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Abstract

We develop quasi-interpolation methods and a Lagrange interpolation method
for trivariate splines on a regular tetrahedral partition, based on the Bernstein-
Bézier representation of polynomials. The partition is based on the body-
centered cubic grid.

Our quasi-interpolation operators use quintic C? splines and are defined
by giving explicit formulae for each coefficient. One operator satisfies a cer-
tain convexity condition, but has sub-optimal approximation order. A second
operator has optimal approximation order, while a third operator interpolates
the provided data values. The first two operators are defined by a small set
of computation rules which can be applied independently to all tetrahedra of
the underlying partition. The interpolating operator is more complex while
maintaining the best-possible approximation order for the spline space. It
relies on a decomposition of the partition into four classes, for each of which
a set of computation rules is provided.

Moreover, we develop algorithms that construct blending operators which
are based on two quasi-interpolation operators defined for the same spline
space, one of which is convex. The resulting blending operator satisfies the
convexity condition for a given data set.

The local Lagrange interpolation method is based on cubic C* splines and
focuses on low locality. Our method is 2-local, while comparable methods
are at least 4-local.

We provide numerical tests which confirm the results, and high-quality
visualizations of both artificial and real-world data sets.
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Zusammenfassung

Wir entwickeln Quasi-Interpolationsmethoden und eine Methode zur lokalen
Lagrange-Interpolation mit trivariaten Splines, definiert iiber einer regelmafsi-
gen Tetraederpartition. Die Splines basieren auf der Bernstein-Bézier Darstel-
lung trivariater Polynome. Die Tetraederpartition basiert auf dem kubisch
innenzentrierten Gitter (body-centered cubic grid).

Die Quasi-Interpolationsoperatoren verwenden quintische C? Splines und
sind durch explizite Formeln fiir die Koeffizienten definiert. Der erste Oper-
ator geniigt einer gewissen Konvexitiatsbedingung, besitzt aber sub-optimale
Approximationsordnung. Der zweite Operator besitzt die fiir den Spline-
raum bestmogliche Approximationsordnung, wahrend der dritte Operator
die bereitgestellten Daten interpoliert. Zur Definition der ersten beiden Op-
eratoren geniigt ein einzelner Satz an Berechnungsformeln fiir die Koeffizien-
ten, der auf alle Tetraeder der Partition unabhingig voneinander angewendet
werden kann. Der interpolierende Operator ist komplexer, besitzt aber eben-
falls die bestmdgliche Approximationsordnung. Dem liegt eine Zerlegung der
Partition in vier Tetraederklassen zugrunde, fiir die jeweils ein Formelsatz
zur Berechnung der Koeffizienten vorliegt.

Dariiber hinaus entwickeln wir Algorithmen, die, basierend auf zwei Quasi-
Interpolationsoperatoren, von denen einer konvex ist, einen Hybrid-Operator
konstruieren. Der Hybrid-Operator erfiillt das Konvexitatskriterium fiir den
gegebenen Datensatz.

Die lokale Lagrange-Interpolationsmethode verwendet kubische C! Splines
und wurde mit Hinblick auf eine méglichst geringe Lokalitat entwickelt. Die
Methode ist 2-lokal, wihrend vergleichbare Methoden eine Lokalitit von min-
destens 4 besitzen.

Unsere numerischen Tests bestdtigen die Ergebnisse. Wir erzeugen Visu-
alisierungen, sowohl von synthetischen Funktionen, als auch von Datenséitzen
aus Computertomographen, die die Qualitit der Rekonstruktionen aufzeigen.
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Chapter 1

Introduction

Polynomial splines are fundamental tools in the field of approximation the-
ory. They are widely used in various forms in many areas such as computer-
aided geometric design, image processing, and engineering, where they find
many practical applications. Hence, it is no surprise that the term ‘spline’
is borrowed from the shipbuilding industry where, in times before digital
computers where commonly used, it described a thin strip of wood that
was bent around a number of lead weights to form a smooth curve. These
strips behave like piecewise cubic polynomials, minimizing the tension along
the curve. It is generally agreed upon that it was the Romanian-born mathe-
matician Isaac Jacob Schoenberg who introduced the term into mathematics,
when he used it in his 1946 paper “Contributions to the problem of approx-
imation of equidistant data by analytic functions” [75]| to describe smooth
approximations by piecewise polynomials.

Thus, even the theory of univariate splines is comparatively young. The
theory developed rapidly, however, especially between the 1960’s and 1980’s.
Splines can be defined by only a few parameters. They can be stably eval-
uated by efficient algorithms, like the de Casteljau algorithm for splines in
B-form [19, 20|, or the algorithms by de Boor [11] and Cox [27] for B-splines.
They also possess excellent approximation properties. These features make
them an ideal tool to use in conjunction with modern digital computers,
which became increasingly common during these years. There are many out-
standing publications on the subject of univariate splines, among them the
monographs by de Boor [12], Niirnberger [57], and Schumaker [77].

It was also during that time that the French engineer Pierre Etienne
Bézier developed a representation of polynomial curves for his work at the
vehicle manufacturer Renault, an account of which can be found in chapter 1
of [37]. This representation is based on the well-known Bernstein basis poly-
nomials, which were introduced in 1912 by the Russian mathematician Sergei
Natanovich Bernstein, who used them for his elegant constructive proof of
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the Weierstrass approximation theorem [8]. To recognize the contributions
of both Bernstein and Bézier, the representation is known as the Bernstein-
Bézier representation (see [10]) or, following a suggestion by de Boor [13], the
B-form. The B-form, though originally developed for univariate polynomials,
can be readily extended to the multivariate setting. The splines developed
in this thesis are based on the trivariate equivalent of this representation.

Early steps towards the development of bivariate splines based on the
B-form began as early as the 1950’s when Lorentz [49] and Stancu [83] stud-
ied bivariate Bernstein basis polynomials on a triangle. With the increasing
possibilities of computer graphics and the development of computer-aided
geometric design came the use of such polynomials as a representation of sur-
faces in the 1970’s, for example in the works of Farin [33, 34| and Sabin [73].
The latter contained the characterization of C'' smoothness for two polyno-
mial pieces defined on neighboring triangles, while the generalization for the
C" case were introduced by Farin in [35]. This characterization proved to be
central to the development of bivariate spline theory, as it combined the ad-
vantages of the B-form with the straightforward description of smoothness as
linear conditions for the coefficients of the polynomials. It was also Farin [34]
who first suggested the B-Form as a representation for bivariate splines on
triangulations. Since then, a vast literature on the subject has accumulated.
The works of Chui [21] and Lai and Schumaker [46] give comprehensive in-
sight into the theory and are among the standard literature in this area of
research.

First results for trivariate splines, defined on tetrahedral partitions and
based on Bernstein-Bézier techniques, were not long in coming. Among them
were the research papers on trivariate macro-elements by Alfeld [1, 2|, Worsey
and Farin [89], and Worsey and Piper [90], and several articles investigating
the dimension of trivariate spline spaces (see [3, 5-7]). The latter problem has
still not been completely solved for arbitrary tetrahedral partitions, or even
in the bivariate case for arbitrary triangulations, although several upper and
lower bounds for the dimension are known (see [4, 46]). Today, the theory of
trivariate splines still is an area of ongoing research, to which this thesis is a
contribution.

There exist a huge number of trivariate spline interpolation methods,
which can be classified into three categories. Macro-element methods are
widely used to construct Hermite-type interpolants, which use function values
as well as derivatives to construct a spline. The earlier mentioned articles
by Alfeld, Worsey, Farin and Piper (see |1, 2, 89, 90|) are classic examples
for this kind of method. Recent contributions to this area are the book of
Lai and Schumaker [46], the works of Matt [52, 53], and also the references
in these. An important tool in the construction of such methods is the
manimal determining set, which is a subset of certain points related to a spline



space such that fixing all coefficients associated with these points uniquely
determines a spline. Usually, it is also necessary to know the dimension of
the spline space.

The second category consists of local Lagrange interpolation methods.
The classic Lagrange interpolation problem is completely solved for uni-
variate B-splines, but it is much more complex in the multivariate setting.
This is largely due to the fact that there exist no Haar spaces of dimen-
sion greater than two in two or more variables (see [28, 50]). There are
many such methods using bivariate splines (see [22, 43, 58, 63, 64, 66|, the
survey [65], and the references in [46]), and recent years have seen an in-
creasing number of local Lagrange interpolation methods in the trivariate
setting (see [41, 42, 44, 54, 55, 59, 61, 62, 78]). In many of these, the locality
is achieved by a decomposition of the underlying triangulation or tetrahe-
dral partition into several classes, and by the subdivision of some of all of
the simplices using a macro-element method. One of the methods using this
technique, which we co-authored with Niirnberger |61], is the subject of chap-
ter 5 of this thesis. Our goal was the construction of a Lagrange interpolant
with low locality. The key to the low locality is our use of a regular partition
which allows an efficient decomposition into very few classes of tetrahedra.
This partition is based on the well-known body-centered cubic grid and uni-
fies the approximation methods developed in this thesis. Our method uses
cubic C'-splines and is 2-local, while the comparable methods developed
in [55] and [41] are 4- and 5-local, respectively. For arbitrary partitions, the
locality can be as high as 10 (see [42]). Similarly to macro-element methods,
the Lagrange interpolation methods also rely on the construction of a mini-
mal determining set, and the knowledge of the dimension of the underlying
spline space.

The third category comprises quasi-interpolation methods. These meth-
ods usually define a linear operator mapping the space of continuous functions
onto a spline space, and thus the other two categories can be interpreted as
a subset of this class. In contrast to macro-element methods and Lagrange
interpolation methods, however, a quasi-interpolation operator does not nec-
essarily rely on a minimal determining set, or even on the knowledge of the
dimension of the spline space. The interpolation sets used in macro-element
methods and Lagrange interpolation methods are often not equidistantly dis-
tributed, and thus an intermediate step is necessary when gridded data is to
be approximated. Quasi-interpolation methods, on the other hand, can be
specifically designed to approximate regularly spaced data directly, as we
show in chapter 3. Some methods work with box splines, which can be in-
terpreted as the multivariate equivalent to the univariate B-splines. These
methods define quasi-interpolation operators as linear combinations of trans-
lates of basic functions, without using Bernstein-Bézier techniques. Examples
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for such methods can be found in [14, 21, 30, 31, 38, 69]. Related to these are
also the so-called simplex splines of [74]. In contrast to those methods are the
quasi-interpolation operators based on the B-form of multivariate polynomi-
als. These methods construct a spline by giving explicit computation rules
for each coefficient. This approach has many advantages. It is not necessary
to construct and evaluate basic functions. The spline is rather evaluated
using the efficient de Casteljau algorithm. Since the rules are given as linear
combinations of the surrounding data values, the methods are implicitly local
and stable. Any symmetries inherent in the underlying partition can be mir-
rored by the rules, thus greatly reducing the number of distinct rules needed
to define the operator. Hence, such methods are usually based on regular
partitions which exhibit many symmetries. Moreover, the coefficients can be
computed independently of each other, which can be exploited by the paral-
lelization capabilities of modern computer hardware. Examples for this kind
of quasi-interpolation operator are the bivariate and trivariate C*-methods
in [60, 71, 72, 80-82|. It is operators of this type that we develop in chap-
ter 3 of this thesis. Our quasi-interpolation operators, however, use quintic
(C?-splines defined on a tetrahedral partition based on the body-centered cu-
bic grid. To our knowledge, these are the first C? operators defined in this
fashion.

This thesis is structured as follows. Chapter 2 gives a comprehensive
overview of the theory which our work is based on. We begin the chapter
with some fundamental facts about tetrahedra and tetrahedral partitions be-
fore we introduce the body-centered cubic grid. Based on this grid, we define
a regular tetrahedral partition, called the BC'C partition, which is common
to all spline spaces used in this thesis. We also develop some related lem-
mas that are used in our main results. We continue with basic facts about
trivariate polynomial approximation and introduce the B-form and related
Bernstein-Bézier techniques. These include the central theorem concerning
the characterization of smoothness conditions between neighboring tetrahe-
dra, and the de Casteljau algorithm. We conclude the chapter with the basic
theory of trivariate splines defined over tetrahedral partitions, the introduc-
tion of minimal determining sets, and the concepts of locality and stability.

We start chapter 3 by establishing some notation and terminology about
quasi-interpolation using Bernstein-Bézier techniques. We introduce the B-
coefficient computation rules which our operators are based on, and develop
related concepts such as symmetry, locality and stability. Moreover, we in-
troduce a new convexity condition which is motivated by the convexity of
the B-form. This concept of convexity is the basis for the algorithms we de-
velop in chapter 4. Building on these fundamentals, we develop three quasi-
interpolation operators with different properties, using quintic C?-splines on
the BCC partition. The operators are defined by giving explicit computation



rules for the coefficients of the splines. These definitions can be found in the
appendix. The first operator, which we call the convezr operator, fulfills our
convexity condition. This comes at the expense of the approximation order,
which is sub-optimal for this operator. Our second operator, on the other
hand, is constructed to achieve the best-possible approximation order for the
underlying spline space, and we call it the optimal operator. Both operators
use only a small set of coefficient computation rules that can be applied to all
tetrahedra of the partition. The number of distinct rules is further reduced
by exploiting the symmetries of the BCC partition. Most quasi-interpolation
methods interpolate none or only some of the provided data values. Our
goal in the development of the third operator was to construct a quasi-
interpolation method that does interpolate the provided data values while
maintaining the best-possible order of approximation. While the operator
achieves this, it is more complex than the other two operators and relies on a
decomposition of the BCC partition into four classes of tetrahedra, for each of
which a separate set of rules is given. This technique is similar to many local
Lagrange interpolation methods (see [54, 59, 61|, among others), in that these
methods also use a decomposition of the underlying partition. In contrast
to those methods, however, our splines can be constructed independently
on each tetrahedron in an arbitrary order. This makes the parallelization
of many algorithms straightforward and was another criterion in designing
the operators. The three quasi-interpolation operators were developed to ap-
proximate gridded data, such as is acquired in computed tomography. The
final section in this chapter establishes local and global error bounds for the
three quasi-interpolation operators. Some of the main results in this chapter
are proved with the help of a computer program which we wrote using the
Mathematica® software package by Wolfram Research. We give a listing of
this program and a detailed description in the appendix.

