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Abstract

In an influential recent paper, Beaudry and Portier (2006) propose a sequential approach for iden-

tifying technological news shocks. Thereby, the correlation coefficient between news shocks of a

short-run identification scheme and technology shocks of a long-run identification scheme in the

VAR framework measures the extent to which news incorporated into forward-looking variables

could reflect future technological developments. While structural VARs can potentially provide a

useful guide for modelers as well as policy-makers, the ability of such models to recuperate struc-

tural shocks in general and news shocks in particular from the data is a contentious issue in the

literature. In the current paper, I find by means of Monte Carlo simulations that the sequential

approach can be quite successful in recuperating technological news shocks from artificial data.
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1 Introduction

In an influential recent study, Beaudry and Portier (2006; henceforth BP) argue that

anticipated technology shocks—labelled news shocks in the following—may be the most im-

portant driver of US business cycles. Other authors such as Haertel and Lucke (2008) and

Vukotić (2013) also come to this conclusion by applying the empirical technique of BP to

German and sectoral US data, respectively. The quality of this empirical finding is impor-

tant because, if correct, it has serious implications for both theoretical modelling and policy

makers. For macroeconomic theoreticians the finding implies a modelling of TFP different

than in the conventional framework, for example. An important policy implication—if news

shocks are an important driver of business cycles and policy makers ignore them—is, on the

other hand, that they may run the risk of interpreting some recessions as resulting from neg-

ative demand shocks, while these are in fact only due to problems related to not anticipating

the future correctly. In such a case, stabilization policy through demand management could

have, contrary to the aim of the policy, destabilizing effects on the economy.

The point of departure of BP’s empirical analysis is a reduced-form cointegrated vector

autoregressive (VAR) model comprising total factor productivity (TFP) and a stock price

(SP) index—a forward-looking variable. BP sequentially apply two different identification

schemes on the VAR, labelled short-run (SR) and long-run (LR) schemes in the following,

which both orthogonalize the structural shocks and normalize their variance to unity, but

differ in the formulation of the additional restriction that is necessary for an exact identifi-

cation. The long-run scheme imposes the restriction that only the first shock of the system

has a long-run effect on TFP, and that shock is therefore labelled as a technology shock, in

line with the conventional wisdom. The short-run scheme imposes, on the other hand, the

restriction that the second shock in the system, labelled news shock, has no impact effect

on TFP but may change it in the longer run and is at the same time reflected by the stock

price index contemporaneously. According to the empirical estimates of BP with the US

data, the technology shock of the LR scheme and the news shock of the SR scheme are

strongly correlated, which leads the authors to conclude that news shocks reflect expected

long-run changes in TFP. When the bivariate system is augmented with further variables
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reflecting economic activity, the authors find that these strongly correlated shocks explain

an important portion of cyclical fluctuations.

The empirical approach of BP is motivated by the presumption that agents might antic-

ipate permanent improvements in TFP before these are realized and that this anticipation

might be reflected by forward-looking variables such as stock prices. As noted above, the

authors check the validity of their presumption by evaluating a correlation coefficient em-

pirically by means of structural VARs. It is, however, known that SVARs with news shocks

are typically subject to the so-called non-invertibility problem which is said to exist when

there is no (perfect) mapping between the VAR representation of observable variables and

the structural shocks of a theoretical model1, as shown by e.g., Schmitt-Grohé (2009), Fève,

Matheron, and Sahuc (2009), Leeper, Walker, and Yang (2009), Fève and Jidoud (2012) and

Sims (2012).

Fève and Jidoud (2012) show that the non-invertibility problem is closely related to the

degree of the forward-looking dimension of the variables included in the VAR as well as the

relative size of news shocks. While SVARs may perform reasonably well even in case of

non-invertibility according to their results, the analysis of Fève and Jidoud (2012) relies on

a very simple data generating process (DGP) in order to make analytic conclusions possible

and they consider only bivariate VARs. Sims (2012) and Forni, Gambetti, and Sala (2011)

have also recently argued that the non-invertibility problem may not always be so severe,

particularly when a large enough number of (forward-looking) variables are included in the

VAR. That is, however, not the practice followed by BP. Moreover, the so-called curse-of-

dimensionality problem prevents researchers from including a large number of variables in

conventional VARs as argued by, e.g., Beaudry, Portier, and Seymen (2013) recently. Given

this background, it appears necessary to investigate the reliability of the BP approach in

technological news shock identification with small VARs.

Another relevant issue for the sequential BP approach to news shock identification is,

as discussed by Christiano, Eichenbaum, and Vigfusson (2007) in another context, that LR

and SR schemes can in general perform differently in identifying the same type of structural

shock. It is therefore of interest whether both BP schemes have similar sampling properties

1See, e.g., Fernández-Villaverde, Rubio-Ramı́rez, Sargent, and Watson (2007).
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and how often they can recuperate the (almost) “true” shocks despite the non-invertibility

problem. Fève and Jidoud (2012) show that the performance of the two schemes may differ,

even when the non-invertibility problem is not relevant. However, their results rely on a

too simple DGP and only bivariate VARs. I discuss the goodness of the BP approach to

technological news shock identification by means of Monte Carlo simulations that rely on a

more complex DGP in this paper and consider, in addition to a bivariate VAR, trivariate

and four-variable VARs à la Beaudry and Portier (2006) as well. Moreover, Fève and Jidoud

(2012) consider only one specific TFP specification, whereas I evaluate various possible

alternatives that are often used in the macroeconomic literature.

