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Zusammenfassung

Für ein Datenbankmanagementsystem, das Unterstützung für deklarative Anfrage-
sprachen wie SQL bietet, ist der Anfrageoptimierer eine unerlässliche Softwarekom-
ponente. Oft können deklarative Anfragen in verschiedene äquivalente Ausführungs-
pläne übersetzt werden. Der Übersetzungsprozess, welcher unter allen äquivalenten
Alternativen einen geeigneten Ausführungsplan auswählt, wird Anfrage-Optimierung
genannt. Der Auswahlprozess beruht auf einem Kostenmodell und auf Verteilungsstatis-
tiken über die zugrunde liegenden Daten. Für die geschätzten Ausführungskosten des
Ausführungsplans ist die Reihenfolge der Join-Operationen ausschlaggebend. Dabei
kann der Laufzeitunterschied zwischen verschiedenen Ausführungsplänen mit un-
terschiedlichen Ausführungsreihenfolgen ihrer Join-Operationen mehrere Größenord-
nungen betragen. Eine vollständige Suche unter allen äquivalenten Operatorbäumen
ist oft zu berechnungsintensiv. Daher muss die Komplexität der Suche eingeschränkt
werden, indem die Größe des Suchraumes reduziert wird. Dazu wird eine weitverbrei-
tete Heuristik angewendet: Es werden nur die Operatorbäume erzeugt und in ihren
Kosten miteinander verglichen, welche frei von Kreuzprodukten sind.

Für die Suche nach dem optimalen und damit billigsten Ausführungsplan gibt
es zwei mögliche Herangehensweisen: Top-Down Join Enumeration und Bottom-
Up Join Enumeration. Dabei hat Top-Down Join Enumeration einen wesentlichen
Vorteil: Durch die bedarfsgesteuerte Aufzählungsreihenfolge können Branch-and-
Bound-Pruning-Strategien verwendet werden. Durch Branch-and-Bound kann die
Übersetzungszeit der Anfrage um mehrere Größenordnungen reduziert werden. Trotz
merklicher Verkürzung der Übersetzungszeit wird in jedem Fall der optimale und
somit kostengünstigste Plan erzeugt. Falls es nach dem jeweilig verwendeten Kosten-
modell mehrere optimale Pläne gibt, wird einer dieser Kandidaten erzeugt.

Die vorliegende Arbeit widmet sich dem Top-Down-Join-Enumeration-Prozess. Im
ersten Teil der Arbeit werden zwei gleich effiziente Partitionierungsalgorithmen für
Graphen vorgestellt, die für Top-Down Join Enumeration von Relevanz sind. Je-
doch gibt es bei den im ersten Teil vorgestellten Strategien zwei erhebliche Ein-
schränkungen: (1) Die Algorithmen eignen sich nur für Anfragen mit einfachen
(binären) Join-Prädikaten. (2) Anfragen, die neben inneren Join-Operationen auch
auf äußere Join-Operationen zurückgreifen, können nicht verarbeitet werden.

Im zweiten Teil dieser Arbeit werden diese Einschränkungen aufgehoben. Dazu
wird zunächst eine von zwei Partitionierungsstrategien für Graphen angepasst und er-
weitert. Anschließend wird ein generisches Framework vorgestellt, das jeden Partitio-
nierungsalgorithmus für Graphen derart umrüstet, dass auch Anfragen mit komplexen
Join-Prädikaten und äußeren Join-Operationen übersetzt werden können. Wie sich
zeigen wird, ist das generische Framework effizienter als der modifizierte und erweit-
erte Partitionierungsalgorithmus für Graphen.

Der dritte Teil dieser Arbeit beschäftigt sich mit Branch-and-Bound-Pruning-
Strategien. Als erstes werden zwei bereits bekannte Pruning-Strategien erläutert
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und klassifiziert. Im Weiteren wird erklärt, wie beide Strategien vereint werden
können. Darauf aufbauend werden sieben Verbesserungen vorgeschlagen. Der da-
raus resultierende neue Branch-and-Bound-Pruning-Algorithmus verbessert (1) die
Effizienz von Pruning, macht (2) Branch-And-Bound Pruning robuster und ver-
hindert (3) Szenarien, bei denen die Übersetzungszeit durch Pruning um mehrere
Größenordnungen verlangsamt wird.

Die vorliegende Arbeit evaluiert mit Hilfe verschiedener Experimente, inwieweit
Laufzeitverbessungen durch die vorgestellten neuen Algorithmen erreicht werden
können. Dabei werden die Anfragen der TPC-H, TPC-DS und SQLite Test Suite
Benchmarks übersetzt und die Laufzeit der Optimierungsphase gemessen. Unsere
Ergebnisse zeigen, dass sich die Übersetzungszeit bei Verwendung der hier vorgestell-
ten Algorithmen für die Benchmark-Anfragen um 100% verbessert. Bei Verwendung
synthetischer Workloads können sogar noch größere Laufzeitverbesserungen erreicht
werden.
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Abstract

For a DBMS that provides support for a declarative query language like SQL, the query
optimizer is a crucial piece of software. The declarative nature of a query allows it to be
translated into many equivalent evaluation plans. The process of choosing a suitable
plan from all alternatives is known as query optimization. The basis of this choice
are a cost model and statistics over the data. Essential for the costs of a plan is the
execution order of join operations in its operator tree, since the runtime of plans with
different join orders can vary by several orders of magnitude. An exhaustive search for
an optimal solution over all possible operator trees is computationally infeasible. To
decrease complexity, the search space must be restricted. Therefore, a well-accepted
heuristic is applied: All possible bushy join trees are considered, while cross products
are excluded from the search.

There are two efficient approaches to identify the best plan: bottom-up and top-
down join enumeration. But only the top-down approach allows for branch-and-bound
pruning, which can improve compile time by several orders of magnitude, while still
preserving optimality.

Hence, this thesis focuses on the top-down join enumeration. In the first part, we
present two efficient graph-partitioning algorithms suitable for top-down join enumer-
ation. However, as we will see, there are two severe limitations: The proposed algo-
rithms can handle only (1) simple (binary) join predicates and (2) inner joins. There-
fore, the second part adopts one of the proposed partitioning strategies to overcome
those limitations. Furthermore, we propose a more generic partitioning framework that
enables every graph-partitioning algorithm to handle join predicates involving more
than two relations, and outer joins as well as other non-inner joins. As we will see, our
framework is more efficient than the adopted graph-partitioning algorithm. The third
part of this thesis discusses the two branch-and-bound pruning strategies that can be
found in the literature. We present seven advancements to the combined strategy that
improve pruning (1) in terms of effectiveness, (2) in terms of robustness and (3), most
importantly, avoid the worst-case behavior otherwise observed.

Different experiments evaluate the performance improvements of our proposed
methods. We use the TPC-H, TPC-DS and SQLite test suite benchmarks to evalu-
ate our joined contributions. As we show, the average compile time improvement in
those settings is 100% when compared with the state of the art in bottom-up join enu-
meration. Our synthetic workloads show even higher improvement factors.
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Korreferent.
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1. Introduction

1.1. Motivation

Queries against DBMSs are often formulated in declarative languages. Prominent
examples are SQL, OQL, XPath and XQuery. Writing such a declarative query has
two advantages: (1) The querist does not need to decide upon the actual algorithms and
execution order to access and combine the data, which in turn (2) leaves the DBMS
with several degrees of freedom to choose the best evaluation and execution strategy
in order to answer the query. This is a shift of complexity: from formulating the
query towards how to answer it in a most efficient way. We refer to the process of
transforming the declarative query in an imperative execution plan as plan generation,
and we call the component in the DBMS which deals with the complexity of choosing
a suitable plan from all alternatives the plan generator.

Today’s plan generators are cost-based. This means that they rely on a cost model
and statistics over the data in order to select from all equivalent plans the one with
the lowest costs. Essential for the costs of a plan is the execution order of join opera-
tions in its operator tree, since the runtime of plans with different join orders can vary
by several orders of magnitude. An exhaustive search for an optimal solution over
all possible operator trees is computationally infeasible. To decrease complexity, the
search space must be restricted. For the optimization problem discussed in this thesis,
the well-accepted connectivity heuristic is applied: We consider all possible bushy join
trees, but exclude cross products from the search, presuming that all considered queries
span a connected query graph. Thereby, a query graph is an undirected graph where
join predicates span the edges between the relations referenced in the SQL query, i.e.,
a graph edge betweenR1 andR2 is introduced if there exists a join predicate involving
attributes of R1 and R2.

When designing a plan generator, there are two strategies to find an optimal join
order: bottom-up join enumeration via dynamic programming, and top-down join enu-
meration through memoization.

Both plan generation approaches rely on Bellman’s Principle of Optimality1: They
generate an optimal join tree for a set of relations S by considering optimal subjoin
trees only. This means that non-optimal, i.e., more expensive, subjoin trees can be dis-
carded, which curtails the search space enormously2. Moreover, since the connectivity
heuristic is applied3, the optimal (sub) join tree needs to be constructed only for those

1The presence of properties requires additional care. For reasons of simplicity properties are ignored
here.

2The search space is reduced from |V |! C(|V | − 1) number of plans to 3|V |−2|V |+1+1
2

where |V | is the
number of relations referenced in the query and C are the Catalan Numbers with C(n) = 1

n+1

(
2n
n

)
[4]. |V |! C(|V | − 1) can be simplified to (2|V |−2)!

(|V |−1)!
[13, 19, 31]

3Which can reduce the search space further depending on the query graph down to |V |
3−|V |
3

number of
plans.
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subsets of relations S that can be joined without the need of applying cross products.
In other words, the subset S of relations referenced in the SQL query has to induce a
connected subgraph of the original query graph.

In order to determine the best join tree for a given subset S of relations, the top-
down/bottom-up plan generator must enumerate all partitions (S1, S2) of S such that
S = S1 ∪ S2 and S1 ∩ S2 = ∅ holds. Furthermore, since we exclude cross products,
S1 and S2 must induce connected subgraphs, and there must be two relations R1 ∈ S1
and R2 ∈ S2 such that they are connected by a graph edge. Let us call such a partition
(S1, S2) a ccp. Denote by Ti the optimal plan for Si. Then the query optimizer has to
consider the plans T1 1 T2 for all ccps (S1, S2) in order to compute the optimal join
tree for the relations contained in S.

Thus, both the bottom-up and the top-down join enumeration face the same chal-
lenge: to efficiently compute the ccps. There has been an ongoing race between top-
down and bottom-up join enumeration concerning this challenge. Traditionally, all
partitioning strategies have been generate-and-test based. But depending on the shape
of the query graph, most of the generated partitions are not valid ccps, i.e., are filtered
out by the tests for connectivity. That is why those approaches are suboptimal and can
have an exponential overhead4.

In bottom-up join enumeration, all the connected subsets for a given set are al-
ready generated. Therefore, a partitioning strategy for dynamic programming that is
not generate-and-test based should be easier to design. Moerkotte and Neumann [22]
presented a dynamic programming variant called DPCCP, producing all partitions in
constant time O(1) per valid ccp.

For top-down join enumeration via memoization, no such equally efficient solution
is known yet. Finding an analogous variant to DPCCP for memoization is very ap-
pealing, not only for the outcome of the race but also because the nature of top-down
processing can leverage the benefits of branch-and-bound pruning. The beauty of those
pruning strategies is that they are risk-free: They can speed up processing by several
orders of magnitude, while at the same time they preserve optimality of the final join
tree.

DeHaan and Tompa took up the challenge and proposed with MINCUTLAZY [5]
a minimal graph cut partitioning algorithm for memoization. Nevertheless, TDMCL,
which is the generic top-down join enumeration algorithm instantiated with MINCUT-
LAZY, cannot compete with DPCCP. The first contribution of this work are two par-
titioning algorithms for top-down join enumeration that close the performance gap to
DPCCP.

However, the proposed algorithms DPCCP and TDMCL are not ready to be used
in real-world scenarios yet because there exist severe limitations: First, as has been
argued in several places, hypergraphs must be handled by any plan generator [2, 27,
35]. Second, plan generators have to deal with outer joins and antijoins [14, 27].
In general, these operators are not freely reorderable, i.e., there might exist different
orderings, which produce different results. Because it has been shown that the non-
inner join reordering problem can be reduced to hypergraphs, it remains the top goal of

4In case of a chain query for example, the naive generate-and-test based approach for top-down join
enumeration generates 2|V |+2 − |V |2 − 3 ∗ |V | − 4 partitions but only |V |

3−|V |
3

are valid ccps [26].
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any plan generator to deal with hypergraphs [2, 21, 27, 20]. Consequently, Moerkotte
and Neumann [21] extended DPCCP to DPHYP to handle hypergraphs.

The second main contribution of this work is a generic partitioning framework that
transforms hypergraphs to restrictive graphs and applies some further modifications.
The advantage of this approach is that existing, well performing graph-partitioning
algorithms can be reused in order to efficiently handle hypergraphs.

As the third and last contribution of this thesis, we present advancements to the
known branch-and-bound pruning strategies.

As will be shown, all combined contributions of this thesis result in a performance
advantage of 100% over DPHYP by considering the TPC-H [34], TPC-DS [33] and
the SQLite test suite [29] benchmarks. For syntactic workloads we present average
runtime improvements by orders of magnitude.

The detailed contributions together with the outline of this thesis are described in
the following section.

1.2. Contribution

1.2.1. Graph-Aware Join Enumeration Algorithms

In Chapter 2, we give a general introduction to top-down join enumeration. We ex-
plain a naive approach and give a complexity analysis that motivates three new graph-
partitioning strategies. For the last partitioning algorithm, we show that it has a com-
plexity in O(1) per emitted ccp for acyclic and standard query graphs. A performance
evaluation concludes this chapter, showing that two of the three partitioning algorithms
are competitive with DPCCP. The following publications contributed to this chapter:

[9] Pit Fender and Guido Moerkotte. Reassessing top-down join enumeration.
IEEE Transactions on Knowledge and Data Engineering, 24(10):1803–1818,
2012

[12] Pit Fender, Guido Moerkotte, Thomas Neumann, and Viktor Leis. Effective
and robust pruning for top-down join enumeration algorithms. In Proceedings
of the 28th International Conference on Data Engineering, pages 414–425,
2012

[8] Pit Fender and Guido Moerkotte. A new, highly efficient, and easy to im-
plement top-down join enumeration algorithm. In Proceedings of the 27th
International Conference on Data Engineering, pages 864–875, 2011

1.2.2. Hypergraph-Aware Join Enumeration Algorithms

We start Chapter 3 by motivating why the handling of hypergraphs is indispensable.
After that, we adjust the naive top-down join enumeration algorithm of Chapter 2 and
explain the necessary changes. We continue with a description of the first hypergraph-
aware partitioning algorithm. Then we present our main contribution: a generic parti-
tioning framework that enables graph-aware partitioning algorithms to cope with hy-
pergraphs. We show how the partitioning strategies of Chapter 2 can be reused. Then
we conclude with a performance evaluation that includes the runtime results of the
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TPC-H, TPC-DS and the SQLite test suite benchmarks. The hypergraph-aware parti-
tioning algorithm and the generic framework have already been published:

[11] Pit Fender and Guido Moerkotte. Top-down plan generation: From theory
to practice. In Proceedings of the 29th International Conference on Data
Engineering, pages 1105–1116, 2013

[10] Pit Fender and Guido Moerkotte. Counter strike: Generic top-down join enu-
meration for hypergraphs. Proceedings of the VLDB Endowment, 6(14):1822–
1833, September 2013

1.2.3. Branch-and-Bound Pruning

The main advantage of top-down join enumeration over bottom-up join enumeration
is that it allows for branch-and-bound pruning. Chapter 4 starts with an introduction
to branch-and-bound pruning. Then, we follow with seven advancements that improve
pruning (1) in terms of effectiveness, (2) in terms of robustness and (3) by avoiding
its potential worst case behavior otherwise observed. At the end of Chapter 4, we
give an in-depth performance evaluation. Furthermore, we give results for the TPC-H,
TPC-DS and the SQLite test suite benchmarks. We have published advancements and
results as follows:

[12] Pit Fender, Guido Moerkotte, Thomas Neumann, and Viktor Leis. Effective
and robust pruning for top-down join enumeration algorithms. In Proceedings
of the 28th International Conference on Data Engineering, pages 414–425,
2012

1.2.4. Conclusion and Appendix

We conclude this thesis in Chapter 5. Appendix A gives a complexity analysis of
the work of DeHaan and Tompa [5]. Furthermore, we include the C++ Code of two
partitioning algorithms in Appendix B.1 and B.2.
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2. Graph-Aware Join Enumeration
Algorithms

For a precise description of our graph-aware join enumeration algorithms, we have to
give some fundamentals. We start with the preliminaries in Section 2.1. An intro-
duction to top-down join enumeration by explaining a naive memoization algorithm
follows in Section 2.2. After that, Section 2.3 presents our first graph-aware top-down
join enumeration algorithm based on an advanced-generate-and-test paradigm. We
improve upon that approach by presenting conservative graph partitioning in Section
2.4. Finally, Section 2.5 explains branch partitioning which has a complexity that is in
O(1) for standard queries per emitted ccp. We conclude this chapter with an extensive
performance evaluation in Section 2.6.

2.1. Preliminaries

2.1.1. Graphs

We start with the notion of a graph as the basis for the definitions that follow.

Definition 2.1.1. An undirected graph G = (V,E) is defined by a set of vertices V
and a set of edges E. The set of edges E is a set of unordered pairs (v, w) for which
v, w ∈ V with v 6= w holds. We assume that the nodes in V are totally ordered via an
(arbitrary) relation ≺.

For an edge (v, w), v and w are said to be adjacent to each other, and the edge is
said to be incident with v and w. The next definition specifies what we mean by an
index of a vertex.

Definition 2.1.2. Let G = (V,E) be an undirected graph with vi ∈ V . Further let
≺ be a binary relation specifying the total order of the vertices of V . We say i is the
index of vi with i = |{w ≺ vi|w ∈ V }|.

We continue with the notion of node-induced subgraphs.

Definition 2.1.3. Let G = (V,E) be an undirected graph and V ′ ⊆ V a subset of
nodes. The node-induced subgraph G|V ′ of G is defined as G|V ′ = (V ′, E′) with
E′ = {(v, w) | (v, w) ∈ E ∧ v ∈ V ′ ∧ w ∈ V ′}. The node ordering on V ′ is the
restriction of the node ordering of V .

Having defined a graph, we now specify what we mean by a path between vertices
v0 and vl in G = (V,E).

Definition 2.1.4. LetG = (V,E) be an undirected graph, then a path u→∗ w with the
length l between vertices u andw is defined as a sequence of vertices 〈v0, v1, v2, ..., vl〉
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in V such that u = v0 and w = vl and (vi−1, vi) ∈ E for i = 1, 2, ...l. The length l of
the path is the number of edges (v0, v1), (v1, v2), ..., (vl−1, vl) in the path.

With the definition of a path, we are able to give the notion of a cycle.

Definition 2.1.5. Let G = (V,E) be an undirected graph, then a cycle is a path
〈v0, v1, v2, ..., vl〉 with ∀0≤i≤lvi ∈ V where v0 = vl holds.

We make the following observation:

Observation 2.1.6. Let G = (V,E) be an undirected graph, then a path
〈v0, v1, v2, ..., vl〉 is free of cycles if ∀0≤i<j≤lvi 6= vj holds.

Through the definition of a path, we can express the notion of a connected
(sub)graph.

Definition 2.1.7. Let G = (V,E) be an undirected graph. If there exists a path be-
tween each pair of vertices of V , then G is called connected.

There is an alternative way to specify whether a graph is connected.

Observation 2.1.8. LetG = (V,E) be an undirected graph. G is connected if |V | = 1
or if there exists a partitioning V ′, V ′′ of V and an edge (v, w) ∈ E such that v ⊆ V ′,
w ⊆ V ′′, and both G|V ′ and G|V ′′ are connected.

For this, we need the notion of the direct and indirect neighborhood.

Definition 2.1.9. Let G = (V,E) be an undirected graph, then the neighborhood of a
vertex v ∈ V is defined as

N (v) = {w | w ∈ V ∧ (v, w) ∈ E}.

We define the neighborhood of a set:

Definition 2.1.10. Let G = (V,E) be an undirected graph, then the neighborhood of
a set S ⊆ V is defined as:

N (S) = {w | v ∈ S ∧ w ∈ (V \ S) ∧ (v, w) ∈ E}.

And a set’s indirect neighborhood is defined by:

Definition 2.1.11. Let G = (V,E) be an undirected graph, then the indirect neigh-
borhood of a set S ⊆ V is defined as:

N0(S) = S

N1(S) = N (S)

Ni+1(S) = N (Ni(S)) \ (∪j=0...iNj(S)).

In the following observation, we give another way of testing a graph G for connec-
tivity:
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Observation 2.1.12. An undirected graph G = (V,E) is connected only if for an
arbitrary vertex v ∈ V , the set of all generations of neighbors of {v} equals V :

V = ∪0≤i<|V |Ni({v}) .

We give the notion of a partition of the vertex set V .

Definition 2.1.13. Let G = (V,E) be a connected undirected graph, V1 ⊂ V with
V1 6= ∅ and V2 = V \ V1, then (V1, V2) is called a partition of V .

Fundamental for the algorithms described in this thesis is the notion of a graph cut.

Definition 2.1.14. Let G = (V,E) be a connected undirected graph and (V1, V2) a
partition of V . The set of all edges Ecut = {(v1, v2) ∈ E | v1 ∈ V1 ∧ v2 ∈ V2}
crossing this partition is called a graph cut.

It follows from the definition that a graph cut necessarily disconnects G into at least
two connected subgraphs. A special case of a graph cut is a minimal cut.

Definition 2.1.15. Let G = (V,E) is a connected undirected graph and (V1, V2) a
partition of V . If both V1 and V2 induce connected subgraphs, thenEcut = {(v1, v2) ∈
E | v1 ∈ V1 ∧ v2 ∈ V2} is a minimal graph cut.

Let G = (V,E) be a connected undirected graph and (V1, V2) a partition of V . The
set of edges produced by the graph cut to gain (V1, V2) is specified with Ecut(V1,V2) =
{(v1, v2) ∈ E | v1 ∈ V1 ∧ v2 ∈ V2}. Assume that G|V1

is not connected. Further,
let V11 be a proper non-empty subset of V1. We can find a minimal cut producing an
edge set Ecut(V11 ,V \V11 )

= {(v1, v2) ∈ E | v1 ∈ V11 ∧ v2 ∈ V \ V11} that partitions
V into (V11 , V \ V11), and it holds that Ecut(V11 ,V \V11 )

⊂ Ecut(V1,V2) and V11 ⊂ V1.
But if both V1 and V2 induce a connected graph, then the graph cut Ecut(V1,V2) cannot
contain another graph cut that is a proper subset. The following observation explains
why it is called minimal cut.

Observation 2.1.16. A minimal cut contains no other graph cuts as a proper subset.

There is a special type of vertex, called an articulation vertex of a connected graph
G. Removing such a vertex from V disconnects the graph into at least two connected
subgraphs. We give its definition.

Definition 2.1.17. Let G = (V,E) be an undirected connected graph. A vertex a ∈ V
is called articulation vertex if there exist two vertices v ∈ V and w ∈ V , such that
every path v ∗→ w in V must contain a.

The articulation vertices of a connected graph G = (V,E) are important when
determining the biconnected components of a graph.

Definition 2.1.18. Let G = (V,E) be a connected undirected graph. A biconnected
component is a connected subgraph GBCC

i =(Vi, Ei) of G with Vi = {v | (v = u ∨
v = w) ∧ (v, w) ∈ Ei}, where the set of edges Ei ⊆ E is maximal such that any
two distinct edges (u,w) ∈ Ei and (x, y) ∈ Ei lie on a cycle 〈v0, v1, v2, ..., vl〉, where
u = v0 ∧ u = vl ∧ w = v1 ∧ x = vj−1 ∧ y = vj ∧ 0 < j < l and ∀0≤i<j<lvi 6= vj
holds. If for an edge (u,w) ∈ Ei no such cycle exists, the vertices u,w ∈ Vi induce a
biconnected component GBCC

i = ({u,w}, {(u,w)}).
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R1 R2 R5

R0 R9 R10 R3 R4

R8 R7 R6

Figure 2.1.: Graph of eleven relations, five biconnected components
GBCC
|{R0,R1,R2,R3,R7,R8},G

BCC
|{R3,R4},G

BCC
|{R4,R5,R6},G

BCC
|{R8,R9} andGBCC

|{R9,R10}
and four articulation vertices R3, R4, R8, R9

We make the following observation:

Observation 2.1.19. Let G = (V,E) be a connected undirected graph with k bi-
connected components. Then the edge set E can be divided into equivalence classes
E1, E2, ...Ek such that each subset Ei spans one of the k biconnected components
GBCC

i = (Vi, Ei) of G.

Furthermore, we observe:

Observation 2.1.20. Two biconnected components Gi and Gj cannot have more than
one vertex in common. If they have one vertex a in common, then a has to be an
articulation vertex, and Vi ∩ Vj = {a} holds.

We exemplify the notion of biconnected components and articulation vertices in
Figure 2.1. The connected undirected graph G = (V,E) with |V | = 11 has five
biconnected components which are: GBCC

|{R0,R1,R2,R3,R7,R8}, G
BCC
|{R3,R4}, G

BCC
|{R4,R5,R6},

GBCC
|{R8,R9} and GBCC

|{R9,R10}. There are four articulation vertices: R3, R4, R8, R9. We
can divide the edge set E in five equivalence classes, which are: E1 = {(R0, R1), (R1

, R2), (R2, R3), (R3, R7), (R7, R8), (R0, R8)}, E2 = {(R3, R4)}, E3 = {(R4, R5),
(R5, R6), (R4, R6)}, E4 = {(R8, R9)} and E5 = {(R9, R10)}.

2.1.2. Query Graphs, Plan Classes and Costs

In this subsection, we introduce the notion of a query graph which serves as an input
for our plan generation algorithms. After that, we specify the notion of a plan class.
Finally, we define the Cout cost function.

The notion of query graph is synonymously used for graphs and hypergraphs. For
the definition of a hypergraph, we refer to Section 3.2.1. A query graph is defined as
follows:

Definition 2.1.21. Given a query and a set of join predicates and let R =
{R1, R2..., Rn} be a set of n relations specified by the query, we define the query
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graph G = (V,E) representing the query as an undirected graph or undirected hy-
pergraph, where R is represented by the vertex set V and the set of join predicates by
an edge set E = {(v, w) | v and w represent relations that are referenced by a join
predicate}.

The result of the algorithms presented here is a join tree. A join tree specifies a
certain execution order of join operations.

Definition 2.1.22. A join tree is a binary tree whose leaf nodes are the relations speci-
fied in a query and whose inner nodes are the join operations. The edges of a join tree
represent the input and output relationship.

An inner node corresponds to a binary join operation which has two subtrees as
input. The leaves of a join tree are the disjoint relations specified in the query. A join
tree or a join subtree may consist of just one node or, alternatively, is the root of two
subtrees.

From a join tree the query evaluation plan can be built. Essentially, the query evalu-
ation plan is an operator tree with physical algebraic operators as nodes. A plan class
groups equivalent plans. The plans within a plan class have the same logical proper-
ties. An import logical property is the set of relations the plan comprises. Another
logical property is the output cardinality of the plans. The optimal plan of a plan class
is the cheapest among all members of the class.

The result of all optimization algorithms presented here will be optimal. From all
possible optimal plans of the same plan class with the same lowest costs, the optimiza-
tion algorithms arbitrarily return one optimal solution.

We give the definition of a connected subgraph and its complement pair, which we
abbreviate with ccp.

Definition 2.1.23. Let G = (V,E) be a connected query graph, (S1, S2) is a connect-
ed subgraph and its complement pair (or ccp for short) if the following holds:

• S1 ∩ S2 = ∅,

• S1 with S1 ⊂ V induces a connected graph G|S1
,

• S2 with S2 ⊂ V induces a connected graph G|S2
, and

• ∃(v1, v2) ∈ E with v1 ∈ S1 ∧ v2 ∈ S2.

The set of all possible ccps is denoted by Pccp. We introduce the notion of ccps for
a set S to specify all those pairs of input sets that result in the same output set S, if
joined.

Definition 2.1.24. Let G = (V,E) be a connected query graph and S a set with
S ⊆ V that induces a connected subgraph G|S . For S1, S2 ⊂ V , (S1, S2) is called a
ccp for S if (S1, S2) is a ccp and S1 ∪ S2 = S holds.

We can observe:

Observation 2.1.25. If (S1, S2) is a ccp for S, then (S1, S2) is also a partition of S.
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By Pccp(S), we denote the set of all ccps for S. Let G = (V,E) be a connected
query graph and Pcon(V ) = {S ⊆ V | G|S is connected ∧|S| > 1} be the set of all
connected subsets of V with more than one element, then Pccp = ∪S∈Pcon(V )Pccp(S)
holds.

If (S1, S2) is a ccp, then (S2, S1) is one as well, and we consider them as symmetric
pairs. We are interested in the set P sym

ccp of all ccps, where symmetric pairs are ac-
counted for only once, e.g., (S1, S2) ∈ P sym

ccp if MINindex(S1) < MINindex(S2) holds,
or (S2, S1) ∈ P sym

ccp otherwise. By MINindex(S) we specify the minimal index i of all
vertices vi ∈ S (Definition 2.1.2). We give no constraints for choosing which one of
two symmetric pairs should be member of P sym

ccp , but leave this as a degree of free-
dom. Analogously, we denote the set of all ccps for a set S containing either (S1, S2)
or (S2, S1) by P sym

ccp (S).
With Cout we give a simple cost function that sums up the cardinalities of the inter-

mediate results [3]. Cout is defined as

Cout(T ) =

{
0 if T is a single relation
|T |+ Cout(T1) + Cout(T2) if T = T1 T2

2.1.3. Problem Specification

Since there are many different join ordering problems, we want to specify the problem
domain which we investigate here. We apply the well-accepted connectivity heuristic
[26] by considering the generation of optimal bushy join trees without cross products.
Therefore, the query graph has to be connected. Within this chapter, we allow only
select-project-join queries with simple join predicates that are not referencing more
than two relations. We discard physical properties like sortedness and groupedness and
assume that Bellman’s Principle of Optimality holds. For each complexity analysis
done in this document, we specify the complexity of set operations ∪,∩, \ to be in
O(1). When we assume that the word size is unlimited and we represent sets by using
bitvectors, the operations ∪,∩, \ can be implemented in a constant (and small) number
of instructions.

2.2. Basic Memoization

As an introduction to top-down join enumeration, we give a basic memoization variant
called TDBASIC, which we derive by utilizing a generic top-down algorithm that in-
vokes a naive partitioning algorithm. In the first sub-subsection, we present our generic
top-down algorithm. Afterwards, we explain the naive partitioning strategy.

2.2.1. Generic Top-Down Join Enumeration

Our generic top-down join enumeration algorithm TDPLANGEN is based on memo-
ization. We present its pseudocode in Figure 2.2. Like dynamic programming, TD-
PLANGEN initializes the building blocks for atomic relations first (Line 2). Then, in
Line 3 the subroutine TDPGSUB is called, which traverses recursively through the
search space. As the name implies, top-down enumeration starts with the vertex set
V . Hence at the root invocation of TDPGSUB, the vertex set S corresponds to the
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vertex set V of the query graph. At every recursion step of TDPGSUB, all possible
join trees of two optimal subjoin trees that together comprise the relations of S are
built through BUILDTREE (Line 3) that we explain later, and the cheapest join tree is
kept. We enumerate the optimal subjoin trees by iterating over the elements (S1, S2)
of P sym

ccp (S) in Line 2. This way, we derive the two optimal subjoin trees, each com-
prising exactly the relations in S1 or S2, respectively, by recursive calls to TDPGSUB.
Generating P sym

ccp (S) is the task of a partitioning algorithm. Depending on the choice
of the partitioning strategy, the overall performance of TDPLANGEN can vary by or-
ders of magnitude.

The recursive descent stops when either |S| = 1 or TDPGSUB has already been
called for that G|S . In both cases, the optimal join tree is already known. To pre-
vent TDPGSUB from computing an optimal tree twice, BestTree[S] is checked in
Line 1. BestTree[S] yields a reference to an entry in an associative data structure
called memotable. The data structure ”memoizes” the optimal join tree generated for a
set S. IfBestTree[S] equals NULL, this invocation of TDPGSUB will be the first one
with G|S as input, and the optimal join tree of G|S has not been found yet. Otherwise,
BestTree[S] will hold an optimal plan for the plan class of S. Note that during the
optimization of S the optimal plan for the plan class might not be found yet because
there are still ccps for S to be considered. This means that during the process of loop-
ing over P sym

ccp (S) (Line 2) BestTree[S] does not necessarily hold the optimal join
tree for S, but the cheapest tree found so far.

TDPLANGEN(G)

� Input: connected G=(V,E), V =
⋃

1≤i≤|V |{Ri}
� Output: an optimal join tree for G

1 for i← 1 to n
2 BestTree({Ri})← Ri

3 return TDPGSUB(V )

TDPGSUB(G|S)

� Input: connected sub graph G|S
� Output: an optimal join tree for G|S

1 if BestTree[S] = NULL

2 for all (S1, S2) ∈ P sym
ccp (S)

3 do BUILDTREE(S, TDPGSUB(G|S1
), TDPGSUB(G|S2

))

4 return BestTree(S)

Figure 2.2.: Pseudocode for TDPLANGEN

The pseudocode of BUILDTREE is given in Figure 2.3. It is used to compare
the cost of the join trees that belong to the same G|S . Since the symmetric pairs
(S1, S2) and (S2, S1) (Line 2 of TDPGSUB) are enumerated only once, we have to
build two join trees (Line 1 and Line 4) and then compare their costs. We use the
method CREATETREE, which takes two disjoint join trees as arguments and com-
bines them to a new join tree. If different join implementations have to be con-
sidered, among all alternatives the cheapest join tree has to be built by CREATE-
TREE. If the created join tree (Line 1) is cheaper than BestTree[S], or even no
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2. Graph-Aware Join Enumeration Algorithms

BUILDTREE(S, Tree1, T ree2)

� Input: connected vertex set S, two sub join trees
1 CurrentTree← CREATETREE(Tree1, T ree2)
2 if BestTree[S] = NULL ∨ cost(BestTree[S]) > cost(CurrentTree)
3 BestTree[S]← CurrentTree
4 CurrentTree← CREATETREE(Tree2, T ree1)
5 if cost(BestTree[S]) > cost(CurrentTree)
6 BestTree[S]← CurrentTree

Figure 2.3.: Pseudocode for BUILDTREE

PARTITIONnaive(G|S)

� Input: a connected node induced (sub) graph G|S
� Output: P sym

ccp (S)
1 for all C ⊂ S ∧ C 6= ∅
2 if MINindex(C) < MINindex(S \ C)∧

ISCONNECTED(G|C) ∧ ISCONNECTED(G|S\C)

3 emit(C, S \ C)

Figure 2.4.: Pseudocode for naive partitioning

tree for S has been built yet, BestTree[S] gets registered with the CurrentTree.
For building the second tree, we just exchange the arguments (Line 4). Again, the
costs of the new join tree are compared to the costs of BestTree[S]. Only if the
new join tree has lower costs, BestTree[S] gets registered with the new join tree.
Note that because of Line 3, BestTree[S] in Line 6 cannot be NULL. Estimating
the costs of the two possible join trees at the same time rather than separately and
comparing them is more efficient, e.g., for cost functions as given in [17], where
card(Tx) ≤ card(Ty) ⇒ cost(Tx 1 Ty) ≤ cost(Ty 1 Tx) holds, with card is
the number of tuples or pages and Tx, Ty are (intermediate) relations.

2.2.2. Naive Partitioning

As we have already seen, the generic top-down enumeration algorithm iterates over
the elements of P sym

ccp (S). Now, we show how the ccps for S can be computed by a
naive generate-and-test strategy. We call our algorithm PARTITIONnaive and give its
pseudocode in Figure 2.4. In Line 1, all 2|S|−2 possible non-empty and proper subsets
of S are enumerated. For rapid subset enumeration, the method described in [36] can
be used. We demand that from every symmetric pair only one ccp is emitted. There
are many possible solutions, but we make sure that the relation with the lowest index
(Definition 2.1.2) is always contained in C in Line 2. Three conditions have to be met
so that a partition (C, S \C) is a ccp. We check the connectivity of G|C and G|S\C in
Line 2. The third condition that C needs to be connected to S \C is ensured implicitly
by the requirement that the graph G|S handed over as input is connected.
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ISCONNECTED(G|C)

� Input: a node induced subgraph G|C
� Output: TRUE if G|C is connected, FALSE otherwise

1 T ← {arbitrary element t of C}
2 while (N (T ) ∩ C) 6= ∅
3 T ← T ∪ (N (T ) ∩ C)
4 return T = C

Figure 2.5.: Pseudocode for ISCONNECTED

To check for connectivity of the node-induced subgraphs, Observation 2.1.12 can be
used. The pseudocode follows directly and is given in Fig. 2.5 with ISCONNECTED.

2.2.3. Exemplified Execution of TDBASIC

As already mentioned, we refer to the generic top-down join enumeration algorithm
TDPLANGEN instantiated with PARTITIONnaive as TDBASIC. Now we exemplify
the execution of TDBASIC with the query graph of Figure 2.6. In Figure 2.7 we
give the selectivities and cardinalities. For the comparison of equivalent join trees
we use the Cout cost function (Section 2.1.2). Table 2.1 shows the different states
during execution. Thereby the first column is the table entry that serves as reference.
The second column displays the recursion level, with 0 indicating the root invocation.
The input parameter S is shown in the third column and the current ccp that is being
processed is displayed by the fourth column. In other words, Table 2.1 shows the order
in which the ccps are enumerated. We can observe that the order is not only top-down
but also demand-driven.

Table 2.2 shows a different perspective of the enumeration process by listing the
order of calls to BUILDTREE. Again, the first column serves as entry of reference. We
give the current ccp for that the call to BUILDTREE was made in the second column.
With the third column, we reference the corresponding entry of Table 2.1. The fourth
column displays the current join tree. Here, we ignore the join tree that we gain by
applying commutativity, since it will have the same costs. The cost for cT are given
in the fifth column. The sixth column displays the table entry computing the cheapest
tree known so far. This entry corresponds to the current value of BestTree.

It should not be surprising that Table 2.1 has the same amount of entries as Ta-
ble 2.2. We can observe that the order in which the (sub) join trees are computed
is bottom-up. For this example, the optimal join tree for V = {R0, R1, R2, R3}
is R0 (R1 (R2 R3)) with the cost of 21. The most expensive join tree for V is
((R0 R1) R2) R3 with the cost of 11001, which is a huge difference. The most
expensive join tree with the costs of 110000 isR0 (R1 R2). We can see that because
of memoization, this subtree was not considered when ((R0 R1) R2) R3 was com-
puted, because BestTree[{R0, R1, R2}] points to (R0 R1) R2, which is only 1

10 of
the costs.
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R0 R1

R2 R3

Figure 2.6.: Example graph G = (V,E) with V = {R0, R1, R2, R3} and E =
{(R0, R1), (R1, R2), (R1, R3), (R2, R3)}

Relation Cardinality
R0 1
R1 10000
R2 100
R3 10

Edge Selectivity
(R0, R1) 0.1
(R1, R2) 0.1
(R1, R3) 0.001
(R2, R3) 0.01

Figure 2.7.: Selectivity and Cardinalities for the Query Graph of Figure 2.6

For the purpose of completeness, we list all ccps in Table 2.3. In particular, we show
for every connected subgraph G|S that is considered by TDBASIC the corresponding
set P sym

ccp (S).

2.2.4. Analysis of TDBASIC

In this section, we give a brief analysis of TDBASIC. Therefore, we count the number
of iterations #I of the loop in Line 1 of PARTITIONnaive summed up over all invoca-
tions of PARTITIONnaive for all S. Here, the number #I depends on the shape of the
query graph. We analyzed #I in our experimental studies for different graph shapes
and deduced the following formulas:

For chains, we have

#Ichain
TDBasic(|V |) = 2|V |+2 − |V |2 − 3 ∗ |V | − 4.

For stars, we have

#Istar
TDBasic(|V |) = 2 ∗ 3|V |−1 − 2|V |.

For cycles, we have

#I
cycle
TDBasic(|V |) = |V | ∗ 2

|V | + 2|V | − 2|V |2 − 2.

For cliques, we have

#I
cliques
TDBasic(|V |) = 3|V | − 2|V |+1 + 1.

These formulas are identical to Moerkotte’s and Neumann’s analysis of the dynamic
programming variant DPSUB [22].

For analyzing the algorithm’s performance, we have to account for the number of
times the enumerated partitions pass the test for connectivity. This is equal to the num-
ber of times BUILDPLAN is called, which we abbreviate with #bP . Since we avoid to
enumerate symmetric partitions twice, this number is half the number of existing ccps.
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Entry L S current ccp
1 0 {R0, R1, R2, R3} ({R0}, {R1, R2, R3})
2 1 {R1, R2, R3} ({R1}, {R2, R3})
3 2 {R2, R3} ({R2}, {R3})
4 1 {R1, R2, R3} ({R1, R2}, {R3})
5 2 {R1, R2} ({R1}, {R2})
6 1 {R1, R2, R3} ({R1, R3}, {R2})
7 2 {R1, R3} ({R1}, {R3})
8 0 {R0, R1, R2, R3} ({R0, R1}, {R2, R3})
9 1 {R0, R1} ({R0}, {R1})

10 0 {R0, R1, R2, R3} ({R0, R1, R2}, {R3})
11 1 {R0, R1, R2} ({R0}, {R1, R2})
12 1 {R0, R1, R2} ({R0, R1}, {R2})
13 1 {R0, R1, R2} ({R0, R1, R3}, {R2})
14 2 {R0, R1, R3} ({R0}, {R1, R3})
15 2 {R0, R1, R3} ({R0, R1}, {R3})

Table 2.1.: Exemplified execution of TDBASIC for the input graph of Figure 2.6

BT current ccp ref Entry cT cost(cT ) ref BT
1 ({R2}, {R3}) 3 R2 R3 10 1
2 ({R1}, {R2, R3}) 2 R1 (R2 R3) 20 2
3 ({R1}, {R2}) 5 R1 R2 100000 3
4 ({R1, R2}, {R3}) 4 (R1 R2) R3) 100010 2
5 ({R1}, {R3}) 7 R1 R3 100 5
6 ({R1, R3}, {R2}) 6 (R1 R3) R2 110 2
7 ({R0}, {R1, R2, R3}) 1 R0 (R1 (R2 R3)) 21 7
8 ({R0}, {R1}) 9 R0 R1 1000 8
9 ({R0, R1}, {R2, R3}) 8 (R0 R1) (R2 R3) 1011 7
10 ({R0}, {R1, R2}) 11 R0 (R1 R2) 110000 10
11 ({R0, R1}, {R2}) 12 (R0 R1) R2 11000 11
12 ({R0, R1, R2}, {R3}) 10 ((R0 R1) R2) R3 11001 7
13 ({R0}, {R1, R3}) 14 R0 (R1 R3) 110 13
14 ({R0, R1}, {R3}) 15 (R0 R1) R3 1010 13
15 ({R0, R1, R3}, {R2}) 13 (R0 (R1 R3)) R2 111 7

Table 2.2.: Multiple calls to BUILDTREE during the enumeration process for the input
graph of Figure 2.6

The numbers again depend on the shape of the query graph but are independent of the
partitioning algorithm.

For chains, stars and cliques, we refer to Ono and Lohman [26] and for cycles to
Moerkotte and Neumann [22]. We give the formula of [22] for cycles divided by two,
since we are only interested in one ccp out of each symmetric pair of ccps.

For chains, we have

#bP chain(|V |) = |V |
3 − |V |
6

.

31



2. Graph-Aware Join Enumeration Algorithms

S P sym
ccp (S)

{R0,R1,R2,R3} {({R0},{R1,R2,R3}),({R0,R1},{R2,R3}),({R0,R1,R3},{R2})}
{R1,R2,R3} {({R1},{R2,R3}),({R1,R2},{R3}),({R1,R3},{R2})}
{R2,R3} {({R2},{R3})}
{R1,R2} {({R1},{R2})}
{R1,R3} {({R1},{R3})}
{R0,R1} {({R0},{R1})}
{R0,R1,R2} {({R0},{R1,R2}),({R0,R1},{R2})}
{R0,R1,R3} {({R0},{R1,R3}),({R0,R1},{R3})}

Table 2.3.: All connected (sub) sets S and the corresponding P sym
ccp (S) during the exe-

cution of TDBASIC for the input graph of Figure 2.6

Chain Star Cycle Clique
|V | #I #bP #I #bP #I #bP #I #bP

3 10 4 10 4 12 6 12 6
4 32 10 38 12 46 18 50 25
5 84 20 130 32 140 40 180 90
6 198 35 422 80 374 75 602 301
7 438 56 1330 192 924 126 1932 966
8 932 84 4118 448 2174 196 6050 3025
9 1936 120 12610 1024 4956 288 18660 9330

10 3962 165 38342 2304 11062 405 57002 28501
11 8034 220 116050 5120 24332 550 173052 86524
12 16200 286 350198 11264 52958 726 523250 261625
13 32556 364 1054690 24576 114348 936 1577940 788970
14 65294 455 3172262 53248 245366 1183 4750202 2375101
15 130798 560 9533170 114688 523836 1470 14283372 7141686
16 261836 680 28632278 245760 1113598 1800 42915650 21457825
17 523944 816 85962370 524288 2358716 2176 128878020 64439010
18 1048194 1938 258018182 1114112 4980086 2601 386896202 193448101
19 2096730 1140 774316690 2359296 10485036 3078 1161212892 580606446
20 4193840 1330 2323474358 4980736 22019294 3610 3484687250 1742343625

Table 2.4.: Sample values for inner counter and number of calls to BUILDPLAN

For stars, we have

#bP star(|V |) = (|V | − 1) ∗ 2|V |−2.

For cycles, we have

#bP cycle(|V |) = |V |
3 − 2 ∗ |V |2 + |V |

2
.

For cliques, we have

#bP clique(|V |) = 3|V | − 2|V |+1 + 1

2
.

Table 2.4 compares the number series for the inner counter and the number of calls
to BUILDPLAN.
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The number of calls to BUILDPLAN #bP is the lower bound for any join enumer-
ation algorithm, no matter if it works top-down or bottom-up. As half of the enu-
merated partitions in PARTITIONnaive are discarded in Line 1, I and #bP differ at
least by a factor of two. Considering the counters for clique queries in Table 2.4, we
see that the factor is exactly two because every second partition is discarded through
minindex(C) < minindex(S \ C) in Line 2 of TDBASICSUB, but every partition
which qualifies passes the two tests for connectivity since in a clique, every vertex is
connected to every other vertex.

We can conclude that PARTITIONnaive has to enumerate all possible subsets C
(Line 1), which is more than the number of existing ccps by several orders of mag-
nitude. The only exception to this observation are clique queries and query graphs
with many cycles. Thus, TDBASIC is too inefficient to be useful, since the worst case
complexity of PARTITIONnaive is in O(2|V |) per emitted ccp. Having that in mind,
the question arises whether it is possible to construct a partitioning algorithm that enu-
merates only the ccps for S and avoids to enumerate symmetric pairs twice. With
TDMINCUTLAZY or TDMCL for short, DeHaan and Tompa [5] describe a partition-
ing algorithm that has a worst case complexity of only O(|V |2) [8, 9] per emitted
ccp. A short description and a subsequent analysis of MINCUTLAZY can be found in
Appendix A.

The next three sections describe three new partitioning algorithms. In Section 2.3,
we explain how we can improve efficiency of naive partitioning by utilizing a query-
graph-aware approach implemented in MINCUTAGAT [9]. Section 2.4 describes how
MINCUTCONSERVATIVE [12] further improves upon that basic idea. Section 2.5 in-
troduces MINCUTBRANCH [8] and shows that MINCUTBRANCH has only a com-
plexity of O(1) per emitted ccp for arbitrary acyclic query graphs, cycle und clique
queries.

2.3. Advanced Generate and Test

In this section, we describe a novel partitioning algorithm named MINCUTAGAT.
MINCUTAGAT was designed by adopting the basic concept of optimistic partitioning
[6] that was shown to be incomplete [9].

2.3.1. TDMINCUTAGAT

The pseudo-code for the new partitioning algorithm is given in Figure 2.8. We de-
note the instantiated generic top-down join enumeration variant by TDMINCUTAGAT
or TDMCA for short. Like naive partitioning, MINCUTAGAT relies on a generate-
and-test based approach. At the same time, it is also more sophisticated by utilizing
adjacency information of the query graph G = (V,E).

The partitioning algorithm is invoked by PARTITIONMinCutAGaT , which in turn im-
mediately calls the recursive component MINCUTAGAT. The main idea is to succes-
sively enlarge a connected set C with one of its neighbors at every recursive iteration.
Since only adjacent vertices are added to C, we ensure that C remains connected at
any time. Hence, MINCUTAGAT needs to rely on only one connection test, which is
to ensure the connectedness of C’ s complement S \ C.
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The initial set for C consisting of an arbitrary vertex t is handed over in Line 2
of PARTITIONMinCutAGaT . Since S and C ⊂ S are connected, for every possible
complement S \ C there must exist a join edge (v1, v2), where v1 ∈ C and v2 ∈
(S \ C) holds. If S \ C is connected, then the partition (C, S \ C) is a ccp and can
be emitted (Line 1 of MINCUTAGAT). As a requirement implied by the definition of
P sym
ccp (S), (1) duplicate ccps are prohibited and (2) symmetric ccps have to be emitted

only once. The latter constraint is ensured automatically because the start vertex t is
always element of C so that t 6∈ (S \ C) holds. For the first constraint, we introduce
an exclusive filter set X that keeps track of vertices v added to C in different branches
of recursion. So once a vertex v is added to X (Line 10) in an ancestor invocation of
MINCUTAGAT, it cannot be chosen as a neighbor again and is filtered out (Line 8).
If there is only one vertex left in S that is not already a member of C, we can stop
our recursive descent because otherwise, C’s complement would be empty in the next
child invocation. We check for this condition in Line 5 and exit if it is true.

Once an articulation vertex a ∈ (S\C) which belongs to more than two biconnected
components GBCC

i , GBCC
j is added to C, no partition is emitted in the next series of

recursive calls of MINCUTAGAT. If k is the number of biconnections GBCC that
contain a, then no partition is emitted until C is enlarged with k−1 vertex sets Vi, 1 ≤
i ≤ k, of GBCC

i = (Vi, Ei) with a ∈ Vi including the vertex sets of those biconnected
components that are directly and indirectly connected with GBCC

i = (Vi, Ei) through
paths not containing a. In other words, this means the first partition that is emitted
after an articulation vertex a was added to C is produced by a minimal graph cut Ecut.
Thereby Ecut contains only edges (a, xi) such that a ∈ C ∧ xi ∈ S \ C holds.

For MINCUTAGAT, we introduce an improved connection test which we call IS-
CONNECTEDIMP (invoked in Line 1). Instead of ensuring that all vertices in a com-
plement S \ (C ∪ {v}) are connected to each other, our novel test ensures only that
the neighbors N (C ∪ {v}) are connected to each other within the complement. In
other words, we check for a weaker condition that tests if from an arbitrary vertex w
with w ∈ N (C ∪ {v}) all other vertices u of N (C ∪ {v}) \ {w} are reachable within
the complement S \ (C ∪ {v}), i.e. if there exists a path for every u connecting w
with u, but not containing any vertices of C ∪ {v}. We can even further weaken this
condition once we know that the complement S \C is already proven to be connected.
In such cases, it is sufficient to check if all elements of N ({v}) \ C are connected
within S \ (C ∪ {v}). On average, ISCONNECTEDIMP is cheaper to execute than a
common connection test that was given with ISCONNECTED in Section 2.2.2. In the
best case, it is in O(1). The worst case is identical to the complexity of the common
connection test, which is in O(|S \ (C ∪ {v})|). We explain ISCONNECTEDIMP in
detail in Section 2.3.2.

To decide if it is sufficient to check only the neighbors of v, we introduce the set
T . If the current partition (C, S \ C) is a ccp (Line 1), then the connection test for the
next child invocations needs to check only for the neighbors of the v that is added to
C. In that case, the next T is set to T ← ∅ ∪ {v} (Line 3 and Line 9). Otherwise, all
neighbors of C ∪ {v} need to be checked so that the next T is set to T ← C ∪ {v}
(Lines 4 and 9).
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PARTITIONMinCutAGaT (G|S)

� Input: a connected (sub)graph G|S
� Output: P sym

ccp (S)
1 t← arbitrary vertex of S
2 MINCUTAGAT(G|S , {t}, ∅, {t})

MINCUTAGAT(G|S , C,X, T )

� Input: a connected (sub)graph G|S , C ∩X = ∅
� Output: ccps for S

1 if ISCONNECTEDIMP(S,C, T )
2 emit (C, S \ C)
3 T ′ ← ∅
4 else T ′ ← C
5 if |C|+ 1 ≥ |S|
6 return
7 X ′ ← X
8 for v ∈ (N (C) \X)
9 MINCUTAGAT(G|S , C ∪ {v}, X ′, T ′ ∪ {v})

10 X ′ ← X ′ ∪ {v}

Figure 2.8.: Pseudocode for MINCUTAGAT

ISCONNECTEDIMP(G|S , C, T )

� Input: (sub)graph G|S , C ⊂ S, T ⊆ C
� Output: if (S \ C) is connected TRUE, else FALSE

1 N ← (N (T ) ∩ S) \ C
2 if |N | ≤ 1
3 return TRUE

4 L← ∅
5 L′ ← {n} : n ∈ N
6 while L 6= L′ ∧ N 6⊆ L′
7 D ← L′ \ L
8 L← L′

9 L′ ← L′ ∪ ((N (D) ∩ S) \ C)
10 if N ⊆ L′
11 return TRUE

12 else return FALSE

Figure 2.9.: Pseudocode for ISCONNECTEDIMP

2.3.2. An Improved Connection Test

This section explains the novel connection test ISCONNECTEDIMP used by MIN-
CUTAGAT. The pseudo code is given in Figure 2.9.
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The purpose of ISCONNECTEDIMP is to check if the neighbors of T that are not inC
are connected to each other within S\C. In Line 1 of ISCONNECTEDIMP, we compute
those neighbors of T as the set N . If N contains only one element, then S \ C must
be connected and the test returns with a positive result. As a starting point for the test,
we choose an arbitrary vertex n ∈ N (Line 5) and assign it to L′. The loop of Line 6
to 9 computes the indirect neighborhood (Definition 2.1.11) of {n}. This corresponds
to enlarging L′ with the neighborhood of L (Line 9) or current L (Line 8). Hereby
Ni({n}) = N (L) within G|S\C holds. Furthermore, L holds the previous L′ (Line 8)
and D holds all the new elements of L′, which directly corresponds to a generation of
neighbors. Note that except for the first iteration of the loop, N (L) ∩ (S \ C) = D
holds.