The convexity condition introduced in chapter 3 is the basis for the algo-
rithms developed in chapter 4. The motivation for these algorithms actually
came from observations on bivariate spline surfaces, where surfaces produced
by non-convex operators tend to oscillate in regions where the approximated
data jumps from one level to another. We observed a similar behavior in
non-convex trivariate operators. Here, the splines can take values outside of
the original data range. The convexity condition was developed to suppress
such behavior. Since a convex operator usually has only sub-optimal approx-
imation order, we devised algorithms to construct a blending operator from
two quasi-interpolation operators, one of which is convex. The main idea
behind these algorithms is to produce an operator that satisfies the convex-
ity condition in critical areas, while maintaining the better approximation

properties of the second operator in regions where the condition is already
fulfilled.
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Chapter 5 is dedicated to our local Lagrange interpolation method [61].
Here, we define the Lagrange interpolation operator as a specialization of
the quasi-interpolation operators from chapter 3. This allows us to use a
consistent terminology throughout the thesis. We start the chapter with
lemmas and theorems concerning Lagrange interpolation on single edges,
faces, and tetrahedra of a partition. In particular, we give a theorem about
partial Worsey-Farin splits which play an important role for the locality of
the method. We define the partition used in the interpolation process and its
decomposition into several classes of tetrahedra. Based on this decomposition
we introduce algorithms that construct a Lagrange interpolation set for cubic
C! splines. Our main results show the improved locality and the stability of
the method. We conclude the chapter with local and global error bounds.

In the final chapter we present numerical tests and visualizations. Using
the programming language C++, we wrote computer programs that imple-
ment the operators and algorithms developed in this thesis. We conducted
numerical tests with the quasi-interpolation operators and the Lagrange in-
terpolation operator and measured the approximation error of their recon-
structions of the test function proposed by Marschner and Lobb [51]. These
tests confirm the approximation order of the respective operators. Moreover,
we wrote software to extract and visualize isosurfaces of our reconstructions.
These visualizations are also presented here. Finally, we used our quasi-
interpolation operators to reconstruct data sets acquired by computed to-
mography. To visualize these reconstructions, we wrote a computer program
which implements our adaption of the ray-casting-based volume visualization
algorithm introduced by Levoy [48], using two-dimensional transfer functions
as proposed in [45] to classify the data.

We thank Professor Dr. Giinther Niirnberger for his encouragement, his
valuable advice, and his constant willingness to discuss our results, through-
out the creation of this thesis.



Chapter 2

Preliminaries

This chapter encompasses the fundamentals which this thesis is based on.
The first section introduces the geometric concept of tetrahedral partitions
which is integral to the field of trivariate spline theory. We then define a
specific tetrahedral partition, based on the body-centered cubic (BCC) grid.
This partition, which we call the BCC partition, is the geometric basis for our
approximation methods. The main part of this chapter is a comprehensive
overview of the Bernstein-Bézier techniques, which are a fundamental tool in
the field of multivariate approximation theory. These techniques are essential
for the methods developed in the following chapters. We conclude this chap-
ter with a section concerning the theory of trivariate splines on tetrahedral
partitions.

We begin with some notation and definitions which we frequently use
throughout this thesis. As usual, we denote the set of non-negative integers
by Ny := NU{0}, and the set of continuous real-valued functions defined on
Q CR™ by C(Q2). For an arbitrary set A, we denote its cardinality by #A.
We use the symbol by Conv(X) to denote the convex hull of the set X C R".
Given a real-valued function f € C'(Q2), Q@ C R™ and a vector u € R™\ {0},
we call

Duf(v) = 7o+ )

, v e
t=0

the directional derivative of f along u at v. We denote Kronecker’s delta by

1, =7,
5i,j = .
0 otherwise.

Usually, ¢ and 7 will be integers. Throughout this thesis, we frequently use
the expression “7 + 7 + k + 1 = m”, or variants thereof, to indicate which
values 7, j, k and [ can take. Unless stated otherwise, we assume that i, j, k
and [ are non-negative integers, implying that 0 <7, 7, k, 1 < m.

7
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Definition 2.1. Let Q2 be a convex compact subset of R". We call

Q| := —
2] = ma u — vl
where || - |2 is the Euclidean norm, the size of Q.

It sometimes is convenient to use the following multi-index notation.

Definition 2.2. We call a k-tuple o == (aq, ..., ) € N* of non-negative
integers a multi-index. The length of the multi-index is defined as |a| :=
oy + ...+ ag. For a function f € C1°N(Q), Q C R¥, we define

D*f = D2 ... D f.

Here, D,. is the partial derivative with respect to the i-th variable of f. More-
over, the factorial of v is defined as a! := ay!- - - oy!, while z == ' - - 23",

When measuring the size of functions and their derivatives, we use the
standard L..,-norm and seminorim.

Definition 2.3. Let f be a measurable function on a domain 2 C R"™. Then
[ flle := esssup | f(v)].
vEQN

For a sufficiently smooth function f, we define

[flk0 == max || D f[o.
|a|=k

2.1 Tetrahedral partitions

In the univariate setting, polynomial splines are defined by subdividing an
interval [a,b] C R into sub-intervals and constructing a polynomial on each
sub-interval. Analogously, trivariate polynomial splines are piecewise defined
polynomials. Instead of intervals, which are 1-simplices, the trivariate poly-
nomials are defined relative to 3-simplices, or tetrahedra.

Tetrahedral partitions are well known in crystallography and the finite
element literature. We briefly discuss some facts of general tetrahedral par-
titions and tetrahedral subdivision schemes before we introduce the uniform
BCC partition, which the approximation methods in this thesis are based
on (see |17, 18|), in the next section. Many uniform tetrahedral partitions
are constructed by subdividing each cell of a uniform cube partition into five
or more tetrahedra, see [18]. This is not the case for the BCC partition,
although its vertices form two interleaved cubic grids.
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Definition 2.4. Let v, ..., v3 € R? be four non-coplanar points. The convex
hull of these points is called a non-degenerate tetrahedron T'. We denote
tetrahedra by T := (vg,v1,v2,v3). The points v;, i = 0,...,3, are called the
vertices of T'. The convex hull of any three of the vertices forms a triangle
in 3-space and is called a face of T. Similarly, the convex hull of any two
vertices forms a line in 3-space and is called an edge of T'.

A tetrahedron has four distinct faces and six distinct edges. We denote
faces and edges by (vg, v1, v2) and (vg, v1), respectively, with similar notation
for the other faces and edges of T. We say (v, v1, v2) lies opposite the vertex
v3 and vice versa, and the edge (vg, v1) is opposite to (ve, vs3).

The volume of any non-degenerate tetrahedron is positive and given by
the following formula.

Lemma 2.5. The volume of a non-degenerate tetrahedron T = (vg, v1, U2, V3)
1

15 given by
Vo U1 V2 U3
6 |0 (1 11 1)‘

The entry v, in this matriz is a shorthand for the three coordinates of the
vertex v,,, and thus the matriz is square.

vol(T) :

Definition 2.6. Let T' := (v, v1,v2, v3) be a non-degenerate tetrahedron. By
|T| we denote the length of the longest edge of T. Let pr be the radius of the
largest ball B such that B C T'. We call B the insphere of T', pr the inradius
of T' and the center of B the incenter of T'. We define

)
Pr

R

and call it the shape parameter of T'.

The shape parameter of a regular tetrahedron, where all six edges are of
the same length, is 12/4/6. For any other tetrahedron the shape parameter
is larger. The shape parameter indicates how flat a tetrahedron is. Hence, it
is related to certain angles inside the tetrahedron.

Definition 2.7. Let T be a non-degenerate tetrahedron. For each face F' of
T, we call the angles between the edges of F' the face angles. We denote the
smallest of the face angles by ¢r. For any two faces Fi, Fy of T, we call the
angle formed by these faces the dihedral angle of Fy and F5. For a vertex v,
let B(v) be the ball around v that touches the plane defined by the opposite
face, and r its radius. Let A be the area of the spherical triangle defined by
the intersection of B(v) with T. We call A/r the solid angle of T" at v, and
denote the smallest of all solid angles of T by Or.
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Spline spaces are defined over a collections of tetrahedra. The following
definition specifies how the tetrahedra in such a collection are interconnected.

Definition 2.8. A system A ={T,...,Tx} of N € N tetrahedra, where the
intersection of any two tetrahedra T; # T € A s either empty, or a common
vertex, or a common edge, or a common face, is called a tetrahedral partition

of the region Q) := Uf\; T; C R®. We call
|A| ;= max |T|
TeA

the mesh size of A. The unions of the vertices, edges, and faces of the
tetrahedra of A are called the vertices, edges, and faces of A, respectively. The
vertices of A sitting on the boundary of Q are called the boundary vertices,
and all other vertices are interior vertices. An edge is called a boundary edge
if both its vertices are boundary vertices, while a face is called a boundary
face if all three vertices are boundary vertices. The other edges and faces are
called interior edges and interior faces, respectively. A tetrahedron which has
at least one boundary face 1s called a boundary tetrahedron, while the other
tetrahedra are interior tetrahedra. Two tetrahedra that share a common face
are called neighbors.
We denote the smallest face angle of all tetrahedra in A by

‘= min
o7\ min or

and the smallest solid angle by

Oa = min Or.

Even though a tetrahedral partition A is a set of tetrahedra, it can also
be interpreted as a set of points in 3-space. For the sake of convenience, we
use the same notation for both aspects of a partition. Let x be a point and (2
a subset of R3. Then we say x € A if and only if there exists a tetrahedron
T € A with x € T. Moreover, we define

anA:=J@n).

TeA

We define certain sub-partitions of a tetrahedral partition, relative to a
vertex or tetrahedron.

Definition 2.9. Let A be a tetrahedral partition and V' the set of its vertices.
For a verter v € V, we define

star(v) := star’(v) ;== {T € A; v € T},
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and for £ > 1,
star’(v) := {T' € A; T Nstar**(v) # 0}.
For a tetrahedron T € A, we define
star(T) := star®(T) := {T'},
and for £ > 0,
star’(T) := {T € A; T nstar” (T # 0}.

The diameter of a star can be estimated in terms of the longest edge of a
tetrahedral partition. We develop the following lemma as a variant of lemma
16.19 in [46], where stars relative to a vertex are considered. Our version
concerns stars relative to a tetrahedron.

Lemma 2.10. Let A be a tetrahedral partition and T € A a tetrahedron.
Then
Q7] < 2(¢+ DA,

where 3
QY = Conv( U T).

Testart(T)

Proof. We show by induction that Q% is contained in a ball with radius
(¢4 1)|Al. Let vy be the barycenter of T and B, the closed ball with center
vr and radius 7. For £ = 0, Q% = T. Since |T| < |A], |[vr — v|]2 < |A] for
all v € T and thus QE} C Bja|. Now suppose that Ql} C B(g+1)a| for some
k € No. Let T € star*™'(T) and v € T. By definition there exists a vertex
u € star*(T) N'T. But then

lor = vll2 < |lor = ull2 + [lu = vll2 < (K +1)[A[+[A].
Thus, Qf,; C Bgy2)a), which concludes the induction. O

The definition of a tetrahedral partition allows for very general partitions
which can contain holes or cavities, or can even consist of unconnected re-
gions. For the remainder of this thesis, we restrict our study to tetrahedral
partitions of contractible regions unless stated otherwise. The next theorem
gives relationships between the number of vertices, edges, and faces of such
partitions. These results can be found in [32]. These are known as the Fuler
relations.

Theorem 2.11 (Euler relations). Let A be a tetrahedral partition of a simply
connected region, and Vi, Vg, Er, Eg, Fr and Fg be the sets of interior and
boundary vertices, interior and boundary edges, and interior and boundary
faces of A, respectively. Let V =V, UVp, E = E; U FEg and F = F; U Fp.
Then
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(i) #A =#Er + #Vp — #V; - 3,
(it) #A = #F/2+ #Fp/4,
(iii) #Ep = 34Vp — 6,
(iv) #Fp =2#FEg/3.

It often is necessary to refine a tetrahedron by splitting it into a number of
subtetrahedra. Many macro-element methods make use of such refinements.

Definition 2.12. Let T be a tetrahedron. A tetrahedral partition Ar of T is
called a refinement of T'. The tetrahedra of Ar are called the subtetrahedra
of T.

Refining each tetrahedron of a partition A results in a refinement of A,
provided that the refinement is still a tetrahedral partition.

Definition 2.13. Let A be a tetrahedral partition of 2, and for each T € A,
let At be a refinement of T. The union

Ar = Ar,

TeA

is called a refinement of A, if Ag is a tetrahedral partition of Q.

This definition assures that the refinements of the individual tetrahedra
are such that faces shared by two tetrahedra are split in the same fashion.

Common examples of refinements of a tetrahedron are the Alfeld split
(or trivariate Clough-Tocher split, see [2]), the Worsey-Farin split (see [89]),
and the partial Worsey-Farin split (see [41]). The Alfeld split results from
introducing a new vertex in the interior of a tetrahedron, and connecting it
with the four original vertices. It can be interpreted as the trivariate analogon
to the well known bivariate Cough-Tocher split introduced in [25].

Definition 2.14. Let T := (v, v1,v2,v3) be a non-degenerate tetrahedron
and vr a point in the intertor of T'. The refinement

AAlfeld(j—‘) = {<UT7 V1, U2, U3>7 <U07 Ur, V2, U3>> <U0a U1, UT, U3>7 <U07 V1, V2, UT>}
1s called the Alfeld split of T.

Since the Alfeld split introduces no new vertices on the boundary of T,
it can be applied to all tetrahedra in a tetrahedral partition without any
restrictions.