Monte Carlo simulations have been used extensively in recent studies such as Barsky

and Sims (2011), Sims (2012) and Beaudry, Portier, and Seymen (2013). The latter two

studies involve, in particular, the evaluation of the SR scheme of BP. The current study

differs from them with its focus being on the comparison of the SR and LR schemes of BP

and on the extent to which the correlation diagnostic test—as it has been dubbed by Fève

and Jidoud (2012)—of BP is a useful tool for exploring whether and to what extent news

shocks comprise a technological component.

A striking finding of Beaudry and Portier (2006) is the very strong correlation between

long-run technology shocks and news shocks. I find that the BP approach is a useful tool

for evaluating whether the news shocks have technological content, although SVARs lead

to partly spurious results: the BP approach obtains a high correlation between long-run

technology shocks and news shocks when the true DGP is constructed in that way and, as

importantly, it would not generate a high correlation between the two types of shocks, were

they not strongly or not at all correlated in reality.

The paper is organized as follows. In the next section, I describe the sequential tech-

nological news shock identification approach of BP. In Section 3, I discuss to what extent

the sequential approach could yet approximate the true DGP. Section 4 provides concluding

remarks.
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2 Beaudry-Portier (2006) Framework

2.1 Theoretical Framework

Consider the Cobb-Douglas production technology

Yt = TFPtK
θ
t−1N

1−θ
t ,

where Yt, Kt, Nt and TFPt stand for output, capital stock, labor input and total factor

productivity respectively and 0 < θ < 1. The original BP approach to news shocks can be

motivated with the TFP specification

TFPt = XtAt, (1)

where Xt and At respectively represent the temporary and the permanent component of

TFP and are defined as

logXt = ρX logXt−1 + εX
t and logAt = γA + logAt−1 + εn,A

t−q
, (2)

with ρX < 1, γA > 1. εX
t and εn,A

t−q stand for surprise technology and anticipated technology—

news—shocks with temporary and permanent effects on TFP, respectively, where perfect

foresight is assumed for news shocks for ease of presentation.2 In the standard dynamic

stochastic general equilibrium framework with rational expectations, which constitutes a

workhorse framework for many macroeconomists, news shocks do not impact on the TFP in

the q periods after they become known but can change the other variables in the system in

the period in which they occur. Thus, if (1) and (2) represent the true TFP dynamics, any

structural bivariate moving average representation of TFP and, say, stock price in logs such

2Note that BP motivate their approach with a Lucas’ tree type of model where the TFP specification looks
somewhat different. Yet, the TFP specification they consider also comprises (temporary) surprise technology
and (permanent) anticipated technology shocks, which is the only crucial point for the forthcoming discussion.
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as




∆tfpt

∆spt



 = Φ (L) εmodel
t , (3)

where ∆ is the difference operator, Φ (L) is a matrix polynomial with L being the lag

operator, should ideally imply

Φ (1) =





∗ 0

∗ ∗



 and Φ (0) =





0 ∗

∗ ∗



 , (4)

and εmodel
t stands for the vector of structural innovations εX

t and εn,A
t .3,4 Obviously, the first

shock in εmodel
t is one with no contemporaneous impact on TFP, but is the sole driver of it

in the long run. The second shock in εmodel
t , on the other hand, can have only a short-run

impact on TFP which dies out in the long run. These features of the log TFP are in line

with the specification given by (1) and (2).

2.2 Empirical Framework

2.2.1 General Framework

BP estimate bivariate, trivariate and four-variable VECMs with real data that all include

TFP (tfpt) and stock prices (spt) as the (first) two variables of the system. The corresponding

reduced-form Wold representation is given by

∆xt = C (L)µt, (5)

where xt is the vector of endogenous variables, C (L) = I + Σ∞

i=1CiLi, and µt is the vector

of error terms with the covariance matrix Ω.5 The underlying VECM is always estimated

3Note that I assume the existence of only two shocks in the DSGE model with respect to the system
described by (3) and (4) for ease of presentation.

4I assume the stability of the DSGE model when the variables of the model that are growing due to the
permanent component log At of the log total factor productivity log TFPt are transformed into stationary
variables. Then, the log-linearized DSGE model has a state-space representation from which a moving-
average representation of the variables as in (3) can be deduced.

5The drift term is neglected for ease of presentation.
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with K − 1 cointegrating relationships, K indicating the number of endogenous variables in

the system, for which BP find evidence by employing the Nyblom-Harvey test.6 BP extract

“structural” shocks from this system by working with two alternative representations of (5):

∆xt = Γ (L) εt, (6)

∆xt = Γ̃ (L) ε̃t, (7)

with Γ (L) = Σ∞

i=0ΓiLi and Γ̃ (L) = Σ∞

i=0Γ̃iLi. The covariance matrices of the structural

shocks, εt and ε̃t, are set to be identity matrices following the widespread convention of the

SVAR literature. The equivalence of (5), (6) and (7) and the restriction on the covariance

matrices of εt and ε̃t imply that

µt = Γ0εt = Γ̃0ε̃t, (8)

Ω = Γ0Γ
′

0 = Γ̃0Γ̃
′

0, (9)

Γi = CiΓ0 and Γ̃i = CiΓ̃0 for i ≥ 0. (10)

The so-called identification problem for the representations in (6) and (7) amounts to the

determination of Γ0 and Γ̃0, respectively. Once these matrices are known, one can capture

the dynamic multipliers Γi and Γ̃i as well as the structural shocks εt and ε̃t.