Because of |D| < |L′|, we compute the next generation of neighbors fromD instead
of L′ (Line 9), which is clearly more efficient.

Once L′ contains all vertices of N , the loop is interrupted (Line 6), and it is obvious
that all n ∈ N are reachable within S \ C so that TRUE is returned (Line 11). If, on
the other hand, L′ cannot be enlarged further so that L = L′ holds, we have computed
all indirect neighbors of {n} (within S \ C) and meet the loop’s other stop condition.
In that case, we could not reach every element of N , so that N \L′ 6= ∅ must hold and
we have to return FALSE (Line 12). Note that those vertices left in N \L′ must belong
to at least one different connected set that is only adjacent to C and not connected to
L′.

2.3.3. Correctness of Advanced Generate and Test

In this subsection, we prove the correctness of MINCUTAGAT. But as a prerequisite,
we need to prove the correctness of ISCONNECTEDIMP first.

Correctness of ISCONNECTEDIMP

Lemma 2.3.1. Algorithm ISCONNECTEDIMP terminates ifG = (V,E) is a connected
and finite query graph and G|S with S ⊆ V a connected (sub)graph.

Proof. There are two different exit points: (1) an early exit in Line 3 and (2) the exit
point at the end of ISCONNECTEDIMP (Lines 11 and 12). If |(N (T ) ∩ S) \ C)| ≤ 1
holds, the first exit is chosen, and the algorithm terminates. Otherwise, the loop of
Lines 6 to 9 is entered. The loop terminates if L′ has not been enlarged in the loop’s
previous iteration or if all neighbors of T — that are in S but not in C — have been
added to L′ so that N ⊆ L′ holds. Let us assume the worst case: D is reassigned
with only one one vertex set at a time so that |D| = 1 holds. Let us further assume
that every time |((N (T ) ∩ S) \ C) \ L′| = 1 holds as well. Then there can be only
|S \C| − 1 number of iterations of the loop. We have to subtract the 1, since |L′| = 1
holds when the loop is entered. Therefore, the loop terminates at least after |S \C|−1
iterations and the second exit point is reached. Furthermore, since S is a finite set,
every set operation used here, especially the computation of the neighborhood of any
subset D ⊂ S, must terminate. Hence, ISCONNECTEDIMP terminates.

Lemma 2.3.2. Let G = (V,E) be a connected query graph and G|S with S ⊆ V a
connected (sub)graph. Further, let C be a non-empty subset of S with C ⊂ S, then
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the complement S \ C is connected if all neighbors of C are connected to each other
through paths containing only vertices of S \ C.

Proof. By contradiction. We assume that the set S \ C is not connected, although
all neighbors of C are connected to each other within S \ C. Since the neighbors of
C are connected through paths containing only vertices in S \ C, there has to exist a
maximally enlarged connected setA =

⋃
0≤i≤|S\C|(Ni(C)\C) as the union of all i-th

gernerations of neighbors of C that are in S \ C. From this follows that A ⊆ (S \ C)
and N (C) ⊆ A and A ∩C = ∅ and N (A) \C = ∅ hold. Because A is connected but
by assumption S\C is not connected,A ⊂ (S\C) must hold. Hence, there exists a set
of vertices L = (S \ C) \ A with L 6= ∅. Because all neighbors of C are contained in
A, no vertex in L can be connected to any vertex in C. Furthermore, by the definition
of A and L, (N (A) \ C) ∩ L = ∅ holds. But this contradicts the prerequisite that G|S
is connected.

Lemma 2.3.3. Let G = (V,E) be a connected query graph and G|S with S ⊆ V a
connected (sub)graph. Further, let C be a non-empty subset of S with C ⊂ S, then
the complement S \ C is connected if and only if all neighbors of C are connected to
each other through paths containing only vertices of S \ C.

Proof. Lemma 2.3.2 shows that if all neighbors of C are connected to each other
through paths containing only vertices of S \ C, then this is a sufficient condition for
G|S\C being connected. What is left is to show that it is also a necessary condition.
This is proved by contradiction. Let us assume G|S\C is connected but the neighbors
of C are not connected to each other. By Definition 2.1.10, the neighborhood of C
has to be a subset of S \ C. But if there are at least two neighbors of C for which no
connecting path in S \ C exists, then this is by Definition 2.1.7 a contradiction to the
connectedness of G|S\C .

Lemma 2.3.4. Let G = (V,E) be a connected query graph and G|S with S ⊆ V a
connected (sub)graph. Further, let C be a non-empty subset of S with C ⊂ S ∧ |C|+
2 ≤ |S| and let G|C and G|S\C be connected subgraphs. Moreover, let v be a vertex
so that v ∈ S \C ∧ v ∈ N (C) holds. Then the set (S \C) \ {v} is connected if and
only if all neighbors N ({v}) of v are connected to each other within (S \ C) \ {v}.
Proof. Let G′ = (V ′, E′) be a connected and finite graph that is identical to the con-
nected subgraph G|S\C of G = (V,E). Then G′s vertex set V ′ is defined by V ′ =
S\C, andG′s edge setE′ is defined byE′ = {(v1, v2) | v1, v2 ∈ V ′ ∧ (v1, v2) ∈ E}.
Let a set S′ be assigned to S′ = V ′ and a set C ′ be assigned to C ′ = {v} with v ∈ V ′.
Following from Lemma 2.3.3, S′ \ C ′ = (S \ C) \ {v} is connected if and only if the
neighbors of C ′ = {v} are connected within S′ \ C ′.

Theorem 2.3.1. Algorithm ISCONNECTEDIMP is correct.

Proof. The algorithm is either called with the parameter T assigned to a connected
vertex set C or to a one vertex set {v}, while v is the vertex recently added to C. From
Lemmas 2.3.3 and 2.3.4, we know that it is sufficient to examine just the connectivity
between the vertices that are in N (T ) within S \ C, which is done in Lines 5 to 9.
Lemmas 2.3.3 and 2.3.4 cover also the special case of an early exit in Line 3. Finally,
we know that the algorithm must terminate if the query graph is finite through Lemma
2.3.1.
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Correctness of MINCUTAGAT

Lemma 2.3.5. Algorithm MINCUTAGAT terminates if G = (V,E) is a connected
and finite query graph and G|S with S ⊆ V a connected (sub)graph.

Proof. The number of possibilities how the set C can be enlarged in every new invo-
cation is limited by the number of neighbors that are not element of X . The maximal
number of neighbors is |S \ C|. Since |V | is limited, |S| is limited and hence, the
number of choices is limited as well. With each recursive invocation, |C| grows by 1,
and the complement |S \ C| decreases by 1. Therefore, the recursion depth of MIN-
CUTAGAT is limited by |S|, and the maximal number of choices is asymptotic with
an increasing size of C. Because the number of choices is finite, every recursive call
must return. This means that the root invocation also has to return and MINCUTAGAT
terminates.

Lemma 2.3.6. Let G = (V,E) be a connected query graph and G|S with S ⊆ V
a connected (sub)graph, then MINCUTAGAT enumerates only connected sets and
assigns them to C where C ⊂ S holds.

Proof. By induction over the recursion depth n.

Base case: n = 0
MINCUTAGAT starts the enumeration with an arbitrary vertex t, which induces a con-
nected subgraph G|{t}.

Induction hypothesis: recursion depth n enumerates only connected sets of C ∪ {v}
and passes them as parameters to recursion depth n+ 1.

Induction step: n→ n+ 1
MINCUTAGAT at recursion level n + 1 is called with a connected set C (IH) and
considers only vertices that are connected to vertices in C (Definition 2.1.10, Line 8).
As any vertex in N (C) is directly connected to at least one vertex in C, any vertex v
can be added to C to form a connected set C ∪ {v} (Line 9).

Lemma 2.3.7. Let G = (V,E) be a connected query graph and G|S with S ⊆ V a
connected (sub)graph, then MINCUTAGAT enumerates only ccps for S.

Proof. Because of Lemma 2.3.6, every enumerated set C has to be connected. Since
S \ C is the complement of C in S, it is disjoint to C, and C ∪ (S \ C) = S holds.
Because of Theorem 2.3.1, every set V \ S that passes the test for connectivity must
be connected. Since only connected query graphs G = (V,E) or subgraphs G|S are
allowed as input, there must exist at least one edge (v1, v2) with v1 ∈ C∧v2 ∈ (S\C).
Hence, according to Definition 2.1.24, every emitted pair (C, S \C) must be a ccp for
S.

Lemma 2.3.8. Let G = (V,E) be a connected query graph and G|S with S ⊆ V a
connected (sub)graph. Further, let v ∈ S be a vertex, n a natural number with n ≥ 0
with Cn = ∪0≤i≤nNi({v}). Then G|Cn

must be a connected subgraph of G|S .
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Proof. By induction over n.

Base case: n = 0
C0 = N0({v}) = {v} (Definition 2.1.11). Thus, GC0 is a connected subgraph of G|S .

Induction hypothesis: GCn is a connected subgraph of G|S for a given, fixed n.

Induction step: n→ n+ 1
For Cn+1 holds: Cn+1 = Cn∪Nn+1({v}). We know GCn is a connected subgraph of
G|S (IH), and becauseNn({v}) ⊆ Cn, all vertices inNn+1({v}) have to be connected
to at least one vertex in Cn. It follows thatG|Cn+1

is a connected subgraph ofG|S .

Lemma 2.3.9. Let G = (V,E) be a connected query graph and G|S with S ⊆ V a
connected (sub)graph and v be an arbitrary vertex with v ∈ S. Then the following
holds: ∃n ≥ 0 such that ∀0≤i≤nNi({v}) 6= ∅ and ∀i>nNi({v}) = ∅.

Proof. According to Definition 2.1.11 for a given Ni({v}) = ∅, Ni+1({v}) = ∅
follows. Besides, sinceN0({v}) 6= ∅, ∀iNi({v}) ⊆ V , and ∀j<iNi({v})∩Nj({v}) =
∅ holds, N|V |({v}) = ∅ for a n ∈ [0, |V |[ must hold as well.

Lemma 2.3.10. Let G = (V,E) be a connected query graph and G|S with S ⊆ V a
connected (sub)graph. If G|C with |C| > 1 ∧ C ⊆ S is a connected subgraph of G|S ,
then ∃v ∈ C such that G|C\{v} is a connected subgraph of G|C .

Proof. In the following, we consider GC as connected and as the basis for computing
N ({v}) and Ni({v}), i.e., we consider only the reduced edge set EC with EC =
{(v0, v1) | (v0, v1) ∈ E ∧ v0, v1 ∈ C}. Let us determine for an arbitrary vi ∈ C
a natural number n such that Nn(vi) 6= ∅ ∧ Nn+1(vi) = ∅ holds. According to
Lemma 2.3.9, we always can find such a number with n > 0 and ∪0≤i≤nNi(vi) = C
holds. Following from Lemma 2.3.8, ∪0≤i<nNi({vi}) induces a connected subgraph
of G|C . Furthermore, all vertices in Nn({vi}) are connected to at least one vertex in
Nn−1({vi}). This implies that any vj ∈ Nn({vi}) can be removed. Since n > 0
and Nn({vi}) 6= ∅ holds, it follows that for any vj ∈ Nn({vi}) the corresponding
subgraph G|S\{vj}) has to be a connected subgraph of G|C .

Lemma 2.3.11. Algorithm MINCUTAGAT enumerates only one set C that consists of
a single vertex. This instance of C must be connected.

Proof. The root invocation of MINCUTAGAT is called with C = {t}, where t ∈ S
holds. This is the only time that C contains just one element. Any recursive self
invocation adds another v ∈ S to the C previously handed over. Since any one-
element vertex set is connected, the only instance of C that contains only one vertex
must be connected as well.

Lemma 2.3.12. In every invocation of MINCUTAGAT, C ∩X = ∅ holds.

Proof. By induction over the recursion depth n.
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Base Case: n = 0
In the root invocation, C = {t} with t ∈ S and X = ∅ holds. Thus, C ∩ T = ∅ holds.

Induction hypothesis: C and X are disjoint for a given, fixed recursion depth n.

Induction step: n→ n+ 1
We only have to show that in every iteration of Line 9 the sets C ∪ {v} and X ′ are
disjoint. For every value of v (Line 8) v 6∈ C and v 6∈ X holds. Since C ∩ X = ∅
(IH) and X ′ ⊆ (X ∪N (C)) holds, we can conclude that for all possible values of X ′

during the loop in Lines 8 to 10, X ′ ∩ C = ∅ must hold. This is because the new v is
added to X ′ in Line 10, i.e. C ∪ {v} and X ′ must still be disjoint in Line 9.

Lemma 2.3.13. Algorithm MINCUTAGAT enumerates all sets C contained in the
powerset of S that are connected and that contain the start vertex t.

Proof. By contradiction. We assume that not all connected sets containing t are enu-
merated and assigned to C. Thus, ∃C ⊆ S ∧ S 6= ∅ such that G|C is a connected
subgraph, and C is not enumerated. If several such C exist, we choose C such that
|C| is minimal. Lemma 2.3.11 implies that |C| > 1. Lemma 2.3.10 implies that
∃v ∈ C : GC\{v} is a connected subgraph. As C is chosen to be minimal, the set
C ′′ = C \ {v} is enumerated.

Case 1: v appears in N (C ′′) \ X during the enumeration of C \ {v′}. This is a
contradiction to the assumption that C was not enumerated (Line 9).

Case 2: v does not appear in N (C ′′) \ X during the enumeration of C ′′. Since v
is connected to C ′′, it must have been excluded, i.e. v ∈ X . We know that in one of
the parent or ancestor invocations of MINCUTAGAT with a C ′ ⊂ C ′′ and X ′ ⊂ X
with v ∈ N (C ′), v has been added to X ′. But right before v has been added to X ′,
MINCUTAGAT must have been invoked with C ′ ∪ {v}. That means that in one of
those child invocations C has already been enumerated because according to Lemma
2.3.12 C ′′ ∩ (X ′ \ {v}) = ∅ must hold.

Lemma 2.3.14. Let G = (V,E) be a connected query graph and G|S with S ⊆ V a
connected (sub)graph. Algorithm MINCUTAGAT enumerates all ccps (C, S \ C) for
S where in all sets C the start vertex t is contained.

Proof. According to Lemma 2.3.7, MINCUTAGAT enumerates only ccps for C. Be-
cause of Lemma 2.3.13, all possible connected sets C that contain the start vertex t
are enumerated. Thus, Algorithm MINCUTAGAT must enumerate all possible ccps
(C, S \ C) for S where the condition t ∈ C holds.

Lemma 2.3.15. Let G = (V,E) be a connected query graph and G|S with S ⊆ V
a connected (sub)graph. Algorithm MINCUTAGAT enumerates all connected sets C
that belong to the power set of S containing the start vertex t ∈ S only once.

Proof. By contradiction. We assume that ∃C ⊆ S, which is enumerated at least twice.
If multiple such C exist, we choose C such that |C| is minimal.
Case 1: |C| = 1. As discussed in Lemma 2.3.11, MINCUTAGAT enumerates only
one set consisting of a single vertex in the root invocation. Thus, |C| = 1 is not
produced twice, as it is not enumerated in any recursive self invocation.
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Case 2: |C| > 1. C cannot be enumerated by two different invocations of MINCUTA-
GAT with the same parameters, as |C| is minimal (otherwise, a smaller |C| must exist
that also has to be enumerated twice). Thus, there must be two different enumeration
paths producing C. As both paths start with the same vertex t, they are identical at
the beginning (Lemma 2.3.11) in enlarging a set C ′ where C ′ ⊂ C holds. At some
point, the common path must fork and two vertices v1, v2 ∈ N (C ′) with v1 6= v2
and v1, v2 ∈ C must exist. Thus, there are two child invocations, the first one with
C ′∪{v1} for the parameter C, and the second one with C ′∪{v2} for the parameter C.
They cannot both have identical sets for the parameter X , because for the later child
invocation, {v1} is added. But since v1 6∈ C ′, the vertex must be added later during the
recursive descent, but this is impossible, since v1 is already included in the set X .

Lemma 2.3.16. Let G = (V,E) be a connected query graph and G|S with S ⊆ V a
connected (sub)graph. Algorithm MINCUTAGAT enumerates all ccps (C, S \ C) for
S where all sets C contain the start vertex t only once.

Proof. As Lemma 2.3.15 clarifies, all connected setsC containing the start vertex t are
enumerated only once. Since the set S\C is the complement ofC in S and there exists
just one complement per set C in S, MINCUTAGAT enumerates all ccps (C, S \ C)
for S only once and t ∈ C always holds.

Lemma 2.3.17. Let G = (V,E) be a connected query graph and G|S with S ⊆ V a
connected (sub)graph. Let a partition (C, S \ C) be a ccp with an arbitrary C such
that C ⊂ S holds. Then, MINCUTAGAT emits either (C, S \ C) or its symmetric
counter pair (S \ C,C), but never both ccps.

Proof. Algorithm MINCUTAGAT emits the ccps always in the form of (C, S \C) but
never in the form of (S \ C,C) (Line 2 of MINCUTAGAT). Since the start vertex t is
always part of C and never element of the complement S \ C from two possible sym-
metric pairs, only one ccp for S is emitted. Because Lemma 2.3.14 and Lemma 2.3.16
hold, MINCUTAGAT enumerates all symmetric ccps for S only once.

Theorem 2.3.2. Algorithm MINCUTAGAT is correct.

Proof. The theorem follows immediately from Lemma 2.3.5, Lemma 2.3.7,
Lemma 2.3.14, Lemma 2.3.15, and Lemma 2.3.17.

2.4. Conservative Graph Partitioning

This section presents a partitioning algorithm named conservative partitioning, which
we denote by MINCUTCONSERVATIVE [12]. It is an improvement of the advanced
generate-and-test approach presented in Section 2.3. The algorithm emits all ccps for
a connected vertex set S for which S ⊆ V holds and where V is the vertex set of the
query graph G = (V,E). We denote the instantiated top-down memoization variant
(Section 2.2.1) by TDMINCUTCONSERVATIVE or TDMCC for short. Its pseudo-code
is given in Figure 2.10.

Conservative partitioning is invoked by PARTITIONMinCutConservative, which in
turn immediately calls its recursive component MINCUTCONSERVATIVE. The basic
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idea of conservative partitioning is similar to the advanced-generate-and-test approach:
to successively enhance a connected set C by members of its neighborhood N (C) at
every recursive iteration. For query graphs with many biconnected components, MIN-
CUTAGAT does not perform optimally. The reason is that enhancing C in a way that
every graph cut is minimal cannot always be done by just removing one vertex v from
S \ C. As mentioned in Section 2.3, this can happen when v is an articulation vertex
a. In the majority of these cases, MINCUTAGAT is not able to emit a ccp in every
iteration, which increases the amortized costs per minimal cut. MINCUTCONSERVA-
TIVE is designed to overcome this disadvantage with a conservative approach. In fact,
conservative partitioning emits a ccp at the start of every invocation except for the root
invocation.

Like MINCUTAGAT, the process of enhancing C starts with a single vertex t ∈ S.
For MINCUTCONSERVATIVE, this is done through a redefinition of N (∅) = {t}.
MINCUTCONSERVATIVE ensures that while C is enlarged it remains connected at any
time. Since S and C ⊂ S are connected, for every possible complement S \ C there
must exist a join edge (v1, v2), where v1 ∈ C and v2 ∈ (S \ C) holds. If at some
point of enlarging C its complement S \C in S is connected as well, the algorithm has
found a ccp for S.

2.4.1. Correctness Constraints

Besides, the connectivity of C’s complement conservative partitioning has to meet
some more constraints before emitting a ccp: (1) Symmetric ccps are emitted once, (2)
the emission of duplicates has to be avoided, and (3) all ccps for S have to be computed
as long as they comply with constraint (1).

Constraint (1) is ensured because the start vertex t is always contained in C and,
therefore, can never be part of its complement S \ C. For the second constraint, the
algorithm uses a filter set X of neighbors to exclude from processing. And for con-
straint (3), it is sufficient to ensure that all possible connected subsets of S that have a
connected complement S \ C are considered when enlarging C.

2.4.2. The Algorithm in Detail

There are certain scenarios, e.g., when star queries are considered, where constructing
every possible connected subset C of S produces an exponential overhead because
most of the complements S \ C are not connected and the partitions (C, S \ C) com-
puted this way are not valid ccps. Therefore, the algorithm follows a conservative
approach by enhancing C in such a way that the complement must be connected as
well. Before we explain this technique, we have to make some observations. From
the recursive process of enlarging C, we know that the number of members in C must
increase by at least one in every iteration. Furthermore, if a partition (C, S \C) is not
a ccp for S, then S \C consists of k ≥ 2 connected subsets O1, O2, ..., Ok ⊂ (S \C)
that are disjoint and not connected to each other. Hence, those subsets O1, O2, ...Ok

can only be adjacent to C. Let v1, v2, ..., vl be all the members of C’s neighborhood
N (C). Then every Oi where 1 ≤ i ≤ k must contain at least one such vj where
1 ≤ j ≤ l and k ≤ l holds. The first ccp after recursively enlarging C by members of
S \C would be generated when all subsets Oi with 1 ≤ i ≤ k but one are joined to C.
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PARTITIONMinCutConservative(G|S)

� Input: a connected (sub)graph G|S , arbitrary vertex t ∈ S
� Output: P sym

ccp (S)
1 MINCUTCONSERVATIVE(S, ∅, ∅)

MINCUTCONSERVATIVE(G|S , C,X)

� Input: a connected (sub)graph G|S , C ∩X = ∅
� Output: ccps for S

1 if C = S ∨ C ∩X 6= ∅
2 return
3 if C 6= ∅
4 emit (C, S \ C)
5 X ′ ← X
6 for v ∈ ((N (C) ∩ S) \X)
7 O = GETCONNECTEDCOMPONENTS(G|S , C ∪ {v}, {v})
8 for all Oi ∈ O
9 MINCUTCONSERVATIVE(G|S , S \Oi, X

′)

10 X ′ ← X ′ ∪ {v}
� N (∅) = {arbitrary element of t ∈ S}

Figure 2.10.: Pseudocode for MINCUTCONSERVATIVE

Hence, in order to ensure that at every recursive iteration of MINCUTCON-
SERVATIVE the complement S \ C is connected as well, it does not always suffice to
enlarge C by only one of its neighbors but by a larger subset ∪i 6=hOi with 1 ≤ h ≤ k
of its direct and indirect neighborhood. For the computation of all subsets Oi with
1 ≤ i ≤ k, MINCUTCONSERVATIVE invokes GETCONNECTEDCOMPONENTS in
Line 7, which calculates an output set O containing all subsets Oi. If the complement
S \ C is connected, the returned O contains only one Oi with Oi = O1 = S \ C.
Section 2.4.3 explains GETCONNECTEDCOMPONENTS in detail.

OnceO = {O1, O2, ..., Ok} is returned, MINCUTCONSERVATIVE invokes itself for
k different times with a corresponding new C ′ = S \Oi, while 1 ≤ i ≤ k holds. Note
that if the old S \ C is connected, there is only one branch of recursions with a new
C ′ = S \O1 = C ∪ {v}. The ccp corresponding to S \Oi is emitted in Line 4 during
the corresponding child invocation. The recursive descent stops once the last neighbor
v ∈ N (C) was added to C so that for the successive child invocation the condition of
Line 1 holds.

As mentioned for meeting constraint (2), conservative partitioning makes use of the
filter set X . Therefore, the current v is added to X ′ (Line 10) after MINCUTCONSER-
VATIVE has returned from the k recursive calls of Line 9. This ensures that in all other
recursive descents invoked with the remaining v ∈ N (C) yet to be processed, the cur-
rent v cannot be chosen as a neighbor again and is excluded from further consideration
(Line 6).
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2.4.3. Exploring Connected Components

This section explains how GETCONNECTEDCOMPONENTS works. For performance
reasons, the computation of the connected components is implemented as a twofold
strategy. The first part of GETCONNECTEDCOMPONENTS adopts the improved con-
nection test ISCONNECTEDIMP (Section 2.3.2), and the second part is only executed
if the connection test fails. The pseudo code is given in Figure 2.11.

When comparing the first part of GETCONNECTEDCOMPONENTS (Lines 1 to 12)
to ISCONNECTEDIMP, the only difference can be found in Lines 3, 11 and 12. This is
because ISCONNECTEDIMP returns a Boolean result and GETCONNECTEDCOMPO-
NENTS a setO of setsOi. In case that S \C is connected, we have to return C ′s whole
complement as the only Oi either in Line 3 or in Line 11. For a detailed explanation
of Lines 1 to 12, we refer to Section 2.3.2.

In case S \ C is not connected, we are not able to reach all neighbors of T that
are elements of S \ C. Therefore, the condition in Line 10 will not evaluate to TRUE.
Hence, L equals our first Oi (Line 12). For the computation of the remaining Oj , we
have to execute the second part of GETCONNECTEDCOMPONENTS.

Therefore, we introduce a set U and assign it with all neighbours of T that are not
in C and are not element of L (Line 13). We use U to indicate whether there is any
other Oj left to compute. This way, U serves as an abort criteria for the loop of Lines
14 to 22. The inner loop of Lines 17 to 20 resembles the loop of our first part (Lines 6
to 9). But this time we cannot implement the second stop condition, as we have done
in Line 6 by checking N 6⊆ L′. The second condition was added as an optimization
to discover as early as possible that all neighbors of T = {v} are connected to each
other. This cannot be done here, since the sole purpose of this inner loop is to compute
the remaining Oj .

2.5. Branch Partitioning

With the advanced-generate-and-test approach, we improved the naive portioning al-
gorithm by successively enlarging a connected set C. But for graphs with many bi-
connected components, this technique alone was not efficient enough, since in several
invocations of MINCUTAGAT no ccps could be emitted. This is because C enlarged
only by one vertex at a time does not always result in a connected complement. As a
result, we proposed the conservative partitioning approach. Therefore, we transformed
the connection test into a computation of the connected and maximally enlarged sets
of C’s complement. This section presents branch partitioning, a further improved par-
titioning strategy where the effort of discovering the connected sets Oi within C’s
complement are avoided.

2.5.1. Branch Partitioning - An Overview

We denote the branch partitioning algorithm by MINCUTBRANCH. The algorithm is
invoked by TDPGSUB to compute for a given vertex set S of a connected (sub)graph
G|S all possible partitions into two disjoint interconnected sets (S1, S2) that are ccps
for S. The output of branch partitioning is the set P sym

ccp (S) so that symmetric ccps are
emitted only once. In the Figures 2.12 and 2.13, we give the algorithm’s pseudocode
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GETCONNECTEDCOMPONENTS(G|S , C, T )

� Input: (sub)graph G|S , C ⊂ S, T ⊆ C
� Output: set O of connected disjoint sets Oi

∀Oi,Oj∈O,i6=j Oi ⊆ (S \ C) ∧Oi ∩Oj = ∅
1 N ← (N (T ) ∩ S) \ C
2 if |N | ≤ 1
3 return {S \ C}
4 L← ∅
5 L′ ← {n} : n ∈ N
6 while L 6= L′ ∧ N 6⊆ L′
7 D ← (L′ \ L)
8 L← L′

9 L′ ← L′ ∪N (D) \ C
10 if N ⊆ L′
11 return {S \ C}
12 else O ∪ {L}

� now explore all other to C adjacent subsets
13 U ← N \ L
14 while U 6= ∅
15 L← ∅
16 L′ ← {n} : n ∈ U
17 while L 6= L′

18 D ← (L′ \ L)
19 L← L′

20 L′ ← L′ ∪N (D) \ C
21 U ← U \ L
22 O ∪ {L}
23 return O

Figure 2.11.: Pseudocode for GETCONNECTEDCOMPONENTS

with PARTITIONMinCutBranch and MINCUTBRANCH. We call the instantiated gener-
ic memoization variant TDMINCUTBRANCH, with a TD as a prefix to indicate the
top-down join enumeration algorithm that is based on branch partitioning.

The algorithm’s approach adopts the idea of MINCUTAGAT: to recursively enlarge
a set C by members of its neighborhood N (C), starting with a single vertex t ∈ S.
This way, we ensure that at every instance of the algorithm’s execution C is connected.
If at some point of enlarging C its complement S \ C in S is connected as well, the
algorithm has found a ccp for S. Besides, the connectivity of C’s complement branch
partitioning has to meet some more constraints before emitting a ccp: (1) Symmetric
ccps are emitted once, (2) the emission of duplicates has to be avoided, and (3) all ccps
for S have to be computed as long as they comply with constraint (1).

Constraint (1) is ensured because the start vertex t - arbitrarily chosen during the
initialization of the partitioning algorithm in Line 1 of PARTITIONMinCutBranch - is
always contained in C and, therefore, can never be part of its complement. For the
second constraint, the algorithm uses a filter set X of neighbors to exclude from pro-
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cessing. After every recursive self-invocation of the algorithm, the neighbor v ∈ N (C)
that was used to enlarge C is added to X . Later, we will see in detail how this works.
For constraint (3), it is sufficient to ensure that all possible connected subsets of S are
considered when enlarging C.

Checking for the connectivity of the complement set adds a linear overhead per test.
Furthermore, there are certain scenarios, e.g., when star queries are considered, where
constructing every possible connected subsetC of S produces an exponential overhead
because most of the complements S \C are not connected and the partitions (C, S \C)
computed this way are not valid ccps. For branch partitioning, we propose a novel
technique which ensures that no partitions are generated that are not a ccp at the same
time. As a positive side effect, the additional check for connectivity or the discovery
of connected components as needed by MINCUTAGAT and MINCUTCONSERVATIVE

can be eliminated.
Before we explain our technique, we repeat important observations of Section 2.4.2.

From the recursive process of enlarging C, we know that the number of members in C
must increase by one in every iteration. Furthermore, if a partition (C, S \ C) is not a
ccp for S, then S\C consists of k ≥ 2 connected subsetsO1, O2, ..., Ok ⊂ (S\C) that
are disjoint and not connected to each other. Hence, those subsets O1, O2, ...Ok can
only be adjacent toC. Let v1, v2, ..., vl be all the members ofC’s neighborhoodN (C).
Then every Oi with 1 ≤ i ≤ k must contain at least one such vj with 1 ≤ j ≤ l and
k ≤ l holds. The first ccp after enlarging C by members of S \ C would be generated
when all subsets Oi with 1 ≤ i ≤ k but one are joined to C.

Having made these observations, we are ready to explain our basic idea. The key
principle is to exploit information about how S \ C is connected from all of MIN-
CUTLAZY’s child invocations. Therefore, we introduce a new input parameter L and
a result set R. The one-element set L contains the last vertex v that was added to
C through the parent invocation. The result set R of a child invocation contains the
maximally enlarged and connected set Oi such that L ⊆ R holds. We compute R by
combining the result sets Rtmp from the child invocations with L. But we have to be
careful to include only those Rtmp that are adjacent to L. Hence, we need to distin-
guish betweenN (L) and (N (C) \N (L)): only those Rtmp can be joined to R where
N (L) ∩Rtmp 6= ∅ holds.

To make use of the connected sets Rtmp that are adjacent to v, we postpone the
emission of ccps towards the end. Instead of enlarging C with all but one Rtmp when
the complement S \ C is not connected, we introduce an optimization which simply
emits (S \ Rtmp, Rtmp) right away. Note that if S \ C is connected, there exists only
one Rtmp with Rtmp = S \ C and (S \ Rtmp, Rtmp) = (C, S \ C) holds. In case
S \C is not connected, C ⊂ (S \Rtmp) must hold. We have said that due to constraint
(3), all connected subsets of S have to be considered as values for the set C. Through
the optimization certain connected sets S \ Rtmp are skipped. Because we avoid only
those S \Rtmp where the complement S \ (S \Rtmp) = Rtmp is not a connected set,
our optimization is still sufficient to meet constraint (3).

2.5.2. The Algorithm in Detail

In the following, we take a closer look at the pseudocode given in Figures 2.12 and
2.13. PARTITIONMinCutBranch calls MINCUTBRANCH the first time with C = L =
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{t}, where t ∈ S is an arbitrary vertex. This ensures constraint (1) because the com-
plement Rtmp cannot contain t at any instance of MINCUTBRANCH’s execution. In
Line 1 and Line 2, the result sets R and Rtmp are initialized.

When processing the neighbors of C, the primary interest lies on the neighbors of
the recently added vertex v ∈ L because they are important for the computation of the
return value. Therefore, in Line 3 the set NL is introduced to store all the neighbors
that certainly need to be processed, i.e., all neighbors of L that are not in X . The other
neighbors of C which, at the same time, are not neighbors of L, are only explored if
they belong to the result setRtmp of one of the child invocations called with a neighbor
of L. We store the neighbors of this category in the set NB that holds all neighbors of
C but not those that are inN (C) and, additionally, are not in X (Line 5). Special care
has to be taken before processing neighbors of L that are also elements of X , whereas
the set X holds former neighbors that have been processed in an ancestor invocation.
Now, only those neighbors of L that are also element ofX and are not contained in one
of the result sets Rtmp need to be processed. We compute those candidates in Line 4
and store them into NX . Whether the other neighbors that are contained by the last
two sets NB and NX are processed or not is decided dynamically during the loop in
Lines 6 to 29.

The loop (Lines 6 to 29) consists of three cases. To understand these cases, we have
to learn about the additional requirement that exists due to our duplicate avoidance
technique. As already mentioned, we use the filter set X to exclude its members from
being processed as a new L in a child invocation of MINCUTBRANCH. Moreover, if
a complement S \ Rtmp is not disjoint with X , then (S \ Rtmp, Rtmp) is a duplicate
and has already been emitted. For explaining this fact, we denote by vold a member
of S \ (Rtmp ∩ X). We know that vold ∈ N (C) must hold, because vold being a
member of X implies that vold was processed as a v in an ancestor invocation of
MINCUTBRANCH as a neighbor of aCold. As we will see later, vold must be connected
to v within S \ Cold with Cold ⊂ C. Hence, a recursive descent started from a child
invocation with aC = Cold∪{vold} and anL = {vold}must have returned at one point
with the same Rtmp as our current value. Therefore, the partition (S \ Rtmp, Rtmp)
has already been emitted. We implement the test for duplicates in Line 24 and emit the
ccp in Line 27.

Let us now consider the chain query of Figure 2.15. We choose R0 as the ini-
tial C. In the root invocation of MINCUTBRANCH, we first process R1. When the
child invocation returns, Rtmp equals {R1, R3}. Before processing R2 as the sec-
ond neighbor, we add R0 to X ′. In the next child invocation of MINCUTBRANCH

with C = {R0, R2}, L = {R2}, and X = {R0}, a further recursive call with
C = {R0, R2, R4}, L = {R4}, and X = {R0} would return a R = {R4}. But
instead of emitting the ccp ({R4}, {R0, R1, R2, R3}), we would falsely assume that it
is a duplicate because (S \ Rtmp) ∩X 6= ∅ holds. To solve this problem, a X ′ needs
to be reset to X once a new neighbor v is chosen that is not part of R yet (Line 12).

As a consequence, we specify the processing order of the three sets NL, NB and
NX dynamically and define three cases: Case (1) is checked in Line 7. It is true if a
child invocation has started with a vx ∈ NL (case (2)) or a vx ∈ NX (case (3)) and a
vy ∈ NL or vy ∈ NB is part of the returned Rtmp. Since the next invocation which
we start with L = {vy} must return the same Rtmp, we do not have to save its return
value and have no partition to emit, since it is already emitted. Note that the child
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PARTITIONMinCutBranch(G|S)

� Input: a connected (sub)graph G|S , arbitrary vertex t ∈ S
� Output: P sym

ccp (S)
1 t← arbitrary vertex of S
2 MINCUTBRANCH(G|S , {t}, ∅, {t})

Figure 2.12.: Pseudocode for PARTITIONMinCutBranch

invocation’s excluded filter set is set to X ′, which in turn we must have set or reset to
our own X in Line 12 by processing case (2) or (3) before. After processing vy, we
delete it from its originating set, which is either NL (Line 10) or NB (Line 11).

Lines 13 to 16 cover case (2). If the condition of case (1) is not valid and there are
elements of NL left, we have to consider case (2). That means NL is not empty and
either Rtmp is empty and no neighbor has been processed yet or no other v ∈ NL is
part of the current Rtmp. As explained for our duplicate avoidance technique, we have
to set or reset the new input parameter X ′ to our current input parameter X . Because
this also needs to be done for case (3), we move this task to Line 12. Once the child
invocation returns, we save the result in Rtmp. Note that Rtmp∩R = ∅ holds. Later in
Line 28, Rtmp is joined with R. Having processed the current v, it is subtracted from
NL in Line 16.

Case (3) ensures that all those neighbors v ∈ NX are processed that are not part of
any returned Rtmp. A child invocation started with such an L = {v} could not emit
any further ccps because of the condition in Line 24. As we only have to compute
Rtmp, we use REACHABLE (Section 2.5.4). Because it is constructed solely for this
task, it is a simpler and, therefore, more efficient method. With the instruction of
Line 19, we avoid further unnecessary calls to REACHABLE. Note that the results of
case (2) are also used to minimize NX .

Lines 20 to 26 will be explained in Section 2.5.3. Before we return the call, we join
L to the final result set R.

2.5.3. Two Optimization Techniques

Lines 20 to 26 specify two optimization techniques that are not a requirement for
the branch partitioning algorithm. The first technique considers cases where Rtmp

contains elements of X . In that case, all other invocations of MINCUTBRANCH and
their child invocations with neighbors of C that are disjoint from Rtmp cannot emit
any partitions because the R′tmp that they produce must be disjoint with Rtmp so that
S \R′tmp cannot be disjoint with X (Line 24) any more. But as we need to ensure that
R is correctly computed, we have to add those neighbors for which we want to avoid
unnecessary calls to MINCUTBRANCH to NX (Line 20).

The second optimization technique avoids exploring all the other neighbors of C
which are also elements of Rtmp if the complement S \ Rtmp is not disjoint with X .
As already mentioned, if these neighbors were not subtracted from NL and NB , they
would be processed in the next iterations of the loop, and the condition of Line 8 would
qualify. Hence, all resulting child invocations of MINCUTBRANCH in Line 9 could
not be avoided, although they would not have emitted any ccps.
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MINCUTBRANCH(G|S , C,X,L)

� Input: a connected (sub)graph G|S , C,X ⊂ S, |L| = 1

� Output: ccps for S
1 R← ∅
2 Rtmp ← ∅
3 NL ← ((N (L) ∩ S) \ C) \X
4 NX ← ((N (L) ∩ S) \ C) ∩X
5 NB ← (((N (C) ∩ S) \ C) \NL) \X
6 while NL 6= ∅ ∨NX 6= ∅ ∨NB ∩Rtmp 6= ∅
7 if (NB ∪NL) ∩Rtmp 6= ∅ � case (1)
8 v ← a element of ((NB ∪NL) ∩Rtmp)
9 MINCUTBRANCH(G|S , C ∪ {v}, X ′, {v})

10 NL ← NL \ {v}
11 NB ← NB \ {v}
12 else X ′ ← X
13 if NL 6= ∅ � case (2)
14 v ← a element of NL

15 Rtmp ← MINCUTBRANCH(G|S , C ∪ {v}, X ′, {v})
16 NL ← NL \ {v}
17 else v ← a element of NX � case (3)
18 Rtmp ← REACHABLE(G|S , C ∪ {v}, {v})
19 NX ← NX \Rtmp

20 if Rtmp ∩X 6= ∅
21 NX ← NX ∪ (NL \Rtmp)
22 NL ← NL ∩Rtmp

23 NB ← NB ∩Rtmp

24 if (S \Rtmp) ∩X 6= ∅
25 NL ← NL \Rtmp

26 NB ← NB \Rtmp

27 else emit (S \Rtmp, Rtmp)
28 R← R ∪Rtmp

29 X ′ ← X ′ ∪ {v}
30 return R ∪ L

Figure 2.13.: Pseudocode for MINCUTBRANCH

2.5.4. Exploring Restricted Neighbors

Finally, we explain REACHABLE as given in Figure 2.14. As already mentioned, it is its
aim to return the maximally enlarged and connected set containing L = {v} adjacent
to C. In Line 1 of REACHABLE, the result set R is initialized with the one-element set
L. EnlargingR starts with the set of neighbors of L that are disjoint toC and lie within
S (Line 3). During the while loop in Lines 4 to 6, all the neighbors of the neighbors
from the previous iteration of the loop that are disjoint with C (Line 6) are added to R
(Line 5). The loop is exited once no vertex is left to be added.
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REACHABLE(G|S , C, L)

� Input: (sub)graph G|S , C ⊆ S, L ⊆ C, |L| = 1

� Output: connected set R adjacent to C
1 R← L
2 I ← S \ C
3 N ← (N (L) ∩ I)
4 while N 6= ∅
5 R← R ∪N
6 N ← ((N (N) ∩ I) \R)
7 return R

Figure 2.14.: Pseudocode for REACHABLE

R3 R1 R0

R4 R2

Figure 2.15.: Chain Query

R0 R1

R2 R3

Figure 2.16.: Cyclic Query

2.5.5. Two Examples

We illustrate the execution of MINCUTBRANCH by two examples. Tables 2.5 and
2.6 show the execution steps when the chain query of Figure 2.15 or, respectively, the
cyclic query of Figure 2.16 is given as input. The first column named level keeps track
of the recursion level. The root invocation is indicated with a 0. Column two shows
which case in the parent invocation has initiated the current call. We omit invocations
whereNL = NX = NB = ∅, because they return immediately to the parent invocation
by avoiding the loop of Lines 6 to 29.

For all acyclic graphs, MINCUTBRANCH has only case 2 to consider. Table 2.5
confirms this for chain graphs. The maximal recursion depth depends on the position of
the start vertex t (Line 1 of PARTITIONMinCutBranch). Here, we have chosen t = R0

as the start vertex. Therefore, the recursion depth is 2, but this is not shown, because
the recursions with L = {R3} and L = {R4} are omitted. For the graph of Figure
2.16, we have a recursion depth of 3 and again t = R0 as the start vertex. Note that
the invocation with L = {R2}, following the third entry in Table 2.6, is left out. As
can be seen for this example at the last three entries of Table 2.6, there is a recursive
invocation of MINCUTBRANCH with C = {R0, R3} and X = {R1, R2} that does
not emit any further ccps. Unfortunately, this is an execution overhead that cannot be
avoided easily.

2.5.6. Complexity of Branch Partitioning

We determine the complexity of MINCUTBRANCH to emit successive ccps by
O( i+r+l
|P sym

ccp (S)|), where i is the number of iterations of the loop in Line 6, r is the number
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level case C L X NL NX NB

0 - {R0} {R0} ∅ {R1, R2} ∅ ∅
1 2 {R0, R1}{R1} ∅ {R3} ∅ ∅
1 MCB. returns {R3} → emitting ({R3}, {R0, R1, R2, R4})
0 MCB. returns {R3, R1} → emitting ({R1, R3}, {R0, R2, R4})
1 2 {R0, R2}{R2} ∅ {R4} ∅ ∅
1 MCB. returns {R4} → emitting ({R4}, {R0, R1, R2, R3})
0 MCB. returns {R4, R2} → emitting ({R2, R4}, {R0, R1, R3})

Table 2.5.: Exemplified execution of MINCUTBRANCH for the graph of Figure 2.15

level case C L X NL NX NB

0 - {R0} {R0} ∅ {R1, R2, R3} ∅ ∅
1 2 {R0, R1} {R1} ∅ {R3} ∅ {R2}
2 2 {R0, R1, R3}{R3} ∅ {R2} ∅ ∅
2 MCB. returns {R2} → emitting ({R2}, {R0, R1, R3})
1 MCB. returns {R2, R3} → emitting ({R2, R3}, {R0, R1})
2 1 {R0, R1, R2}{R2} {R3} ∅ {R3} ∅
2 REACHABLE returns {R3} → emitting ({R3}, {R0, R1, R2})
0 MCB. returns {R2, R3, R1} → emitting ({R1, R2, R3}, {R0})
1 1 {R0, R2} {R2} {R1} {R3} ∅ ∅
2 2 {R0, R2, R3}{R3} {R1} ∅ {R1} ∅
2 REACHABLE returns {R1} → emitting ({R1}, {R0, R2, R3})
1 MCB. returns {R1, R3} → emitting ({R1, R3}, {R0, R2})
1 1 {R0, R3} {R3}{R1, R2} ∅ {R1, R2} ∅
1 REACHABLE returns {R1} → not emitting emitting duplicate
1 REACHABLE returns {R2} → not emitting emitting duplicate
0 MCB. returns {R1, R2, R3}

Table 2.6.: Exemplified execution of MINCUTBRANCH for the graph of Figure 2.16

of all invocations of REACHABLE and l is the number of all iterations of the loop in
Line 4 of REACHABLE.

For acyclic graphs, we know that |P sym
ccp (S)| = |S| − 1 holds. Furthermore, no

v ∈ NB ∪ NX will be processed. Therefore, i = |S| − 1 and r = l = 0 holds, since
there is no call to REACHABLE. Hence, the complexity of MINCUTBRANCH to emit
a ccp for acyclic graphs is in O(1).

A cycle query has |P sym
ccp (S)| = 1

2 |S|
2 \ 1

2 |S| symmetric ccps for S. Each of the first
|S|−1 invocations processes a neighbor taken from the setNL. That recursive descent
is always initiated through Line 15. There are |S| − 2 second invocations of the loop
of Line 6 calling MINCUTBRANCH from Line 9. Those invocations process further∑|S|−2

k=1 k neighbors in total. Altogether, there are |S| − 1 + |S| − 2| +
∑|S|−2

k=1 k =
1
2 |S|

2 + 12|S| − 2 = i neighbors processed. REACHABLE is called r = |S| − 2
times, and the loop of Line 4 never iterates, so that l = 0 holds. Therefore, the total
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complexity per emitted ccp is |S|
2+3|S|−8
|S|(|S|−1) , which decreases asymptotically to 1, so that

the complexity is O(1).
Considering clique queries, we know that |P sym

ccp (S)| = 2|S|−1 − 1 holds. There are
2|S|−1 neighbors processed that are element of NL. Furthermore, there are 2|S|−2 − 1
neighbors processed that are element of NX . Therefore, i = 2|S|−1 + 2|S|−2 \ 1 =
3
42
|S| − 1 and r = 2|S|−2 − 1 holds. The number of iterations through the loop

of Line 4 must be |S| − 2 times less than there are calls to REACHABLE, so that
l = 2|S|−2−|S|−3 holds. To emit all symmetric ccps, the complexity is 5

42
|S|−|S|−5.

Per emitted ccp the complexity increases asymptotically to 5
2 . Hence, the complexity

for clique queries is in O(1).

2.6. Evaluation

This section summarizes our experimental findings. We start by briefly describing our
setup. Then we give an organizational overview (Section 2.6.2) and present our results
(Section 2.6.3).

2.6.1. Experimental Setup

For all plan generators, no matter whether they work top-down or bottom-up, a shared
optimizer infrastructure was established. It contains the common functions to in-
stantiate, fill, and lookup the memotable, initialize and use plan classes, estimate
cardinalities, calculate costs, and compare plans. Thus, the different plan genera-
tors differ only in those parts of the code responsible for enumerating ccps. Except
for PARTITIONnaive all partitioning algorithms are implemented as an iteratator. Ap-
pendix B.1 shows the C++ Code for MINCUTCONSERVATIVE and B.2 the C++ Code
for MINCUTBRANCH. We store the pre-calculated ancestors, descendants (Section
A.1, required by MINCUTLAZY) and neighbors of a vertex in an array of size |V |.

Since, due to the fact that we ignore pruning, the cost calculation is immaterial for
our investigation, we simply use Cout (Section 2.1.2). To generate our workload, we
have implemented a generic query graph generator. In a first step, it generates chain,
star, cycle, and clique queries as well as random acyclic and cyclic graphs. For the
latter, edges are randomly added by selecting two relation’s indices using uniformly
distributed random numbers. In a second step, cardinalities and selectivities are at-
tached using a random generator with a Gaussian distribution. Since we do not apply
branch-and-bound pruning techniques (Chapter 4), these numbers do not influence the
search space of the plan generators.

2.6.2. Organizational Overview

In our empirical analysis, we compare basic memoization, denoted by TDBA-
SIC, based on naive partitioning and TDMCL with the novel memoization variants:
TDMCLImp, TDMCA, TDMCC and TDMCB. Table 2.6.2 shows an overview over
the different top-down join enumeration algorithms. To put all six top-down plan gen-
eration algorithms in perspective, we include the results of Moerkotte’s and Neumann’s
DPCCP [22] as a very efficient bottom-up join enumeration algorithm via dynamic pro-
gramming.
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Name Abb. Name Partitioning Strategy Remarks
TDBASIC TDBASIC PARTITIONnaive Sec. 2.2.2
TDMINCUTLAZY TDMCL MINCUTLAZY Sec. A.2
TDMINCUTLAZYImp TDMCLImp MINCUTLAZY Sec. A.5.1
TDMINCUTAGAT TDMCA MINCUTAGAT Sec. 2.3
TDMINCUTCONSERVATIVE TDMCC MINCUTCONSERVATIVE Sec. 2.4
TDMINCUTBRANCH TDMCB MINCUTBRANCH Sec. 2.5

Table 2.7.: Names and abbreviated names of different plan generation algorithms with
different partitioning strategies.

For our experiments, we measured the execution time of the six different plan gen-
erators on the same workload. To minimize measurement errors, we computed the
average for every algorithm run for a given input. For fixed query shapes that are
chains, stars, cycles, and cliques, and for random acyclic graphs, we give the number
of vertices on the abscissa and the execution time in log scale on the ordinate. We draw
lines to connect the averaged execution times.

Since for randomly generated cyclic queries the algorithms’ performance results
deviate significantly for the same number of vertices, we show the results for different
numbers of vertices separately. At the abscissa, we choose to display the number of
edges and again the execution time in log scale on the ordinate. We do not present the
exact results, which still can deviate strongly, but results smoothed by Bezier curves.

As we will see, apart from some minor exceptions, Moerkotte’s and Neumann’s
DPCCP is the algorithm which performs best. Therefore, it is interesting to evaluate
the results in terms of the quotient of the algorithm’s execution time and the execution
time of DPCCP. For the following discussion, we refer to that quotient as the normed
time.

We include only those query graphs in our evaluation that all plan generators could
process in less than 100 seconds. Our workload consists of 25.500 query graphs. The
number of vertices and edges for our random cyclic queries are uniformly distributed.
We conducted all our experiments on an Intel Pentium D with 3.4 GHz, 2 Mbyte
second level cache and 3 Gbyte of RAM that runs openSUSE 11.0. We used the Intel
C++ compiler with the O3 compiler option set.

2.6.3. Experiments

This section summarizes our experimental findings. First, we give a short evaluation
of the partitioning costs between lazy minimal cut partitioning and branch partitioning.
Then, we follow with an evaluation of acyclic query graphs and present the results for
cyclic graphs at the end.

Partitioning Costs

We have analyzed the complexity of lazy minimal cut partitioning (MINCUTLAZY

in Appendix A.4) and branch partitioning (MINCUTBRANCH in Section 2.5.6) for
chain, star, cycle and clique queries. For both partitioning strategies, the complexity is
in O(1) for chain, star and cycle queries per emitted ccp. But when clique queries are
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Figure 2.17.: Cost per emitted ccp of MINCUTLAZY and MINCUTBRANCH for clique
queries.

considered, MINCUTLAZY has a complexity in O(|S|2), whereas MINCUTBRANCH

is still inO(1) per emitted ccp. Therefore, we have measured the partitioning costs and
discuss them here for clique queries. Figure 2.17 shows our results with the number of
vertices on the abscissa and the execution time per emitted ccp on the ordinate.

The costs per emitted ccp are decreasing for a small number of vertices. But with
five and more vertices, the costs for lazy minimal cut partitioning are increasing again.
The increase is quadratic. For MINCUTBRANCH, the costs are dropping for less than
ten vertices. After that, they are slightly increasing. The decrease at the start of both
curves is due to some instantiation overhead that becomes negligible compared to the
other processing costs, when a higher number of vertices is considered. Our results
support a quadratic increase as proven by our complexity analysis, but this effect is
rather weak for the number of vertices considered here. Note that the effect was weak-
ened by our implementations, since we have used inline assembler instructions to min-
imize the accessing cost of the data structure MINCUTLAZY relies on.