The Worsey-Farin split can be interpreted as a refinement of the Alfeld
split of a tetrahedron T". Each subtetrahedron of the Alfeld split is subdivided
into three subtetrahedra by introducing a new vertex in the interior of each
of the original faces of T.
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Definition 2.15. Let T := (v, v1,v2,v3) be a non-degenerate tetrahedron,
V4 = Vg, Vs = vy, and vy a point in the interior of T. Fori=1,....,4, let
F; = (v;_1,v;,vi41) be the faces of T, and vg, a point in the interior of F;.
The tetrahedral partition

4

AWF(T) = U {<Ui—1a Vi UF;s UT>, <U¢, Vit+1, VE;, UT>7 (Ui+1, Vi1, VF;, UT>}
i=1

is called the Worsey-Farin split of T.

When applying the Worsey-Farin split to each tetrahedron of a partition,
it has to be made sure that the new vertices introduced to common faces
of two neighboring tetrahedra match. Figure 2.1 shows The Alfeld split and
the Worsey-Farin split of a tetrahedron.

The partial Worsey-Farin split is constructed in the same way as the
Worsey-Farin split, but not necessarily all of the faces of the original tetra-
hedron are subdivided.

Definition 2.16. Let T := (v, v1,v2,v3) be a non-degenerate tetrahedron,
V4 = Vg, Vs = vy, and vy a point in the interior of T. Fori=1,....,4, let
F; = (vi_1,v;,vi11) be the faces of T. Given an integer 0 < m < 4, let vp,
be a point in the interior of F;, i =1,...,m, and

A. o {(Ui717UiJUF¢JUT>7<U’L'7Ui+17UF¢7UT>7<U’i+17v’i717,UF7;7,UT>}7 1 S Z S m
e Vi—1, Uiy Vjg1, U m <1 <4.
y Yiy YVit1 )

Then we call .
AR (T) = A
i=1
the m-th degree partial Worsey-Farin split of 7.

Note that the partial Worsey-Farin split of degree 0 is identical to the
Alfeld split, while the 4-th degree partial Worsey-Farin split is identical to
the Worsey-Farin split, when applied with the same split points.

2.2 A tetrahedral partition based on the body-
centered cubic grid

In this section we describe a tetrahedral partition which is the basis for the
methods developed in chapters 3 and 5. The vertices of the partition are
those of the well-known body-centered cubic grid. Given a regular cube
partition of 3-space, the body-centered cubic grid is the union of the vertices
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U3 U3
° °
Ur Ur
° °
e P vie e Uy
® o
Vo Vo

Figure 2.1: On the left side, the Alfeld split of a tetrahedron 7" is shown. The
right side shows the Worsey-Farin split 7. Dashed lines run in the interior
of T'. The blue solid lines split the faces of T

of the cubes and their centers. Definitions of a uniform tetrahedral partition
using these vertices can be found in [17, 18]. For our purposes we choose
a slightly modified definition where we not only consider cubes, but also
cuboids whose edges have not necessarily the same length. This allows us
to use our methods on data sets which are generated by either computed
tomography or magnetic resonance tomography. These data sets commonly
sit on a cuboid grid, which may use different scales for each axis.

Definition 2.17. Given a triple H := (h1,ho,hs) € RY of positive real
numbers, we define

Vi = {viji = (ih1, jha, kh3); i, j,k € Z} C R®
and
Wi = {wije = (ha(i + 3),ha(j + 3)  ha(k + 3)); 4,5,k € Z} C R,

We call Vi the set of cube vertices, and Wy the set of cube centers. Both
sets form uniform cubic grids. The union Vpoe = Vg U Wp of these two
sets is called the body-centered cubic grid with spacing H.

Note that for each ¢,j,k, the vertices {viiy j+jrprn; 0 <7, j K <1}
form a rectangular cuboid with center w;j, (cf. Figure 2.2). Likewise, a
cuboid of the same size with center v;;;, is formed by the vertices {w;_; j_j k—r; 0 <
i',j', k" < 1}. For the special case hy = hy = hs, they form a cube.

We use the following notation to address the vertices relative to each
other. A combination of letters is used to define the position of one vertex
relative to another vertex. These letters L, R, U, D, F and B are mnemonics
for the directions left, right, up, down, front and back, respectively.
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Vi,j+1,k+1@ Vit1,5+1,k+1
°
Vij+1,k®
O Vi1 j4+1,k
Wik !
°
Vijik+1@
O Vit1,jk+1
Vijk @
Vi+1,5,k

Figure 2.2: A portion of the cubic grid formed by the vertices in Vg is shown
on the right. On the left, the red cuboid with center w;j; is shown.

Definition 2.18. Given a verter v € Voo, with indices 1, j, k. We define

Vi—1,5.k
vy, = o

Wi—1,5,k,

Vi j—1,k»
Up ‘=
Wi 51,k

Vi,j,k—1,

Wi 5 k—15

) Wi—1,j—1,k—1,
VLDF ‘=
/Ui7j7k7

_JWi-15k-1,
VLUur ‘=
Vi j+1,k»

JWi-15-1ks
VLDB ‘=
Vi, k+15

. Wi—1,5,k>
VLuB ‘=
Vi j+1,k+1,

v € Vg,
UEWH.

v E€ Vy,
UEWH.

v € Vy,
v E Wy.

UEVH,

’UEWH.

v E€ Vy,
UEWH.

UEVH,
UEWH.

v € Vy,
v € Wy

T Vit1,5,ks v € Vg,
R =
Wit1 4k, U E Wh.
vy J Vid+lk UV E Vu,
U=
Wi, j4+1,k> v E WH
- Vijk+1, v € Vy,
B =
Wijk+1, U E Why.
v ) Wij-1k—1, U € VH,
RDF =
Vit1,4,k> v e Wy.
v ) Wi j k-1, v € Vy,
RUF ‘=
Vitl,j+1,k, UV E Wh.
v ) Wii—1k; v € Vy,
RDB ‘=
Vit1jkr1, U € Wh.
) Wi 5.k v E Vy,
VRUB ‘=
Vitlj1Lk+1, U E Wh.

These vertices are shown in figure 2.3.
We obtain a tessellation consisting of tetrahedra and octahedra by con-
necting the vertices defined in (2.17). Each v € Vg is connected to the four
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vy
°
oo HYB VRUB
LUF VRUF [ ]
UB
VL @ ¢
L * oUR
°
VF
® °
& ULDEB e URDB
LDF VRDF
oy

Figure 2.3: The vertices relative to v defined in 2.18. Black vertices are in
the same set as v, while red vertices are in the other set.

vertices vy, Vg, v and vg. This results in a uniform rectangular tiling of each
of the equidistant planes y = jhy/2, j € Z. We continue by connecting v to
the eight vertices VrL,DF,UVRDF,VLUF,VRUF,VLDB, VRDB, VLUB and VRUB- The
result is a wireframe mesh which can be interpreted as a decomposition of
3-space into tetrahedra and octahedra. We use a similar notation to specify
these relative to a vertex.

Definition 2.19. For each vertex v € Vpcco, we call

OD(U) 12(”; Up,VLDF,VRDF,VLDB, URDB>>

OU(U) ¢:<U7UU,ULUF7URUF7ULUB>URUB>-

the octahedra originating at v. Similar to the definition of tetrahedra, the
angle brackets denote the convex hull of the enclosed vertices.

Connecting its first two vertices subdivides each tetrahedron into four
tetrahedra. The resulting tetrahedral partition is the basis for all methods
developed in this thesis.
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Definition 2.20. For each vertex v € Voo, we call

TLD(U) = <U7UL7ULDF7ULDB>7 TLU(U) = <UaUL7ULUFaULUB>7
Trr(v) = (v,vr,vepr, vivr), Ti(v) := (v,vL,vLDB,VLUB),
Trp(v) := <U,UR,URDF,URDB>, Try(v) = <U7URaURUFaURUB>>
Trr(v) := (v,Vr, VrRDF, VRUF), TrB(V) = (V, VR, VRDB, VRUB),
Tpr(v) == (v,vp,vLpr,vipB), Tpr(v) := (V,vp,VRDF, VRDB),
Tpr(v) := (v,vp,vLpr, VrRoF), Tpp(v):= (v,vD, VDB, VRDB),
Tyr(v) == (v,vv,vur,vivs), Tur(v) = (v,vv, VrUF, VRUB),
TUF(U) = <UaUUaULUF;URUF>7 TUB(U) = <U>UU7ULU37URUB>7
Trr(v) == (v,vp, vipr, Vvr), Trr(V) := (V,Vp, VrDF, VRUF),
Trp(v) == (v,vp,vLpF, VrDF), Tru(v):= (V,VF, VLUF, VRUF),
TBL(U) = (U,UB,ULDB,ULUB>, TBR(’U) = <U,UB,URDB,URUB>,
TBD(U) = <U,UB,ULDBy'URDB>> TBU(U) = (U,UB,ULUB,URUB>~

the tetrahedra originating at v. We denote the union of the tetrahedra orig-
inating at v by T (v), and call

ABCC = U T(U)

vEVBco

the BCC partition with spacing H.

For each pair of index letters, there are two distinct tetrahedra with these
letters. The tetrahedra Ty (v) and Ty p(v), for example, do not define the
same tetrahedron.

Remark 2.21. Two of the vertices of each tetrahedron 7" in the resulting
tetrahedral partition are in the set Vg, while the other two vertices are in
Wy . Hence, of the six edges of T', one connects vertices in Vg, one connects
vertices in Wy, while the remaining four share one vertex each of Vg and
Wy. These four edges have the same length, which is half the length of the
space diagonal of a cuboid. This results in three different types of tetrahedra,
identified by the lengths of their edges. They are shown in figure 2.4.

Our next lemma concerns the mesh size of the BCC partition, which is
closely related to the spacing parameters.

Lemma 2.22. Let Agcc be the BCC partition with spacing H := (hy, ha, h3).
Then

|Apcc| = max, h;.
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ho /

Figure 2.4: The three different types of tetrahedra of Agcc. They gray edges

all have the same length, \/h? + h3 + h3/2.

Proof. Let Q := [Vijk, Vit1,k] X [Vijk, Vij+1.k) X [Vijk, Vije+1] The length of
the space diagonal of the cuboid Q is hy := \/h? + h% + h2. Looking at the
edges e; of a tetrahedron 7" € Apcc and remark 2.21, we see that |e;| €
{h1, ha, hs, hs/2}. Let hyqp = max,—y 23 hj, then

he 1 1 1
5 =3 h? + h% + h3 < §\/:shzm < §hmax¢§ < P
Thus, |Apce| = max;—1 2.3 hi. O

The shape and the angles of the tetrahedra of Agcc are determined by the
ratio of the smallest and largest spacing parameters. Our following lemma
estimates the lengths of the edges of Agcc in terms of that ratio.

Lemma 2.23. Let Apcce be the BCC partition with spacing H := (hy, hs, h3),
Romin := min{hy, ha, hs} and hpe, := max{hy, he, h3}. We call

hmin

hmam

KH =

the shape parameter of Agcc. For any T € Apcc,
(i)  Ku|Apce| <|T| < |Apccl,

V2K
8

Proof. Fix T € Apcc. By the construction of Agce, one of the edges of T
connects two vertices vy, v; € Vg, and the opposite edge of T' connects two
vertices vy, v3 € Wy Let €1 := (vg, v1) and ey := (v, v3) be these edges.

(7). By lemma 2.22, [Apcc| = hmae- Thus, Ky|Apcco| = hmin. Since
le], |e2| € {h1, ha, hs}, the first inequality follows. The second inequality of
(z) follows from the definition of the mesh size.

(i) pr = 7.
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(7). We calculate the inradius of T'. Suppose T is a tetrahedron with edge
lengths |e1| = hi, |ea] = he, as depicted in figure 2.5 on the left. Due to the
symmetry of the partition, the incenter v, is located on the line connecting
the midpoints of e; and ey which we call u; and ws, respectively. The line
segment (up, ug) is perpendicular to both edges e; and es and has the length
%. Let wy; and ws be the point of intersection of the insphere with the faces
(v1,v9,v3) and (v, v1, v2), respectively. The points wvp, vy, ur, us, wy and v,
are coplanar and sit on a isosceles triangle with vertices vy, vy, us. The edges
of this triangle have the lengths hq, b} and A/, where

2 2
U @ + E
1 . 2 2 .
Likewise, the points va, v3, U1, U2, wo and v, are coplanar and sit on a isosceles
triangle with vertices vy, v3, u; and edges with lengths hy, b} and hf, where

ha\? ()
Ry = — — .
() + (5
Both triangles are shown in figure 2.5.
The triangles (ug,v,,w1) and (ug,vg, u1) are similar, and we use the in-

tercept theorem to calculate pp. Let d := [Jug, v,||2, then
P_T _ h1/2
d - n

The triangles (v,, w, u1) and (vs, ug, uy) are also similar. Note that ||uq,v,||2 =

%3 — d. We use the intercept theorem again and obtain

pr_ ha/2
ha2—d

We solve for d and combine the equations, then solve for pr which yields

hihahs hyhahs
T = =

e 4 1) 5 (1 T+ 1 + a5 75

The length of the longest edge of T is either hy or hs, since the other edges

have the lengtlls
h2+h2+h2<—1\/3h2 < P
1 2 3 = 2 min — tmin-
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(%
‘2 U3 hg (%) (%)
‘ w1 “
hl Yp pPr hll }L%‘
A
‘ R, U K,
|
Vo hy W Uy u‘l

Figure 2.5: Calculation of the inradius. Due to the symmetry of the tetra-
hedra, the incenter is located on the line connecting the midpoints of two
opposite edges.

Then we estimate

pr = '
2 (hmafﬁ h%nar + h%naz + hmlH V h%nax + h%nax)

7|12 TR, ITIES

min min

> = .
S 2 (\/ih?nax + ﬁh%naz) 4\/§h$na:p 4\/§

The proof is analogous for the other types of tetrahedra. m

Our following lemma shows how the distance between two vertices of the
BCC partition can be expressed in terms of vertex stars.