Two important properties of systems considered by BP are stated by the following two

propositions, which will prove to be useful for my forthcoming discussion. The proofs of the

propositions can be found in the appendix. Note that I follow the definition of Lütkepohl

(2005), who does not define the cointegration relationship as necessarily one among I (1)

variables, in the following. This serves to simplify the presentation, but does not have an

impact on my conclusions.7

Proposition 1 Let (5) be the Wold representation of a K-dimensional I (1) process xt with

r cointegrating relationships and (7) be its structural representation. If K − r elements of

the jth column of Γ̃ (1) are equal to zero, then the remaining elements in the same column

6This cointegration rank is also in line with standard macroeconomic theory which contains only one unit
root due to TFP and in which hours worked is a stationary series. See the discussion below.

7I deal with the so-called I (1) processes—processes integrated of order one—in this paper.
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are also equal to zero.

Proposition 2 Let (5) be the Wold representation of a K-dimensional I (1) process xt with r

cointegrating relationships and (7) be its structural representation. Furthermore, let the last r

columns of Γ̃ (1) comprise a K×r block of zeros. At most (K − r) (K − r − 1) /2 restrictions

on Γ̃0, in addition to the assumption of the identity covariance matrix of structural shocks,

are necessary for an exact identification of the first K − r columns of Γ̃ (1).

2.2.2 Short-Run and Long-Run Schemes

Bivariate System Since Γ0 and Γ̃0 are 2×2 matrices in the bivariate case, four restrictions

are necessary for a unique identification of their elements. The relationships in (9) provide

three restrictions due to the symmetry of the covariance matrix Ω. The difference between

the representations (6) and (7) comes from the one additional restriction which is necessary

for an exact identification of Γ0 and Γ̃0. The representation in (6) is based on a short-run

restriction, namely that the (1, 2) element of Γ0 is equal to zero. The additional restriction

for the identification of (7) is a long-run restriction, namely that the (1, 2) element of Γ̃ (1)

is equal to zero. Formally,

Γ0 =





∗ 0

∗ ∗



 and Γ̃ (1) =





∗ 0

∗ ∗



 , (11)

where the asterisks show the unrestricted elements of the corresponding matrices. Note that

under the log TFP process given by (1) and (2), ε2t and ε̃1t must be identical if both SR and

LR identification schemes described by (11) function perfectly.

Higher Dimensional Systems BP examine the correlation between the estimates of

ε2,t and ε̃1,t from the bivariate model that are computed with the US data and obtain a

high positive correlation between the two shocks. In order to check the robustness of their

results and to measure the impact of technological news shocks on other macroeconomic

quantities, the authors increase the dimension of the bivariate model first with consumption

(ct) such that xt = [tfpt, spt, ct]
′ and then further with investment (it) such that xt =
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[tfpt, spt, ct, it]
′. As before, a reduced form representation of the type in (5) underlies two

different structural identification schemes, a short-run identification scheme and a long-run

identification scheme.8 Moreover, the three- and four-variable models are estimated with

two and three cointegrating relationships, respectively.9 The structural shocks are assumed

to have the identity matrix as the covariance matrix as before. The short-run and long-run

identification schemes of the trivariate framework are characterised by the restrictions

Γ0 =











∗ 0 0

∗ ∗ ∗

∗ ∗ ∗











and Γ (1) =











∗ ∗ 0

∗ ∗ ∗

∗ ∗ ∗











(12)

and

Γ̃ (1) =











∗ 0 0

∗ ∗ ∗

∗ ∗ ∗











, (13)

respectively. The four-variable versions of (12) and (13) are

Γ0 =

















∗ 0 0 0

∗ ∗ ∗ 0

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

















and Γ (1) =

















∗ ∗ 0 0

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

















(14)

and

Γ̃ (1) =

















∗ 0 0 0

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

















. (15)

Obviously, for the trivariate/four-variable systems to function properly, there must be

8Notice that conventional VARs postulate the same number of shocks as the number of variables. In the
higher dimensional systems, it is trivial to add additional shocks that do not impact on TFP to the data
generating process. An example of this can be found in the next section.

9Note that this is in line with standard theory where TFP is a unit root process. Adding ct and it
generates additional cointegrating relations between tfpt and ct and tfpt and it, c.f. King, Plosser, and
Rebelo (1988b).
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additional shocks in the system with no impact effect on TFP but other variables. Note

furthermore that in the SR schemes summarized by (12) and (14), two permanent shocks

on TFP are allowed now. If (1) and (2) represent the true DGP process, however, then

the (1, 1) element of Γ̃ (1) must be estimated to be zero by both trivariate and four-variable

models if these obtain the true dynamics implied by the DGP correctly.

For the systems described by (11) , (13) and (15) with a cointegration rank of K − 1,

Proposition 1 implies that the structural long-run multiplier matrix has the form

Γ̃ (1) =











∗ 0 · · · 0
...

...
. . .

...

∗ 0 · · · 0











. (16)

In other words, one zero restriction on a column of the long-run multiplier matrix of a K-

variable VAR with a cointegration rank ofK−1 implies that the whole column corresponding

to the zero restriction consists of zeros. Thus, (11) , (13) and (15) are systems in which

only the first shock can have a long-run impact on the variables of the system and the

remaining shocks can only have transitory effects on the variables. The only shock with a

long-run impact on TFP (as well as other variables) is interpreted to be a technology shock in

conventional macroeconomic models as well as in the above described theoretical framework.

