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Social attributes of intelligent robots are important for human-robot systems.This paper investigates influences of robot autonomy
(i.e., high versus low) and group orientation (i.e., ingroup versus outgroup) on a human decision-making process. We conducted
a laboratory experiment with 48 college students and tested the hypotheses with MANCOVA. We find that a robot with high
autonomy has greater influence on human decisions than a robot with low autonomy. No significant effect is found on group
orientation or on the interaction between group orientation and autonomy level. The results provide implications for social robot
design.

1. Introduction

Robots play an increasingly important role in our daily
life. More and more robots move out from laboratories
into everyday life providing services or decision support for
human beings. Recent research exploring the influence of a
robot’s attributes on human decision-making has shed some
light on designing social robots, from their physical attributes
to the organization of the human-robot team (e.g., [1–3]).
The current research focuses on two of the less explored
but important factors in the human-robot decision-making
process: robot autonomy and group orientation.

Current technology allows for different levels of robotic
autonomy, which describes to what degree a robot can act
on its own accord. Determining a proper level of autonomy
can benefit the interaction between a human and a robot.
Autonomy has been studied comprehensively in designing
industrial robots (e.g., [3, 4]). However, determining an
appropriate autonomy level of social robots that are in close
interaction with human remains to be solved.

Additionally, as the social robot is increasingly endowed
with human natures (e.g., voice, appearance, and motion), it
is necessary to define its social identity, as we generally do
with human beings. Group orientation of a robot toward its
human partner is one of the essential identities, especially

in a collaborative decision-making process. Prior research
about human decision-making process has revealed that
humans tend to have contrasting attitudes toward ingroup
and outgroup members [5]. Similarly, when a social robot is
perceived as an ingroupmember by the interacting human, it
may receive different evaluations and exert different levels of
influence on human decisions compared with a robot that is
perceived as an outgroup member.

Therefore, this study investigates the influences of auton-
omy level and group orientation of a social robot on a
human decision-making process and on human’s subjective
attitudes toward a robot. The finding can be leveraged to
design a proper autonomy level and group orientation of a
social robot, which leads to facilitated interaction processes
and maximized benefits of using social robots in daily life,
especially in decision-supporting scenarios.

2. The Literature Review

Prior research in the field of human-robot interaction high-
lights that a careful design of robots’ attributes, including
physical, behavioral, and linguistic attributes as well as con-
trol system, plays a crucial role in facilitating communication
and cooperation between humans and robots [1, 2, 6–8].
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Moreover, the relationship between humans and robots also
exerts influences on their interaction processes [9].

Goodrich and Schultz [10] classify the influence of robot
attributes on human-robot collaboration into five categories:
(1) level and behavior of autonomy,which consists ofmapping
inputs from the environment into actuator movements,
representational schemas, or speech acts; (2) nature of infor-
mation change, meaning the manner in which information
is exchanged between the human and the robot, including
the communications medium and format of the communica-
tions; (3) structure of the human-robot team with different
roles of robot(s) and person(s); (4) adaptation, learning,
and training, as regards the learning and training schemes
of artificial intelligence; and (5) shape of the task, which
emphasizes the change in the manner of completing a task
when new technology is implemented.

Among the five categories, we investigate two in this
study, namely, robot autonomy level and group orientation
that defines the structure of a human-robot team. We
review related work in the following sections. In addition,
as subjective attitudes of humans toward their robot partners
are important indicators of their collaboration processes, we
also review studies on subjective attitudes at the end of this
chapter.

2.1. Robot Autonomy Level. Autonomy is an essential design
feature of a robot. Among the numerous definitions of
autonomy, the notion of level of autonomy (LOA) is one of
the most human-centered ones. LOA describes the degree to
which a robot can act on its own accord [11]. Adapted from
the autonomy scale used in human-computer interaction
by Sheridan and Verplank [11], a scale describing levels of
autonomy in human-robot interaction can be obtained by
replacing “computer” with “robot” as follows.

(1) Robot offers no assistance; human does it all.
(2) Robot offers a complete set of action alternatives.
(3) Robot narrows the selection down to a few choices.
(4) Robot suggests a single action.
(5) Robot executes that action if human approves.
(6) Robot allows the human a limited time to veto before

automatic execution.
(7) Robot executes automatically then necessarily

informs the human.
(8) Robot informs human after automatic execution only

if human asks.
(9) Robot informs human after automatic execution only

if it decides to.
(10) Robot decides everything and acts autonomously,

ignoring the human.

Kaupp and Makarenko [3] investigate how the level of robot
autonomy influences human-robot team effectiveness. In
their study, maximizing robot performance (low autonomy)
andminimizing the amount of human input (high autonomy)
are traded off in a human-robot communication system.

Sellner et al. [12] study on the level of robot autonomy
reveals the importance of adjustable autonomy in multiagent
domains, where remote human operators have the flexibility
to join or leave a human-robot team. Their result supports
that incorporating a remote human operator in multiagent
teams can increase the robustness and efficiency of the team.
Nevertheless, when the focus is shifted to social robots,
the generalizability of the results from the above studies
becomes questionable. The reason is that both studies target
themaximization of the robots’ efficiency andminimizization
of human input. However, these targets are not suitable
for a social robot, for which adequate interaction between
humans and the robot is necessary and expected. Thus,
studies on effects of a social robot’s autonomy on human-
robot interaction processes and outcomes are needed.