Lemma 2.24. Let v,w € Vpoc with w = v + (zhy,yhs, zhs). Then
w € star™ (v),

where
N :=|z| + |y| + |z| — min{|z], |y|, |2]}

Proof. We show that there exists a sequence of N edges that connect v to
w. Note that z, y and z are multiples of %, since both v and w are vertices
of Agce. Thus, there exist integers i, 7, k with ¢ = 2z, j = 2y and k = 2z.
Since Wy = Vg + (h, he, h3)/2, i, j and k are either all even, or all odd. Let
r:= min{|x|, |y, |z|}. Then 2r is also an integer and has the same parity as
i,j and k, and the numbers |i| — 2r, |j| — 2r and |k| — 27 are even. It follows
that the numbers |z| — 7, |y| — r and |z| — r are non-negative integers. Let

ex = (sgn(z)hy,0,0), e, := (0,sgn(y)hs,0),

1
e = (0,0,58n(2)h3), e5:= Q(er +ey tez).
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Then if u is a vertex of Apcc, so are u + e,, u + ey, u+ e, and u + e,. Let
v = v and

Vo1 + €4, 0<l<|z|—r,

. Vi—1 + ey, lz| —r <l <l|z|—7r+]|yl -,
v tes,  |rl=rlyl—r << |2l =4yl = A 2] =
veertes, >zl —rfyl—r 4z -

But then, since

N = [z[+ly[ + [z[ =7 = (2] = r) + (ly| = r) + (|z] =) + 27,

oy = v+ (x| —r)es + (Jy| —r)ey, + (Jz] —r)e. + 2re;
= v+ |zle, + |yley + |zles + 2res —r(ex + ey + €2)
= v + (xhy, yha, zh3) = w,

and it follows that there exists a sequence of N edges e, := (vy_1,v¢), £ =
1,..., N, that connect v to w. [

The following corollary shows how this result can be applied to tetrahedra.

Corollary 2.25. Let T := (vg, v1,v2,v3) € Acc be a tetrahedron and w €
Veoo a vertex of the BCC partition. Form =0,...,3, let N,, be the number
from lemma 2.24 such that w € star™ (v,,). Then

w € star™ (T),
where

N := min N,,.

m=0,...,3

2.3 Bernstein-Bézier techniques

The splines considered in this thesis are trivariate piecewise polynomial func-
tions defined on tetrahedral partitions. We begin this section with some
general results about polynomial approximation, before we introduce the
Bernstein basis for trivariate polynomials.

Definition 2.26. The space of trivariate polynomials of total degree d is
defined as

Pa ::span{xiyjzk; i,7,k € N, O§i+j+k§d}.

The dimension of that space is well-known.
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Lemma 2.27 (Lemma 15.1 in [46]). The dimension of the space Py is (d-:;-?)).

Polynomials are an important tool in the field of approximation theory.
There exist a number of results on the approximation power of polynomials.
We will use a few of these results to provide error bounds for the splines
constructed in this thesis.

The following result is the multivariate equivalent of the well-known
Markov inequality. It has been formulated and proven in [26] and [87]. We
use the specialized version of the inequality for the maximum norm on a
tetrahedron that can be found in [46] (Theorem 15.28).

Theorem 2.28. Let T be a non-degenerate tetrahedron and p € Py a poly-
nomial. Then there exists a constant K > 0 depending only on d, such that

o K
HD pHT < o] HpHTv (2'1)
Pr

where pr is the inradius of T

Another important result concerns the approximation power of polyno-
mials, using the multivariate Taylor polynomial.

Theorem 2.29 (Theorem 15.32 in [46]). Let Q C R? be conver and compact
and fix d € No. Then for each f € C4T(Q) there exists a polynomial py € Py,
such that

ID(f = po)lle < K| flasrn, 0<al <d, (2:2)

where K 1s a positive constant depending only on d. This polynomial is called
the Taylor polynomial of degree d associated with f and has the form

pii) = 30 W e

la|<d

with u being the center of the largest ball B such that B C ().

The inequality (2.2) also holds for non-convex domains  with a Lipschitz
smooth boundary. In these cases, we use a theorem by Stein (see [84], p.181)
to extend D*(f —py) to Conv(£2). The constant K then also depends on the
Lipschitz constant of the boundary of €.

We will now introduce an alternative basis for the space of trivariate poly-
nomials, which is far more suitable than the monomial basis when working
with splines on tetrahedral partitions. This basis uses the Bernstein basis
polynomials, which were introduced for the univariate case in 1912 by S.
Bernstein, when he used them for an elegant proof of the Weierstrass theo-
rem in [8]. French engineer P. Bézier used this basis in the early 1960’s to
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represent curves in CAGD. Some details on his work can be found in [37],
while [9] is a translation of his book from French. The generalization to the
trivariate setting has been extensively studied in the literature, see [36, 37, 39|
for details. The properties of the B-form and related theorems given in this
section can be found in [13, 39, 40, 46, 47|.

The fundamental building blocks of the Bernstein basis polynomials are
certain linear polynomials which are symmetric to a tetrahedron 7. The
earliest reference to these barycentric coordinates we have found is in [56].

Definition 2.30. Let T := (vg,v1,v9,v3) be some non-degenerate tetrahe-
dron. The unique linear polynomials o1 : R* = R, m = 0,...,3, defined
by
det VUV V1 Uy Vs det Vo U Vy U3
T 1 1 1 1 T 1 1 1 1
990 (U> = Vo U1 Uy U3 ) 1 (U) = v V1 Uy U3 )
det (1 11 1) det (1 11 1)
Vo U1 U s Vo U1 V2 U
. det (1 11 1) det (1 11 1>
Py (v) =

T .
B Vg U1 V2 U3 7 i (U) o Vg V1 V2 U3 7
det det

11 1 1 1 1 1 1

are the barycentric coordinates relative to T. Note that the barycentric
coordinates are well-defined, since the determinant in the denominator is
non-zero for non-degenerate tetrahedra. For a fived v € R3, the 4-tuple

(@8 (v), @1 (v), % (v), 9% (v)) is called the barycentric coordinates of v rela-
tive to T'.

It often will be clear from context which tetrahedron we are referring to.
In those cases we sometimes write ¢, instead of ¢ .
We now state some properties of the barycentric coordinates.

Lemma 2.31. Let T := (vg, v, v2,v3) be some non-degenerate tetrahedron
and @;, 1 =0,...,3, the barycentric coordinates relative to T'.

(i) Fori,j e {0,...,3},

@i(vj) = ;. (2.3)
(ii) (Partition of unity) )
S plv) = 1 2.4)

for all v € R3.
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(11i) (Non-negativity on T )
Form=0,....3andveT,

Pm(v) > 0. (2.5)

Moreover, the barycentric coordinates of v are simultaneously non-
negative if and only if v € T':

om(v) >0 for allm=0,...,3 & veTl.

(iv) (Reproduction of the identity)
Every v € R? has the unique representation

v = Z O (V) V. (2.6)

Proof. Part (i) follows immediately from the definition. If i = j, the determi-
nants in the numerator and denominator are equal, and if 7 # j, the matrix
in the numerator is singular.

To show that (ii) and (iv) hold, we consider the linear system

Vo U1 V2 Vs (v
<1 11 1)¢_ (1)

The matrix is nonsingular, and the solution is ¢ = (¢o(v), p1(v), ¢2(v), p3(v))
by Cramer’s rule.

The functions ¢y, are linear polynomials. It follows from (i) that ¢,,(v) =0
for all v € m,,, where m,, is the plane containing the face of T" which lies oppo-
site of v,,. This plane divides R? into two regions, 7 := {v € R?; ¢,,(v) >
0} and 7, := {v € R? ¢,(v) > 0}. Since p,(v,) =1, T C 7. Thus
T =03 _,mt, and (iii) follows. O

Our following lemma reveals the relationship between the barycentric
coordinates relative to two neighboring tetrahedra.

Lemma 2.32. Let T := (vg, vy, vq,v3) and T := (vo, v1,v2,3) be two non-
degenerate tetrahedra that share a common face, and let v be some point in
g-space. Let 1; := ol (03) and @; == ol (v), i =0,...,3, be the barycentric
coordinates of v3 and v relative to T, respectively. Then the barycentric
coordinates of v relative to T are

7 ¢s

— 0 — _ 3
‘Pi(“)—% ¢z¢3

,1=0,1,2, andcp?(v)-ﬂ) )
3
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Proof. Since T is non-degenerate, 05 is not in the plane passing through
vo, U1, 2. Thus, 13 # 0. Using (2.6), we get

U = Qoo + P1U1 + Pava +p3v3  and T3 = Yoy + P1v1 4 Pavs + P3v3. (2.7)
Let ©;, 2 =0,...,3, be the barycentric coordinates of v relative to T. Then
v = PoUp + P1U1 + Pav2 + P303.

We substitute v and 03 in the equation above with (2.7).

©oUo+ 101+ Pav2 + P33 = PoUy + @101+ Pava + @3 (ovo + 1101 +Pave +1P3v3).

Collecting the terms yields

0 = (Po+P310—p0)vo+ (P14 @311 —p1)v1+(Pa+P3tha — pa ) va+(P3ths — p3) vs.

Since T is non-degenerate, the coefficients of the vertices must be zero, and
solving for ¢; concludes the proof. O

The barycentric coordinates are the fundamental building blocks of the
well-known Bernstein basis polynomials. These polynomials form an alter-
native basis of P;, which is highly suitable for the representation of piecewise
polynomials defined on tetrahedra. Bernstein basis polynomials are defined
relative to some tetrahedron 7.

Definition 2.33. Let T := (vg, vy, v2,v3) be some non-degenerate tetrahedron
and d € Ny. For all non-negative integers i, 7, k,l with i+ 7+ k+1=d, the
trivariate Bernstein basis polynomials of degree d are defined as

o,
B%(v) = W%(”)@i(”)@é(”)@é(v)a v € R?,

where ¢, m = 0,...,3, are the barycentric coordinates relative to T'. For
simplicity’s sake, we define 0° := 1 in this context.
If at least one of the indices i, j, k,l is negative, we define B;ji := 0.

Note that for the Bernstein basis polynomials of degree 1 are the barycen-
tric coordinates:

sz)oo = @ga Bgloo = 90{7 B(%lo = 9057 Bgom = %03T-
When dealing with Bernstein basis polynomials, it often is clear which tetra-
hedron we are referring to. In those cases we may omit the superscript T,
writing B;ji; instead of ngl.
The following theorem states that the Bernstein basis polynomials form
a basis of the space of trivariate polynomials.
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Theorem 2.34 (Theorem 15.8 in [46]). Let T' be some non-degenerate tetra-
hedron and d € Ny, then

Pd:span{Bg»kl; i+j+k+1l=d}.
We give some important properties of the Bernstein basis polynomials.
Some of those properties are inherited from the barycentric coordinates.

Lemma 2.35. Let T := (vg, v, va,v3) be some non-degenerate tetrahedron,
Bijki, i+ 7+ k+1=d e Ny, the Bernstein basis polynomials of degree d
relative to T, and ¢, m = 0,...,3, the barycentric coordinates relative to
T.

(i) (Recursion formula)
The Bernstein basis polynomials comply with the recursion

0, 1<0,7<0,k<0o0rl<O,
1 1=7=k=1=0,
©oBi—1jk1 + P1Bij—1k1

+©oBijk-11+ P3Bijki-1 otherwise.

Bijn =

(ii) (Partition of unity)
For all d € Ny and v € R?,

Z Bz’jkl(v) =1, (2-8)

i+j+k+l=d

(15i) (Non-negativity on T )

Bijr(v) >0 foralli+j+k+1=d & veT. (2.9)

(iv) (Symmetry)
The Bernstein basis polynomials relative to T are symmetric in the
following sense. For all v € R®, Then

Biji(v) = Bji(0), i+j+k+1=d,

with © = p1(vV)ve + po(v)vr + @2 (v)vy + @3(v)vs. This follows im-
mediately from the definition of the Bernstein basis polynomials. The
Bernstein basis polynomials exhibit other symmetries analogously.

Proof. The recursion formula in (i) follows immediately from the definition
of the Bernstein basis polynomials.
To show that (ii) holds, we use the binomial expansion and (2.4) to obtain

1=14= (Z @m(v)> = > Byuv).

i+j+k+l=d
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Part (iii) is an immediate consequence of 2.31 (iii), and (iv) again follows
from the definition of the Bernstein basis polynomials. O]

In view of theorem 2.34 it is clear that every trivariate polynomial of
total degree d can be written as a linear combination of the Bernstein basis
polynomials of degree d relative to some non-degenerate tetrahedron 7. This
representation of polynomials is known as the B-form to recognize the works
of both Bernstein and Bézier (see [13]). Polynomials in B-form are also known
as Bernstein polynomials in the literature.

Definition 2.36. Let T be a non-degenerate tetrahedron, d € N, and p € Py.
The representation

Z Cijk1 Bijkis (2.10)

i+j+k+i=d

is called the B-form (relative to T) of p. The coefficients c;jiu are called the
B-coefficients of p.

p

Remark 2.37. Note that most Bernstein basis polynomials associated with
a tetrahedron 7" vanish on the planes containing the faces of T. For example,
let F':= (vg, v1,v9) and Pp the plane containing F', then the barycentric coor-
dinate (3 relative to 1" is zero for each v € Pp. It follows from definition 2.33
that

Bijr(v) =0 forall v € Ppand [ # 0,

since in these cases ¢(v) = 0. Thus, the B-form of p restricted to this plane
can be written as

Ppr = E Cijleijkl = E Cz’jkzOBijk:Oa
i+j+k+l=d i+j+k=d

which essentially is a bivariate polynomial.
Similarly, p becomes a univariate polynomial when restricted to a line
containing one of the edges of T'.

Associated with the B-coefficient are certain equally spaced points on 7.