The implication of Proposition 2 for the systems (11) , (13) and (15), for which r = K−1

holds, is that no further restrictions are necessary for the identification of the first column

of Γ̃ (1). The assumptions of the diagonal covariance matrix of structural shocks with ones

on its diagonal and that all (1, j) elements of Γ̃ (1) for j = 2, . . . , K are equal to zero suffice

to guarantee the identification of the permanent shock. The computation can be carried out

following the lines of King, Plosser, Stock, and Watson (1991; henceforth KPSW).

2.3 The Correlation Diagnostic Test

Assume that (1) and (2) represent the true DGP and both SR and LR schemes can

recover the true news shock from the data generated by that DGP perfectly. In other

words, we abstract from various problems that can limit the success of SVAR identification
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schemes such as lag truncation bias, small sample bias etc. that have been discussed in the

literature.10 In that case, it is to be expected that ε2,t, ε̃1,t and εn,A
t are perfectly correlated.

Yet, even if such problems related to SVAR identification are not relevant, the problem of

non-invertibility, which arises when the anticipation lead of the news shocks is more than one

period as has been shown by Fève and Jidoud (2012) and Sims (2012), hinders the existence

of a perfect correlation between the true shock, εn,A
t , and the estimated shocks, ε2,t and ε̃1,t.

Nevertheless, as Fève and Jidoud (2012) and Sims (2012) argue, SVARs can still deliver gut

approximations of the true DGP, in case forward-looking variables entering the VAR contain

sufficient information.

The specification in (1) and (2) thus corresponds to a situation, in which the BP diag-

nostic test would function perfectly in case the non-invertibilty problem and other problems

related to SVAR estimation are irrelevant. However, other TFP specifications are also easily

conceivable. Assume, for example, that (1) is defined by

Xt = 1 and logAt = γA + logAt−1 + εs,A
t + εn,A

t−q
(17)

so that TFP is subject only to permanent surprise and anticipated technology shocks.11 In

such a setting, when both schemes function perfectly, the SR and LR schemes are expected

to recuperate

ε2t = εn,A
t−q and ε̃1,t = εs,A

t + εn,A
t−q

so that the correlation between ε2,t and ε̃1,t would be

corr (ε2,t, ε̃1,t) =
σ2

εn,A

σεn,A

√

σ2
εs,A + σ2

εn,A

, (18)

where σ2
x shows the variance of the generic variable x. Thus, the true correlation between the

estimated shocks from the SR and LR schemes depend on the size of surprise and anticipated

10See, e.g., Erceg, Guerrieri, and Gust (2005), Christiano, Eichenbaum, and Vigfusson (2007) and Chari,
Kehoe, and McGrattan (2008), which explore the ability of SVARs to recuperate true structural shocks and
their true multipliers.

11The identification schemes of Beaudry and Lucke (2010) and Barsky and Sims (2011) are motivated with
such a TFP process.
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technology shocks and is less than one.

3 Monte Carlo Exercises

BP obtain a strong correlation between the empirical estimates of news and long-run

technology shocks in bivariate as well as higher-dimensional systems with the US data. The

dynamics invoked by these shocks are also very similar across the LR and SR identification

schemes. In order to investigate the use of the sequential approach of BP, I perform several

Monte Carlo exercises in this section. I am particularly interested in showing (i) how the SR

and LR schemes perform and whether their performance is different and (ii) the extent to

which the correlation diagnostic test is a useful tool for recuperating the technology content

of news shocks.

3.1 Data Generating Process

The DGP that is taken to be an RBC model with two real frictions—internal habit

formation in consumption and investment adjustment costs—similar to Barsky and Sims

(2011). Note that this model does not produce aggregate comovement across consumption,

investment, output and hours in response to news shocks and, hence, deviates from the

empirical findings of BP, who find that news shocks should induce aggregate comovement in

the data. Therefore, using the RBC model with real frictions as DGP indirectly provides a

means to test whether the BP approach would perform good in a setting where there is no

aggregate comovement in reality.

The core structure of the DGP consists of the following social planner’s problem:

max
∞
∑

t=0

βtE0

(

ln (Ct − bCt−1) − ψ
N

1+1/η
t

1 + 1/η

)

s.t.

Kt = (1 − δ)Kt−1 +

(

1 − φ

(

It
It−1

))

It
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Table 1: Specification of TFP

Specification Xt At

1 Xt = 1 logAt = γA + logAt−1 + εs,A
t

2 Xt = ρXXt−1 + εX
t logAt = γA + logAt−1 + εn,A

t−q

3 Xt = 1 logAt = γA + logAt−1 + εs,A
t + εn,A

t−q

4 Xt = ρXXt−1 + εX
t logAt = γA + logAt−1 + εs,A

t + εn,A
t−q

Yt = TFPtK
θ
t−1N

1−θ
t

Yt = Ct + It +Gt

Gt = gtYt.

Here, Ct, Nt, Kt, It, Yt and Gt stand for consumption, labor, capital, investment, output and

government spending, respectively. TFPt and gt are exogenous processes for the level of

technology and the share of government spending in total output, respectively. I assume

that gt follows a stationary process subject to surprise and anticipated shocks,

ln gt = (1 − ρ) ln ḡ + ρg ln gt−1 + ε3,t + ε4,t−q,

q denoting the anticipation lead. I set q = 2, i.e., the anticipation lead is 2 quarters in this

framework, since the calibration of the model corresponds to quarterly data.

I postulate the TFP in general form as

TFPt = XtAt,

where Xt and At constitute the temporary and permanent components of it, respectively.

