
Reuse-Based Test
Recommendation

in So�ware Engineering

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenscha�en

der Universität Mannheim

vorgelegt von

Diplom-Wirtscha�sinformatiker Werner Janjic
aus Koblenz

Mannheim, 2014

Dekan:
Referent:
Korreferent:

Prof. Dr. Heinz Jürgen Müller, Universität Mannheim
Prof. Dr. Colin Atkinson, Universität Mannheim
Prof. Dr. Reid Holmes, University of Waterloo, Canada

Tag der mündlichen Prüfung: 24.06.2014

ii

iii

iv

for Silke. . .

v

vi

Abstract

Still today, the development of e�ective and high-quality so�ware tests is an
expensive and very labor intensive process. It demands a high amount of problem
awareness, domain knowledge and concentration from human so�ware testers.
Therefore, any technology that can help reduce the manual e�ort involved in
the so�ware testing process – while ensuring at least the same level of quality –
has the potential to significantly reduce so�ware development and maintenance
costs. In this dissertation, we present a new idea for achieving this by reusing
the knowledge bound up in existing tests. Over the last two decades, so�ware
reuse and code recommendation has received a wide variety of a�ention in
academia and industry, but the research conducted in this area to date has
focused on the reuse of application code rather than on the reuse of tests. By
switching this focus, this thesis paves the way for the automated extraction
of test data and knowledge from previous so�ware projects. In particular, it
presents a recommendation approach for so�ware tests that leverages lessons
learned from traditional so�ware reuse to make test case reuse suggestions to
so�ware engineers while they are working. In contrast to most existing testing-
assistance tools, which provide ex post assistance to test developers in the form
of coverage assessments and test quality evaluations, our approach o�ers an
automated, proactive, non-intrusive test recommendation system for e�icient
so�ware test development.

vii

viii

Zusammenfassung

Auch heutzutage ist die Entwicklung qualitativ hochwertiger So�ware-Tests
ein nicht zu vernachlässigender Kostentreiber in So�ware-Projekten. Die Mit-
glieder eines erfolgreichen Teams zur So�ware-�alitätssicherung benötigen
ein hohes Maß an Kenntnis über die projektspezifische Domäne, Konzentra-
tion und Problembewusstsein. Gleichzeitig steht das Testen von So�ware in
einem Spannungsverhältnis zur Entwicklung neuer, für den Benutzer sichtbarer
Funktionalität, und ist dadurch bei Entscheidungen im Entwicklungsprozess po-
tentiell benachteiligt. Um diesem Missstand entgegenzuwirken haben So�ware-
Ingenieure seit den frühen Zeiten des So�ware-Testens nach Möglichkeiten
gesucht, den Prozess so weit wie möglich zu automatisieren und den manuellen
Aufwand zu reduzieren. Dabei muss sichergestellt sein, dass die resultierende
Test- und So�ware-�alität vergleichbar oder besser ist, als beim manuellen
Testen. Die vorliegende Dissertation beschä�igt sich mit der tool-gestützten
Wiederverwendung des in bestehenden Tests enthaltenen Expertenwissens in
zukün�igen Tests und in neuem Kontext. Dafür bedienen wir uns zuerst der allge-
mein bekannten Techniken für code-basierte Wiederverwendung und entwickeln
darauf basierend eine sprachunabhängige Suchmaschine für So�ware-Tests.
Weiterhin demonstrieren wir die Anwendbarkeit des entwickelten Ansatzes an-
hand einer prototypischen Implementierung als Eclipse Plug-In, welches auf
Grundlage dieser Suchmaschine seinem Benutzer unaufdringlich und vorauss-
chauend Vorschläge zum So�ware-Testen unterbreitet. Die potentiell wieder-
verwendbaren Tests werden im Hintergrund evaluiert und stehen dem Benutzer
auf Tastendruck zur Verfügung. Um den Nutzen der vorgestellten Ideen zu
erhöhen, stellt diese Arbeit auch einen Ansatz vor, mit dessen Hilfe potentiell
falsche Ergebnisse automatisch erkannt und aus der Ergebnisliste gestrichen
werden. Neben den grundlegenden Betrachtungen sorgen praktische Beispiele
für ein besseres Verständnis der vorgestellten Ideen.

ix

Contents

Abstract vii

Zusammenfassung ix

I Introduction 1

1 Introduction 3

1.1 Motivation . 4

1.2 Research Objective . 5

1.3 Contribution Of The Thesis . 8

1.4 Scope of the Thesis . 9

1.5 Structure of the Thesis . 10

2 So�ware Testing 15

2.1 So�ware Testing Terms . 15

2.2 Extracting knowledge from JUnit . 23

2.3 Summary . 28

II Search and Reuse 31

3 So�ware Search and Recommendation 33

3.1 Search Scenarios in So�ware Engineering 34

3.1.1 Speculative Searches . 36

3.1.2 Definitive Searches . 39

3.2 So�ware Search Engines . 41

3.2.1 Agora . 41

3.2.2 Merobase Component Finder 43

xi

3.2.3 Sourcerer . 45

3.2.4 S6 . 47

3.3 Excursus: Recall and Precision . 48

3.4 Test-Driven Reuse . 49

3.5 Summary . 53

4 Automated Interface Adaptation 55

4.1 Distributed Automated Adaptation System 56

4.2 Interface Adaptation . 57

4.3 Improvements to Test-Driven Search 63

4.4 Summary . 64

5 Reuse-Oriented Code Recommendation Systems 67

5.1 Recommendation Systems for Code Reuse 68

5.2 So�ware Reuse Process . 69

5.3 State of the Art Systems . 73

5.3.1 Code Finder . 73

5.3.2 CodeBroker . 75

5.3.3 Strathcona . 78

5.3.4 Code Genie . 81

5.3.5 PARSEWeb . 84

5.3.6 Code Conjurer . 87

5.4 Usage Scenarios . 92

5.4.1 Component Reuse . 92

5.4.2 Library Reuse . 93

5.5 Characteristics of ROCRs . 93

5.6 Summary . 96

III Reuse of So�ware Tests 99

6 Infrastructure for Test Reuse 101

6.1 Obtaining Reusable Test Cases . 101

6.1.1 Potential of Open Source Repositories 103

6.2 Extracting Knowledge from Test Cases 105

xii

6.2.1 A Meta-Model for So�ware Tests 106

6.3 Index Creation . 115

6.3.1 Index Content . 117

6.3.2 A File Parser for JUnit Tests 119

6.4 Summary . 131

7 Reuse-Assisted So�ware Testing 133

7.1 Usage Scenarios for Test Search Engines 134

7.1.1 Analysis & Design . 135

7.1.2 Implementation . 135

7.1.3 Testing . 137

7.2 Result Retrieval Techniques for Test Reuse 137

7.2.1 Interface-Based Searches . 139

7.2.2 Value-Based Searches . 149

7.2.3 Code-Based Searches . 156

7.3 Retrieval of Exception Tests . 158

7.4 Test Reuse Process . 159

7.5 Implementation . 161

7.6 Summary . 162

8 Reuse-Assisted Test Recommendation 165

8.1 Characteristics . 166

8.2 Process Outline . 168

8.3 Implementation . 170

8.3.1 Eclipse Plug-In . 171

8.3.2 Continuous Speculative Testing 174

8.3.3 Exception Tests . 176

8.3.4 Algorithmic Outline . 177

8.4 Summary . 178

9 Search-Enhanced Recommendation Improvement 181

9.1 Using Oracles in So�ware Testing 182

9.1.1 Excursus: The Knight and Leveson Experiment 184

9.2 Search-Enhanced Testing . 187

9.3 Filtering False-Positives . 199

xiii

9.3.1 Oracle-Based Filtering . 201

9.3.2 Test Case Evaluation . 203

9.4 Summary . 206

IV Epilogue 211

10 Epilogue 213

10.1 Retrospective . 213

10.2 Contributions . 214

10.3 Future Work . 216

10.4 Concluding Vision . 218

Acknowledgements 221

Appendices 225

List of Figures 227

List of Tables 229

A Materials 231

A.1 Regular Expressions . 233

A.1.1 Examples of �eries with Regular Expressions 234

A.2 Comparison of Retrieval Precision 235

B Listings 237

C Bibliography 247

D Index 263

xiv

xv

Part I.

Introduction

1

“ Debugging is twice as hard as

writing the code in the first place.

Therefore, if you write the code as cleverly as possible,

you are, by definition, not smart enough to debug it.”