Definition 2.38. Let T be a non-degenerate tetrahedron and d € N The
points
1 7 k [ S
fgklizavo—i-avl—'—g’l}g—l-avg, Z+]+k+l:d

are called the domain points of degree d relative to T. We denote the set of
domain points relative to T' by

Dy(T) = {&jw; i +7+Ek+1=d}.

Certain subsets of the domain points are frequently used. We denote
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Figure 2.6: The domain points of degree 4 are shown in the upper left. In
the upper right, the C? ball around vy (D2 (vy)) is shown. The figures in the
lower left and lower right show the C? shell around v3 (RI (v3)) and the C*
tube around the edge (vq,v3) (7 ((v2,v3))), respectively.

e the ball of radius r around vy by

DT (vy) {@jkl; i>d—r}.

e the shell of radius r around vy by
R (vg) == {&s i=d—r}.

e the tube of radius r around the edge e := (v, v1) by

tT {gz]kl; 7’+] —d—T'}

For the other vertices and edges, as use the analogous definitions.

Figure 2.6 shows the domain points of degree 4 and various subsets
thereof.

Note that for each B-coefficient c;;1; of a trivariate polynomial p in B-form
relative to 7', there exists a domain point & € Da(T). Let & = &g, then
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we call c¢ := ¢ the associated B-coefficient and B := By the associated
Bernstein basis polynomial. Using this notation, we can write

p= Y ceB
£eDy(T)

for (2.10). The four-dimensional vector consisting of the coordinates of a
domain point and the associated B-coefficient is called a control point of p.
The following theorem shows that the graph of p runs inside the convex hull
of its control points.

Theorem 2.39. Let p .= ZieDd(T) ceBe be the B-form of a trivariate poly-
nomaial of degree d. For allv € T,

(o) ceo ({(9)) ) e

min ce < plv) < max ce.
(Bl G Sp(v) < max

In particular,

Proof. First we show that
Z gz‘jlez’jkl(U> = . (211)
i+j+h+i=d
By 2.31 (iv) and 2.35 (ii),
v = (po(v)ve + @1(v)v1 + pa(v)va + P3(v)v3) Z Biji(v).
i+jrkrl=d—1

We expand the sum and use the definition of the Bernstein basis polynomials,
then consider the first term of the result.

(=D 5 G ko
¢O(U)UOWS@0(U)SO1(U)SO2(U)@?,(U)

(i+1) d! : ; (i+1)
= vo(i+1)!j!k!l!900+1(v)90{(v)<p’§(v)90§(v): 7 VB

Thus, we obtain

(i+1) (l+1)
v = N Z d UOBi—I—l,j,k,l + ...+ N Z d UBBi,j,k,l—i-l'
i+j+k+l=d—1 i+j+k+l=d—1

We shift the indices and obtain

i ' k l
v= | Z (C_ZUO + évl + 7Y + EU3> Biju,
i+j+k+l=d
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which gives (2.11). Let v € T. Then

This is a convex combination, since by 2.35 (ii) and (iii), 0 < Byju(v) < 1.
This concludes the proof. O

The B-form of a polynomial relative to a tetrahedron 7" depends on the
order in which the vertices of T" are given, since each of the indices is associ-
ated with a barycentric coordinate, which in turn is associated with a vertex.
Our following lemma shows how to obtain the B-form of a polynomial relative
to a tetrahedron whose vertices have been rearranged.

Lemma 2.40. Let T := (vg, vy, v9,v3) be a non-degenerate tetrahedron and
o a permutation of the set {0,1,2,3}. Let T := (Uo(0), Vo (1), Vo(2)s Vo (3)), GNA

— T
D= Cig ir insis Big iy .
0,21,22,t3°710,21,12,13
10+i1+i2+iz=d

a polynomaial of degree d in B-form relative to T'. Then

= E S T
p = le(o>7%<1)717(2>7%¢<3) Bz‘o,il,m,is
i9+1i1+i2+i3=d
is the B-form of p relative to T, with T = o~'. Moreover, the relationship

between the barycentric coordinates relative to T and T s

<p§:<p§(m), m=20,...,3.

Proof. The indices of the B-coefficients correspond to the indices of their
associated domain points. We establish the relationship between domain
points relative to T and domain points relative to T. Let 0, = vy(m),

m=0,...,3. Then T = goJT(m), and

3 3 3
7 1 o 1 . 1 . T
gio,il,iz,is T d z :vam “d 2 :vag(m) T d z :ZT(m)Um - éif(o)vifu),if(z),if(s)'
m=0 m=0 m=0
0

A polynomial of degree d can be written as a polynomial of higher degree.
The following lemma shows how the B-coefficients of the new representation
are calculated.
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Lemma 2.41 (Theorem 15.37 in [46]). Let p € Py be a polynomial of degree
d in B-form relative to some non-degenerate tetrahedron T, and let cijp,
i1+ j+ k+1 = d be the B-coefficients of p. Then the B-form of p as a
polynomial of degree d + 1 1is

1 . )
E —— (iCi—1,jky + JCij—1k0 + KCijr—11 + 1¢ijri—1) Bijki,
o d+1

itk Hl=d+1

p

where the B-coefficients with negative indices are zero.

This lemma can be used repeatedly to raise p to any degree.
The following theorem shows that the B-form is stable.

Theorem 2.42 (Theorem 15.9 in [46]). Let p be a polynomial of degree d
in B-form relative to a non-degenerate tetrahedron T' with B-coefficients c¢.
There exists a constant K depending only on d such that

1
— ma < < ma . 92.12
Kgé%dé)‘%' < lpllr < éer%dg;)l%l (2.12)

The Russian mathematician S. Bernstein introduced the following oper-
ator in 1912 and famously used it for a constructive proof of the Weierstrass
theorem (see [8]).

Definition 2.43. Let T' be a non-degenerate tetrahedron and Be the Bern-
stein basis polynomials relative to T'. For continuous function f € C(T), the
Bernstein operator is defined as By : C(T) — Py with

Baf = > f(€)Be.
£€Dy(T)

We will use the following result on the approximation properties of the
Bernstein operator:

Theorem 2.44. Suppose f € C*(T), then

1
If = Bafllr < SITF flor.

Proof. We closely follow the proof of theorem 2.45 in [46], where the bivariate
setting is covered. Using 2.35 (ii), we have

Baf(v) — f(v) = Z (f(&ijm) — () Bijra(v).
it jtkti=d

Let wiji = &jr — v. By Taylor’s theorem, there exists an h;jp € [0, 1] such
that

f(ﬁijkl) — flv) = Duijklf(v) + %Dijklf(v + hz’jkz(&jkz - U))
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Then

Bif(w) = f(v)= > Dijuf(v)Byu(v)
ijthri=d

2 > Diaf (v + hiju(Eip — v)) Biju (v).

i+jt+k+l=d

Let v := (z,y,2) and v, := (Tn, Ym, 2m). Then

Diji f(v) = (& — ) Do f (v) + (giyjkl —y)Dy f(v) + (&5 — 2) D= f(v),

where the coordinates of the domain points are

Tw = =0+ Sx =X+ =
R A A

with similar expressions for §Zy]kl and &7y, Therefore,

Z Dijri f(v) Bijri(v) = Dy f(v) Z (&ik — ) Biji(v)
i+j+h+l=d i+j+h+i=d

+ Dy f(0) D (€ —y)Byu() + Dof(0) Y (& — 2)Biu(v).
i+j+h+l=d it j+ht=d

It follows from (2.11) that these sums vanish. We now estimate

| iijklf(v + hijra (i — 0)) | < 2[lv = Egrall3] flo,z-

Combining the above yields

[f(0) = Baf ) < |fler D v = gmll3Bijw(v). (2.13)

itj+k+l=d
To estimate this further, we observe that

Z ij Biju(v) = Z Um%(“)@i(v)@g(vwlg(v)
i+j+k+l=d itjrht=d
= > d(d — 1)po(v)p1(v) Bi-1,j-1,k1(v)
(i=1)+ (1) +h-+l=d—2
= d(d — 1)po(v)¢1(v),

due to 2.35 (ii). A similar calculation leads to

Y PBiyu(v) = d(d —1)gf(v) + dipo(v),

i+j+k+l=d
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with analogous identities for the other index combinations. Then we obtain

> v = &Gull3Bim(v)

i+j+k+l=d

= Z (&5 — z)? + ( Tkl — y)* + ( Tkl 2)?) Biju(v)
i+jt+k+i=d

— Z (%@0 —z)+...+ é(asg - $))23ijkl(v)

i+j+k+l=d

i l 2
+4Z: %@rﬂ%%~+j%—w)&m@)
i+j+k+=d
i l
‘|" Z (E(ZO—Z)—l—...—i—E(Zg—z))zBijkl(U)
i+j+k+l=d
Now we use the identities from above together with (2.11) and 2.31 (ii). Then

i l

::éﬁ%;ll(?dvﬂxo—wd—%xg%-wdvﬂxs—33)2
1 =0

+ 3(%00(?1)(560 —z)* 4 ...+ ps3(v) (x5 — 1)),
with analogous results for the other two sums. Thus,
> o= &ml3Biju(v)
i+jt+k+l=d

::é(¢d@(@o—$f4-@o—yf*‘@0_zy)

+o A es(v) (s — o) + (ys — 9)° + (28 — 2)2)>

1
= < (o®)llvo = vl + ... + pa(v)ls = wl3)

1
< =|T%.
< ||
This completes the proof. O

We also present a result on the relationship between p and its B-coefficients.

Theorem 2.45. Let p be a polynomial of degree d in B-form relative to
a non-degenerate tetrahedron T with B-coefficients ce. Then there ewists a
constant K depending only on d such that

. <K T2, 2.14
s g — p(6)] < Klpla|T| (2.14)
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Proof. Consider the polynomial

D= Z (ce — p(&)) Be.

§€Dy(T)

By (2.12), there exists a constant depending only on d such that
max lce = p(O < K|lr = KI| Y (ce —p(€)) Bellr = K |p = Bapll -

<<Pa(T £€Da(T)

Then (2.14) follows from theorem 2.44. O

The following algorithm provides an efficient way to compute the values
of a polynomial in B-form. The univariate and bivariate versions of this
algorithm have been developed by French engineer Paul de Casteljau in 1959
and 1963, respectively (cf. [19, 20]). A trivariate versions of this algorithm
can be found in [39)].

In addition to calculating the values of a polynomial, the intermediate
values generated by the algorithm can be used for a number of other tasks,
such as determine the representation of the polynomial relative to a different
tetrahedron or calculating derivatives of the polynomial.

Algorithm 2.46 (de Casteljau). Let T' := (vg, v1, v2, v3) be a non-degenerate

tetrahedron and ¢,,, m =0, ..., 3, the barycentric coordinates relative to 7.
Let
p = Z Cijki Bijh
itj+k+i=d

be a polynomial of degree d in B-form relative to T, and fix v € R3.

1) Fori+j+k+1=d, set C% += Cijkl-

2) Form=1,...,d, do:
21) Fori+j+k+1=d—m, set
] [m [m—1]

m m—1 m—1 -1
C[‘jljl = SOO(U)C['—l—l,j,]k,l+901(U)Cz[‘,j+1,k,l+902(’U)Cz',j,k+]l,l+¢3(U)Ci,j,k,l+1

it
Theorem 2.47 (Theorem 15.10 in [46]). Given a polynomial p of degree d

[m]

in B-form and v € R3, let Cijr be the de Casteljau coefficients of p(v). Then

pw)= > dhBin()

it+jt+ktl=d—m

The real numbers ¢;.,, are called the de Casteljau coefficients of p(v).

for allm =0,...,d. In particular, p(v) = chQOO. Moreover, the de Casteljau
coefficients can be computed directly by
CE?IZ]Z = Z Ci+io,j+jo,k+ko,l+loBio,jo,ko,lo (U), 1 +j + k + l=d—m.

i0+jo+ko+lo=m
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Note that the B;jj; in the theorem above are the Bernstein basis polyno-
mials of degree d — m relative to 7.

Corollary 2.48. Let T' := (v, v1, v2, v3) be a non-degenerate tetrahedron and
p = Z Cijki Bijri
i+jt+ktl=d
a polynomial of degree d in B-form relative to T'. Then
® p(vo) = Ca0,00,
e p(v1) = 0,400,
e p(v2) = €0,0,4,0,
® p(v3) = co00.d-

Proof. The barycentric coordinates of vy relative to 7" are (1,0,0,0). Follow-
ing de Casteljau’s algorithm and theorem 2.47, we have

(vo) = cd a1 _ — o —c
P{V0) = Cop00 = 10000 = -+ = €4-1,0,00 = €d,0,00 — €d,0,0,0

Analogous calculations for the other cases conclude the proof. O

The intermediate values produced by the algorithm are the B-coefficients
of the B-form relative to the subtetrahedra.

Theorem 2.49 (Theorem 15.36 in [46]). Given a polynomial p in B-form
and v € R3, let c%ﬂl be the de Casteljau coefficients of p(v). Let

— 7] To — (5] T1
Po = E , COjleijkl7 p1 = E , CiOkleijkl?
itj+k+i=d itjtk+=d
— k] RT» — (] T3
P2 = E : CijOlBijkl7 Pp3 = E , CijkoBz‘jkh
itj+k+i=d i+ jrk+i=d
where Ty == (v, v1,v9,v3), T1 := (vg, v, v, v3), Ty := (vg,v1,v,v3) and T3 :=
(vo,v1,v9,v). Then for each m =0,...,3, where T, is non-degenerate,
P = DPm-

This means that the de Casteljau coefficients can be interpreted as the
B-coeflicients of the B-form of p relative to certain tetrahedra which share
a face with T. Notice that the vertex v may sit in the interior of 7. In
this case, the resulting subtetrahedra form an Alfeld split of the original
tetrahedron, and the polynomials py, ..., ps are the B-form of p relative to
these subtetrahedra.