This TFP specification resembles very much the one in the seminal paper of King, Plosser,

and Rebelo (1988a). Note that TFP is a unit root process in all forthcoming exercises, i.e.,

it has a permanent component. I consider four different specifications of TFP, of which

components are summarized in Table 1. The implication of each specification for the success

of the BP news shock identification approach is discussed below.

The values given in Table 2 are used for the parameters and mostly follow Barsky and
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Table 2: Calibration of DGP Parameters

β b ψ η δ θ ḡ ρX γA φ′′ (γA) σε3
= σε4

0.99 0.8 1 1 0.025 0.33 0.2 0.95 0.0025 0.3 0.25

Sims (2011). σx stands for the standard deviation of the term x. The standard deviations

of the shocks affecting the TFP are reported below.

3.2 Simulation Results

Using the foregoing DGP, I generate 500 replications of time series with a sample length

of 200 periods (quarters). I then compute the statistics of interest for each replication.

Note that I replace spt with the log of consumption (ct) in my simulations. The trivariate

model additionally contains labor, nt, and the four-variable model furthermore output, yt,

both in logs. Since labor is a stationary series by construction, including it in the VAR

amounts having one additional, trivial cointegrating relation with a one corresponding to

nt and zeros corresponding to the other variables. ct and yt are also cointegrated with tfpt

by construction. Therefore, the cointegration rank is always set to K − 1 in the K-variable

models in the forthcoming exercises.

3.2.1 TFP Specification 1

The first TFP specification in Table 1 provides a means to check to what extent the

BP scheme might artificially generate a high positive correlation between ε2,t and ε̃1,t, al-

though the two must be orthogonal to each other according to the true DGP. With this TFP

specification, solely permanent surprise technology shocks impact on TFP. In this case, the

short-run and long-run impact of shocks on the bivariate system read

Φ (0) =





∗ 0

∗ ∗



 and Φ (1) =





∗ 0

∗ 0



 (19)

in terms of the representation given by (3), with consumption here being the second variable

of the system instead of stock price. Note that in this case ε2,t is supposed to be a linear
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combination of the shocks to government spending share in GDP, and ε̃1,t stands for the

only technology shock. It is hence expected that

εs,A
t = ε1t = ε̃1,t and ε2t⊥ε̃1,t

in terms of the BP schemes.

The experiment I conduct with the DGP under the first TFP specification shows that

the BP scheme is successful in obtaining a low correlation between ε2,t and ε̃1,t. Histograms

corresponding to the measured correlation for the bivariate, trivariate and four-variable BP

models are illustrated in the first, second and third columns of Figure 1, respectively. The

first row of the figure corresponds to the correlation between ε2,t and ε̃1,t in the empirical

models. According to the first histogram that corresponds to the bivariate model, for ex-

ample, the correlation between ε2,t and ε̃1,t is between -0.2 and 0.2 in about 60% of the

simulations; it is between -0.4 and 0.4 in about 90% of all simulations.12 The probability

of a very low, statistically insignificant, correlation decreases somewhat with the number of

variables included in the model. This may have to do with properties of the DGP which I do

not deal with further in this paper. However, it is very unlikely that the correlation is above

0.8 for any model according to my simulations. Only the four-variable model generates a

correlation coefficient above 0.8 in less than 10% percent of all simulations. It should be

noted, however, that the four-variable model is subject to stochastic singularity, since there

are only three shocks in the true DGP in this first exercise. Adding a further shock to the

DGP would improve the performance of the four-variable model by enabling it to better

isolate different shocks. In general, I conclude, the BP approach would very probably not

obtain a high correlation between ε2,t and ε̃1,t if those were not highly correlated in reality.

I next turn to the success of the short-run identification scheme in obtaining an empirical

“news” shock that is orthogonal to the true surprise technology shock, εs,A
t , and of the

long-run scheme in recuperating the true and only technology shock εs,A
t . According to the

second row of Figure 1, all short-run schemes are highly successful in obtaining of a very

12Note that I impose the sign restriction on both ε2,t and ε̃1,t that they correspond to a shock with a
positive long-run impact on TFP in the simulations. Therefore, the majority of the correlations that are
reflected in Figure 1 are positive.
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low, virtually zero, correlation between ε2,t and εs,A
t , and all long-run schemes are highly

successful in obtaining a very high, i.e. above 0.8, correlation between ε̃1,t and εs,A
t , as

expected. It must be noted, however, that the success of the long-run schemes deteriorates

gradually with the number of additional variables included in the VAR.

3.2.2 TFP Specification 2

After establishing that a Type I error is unlikely to be made by the BP schemes under

Specification 1 and the probability of a Type II error also relatively low, I now turn to the

specifications which are more in line with the premises of BP. Specification 2 in Table 1

describes the setting which was introduced at the beginning of Section 2. In the short run

TFP is hit only by the temporary shock, εX
t , while only the anticipated technology shock,

εn,A
t , can have a long-run impact on it. For such a setting, histograms corresponding to the

measured correlation across true and empirical shocks are illustrated in Figure 2. The first

row again corresponds to the empirical correlation between ε2,t and ε̃1,t, and the bivariate

model is, again, the best performer in finding that correlation, which is supposed to be 1

according to the underlying DGP: in slightly more than 80% of all the simulations, it obtains

a correlation coefficient that exceeds 0.8. The probability of the correlation coefficient being

above 0.6 is almost 100%.