For MINCUTBRANCH, we have proven that the complexity is increasing asymptot-
ically to a constant factor. Our results show a very weak increase. This is caused by
an increasing number of cache misses for an increasing number of vertices.

In summary, our results show that the performance differences between the two
algorithms for clique queries are strongly increasing with a higher number of vertices.

For the other three graph shapes, MINCUTBRANCH clearly dominates MINCUT-
LAZY, but the differences are not as strong as for clique queries, because both algo-
rithms have only a constant overhead in those scenarios.

Cost of Plan Generation for Acyclic Query Graphs

We give the results for chain queries in Figure 2.18, for star queries in Figure 2.19 and
for random acyclic graphs that are neither chain nor star queries in Figure 2.20. For all
different acyclic graphs, the normed runtimes of TDBASIC and TDMCA show an ex-
ponential increase, although the effect is much weaker for TDMCA. With a maximal
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normed runtime of almost 47000 (Table 2.8) for chain queries, TDBASIC is a terrible
choice for acyclic graphs. DeHaan’s and Tompa’s TDMCL performs on a mediocre
level with a maximal factor of 3.5 for star queries (Table 2.8). Since TDMCLImp

needs much fewer biconnection tree buildings when acyclic graphs are considered, as
our derived formulas (Section A.5.2) show, it is distinctly faster than TDMCL (maxi-
mal factor of 1.8 for star queries). TDMCC performs quite well and is only dominated
by TDMCB in every acyclic scenario. Except for star queries, where we have more
cache misses with an increasing number of vertices, TDMCB performs even better
than the state-of-the-art in dynamic programming for graphs DPCCP. The lowest fac-
tor we could determine for TDMCB was at 0.66 for random acyclic queries.

Cost of Plan Generation for Cyclic Query Graphs

Cycle and clique queries belong to the same group of cyclic graphs, but in terms of the
number of ccps, they belong to two opposite sides of the spectrum. Cycles have the
lowest number of edges that is possible for cyclic graphs, removing one edge would
result in a chain query. We present their results in Figure 2.21. Cliques have the
maximal number of edges possible. The results for clique queries can been found in
Figure 2.22. Table 2.9 summarizes the normed runtimes for all evaluated algorithms.

As expected, the results for cycle queries look more similar to those for chain queries
than to the results for clique queries. From Table 2.9 we can see only for TDBASIC

and TDMCA the averaged normed runtime has increased compared to the results for
chain queries. Again, TDMCB is the fastest algorithm, closely followed by TDMCC.

When looking at cliques, the picture changes completely. Now TDBASIC dominates
TDMCL and TDMCLImp. TDMCA performs better than TDBASIC, since it relies
only on one connection test per emitted ccp. This time, TDMCB performs second
best and is only dominated by DPCCP. Again, TDMCC is only slightly slower than
TDMCB.

When we consider random cyclic graphs, we can trace the performance shift be-
tween cycle and clique queries. We display our results for 8 and 16 vertices in Fig-
ure 2.23 and 2.24. The trends of the normed runtimes of TDMCA and TDBASIC

compared to the trends of TDMCL and TDMCLImp, respectively, are oppositional.
Whereas the normed runtime of TDMCA and TDBASIC is decreasing with an increas-
ing number of edges for a fixed number of vertices, TDMCL’s and TDMCLImp’s
normed runtime is increasing. For a fixed number of vertices and a relatively small
number of edges, the differences between TDMCL and TDMCLImp are distinctive,
but for a number of edges lying in the median span, the differences become indis-
tinctive. Independent of the number of edges or vertices, TDMCLImp dominates
TDMCL.

One can clearly see that TDMCA dominates TDBASIC and TDMCL and its im-
proved version with some minor exceptions of TDMCLImp at the beginning of the
spectrum.

Once more, all top-down join enumeration algorithms except for TDMCC are out-
performed by TDMCB. Although TDMCC’s average normed runtime is by 0.8% low-
er, its minimum and maximum normed runtimes are higher. With an averaged normed
runtime of 1.1 for random cyclic queries, TDMCB is almost as efficient as DPCCP,
which performs best. We can contrast the worst relative factor of 1.47 with a factor of
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Figure 2.18.: Absolute and normed runtime results for chain queries.
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Figure 2.19.: Absolute and normed runtime results for star queries.
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Algorithm Chain Star Acyclic
min max avg min max avg min max avg

DPCCP 0.00 s 0.00 s 0.00 s 0.00 s 2.02 s 0.11 s 0.00 s 0.26 s 0.01 s
TDBASIC 1.06 46827 1569 0.89 77 11.88 0.94 5646 151
TDMCL 1.69 2.85 2.27 2.19 3.50 2.93 1.48 3.22 2.23
TDMCLImp 1.22 2.35 1.64 0.90 1.77 1.34 0.82 2.35 1.20
TDMCA 0.65 1.66 1.11 0.76 30 4.02 0.62 9.77 1.88
TDMCC 0.78 1.09 0.96 0.87 1.49 1.17 0.79 1.18 0.98
TDMCB 0.74 0.98 0.85 0.77 1.30 1.04 0.66 1.03 0.85

Table 2.8.: Minimum, maximum and average of the normalized runtimes for chain,
star and random acyclic queries.

Algorithm Cycle Clique Cyclic
min max avg min max avg min max avg

DPCCP 0.00 s 0.00 s 0.00 s 0.00 s 7.75 s 0.97 s 0.00 s 15.68 s 1.64 s
TDBASIC 0.77 22951 3631 0.49 1.96 1.46 1.10 201 5.76
TDMCL 1.37 3.95 2.59 2.40 8.48 6.35 2.13 8.00 5.63
TDMCLImp 1.07 2.33 1.55 3.23 7.75 5.82 1.24 7.41 5.43
TDMCA 0.63 1.79 1.38 0.72 1.41 1.15 0.80 5.58 1.30
TDMCC 0.84 1.09 0.94 0.72 1.26 1.09 0.81 1.54 1.12
TDMCB 0.74 0.98 0.84 0.74 1.29 1.06 0.78 1.47 1.13

Table 2.9.: Minimum, maximum and average of the normalized runtimes for cycle,
clique and random cyclic queries.

1
0.78 = 1.28 in the best case, being faster than DPCCP, although no branch-and-bound
pruning is put in place.
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Figure 2.20.: Absolute and normed runtime results for random acyclic queries that are
neither chain nor star queries.
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Figure 2.21.: Absolute and normed runtime results for cycle queries.
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Figure 2.22.: Absolute and normed runtime results for clique queries.
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Figure 2.23.: Absolute and normed runtime results for cyclic queries with 8 vertices.
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Figure 2.24.: Absolute and normed runtime results for cyclic queries with 16 vertices.
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3.1. Motivation

In the last chapter, we introduced different top-down join enumeration algorithms that
generate optimal plans. However, for all of them the type of input queries was limited
to:

1. only inner joins,

2. only simple join predicates referencing two relations, and

3. no cross products were allowed.

If a query falls into this category, it can be represented by a query graph that is
a simple undirected connected graph. There are three reasons why the simple graph
model for this type of queries suffices:

1. Inner joins can be freely reordered, since they are commutative and associative.
Thus, every plan generated by the plan generator is a valid plan, i.e., produces
the same result as the initial plan specified by the query.

2. Simple join predicates reference two relations only. Therefore, each such join
predicate can be represented by a graph edge that connects two vertices. Those
two vertices in turn represent the two referenced relations of the predicate.

3. If no cross products are allowed, the mapping of join predicates to graph edges
will produce a connected graph.

However, in practice real-world queries often do not meet all three restrictions at the
same time. If other operators like left outer joins, full outer joins, antijoins, semijoins,
and groupjoins are considered in a query, then no longer are all plans valid. In other
words: There might be certain operator reorderings gained by applying commutativity
and associativity that result in an invalid plan, i.e., a plan that produces the wrong
query result.

Consider the query

Select * From (R0 Left Outer Join R1 On R0.A = R1.B)
Full Outer Join R2 On R1.C = R2.D

The query can be translated into an initial operator tree:
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R1.C=R2.D

R0.A=R1.B

R0 R1

R2

For this query, no valid reordering is possible. To prevent invalid reorderings,
conflicts need to be detected and represented. Moerkotte et al. [20] presented
three different conflict detectors that can be used by dynamic programming-based or
memoization-based join enumeration algorithms in order to prevent invalid plans.

Without going into details, at the core of their conflict presentation is a set of rela-
tions, called TES, associated with each operator in the initial operator tree [21, 27, 20].
The intuition behind it is rather simple: before an operator can be applied to join two
subplans, all relations in TES must be present in the two subplans. For our example,
we have TES( R0.A=R1.B) = {R0, R1} and TES( R1.C=R2.D) = {R0, R1, R2}.
Since non-commutative operators might be considered, the conflict detectors general-
ly distinguish between the relations contained in the left and right branch of the initial
operator tree. Intersection of the TES with the set of relations contained in the left
and right branch of the operator tree gives a pair (L-TES, R-TES) of sets of relations.
For p1,2 , this pair is ({R0, R1}, {R2}). As [21, 20] shows, instead of modeling
the predicate R1.C = R2.D as a simple graph edge (R1, R2), a complex hyperedge
({R0, R1}, {R2}) is introduced. As shown in [20] for the conflict detector CD-A, the
join enumerator can be limited to valid orderings by utilizing complex hyperedges.

Because of the second limitation, any graph-aware plan generator should be able to
handle hypergraphs [2, 27, 35]. This is because any complex join predicate references
more than two relations. Thus, a complex join predicate cannot be mapped to a simple
edge, but to a complex hyperedge only.

Apart from non-inner joins and complex join predicates, cross products might be
specified in a query. As will be explained later, we can use complex hyperedges to
encapsulate cross products and transform them into join operators with a selectivity of
one.

As we have argued, in practice we need to deal with hypergraphs. Hence, to
overcome the three limitations, we need hypergraph-aware plan generators. Conse-
quently, Moerkotte and Neumann [21] extended DPCCP to DPHYP to handle hyper-
graphs. Since DPHYP is a bottom-up join enumeration algorithm, it cannot benefit
from branch-and-bound pruning. On the other hand, branch-and-bound pruning can
significantly speed up plan generation [5, 12], while still guaranteeing plan optimality.

In this chapter, we present a novel algorithm called TDMCCHYP (short for TD-
MINCUTCONSERVATIVEHYP) as an advancement of TDMINCUTCONSERVATIVE.
TDMCCHYP is the first available plan generation algorithm which works top-down
and is able to deal with hypergraphs. Furthermore, we propose a generic framework
that can be used by any existing partitioning algorithm for simple graphs to efficient-
ly partition hypergraphs. We show how the novel framework can by utilized by any
existing graph-aware top-down join enumeration algorithm.
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Figure 3.1.: Hypergraph H(V,E) = ({R0, R1, R2, R3, R4}, {({R0}, {R1, R2}),
({R0}, {R4}), ({R1}, {R3}), ({R2}, {R3}), ({R2}, {R4}),
({R3}, {R4})})

This chapter is organized as follows. Section 3.2 explains some preliminaries. In
Section 3.3, we continue with a naive approach for top-down plan generation. Section
3.4 introduces TDMCCHYP [11]. In Section 3.5, a novel framework as a generic
approach [10] is presented. Section 3.6 concludes this chapter with an evaluation.

3.2. Preliminaries

3.2.1. Hypergraphs

Let us begin with the definition of hypergraphs.

Definition 3.2.1. A hypergraph is a pair H = (V,E) such that

1. V is a non-empty set of nodes, and

2. E is a set of hyperedges, where a hyperedge is an unordered pair (v, w) of non-
empty subsets of V (v ⊂ V and w ⊂ V ) with the additional condition that
v ∩ w = ∅.

We call any non-empty subset of V a hypernode. We assume that the nodes in V are
totally ordered via an (arbitrary) relation ≺.

A hyperedge (v, w) is simple if |v| = |w| = 1. A hypergraph is simple if all its
hyperedges are simple. We call all non-simple hyperedges complex hyperedges and
all non-simple hypergraphs complex hypergraphs.

As explained in [20] (Section 3.1), the conflict detector CD-A computes the hyper-
edges of a hypergraph by considering the L-TES and R-TES of a given join operator.
Note that here it does not matter if the hyperedge is computed as (L-TES, R-TES) or
(R-TES, L-TES). Important for the differentiation between L-TES and R-TES is a cer-
tain node-ordering≺ of the hypergraph. More specifically, we order the relations from
the left to right in the initial operator tree as gained from the SQL query [21]. That is,
if R and S are two leaves in the initial operator tree and R occurs left of S, then R ≺ S
must hold.

Take a look at the complex hypergraph H(V,E) depicted in Figure 3.1 with V =
{R0, R1, R2, R3, R4} andE = Esimple∪Ecomplex. The graphH has five simple edges
with Esimple = {({R0}, {R4}), ({R1}, {R3}), ({R2}, {R3}), ({R2}, {R4}), ({R3},
{R4})} and one complex hyperedge with Ecomplex = {({R0}, {R1, R2})}.

The next definition is an adoption of Definition 2.1.2. It specifies what we mean by
an index of a vertex.
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Definition 3.2.2. Let H = (V,E) be a hypergraph and vi a vertex with vi ∈ V .
Further, let ≺ be a binary relation specifying the total order of the vertices of V . We
say i is the index of vi with i = |{w ≺ vi|w ∈ V }|.

To decompose a join-ordering problem represented as a hypergraph into smaller
problems, we need the notion of subgraph. More specifically, we only deal with node-
induced subgraphs.

Definition 3.2.3. Let H = (V,E) be a hypergraph and V ′ ⊆ V a subset of nodes.
The node-induced subgraph H|V ′ of H is defined as H|V ′ = (V ′, E′) with E′ =
{(v, w)|(v, w) ∈ E, v ⊆ V ′, w ⊆ V ′}. The node ordering on V ′ is the restriction of
the node ordering of V .

The node-induced subgraph H|V ′ of the hypergraph H as given in Figure 3.1 with
V ′ = {R0, R2, R4} has an edge set E′ = {({R0}, {R4}), ({R2}, {R4})} that con-
sists only of simple edges. Hence, H|V ′ is a simple hypergraph. Next, we define
connectedness.

Definition 3.2.4. Let H = (V,E) be a hypergraph. H is connected if |V | = 1 or if
there exists a partitioning V ′, V ′′ of V and a hyperedge (v, w) ∈ E such that v ⊆ V ′,
w ⊆ V ′′, and both H|V ′ and H|V ′′ are connected.

The node-induced subgraphH|{R0,R1,R2,R3} gained from the connected hypergraph
of Figure 3.1 is connected, whereas H|{R0,R1,R2} is not.

If H = (V,E) is a hypergraph and V ′ ⊆ V is a subset of the nodes such that the
node-induced subgraphH|V ′ is connected, we call V ′ a connected subgraph or csg for
short. The number of connected subgraphs is important: it directly corresponds to the
number of entries in the memotable.

We assume that all hypergraphs used as input for our algorithms are connected. This
way, we can make sure that no cross products are needed. However, when dealing with
hypergraphs, this condition can easily be assured by adding according hyperedges: for
every pair of connected components, we can add a hyperedge whose hypernodes con-
tain exactly the relations of the connected components. By considering these hyper-
edges as operators with selectivity 1, we get an equivalent connected hypergraph,
i.e., one that describes the same query.

We now specify what we mean by a path between vertices x and y in H = (V,E).

Definition 3.2.5. Let H = (V,E) be a hypergraph, then a path x →∗ y with
length l between vertices x ∈ V and y ∈ V is defined as a sequence of hy-
pernodes 〈v0, v1, v2, ..., vl〉 with x ∈ v0 ∧ y ∈ vl and ∀0≤i≤l vi ⊂ V and
(vi−1, vi) ∈ E for i = 1, 2, ...l. The length l of the path is the number of hyperedges
(v0, v1), (v1, v2), ..., (vl−1, vl) in the path.

With the definition of a path, we are able to give the notion of a cycle.

Definition 3.2.6. Let H = (V,E) be an undirected graph, then a cycle is a path
〈v0, v1, v2, ..., vl〉 with ∀0≤i≤lvi ⊂ V where v0 ∩ vl 6= ∅ holds.

We introduce the notion of an articulation hyperedge and give its definition:
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Definition 3.2.7. Let H = (V,E) be a connected hypergraph. Then we call a hy-
peredge (v, w) an articulation hyperedge if removing (v, w) from E disconnects the
graph H .

The hypergraph shown in Figure 3.1 has only one articulation hyperedge: ({R1},
{R3}). We observe that an articulation hyperedge cannot be part of any cycle. Hence,
we call a hypergraph whose complex hyperedges are all articulation hyperedges a com-
plex cycle-free hypergraph. The hypergraph of Figure 3.1 is not a complex cycle-free
graph since the complex hyperedge ({R0}, {R1, R2}) is not an articulation hyperedge.

As has been previously mentioned, invalid operator reorderings can be prevented by
transforming simple edges into hyperedges [2, 21, 20]. Complex hypergraphs that are
the result of those transformations can be mainly categorized as complex cycle-free
hypergraphs. We strongly believe that among all complex query graphs that can be
found in real-world scenarios, the majority belongs to this category. The only common
exception will be graphs that contain complex hyperedges originating from complex
predicates.

For the purpose of completeness, we adopt Definition 2.1.23 and 2.1.24 for hyper-
graphs:

Definition 3.2.8. Let H = (V,E) be a connected hypergraph, (S1, S2) is a connected
subgraph and its complement pair (or ccp for short) if the following holds:

• S1 with S1 ⊂ V induces a connected graph H|S1
,

• S2 with S2 ⊂ V induces a connected graph H|S2
,

• S1 ∩ S2 = ∅, and

• ∃(v, w) ∈ E | v ⊆ S1 ∧ w ⊆ S2.

The set of all possible ccps is denoted by Pccp. We introduce the notion of ccp for a
set to specify all those pairs of input sets that result in the same output set, if joined.

Definition 3.2.9. Let H = (V,E) be a connected hypergraph and S a set with S ⊆ V
that induces a connected subgraph H|S . For S1, S2 ⊂ V , (S1, S2) is called a ccp for
S if (S1, S2) is a ccp and S1 ∪ S2 = S holds.

By Pccp(S), we denote the set of all ccps for S. Let Pcon(V ) = {S ⊆
V | H|S is connected ∧ |S| > 1} be the set of all connected subsets of V with more
than one element, then Pccp = ∪S∈Pcon(V )Pccp(S) holds.

Note that if (S1, S2) is a ccp for S, then (S2, S1) is one as well. We call them
symmetric pairs.

Next, we define a compound vertex:

Definition 3.2.10. Let H = (V,E) be a hypergraph. A compound vertex c represents
a set of vertices V ′ = {v0, v1, ...vn}, where V ′ ⊂ V ∧ c 6∈ V holds.

In practice, vertex sets are represented as bitvectors, i.e., by utilizing uint32 t or
uint64 t types. Thereby two advantages can be combined: The vertex set representa-
tion becomes very space efficient, and set operations on the bitvector(s) can be com-
puted in a few processor cycles only. Since a vertex is represented through a bit in the
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. . . 
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Figure 3.2.: A bitvector with 2x bits where the first five bits are reserved for represent-
ing subsets of V = {v0, v1, v2, v3, v4}. With the first four bits the vertex
set S = {v0, v1, v2, v3} is represented.

bitvector and the bitvector is limited by the word size, the question arises how to rep-
resent a compound vertex within the same bitvector. Therefore, take a look at Figure
3.2, where a bitvector with 2x bits is shown. We use the first five bits with a light gray
background to represent arbitrary subsets of the vertex set V = {v0, v1, v2, v3, v4}.
Let us assume we want to represent a vertex set S = {v0, v1, v2, v3}. Then the first
four of the five bits are set. The fifth bit is reserved, but not set. Further, assume we
want to introduce a compound vertex c that represents the vertices {v0, v2, v3}. We
indicated this in Figure 3.2 by the bits with the dark gray background, i.e., the first bit
(index 0), the third (index 2) and fourth bit (index 3). Thus, we can unset the first,
the third and the fourth bit. But in exchange, we have to encode the presence of the
compound vertex c by a bit. Hence, we have two possibilities: Either we assign a new
and additional index, e.g. index 5 since c 6∈ V holds, or we reuse an index, e.g. index
0, 2 or 3. Therefore, we differentiate between two kinds of compound vertices which
we call: index-introducing compound vertices and index-reusing compound vertices.

3.2.2. Graphs vs. Hypergraphs

We need the next definitions in order to explain some principle ideas of our generic
framework. We start by defining an embedding g that maps a graph G = (VG, EG) to
a hypergraph H = (VH , EH).

Definition 3.2.11. Let G be the set of all graphs and H the set of all hypergraphs.
Further, let EG be the set of all graph edges and EH the set of all hyperedges. We
define g : G → H as an embedding that maps an undirected graph G = (V,EG)
to an undirected hypergraph H = (V,EH), where g(G(V,EG)) = H(V, ge(EG))
holds. Thereby ge with ge : EG → EH that maps a set of graph edges EG to a set of
hyperedges EH is defined such that ge(EG) = {({u}, {v}) | (u, v) ∈ EG} holds.

Next, we define the reverse mapping g−1:

Definition 3.2.12. Let G be the set of all graphs and H the set of all hypergraphs.
Further, let EG be the set of all graph edges and EH the set of all hyperedges.
We define g−1 : H → G as a mapping with g : H → G that maps an undi-
rected hypergraph H = (V,EH) to an undirected graph G = (V,EG), where
g−1(H(V,EH)) = G(V, g−1e (EH)) holds. We define g−1e with g−1e : EH → EG
that maps a set of simple hyperedges EH to a set of graph edges EG such that
ge(EH) = {(u, v) | ({u}, {v}) ∈ EH} holds.

We give the notion of restrictedness for hypergraphs:
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Definition 3.2.13. Let Hi = (V,Ei) and Hj = (V,Ej) be two undirected connected
hypergraphs. Further, let P i

ccp be the set of ccps computed for Hi and P j
ccp the set of

ccps computed for Hj . We say that Hi is less restrictive than Hj if P i
ccp ⊃ P

j
ccp holds,

and more restrictive if P i
ccp ⊂ P

j
ccp holds.

3.2.3. Neighborhood

The main idea for generating ccps efficiently is to incrementally expand connected
subgraphs by considering new nodes in the neighborhood of a subgraph.

We start with the definition of a simple neighborhood that relies only on simple
edges and returns one set of vertices.

Definition 3.2.14. Let H = (V,E) be a connected hypergraph and C be a subset of
V . Then, the simple neighborhood of C ⊆ V is defined as:

Nsimple(C) = {x | x ∈ v ∧ (u, v) ∈ E ∧ u ⊂ C ∧
v ⊂ (V \ C) ∧ |u| = 1 ∧ |v| = 1}.

We now give the definition of neighborhood for all edges, including complex hyper-
edges. We further restrict the neighborhood by some set of X of forbidden nodes. As
we will see, this is necessary in order to avoid the generation of ccps more than once.

Definition 3.2.15. Let H = (V,E) be a connected hypergraph, S a set of nodes
(S ⊆ V ) such that H|S is connected, and X ⊆ V a set of excluded nodes. Then, the
neighborhood of C ⊂ S excluding X is defined as:

N (S,C,X) = {v | (u, v) ∈ E ∧ u ⊆ C ∧ v ⊆ S \ C∧
v ∩X = ∅}.

For our approach, we need the notion of minimal neighborhood, where all subsumed
hypernodes v ∈ N (S,C,X) are eliminated. Again, this is necessary to avoid duplicate
generation of ccps.

Definition 3.2.16. Let S ⊆ V , C ⊆ V , X ⊆ V be sets of nodes with C ⊂ S and H|S
connected. Then, we define the minimal neighborhood of C ⊂ S excluding X as:

N ↓ (S,C,X) = {v | v ∈ N(S,C,X)∧
@u ∈ N(S,C,X) : u ⊂ v}.

Thus, the minimal neighborhood only retains those hypernodes which are not proper
supersets of others.

Let us exemplify Definitions 3.2.14, 3.2.15 and 3.2.16 by the hypergraph of Figure
3.1: Nsimple({R0}) = {R4}, Nsimple({R0, R4}) = {R2, R3}, N (V, {R0, R4}, ∅) =
{{R1, R2}, {R2}, {R3}},N ↓ (V, {R0, R4}, ∅) = {{R2}, {R3}} andN ↓ (V, {R0},
∅) = {{R1, R2}, {R4}}.
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3.3. Basic Memoization for Hypergraphs

The basic variant of top-down join enumeration through memoization for inner-join
operations and simple join predicates has been discussed in Section 2.2. We adapt
it here for the use of complex predicates with inner and non-inner join operations
[10, 20]. Thereby, TDBASICHYP is an instantiation of the generic top-down join
enumeration algorithm TDPLANGENHYP with the naive generate-and-test strategy
PARTITIONnaiveHyp.

In Section 3.3.1, we explain the generic top-down join enumeration algorithm TD-
PLANGENHYP. Section 3.3.2 describes PARTITIONnaiveHyp and Section 3.3.3 a suit-
able test for the connectedness of hypergraphs or node-induced subgraphs.

3.3.1. Generic Top-Down Join Enumeration for Hypergraphs

Our generic top-down join enumeration algorithm TDPLANGENHYP is based on
memoization [5]. We present its pseudocode in Figure 3.3. As input, TDPLANGEN-
HYP takes a hypergraph H and a set of (join) operators O. Both inputs are derived
from some SQL query. For more information on how a query is transformed into a set
of operators O and a hypergraph, we refer to [20].

Like dynamic programming, TDPLANGENHYP first initializes the building blocks
for single relations and adds them to the lookup table BestTree. It then calls the recur-
sive routine TDPGHYPSUB in Line 3 of TDPLANGENHYP for the whole set V of
nodes. TDPGHYPSUB checks for the presence of an already derived best plan for any
input set of nodes S. If such a plan does not exist, TDPGHYPSUB iterates over all
ccps (S1, S2) for S (Line 2). If an operator is applicable [20] (Line 4), the subroutine
BUILDTREE is invoked. The applicability test (Line 4) includes L-TES ⊆ S1 ∧ R-TES
⊆ S2 and ensures correctness of the generated plan [20].

Whereas Line 2 declaratively specifies the set of ccps for S to be considered, any real
implementation must provide a procedure to generate them explicitly. This is the task
of a partitioning algorithm and the only exchangeable part of our generic algorithm
TDPLANGENHYP. In Section 3.3.2, we will describe with PARTITIONnaiveHyp a
naive method for computing Pccp(S).

Remember that for TDPLANGEN as described in Section 2.2.1, we only considered
symmetric pairs once and, therefore, had to compute P sym

ccp (S) only where |P sym
ccp (S)|∗

2 = |Pccp(S)| holds. This was possible since we only considered inner joins and thus
did not rely on an applicability test. But for the conflict detection approach of [20]
to work properly, we have to make sure that all ccps for S are considered in Line 4.
This is because at least one ccp of each symmetric pair, i.e. either (S1, S2) or (S2, S1),
will fail the applicability test APPLICABLE for the matching ◦. Hence, we still have to
handle commutativity explicitly within BUILDTREE.

The pseudocode of BUILDTREE is given in Figure 3.4. It is used to compare the
cost of the join trees that belong to the same H|S . The basic functionality is already
described in Section 2.2.1. New, however, is the handling of commutativity. Therefore,
the (join) operator ◦ is passed to BUILDTREE. Only if ◦ has the commutative property
[20], commutativity can be applied (Lines 5 to 7). Interesting orders should be handled
as proposed in [25, 23].
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TDPLANGENHYP(H,O)

� Input: connected H = (V,E), O set of operators ◦
� Output: an optimal join tree for H

1 for i← 1 to |V |
2 BestTree[{Ri}]← Ri

3 return TDPGHYPSUB(H)

TDPGHYPSUB(H|S , O)

� Input: connected H|S , O set of operators ◦
� Output: an optimal join tree for H|S

1 if BestTree[S] = NULL
2 for all (S1, S2) ∈ Pccp(S)
3 for ◦ ∈ O
4 if APPLICABLE(◦,S1,S2)
5 BUILDTREE(◦, S, TDPGHYPSUB(S1), TDPGHYPSUB(S2))
6 return BestTree[S]

Figure 3.3.: Pseudocode for TDPLANGENHYP

BUILDTREE(◦, S, T ree1, T ree2)
� Input: (join) operator ◦, vertex set S, two optimal join trees

1 CurrentTree← CREATETREE(Tree1, T ree2)
2 if BestTree[S] = NULL ∨

cost(BestTree[S]) > cost(CurrentTree)
3 BestTree[S]← CurrentTree
4 if ◦ is commutative
5 CurrentTree← CREATETREE(Tree2, T ree1)
6 if cost(BestTree[S]) > cost(CurrentTree)
7 BestTree[S]← CurrentTree

Figure 3.4.: Pseudocode for BUILDTREE

3.3.2. Naive Partitioning of Hypergraphs

As we have seen, the generic top-down enumeration algorithm iterates over the ele-
ments of Pccp(S). One way of computing the ccps for S is adopting the naive generate-
and-test strategy PARTITIONnaive, as presented in Section 2.2.2. We call the resulting
naive partitioning algorithm PARTITIONnaiveHyp and give its pseudocode in Figure
3.5. In Line 1, all 2|S|−2 possible non-empty and proper subsets of S are enumerated.
Three conditions have to be met so that a partition (C, S \ C) is a ccp. We check the
connectivity of H|C and H|S\C in Line 2. We give a test for connectedness in Section
3.3.3. The third condition that C needs to be connected to S \ C is ensured implicitly
by the requirement that the (sub) graph handed over as input is connected.

3.3.3. Test for Connectedness of Hypergraphs

Whereas the test for connectedness for query graphs with simple edges as described
in Section 2.2.2 is cheap (O(|V |)) and straightforward to implement, the test for con-

73



3. Hypergraph-Aware Join Enumeration Algorithms

PARTITIONnaiveHyp(H|S)

� Input: a connected (sub) graph H|S)
� Output: Pccp(S)

1 for all C ⊂ S ∧ C 6= ∅
2 if ISCONNECTEDHYP(H|C) ∧ ISCONNECTEDHYP(H|S\C)
3 emit(C, S \ C)

Figure 3.5.: Pseudocode for naive partitioning for hypergraphs

nectedness of complex hypergraphs is more expensive (O(|V |∗|E|) and more delicate.
Therefore, we explain it here in length. We give the pseudocode with ISCONNECTED-
HYP in a modularized fashion (Figures 3.6, 3.7 and 3.8). This enables us to reuse some
parts later on.

The basic idea of ISCONNECTEDHYP is to start with a set of single disjoint vertex
sets Oi ⊂ C with |Oi| = 1. Since each vertex set contains only one vertex at a
time, each vertex set Oi itself must be connected. Then, these sets are merged by
finding connecting hyperedges. Consider a hyperedge (u, v) and two disjoint vertex
setsOi, Oj . If u ⊆ Oi ∧ v ⊆ Oj holds, then the two vertex setsOi, Oj are connected.
We have to iterate over the set of hyperedges several times until only a single vertex
set is left. Otherwise, we fail to merge some vertex setsOi, Oj . If there is only a single
vertex set left at the end, the (sub) hypergraph must be connected.

For performance reasons, our approach works in two steps. The first step merges
vertex setsOi, Oj by considering simple edges only. We do so by calling GETSIMPLE-
COMPONENTS in Line 1 of ISCONNECTEDHYP. GETSIMPLECOMPONENTS chooses
an arbitrary vertex in Line 4 to start with and assigns it to L′, which then gets enlarged
by adding adjacent singleton vertex sets within the loop in Lines 5 to 8. Note that
instead of iterating over all simple edges, we exploit the precomputed simple neigh-
borhoodNsimple (Def. 3.2.14), which is much more efficient (Line 8). If the vertex set
L′ cannot be enlarged further (Line 5), we choose another new vertex i ∈ I (Line 4)
as the new L′. The newness is ensured in Line 9. The loop starts over with the new L′.
We return from the call to ISCONNECTEDHYP with a set Oset of merged vertex sets
Oi once we have considered all single vertex sets i ∈ I that have not been previously
merged.

In Line 3 of ISCONNECTEDHYP, we implemented an early exit that only checks
if Oset contains only one vertex set Oi. If so, it is obvious that all vertices in C
must be connected. Otherwise, we have to consider the complex hyperedges in order
to determine if all Oj ∈ Oset could be merged to one Oi. This is done by calling
MERGECOMPONENTS in Line 7 of ISCONNECTEDHYP as the second step of our ap-
proach. MERGECOMPONENTS maintains two sets of vertex sets: Oset and O′set. O

′
set

was initialized with an arbitrary element T ∈ Oset (Lines 4, 6 of ISCONNECTEDHYP)
which was deleted from Oset (Line 5 of ISCONNECTEDHYP) before the call. Now,
MERGECOMPONENTS considers one vertex set Oi ∈ Oset at a time (Line 1) and tries
to merge it with some vertex sets Oj (Line 7) already added to O′set. Therefore, we
need to consider hyperedges that can connect Oi with Oj . Instead of iterating over
the list of complex hyperedges, we make use of the neighborhood N (Def. 3.2.15) in
Line 6. If two candidates Oi, Oj can be merged, we have to make sure that the now
combined vertex set T cannot be further enlarged with other elements of O′set. This is
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ISCONNECTEDHYP(H|C)

� Input: a node induced subgraph H|C
� Output: TRUE if H|C is connected, FALSE otherwise

1 Oset ← GETSIMPLECOMPONENTS(H|C , C, ∅)
2 if |Oset| ≤ 1
3 return TRUE
4 T ← Oi ∈ Oset

5 Oset ← Oset \ {T}
6 O′set ← {T}
7 O′set ← MERGECOMPONENTS(H|C , ∅, Oset, O

′
set)

8 return |O′set| ≤ 1

Figure 3.6.: Pseudocode for ISCONNECTEDHYP

GETSIMPLECOMPONENTS(H|S , I,X)

� Input: I ∪X = S, X ∩ I = ∅
� Output: Oset a set<connected sets>
∀Oi,Oj∈Oset

Oi, Oj ⊆ I ∧Oi ∩Oj = ∅
1 Oset ← ∅
2 while I 6= ∅
3 L← ∅
4 L′ ← i ∈ I
5 while L 6= L′

6 D ← L′ \ L
7 L← L′

8 L′ ← L′ ∪ ((Nsimple(D) ∩ S) \X)
9 I ← I \ L′

10 Oset ← Oset ∪ {L′}
11 return Oset

Figure 3.7.: Pseudocode for GETSIMPLECOMPONENTS

necessary because for the combined set T , other hyperedges might qualify where one
of their two hypernodes can contain nodes from Oi and Oj at the same time. There-
fore, the loop of Line 4 is put in place. When T cannot be enlarged any further, we add
it to O′set in Line 11. Note that all vertex sets Oj used for the enlargement of T have
been deleted from O′set before (Line 9). Once all Oi of Oset have been considered, we
know that no element Oj of O′set can be merged with any other Ok ∈ O′set.

When the call is returned, we check how many elements are contained in O′set. We
know that C can only be connected if O′set has just one element. Since we define an
empty set to be connected as well, we check for |O′set| ≤ 1 and return the result of this
test (Line 8).

3.4. Conservative Partitioning for Hypergraphs

In Section 2.4 and 2.5 MINCUTBRANCH [8, 9] and MINCUTCONSERVATIVE [12]
have been presented. Both partitioning algorithms are very efficient, but do not accept
hypergraphs as input. PARTITIONnaiveHyp, on the other hand, can handle hypergraphs,
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MERGECOMPONENTS(HS , X,Oset, O
′
set)

� Input: S ∩X = ∅, Oset, O
′
set sets<connected sets>

� Output: O′set a set<connected sets>
∀Oi,Oj∈O′

set
Oi, Oj ⊆ (S \X) ∧Oi ∩Oj = ∅

1 for all Oi ∈ Oset

2 T ← Oi

3 t← 0
4 while t 6= |T |
5 t← |T |
6 Nset ← N (S, T,X)
7 for all Oj ∈ O′set
8 if ∃v ∈ Nset : v ⊆ Oj

9 O′set ← O′set \ {Oj}
10 T ← T ∪Oj

11 O′set ← O′set ∪ {T}
12 return O′set

Figure 3.8.: Pseudocode for MERGECOMPONENTS

but is too expensive to execute and, thus, should not be used in practice, as Section 3.6
will show.

In this section, we present with MINCUTCONSERVATIVEHYP [11] a partitioning
algorithm that performs much better when enumerating all ccps for a given S and a
given hypergraph. The name was chosen because we adopted and extended a principle
idea of MINCUTCONSERVATIVE. Since MINCUTCONSERVATIVEHYP is a partition-
ing algorithm, it can be used to instantiate the generic top-down join enumeration
algorithm (Section 3.3.1). We denote the instantiated top-down memoization variant
by TDMCCHYP (short for TDMINCUTCONSERVATIVEHYP). The pseudocode for
MINCUTCONSERVATIVEHYP is given in Figure 3.10.

3.4.1. Overview of MINCUTCONSERVATIVEHYP

Before we present the algorithm in detail, we explain its basic idea. The goal of a
partitioning algorithm is to compute the set Pccp(S) for a connected vertex set S. As
we will show in Section 3.6, the generate-and-test approach of TDBASICHYP is not
practical at all, because the majority of generated partitions is rejected by either one
of the tests for connectedness in Line 2 of PARTITIONnaiveHyp. In certain scenarios
(e.g., chain queries), this adds an exponential overhead for each emitted ccp. Clearly,
this has to be avoided.

Let C be a set of vertices. For the time being, assume that C is initialized with an
arbitrary single vertex t ∈ S. The general idea of MINCUTCONSERVATIVEHYP is
to recursively enlarge a connected set C of vertices by adding members of its neigh-
borhood N . If at some point during the enlargement of C its complement S \ C in
S is connected as well, the algorithm has found a ccp for S. We ensure that at (al-
most) every instance of the algorithm’s execution C is connected. Sometimes there
are exceptions, and their handling is described below.

Besides, the connectedness of C’s complement S \ C MINCUTCONSERVATIVE-
HYP has to meet some more constraints before emitting a ccp: (1) Only one of two
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symmetric ccps is computed, (2) the emission of duplicates has to be avoided, and (3)
all ccps for S have to be computed as long as they comply with constraint (1).

We demand constraint (1) purely out of performance reasons. This is if a ccp is
found and emitted, we can emit its symmetric counterpart right away and do not need
to bother to compute it later on. We can easily ensure constraint (1) because the start
vertex t – arbitrarily chosen as the initial neighborhood – is always contained in C
and, therefore, can never be part of its complement. For the second constraint, the
algorithm uses a filter set X of neighbors to exclude from processing. After every
recursive self-invocation of the algorithm, the adjacent hypernode v that was used
to enlarge C is added to X . The presence of cycles in the hypergraph that involve
complex hyperedges requires some additional precautions. Therefore, we introduce
Xmap, which is a mapping between vertices and vertex sets, and helps us to prevent
duplicates. Later, we will see in detail how this ties in. For constraint (3), it is sufficient
to ensure that all possible connected subsets of S that contain the start vertex t are
considered when enlarging C.

There are certain scenarios, e.g., when simple hypergraphs like star queries are con-
sidered, where constructing every possible connected subset C of S produces an ex-
ponential overhead. This is because most of the produced complements S \ C are not
connected and the partitions (C, S \ C) computed this way are not valid ccps. There-
fore, the algorithm follows a conservative approach by enhancing C in such a way that
the complement must be connected as well.

To explain this approach, we have to make some observations. From the recursive
process of enlarging C, we know that the number of members in C must increase by
at least one in every iteration. Furthermore, if a partition (C, S \ C) is not a ccp for
S, then S \ C consists of k ≥ 2 connected subsets O1, O2, ..., Ok ⊂ (S \ C) that
are disjoint and not connected to each other. Hence, those subsets O1, O2, ...Ok can
only be adjacent to C. Let v1, v2, ..., vl be hypernodes that are all the members of C’s
neighborhood N (S,C, ∅). Then every Oi with 1 ≤ i ≤ k must contain at least one
such vy where 1 ≤ y ≤ l and k ≤ l holds. The first ccp after recursively enlarging
C by members of S \ C would be generated when all subsets Oi with 1 ≤ i ≤ k
but one are joined to C. Hence, in order to ensure that at every recursive iteration of
MINCUTCONSERVATIVEHYP the complement S \C is connected as well, it does not
always suffice to enlarge C by only one of its adjacent hypernodes, but by a larger
subset ∪Oj of its direct and indirect neighborhood. Section 3.4.4 will explain how the
subsets O1, O2, ...Ok are computed with GETCONNECTEDCOMPONENTS.

Let C be a connected set of vertices and (u, v) a complex hyperedge with |v| >
1 ∧ u ⊆ C. Then, if C is enlarged by v to C ′ := C ∪ v, the new C ′ is not nec-
essarily connected. For an example, we refer to Figure 3.1. If C is set to {R0} and
v = {R1, R2}, the new C ′ = {R0, R1, R2} is not connected any more. Hence, we
have to check every time whether C ′ is connected. DPHYP deals with this problem
by exploiting its bottom-up processing nature (see ENUMERATECMPREC in [21]): C ′

is connected if and only if there exists an entry for C ′ in the dynamic programming
table (BestTree[C ′]). We cannot rely on such a trick because TDMINCUTCON-
SERVATIVEHYP works top-down. Moreover, it is not sufficient to precompute the
connectedness of certain subsets of V , e.g. all complex complex hypernodes of V .
In fact, we would have to consider all 2|V | − 2 possible subsets of V or at least all
connected non-empty subsets of V . Therefore, we have chosen a different approach.
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We introduce a set of vertex sets Cset. Cset keeps track of the connected components
(maximally enlarged subsets) of C that are not connected to each other. To check if
C is connected, we only have to ensure that Cset contains just one vertex set (which
would be equal to C). Since the majority of the hypernodes of all hyperedges will be
connected, maintaing Cset will be cheap. In the worst case, it is in O(|Cset|2), which
is still cheaper than a call to ISCONNECTED (O(|C|2)). MAINTAINCSET takes care of
this task and is explained in Section 3.4.5.

3.4.2. The Algorithm in Detail

Now we take a closer look at the pseudocode of MINCUTCONSERVATIVEHYP in Fig-
ure 3.10. PARTITIONMinCutConservativeHyp invokes MINCUTCONSERVATIVEHYP

with C = X = F = ∅. Cset as well as Xmap are also empty. With the exception
of F , the intention behind every parameter of MINCUTCONSERVATIVEHYP has al-
ready been explained. F is used as an optimization technique in form of a filter set to
speed up duplicate avoidance and is discussed in Section 3.4.3.

Remember that S is the set for which we want to create ccps (C, S \C). MINCUT-
CONSERVATIVEHYP recursively enlargesC until the stop criterium with |C| = |S|−1
(Line 3) is met. C is enlarged by hypernodes that are members of its minimal neigh-
borhood (Definition 3.2.16, Line 8). To avoid duplicate ccps, vertices that have been
added to C in previous invocations are excluded here and in further child invocations.
In the root invocation,C is set to be empty, which means that its minimal neighborhood
would be empty as well. To deal with the initial empty C, we redefine the minimal
neighborhood of the empty set to be the singleton set containing solely an arbitrary
start vertex t ∈ S.

The loop in Lines 8 to 20 iterates over all adjacent hypernodes v, where v ∈ N ↓
(S,C,X)∧C ∪ v 6= S holds. The condition C ∪ v 6= S ensures that the new C for the
next child invocation is not equal to S, which would not give rise to any more ccps.

As has been discussed, we need to take special care of how we enlarge C such that
the complement S \ (C ∪ v) is connected as well. Therefore, we have to determine if
S \ (C ∪v) consists of subsets O1, O2, ...Ok that are disjoint and not interconnected to
each other. Thus, we calculateO := O1, O2, ...Ok by a call to GETCONNECTEDCOM-
PONENTS (explained in Section 3.4.4). Following from the discussion in Section 3.4.1,
the next ccp is only emitted when all but one subsetOi with 1 ≤ i ≤ k are merged with
the current C. As a consequence, we compute the next C simply by assigning Oi’s
complement in S to C ′ (Line 11). All different Oi are then considered by processing
the loop consisting of Lines 10 to 15.

Referring to Section 3.4.1, a merge of an adjacent hypernode withC might not result
in a connected C ′ anymore. This still might be true if even all but one of the connected
subsets O1, O2, ...Ok are merged with C ′, i.e. C ′ = S \ Oi. We exemplify this fact
with the complex hypergraph of Figure 3.9. Therefore, assume that the initial C is set
to {R0}. The next step enlarges the initial C with v = {R1, R3}. Then, the connected
components of the complement S \ (C ∪ v) = {R2, R4} are computed by invoking
GETCONNECTEDCOMPONENTS. Since R2 is not connected to R4 two components
are returned by GETCONNECTEDCOMPONENTS. For the first connected component
R2, the new C ′ is computed as {R0, R1, R3, R4}. But the new C ′ is not connected.
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R
0

R
3

R
4

R
1

R
2

Figure 3.9.: Hypergraph with five relation and a disconnected hypernode.

Therefore, MAINTAINCSET (explained in Section 3.4.5) manages the set of connect-
ed subsets of C by adding and merging C ′ \ C with the elements of Cset. In Line 15,
MINCUTCONSERVATIVEHYP invokes itself. Before the next child invocation emits
a partition (C, S \ C), the condition of Line 1 is checked. Here, we ensure that C is
connected by checking the cardinality of Cset. Furthermore, we ensure that S \ C is
not empty.

The next section explains our duplicate avoidance technique.

3.4.3. Avoiding Duplicates

In the following, we present two alternative approaches: Our first approach is more ef-
ficient, but produces false negatives. Our second approach produces no false negatives,
but has higher processing costs.

Duplicate Avoidance with False Negatives

To prevent the emission of duplicate ccps, MINCUTCONSERVATIVEHYP distinguishes
between two cases: the simple case and the complex case.

The first case occurs if solely a single vertex r is added toC, i.e., |C ′\C| = 1. In this
case, we can apply the duplicate avoidance technique of MINCUTCONSERVATIVE [12]
(Section 2.4), which we now briefly review. The new node r is added to the excluded
set X ′ (Line 17). As a consequence, r cannot be chosen again from the neighborhood
(Line 8) in any further child invocation. Additionally, we have to check that X ′ is
disjoint with C ′ (Line 12). To see this, imagine a vertex set v with |v| = 1 was merged
withX , and in a later iteration of the loop in Line 8, another vertex set uwith |u| = 1 is
chosen to be merged withC ′. Assume that the call to GETCONNECTEDCOMPONENTS

yields O = {O1, O2, ...Ok}. Then, u must be part of some Oi (1 ≤ i ≤ k). Now,
if the previously chosen v is also part of Oi at some recursive call, then only ccps are
emitted that have been emitted before. The check X ′ ∩ C ′ 6= ∅ prevents this.

The second case is much more complex. We proceed in several steps. In step 1,
let us observe that it is easy to generate duplicate ccps. Consider the hypergraph in
Figure 3.11 with S = {R0, R1, R2, R3, R4, R5}. Let us forward to the point of the
algorithm’s execution whereC = {R0, R1} holds. To continue, we have to recursively
enlarge C with its neighbors. Hence, we have to walk the cycle in the direction C →
v → w, which generates C, C ∪ v, C ∪ v ∪w. The opposite direction gives us C ∪w,
C ∪ w ∪ v. Thus, it is easy to generate duplicate connected components, and because
C ∪ v ∪ w would be generated twice, the corresponding ccp (C ∪ v ∪ w, x) would be
emitted twice.
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PARTITIONMinCutConservativeHyp(H|S)

� Input: a connected (sub) hypergraph H|S
� Output: all ccp for S

1 for all r ∈ S
2 Xmap[{r}]← ∅
3 MINCUTCONSERVATIVEHYP(H|S , ∅, ∅, ∅, Xmap, ∅)

MINCUTCONSERVATIVEHYP(H|S , C, Cset, X,Xmap, F )

� Input: connected set S, C ∩X = ∅, F ⊆ C
Cset a set<connected sets>
Xmap a map<vertex, set of vertices>

� Output: ccps for S
1 if |Cset| = 1 ∧ C 6= S
2 emit (C, S \ C) and (S \ C,C)
3 if |C| = |S| − 1
4 return
5 X ′ ← X
6 X ′map ← Xmap

7 F ′ ← F
� N ↓ (S, ∅, ∅) = {arbitrary element of t ∈ S}

8 for all v ∈ N ↓ (S,C,X) : C ∪ v 6= S
9 O ← GETCONNECTEDCOMPONENTS(H|S , C ∪ v)

10 for all Oi ∈ O
11 C ′ ← S \Oi

12 if X ′ ∩ C ′ 6= ∅ ∨ ((C ′ \ C) ∩ F ′ 6= ∅ ∧ ¬CHECKXMAP(C ′, F ′, X ′map))
13 continue
14 C ′set ← MAINTAINCSET(H|S , C, C

′, Cset)
15 MINCUTCONSERVATIVEHYP(H|S , C

′, C ′set, X
′, X ′map, F

′)
16 if |v| = 1
17 X ′ ← X ′ ∪ v
18 else
19 F ′ ← F ′ ∪ v
20 X ′map ← MAINTAINXMAP(v,X ′map)

Figure 3.10.: Pseudocode for MINCUTCONSERVATIVEHYP
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Figure 3.11.: Sample Hypergraph

In step 2, we convince ourselves that the duplicate avoidance technique of MIN-
CUTCONSERVATIVE does not help here. Imagine we have to partition the hypergraph
in Figure 3.11 with S = {R0, R1, R2, R3, R4, R5}. Then the minimal neighborhood
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N ↓ (S,C,X) with C = {R0, R1} contains v = {R2, R3}. Once v is chosen in Line
8, v is added to C. Assume we apply the technique used in MINCUTCONSERVATIVE.
Then we have to add all members of v to X ′. Because of R3 ∈ v, that would imply
that we cannot generate C ∪ w ∪ {R3} with w = {R4} later on, which breaks our
correctness constraint (3) (Section 3.4.1).

In step 3, we present our duplicate avoidance strategy. Therefore, we introduce
Xmap that represents a mapping between vertices and vertex sets. The mapping is
managed by MAINTAINXMAP presented in Figure 3.12. Now, instead of adding all
vertices of the hypernode v to X ′ (case 1), we alter Xmap. We register for every
member of v either (1) the whole hypernode A = v (Line 3 of MAINTAINXMAP), or
(2) merge v with an already registered vertex set (Line 5 of MAINTAINXMAP).

To check if we are allowed to add {R3} to C (Figure 3.11), we have to consult our
Xmap. This is done by a call to CHECKXMAP (Line 12 of MINCUTCONSERVATIVE-
HYP). Figure 3.13 shows the pseudocode. CHECKXMAP checks for all vertices r ∈ v
that are added toC if their mappingXmap[r] is (1) either empty or (2) does not overlap
completely with the new C so that Xmap[r] 6⊆ C holds (Line 2 of CHECKXMAP). Let
us explain the intuition behind the latter by referring to our example scenario. When
we enlarged C = u with v, we set Xmap[R2] = v and Xmap[R3] = v after returning
from the child invocation. In the next iteration of the loop (8 of MINCUTCONSER-
VATIVEHYP), we merge C = u with w. If we now want to add R3 to C = u ∪ w,
CHECKXMAP allows this because Xmap[R3] = v and v \ C 6= ∅ holds. In general,
any combination of vertices in v is allowed to be added to C, as long as not all ele-
ments of v are added to C. At that point where we try to add the last member r of v
to C as well, Xmap[r] returns v, and since v ⊂ C holds, CHECKXMAP returns FALSE.
Since CHECKXMAP ensures that not all members of Xmap[r] are included into C ′,
we have to pay attention during the maintenance of Xmap in the case the value of a
given entry Xmap[r] is already assigned with. Before we enlarge Xmap[r] (Line 5 of
MAINTAINXMAP) we have to ensure that Xmap[r] does not already contain A (second
part of the condition in Line 2). For those cases, we have to curtail Xmap[r] (Line 3)
instead of enlarging it. Thus, we allow only for proper subsets of A (and not for the
superset Xmap[r] of A) to be added to C in later recursions of MINCUTCONSERVA-
TIVEHYP.

Iterating over all members of C in Line 1 of CHECKXMAP is relatively expensive.
Therefore, we introduce a vertex filter set F . In Line 19 of MINCUTCONSERVATIVE-
HYP, we add all elements of a hypernode v to F . It is easy to see that we only need
to consider the vertices of C that are also element of F in Line 1 of CHECKXMAP.
Furthermore, we can even avoid the whole effort of evaluating CHECKXMAP if all
the vertices in C ′ \ C with which C is going to be enlarged are disjoint to F (Line
12 of MINCUTCONSERVATIVEHYP). If we assume that the majority of complex hy-
peredges are introduced because of non-inner join conflict encodings, the majority of
hypergraphs will not have any cycles involving a complex hyperedge and can be cate-
gorized as complex cycle-free hypergraphs. In those cases, (C ′ \ C) ∩ F ′ = ∅ holds,
and CHECKXMAP is never called.