With theorem 2.49, the B-form of p relative to an arbitrary tetrahedron
can be calculated.
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Corollary 2.50. Let T := (vy,vy,vs,vs3) and T = (g, 1, g, 73) be non-
degenerate tetrahedra, and p a polynomial in B-form relative to T. Then
the B-form of p relative to T can be computed by applying de Casteljau’s
algorithm at most four times.

The de Casteljau algorithm can be modified to calculate directional deriva-
tives of polynomials in B-form.

Algorithm 2.51 (de Casteljau for directional derivatives). Let T := (vg, vy, v2, v3)

be a non-degenerate tetrahedron and ,,, m =0, ..., 3, the barycentric coor-
dinates relative to T'. Let cl[.?;:]l, m =0, ...,d, be the de Casteljau coefficients
of p(v) and uy, ..., u, non-trivial vectors.

0] d—1]

1) Fori+j+k+1=d—r,set C, = ciy -
2) Form=1,...,nm
2.1) Fori=0,...,3, set ¥;(um) := ©i(tn) — @;(0).
22) Fori+j+k+1l=d—r—m,set
~lm Alm—1 Alm—1 Alm—1 Alm—1
Cz[jljl = ¢0(um)0£+1,g‘,}k,z+wl (U)C'E,j—i-l,]k,l—i_w?(’U>C£,j,k+]1,l+w3(U)Cz[‘,j,k,l}-i-l'

Alm]

We call the real numbers ¢;;; the de Casteljau coefficients of Dy, - - - Dy, p(v).

Thus, the calculation of a directional derivative D*p(v) involves d — |«|
steps of the de Casteljau algorithm 2.46, followed by || steps of the modified
de Casteljau algorithm above.

Theorem 2.52 (Theorem 15.14 in [46]). Given a polynomial p in B-form,

v € R?, and uq,...,u, non-trivial vectors. Let é%jz be the de Casteljau
coefficients of Dy, - - D, p(v) produced by algorithm 2.51. Then
d

Dy, Dy, p(v) = mcoooo-

One of the advantages of the B-form is the simple description of condi-
tions for the differentiability of two polynomial pieces defined on neighboring
tetrahedra. These conditions are given as relations between the B-coefficient
of the two polynomials. For the C! case, these conditions have been formu-
lated in [2]. The C" conditions can be found in [13, 37, 47].

The following theorem is central to the theory of splines in B-form.

Theorem 2.53 (Theorem 15.31 in [46]). Let T := (vg, vy, vs,v3) and T :=
(vg, V1, V9, U3) be two non-degenerate neighboring tetrahedra with the common
face F := (v, v1,v9). Let

— T T . T pT
pi= E Cijleijkl and p = E Cz‘jlez'jkl'
i+j+k+H=d i+j+k+l=d
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Use

Figure 2.7: Visualization of the smoothness conditions between two poly-
nomials defined on neighboring tetrahedra. For a C'-condition (red), four
B-coefficients in the left tetrahedron determine one B-coefficient in the right
tetrahedron. For a C?-condition (blue), six B-coefficients in the left tetrahe-
dron determine one B-coefficient in the right tetrahedron.

be two polynomials of degree d in B-form relative to T and T, respectively.

Let f € CY({T,T}) be defined by

() = {p(v), vel,

p(v) otherwise.

Then f € C"({T,TY) if and only if for all p=0,...,7,
Cgkp pr— Z cf+io,j+jo,k+ko,loBij;,jo,ko,lo<@3)’ fOT’ all Z+j +k - d_p

i0+jo+ko+lo=p
(2.15)

The equations 2.15 are called C" smoothness conditions. In particular,
the theorem says that two polynomial pieces are joined continuously at the
common face F'if and only if their B-coefficients associated with F' match:

Cg‘ko =0 foralli+j+k=d. (2.16)
Their first derivatives are continuous if and only if in addition to (2.16),

cz-ij = C?ﬂ,j,k,OSﬁg(ﬁ?»)+cgj+1,k,0@1T(@3)+ng‘,k+1,o%0;‘r(773)+CZj,k,1%03T<@3) (2.17)

for all  + 75+ k = d — 1. The convex hull of the domain points associated
with the B-coefficients in the sum of (2.15) form a smaller version of the
tetrahedron 7'. Figure 2.7 shows which B-coefficients are relevant for a typical
C' and C?-condition between cubic polynomials.
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The smoothness conditions are simplified when v5 sits in a plane contain-
ing one of the faces of T'. Similarly to the situation discussed in remark 2.37,
p and p degenerate to bivariate polynomials when restricted to this plane,
and thus the smoothness conditions also degenerate to bivariate smoothness
conditions. Moreover, they degenerate to univariate smoothness conditions
when 73 and two of the vertices of T are collinear.

2.4 'Trivariate splines on tetrahedral partitions

Piecewise polynomials defined on tetrahedral partitions have been studied in
the finite-element literature without using Bernstein-Bézier methods (see [15,
86| and references therein). Two of the first methods to use the B-form for this
purpose were developed by Alfeld [2] and Worsey and Farin [89], who studied
certain macro-element spaces to solve Hermite interpolation problems.

Definition 2.54. Let A be a tetrahedral partition of a simply connected re-
gion 0 C R3. Given two integers d € Ny and 0 < r < d, the space of
continuous trivariate polynomial splines of degree d and smoothness r over

A is defined by
Si(A) = {s € C"(A); sr € Py for all T € A},

Spline spaced can be characterized by the C” smoothness conditions,
p=0,...,7, in theorem 2.53, as the following theorem shows.

Theorem 2.55. Let A be a tetrahedral partition of a polygonally bounded
domain Q € R3, § := S5(A) a trivariate spline space over A, and s €
§_1(A). Then s € S if and only if for every pair T = (vg,v1,v2,03),

T = (vg,v1,v2,03) of neighboring tetrahedra in A, (2.15) is salisfied for
p=0,...,7.

Proof. This follows immediately from the definition of the spline space, and
from theorem 2.53. O

Often certain subspaces of S} (A) are used, where the order of smoothness
is increased at the vertices, edges and faces of the underlying partition.

Definition 2.56. Let A,r,d be defined as in 2.54. Let V and E denote the
sets of vertices and edges of A, respectively. For integersr < v < u <d, the
subspace

STV (A) 1= {s € Sj(A); s € CH(v) for allv eV,
se€ C”(e) foralle € E}

is called the superspline space of degree d and smoothness (r, u, ).
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By s € C*(v) we indicate that the partial derivatives of all polynomial
pieces of s meeting at the vertex v match up to the order u. Likewise,
s € C”(e) means that all polynomial pieces defined on tetrahedra sharing
the edge e have matching partial derivatives up to the order v.

Superspline spaces can also be characterized by smoothness conditions.

Theorem 2.57. Let A be a tetrahedral partition of a polygonally bounded
domain Q € R?, § C SY(A) a trivariate spline space over A, and s €
S;H(A).

(i) Let v be a vertex of A and 0 < r < d. Then s € C"(v) if and only
if for every pair T = (v,v1,v9,v3), T := (v,v1,s,03) of neighboring
tetrahedra in A which share the vertex v, and for all p = 0,...,r, the
smoothness condition

T T T ~
Cijkp = Z Citio.j+josk-+kordo Biojoskolo (U3)
io+jo+ko+lo=p

is satisfied for alli+j+k=d—p withi>r.

(11) Let e := (vo,v1) be an edge of A andr < 0. Then s € C"(e) if and only
if for every pair T := (vy, vy, Vg, v3), T 1= (v1,v1, Vs, T3) of neighboring
tetrahedra in A which share the edge e, and for all p = 0,...,r, the
smoothness condition

T T T ~
Cijkp = Z Citio,j-+josk-+kordo Biojoskolo (U3)
i0+jo+ko+lo=p

is satisfied for alli+j+k=d—pwithi+j>r.

Notice that the domain points associated with the B-coefficients in 2.57,
(i) and (ii), are those in the balls DI (v), DI (v), and in the tubes tZ(e), tT(e),
respectively.

Proof. We follow the proof of lemma 5.9 in [46]. The B-coefficients of s
associated with the ball D,.(v) can be regarded as the B-coefficients of a spline
sy € S, (star'(v)). Then s € C"(v) only if s, reduces to a polynomial, in
which case s, € S'(star'(v)). Then (i) follows from theorem 2.55. Likewise,
for the edge e := (uy,us), the B-coefficients of s associated with the tube
tr(e) can be regarded as the B-coefficients of a spline s, € S;*(star!(u;) U
star!(us)). Again, s € C"(e) only if s, € S"(star!(u;) Ustar!(us)), and (ii)
follows from theorem 2.55. O]

We extend definition 2.38 to spline spaces.
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Definition 2.58. For a spline space S C SY(A) defined over a tetrahedral
partition A, we denote the set of domain points of degree d of A by

Da(A) = | Du(T).

TeA

Let V' and E be the sets of vertices and edges of A, respectively. For 0 <

m < d we call
Dn(v):= |J Dh)

Testar(v)

the ball of radius m around v and

R,(v):== |J RL@)

Testar(v)

the shell of radius m around v, where v € V' For an edge e := (vg,v1) € E,

we call
tm(e) = U t(e)

Testar(vy)Nstar(ve)

the tube with radius m around e.

A space of continuous splines can be parametrized by the union of the
B-coefficients of all polynomial pieces. It follows from (2.16) that for any
two such polynomials defined relative to neighboring tetrahedra, the B-
coefficients associated with domain points on the common face match, and
thus only one parameter is needed to define both coefficients. Hence, the
total number of domain points is an upper bound for the dimension of any
continuous spline space.

Lemma 2.59. Let S C SY(A) be a spline space, then
dim S < #Dy(A).
For 8 = 8Y(A), the numbers are equal.

Proof. By theorem 2.53, s € S}(A) if and only if those B-coefficients of
neighboring polynomial pieces which are associated with the common face
match. Hence, fixing such a B-coefficient determines all B-coefficients associ-
ated with the respective domain point. Therefore, the number of independent
B-coefficients is equal to the number of distinct domain points. O

The next corollary shows how the smoothness conditions in theorem 2.57
can be used to determine B-coefficients associated with balls and tubes. This
is an integral part of many Lagrange interpolation methods.
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Corollary 2.60. Let A be a tetrahedral partition and S = S;""(A) a
trivariate spline space over A. Let T be a tetrahedron of A, and v and e
a verter and an edge of T', respectively. Suppose the B-coefficients associated
with Dg(v) of a spline s € S are known. Then the B-coefficients asso-
ciated with D, (v) are uniquely determined by smoothness conditions from
theorem 2.57 (i). Likewise, if the B-coefficients associated with t¥(e) are
known, then the B-coefficients associated with t,(e) are uniquely determined
by smoothness conditions from theorem 2.57 (ii).

The B-coefficients associated with the ball D, (v) are determined by first
applying the smoothness conditions to determine the B-coefficients associated
with DT (v) for all neighbors T of T. This process is repeated for all T to
determine B-coefficients of their neighbors, and so on. The process for the
B-coeflicients associated with the tube ¢, (e) is similar.

An important tool in the study of spline spaces is the minimal determining
set. This is a subset of the domain points such that fixing the B-coefficients
associated with the set determines all other B-coefficients as well.

Definition 2.61. Let S C S}(A) be a spline space. Let I' C Dy(A) be a
subset of the domain points of degree d. 1" is called a determining set for S,

if
cp=0forallnel’ = s=0.

A determining set is called minimal if no determining set with fewer elements
exists. It is called consistent, if by fizing all C-coefficients associated with
I' of a spline s, all remaining B-coefficients of s are determined, and all
smoothness conditions are satisfied.

We usually denote minimal determining sets by the letter M.
There is a relation between determining sets and the dimension of spline
spaces.

Theorem 2.62. Let I' be a determining set for a spline space S C S(A).
Then

(i) dimS < #T.
(11) If T is consistent, then #I' = dim S.
(117) If #1I' = dim S, then I' is minimal.

Proof. Parts (i) and (iii) are covered by theorems 17.8 and 17.10 in [46]. To
show part (ii), we refer to the proof of theorem 5.15 therein. O

We conclude this section by defining two important properties of minimal
determining sets.
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Definition 2.63. Let M be a minimal determining set for a spline space
S C Si(A). For domain points £ € M and n € Dy(A), we say the B-
coefficient ¢, of a spline s € S depends on ¢, if changing the value of c¢ also
changes the value of ¢,. For each n € Dy(A), we define

I, ={£ e M, ¢, depends on c¢} .

M s called local if there exists an integer £ € Ng which does not depend on
A, such that for all domain points n € Dg(A) there exists a tetrahedron T,
containing n with

T, C star’(T;,).

Moreover, M is called stable if there exists a constant K which depends only
on U, 0x and ¢, such that for each domain point n € Dy(A),

<K .
o] < Komaxeg]

Here, Op and ¢a are the smallest face and solid angles of A defined in 2.8.



Chapter 3

Quasi-interpolation using quintic
C? splines on the BCC partition

In this chapter we investigate the problem of constructing quasi-interpolation
operators based on quintic C?-splines on the BCC partition which approx-
imate a given set of discrete data values located on a regular cuboid grid.
The space of such splines has been investigated by Strang and Fix in [85],
and it is known that the best possible approximation order of this space is
four.

There exist some quasi-interpolation methods for this spline space us-
ing box splines (see [30, 31, 38]). These methods rely on samples on the
BCC grid and the evaluation of translated basic functions to generate a re-
construction. Our methods, in contrast, give an explicit representation of
the polynomial pieces by providing formulas for each B-coefficient. Thus,
our method is similar to the bivariate operators by Sorokina and Zeilfelder
(see [80, 82]), and the trivariate operators in [60, 72, 81|. This approach
to approximation has several advantages. One does not need to determine
the dimension of the underlying spline space, which is a highly non-trivial
problem. Nor is it necessary to explicitly construct a local and stable basis,
or even a minimal determining set, to achieve a certain approximation order.
From the point of view of an application programmer, this technique has the
additional advantage that a spline can be constructed independently on each
tetrahedron of the partition from only a small portion of the data set. This
allows the application of our methods to huge data sets, as there is no need
to retain the B-coefficients associated with an individual tetrahedron, once
all computations regarding the related polynomial piece are completed. It
also means that many algorithms using these operators can be readily paral-
lelized. This was one of the main design criteria for the operators. Another
criterion was the use of only to gridded data, which is available in many
real-world applications, such as computed tomography.