Brian Kernighan

Computer Scientist

1
Introduction

Since the advent of the so-called digital revolution [Soc14], i.e., the transition from

analog to digital technology, our lives have become more and more dependent on

devices that are operated by so�ware. While car drivers in the early 1970s were

barely aware of any digital equipment in their vehicles, nowadays they are sur-

rounded by a myriad of digital assistance tools to the extent that autonomously

driving cars have become reality. In fact, every aspect of life has become more

and more digitalized. Whereas in the 1980s only a small proportion of children

had a games console let alone a computer, today they not only have their own

personal computer at home, but also may possess pocket-size computers in

the form of mobile phones or tablet PCs. Another big change occurred when

the so�ware industry started to move more and more functionality that was

previously implemented in hardware to the driver so�ware, as exemplified by

so-called so�modems. Today, so�ware is more important than ever and modern

life is unimaginable without functioning, trustworthy so�ware applications.

3

Chapter 1 INTRODUCTION

1.1. Motivation

The more dependent we become on so�ware, the more shaken we are when it

fails and does not behave as expected. Only recently, Apple’s ominous goto fail1

disaster and the even more severe heartbleed2 bug demonstrated how vulnerable

we have become and that even very small defects in a program can have signifi-

cant impact. Hence, the creation of reliable and high quality so�ware systems

is a key goal and major challenge for so�ware engineers. Although so�ware

testing has gained a lot of a�ention in so�ware process theory over the last five

decades [Roy70; Boe88; Jac+99] it is still a rather labor-intensive and tedious

process. Developers are therefore o�en reluctant to sacrifice development time

to test their system. Moreover, in addition to its time demands, so�ware testing

also requires a high degree of domain and expert knowledge, concentration and

problem awareness from the testing sta�.

Since the early days of so�ware engineering, researchers have been struggling

to find e�ective and e�icient strategies to automate bug detection and reduce

the manual e�ort involved in testing so�ware [OB88; Vou90; EKR03; GO06;

LT12]. In their introductory book on so�ware testing, for instance, Ammann and

O�u� address the need for more research in test automation and stress that

one of the outstanding problems in this area is the automated generation of

test data. However, they mainly consider the idea of using genetic algorithms,

while arguing that these are more applicable at the system level than at the unit

level [AO08, pp. 288].

Although numerous other techniques for acquiring test data have been proposed,

such as dynamic symbolic execution [KS98], concolic testing [SA06] or directed

automated random testing [GKS05], research in the area of automated test data

generation has largely focused on algorithms that analyze program structure

and utilize coverage criteria, program path inspection, etc.

With the emergence of dedicated so�ware search engines in the 2000s, driven

by the newly available open source so�ware repositories [HA06], this situation

1 h�p://gotofail.com
2 h�p://heartbleed.com/

4

Research Objective 1.2

changed. These search engines supported a new generation of recommendation

tools, especially reuse-oriented code recommendation systems, aimed at accel-

erating the so�ware development process by obviating the continual need to

“reinvent the wheel”. Prominent tools that emerged at that time are, for instance,

Strathcona [HM05], Code Conjurer [HJA08] or the Eclipse Code Recommenders

project [BMM09]. They share the common goal of improving the productivity of

developers by automatically recommending generated or reusable code artifacts

of di�erent sizes (i.e., from method call statements to full sized Java classes) in

so�ware development projects. Essentially they reuse the historical knowledge

wrapped up in existing repositories to accelerate the development of new appli-

cations. A typical example is to suggest previously wri�en code for reuse or to

indicate how classes from a class library should be used based on the way they

were used in existing code.

Although intensive research has been conducted independently in the fields

of automated so�ware testing and so�ware reuse, to date there has been no

recognized a�empt to bring both areas together and exploit their potential

synergies. More specifically, no existing recommendation tool has a�empted to

use the information locked up in the vast number of tests stored in the many

public and private corporate repositories to support the writing of new tests.

Therefore, the goal of this thesis is to address that challenge and to present novel

ideas that should help to leverage the reuse of previously created tests in future

so�ware projects.

1.2. Research Objective

The previously conducted research in the area of automation in so�ware testing

has created an impressive array of sophisticated algorithms and techniques

to automatically generate test case values and to obtain appropriate expected

results. These expected results can be compared to the outputs actually produced

by programs under test when invoked using the same test case values. In the

literature, a mechanism that inspects the output of the system under test and

determines its correctness is usually called test oracle [Wey82]. However, the

5

Chapter 1 INTRODUCTION

biggest problem is obviously how to determine the correct output of a program.

While the literature in earlier years expected the human tester to act as the

test oracle, the automation of so�ware testing shi�s this burden to computer

programs, which have to determine the expected behavior of the particular

system under test.

One idea that represents a kind of intermediate approach between zero and

full automation is the so-called approach of back-to-back testing [Vou90]. This

technique utilizes a set of (manually created) functionally equivalent programs

as oracles to help determine the correct output produced by a program for a set

of test input data. Using this technique it is possible to automatically create

lists of potentially interesting tests which need further inspection by human

testers, but avoid the manual creation of tests for uncritical inputs. The back-

to-back testing technique, however, requires the manual creation of several

di�erent implementations of the same functionality and therefore is itself labor

intensive. Additionally, there is also the question of testing the set of independent

implementations.

In this dissertation, we present a new approach of reuse-oriented so�ware testing

which aims to support (automated) so�ware testing through the application of

well-known so�ware reuse techniques. By combining these two research areas,

we aim to automatically acquire test data and expected outputs for components

under test. In other words, we aim to extract the knowledge bound up in

previously created so�ware tests and make this information e�iciently searchable

in order to accelerate the creation of new tests. Although a dedicated search

engine for so�ware tests presents this information to the user, it actually does

not create it. Usually the original source of the test data and expected results is

still a human (i.e., a human oracle).

Despite a lot of work has been conducted on tools that support quality assurance

in so�ware testing, the current generation of IDE tools for testing generally

focuses on increasing the quality of tests by analyzing them ex post using various

criteria. Tools like Cobertura3 and JaCoCo4, for instance, help developers to

3 h�p://cobertura.sourceforge.net
4 h�p://www.eclemma.org/jacoco

6

Research Objective 1.2

identify parts of the system under development that are not yet reached and

inspected by existing tests.

However, they still leave most of the labor intensive and time consuming work

of fixing the identified weaknesses to the engineer. It is therefore necessary to

run these tools over and over again and wait for their reports. On the other

hand, approaches that try to generate tests based on formal specifications do not

seem practical for mainstream development projects [San96] because developers

usually do not want to learn another language or coding standard. More recently,

there has been interesting work conducted on the tool-based, mutation-driven

generation of test data [FZ12], but the problem of equivalent mutants still creates

a significant amount of manual e�ort when using this technique.

With the novel ex ante approach for tool-supported so�ware testing, which is

presented in this dissertation, we provide the foundation for a new generation

of tools that try to predict which tests developers are likely to write next, based

on the information acquired from previously wri�en tests. Leveraging the ideas

of code search engines, we define the characteristics of reuse-assisted so�ware

testing tools and provide a prototypical implementation that fulfills the vision

of “a powerful integrated test environment which by itself, as a piece of so�ware is

[...] generating the most suitable test cases, executing them and finally issuing a

test report” [Ber07]. Using novel techniques like speculative analysis [Bru+10],

we will show that it is possible to recommend reusable tests that have been

evaluated even before they are considered for reuse, enabling test reuse tools to

rank recommendations before they are presented to the user.

The aims of the work conducted in this dissertation are as follows:

1. to advance the current state-of-the-art in tool supported so�ware testing,

by developing a reuse-oriented approach for the creation of so�ware tests,

2. to investigate the feasibility of using previously created so�ware tests as

test oracles and develop a model that allows the creation of language-

independent, searchable repositories of so�ware tests,

7

Chapter 1 INTRODUCTION

3. to define the requirements for reuse-assisted so�ware testing in modern

IDEs and create a tool that recommends contextually matching so�ware

tests during a so�ware project,

4. to investigate the feasibility of performing an ex ante analysis of the appli-

cation of reusable so�ware tests in a newly developed application,

5. to employ the idea of back-to-back testing to reduce the number of false-

positive results and therefore help preventing the recommendation of test

data that is not suitable for the system under development.