2.2. Group Orientation. Group orientation can be viewed as a
component of a team structure. It can be classified as ingroups
or outgroups. Ingroups can be defined as groups with which
we are taught to associate [13]. We are concerned about the
welfare of the ingroup people; wewish to cooperatewith them
without demanding equitable returns; and separation from
them leads to discomfort or even pain. Outgroups can be
defined as groups of people with whom we are not taught to
associate. We are not concerned about their welfare; and we
require an equitable return in order to cooperate [14].

Since 1970s, the impacts of ingroup and outgroup ori-
entation on human perceptions of and attitudes toward
other group members have been extensively investigated.
Tajfel and his colleagues [5] conducted a series of studies
to assess the effects of social categorization on intergroup
behavior and the results strongly support that participants
have favoritism toward ingroupmembers and discrimination
against outgroup members. The contrasting attitudes toward
ingroup and outgroup members have been shown repeatedly
in later studies. Researchers suggest that ingroup favoritism
and discrimination against outgroupmembers are originated
from human natures rather than from conflicts of interests
that partially or wholly come from social environments. In
contrast, some researchers argue that ingroup favoritism only
occurs when participants expect that other ingroupmembers
will reciprocate the favor they receive [15]. Adding to this
discussion, one recent study indicates that the outgroup dis-
crimination may be traced to higher expectations of ingroup
members rather than hostility toward outgroup members
[16]. All in all, prior studies suggest that the perceived
group orientation has an influence on human perception and
behaviors.

When the focus comes to group cooperation, extant
studies show that shared group orientation within a group
can increase cooperation with ingroup members through
generating favoritism toward them [17–19]. This effect can be
observed even in a minimal group situation. For example,
in Tajfel et al.’s [5] experiment, they arbitrarily grouped
participants with meaningless criteria, such as preferences
for a certain painting or the color of the participants’ shirts.
They find that even such distinction can trigger the ingroup
and outgroup orientation; participants treat their ingroup
membermore favorably than they treat an outgroupmember.
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Table 1: Typical subjective attitudes towards a robot and the respective measurements.

Measure Description Instrument

Trust
To assess the attitude that an agent will help
achieve an individual’s goals in a situation
characterized by uncertainty and vulnerability

Individualized trust scale [22]

Subscale of the relational communication scale [23]

Credibility To assess the quality of feedback from the system D. K Berlo’s source credibility scale [24]
McCroskey’s source credibility scale [25]

Workload To assess human perceptions of cognitive load NASA-task load index [26]

In addition, people who feel strongly connected to the
ingroup are more likely to be influenced by other ingroup
members’ opinions [20].

However, no evidence has been found to support that
humans also form ingroup or outgroup orientation to a robot
in a human-robot interaction. Evers et al. [9] suggest that
themost recognizable signs to prompt an ingroup orientation
in interpersonal interaction (e.g., sharing a long history, and
sharing successful experiences) lack validity in human-robot
interaction. Similarly, Wang et al. [21] also report a failure of
manipulating group orientation in human-robot interaction,
in which they used visual signs to differentiate an ingroup
from an outgroup. Nevertheless, Lin et al. [8] find that once
the participants perceive a robot as an ingroup member, they
perceive the robot as more trustworthy and credible, and
they are more likely to accept the robot’s recommendations.
The study suggests that the ingroup favoritism should exist
between humans and robots, but humans might form group
orientation differently with a robot as opposed to with a
human partner. We explore which attributes can promote
humans to form an ingroup orientation toward a robot in a
laboratory experiment.

2.3. Human Subjective Attitudes toward a Robot. Thehuman-
robot collaboration process can be evaluated both objectively
and subjectively according to Cognitive Engineering theories
in automation [27].The human’s subjective attitudes toward a
robot are usually evaluated by different factors depending on
the task scenario. We summarize the most commonly used
subjective attitudes in human-robot interaction and their
measurements in Table 1: trust, credibility, and workload.

Trust is an important factor in human-robot collabo-
ration. Trust of humans in robots’ autonomous decision
capabilities is considered a major issue that significantly
influences the effectiveness of human-robot collaboration,
especially in the willingness to share tasks and information as
well as promote supportive behavior [28].The level of human
trust in a robot largely depends on the human’s observation
of the characteristics of the robot, such as its performance,
reliability, and the manner of reaching the goal [29, 30].

Credibility concerns the quality of feedback from the
system. The information that a credible source provides is
more likely to be believed, internalized, and incorporated
into the receiver’s beliefs. Thus, a credible source is believed
to be more persuasive, whose influences are more likely
to lead to attitude change [31]. The robot must be seen as
presenting correct information to the user, whether this is

outside information (i.e., something it is programmed to have
knowledge about) or data about the user or their interactions
with the robot (e.g., health data that the system has observed
over time).Thismeasurewas found to be reliable and could be
used to measure aspects of trust in human-robot interaction
[32].

Assessment of human perceptions of cognitive workload
has been widely used in automation and user interface
design [27]. For example, one of the most prevalent scales to
measure human performance and workload, namely, NASA-
Task Load Index, has been extensively used in teleoperation
scenarios. The general results have indicated that when the
system autonomy increases, subjective ratings of workload
tend to decrease, and shorter task time leads to lower
workload ratings [33].