As has been said, this approach produces false negatives. Hence, duplicate ccps
might be emitted. But these cases are rare. Nevertheless, they result in a performance
penalty because of two reasons: First, further unnecessary subcalls to MINCUTCON-
SERVATIVEHYP might be made, which can cause the emission of further false ccps.
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MAINTAINXMAP(A,Xmap)

� Input: set A of vertices, Xmap a map<vertex, set of vertices>
� Output: modified Xmap

1 for all r ∈ A
2 if Xmap[r] = ∅ ∨A ⊆ Xmap[r]
3 Xmap[r]← A
4 else
5 Xmap[r]← Xmap[r] ∪A
6 return Xmap

Figure 3.12.: Pseudocode for MAINTAINXMAP

CHECKXMAP(C,F,Xmap)

� Input: set C, F , Xmap a map<vertex, set of vertices>
� Output: FALSE if duplicate ccps have to be avoided

1 for all r ∈ (C ∩ F )
2 if Xmap[r] 6= ∅ and Xmap[r] \ C = ∅
3 return FALSE

4 return TRUE

Figure 3.13.: Pseudocode for CHECKXMAP

And second, false ccps increase the number of iterations of the loop in Lines 2 to 5
of TDPGHYPSUB. Which in turn results in two additional subcalls of TDPGHYP-
SUB for every duplicate ccp. Note that those two invocations will return immediately
because the condition of Line 1 of TDPGHYPSUB evaluates to FALSE. With the com-
plex hypergraph of Figure 3.14 as input, we give an example where a duplicate ccp
is produced through a false negative. Table 3.1 lists all input parameters for each in-
vocation of MINCUTCONSERVATIVEHYP except for H|S and Cset. In this example,
S will be set to S = {R0, R1, R2, R3, R4, R5}. The first column of Table 3.1 just
serves as entry number for reference. Although C is a vertex set, we display the order
of insertion instead of using a set notation (Column 3). For the given S, MINCUT-
CONSERVATIVEHYP emits 19 ccps (symmetric counter pairs not counted), including
one duplicate ccp. Thereby ({R0, R1, R2, R5}, {R3, R4}) is emitted twice, right af-
ter Entry 10 and Entry 19. The call to R0 → R1 → R2 → R5 should have been
avoided (Entry 19). The problem here is that the Xmap entries of R2 and R5 have
each be enlarged by a second hypernode. Xmap[R2] was enlarged by R5 after the
returned call of Entry 12 and Xmap[R5] by R4 after the returned call of Entry 15.
Thus CHECKXMAP(C = {R0, R1, R2, R5}, F = {R2, R3, R4, R5}, Xmap) produced
a false negative and Entry 19 was not prevented.

Next, we present our duplicate avoidance technique that is free of false negatives.
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R0

R1

R3

R5

R4

R2

Figure 3.14.: Hypergraph H(V,E) = ({R0, R1, R2, R3, R4}, {({R0}, {R1}), ({R1},
{R2}), ({R1}, {R3}), ({R1}, {R4}), ({R1}, {R5}), ({R2}, {R4}),
({R3}, {R4}), ({R3}, {R5}), ({R4}, {R5}), ({R0}, {R2, R3}), ({R0},
{R2, R5}), ({R0}, {R4, R5})})

Duplicate Avoidance without False Negatives

As we have seen, the previous technique produces false negatives in some unlikely
scenarios. Let us discuss a simple alternative. Therefore, we do not modify the tech-
nique as used in MINCUTCONSERVATIVE for the simple cases where |v| = 1 (Line 8
of MINCUTCONSERVATIVEHYP) holds. But we modify the handling of the complex
cases with |v| > 1. Instead of maintaing a vertex set for every vertex to which we have
referred as Xmap, we introduce a set of hypernodes Xset. In case a v with |v| > 1 was
processed (Line 8 of MINCUTCONSERVATIVEHYP) we simple add v to Xset. Now
in order to detect duplicates and avoid unnecessary calls to MINCUTCONSERVATIVE-
HYP, we check if C ′ ∩ X ′ = ∅ holds. This is done as before and covers only the
simple case. For the complex case, we iterate over all entries of h ∈ Xset and ensure
that C ′ ∩ h = ∅ holds.

Unfortunately, this can become relatively expensive. Therefore, we refine our
method. The intuition behind this is that we want to skip the iteration and subsequent
checking of complex hypernodes that cannot cause duplicate ccps anyway. We achieve
this by adopting our idea of Xmap. This time, Xmap will contain sets of complex hy-
pernodes. Now once a complex hypernode v is processed, we add v toXmap[x], where
x ∈ v holds. We determine x by extracting the vertex with the smallest index in v.
This is done by MAINTAINXMAPNoFN , as given in Figure 3.15.

In order to decide if a call to MINCUTCONSERVATIVEHYP will produce duplicate
ccps and, hence, has to be avoided, we have to modify CHECKXMAP as well. We
give the pseudocode for our modified version with CHECKXMAPNoFN in Figure 3.16.
Since Xmap[r] now contains a set of complex hypernodes, we have to check each of
them to ensure that none of them is contained in C (Line 3 of CHECKXMAPNoFN ).

As has been said, duplicate ccps produced by the usage of MAINTAINXMAP and
CHECKXMAP are rare. On the other hand, MAINTAINXMAPNoFN and CHECKXMAP

NoFN are more expensive to execute. Therefore, we use MINCUTCONSERVATIVE-
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C X Xmap F

1 R0 ∅ empty ∅
2 R0→R2,R3 ∅ empty ∅
3 R0→R2,R3→R1 ∅ empty ∅
4 R0→R2,R3→R1→R4 ∅ empty ∅
5 R0→R2,R3→R1→R5 {R4} empty ∅
6 R0→R2,R3→R4 {R1} empty ∅
7 R0→R2,R3→R4→R5 {R1} empty ∅
8 R0→R2,R3→R5 {R1,R4} empty ∅
9 R0→R2,R5 ∅ R2:{R2,R3}, R3:{R2,R3} {R2,R3}
10 R0→R2,R5→R1 ∅ R2:{R2,R3}, R3:{R2,R3} {R2,R3}

emitting ({R0, R1, R2, R5}, {R3, R4})
11 R0→R2,R5→R1→R4 {R3} R2:{R2,R3}, R3:{R2,R3} {R2,R3}
12 R0→R2,R5→R4 {R1,R3} R2:{R2,R3},R3:{R2,R3} {R2,R3}

13 R0→R4,R5 ∅ R2:{R2,R3,R5}, R3:{R2,R3}, {R2,R3,
R5:{R2,R5} R5}

14 R0→R4,R5→R1,R3 ∅ R2:{R2,R3,R5}, R3:{R2,R3}, {R2,R3,
R5:{R2,R5} R5}

15 R0→R4,R5→R3 {R1,R2}
R2:{R2,R3,R5}, R3:{R2,R3}, {R2,R3,

R5:{R2,R5} R5}

16 R0→R1 ∅ R2:{R2,R3,R5},R3:{R2,R3}, {R2,R3,
R4:{R4,R5}, R5:{R2,R4,R5} R4,R5}

17 R0→R1→R2 ∅ R2:{R2,R3,R5},R3:{R2,R3}, {R2,R3,
R4:{R4,R5}, R5:{R2,R4,R5} R4,R5}

18 R0→R1→R2→R4 {R3}
R2:{R2,R3,R5},R3:{R2,R3}, {R2,R3,
R4:{R4,R5}, R5:{R2,R4,R5} R4,R5}

19 R0→R1→R2→R5 {R3, R4}
R2:{R2,R3,R5},R3:{R2,R3}, {R2,R3,
R4:{R4,R5}, R5:{R2,R4,R5} R4,R5}

emitting ({R0, R1, R2, R5}, {R3, R4})

20 R0→R1→R3 {R2}
R2:{R2,R3,R5},R3:{R2,R3}, {R2,R3,
R4:{R4,R5}, R5:{R2,R4,R5} R4,R5}

21 R0→R1→R3→R5 {R2,R4}
R2:{R2,R3,R5},R3:{R2,R3}, {R2,R3,
R4:{R4,R5}, R5:{R2,R4,R5} R4,R5}

22 R0→R1→R5
{R2,R3, R2:{R2,R3,R5},R3:{R2,R3}, {R2,R3,
R4} R4:{R4,R5}, R5:{R2,R4,R5} R4,R5}

Table 3.1.: MINCUTCONSERVATIVEHYP emits a duplicate ccp with input of Figure
3.14 and S = {R0, R1, R2, R3, R4, R5}

HYP only with the former technique and presented the latter only for reasons of com-
pleteness.

3.4.4. GETCONNECTEDCOMPONENTS

The pseudocode for GETCONNECTEDCOMPONENTS is given in Figure 3.17. As has
been said, GETCONNECTEDCOMPONENTS is designed to compute all disjoint, con-
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MAINTAINXMAPNoFN (A,Xmap)

� Input: set A of relations, Xmap a map<vertex, set of complex hypernodes>
� Output: modified Xmap

1 i← MINindex(A)
2 v ← vi ∈ A
3 Xmap[v]← Xmap[v] ∪A
4 return Xmap

Figure 3.15.: Pseudocode for MAINTAINXMAPNoFN

CHECKXMAPNoFN (C,F,Xmap)

� Input: set C, F , Xmap a map<vertex, set of complex hypernodes>
� Output: FALSE if duplicate ccps have to be avoided

1 for all r ∈ (C ∩ F )
2 if Xmap[r] 6= ∅
3 for all h ∈ Xmap[r]
4 if h \ C = ∅
5 return FALSE

6 return TRUE

Figure 3.16.: Pseudocode for CHECKXMAPNoFN

nected but not interconnected subsets O1, O2, ...Ok of Cs complement in S. The main
idea of GETCONNECTEDCOMPONENTS is similar to the one used in ISCONNECT-
EDHYP (Section 3.3.3). In Line 1, we call GETSIMPLECOMPONENTS (explained in
Section 3.3.3) to compute all the subsets of S \ C that induce disjoint connected hy-
pergraphs consisting of simple edges only.

The result of that call is stored into Oset. Now, we only need to check whether the
simple connected components can be merged further by considering complex hyper-
edges. This task is delegated to MERGECOMPONENTS (Section 3.3.3) in Line 5 of
GETCONNECTEDCOMPONENTS. For more details, we refer to Section 3.3.3.

3.4.5. MAINTAINCSET

The purpose of MAINTAINCSET is to speed up the test for connectedness of C. The
result of the test is needed in order to determine if a partition (C, S \ C) is a valid
ccp (Line 1 of MINCUTCONSERVATIVEHYP). The pseudocode is shown in Figure
3.18. As the name implies, MAINTAINCSET managesCset, which contains all disjoint,
connected but not interconnected subsets ofC. IfCset contains only one vertex set, this
means that C consists only of one connected subset and must therefore be connected.
Besides the Cset also S, C and C ′ are handed over. The latter two input parameters are
used to determine all vertices that were added to C. We assign the result to the vertex
set I (Line 1).
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GETCONNECTEDCOMPONENTS(H|S , C)

� Input: C ⊂ S a connected set
� Output: O′set a set<connected sets>
∀Oi,Oj∈O′set Oi, Oj ⊆ (S \ C) ∧Oi ∩Oj = ∅

1 Oset ← GETSIMPLECOMPONENTS(H|S , S \ C,C)
2 T ← Oi ∈ Oset

3 Oset ← Oset \ {T}
4 O′set ← {T}
5 O′set ← MERGECOMPONENTS(H|S , C,Oset, O

′
set)

6 return O′set

Figure 3.17.: Pseudocode for GETCONNECTEDSETS

MAINTAINCSET(H|S , C, C
′, Cset)

� Input: set S of relations, C ′ ⊆ S, C ⊆ C ′
Cset a set<connected sets>

� Output: modified Cset

1 I ← C ′ \ C
2 Oset ← GETSIMPLECOMPONENTS(H|S , I, S \ I)
3 C ′set ← MERGECOMPONENTS(H|S , S \ C ′, Oset, Cset)

4 return Cset

Figure 3.18.: Pseudocode for MAINTAINCSET

We utilize GETSIMPLECOMPONENTS (Line 2) to compute all the subsets of I that
induce connected hypergraphs consisting only of simple edges. The computed subsets
are stored in Oset and handed over to MERGECOMPONENTS (Line 3), which merges
them with the components ofCset. For every subset ofOset, there are two possibilities.
It can either be merged with one subset of Cset, or it combines two or more subsets of
Cset by forming one unified vertex set. But one member of Oset will always be adja-
cent to at least one connected subset in Cset. There is only one exception that occurs
when MAINTAINCSET is called from MINCUTCONSERVATIVEHYP’s root invocation,
then Cset will be empty and C ′set will be returned containing only {t} (a vertex set
with the start vertex t).

3.4.6. An Example

We illustrate the execution of MINCUTCONSERVATIVEHYP by an example. Table 3.2
shows the execution steps for the cyclic query given in Figure 3.1. The first column
is the table entry number that serves as reference. The second column keeps track of
the recursion level. The root invocation is indicated with a 0. Columns 3− 6 show the
input parameters of MINCUTCONSERVATIVEHYP. S is set to {R0, R1, R2, R3, R4}
and remains unchanged. The last column displays the result of the minimal neighbor-
hood (Def. 3.2.16) N ↓ (S,C,X). The start vertex t is set to R0. Although C is a
vertex set, we display the order of insertion instead of using a set notation (Column 3).
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In this example, MINCUTCONSERVATIVE emits six ccps. However, one partition is
generated but not emitted because C is not connected at that point (entry no. 11). We
have omitted the calls to MAINTAINCSET because its results are implicitly given as a
parameter of the next child invocation. MAINTAINXMAP is called only once (entry no.
13). It registers for every member of the hypernode {R1, R2} the hypernode itself. At
the same time, F is enlarged with {R1, R2}. We can see that our filter technique is
quite effective, since CHECKXMAP is called only once (entry no. 17). All the other
times, (C ′ \ C) ∩ F ′ 6= ∅ does not hold. There is only one time where the result of
GETCONNECTEDCOMPONENTS contains more than one vertex set (entry no. 23). At
this instance, v is assigned with {R3} and C is assigned with {R0, R4}. Instead of
setting C ′ to C ∪ v, it is set to S \ Oi = S \ {R1} = {R0, R2, R3, R4}. Otherwise,
the complement S \ C ′ = {R1, R2} would not be connected during the next child
invocation.

3.5. Generic Top-Down Join Enumeration for
Hypergraphs

The techniques we used in Section 3.4 to construct MINCUTCONSERVATIVEHYP as
a derivative of MINCUTCONSERVATIVE are very specific and cannot be applied to
any other graph-partitioning algorithm in order to enable it to handle hypergraphs.
Thus, we want to propose a more generic approach. This section describes a generic
graph-partitioning framework to which we refer as PARTITIONX . It is an improvement
of [10]. PARTITIONX enables any existing graph-partitioning algorithm for top-down
join enumeration to deal with hypergraphs. In particular, we use PARTITIONX to en-
hance MINCUTBRANCH, which results in a novel partitioning algorithm that we call
MINCUTBRANCHHYP. We call the instantiated top-down join enumeration variant
TDMCBHYP. As we will see, the new approach is not only generic, but also more
efficient in terms of performance and, thus, superior.

3.5.1. High-Level Overview

To explain our main ideas, let us make four important observations. These will high-
light the problems we face and will indicate solutions.

First, assume that we have two simple connected hypergraphs Hv = (v,Ev) and
Hw = (w,Ew) with |v| > 1∨ |w| > 1. Now we want to connect both graphs with one
edge. We discuss two possible solutions: (1) A connected complex hyperedge (v, w)
covering the whole vertex sets v, w on both sides. We refer to the resulting complex
hypergraph as Hcomplex. (2) Instead of (v, w) we introduce a simple edge ({x}, {y}),
where x ∈ v ∧ y ∈ w holds. We refer to this connected simple hypergraph as Hsimple.
According to Definition 3.2.13, Hcomplex is more restrictive than Hsimple, since parti-
tioning the resulting set V = v ∪ w into all possible ccps (Definition 3.2.8) leaves us
with much fewer choices if a complex hyperedge (|P ccp(v ∪ w)| = 2) is introduced
(1) instead of a simple edge (2). To exemplify this, consider the disconnected graph
H = (V = v ∪ w,E = {({R0}, {R1})}) with v = {R0, R1} ∧ w = {R2}. On the
one hand, if we connect v and w by the complex hyperedge (v, w), then P ccp(v ∪ w)
has two ccps: ({R0, R1}, {R2}) and ({R2}, {R0, R1}). On the other hand, if we
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L C Cset X Xmap F N ↓
1 0 ∅ ∅ ∅ empty ∅ {{t = R0}}

2 1 R0 {{R0}} ∅ empty ∅ {{R1, R2},
{R4}}

3 1 emitting ({R0}, {R1, R2, R3, R4})

4 1
v = {R1, R2} → GETCONNECTEDCOMPONENTS(S,

{R0, R1, R2})→ {{R3, R4}}

5 2 R0→R1, R2
{{R0}, {R1}, ∅ empty ∅ {{R3},
{R2}} {R4}}

6 2
v = {R3} → GETCONNECTEDCOMPONENTS(S,

{R0, R1, R2, R3})→ {{R4}}
7 3 R0→R1, R2→R3 {{R0, R1, R2, R3}} ∅ empty ∅ {{R4}}
8 3 emitting ({R0, R1, R2, R3}, {R4})

9 2
v = {R4} → GETCONNECTEDCOMPONENTS(S,

{R0, R1, R2, R4})→ {{R3}}

10 3 R0→R1, R2→R4
{{R0, R2, R4}, {R3} empty ∅ ∅{R1}}

11 3 no emission of ({R0, R1, R2, R4}, {R3}) since |Cset| > 1

12 1
v = {R4} → GETCONNECTEDCOMPONENTS(S,

{R0, R4})→ {{R1, R2, R3}}
13 1 call to MAINTAINXMAP({R1, R2}, empty)→ R1 : {R1, R2}, R2 : {R1, R2}

14 2 R0→R4 {{R0, R4}} ∅ R1:{R1,R2}, {R1, {{R2},
R2:{R1,R2} R2} {R3}}

15 2 emitting ({R0, R4}, {R1, R2, R3})

16 2
v = {R2} → GETCONNECTEDCOMPONENTS(S,

{R0, R2, R4})→ {{R1, R3}}

17 2
call to CHECKXMAP({R0, R2, R4}, {R1,R2},R1:{R1,R2},

R2:{R1,R2})→ returns TRUE

18 3 R0→R4→R2 {{R0, R2, R4}} ∅ R1:{R1,R2}, {R1, {{R3}}R2:{R1,R2} R2}
19 3 emitting ({R0, R2, R4}, {R1, R3})

20 3
v = {R3} → GETCONNECTEDCOMPONENTS(S,

{R0, R2, R3, R4})→ {{R1}}

21 4 R0→R4→R2→R3 {{R0, R2, R3, R4}} ∅ R1:{R1,R2}, {R1, {{R1}}R2:{R1,R2} R2}
22 4 emitting ({R0, R2, R3, R4}, {R1})

23 2
v = {R3} → GETCONNECTEDCOMPONENTS(S,

{R0, R3, R4})→ {{R1}, {R2}}

24 3 R0→R4→R1, R3 {{R0, R1, R3, R4}} {R2}
R1:{R1,R2}, {R1, ∅
R2:{R1,R2} R2}

25 3 emitting ({R0, R1, R3, R4}, {R2})

Table 3.2.: Exemplified execution of MINCUTCONSERVATIVEHYP for the graph of
Figure 3.1 with S = {R0, R1, R2, R3, R4}
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Figure 3.19.: (a) Overlapping hyperedges, (b) and (c) simple graphs

choose ({R0}, {R2}), this gives rise to two additional ccps: ({R0, R2}, {R1}) and
({R1}, {R0, R2}). Hence, the latter case is less restrictive.

For the second observation, we take a look at the naive partitioning strategy for hy-
pergraphs PARTITIONnaiveHyp (Figure 3.5). Line 1 of PARTITIONnaiveHyp enumerates
2|v∪w| − 2 subsets of S = v ∪ w. Considering Hcomplex, we observe that only C = v
and C = w make it past Line 2. This is clearly inefficient, since all other generated
subsets of S = v ∪ w are rejected.

Assume that we substitute the complex hyperedge (v, w) of Hcomplex by a simple
edge ({x}, {y}) with x ∈ v ∧ y ∈ w. Then, the complex graph Hcomplex becomes
a simple hypergraph to which we refer as Hcomplex→simple. As a consequence, we
can utilize the reverse mapping (Definition 3.2.12) g−1(Hcomplex→simple) and reuse a
highly efficient graph-aware partitioning algorithm for graphs like MINCUTBRANCH

or MINCUTCONSERVATIVE. However, we have to be careful, since complex hyper-
edges are more restrictive and, thus, by converting hyperedges to simple edges, invalid
ccps might be generated. Therefore, we need to check the ccps of the simple graph for
connectivity within the original hypergraph. We call partitions of the simple graph that
are not valid ccps of the original complex hypergraph false ccps. In the example used
in the first observation, the false ccps are ({R0, R2}, {R1}) and ({R1}, {R0, R2}).

Third, if we represent a complex hyperedge (v, w) by a simple edge, there
are |v| ∗ |w| possibilities to do so. For the graph presented in Figure 3.19(a),
the call to PARTITIONnaiveHyp(H|{R0,R1,R2,R3}) generates 14 subsets assigned
to C, but only C = {R0}, {R1}, {R0, R1, R2}, {R3}, {R0, R2, R3} and
{R1, R2, R3} survive the test in Line 2. Thus, there exist only six valid ccps:
{({R0}, {R1, R2, R3}), ({R0, R1, R2}, {R3}), ({R0, R2, R3}, {R1})} (symmetric
counter pairs left out). For g−1 (Definition 3.2.12) applied on the hypergraph given in
Figure 3.19(b), a graph-aware partitioning algorithm generates 12 partitions and, there-
fore, 6 false ccps. Since the two hyperedges of Figure 3.19(a) overlap, the mapping
of Figure 3.19(c) is one of the 4 possible combinations. Here, not a single false ccp is
generated when g−1 and a graph-aware partitioning algorithm is used. We conclude
that in certain cases, there are good (restrictive) and bad (less restrictive) mappings.

We summarize what we have observed so far: Using PARTITIONnaiveHyp as a par-
titioning algorithm results in a huge computational overhead. Therefore, we are in-
terested in reusing efficient graph-partitioning algorithms. For simple hypergraphs,
we only have to apply our inverse mapping function g−1 to gain a graph which can
be used as input to any graph-partitioning algorithm. Since the hypergraph is simple,
no false ccps will be produced. This is because for any simple hypergraph Hsimple:
g(g−1(Hsimple)) = Hsimple (Definitions 3.2.11 and 3.2.12) holds. But for complex
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Figure 3.20.: (a) Hypergraph, (b) simple graph and (c) final graph

hypergraphs Hcomplex: Hcomplex: g(g−1(Hcomplex)) = Hcomplex does not hold, since
g−1 maps only simple hyperedges to graph edges and ignores complex hyperedges.

Thus, we denote by s a function that maps the complex hyperedges of a given hy-
pergraph to simple hyperedges. There are several ways of defining s, but for now
we leave s undefined. Let Hcomplex be an arbitrary complex hypergraph. Then we
compute the input of our graph-partitioning algorithm as follows: g−1(s(Hcomplex)).
According to our third observation, there are good (restrictive) and bad (less restric-
tive) mappings. In other words, by applying s we might loose restrictness so that in
many cases g(g−1(s(Hcomplex))) = Hcomplex will not hold. Note that for any simple
hypergraph Hsimple, our mapping s needs to be defined as the identity function such
that g(g−1(s(Hsimple))) = Hsimple holds. In general, if s(H) 6= H holds, then the
simple hypergraph s(H) will be less restrictive and we need connection tests based on
H that filter out false ccps. In Section 3.5.3, we present COMPUTEADJACENCYINFO

as our implementation for the composition of g−1 ◦ s.
Now, take a look at Figure 3.20(a). A call to PARTITIONnaiveHyp(H|{R0,R1,R2,R3,

R4}) results in the generation of 30 subsets assigned to C, where just C =
{R0, R1, R2, R3} and C = {R4} make it past Line 2. Invoking COMPUTEADJACEN-
CYINFO (Section 3.5.3) produces the simple graph of Figure 3.20(b). Taking that graph
as an input for a call to any graph-aware partitioning algorithm would return four pairs:
({R0, R1, R2, R3}, {R4}), ({R0, R2, R3, R4}, {R1}), ({R0, R1, R3}, {R2, R4}) and
({R0, R1, R2, R4}, {R3}) (symmetric counter pairs left out). But only the first parti-
tion and its symmetric counter pair are valid ccps. Hence, the produced simple graph
of Figure 3.20(b) is less restrictive than the original one. In Figure 3.20(a), we can
see that R1 cannot be separated from R0, since otherwise, the connection to R2 would
be lost. Furthermore, R2 cannot be separated from R0, R1, or the connection to R3

would be lost. On top of that, R2 and R3 have to remain in the same subgraph, or the
connection to R4 breaks up. In conclusion, it is only possible to separate R4 from the
rest, because all other combinations would end up in more than two connected subsets
and, therefore, false ccps.

From this example we can draw our fourth observation: If a complex hyperedge
(v, w) is essential for the connectedness of the hypergraph, i.e., it is a complex ar-
ticulation hyperedge, then it is impossible to partition the graph by separating one or
two of its complex hypernodes v or w. In other words: There exists no minimal cut
involving an edge (s, t) with s ⊂ v ∧ t ⊂ v within a hypernode v that is part of an
articulation hyperedge (v, w).

In order to benefit from our last observation, we propose the concept of a compound
vertex (Definition 3.2.10). The basic idea is to group those vertices that compose a
non-separable hypernode into a new index-introducing compound vertex. Particular-
ly, we remove those vertices from the vertex (sub)set S ⊆ V that have been grouped
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and introduce the compound vertex as a new v by adding it to S (actually to some S′,
as we will see). In case that non-separable hypernodes are overlapping, we group all
overlapping vertex sets together. Those steps are performed through COMPOSECOM-
POUNDVERTICES (Section 3.5.4). The result of this step is shown in Figure 3.20(c),
where R8 is the index-introducing compound vertex representing R0, R1, R2, R3 of
Figure 3.20(a-b).

3.5.2. Structure of the Generic Partitioning Framework

With MINCUTCONSERVATIVEHYP, we have presented the first partitioning algorithm
that can efficiently handle complex hypergraphs. Analyzing its frequent code paths,
we have identified the computation of the subsumed neighborhood as a frequent and
relatively expensive hot spot. Because MINCUTCONSERVATIVEHYP has to handle
complex hyperedges, the neighborhood of a vertex or vertex set can not be precom-
puted any more. Furthermore, for every computation a subsumption test has to be
executed with a complexity of O(|Ecomplex|2), where Ecomplex = {(v, w) | v, w ∈
E ∧ (|v| > 1 ∨ |w| > 1)} is the set of complex hyperedges. For the design of our
generic partitioning framework the elimination of subsumed neighborhood compu-
tations was paramount. By applying a function s (Section 3.5.1) that maps complex
hyperedges to simple edges, we were able to achieve that. Nevertheless, since complex
hyperedges may or may not lie within a given (sub) hypergraph H|S , the precomputed
neighborhoods have to be adjusted accordingly.

Global Data Structures

Through the nature of top-down join enumeration, every call to TDPGHYPSUB (Fig-
ure 3.3) needs to hand over a vertex set to which we refer as Scurrent for now. Scurrent
is a proper subset of the vertex set used in the parent invocation of TDPGHYPSUB.
For the time being, we refer to the vertex set of the parent invocation as Sparent with
Scurrent ⊂ Sparent. Thus, the precomputed neighbors of any element x ∈ Scurrent
can only be a subset (not necessarily a proper subset) of the precomputed neighbors
in the parent invocation of TDPGHYPSUB for the same x. So an adjustment of pre-
computed neighbors can only mean the elimination and not addition of vertices within
the neighborhood. Since we may not modify precomputed adjacency information of
the parent invocation, we copy its adjacency information in order to be able to modify
and use its copy. We therefore propose the usage of a stack, where we push with every
call to the partitioning algorithm PARTITIONX (the central method of our framework
explained in the next subsection) a new entry onto the stack that is a copy of the old
top entry. The declaration of the stack named Infostack as a global variable and the
structure of its element named StackEntry are given in Figure 3.25 and 3.23. Figure
3.24 shows the definition of the structure HyperEdge. Besides the hypernodes v and
w it stores a representative vrep ⊆ v and wrep ⊆ w for each hypernode. We gain vrep
and wrep as the result of the complex hyperedge (v, w) to simple edge (vrep, wrep)
mapping as part of applying s (Section 3.5.1).
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Pseudocode of PARTITIONX

With PARTITIONX shown in Figure 3.21, we give the framework’s central method that
handles the calls to all other main methods. We differentiate between two cases: (1)
the top-level case where the handed over H|S is equal to the query graph H = (V,E)
(Lines 3 to 5) and (2) all other invocations of PARTITIONX where H|S is a proper
subgraph of H = (V,E) (Lines 6 to 8).

We identify case (1) by checking if the Infostack that is part of the global vari-
ables (Figure 3.25) is initialized yet. During the handling of case (1), we first
initialize Infostack by a call to INITIALIZEINFOSTACK (Figure 3.26) in Line 3
of PARTITIONX . In Line 4, we apply the composition of g−1 ◦ s by invoking
COMPUTEADJACENCYINFO with the whole hypergraph H = (V,E) as the argument.
The result is a connected undirected graph represented through the vertex set S and the
precomputed neighborhood arrays Ns and Nh. The latter two are declared as global
variables, shown in Figure 3.25. For performance reasons, we differentiate between
the two. The elements of the array Ns have been computed by considering simple
hyperedges only. The values for Nh originate from complex hyperedge to simple edge
mappings. Line 5 transforms certain hypernodes into compound vertices in order to
(a) regain some of the restrictiveness of the transformed hyperedges and to (b) speed
up processing, since fewer vertices are involved.

The handling of case (2) takes place in Lines 6 to 8. By invoking MANAGEINFO

STACK(S) (Line 6), a new StackEntry is pushed onto the Infostack as a copy of the
previous topmost entry. Through a call to CLEANSEHYPERNEIGHBOURS (Line 7),
we adjust the adjacency information that needs modification because complex hyper-
edges have been cut off. By cut-off edges we refer to those complex hyperedges that
have been part of the parent’s (sub) hypergraph H|Sparent

but are not fully contained
in the current sub-hypergraph H|Scurrent

with Sparent ⊃ Scurrent. RECOMPOSECOM-
POUNDVERTICES is invoked from Line 8 to ensure the accuracy of compound vertices
that have been adopted from the parent’s invocation. This can mean that compound
vertices are dissolved completely or their represented vertices are reassigned to new
compound vertices in case of overlapping complex articulation hypernodes.

Line 9 determines whether the relatively expensive connection test assessing con-
nectivity based on the original hypergraph is needed. The partitioning algorithm called
in Line 10 only sees a simple graph with intermixed original and compound vertex
nodes (index-reusing compound vertices, as we will see). Importantly, it does not
need any knowledge about the vertices represented by the compound vertices. Finally,
we loop through the emitted partitions of the simple graph (Line 11). We decode the
emitted partitions (Section 3.5.4) by substituting the compound vertices with the orig-
inal vertices (Line 12, 13) and apply the connection test (Line 15) if needed (Line 14).
Note that if a connection test is necessary (Section 3.5.5), the last step is very im-
portant in order to filter out false ccps. Missing to filter out false ccps results in the
generation of (sub)plans that rely on cross products and might be invalid [20]. Let
Ecomplex = {(v, w) | v, w ∈ E ∧ (|v| > 1 ∨ |w| > 1)} be the set of complex hyper-
edges, then the complexity of the preprocessing step is in O(|Ecomplex| ∗ |V |

2

2 ). The
complexity of the enumeration algorithm in Line 10 remains unchanged. The com-
plexity of the two additional connectivity tests is in O(|V | + | |Ecomplex|2

2 ) per emitted
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PARTITIONX(H|S)

� Input: a connected (sub) hypergraph H|S
� Output: Pccp

1 S′ ← ∅
2 if TOP(Infostack) = NIL � V = S holds
3 INITIALIZEINFOSTACK � Figure 3.26
4 COMPUTEADJACENCYINFO(H|S) � Section 3.5.3
5 S′ ← COMPOSECOMPOUNDVERTICES(H|S) � Section 3.5.4
6 else MANAGEINFOSTACK(S) � Section 3.5.6
7 CLEANSEHYPERNEIGHBOURS(H|S) � Section 3.5.6
8 S′ ← RECOMPOSECOMPOUNDVERTICES(H|S) � Section 3.5.6
9 con← CONNECTIONTESTREQUIRED(S′) � Section 3.5.5

10 P sym
partitions ← PARTITIONgraph−aware(G|S′) � Chapter 2

11 for all (l′, r′) ∈ P sym
partitions

12 l← DECODE(l′) � Section 3.5.4
13 r ← DECODE(r′) � Section 3.5.4
14 if con = TRUE
15 if ISCONNECTEDHYP(H|l) ∧ ISCONNECTEDHYP(H|r) � Section 3.5.5
16 Pccp ← Pccp ∪ {(l, r)} ∪ {(r, l)}
17 else Pccp ← Pccp ∪ {(l, r)} ∪ {(r, l)}

Figure 3.21.: Pseudocode for PARTITIONX

ccp (false ccps included). Note that in many cases, the two tests can be avoided (see
Section 3.5.5).

Not shown here but important: Since the struct StackEntry is pushed onto
Infostack with every call to PARTITIONX (Lines 3 and 6), it needs to be popped from
Infostack before TDPGHYPSUB returns. The invocation of POP(Infostack) should
be added after the loop of Lines 2 to 5 of TDPGHYPSUB (Figure 3.3).

A Call Graph

Figure 3.22 contains the call graph for the top-level case of PARTITIONX where S = V
holds and V is the vertex set of the query graph. Because Figure 3.22 shows the top-
level case, there is only one invocation of TDPGHYPSUB without further recursive
self invocations. The call graph gives an overview of the methods used in our parti-
tioning framework during the computation of Pccp(V ). Sections 3.5.3, 3.5.4 and 3.5.5
will explain the invoked methods in detail. The case of all other innovations of PARTI-
TIONX where S ⊂ V holds is discussed in Section 3.5.6.

3.5.3. Generating the Adjacency Information

All graph-aware partitioning algorithms like MINCUTLAZY [5] (Appendix A.1),
MINCUTAGAT (Section 2.3), MINCUTCONSERVATIVE (Section 2.4) or MINCUT-
BRANCH (Section 2.5) utilize the neighborhood information to extend connected sets.
Thus, our generic partitioning framework has to provide this information to the par-
ticular partitioning algorithm PARTITIONgraph−aware it is instantiated with. We make
this information available through the global variables shown in Figure 3.25 with ref-
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TDPlanGenHyp
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partition_X

initializeInfoStack

computeAdjacencyInfo
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isConnectedHyp

computeLookUpIdx
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getBCCInfo maximizeCompoundVertices manageAdjacencyInfo

findInitialCompounds maximizeCompoundVerticesSub

maintainLabels

findInitialCompoundsSub

Figure 3.22.: Call graph for the top-level case of PARTITIONX

erence to Figures 3.23 and 3.24. Essentially, PARTITIONgraph−aware has to rely on the
precomputed neighborhood array Nm of struct StackEntry (Figure 3.23). The other
variables mainly exist for performance and maintenance reasons and are explained lat-
er on. The initial setup is done by COMPUTEADJACENCYINFO given in Figure 3.29.
Before going into the details of the pseudocode, we need to explain how the adjacency
information can be stored.

Precomputed Neighborhoods

To capture the adjacency information of simple edges is relatively easy and straight
forward. This is done by an associative array Ns that stores for a given vertex x the
vertices adjacent to x, as defined in Figure 3.25. In practice, Ns is implemented as an
array of bitvectors, as Section 3.5.7 will point out. Here the lookup for a given xworks
slightly different. First, we determine the index i of the given vertex x (Definition
3.2.2). Since x itself will be represented as a bitvector where only one bit is set, we
simply have to determine the index of that particular bit. This can be done by the
bit scan forward assembler instruction. In a second step, we use i as an index into
the array Ns. With access to the corresponding bitvector, we can determine the bits
that are set. Each bit then corresponds to an index that represents a vertex in V . To
compute the simple neighborhood Nsimple(C) (Definition 3.2.14), we simply iterate
over the bits that are set in the bitvector representing C. We use the corresponding
index of each bit that is set to access the corresponding bitvector in Ns. The result of
Nsimple(C) then is the union of accessed bitvectors except the bits set in the bitvector
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of C. Thus, the adjacency information of a simple hyperedges can be easily stored and
accessed in such an array of bitvectors.

For storing the adjacency information of complex hyperedges, we have to choose
a different approach. There are three reasons for this. (1) First of all, we cannot
determine a unique index of a given complex hypernode v the same way as before,
because in the corresponding bitvector of v is more than one bit set. One might argue to
choose the bitvector’s integer value instead. But then the array of bitvectors will have a
size of 2|V |, which is not practical for large V s. As an alternative implementation, we
could use a map. But then the lookup is slightly more costly, O(log|V |) (e.g. in case
of a red-black tree) instead of O(1). Let us assume we have solved this problem. That
brings us to our second reason. (2) For a given complex hypernode, there might exist
more than one adjacent hypernode. Thus, an array or map of bitvectors is not sufficient
anymore. We need to have a set of bitvectors instead. Hence, we can cope with the
first two reasons by paying some performance penalties. Nevertheless, there is a third
reason. (3) This approach is not suitable for computing the complex neighborhood
N (S,C, ∅) (Definition 3.2.15). For the simple neighborhood, we only had to iterate
over every vertex of C. But now we would have to consider every possible subset
of C and would need to check our array or map if we found a set of bitvectors for
that particular subset of C. Thus, we can conclude that the lookup of a precomputed
complex neighborhood is infeasible.

Hence, we store the complex hyperedges. We can compute a hyperedge filter EF

that points only to those hyperedges that reference only vertices contained in the cur-
rent vertex set S. To compute N (S,C, ∅), we have to consider all those hyperedges
that are qualified by the filter. Thus, we have a complexity of O(|Ecomplex|), where
Ecomplex = {(v, w) | v, w ∈ E ∧ (|v| > 1 ∨ |w| > 1)} is the set of complex hy-
peredges. Since the neighborhood is computed many times, this will have a negative
impact on the performance of the partitioning algorithm. The good news is that we will
not need to compute N (S,C, ∅). Moreover, since we map the complex hyperedges to
simple hyperedges, we can rely on the precomputed simple neighborhood. As we will
see, the adjacency information of our simple hyperedges that we have generated by the
complex to simple hyperedge mapping is stored in the array Nh instead of in Ns.

The Pseudocode in Detail

At the beginning of COMPUTEADJACENCYINFO (Figure 3.29), we precompute the
simple neighborhood Ns (Figure 3.25) by iterating over all simple edges (Line 3
to 5). The complex hyperedges of a given hypergraph are stored in an array
called HyperEdges (Figure 3.25) of type HyperEdge (Figure 3.24). The size of
HyperEdges is |Ecomplex|. Therefore, we loop over Ecomplex in Line 8 of COM-
PUTEADJACENCYINFO and invoke STORECOMPLEXHYPEREDGE (Figure 3.30) in
Line 9. STORECOMPLEXHYPEREDGE stores the two hypernodes v and w of the cur-
rent complex hyperedge (v, w). The values for vrep and wrep are assigned later by a
call to STOREADJACENCYINFO (Figure 3.32). Both values are used to store the result
of the complex hyperedge (v, w) to simple edge (vrep, wrep) mapping. Thus, vrep ⊆ v
and wrep ⊆ w holds.

To understand Lines 8 to 41, recall the third observation of Section 3.5.1. We solve
the problem illustrated there by first pretending to substitute every complex hyperedge
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(v, w) with all possible combinations (= |v| ∗ |w|) of simple edges (loop of Line 11 to
20). For every created overlapping simple edge, we increase card (Line 14). For every
combination of indices i of xi ∈ v and j of yj ∈ w (Definition 3.2.2), we compute the
position of the corresponding entry within the array Ovlp (Line 1) by a call to COM-
PUTELOOKUPIDX (Line 13). The formula used in Line 1 of COMPUTELOOKUPIDX

(Figure 3.27) guarantees space efficiency (SIZEOF(Ovlp) = |V |∗(|V |−1)
2 ). In Line 19

and 20 of COMPUTEADJACENCYINFO, we keep track of the simple edge and its array
entry that is generated most frequently. After the generation of simple edges (they are
not materialized yet), we check if we have found overlapping hyperedges (Line 22). If
so, we materialize the simple edge that was generated most frequently (Line 30). At
this point, we remove all other combinations of simple edges (Line 26 to 29) for the set
of overlapping edges stored in Ovlp[idx].Eref (Line 23). Lines 33 to 36 spot the next
largest set of overlapping hyperedges, and the process is started again. Those com-
plex hyperedges that do not overlap are substituted with one simple edge in Lines 37
and 41 through a call to STOREADJACENCYINFO (Figure 3.32). We decided to store
the substituted complex hyperedges not within the simple neighborhood Ns, but with-
in Nh, where h stands for hyperneighborhood, although it is not an exact translation
(Definition 3.2.15).

Storing the Adjacency Information

The purpose of STOREADJACENCYINFO is to update Nh, but also HEdgeLkp and
HyperEdges. Figure 3.25 declares HEdgeLkp as an array of hyperedge refer-
ences and HyperEdges as an array of all complex hyperedges. Our generic parti-
tioning framework needs both variables in order to reconstruct the complex hyper-
edge (v, w) for a given simple edge ({x}, {y}). From the handed over xi and yi
we know that a simple hyperedge ({xi}, {yj}) is represented. Thereby, ({xi}, {yj})
is the result of the complex hyperedge to simple edge mapping where (v, w) is the
corresponding complex hyperedge so that xi ∈ v ∧ yi ∈ w holds. By calling
COMPUTELOOKUPIDX(xi, yj), we can compute an index into HEdgeLkp that re-
turns a hyperedge reference in form of an index into HyperEdges.

In Line 3 of STOREADJACENCYINFO, we compute the index lkp. We use lkp to
updateHEdgeLkp in Line 4. The generated simple hyperedge ({xi}, {yj}) is materi-
alized in the particular HyperEdges entry of the corresponding complex hyperedges
Eref in Lines 6 and 7.

3.5.4. Composing Compound Vertices

This section discusses how the information of non-separable hypernodes is encoded
into the simple graph to make it more restrictive by preventing as many false ccps as
possible (fourth observation Section 3.5.1).

Merging Compound Vertices

In the following, we focus on the details of finding non-separable hypernodes and
merging them into compound vertices. The process is started by invoking COMPOSE-
COMPOUNDVERTICES, as shown in Figure 3.33. In Lines 1 to 9 of COMPOSECOM-
POUNDVERTICES, the variables for the recognition of biconnected components (Def-
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1 define StackEntry as struct
2 Eref

F set<hyperedge references> � corresponding to current S
3 Eref

C set<hyperedge references> � hyperedge ref. partly cut off
4 S′ vertex set � S′ ⊇ Sorg

5 Sorg vertex set � remaining original vertices
6 Sdisconnected

compounds � disconnected compounds
7 SA a vertex set � index-introducing compounds
8 Nm associative array of vertex sets � merged neighbors: Ns ∪Nh

9 Compoundmap a map<vertex set→ vertex set> � {Ri} → compound vertex
10 Compound−1map a map<vertex set→ vertex set> � compound vtx→ {Ri, ...Rj}

Figure 3.23.: Struct StackEntry

1 define HyperEdge as struct
2 v vertex set
3 w vertex set
4 vrep vertex set � vrep ⊆ v ∧ |vrep| ≤ 1 holds
5 wrep vertex set � wrep ⊆ w ∧ |wrep| ≤ 1 holds

Figure 3.24.: Struct HyperEdge

1 declare Ns associative array of vertex sets
2 declare Nh associative array of vertex sets
3 declare HEdgeLkp array of hyper edge references
4 declare HyperEdges an array< HyperEdge > � Figure 3.24
5 declare Labelmap a map<vertex set→ vertex set> � {Ri, ...Rj} → compound
6 declare Label−1map a map<vertex set→ vertex set> � compound→ {Ri, ...Rj}
7 declare IdxIntroVmap a map<vertex set→ vertex set> � {Ri} → index-introducing
8 declare Infostack a stack<StackEntry> � Figure 3.23
9 declare Eref

A a set<hyperedge references> � all articulation hyperedges

Figure 3.25.: Global Variables

INITIALIZEINFOSTACK

1 PUSH(Infostack,new StackEntry)

Figure 3.26.: Pseudocode for INITIALIZEINFOSTACK

COMPUTELOOKUPIDX(xi, yj)

� Input: vertex labels i, j (Definition 3.2.2) with xi ∈ S ∧ yj ∈ S
1 return MAX(i,j)∗(MAX(i,j)−1)

2 + MIN(i, j)

Figure 3.27.: Pseudocode for COMPUTELOOKUPIDX

inition 2.1.18) are initialized. Line 11 invokes the recognition of the non-separable
hypernodes. With a call to MAXIMIZECOMPOUNDVERTICES in Line 12, we try to
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1 define Overlap as struct
2 Eref

3 card
4 x vertex set
5 y vertex set

Figure 3.28.: Struct Overlap used by COMPUTEADJACENCYINFO

enlarge disconnected hypernodes. Section 3.5.5 will explain in detail how MAXIMIZE-
COMPOUNDVERTICES works.

Once the call to GETBCCINFO and the subsequent call to MAXIMIZECOMPOUND-
VERTICES are returned, the following holds: TOP( Infostack).S

′ will contain only
original vertices that are not part of any non-separable hypernode. The rest of the
vertices v ∈ S \ TOP(Infostack).S

′ will be mapped to index-introducing compound
vertices. We store the mapping in the global variable IdxIntroVmap. Note that a giv-
en v can be mapped to more than one index-introducing compound vertex. With the
information stored in IdxIntroVmap, we merge overlapping articulation hypernodes
to a new compound vertex that represents the union of hypernodes (Line 14 to 32).

Therefore, we loop in Line 15 through S′′, which contains all original vertices that
are represented by at least one compound vertex. We declare h in order to store the
union of overlapping hypernodes and initialize it in Line 16. With Z and I , we keep
track of the compound vertices that represent the overlapping hypernodes. I maintains
those we already have investigated and Z those we still have to consider. Z is initial-
ized (Line 19) with the compound vertices that represent v (which was arbitrary chosen
from S′′ in Line 17). Within the loop in Lines 21 to 28, we investigate all compound
vertices contained in Z by incrementally removing vertices in Line 23 and possibly
adding vertices in Line 27. Line 25 applies a reverse lookup (through Label−1map) of
the index-introducing compound vertex u that was chosen out of Z (Line 22). We add
to h the result of the lookup, which are the vertices represented by u. For every vertex
x (Line 26) contained in one of the hypernodes in question, we consult IdxIntroVmap

(Line 27) to enlarge Z with compound vertices that correspond to x minus those al-
ready investigated (and kept in I). That way, all compound vertices in question have to
be added at one point to Z, either in Line 19 or Line 27. By incrementally taking one
element at a time out ofZ and adding the vertices it encompasses to the new hypernode
h, we ensure that h gets maximally enlarged. Line 28 removes all vertices contained
in h from S′′, and the process continues until the last h of overlapping non-separable
hypernodes is found.

In Line 29, we transform the overlapping index-introducing compound vertices into
a new index-reusing compound vertex with the index i. Thereby, we assign i with the
smallest index (Definition 3.2.2) among the indices used by the vertices contained in
h. Undoubtedly, reusing an index complicates things. As an alternative, we could just
reassign one of the overlapping index-introducing compound vertices in order to rep-
resent the vertices contained in h. Or as proposed in [10] we could even assign a com-
pletely new index-introducing compound vertex. But the approach of adding index-
introducing compound vertices to a vertex set S′ that is feed to PARTITIONgraph−aware

has one disadvantage that can cause performance penalties. The vertex sets used here
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COMPUTEADJACENCYINFO(H|S)

� Input: vertex (sub)set S ⊆ V
1 declare Ovlp an array < Overlap > � defined in Figure 3.28
2 declare Eref

hyp ← ∅ as a set of hyperedge references
3 for all ({x}, {y}) ∈ E � all simple hyperedges of H|S
4 Ns[x]← Ns[x] ∪ {y}
5 Ns[y]← Ns[y] ∪ {x}
6 max← 0
7 idx← 0
8 for all (v, w) ∈ E | |v| > 1 ∨ |w| > 1 � all complex hyperedges of H|S
9 ref ← STORECOMPLEXHYPEREDGE(v, w)

10 Eref
hyp ← Eref

hyp ∪ {ref}
11 for all xi ∈ v
12 for all yj ∈ w
13 lkp← COMPUTELOOKUPIDX(xi, yj)
14 Ovlp[lkp].card← Ovlp[lkp].card+ 1
15 Ovlp[lkp].Eref ← Ovlp[lkp].Eref ∪ {ref}
16 Ovlp[lkp].x← xi
17 Ovlp[lkp].y ← yj
18 if Ovlp[lkp].card > max
19 max← Ovlp[lkp].card
20 idx← lkp

21 TOP(Infostack).E
ref
F ← Eref

hyp

22 while max > 1 � for overlapping hyperedges
23 for all ref ∈ Ovlp[idx].Eref ∩ Eref

hyp

24 (v, w)← DEREFERENCE(ref) � Figure 3.31
25 Eref

hyp ← Eref
hyp \ {ref}

26 for all xi ∈ v
27 for all yj ∈ w
28 lkp← COMPUTELOOKUPIDX(xi, yj)
29 Ovlp[lkp].card← Ovlp[lkp].card− 1
30 STOREADJACENCYINFO(Ovlp[idx].x,Ovlp[idx].y, Ovlp[idx].Eref )
31 max← 0
32 idx← 0
33 for all i : 0 ≤ i < SIZEOF(Ovlp) � find next max Ovlp[i].card
34 if Ovlp[i].card > max
35 max← Ovlp[i].card
36 idx← i

37 for all ref ∈ Eref
hyp � all non-overlapping hyperedges

38 (v, w)← DEREFERENCE(ref) � Figure 3.31
39 x← arbitrary element of v � e.g. with the smallest index
40 y ← arbitrary element of w � e.g. with the smallest index
41 STOREADJACENCYINFO(x, y, {ref})

Figure 3.29.: Pseudocode for COMPUTEADJACENCYINFO

are represented by bitvectors. Generating index-introducing compound vertices im-
plies occupying more bits. If we reach a point where the number of bits occupied
is larger than the word size, we have to work with word-size-exceeding bitvectors
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STORECOMPLEXHYPEREDGE(v, w)

� Input: vertex sets v and w representing two hypernodes
� Output: reference to the entry in HyperEdges (Figure 3.25)

1 ref ← find next available entry in HyperEdges
2 HyperEdges[ref ].v ← v
3 HyperEdges[ref ].w ← w
4 HyperEdges[ref ].vrep ← ∅
5 HyperEdges[ref ].wrep ← ∅
6 mark HyperEdges[ref ] as occupied
7 return ref

Figure 3.30.: Pseudocode for STORECOMPLEXHYPEREDGE

DEREFERENCE(ref)

� Input: ref a hyperedge reference
� Output: a hyperedge (v, w)

1 v ← HyperEdges[ref ].v
2 w ← HyperEdges[ref ].w
3 return (v, w)

Figure 3.31.: Pseudocode for DEREFERENCE

STOREADJACENCYINFO(xi, yj , E
ref )

� Input: vertex xi, yj with xi ∈ S ∧ yj ∈ S, a set of hyperedge references Eref

1 Nh[xi]← Nh[xi] ∪ {yj}
2 Nh[yj ]← Nh[yj ] ∪ {xi}
3 lkp← COMPUTELOOKUPIDX(xi, yj)
4 HEdgeLkp[lkp]← HEdgeLkp[lkp] ∪ Eref

5 for all ref ∈ Eref

6 HyperEdges[ref ].vrep ← {xi}
7 HyperEdges[ref ].wrep ← {yj}

Figure 3.32.: Pseudocode for STOREADJACENCYINFO

that slow down bitvector operations noticeably. Therefore, we restrict ourselves not
to occupy more bits than necessary. Thus, we limit ourself to |V |, where V is the
vertex set of the query graph. Note that this is not entirely true, since the members
CompoundMapmap and CompoundMap−1map of StackEntry and the global vari-
ables Labelmap, Label−1map and IdxIntroVmap still reference index-introducing com-
pound vertices, but those variables are not accessed by PARTITIONgraph−aware. In fact,
only a few performance uncritical methods of our generic partitioning framework need
to deal with these variables.