The success of the BP approach in obtaining a high correlation between ε2,t and ε̃1,t

somewhat diminishes with trivariate and four-variable models. The latter models find a

correlation coefficient above 0.8 in only about 70% of all simulations. This finding may at

least partly be due to the fact that the trivariate and four-variable SR identification schemes

do not exactly reflect the DGP. Notably, both (12) and (14) imply that there are two shocks

with a possible non-negative impact on TFP in the long run according to the trivariate and

four-variable SR schemes. The DGP with TFP Specification 2 foresees, on the other hand,

that the second shock—the news shock—were the only long-run driving force of the TFP.

Thus, the success of the SR identification scheme can be said to be related to the extent

to which the estimated long-run impact of the first shock on TFP is zero. Note that if the

(1, 1) element of Γ (1) were exactly zero in the trivariate and four-variable cases, this would

imply that the entire first column of Γ (1) were zero according to Proposition 1, in line with
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the DGP.

The second and third rows of Figure 2 highlight a significant discrepancy between the

performances of the short-run and long-run BP identification schemes. The SR scheme is

more successful than the LR scheme in obtaining the true correlation between the true and

empirically estimated anticipated technology shocks. In terms of the bivariate model, for

example, the SR scheme obtains a correlation between ε2,t and εs,A
t that exceeds 0.8 in all

simulations, whereas only about 60% of all correlations between ε̃1,t and εs,A
t following from

the LR scheme are above 0.8. Furthermore, the performances of both SR and LR schemes

deteriorate with more variables in the VAR.

That the SR and LR schemes perform differently is indeed in line with what Christiano,

Eichenbaum, and Vigfusson (2007) report in a Monte Carlo study and may thus not be so

surprising. Note that the finding may have important implications for the users of the BP

sequential approach to technological news shock identification. The bivariate scheme can,

for example, successfully recuperate the news shock in all cases, although the correlation

test would indicate a strong correlation between ε2,t and ε̃1,t, i.e. a coefficient above 0.8, in

only about 80% of all cases. Yet, the LR scheme shock is correlated with the true shock

with a coefficient above 0.8 in only about 60% of all cases. Hence, it can be deduced, the

correlation test might generate spurious results to some degree.

From Figure 3, which shows the mean response to a standard news shock and the cor-

responding sampling uncertainty for the BP models, follows that the bivariate models are

again the best performers in terms of detecting the true responses of TFP and consumption.

The bivariate models with both short-run and long-run restrictions capture the true response

better than the higher dimensional ones on average. The higher dimensional models under-

estimate the true response for both TFP and consumption, and the underestimation is wider

in the four-variable case than in the trivariate case. Another important observation is that

the LR identification schemes are associated with a higher estimation uncertainty than the

SR identification schemes, which is in line with the findings of Christiano, Eichenbaum, and

Vigfusson (2007).
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3.2.3 TFP Specifications 3 and 4

The last two specifications that I list in Table 1 postulate two other convenient constella-

tions for the TFP process. Specification 3 is the simpler one and distinguishes between two

types of permanent technology shocks: surprise and anticipated. Note that such a structure

would be in line with the alternative approaches to identification of technological news shocks

in Beaudry and Lucke (2010) and Barsky and Sims (2011). Under this constellation, the

short-run BP scheme is supposed to be in line with the TFP specification, while the long-run

scheme mingles the two types of technology shocks: εs,A
t and εn,A

t−q. Under specification 4,

on the other hand, both schemes mingle shocks: the short-run scheme εX,A
t and εs,A

t for the

surprise technology shock; the long-run scheme εs,A
t and εn,A

t−q. Yet, the SR schemes are still

supposed to detect news shocks correctly.

Note that under both of the foregoing TFP specifications the success of the BP identi-

fication schemes with respect to technological news shocks depends on the relative size of

shocks. With both TFP specifications 3 and 4, it is expected that

ε2t = εn,A
t−q and ε̃1,t = εs,A

t + εn,A
t−q

so that the correlation between ε2,t and ε̃1,t is

corr (ε2,t, ε̃1,t) =
σ2

εn,A

σεn,A

√

σ2
εs,A + σ2

εn,A

. (20)

Thus, with σεs,A = 0.66 and σεn,A = 0.66, the expected correlation is 0.71 in the benchmark

simulations. The histograms in Figure 4, which shows histograms corresponding to the

DGP with TFP Specification 3, point out for the bi- and trivariate models that there is

more than 50% probability of the correlation lying between 0.6 and 0.8, the trivariate model

being slightly more successful than the bivariate model. For the four-variable model, the

probability of the correlation coefficient being between 0.6 and 0.8 is somewhat lower, but

still close to 50%. Yet, for all models, particularly for the bivariate and four-variable models,

there is a non-negligible probabality—between 20% and 35%—that the correlation would be

above 0.8. Thus, there is a fairly high chance of the correlation test indicating, falsely, a too
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high correlation.

Particularly the bivariate and trivariate models with short-run restrictions are rather

successful in recuperating the news shocks from the data if the third TFP specification

underlies the DGP, see the second row of Figure 4. Both models generate a correlation

between ε2,t and εn,A
2,t above 0.8 in 80% of simulations. The four-variable model is yet less

successful: it generates a correlation above 0.8 in only half of all simulations.

Finally, the long-run identification schemes are expected to generate a correlation of 0.71

between ε̃1,t and εn,A
2,t by construction. The bi- and trivariate models can achieve this in

roughly half and the four-variable model in only 35% of all simulations. Thus, LR schemes

once again underperform SR schemes in recuperating the true shocks. The most striking

finding for this paper though is that the probability of the LR scheme of generating a

correlation between ε̃1,t and εn,A
2,t that exceeds 0.8 is virtually zero with the bi- and trivariate

models, and less than 10% with the four-variable model. Yet, despite this finding, the BP

correlation test would point to a too high positive correlation, i.e. above 0.8, between ε2,t

and ε̃1,t way too often. This, like under DGP with TFP Specification 2, suggests that the

correlation diagnostic test might partly generate spurious results.

