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Abstract

This paper analyzes the impact of a group-size change on contributing incen-
tives in repeated provision of pure public goods. We develop a model in which
the group members interact repeatedly and might be temporarily constrained
to contribute to the public goods production. We show that an increase in the
group size generates two opposite effects – the standard free-riding effect and
the novel large-scale effect, which enhances cooperative incentives. Our re-
sults indicate that the former effect dominates in relatively large groups while
the latter in relatively small groups. We provide therefore a rationale for non-
monotonic group-size effect which is consistent with the previous empirical
and experimental findings.
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1 Introduction

This paper addresses the question of private provision of public goods in a repeated

setting. We consider an environment in which individuals interact repeatedly and

might be temporarily constrained to contribute to the public goods production.

The examples include review posting or file sharing in online communities, open-

source software developing in programmer communities, problem solving in teams,

fundraising in charitable organizations, information sharing in alliances, etc. In these

examples, potential contributors might be temporarily unable to make contributions.

Indeed, online community members might have no files to share, programmers or

team members might lack expertise in solving particular tasks, donors might be

financially constrained in some periods, while allies might have no relevant infor-

mation to reveal. In this paper, we develop a repeated framework with temporarily

constrained group members and provide the conditions under which cooperation can

be sustained. Our main contribution is to analyze the effect of group size on the

members’ incentives to cooperate, which is called the group-size effect.

We consider an infinite-horizon model. A group of selfish infinitely-lived agents

can provide a pure public good in each period. Public goods are assumed not to

accumulate over time. The group members cannot directly communicate or make

monetary transfers. Each group member might become temporarily unable to con-

tribute to the public good production in some periods, which is his private informa-

tion. Moreover, in the baseline model, individual contributions do not accumulate

within one period. Indeed, think of a public good as a piece of information relevant

in that period. If at least one group member reveals it then the public good is pro-

vided in that period. We relax this assumption in Section 5.2 in which a framework

with cumulative contributions is analyzed.

We assume further that the cost of public good production exceeds a contrib-

utor’s private benefit. Thus, cooperation cannot be sustained in a one-shot game.

We consider next a repeated setting in which the group members observe whether

the public goods have been provided or not in the previous periods, and condition

their contributing decisions on this public history. In this setting, cooperative incen-

tives arise from the repeated interactions. While it is not surprising that repeated

interactions can incentivize cooperation, the mechanism at work is novel here. Each

member who is able to make contribution faces the following trade-off. On the one

hand, he has strong incentives to free-ride as contributing is costly and the public

good might as well be provided by other able members. On the other hand, he might
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be constrained in some future periods and thus will have to rely on contributions by

his non-constrained peers. However, those will contribute only if cooperation in the

group has not broken down by then. We show that cooperation can be sustained

in equilibrium if the group members are sufficiently patient. We provide therefore

a rationale for public good contribution in a setting with selfish agents in which

private benefits from making contributions are assumed away.

Our main finding is that of group-size effect. We show that for a range of param-

eter values, cooperative incentives increase with the group size in relatively small

groups but decrease with the group size in relatively large groups. In short, the

group-size effect is positive in small groups but negative in large groups. The intu-

ition for this result is as follows. On the one hand, free-riding incentives strengthen

with an increase in the group size. Each member realizes that in larger groups, it is

more likely that other members are able to contribute to the public good provision

and thus less likely that his own deviation triggers punishment. An increase in the

group size thus has a negative impact on cooperative incentives. On the other hand,

there is also a positive impact since continuation value of cooperation increases with

the group size. Intuitively, the larger the group, the more members will be able to

contribute to the public good production in the future periods. Each member thus

expects the higher future payoffs in the periods in which he becomes constrained

and so has extra incentives to sustain cooperation in the periods in which he faces

no constraints. We call this effect a ”large-scale effect.”

There are therefore two opposite forces at work when the group size changes –

the free-riding effect and the large-scale effect. We show that the aggregate impact

depends on the initial group size. Indeed, the large-scale effect dominates in rela-

tively small groups while the free-riding effect dominates in relatively large groups.

The most intuitive way to see this result is to consider the limit cases of the group

size. In a single-member group, there are no other members to rely on when a mem-

ber faces constraints. As a result, contributing today implies no future benefits to

the member and so he decides to shirk. In an infinitely-large group, no member will

contribute either as his deviation is highly unlikely to trigger punishment. Then,

cooperation has to be sustained in a medium-size group if it can be sustained at all.

Our result about non-monotonic group-size effect is closely related to the issue

of community design. In online communities, for example, interactions and contri-

butions fluctuate considerably over time. Many once active communities suddenly

become quiet. Some of them revive later on while others never recover since then.

This suggests that community members might tacitly apply collective punishment
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after observing a drop in contributions. Moreover, some organizations switch from

open to restricted membership or start charging membership fees once they gain

popularity. One possible explanation for this practice is that communities might

want to limit the group size in order to mitigate the free-riding problem.1 Indeed,

the trade-off between large-scale effect and free-riding effect implies that as a group

size grows, an increase in the probability of having more able members comes at a

cost of lower individual incentives, which does not pay off in relatively large groups.

Our findings contribute to the literature on voluntary provision of pure public

goods which goes back to the pioneering work of Samuelson (1954, 1955) followed by

Olson (1965), Chamberlin (1974), Andreoni (1988), among many others. In these

studies, an individual’s marginal return from public good contribution decreases

with the group size. Each group member therefore tends to shift a larger share of

his resources to private consumption as the group expands. As a result, the free-

riding effect arises such that individual contributions decrease with the group size.2

Although theoretically sound, this reasoning fails to explain significant contribution

rates observed in many real world communities. This is somewhat resolved in the

literature on impure public good provision which assumes that agents gain certain

private benefits or warm glow (such as moral satisfaction and joy of giving) from their

own contribution (see Steinberg 1987, Andreoni 1989, 1990, among many others).

Then, the impact of a group size on agents’ private benefits is crucial in determining

the group-size effect. For example, if private benefits from giving increase with

the number of recipients then cooperative incentives might dominate free-riding

incentives even in large groups (see Andreoni 2007).

There is also a growing empirical and experimental literature on the group-size

effect. The evidence is mixed, however. Ledyard (1995) reports that free-riding

behavior aggravates with the group size while Goeree et al. (2002) find no clear

group-size effect. In turn, Zhang and Zhu (2011) show that an exogenous reduction

in group size lowers average contribution levels of the remaining contributors at

Chinese Wikipedia. The evidence of non-monotonic group-size effect is reported by

Isaac and Walker (1988) and Isaac et al. (1994). Those are experimental studies

analyzing free-riding and cooperative behaviors in groups of different sizes. The

experiments were run for 10, 40 and 60 decision rounds and per-period endowment

of each individual was his private information. The authors report a positive group-

1Obviously, there could be many other reasons for restricting membership and introducing
membership fees (such as network effects, critical mass effects or congestion).

2Similar results are also reported in the mechanism design literature on public good provision
(see Güth and Hellwig 1987, Mailath and Postlewaite 1990, Hellwig 2003).
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size effect in relatively small groups (of size 4 and 10) but no group-size effect in

relatively large groups (of size 40 and 100), which is somewhat in line with our

theoretical findings.