To differentiate between original vertices contained in the vertex set V of our query
graph and index-reusing compound vertices, we maintain the member Sorg in the struct
StackEntry that contains only non-compound vertices that are not represented by any
compound vertex at the same time. In Line 30, the new vertex set TOP(Infostack).S

′

(as returned later on in Line 34) is enlarged with the index-reusing compound vertex
that represents the new h. Lines 31 and 32 make the index-reusing compound vertex
known to the vertices it represents. Finally, we call MANAGEADJACENCYINFO in
order to set up the merged neighborhood TOP(Infostack).Nm.
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COMPOSECOMPOUNDVERTICES(H|S)

� Input: connected (sub)graph H|S
� Output: S′ a set of vertex sets

1 declare stack of edges Estack

2 for each vertex x ∈ S
3 color[x]← WHITE
4 low[x]← |S|+ 1
5 π[x]← NIL
6 parent[x]← NIL
7 desc[x]← {x}
8 count← 0
9 t←arbitrary x ∈ S

10 TOP(Infostack).S
′ ← S

11 GETBCCINFO(t)
12 MAXIMIZECOMPOUNDVERTICES(S)
13 TOP(Infostack).Sorg ← TOP(Infostack).S

′

14 S′′ ← S \ TOP(Infostack).S
′ � vertices represented by index-introducing c.

15 while S′′ 6= ∅
16 h← ∅ � h stores the new hypernode
17 v ← {y} : y ∈ S′′
18 S′′ ← S′′ \ v
19 Z ← IdxIntroVmap[v]
20 I ← ∅
21 while Z 6= ∅
22 u← {z} : z ∈ Z
23 Z ← Z \ u
24 I ← I ∪ u
25 h← h ∪ Label−1map[u]
26 for all x ∈ h
27 Z ← Z ∪ (IdxIntroVmap[{x}] \ I)
28 S′′ ← S′′ \ h
29 compound← {MINindex(h)} � vertex with smallest index of h
30 TOP(Infostack).S

′ ← TOP(Infostack).S
′ ∪ compound

31 for all x ∈ h
32 TOP(Infostack).Compoundmap[{x}]← compound
33 MANAGEADJACENCYINFO(H|S)
34 return TOP(Infostack).S

′

Figure 3.33.: Pseudocode for COMPOSECOMPOUNDVERTICES

The pseudocode for MANAGEADJACENCYINFO is given in Figure 3.34. It is a mod-
ification of [10]. Here, we follow a new approach, where we merge Ns and Nh into
TOP(Infostack).Nm (Line 2 of MANAGEADJACENCYINFO). This has the advantage
that PARTITIONgraph−aware only has to work with one precomputed neighborhood in-
stead of consulting two at the same time, which improves performance. Within the first
loop of Lines 1 to 5, we ensure that if x is adjacent to a vertex y that is represented by
a compound vertex, the neighborhood of x also contains that index-reusing compound
vertex TOP(Infostack).Compoundmap[{y}]. Note that if y ∈ TOP(Infostack).Sorg
holds, TOP(Infostack).Compoundmap[{y}] will be empty.
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MANAGEADJACENCYINFO(H|S)

1 for all x ∈ S
2 TOP(Infostack).Nm[x]← TOP(Infostack).Nm[x] ∪Ns[x] ∪Nh[x]
3 for all y ∈ (Ns[x] ∪Nh[x])
4 TOP(Infostack).Nm[x]← TOP(Infostack).Nm[x] ∪

TOP(Infostack).Compoundmap[{y}]
5 TOP(Infostack).Nm[x]← TOP(Infostack).Nm[x] \ {x}
6 for all x ∈ TOP(Infostack).S

′ \ TOP(Infostack).Sorg

7 h← TOP(Infostack).Compound
−1
map[{x}]

8 if ISCONNECTEDHYP(H|h) 6= TRUE

9 TOP(Infostack).S
disconnected
compounds ← TOP(Infostack).S

disconnected
compounds ∪ {x}

10 for all y ∈ (h \ {x})
11 TOP(Infostack).Nm[x]← TOP(Infostack).Nm[x] ∪

TOP(Infostack).Nm[y]

Figure 3.34.: Pseudocode for MANAGEADJACENCYINFO

Through the second loop (Lines 6 to 11) the neighborhood of the index-reusing
compound vertices x are precomputed. This means that the current values for
TOP(Infostack).Nm[x] have to be completed, since so far, they only contain the adja-
cent vertices of the old x. This is done by adding the missing adjacency information of
the other vertices also represented by the compound vertex x (Lines 10 to 11). Line 9
maintains TOP(Infostack).S

disconnected
compounds that contains all index-reusing compound ver-

tices that represent disconnected hypernodes. We keep track of this information to de-
cide later on (Line 9 of PARTITIONX ) if we need to perform connection tests with the
information of the original hypergraph H|S .

Discovering Non-Separable Hypernodes

As has been said, GETBCCINFO is responsible for discovering the non-separable
hypernodes. This is done by determining the complex articulation hyperedges. Dur-
ing the transformation of a complex hypergraph H into a simple hypergraph s(H),
the complex articulation hyperedges are mapped to simple hyperedges. Now, if the
complex hyperedge’s substitute is recognized as a biconnected component (Definition
2.1.18) in the simple graph, this indicates that the complex hyperedge must be an ar-
ticulation hyperedge. Actually, it is possible that there are overlapping hyperedges
mapped to the same simple edge, but we will take care of this case. Thus, in order to
determine non-separable hypernodes, we have to discover the biconnected components
of the simple graph. Therefore, we used the algorithmic skeleton of [1, 9].

As mentioned, the variables for the recognition of biconnected components are ini-
tialized in Lines 1 to 9 of COMPOSECOMPOUNDVERTICES. We presume that the
details of depth-first search and pre-order numbering are known and omit any further
explanation [4].

The stack of graph edges Estack is used to distinguish between the tree edges and
back edges that are not captured. Tree edges are those that lead to all the accessed
vertices during the discovery of vertices. Back edges are the rest of the graph edges
that would close the cycles to already visited vertices. We denote the set of tree edges
withEt and the set of back edges withEb. It holds thatE = Et∪Eb withEb∩Et = ∅.
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For the recognition of cycles, we need an additional associative array low. It holds the
following:

low[x] = MIN({df [x]} ∪ {df [y] | y ∈ D(x)}),

where df is the pre-order number and D(x) is defined as:

D(x) = {y | ∃z(z, y) ∈ Eb, y
∗→ x

∗→ z}.

In other words, the setD(x) includes all vertices y with a back edge (z, y) ∈ Eb, and
x is a descendant of y and z a descendant of x in the directed spanning tree S(V,Et).
Note that the vertex x is a descendant of y if df [y] < df [x] holds. Hence, z is also a
descendant of y, and it holds that df [y] < df [x] < df [z]. The calculation of low[x] can
be embedded into the depth-first search procedure if the formula is rewritten in terms
of values of low[s] at the direct children s ∈ C(x) of x in S(V,Et) and of the preorder
numbers of the vertices connected to x via back edges.

low[x] = MIN({df [x]} ∪ {low[s] | s ∈ C(x)} ∪ {df [y] | y ∈ D(x)})

The set C(x) is defined as:

C(x) = {s | s ∈ N (x) ∧ df [x] < df [s]}.

Due to the recursive iteration, the final value of low[x] is not known before the list
of vertices adjacent to x is fully processed. Note that in the definition of C, we use
N (x) to determine the adjacent vertices to x. In Line 5 of GETBCCINFO, we compute
N (x) by merging Ns[x] ∪ Nh[x]. If a vertex x is an articulation vertex and the entry
point of a biconnected component GBCC = (Vi, Ei) where x, s ∈ Vi holds, it is
recognized by low[s] ≥ df [x]. This is also true for those start vertices t (Line 9 of
COMPOSECOMPOUNDVERTICES) that are not also an articulation vertex.

In Line 4 of GETBCCINFO, the value of low[x] is initialized. Since during pro-
cessing low[x] ≤ df [x] holds, its preorder number is chosen. As the first part of the
previous rewritten formula, the value of low[x] is adjusted to the minimum value be-
tween low[y] from the son y of x and itself in Line 25. The second part of the definition
is implemented in Line 28. The check of Line 26 ensures that (x, y) ∈ Eb is really a
back edge and not just a tree edge.

The condition in Line 10 of GETBCCINFO indicates, if evaluated to TRUE, that a
biconnected component was found. More precisely: It means that either x is the start
node t (assigned in Line 9 and handed over in Line 11 of Figure 3.33), or an articulation
vertex was found that is the only link to another biconnected component. In Line 11,
we declare desc to store the descendants of x, i.e., all vertices z where every possible
path z →∗ t would involve x. Those descendants are gathered in Lines 14 and 17 and
finally stored with (possibly) other descendants of x (x can be the parent vertex for
several biconnected components) in Line 24.

Lines 12 to 19 will pop all edges ({e1}, {e2}) belonging to this biconnected com-
ponent from the stack of edges Estack. Thereby, we update desc and set the parent for
every vertex (Line 15, 18) in the biconnected component. As has been mentioned, in
case x = t holds it is possible that x is not an articulation vertex, but only a member
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GETBCCINFO(x)

� Input: vertex x ∈ S
1 color[x]← GRAY
2 count← count+ 1
3 df [x]← count
4 low[x]← df [x]
5 for all y ∈ (Ns[x] ∪Nh[x])
6 if color[y] = WHITE
7 PUSH(Estack, ({x}, {y}))
8 π[y]← x
9 GETBCCINFO(y)

10 if low[y] ≥ df [x]
11 desc← ∅
12 repeat ({e1}, {e2})← POP(Estack)
13 if e1 6= x
14 desc← desc ∪ desc[e1]
15 parent[e1]← x
16 if e2 6= x
17 desc← desc ∪ desc[e2]
18 parent[e2]← x
19 until ({e1}, {e2}) = ({x}, {y})
20 if low[x] = low[y] � is t articulation vertex?
21 parent[x]← x
22 if low[x] 6= low[y] ∧ y ∈ Nh[x] ∧ desc ∩Ns[x] = ∅
23 FINDINITIALCOMPOUNDS(x,y)
24 desc[x]← desc[x] ∪ desc
25 low[x]← MIN(low[x], low[y])
26 else if y 6= π[x]
27 PUSH(Estack, ({x}, {y}))
28 low[x]← MIN(low[x], df [y])
29 color[x]← BLACK

Figure 3.35.: Pseudocode for GETBCCINFO

of the current biconnected component. In order to differentiate between the two cases
later on, we set x’s parent to itself (Line 21) if x is not an articulation vertex (Line 20).

Line 22 checks for several conditions: (1) if x is an articulation vertex low[x] 6=
low[y] and not just t, (2) if ({x}, {y}) substitutes a hyperedge and (3) if in the original
hypergraph x is not connected to any other node z ∈ desc by a simple edge. Only if
all three conditions are met, FINDINITIALCOMPOUNDS is invoked in Line 23.

The pseudocode of FINDINITIALCOMPOUNDS is given in Figure 3.36. Entering
FINDINITIALCOMPOUNDS, we know that there must exist at least one complex hy-
peredge (v, w) in the original graph with x ∈ v ∧ y ∈ w. With the help of the lookup
index computed from the labels i, j in Line 1 (Figure 3.27), we get the hyperedge ref-
erences of the original hypergraph via the global array HEdgeLkp (which was set up
by STOREADJACENCYINFO). At this point, it is possible that more than one reference
is returned. In this case, the referenced complex hyperedges must overlap. Although
not necessary, but for reasons of simplicity, we demand that just one reference exists
(Line 3) before FINDINITIALCOMPOUNDSSUB for the hypernodes v and w is called.
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FINDINITIALCOMPOUNDS(xi, yj)

� Input: vertices xi, yi ∈ V
1 lkp← COMPUTELOOKUPIDX(xi, yj)
2 if |HEdgeLkp[lkp]| = 1
3 (v, w)← HEdgeLkp[lkp]
4 FINDINITIALCOMPOUNDSSUB(v)
5 FINDINITIALCOMPOUNDSSUB(w)

6 Eref
A ← Eref

A ∪ REFERENCES({(v, w)})

FINDINITIALCOMPOUNDSSUB(v)

1 if |v| > 1
2 label← MAINTAINLABELS(v) � assigning index-introducing compound v.
3 TOP(Infostack).S

′ ← TOP(Infostack).S
′ \ v

4 TOP(Infostack).SA ← TOP(Infostack).SA ∪ label
5 for all x ∈ v
6 IdxIntroVmap[{x}]← IdxIntroVmap[{x}] ∪ label

Figure 3.36.: Pseudocode for FINDINITIALCOMPOUNDS

MAINTAINLABELS(v)

� Input: vertex set v ∈ S
� Output: vertex set containing index-introducing vertex

1 if KEYDOESNOTEXIST(Labelmap, v)
2 k ← SIZE(Labelmap) + |V | � V is the vertex set of the query graph
3 zk ← new index-introducing compound vertex labeled k
4 Labelmap[v]← {zk}
5 Label−1map[{zk}]← v
6 return {zk}
7 else
8 return Labelmap[v]

Figure 3.37.: Pseudocode for MAINTAINLABELS

FINDINITIALCOMPOUNDSSUB ensures that the handed over hypernode v is really
complex (Line 1). If so, we assign an index-introducing compound vertex that repre-
sents the vertices contained in v by a call to MAINTAINLABELS (Figure 3.37). Further-
more, for every vertex x ∈ v we (1) remove x from the vertex set TOP(Infostack).S

′

and (2) x as part of the hypernode v is mapped to its corresponding index-introducing
compound vertex IdxIntroVmap[v].

Decoding Compound Vertices

As Section 3.5.1 explains, we need to substitute the index-reusing compound vertices
in every emitted partition of the partitioning algorithm. This is done by DECODE, as
given in Figure 3.38. In Line 1, we initialize decodedwith the original vertices that are
not represented by any compound vertex. After that, we loop over the index-reusing
compound vertices (Line 2) contained in C ′ and substitute them with the group of
vertices they represent (Line 3).
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DECODE(C ′)

� Input: vertex set C ′

1 decoded← C ′ ∩ TOP(Infostack).Sorg

2 for all x ∈ C ′ \ TOP(Infostack).Sorg � only index-reusing compound vertices
3 decoded← decoded ∪ TOP(Infostack).Compound

−1
map[{x}]

4 return decoded

Figure 3.38.: Pseudocode for DECODE

Compound Vertices - An Example

Let us get back to our motivation example for compound vertices of Section 3.5.1.
From the graph shown in Figure 3.20(a), we gained the simple graph of Figure 3.20(b)
by calling COMPUTEADJACENCYINFO. But as it turned out, this was not restrictive
enough, since three of the four generated partitions were false ccps (symmetric counter
pairs ignored). By invoking GETBCCINFO, we gain the following information:
Label−1map = {({R5} → {R2, R3}), ({R6} → {R0, R1}), ({R7} → {R0, R1, R2})}
and IdxIntroVmap ={({R0} → {R6, R7}), ({R1} → {R6, R7}), ({R2} →
{R5, R7}), ({R3} → {R5})} and TOP(Infostack).S

′ = {R4}.
Once we reach Line 29 of COMPOSECOMPOUNDVERTICES, h = {R0, R1, R2, R3}

holds. We introduce R0 as a new index-reusing compound vertex representing
h. After Line 30 of COMPOSECOMPOUNDVERTICES, compound = {R0} ∧
TOP(Infostack).S

′ = {R0, R4} holds. The resulting simple graph is shown in
Figure 3.20(c). Note that instead of the index-reusing compound vertex R0, an
index-introducing compound vertex R8 is shown. This was done in order not to
complicate things while motivating our central ideas in Section 3.5.1. Any graph-
aware partitioning algorithm will produce only one partition: ({R0}, {R4}) (or its
symmetric partition ({R4}, {R0})). And finally, a call to DECODE({R0}) returns
{R0, R1, R2, R3} and DECODE({R4}) returns {R4}. Since both {R4} and the de-
coded set {R0, R1, R2, R3} are connected, the partition is proved to be a ccp and is
returned together with its symmetric counter pair (Lines 16 or 17 of PARTITIONX )
without generating any false ccps.

3.5.5. Economizing on Connection Tests

Let us briefly recall that non-inner joins are not freely reorderable because certain
join reorderings result in different non-equivalent plans that return different query re-
sults when executed. Furthermore, it is well known that valid operator orderings can
be encoded by transforming simple edges into hyperedges [2, 20, 21, 27]. Complex
hypergraphs that are a result of those transformations can be mainly categorized as
complex cycle-free hypergraphs (Section 3.2.1). We strongly believe that among all
complex query graphs that can be found in real-world scenarios, the majority belongs
to this category. The only common exception will be graphs that contain complex
hyperedges originating from complex predicates.
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CONNECTIONTESTREQUIRED(S′)

� Input: set S′ that may contain compound vertices
� Output: returns TRUE if connection test can be avoided

1 return TOP(Infostack).S
disconnected
compounds ∩ S′ = ∅ ∧ E

ref
A ⊃ TOP(Infostack).E

ref
F

Figure 3.39.: Pseudocode for CONNECTIONTESTREQUIRED

Avoiding Connection Tests

For complex cycle-free hypergraphs, there are certain scenarios where we do not need
a connection test. Since we have to run at least one connection test for every emitted
join partition, saving the effort in doing so would increase efficiency significantly. In
general, two conditions have to be met in order to be able to avoid the connection
tests: (1) All complex hyperedges need to be articulation hyperedges. (2) All complex
hypernodes need to be connected.

We check for these two conditions by a call to CONNECTIONTESTREQUIRED in
Line 9 of PARTITIONX . The pseudocode for CONNECTIONTESTREQUIRED is given in
Figure 3.39. Condition (1) is checked by ensuring that Eref

A ⊃ TOP(Infostack).E
ref
F

holds. Thereby, Eref
A is a set of hyperedge references that point to all articula-

tion hyperedges, and TOP(Infostack).E
ref
F points to all complex hyperedges that

reference only vertices of the (sub) graph. Hyperedge references are stored in the
form of integers that are an index to the corresponding entry in the hyperedge ar-
ray. We store hyperedge references as a bitvector. To check for Condition (2), we
need to compare the set of index-reusing compound vertices that are disconnected
TOP(Infostack).S

disconnected
compounds with S′. Hereby, TOP(Infostack).S

disconnected
compounds is com-

puted in Lines 8 and 9 of MANAGEADJACENCYINFO.
Even if a complex hypernode is disconnected, we might be able to connect it by

merging it with adjacent vertices. But we cannot risk to restrict the graph by enlarging
the complex hypernode too much. Otherwise, we might prevent the computation of
valid ccps. Thus, we have to determine under which circumstances it is safe to enlarge
a hypernode. Note that enlarging a node has a positive side effect: The number of ver-
tices in TOP(Infostack).S

′ is decreased because more vertices are represented by the
same compound vertex. That in turn increases the graph-aware partitioning algorithms
performance notably, since a graph with fewer vertices and fewer edges is considered.

Before we determine how to enlarge a hypernode, let us take a look at Figure 3.40(a).
Here, R3 is only connected to the rest of the graph through R2, R4. But the latter
hypernode is not connected. The only way to connect R2 with R4 is through R1 and
R0, R5. Thus, there exists only one valid ccp: ({R0, R1, R2, R4, R5}, {R3}) (and its
symmetric counter pair). In fact, if we do not include R0, R1, R5, we have to partition
the graph into at least three connected subgraphs.

Figure 3.40(b) shows the transformed graph of Figure 3.40(a) after applying COM-
PUTEADJACENCYINFO. We can observe that R1 and R0 lie on every possible path
R2 →∗ R4. We can generalize our observation: If there exists a non-separable hyper-
node that is not connected, it can be enlarged with all vertices that lie on every possible
path (in the mapped simple graph) between the connected subsets of the disconnect-
ed hypernode. Since the vertices that are candidates for the enlargement have to lie
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R5

R0

R4

R1

R2 R3

R5 

R0 R1

R4 R2 R3

R3 

R8

Figure 3.40.: (a) Hypergraph, (b) simple graph and (c) final graph

on every path, all vertices that qualify for the enlargement in the end are articulation
vertices by definition.

Enlarging Disconnected Hypernodes

Non-connected hypernodes are enlarged by MAXIMIZECOMPOUNDVERTICES, as giv-
en in Figure 3.41. Since this method relies on the knowledge of the biconnected com-
ponents of the graph, we invoke it after calling GETBCCINFO, but before merging the
overlapping hypernodes in COMPOSECOMPOUNDVERTICES.

Therefore, we loop through the set of compound vertices SA (Line 1 of MAXIMIZE-
COMPOUNDVERTICES), which was computed by FINDINITIALCOMPOUNDSSUB in
Line 4. Next, we check whether the corresponding hypernode h (Line 2) is connected
(Line 3). The loop of Lines 7 to 16 is responsible to enlarge the hypernode h. There-
fore, we use two sets Z and I , whereby Z holds the vertices of the initial h (Line 5)
and I keeps track of the already investigated vertices of the initial h. Once all members
of Z are investigated, the stop condition of the loop is met.

The idea is as follows: We take an element of Z and assign it to y. There are two
possibilities: y is either already part of h or an ancestor of an element of h. In the latter
case, it must be an articulation vertex and/or the start vertex t (Line 9 of Figure 3.33).
If it is an articulation vertex, we can add it to h (Line 10), since all paths between
desc[y] ∩ h and other members of the hypernode h \ desc[y] must contain y. We
choose the next y to be its parent (Line 12). Note that the descendants of y are either
already processed or part of different biconnected components. In the latter case, they
will be processed later on if they intersect with Z, or they are of no interest. If they
are not of interest, this is because they will not be part of every path connecting the
different subsets of h.

Before we continue with the next y, we have to check in Line 9 if (1) y has not been
processed yet, i.e., y 6∈ Z or (2) the descendants of y cover the whole hypernode h. In
the latter case, we do not need to go any further (following the parents), because we
would process other biconnected components that are not of interest. We can discard
the members of those components since they cannot be part of every path between the
disconnected members of the non-connected hypernode h.

Since we might have interrupted the loop (Line 9) because h * desc[y] holds, we
still have to add y to h (Line 14). But there is the chance that y = t holds where t is
the start vertex. Now there are two possibilities: either y is also an articulation vertex
or it is not (see Section 3.5.4). The differentiation between the two cases is encoded
through Line 21 of Figure 3.35. Therefore, we have to ensure that parent[y] = NIL

holds first, otherwise y might not be contained in every possible path between the
disconnected parts of h.
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MAXIMIZECOMPOUNDVERTICES(S)

� Input: vertex set S
1 for all x ⊂ TOP(Infostack).SA � all index-introducing compound v.
2 h← Label−1map[{x}]
3 if ISCONNECTEDHYP(h) = TRUE
4 continue
5 Z ← h
6 I ← ∅
7 while Z 6= ∅
8 y ← z ∈ Z
9 while h * desc[y] ∧ y 6∈ I

10 h← h ∪ {y}
11 I ← I ∪ {y}
12 y ← parent[y]
13 if parent[y] = NIL
14 h← h ∪ {y}
15 Z ← Z \ {y}
16 I ← I ∪ {y}
17 if h 6= Label−1map[{x}]
18 MAXIMIZECOMPOUNDVERTICESSUB({x}, h)

MAXIMIZECOMPOUNDVERTICESSUB(v, h)

1 if KEYDOESNOTEXIST(Labelmap, h) 6= TRUE
2 label← Labelmap[h]
3 TOP(Infostack).SA ← (TOP(Infostack).SA \ v) ∪ label
4 TOP(Infostack).S

′ ← (TOP(Infostack).S
′) \ h

5 for all x ∈ h
6 IdxIntroVmap[{x}]← (IdxIntroVmap[{x}] \ v) ∪ label
7 else CHANGEKEY(Labelmap, Label

−1
map[v]→ h)

8 Label−1map[v]← h
9 TOP(Infostack).S

′ ← TOP(Infostack).S
′ \ h

10 for all x ∈ h \ Label−1map[v]
11 IdxIntroVmap[{x}]← IdxIntroVmap[{x}] ∪ v
12 update all hyperedges (v, w) where v ⊆ h ∨ w ⊆ h holds

Figure 3.41.: Pseudocode for MAXIMIZECOMPOUNDVERTICES

Finally, the condition of 17 checks if h was enlarged. If so, we have to apply the
changes by invoking MAXIMIZECOMPOUNDVERTICESSUB. Now there are two pos-
sibilities for the new h: (1) either there is no compound vertex assigned or (2) there is
one assigned because the new h is also the endpoint of a different articulation hyper-
edge. In Lines 1 to 6 and 7 to 11, we change the assignments of the IdxIntroVmap

and the vertex set TOP(Infostack).S
′ according to both cases. In Line 12, we update

the corresponding hyperedge.

Let us get back to our example of Figure 3.40 with the disconnected hyper-
node {R2, R4}. Before invoking MAXIMIZECOMPOUNDVERTICES, the follow-
ing holds: Label−1map = {({R6} → {R2, R4}), ({R7} → {R0, R5})} and
IdxIntroVmap = {({R0} → {R7}),({R2} → {R6}),({R4} → {R6}),({R5} →
{R7})}. Once MAXIMIZECOMPOUNDVERTICES returns, Label−1map ={({R6} →
{R0, R1, R2, R4}), ({R7} → {R0, R5})} holds. Furthermore, the entry for R0 in
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IdxIntroVmap was changed to {R6, R7} and ({R1} → {R6}) was inserted. Note
that the entry for R5 remains the same. Once the call to COMPOSECOMPOUNDVER-
TICES returns, we have merged the index-introducing compound vertices to a single
index-reusing compound vertex R0. The resulting simple graph is shown in Figure
3.40(c) with TOP(Infostack).S

′ = {R0, R3}. Note that instead of the index-reusing
compound vertex R0, an index-introducing compound vertex R8 is shown. Similarly
to Section 3.5.4, this was done in order not to complicate things while motivating our
central ideas of Section 3.5.1. Further note that now all two conditions for avoiding
the connection tests are met.

Storing Set Connectivity Information

We propose to store the information whether a vertex set C is connected or not into
the memotable. Besides TRUE and FALSE, we need UNKNOWN. Now every time
ISCONNECTEDHYP(H|C) is called, we check whether an entry in the memotable for
the given vertex set C exists. If not, we create one and invoke the connection test
since its current value is UNKNOWN to set it to TRUE or FALSE. In all other cases,
we just return its value, which saves us additional connection tests. Note that since
our mappings of hypergraphs into simple graphs are relatively restrictive, there will be
only a few entries in the memotable with the value FALSE.

3.5.6. Efficient Subgraph Handling

Due to the nature of top-down join enumeration, a partitioning algorithm is called
many times, each time with a different subgraph H|S . So far, we have only dis-
cussed the top-level case as explained in Section 3.5.1, where H|S = H|V = H
holds. But invoking COMPUTEADJACENCYINFO and COMPOSECOMPOUNDVER-
TICES from PARTITIONX for every proper subgraph of H input is to expensive. In-
stead, we reuse the information already computed by COMPUTEADJACENCYINFO and
COMPOSECOMPOUNDVERTICES as stored in the global variables (Figures 3.25 and
3.23). But unfortunately, the adjacency information kept in Nm (Figure 3.23) might
need adjustments to comply with the current subset of vertices stored in S. Otherwise,
we might miss to compute valid ccps for the current S. If we applied COMPUTEAD-
JACENCYINFO alone (without the application of COMPOSECOMPOUNDVERTICES),
this would not be necessary. This is because COMPUTEADJACENCYINFO implements
the composition of g−1 ◦ s only. In other words, a graph simplification s(H) with
a possible loss of restrictiveness and a subsequent application of g−1 allows for the
computation of false ccps but does not prevent the emission of valid ccps. But by in-
voking COMPOSECOMPOUNDVERTICES, we substitute single vertices stored in S by
introducing index-reusing compound vertices.

The general idea of COMPOSECOMPOUNDVERTICES (Section 3.5.4, motivated
by the fourth observation of Section 3.5.1) is the transformation of non-separable
hypernodes to compound vertices. Thus, we gain a different simple graph to which
we refer as G for now. In most scenarios G has fewer edges and fewer vertices
than g−1(s(H|S)). The output S′ of COMPOSECOMPOUNDVERTICES (Line 5 of
PARTITIONX ) is the vertex set of G. Since S′ contains only vertices of S and index-
reusing compound vertices, the indices used in S′ must be a (not necessarily proper)
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TDPlanGenHyp

TDPGHypSub

partition_X

manageInfoStack

cleanseHyperNeighbours

reComposeCompoundVertices connectionTestRequired partition_graph_aware decode

isConnectedHyp

computeFilters

computeLookUpIdx

adjustCompoundFilter reManageAdjacencyInfo

Figure 3.42.: Call graph for the top-level case of PARTITIONX

subset of the indices used in S. For the rare case of S′ = S, G = g−1(s(H|S)) will
hold. In all other cases, we need to modify Nm at some point during the top-down
traversal of TDPLANGENHYP. We have reached such an instance when a complex
articulation hyperedge (v, w) becomes cut off because it is contained in the minimal
cut of the parent partitioning. If such a hyperedge (v, w) is cut off, then one of its
hypernodes (say w) is not contained in the new S anymore. Now if the other hyper-
node v with v ⊆ S is a complex hypernode so that |v| > 1 holds, v must have been
non-separable for the parent S. For the current S, complex hypernodes of other com-
plex articulation hyperedges (that reference only vertices of the current S) might still
reference a superset of v. But if that is not the case, v is not non-separable anymore
and, hence, the corresponding compound vertex needs to be dissolved or recomputed
(if it is a merger of different overlapping non-separable hypernodes). In any case, this
requires a modification of Nm. To put this into different words: The application of
COMPOSECOMPOUNDVERTICES guarantees that the same Pccp(S) for that specific S
can be computed (false ccps already removed) but not the same Pccp (Section 3.2.1).

As Section 3.5.2 has pointed out, PARTITIONX differentiates between two cases:
Case (1), to which we refer as top-level case where S = V holds, and Case (2), which
covers all other cases where S ⊂ V holds. Figure 3.42 shows the call graph for Case
(2). Thus TDPGHYPSUB must have been called at least two times which is indicated
by the arrow that starts from and points to the box of TDPGHYPSUB. In this section,
we cover Case (2). Hence, we explain all depicted methods that are directly or indi-
rectly called by PARTITIONX , except CONNECTIONTESTREQUIRED (Section 3.5.5),
PARTITIONgraph−aware (Chapter 2), DECODE (Section 3.5.4), COMPUTELOOKUPIDX

(Section 3.5.3) and ISCONNECTEDHYP (Section 3.3.3).

Managing the Infostack

For maintenance reasons, besides Nm other variables have to be modified as well. As
already mentioned in Section 3.5.2, we group those volatile variables in the structure
StackEntry (Figure 3.23). For every subsequent call to PARTITIONX , we push a
copy of the old topmost StackEntry onto Infostack in order to be able to modify
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MANAGEINFOSTACK(S)

� Input: connected set S not containing any compound vertices
1 Eref

F ← TOP(Infostack).E
ref
F

2 PUSH(Infostack, TOP(Infostack))

3 COMPUTEFILTERS(S,Eref
F )

Figure 3.43.: Pseudocode for MANAGEINFOSTACK

COMPUTEFILTERS(S,Eref
Fparent

)

� Input: connected set S, set of old hyperedge references Eref
Fparent

1 TOP(Infostack).E
ref
F ← ∅

2 TOP(Infostack).E
ref
C ← ∅

3 for all ref ∈ Eref
Fparent

4 (v, w)← DEREFERENCE(ref) � Figure 3.31
5 if v ⊂ S ∧ w ⊂ S
6 TOP(Infostack).E

ref
F ← TOP(Infostack).E

ref
F ∪ {ref}

7 elseif (v ⊂ S ∧ w 6⊂ S) ∨ (v 6⊂ S ∧ w ⊂ S)
8 TOP(Infostack).E

ref
C ← TOP(Infostack).E

ref
C ∪ {ref}

9 if ref ∈ Eref
A

10 if v 6⊂ S
11 TOP(Infostack).SA ← TOP(Infostack).SA \ v
12 else TOP(Infostack).SA ← TOP(Infostack).SA \ w

Figure 3.44.: Pseudocode for COMPUTEFILTERS

it. This is done by a call to MANAGEINFOSTACK (Line 6 of PARTITIONX ) with the
pseudocode given in Figure 3.43.

Besides pushing a copy of the current StackEntry on top of Infostack (Line 2),
MANAGEINFOSTACK invokes COMPUTEFILTERS. The pseudocode for COMPUTE-
FILTERS is given in Figure 3.44. We call it to speed up processing by maintaining two
sets of complex hyperedge references: (1) the current set of complex hyperedge refer-
ences Eref

F and (2) the set of complex cut-off hyperedge references Eref
C . This way,

Eref
C will be a subset of the parent Eref

F , which is passed in as Eref
Fparent

. Furthermore,
the set of index-introducing compound vertices SA is cleansed. Therefore, the index-
introducing compound vertices that represent vertices not contained in the current S
anymore are removed. This can only happen if a complex articulation hyperedge is cut
off (Line 9 of COMPUTEFILTERS).

Once the current call to TDPGHYPSUB returns, we pop the topmost StackEntry
again (Section 3.5.2).

After MANAGEINFOSTACK is called, PARTITIONX invokes CLEANSEHYPER-
NEIGHBOURS in Line 7 and RECOMPOSECOMPOUNDVERTICES subsequently in
Line 8. We will explain CLEANSEHYPERNEIGHBOURS next.
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Cleansing of Hyperneighbors

The pseudocode for CLEANSEHYPERNEIGHBOURS is given in Figure 3.45. Its sole
purpose is to remove adjacency information that was derived from adjacent complex
hyperedges that were cut off during the top-down traversal of TDPGHYPSUB. If out-
dated adjacency information is not removed, PARTITIONgraph−aware will produce ad-
ditional false ccps, which will result in a notably performance penalty. But what is even
more important, our connection test avoidance technique will not function properly any
more. This means we might avoid connection tests, because according to the criteria
implemented in CONNECTIONTESTREQUIRED (Figure 3.39), they are not required for
some scenarios. But through outdated adjacency information, PARTITIONgraph−aware

is likely to produce false ccps that will not get caught because of those omitted tests.

As previously mentioned, we discover the complex hyperedges that were cut off
through COMPUTEFILTERS and store them into TOP(Infostack).E

ref
C . In case a com-

plex articulation hyperedge was cut off, |TOP(Infostack).E
ref
C | = 1 will hold. Other-

wise, TOP(Infostack).E
ref
C can contain zero to many references. So, what we have to

do is to check for every reference in TOP(Infostack).E
ref
C how it has contributed to

the computation of Nm.

There are three different sources considered when Nm is populated: (1) Ns,
that holds the simple neighborhood, (2) Nh, that is computed from the result
of complex hyperdge to simple edge mappings and (3) the application of the
TOP(Infostack).Compound

−1
map mapping for the index-reusing compound vertex el-

ements of Nm. Since any graph-aware partitioning algorithm PARTITIONgraph−aware

intersects its neighborhood computation with the vertex set S of the (sub) graph G|S
it was called with, source (1) needs no adjustment. But we have to ensure that the
information originating from source (2) and (3) is still accurate for the current S.

The associative array Nm stores the adjacency information of a given complex hy-
peredge (v, w) with the help of two representatives vrep, wrep with vrep ⊆ v∧|vrep| =
1 ∧ wrep ⊆ w ∧ |wrep| = 1 (Figure 3.24). To check if v is connected to w, we
have to check among all members z ∈ v if TOP(Infostack).Nm[z] is not disjoint with
w. Alternatively, since the information in Nm needs to be symmetric, we could also
check if for any z ∈ w, TOP(Infostack).Nm[z] intersects with v. Let ref be the index
of the corresponding HyperEdges[ref ] entry that represents the hyperedge (v, w).
Now assume w with w * S was cut off, because of ref ∈ TOP(Infostack).E

ref
C

and v ⊆ S holds. Further, let x be the vertex of the one-element set vrep, which
is the representative of v and y the vertex of the one-element set wrep, which is the
representative of w for (v, w). Then we need to adjust Nm. This is done by remov-
ing y from TOP(Infostack).Nm[x] and x from TOP(Infostack).Nm[y]. Actually, the
latter is not really necessary, since TOP(Infostack).Nm[y] will not be accessed by
PARTITIONgraph−aware, because y 6∈ S holds. Furthermore, if all members z with
z ∈ w are cut off so that z 6∈ S holds, we can even skip the adjustment for that partic-
ular (v, w). The reason for that is the same as for source (1): PARTITIONgraph−aware

intersects its neighborhood computation with the vertex set S so that the vertex y repre-
senting w will not be in the result set. This is especially true when (v, w) is a complex
articulation hyperedge that was cut off.
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CLEANSEHYPERNEIGHBOURS(H|S)

1 if TOP(Infostack).E
ref
C ⊆ Eref

A

2 return
3 Z ← TOP(Infostack).E

ref
C

4 while Z 6= ∅
5 ref ← z ∈ Z
6 Z ← Z \ {ref}
7 (v, w)← DEREFERENCE(ref)
8 x← ELEMENTOF(HyperEdges[ref ].vrep)
9 y ← ELEMENTOF(HyperEdges[ref ].wrep)

10 lkp← COMPUTELOOKUPIDX(x, y)
11 if x ⊂ S ∧ y ⊂ S ∧ (v 6⊂ S ∨ w 6⊂ S) ∧

HEdgeLkp[lkp] ∩ TOP(Infostack).E
ref
F = ∅

12 Z ← Z \HEdgeLkp[lkp]
13 cv ← ELEMENTOF(TOP(Infostack).Compoundmap[x])
14 cw ← ELEMENTOF(TOP(Infostack).Compoundmap[y])
15 if {cv} ∩ {x} = ∅ ∧ {cw} ∩ {y} = ∅
16 TOP(Infostack).Nm[x]← TOP(Infostack).Nm[x] \ {y}
17 TOP(Infostack).Nm[y]← TOP(Infostack).Nm[y] \ {x}
18 if cv 6= NIL ∨ cw 6= NIL
19 hv ← x
20 if cv 6= NIL
21 hv = TOP(Infostack).Compoundmap[{cv}]
22 if cw 6= NIL
23 hv ← hv ∩ TOP(Infostack).Nm[cw]
24 hw ← y
25 if cw 6= NIL
26 hw = TOP(Infostack).Compoundmap[{cw}]
27 if cv 6= NIL
28 hw ← hw ∩ TOP(Infostack).Nm[cv]

29 Eref
Tmp ← ∅

30 for all l ∈ hv
31 if Ns[l] ∩ hw 6= ∅
32 Eref

Tmp ← ∅
33 break
34 for all r ∈ hw
35 lkp← COMPUTELOOKUPIDX(l, r)

36 Eref
Tmp ← Eref

Tmp ∪HEdgeLkp[lkp]
37 if Eref

Tmp ∩ TOP(Infostack).E
ref
F = ∅ ∧ Eref

Tmp 6= ∅
38 diff ← {y} ∪ {cw}
39 TOP(Infostack).Nm[x]← TOP(Infostack).Nm[x] \ diff
40 if cv 6= NIL
41 TOP(Infostack).Nm[cv]← TOP(Infostack).Nm[cv] \ diff
42 diff ← {x} ∪ {cv}
43 TOP(Infostack).Nm[y]← TOP(Infostack).Nm[y] \ diff
44 if cw 6= NIL
45 TOP(Infostack).Nm[cw]← TOP(Infostack).Nm[cw] \ diff

Figure 3.45.: Pseudocode for CLEANSEHYPERNEIGHBOURS
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Now let us take a look at the pseudocode of CLEANSEHYPERNEIGHBOURS. In
Line 1, we start by checking if there was a complex articulation hyperedge cut off. If
so, nothing needs to be done for now, and we can return the call (Line 2). Otherwise,
we loop over all complex hyperedge references (Lines 4 to 45). In Line 5, we choose
one arbitrary hyperedge reference ref . Thereby, ref will be an index into the array
HyperEdges (Figure 3.25). We remove ref from the setZ in Line 6. In Lines 8 and 9,
we look up the representatives of v and w (Figure 3.24). The representatives have been
selected by COMPUTEADJACENCYINFO and have been attached to the corresponding
hyperedge by STOREADJACENCYINFO (Figure 3.32).

With the first part of the expression in Line 11, we check for the previously dis-
cussed scenario where one hypernode was not completely cut off and its representa-
tive is still contained in S. To explain the condition’s second part, we need to take a
look at how COMPUTEADJACENCYINFO maps complex hyperedges to simple edges.
In order to be as restrictive as possible, we try to map two or more overlapping hy-
peredges to one simple edge (third observation of Section 3.5.1). Now we check with
HEdgeLkp[lkp] ∩TOP(Infostack).E

ref
F = ∅ if all of those complex hyperedges with

the same mapping have really been cut off, otherwise we cannot change Nm for those
elements.

In Line 12, we remove the rest of the overlapping hyperedges mapped to the same
simple edge from Z in order to reduce the iterations of the loop of Lines 4 to 45.
Depending on some additional conditions that we explain later, Nm is adjusted either
in Lines 16 and 17 or 39 and 43.

So far, we only have discussed the cleansing of two of the three possible sources for
the computation of Nm: Ns and Nh. The cleansing of source (3) related adjacency
information is more complex because index-reusing compound vertices are involved
that coexist inNm together with the vertices they represent. Therefore, we also need to
check if the index-reusing compound vertex cv that represents a representative x of v is
still linked to the index-reusing compound vertex cw of y. Further, either one of x or y
might not be represented by a compound vertex. Depending on the scenario, up to six
adjustments might be necessary, which we apply in Lines 38 to 45. In the following,
we explain the necessary checks to determine if those adjustments are justified.

In Lines 13 and 14, the index-reusing compound vertices of x and y are discovered.
If they exist, cv and cw will hold the corresponding compound vertex. If no such vertex
exists, the value will be NIL. We apply the adjustment for source (2) in Lines 16 and
17 under the following conditions: (1) There is no complex articulation hyperedge
among the cut-off edges (Lines 1 and 2). (2) Both v and w or either one are partly cut
off (Line 11). (3) The representatives x and y are still contained in S (Line 11). (4)
If x or y are represented by an index-reusing compound vertex cv or cw, respectively,
then they must be of different value (Line 15). If this is not the case, we have to check
further conditions and might still apply the identical adjustments in Lines 39 and 43.

The following example shows why the check in Line 15 is necessary: Let us take
a look at Figure 3.46(a), where a complex hypergraph with five relations is depict-
ed. A call to COMPUTEADJACENCYINFO transforms the complex hypergraph in-
to the simple graph of Figure 3.46(b). A call to COMPOSECOMPOUNDVERTICES

produces the intermediated index-introducing compound vertex R5 in order to rep-
resent the non-separable hypernode R0, R4. During the process, COMPOSECOM-
POUNDVERTICES transforms R5 into the index-reusing compound relation R0 and
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Figure 3.46.: (a) Hypergraph, (b) simplified graph (COMPUTEADJACENCYINFO) and
(c) final graph with R0 as compound vertex
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Figure 3.47.: (a) Sub-hypergraph of Figure 3.46 (b) a disconnected graph with R0 as
compound vertex

returns S′ = {R0, R1, R2, R3}. The result is shown in Figure 3.46(c), where R0

represents R0 and R4. PARTITIONgraph−aware will produce four ccps. One of these
will be ({R0, R1, R2}, {R3}), which gets decoded as ({R0, R1, R2, R4}, {R3}) and
({R3}, {R0, R1, R2, R4}). Therefore, TDPGHYPSUB will invoke PARTITIONX with
the subgraph H|{R0,R1,R2,R4} depicted in Figure 3.47(a). Now CLEANSEHYPER-
NEIGHBOURS is called, where TOP(Infostack).E

ref
C contains one reference to the

cut-off complex hyperedge (v, w) = ({R0}, {R2, R3}). Thereby, x is set to R0 and
y to R2. Line 13 assigns cv with R0 and Line 14 cw with NIL. The check of Line
15 would fail since {cv} ∩ {x} 6= ∅. But without the test, we would delete R2 from
Nm[R0] and R0 from Nm[R2]. Hence, CLEANSEHYPERNEIGHBOURS would pro-
duce the disconnected simple graph of Figure 3.47, which would be no valid input for
PARTITIONgraph−aware.

Once the control flow passes the check of Line 18, the following conditions are met:
The conditions (1), (2), (3) still hold. Condition (4) is optional. (5) Both x and y or
either one are represented by an index-reusing compound vertex. (6) Because of (1),
(2), (3) and (5), both the hypernodes v and w or either one is only partly represented
by an index-reusing compound vertex. In other words, there exists at least one non-
separable hypernode that overlaps with v orw. (7) Because of (5) and (6), if v overlaps
with such a non-separable hypernode, then xmust be contained by that hypernode. The
same holds for y.

It is important to note that besides a scenario (a) where (1), (2), (3) and (4) hold
or a scenario (b) where (1), (2), (3), (5), (6) and (7) hold, adjustments neither have
to nor can be applied. Note that the set of all possible scenarios (a) and the set of all
possible scenarios (b) is not disjoint. Further note that the conditions for scenario (b)
are necessary but not sufficient. We explain what else has to be considered. Let us
assume both cv and cw are not NIL. Hence, there exist two node sets hv and hw that
are represented by cv and cw, respectively. Because of condition (5), x ∈ hv ∧ y ∈ hw
holds. We know that hv was connected to hw before (v, w) was cut off. But before
we disconnect hv from hw by adjusting Nm in Lines 38 to 45, we have to make sure
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that there is no other link. This could be either a simple or a complex hyperedge of the
original hypergraph.

For the investigation of simple edge links, we utilizeNs. Therefore, we loop through
all vertices l in hv (Line 30) and check if if Ns[l] ∩ hw 6= ∅ holds (Line 31). If that
is the case, we can continue with the next cut-off edge (Line 7). To determine if there
exists another complex hyperedge-link is slightly more costly. This is because we
need to consult for every pair (l ∈ hv, r ∈ hw) (Lines 30 and 34) the HEdgeLkp-
array (Lines 35 and 36) to check if a complex hyperedge (s, t) with s ∈ S∧ l ∈ s∧ t ∈
S ∧ r ∈ t exists. Once we have ensured (Line 37) that no such link exists, we apply
the adjustments in Lines 38 to 45.

Apart from the case where both cv and cw are not NIL, there are also cases where
only either one of cv or cw is not NIL. For those we also have to ensure that no other link
between either x and vertices in hw or y and vertices in hv respectively exists before
we can apply the adjustments. We take care of these different cases by assigning hv
or hw dynamically, depending on the situation. So hv or hw might hold a whole set
of vertices represented by cv or cw (Lines 21 and 26) or a single vertex x or y (Lines
19 and 24). In the following, we refer to the additional condition of scenario (b) as
condition (8).

In order to increase efficiency by decreasing the number of iterations of the loops in
Lines 30 and 34, we try to reduce hv and hw in Lines 23 and 28 to only those vertices
where links point to.

Now the only thing left to be discussed is whether we really have to differentiate
between scenarios (a) and (b), i.e., are there scenarios where only conditions (1), (2),
(3) and (4) hold, but not condition (5), (6), (7) and (8). Therefore, consider the hy-
pergraph of Figure 3.48(a). The result of the call to COMPUTEADJACENCYINFO is
given in Figure 3.48(b). Through the invocation of COMPOSECOMPOUNDVERTICES

with the subsequent call to GETBCCINFO, two index-introducing compound vertices
R6 and R7 are produced that represent the non-separable hypernodes {R1, R5} and
{R0, R5}. COMPOSECOMPOUNDVERTICES merges them to {R0, R1, R5} and maps
them to the index-reusing compound vertex R0. The result of this step is shown in
Figure 3.48(c), where S′ = {R0, R2, R3, R4} holds. PARTITIONgraph−aware will pro-
duce three ccps. One of them will be ({R0, R3, R4}, {R2}), which gets decoded as
({R0, R1, R3, R4, R5}, {R2}) and ({R2}, {R0, R1, R3, R4, R5}). Thus, TDPGHYP-
SUB will invoke PARTITIONX with the subgraph H|{R0,R1,R3,R4,R5} depicted in Fig-
ure 3.49(a). Since this is not the top-level case, PARTITIONX calls CLEANSEHY-
PERNEIGHBOURS, where TOP(Infostack).E

ref
C contains one reference to the cut-off

complex hyperedge (v, w) = ({R1, R2}, {R3}). Thereby, x gets set to R1 and y to
R3. Line 13 assigns cv with R0 and Line 14 cw with NIL. The check of Line 15 will
not fail, since {cv} ∩ {x} = ∅ holds. Hence (v, w) = ({R1, R2}, {R3}) is identified
as scenario (a). Thus, Lines 16 and 17 would delete the link between R1 and R3. Now
let us see if it is also classified as scenario (b). In fact, all conditions (1), (2), (3), (5),
(6), (7) hold, except for condition (8). Thereby, hv = {R0, R1, R5} and hw = {R3}
hold, but because of Line 31 Ns[R0] = {R3} is checked and, therefore, Lines 38
to 45 are not executed. Without the adjustment of Lines 16 and 17 and after apply-
ing RECOMPOSECOMPOUNDVERTICES, the input graph for PARTITIONgraph−aware

looks like the graph of Figure 3.49(b). Here, R0 represents {R0, R5} only. The re-
assignment is done by RECOMPOSECOMPOUNDVERTICES, as will be explained in
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Figure 3.48.: (a) Hypergraph, (b) simplified graph (COMPUTEADJACENCYINFO) and
(c) final graph with R0 as compound vertex
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Figure 3.49.: (a) Sub-hypergraph of Figure 3.48 (b) simple graph with R0 as com-
pound vertex

short. Since the edge (R1, R3) is not correct because ({R1, R2}, {R3}) was cut off,
PARTITIONgraph−aware will produce with ({R0, R4}, {R1, R3}) a false ccp, which
can be avoided through the implementation of Lines 16 and 17. ({R0, R4}, {R1, R3})
would be decoded to ({R0, R4, R5}, {R1, R3}) and ({R1, R3}, {R0, R4, R5}). Since
the conditions for avoiding the connection tests are met, both partitions would be emit-
ted. Thus, an incorrect result would be produced.

Recomposing Compound Vertices

The application of COMPOSECOMPOUNDVERTICES substitutes single vertices that are
elements of a non-separable hypernode by index-reusing compound vertices. This on-
ly happens when complex articulation hyperedges are present. The transformation of
non-separable hypernodes to compound vertices is important for the efficiency of the
partitioning process, since the computation of many false ccps is prevented. At some
point during the top-down traversal of TDPGHYPSUB, complex articulation hyper-
edges are cut off and non-separable hypernodes represented by index-reusing com-
pound vertices are not non-separable anymore. Hence, the index-reusing compound
vertices that represent the complex hypernode of such a cut-off complex articulation
hyperedge need to be recomputed or, as in many cases, completely dissolved. This is
the task of RECOMPOSECOMPOUNDVERTICES. The pseudocode is given in Figure
3.50. The main difference to COMPOSECOMPOUNDVERTICES is that no calls to GET-
BCCINFO and MAXIMIZECOMPOUNDVERTICES are made. Instead, the information
is mainly stored in Label−1map, IdxIntroVmap, TOP(Infostack).Compoundmap and
TOP(Infostack).Compound

−1
map is reused, which increases efficiency. We start by

checking if the cut-off edge was complex. If so, we ensure whether it was also an ar-
ticulation hyperedge. This is done in Line 1 of RECOMPOSECOMPOUNDVERTICES.
Otherwise, the call is returned immediately. In Lines 3 and 4, we dereference and
assign the one articulation hyperedge that was cut off to (v, w). We determine the
hypernode u of (v, w) that is still in S in Lines 5 to 8. Then we check if u can be
removed from TOP(Infostack).SA by a call to ADJUSTCOMPOUNDFILTER (Figure
3.51) in Line 9.
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The task of ADJUSTCOMPOUNDFILTER is to determine if u is also the hypernode
of another complex articulation hyperedge (Line 5 of ADJUSTCOMPOUNDFILTER).
Therefore, all complex articulation hyperedges that reference only vertices in the cur-
rent S need to be considered (Line 3). If no other non-separable hypernode that match-
es u was found, u can be removed (Line 9 ADJUSTCOMPOUNDFILTER). Note that the
other hypernode of (v, w) that is not u was already removed from TOP(Infostack).SA
either in Line 11 or 12 of COMPUTEFILTERS.

We rely on the accuracy of TOP(Infostack).SA in Lines 19 and 28 of RECOM-
POSECOMPOUNDVERTICES. With compoundo, we reference the old index-reusing
hypernode that represented u and possibly other overlapping non-separable hyper-
nodes (Line 10 of RECOMPOSECOMPOUNDVERTICES). The vertex set corresponding
to compoundo is assigned to hypernodeo (Line 11).

Let us denote with hu the vertex set that is represented by u. Then we know that
u ⊆ hu ⊆ hypernodeo must hold. Further, assume for now that by calling ADJUST-
COMPOUNDFILTER u was removed from TOP(Infostack).SA. Then we know that hu
is non-separable anymore. Now if hu = hypernodeo holds, we have to dissolve the
index-reusing hypernode compoundo. Otherwise, if hu ⊂ hypernodeo holds, then
hypernodeo is a merger of non-separable hypernodes. In that case, we have to de-
termine how and if the other non-separable hypernodes overlap. New index-reusing
compound vertices may need to be introduced.

This is done by the loop of Lines 15 to 38. The approach is quite similar to the one
implemented in COMPOSECOMPOUNDVERTICES. We explain only the differences
and refer to Section 3.5.4 for the details. Instead of looping over all single vertices
that are represented by any index-introducing compound vertex (Line 15 of COM-
POSECOMPOUNDVERTICES), only the vertices of hypernodeo need to be considered
(Line 15 of RECOMPOSECOMPOUNDVERTICES). For all other vertices, nothing will
change. If a y ∈ hypernodeo with y ∈ hu is not also a member of any other non-
separable hypernode, it cannot be represented by an index-reusing compound vertex
any more. Hence, the initial vertex set h is set to h = v = {y} (Line 17). So if
no non-separable hypernode containing y exists, the vertex set Z will be empty (Line
19) and the loop of Lines 22 to 29 will not be entered. Then, Line 36 will remove
the index-reusing compound vertex mapping for y and Line 37 will add y back to
TOP(Infostack).Sorg. The latter is important for a proper functioning of DECODE.
In case there is another non-separable hypernode that still contains y, this is handled
in the same way as in COMPOSECOMPOUNDVERTICES. The only difference is that
we have to intersect the IdxIntroVmap lookup with TOP(Infostack).SA in Lines 19
and 28. This is important because not all members of IdxIntroVmap[v = {y}] or
IdxIntroVmap[{x}] are necessary non-separable hypernodes within the current S.

Line 39 ensures that TOP(Infostack).S
disconnected
compounds does not contain the old index-

reusing compound vertex. We need TOP(Infostack).S
disconnected
compounds for the determina-

tion if connection tests can be avoided in CONNECTIONTESTREQUIRED. Finally,
the changes made by RECOMPOSECOMPOUNDVERTICES have to be encoded into
TOP(Infostack).Nm. Therefore, REMANAGEADJACENCYINFO is called in Line 41.