The importance of the relative size of shocks in the DGP for the success of a VAR

identification scheme has often been emphasized in the VAR literature.13 In order to examine

the relevance of the issue, I decrease the standard deviation of the surprise technology shock

in the TFP Specification 3 by half to 0.33 in an alternative simulation. The histograms

corresponding to this exercise are reported in Figure 5. As for the short-run identification

schemes, it is eye-catching that the histograms for the relationship between ε2,t and εn,A
2,t

are very similar to the ones from the exercise with the TFP Specification 2. For the LR

schemes, it must first be noted that the expected correlation between ε̃1,t and εn,A
2,t is 0.89

with σεs,A = 0.33. Almost all simulation correlations for the bi- and trivariate models

with long-run restrictions lie between 0.6 and 1, and, thus, these models can be said to be

successful in capturing the properties of the true DGP. The four-variable model, albeit less

succesfull, still captures a correlation between ε̃1,t and εn,A
2,t that lies between 0.6 and 1 in

13See, e.g., Erceg, Guerrieri, and Gust (2005), Christiano, Eichenbaum, and Vigfusson (2007), Sims (2012)
and Fève and Jidoud (2012).
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about 75% of all simulations. Finally, all models obtain a correlation between ε2,t and ε̃1,t

that is above 0.8 with a high probability. Yet, as I argued above, some of these correlations

might be of a spurious nature, since the models with LR restrictions are themselves not so

successful in obtaining the true correlation between own long-run technology shocks and the

news shock from the DGP.

To gain more insight into the identification performance of the BP schemes under the

third TFP specification, I now turn to the responses of TFP and consumption to a one-

standard-deviation news shock, illustrated in Figure 6 for both of the foregoing paratemer

constellations. Note that the IRFs of the LR schemes cannot reflect the true responses to

a news shock by construction as long as σεs,A 6= 0 but converge to it as σεs,A → 0. The

IRFs in the upper (lower) block correspond to the experiment with the higher (lower) stan-

dard deviation of technology shocks, i.e. σεs,A = 0.66 (σεs,A = 0.33). In the benchmark

experiments with σεs,A = 0.66, the SR schemes outperform the LR schemes both in terms

of obtaining the true response on average and generating a smaller sampling uncertainty

interval. Moreover, the LR schemes generally fail to include the true response within the

sampling uncertainty interval at short horizons. The failure of the LR schemes disappears,

however, when the standard deviation of the surprise technology shock is decreased by half

to 0.33. The LR schemes become partly even more successful than SR schemes in obtaining

the true response on average when the standard deviation of the surprise technology shock

is decreased, although they are still associated with relatively higher estimation uncertainty.

The performance of the short-run schemes is less affected by the change in the standard

deviation of the surprise technology shock. Finally, it must also be noted that both iden-

tification schemes are generally quite successful in recuperating the shape of the impulse

response functions.

I do not report here the results from the experiments with the last TFP specification in

Table 1, since those are very similar to the foregoing ones with TFP Specification 4. Hence,

it can be claimed that some more noise through a temporary component in the TFP has a

negligible impact on the identification of news shocks with the BP schemes.
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4 Concluding Remarks

In this paper, I have investigated the technical properties of the sequential approach

implemented by Beaudry and Portier (2006) for identifying anticipated technology—the so-

called news—shocks in the SVAR framework. I have examined to extent to which the BP

approach could be empirically successful in recuperating news shocks with technology content

from the data by means of a Monte Carlo experiment. Thereby, I used the neoclassical growth

model with real frictions as the data generating process and considered various alternative

specifications for TFP, a crucial variable when identifying anticipated technology shocks,

which are widely used in the existing literature.

My general finding is that the BP approach, even with a small VAR model with only

two variables, can be quite successful in estimating the news shocks and their dynamic

multipliers. It often obtains a high correlation between long-run technology shocks and news

shocks when the true DGP is constructed in that way. However, the sequential approach may

also partly generate spuriously high correlations between the short-run news and long-run

technology shocks. Nevertheless, the approach would not generate a high correlation between

the foregoing shocks, were these not strongly correlated in the underlying true DGP.

Another relevant finding is that the performances of short-run and long-run BP identifi-

cation schemes differ in terms of recuperating the true anticipated technology shock series.

Yet, both schemes typically deliver very similar average impulse response functions with

respect to these shocks, although the long-run schemes are typically associated with higher

estimation uncertainty than short-run schemes.

All in all, the sequential BP approach is a useful tool for estimating news shocks with

technology content. On the contrary to what Sims (2012) suggests for the identification

scheme of Barsky and Sims (2011), that using more forward-looking variables than just

stock price might lead to better results, low dimensional BP models could perform rather

good in recuperating the technological news shocks.

Note that, while the sequential approach provides one way of estimating the technology

content of news shocks, other possibilities to explore the validity of the technology inter-

pretation of news shocks exist as well. Haertel and Lucke (2008) and Lucke (2013) use, for
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example, patent data and test whether those are Granger-causal for news shocks in the US

and Germany. The authors establish both a significant technology content of news shocks

and a significant role for them in the short-run macroeconomic fluctuations of the two coun-

tries. My findings can be seen as complementary to the findings of these authors, since

they are supportive for the technology interpretation of Beaudry and Portier (2006), who

also report a significant role for technological news shocks in the US business cycles.
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Figure 1: Histogram of Correlations under TFP Specification 1
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Notes : Share of correlation coefficients falling in a certain interval in the simulation is shown.