This paper is also related to the literature on dynamic free-rider problems which

focuses mainly on durable contribution settings.3 To the best of our knowledge, the

only paper that studies a setting with non-durable contributions is that by Pecorino

(1999). He assumes perfect monitoring, non-constrained agents and large groups,

and shows that cooperation can be sustained even in an infinitely-large group. In

contrast, we consider imperfect monitoring, temporarily constrained individuals and

finite groups. We can then compare cooperative incentives in finite groups of differ-

ent sizes and explicitly identify the group-size effect.

Another strand of literature to which this paper is related is that on free-rider

problem in team production. Holmstrom (1982) emphasizes that free-rider problem

is generic in teams and shows that budget breaking might be needed in order to

mitigate externalities from joint production. In contrast to Holmstrom (1982) and

other follow-up studies, we don’t build on the agency framework but rather study

cooperative incentives induced by the repeated interactions. Kandel and Lazear

(1992) develop a model in which free-rider problem can be somewhat alleviated

through peer pressure. Since the payoffs depend on aggregate performance, the

team members indeed have incentives to impose pressure on their shirking peers

through physical or mental punishment. Kandel and Lazear (1992) conclude that

peer pressure works well in homogeneous groups in which the members understand

each other’s tasks and so can effectively monitor each other. Our findings sug-

gest however that skill heterogeneity might actually enhance cooperation in teams.

Workers of different skills coming up with different ideas is the only source of co-

operative incentives in our setting. A member works hard on a task that he is able

to solve only if he expects his team mates to have necessary skills he lacks to solve

some other tasks in the future.

The remainder of the paper is organized as follows. Section 2 describes the setup

of our baseline model. Section 3 characterizes the equilibrium. Section 4 proceeds

with our main result about group-size effect. Section 5 presents alternative model

3The classical references include Fershtman and Nitzan (1991) who study a dynamic pub-
lic goods problem, Marx and Matthews (2000) who consider a dynamic fundraising environment,
Lockwood and Thomas (2002) who analyze a repeated Prisoner’s Dilemma with irreversible contri-
butions, and many others. In all these studies, individual contributions are assumed to accumulate
over time and thus are (partially) durable. In this paper, we abstract from this intertemporal link
and focus on environments with non-durable contributions which are quite common in real-world
practice.
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specifications and examines robustness of our results. Finally, section 6 concludes.

2 Model

Consider an infinite-horizon model. A group of N risk-neutral infinitely-lived indi-

viduals can produce one unit of indivisible public good in each period. Public goods

are assumed not to accumulate over time. The group members cannot directly

communicate or make monetary transfers.

We assume that some of the group members might be incapable to contribute

to the public good production in some periods. Formally, in each period, a group

member receives a personal shock which is independent and identically distributed

across periods and individuals. A member is able to contribute one unit of the public

good with probability q, and is not able to contribute with probability 1 − q. In

what follows, we call the former an able member while the latter an unable member.

Nt denotes the number of able members in period t where Nt ∈ {0, 1, ..., N}. An

able member’s strategy space in period t is whether to contribute one unit of the

public good or not.

We study first a benchmark case in which individual contributions do not accu-

mulate within one period. If at least one individual contributes in period t then the

public good is produced in that period. Then an able member gets payoff v ≥ 0

while an unable member gets u > 0. Additional contributions generate no extra

payoffs to the group members. However, if no member contributes in period t then

the public good is not provided in that period and an able member gets w ≥ 0

while an unable member gets 0. We assume that 0 ≤ w ≤ v which means that an

able member’s utility from the public good consumption is weakly higher than his

utility from no public good option. The member’s individual one-period payoffs are

summarized in Table 1.

Public good provision is costly. In particular, an able member incurs a fixed cost

c of providing one unit of the public good. We assume that c > v−w which implies

that the cost of production exceeds the private benefits for a contributor. It follows

that no contribution will be made in a stage game.

public good provided public good not provided
unable member u 0
able member v w

Table 1: Individual one-period payoffs.
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We focus on symmetric pure strategies. We relax this assumption in Section 5.1

in which we consider correlated equilibrium. Suppose now that all able members

contribute to the public good provision. Then the member’s individual one-period

ex-ante payoff is given by q (v − c) + (1− q) (1− α)u, where α ≡ (1− q)N−1 is

the probability that there are no other able members in the group. Suppose next

that no able member contributes to the public good provision. Then the member’s

individual one-period ex ante payoff is qw. The following assumption guarantees

that it is ex ante socially beneficial that all able members contribute to the public

good production.

Assumption 1 q (v − c− w) + (1− q) (1− α)u ≥ 0.

The timing of events within one period is as follows. First, able members are

randomly drawn by nature. Each member’s ability to contribute to the public good

production is his private information. Second, able members simultaneously and

independently decide whether to contribute or not. Finally, all members observe

whether the public good is provided and get corresponding payoffs.

Our framework is quite general and can be used to analyze different applications.

We provide now several examples and turn then to equilibrium characterization.

Peer-to-Peer Networks Consider a file-sharing network of internet users. In each

period, some users (with probability q) get a rare file of value w > 0 and choose

whether to share it with the rest of the group. Sharing the file does not generate

extra benefits for the users, i.e., v = w. The cost of sharing is c. If the file is

distributed then the rest of the group gets benefit u > 0.

Intelligence Agencies Think of a group of countries facing a common threat (e.g.,

terror threat). In each period, an intelligence service of each country might get a

piece of relevant information which can be then revealed at cost c to intelligence

services of other countries. This would obviously benefit uninformed countries (u >

0) but would bring no extra benefit to informed ones (v = w > 0).

Online Reviews In each period, a new restaurant is opened. Some consumers

might learn by chance how good it is (with probability q). They then decide whether

to post an online review about the restaurant quality. Posting a review is costly

and implies no extra benefits for the informed consumers, i.e., v = w. Still, posting

a review would benefit the uninformed consumers by generating net payoff u > 0

for them.

Open-Source Software Consider an open-source software application. With prob-

ability q each programmer comes up with an idea of how to improve the application
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(e.g., fixing bugs, improving efficiency, etc.) and then decides whether to make this

improvement. The cost of improving the application is c. Each programmer gets

benefit v = u > 0 if the software is upgraded, and w = 0 otherwise.

Teamwork Think of a team which is assigned a new task every period. With prob-

ability q each member knows how to perform the task at cost c. If the team succeeds

in solving the task then each team member gets benefit v = u > 0. However, if the

team fails then each member gets w = 0.

3 Equilibrium Characterization

Consider first a single stage game. In this case, able members will not contribute

to the public good production since the cost exceeds their private benefits from

contributing. This is the unique equilibrium in the static setting.

We turn next to the repeated setting in which all group members observe whether

the public goods have been provided or not in the previous periods. The equilibrium

strategy we consider is similar to that in Green and Porter (1984) and includes

a cooperation phase and a punishment phase. An able member cooperates (i.e.,

contributes to the public good provision) in the cooperation phase and punishes

(i.e., does not contribute) in the punishment phase. Punishment lasts for T periods

and afterwards cooperation is restored.4

We denote the state in period t by wt ∈ {0, 1}. Then wt = 0 if in period t the

game is in the punishment phase while wt = 1 if it is in the cooperation phase. At

the end of each period, the group members observe whether a public good has been

provided in this period or not, which serves as a public signal for them.5 We define

the following binary signal space
{
y, y
}

such that yt = y either if wt−1 = 1 and

a period-t public good is provided, or if in period t a punishment phase has just

ended. In turn, yt = y either if wt−1 = 1 but a period-t public good is not provided,

or if in period t a punishment phase has not been yet ended. The solution concept

is symmetric Public Perfect Equilibrium (SPPE) in which the members condition

their actions only on the public history.6 Then all able members contribute to the

4No personal enforcement is allowed. We therefore don’t consider the punishments based on
the statistical evaluation of an individual member’s previous deviations.