1.3. Contribution Of The Thesis

The contributions of this thesis arising from our work are:

1. a definition of scenarios for test reuse in the so�ware development lifecycle,

2. a meta-model, which allows the creation of models that capture so�ware

tests wri�en in di�erent frameworks,

3. a parser for JUnit test cases. Although developers are probably most fa-

miliar with the JUnit testing framework, we will identify weaknesses in

its structure and the reusability of JUnit test cases which also a�ect the

maintainability of large sets of test cases,

4. the SENTRE system – an internet-scale search engine and back-end for

reusable so�ware tests,

5. a set of value-based retrieval techniques for so�ware tests that supplement

name-dependent searches by using existing test data to identify reusable

assets,

6. we provide a concise overview of the requirements and essential character-

istics of reuse-oriented recommendation systems in so�ware engineering,

especially for reuse-oriented test recommendation,

8

Scope of the Thesis 1.4

7. a test reuse and recommendation plug-in for the Eclipse IDE and JUnit,

which provides test recommendations on demand with minimum e�ort

to reuse them. By autonomously inspecting reusable candidates and their

impact on the test currently being wri�en, the environment filters and

ranks potentially reusable test cases and automatically integrates them

into the user’s development context,

8. a process model for tool-supported reuse of code and so�ware tests,

9. a testing technique, known as Search-Enhanced Testing, and a prototype

implementation based on the ideas of n-version programming and back-

to-back testing, which utilizes reusable components as oracles,

10. an approach of automatically filtering false-positive recommendations

from a list of potentially reusable tests.

1.4. Scope of the Thesis

The goal of this dissertation is to advance the state-of-the-art in so�ware testing

by leveraging the results of the so�ware search and reuse community. Therefore,

we will mainly focus on the utilization of tools and techniques from the area of

so�ware reuse in the context of so�ware testing. This includes the development

of a search engine for so�ware tests an an accompanying test recommendation

environment for the Eclipse IDE. As well as the ideas of reusing previously created

tests, we will also present an approach that uses reusable so�ware components

as oracles to automatically generate test data.

Since we are bringing together two di�erent research areas – namely, the area

of so�ware testing and the area of so�ware search and reuse – our work could

be regarded as a new application for reuse, as well as a new so�ware testing

technique. Nevertheless, given that we have chosen to view the problem from

the search and reuse perspective, our work does not go deeper into the area of

so�ware testing than necessary. Although automated test generation represents

a broad field in which a lot of work is being conducted, all of the currently

9

Chapter 1 INTRODUCTION

proposed approaches are di�erent to the ideas developed in this thesis. Our

technology does not try to understand what the developer wants to test and does

not assume that it is smart enough to read the developer’s mind, but rather relies

on the human knowledge already embodied within previously hand-cra�ed

so�ware tests that are available for reuse.

1.5. Structure of the Thesis

This thesis is structured as follows:

Chapter 2 introduces the basic so�ware testing terminology that is needed in

the context of this thesis. In order to make the presented material as clear as

possible, the terms introduced in this chapter are used consistently throughout

the remaining thesis. Furthermore, we provide a short introduction to JUnit,

which all readers should be familiar with. Based on an exemplary class under

test, we show di�erent possibilities of writing test cases that all test the same

functionality although they di�er in syntax.

Chapter 3 reviews the state-of-the-art in so�ware search and reuse and surveys

the corresponding literature. Beginning with an introduction to archetypal

so�ware search scenarios and their role in the so�ware development lifecycle,

we identify concrete applications for code search and group them into two main

kinds, the so-called speculative and definitive searches. Subsequently, the chapter

provides a historical overview of so�ware search and reuse since the famous

McIlroy paper [McI69] and introduces some of the most important milestones

in so�ware search over the last few decades. An introduction to the test-driven

search for so�ware components and its importance to so�ware reuse concludes

this chapter.

Chapter 4 presents our enhanced implementation of an automated adapta-

tion system for component interfaces, which was initially envisaged for use in

conjunction with test-driven reuse but is also necessary for the automated eval-

uation of reusable so�ware tests. First, we present an overview of the problem

and briefly explain the issues with incompatible interfaces. Subsequently, we

10

Structure of the Thesis 1.5

introduce the idea of parallelized distributed interface adaptation and describe

an algorithm for non brute-force automated component adaptation and testing.

Finally, we show how our implementation improves previously created systems

and how the distribution of work among adaptation clients can help to speed

up the process of so�ware adaptation.

Chapter 5 discusses the application of the previously introduced ideas and

so�ware search engines in the context of modern so�ware development envi-

ronments. Since a goal of this thesis is to contribute to so�ware testing from the

point of view of the reuse community, it is necessary to survey existing reuse-

oriented code recommendation systems. The chapter starts with an overview of

the prerequisites for the development of reuse-oriented code recommendation

systems and then introduces a micro-process of so�ware reuse, which embeds

the subsequently introduced systems. The presentation of the state-of-the-art

of existing tools serves as the appropriate framework for the identification of

their characteristics. These are then used to distill a general set of requirements

for reuse-oriented recommendation tools.

Chapter 6 presents our work on the creation of an infrastructure for test reuse.

A�er introducing the challenges presented by test reuse and an overview of

possible sources of reusable assets, we discuss the possibilities of knowledge

extraction from previously created so�ware tests. To this end, we develop a

meta-model for so�ware tests, which captures all aspects of reusable test code

in the context of potential test reuse, and embed our e�ort in the context of

component based so�ware development. The detailed description of the features

captured by the model sets the scene for its concrete application in the context

of reusable JUnit test cases. Subsequently, the chapter deals with the creation

of a searchable index of JUnit test cases acquired from various open source

so�ware repositories and we introduce the heuristics which help us identify

the classes under test in reusable so�ware tests, as well as the classes that are

necessary to extract the concrete test data contained in the file. In addition to

describing our strategies for extracting test case values and expected results

from previously existing JUnit test cases, the chapter also deals with exception

tests, their recognition and extraction.

11

Chapter 1 INTRODUCTION

Chapter 7 presents SENTRE, a prototype search engine for reusable so�ware

tests. The chapter starts with a general overview of potential use cases for this

kind of search engine and describes the applicability of test reuse in the context

of the so�ware development lifecycle. Since the search engine relies on an

index that was created with the tools described in Chapter 6, we subsequently

introduce a set of retrieval techniques for test reuse. Beside the well-known

idea of interface-based searches, which has been implemented in the area of

code reuse, the chapter describes a novel technique which uses test case values

and expected results to obtain reusable tests. Furthermore, we enhance this

technique with the capability to specify pa�erns instead of concrete values with

the help of regular expression. This allows clients to improve recall compared to

a search with concrete values, since the retrieval algorithm can consider a whole

space of input values and expected results. The third concept discussed in this

sequence, is the idea of code-based searches which do not rely on pure structural

analysis but actually execute reusable tests in the context of the client’s class

under test. The chapter concludes with an overview of the implementation and

architecture of the search engine.

Chapter 8 proceeds by linking the ideas and approaches presented in the pre-

ceding chapters. Based on SENTRE, it presents a reuse-oriented test recommen-

dation system developed for the Eclipse IDE. Building upon the characteristics

that we identified in Chapter 5, the chapter starts with an overview of the re-

quirements that our system needs to fulfill. Furthermore, the chapter embeds the

tool into a micro-process of tool-supported test reuse, which outlines the main

activities involved in integrating reused so�ware tests in a new development

context. The description of our implementation includes some concrete exam-

ples of the capabilities of the system and describes its features, the underlying

architecture and algorithms.

Chapter 9 addresses an issue that a�ects any kind of recommendation system

– the presence of incorrect results in a list of recommendations. The more false-

positive results are presented to the user, the less likely a recommendation tool

is to be included in the standard workflow of a developer. Before we develop

a strategy to avoid the recommendation of “wrong” tests (with respect to the

12

Structure of the Thesis 1.5

problem domain of the user), we introduce another approach which helps the

automation of so�ware testing. The Search-Enhanced Testing approach utilizes

reusable so�ware components as oracles and executes them with random test

case values. We have created a tool which shows the discrepancies in tests

executed on a set of oracles using so-called execution profiles and which indicates

input values that have the potential to uncover problems in the system under

development. Building on these ideas of Search-Enhanced Testing, the chapter

introduces oracle-based result filtering, which uses a similar approach to identify

reusable test cases that are not part of the domain covered by the client’s system

under test. These are automatically ruled out by the system in order to improve

the precision of searches for reusable so�ware tests. An initial evaluation of the

underlying algorithm concludes the chapter.

Chapter 10 concludes the main body of the dissertation. Since this thesis

comprises initial and foundational work in the area of test reuse, we present

an outlook of promising future work that has the best potential to lead to new

advances. Finally, we sum up the work conducted in this thesis with some final

comments and remarks.

13

“ The worst I ever saw was a 500-instruction

assembly language routine with an average of

2.2 bugs per instruction a�er syntax checking [. . .].