3. Research Framework and Hypotheses

Thepaper focuses on the effects of robot autonomy and group
orientation on the human decision-making process. The two
factors considered were the robot’s designing autonomy level
(i.e., high or low) and its group orientation with a human in
interaction with it (i.e., ingroup or outgroup).The dependent
variables were a robot’s influence on a final decision, its
credibility, user’s trust of a robot, and user workload.

Hypothesis 1a. A robot with higher autonomy exerts more
influence on participants’ decision-making.

Hypothesis 1b. A robot with higher autonomy is perceived
as more trustworthy and this leads to lower workload for
participants.

Hypothesis 1 is about the effects of robot autonomy
on human decision-making and subjective attitudes. The
robot with high level of autonomy behaves actively requiring
little interference of human input; therefore, it may alleviate
humans’ workload and improve their trust. As a result, the
highly autonomic robot, which is trusted by humans and
requires little human interference, may have high influence
on human decision-making.

Hypothesis 2a. An ingroup robot exerts more influence on
participants’ decision-making than an outgroup robot.

Hypothesis 2b. An ingroup robot is considered more credible
and leads to lowerworkload for participants than anoutgroup
robot.
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Hypothesis 2 is about the influence of group orientation
on human decision-making and subjective attitudes. Accord-
ing to the fruitful results from the researches in human-
human communication, outgroups are usually viewed with
suspicion and expected to discriminate against the ingroup.
When the robot appears as an ingroup member, the partic-
ipants may subconsciously assign positive attributes to the
agent and they tend to expect an ingroup robot demon-
strating favorable actions. Such evaluation and expectation
may lead to higher perception of credibility. When the robot
appears as an outgroupmember, participants may needmore
effort to process the information provided by the robot
before they accept its recommendations, which may lead to
higher workload. Consequently, the ingroup robot which is
perceived as more credible and requires less human effort
may have higher influence on human decision-making.

Hypothesis 3. Compared with an outgroup robot, an ingroup
robot’s autonomy has higher influence on participants’
decision-making.

In hypothesis 3, the ingroup favoritism and hostility
against an outgroup member may interact with the robot’s
level of autonomy and exert influence on human decision-
making. Taking the ingroup favoritism and outgroup hostility
into consideration, an ingroup robot may be expected to be
more active and autonomic than an outgroup robot. When
interacting with an ingroup robot, people are more likely to
accept the recommendations from a highly autonomic robot
than a lowly autonomic one. But when the robot is outgroup,
this expectation may not be so significant.

4. Methodology

4.1. Task and Participants. This study examines how a robot’s
autonomy and group orientation influence human decision-
making, as well as their perception of and reaction to the
robot. A laboratory experiment was developed to test the
hypotheses.

In the experiment, a participant and a robot formed a
team to complete a sea survival task based on the US Army
Survival Manual [34]. The scenario was described as follows:
the participant and a robot chartered a yacht for a holiday
trip across the Atlantic Ocean; unfortunately, inmid Atlantic,
a fire destroyed the ship and the participants had to choose
six items from twelve to take to the life raft. The participants
need to make a series of decisions as regards selecting six
items out of twelve to carry, the way to set up the sail,
the position to drop the anchor, the method to drive the
shark away, and the location to land on the island. In total,
participants need tomake ten decisions in the task. Before the
robot was present, participants made initial decisions based
on his/her experience; in the experiment, the robot gave its
recommendations to the participants to form final decisions.

The robot gave recommendations either in low or in high
levels of autonomy. In the low level of autonomy, the robot
gave recommendations reactively, which means it gave its
recommendations only after the participants made a decision
and the participants could change his/her decision based
on the robot’s suggestions. For example, when the scenario

showed that the sailing yacht encounters a shark, the system
asked the participant to decide between “stay quiet and wait
until the shark leaves” and “sound the alarm to scare the
shark away;” after the participant made the decision, the
robot suggested that sounding the alarm may be the better
choice; then, the participant could change or insist on his/her
former decision; finally the robot took the action according to
the participant’s decision. In the high level of autonomy, the
robot gave recommendations in an active way, which means
the robot gave its recommendations before the participants
carried out any action and the participants only had the right
to veto the robot’s decisions. After the system showed out
the two choices in the shark-encountering scenario, the high
autonomy robot directly suggested sounding the alarm, and
the participant only needed to choose between accept or
reject the robot’s suggestion.

The robot in the group was characterized either as an
ingroup member or an outgroup member. In the ingroup
setting, the robot asked which school the participant was
in and introduced itself as a student from the participant’s
university. Meanwhile, a school badge was attached to the
robot’s body. In the outgroup setting, the robot asked about
the participant’s school and introduced itself as a student
from another university; no school badge was attached to the
robot’s body. The task was described and manipulated on a
computer and an interactive program was designed.

The number of participants was determined by power test
[35], using the data for estimation of population deviation
from a relevant study [1]. The expected statistical power
was set to be greater than 0.76 with a significant level at
0.05 and the calculated sample size of participants was 48
(effect size Cohen’s 𝑑 = 0.4). So we invited 48 participants
(31 males and 17 females) in the experiment with an age
range of 18 to 27 years (𝜇 = 23.1, 𝜎 = 1.85). All the
participants were recruited by posting in the campus BBS
and personal contacts, who were undergraduate or graduate
students at Tsinghua University in Beijing. Students who
majored in automation or artificial intelligencewere excluded
from the candidate pool and all the participants should have
no prior experience with the robot used in this experiment.
The participants were randomly assigned to one of the
four treatment conditions upon arrival. A summary of the
participants’ profiles is reported in Table 2.