5More generally, one can allow the public signal to be the units of contributions in the previous
period. However, this will not change our result regarding group-size effect and able members’
trade-off is more transparent in the present setting. In fact, we allow the more general signal space
in the discussion of cumulative contributions in Section 5.2.

6It is well known from the literature on the repeated games with imperfect public monitoring
that using public strategy is a best response to all other members’ using public strategies.
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public good production if in the previous period the public signal is y, and don’t

contribute if in the previous period the public signal is y. The transition between

the states can be summarized as follows:

• wt = 1 for t = 0;

• if wt−1 = 1 and yt = y then wt = 1; if wt−1 = 1 and yt = y then wt = 0;

• if wt−1 = 0 and yt = y then wt = 1; if wt−1 = 0 and yt = y then wt = 0.

We analyze now the able members’ incentives to follow the prescribed strategy.

If an able member contributes to the public good production in a punishment phase

then the subsequent game will not be affected, but he gets negative net payoff

v − c−w in the current period. It follows that an able member has no incentive to

contribute in a punishment phase and therefore will follow the prescribed strategy.

If an able member contributes to the public good production in a cooperation

phase then his expected payoff is

v − c+ δV +,

where δ ∈ (0, 1) is a common discount factor and V + is the member’s value function

defined at the beginning of any period in the cooperation phase and before each

member learns whether he is able to contribute or not. By following the prescribed

strategy in the cooperation phase, the able member also ensures cooperation in the

next period.

Suppose that the able member chooses to deviate in the cooperation phase. Then

punishment will be trigged only if there are no other able members in the group.

Therefore, the expected payoff from deviating in the cooperation phase is given by

(1− α)
(
v + δV +

)
+ α

(
w + δV −

)
,

where V − is the member’s value function defined at the beginning of a punishment

phase and before each member learns whether he is able to contribute or not. As

before, α ≡ (1− q)N−1 denotes the probability that there are no other able members

in the group.

We can define the value functions V + and V − recursively. At the beginning of any

period in a cooperation phase, a member anticipates that with probability q he will

be able to contribute to the public good provision while with probability 1−q he will

not be able to do so. Following the prescribed strategy, an able member contributes

9



to the public good production and gets payoff v − c + δV +. In turn, an unable

member’s payoff is determined by the rest of the group. If other group members

are able to contribute then they follow the prescribed strategy and do contribute.

This generates benefit u for the unable member and ensures cooperation in the next

period. However, if there are no other able members in the group then the public

good is not provided which triggers punishment. The unable member’s expected

payoff is δV − in this case. It follows then that

V + = q
(
v − c+ δV +

)
+ (1− q)

[
(1− α)

(
u+ δV +

)
+ αδV −

]
. (1)

At the beginning of a punishment phase, all members realize that for T periods no

public goods will be produced but afterwards cooperation will be restored. They

therefore expect per-period payoff qw for T periods and δTV + afterwards. It implies

that

V − =
T−1∑
τ=0

δτqw + δTV + =
1− δT

1− δ
qw + δTV +. (2)

Substituting (2) into (1) and rearranging yields the continuation value of cooperation

V +:

V + =
(1− q) (1− α)u+ q (v − c) + (1− q)αδ

(
1−δT
1−δ

)
qw

1− qδ − δ (1− q) (1− α + αδT )
. (3)

An able member follows the prescribed strategy in the cooperation phase if and

only if his payoff from cooperating exceeds that from deviating:

v − c+ δV + ≥ (1− α)
(
v + δV +

)
+ α

(
w + δV −

)
. (4)

Substituting V + and V − into (4) and simplifying yields the necessary and sufficient

condition for sustaining cooperation:

α

(
(1− α) [(1− q)u+ q (v − w)]

c− α (v − w)
− 1

)
≥ 1− δ
δ(1− δT )

. (5)

The right-hand side of (5) is a decreasing function of T . It goes to infinity when

T approaches 0, which implies that without punishment, cooperation cannot be

sustained. It converges to 1−δ
δ

when a grim-trigger strategy (under which T goes

to infinity) is applied. Therefore, a longer punishment phase makes cooperation

easier to sustain, but it also leads to the value loss on the equilibrium path because

punishment can be trigged even if no one has deviated. Since the right-hand side
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of (5) is always positive then a necessary condition for sustaining cooperation for

given T is

(1− α) (1− q)u+ [(1− α) q + α] (v − w) > c. (6)

Note moreover that the right-hand side of (5) is a decreasing function of both δ

and T . For any positive but finite T , it reaches its maximum of∞ when δ approaches

0 and its minimum of 1
T

when δ approaches 1. Thus for given T , as long as

α

(
(1− α) [(1− q)u+ q (v − w)]

c− α (v − w)
− 1

)
≥ 1

T
, (7)

and the members are patient enough, cooperation can be sustained. When a grim-

trigger strategy is used (T = ∞) so that the right-hand side of (7) becomes zero,

cooperation essentially requires the left-hand side of (7) to be positive. The result

is summarized in the following proposition. (Proofs of this and other propositions

are given in the Appendix.)

Proposition 1 As long as condition (6) holds, there exists a threshold discount fac-

tor δ ∈ (0, 1) associated with some punishment length T <∞ such that cooperation

is sustained for all δ ≥ δ.

Comparing (6) with Assumption 1 makes it clear that for c ∈ [(1− α) (1− q)u+

[(1− α) q + α] (v − w) , v−w+ 1−q
q

(1− α)u], cooperation is ex ante socially benefi-

cial but it cannot be sustained in equilibrium. Note also that applying a grim-trigger

strategy (T = ∞) is often suboptimal as it forgoes potential surplus from cooper-

ation by punishing forever after one period of non-provision. As long as the able

members’ incentives are compatible with cooperation, the shorter the punishment

phase the better. Therefore, the optimal punishment length, T ∗δ , is characterized by

α

(
(1− α) [(1− q)u+ q (v − w)]

c− α (v − w)
− 1

)
=

1− δ
δ
(
1− δT ∗

δ

) (8)

if the solution exists. Otherwise, we set T ∗δ = ∞. This corresponds to the case in

which the group never recovers to cooperation after one period of non-provision.

4 Group-Size Effect

We turn next to the group-size effect to study the impacts of a group-size change

on the members’ incentives to cooperate. Consider first the non-deviation condition
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(4). Substituting (2) into (4) and rearranging yields

α︸︷︷︸
free-riding

δ (1− δT ) V +︸︷︷︸
large scale

+

(
v − w − δqw1− δT

1− δ

) ≥ c. (9)

Group size N affects only α and V + which are both on the left-hand side of (9). α

denotes the probability that there are no other able members in the group and so

decreases with N . This effect makes the left-hand side of (9) smaller as N increases.

V + is the continuation value of cooperation and is also affected by a change in the

group size N . The following lemma shows that an increase in N actually makes V +

(and therefore the left-hand side of (9)) larger.

Lemma 1 V + increases with N in equilibrium.

It follows therefore that there are two opposite forces at work when the group

size increases. The first force is the conventional free-riding effect reflected by α in

(9). Intuitively, an able member has more incentives to deviate in a larger group.