The generic mnemonic “xV” in the graph titles refers to the x-variable BP model. See Table 1

for the TFP specification. Standard deviation of shocks: σεs = 0.66. 1st row: correlation

between empirical shocks. 2nd and 3rd rows: correlation between the true technology shock

and the empirical short-run “news” and long-run technology shock, respectively.
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Figure 2: Histogram of Correlations under TFP Specification 2
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Notes : Share of correlation coefficients falling in a certain interval in the simulation is shown.

The generic mnemonic “xV” in the graph titles refers to the x-variable BP model. See Table

1 for the TFP specification. Standard deviation of shocks: σεX = 0.66. σεn,A = 0.66. 1st

row: correlation between empirical shocks. 2nd and 3rd rows: correlation between the true

technology/news shock and the empirical short-run news and long-run technology, respectively.
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Figure 3: Response to a News Shock under TFP Specification 2
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Notes : The generic mnemonic “xV” in the graph titles refers to the x-variable BP model. See

Table 1 for the TFP specification. The shaded area shows the 95% confidence band from 500

Monte Carlo simulations with a sample length of 200 periods.
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Figure 4: Histogram of Correlations under TFP Specification 3
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Notes : Share of correlation coefficients falling in a certain interval in the simulation is shown.

The generic mnemonic “xV” in the graph titles refers to the x-variable BP model. See Table 1

for the TFP specification. Standard deviation of shocks: σεs,A = 0.66. σεn,A = 0.66. 1st

row: correlation between empirical shocks. 2nd and 3rd rows: correlation between the true

news shock and the empirical short-run news and long-run technology shock, respectively.
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Figure 5: Histogram of Correlations under TFP Specification 3
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Notes : Share of correlation coefficients falling in a certain interval in the simulation is shown.

The generic mnemonic “xV” in the graph titles refers to the x-variable BP model. See Table 1

for the TFP specification. Standard deviation of shocks: σεs,A = 0.33. σεn,A = 0.66. 1st

row: correlation between empirical shocks. 2nd and 3rd rows: correlation between the true

news shock and the empirical short-run news and long-run technology shock, respectively. The

difference to the simulation in Figure 4 is that in the current figure σεs,A = 0.33.
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Figure 6: Response to a News Shock under TFP Specification 3
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Notes : The generic mnemonic “xV” in the graph titles refers to the x-variable BP model. See

Table 1 for the TFP specification. The shaded area shows the 95% confidence band from 500

Monte Carlo simulations with a sample length of 200 periods.
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Appendix: Proofs of Propositions

Proof 1 (Proof of Proposition 1) It is known from the Granger representation theorem

that the matrix of the long-run multipliers C (1) has rank K − r. Note that Γ̃ (1) must have

the same rank due to (10) and the fact that Γ̃0 is non-singular by construction. Thus, Γ̃ (1)

can be written as

Γ̃ (1) =





























γ̃11 · · · γ̃1K

... · · ·
...

γ̃K−r,1 · · · γ̃K−r,K

κ1

[

γ̃11, . . . , γ̃K−r,1

]

′

· · · κ1

[

γ̃1K , . . . , γ̃K−r,K

]

′

... · · ·
...

κr

[

γ̃11, . . . , γ̃K−r,1

]

′

· · · κr

[

γ̃1K , . . . , γ̃K−r,K

]

′





























(21)

where κi for i = 1, . . . , r are row vectors of length K − r. From (21) follows straightforward

that the last r elements of the jth column of Γ̃ (1) must be equal to zero, when the first K− r

elements of the same column are set to zero.

Proof 2 (Proof of Proposition 2) The Granger representation theorem states that the

r ×K matrix β′ containing the cointegrating vectors is orthogonal to the matrix of long-run

multipliers: β ′C (1) = 0r×K. Hence,

β′Γ̃ (1) = 0r×K , (22)

following from (10). Since Γ̃ (1) has a cointegration rank of K − r, i.e., K − r independent

elements in each of its columns, (22) amounts to r (K − r) restrictions on each row of Γ̃ (1).

Let Γ̃ (1) be partitioned as

Γ̃ (1) =
[

Γ̂K×(K−r) 0K×r

]

(23)

so that only the firstK−r shocks can have a permanent impact on the variables in this system.

Note that the knowledge of the first K − r columns of Γ̃0 is necessary for computing the
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dynamic multipliers of the permanent shocks. Furthermore, the knowledge of the first K − r

rows of the matrix Γ̃−1
0 is necessary for computing the variances of the permanent shocks.

KPSW show that the knowledge of either the first K−r columns of Γ̃0 or the first K−r rows

of Γ̃−1
0 is enough for computing the other one. Thus, when the interest lies in computing the

dynamics related to the permanent shocks, K (K − r) elements of either Γ̃0 or Γ̃−1
0 have to

be estimated. When the covariance matrix of structural shocks is an identity matrix, as has

always been assumed in this note, this imposes (K − r) ((K − r) + 1) /2 restrictions to this

end. Recall from above that r (K − r) additional restrictions come from the cointegration

property of the model. Hence,

K (K − r) −
(K − r) ((K − r) + 1)

2
− r (K − r) =

(K − r) ((K − r) − 1)

2

more restrictions are needed for computing the dynamic multipliers of the permanent shocks.
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