We give the pseudocode for REMANAGEADJACENCYINFO in Figure 3.52. In
Lines 4 to 9, we recompute the neighborhood for the vertex co by consulting Ns in
Lines 4 to 5 and Nh in Lines 6 to 9. This is important since the original value of
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RECOMPOSECOMPOUNDVERTICES(H|S)

� Input: connected (sub)graph H|S
� Output: S′ a set of vertex sets

1 if Eref
A ∩ TOP(Infostack).E

ref
C = ∅ ∨ TOP(Infostack).E

ref
C = ∅

2 return TOP(Infostack).S
′

3 ref ← ELEMENTOF(TOP(Infostack).E
ref
C )

4 (v, w)← DEREFERENCE(ref) � Figure 3.31
5 u← ∅
6 if v ⊆ S
7 u← v
8 else u← w
9 ADJUSTCOMPOUNDFILTER(u)

10 compoundo ← TOP(Infostack).Compoundmap[u]
11 hypernodeo ← TOP(Infostack).Compound

−1
map[compoundo]

12 TOP(Infostack).S
′ ← TOP(Infostack).S

′ \ compoundo
13 S′′ ← hypernodeo � contains only vertices represented by index-introducing v.
14 added← ∅
15 while S′′ 6= ∅
16 v ← {y} : y ∈ S′′
17 h← v � h stores the new hypernode
18 S′′ ← S′′ \ v
19 Z ← IdxIntroVmap[v] ∩ TOP(Infostack).SA

20 I ← ∅
21 X ← v
22 while Z 6= ∅
23 u← {z} : z ∈ Z
24 Z ← Z \ u
25 I ← I ∪ u
26 h← h ∪ Label−1map[u]
27 for all x ∈ (h \X)
28 Z ← Z ∪ ((IdxIntroVmap[{x}] ∩ TOP(Infostack).SA) \ I)
29 X ← X ∪ h
30 S′′ ← S′′ \ h
31 toadd← {MINindex(h)} � vertex with smallest index of h
32 if |h| > 1
33 TOP(Infostack).Compound

−1
map[toadd]← h

34 for all x ∈ h
35 TOP(Infostack).Compoundmap[{x}]← toadd
36 else TOP(Infostack).Compoundmap[h]← ∅
37 TOP(Infostack).Sorg ← TOP(Infostack).Sorg ∪ toadd
38 added← added ∪ toadd
39 TOP(Infostack).S

disconnected
compounds ← TOP(Infostack).S

disconnected
compounds \ added

40 TOP(Infostack).S
′ ← TOP(Infostack).S

′ ∪ added
41 REMANAGEADJACENCYINFO(H|S , compoundo, hypernodeo, added)
42 return TOP(Infostack).S

′

Figure 3.50.: Pseudocode for RECOMPOSECOMPOUNDVERTICES

TOP(Infostack).Nm[co] was overwritten with the merged adjacency information of
the whole vertex set hypernodeo. But before we can reset TOP(Infostack).Nm[co],
we need to store its current value into Z. We will rely on this information in Lines
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ADJUSTCOMPOUNDFILTER(u)

� Input: index-introducing compound vertex u
1 if |u| > 1
2 referenced← FALSE

3 for all ref ∈ (TOP(Infostack).E
ref
F ∩ Eref

A )
4 (v, w)← DEREFERENCE(ref)
5 if v = u ∨ w = u
6 referenced← TRUE
7 break
8 if referenced 6= TRUE
9 TOP(Infostack).SA ← TOP(Infostack).SA \ u

Figure 3.51.: Pseudocode for ADJUSTCOMPOUNDFILTER

11 and 23. This is because the adjacency information needs only adjustments between
the elements of Z and the elements of hypernodeo. The other values for the other
elements of S will remain unchanged.

Since Nh was computed in order to reflect the adjacency between hypernodes
through complex hyperedges, we need to check if this information is still accurate
for the current S. Therefore, we check for every pair (x, co) (Lines 7 and 8) if there is
at least one hyperedge that only references vertices in S.

In Line 10, we determine between two cases: Case (1) is that some vertices of
hypernodeo are still represented by an index-introducing compound vertex. In that
case, there have been overlapping non-separable hypernodes. Otherwise, the index-
reusing compound vertex was completely dissolved, to which we refer as case (2). We
process case (1) in Lines 11 to 22 and case (2) in Lines 23 to 24.

During the handling of case (1), we iterate over all members x of Z (Line 11).
First, we update the neighborhood of x as stored in TOP(Infostack).Nm[x] in Lines
11 to 14. For every x we remove co from its neighbors TOP(Infostack).Nm[x] (Line
12). Then we iterate over every member y of x’ neighbors that is a member of
hypernodeo at the same time so that y ∈ TOP(Infostack).Nm[x] ∧ y ∈ hypernodeo
holds. We enlarge TOP(Infostack).Nm[x] now with the new index-reusing com-
pound vertex of y (Line 14). If y is not represented by a compound vertex, then
TOP(Infostack).Compound

−1
map[y] = ∅ will hold (Line 36 of RECOMPOSECOM-

POUNDVERTICES).
After the updates on TOP(Infostack).Nm[x ∈ Z], the neighborhood of the vertices

x ∈ added recently added to TOP(Infostack).S
′ is recomputed (Lines 16 to 20). Since

this part is identical to the Lines 8 to 11 of MANAGEADJACENCYINFO, we omit further
explanation. In Lines 21 and 22, we make the new compound vertices known to their
corresponding neighbors.

The handling of case (2) is much simpler. Since the index-reusing compound vertex
co was dissolved, we only have to remove the reference to co from co’s old neighbors
x ∈ Z. But since co ∈ TOP(Infostack).Sorg holds, we need to keep the adjacency
information stored in Ns[co] ∪ Nh[co]. Therefore, we have to consult the recently re-
computed TOP(Infostack).Nm[co]. If TOP(Infostack).Nm[co] is disjoint to {x} with
x ∈ Z (Line 23), then co needs to be deleted from TOP(Infostack).Nm[x] (Line 24).
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REMANAGEADJACENCYINFO(H|S , compoundo, hypernodeo, added)

1 co ← ELEMENTOF(compoundo)
2 Z ← TOP(Infostack).Nm[co]
3 TOP(Infostack).Nm[co]← ∅
4 for all x ∈ (Ns[co] ∩ S)
5 TOP(Infostack).Nm[co]← TOP(Infostack).Nm[co]∪

{x} ∪ TOP(Infostack).Compoundmap[{x}]
6 for all x ∈ (Nh[co] ∩ S)
7 lkp← COMPUTELOOKUPIDX(x, co)

8 if HEdgeLkp[lkp] ∩ TOP(Infostack).E
ref
F 6= ∅

9 TOP(Infostack).Nm[co]← TOP(Infostack).Nm[co]∪
{x} ∪ TOP(Infostack).Compoundmap[{x}]

10 if added * TOP(Infostack).Sorg

11 for all x ∈ Z
12 TOP(Infostack).Nm[x]← TOP(Infostack).Nm[x] \ compoundo
13 for all y ∈ TOP(Infostack).Nm[x] ∩ hypernodeo
14 TOP(Infostack).Nm[x]← TOP(Infostack).Nm[x]∪

TOP(Infostack).Compound
−1
map[y]

15 for all x ∈ added
16 h← TOP(Infostack).Compound

−1
map[{x}]

17 if ISCONNECTEDHYP(H|h) 6= TRUE

18 TOP(Infostack).S
disconnected
compounds ← TOP(Infostack).S

disconnected
compounds ∪ {x}

19 for all y ∈ h
20 TOP(Infostack).Nm[x]← TOP(Infostack).Nm[x] ∪

TOP(Infostack).Nm[y]
21 for all y ∈ TOP(Infostack).Nm[x]
22 TOP(Infostack).Nm[y]← TOP(Infostack).Nm[y] ∪ {x}
23 else for all x ∈ (TOP(Infostack).Nm[co] \ Z)
24 TOP(Infostack).Nm[x]← TOP(Infostack).Nm[x] \ compoundo

Figure 3.52.: Pseudocode for REMANAGEADJACENCYINFO

3.5.7. Implementation Details

The efficiency of our framework depends heavily on the type of data structures used.
To represent sets, we use bitvectors. As bitvector, we use the uint32 t or uint64 t
type. Thus, a set of vertices is represented by bits in the bitvector. Our global variables
of Figure 3.25 and 3.23 are based on bitvectors. The arraysNs, Nh andNm, for exam-
ple, are arrays of bitvectors with |V | elements. Similarly, we implemented Label−1map,
IdxIntroVmap and Compoundmap. We compute the entry or index into the array by
using the bit scan forward assembler instruction. This gives us the least significant
bit index for a given bitvector. The result of this operation is the index of the array.
Only for Labelmap we have to use a real map implementation.

Our frameworks maps complex hyperedges to simple edges. Assume (v, w) is a
complex hyperedge and ({x}, {y}) the corresponding simple edge with x ∈ v∧y ∈ w.
In our implementation, we declared a structure called HyperEdge (Figure 3.24)
containing four bitvectors: v, w, vrep, wrep to hold the information of (v, w) and
({x}, {y}), where vrep is representing v and wrep is representing w such that vrep =
{x} ∧ wrep = {y} holds. All complex hyperedges are stored in an array called
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HyperEdges (Figure 3.25) of type HyperEdge (Figure 3.24). An hyperedge ref-
erence is then the index of that array position. Again, we use bitvectors to represent
Eref

A ,Eref
F andEref

C . We applied the same idea forHEdgeLkp. SinceHEdgeLkp is
an array of complex hyperedge references, we implemented it as an array of bitvectors.

For our discussion, we differentiated between index-introducing and index-reusing
compound vertices. Therefore, we assigned k with SIZE(Labelmap) + |V | in Line 2
of MAINTAINLABELS in order to ensure that the new compound vertices zk are really
index-introducing, i.e., that zk 6∈ V holds. In our implementation, we do not add
the additional |V | since a strict differentiation between index-introducing and index-
reusing compound vertices is not really necessary.

3.6. Evaluation

This section is structured as follows: We start by explaining our setup in Sections
3.6.1 and 3.6.2. Section 3.6.3 gives an organizational overview. Finally, we present
our results in Sections 3.6.4 to 3.6.7. Our empirical evaluation is threefold:

• First, in Sections 3.6.4 and 3.6.5 we give a performance analysis of our algo-
rithms for randomly generated queries. Thereby, we differentiate between (1)
queries that contain complex predicates and inner joins only and (2) those that
contain inner joins but also non-inner joins without considering complex predi-
cates.

• Second, we give a short analysis of the overhead produced by our generic par-
titioning framework in Section 3.6.6. Therefore, we use the same randomly
generated standard queries as in Section 2.6.2.

• Whereas the first two parts of the evaluation consider synthetic workloads, the
third part investigates the performance when the TPC-H [34] and the TPC-
DS [33] queries are considered. Furthermore, we include results for the query
graphs gained from the SQLite test suite [29]. We present those results in Sec-
tion 3.6.7.

3.6.1. Implementation

For all plan generators, no matter whether they work top-down or bottom-up, a shared
optimizer infrastructure was established. It contains the common functions to instanti-
ate, fill, and look up the memotable, initialize and use plan classes, estimate cardinali-
ties, calculate costs, and compare plans. Thus, the different plan generators differ only
in those parts of the code responsible for enumerating ccps.

For the cost estimation of joins, we decided to use the formulas developed by Haas
et al. [17]. They have the advantage of being very precise.

3.6.2. Workload

There are two situations giving rise to complex hyperedges: (1) the TES as produced by
CD-A [20] indicating non-reorderability of non-inner joins and (2) complex predicates
referencing more than two relations.
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In Sections 3.6.4 and 3.6.5, we distinguish between these two cases. Thus, we have
implemented two kinds of query graph generators. The first graph generator is based
on a random operator tree generator that attaches all different inner and non-inner join
operators. Here, we make only one assumption. More than half of all attached join op-
erators should be inner join operators. We then compute acyclic complex hypergraphs
from these generated operator trees with the conflict detector CD-A, as proposed in
[20]. To gain cyclic graphs, we determine all subgraphs of a given hypergraph that
are connected by inner join edges only. Within those subgraphs, we randomly gener-
ate more inner join edges. We call the generated graphs non-inner join query graphs,
although the majority of edges are still inner join edges. We refer to those graphs as
non-inner/simple.

The second graph generator generates random acyclic and cyclic graphs, containing
simple edges only. Thereby, the edges are randomly added by selecting two relation’s
indices using uniformly distributed random numbers. After having generated a simple
graph, the generator starts transforming simple edges to complex hyperedges at ran-
dom. Therefore, it randomly chooses between 3 parameters: (1) and (2) the size of the
hypernodes connected through the new hyperedge and (3) if the simple edge that is
transformed is part of a cycle or not, i.e., is the only connection between two connect-
ed subgraphs or not. An edge is only transformed if the resulting complex hyperedge
is not subsumed by any other edge. Essentially, this generator generates hypergraphs
with complex hyperedges that model complex join predicates involving more than two
relations. Therefore, we call the generated graphs complex predicate query graphs and
refer to them as inner/complex.

To generate cardinalities and selectivities, we follow the approach of [12] as de-
scribed in Section 4.4.2. Note that since we do not apply branch-and-bound pruning
techniques, the assigned cardinalities and selectivities were not important for our stud-
ies.

In Section 3.6.7, we compare the runtime performance of our plan generators with
different benchmarks. Therefore, we computed the query graphs for all queries of the
TPC-H [34] and the TPC-DS [33] benchmarks. As basis for the query graph compu-
tation, we used the explain output of the IBM DB2 10.1 LUW database management
system [18]. For every query we took the operator tree from the explain output and
reduced it to a join tree. Thereby, every base relation of the join tree introduced a
new vertex into the query graph. We assigned every vertex with the cardinality of the
base relation if no local predicate could be applied. Otherwise, we took the optimizer’s
cardinality estimate when all corresponding local predicates had been applied. The hy-
peredges were extracted from the predicates that were attached to the join operators. In
case a materialized intermediate result in the form of a temporary relation TMP was
referenced, we located the TMP operator in the join tree. Instead of a simple hyper-
edge, we introduce a complex hyperedge. For the part referencing the TMP operator,
we introduced a complex hypernode that contained all base relations underneath that
TMP operator. Hence, if two TMP operators were referenced in the join predicate,
the corresponding hyperedges had two complex hypernodes at the end. For several
TPC-DS queries the DB2 optimizer applied subplan sharing. Since the root node of
every subplan is a TMP operator, we did not convert every join predicate referencing
that TMP into a complex hyperedge. Instead, we introduced only a complex hyper-
node for every first predicate that we encountered referencing such a shared subplan
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via a TMP . For all other references to the same TMP , we introduced a new vertex in
the query graph. We assigned the vertex with a cardinality corresponding to the same
TMP . If (local) predicates could be applied on that TMP , we took the cardinality
after the predicate application. In order to simplify things, we ignored groupings and
UNION operations. Although not valid, we transformed every UNION into an in-
ner join with a selectivity of one. We modeled the corresponding edge as a complex
hyperedge. Thereby, all base relations as a whole on each side of the UNION formed
a complex hypernode.

As third benchmark, we took the SQLite test suite [29]. The query graphs for the
SQLite test suite were provided through the courtesy of Thomas Neumann and ob-
tained from the HyPer optimizer [32].

3.6.3. Organizational Overview

In our empirical analysis, we compare the performance of six top-down join enumera-
tors:

• TDBASICHYP as the instantiated TDPLANGENHYP (Section 3.3.1) variant
with naive partitioning PARTITIONnaiveHyp (Section 3.3.2)

• TDMCLHYPnaive as the instantiated TDPLANGENHYP variant with MINCUT-
LAZY [5] (Appendix A.2). Thereby, we apply a graph mapping of complex
hyperedges to simple hyperedges where every complex hypernode is represent-
ed by the vertex with the smallest index. We reuse Lines 37 to 40 of COM-
PUTEADJACENCYINFO. We filter out false ccps with ISCONNECTEDHYP (Sec-
tion 3.3.3).

• TDMCBHYPnaive as the instantiated TDPLANGENHYP variant with MINCUT-
BRANCH (Section A.2). We apply COMPUTEADJACENCYINFO (Section 3.5.3)
and filter out false ccps with ISCONNECTEDHYP (Section 3.3.3).

• TDMCCHYP as the instantiated TDPLANGENHYP (Section 3.3.1) variant with
MINCUTCONSERVATIVEHYP (Section 3.4).

• TDMCBHYP as TDPLANGENHYP instantiated with PARTITIONX (Sec-
tion 3.5) and MINCUTBRANCH as partitioning algorithm (Section 2.5).

• TDMCCFWHYP as TDPLANGENHYP instantiated with PARTITIONX (Sec-
tion 3.5) and MINCUTCONSERVATIVE as partitioning algorithm (Section 2.4).

Table 3.6.3 gives a summarized overview of the six different algorithms. In order to
put all top-down plan generators into perspective, we include the results of Moerkotte
and Neumann’s DPHYP [21] as the state of the art in bottom-up join enumeration via
dynamic programming.

We present our results in terms of the quotient of the algorithm’s execution time and
the execution time of DPHYP. We refer to this quotient as the normed time. Table 3.4
shows the average, minimum, and maximum normed time over the whole workload
for non-inner/simple and inner/complex queries.

Since the normed time for DPHYP is always 1, we rather give its elapsed time
in seconds. Figure 3.53 displays the runtime results for acyclic/inner/complex and
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3. Hypergraph-Aware Join Enumeration Algorithms

Name Partitioning Strategy Remarks
TDBASICHYP PARTITIONnaiveHyp Sec. 3.3.2
TDMCLHYPnaive COMPUTEADJACENCYINFO+MINCUTLAZY Sec. 3.5.3, A.2
TDMCBHYPnaive COMPUTEADJACENCYINFO+MINCUTBRANCH Sec. 3.5.3, A.2
TDMCCHYP MINCUTCONSERVATIVEHYP Sec. 3.4
TDMCBHYP PARTITIONX+MINCUTBRANCH Sec. 3.5.2, 2.5
TDMCCFWHYP PARTITIONX+MINCUTCONSERVATIVE Sec. 3.5.2, 2.4

Table 3.3.: Names of different plan generation algorithms and the corresponding par-
titioning strategies.

Figure 3.54 for acyclic/non-inner/simple queries. We give the number of vertices on
the abscissa and the execution time in log scale on the ordinate. We draw lines to
connect the averaged execution times.

For randomly generated cyclic queries, the algorithms’ performance results deviate
significantly for the same number of vertices. Thus, we cannot show the results for
different numbers of vertices at the same time. Figures 3.55 and 3.56 present the
results for 10 and 15 vertices for cyclic/inner/complex queries. The results for 10 and
15 vertices for cyclic/non-inner/simple queries are shown in Figures 3.57 and 3.58.

For the experiments with the randomly generated queries (Section 3.6.4 and 3.6.5),
we include only those query graphs in our evaluation that all plan generators could
process in less than 100 seconds. In the third part of our experiments, where we eval-
uated the runtime performance with the benchmark queries, we measured the compile
time only for those query graphs with equal or less than 32 vertices. Here, we applied
no time constraint.

The workload of the randomly generated queries consists of more than 50000 query
graphs. We generated graphs up to 20 vertices of non-inner/simple queries and graphs
up to 22 vertices of inner/complex queries. Thereby, among the cyclic queries the
number of edges per number of vertices is evenly distributed. In fact, when generating
the cyclic queries, we took care that the minimal number of edges was equal to the
number of vertices and that the maximal number of edges was at least twice the number
of vertices. Every graph had to have at least one complex hyperedge.

Our experiments of Sections 3.6.4 to 3.6.6 were conducted on an Intel Pentium D
with 3.4 GHz, 2 Mbyte second level cache and 3 Gbyte of RAM running openSUSE
12.1. The performance evaluation of Section 3.6.7 was conducted on an i7 Intel Quad
Core with 3.4 (1.6) GHz, 8 Mbyte second level cache and 4 Gbyte of RAM running
openSUSE 12.1. On both machines, we used the Intel C++ compiler with the compiler
option O3.

3.6.4. Evaluation of Random Acyclic Query Graphs

The results for acyclic/inner/complex and acyclic/non-inner/simple are shown in Fig-
ure 3.53, Figure 3.54 and on the left side of Table 3.4.

When comparing the performance results between acyclic/non-inner/simple and
acyclic/inner/complex queries, each algorithm retains its unique trend. Nevertheless,
on average plans for non-inner/simple queries had a lower compile time. As it turns
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Algorithm min max avg min max avg
acyclic/non-inner/simple cyclic/non-inner/simple

DPHYP 0.0001 s 0.0591 s 0.0007 s 0.0001 s 1.2355 s 0.0076 s
TDBASICHYP 1.1667 × 14047 × 981 × 0.9428 × 15227 × 928 ×
TDMCLHYPnaive 0.3147 × 12.78 × 2.4984 × 0.2851 × 14.46 × 2.1679 ×
TDMCBHYPnaive 0.2727 × 12.52 × 2.0636 × 0.2308 × 14.06 × 1.7020 ×
TDMCCHYP 0.1888 × 4.0108 × 1.2180 × 0.1189 × 3.5678 × 1.1529 ×
TDMCBHYP 0.1049 × 2.6388 × 0.9752 × 0.0925 × 2.1425 × 0.8760 ×
TDMCCFWHYP 0.1049 × 2.5003 × 1.0020 × 0.0964 × 2.0638 × 0.8920 ×
Algorithm min max avg min max avg

acyclic/inner/complex cyclic/inner/complex
DPHYP 0.0001 s 0.4384 s 0.0096 s 0.0003 × 44.31 s 2.1758 s
TDBASICHYP 2.3023 × 32292 × 986 × 1.0340 × 52102 × 20.11 ×
TDMCLHYPnaive 0.7091 × 5.1429 × 1.5532 × 1.2000 × 7.3271 × 1.6273 ×
TDMCBHYPnaive 0.5636 × 4.8001 × 1.2767 × 0.8092 × 2.4777 × 1.1721 ×
TDMCCHYP 0.6545 × 3.2344 × 1.3783 × 0.8295 × 2.0265 × 1.3510 ×
TDMCBHYP 0.4364 × 2.4328 × 1.0159 × 0.7573 × 1.5730 × 1.0266 ×
TDMCCFWHYP 0.4727 × 1.8794 × 1.0486 × 0.7600 × 1.6072 × 1.0361 ×

Table 3.4.: Performance results for random queries

out, the average size of a hypernode associated to an average hyperedge is distinctly
higher for non-inner/simple join queries. Hence, the number of ccps for acyclic/non-
inner/simple queries has to be lower, which makes them easier to compile, since fewer
plans have to be considered.

Further, we observe the following for acyclic query graphs. The performance of
TDBASICHYP with an average normed runtime of 980 and a worst case normed run-
time of 32300 is unacceptable. TDMCLHYPnaive shows the second highest normed
runtimes, but performs much better than TDBASICHYP. Nevertheless, its runtime be-
havior is not robust, as a worst case normed runtime of 12.8 indicates. In fact, if queries
with an increasing number of vertices are considered, the differences to TDMCCHYP,
TDMCCFWHYP, TDMCBHYP and DPHYP are increasing.

We can study the effect of using compound vertices (Section 3.5.4), an improved
connection test handling (Section 3.5.5) and further optimizations (Section 3.5.6)
by comparing TDMCBHYP with TDMCBHYPnaive. For acyclic/non-inner/simple
queries, there is an average runtime difference of about an factor of two. Looking
at acyclic/inner/complex queries, the differences between TDMCBHYP and TDM-
CBHYPnaive are not that high.

Among all top-down join enumeration algorithms, TDMCBHYP performs best on
average, although the differences to TDMCCFWHYP are negligible. Comparing the
performances between TDMCBHYP and DPHYP, we see that TDMCBHYP domi-
nates for acyclic/non-inner/simple queries but not for acyclic/inner/complex queries.

Looking at the max/min normed runtimes, we see that TDMCBHYP can be slower
by a factor of at most 2.6, but also by a factor of up to 0.1−1 = 10 faster than DPHYP.
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3.6.5. Evaluation of Random Cyclic Query Graphs

Let us look at the performance for random cyclic queries. Again, we distinguish be-
tween the case where complex hyperedges exist only due to conflicts of non-inner
joins (cyclic/non-inner/simple) and the case where they result from complex predi-
cates (cyclic/inner/complex).

Here, for any fixed number of relations, the variations in runtime are enormous.
More specifically, they heavily depend on the number of edges. This is obvious, as we
imagine to add edges to a chain until we get a clique. Hence, we fixed the number of
relations to some medium number 10 (and 15) and varied the number of edges from
10 to 24 (15 to 40) in case of cyclic/non-inner/simple and up to 40 (80) in case of
cyclic/inner/complex queries.

Considering Figures 3.55, 3.56, 3.57 and 3.58, we observe that (except for TDBA-
SICHYP) the runtimes of all algorithms increase heavily with the number of edges.
This is due to the increased search space size. TDBASICHYP only shows a slight in-
crease in runtime if more edges are present. This can easily be explained by observing
that adding edges leads to a higher connectivity within the graph and thus to more ccps.
With a higher number of ccps, the connection tests of PARTITIONnaive have fewer fail-
ures. Furthermore, the test for connectedness becomes cheaper on average: Since more
connecting edges might exist, interconnected subsets are faster to merge. Hence, with
an increasing number of edges for a fixed number of vertices, TDBASICHYP becomes
more competitive.

Looking at the right side of Table 3.4, we observe that with an average normed
runtime of 928 and a maximal normed runtime of 15227 for cyclic/non-inner/simple
queries, TDBASICHYP must be discarded from further consideration. Again,
TDMCLHYPnaive has the second highest average normed runtimes and is dominated
by all other plan generators except for TDBASICHYP. The performance of TDMC-
CHYP is in the medium span. For cyclic/non-inner/simple queries, it performs better
than TDMCBHYPnaive, but for cyclic/inner/complex the opposite is true.

Once again, there is roughly a factor of two runtime differences between TDMCB-
HYPnaive and TDMCBHYP when non-inner/simple queries are considered. Thus, the
usage of compound vertices and the proposed improved connection test handling pays
off. For cyclic/inner/complex queries, the differences between the two algorithms are
much smaller. This is as expected, since those type of queries are usually not complex-
cycle free. Hence, fewer compound vertices are introduced and fewer connection tests
can be avoided.

Again, TDMCBHYP dominates TDMCCFWHYP. Since both algorithms use the
same generic partitioning framework, the differences are only due the application of
different graph-partitioning strategies. As MINCUTBRANCH and MINCUTCONSER-
VATIVE are almost equally competitive, the normed runtime of TDMCCFWHYP is
only slightly higher.

For cyclic/non-inner/simple queries, even DPHYP is dominated by TDMCBHYP.
As the minimal normed runtime of 0.09 indicates, TDMCBHYP has a clear advantage
over DPHYP in certain scenarios because TDMCBHYP uses compound vertices and,
therefore, enlarges an already connected set by a whole adjacent hypernode at once.
DPHYP, on the other hand, incrementally enlarges a connected set by one member
of the adjacent hypernode at a time. There can be as many invocations of DPHYP’s
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Algorithm min max avg min max avg
Chain (8 ≤ |V | ≤ 30) Star (8 ≤ |V | ≤ 26)

DPHYP 0.0005 s 0.0316 s 0.0097 s 0.0029 s 76.1274 s 8.7825 s
TDMCB 0.6600 × 1.3332 × 0.9768 × 0.9091 × 1.1000 × 1.0044 ×
TDMCBHYP 0.6666 × 1.5410 × 0.9781 × 0.9118 × 1.1333 × 1.0056 ×
Algorithm min max avg min max avg

Cycle (8 ≤ |V | ≤ 30) Clique (8 ≤ |V | ≤ 19)

DPHYP 0.0013 s 0.0880 s 0.0367 s 0.0236 s 64.3322 s 11.6768 s
TDMCB 0.4606 × 1.0790 × 0.9626 × 0.9629 × 1.0696 × 1.0246 ×
TDMCBHYP 0.4647 × 1.1081 × 0.9666 × 0.9648 × 1.0788 × 1.0281 ×

Table 3.5.: Chain, Star, Cycle and Clique queries: minimum, maximum and average
of the normed runtimes

sub-methods without any emission of ccps as there are proper connected subsets of
the adjacent hypernode. However, the number of connected subsets is limited to the
number of sets that contain the same representative vertex of the neighborhood (see
[21] for more details). In the worst case, this number corresponds to 2|n|−1 − 2, with
|n| being the size of the hypernode. As the average normed runtime of 0.88 indicates,
these cases are rare. Nevertheless, with a maximal normed runtime of 2.14, TDMCB-
HYP seems to be more robust in terms of sensitivity to the current vertex labeling of
the input graph.

3.6.6. Overhead Detection

In order to determine the overhead induced by our framework we evaluated TDMCB-
HYP on the standard cases of simple query graphs: chains, stars, cycles, and cliques.
We included TDMCB (Section 2.5), that is not capable of handling complex hyper-
graphs. We run these four different query graph classes for different numbers of rela-
tions (n). The results are shown in Table 3.5. Note that the runtimes of TDMCB and
TDMCBHYP are almost identical, indicating that there is no measurable overhead.

3.6.7. Performance Evaluation with Different Benchmarks

We investigate three benchmarks. For the TPC-H [34] and TPC-DS [33] benchmarks,
we used the generated plans of the IBM DB2 LUW database management system [18]
to extract the query graphs. The query graphs for the SQLite test suite [29] were
extracted from the HyPer optimizer [32].

Thus, we could benefit from optimization techniques such as unnesting and subplan
sharing. We used complex hyperedges to prevent reordering conflicts. The runtimes
reported here do not include the preparation time for computing the query graphs.

Tables 3.7, 3.8 and 3.9 give the summarized results for the three benchmarks. There-
by, the first column gives the overall runtime for processing the workload with a given
plan generator. We refer to that value as H/DS/SQLite-total time. In the second col-
umn the overall normed runtime is given. The H/DS/SQLite-total time for a given
algorithm is divided by DPHYP’s H/DS/SQLite-total time. We refer to that value as

131



3. Hypergraph-Aware Join Enumeration Algorithms

 0.001

 0.01

 0.1

 1

 10  15  20  25  30  35  40

ti
m

e
 e

la
p

s
e

d
 i
n

 s
e

c
o

n
d

s

number of edges

Cyclic with 10 relations and Ad Hoc Join Costs by L. Haas et al.

DPHyp
TDBasicHyp

TDMcLHypnaive
TDMcBHypnaive

TDMcCHyp
TDMcCFwHyp

TDMcBHyp

 0.1

 1

 10

 10  15  20  25  30  35  40

ti
m

e
 e

la
p

s
e

d
 n

o
rm

e
d

 w
it
h

 t
im

e
 e

la
p

s
e

d
 f

o
r 

D
P

H
y
p

 e
x
e

c
u

ti
o

n

number of edges

Cyclic with 10 relations and Ad Hoc Join Costs by L. Haas et al.

DPHyp
TDBasicHyp

TDMcLHypnaive
TDMcBHypnaive

TDMcCHyp
TDMcCFwHyp

TDMcBHyp

0.5

1

2

 10  15  20  25  30  35  40

ti
m

e
 e

la
p

s
e

d
 n

o
rm

e
d

 w
it
h

 t
im

e
 e

la
p

s
e

d
 f

o
r 

D
P

H
y
p

 e
x
e

c
u

ti
o

n

number of edges

Cyclic with 10 relations and Ad Hoc Join Costs by L. Haas et al.

DPHyp
TDMcCHyp

TDMcCFwHyp
TDMcBHyp

Figure 3.55.: Cyclic/inner/complex with 10 relations

132



3.6. Evaluation

 0.001

 0.01

 0.1

 1

 10

 100

 20  30  40  50  60  70  80

ti
m

e
 e

la
p

s
e

d
 i
n

 s
e

c
o

n
d

s

number of edges

Cyclic with 15 relations and Ad Hoc Join Costs by L. Haas et al.

DPHyp
TDBasicHyp

TDMcLHypnaive
TDMcBHypnaive

TDMcCHyp
TDMcCFwHyp

TDMcBHyp

 0.1

 1

 10

 100

 20  30  40  50  60  70  80

ti
m

e
 e

la
p

s
e

d
 n

o
rm

e
d

 w
it
h

 t
im

e
 e

la
p

s
e

d
 f

o
r 

D
P

H
y
p

 e
x
e

c
u

ti
o

n

number of edges

Cyclic with 15 relations and Ad Hoc Join Costs by L. Haas et al.

DPHyp
TDBasicHyp

TDMcLHypnaive
TDMcBHypnaive

TDMcCHyp
TDMcCFwHyp

TDMcBHyp

0.5

1

2

 20  30  40  50  60  70  80

ti
m

e
 e

la
p

s
e

d
 n

o
rm

e
d

 w
it
h

 t
im

e
 e

la
p

s
e

d
 f

o
r 

D
P

H
y
p

 e
x
e

c
u

ti
o

n

number of edges

Cyclic with 15 relations and Ad Hoc Join Costs by L. Haas et al.

DPHyp
TDMcCHyp

TDMcCFwHyp
TDMcBHyp

Figure 3.56.: Cyclic/inner/complex with 15 relations
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Algorithm Q2 Q5 Q7 Q8 Q9 Q20 Q21
TDBASICHYP 1.18 × 1.24 × 1.25 × 1.44 × 1.01 × 1.16 × 1.56 ×
TDMCLHYPnaive 1.35 × 1.47 × 1.35 × 1.15 × 1.21 × 1.36 × 1.45 ×
TDMCBHYPnaive 1.13 × 1.10 × 1.09 × 0.95 × 0.94 × 1.08 × 1.11 ×
TDMCCHYP 1.16 × 1.25 × 1.19 × 1.05 × 1.08 × 1.20 × 1.23 ×
TDMCCFWHYP 1.11 × 1.08 × 1.04 × 0.89 × 0.89 × 1.12 × 1.13 ×
TDMCBHYP 1.15 × 1.05 × 1.01 × 0.88 × 0.88 × 1.03 × 1.10 ×

Table 3.6.: Normed runtimes for TPC-H Queries with more than 4 tables referenced

overall normed runtime. For the value in the third column, we take the normed run-
time for every query and compute the average of all normed runtimes of the whole
workload. To be more precise, for that value we compute the sum of all query-specific
normed runtimes and divide the sum by the number of query graphs the workload
consists of. We call this value averaged normed runtime.

TPC-H

We considered all TPC-H queries except for those that did not contain any join (Q1
and Q6). For Q14 and Q17, we gained the same query graph. Thus, we ignored the
query graph for Q17 and considered only the graph for Q14.

For those queries referencing more than 4 tables, we give the normed runtime results
in Table 3.6. Hereby Q2, Q20 reference 5 relations, Q5, Q7, Q9, Q21 6 relations, and
Q8 8 relations. Queries Q2 and Q20 have 4 join edges, Q21 has 5 edges, Q5, Q7 and
Q9 have 6 edges and Q8 has 7 edges.

For the 19 TPC-H queries we investigated, we give the summarized results in Table
3.7. We can observe that H-total time is very low. This is as expected, since the
queries reference 8 relations at the most. Thus, the performance differences between
the algorithms are very low. Nevertheless, when looking at the overall normed runtime,
TDMCCFWHYP and TDMCBHYP dominate all other algorithms. Considering the
averaged normed runtimes, the results are different. Thus, we have investigated the
reason for the differences between the overall normed runtime and the average normed
runtime. As it turns out, TDMCCFWHYP and TDMCBHYP exhibit a better normed
runtime for queries with a higher number of relations than for queries referencing only
a few number of relations. Since queries with a higher number of relations usually take
longer to compile, the performance results of these queries have a larger influence on
the overall normed runtime.

TPC-DS

In Table 3.8 we give the summarized results for the TPC-DS benchmark. With an
overall normed runtime of 185, TDBASICHYP is distinctly outperformed by all other
algorithms. This is due to the fact that some TPC-DS queries reference a higher num-
ber of relations. The runtime performance differences between all other algorithms
are not that large. Looking at the overall normed runtime values, we can deduce that
TDMCBHYP dominates all other algorithms including DPHYP. DPHYP performs
second best and is closely followed by TDMCCFWHYP, which performs third best.
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Algorithm
∑

overall normed average normed
DPHYP 0.00069 s 1.0000 × 1.0000 ×
TDBASICHYP 0.00086 s 1.2468 × 1.0812 ×
TDMCLHYPnaive 0.00089 s 1.2946 × 1.3311 ×
TDMCBHYPnaive 0.00070 s 1.0260 × 1.0417 ×
TDMCCHYP 0.00078 s 1.1372 × 1.1210 ×
TDMCCFWHYP 0.00069 s 0.9989 × 1.0871 ×
TDMCBHYP 0.00067 s 0.9822 × 1.1066 ×

Table 3.7.: Overall sum of elapsed time, overall normed runtime and average normed
runtime for TPC-H Queries

Algorithm
∑

overall normed average normed
DPHYP 0.40269 s 1.0000 × 1.0000 ×
TDBASICHYP 72.77494 s 180.7233 × 3081.9210 ×
TDMCLHYPnaive 0.53662 s 1.3326 × 1.5160 ×
TDMCBHYPnaive 0.46422 s 1.1528 × 1.2675 ×
TDMCCHYP 0.52345 s 1.2999 × 1.1670 ×
TDMCCFWHYP 0.42106 s 1.0456 × 1.0826 ×
TDMCBHYP 0.39770 s 0.9876 × 1.0586 ×

Table 3.8.: Overall sum of elapsed time, overall normed runtime and average normed
runtime for TPC-DS Queries

Algorithm
∑

overall normed average normed
DPHYP 981.00958 s 1.0000 × 1.0000 ×
TDMCCHYP 1620.57226 s 1.6519 × 1.4347 ×
TDMCCFWHYP 1286.18479 s 1.3111 × 1.1925 ×
TDMCBHYP 1228.61938 s 1.2524 × 1.1495 ×

Table 3.9.: Overall sum of elapsed time, overall normed runtime and average normed
runtime for 337 queries of the SQLite test suite

SQLite Test Suite

For an evaluation with the SQLite test suite queries, we have considered only a sub-
set of the algorithms. Table 3.9 gives the results. From the SQLite-total time, we
can see that the queries take in average much longer to compile than the TPC-H and
TPC-DS queries. In fact, the queries considered here reference up to 32 relations. We
can observe that DPHYP outperforms all other algorithms by at least 25%. TDMCB-
HYP performs second best and dominates TDMCCFWHYP, although the differences
are not that high. Section 4 will show that by utilizing the branch-and-bound prun-
ing capabilities, TDMCBHYP and TDMCCFWHYP can overcome the performance
disadvantage of 25% − 30%. In fact, by considering the same workload we show
that when TDMCBHYP and TDMCCFWHYP are paired with our novel and advanced
branch-and-bound pruning strategies, DPHYP is outperformed by a factor of two.
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4. Branch-and-Bound Pruning

4.1. Motivation

An advantage of top-down join enumeration is that it can leverage the benefits of
branch-and-bound pruning that are not available to bottom-up processing. The sole
reason for this lies in the processing order of top-down join enumeration that is
demand-driven. This means that a join tree for a subset of relations S is built only
upon request, as outlined in Section 2.2.1. If such a request for S is made, there are
two possibilities: (1) Either the optimal join tree is already computed because a call
with the same S has been made before. Or (2) the tree needs to be computed by con-
sidering all possible ccps (S1, S2) for S with further recursive self invocations for S1
and S2. Because of the demand-driven nature, the search space can be curtailed by ap-
plying branch-and-bound pruning strategies. The beauty of these pruning strategies is
that they are risk-free: They can speed up processing by several orders of magnitude,
while at the same time they preserve the optimality of the final join tree.

DeHaan and Tompa categorized the branch-and-bound based pruning strategies into
accumulated-cost-bounding ACB and predicted-cost-bounding PCB [5]. These two
pruning methods can be combined into an effective pruning mechanism (APCB) [5].

Let us explicitly state two obvious observations. (1) Different top-down join enu-
meration algorithms lead to different enumeration orders. (2) Different enumeration
orders (can) lead to a different pruning behavior. This leads to the question of the
robustness of a pruning strategy, where we call a pruning strategy robust if it behaves
equally well in different top-down enumeration strategies.

We show how APCB can be improved (a) in terms of effectiveness, (b) in terms of
robustness and (c), most importantly, by avoiding the worst-case behavior otherwise
observed. We achieve this by integrating seven new techniques into APCB.

Applying this improved version of APCB will accelerate plan generation for our
generated workload by an average factor of 10 and decrease the worst-case behavior by
a factor of 25−225 when compared with APCB. And as we will see, our new pruning
method is more robust than APCB because its pruning efficiency is less dependent
on the enumeration strategy used. By considering the TPC-H [34], TPC-DS [33] and
SQLite test suite [29] queries, we were able to support our claims. In particular, we
show how our improvements speed up plan generation by 100% when compared with
DPHYP [21] as the state-of-the-art in bottom-up plan generation.

This chapter is organized as follows. In Section 4.2, we describe ACB, PCB and
APCB. Section 4.3 explains our technical advances [12]. An evaluation is presented
in Section 4.4.
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4. Branch-and-Bound Pruning

BUILDTREE(◦, S, T ree1, T ree2, b)
� Input: (join) operator ◦, vertex set S, two optimal subjoin trees, cost budget b

1 cT ← CREATETREE(Tree1, T ree2)
2 if cost(cT ) ≤ b
3 if BestTree[S] = NULL ∨ cost(BestTree[S]) > cost(cT )
4 BestTree[S]← cT
5 if ◦ is commutative
6 cT ← CREATETREE(Tree2, T ree1)
7 if cost(cT ) ≤ b
8 if BestTree[S] = NULL ∨ cost(BestTree[S]) > cost(cT )
9 BestTree[S]← cT

Figure 4.1.: Pseudocode for BUILDTREE

4.2. Accumulated-Cost Bounding and Predicted-Cost
Bounding

We start by making a necessary modification to BUILDTREE. After that we explain
accumulated-cost and predicted-cost bounding [5], and describe how they can be com-
bined.

4.2.1. Building a Join Tree

As has been said in Section 3.3.1, BUILDTREE is used to construct a join tree by com-
bining two optimal subjoin trees and comparing its costs with BestTree[S], which
holds the cheapest join tree found so far. We give the pseudocode in Figure 4.1. For an
explanation of the basic functionality, we refer to Section 3.3.1. New is the cost bud-
get b that is handed over as input parameter. An actual budget is only passed within
the context of our improvements to branch-and-bound pruning (Section 4.3), other-
wise the budget will be assigned with ∞. The checks in Line 2 and 7 ensure that
only join trees with lower costs than the cost budget allows for are registered with
BestTree[S]. Hence, the invocation of BUILDTREE does not guarantee any more that
BestTree[S] 6= NULL holds.

4.2.2. Accumulated-Cost Bounding

As implemented in Volcano [16], Cascades [15], and Columbia [28], this bounding
technique passes a cost budget to the top-down join enumeration procedure. We give
the pseudocode for accumulated-cost bounding integrated in our generic top-down join
enumeration algorithm in Figure 4.2 with TDPGACB by modifying [6]. During the
recursive descent, each instance of TDPGACB subtracts costs from the handed-over
budget as soon as they become known. The descent is aborted once the budget drops
below zero. Every call that returns with a join tree has produced an optimal join tree.
If no join tree is returned, the handed-over budget was not sufficient. Line 2 iterates
over the ccps for S. The first step in the loop is to determine the cost for combining
the two subjoin trees. These costs can be subtracted from the budget b (Line 6) and
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TDPGACB(G|S , b)

� Input: connected sub graph G|S , cost budget b
� Output: an optimal join tree for G|S

1 if BestTree[S] = NULL ∧ lB[S] ≤ b
2 for all (S1, S2) ∈ Pccp(S)
3 for ◦ ∈ O
4 if APPLICABLE(◦,S1,S2)
5 c1 ← cost of operator ◦
6 b′ ← MIN(b, cost(BestTree[S]))− c1
7 lT ← TDPGACB(G|S1

, b′)

8 if lT 6= NULL

9 b′ ← b′ − cost(lT )
10 rT ← TDPGACB(G|S2

, b′)

11 if rT 6= NULL

12 BUILDTREE(◦, S, lT, rT, b)
13 if BestTree[S] = NULL

14 lB[S] = b
15 return BestTree[S]

Figure 4.2.: Pseudocode for TDPGACB

handed over to the child invocation for S1 (Line 7). If no tree for S1 is returned, it
becomes obvious that no join tree for the partition (S1, S2) can be constructed that is
cheaper than MIN(b, cost(BestTree[S])). Hence, there is no need to request a join
tree for S2. Otherwise, if a subjoin tree for S1 has been found, the budget for S2 is
adjusted by decreasing b′ with the cost for constructing the tree of S1 (Line 9). Line 9
invokes the recursive descent for S2 with a tighter bound than for S1. Upon return
of the call, a join tree for S can only be registered with BestTree[S] if (1) a tree
for S2 was returned, (2) the combined tree is cheaper than the budget allows for and
(3) it is cheaper than all other trees produced so far. Line 11 takes care of (1), and
BUILDTREE (Section 4.2.1) handles (2) and (3). Every time a new and cheaper join
tree for S has been registered with BestTree[S], the budget b′ for all other ccps for S
can be adjusted (Line 6) instead of resetting it to the b that was handed over. If after the
enumeration of all ccps for S (Line 2) no tree has been found that is cheaper than b, the
lower bound lB[S] is set to b. If a join for S is requested another time with a budget b′′,
the call can be returned immediately if the tree was already built and registered with
BestTree[S] or b′′ is smaller than lB[S] (Line 1). Note that if the lower bound for S
is not set, lB[S] returns 0. The initial budget for the top-level call to TDPGACB is set
to∞.

4.2.3. Predicted-Cost Bounding

As has been shown, accumulated-cost bounding prunes the search space by passing
budget information top-down. Predicted-cost bounding as a contribution of Columbia
[28] follows the opposite approach by estimating the costs of the subjoin trees that lie
below in the recursive search tree. The main idea is to find a lower bound in terms of
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TDPGPCB(G|S)

� Input: connected sub graph G|S
� Output: an optimal join tree for G|S

1 if BestTree[S] = NULL

2 for all (S1, S2) ∈ Pccp(S)
3 for ◦ ∈ O
4 if APPLICABLE(◦,S1,S2)
5 if LBE(◦, S1, S2) ≤ cost(BestTree[S])
6 BUILDTREE(G|S , TDPGPCB(G|S1

),

TDPGPCB(G|S2
),∞)

7 return BestTree[S]

Figure 4.3.: Pseudocode for TDPGPCB

join costs for a given ccp (S1, S2) before actually requesting the two corresponding
optimal subjoin trees to be built through two different recursive descents. If now the
estimate which is specific for that ccp is larger than the cost of a join tree already built
for S, the cheapest join tree for S clearly cannot consist of a join between S1 and S2.
Hence, the effort of subcalls with S1 and S2 can be spared.

In Figure 4.3, the pseudocode after [5] for top-down join enumeration enhanced with
predicted-cost bounding is given with TDPGPCB . It is identical to TDPGHYPSUB,
except for Line 5, where the lower bound estimate LBE is compared to the costs of
BestTree[S], which serves as an upper bound. If there is no join tree for S known
yet, cost(BestTree[S]) will return∞.

The lower bound estimation procedure LBE depends upon the cost model used in
the optimizer. For our experiments, we use the I/O cost model for ad hoc join costs, as
proposed in [17].

4.2.4. Combining the Methods

A combination of both bounding methods is very beneficial, as [5] points out. This
can be done by inserting the call of LBE between Lines 4 and 5 of TDPGACB . The
inserted code has the following form:

4.5 do if LBE(S1, S2) ≤ MIN(b, cost(BestTree[S]))

Again, if there is no join tree registered with BestTree[S], cost(BestTree[S])
will return ∞. In this case, b is chosen as the comparison value, in all other cases
cost(BestTree[S]) will be the smaller value of the two. We denote the combined
method by TDPGAPCB .

4.2.5. An Example for Accumulated-Predicted-Cost Bounding

To exemplify how TDPGAPCB works, we revisit the example of Section 2.2.3. There-
fore, we reuse the graph of Figure 2.6 and the corresponding selectivities and cardinal-
ities of Figure 2.7. Again, we use Cout as cost function (Section 2.1.2). As partitioning
strategy we use PARTITIONnaive.
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Entry L S lB[S] current ccp b′ LBE

1 0 {R0, R1, R2, R3} 0 ({R0}, {R1, R2, R3}) ∞ 10
2 1 {R1, R2, R3} 0 ({R1}, {R2, R3}) ∞ 10
3 2 {R2, R3} 0 ({R2}, {R3}) ∞ 0
4 1 {R1, R2, R3} 0 ({R1, R2}, {R3}) 20 100000
5 2 {R1, R2} - ({R1}, {R2}) - -
6 1 {R1, R2, R3} 0 ({R1, R3}, {R2}) 20 100
7 2 {R1, R3} - ({R1}, {R3}) - -
8 0 {R0, R1, R2, R3} 0 ({R0, R1}, {R2, R3}) 21 1020
9 1 {R0, R1} - ({R0}, {R1}) - -
10 0 {R0, R1, R2, R3} 0 ({R0, R1, R2}, {R3}) 21 10000
11 1 {R0, R1, R2} - ({R0}, {R1, R2}) - -
12 1 {R0, R1, R2} - ({R0, R1}, {R2}) - -
13 1 {R0, R1, R2} 0 ({R0, R1, R3}, {R2}) 21 10
14 2 {R0, R1, R3} - ({R0}, {R1, R3}) −90 -
15 2 {R0, R1, R3} - ({R0, R1}, {R3}) −90 -

Table 4.1.: Exemplified execution of TDPGAPCB instantiated with PARTITIONnaive

for the input graph of Figure 2.6

Table 4.1 shows the different states during execution. Here, the first column is
the table entry that serves as reference. The second column displays the recursion
level, with 0 indicating the root invocation. The input parameter S is shown in the
third column, the corresponding lower bound (lB) for S in the fourth column, and the
current ccp that is being processed is displayed by the fifth column. In the sixth and
seventh column, we list the current budget b′ and the result of the LBE call with the
current ccp as input. The rows that are grayed out are prevented though branch-and-
bound pruning. Since the corresponding values are not computed, we have taken them
from Section 2.2.3.

We can observe that through the predicted cost-bounding component, we prevent
the entries 5, 7, 9, 11 and 12. The accumulated cost-bounding component prevents the
entries 14 and 15 by returning the call for S = {R0, R1, R3} in Line 1 of TDPGAPCB

(Figure 4.2).

4.3. Technical Advances

This section describes our improvements to accumulated-predicted cost bounding. We
name the new algorithm TDPGAPCBI because it is based on TDPGAPCB . The pseu-
docode is given in Figure 4.4.

First of all — and not indicated in the pseudocode — we propose an advancement of
the LBE method to [5], as described in [12]. Instead of basing its computation solely on
an estimation, we include information which we already know. For this, we increase
the return value of LBE by the costs of the optimal join trees for S1 or S2 or at least
lB[S1] or lB[S2] respectively, if this information is already available. However, we
can add lB[S1] to the estimate only if the costs for BestTree[S1] are not known yet,
that is if BestTree[S1] = NULL holds. The same is true for S2.
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4. Branch-and-Bound Pruning

TDPGPACBI(G|S , b)

� Input: connected sub graph G|S , cost budget b
� Output: an optimal join tree for G|S

1 if BestTree[S] 6= NULL and cost(BestTree[S]) ≤ b
2 return BestTree[S]
3 if lB[S] > b
4 return NULL

5 if attempts[S] > 0
6 if b < uB[S]
7 b← uB[S]

8 else b← MAX(b, lB[S] ∗ 2attempts[S])
9 attempts[S]← attempts[S] + 1

10 if uB[S] < b ∧ uB[S] > 0
11 b← uB[S]
12 nlB ←∞
13 for all (S1, S2) ∈ Pccp(S)
14 for ◦ ∈ O
15 if APPLICABLE(◦,S1,S2)
16 if LBE(◦, S1, S2) > MIN(b, cost(BestTree[S]))
17 nlB ← MIN(nlB, LBE(S1, S2))
18 continue
19 c1 ← minimal costs of operator 1
20 b′ ← MIN(b, cost(BestTree[S]))
21 if BestTree[S2] 6= NULL

22 cr ← cost(BestTree[S2])
23 else cr ← lB[S2]
24 b′ ← b′ − c1
25 lT ← TDPGPACBI(G|S1

, b′ − cr)
26 if lT 6= NULL

27 clT ← cost(lT )
28 b′ ← b′ − clT
29 rT ← TDPGPACBI(G|S2

, b′)

30 if rT 6= NULL

31 BUILDTREE(◦, G|S , lT, rT, b)
32 crT ← cost(rT )
33 nlB ← MIN(nlB, clT + crT + c1)
34 else nlB ← MIN(nlB, clT + lB[S2] + c1)
35 else nlB ← MIN(nlB, lB[S1] + cr + c1)
36 if BestTree[S] = NULL

37 lB[S]← MAX(b, nlB)
38 return BestTree[S]

Figure 4.4.: Pseudocode for TDPGACBI

Second, we make use of a join heuristic to decrease the initial budget [12]. For
our implementation we have used GOO [7] which is in O(|V |3). But instead of using
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only the cost of the whole join tree produced by the heuristic as a total bound, we
also include the cost of its produced subtrees. For this, we introduce with uB[S]
another bound that is populated by the cost of the join and subjoin trees produced by
the heuristic. If now an upper bound for S exists (uB[S] > 0) and the passed-in budget
b is greater, we decrease b and set it to uB[S] (Line 11).