That person didn’t belong in programming.”

So�ware Testing Techniques [Bei90]

Boris Beizer, So�ware Engineer

2
So�ware Testing

2.1. So�ware Testing Terms

Although testing is one of the most important activities in so�ware engineering,

it is not unusual for engineers talking about so�ware testing to mean di�erent

things when using the same words. To reduce the resulting potential for confu-

sion, we will introduce some definitions for the most important terms used in

the context of this thesis. The definitions are mostly derived from those given

in the books1 “The Art of So�ware Testing” by Glenford Myers [Mye79; MS04]

and “Introduction to So�ware Testing” by Paul Ammann and Je� O�u� [AO08],

accompanied by additional remarks to tailor them to the context of this thesis.

1 These books represent the standard literature in the area of So�ware Testing and cover di�erent
periods. Myers’ book was initially published in 1979 (recently revised and updated), while
object-oriented development was still in its infancy, whereas the book by Ammann and O�u�
was published in 2008 and covers more recent trends and approaches in so�ware development.

15

Chapter 2 SOFTWARE TESTING

As we will see, however, not all of the terms are well-defined in the literature

and sometimes authors use them ambiguously.

Test Case Values and Expected Results

A so�ware system is generally regarded as an engine for transforming a given

set of input data to (one or more) outputs through computational process-

ing. The corresponding transformations are commonly referred to as an IPO

(input-processing-output) model and constitute the basic starting point for our

considerations. So�ware testing is essentially about checking the correctness of

these transformations, and represents one way to use a system. In his seminal

book on So�ware Engineering [Som10], Sommerville uses a drawing similar to

Figure 2.1 to introduce and describe an input-output-model for so�ware tests.

Input Data
for the Test

If

System Under Test

Test Results Of

Figure 2.1.: Input-Processing-Output Model of Program Tests [Som10].

In this drawing, the If entity represents the input data that causes the system

to fail, while Of is the set of outputs produced by the system that indicates an

error. Building on this IPO model, the essential ingredients for the construction

of a so�ware test are a description of the input data space, the so�ware under

16

So�ware Testing Terms 2.1

test, which is responsible for processing the input, and the expected outcome

(i.e., output) of the execution of the so�ware under test.

To describe a concrete test for the system under test, it is first necessary to pick

a set of input data for the so�ware from the input data space, the so-called test

case values:

Definition 2.1 (Test Case Values). Test case values are the input values nec-

essary for the execution of an operation of the so�ware under test.

In terms of the IPO model, the test case values play the role of the input data /

test data for the so�ware under test, i.e., the values provided in the parameter

list of an operation. In the remainder of this thesis they will be denoted by

the Greek le�er α. Thus, the test case values used for operation invocations in

so�ware tests can be denoted as n-tuples

(α1,i, α2,i, . . . , αn,i)

thereby representing the n input parameters to the invocation of method i.

Since the examples and techniques used in this thesis primarily focus on Java

and JUnit, we will regard the terms class under test and component under test

(hereina�er referred to as CUT) as synonymous with so�ware under test. An

invocation or execution will usually mean the invocation of a method or an

operation, respectively. Although we are aware of the perennial dispute about

the question “what is a component?”, we will not investigate this issue in detail

in the context of this thesis. For the interested reader, the literature provides

plenty of discussions on the commonalities and di�erences between component

models, such as those described in frameworks and methodologies like EJB,

DCOM, SOFA, PECOS or KobrA (see, e.g., [Fal10]).

With the choice of the Java programming language and the JUnit testing frame-

work as a vehicle for our considerations, the above definition has to be interpreted

in conjunction with the abstract definition of the interface of a Java class, as

depicted in Figure 2.2. The basic structure of a Java class interface is formed

by the classname followed by a list of methods interfaces, which is enclosed in

17

Chapter 2 SOFTWARE TESTING

brackets. A method interface itself consists of the method’s name, the list of

parameters it expects and the declaration of its return type. The parameters are

expressed as types of the expected values.

C((mn(α0..ix,n) : Γn;)0..j)

C : classname mn : name of method n
αx,n : parameter x of method mn Γn : return value of method mn

Potency (y..z) : multiplicity of occurrence

Figure 2.2.: Generic Structure of a Class Interface.

A method can expect an arbitrary number of comma-separated input parameters,

while a method without input parameters is indicated by an empty pair of

brackets (). The return type is mandatory unless there is no return value. This

is indicated by the keyword void. Theoretically, a class may contain no method

at all (beside those inherited from Object), which means that it is practically

useless in our context.

The value returned by a so�ware component in response to specific input is

the essential cornerstone for so�ware testing. So�ware tests observe a CUT’s

behavior, which is manifested by its output in response to given input. This “real”

result obtained by the execution of the so�ware under test is compared against

the expected result of a test, which is defined as follows:

Definition 2.2 (Expected Result). The expected result is the result that should

be produced by the execution of the so�ware under test if and only if it satisfies its

intended behavior [AO08].

Although it seems obvious and natural, in addition to this definition, Myers

formulates a stronger requirement for expected results / outputs by requesting

that they have to be defined prior to the execution of a program. However, it is

an important question in the so�ware testing literature, how to determine the

18

So�ware Testing Terms 2.1

correct output of an invocation for a given set of test case values. The term that

is commonly used to describe the source of information about expected results is

the term test oracle [Wey82; Bei90; RAO92; SWH11], although it does not define

what an oracle should be: it can be an algorithm, some equivalent implementation

of the system under test (like in Search-Enhanced Testing [AHJ11]) or a human

being, which is sometimes also called a “golden oracle” [Hum+06]:

Definition 2.3 (Test Oracle). A test oracle determines the expected result of

an invocation of the so�ware under test for a particular set of test case values. The

source of test data and the test oracle can be independent.

Thus, it is clear that the term expected result should not be confused with the

term test result. While the former is some kind of “virtual” value which has to be

defined by an oracle, the la�er is the concrete output of the so�ware under test

for a given set of test data. Beizer [Bei90] gives an overview on possible sources

of oracles, amongst which he specifies kiddie testing (“run the test and see what

comes out”) as a valid means to obtain test oracles if the tester has knowledge

about intermediate variable values and shows high personal discipline. Further

sources of oracles for so�ware testing are, e.g., regression test suites (existing

tests of the same project used during refactoring or maintenance) and existing

programs (cf. Chapter 9.2).

So�ware Tests

Unfortunately, literature is not clear about the meaning of what a test itself

represents. Although Ammann and O�u� give a large set of definitions for

di�erent terms in testing, they do not define the word test itself. Myers, however,

defines the nature of testing and states that

“Testing is the process of executing a program with the intent of

finding errors.” [MS04, p. 6]

Assuming that testing is a process that not only relies on the execution of a

program, but also on the observation of its behavior, the above statement implies

19

Chapter 2 SOFTWARE TESTING

that a test is the smallest element in the process of testing. Hence, we define a

test as follows:

Definition 2.4 (Test). A test is the atomic action in the process of so�ware

testing. It compares the actual test result, which is obtained by executing the

so�ware under test using test case values, to the expected result that is provided by

an oracle.

By saying that a test is “atomic” in the sense of the process of testing, we still

acknowledge that it contains execution steps and comparison steps as its basic

actions. If the test result di�ers from the expected result, one could automatically

assume that a test has discovered an error in the so�ware under test. It is,

however, necessary to understand that the observation of an unexpected test

result may also be caused by a bug in the test [Bei90, p. 20]. Therefore an

unexpected test result should not only lead to the debugging of the so�ware

under test, but also to a review of the test itself.

In the JUnit framework, the test result (obtained from an invocation with test

case values) and expected return value are subsumed in an assertion statement,

which we will use synonymously with test. An assertion or test can be described

as the assignment

ξ : (α1, α2, . . . , αn)→ Γ

meaning that the invocation of method ξ using the n-tuple of input parameters

is expected to instruct the program to produce the result Γ. To conclude these

considerations we can rephrase Myers’ initial statement and regard so�ware

testing as the process of finding errors by executing a program2 using tests.

Test Cases and Test Suites

Usually it is necessary to define several assertions to e�ectively investigate a

piece of so�ware for the presence of bugs. Therefore so�ware tests are usually

contained in test cases, which combine tests with pre- and post-actions that

2 this term applies to di�erent levels of granularity, e.g., unit (i.e., class), component and system.

20

So�ware Testing Terms 2.1

ensure that the required conditions are valid before the tests are executed, such

as ensuring that the so�ware under test is in a certain state. Based on the

definition of Ammann and O�u�, a test case can be characterized according to

the following properties:

Definition 2.5 (Test Case). A test case is composed of tests (i.e., an operation

invocation with test case values and a corresponding expected result), supplemented

with set-up and tear down actions. Thus, test cases are usually used to evaluate an

operation of the so�ware under test.