He realizes that the larger the group, the more likely there are other able members

in the group and so the less likely his own deviation is to trigger punishment. The

second force is what we call a large-scale effect, reflected by V + in (9). An able

member wants cooperation to be sustained in order to enjoy public good benefits

even in the periods when he will be unable to contribute and so will depend on the

other members’ contributions. The more members there are in the group, the more

likely there will be able members in the periods when he will be unable to contribute

and so the larger the continuation value of cooperation.

We use the optimal punishment length, T ∗δ , to measure the group size effect.

Suppose that a finite solution to (8) exists when the group size is N ′. Now increase

the group size to N ′′ > N ′. If the optimal punishment length T ∗δ becomes larger

or even infinite under N ′′ then we say that the group size effect is negative. If the

optimal punishment length becomes shorter after the group size increases to N ′′,

the group-size effect is positive.

Consider the left-hand side of equation (8). If c ≥ q (v − w) + (1− q)u then

it is nonpositive for all N ≥ 2 and thus cooperation cannot be sustained for any

group size. If c < q (v − w) + (1− q)u then the left-hand side of (8) is positive for

some N ≥ 2. We show that it has an inverted-U shape (i.e., first increases but then
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decreases in N) if c > ĉ where

ĉ ≡ 1

2
(v − w − (1− q) (1− 2q) (u− v + w)) +

1

2

√
((1− q)u+ q (v − w)) (u− (u− v + w) (5q − 8q2 + 4q3)).

However, if c ≤ ĉ then the left-hand side of (8) strictly decreases in N . The results

are summarized in the following proposition.

Proposition 2 If ĉ < c < q (v − w) + (1− q)u then the group-size effect is positive

in small groups but negative in large groups. If c ≤ ĉ then the group-size effect is

always negative.

According to Proposition 2, for c ≤ ĉ, free-riding effect prevails regardless of the

group size. However, for ĉ < c < q (v − w) + (1− q)u, the relationship between

the group size and cooperative incentive is non-monotonic. While an increase in

the group size intensifies both the free-riding incentives and the continuation value

of cooperation, its aggregate impact depends on the current group size. We show

that an increase in the group size enhances cooperation in relatively small groups

but hinders cooperation in relatively large groups. Indeed, in a small group, an

individual deviation is quite likely to trigger punishment and the continuation value

of cooperation is low. As the group size increases, an individual deviation is some-

what less likely to trigger punishment while the continuation value of cooperation

increases considerably. An increase in the group size then boosts the value of coop-

eration more than it boosts the free-riding incentives. In contrast, in large groups,

a group-size increase just slightly affects the continuation value of cooperation and

so enhances the free-riding incentives more than cooperative incentives. It follows

therefore that large-scale effect dominates free-riding effect only when the group size

is relatively small.

Proposition 2 therefore suggests that in case of ĉ < c < q (v − w) + (1− q)u, for

any patience level, cooperation is easier to be sustained in medium-size groups in

which free-riding incentives and cooperative incentive are well balanced. Intuitively,

consider now the limit cases in which N approaches 1 or converges to infinity. In

a single-member group, the member has no incentive to contribute today as there

is no future reward for doing so. Therefore, no contribution will be made in this

case. In an infinitely-large group, there always exist unconstrained members who

follow the cooperation strategy and so a deviation will not trigger punishment. As
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a result, no member will contribute either. Then, cooperation has to be sustained

in a medium-size group if it can be sustained at all.

Even though the model is very stylized, it yields empirically testable predictions.

Controlling for all other variables and changing N alone, one can test non-monotonic

group-size effect predicted by our results. The testable hypotheses might be as fol-

lows. First, the group-size effect is initially increasing and then decreasing. Second,

cooperation is more likely to be sustained in medium-size groups.

5 Discussion and Extensions

In this section, we relax some of the important assumptions of the model and discuss

robustness of our results. We first consider the case in which the group members

condition their contribution decisions on their observation of a signal. This allows

them to somewhat coordinate their decisions and so makes cooperation easier to be

sustained. We next relax the assumption of non-cumulative individual contributions

and study the case of linear public good technology. We show that under some mild

assumptions, our result about group-size effect holds in these extensions of the

baseline model.

5.1 Correlated Equilibrium

In the baseline model, we assume that the group members cannot directly com-

municate with each other. Though realistic in some situations, this assumption

might be too restrictive in some others. Moreover, one might underestimate the

level of cooperation in a group if coordination is completely ruled out. Indeed, in

our baseline model, every able member contributes on the equilibrium path while

only one contribution is needed for public good provision. Therefore, all but one

contributions are wasted which substantially reduces the value of cooperation.

In this section, we keep the assumption of no direct communication but suppose

that the group members base their contribution decisions on their observation of

a signal. Assume that the nature randomly determines an order of contribution

making. For example, member 1 is assigned to make contribution first, member 2

is second, ..., member i is ith. Denote by O the finite set of all possible orders.

We assume that all orders in O are realized with the equal probability. The group

members don’t know their position in the sequence. In each period, a member

observes the signal only when it is his turn to make contribution and no contribution
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has been made so far in that period. The period ends either when one contribution

has been made or when all group members have been called for contribution making.

At the end of the period, all members know whether the contribution has been

made or not. The prescribed equilibrium strategy requires that an able member

makes contribution if he observes the signal. The punishment will be triggered if no

contribution is made in the previous period. We characterize correlated equilibrium

in which no group member wants to deviate from the prescribed strategy if the

others don’t deviate.7

Although the group members still cannot directly communicate with each other,

the signal mechanism works as a coordinating device and guarantees that at most

one contribution per period is made on the equilibrium path. Therefore, the contri-

bution waste of the baseline model does not arise here, which implies higher value

of cooperation.

Think of the following interpretation of this setting. In each period, there might

be several members able to contribute to the public good provision. Since the

probability of two members making contribution at exactly the same time is tiny,

it is plausible to assume that the timing of contribution making is sequential. The

explanation for this might be different time availability assigned randomly to the

group members. Then an able member contributes to the public good production

only if he observes that no contribution is made so far by his peers. However, if

at the moment of contributing an able member observes that one contribution has

been already made then he does not need to contribute again. For example, if an

informed member reveals a piece of useful information to the rest of the group then

other initially informed members will not do so.

We turn next to the analysis of the able members’ incentives to follow the pre-

scribed strategy. (Indeed, an unable member cannot make contribution even if he

observes the signal.) Similarly to the baseline model studied in Section 3, an able

member here has no incentive to contribute in a punishment phase and so will fol-

low the prescribed strategy. Consider now his incentives in a cooperation phase.

Suppose that an able member receives the signal and so knows that it is his turn to

contribute. The expressions for the expected payoffs from cooperating and deviating

are the same as in the baseline model except for the value functions which we denote

here by Ṽ + and Ṽ −. Obviously, the value function defined at the beginning of a

punishment phase satisfies Ṽ − = V −. The value function defined at the beginning

7Alternatively, one could consider mixed-strategy equilibrium in which able members randomize
between making and not making contribution.
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of any period in a cooperation phase, Ṽ +, is

Ṽ + = q
(
v − βc+ δV +

)
+ (1− q)

[
(1− α)

(
u+ δV +

)
+ αδV −

]
,

where β is the probability that conditional on being able, a member is the first one

among all able members to receive the signal. β is given by

β ≡
N−1∑
k=0

(
N − 1

k

)
qk(1− q)N−1−k 1

k + 1
=

1− (1− q)α
Nq

.