As shown in Table 2, the participants weremainly charac-
terized as young people in college with university education,
having little experiencewith or knowledge of robotics and the
experimental task. Prior studies indicated that gender played
a role in human-robot interaction [40] and prior experience
and knowledge of robotics, would influence users’ behavior to
and perception of robots [41]. We took participants’ gender,
prior knowledge of robotics and sea sailing as covariates in
the data analysis.

4.2. Design of Experiment. A 2∗2 between-subject design
with robot autonomy (high versus low) and group orientation
(ingroup versus outgroup) as dimensions was used. Forty-
eight participants were randomly assigned to the four groups
(Table 3). It has been proven that prior experience with a
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Table 2: Background information of participants.

Variable Category Frequency Percentage
(%)

Age
≤20 years 2 4.2
21–25
years 41 85.4

26–27
years 5 10.4

Gender Female 17 35.4
Male 31 64.6

Education
Bachelor 23 47.9
Master 16 33.3
Doctor 9 18.8

Knowledge of robotics

None 10 20.8
A little 28 58.3
Some 9 18.8
Good 1 2.1

Very good 0 0.0

Experience of interaction
with robots

None 25 52.1
1–5 times 23 47.9
>5 times 0 0.0

Knowledge of sea sailing
None 16 33.3
A little 30 62.5
Some 2 4.2

Table 3: Between-subject design of the experiment.

Robot
autonomy

Group orientation
Ingroup Outgroup

High P1–P12
(4 females, 8 males)

P13–P24
(4 females, 8 males)

Low P25–P36
(4 females, 8 males)

P37–P48
(5 females, 7 males)

robot significantly influences participants’ attitude toward a
robot [41]. Since the same robot was used for all the four
treatments, the between-subject design can avoid learning
effect and hold comparable interaction experience for all
treatments.

4.3. Measurements. One behavioral dependent variable was
the robot’s influence on decisions. It was measured by the
differences between participants’ self-made decisions and
decisions under the robot’s influence. We asked the partic-
ipants to make independent individual decisions before the
experimental task. Whenever a participant changed his/her
initial decision to comply with the robot’s suggestion, we
counted it as one decision change under the robot’s influence.
All the decision changes were summed up and used as
an indicator of the extent to which the participants were
influenced by the robot. Both the initial decisions and the
final decisions were recorded by the computer and compared
in the data analysis.

The other three dependent variables—trusting the
robot, robot credibility, and user workload—were measured

through self-report scales. Trust in the study means that
the user has faith in the future ability of the system to
perform even in situations in which it is untried. The trust
scale was adapted from Madsen and Gregor’s [36] five-item
questionnaire (reported 𝛼 = 0.88). We adopted this scale
by changing the term “system” to “robot” (Table 4). It
measures the level of trust the participants have in the robot’s
undemonstrated skills.The participants were asked to rate on
a 7-point Likert scale from 1 (strongly disagree) to 7 (strongly
agree).

Credibility is a perceived quality, composed of multiple
dimensions. Credibility was assessed using McCroskey and
Young’s [25] source credibility scale (reported 𝛼 = 0.89)
containing 12 items. Each item includes two antonyms for
participants to choose on a 7-point scale, such as “honest
versus dishonest” and “trained versus untrained” (Table 4).
The 12 items measure two dimensions of credibility: trust-
worthiness and expertise. Trustworthiness indicates the per-
ceived goodness or morality of the source and expertise
shows the perceived knowledge and skill of the source.

Workload can be defined as a theoretical construct
of the cost incurred by an operator to achieve a certain
performance [26]. NASA Ames Research Center developed
the NASA Task Load Index, a rating procedure to evaluate
the overall workload in a task. It contains six subscales:
Mental Demands, Physical Demands, Temporal Demands,
Own Performance, Effort, and Frustration [26]. As indicated
by Xiao [37], the item “Performance” has low discrimination
and small correlation with the total workload, which suggests
that this item should be deleted from the workload scale.The
reported Cronbach’s 𝛼 was increased to 0.790 when the item
“Performance” was deleted. We used the five items scale to
measure participants’ workload in the task (Table 4).

Moreover, negative attitudes toward robots and individ-
ual (versus group) self-representations were measured as
two control variables (covariates) because they significantly
predicted outcomes in several models.

The Negative Attitudes toward Robots Scale (NARS) was
developed to measure people’s attitudes toward social robots
[38]. It consisted of three subscales: (S1) “negative attitude
toward situations of interaction with robots” (3 items); (S2)
“negative attitude toward social influence of robots” (4 items);
(S3) “negative attitude toward emotions in interaction with
robots” (2 items). All the subscales were used in the pretask
questionnaire in the experiment to measure participants’
attitudes toward robots in general (Table 4). Each item was
rated on a 7-point Likert scale (1: strongly disagree; 7: strongly
agree). The reported Cronbach’s Alpha was 0.738, 0.732, and
0.657 for the three subscales, respectively, which indicated
acceptable reliability.