Third, we improve the lower bounds. Instead of setting lB to the current b when
no join tree was found for b (compare to Line 14 of TDPGACB), we compare b to
the minimum of all LBE results and take the maximum of the two [12]. This comes
in handy when the predicted cost bounding component rejects all ccps for S (Line 16
of TDPGPACBI ). For this, nlB is introduced in Line 12 and set to∞. Its minimum
is computed over all ccps for S in Line 17, notably before predicted cost bounding
rejects a ccp (Line 16). In Line 37, we set its value if no join tree within the budget
b was found. Lines 33, 34 and 35 extend this idea further by also considering cases
where the corresponding LBE results are smaller than b, but join tree construction still
fails because b is not high enough. Note that in Line 33 the value of nlB may still be
decreased, even when BUILDTREE constructs a join tree that is cheaper than b. But
this is irrelevant, since lB[S] is only set if no join tree could be constructed (Line 36).

Fourth, a rising budget is proposed in [12] as the solution for the worst case be-
havior of accumulated cost bounding observed in [5]. Accumulated cost bounding is
efficient by preventing top-down join enumeration from building expensive subtrees
that cannot be part of an optimal solution. But in several cases, it might increase op-
timization time significantly, compared to top-down join enumeration without it. This
occurs when a join tree for S is requested several times, and each time the budget b
that is passed in is slightly higher than before. If the slightly increased budgets are
still too low to produce the cheapest join tree, the results are unnecessary computa-
tions of P sym

ccp (S) and the corresponding subtree requests that might even have the
same cascading negative effect. As a solution to this problem, we count the number
of times a request to TDPGPACBI with the same S has been made in Line 9 and
store it in attempts[S]. If now a join tree for S is requested the second time and
it has not already been constructed the first time, the budget is increased and set to
lB[S] ∗ 2attempts[S] if b is not higher already (Line 8). If we have an upper bound for
S, we make an exception and set b to that upper bound uB[S] right away (Line 7).

Fifth, TDPGPACBI tightens the budget which is passed in to the call for requesting
the left subjoin tree comprising the relations of S1 more intelligently [12]. For this, we
include information about the costs of the right join tree comprising the relations of S2
or at least its lower bound lB[S2]. This is done through Lines 21 to 23 and 25. Note
that if the lower bound for S is not set, lB[S] returns 0.

Sixth, we change the order in which the partitioning algorithm selects its next neigh-
bor (Section 2.1.1) [12], e.g., Line 6 of MINCUTCONSERVATIVE (Section 2.4) or
Lines 7, 13 of MINCUTBRANCH (Section 2.5). In our implementation, the next neigh-
bor is selected by the least significant bit of the bitvector that stores the rest of the
neighborhood to be processed. Therefore, we propose a re-numbering of the nodes in
the query graph. The preferred processing order of neighbors is taken from the join
tree produced by our join heuristic. We renumber the vertices by a breadth-first traver-
sal of the join tree. As our experiments have shown, the effect is that the join tree and
its subtrees produced by the heuristics are mostly planned first and, thus, before other
join trees during the top-down join enumeration.
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4. Branch-and-Bound Pruning

Seventh, not shown in the pseudocode either, we use the LBE method to initialize
the lower bounds lB[S1] and lB[S2], if not set already. Although LBE takes both
S1 and S2 as an argument at the same time, lower bound estimates for S1 and S2 are
usually computed separately, dependent on the costs functions used. We modify LBE
such that it calls INITLOWERBOUND(Si) for every uninitialized lower bound lB[Si] it
encounters with i = 1...2. One possibility for implementing INITLOWERBOUND is as
follows: We compute the value for lB[Si] as the sum of the costs for scanning the base
relations contained in Si as required by any join operation that has a base relation as
input. Obviously, the seventh advancement needs to be tightly coupled with our first
advancement. The advantage of setting lB comes mainly into play when the result
of the LBE(◦, S1, S2) is smaller than MIN(b, cost(BestTree[S])). Here, it increases
the changes that the search for S1 and S2 can be curtailed. There are two reasons for
this: (1) We might be able to stop the descent in Line 4 for S1 and S2 because of the
condition in Line 3, since now lB[Si] 6= 0 will hold. And (2) the budgets for S1 or S2
are further decreased by either lB[S2] in case of BestTree[S2] = NULL or lB[S1] in
case of BestTree[S1] = NULL holds. Without the advancement, lB[Si] might still be
0.

4.4. Evaluation

This section summarizes our experimental findings. First, we describe our general
setup in Sections 4.4.1 and 4.4.2. Then we give our evaluation, which is threefold:

• In Section 4.4.3, we analyze the pruning behavior for randomly generated
queries without complex hyperedges, including the standard shapes: chain, star,
cycle and clique queries.

• Section 4.4.4 investigates our pruning techniques for generated queries with
complex hyperedges. We differentiate between (1) queries that contain com-
plex predicates and inner joins only and (2) those that contain inner joins but
also non-inner joins without considering complex predicates.

• Whereas the first two parts of the evaluation consider synthetic workloads, the
third part investigates the pruning behavior when the TPC-H [34] and TPC-
DS [33] queries are considered. Furthermore, we include results for the query
graphs gained from the SQLite test suite [29]. Those results are presented in
Section 4.4.5.

4.4.1. Implementation

For all plan generators, no matter whether they work top-down or bottom-up, a shared
optimizer infrastructure was established. It contains the common functions to instanti-
ate, fill, and look up the memotable, initialize and use plan classes, estimate cardinali-
ties, calculate costs, and compare plans. Thus, the different plan generators differ only
in those parts of the code responsible for enumerating ccps and to utilize pruning (if
applied).

For the cost estimation of joins, we decided to use the formulas developed by Haas et
al. [17]. They have the advantage of being very precise. The lower bound estimation
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Relation Size Prob.
10-100 15%

100-1000 30%
1000-10000 25%

10000-100000 20%

Domain Size Prob.
2-10 5%

10-100 50%
100-500 35%

500-1000 15%

Figure 4.5.: Relation and domain sizes for random join queries, as proposed by Stein-
brunn et al.

method LBE (Section 4.2.3) bases its estimate on reading the intermediate relations
that are the input for the next join. In order to assign an initial lower bound as pro-
posed by our seventh advancement, we sum up the costs for scanning the base relations
contained in S1 or S2, respectively, as required by any join operation that has a base
relation as input.

4.4.2. Workload

We generated our workload with a generic query graph generator that proceeds in two
steps: First, a list of vertices and edges is generated. And second, selectivities and
cardinalities are attached to the edges and vertices of the graph.

Let us start with the first step: For the experiments conducted in Section 4.4.3,
we proceed with the same technique as described in Section 2.6.1. For the complex
hypergraphs used in Section 4.4.4, we use the two approaches of Section 3.6.2. With
this two techniques we gain two types of graphs: non-inner/simple and inner/complex
graphs.

As has being said, cardinalities and selectivities are generated in a second step. For
this, we follow the approach of [24], which is based on a proposal by Steinbrunn et al.
[30]. Our method is described in [12]. According to the kind of join, we can distinguish
between foreign-key key joins (or FFK-joins for short) and other joins, which we call
non-foreign-key key joins (or non-FFK-joins for short). Based on this, we generate
FFK-join queries and non-FFK-join queries. For non-FFK-join queries, cardinalities
and domain sizes are generated according to the scheme in Fig. 4.5. If — as proposed
in [30] — selectivities are computed by choosing two random attributes and using

1
max(dom(A1),dom(A2)

, this often leads to intermediate cardinalities less than 1, which
then are successively increased to become huge again. As this does not seem to be
realistic, we propose and use foreign-key join queries. For relation and domain sizes,
the same scheme as before is used. Then, with a probability of 10%, the selectivity
of a join edge is computed as described above for non-FFK-join queries, and with a
probability of 90% the selectivity is computed such that the cardinality of the result is
equal to the cardinality of the relation with the foreign key.

As DeHaan and Tompa pointed out, pruning techniques are quite unsuccessful with
star queries [5]. This makes them perfect for analyzing the overhead of a branch-and-
bound pruning strategy. To use them for this purpose, we decrease the chances for
pruning down to zero by setting the join selectivity of an edge to the reciprocal of the
dimension’s cardinality.
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Abbreviated Name Partitioning Strategy Pruning Type
TDMCL MINCUTLAZY none
TDMCLPCB MINCUTLAZY TDPGPCB

TDMCLAPCB MINCUTLAZY TDPGAPCB

TDMCLAPCBI MINCUTLAZY TDPGAPCBI

TDMCLAPCBI Opt MINCUTLAZY TDPGAPCBI Opt

TDMCC MINCUTCONSERVATIVE none
TDMCCPCB MINCUTCONSERVATIVE TDPGPCB

TDMCCAPCB MINCUTCONSERVATIVE TDPGAPCB

TDMCCAPCBI MINCUTCONSERVATIVE TDPGAPCBI

TDMCCAPCBI Opt MINCUTCONSERVATIVE TDPGAPCBI Opt

TDMCB MINCUTBRANCH none
TDMCBPCB MINCUTBRANCH TDPGPCB

TDMCBAPCB MINCUTBRANCH TDPGAPCB

TDMCBAPCBI MINCUTBRANCH TDPGAPCBI

TDMCBAPCBI Opt MINCUTBRANCH TDPGAPCBI Opt

Table 4.2.: Abbreviated names of different partitioning algorithms and pruning
strategies.

For a description of how the query graphs for the TPC-H [34], TPC-DS [33] and
SQLite yes suite [29] queries have been computed, we refer to Section 3.6.2.

4.4.3. Performance Evaluation with Simple Query Graphs

We start with an organizational overview. After that, we evaluate the pruning perfor-
mance of acyclic query graphs and follow with cyclic queries later. At the end, we
investigate our different pruning advancements.

Organizational Overview

In our empirical analysis for simple graphs, we compare the accumulated-predicted
cost bounding algorithm named TDPGAPCB , which was given by DeHaan and
Tompa (Section 4.2.4) [5], to our novel branch-and-bound pruning algorithm called
TDPGAPCBI . We instantiate both algorithms with three different partitioning strate-
gies for simple graphs to calculate the ccps: MINCUTLAZY [5] (Appendix A), MIN-
CUTCONSERVATIVE [12] (Section 2.4) and MINCUTBRANCH [8] (Section 2.5). We
use the abbreviated names, as shown in Table 4.2. By TDPGAPCBI Opt, we indicate
the APCBI pruning strategy with pre-calculated optimal (tight) upper bounds. We de-
rive those by extracting the costs of the optimal subjoin trees of each plan class after
a run of DPCCP [22] and make them available with a lookup to uB[S] (Line 11 of
TDPGAPCBI ). Since APCBI OPT is of no practical use, it is only shown here to
indicate the theoretical lower bound of ACB. Therefore, we do not include the pre-
computation time of the optimal upper bound’s runtime results for TDPGAPCBI Opt.

In order to put all top-down join enumeration algorithms into perspective, we in-
clude the results of Moerkotte and Neumann’s DPCCP [22] as a very efficient bottom-
up join enumeration algorithm via dynamic programming. We present our results in
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terms of the quotient of the algorithm’s execution time and the execution time of DPC-
CP. We refer to this quotient as the normed time. Tables 4.3, 4.4 and 4.5 show the av-
erage, minimum, and maximum normed time over the whole workload for a particular
graph type. Since the normed time for DPCCP is always 1, we rather give its elapsed
time in seconds.

Table 4.6 shows the details of the pruning behavior. With maxs or avgs, we refer
to the maximum or average of the following quotient. We divide the number of times
a join tree was requested and successfully returned by the number of built join trees
by DPCCP. Note that the divisor corresponds to the number of plan classes, which
equals the number of connected subgraphs. As a consequence, the subscript s indicates
that we are talking about the normed number of plan classes for which a plan was
successfully built. Analogously, maxf (avgf ) denotes the maximum (average) of the
quotient where we divide the number of times a join tree was requested but not built
by the number of join trees built by DPCCP. The latter quotient gives us the ratio of
failed builds compared to the total number of DPCCP’s optimal join tree builds.

In order not to overload the evaluation charts, we decided to include only a subset of
the possible combinations between algorithms and pruning strategies we investigated.
We present TDMCL and TDMCC to show the performance difference to DPCCP. Ac-
cording to [5], this deficiency can be overcome by pruning (TDMCLAPCB). We also
present TDMCCAPCB , TDMCBAPCB and TDMCBAPCBI to allow for a compari-
son of the two pruning strategies. Finally, the results for TDMCCAPCBI are presented
because it dominates all the other combinations. The workload consists of more than
20000 query graphs. Our experiments were conducted on an Intel Pentium D with 3.4
GHz, 2 Mbyte second level cache and 3 Gbyte of RAM running openSUSE 12.1. We
used the Intel C++ compiler with the compiler option O3.

Acyclic Query Graphs

The minimum, maximum, and average normed runtimes over the whole acyclic work-
load for chain, star, and random acyclic queries are given in Tables 4.3 and 4.4.

We see that, except for star queries (Table 4.3, Figure 4.7), pruning (TDPGPCB ,
APCPI) decreases the optimization time for acyclic graphs. However this is not true
for TDPGAPCB , which performs worse when either star or random acyclic queries are
considered. TDPGAPCB exhibits extremely high average normed runtimes for ran-
dom acyclic queries. In fact, accumulated-cost-bounding without our improvements
does not pay off, as the much lower average normed runtimes of TDPGPCB show.

In contrast, DeHaan and Tompa [5] reported performance gains by combining the
methods ACB and TDPGPCB into TDPGAPCB . The main reason for the different
findings lies in the different workload settings. In particular, it mainly depends on how
the cardinalities and selectivities are computed. Our workload predominantly consists
of key foreign-key join scenarios, which are not that advantageous for accumulated-
cost bounding.

We also see that for TDPGAPCB the maximum normed runtimes sometimes deviate
substantially from the average. TDPGAPCBI does not show this behavior. Hence,
TDPGAPCBI exhibits a much better worst case behavior than TDPGAPCB .

Table 4.6 gives us the explanation for TDPGAPCB’s worst case behavior by looking
at the values of maxf . Through the improved lower bounds, our rising budget and the
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4. Branch-and-Bound Pruning

Algorithm min max avg min max avg
Chain Star

DPCCP 0.0001 s 0.0082 s 0.0032 s 0.0001 s 15.490 s 2.1200 s
TDMCL 0.9468 × 2.2641 × 1.3133 × 0.9613 × 2.2923 × 1.3712 ×
TDMCLPCB 0.3291 × 2.5645 × 0.8881 × 1.0090 × 2.5045 × 1.3920 ×
TDMCLAPCB 0.3544 × 3.3335 × 0.9926 × 1.2113 × 3.2712 × 1.7285 ×
TDMCLAPCBI 0.1091 × 2.9416 × 0.5742 × 0.8470 × 3.6037 × 1.4289 ×
TDMCLAPCBI Opt 0.0584 × 2.8568 × 0.3974 × 0.8627 × 2.0956 × 1.3285 ×
TDMCC 0.6399 × 1.8050 × 1.0381 × 0.6923 × 1.5193 × 1.0386 ×
TDMCCPCB 0.1593 × 1.6809 × 0.5570 × 0.7458 × 1.7192 × 1.0804 ×
TDMCCAPCB 0.1481 × 2.4412 × 0.5572 × 0.9938 × 2.1116 × 1.3987 ×
TDMCCAPCBI 0.0488 × 1.6809 × 0.2959 × 0.6648 × 2.0689 × 1.1306 ×
TDMCCAPCBI Opt 0.0426 × 0.9265 × 0.2500 × 0.6845 × 2.7019 × 1.0724 ×
TDMCB 0.5000 × 1.7394 × 1.0119 × 0.7306 × 1.6003 × 1.0324 ×
TDMCBPCB 0.2000 × 1.1538 × 0.5449 × 0.7402 × 1.7192 × 1.0522 ×
TDMCBAPCB 0.1579 × 2.5000 × 0.6001 × 0.9847 × 2.0950 × 1.3738 ×
TDMCBAPCBI 0.0610 × 1.1333 × 0.3369 × 0.6387 × 1.8019 × 1.0866 ×
TDMCBAPCBI Opt 0.0380 × 0.9091 × 0.2390 × 0.6431 × 1.5999 × 1.0282 ×

Table 4.3.: Minimum, maximum and average of the normed runtimes for chain and
star queries.

Algorithm min max avg min max avg
random Acyclic random Cyclic

DPCCP 0.0002 s 2.5436 s 0.0990 s 0.0002 s 55.394 s 4.9052 s
TDMCL 0.8333 × 2.3437 × 1.2584 × 1.0000 × 2.5975 × 1.6741 ×
TDMCLPCB 0.0786 × 2.6177 × 0.7999 × 0.0383 × 1.7500 × 0.3036 ×
TDMCLAPCB 0.0263 × 613.08 × 13.591 × 0.0256 × 25.366 × 0.3909 ×
TDMCLAPCBI 0.0049 × 2.7344 × 0.4924 × 0.0100 × 1.3125 × 0.1291 ×
TDMCLAPCBI Opt 0.0025 × 1.8861 × 0.4178 × 0.0085 × 1.0000 × 0.1238 ×
TDMCC 0.6467 × 1.7032 × 1.0482 × 0.6635 × 3.6544 × 1.0391 ×
TDMCCPCB 0.0440 × 1.5627 × 0.6136 × 0.0081 × 1.1450 × 0.1051 ×
TDMCCAPCB 0.0132 × 193.45 × 3.1745 × 0.0082 × 15.866 × 0.3971 ×
TDMCCAPCBI 0.0027 × 1.9800 × 0.2863 × 0.0030 × 0.6250 × 0.0397 ×
TDMCCAPCBI Opt 0.0017 × 1.4849 × 0.2772 × 0.0030 × 0.6112 × 0.0387 ×
TDMCB 0.6250 × 1.6279 × 1.0201 × 0.6535 × 1.5474 × 1.0485 ×
TDMCBPCB 0.0721 × 1.5939 × 0.5708 × 0.0078 × 0.9589 × 0.1022 ×
TDMCBAPCB 0.0150 × 325.28 × 7.6074 × 0.0058 × 11.231 × 0.1394 ×
TDMCBAPCBI 0.0023 × 1.4554 × 0.3130 × 0.0034 × 0.5471 × 0.0444 ×
TDMCBAPCBI Opt 0.0030 × 1.4854 × 0.2671 × 0.0030 × 0.5624 × 0.0393 ×

Table 4.4.: Minimum, maximum and average of the normed runtimes for random
acyclic and random cyclic queries.

initialized lower bounds, TDPGAPCBI can prevent the negative effect (described in
Section 4.3) as the corresponding values of maxf verify.
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Algorithm min max avg min max avg
Cycle Clique

DPCCP 0.0001 s 0.0224 s 0.0080 s 0.0003 s 21.640 s 1.7672 s
TDMCL 0.9576 × 2.0411 × 1.2546 × 1.4167 × 2.0689 × 1.7085 ×
TDMCLPCB 0.2857 × 1.5464 × 0.6312 × 0.0605 × 1.3684 × 0.4030 ×
TDMCLAPCB 0.2267 × 6.8493 × 0.6792 × 0.0440 × 9.5792 × 0.5870 ×
TDMCLAPCBI 0.0859 × 1.2343 × 0.3236 × 0.0178 × 0.8420 × 0.1768 ×
TDMCLAPCBI Opt 0.0567 × 0.9336 × 0.2162 × 0.0178 × 0.5833 × 0.1653 ×
TDMCC 0.6626 × 1.2886 × 1.0312 × 0.8333 × 1.1183 × 1.0294 ×
TDMCCPCB 0.1636 × 1.2243 × 0.4036 × 0.0132 × 0.8421 × 0.1340 ×
TDMCCAPCB 0.1200 × 3.5790 × 0.3801 × 0.0166 × 9.7472 × 0.8473 ×
TDMCCAPCBI 0.0521 × 0.7510 × 0.1833 × 0.0045 × 0.3449 × 0.0508 ×
TDMCCAPCBI Opt 0.0412 × 0.6058 × 0.1382 × 0.0044 × 0.2158 × 0.0458 ×
TDMCB 0.5001 × 1.6596 × 1.0168 × 0.8333 × 1.3000 × 1.0422 ×
TDMCBPCB 0.1888 × 0.8908 × 0.4106 × 0.0114 × 0.6947 × 0.1324 ×
TDMCBAPCB 0.1100 × 6.9825 × 0.4009 × 0.0102 × 5.7806 × 0.2438 ×
TDMCBAPCBI 0.0533 × 0.8164 × 0.1934 × 0.0051 × 0.2828 × 0.0541 ×
TDMCBAPCBI Opt 0.0412 × 0.5425 × 0.1334 × 0.0046 × 0.2106 × 0.0474 ×

Table 4.5.: Minimum, maximum and average of the normed runtimes for cycle and
clique queries.

Also TDPGAPCB is much less robust (Section 4.1) than TDPGAPCBI , as the
deviation of the avgs and avgf values between the corresponding three different
TDMCXAPCB results compared to TDMCXAPCBI prove.

When comparing the performance of TDMCLAPCB and TDMCCAPCBI for ran-
dom acyclic graphs, we can determine an improvement factor of about 47 made
through our contributions.

For chain queries using TDPGAPCBI instead of TDPGAPCB improves the average
normed runtime of all three enumerators by a factor of 1.7− 1.9. For random acyclic
queries the average normed runtimes difference are much higher with a factor of 11−
28. Figure 4.6 confirms that all pruning methods speed-up the planing process when
chain queries are considered. Figure 4.8 shows how for random acyclic queries with
an increasing number of vertices the performance of TDPGAPCB diminishes while
on the other hand the performance of TDPGPCB and TDPGAPCBI improves. Note
that in both Figures the relative order of the algorithms is independent of the number
of relations.

Figure 4.9 depicts the density plot of the normed runtimes for random acyclic
graphs. Again we can see that in the majority of cases TDPGAPCB performs worse
than DPCCP regardless of the partitioning algorithm (MINCUTLAZY or MINCUT-
BRANCH). TDPGAPCBI clearly shows the highest improvement factor of the normed
runtimes for a large part of the queries. Thereby TDMCCAPCBI is slightly better then
TDMCBAPCBI . There are only some minor exceptions where TDMCCAPCBI and
TDMCBAPCBI performs worse than DPCCP. Thus our novel pruning strategy, proves
to be risk free, again with the exception of star queries.
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Algorithm avgs maxs avgf maxf avgs maxs avgf maxf
Chain Star

TDMCLPCB 0.87 1.00 0.00 0.00 1.00 1.00 0.00 0.00
TDMCLAPCB 0.63 1.00 0.47 4.01 1.00 1.00 0.00 0.00
TDMCLAPCBI 0.41 0.87 0.19 0.76 1.00 1.00 0.00 0.00
TDMCLAPCBI Opt 0.33 0.90 0.16 0.62 1.00 1.00 0.00 0.00
TDMCCPCB 0.78 1.00 0.00 0.00 1.00 1.00 0.00 0.00
TDMCCAPCB 0.56 1.00 0.36 7.45 1.00 1.00 0.00 0.00
TDMCCAPCBI 0.33 0.80 0.17 0.67 1.00 1.00 0.00 0.00
TDMCCAPCBI Opt 0.32 0.71 0.18 0.60 1.00 1.00 0.00 0.00
TDMCBPCB 0.84 1.00 0.00 0.00 1.00 1.00 0.00 0.00
TDMCBAPCB 0.59 1.00 0.52 7.30 1.00 1.00 0.00 0.00
TDMCBAPCBI 0.41 0.87 0.19 0.76 1.00 1.00 0.00 0.00
TDMCBAPCBI Opt 0.32 0.90 0.16 0.62 1.00 1.00 0.00 0.00

random Acyclic random Cyclic
TDMCLPCB 0.84 1.00 0.00 0.00 0.26 1.00 0.00 0.00
TDMCLAPCB 0.38 1.00 36.6 1674 0.07 0.80 1.15 344
TDMCLAPCBI 0.36 1.00 0.30 1.43 0.03 0.72 0.03 0.72
TDMCLAPCBI Opt 0.34 1.00 0.27 0.96 0.03 0.65 0.03 0.65
TDMCCPCB 0.82 1.00 0.00 0.00 0.23 1.00 0.00 0.00
TDMCCAPCB 0.42 1.00 12.5 1295 0.06 0.77 24.05 1122
TDMCCAPCBI 0.31 0.96 0.30 1.40 0.03 0.64 0.03 0.74
TDMCCAPCBI Opt 0.32 0.96 0.30 0.99 0.03 0.65 0.03 0.60
TDMCBPCB 0.84 1.00 0.00 0.00 0.23 1.00 0.00 0.00
TDMCBAPCB 0.38 1.00 37.9 2450 0.06 0.73 3.17 405
TDMCBAPCBI 0.37 1.00 0.30 1.44 0.04 0.73 0.03 0.77
TDMCBAPCBI Opt 0.34 1.00 0.28 0.98 0.03 0.65 0.03 0.69

Cycle Clique
TDMCLPCB 0.74 0.96 0.00 0.00 0.35 0.84 0.00 0.00
TDMCLAPCB 0.44 0.78 0.68 24.7 0.11 0.51 3.47 124
TDMCLAPCBI 0.27 0.53 0.12 0.54 0.04 0.26 0.04 0.18
TDMCLAPCBI Opt 0.19 0.61 0.11 0.42 0.04 0.23 0.04 0.18
TDMCCPCB 0.66 0.99 0.00 0.00 0.33 0.95 0.00 0.00
TDMCCAPCB 0.43 0.78 0.44 20.7 0.10 0.56 47.81 665
TDMCCAPCBI 0.24 0.61 0.12 0.46 0.04 0.32 0.04 0.18
TDMCCAPCBI Opt 0.19 0.61 0.11 0.42 0.04 0.25 0.04 0.19
TDMCBPCB 0.74 0.98 0.00 0.00 0.31 0.95 0.00 0.00
TDMCBAPCB 0.42 0.88 0.68 45.9 0.10 0.53 9.51 474
TDMCBAPCBI 0.27 0.61 0.12 0.47 0.04 0.23 0.04 0.20
TDMCBAPCBI Opt 0.19 0.63 0.11 0.41 0.04 0.21 0.04 0.19

Table 4.6.: Average and maximum: Number of optimal join trees built (s) and number
of failed join tree requests (f ) normed with the number of all possible join
trees.
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Figure 4.6.: Performance results for chain queries.

In general the star queries in our workload are not beneficial for pruning. We gen-
erated the selectivities for star queries in a way that disabled pruning (Section 4.4.2).
This is confirmed by avgs = 1. Consequently, the normed runtime for star queries
gives us an idea of the overhead of the pruning techniques. The overhead is largest for
TDMCLAPCB and TDMCLAPCBI , as indicated by the average normed runtimes of
1.73 and 1.43 compared to 1.37 (TDMCL).

The novel algorithm TDPGAPCBI not only decreases the optimization time, but
also requires less space for its memotable, as the avgs values in Table 4.6 indicate. For
random acyclic graphs, TDMCCAPCB had to build 42% of DPCCP built join trees,
whereas TDMCCAPCBI could drop this to a value of 31%.

Cyclic Query Graphs

The minimum, maximum, and average normed runtimes over the whole cyclic work-
load for cycle, clique, and random cyclic queries are given in Tables 4.4 and 4.5.
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Figure 4.7.: Performance results for star queries.

We see, for example, for random cyclic queries that using TDPGAPCBI instead
of TDPGAPCB improves the average normed runtime of all three enumerators by an
average factor of 3− 10. We also see that for TDPGAPCB the maximum normed run-
times sometimes strongly deviate from the average. On the other hand, TDPGAPCBI

does not show such a worst case behavior. Our results indicate that TDPGAPCB’s
maximum normed runtime is by a factor of 25 higher than maximum normed runtime
of TDPGAPCBI .

As already outlined for acyclic graphs, TDPGAPCBI compared to TDPGAPCB

proves to be much more robust. Again, we determine this from the deviation among the
avgs and avgf values, which verify that the enumeration order has much less impact on
the pruning behavior of TDPGAPCBI than on the pruning behavior of TDPGAPCB .
Also, comparing the average normed runtime of TDMCCAPCB and TDMCBAPCB

indicates an average deviation of 2.8. Furthermore the charts for clique queries (Fig-
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Figure 4.8.: Performance results for random acyclic queries that are neither chain nor
star queries.

ure 4.11) and random cyclic queries with 15 vertices (Figure 4.13) show the same
evidence: The performance of TDMCCAPCB and TDMCBAPCB deviate strongly.

As already mentioned cycle and clique queries belong to the same group of cyclic
graphs, but in terms of the number of ccps, they are on two opposite sides of the
spectrum. Cycles have the lowest number of edges that is possible for cyclic graphs,
removing one edge would result in a chain query. Cliques have the maximal number
of edges possible. Therefore, the potential for performance improvements through
pruning is much higher for the latter, as the results in Table 4.5 show. The average
normed time for TDMCCAPCBI and TDMCBAPCBI decreases by a factor of 3.6
between the two graphs. This is also true for the space requirements of the memotable,
as can be seen from the different avgs values (Table 4.6). Whereas TDMCCAPCBI

still requires 24% of DPCCP’s size of the memotable, the space requirement drops
down to 4% when clique queries are optimized.
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Figure 4.9.: Density plot of random acyclic queries.

Comparing the average normed runtime of TDMCLAPCB and TDMCCAPCBI for
random cyclic graphs, we see an improvement factor of 9.8. Figure 4.12 and Fig-
ure 4.13 support our claim that TDMCCAPCBI and TDMCBAPCBI are the best per-
forming join enumeration algorithm for cyclic graphs. Thereby TDMCCAPCBI is
slightly faster. The average speedup between TDMCCAPCBI and DPCCP is a factor
of 25. This factor increases significantly with the number of relations in the query.

Figure 4.14 shows the corresponding density plot. As can be seen, TDMCCAPCBI

and TDMCBAPCBI are much farther to the right than the other competitors. This
means that for a much higher fraction of queries it achieves a far lower runtime.

Impact of Technical Advances

This section investigates how the seven new pruning advancements (Section 4.3) im-
prove the efficiency of TDPGAPCB . Figure 4.15 presents the averaged relative run-
time ratios. By relative runtime ratio we refer to the runtime result of the investigated
pruning method divided by the runtime of TDPGAPCB for the same query graph. For
our investigation we used MINCUTBRANCH (Section 2.5) as partitioning algorithm.
Thus we took the runtime of TDMCBAPCB as divisor for the relative runtime ratio
computation. We measured the runtime of every single pruning advancement on top
of TDMCBAPCB . This was done with the exception of remapping the query graph
(Advancement no. 6) and the join heuristic (Advancement no. 2), which we measured
as a whole, since remapping depends on a heuristic. As already mentioned, the join
heuristic we implemented is GOO [7].
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Figure 4.10.: Performance results for cycle queries.

Looking at the results (Figure 4.15) for the acyclic queries, we can see that all ad-
vancements have a relative runtime ratio significantly below 1, with the exception of
GOO and remapping the graph, which itself appears to be counter-productive. That is
why we also measured all advancements at once, except for the latter. This combina-
tion is displayed as the third last bar. When we compare it to TDPGAPCBI , we can see
that only in combination with the other advancements it further improves runtime. For
acyclic graphs the initial lower bounds (Advancement no. 7) are the most significant
improvement.

Considering cyclic queries, all advancements have a relative runtime ratio below
0.79. Again, the initial lower bounds exhibit the highest performance gains. Note
that the performance improvements of all advancements become more significant for
workloads with a larger number of vertices.

The last bar shows TDPGAPCBI with the upper bounds for all different connected
plan classes set to the cost of the corresponding optimal plan. But compared to the
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Figure 4.11.: Performance results for clique queries.

relative runtime ratio of TDPGAPCBI , it brings an improvement of 12% at the most.
Hence, let us emphasize that there is not much potential for improving accumulated
cost bounding strategies in the future, since this number is only of theoretical nature
and can never be achieved in practice.

4.4.4. Performance Evaluation with Complex Query Graphs

This section compares the performance of our novel branch-and-bound pruning al-
gorithm TDPGAPCBI instantiated with our generic partitioning framework (Section
3.5), with the performance of DPHYP. Thereby, we instantiate PARTITIONX with
the best performing partitioning strategies MINCUTCONSERVATIVE (Section 2.4) and
MINCUTBRANCH (Section 2.5). Furthermore, we include the results of TDPGAPCBI

instantiated with MINCUTCONSERVATIVEHYP (Section 3.4). Table 4.7 gives an
overview of the algorithms investigated here.
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Figure 4.12.: Performance results for random cyclic queries with 10 vertices.

Abbreviated Name Partitioning Strategy Pruning Type
TDMCCHYP MINCUTCONSERVATIVEHYP none
TDMCCHYPAPCBI MINCUTCONSERVATIVEHYP TDPGAPCBI

TDMCBHYP PARTITIONX+MINCUTBRANCH none
TDMCBHYPAPCBI PARTITIONX+MINCUTBRANCH TDPGAPCBI

TDMCCFWHYP PARTITIONX+MINCUTCONSERVATIVE none
TDMCCFWHYPAPCBI PARTITIONX+MINCUTCONSERVATIVE TDPGAPCBI

Table 4.7.: Abbreviated names of different partitioning algorithms and pruning
strategies.

As workload, we use the same query graphs as already used in Section 3.6.2. We
differentiate between non-inner/simple and inner/complex query graphs.

Let us start with the pruning performance of acyclic queries. Figures 4.16 and 4.17
show the results for acyclic/inner/complex and acyclic/non-inner/simple queries. We
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Figure 4.13.: Performance results for random cyclic queries with 15 vertices.

can observe that TDMCBHYPAPCBI dominates TDMCCFWHYPAPCBI , although
the differences are not that high. We can make the same observations when looking
at the average normed runtimes on the left side of Table 4.8. Further, we can see that
the average normed runtimes for acyclic/inner/complex are lower than the values for
acyclic/non-inner/simple queries. This is because for an average acyclic/inner/com-
plex query, more ccps exist when compared with an average acyclic/non-inner/simple
query, which makes the acyclic/inner/complex query harder to compile. Since more
ccps exist, TDMCBHYPAPCBI and TDMCCFWHYPAPCBI can benefit more from
their pruning capabilities. Independent of the acyclic scenario, DPHYP is clearly dom-
inated by TDMCBHYPAPCBI either by an average factor of 1

0.89 = 1.12 or by a factor
of 1

0.49 = 2.04.

The advantages of branch-and-bound pruning become more distinctive when
random cyclic queries are considered. The results for cyclic/inner/complex and
cyclic/non-inner/simple queries are given in Figures 4.18, 4.19 and 4.20, 4.21.
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Figure 4.14.: Density plot of random cyclic queries.

Again the pruning performance is better for the inner/complex queries than for
the cyclic/non-inner/simple queries of our workload. We can find the same ra-
tionale: the number of ccps is higher for cyclic/inner/complex queries than for
cyclic/non-inner/simple queries. Again, TDMCCFWHYPAPCBI is slightly slower
than TDMCBHYPAPCBI . Comparing the average normed runtimes on the right side
of Table 4.8, we can see that TDMCBHYPAPCBI outperforms DPHYP with an aver-
age factor of up to 0.064.

Looking at all four scenarios ANS (acyclic/non-inner/simple), AIC (acyclic/inner/-
complex), CNS (cyclic/non-inner/simple) and CIC (cyclic/inner/complex), we can
conclude: Different queries together with different cardinalities and selectivities em-
bed different inherent pruning potentials.

We thus decided to illustrate this potential using density plots, as shown in Figures
4.22 and 4.23. The x-axis gives the speed-up factor achieved by pruning. The y-axis
shows its frequency, i.e., how often a certain speed-up factor was observed during
our experiments with random cyclic and acyclic queries. Thereby, Figure 4.22 gives
the density plot for the speed-up factor of TDMCBHYPAPCBI when compared with
TDMCBHYP. The speed-up factor in comparison to DPHYP is given in Figure 4.23.
Both figures support our claim: The pruning behavior for our four cases is rather
different. First, in the worst case (ANS), we have a steep peak around 1. This means
that the pruning potential is poor. It becomes larger in case of AIC, but still for cyclic
queries in the cases CNS and CIC, we observe a much higher optimization potential.
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Figure 4.15.: Performance of different Pruning Advancements.

Algorithm min max avg min max avg
acyclic/non-inner/simple cyclic/non-inner/simple

DPHYP 0.000 s 0.059 s 0.001 s 0.000 s 1.235 s 0.008 s
TDMCCHYP 0.189 × 4.011 × 1.218 × 0.119 × 3.568 × 1.153 ×
TDMCBHYP 0.105 × 2.639 × 0.975 × 0.093 × 2.142 × 0.876 ×
TDMCCFWHYP 0.105 × 2.500 × 1.002 × 0.096 × 2.064 × 0.892 ×
TDMCCHYPAPCBI 0.070 × 3.409 × 1.041 × 0.040 × 2.920 × 0.574 ×
TDMCBHYPAPCBI 0.065 × 2.640 × 0.893 × 0.018 × 2.034 × 0.450 ×
TDMCCFWHYPAPCBI 0.065 × 3.689 × 1.066 × 0.022 × 2.547 × 0.539 ×
Algorithm min max avg min max avg

acyclic/inner/complex cyclic/inner/complex
DPHYP 0.000 s 0.438 s 0.010 s 0.000 s 44.306 s 2.176 s
TDMCCHYP 0.655 × 3.234 × 1.380 × 0.829 × 2.026 × 1.351 ×
TDMCBHYP 0.436 × 2.433 × 1.016 × 0.757 × 1.573 × 1.027 ×
TDMCCFWHYP 0.473 × 1.879 × 1.049 × 0.760 × 1.607 × 1.036 ×
TDMCCHYPAPCBI 0.030 × 3.797 × 0.712 × 0.004 × 1.391 × 0.096 ×
TDMCBHYPAPCBI 0.027 × 2.206 × 0.486 × 0.003 × 1.084 × 0.065 ×
TDMCCFWHYPAPCBI 0.027 × 2.559 × 0.583 × 0.003 × 1.217 × 0.073 ×

Table 4.8.: Performance results for random queries

4.4.5. Performance Evaluation with Different Benchmarks

Whereas in Section 4.4.4 we have investigated the pruning potential for random query
graphs, we now want to analyze the pruning potential for standard benchmark queries.
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Figure 4.16.: Acyclic/inner/complex

Therefore, we consider the queries of the TPC-H [34] and TPC-DS [33] benchmarks
as well as the queries obtained from the SQLite test suite [29]. We refer to Section
3.6.2 for a description of how the query graphs have been computed.

Again, we instantiate TDPGAPCBI with PARTITIONX and employ MINCUT-
CONSERVATIVE and MINCUTBRANCH as graph-partitioning strategies. We use
the performance results of DPHYP to put our results for TDMCBHYPAPCBI and
TDMCCFWHYPAPCBI (Table 4.7) into perspective.

Tables 4.10, 4.11 and 4.12 give the summarized results for the three benchmarks.
Thereby, the first column gives the overall runtime for processing the workload with
a given plan generator. We refer to that value as H/DS/SQLite total time. In the
second column the overall normed runtime is given. Thus, the H/DS/SQLite total time
for a given algorithm is divided by DPHYP’s H/DS/SQLite total time. We refer to
that value as overall normed runtime. For the value in the third column, we take the
normed runtime for every query and compute the average of all normed runtimes of
the whole workload. To be more precise, for that value we compute the sum of all
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Figure 4.17.: Acyclic/non-inner/simple

Algorithm Q2 Q5 Q7 Q8 Q9 Q20 Q21
TDMCCFWHYPAPCBI 0.70 × 0.40 × 0.40 × 0.59 × 0.54 × 0.61 × 1.05 ×
TDMCBHYPAPCBI 0.65 × 0.36 × 0.36 × 0.43 × 0.49 × 0.63 × 0.84 ×

Table 4.9.: Normed runtimes for TPC-H Queries with more than 4 tables referenced

query-specific normed runtimes and divide the sum by the number of query graphs the
workload consists of. We call this value averaged normed runtime.

TPC-H

We considered all TPC-H [34] queries except for those that did not contain any join
(Q1 and Q6). For Q14 and Q17 we gained the same query graph. Hence, we consider
only the graph for Q14.

For those queries referencing more than 4 tables, we give the normed runtime results
in Table 4.9. For the 19 TPC-H queries we investigated, we give the summarized
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Figure 4.18.: Cyclic/inner/complex with 10 relations

Algorithm
∑

overall normed average normed
DPHYP 0.00069 s 1.0000 × 1.0000 ×
TDMCCFWHYPAPCBI 0.00044 s 0.6350 × 1.1955 ×
TDMCBHYPAPCBI 0.00038 s 0.5504 × 1.0917 ×

Table 4.10.: Overall sum of elapsed time, overall normed runtime and average normed
runtime for TPC-H Queries

results in Table 4.10. Since the TPC-H queries reference 8 relations at the most, the
H-total time is very low. Thus, the number of ccps is low as well. This leads to a lower
pruning potential, as the overall normed time for TDMCBHYPAPCBI with a value of
0.55 shows. TDMCCFWHYPAPCBI is even 15% slower then TDMCBHYPAPCBI .
Nevertheless, DPHYP is clearly outperformed by both algorithms when the whole
TPC-H workload is considered.
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Figure 4.19.: Cyclic/inner/complex with 15 relations

TPC-DS

In Table 4.11 we give the summarized results for the TPC-DS benchmark [33].
Since on average more relations are referenced than in a TPC-H query, the prun-
ing potential should be higher. This is confirmed by an overall normed run-
time of 0.23 for TDMCBHYPAPCBI . With an overall normed runtime of 0.58,
TDMCCFWHYPAPCBI is by a factor of 2.43 slower than TDMCBHYPAPCBI , but
still distinctly faster than DPHYP. The speed-up factor of TDMCBHYPAPCBI in
comparison to DPHYP is 1

0.23 = 4.35.

SQLite Test Suite

The summarized results for the SQLite Test Suite [29] are given in Table 3.9. From the
SQLite-total time, we can see that the queries take on average much longer to compile
than the TPC-H and TPC-DS queries. In fact, the queries considered here reference up
to 32 relations. Hence, we might expect a larger pruning potential. But taking a look
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Figure 4.20.: Cyclic/non-inner/simple with 10 relations

Algorithm
∑

overall normed average normed
DPHYP 0.40295 s 1.0000 × 1.0000 ×
TDMCCFWHYPAPCBI 0.23423 s 0.5813 × 0.9825 ×
TDMCBHYPAPCBI 0.09636 s 0.2391 × 0.9716 ×

Table 4.11.: Overall sum of elapsed time, overall normed runtime and average normed
runtime for TPC-DS Queries

at the selectivities and cardinalities of the query graphs tells us something different.
There is only one cardinality for all relations, which is 10 tuples. The selectivities of
the join edges are either 0.04 or 1. Those values lead to many equivalent (sub)plans
of equal costs, which in turn minimize the pruning potential. Nevertheless, the overall
normed runtime of 0.52 for TDMCBHYPAPCBI and 0.59 for TDMCCFWHYPAPCBI

shows that DPHYP is outperformed distinctively. Under the given circumstances, this
is still a very good result.
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Figure 4.21.: Cyclic/non-inner/simple with 15 relations

Algorithm
∑

overall normed average normed
DPHYP 981.00958 s 1.0000 × 1.0000 ×
TDMCCFWHYPAPCBI 576.05450 s 0.5872 × 0.7324 ×
TDMCBHYPAPCBI 510.90008 s 0.5208 × 0.6690 ×

Table 4.12.: Overall sum of elapsed time, overall normed runtime and average normed
runtime for 337 queries of the SQLite test suite
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Figure 4.22.: Density plots for TDMCBHYPAPCBI with TDMCBHYP as norm
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Figure 4.23.: Density plots for TDMCBHYPAPCBI with DPHYP as norm
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5. Conclusion

Dynamic programming-based join enumeration is a common and well-accepted ap-
proach for plan generation. However, this approach is not suitable for every type of
query, i.e., if the query is to complex because it references too many relations or it con-
sists of too many join predicates. For those type of queries, plan generation often relies
on computationally less intensive greedy join heuristics or modifies the query graph,
as proposed in [24]. As a consequence, the produced plans are often not optimal, and,
thus, the compiled query takes longer to execute. The first who analyzed the search
space for dynamic programming-based/memoization-based plan generation were Ono
and Lohman [26].

This work motivated Moerkotte and Neumann [22] to analyze different dynamic
programming-based plan generation algorithms. As it turned out, depending on the
shape of the query, all dynamic programming plan generation variants known to the
literature were far from optimal when compared with the lower bounds given by Ono
and Lohman [26]. As a consequence, Moerkotte and Neumann proposed DPCCP [22]
as the first dynamic programming-based plan generator meeting those bounds.

For top-down join enumeration, no equivalent efficient solution was known. On the
other hand, due to its demand-driven processing nature, top-down join enumeration is
amenable to branch-and-bound pruning techniques. The beauty of branch-and-bound
pruning is that it can speed up plan generation by several orders of magnitude while
guaranteeing the optimality of the produced plan.

This gave rise to a rivalry between bottom-up plan generation via dynamic program-
ming and top-down plan generation via memoization. DeHaan and Tompa followed
with a memoization-based plan generator called TDMINCUTLAZY. Although dis-
tinctly more efficient than the naive generate-and-test based memoization algorithm,
TDMINCUTLAZY is still outperformed by DPCCP when not relying on its branch-
and-bound pruning capabilities.

Both DPCCP and TDMINCUTLAZY could only handle graphs and thus only a sub-
set of real-world queries. Therefore, Moerkotte and Neumann [21] developed DPHYP,
which was the first efficient plan generator that could deal with hypergraphs. Thus,
top-down join enumeration had a couple of disadvantages:

• There was a distinctive performance gap towards bottom-up plan generation.

• Only a subset of queries could be compiled, i.e., those that contained inner joins
and simple join predicates only.

• The proposed branch-and-bound pruning techniques were not safe. In particular,
there are scenarios with a worst-case runtime behavior that is by several orders
of magnitude higher than if no branch-and-bound pruning is applied.

By making a series of contributions, this thesis dealt with these disadvantages. We
summarize the contributions in the following.
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5. Conclusion

5.1. Graph-Aware Join Enumeration Algorithms

We motivated our work with a complexity analysis of TDBASIC. The analysis showed
that the naive generate-and-test partitioning strategy used by TDBASIC has a com-
plexity in O(2|V |) per emitted ccp where |V | is the number of vertices in the query
graph. In Appendix A, we analyzed MINCUTLAZY and showed that it has a worst
case complexity in O(|V |2) per emitted ccp. Further, we improved upon TDMIN-
CUTLAZY and presented TDMINCUTLAZYIMP. Most importantly, we proposed
three new graph-partitioning algorithms: MINCUTAGAT [9], MINCUTCONSERVA-
TIVE [12] and MINCUTBRANCH [8]. We showed that the complexity of MINCUT-
BRANCH is in O(1) for standard and acyclic graphs per emitted ccp. We presented
two efficient implementations in C++ for MINCUTCONSERVATIVE (Appendix B.1)
and MINCUTBRANCH (Appendix B.2). In our evaluation, MINCUTCONSERVATIVE

and MINCUTBRANCH proved to be competitive with DPCCP. For random acyclic
queries they outperformed DPCCP, for random cyclic queries they were dominated by
DPCCP. But altogether, the performance differences were marginal. In summary, we
closed the performance gap between top-down versus bottom-up plan generation by
presenting MINCUTCONSERVATIVE and MINCUTBRANCH.

5.2. Hypergraph-Aware Join Enumeration Algorithms

Previous work emphasized that a plan generator has to deal with hypergraphs
[2, 21, 27, 20, 35], otherwise it can compile only a subset of real-world queries. There-
fore, we presented MINCUTCONSERVATIVEHYP [11] as an extension of MINCUT-
CONSERVATIVE as the first efficient partitioning algorithm for hypergraphs. Further-
more, we proposed a generic graph-partitioning framework that enables any graph-
aware partitioning algorithm to handle hypergraphs [10]. The beauty of this approach
is that we could reuse our efficient and competitive graph-partitioning algorithms MIN-
CUTCONSERVATIVE and MINCUTBRANCH.

In our performance evaluation, we compared TDMCBHYP as our generic top-down
join enumeration algorithm instantiated with our generic graph-partitioning framework
and MINCUTBRANCH as partitioning algorithm with DPHYP. As our results proved,
TDMCBHYP is indeed competitive with DPHYP, even without exploiting its branch-
and-bound pruning capabilities. We were able to support this claim by the performance
results of the TPC-H, TPC-DS and the SQLite test suite benchmarks.

5.3. Branch and Bound Pruning

The main advantage of top-down join enumeration over bottom-up join enumeration is
that it allows for branch-and-bound pruning. Two branch-and-bound pruning methods
are known to the literature: accumulated cost bounding and predicted cost bounding. It
has been shown how both methods can be combined. Through seven advancements we
achieved an improvement to the combined pruning method (a) in terms of effective-
ness, (b) in terms of robustness and (c), most importantly, by avoiding the worst-case
behavior otherwise observed. For the workload considered in our evaluation, we im-
proved the average pruning performance by a factor of 10 and decreased the worst-case
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behavior by a factor of 25 − 225. By considering the TPC-H, TPC-DS and SQLite
queries, we have shown that our improvements speed up plan generation by 100%
when compared with DPHYP as the state-of-the-art in bottom-up plan generation.

5.4. Graceful Degradation

As has been mentioned, for complex queries, i.e., queries that reference many rela-
tions or queries that consist of many join predicates, plan generation relies often on
computationally less intensive greedy join heuristics. With the contributions of this
thesis, we showed how compile time can be decreased by orders of magnitude while
still preserving plan optimality. Thus, in order to produce an optimal plan, we are able
to consider much more complex queries than before.

This leads to an important question: When should plan generation rely on dynamic
programming/memoization and when should it use a greedy join heuristic? The prob-
lem with dynamic programming is that it does not exhibit graceful degradation. This
means that a complete query execution plan is produced very late in the plan generation
process. One solution to this is to limit the query by a certain number of relations/join
edges or a combination of both. Queries with a higher number of relations/join edges
are not considered for dynamic programming. Another solution gives the dynamic
programming-based search process a time constraint. If the search takes longer, it is
aborted and a greedy join heuristic is used. A more elegant solution modifies the query
graph beforehand such that the search space for dynamic programming is decreased
[24].

For top-down join enumeration, the latter solution can still be applied, but the whole
problem is less immanent. For our improved accumulated predicted cost bounding
method, we produce an initial plan by utilizing a greedy join heuristic. Thus, the
search process can be stopped at any time, and we already have a usually relatively
good plan. Moreover, top-down processing produces a complete plan, i.e. a plan that
contains all relations of the query, much faster. Thus, it exhibits graceful degradation.
Due to the demand-driven nature of top-down join enumeration, we have the means of
prioritizing the optimization of certain (sub)plans. In such a way, we can consider the
(sub)plans of the initial plan at a faster rate. This is achieved by the sixth advancement
of our pruning method. Hence, if the search process needs to be stopped, we do have
a plan that has the same or even and most likely smaller cost than our initial plan.

5.5. Summary

With TDMCBHYPAPCBI and TDMCCFWHYPAPCBI , we presented two top-down
join enumeration algorithms that are based on our generic partitioning frame-
work and use the improved accumulated predicted cost-bounding method. Where-
as TDMCBHYPAPCBI relies on MINCUTBRANCH as graph-partitioning method,
TDMCCFWHYPAPCBI utilizes MINCUTCONSERVATIVE.

Our experiments with the TPC-H, TPC-DS and SQLite queries showed that both
TDMCBHYPAPCBI and TDMCCFWHYPAPCBI dominate DPHYP, which is the
state-of-the-art in bottom-up processing. Thereby, TDMCBHYPAPCBI performs best.
In fact, TDMCBHYPAPCBI is on average by a factor of two faster than DPHYP.
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5. Conclusion

Moreover, for our generated workloads we have shown that TDMCBHYPAPCBI and
TDMCCFWHYPAPCBI have a better worst-case performance than DPHYP.

Because of the distinctive performance advantage, a better worst-case behavior and
graceful degradation, we can conclude: When building a query optimizer, top-down
processing, and, in particular, TDMCBHYPAPCBI should be the alternative of choice.
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A. TDMinCutLazy

A.1. Important Notions

Lazy minimal cut partitioning makes use of a data structure called biconnection tree
[8]. We give its definition:

Definition A.1.1. Let G = (V,E) be a connected undirected graph and BCC =
{GBCC

1 (V1, E1), ..., G
BCC
k (Vk, Ek)} the set of biconnected components of which G

consists such that V =
⋃

1≤i≤k Vi holds. For an arbitrary vertex t ∈ V , a set of vertex
nodes Vvn and a set of set nodes Vsn where Vtree = Vvn ∪ Vsn and Vvn ∩ Vsn = ∅
holds, we call T = (Vtree, Etree, t) a biconnection tree if

• Vvn = V ,

• Vsn = {sVi | s representing a set of vertices Vi of a biconnected component
GBCC

i (Vi, Ei)}, and

• the set of tree edges Etree = {(sVi , v) | sVi ∈ Vsn ∧ v ∈ Vi}.

The vertex t is called root of T .

Within a biconnection tree T , the descendants DT and the ancestors AT of an
arbitrary vertex v ∈ V can be defined as follows.

DT (v) = {u ∈ V | u occurs in a subtree of T rooted at v},

AT (v) = {u ∈ V | u is a vertex node on path t ∗→ v}.