To keep so�ware tests maintainable, one test case should test one single function

or component of the system under test. Test cases for similar or related parts of

the so�ware under test are collected in test suites or test sets, which Ammann

and O�u� simply define as a set of test cases [AO08].

Definition 2.6 (Test Suite). A test suite is a collection of test cases. It or-

chestrates their execution and is intended to evaluate the system under test as a

whole.

These terms represent the fundamental vocabulary of so�ware testing used

throughout this dissertation. We have chosen not to rely on previous definitions

from the literature, which are o�en ambiguous and sometimes contradictory, as

we will see in the following subsection. Instead, we have aimed to stay very close

to the most common definitions from the literature, but we have also clarified

their meaning where this was necessary. This is essential for the following

chapters, since we are going to define a meta-model for reusable so�ware tests

later in this thesis and this cannot be done without a consistent terminology for

the considered domain.

Ambiguities

Despite the fact that so�ware testing has to be performed in every development

project, so�ware testing still lacks a common definition of many of its terms.

In the literature authors usually introduce di�erent terms that have the same

21

Chapter 2 SOFTWARE TESTING

de-facto meaning, or even worse, a single term that refers to di�erent things.

This deficiency is also mentioned in the book by Ammann and O�u� [AO08],

who state that in order “to follow tradition” they sometimes use their definition

of a test case (composed of test case values, expected results and so-called prefix

and postfix values) in place of test case values, where this is clear from the context

[AO08, p. 15].

Since imprecise and confusing terminology is a general malady in so�ware

engineering today, we want to avoid ambiguity wherever possible. For the sake

of linguistic clarity, we give an overview of the introduced terms in Table 2.1 and

list their corresponding element in the JUnit framework.

So�ware Testing Java / JUnit
Test Case Values Method Input Parameters
Expected Result Expected Value (Assertion)
Test Assertion
Test Case Test Method
Test Suite Test Case / Test Suite

Table 2.1.: Terms in So�ware Testing and Java / JUnit.

As one might have already observed from the definition of a test case and test

suite, the general meaning of these terms is di�erent to their usage in JUnit. We

will discuss this issue in more detail later in this thesis, but it is nevertheless

worth noting at this point, that the general definition of a test case is more

similar to a test method contained in a JUnit test case than to the TestCase class

defined in JUnit 3.

With the introduction of JUnit 4, the TestCase class is no longer used to define

a set of test cases, but the usage of the @Test annotation before a test method

is also misleading. Therefore, an annotation @TestCase might have been more

precise in this context. Hence, our definition of a test case corresponds to a test

method in a JUnit test class, while the term test suite describes both a test class

as well as a test suite that orchestrates the execution of test classes.

22

Extracting knowledge from JUnit 2.2

2.2. Extracting knowledge from JUnit

So�ware testing is generally regarded as a labor intensive, challenging and ex-

pensive task that is nevertheless essential to the development of quality so�ware.

A prominent example of the huge impact of a single line of faulty code is the

so-called goto fail bug, where a single line of code (i.e., a simple ‘goto fail;’

statement) corrupted the SSL stack of Apple’s OS X and iOS3.

For the remainder of this thesis, we have chosen to focus on tests wri�en using

the JUnit testing framework. Since it is a widely used tool for so�ware testing,

there is a broad range of literature available [BG14] and most readers should be

familiar with JUnit’s testing model. The methodology and ideas developed in

this thesis should, however, be easily applicable to other testing frameworks and

languages as well. Based on the previous definition of so�ware testing terms

we are going to develop a generic model of so�ware tests in Section 6.2.1 of this

thesis.

The Class Under Test

Unfortunately, there is still no unambiguous standard methodology for so�ware

testing, and therefore it is no surprise that testers may write totally di�erent tests

for testing the same conditions for a given piece of so�ware. As we will see, it is

possible to describe functionally equivalent tests in syntactically very di�erent

ways. This is not surprising, since it is well known that two implementations

of the same program will rarely look exactly alike. In this section, we consider

a very simple scenario, where a tester wants to investigate whether a distance

calculator performs the computation of the distance between two given points

correctly.

Therefore we start with the li�le program in Listing 2.1, which serves as the class

under test for the subsequently presented test cases.

3 https://github.com/landonf/Testability-CVE-2014-1266, checked February, 24th 2014

23

https://github.com/landonf/Testability-CVE-2014-1266

Chapter 2 SOFTWARE TESTING

Listing 2.1: Distance Calculator – Class Under Test.

1 public class Euclid {

2 public double dist(double x1 ,double y1 ,

3 double x2 ,double y2) {

4 return Math.sqrt((x2 -x1)*(x2 -x1)+(y2 -y1)*(y2 -y1));

5 }

6 }

For our purposes, we define the example class Euclid with the method dist,

which calculates the distance of two points p(x1|y1) and q(x2|y2) using the well-

known formula for the Euclidean distance:

d(p, q) =
√

(x2 − x1)2 + (y2 − y1)2 (2.2.1)

A tester can arbitrarily choose any points, such as p(4|2), q(8|5) with a distance

of d = 5, to test the program for bugs. According to our previous definitions, the

general description of such a test

dist: (4, 2, 8, 5)→ 5

maps the given test case values (4, 2, 8, 5) to the corresponding expected

result of 5. It therefore states that the test is performed executing the dist

operation of the system under test.

JUnit TestCase Example

Even though tests wri�en for the code example from Listing 2.1 are intended to

examine bugs in only one single calculation – which is performed in the return

statement in line 3 – there are virtually unlimited ways of writing a test case

for this class. The typical approach would be to write a test case that defines

the correct outcome of the invocation of the distance calculator’s dist method

depending on an ordered quadruple of input parameters, like the one presented

in Listing 2.2.

24

Extracting knowledge from JUnit 2.2

Listing 2.2: Test for the Distance Calculator with assertEquals.

1 public class EuclidTest {
2 @Test
3 public void testDistanceCalculation () {
4 Euclid calc = new Euclid ();
5 assertEquals (5,calc.dist(4, 2, 8, 5)); // P, Q
6 assertEquals (5,calc.dist(0, 0, 3, 4)); // Origin
7 assertEquals (12.5, calc.dist(-3, -4, 4.5, 6)); // Fl
8 }
9 }

This test adheres to the conventions of the IPO model: it takes, for instance, the

input (0, 0, 3, 4) as test case values for the so�ware under test and evaluates

the test result against the expected result for equality. In this case, the developer

also provides an expected value in the way defined in the JUnit documentation,

i.e., as the first parameter of the assert statement. Hence, from this test case

it is possible to extract the mapping of test case values to the corresponding

expected results (0, 0, 3, 4)→ 5 directly from the code.

Test Syntax vs. Test Semantics

Since JUnit classes are well-known POJOs4 there is, however, no automated

check for the correct order of the parameters of the assertEquals statement. This

fact imposes a first obstacle to the automated parsing of JUnit tests, since a

tester may write line 5 in Listing 2.2 conversely as

assertEquals(calc.dist(4, 2, 8, 5), 5);

which would – strictly speaking – be represented by the following mapping of

test case values to expected result: 5→ (4, 2, 8, 5). This would not be correct

in the context of the class under test, although it represents a valid statement.

But before addressing this issue, we want to investigate another way of writing

a test for the same distance calculator class as presented in Listing 2.3.

4 POJO = plain-old Java object.

25

Chapter 2 SOFTWARE TESTING

Listing 2.3: Test for the Distance Calculator with assertTrue.

1 public class EuclidTest {
2 @Test
3 public void testDistanceCalculation () {
4 Euclid calc = new Euclid ();
5 int pqDist = calc.dist(4, 2, 8, 5);
6 int originDist = calc.dist(0, 0, 3, 4);
7 double floatingDist = calc.dist(-3, -4, 4.5, 6);
8 assertTrue(pqDist == 5);
9 assertTrue(originDist == 5);

10 assertTrue(floatingDist == 12.5);
11 }
12 }

This test case is more challenging to an automated knowledge extractor, since

there are several issues that make it di�icult to create the mappings of input val-

ues to expected outputs. Although the use of assertTrue instead of the equality

assertion can be resolved relatively easily, the definition of variables containing

the test result and their usage in the assertion is somewhat challenging. Since

the test is now split into two parts, where a) the CUT is invoked using test case

values, b) the test result is assigned to a variable and c) this variable containing

the test result is compared to the expected result the extraction of the tests from

this test case demands more sophisticated algorithms.