43
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We construct three quasi-interpolation operators with different proper-
ties. The first operator satisfies a certain convexity condition, but has a less
than optimal approximation order. The second operator has the best pos-
sible approximation order for the underlying spline space. While it is more
complex than the convex operator, it can still be defined by giving a single
set of B-coefficient computation rules which is applied to all tetrahedra of the
underlying partition. The third operator interpolates all of the data values
located on the unit cube while maintaining the best possible approximation
order. To achieve this, the tetrahedra of the underlying partition are decom-
posed into four classes, and a separate set of computation rules is provided
for each class.

We begin this chapter by establishing some terminology regarding quasi-
interpolation with polynomial spline spaces. Although all definitions and
statements are given explicitly for trivariate splines, it should be noted that
most can be easily adapted to the n-variate setting.

Definition 3.1. Given a set X C R? of discrete points, we call the space
Fx ={f: X >R}

of discrete real-valued functions the sample space for the set of sample points
X. For f € Fx, we call f(x) the data value of the sample point x € X.
Given a space S C SJ(A) of trivariate polynomial splines of degree d and
smoothness r over a tetrahedral partition A, we call a linear operator

QZ.FX—>S,

where each B-coefficient of Q(f) is a linear combination of the data values
{f(z)}zex, a trivariate quasi-interpolation operator for (X,S) of degree d
and smoothness r.

When dealing with a continuous function f € C(2), with Conv(X) C Q,
we implicitly mean the restriction of f to X when writing Q(f).

The quasi-interpolation operators developed in this chapter are defined
by giving explicit computation rules for all B-coefficients of the spline. These
rules can be written as linear combinations of data values.

Definition 3.2. Let Q be a quasi-interpolation operator for (X, S) of degree
d and A the underlying tetrahedral partition of S. Let f € Fx, T € A, n €
Dy(T) and ¢l the associated B-coefficient of Q(f)r. The linear combination

o => wl f(z)

zeX
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T The real numbers wt

is called a B-coefficient computation rule of @) for ¢, . .

are called weights. The set
XnT = {z € X; w;@ #0}
T

is called the support of the rule for c; . We denote the union of the supports
of the rules for all B-coefficients of T by

Xr= |J x|

n€D(T)

As usual, we may omit the superscript 7" whenever it is clear which tetra-
hedron we are referring to.

Explicitly giving a rule for each B-coefficient defines a quasi-interpolation
operator. It obviously would be highly impractical if all of these rules used
different sets of weights. Thus, for the quasi-interpolation operators in this
chapter, we take advantage of the regular nature of the BCC partition and
define the rules relative to a tetrahedron. For the first two operators, this
results in a small set of rules which can be applied to each tetrahedron of the
BCC partition. The third operator is more complex, and the tetrahedra are
decomposed into four classes, for each of which a set of rules is given.

Remark 3.3. Let n € Dg(A) and T # T € A withn e TNT. If Sis a
space of continuous splines, then the rules for cg and CZ are identical, which
means that they share the same support and use the same weights. This is
a consequence of the C° condition (2.16). In such a case, it suffices to give
one rule for each n € Dy(A) to define a quasi-interpolation operator.

The following definition allows us to address the data values relative to a
tetrahedron.

Definition 3.4. Let T := (vg, v1, v, v3) be some non-degenerate tetrahedron,
f € Fx, and x € X a sample point. Let ¢ := (o, ..., ps3) be the barycentric
coordinates of x relative to T. Then we write

fg - gom,wz,@s = fpovo + ... + psv3) = f(x).

A collection of sample points can also be written relative to T. For'Y C X,
we write

oY = {(¢) (x),...,05(x)); z€Y}.

We may omit the superscript 7" when it is clear which tetrahedron we are
referring to.
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Using the definition above, the B-coefficient computation rules of a quasi-
interpolation operator () can be written as

d= Y Wil o

T
ek,

where the ¢} are the B-coefficients of Q(f)r. Here, we write X, instead of
Xg , since it is clear which tetrahedron the rule is associated with.

Example 3.5. The following rule defines the computation of the B-coefficient
c5000 associated with the domain point &5090 of some tetrahedron T'. The data
values are given relative to 7.

. (216f
C5000 T 1,0,0,0

+28(fo,1,-11 + fo,—11,-1 + fo0-10 + f1,-1.010 + fr10-1 + foo,10)

+6(f1,—12-1+ fa—10-1+ fo—210+ for,-1,-1 + fo—1,-11 + fo01,-2
+ fii,—21+ fo1101 + foz,—10+ for1,-1+ fo—111 + foo-12)

+3(f-1200 + fi—220+ fi2—20+ fioz—2+ fio—22+ f-1002

+ f3.00,-2 + f3,—2,0,0)>

In addition to this description of B-coefficient computation rules, we pro-
vide graphical representations, where the support of each rule is shown in
a three dimensional grid, with the weights written at the associated sample
points. We call such a representation a weight mask. Figure 3.1 shows the
weight mask for the rule given in the example above. Note that only the
numerators of the weights are shown at the grid points, and the common
denominator is given separately. The tetrahedron 7' is shown both in the
grid, where its relative location to the sample points can be seen, and in a
bigger version on the right, where the arrangement of the vertices, and the
domain point associated with the B-coefficient are shown.

The relative notation of definition 3.4 allows us to define certain symme-
tries for B-coefficient computation rules.

Definition 3.6. Let n,& be two domain points of a tetrahedron T' € A. We
say, the rules

T __ T T T _ T T
=D wpels end o= wiLf

T T
gl oerk,

of a quasi-interpolation operator @ for (X,S) are (0,1)-symmetric to each
other if and only if
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All weights multiplied by ﬁ

3 6 U1
3 6 28 6 3
6 3
6 28
28 6
6 o8 216 ; 28 0 7 Vo
3 6
6 3
3 6 % L6 V3

Figure 3.1: Weight mask for the rule for cspp9 defined in example 3.5. The
associated domain point is shown in the tetrahedron on the right.

(i) (00, 01,2, 03) € R%, & (1,00, 92,03) € P, and

(ii) for each (o, 1, 2. 03) € %,
T T
Wn,(po.01,02.03) = We,(01.00,02,03)"
The other cases of (i, j)-symmetry with i,j € {0,1,2,3} are defined analo-
gously, with © and j referring to the indices of the tuples in ®%.

Two rules that are symmetric to each other share the same set of weights.
Thus, symmetries between two B-coefficient computation rules can also be
expressed by swapping the barycentric coordinates of the sample points.

Lemma 3.7. Fiz T € A and suppose the rules for two B-coefficients c;‘q and
céT of a quasi-interpolation operator Q) are (0,1)-symmetric to each other,

then
T T T
Ce = Z W (p0,01,02,03) ) ¢1,00,02,03°

(Po-p1,02,03) QT

For the other cases of symmetry, analogous statements hold.

Proof. Using 3.6 (i), we write the rule for ¢f with the weights w; ;.

T T T
Ce = Z wﬂ7(<P17<P07<P2#P3)f‘PO,SD’l,SOQ#PS'

(@07%75027503)@1’;(5

We then swap ¢g and ¢; to obtain

T T T
Ce = Z W (0o0,01,02,93)d 01,00,02,03"

(‘p1790079027903)e¢’1);§
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Using 3.6 (i) completes the proof. ]

We use lemma 3.7 to simplify the definition of quasi-interpolation oper-
ators. For example, in definition 3.17 (A.2), the rules for the B-coefficients
0140, C4001 and coog1 can be derived from the rule for ¢4109 by using both (0, 2)-
and (1,3)-symmetry.

The following lemma is used to prove certain reproduction properties of
the operators defined later in this chapter.

Lemma 3.8. Fiz T € A and suppose the rules for two B-coefficients cg and

cg of a quasi-interpolation operator Q) are (0, 1)-symmetric to each other. Let
fand f be functions such that f} . ., o= FL 0 on.0s fOT all (9o, 01,02, 03) €

% Thencl =&, where c] and & are B-coefficients of Q(f)r and Q(f)r,
respectively. Similar statements hold for the other symmetries.

Proof. Using lemma 3.7, we write

T _ T i
Ce = Z Wn,(@0.01,02.03) 01,0023
(<P0,<.D1,e027903)€¢§,]
and use the symmetry of the functions to complete the proof. O

Note that the Bernstein basis polynomials relative to 7" exhibit such sym-
metries.

The next definition is motivated by the convex hull property of the B-form
and defines a concept of convexity for quasi-interpolation operators.

Definition 3.9. Let () be a trivariate spline quasi-interpolation operator for
(X,S). Q is called convex, if for all f € Fx the condition

T <QUf)w) < fL.. forallveT, (3.2)

holds for each T € A, where

Jmin = in f(@) and - fr,, = max f(@).

In other words, each polynomial piece p of a convex quasi-interpolation
operator is bounded by the least and greatest data values that were used
in the construction of p. Tt should be noted that fZ. and fI — are not
the minimum and maximum values of fi7, but the minimum and maximum
values of f that are relevant for the construction of Q(f)r.

The convexity of a quasi-interpolation operator () can be expressed by a
similar condition for the rules for Q).
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Lemma 3.10. Let () be a trivariate spline quasi-interpolation operator for

(X,S) which is defined by the rules

=Y wl f(z), neDT), TeA.

rzeX

For each n € Dy(T), let

Somin = xﬂél)l% fx) and  fome = 32%? f(x).

If for all f € Fx,
fn,mm S Cg S fn,maz (33)
for each T € A and each n € Dy(T), then Q is convex.

Proof. Since X, C Xr, fl, < fymin and fymee < fil
each T" € A. Then

Let (3.3) hold for

azx*®

fT < fn,min < C; < fn,maa: < fgr;a:v for each n e Dd(T)

Since Q(f)r is a polynomial in B-form, it follows from lemma 2.39 that
T <Q(f)r(v) < fl.. forallveT.
[

The next lemma shows that an operator is convex if each B-coefficient is
a convex combination of the sample values.

Lemma 3.11. Let () be a trivariate spline quasi-interpolation operator for

(X,S) which is defined by the rules
of => wl f(x), neDyT)T €A,
zeX
where w, , > 0 for all x € X and all n € Dy(A), and m;{ w), =1 for all
n € Dy(T) and all T € A. Then Q is conver.

Proof. We show that (3.3) holds for each n € Dy(T) and each T € A. Fix
f € Fx. First we observe that for each n € Dy(T),

k= ngx (x) = Z w) f(x).

rzeX zeX]

Since all weights are non-negative, it follows that

Jomin = ( Z ng)fnmzn < Z ngf(x) = cg.

ze Xl zeX]
———
=1
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and
CZ; = Z wizf(x) < Z waxfn,maac = fn,ma:v'
ze X[ ze X
The convexity of ) follows from lemma 3.10. O]

The following definition introduces the concepts of locality and stability,
which are known for minimal determining sets from definition 2.63, to quasi-
interpolation operators.

Definition 3.12. Let () be a trivariate spline quasi-interpolation operator
for (X, S) which is defined by the rules

= wl f(z), neDUT), TeEA.

zeX

We say Q) is {-local if there exists a constant € N such that for all f € Fx
Xy C star’(T) for all T € A.

The operator ) is called stable, if there exists a constant K, depending only
on £ and the smallest face and solid angles of A, such that for each n € Dy(T)
and T € A,
T
jen| < K max [ f(x)].

Most quasi-interpolation operators are designed to take advantage of the
uniform structure of the underlying partition. In the ideal case, such an oper-
ator is defined by a single set of rules which can be applied to all tetrahedra.
Two of the operators developed in this chapter belong to this class, while the
third operator uses four sets of rules.

The operators are designed to approximate data sitting on a uniform
cuboid grid on the unit cube. Given the fact that the locality of all operators
is greater than zero, additional data values have to be supplied outside the
boundary of the unit cube. This is taken into account by the following
definition of a set of sample points which our operators will use.

Definition 3.13. Given a set of N; x Ny x N3 data values, where N; >
2P+ 1, i=1,2,3, for some small P € Ny, we assume that these values are
located at the vertices of the reqular cuboid grid

X = {xi,j,k = (ihl,jhg,kh3>;i:—P,...,n1—1+P,
j:—P,...,n2—1+P,
k:—P,,n3—1+P}CR57

with n; == N; — 2P and h; == ——, i =1,2,3. We call X the set of uniform

n—1°

cuboid sample points. We call P the padding parameter.
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Figure 3.2: A tetrahedron in the boundary region of a small partition A;.
The vertices vy and vy sit on the boundary of the black unit cube. Vertex v,
is inside the unit cube, while v3 is outside.

The padding parameter P can be interpreted as the number of layers of
cuboids outside the unit cube. Based on X, we construct a partition A; C
Apgcc covering the unit cube, and develop quasi-interpolation operators for

S3(A).

Definition 3.14. Let H := (hy, ha, h3) be the positive real numbers defined
in 8.13, Agcc the BCC partition with spacing H, and €y := [0,1]® the unit
cube. Then

Ay :={T € Apcc; vol(TNy) > 0}.

The partition A; is constructed such that the vertices of X coincide with
those in V;. Of the tetrahedra in the boundary region of the unit cube, at
most one vertex lies outside of €2;. Figure 3.2 shows such a tetrahedron.

From a structural point of view, all tetrahedra in Apcc are the same.
To be more precise, the relationship between any two neighboring tetrahedra
can be described by the same 4-tuple of barycentric coordinates.

Lemma 3.15. Let T := (v, vy, v2,v3) and T := (vg,v1, Ve, U3) be two neigh-
boring tetrahedra of Agce. Then the vertices of T and T can be arranged
such that vyg,vo € Vg and vy,v3,03 € Wy, or vice versa. Moreover, the
barycentric coordinates of U3 relative to T are (1,0,1,—1).