Note that on the equilibrium path in our correlated equilibrium, only the able mem-

ber who receives the signal first, actually incurs the cost c of public good production.

Following the similar steps as in Section 3 yields the non-deviation condition for

an able member who receives the signal:

α

(
(1− α) [(1− q)u+ q (v − w)] + (1− β) cq

c− α (v − w)
− 1

)
≥ 1− δ
δ(1− δT )

. (10)

It is natural to expect that in correlated equilibrium, cooperation is easier to be

sustained than in the baseline model. Indeed, the signal mechanism generates at

most one contribution per period and so enhances the value of cooperation. As a

result, the left-hand side of (10) is strictly greater than that of (5).

We turn now to our main research question, namely, the group-size effect. It is

a priori not clear how an increase in the group size affects the members’ incentives

to cooperate. To answer this question, we study the impacts of a change in N

on the left-hand side of non-deviation condition (10). Note that on the left-hand

side of (10), both α and β depend on N , and α enters both in the numerator and

denominator, which considerably complicates the analysis of the general case. Then,

to obtain a clear-cut result, we restrict our attention to the case in which an able

member gets the same level of utility from the public good consumption and from

no public good option, v = w (as in the examples of information sharing).

Consider the left-hand side of (10) for v = w. If c ≥ u then it is nonpositive

for all N ≥ 2 and therefore cooperation cannot be sustained for any group size. If

c < u then it is positive for some N ≥ 2. We show that it has an inverted-U shape

(i.e., first increases and then decreases in N ≥ 2) either if q ≤ 1
2

or if q > 1
2

and

c > f̂ (q)u where

f̂ (q) ≡ 4 (1− q) (1− 2q) ln (1− q)
(2− q) q − 2 (1 + 2q (1− q)) ln (1− q)

.
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However, if q > 1
2

and c ≤ f̂ (q)u then the left-hand side of (10) strictly decreases

in N ≥ 2. We formalize the results in the following proposition.

Proposition 3 If q ≤ 1
2

and 0 < c < u, or if q > 1
2

and f̂ (q)u < c < u, then the

group-size effect is positive in small groups and negative in large groups. If q > 1
2

and 0 < c ≤ f̂ (q)u then the group-size effect is always negative.

Proposition 3 suggests that for a relatively large range of parameter values, the

main insights of our baseline model also hold in the case of correlated equilibrium.

Here, because of implicit coordination generated by the signal mechanism, the prob-

ability of an able member contributing is strictly lower than 1. The more members

there are in the group, the less likely an able member is to receive the signal to

contribute. Therefore, the large-scale effect is amplified here relative to the baseline

case. As a result, in relatively small groups, the large-scale effect again dominates

the free-riding effect. Still, the important trade-off between the two effects high-

lighted in the previous section remains true in the correlated equilibrium. Indeed,

in relatively large groups, the free-riding effect dominates the (even amplified) large-

scale effect since deviation is quite unlikely to trigger punishment and thus incentives

to free ride are stronger than those to cooperate.

5.2 Cumulative Contributions

In the baseline model, we assume that individual contributions do not accumulate

within one period. We relax this assumption here to consider a setting in which

public good consumption strictly increases in the number of individual contributions,

as in the cases of dispersed information, ideas and labor input. So, if each able

member cooperates, an increase in the group size affects not only the probability of

a single unit being provided but the expected total number of contributions. Our

final goal is then to study the group-size effect in this environment.

Consider the following production technology. If the total number of contribu-

tions is k = 0, 1, ..., N then the public good of size P (k) is provided and each group

member gets utility P (k) from consuming it. So the public good production is

deterministic. Alternatively, P (k) might be interpreted as the probability of the

public good being successfully provided. We assume that P (k) is strictly increasing

in k and that P (0) = 0. Able members’ utility is equal to 0 in case the public good

is not provided.

In each period, an able member decides whether to contribute one unit to the

public good production or not. The cost of contributing is c > 0. To be consistent

17



with our baseline model, we assume that P (k)− P (k − 1) < c for k = 1, ..., N . So,

an able member has no incentive to make contribution in a stage game. Then, the

unique equilibrium in the static setting entails no public good contribution.

We study next the repeated setting in which all group members observe the total

number of contributions made in the previous periods. As in the baseline model, the

solution concept here is SPPE. To characterize SPPE, we follow the approach devel-

oped by Abreu et al. (1986, 1990). According to this approach, a SPPE value can

be decomposed into a member’s current payoff and the continuation value, denoted

by v (k), which is a mapping from the set of all public outcomes, k = 0, 1, ..., N ,

into the set of SPPE values, V ∗ (N, δ). Note that each able member choosing not

to contribute constitutes a SPPE and so V ∗ (N, δ) is non-empty: 0 ∈ V ∗ (N, δ).

It is also assumed that the group members have access to a public randomization

device at the end of each period. Then v (k) can be a probability distribution over

V ∗ (N, δ). As a consequence, V ∗ (N, δ) is a convex set. Then, applying Abreu et al.’s

approach, we can show that V ∗ (N, δ) is a closed interval of the form [0, v (N, δ)].

We focus the analysis on the upper bound of V ∗ (N, δ), v (N, δ), which is the

highest value a SPPE can achieve. We believe it is reasonable to do so since the

SPPE with the highest value will be a natural candidate in case the group members

have ever a chance to coordinate on equilibrium selection. To construct a SPPE, we

also have to choose a continuation value from V ∗ (N, δ). Abreu et al. (1986, 1990)

show that any value in V ∗(N, δ) can be achieved by the following trigger strategy

with the bang-bang property. At the beginning of the game, every able member

contributes to the public good provision. Then, after observing the public outcome

k, with probability 1−η (k) all group members continue to play the same cooperative

strategy in the next period, and with probability η (k) they switch to static Nash

forever. We can then find the highest value, v (N, δ), among those trigger strategy

SPPE values.

We assume without loss of generality that P (k) = k. The following problem
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then characterizes the highest SPPE value, v (N, δ):

max
η(k)

v = qva + (1− q) vu

s.t. va = (N − 1) q + 1− c+ δv
N−1∑
k=0

(1− η (k + 1))

(
N − 1

k

)
qk (1− q)N−k−1 ,

vu = (N − 1) q + δv
N−1∑
k=0

(1− η (k))

(
N − 1

k

)
qk (1− q)N−k−1 ,

va ≥ vu.

Here, va is an able member’s discounted payoff if he follows the prescribed strategy

while vu is an unable member’s discounted payoff. In each period in which co-

operation is sustained, every member expects other members to provide (N − 1) q

units of public good. Moreover, an able member also contributes one unit at cost

c. These are the members’ current payoffs. The discounted continuation value of

cooperation is δv multiplied by the probability of cooperation being sustained. The

ex ante expected value v is thus qva + (1− q) vu. In the equilibrium, the incentive

compatibility (IC) constraint has to hold so that an able member has no incentive

to mimic an unable member: va ≥ vu.

Substituting the expressions for va and vu into v and the IC constraint and

rearranging yields

v = q (1− c) + (N − 1) q + δv
N∑
k=0

(
N

k

)
qk (1− q)N−k (1− η (k)) , (11)

c− 1 ≤ δv
N−1∑
k=0

(
N − 1

k

)
qk (1− q)N−k−1 (η (k)− η (k + 1)) .

In the equilibrium, the IC constraint has to hold with equality. We prove it by

contradiction. For the IC constraint to be satisfied, some η (k) have to be strictly

greater than zero. Suppose that the IC constraint does not bind in the equilibrium.