Testing without using JUnit

For the sake of clarity this test case also makes it necessary to revisit the previous

definition of the term “test”. Although this test case might appear to deviate

from the definition in Section 2.4 this is, however, not the case. A test was defined

as the execution of the so�ware under test using test case values (e.g., line 5 in

Listing 2.3) and comparing the test result to an expected result (e.g., line 8 of the

same listing).

The last kind of test case we want to take a brief look at is not a JUnit test case in

the narrow sense, but a test case expressed using plain Java code and a boolean

value that indicates whether the returned result matches the expected result or

26

Extracting knowledge from JUnit 2.3

not. Nevertheless, the code presented in Listing 2.4 meets our definition of a

test case and a test since it aims to reveal an unexpected result by executing the

system under test using test case values.

Listing 2.4: Test for the Distance Calculator without JUnit.

1 public class DistCalcVerifier {

2

3 // this is true if the test is passed

4 public boolean verifyDistanceCalculation () {

5 Euclid calc = new Euclid ();

6 if (calc.dist(-5,5) != 0) {

7 return false;

8 }

9 return true;

10 }

11

12 }

The code in Listing 2.4 provides evidence that even before the advent of JUnit

or other similar testing frameworks it was already possible to test Java classes

and look for defects using so-called plain old Java objects (POJO). A human can

recognize the Calculator as the system under test, the tuple (−5, 5) as test case

values and 0 as the expected result.

However, for a parser such a piece of code does not contain enough structural

information that would reveal it to be a test case containing a test for the above

calculator. Hence, the problem of extracting the test case values and expected

results out of such assets is out of scope of this thesis, since our approach

envisages automatic knowledge extraction from test cases. In the following, we

will focus on test cases which are automatically recognizable as such.

The following chapters will introduce so�ware search engines and reuse-oriented

recommendation systems along with the techniques applied in these field. Based

on the foundations presented, we are going to create a search engine for reusable

so�ware tests and develop a reuse-oriented test-reuse environment, which en-

ables users to reuse so�ware tests directly from within their IDE.

27

Chapter 2 SOFTWARE TESTING

2.3. Summary

In this chapter we have introduced the essential terminology of so�ware testing

used within this thesis. Furthermore, we have given an overview of the structure

and usage of JUnit. We need the definitions and considerations from this chapter

later in this thesis, when we define a data model for test reuse and explain the

creation of a reuse-assisted test recommendation system. Additionally, we have

identified issues arising from the fact that JUnit test cases are plain Java code,

which o�ers developers and testers a large variety of possibilities to write a test

case for a given program. The examples presented in this chapter show that

semantically equivalent tests can be expressed using a di�erent syntax, which

makes it more di�icult for a parser to automatically extract the information

contained in test cases.

Since a detailed introduction to so�ware testing and JUnit is out of the scope

of this thesis, we refer the interested reader to literature available on these

topics [Mye79; Bei90; Bec03; AO08; BG14]. Additionally, there is a large body of

knowledge available on the internet.

Contribution of this chapter

• This chapter has given a definition of the essential terms for so�ware

testing. Tests execute one operation with a well-defined set of test case

values and a corresponding expected result, which is compared to the result

returned by the operation. Multiple tests for an operation are grouped in

test cases. Test cases for several operations of a component are grouped

into test suites.

• We have introduced a couple of examples of the use of JUnit that give a

basic understanding of the framework’s concepts and drawbacks.

28

Summary 2.3

29

Part II.

Search and Reuse

31

“ Computers are magnificent tools

for the realization of our dreams,

but no machine can replace the human spark

of spirit, compassion, love, and understanding.”

Louis Gerstner, Jr.

CEO of IBM 1993–2002

3
So�ware Search and

Recommendation

As so�ware becomes an omnipresent part of our environment and is embedded

in ever more devices, the quantity and variety of source code wri�en to support

them grows steadily. Vast numbers of so�ware artifacts have been made publicly

available as part of the so-called open-source revolution or are stored in huge

corporate repositories. Furthermore, the availability of high-bandwidth network

connections has made these accessible at the touch of a bu�on. During the

early 2000s this triggered the emergence of numerous internet-scale code search

engines, which aimed to leverage the success of document-based search engines

to promote so�ware reuse in general.

As earlier said, during that time, most of the available code search engines

implemented the ideas of Google, Yahoo! or other “traditional” search engines

and usually did not o�er much more than simple keyword-based searches. Plain

33

Chapter 3 SOFTWARE SEARCH AND RECOMMENDATION

text search is, however, not sophisticated enough to allow developers to find

the components they need with reasonable time and e�ort, since it does not

exploit the fact that code is executable – in contrast to a text document. The

original research on so�ware retrieval during the 1980s and 1990s did exploit

the idiosyncrasies of so�ware (such as operation signatures) but was unable

to cope with more than a few thousand so�ware components. The survey of

Mili et al. [MMM98] provides a comprehensive overview of the state of the

field in the late 1990s. Recent research has focused on providing more scalable

and sophisticated retrieval approaches such as Component Rank [Ino+05] or

Test-Driven Reuse [HJA08].

3.1. Search Scenarios in So�ware Engineering

“So�ware reuse is the process of creating so�ware systems from existing so�ware rather

than building so�ware systems from scratch.” – Charles W. Krueger

This simple idea expressed by Krueger in 1992 [Kru92] and first envisioned by

McIlroy in the late 1960s [McI69] has been the general motivation for research

into so�ware search and reuse for over four decades. More detailed understand-

ings of the di�erent use cases for so�ware search have only recently emerged

through several studies and on-line surveys such as those described by Umarji et

al. [USL08] in 2008. The basic goal of their survey was as to answer the question

“what do developers search for?” and the most frequently given motivations for

search are presented in Table 3.1.

From a total of 58 anecdotal descriptions of how developers used existing search

engines, the authors of the survey identified nine archetypal motivations for

code search (i.e., use cases). Eight of these nine use cases were motivated by the

goal of reusing so�ware, while one was motivated by the goal of fixing bugs.

The eight reuse use cases were further divided into two groups of four – the

first motivated by the desire to directly reuse code, of the size from small code

snippets through class-size units to standalone (sub-)systems – and the second

34

Search Scenarios in So�ware Engineering 3.1

Description
Code for

Reuse
Reference
Example

∑
Block Wrappers, parsers, code

excerpts
7 4 11

Subsystem
Code of algorithms and
data structures, GUI wid-
gets, Library, APIs

21 11 32

System Stand-alone applications 6 2 8∑
34 17 51

Table 3.1.: Motivation for code search by target size [USL08].

motivated by the desire to find reference examples that provide ideas about how

to implement a particular piece of functionality. A prominent example from

this survey is the use of search engines to find guidance in the use of libraries

– a topic that has received significant research a�ention (see, e.g., Holmes and

Murphy [HM05]).

Summarizing the work by Umarji et al., we can group searches motivated by the

goal of reusing code without modification into the following four categories:

• code snippets, wrappers or parsers,

• reusable data structures, algorithms and GUI widgets to be incorporated

into an implementation,

• reusable libraries to be incorporated into an implementation,

• a reusable system to be used as a starting point for an implementation.

Furthermore, we can group searches motivated by finding reference examples

into these four categories:

• a block of code to be used as an example,

• example of how to implement a data structure, algorithm or GUI widget,

• example of how to use a library,

• looking at similar systems for ideas.

35

Chapter 3 SOFTWARE SEARCH AND RECOMMENDATION

So�ware Life Cycle Phases

Analysis Design Implement. Test Deployment MaintenanceArchetype

Code inspiration

Design prompter

Snippet reuse

Component reuse

Library reuse

Test case reuse

Library identification

Prog. understanding

Definitive Search Speculative Search

Figure 3.1.: Search Scenarios in So�ware Engineering [JHA10].

We have identified eight archetypal search scenarios in the context of the tradi-

tional so�ware development life cycle, which are visualized in Figure 3.1. The

searches are grouped into so-called speculative and definitive searches. The

former are represented by dashed and the la�er by solid lines [JHA10]. The

figure shows that searches conducted early in the so�ware development process

(i.e., late in the analysis or early in the design phase) are rather speculative. At

this point in time, developers are using so�ware search engines to get an idea of

what reusable material is available or to get some inspiration on how to solve a

given task.

Later in the process (i.e., late in the design phase or during coding) searches can

become much more definitive as typically a concrete specification of a required

component is available. Since the focus of this thesis is test case reuse, which

is a special case of source code recommendation, the tools presented in this

chapter focus on the following four types of so�ware search: a) Snippet Reuse,

b) Component Reuse, c) Library Reuse and d) Test Case Reuse.