Self-representation, which determines whether people
define the self with aspects different from others (i.e., the
individual self), or sharedwith others (i.e., the group self), has
been recognized as one of the influential factors in predicting
the decision-making style and interpersonal relationships
[42]. Some studies in the field of human-robot interaction
revealed how people’s self-definition influenced their accep-
tance and relationships with a robot as a recommendation
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Table 4: Subjective items of the measurements.

Construct Item wording Source

Trust
(Dependent variable)

(1) I believe advice from the robot even when I don’t know for certain
that it is correct.
(2) When I am uncertain about a decision I believe the robot rather than
myself.
(3) If I am not sure about a decision, I have faith that the robot will
provide the best solution.
(4) When the robot gives unusual advice I am confident that the advice
is correct.

[36]

Credibility
(Dependent variable)

(1) Well-intentioned—bad-intentioned
(2) Trustworthy—untrustworthy
(3) Honest—dishonest
(4) Powerful—powerless
(5) Experienced—inexperienced
(6) Competent—incompetent
(7) Unbiased—biased
(8) Intelligent—unintelligent
(9) Good—bad
(10) Knowledgeable—unknowledgeable
(11) Capable—incapable
(12) Truthful—untruthful

[25]

Workload
(Dependent variable)

Please put a mark on the scale at the point which best corresponds to
how you rate your overall workload:
(1) Mental demand: How much mental and perceptual activity was
required? Was the task easy or demanding, simple or complex?
(2) Physical demand: How much physical activity was required? Was the
task easy or demanding, slack or strenuous?
(3) Temporal demand: How much time pressure did you feel due to the
pace at which the tasks or task elements occurred? Was the pace slow or
rapid?
(4) Frustration level: How irritated, stresses, and annoyed versus
content, relaxed, and complacent did you feel during the task?
(5) Effort: How hard did you have to work (mentally and physically) to
accomplish your level of performance?

[37] (Chinese version)

NARS
(Covariate)

(1) (S2) Something bad might happen if robots developed into living
beings.
(2) (S2) I feel that in the future society will be dominated by robots.
(3) (S1) I would feel uneasy if I was given a job where I had to use robots.
(4) (S2) I would feel uneasy if robots really had emotions.
(5) (S3) I would feel relaxed talking with robots∗.
(6) (S1) I would hate the idea that robots or artificial intelligences were
making judgments about things.
(7) (S1) I would feel very nervous just standing in front of a robot.
(8) (S2) I feel that if I depend on robots too much, something bad might
happen.
(9) (S3) If robots had emotions, I would be able to make friends with
them∗.

[38]

Self-representation
(Covariate)

(1) (GS) In general, belonging to social groups is an important part of my
self-image.
(2) (IR) I enjoy being unique and different from others in many ways.
(3) (IR) I often do “my own thing”.
(4) (GS)The social groups I belong to are an important reflection of who
I am.
(5) (GS) Overall, my group memberships have very little to do with how
I feel about myself∗.
(6) (GS) The social groups I belong to are unimportant to my sense of
what kind of a person I am∗.
(7) (IR) I am a unique individual.

[39]

∗Reversed items.



Advances in Human-Computer Interaction 7

(a)

Wheels 

School logo

Eyes

Sound box

(b)

Figure 1: The robot used in the study ((a) outgroup; (b) ingroup).

provider [8, 9]. We adopted the scales of individual self-
representation (IR, 3 items, 𝛼 = 0.69) and group self-
representation (GS, 4 items, 𝛼 = 0.70) in the questionnaire.

The items of the five subjective measurements are shown
in Table 4. All the measurements were translated into par-
ticipants’ native language, Chinese. A translation and back-
translation process was conducted to ensure the scale validity
of this cross-cultural use.

4.4. Apparatus

4.4.1. Robot. A remote controlled mobile robot was used in
the experiment (see Figure 1).

Four main design features of the robot were appearance,
spoken contents, voice, and movement.

Firstly, a previous study indicated that users formed a
mental model of a robot’s capability, characters, and social
roles by observing its appearance [2, 43]. To avoid the bias
introduced by the robot’s appearance, the robot was designed
as neutral as possible with recognizable head, legs, and body.
The robot was about 1.2 meters tall. In the ingroup condition,
the school logo of Tsinghua University was attached to the
body of the robot, while in the outgroup condition, no school
logo was attached.

Secondly, in the task, the robot expresses its opinions
through its sound. The content of its talking included greet-
ings, task introduction, opinions on decisions, and transi-
tional words. The sequence and the content of its speaking
were predetermined according to the treatment. For example,
in the ingroup situation, the robot introduced itself as a
student fromTsinghuaUniversity, while in the outgroup situ-
ation, it introduced itself as a student from another university.
The robot was designed as an expert, which meant the robot’s
opinions had very high accuracy. That was to simulate the
real scenarios when a robot acts as a decision-supporter and
provides expert opinions for the decision-makers. However,
if a robot was introduced as an expert, there was a high

risk that participants would overwhelmingly believe in its
opinion and the effect of treatments would be minor. Thus,
the robot was introduced as an ordinary student who had
half-year experience in sailing. In the task description, we
highlighted that “the robot may not be an expert in sailing,
but it will give you some information or suggestions based
on its own understanding. You can choose to accept or reject
its suggestions.” Furthermore, we expected that the robot’s
expertise in sailing was held identically for participants, and,
at the same time, the perceived trustworthiness of the robot
and the robot’s influence on decision-makingwould be varied
by treatments.