Then, there exists at least one positive η (k) which can be decreased by a tiny amount

ε > 0 while the IC constraint is still satisfied. However, decreasing this η (k) will

increase v (since v is a decreasing function of all η (k)). Thus, a non-binding IC

constraint is not optimal, which leads to a contradiction.

In what follows, we use the method developed by Abreu et al. (1991). According

to this method, solving for v (N, δ) is equivalent to finding the maximum likelihood
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test to detect deviation. We next show this formally. Define

L ≡
q
N−1∑
k=0

N − 1

k

qk(1−q)N−1−kη(k)+(1−q)
N−1∑
k=0

N − 1

k

qk(1−q)N−1−kη(k)

q
N−1∑
k=0

N − 1

k

qk(1−q)N−1−kη(k+1)+(1−q)
N−1∑
k=0

N − 1

k

qk(1−q)N−1−kη(k)

.

The numerator is the ex ante probability of triggering punishment if one able mem-

ber deviates and does not make contribution. This probability is then the measure

of punishment off the equilibrium path. The denominator is the ex ante probabil-

ity of triggering punishment if no member deviates. This probability is therefore

the measure of punishment on the equilibrium path and represents the equilibrium

value loss. Then the likelihood ratio L measures how effective the punishment is in

deterring deviation per unit of the value loss on the equilibrium path. The larger

L is, the heavier punishment is imposed on the deviator per unit of the equilibrium

value loss.

Since

L − 1 =

q
N−1∑
k=0

N − 1

k

qk(1−q)N−1−k(η(k)−η(k+1))

N∑
k=0

N
k

qk(1−q)N−kη(k)

, (12)

then the binding IC constraint can be written as a function of L−1 in the following

way:

c− 1 =
δv

q
(L − 1)

N∑
k=0

(
N

k

)
qk (1− q)N−k η (k) .

Clearly, L has to be strictly greater than 1 for the IC constraint to hold. Substituting

the IC constraint into the value function (11) yields

v =
1

1− δ

[
q (N − 1)− q (c− 1)

(
1 +

1

L − 1

)]
, (13)

which after rearranging becomes

v =
1

1− δ
[(1− q) q (N − 1) + q (q (N − 1) + 1− c)]− 1

1− δ
q (c− 1)

L − 1
.

The first term above is the expected value in case cooperation can be sustained

forever. The second term is the expected loss resulting from future punishments
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on the equilibrium path. (13) implies that v is a strictly increasing function of L.

Therefore, the optimal punishment scheme maximizes L subject to the binding IC

constraint, which is equivalent to finding the maximum likelihood test for detecting

deviation.

We prove in the Appendix that the optimal punishment scheme is characterized

by the public outcome k̃ ∈ {0, 1, ..., N} such that η (k) = 1 for k < k̃, 0 < η(k̃) < 1,

η (k) = 0 for k > k̃. k̃ and η(k̃) are found through the following procedure:

- set k̃ = 0 and check the IC constraint for 0 < η (0) < 1, η (k) = 0, k > 0; if

the IC constraint holds then this is the optimal punishment scheme and η (0) is

characterized by the binding IC constraint; if the IC constraint does not hold then

- set k̃ = 1 and check the IC constraint for η (0) = 1, 0 < η (1) < 1, η (k) = 0, k > 1;

if the IC constraint holds then this is the optimal punishment scheme and η (1) is

pinned down by the binding IC constraint; if the IC constraint does not hold then

- move to k̃ = 2, check the IC constraint, and continue this process until the IC

constraint is satisfied for some k̃.

The following proposition summarizes the result.

Proposition 4 The optimal SPPE value, v (N, δ), is supported by the following

cut-off strategy: η (k) = 1 for k < k̃, 0 < η(k̃) < 1, η (k) = 0 for k > k̃. k̃ and η(k̃)

are found through the procedure described above.

According to Proposition 4, the optimal punishment scheme is characterized by

a public outcome k̃ such that η (k) = 1 for k < k̃, 0 < η(k̃) < 1, η (k) = 0 for k > k̃.

Substituting the optimal punishment scheme into (12) yields

L − 1 =

q


N − 1

k̃ − 1

qk̃−1(1−q)N−k̃(1−η(k̃))+

N − 1

k̃

qk̃(1−q)N−k̃−1η(k̃)


k̃−1∑
k=0

N
k

qk(1−q)N−k+

N
k̃

qk̃(1−q)N−k̃η(k̃)

. (14)

We next study the group-size effect to check robustness of the baseline model

results. In this setting with cumulative contributions, we measure the group-size

effect by the impact of a group-size change on the optimal cut-off strategy. The

group-size effect is negative if an increase in N makes k̃ larger or (in case k̃ remains

unchanged) makes η(k̃) larger. Indeed, in this case, a more likely punishment is

needed to sustain cooperation. The group-size effect is positive if an increase in

N makes k̃ smaller or (in case k̃ remains unchanged) makes η(k̃) smaller. Then,

cooperation can be sustained with a less likely punishment.
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Ideally, we would like to characterize the group-size effect for the whole range of

parameters N , c, q and δ. Although Proposition 4 provides an algorithm for finding

the upper bound of V ∗ (N, δ), we have no explicit expressions for k̃ and η(k̃) in

terms of N and other parameters. This considerably complicates our task. In what

follows, we restrict our attention to the case of sufficiently large δ, i.e., sufficiently

patient group members:

δ >

(
1 +

(
q (N − 1)

c− 1
− 1

)
(1− q)N−1

)−1
for N > 1 +

c− 1

q
. (15)

In this case, k̃ = 0 characterizes the optimal punishment scheme. To see this,

substitute k̃ = 0 into (14) which yields

L − 1 =
q (1− q)N−1 η (0)

(1− q)N η (0)
=

q

1− q
.

Then substituting L − 1 into the value function (13) yields

v =
1

1− δ
[q (N − 1)− (c− 1)] ,

which is positive for N > 1 + c−1
q

. Finally, substituting L−1 and v into the binding

IC constraint and rearranging yields

η (0) =
(1− δ) (c− 1)

δ [q (N − 1)− (c− 1)] (1− q)N−1
,

which satisfies η (0) ∈ (0, 1) for δ specified in (15). Therefore, k̃ = 0 indeed charac-

terizes the optimal punishment scheme in this case.

We consider now an increase in the group size from N to N + 1. The group-

size effect is positive if k̃ = 0 still characterizes the optimal punishment scheme for

N + 1 and η (0) decreases with an increase in the group size. The group-size effect

is negative otherwise. Intuitively, if an increase in the group size favors cooperation

then the new punishment should be less likely than the original one. We show

in the Appendix that for relatively large groups, the group size effect is negative,

i.e., an increase in the group size leads to a more likely punishment. For relatively

small groups, the group-size effect is shown to be positive under some assumptions.

Proposition 5 formalizes the result.

Proposition 5 Suppose that in a group of size N , the members are patient enough
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such that (15) holds. Then cooperation is sustained with k̃ = 0. Consider an increase

in the group size to N + 1. Then the group-size effect is positive for relatively small

N and negative for relatively large N if and only if 0 < q < 1
2

or 1
2
≤ q < 1 and

2q < c < 1 + q. Otherwise, the group-size effect is always negative.

Proposition 5 indicates that for some range of parameter values, our insights

about non-monotonic group-size effect hold in this environment with cumulative

contributions. The forces at work here are similar to those of the baseline model.