3.1.1. Speculative Searches

The most common usage scenarios for so�ware search engines come under

the umbrella of so-called speculative searches. These are searches performed

36

Search Scenarios in So�ware Engineering 3.1

by developers with the goal of finding out what is available in a repository.

Additionally it is a helpful strategy to get an initial idea of what might be a good

design for a component that is going to be created. Typically users performing a

search have a concrete description of a task and are looking for previous examples

of how something similar has been implemented. They o�en start by searching

the web for discussion threads, looking in particular for explanations of the pros

and cons of di�erent frameworks or for insights into how other developers have

approached the problem before [JHA10; JHA14].

During this stage of so�ware development neither a detailed syntactical nor a

clear semantic description of the component in question is likely to be available.

The developer uses the search engine to help design the component under

development and identify a suitable architecture for the implementation. The

approaches of tools such as the design prompter [HJA10] fall under the category

of speculative search, as does the idea of drawing inspiration from open source

and library searches described in [USL08]. Looking for reusable code snippets is

the only minor exception in the context of speculative searches, since developers

usually do this late in the development process when they are implementing the

system in hand.

Even when all the technical di�iculties for speculative searches (such as syn-

tactical mismatches, etc.) have been solved, human factors such as company

regulations, unsuitable open source licenses or the well known “not invented

here syndrome" [FF95] o�en still deter developers from directly integrating

reusable material into their code. Furthermore, common sense suggests that the

earlier reuse can be performed in the so�ware development lifecycle, the greater

the benefit in terms of increased development e�iciency and decreased devel-

opment costs. This assumption is supported by Boehm’s observations, which

show that the later changes occur in a so�ware project, the more expensive they

become [Boe81]. Furthermore, Crnkovic et al. found that reuse becomes more

di�icult the later it occurs in a system’s development cycle [CCL06].

Speculative searches are typically keyword-based searches, making li�le or no

use of additional characteristics of the code – such as interface descriptions

or more concrete functionality specifications – and usually occur during the

37

Chapter 3 SOFTWARE SEARCH AND RECOMMENDATION

design phase of a so�ware project or during the early implementation phase.

Our investigations show that these keyword-based searches tend to be rather

imprecise [HJA07], i.e., about four out of five results of a search are incorrect. This

is not really a problem, however, since at this stage the developers usually have

no clear picture of the component which has to be wri�en and may investigate

the available solutions.

These speculative searches can be performed in many ways. Two examples from

our earlier publications are, for instance, 1) the so-called design prompter and

2) the code inspiration scenario. The la�er is presumably the most frequently

performed type of speculative searches [JHA10]. In the following paragraphs,

we give a brief description and examples of how the above kinds of speculative

searches can be used by developers.

Design Prompter Given the progress achieved in data mining and related

areas in recent years, it makes sense to investigate the possibility of au-

tomatically generating design hints based on the knowledge wrapped in

existing collections of so�ware. Like the shopping systems of large online

retailers a proactive design prompter system might, for example, suggest

to a developer that “other developers that have created a stack component

also assigned a push and a pop method to it” [HJA10]. Such a system needs

to monitor the developers while they are designing or coding a system and

then make recommendations based on the “mean value” of artifacts that

other developers created in similar situations. This idea is not necessarily

limited to the class level, it also seems feasible to extract helpful design or

even architectural pa�erns from the contents of a so�ware repository.

Code Inspiration When a task is assigned to developers, they usually have

only a rough idea of how this could be implemented. A search engine can

be helpful to get an idea of how other developers have solved a similar

task, to be�er understand the problem domain, to get an idea of possible

risks (like vaguely known APIs) and to create a dra� outline of the code.

Ye calls this approach Glass-Box Reuse where programmers do not directly

reuse a so�ware artifact but rather use it as an example for their own

38

Search Scenarios in So�ware Engineering 3.1

implementation [Ye01]. This contributes to the quality and productivity of

programmers by reducing their cognitive load [Nea96].

3.1.2. Definitive Searches

As soon as a so�ware system’s design has become concrete enough that the

“contours" of its components are clear, the requirements for a search engine

change significantly as the additional information provided by the system and

component specifications can be used to define more focused searches. Although

source code is text, the behavioral and structural information it contains can

support much more sophisticated searches than merely text-based searches. For

example, the process of compiling source code reveals a lot of information that

can be exploited when searching for components and deciding which candidates

to return within search results. In general, definitive searches can be categorized

as into the following main groups:

Interface-based Searches Our previously published evaluations have shown

that ordinary keyword-based (even pure signature-based) searches (see Mili

et al. [MMM98] for detailed explanations) in internet-scale repositories do

not deliver reusable material with a satisfactory level of precision [HJA07].

The main reason for this is the ambiguity that creates a large number of

candidates that match a general keyword or signature [DR12]. Interface-

based searches improve the precision by matching the complete interface

of the sought a�er component (i.e., component name, method names and

parameter profiles, etc.) against the interfaces of components in the search

space. By including various stemming and relaxed name-matching tech-

niques, significantly higher precision can be a�ained without sacrificing

recall.

Test-Driven Reuse Although they improve on simple text-based searches, the

precision of interface-based searches still leaves a lot to be desired. User’s

still have to evaluate the fitness-for-purpose of the results and may get

frustrated by too many “false positives”. Test-driven searches raise the pre-

cision even further by exploiting the fact that source code can be executed

39

Chapter 3 SOFTWARE SEARCH AND RECOMMENDATION

and thus is behaviorally observable. In contrast with formal specifications,

which also provide a description of the required functionality of compo-

nents, test cases are frequently developed anyway within most mainstream

development processes and thus lend themselves for use as queries for

searches[Hum08; Rei09].

Discrepancy-Driven Testing The reuse of existing so�ware components is

not always an accepted tool in so�ware development. Licensing issues or

company regulations may dissuade developers from integrating reusable

components into their so�ware. However, it is possible to utilize such com-

ponents for the purpose of so�ware testing: the retrieved components serve

as so-called test oracles, which can be executed alongside the component

under development utilizing, e.g., a large amount of randomly created test

input. The result values of these components can be compared with each

other [Hum+06; AHJ11] and when a disagreement occurs between them an

interesting test case worthy of human consideration has been discovered.

We will elaborate on this in more detail in Section 9.2, where discrepancy-

driven testing is utilized to improve the results of reuse-assisted so�ware

testing.

Test Reuse As so�ware search engines not only contain components, but o�en

also the test cases intended to test them, we can extract the knowledge

stored within the test cases as well. The idea of reusing so�ware tests to

enhance newly created test cases is the the main focus of this thesis.

Library Searches During the development of so�ware systems, developers

o�en need to incorporate additional external libraries into their projects.

So�ware search engines can be used in a variety of ways to increase the

productivity of developers in this context. When libraries are inadequately

documented or the achievement of a certain result demands a possibly

complex invocation chain that cannot easily be discovered by the devel-

oper, recommendation systems that provide suggestive code snippets can

greatly reduce the learning time needed to understand and use the provided

API [RWZ10].

40

So�ware Search Engines 3.2

3.2. So�ware Search Engines

Search engines specialized on code provide the backbone for modern code

reuse recommendation tools. The most significant and widely recognized code

search engines that were developed within scientific projects are Agora [SHW98],

Sourcerer [Baj+06], Merobase [HJA08; Jan+13] and S6 [Rei09]. All of the afore-

mentioned focus primarily on the Java programming language and thus it is no

surprise that the recommendation systems which rely on them are also primarily

Java-oriented1.

The timeline in Figure 3.2 summarizes the main scientific milestones of the

last quarter of a century in the field of code search and recommendation. The

white boxes in the figure represent important publications related to so�ware

reuse, the red ones the announcement of a search engine and the blue boxes

represent the release of a recommendation system that is based on a search

engine. It is important to note that although there have been industrial products

for code search and reuse, none has yet “taken o�” commercially. One of the

commercially “biggest players” – Google Codesearch – shut down its service in

January 2012 [Goo11].

3.2.1. Agora

From the visionary ideas in the late 1960s, it still took the scientific community

more than twenty years to develop a widely-recognized reuse-recommendation

system. The introduction of CodeFinder [FHR91] marked a milestone, although

it took some more years until the emergence of Agora, a component search

engine developed within the So�ware Engineering Institute at Carnegie Mellon

University [Sea99]. It’s purpose was to provide a search engine that supports

searches for components based on the description of their interface properties.