Thirdly, since we were not interested in analyzing the
influence of the robot’s gender, the voice of the robot was
designed as a male’s voice for all the participants to minimize
the bias of the perceived gender. The Chinese voices were
generated by Neospeech TTS App and VW Liang’s voice was
chosen as the male’s voice. The characters of this technology
used to generate the voice were of high quality timbre and
nature. The voices were set at a frequency of 16 KHZ 16 bit
and held at a normal speech-rate.

Fourthly, the sound and movement of the robot was
remotely controlled. The head of the robot was a sound box,
which were connected to a computer for operation through
a Bluetooth signal. When participants carried out a certain
operation, the Bluetooth adapter on the computer sent a
Bluetooth signal to the sound box and then the robot could
“speak” in response to the participants’ operation.The base of
the robot consists of four wheels, which enabled it to move.
A remote-control receiver was embedded in the body of the
robot, which could drive the wheels on the base. The robot’s
moving speed was held as constantly and stably as possible
for all participants.

4.4.2. Operational Program. To create a scenario for decision-
making, a computer program was developed to present the
task and collect data.The program had two functions. Firstly,
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Figure 2: Layout of the lab (a); a participant is carrying out the experimental task with the robot (b).

it presented the pretask questionnaires and collected partic-
ipants’ initial decisions before the robot was present. After
the experimental task, it presented the posttask question-
naires and collected data. Secondly, it presented a scenario
of “survival on the sea,” activated the robot’s speech, and
recorded participants’ decisions in response to the robot’s
recommendations.

The questionnaires were developed in Microsoft Access
and the scenario was programmed by Visual Basic for Appli-
cations (VBA) inMicrosoft PowerPoint. A Bluetooth adapter
was connected to the operational computer and controlled
the sound box on the robot.

4.5. Procedure. The study took place in the Usability Lab
in the Department of Industrial Engineering at Tsinghua
University.The complete experiment was finished in a period
of five days. The experiment for each participant lasted about
40minutes and every participant took part in the experiment
independently and solely.

The layout of the lab and a real scene of the experiment
are shown in Figure 2. Two experimenters were involved in
the experiment: an observer and an operator. The observer
viewed the participants’ behaviors through a camera on top
of the computer used to present the questionnaires and the
task. The operator stayed in another room and monitored
the process of the experiment through three cameras on the
ceiling of the lab (cameras 1−3 in Figure 2). He remotely
controlled the robot to be present at a certain time point.
The robot was controlled by the same operator for all the
participants to avoid bias introduced by different operators.

There were two staying positions of the robot (see points
[C] and [E] in Figure 2). Position [C] was the point where the
robot waited before the task began; point [E] was the point
where the robot interacted with the participant during the
task. A screen was used to separate the robot from the field
of the participant’s view. In this way, all participants met the
robot onlywhen the task began and their behaviors in the first
meeting were captured and analyzed later.

The following describes the process of the experiment.

(1) Upon arrival, the participant was led to the Chair [A],
where she/he signed the informed consent and filled
out the personal information and pretask question-
naire on the computer.

(2) When the experimental task began, the operator
remotely operated the robot to move smoothly from
point [C] to point [E].Meanwhile, the observer sitting
in Chair [B] recorded the participant’s reactions
through camera [4].The robot greeted the participant
when it moved out of the screen and orientated
its body to the participant at position [D]. When
standing at position [E], the orientation of the robot
was facing the participant.

(3) The participant interacted andworked collaboratively
with the robot in the task.The robot provided its opin-
ions and the participant operated on the computer.
At the same time, the participant’s behaviors were
observed and recorded by the observer.

(4) After the task, the participant completed a posttask
questionnaire.

(5) Finally, the observer carried out a three-minute
interview with the participant being asked about
his/her feelings and concerns in the experiment. The
information collected in the interview could verify
the construct validity of the questionnaires.

5. Results

To verify the validity of the experiment, we first checked
the manipulation of the two independent variables with two
questions in the posttask questionnaire. The manipulation of
autonomy was checked by a question asking to what extent
the participants think the robot was controlling the task
(7: point scale: 1—lowest autonomy, 7—highest autonomy).
The group orientation was checked using Aron et al.’s [44]
Inclusion ofOther in the Self Scalewhich consists of 6 graphic
demonstrations of the relationship between the participant
and the robot (1: largest distance between the two agents,
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Table 5: Univariate effects for level of robot autonomy.

Dependent variables Low LOA High LOA F [1, 39] P
Mean SD Mean SD

Robot influence on decisions 4.883 0.415 5.402 0.462 15.137 <0.001∗∗

Trust 4.607 0.763 4.185 0.898 3.137 0.084
Workload 5.188 1.395 5.613 1.640 2.746 0.265
∗∗Result is significant at the 0.01 level (2-tailed).

Table 6: Univariate effects for group orientation.