On the one hand, an increase in the group size boosts the continuation value of

cooperation, which advances cooperative incentives of the members. On the other

hand, it also enhances free-riding incentives, which hinders cooperation. Obviously,

the latter effect prevails in large groups in which an individual deviation is not likely

to trigger punishment and therefore free-riding incentives dominate cooperative in-

centives. In small groups, however, the former effect might prevail as an individual

deviation is quite likely to trigger punishment (and so free-riding incentives are

not that high) while the continuation value of cooperation grows swiftly with the

group-size (and so do cooperative incentives).

6 Conclusion

This paper studies the group-size effect in public goods provision. We develop a

model in which the group members interact repeatedly and might be temporarily

constrained to contribute to the public goods production. In our setting, an increase

in the group size enhances both the future value of cooperation and the temptation

to free ride. We show that the former effect dominates in relatively small groups

while the latter in relatively large groups. As a result, the group-size effect is positive

in small communities but negative in large communities.

Our findings provide a novel rationale for public goods contribution and non-

monotonic group-size effect. The underlying mechanism is fairly simple and easy to

extend. For example, one can consider heterogeneous individuals and study optimal

group composition. According to our analysis (available upon request), optimal

group composition often requires a mixture of individuals who are more likely to

be unconstrained with those who are more likely to get temporarily constrained as

the former have higher incentives to shirk. One can also think about introducing

a more elaborated production technology into the model. Indeed, in the case of

cumulative contributions, public good production can be interpreted as information
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aggregation process similar to that in voting models. Then, with our model in hand,

one can analyze the optimal size of deliberating committees and efficient aggregation

of information (for a related work, see Koriyama and Szentes, 2009). Finally, we

assume in this paper that every group member can become temporarily constrained

and so the probability of all members being constrained is strictly positive in each

period. Our setting can be easily extended to the case with a fixed number (but

random identity) of unconstrained individuals in each period. We leave these and

other potential extensions for future research.

Appendix

Proof of Proposition 1.

Note that the right-hand side of (5) is a continuous function, strictly decreasing in

both δ and T . If T =∞ then the right-hand side of (5) becomes 1−δ
δ

, which strictly

decreases from ∞ to 0 when δ increases from 0 to 1. Then, from the Intermediate

Value Theorem, there exists a δ ∈ (0, 1) such that

α

(
(1− α) [(1− q)u+ q (v − w)]

c− α (v − w)
− 1

)
=

1− δ
δ

.

For any δ > δ, we have
1− δ
δ

<
1− δ
δ

.

Since the right-hand side of (5) is continuous in T , there always exists a T < ∞
such that

α

(
(1− α) [(1− q)u+ q (v − w)]

c− α (v − w)
− 1

)
≥ 1− δ
δ (1− δT )

.

The proposition then follows.

Proof of lemma 1.

Differentiating (3) with respect to α and simplifying yields

sign

(
dV +

dα

)
= −sign

(
qδ
(
1− δT

)
(−c− u− w + v) +

(
1− δT+1

)
u
)
.

Consider the argument of the sign function, qδ
(
1− δT

)
(−c− u− w + v)+

(
1− δT+1

)
u,

as a function of T . It is easy to check that its first-order derivative is proportional

to δT+1 ln δ, which implies that the argument itself is monotonic in T . When T = 0,
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it equals to (1− δ)u ≥ 0. When T =∞, it equals to qδ(−c− u−w+ v) + u which

is strictly positive because

qδ(−c− u− w + v) + u = qδ (v − w − c) + (1− qδ)u

≥ qδ (v − w − c) + (1− α) (1− qδ)u > 0.

The last inequality follows from Assumption 1. Therefore, the argument of the sign

function is always positive for T ∈ [0,∞] and

dV +

dα
< 0.

Since α is a decreasing function of N then

dV +

dN
> 0.

Proof of Proposition 2.

We use the first-order condition with respect to α to find critical points of the

left-hand side of (5). There are two critical points:

α1 =
1

v − w

[
c−

√
c (1− q) (c− v + w) (u− v + w) ((1− q)u+ q (v − w))

(1− q) (u− v + w)

]

and

α2 =
1

v − w

[
c+

√
c (1− q) (c− v + w) (u− v + w) ((1− q)u+ q (v − w))

(1− q) (u− v + w)

]
.

α2 is strictly larger than 1 and is therefore ruled out since α ∈ [0, 1]. α1 is always

smaller than 1. The second-order condition with respect to α is

−2c (c− v + w) [(1− q)u+ q (v − w)]

(c− α (v − w))3
< 0.

Therefore, the left-hand side of (5) is a strictly concave function of α ∈ [0, 1]. α1 is

smaller than or equal to 0 if and only if q (v − w) + (1− q)u ≤ c. In this case, the

left-hand side of (5) is nonpositive for α ∈ [0, 1] and therefore cooperation cannot

be sustained for any group size N . α1 is larger than 0 if and only if q (v − w) +
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(1− q)u > c. Then the left-hand side of (5) has a single peak at (0, 1) and is

therefore first increasing and then decreasing in α. Since α is a strictly decreasing

function of N then the left-hand side of (5) is also first increasing and then decreasing

in N .

However, strictly speaking, α cannot exceed 1 − q since at least two members

are required to form a group. Thus, in order to prove that the left-hand side of (5)

has an inverted-U shape one has to show that α1 ∈ (0, 1− q). Then condition

2c > v − w − (1− q) (1− 2q) (u− v + w) +√
((1− q)u+ q (v − w)) (u− (u− v + w) (5q − 8q2 + 4q3))

ensures that α1 < 1−q. However, if the above condition does not hold then α1 ≥ 1−q
and thus the left-hand side of (5) is an increasing function of α ∈ (0, 1− q) and a

decreasing function of N ≥ 2.

Proof of Proposition 3.

Substituting v = w, α and β into the non-deviation condition (10) yields

(1− q)N−1 Nu(1−q)(1−(1−q)N−1)−c(1−(1−q)N+N(1−q))
cN

≥ 1− δ
δ(1− δT )

. (16)

Consider the left-hand side of (16). Its first-order derivative is given by

(1−q)N−1(c(1−(1−q)N+N ln(1−q)[−N(1−q)+2(1−q)N−1])+uN2 ln(1−q)[1−q−2(1−q)N ])
cN2 . (17)

It is easy to check that the sign of (17) is equal to the sign of

c

u
+ f̂ (N, q) ,

where

f̂ (N, q) ≡ N2 ln(1−q)[1−q−2(1−q)N ]
1−(1−q)N+N ln(1−q)[−N(1−q)+2(1−q)N−1]

.

We next compare c
u

with −f̂ (N, q) to determine the sign of (17). For any q ∈ (0, 1),

−f̂ (N, q) is an increasing function of N ≥ 2. It takes its minimum of f̂ (q) ≡
f̂ (2, q) = 4(1−q)(1−2q) ln(1−q)

(2−q)q−2(1+2q(1−q)) ln(1−q) when N = 2 and approaches 1 from below when

N goes to infinity. Consider the following three cases.

1. c
u
≥ 1.
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In this case, c
u

+ f̂ (N, q) > 0 and so the sign of (17) is strictly positive

for all N ≥ 2. So, the left-hand side of (16) is an increasing function of

N ≥ 2 bounded between −1
2

(1− q)
(
2− q2 − 2 (1− q) q u

c

)
< 0 and 0, and so

nonpositive for all N ≥ 2. Thus, cooperation cannot be sustained for any

group size.