A.2. Lazy Minimal Cut Partitioning

DeHaan and Tompa [5] proposed a partitioning algorithm named MINCUTLAZY that
generates the ccps for a set. We give its pseudocode in Figure A.1. MINCUTLAZY can
be embedded into a top-down memoization algorithm like TDPLANGEN, as given in
Section 2.2.1. We refer to the top-down join enumeration algorithm instantiated with
DeHaan’s and Tompa’s MINCUTLAZY as TDMINCUTLAZY or TDMCL for short.

DeHaan’s and Tompa’s partitioning algorithm starts with one-element sets of the
relations C and expands them recursively by the descendantsDT (v) of a neighbor v ∈
N (C), but does not cause the complement S \C to become disconnected. Duplicates
are avoided through a restricted set X that is enhanced by the ancestors AT (v) of a
C’s neighbor v ∈ N (C) after every recursive call. The calculation of descendants
and ancestors is based on a biconnection tree structure T that is computed by a call
to BUILDBCT (Section A.3). We analyze the complexity to build a biconnection
tree in Section A.3.2. It is O(|S|2). To avoid the unnecessary recomputation of the
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biconnection tree at every invocation of MINCUTLAZY, the reusability test ISUSABLE

[5] is proposed. Since the test returns false negatives, the partitioning algorithm in the
worst case constructs a biconnection tree for every emitted partition. But in the best
case, that is, for all acyclic graphs, only one biconnection tree is constructed.

PARTITIONMinCutLazy(G|S)

� Input: a connected (sub)graph G|S
� Output: P sym

ccp (S)
1 t← arbitrary vertex of S
2 MINCUTLAZY(G|S , ∅, ∅, {t}, NULL, t)

MINCUTLAZY(G|S , C, Cdiff , X, T ′, t)
� Input: connected set S, C ∩X = ∅, Cdiff ⊆ C
� Output: ccps for S

1 if C 6= ∅
2 emit (C, S \ C)
3 if N (C) ⊆ X
4 return
5 if ISUSABLE(T ′, Cdiff )
6 T ← T ′
7 else T ← BUILDBCT(GS\C , t)

8 P ← {v ∈ N (C)|v ∈ (S \X) ∧ (DT (v) ∩N (C)) = {v}}
9 X ′ ← X

10 for all v ∈ P
11 do MINCUTLAZY(G|S , C ∪ DT (v),DT (v), X ′, T , t)
12 X ′ ← X ′ ∪ AT (v)

� N (∅) = S \ {t}

Figure A.1.: Pseudocode for MINCUTLAZY

A.3. Biconnection Tree Building

Unfortunately, DeHaan and Tompa omitted some important implementation details
about how to build a biconnection tree efficiently. This section fills some gaps. First
the biconnection tree construction (Section A.3.1) is explained, and then implementa-
tion alternatives for precomputing the ancestors and descendants (Section A.3.2) are
discussed through a complexity analysis.

A.3.1. Biconnection Tree Construction

The pseudocode for constructing a biconnection tree is given in Figures A.2 and A.3 as
a modification of [6] [1]. The variables are initialized in BUILDBCT, and the recursive
search and building procedure is implemented within BUILDBCTSUB. We presume
that the details of depth-first search and pre-order numbering are known and omit any
further explanation [4].

The stack of graph edges Estack is used to distinguish between the tree edges and
back edges that are not captured. Tree edges are those that lead to all the accessed
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vertices during the discovery of vertices. Back edges are the rest of the graph edges
that would close the cycles to already visited vertices. We denote the set of tree edges
withEt and the set of back edges withEb. It holds thatE = Et∪Eb withEb∩Et = ∅.
For the recognition of cycles, we need an additional field low. For its values, it holds:

low[v] =Min({df [v]} ∪ {df [w] | w ∈ D(v)}),
where df is the pre-order number and D(v) is defined as:

D(v) = {w | ∃x(x,w) ∈ Eb, w
∗→ v

∗→ x}.

In other words, the set D(v) includes all vertices w with a back edge (x,w) ∈ Eb,
and v is a descendant of w and x a descendant of v in the directed spanning tree
S(V,Et). Note that the vertex v is a descendant of w if df [w] < df [v] holds. Hence, x
is also a descendant of w, and it holds that df [w] < df [v] < df [x]. The calculation of
low[v] can be embedded into the depth-first search procedure if the formula is rewritten
in terms of values of low[s] at the direct children s ∈ C(v) of v in S(V,Et) and of the
preorder numbers of the vertices connected to v via back edges.

low[v] =Min({df [v]} ∪ {low[s] | s ∈ C(v)} ∪ {df [w] | w ∈ D(v)})

The set C(v) is defined as:

C(v) = {s | s ∈ N (v) ∧ df [v] < df [s]}

Due to the recursive iteration, the final value of low[v] is not known before the list
of vertices adjacent to v is fully processed. If a vertex v is an articulation vertex and
the entry point of the biconnection GBCC = (Vi, Ei) where v, s ∈ Vi holds, it is
recognized by low[s] ≥ df [v]. This is also true for a root that is not an articulation
vertex because it has just one set node as a child.

In Line 4 of BUILDBCTSUB, the value of low[v] is initialized. Since during pro-
cessing low[v] ≤ df [v] holds, its preorder number is chosen. As the first part of
the previous rewritten formula, the value of low[v] is adjusted to the minimum value
between low[w] from the son w of v and itself in Line 21. The second part of the
definition is implemented in Line 24. The check of Line 22 ensures that (v, w) ∈ Eb

is really a back edge and not just a tree edge.
Knowing the value low[w] of v’s descendant w in S(V,Et), it could be determined

whether v is an articulation vertex and as a vertex node, implicitly, the father of a set
node s{v,w,...} (Line 11). If so, that set node s{v,w,...} has to be constructed and added
to the set of set nodes Vsn (Line 16 ). Taking all edges from Estack (Line 13) until
the edge (v, w) from which w was accessed (Line 15) corresponds to enumerating
the recognized biconnected component. To complete the set node, all its child vertex
nodes have to be attached by adding an edge to the edge set Etree of the biconnection
tree (Line 19). They can be taken from the stack of vertex nodes vstack (Line 18).

If v is an articulation vertex, then all its set nodes are attached in Line 28. The set
nodes which belong to v and all contain v have to be on top of sstack. In case that v
is not an articulation vertex, there will be no items on top of sstack containing v. This
follows from the observation that the set node corresponding to the biconnection is not
constructed until the recursive call (Line 9) returns to its articulation vertex or root t in
S(V,Et).
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BUILDBCT(G, t)

� Input: connected query graph G = (V,E), t ∈ V
� Output: biconnection tree T for G rooted at t

1 for each vertex v ∈ V
2 color[v]← WHITE

3 df [v]← |V |+ 1
4 low[v]← |V |+ 1
5 π[v]← NIL

6 count← 0
7 declare stack of edges Estack

8 declare stack of vertex nodes vstack
9 declare stack of set nodes sstack

10 BUILDBCTSUB(t)
11 return (Vsn ∪ V,Etree, t)

Figure A.2.: Pseudocode for BUILDBCT

A.3.2. Complexity of Biconnection Tree Construction

Now we pay attention to the complexity of constructing a biconnection tree. Recog-
nizing the biconnected components of a graph has a complexity of O(|E|) [1]. But
BUILDBCT contains three more loops, which we have to examine additionally.

The loop in Line 13 iterates over the edges that are part of a biconnection, not
including their back edges bi ∈ Eb. Since a tree edge ei ∈ Et is never pushed twice
on Estack within all invocations of BUILDBCTSUB, this loop increases complexity by
|Et|, where Et = E − Eb. Note that |Et| = |V | − 1 holds.

The second loop (17) iterates over vertices in vstack and attaches each vertex to its
corresponding set node. That adds |V | − 1 to the complexity. Note that the −1 comes
from the root t, which does not have to be attached to a set node.

The third loop (26) runs over all set nodes that need to be linked to their correspond-
ing articulation vertex or root t, respectively. If A is the set of all articulation vertices,
then in all calls to BUILDBCTSUB there will be |A| set nodes added to sstack if t ∈ A,
or |A|+ 1 set nodes otherwise. This increases complexity by at least |A|.

A.3.3. Computation of Ancestors and Descendants

DeHaan and Tompa suggest [5] to incorporate the computation of DT (v) and AT (v)
for all v ∈ V into the biconnection tree building without increasing its complexity, but
do not explain how this can be done.

The children as direct descendants can be part of more than one biconnected compo-
nent bcc. Therefore, in addition to bcc (12) in BUILDBCTSUB, the field descendants
is introduced preferably before Line 5. After a new bcc is constructed (16), the
descendants should be updated with the descendants of those vertices which have
been calculated in previous recursions. This means adding O(|bcc| − 1) for each bcc
and in total O(|V | − 1).
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BUILDBCTSUB(v)

� Input: vertex v ∈ V
1 color[v]← GRAY

2 count← count+ 1
3 df [v]← count
4 low[v]← df [v]
5 for all w ∈ N (v)
6 if color[w] = WHITE

7 PUSH(Estack, (v, w))
8 π[w]← v
9 BUILDBCTSUB(w)

10 PUSH(vstack, v)
11 if low[w] ≥ df [v]
12 bcc← ∅
13 repeat (e1, e2)← POP(Estack)
14 bcc← bcc ∪ {e1} ∪ {e2}
15 until (e1, e2) = (v, w)
16 Vsn ← Vsn ∪ {sbcc}
17 while TOP(vstack) ∈ bcc
18 c← POP(vstack)
19 Etree ← Etree ∪ {(sbcc, c)}
20 PUSH(sstack, sbcc)
21 low[v]← MIN(low[v], low[w])
22 else if w 6= π[v]
23 PUSH(Estack, (v, w))
24 low[v]← MIN(low[v], df [w])
25 color[v]← BLACK

26 while v ∈ TOP(sstack)
27 sbcc ← POP(sstack)
28 Etree ← Etree ∪ {(sbcc, v)}

Figure A.3.: Pseudocode for BUILDBCTSUB

At the same time, to all those vertices in the biconnected component the direct an-
cestor v can be assigned. Since the other ancestors, which are all articulation vertices
on the path to the root t, are not known at this point, only the parent can be linked.

To calculate AT (v), the indirections of the parent articulation vertices and their
ancestors need to be followed until the root t is reached. In the worst case scenario,
i.e., a chain query where one end is the root and the other end has |V | − 1 ancestors,
this means that |V |−2 indirections have to be followed for one computation ofAT (v).

The other alternative is to update not only the direct descendants but the whole set.
That means in the worst case with a chain query |V | − 1 update operations for the
opposite end of t and (|V | − 1)! updates in total. It is cheaper not to follow DeHaan’s
and Tompa’s suggestion and to postpone the calculation of the ancestors to the end of
the tree construction. Knowing all direct descendants, the computation can be done
top-down in O(|V | − 1) by revisiting the root and all the articulation vertices. Going
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down this path enables us to postpone the update operation of the current descendants
with the descendants of the children in BUILDBCTSUB, which saves us O(|V | − 1)
compared to incorporating it in the biconnection tree building.

A.3.4. An Alternative to Tree Construction

Looking at MINCUTLAZY raises the question whether the overhead of the biconnec-
tion tree building is necessary, since just the ancestors and descendants of a vertex v
need to be computed. The only method which depends on a biconnection tree structure
is ISUSABLE. For this reason, we suggest to reformulate the usability test and to use
just the information of the vertex set Vi of a GBcc

i (Vi, Ei) to which a vertex v belongs.
If a vertex is an articulation vertex, i.e., an inner vertex node of the biconnection tree, it
must be part of more than one set node or biconnected component, respectively (Defi-
nition 2.1.17). Therefore, we map only Vi to a vertex v in case that v is not the parent
vertex node p of the set node sVi in a biconnection tree. To optimize the usability test,
we suggest for the mapping of v to Vi that the vertex set Vi is reduced by {p}.

Following this suggestion, we do not need the stacks sstack and vstack and the loop
in Line 17 of BUILDBCTSUB any more, which saves us O(|V | − 1).

We can conclude that in spite of our suggested improvements, the additional de-
mands on the algorithm of [1] increase the complexity by 2 ∗ |V | − 2 + |A| to an
overall complexity of |E|+ 2 ∗ |V | − 2 + |A|.

A.4. Complexity of Lazy Minimal Cut Partitioning

We analyze the complexity of DeHaan’s and Tompa’s MINCUTLAZY for fixed shape
query graphs, which are chain, star, cycle and clique queries. We base our calculations
on the proposed improvements of Section A.3.4 [9]. Thus the complexity for building a
biconnection tree is |E|+2|S|−2+|A|, whereA is the set of articulation vertices (Defi-
nition 2.1.17) of aG = (S,E). Furthermore, our analysis presumes a simplification of
Line 8, which saves unnecessary iterations during the calculation of the pivot set. Now
the revised computation in Line 8 is: P ← {v ∈ N (C)\X | (DT (v)∩N (C)) = {v}}.
For one call to PARTITIONMinCutLazy, we compute the algorithm’s complexity in the
form of O(

Ot+Ou+Op+Oi

|P symccp(S)| ), where Ot is the complexity of all biconnection tree build-
ings, Ou the complexity of all usability tests, Op the complexity for computing all
pivot sets P , and Oi the complexity of all iterations of the loop in Line 10.

First, we consider chain queries. We know that |A| = |S| − 2 holds and only one
biconnection tree has to be built. Hence, Ot = |S|−1+2|S|−2+ |S|−2 = 4|S|−5
holds. The number of usability tests will be |S| − 3 times at minimum and |S| − 2
times at maximum at O(1) cost each, because at every step |DT (v)| = 1 holds. The
condition of Line 8 (DT (v)∩N (C)) = {v} for computing the pivot set P is evaluated
2|S| − 4 times at least and 2|S| − 3 times at most at O(1) cost each. MINCUTLAZY

is invoked |S| − 1 times in Line 11, which we account with O(1) cost each. In total,
the complexity is 4|S| − 5 + |S| − 2 + 2|S| − 3 + |S| = 8|S| − 11, and there are
|S| − 1 ccps emitted, whereas symmetric ccps are counted only once. Therefore, the
complexity of MINCUTLAZY to emit a ccp corresponds to O(1).
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Next, star queries are to be considered. Again, there will be only one biconnection
tree building with a complexity of |S| − 1+2|S| − 2+1 = 3|S| − 2, because |A| = 1
holds. Depending on whether the hub of the star is chosen as the root vertex t of the
biconnection tree, there is no usability test required and otherwise, one usability test
at O(1) cost. The condition of Line 8, (DT (v) ∩ N (C)) = {v}, is computed |S| − 1
times at least and |S| times at most at O(1) cost each. There are |S| − 1 times that
MINCUTLAZY is invoking itself in Line 11, which we account with O(1) cost each.
In total, the complexity is 3|S| − 2 + 1 + |S| + |S| = 5|S| − 2, and since there are
|S| − 1 ccps emitted, the complexity of MINCUTLAZY to emit a ccp is in O(1).

Let us now consider cycle queries. First of all, we know that |E| = |S| holds. There
are |S|many connected subgraphs of size k, with k < |S| and (|S|−1)|S| = |S|2−|S|
in total. When we count symmetric ccps only once, the number of ccps is 1

2 |S|
2− 1

2 |S|.
Lazy minimal cut partitioning needs one initial biconnection tree building for S and at
the most |S| − 2 buildings for the complements of size |S| − 1 that are chain graphs,
because the cycle is broken off. This yields a worst case complexity of |S|−2|S|−2+
1+(|S|−1)(|S|−2+2(|S|−1)−2+|S|−3) = 4|S|2−18|S|+17 for all tree buildings.
MINCUTLAZY invokes itself 1

2 |S|
2 − 1

2 |S| times. The same holds for the number of
times that the condition of Line 8, (DT (v)∩N (C)) = {v}, is computed, again atO(1)
cost each. The number of tree usability tests evaluated is at least |S| − 1 lower than
MINCUTLAZY invokes itself, because of the early exit in Line 1. Therefore, there are
1
2 |S|

2− 3
2 |S|+1 usability tests withO(1) cost each. In total, the worst case complexity

is 4|S|2 − 18|S|+ 17+ 1
2 |S|

2 − 3
2 |S|+ 1+ 2(12 |S|

2 − 1
2 |S|) =

11
2 |S|

2 − 41
2 |S|+ 18.

Therefore, the complexity of MINCUTLAZY to emit a ccp is in O(1).

Finally, we analyze the algorithm’s complexity for clique queries. For every clique,
it holds that |E| = |S|(|S|−1)

2 . Since a powerset of a set with n elements has 2n − 1

nonempty subsets, for a clique |P symccp(S)| = 2|S|−1 − 1 holds. When determining
the complexity of the biconnection tree buildings for clique queries, it is important
how often the tree building algorithm is called for a subgraph GS\C . Since the vertex
t, arbitrarily chosen during the invocation of PARTITIONMinCutLazy, must always be
part of a complement S \C, there are

(|S|−1
k−1

)
possible complements of size k. Because

of the early exit in Line 1 of MINCUTLAZY, there are no biconnection trees built for
complements of size k = 1 or if S \ C = X holds. This means that there are only(|S|−2
k−2

)
biconnection tree buildings of size k. In total, there are

∑|S|
K=1

(|S|−2
k−2

)
=

2|S|−2 biconnection tree buildings with a complexity of
∑|S|

K=1(
(|S|−2
k−2

)
k2+3k−4

2 ) =
1
322
|S|(|S|2 + 11|S| − 2). There are as many tree usability tests as biconnection tree

buildings, each at O(1) costs, since ∀v ∈ S : |DT (v)| = 1 holds. This results in
a complexity of 2|S|−2 for all tests. MINCUTLAZY is called 2|S|−1 times, which we
count with a complexity of 2|S|−1. The condition (DT (v)∩N (C)) = {v} is calculated
2|S|−1 times at cost of O(1) each. The total complexity is 1

322
|S|(|S|2 + 11|S| − 2) +

2|S|−2 + 2 ∗ 2|S|−1 = 1
322
|S|(|S|2 + 11|S| + 38). When we assume that the number

of ccps is |P symccp(S)| = 2|S|−1 instead of 2|S|−1 − 1, we have a complexity of
1
16 |S|

2 + 11
16 |S|+

19
8 per emitted ccp, which corresponds to O(|S|2).
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A.5. Improved Version

In this subsection, we present an improvement of TDMINCUTLAZY. We call the
improvement TDMINCUTLAZYImp or TDMCLImp for short. First, we explain the
idea of our improvement and then, we analyze the number of tree buildings for both
versions.

A.5.1. Global Reuse of the Biconnection Tree

In [5], the reusability of the biconnection tree within a call to the minimal cut parti-
tioning algorithm is discussed. We propose a global reuse of the biconnection tree.
We observe that once MINCUTLAZY emits a ccp (C, S \C) for a set S, the top-down
memoization algorithm recursively invokes himself, one time with the C and the other
time with (S\C) as the next S. Hence, the minimal cut partitioning algorithm is called
again with connected subsets of the old S. Our idea is to share the biconnection tree
with the memoization algorithm TDPLANGEN and reuse it for the subsequent call to
the partitioning algorithm with S \ C as the next S. Therefore, the recursion of MIN-
CUTLAZY must be transformed into an iterative stack implementation such that the
emitted ccps for a set are available before the call of the partitioning algorithm returns
to TDPLANGEN. This way, one instance of the biconnection tree can be shared at a
time. Note that the existing tree cannot be reused for the top-down descent with C,
since the root t of the biconnection tree is not an element of C, which is necessary, as
pointed out in [5].

A.5.2. Analyzing the Number of Tree Buildings

We have analyzed the potential of our improvement. Therefore, we derived formu-
las for the number of biconnection tree buildings in the best and the worst case that
TDMINCUTLAZY needs for enumerating chain, star and clique query graphs. The
formulas hold if one of two strategies for choosing the root vertex for a new bicon-
nection tree (or tree for short) is consistently applied: we either determine the root by
appointing the vertex with the lowest index or the vertex with the highest index of the
set.

Chain Queries

In case of TDMINCUTLAZY, there are as many tree buildings as there are calls to
PARTITIONMinCutLazy and as there are connected subsets S, |S| > 1 of V from the
query graph G = (V,E). We define k as the cardinality of a connected subset of V .
Because we only account for subsets with more than one vertex, 2 ≤ k ≤ |V | holds.
Since there are |V | − k + 1 different connected subsets of size k, the total number of

subsets with more than one vertex is #tchain(|V |) =
|V |∑
k=2

(|V | − k + 1) = |V |2
2 −

|V |
2 .

We observe that only the tree for the whole set V can be reused. This is because
in every possible case, only one vertex is added to C so that |DT (v)| = 1 holds.
Furthermore, the number of times the top-level tree for all vertices in V is reused
depends on the choice of the root t. If the root is chosen from one end, we have the
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worst case, since there are only |V | − 2 different connected and proper subsets of V
containing t. The best case we have if t is chosen as the middle vertex of the chain

query. Then if |V | is even, we have 2 ∗
1
2
∗|V |∑
i=2

i = |V |2
4 + |V |

2 − 2, and if |V | is odd, we

have 2 ∗
|V |−1

2∑
i=2

i = |V |2
4 + |V |

2 −
7
4 = d |V |

2

4 + |V |
2 − 2e connected and proper subsets

of V containing t. By subtracting our results for the number of times the tree can be
reused from the number of connected subsets with more than one vertex, we get the
final result. For the best case, we then have #tchainimp (|V |) = b (|V |−2)

2

4 c + 1, and for

the worst case #tchainimp (|V |) = |V |2−3∗|V |
2 + 2 tree buildings.

Star Queries

For TDMINCUTLAZY, we have
(|V |−1

k−1
)

different connected subsets of size k and in

total #tstar(|V |) =
|V |∑
k=2

(|V |−1
k−1

)
= 2|V |−1 − 1 different connected subsets with more

than one vertex. In the best case, the root t of the tree is chosen from the hub vertex of
the star. Then we have #tstarimp (|V |) = 1. The worst case happens when the hub vertex
has an index that would be the last or second last choice for the root of the trees among
all other indices. We observe that we need one tree construction less if the hub’s index
is the third last choice for being the root, and i − 2 tree constructions less if it is the

ith last choice. Therefore, for the worst case we have #tstarimp (|V |) =
|V |∑
i=3

(i− 2) + 1 =

|V |2−3∗|V |
2 + 2 tree buildings.

Clique Queries

There are
(|V |

k

)
connected subgraphs with k vertices. For TDMINCUTLAZY, we

need 2k−2 tree buildings per call to PARTITIONMinCutLazy. Since we need a tree
only for graphs with more than one vertex, we have for the non-improved version

#tclique(|V |) =
|V |∑
k=2

(|V |
k

)
∗ 2k−1 = 1

4 ∗ 3
|V | − |V |2 −

1
4 . We observe for |V | > 2

that for the improved version we reuse 2|V | − |V | biconnection trees more than in
the case of a clique query of |V | − 1 vertices. We give the number of reuses by
|V |−2∑
k=1

(2k − k) = 2|V |−1 − |V |
2

2 + 3∗|V |
2 − 3. The total number of tree buildings for

TDMINCUTLAZYImp then is the difference between the number of tree buildings
of TDMINCUTLAZY and the number of reuses. We give it with #tcliqueo (|V |) =
1
4 ∗ 3

|V | − 2|V |−1 + |V |2
2 − 2 ∗ |V |+ 11

4 .
In Table A.1, we give the number of tree buildings for TDMINCUTLAZY with #t

and for TDMINCUTLAZYImp with #timp.
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Chain Star Clique
|V | #t min(#timp) max(#timp) #t min(#timp) max(#timp) #t #timp

3 3 1 2 3 1 2 5 4
4 6 2 4 7 1 4 18 15
5 10 3 7 15 1 7 58 50

10 45 17 37 511 1 37 14757 14283
15 105 43 92 16383 1 92 3587219 3570928
20 190 82 172 524287 1 172 871696090 871171975

Table A.1.: Number of biconnection tree buildings for TDMINCUTLAZY and
TDMINCUTLAZYImp.
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B.1. Conservative Partitioning

In the following we present the C++ Code for an iterator implementation of MINCUT-
CONSERVATIVE (Section 2.4). The Code compiles with the Intel C++ compiler only,
since Intel Intrinsics are used. The iterator is initialized by invoking the constructor
MINCUTCONSERVATIVE. Here, s will be the bitvector representation of the vertex
(sub)set S and neighborhood will hold a pointer to the precomputed neighborhood
array. We loop over P sum

ccp (Line 1 of Figure 2.2) by utilizing a while loop. For the
stop condition, we use the iterator’s HASNEXT method. A result of TRUE indicates if
there is another ccp. Otherwise, all ccps for S have already been enumerated (FALSE).
NEXT then stores a ccp (left, right) into left and right and computes the next ccp.

Conservative partitioning is a recursive algorithm, but we transformed the recursion
by using a loop and making use of a stack (struct stack entry) to store the values
of the local variables. Therefore, we differentiate between different cases (= state):
Case 1 handles the emission of ccps (Line 4 of Figure 2.10) by assigning C to left
and S \ C to right. Case 2 computes the next v (Line 6 of Figure 2.10). Case 3
invokes GETCONNECTEDCOMPONENTS. In case |O| = 1 holds, Case 3 also covers
the recursive descent. Case 4 handles the scenarios where |O| > 1 holds. Finally, Case
5 is important for determining if there exists another ccp that has not been emitted
yet, i.e. if the next call of HASNEXT has to return TRUE or FALSE. Our approach is
simple: We know that there must exists at least one ccp. Hence, the first invocation
of HASNEXT always returns TRUE. We compute the first ccp during the subsequent
and first invocation of NEXT. But in order to have an answer ready for the next call
to HASNEXT, we continue computing until we have found the second ccp. Then the
second ccp is stored and hasNext is set to TRUE. In case the computation terminates
without finding another ccp we assign hasNext with FALSE. Thus, we use Case 5
to differentiate between the first invocation of NEXT, where we essentially compute
two ccps, and all other subsequent invocations. Moreover, Case 5 emulates the return
of the recursive sub invocation by popping the stack. If the stack is empty, we know
that there is no other ccp for S. In that case, we terminate the computation by setting
hasNext to FALSE and return the call.

# i f n d e f MINCUTCONSERVATIVE HH
# d e f i n e MINCUTCONSERVATIVE HH

c l a s s M i n C u t C o n s e r v a t i v e {

p u b l i c :
M i n C u t C o n s e r v a t i v e ( c o n s t u i n t 3 2 t s , u i n t 3 2 t c o n s t ∗ n e i g h b o r h o o d ) ;

v i r t u a l ˜ M i n C u t C o n s e r v a t i v e ( ) ;
void n e x t ( u i n t 3 2 t& l e f t , u i n t 3 2 t& r i g h t ) ;
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bool hasNext ( ) { re turn h a s N e x t ; }
p r i v a t e :

i n t ge tConnec tedComponents ( c o n s t u i n t 3 2 t& s , c o n s t u i n t 3 2 t& c new ,
c o n s t u i n t 3 2 t& n e i g h i t n o c , c o n s t u i n t 3 2 t& n e i g h ) ;

i n l i n e u i n t 3 2 t ge tNe ighbourhood ( c o n s t u i n t 3 2 t c ) c o n s t {
u i n t 3 2 t r e s u l t = 0 ;
u i n t 3 2 t c p r i m = c ;
whi le ( c p r i m != 0) {

unsigned i n t i n d e x = l e a s t S i g n i f i c a n t S e t B i t ( c p r i m ) ;
r e s u l t = s e t u n i o n ( r e s u l t , n e i g h b o r h o o d [ i n d e x ] ) ;
c p r i m = r e s e t ( c pr im , i n d e x ) ;

}
re turn d i f f e r e n c e ( r e s u l t , c ) ;

}

i n l i n e u i n t 3 2 t d i f f e r e n c e ( u i n t 3 2 t x , u i n t 3 2 t y ) c o n s t {
x &= ( ˜ y ) ; re turn x ; }

i n l i n e u i n t 3 2 t i n t e r s e c t ( u i n t 3 2 t x , u i n t 3 2 t y ) c o n s t {
x &= y ; re turn x ; }

i n l i n e u i n t 3 2 t s e t u n i o n ( u i n t 3 2 t x , u i n t 3 2 t y ) c o n s t {
x |= y ; re turn x ; }

i n l i n e u i n t 3 2 t r e s e t ( u i n t 3 2 t x , unsigned i n t i ) c o n s t {
x &= ˜ ( ( ( u i n t 3 2 t ) 1 ) << i ) ; re turn x ; }

i n l i n e u i n t 3 2 t l o w e s t b i t ( u i n t 3 2 t x ) c o n s t {
re turn ( x & (−x ) ) ; }

i n l i n e unsigned i n t l e a s t S i g n i f i c a n t S e t B i t ( u i n t 3 2 t x ) c o n s t {
re turn b i t s c a n f o r w a r d ( x ) ; }

i n l i n e unsigned i n t c a r d i n a l i t y ( u i n t 3 2 t x ) c o n s t {
re turn p o p c n t 6 4 ( x ) ; }

i n l i n e bool d i s j o i n t ( u i n t 3 2 t x , u i n t 3 2 t y ) c o n s t {
re turn (0 == ( x & y ) ) ; }

p r i v a t e :
u i n t 3 2 t s ;
u i n t 3 2 t c o n s t ∗ n e i g h b o r h o o d ;

i n t s c a r d ;
i n t s t a t e ;
bool h a s N e x t ;

s t r u c t s t a c k e n t r y {
u i n t 3 2 t c ;
u i n t 3 2 t c new ;
u i n t 3 2 t x ;
u i n t 3 2 t n e i g h ;
u i n t 3 2 t ne igh new ;
u i n t 3 2 t i t e r ;
i n t num bccs ;
i n t num bccs found ;

} ;
s t a c k e n t r y ∗ s t a c k ;
s t a c k e n t r y ∗ s t a c k P o i n t e r ;
i n t s t a c k I n d e x ;

u i n t 3 2 t ∗ b c c S t a c k ;
i n t b c c I n d e x ;
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} ;

M i n C u t C o n s e r v a t i v e : : M i n C u t C o n s e r v a t i v e ( c o n s t u i n t 3 2 t s ,
u i n t 3 2 t c o n s t ∗ n e i g h b o r h o o d )

: s ( s ) , n e i g h b o r h o o d ( n e i g h b o r h o o d ) , s t a c k I n d e x ( 0 ) {
s t a t e = 2 ;
h a s N e x t = t rue ;
s c a r d = c a r d i n a l i t y ( s ) ;

s t a c k = new s t a c k e n t r y [ s c a r d ] ;
s t a c k P o i n t e r = & s t a c k [ 0 ] ;
s t a c k P o i n t e r−>c = 0 ;
s t a c k P o i n t e r−>n e i g h = l o w e s t b i t ( s ) ;
s t a c k P o i n t e r−>x = 0 ;
s t a c k P o i n t e r−> i t e r = s t a c k P o i n t e r−>n e i g h ;
s t a c k I n d e x = 0 ;

b c c S t a c k = new u i n t 3 2 t [ ( s c a r d ∗ ( s c a r d − 1 ) ) / 2 ] ;
b c c I n d e x = 0 ;

}

M i n C u t C o n s e r v a t i v e : : ˜ M i n C u t C o n s e r v a t i v e ( ) {
d e l e t e [ ] ( s t a c k ) ;
d e l e t e [ ] ( b c c S t a c k ) ;

}

void M i n C u t C o n s e r v a t i v e : : n e x t ( u i n t 3 2 t& l e f t , u i n t 3 2 t& r i g h t ) {
bool d i d e m i t = f a l s e ;

whi le ( t rue ) {
sw i t ch ( s t a t e ) {
case 1 :
{

l e f t = s t a c k P o i n t e r−>c ;
r i g h t = d i f f e r e n c e ( s , l e f t ) ;
d i d e m i t = t rue ;

}
case 2 :
{

s t a c k P o i n t e r−> i t e r = d i f f e r e n c e ( s t a c k P o i n t e r−>neigh ,
s t a c k P o i n t e r−>x ) ;

}
case 3 :

i f ( s t a c k P o i n t e r−> i t e r != 0 ) {
u i n t 3 2 t c u r r e n t = l o w e s t b i t ( s t a c k P o i n t e r−> i t e r ) ;
u i n t 3 2 t c new = s e t u n i o n ( s t a c k P o i n t e r−>c , c u r r e n t ) ;

u i n t 3 2 t n e i g h i t e r = i n t e r s e c t ( d i f f e r e n c e ( n e i g h b o r h o o d [
l e a s t S i g n i f i c a n t S e t B i t ( c u r r e n t ) ] , c new ) , s ) ;

s t a c k P o i n t e r−>ne igh new = d i f f e r e n c e ( s e t u n i o n (
s t a c k P o i n t e r−>neigh , n e i g h i t e r ) , c u r r e n t ) ;

i f ( s t a c k P o i n t e r−>ne igh new == 0) {
s t a t e = 5 ;

break ;
}

187



B. Iterator Implementations

s t a c k P o i n t e r−>c new = c new ;
s t a c k P o i n t e r−>num bccs found = ge tConnec tedComponents (

s , c new , n e i g h i t e r , s t a c k P o i n t e r−>ne igh new ) ;
s t a c k P o i n t e r−>num bccs = s t a c k P o i n t e r−>num bccs found ;

i f ( s t a c k P o i n t e r−>num bccs found == 0) {
s t a c k I n d e x ++; / / de scend r e c u r s i v e l y
s t a c k [ s t a c k I n d e x ] . num bccs = 0 ;
s t a c k [ s t a c k I n d e x ] . c = c new ;
s t a c k [ s t a c k I n d e x ] . x = s t a c k P o i n t e r−>x ;
s t a c k [ s t a c k I n d e x ] . n e i g h = s t a c k P o i n t e r−>ne igh new ;

s t a c k P o i n t e r−>x = s e t u n i o n ( s t a c k P o i n t e r−>x , c u r r e n t ) ;
s t a c k P o i n t e r = & s t a c k [ s t a c k I n d e x ] ;
s t a t e = 1 ;

i f ( d i d e m i t )
re turn ;

e l s e
break ;

}
} e l s e {

s t a t e = 5 ;
break ;

}
case 4 :

i f ( s t a c k P o i n t e r−>num bccs > 0) {
s t a c k P o i n t e r−>num bccs−−;

u i n t 3 2 t c jump = b c c S t a c k [ b c c I n d e x −
s t a c k P o i n t e r−>num bccs ] ;

u i n t 3 2 t c j u m p n o c = d i f f e r e n c e ( c jump , s t a c k P o i n t e r−>c ) ;
u i n t 3 2 t ne igh jump = s e t u n i o n ( i n t e r s e c t ( ge tNe ighbourhood (

c j u m p n o c ) , s ) , s t a c k P o i n t e r−>ne igh new ) ;
ne igh jump = d i f f e r e n c e ( ne igh jump , c jump ) ;

i f ( d i s j o i n t ( c jump , s t a c k P o i n t e r−>x ) && c jump < s ) {
++ s t a c k I n d e x ; / / de scend r e c u r s i v e l y

s t a c k [ s t a c k I n d e x ] . num bccs = 0 ;
s t a c k [ s t a c k I n d e x ] . c = c jump ;
s t a c k [ s t a c k I n d e x ] . x = s t a c k P o i n t e r−>x ;
s t a c k [ s t a c k I n d e x ] . n e i g h = ne igh jump ;

s t a c k P o i n t e r = & s t a c k [ s t a c k I n d e x ] ;
s t a t e = 1 ;

i f ( d i d e m i t )
re turn ;

e l s e
break ;

} e l s e {
s t a t e = 4 ;

break ;
}

} e l s e {
u i n t 3 2 t c u r r e n t = l o w e s t b i t ( s t a c k P o i n t e r−> i t e r ) ;

s t a c k P o i n t e r−>x = s e t u n i o n ( s t a c k P o i n t e r−>x , c u r r e n t ) ;
b c c I n d e x −= s t a c k P o i n t e r−>num bccs found ;
s t a c k P o i n t e r−> i t e r = d i f f e r e n c e ( s t a c k P o i n t e r−>i t e r , c u r r e n t ) ;
s t a t e = 3 ;
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break ;
}

case 5 :
−− s t a c k I n d e x ;

s t a c k P o i n t e r = & s t a c k [ s t a c k I n d e x ] ;
i f ( s t a c k I n d e x < 0) {

h a s N e x t = f a l s e ;
re turn ;

}
i f ( s t a c k P o i n t e r−>num bccs found == 0) {

s t a c k P o i n t e r−> i t e r = d i f f e r e n c e ( s t a c k P o i n t e r−>i t e r ,
l o w e s t b i t ( s t a c k P o i n t e r−> i t e r ) ) ;

s t a t e = 3 ;
} e l s e {

s t a t e = 4 ;
}
break ;

}
}

}

i n t M i n C u t C o n s e r v a t i v e : : ge tConnec tedComponents ( c o n s t u i n t 3 2 t& s ,
c o n s t u i n t 3 2 t& c new , c o n s t u i n t 3 2 t& n e i g h i t n o c ,
c o n s t u i n t 3 2 t& n e i g h ) {

u i n t 3 2 t c h e c k p o i n t s = n e i g h i t n o c ;

i f ( c a r d i n a l i t y ( c h e c k p o i n t s ) <= 1) {
re turn 0 ;

}
u i n t 3 2 t c o n p o i n t s ( n e i g h ) ;

u i n t 3 2 t t o d i s c o v e r = l o w e s t b i t ( c h e c k p o i n t s ) ;
c h e c k p o i n t s = d i f f e r e n c e ( c h e c k p o i n t s , t o d i s c o v e r ) ;

u i n t 3 2 t checked = c new ;
u i n t 3 2 t p r e v i o u s c h e c k e d = c new ;
i n t numBcc = 0 ;
bool d o c o n t e s t = t rue ;
whi le ( c o n p o i n t s != 0 ) {

whi le ( t o d i s c o v e r != 0) {
u i n t 3 2 t n e x t = l o w e s t b i t ( t o d i s c o v e r ) ;
checked = s e t u n i o n ( checked , n e x t ) ;

t o d i s c o v e r = d i f f e r e n c e ( t o d i s c o v e r , n e x t ) ;
u i n t 3 2 t r e a c h e d = n e i g h b o u r h o o d [ l e a s t S i g n i f i c a n t S e t B i t ( n e x t ) ] ;

r e a c h e d = i n t e r s e c t ( d i f f e r e n c e ( r eached , checked ) , s ) ;

i f ( d o c o n t e s t ) {
c h e c k p o i n t s = d i f f e r e n c e ( c h e c k p o i n t s , r e a c h e d ) ;
i f ( c h e c k p o i n t s == 0) {

re turn 0 ;
}

}
t o d i s c o v e r = s e t u n i o n ( t o d i s c o v e r , r e a c h e d ) ;
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}
/ / n o t c o n n e c t e d a t t h i s p o i n t
d o c o n t e s t = f a l s e ;
b c c I n d e x ++;

numBcc ++;
b c c S t a c k [ b c c I n d e x ] = s e t u n i o n ( d i f f e r e n c e ( s , checked ) ,

p r e v i o u s c h e c k e d ) ;

p r e v i o u s c h e c k e d = checked ;
c o n p o i n t s = d i f f e r e n c e ( c o n p o i n t s , checked ) ;
t o d i s c o v e r = l o w e s t b i t ( c o n p o i n t s ) ;

}
re turn numBcc ;

}
# e n d i f /∗ MINCUTCONSERVATIVE HH ∗ /

B.2. Branch Partitioning

In this section, we give the C++ Code for the iterator implementation of MINCUT-
BRANCH (Section 2.5). Since we make use of the Intel Intrinsics the Code needs to be
compiled with the Intel C++ compiler. The iterator interface is the same as described in
Section B.1. Branch partitioning is a recursive algorithm like the previously described
conservative partitioning algorithm. We remove the recursion by applying the same
transformation through using a loop and making use of a stack (struct stack entry) to
store the values of the local variables.

Here we differentiate between five different cases (= state): Case 1 handles the
emission of ccps (Line 27 of Figure 2.13) by assigning Rtmp to left and S \ Rtmp

to right. Case 2 models the handling of the three different cases as described in
Section 2.5.2, which covers Lines 7 to 19 of Figure 2.13. Note that in the iterator
implementation, the handling of the first and second case of Section 2.5.2 is merged
into one. The computation of N (C) is also optimized by merging the result of N (L)
with the result of the previousN (C). Case 3 covers Lines 20 to 26. Case 4 is important
for determining if there exists an other ccp that has not been emitted yet. Thereby, we
follow the same idea as discussed in Section B.1. Finally, Case 5 emulates the return
of the recursive sub invocation by popping the stack. If the stack is empty, we know
that there is no other ccp for S. In that case, we terminate the computation by setting
hasNext to FALSE and return the call.

# i f n d e f MINCUTBRANCH HH
# d e f i n e MINCUTBRANCH HH

c l a s s MinCutBranch {
p u b l i c :

MinCutBranch ( c o n s t u i n t 3 2 t s , u i n t 3 2 t c o n s t ∗ n e i g h b o r h o o d ) ;
˜ MinCutBranch ( ) ;

void n e x t ( u i n t 3 2 t& l e f t , u i n t 3 2 t& r i g h t ) ;
bool hasNext ( ) { re turn h a s N e x t ; }

p r i v a t e :
void r e a c h a b l e ( c o n s t u i n t 3 2 t& c , c o n s t u i n t 3 2 t& c u r r e n t ,

u i n t 3 2 t& s n o c ) c o n s t ;
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i n l i n e u i n t 3 2 t ge tNe ighbourhood ( c o n s t u i n t 3 2 t c ) c o n s t {
u i n t 3 2 t r e s u l t = 0 ;
u i n t 3 2 t c p r i m = c ;
whi le ( c p r i m != 0) {

unsigned i n t i n d e x = l e a s t S i g n i f i c a n t S e t B i t ( c p r i m ) ;
r e s u l t = s e t u n i o n ( r e s u l t , n e i g h b o r h o o d [ i n d e x ] ) ;
c p r i m = r e s e t ( c pr im , i n d e x ) ;

}
re turn d i f f e r e n c e ( r e s u l t , c ) ;

}

i n l i n e u i n t 3 2 t d i f f e r e n c e ( u i n t 3 2 t x , u i n t 3 2 t y ) c o n s t {
x &= ( ˜ y ) ; re turn x ; }

i n l i n e u i n t 3 2 t i n t e r s e c t ( u i n t 3 2 t x , u i n t 3 2 t y ) c o n s t {
x &= y ; re turn x ; }

i n l i n e u i n t 3 2 t s e t u n i o n ( u i n t 3 2 t x , u i n t 3 2 t y ) c o n s t {
x |= y ; re turn x ; }

i n l i n e u i n t 3 2 t r e s e t ( u i n t 3 2 t x , unsigned i n t i ) c o n s t {
x &= ˜ ( ( ( u i n t 3 2 t ) 1 ) << i ) ; re turn x ; }

i n l i n e u i n t 3 2 t l o w e s t b i t ( u i n t 3 2 t x ) c o n s t {
re turn ( x & (−x ) ) ; }

i n l i n e unsigned i n t l e a s t S i g n i f i c a n t S e t B i t ( u i n t 3 2 t x ) c o n s t {
re turn b i t s c a n f o r w a r d ( x ) ; }

i n l i n e unsigned i n t c a r d i n a l i t y ( u i n t 3 2 t x ) c o n s t {
re turn p o p c n t 3 2 ( x ) ; }

i n l i n e bool d i s j o i n t ( u i n t 3 2 t x , u i n t 3 2 t y ) c o n s t {
re turn (0 == ( x & y ) ) ; }

p r i v a t e :
u i n t 3 2 t c o n s t ∗ n e i g h b o r h o o d ;
i n t s t a t e ;
bool h a s N e x t ;
u i n t 3 2 t s ;
u i n t 3 2 t r t m p ;
u i n t 3 2 t s n o r t m p ;

s t r u c t s t a c k e n t r y {
u i n t 3 2 t c ;
u i n t 3 2 t x ;
u i n t 3 2 t x p r im ;
u i n t 3 2 t n e i g h ;
u i n t 3 2 t n x ;
u i n t 3 2 t n l ;
u i n t 3 2 t n b ;
u i n t 3 2 t n e x t n e i g h ;
u i n t 3 2 t r ;

i n t n e x t s t a t e ;
} ;

s t a c k e n t r y ∗ s t a c k ;
s t a c k e n t r y ∗ s t a c k P o i n t e r ;
i n t s t a c k I n d e x ;

} ;

MinCutBranch : : MinCutBranch ( c o n s t u i n t 3 2 t s ,
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u i n t 3 2 t c o n s t ∗ n e i g h b o r h o o d )
: s ( s ) , n e i g h b o r h o o d ( n e i g h b o r h o o d ) , s t a c k I n d e x ( 0 ) {

s t a t e = 2 ;
h a s N e x t = t rue ;
s t a c k = new s t a c k e n t r y [ c a r d i n a l i t y ( s ) ] ;
s t a c k P o i n t e r = & s t a c k [ 0 ] ;
s t a c k P o i n t e r−>c = 0 ;
s t a c k P o i n t e r−>n e x t n e i g h = 0 ;
s t a c k P o i n t e r−>x = 0 ;

u i n t 3 2 t n e i g h = l o w e s t b i t ( s ) ;
s t a c k P o i n t e r−>n e i g h = n e i g h ;
s t a c k P o i n t e r−>n l = n e i g h ;
s t a c k P o i n t e r−>n x = 0 ;
r t m p = 0 ;
s t a c k P o i n t e r−>r = 0 ;
s t a c k P o i n t e r−>x pr im = 0 ;
s t a c k P o i n t e r−>n b = 0 ;
s t a c k P o i n t e r−>n e x t s t a t e = 0 ;

}

MinCutBranch : : ˜ MinCutBranch ( ) {
d e l e t e [ ] ( s t a c k ) ;

}

void MinCutBranch : : n e x t ( u i n t 3 2 t& l e f t , u i n t 3 2 t& r i g h t ) {
bool d i d e m i t = f a l s e ;

whi le ( t rue ) {
sw i t ch ( s t a t e ) {
case 1 :
{

l e f t = r t m p ;
r i g h t = s n o r t m p ;

d i d e m i t = t rue ;
s t a t e = 2 ;

}
case 2 :
{

i f ( s t a c k P o i n t e r−>n l != 0) {
u i n t 3 2 t l p r i m = l o w e s t b i t ( i n t e r s e c t (

s t a c k P o i n t e r−>n l , r t m p ) ) ;
i n t n e x t s t a t e = 2 ;
i f ( l p r i m == 0) {

n e x t s t a t e = 3 ;
l p r i m = l o w e s t b i t ( s t a c k P o i n t e r−>n l ) ;

s t a c k P o i n t e r−>x pr im = s t a c k P o i n t e r−>x ;
}

s t a c k P o i n t e r−>n l = d i f f e r e n c e ( s t a c k P o i n t e r−>n l , l p r i m ) ;
u i n t 3 2 t c p r i m = s e t u n i o n ( s t a c k P o i n t e r−>c , l p r i m ) ;

i f ( c p r i m < s ) {
u i n t 3 2 t n e i g h ( n e i g h b o r h o o d [

l e a s t S i g n i f i c a n t S e t B i t ( l p r i m ) ] ) ;
n e i g h = d i f f e r e n c e ( i n t e r s e c t ( ne igh , s ) , c p r i m ) ;
i f ( n e i g h == 0) {
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r t m p = l p r i m ;
s t a t e = 3 ;

break ;
}

c o n s t u i n t 3 2 t x = s t a c k P o i n t e r−>x pr im ;
s t a c k P o i n t e r−>n e x t s t a t e = n e x t s t a t e ;
s t a c k P o i n t e r−>x pr im = s e t u n i o n (

s t a c k P o i n t e r−>x pr im , l p r i m ) ;
s t a c k I n d e x ++;
s t a c k [ s t a c k I n d e x ] . n e x t n e i g h = s t a c k P o i n t e r−>n e x t n e i g h ;
s t a c k P o i n t e r = & s t a c k [ s t a c k I n d e x ] ;
s t a c k P o i n t e r−>n e x t n e i g h = d i f f e r e n c e ( s e t u n i o n (

s t a c k P o i n t e r−>n e x t n e i g h , n e i g h ) , c p r i m ) ;
s t a c k P o i n t e r−>n b = d i f f e r e n c e ( d i f f e r e n c e (

s t a c k P o i n t e r−>n e x t n e i g h , n e i g h ) , x ) ;
s t a c k P o i n t e r−>n l = d i f f e r e n c e ( ne igh , x ) ;
s t a c k P o i n t e r−>n x = i n t e r s e c t ( ne igh , x ) ;
s t a c k P o i n t e r−>c = c p r i m ;
s t a c k P o i n t e r−>x = x ;
r t m p = 0 ;
s t a c k P o i n t e r−>r = l p r i m ;
s t a c k P o i n t e r−>n l = d i f f e r e n c e ( s t a c k P o i n t e r−>n l , x ) ;

s t a t e = 2 ;
break ;

}
r t m p = l p r i m ;
s t a t e = n e x t s t a t e ;

} e l s e {
s t a c k P o i n t e r−>n x = d i f f e r e n c e ( s t a c k P o i n t e r−>n x ,

s t a c k P o i n t e r−>r ) ;
i f ( s t a c k P o i n t e r−>n x != 0) {

u i n t 3 2 t l p r i m = l o w e s t b i t ( s t a c k P o i n t e r−>n x ) ;
s t a c k P o i n t e r−>x pr im = s t a c k P o i n t e r−>x ;

u i n t 3 2 t c p r i m = s e t u n i o n ( s t a c k P o i n t e r−>c , l p r i m ) ;
i f ( c p r i m < s ) {

r e a c h a b l e ( c pr im , l p r i m , r t m p ) ;
} e l s e {

r t m p = l p r i m ;
}

i f ( ! d i s j o i n t ( r tmp , s t a c k P o i n t e r−>x pr im ) )
s t a c k P o i n t e r−>n b = i n t e r s e c t (

s t a c k P o i n t e r−>n b , r t m p ) ;

s n o r t m p = d i f f e r e n c e ( s , r t m p ) ;
i f ( ! d i s j o i n t ( s n o r t m p , s t a c k P o i n t e r−>x ) ) {

s t a c k P o i n t e r−>n b = d i f f e r e n c e (
s t a c k P o i n t e r−>n b , r t m p ) ;

}

s t a c k P o i n t e r−>x pr im = s e t u n i o n ( s t a c k P o i n t e r−>x pr im ,
l p r i m ) ;

s t a t e = 4 ;
break ;
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} e l s e {
s t a t e = 5 ;

break ;
}

}
}

case 3 :
{

i f ( ! d i s j o i n t ( r tmp , s t a c k P o i n t e r−>x ) ) {
s t a c k P o i n t e r−>n x = d i f f e r e n c e ( s e t u n i o n (

s t a c k P o i n t e r−>n x , s t a c k P o i n t e r−>n l ) , r t m p ) ;
s t a c k P o i n t e r−>n l = i n t e r s e c t ( s t a c k P o i n t e r−>n l , r t m p ) ;
s t a c k P o i n t e r−>n b = i n t e r s e c t ( s t a c k P o i n t e r−>n b , r t m p ) ;

}

s n o r t m p = d i f f e r e n c e ( s , r t m p ) ;
i f ( ! d i s j o i n t ( s n o r t m p , s t a c k P o i n t e r−>x ) ) {

s t a c k P o i n t e r−>n l = d i f f e r e n c e ( s t a c k P o i n t e r−>n l , r t m p ) ;
s t a c k P o i n t e r−>n b = d i f f e r e n c e ( s t a c k P o i n t e r−>n b , r t m p ) ;

}
}

case 4 :
{

s t a c k P o i n t e r−>n l = s e t u n i o n ( s t a c k P o i n t e r−>n l ,
i n t e r s e c t ( s t a c k P o i n t e r−>n b , r t m p ) ) ;

s t a c k P o i n t e r−>r = s e t u n i o n ( s t a c k P o i n t e r−>r , r t m p ) ;

i f ( d i s j o i n t ( s n o r t m p , s t a c k P o i n t e r−>x pr im ) &&
r t m p < s ) {

i f ( d i d e m i t ) {
h a s N e x t = t rue ;
s t a t e = 1 ;

re turn ;
} e l s e {

s t a t e = 1 ;
break ;

}
} e l s e {

s t a t e = 2 ;
break ;

}
}

case 5 :
{

s t a c k I n d e x −−;
i f ( s t a c k I n d e x >= 0) {

r t m p = s t a c k P o i n t e r−>r ;
s t a c k P o i n t e r = & s t a c k [ s t a c k I n d e x ] ;
s t a t e = s t a c k P o i n t e r−>n e x t s t a t e ;

break ;
}

h a s N e x t = f a l s e ;
re turn ;

}
}

}
}
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void MinCutBranch : : r e a c h a b l e ( c o n s t u i n t 3 2 t& c , c o n s t u i n t 3 2 t& l ,
u i n t 3 2 t& s n o c ) c o n s t {

s n o c = l ;
u i n t 3 2 t n e i g h = n e i g h b o r h o o d [ l e a s t S i g n i f i c a n t S e t B i t ( l ) ] ;
n e i g h = i n t e r s e c t ( d i f f e r e n c e ( ne igh , c ) , s ) ;
whi le ( n e i g h != 0) {

s n o c = s e t u n i o n ( s n o c , n e i g h ) ;
n e i g h = ge tNe ighbourhood ( n e i g h ) ;
n e i g h = i n t e r s e c t ( d i f f e r e n c e ( d i f f e r e n c e ( ne igh , c ) , s n o c ) , s ) ;

}
}
# e n d i f /∗ MINCUTBRANCH HH ∗ /
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