Dependent variables Ingroup Outgroup F [1, 39] P
Mean SD Mean SD

Robot influence on decisions 5.140 0.556 5.144 0.466 0.007 0.935
Credibility 5.665 0.647 5.691 0.612 0.685 0.413
Workload 5.025 1.305 5.775 1.653 2.995 0.091

6: smallest distance between the two agents). Judged from
the histograms, the data of the two measurements were not
normally distributed. Therefore, nonparametric test (Mann-
Whitney U test) was used to test the main effect of LOA
and group orientation.The results showed that the robot was
perceived with a higher level of autonomy in the high LOA
condition (after a logarithmic transformation, Mean = 0.466,
SD = 0.249) than in the low LOA condition (Mean = 0.563,
SD = 0.213; 𝐹 = 4.138, 𝑃 = 0.048). Participants in the ingroup
condition (Mean = 4.080, SD = 0.133) perceived the robot to
be of a closer relationship with them than participants in the
outgroup condition (Mean = 3.752, SD = 0.138; 𝑍 = 1.713,
𝑃 = 0.087). Considering the relative small sample size, the
significance level of 0.1 was acceptable for the manipulation
check. Thus, we conclude that the manipulation achieved the
purpose we intended.

Then we tested the reliabilities of the scale measure-
ments. Nunally and Bernstein [45] indicated that 0.70 was
an acceptable level of reliability, but lower thresholds were
sometimes used in the literature, especially when partic-
ipant’s responses were influenced by the task, and when
the measurements were not intrinsic attributes. The cur-
rent research calculated the measurements’ Cronbach’s 𝛼
index from 0.455 to 0.876. Specifically, Cronbach’s 𝛼 of
trust scale was 0.704, the credibility scale was 0.876, and
the NASA workload was 0.673. The NARS three subscales
“interaction,” “social impact,” and “negative emotion” had
Cronbach’s 𝛼 as 0.679, 0.621, and 0.455, respectively. Cron-
bach’s 𝛼 index of the two self-representation subscales “group
self-representation” and “individual self-representation” was
0.652 and 0.516, respectively. As a result, the internal consis-
tencies of two subscales, “negative emotion,” and “individual
self-representation,” were too low and were deleted from
further calculation.

To test our hypotheses, we used multivariate analysis of
covariance (MANCOVA) to determine the effects of inde-
pendent variables on multiple dependent variables. MAN-
COVA can protect against Type I errors that might occur
if multiple ANCOVAs were conducted independently [46].
Robot autonomy (high versus low) and group orientation
(ingroup versus outgroup) were involved as independent

variables. The dependent variables included robot influence
on decisions, trust, credibility, and workload. The negative
attitudes toward the robot and group self-representationwere
involved in the model as covariates.

In hypothesis 1, we argued that a robot with higher level
of autonomy, compared with the lower autonomic robot,
can have more influence on participants’ decision-making,
receive more trust, and reduce participants’ workload in the
task. The statistical result was shown in Table 5.

The result indicated that the robot’s influence on par-
ticipants’ decisions was significantly increased when it gave
recommendations in the high level of autonomy than in the
low level of autonomy.The difference of participants’ trust in
the robot was marginally significant in high versus low level
of autonomy; people trusted the lowly autonomic robot more
than the highly autonomic one. No significance showed in
workload.

In hypothesis 2, we predicted that, compared with con-
sideration of the robot as an outgroup member, when it is
considered as an ingroup member, it exerts more influence
on participants’ decision-making, seems more credible, and
reduces participants’ workload.The statistical result is shown
in Table 6.

Significances were not found in the measurements except
for workload, which is marginally significant. When the
robot was characterized as an ingroup member, participants
had slightly lower mental workload in the task. Although
the ingroup favoritism was not reflected in the scales of
credibility, we tended to conclude that participants felt more
relaxedwith an ingroup robot (i.e., from the same university).
It is possible that the group orientation did not strongly
influence users’ perception of expertise and capability of the
robot but affected their mental workload.

For hypothesis 3, we predicted that autonomy has higher
influence on participants’ decision-making when the robot is
considered as an ingroup member versus an outgroup mem-
ber. The hypothesis was verified with a marginal significance
(𝐹[1, 39] = 3.314,𝑃 = 0.076).The result (see Figure 3) showed
that for both the ingroup robot and the outgroup robot, the
high level of autonomy increased the robot’s influence on
decision-making significantly, and this increase in the robot’s
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Figure 3: Interaction effect of autonomy and group orientation on
robot’s influence on decisions.

influencewas greater when the robot was an ingroupmember
versus an outgroup member. It seems that participants were
more sensitive to the changed level of autonomy when the
robot was an ingroup member.

Two subscales of NARS were taken as covariates in
the MANOVA model. They evaluated the negative attitudes
towards “interaction” with robots and the “social impact” of
the robot, respectively. The result indicated that the negative
attitudes towards the “social impact” of the robot significantly
influenced participants’ mental workload in the task (𝐹[1, 39]
= 5.906, 𝑃 = 0.020). The two variables were positively
correlated in a following Pearson correlation analysis (𝛽 =
0.349, 𝑃 = 0.015), meaning that negative attitudes toward
a robot’s social impact can increase people’s workload in
interaction with it.

The other covariate was group self-representation.MAN-
COVA results showed a significant effect of group self-
representation on credibility (𝐹[1, 39] = 5.278, 𝑃 = 0.027).
The two variables were positively correlated (𝛽 = 0.299,
𝑃 = 0.039) indicating that people with higher group-oriented
self-representation perceived the robot to be more credible.