Proof. The vertices of Vy form a uniform cuboid grid with cube centers Wp,.
Suppose (vg, v2) is an edge of this grid, and vy, vs, 03 € Wy are cube centers,
as shown in figure 3.3. Then the midpoint of this edge is (vy + v2)/2 =
(vs + v3)/2, and thus U3 = vg + vy — v3.

Now suppose vy, v9 € W. The vertices Wy also form a uniform cuboid
grid, which is translated by (h;i/2,hs/2,h3/2) and has cube centers V.
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Use o U1

Figure 3.3: Two neighboring tetrahedra of Agce The cubes indicate the
cuboid grid defined by either Vg or Wy.

We use the same arguments as before to obtain the barycentric coordinates
(1,0,1,-1). O

This means that the smoothness conditions of spline spaces defined over
Apcce can be characterized by a small number of conditions. The next corol-
lary follows immediately from theorem 2.53 and lemma 3.15, and gives these
conditions explicitly for the Space SZ(Agcc).

Theorem 3.16. The smoothness condition of S2(Apcc) between neighboring
tetrahedra T, T € Apcc are be completely characterized by the equations

T _T . . .
Cijko = Cijkos i+J+ k=5,
(3.4)
T T _ T T . . _
Cijk1 T Cijk1 = Cip1jk0 T Cijik+1,00 i+ + k=4,
(3.5)
T T T _ T T T . . _
Cijka T Cix1 k1 T Cijkt11 = Citt k1 T Cijrt11 T Cijk2 i+Jj+k=3.
(3.6)

Proof. We arrange the vertices of T and T according to lemma 3.15 and use
theorem 2.53, obtaining

T _ T . . .
Ciiko = Cijkos 1+ j+ k=05,

T _ T T T . . .
Cijk1l = Cit1,5k0 T Cijk+1,0 — Cijkls i+7+k=4,

o T T T
Cijk2 = Cit2,ik0 T 2Cis1 k110 T Cijrt2,0

T T T . . _
= 2C 1501~ 2C a1 T Gk i+jt+k=3
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We rearrange the terms in the third equation and substitute using the second
equation.

T T T T
Cijk2 = Cig2,jk0 T Cit1,jk+1,0 — Cit1,5k1
J/

v~

T
Cit1,5,k,1

T T T
T Cit1jk+1,0 T Cijk42,0 — Cijht1,1
NS >

~ vV
T
Cijk+1,1
T T T . . o
~ Civ1gk1 T Cighi11 T G2 i+j+k=3

3.1 A convex quasi-interpolation operator

In this section we develop a convex quintic C? quasi-interpolation operator
that approximates data located on a cuboid grid. For the remainder of this
section, we assume that X is constructed with a padding parameter P > 2,
and that A; is the BCC partition associated with X as defined in 3.14. We
define S := S2(A,).

Definition 3.17. For each T := (vg,v1,v2,v3) € Ay, we assume that the
vertices of T are arranged such that vg,ve € Vg and vi,v3 € Wy. Then
Qconv 18 the quasi-interpolation operator defined by the B-coefficient compu-
tation rules (A.1)-(A.20), which are given relative to T, and the following
symmetries. For each i+ j+ k +1 =5, the rule for c;ji is (0,2)-symmetric
to the rule for ciju and (1,3)-symmetric to the rule for ciy;.

The main result of this section shows that a spline constructed by these
rules satisfies all smoothness conditions of S and uses only data values located
at the sample points in X.

Theorem 3.18. The operator Q.ony, defined by the B-coefficient computation
rules (A.1)-(A.20), is a quasi-interpolation operator for (X,S).

Proof. First we show that all sample points used by the rules are indeed in
the set X'. Fix T := (v, v1,v9,v3) € Ay. The sample points used by the rules
for (QQcony are depicted in figure 3.5 as blue and black barycentric coordinates.
Looking at definitions 2.17 and 3.13, it is clear that X NVy = &X'. Since both
vo and vy belong to Vi, the vertices vg+i(ve—vy), i € Z, are also in V. These
vertices have the barycentric coordinates (1—1¢,0,14,0) relative to 7. Likewise,
the vertices vo+j(vs—1v1), J € Z, belong to Vg, since vy, v3 € Wy and Wy =
Vi +(1/2,1/2,1/2). The barycentric coordinates of these vertices relative to
T are (1,—74,0, 7). By asimilar argument, the vertices vy+ k(vs —vo+v; —v2),
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k € Z, with barycentric coordinates (1 — k, k, —k, k) relative to T are also in
the set V. Hence, the vertices in Vg can be represented by the barycentric
coordinates (1 —i — k,k — j,i — k,j + k) relative to T. This introduces a
local orthogonal coordinate system with origin vy and units hq, ho, h3, where
the vertices of Vy are identified by integer coordinates. The axes of this
coordinate system are parallel to the edges of the cuboid grid defined by V.
Figure 3.4 shows a tetrahedron and the associated axes together with a small
portion of this grid. Table 3.1 shows selected values of (i, 7, k), the associated
barycentric coordinates relative to T, and the smallest star which contains
the sample point. All sample points used in the rules for Q.,,, can be found
in this table, and thus all data values sit on the grid defined by Vy.

It remains to show that no sample point outside of X is referenced by the
rules. The definition of Ay assures that at least three of the four vertices of
T are contained in the unit cube. The padding parameter P > 2 guarantees
that all sample points with local coordinates in the range of —2,...,2 are in
X. The only sample point we need to take a closer look at is (3,0,0). The
barycentric coordinates relative to 7" of this point are (—2,0,3,0). Thus, it
sits at a distance of two units from vy and is also contained in X.

We now show that the smoothness conditions (3.4) - (3.6) are fulfilled.
We distinguish between two cases. In the first case, the vertex arrangement
of the neighboring tetrahedra reflects the situation of theorem 2.53. In the
second case, the vertices of the neighboring tetrahedra are arranged in a
different way than in theorem 2.53, und thus the indices of the B-coefficients
in (3.4)-(3.6) have to be adjusted.

Case 1. Let T := <UO,Ul,U2,U3>7T := (vg, V1, V2, 03) € A1 be two neigh-
boring tetrahedra with vy,vs € Vg and vy,vs3,03 € Wpy as shown in fig-
ure 3.3. According to lemma 3.15, the barycentric coordinates of vs relative
to T are (1,0,1,-1). We use lemma 2.32 to rewrite the rules for cg rela-
tive to T. Let (vo,...,®3) be the barycentric coordinates of an arbitrary
point v relative to T, then the barycentric coordinates of v relative to T are
(po+v3, ©1, P2+ 3, —p3). Thus, a sample value relative to T can be written
as )

r = fr (3.7)

$0,%1,%2,93 Po+p3,01,02+03,—P3

To show that (3.4) is satisfied, we use the equation above on each sample
point in the rule for c;frjk,o. This reveals that the rules for cZ.Tjk0 and Cgko use
the same set of sample points with the same weights, and thus the rules are
identical. We use the same technique with the equations (3.5) and (3.6).
These calculations were performed by a computer program that we wrote
using the Mathematica® software package by Wolfram Research. We refer
to appendix D for a detailed description of our program and its source code.

Case 2. Let T := (vg,v1,vs,vs), T 1= (T, v1,v2,v3) € Ay be two neigh-
boring tetrahedra with vy, vg,v2 € Vg and vi,v3 € Wy. In this case, the
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common face of T and~T is (vq,ve,v3) rather than (v, v1,v). We rearrange
the vertices of T" and T" with the permutation

(0 1 2 3
7=\ 2 3 0)
resulting in the situation described in case 1. Then we use lemma 2.40 to

adjust the indices of the B-coefficients in the smoothness conditions (3.4)
- (3.6) and obtain

T _T . . .
Coijk = Coijk> i+ +k=5,
T T _ T T . . o
Clijk T Clijk = Co,it1,5k 1 Cojijk+10 i+j+k=4,
T T T _ T T T : . _
Coijk T Clivi ik T Clijk+1 = Cliti gk — Clijk+1 T C2,i ks i+J7+k=3.

We also adjust (3.7), using the relationship between the barycentric co-
ordinates described in lemma 2.40. Let U := (ug,uy,us, u3z) and U =
(ug, uy, Uz, Ug) be the tetrahedra resulting from rearranging 7" and T, respec-
tively. Then w,, = Vp(m), m =0,...,3, and @3 = . Thus, oY (v) = goz(m) (v)
and, using the inverse permutation,

P (V) = Pg-1(m) (V). (D)
Furthermore, i i
(V) = Po(m)(v) (II)
Pm\V Soa(m) :
for an arbitrary point v. Let x be a sample point with barycentric coordinates

¢V () relative to U. If follows from (3.7) that the barycentric coordinates of
x relative to U are

(o8 (@), o7 (2), 08 (2), 05 () = (08 () + &5 (), ¥ (), o (2) + &F (), =Y (2)).

(111)
To obtain the barycentric coordinates of z relative to T', we then write

Thus, we obtain

f«i}@h@m@s - fT<P07<P0+501,s02,<P0+4P3' (3'8)
We conclude the proof by using the same method as in case 1 to verify that
all smoothness conditions are fulfilled. The calculations were also performed
by our computer program, see appendix D. O
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‘ bary. coords. ‘ star

(i,J, k)

‘ bary. coords. ‘ star

(i,, k)
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number / is given to indicate that the point is contained in star’(T), where

T is the tetrahedron in Agce which is analogous to T
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Figure 3.4: A tetrahedron T (left) and the local coordinate system relative
to T' which was introduced in the proof of theorem 3.18 (right). The grid
lines show a portion of the cuboid grid defined by the vertices in V.

The following theorem shows the convexity and locality of Q.n,. Since
Qconv uses sample values outside of A;, we have to adjust the concept of
locality from definition 3.12 slightly. The partition A; is a subset of Agcc,
and hence there exists a tetrahedron 7' € Apcce foreach T € Ay with T = T.
The locality is measured using star’(T).

Theorem 3.19. The operator Q.on, s convex. It is also 2-local in the fol-
lowing sense. For each T € Ay, let T be the analogous tetrahedron in Apcc.
Then

Xy C star®(T).

Proof. For each of the B-coefficient computation rules for Q.on,, the sum of
the weights is 1 and all weights are non-negative. The convexity follows from
lemma 3.11.

To show the locality of the operator, we use the local coordinate system
introduced in the proof of theorem 3.18. For each sample point, the local
coordinates are given in table 3.1. The vertices of T" have local coordinates
(0,0,0), (1/2,-1/2,1/2), (1,0,0), and (1/2,1/2,1/2). Using corollary 2.25,
we directly calculate the number ¢ for each sample point x such that z €
star’(T"). These numbers are given in the right column of table 3.1.

We demonstrate this process for the sample point x with barycentric coor-
dinates (—1, 3,0, —1) relative to T.. The local coordinates of z are (1, —2,1).
Local coordinates are multiples of hi, he and hs, which are also used in
lemma 2.24 to calculate stars relative to a vertex. Thus, we calculate the
local coordinates of x — v,, for each vertex, and use lemma 2.24 to calculate
the number N,, with z € star™¥(v,,). Then we use corollary 2.25 with these
results.
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0,-2,-1,4 L
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Figure 3.5: Union of the supports of all rules for Q.. (blue and black) and
Qopt (light blue and gray). The barycentric coordinates relative to the red
tetrahedron are written at each grid location.

The local coordinates of x — vy are (1,—2,1). By lemma 2.24, x €
star’™(v), where Ny = [1] + | — 2| + [1] — min{|1],] — 2|,|1]} = 3. The
local coordinates of x — vy, * — v9, and x — w3 are (1/2,-3/2,1/2), (0,—-2,1),
and (1/2,—5/2,1/2), respectively, and thus = € star?(v,), o € star3(vy), and
x € star®(v3). By corollary 2.25, z € star’¥ (T) with N = min{3,2, 3,3} = 2.

Repeating this process reveals that all sample points are contained at
most in star?(T)). To illustrate the stars, we show the support of all rules in
figure 3.5, and two chains of tetrahedra, connecting selected sample points
to T, in figure 3.6 [
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13

15

Figure 3.6: A subset of star®(T’) for a tetrahedron T' € Apgc, showing two
selected chains of tetrahedra with Ty, T, C star®(T).

As a consequence of the convexity, QQ.on, is also stable, as the following
theorem shows.

Theorem 3.20. Let T € Ay and f € Fx. Then

HQconv(f>HT < ;rrrel?é}; ’f(l')’

Proof. Let n € D5(T'). Then the B-coefficient ¢, is computed by one of the
rules for Q.ony- Since the support of the rule is contained in A7, and since
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wy, . = 0 for x € X, we have

- anxf anxf

rEXy, reXT

But then, by the triangle inequality,

enl < D Tl [f(2)] < D [wno| max |f(z)] < max|f(z)] > lwnal.

rEXT rEXT X

Since all weights are non-negative, and the sum of all weights used in any
given rule is 1, we have

<
[en] < max | f(z)].

It follows from theorem 2.42 that

< <
|Qeon (F)llr = maix fey| < max |f(x)].

m
Finally, we show that linear polynomials are reproduced by the operator.

Theorem 3.21. Q.. reproduces linear polynomials. For each p € Py,

QCOTLU(p) = p'

Proof. Since Q.o is linear, it suffices to show that the Bernstein basis poly-
nomials Bjji, ¢ +j + k 4+ | = 1, relative to a fixed tetrahedron T' € A are
reproduced. We first compute the B-coefficients of B, i, written as a polyno-
mial of degree five, by repeatedly using lemma 2.41. These are then compared
to the B-coefficients of Qcony(Bijki)r, computed with the rules (A.1)-(A.20).

Due to the symmetry of both the Bernstein basis polynomials and the B-
coefficient computation rules of (Q.on., it suffices to proof the reproduction of
Biooo and Byigo, since then the repro