2. max
[
f̂ (q) , 0

]
< c

u
< 1, which amounts to q ≤ 1

2
and c < u, or q > 1

2
and

f̂ (q)u < c < u.

In this case, there exists a unique N > 2 such that c
u

+ f̂
(
N, q

)
= 0 and

c
u

+ f̂ (N, q) ≷ 0 for N ≶ N . Thus, the left-hand side of (16) has a single peak

at N > 2 and approaches zero from above when N goes to infinity. It has

therefore an inverted-U shape at N ≥ 2.

3. 0 < c
u
≤ max

[
f̂ (q) , 0

]
, which amounts to q > 1

2
and c ≤ f̂ (q)u.

In this case, c
u

+ f̂ (N, q) < 0 and so the sign of (17) is strictly negative for all

N ≥ 2. The left-hand side of (16) is a decreasing function of N ≥ 2 bounded

between −1
2

(1− q)
(
2− q2 − 2 (1− q) q u

c

)
> 0 and 0, and so positive for all

N ≥ 2.

To sum up, the left-hand side of (16) has an inverted-U shape at N ≥ 2 either

when q ≤ 1
2

and c < u or when q > 1
2

and f̂ (q)u < c < u. It decreases in N ≥ 2

when q > 1
2

and c ≤ f̂ (q)u.

Proof of Proposition 4.

Some η(k) have to be positive for the IC constraint to hold. Otherwise, vu will be

strictly higher than va and therefore the IC constraint will be violated. Since some

η(k) are positive, L is well defined.

To find the highest L, we need to find a public outcome k which is most likely

to occur off the equilibrium path relative to its likelihood on the equilibrium path.

For each public outcome, the power of test, L (k), is defined as the likelihood ratio

of triggering punishment after public outcome k has been observed. Denote by

θd (k) the probability of triggering punishment after observing k off the equilibrium

path and by θc (k) the probability of triggering punishment after observing k on the
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equilibrium path. Then

L (k) =
θd (k)

θc (k)
=

q·

N − 1

k

qk(1−q)N−1−k+(1−q)·

N − 1

k

qk(1−q)N−1−k

q·

N − 1

k − 1

qk−1(1−q)N−k+(1−q)·

N − 1

k

qk(1−q)N−1−k

= N−k
N

1
1−q .

It is easy to check that {L (k)}Nk=0 is a sequence strictly decreasing in k. Note that

L =

N∑
k=0

θd (k) η (k)

N∑
k=0

θc (k) η (k)

.

Moreover,

k−1∑
j=0

θd (j) + θd (k) η (k)

k−1∑
j=0

θc (j) + θc (k) η (k)

>

k∑
j=0

θd (j) + θd (k + 1) η (k + 1)

k∑
j=0

θc (j) + θc (k + 1) η (k + 1)

(18)

for k = 0, ..., N − 1. To see this formally, compare the left-hand side of the above

inequality with the right-hand side. This is equivalent to comparing

(1− η (k))
k−1∑
j=0

(
θc (k) θd (j)− θd (k) θc (j)

)
+

η (k + 1)
k−1∑
j=0

(
θc (k + 1) θd (j)− θd (k + 1) θc (j)

)
+ (19)

η (k) η (k + 1)
[
θd (k) θc (k + 1)− θc (k) θd (k + 1)

]
with zero. The first term equals zero for k = 0 and is strictly positive for k =

1, ..., N − 1 since θd(j)
θc(j)

> θd(k)
θc(k)

with j = 0, ..., k − 1. The second term is equal to

zero for k = 0 and is strictly positive for k = 1, ..., N − 1 since θd(j)
θc(j)

> θd(k+1)
θc(k+1)

with

j = 0, ..., k − 1. Finally, the last term is always positive since θd(k)
θc(k)

> θd(k+1)
θc(k+1)

. It

follows that (19) is strictly positive and therefore (18) holds. (18) implies that

θd(0)
θc(0)

> θd(0)+θd(1)η(1)
θc(0)+θc(1)η(1)

> θd(0)+θd(1)+θd(2)η(2)
θc(0)+θc(1)+θc(2)η(2)

> ... > θd(0)+θd(1)+...+θd(N)η(N)
θc(0)+θc(1)+...+θc(N)η(N)

. (20)

28



Thus, L reaches its maximum value of θd(0)
θc(0)

when η (0) > 0 and η (1) = ... = η (N) =

0. The next step is to check the IC constraint for this punishment scheme. If the

IC constraint is satisfied then this is the optimal punishment scheme and η (0) is

characterized by the binding IC constraint. If the IC constraint does not hold then

one has to consider the second largest value of L from ranking (20), θd(0)+θd(1)η(1)
θc(0)+θc(1)η(1)

,

which is reached when η (0) = 1, η (1) > 0 and η (2) = ... = η (N) = 0. If the IC

constraint is satisfied for η (0) = 1, η (1) > 0 and η (2) = ... = η (N) = 0, then

this is the optimal punishment scheme and η (1) is characterized by the binding IC

constraint. Otherwise, one has to consider the third largest value of L from ranking

(20), check the IC constraint for the punishment scheme corresponding to this value

of L, and continue this process until the IC constraint is satisfied.

Proof of Proposition 5.

Denote R (N, q) ≡
(

1 +
(
q(N−1)
c−1 − 1

)
(1− q)N−1

)−1
. Suppose that δ > R (N1, q).

Then k̃ = 0 characterizes the optimal punishment scheme for some N1 > 1 +
c−1
q

. Consider an increase in the group size from N1 to N1 + 1. k̃ = 0 will still

characterize the optimal punishment scheme for N1 + 1 if R (N1 + 1, q) < R (N1, q),

which amounts to

N1 <
c

q
.

Assume that there is N1 such that 1 + c−1
q
< N1 <

c
q

and consider the impact of a

group-size increase from N1 to N1 + 1 on η (0). It is easy to show that for 1 + c−1
q
<

N1 <
c
q
, η (0) decreases with a group-size increase from N1 to N1 + 1, which means

that the group-size effect is positive in this case. Otherwise, the group-size effect

is negative. We next check when there exists N1 ≥ 2 such that 1 + c−1
q
< N1 <

c
q
.

Consider the following cases.

1. If c
q
≤ 2 then there is no N1 ≥ 2 such that 1 + c−1

q
< N1 <

c
q

and therefore the

group-size effect is always negative.

2. If 1 + c−1
q

< 2 < c
q

then there is N1 ∈
[
2, c

q

)
such that 1 + c−1

q
< N1 <

c
q

and therefore the group-size effect is positive. Still, for N1 ≥ c
q

the group-size

effect is negative.

3. If 2 ≤ 1 + c−1
q

and there is at least one integer between 1 + c−1
q

and c
q

then the

group-size effect is positive for this integer and negative for all N1 ≥ c
q
.

4. If 2 ≤ 1+ c−1
q

but there is no integer between 1+ c−1
q

and c
q

then the group-size

effect is always negative.
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If the distance between 1 + c−1
q

and c
q

is greater than 1 then there will be always

at least one integer between them. It follows therefore that the group-size effect is

positive for relatively small N1 and negative for relatively large N1 if and only if

either 1 + c−1
q
< 2 < c

q
or 2 ≤ 1 + c−1

q
and c

q
−
(

1 + c−1
q

)
> 1. These conditions

amount to 0 < q < 1
2

and c > 1 or 1
2
≤ q < 1 and 2q < c < 1 + q.
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