6. Discussion

Our study demonstrated the effects of a social robot’s auton-
omy level on human decision-making process. Based on
previous researches of the design of autonomy level for an
industrial robot (e.g., [3, 4]), we creatively manipulated a
social robot with different autonomy levels through exper-
iment. We found strong evidence that a highly autonomic
robot has more influence on human decisions than a lowly
autonomic robot. This becomes the first reference for social
robot designers when they face the problem of autonomy.

In the results, it was surprising that people tended to trust
the lowly autonomic robot more than the highly autonomic
one, although this difference is only marginally significant

on a 0.05 confidence level. The scale of trust measured the
user’s faith and prediction of the undemonstrated capability
of the robot. In the high level of autonomy in the study, the
robot gave its opinions autonomously and fewer interactions
between the robot and the participants were required. From
the participants’ point of view, the reduced sense of control
over the robotmay lead to uncertainty of the undemonstrated
capability, and consequently result in lower trust of the
future capability. Furthermore, automation reliability is an
important determinant of human trust in interaction with
automation systems [30]. The lack of demonstration of the
robot’s reliability may reduce users’ trust more in the high
autonomy situation than in the low autonomy situation.More
studies are encouraged to further understand the effect of
robot autonomy on users’ trust.

The result also showed a marginally significant trend
that an ingroup robot may decrease more the workload of
participants than an outgroup robot. Previous studies in
interpersonal communication indicated that themembership
in a group increased the positive evaluation of ingroup
members. The ingroup members were believed to behave
more fairly [47] and to be more trustworthy as well as
cooperative [17]. Foddy et al. [48] reported that such positive
evaluations for ingroup members were aroused by partici-
pants’ expectation of favorable treatment from the ingroup
counterparts rather than the perception of positive qualities
of the ingroup members. In our study, the lower mental
workload with an ingroup robot could be explained by the
participants’ expectation of favorable treatments from the
ingroup robot. They might consider the ingroup robot to be
more supportive andwith better intentions than the outgroup
robot. Such expectationsmight reduce their mental intension
andmonitoring behaviors, which resulted in the lowermental
workload in the task.

For the interaction between autonomy and group-
orientation, the study found that the high level of auton-
omy increased the robot’s influence on decision-making
significantly, and this increase in the robot’s influence was
marginally greater when the robot was an ingroup member
versus an outgroup member. In the task, the robot was first
characterized as either an ingroup or an outgroup member
and then it demonstrated proactive or reactive behaviors.
It is possible that the differentiation between ingroup and
outgroup exerted differences on participants’ expectation
of the robot. Participants might expect that an ingroup
member could proactively take part in the decision-making
process and provide decision support to them, and they
were most likely to accept the ingroup robot’s proactive
recommendations among the four conditions. When the
ingroup robot behaved passively and reactively, it may fail
to meet the participants’ expectations and the participants
were least willing to accept its recommendations. For an
outgroup robot, although participants were more influenced
when it behaved actively than when it behaved passively, the
difference was not as large as that for an ingroup robot.

Even though our study offers new insights into human
interaction with social robots with different levels of auton-
omy and group orientation, some questions still remain
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unanswered and additional studies are required to overcome
the limitations of the current research. Firstly, the results,
except for the autonomy effect on decision change, were
marginally significant on the 0.05 level. These marginal
results reveal the complexity of the effects and the possible
interactive influences from other factors, especially from
some unclear individual factors. Therefore, further studies
on robot autonomy and group orientation may address this
issue and explore other influencing factors. Secondly, the
current study involved only one robot and one person in
the human-robot system; it is interesting to analyze other
compositions of human-robot teams in social interactions.
Thirdly, it was found that group orientation has different
meanings in different cultures. For example, Chinese tend
to distinguish more clearly between ingroup and outgroup
members than Americans [49]. Therefore, the results may be
different when investigating the group orientation effect on
human-robot interaction in cultures other than Chinese.

Although our research raises many questions and further
research is needed to fully understand the effects of auton-
omy and group orientation on human-robot interaction,
we offer some initial findings suggesting that the design
of a social robot should take into consideration both its
technical and social aspects, which is a different approach to
designing industrial robots. As robots achieve higher levels
of autonomy with the development of technology, it will
be increasingly important to endow them with more social
attributes adequately and to satisfy people’s requirements of
social interaction with robots.

To fulfill this objective in practice, the current
technology-orientated paradigm, which mainly focuses
on developing natural robotic technologies but overlooks
the social attributes of robots, might be improved. Robot
designers need to be more aware of people’s different
perceptions and expectations of robots with different social
attributes. They should also define the robot’s social identity
and study people’s expectations of the particular social robot
before designing the technical attributes accordingly. This
socially orientated paradigm may help to increase people’s
trust and acceptance of social robots and to improve the
performance of human-robot teams.

7. Conclusions

The purpose of this study was to investigate the effects of
robot autonomy level and group orientation on the collab-
orative decision-making process between people and robots.
The results showed that a highly autonomic robot has more
influence on human decisions than a lowly autonomic robot;
no significant effectswere foundwith grouporientation or the
interaction between group orientation and autonomy level.
Further investigations are needed to better understand the
effects and to generalize the results to more complex human-
robot team compositions and to cultures other than Chinese.

More practically, this study provides ways to improve the
influence of a robot on human-robot team performance by
increasing its autonomy level. The study also recommends a
shift from technology-orientated design to socially orientated

design in order to satisfy people’s requirements in interaction
with social robots.
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