Since its user interface was very similar to a “classic” web search engine‘s inter-

face, users had to explicitly open the browser and formulate search queries using

1 At the time writing only Merobase and S6 were still publicly available at their publicized
address.

41

Chapter 3 SOFTWARE SEARCH AND RECOMMENDATION

1968
→

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

1969:
M

cIlroy:
M

ass
produced

So�
w

are
C

om
ponents

[M
cI69]

1991:
Fischer

&
H

enninger:
C

ode
Finder

[FH
R

91;H
en93]

1995:
Frakes

&
Fox:

Sixteen
�

estions
about

So�
w

are
R

euse
[FF95]

1997:
H

enninger:
A

n
evolution-

ary
approach

to
constructing

e�
ective

so�
w

are
reuse

reposi-
tories

[H
en97]

1998:
Seacord

et
al.:

A
gora:

A
Search

Engine
for

So�
w

are
C

om
ponents

[SH
W

98]
2002:

Ye
&

Fischer:
C

odeB
roker

[Y
F02]

2003:
Yokom

ori
et

al.:
SPA

R
S-J

R
anked

C
om

ponent
Search

[Yok+03]

2004:
H

um
m

el
&

A
tkinson:

TestD
riven

R
euse

of
So�

-
w

are
C

om
ponents

[H
A

04].

2005:
M

andelin
et

al.:
Prospector
[M

an+05]

2005:
H

olm
es

&
M

urphy:
Strathcona

[H
M

05]2006:
A

tkinson
et

al.:
M

erobase

2006:
B

ajracharya
et

al.:
Sourcerer
[B

aj+06]

2007:
Thum

m
alapenta

&
X

ie:
PA

R
SEW

eb
[TX

07]

2007:
Lem

os
et

al.:
C

ode-
G

enie
[Lem

+07]

2007:
H

um
m

el
&

Janjic:
C

ode
C

onjurer
[Jan07;H

JA
08]

2008:
C

o�
rell:

Jigsaw
[C

W
D

08]

2009:
B

ruch
&

M
ezini:

Eclipse
C

ode
R

ecom
-

m
enders

[B
M

M
09]

2009:
R

eiss:
S
6

[R
ei09]

2010:
M

cM
illan

et
al.:

R
ecom

m
ending

source
code

exam
ples

[M
PG

10]

2013:
Janjic

&
A

tkinson:
U

tilizing
So�

w
are

R
euse

Experience
for

A
utom

ated
TestR

ec-
om

m
endation

[JA
13]

2013:
Janjic

&
A

tkinson:
Sentre
[JA

13]

Figure
3.2.:M

ilestones
in

Source
C

ode
Search

and
R

ecom
m

endation.

42

So�ware Search Engines 3.2

a dedicated query language. Searches with Agora were constructed using basic

operators like ‘+’ or ‘-’, indicating whether a term should be required or prohib-

ited. Furthermore more complex searches could be formulated using boolean

operators AND, OR, NOT or NEAR. A search for a component that provides a

scrollable drawing pane supporting color-draws would, for instance, require a

query of this form:

+method:scroll +property:color +method:draw

Obviously, this is not a very convenient way to issue searches during so�ware

development since users must leave their development environment, open a

browser window and – most importantly – invest additional time and e�ort to

create an appropriate query. Therefore, they must have a fairly clear picture

of what they are seeking, especially when using the specialized features of the

query language like boolean operators. The need to learn the query language and

to come up with a suitable query consumes time that diverts developers from

their main task: the development of the so�ware system. A�er the results have

been presented, developers have to inspect them manually, adapt them to their

dedicated context and integrate possibly suitable reuse candidates into their

project. This can be a very time consuming and tedious task since it involves a

lot of manual e�ort which requires developers to build and execute the system

to try out each new component, regardless of whether or not it turns out to be

suitable for the envisaged purpose.

3.2.2. Merobase Component Finder

Another half a decade passed before SPARS-J and the Merobase Component

Finder were introduced in 2003 and 2006. At that time, scientific groups and

companies began exploiting the possibilities to create so�ware search engines.

The commercially most famous were Koders.com (2005), Google Codesearch (2006)

and Krugle (2006). It is necessary to mention that Koders.com was sold to Black

Duck So�ware in 2008 and merged with Ohloh Code in 2012, which itself has

already been sold twice and still merely supports keyword- and name-based

searches.

43

Chapter 3 SOFTWARE SEARCH AND RECOMMENDATION

Merobase was the first search-engine to support test-driven searches with server-

side test execution. Its sandboxed execution environment enables it to exploit

the power of distributed computing clusters and avoid the execution of possibly

malicious source code on the developers’ machines. Driven by the Lucene

framework, Merobase is not only able to perform very fast keyword-, signature-

and interface-driven searches, but also to provide accurate results to test-driven

searches [Hum08]. When crawling for code, Merobase’s analysis algorithm

identifies the basic abstraction implemented by a module and stores it in a

language-agnostic description format. The description’s most important element

is the abstraction’s name, but other key features such as method names and

parameter signatures are also stored within the search repository.

The above mentioned search strategies supported by Merobase can be used

either via the o�icial web site of Merobase or using a distinct web service API.

In both cases, the most prominent query forms are those for interface-based

searches and those for test-driven search. The Merobase �ery Language (MQL)

supports function oriented and object-oriented queries queries. To search for a

component based on a function that has to be implemented by the results, the

query contains the name of the function, a comma separated list of its input

parameter types enclosed in braces followed by a colon and the type of its return

value. The end of the query is indicated using a semicolon:

getDistance(float,float):float;

The above query is used to retrieve components that contain a method called

getDistance with two input parameters of the type float and a return value

of the type float. The MQL also supports empty parameter list and the return

type (with colon) is optional. For object-oriented searches, the first element of

the query is the component name followed by a list of function-oriented queries

enclosed in curly braces:

Customer {

getAddress():String;

setAddress(String):void;

}

44

So�ware Search Engines 3.2

The architecture of Merobase – as depicted in Figure 3.3 – was initially composed

of three tiers: the backend with the search index and database, the system re-

sponsible for adaptation and evaluation of the candidates in test-driven searches

and finally the web front-end that enables users to interact with the system.

Figure 3.3.: Initial System Architecture of Merobase [Hum08].

Merobase also serves as back-end for our Code Conjurer Eclipse plug-in (cf. Sec-

tion 5.3.6), which initially used a proprietary XML format to communicate with

the web server. It enables users to communicate with the search engine directly

from within their IDE, either pro-actively or via a background agent that looks

for reusable artifacts relevant to the development context.

3.2.3. Sourcerer

The Sourcerer search engine, developed as a search engine for open-source code,

relies on a relational database created by mapping basic source code elements

and their relations to a relational model (see [Baj+06] for more details). It uses

fingerprints, which are a vector-based representation of various a�ributes in

the code, to provide the basis for structural searches. To improve the quality of

45

Chapter 3 SOFTWARE SEARCH AND RECOMMENDATION

Figure 3.4.: The Architecture of the Sourcerer Infrastructure [Baj+06].

the results it incorporates a ranking technique called CodeRank, which is based

on Google’s PageRank. Sourcerer’s index was built to exploit the fact that the

retrieval of source code di�ers from traditional document retrieval and o�ers

five di�erent search functions:

1. Component Search

2. Component Usage Search

3. Function Search

4. Function Usage Search

5. Program Structure Search (Fingerprint Search)

The architectural organization of the Sourcerer infrastructure is depicted in

Figure 3.4. It shows the main division into a repository infrastructure and a code

search application. While the former is responsible for crawling, downloading

and processing code from external repositories, the la�er supports search for

the retrieved artifacts and o�ers an appropriate user interface.

The Sourcerer code search engine serves as back-end for the Code Genie Eclipse

plug-in [Lem+07]. In contrast to Merobase, Sourcerer does not support server-

side test-driven searches, but shi�s this technology to the developer’s com-

puter.

46

So�ware Search Engines 3.2

3.2.4. S6

The S6 system, another test-driven search engine, was made publicly available

in 2009 [Rei09]. While the previously presented code search engines enabled

their users to perform keyword-based queries or provided a query language

to be�er describe the desired component, S6 combines keyword based queries

with the specification of test information directly on its website, as seen on the

screenshot of the search engine in Figure 3.5.

Although the search engine recommends Java classes, it does not make any use

of the language’s features in describing queries. Thus, its users have to invest

significant e�ort in learning how to formulate queries before they are able to

use the search engine. In addition to that, the usage of S6 is aggravated, since

there is no recommendation system available that supports the search engine’s

functionality and makes its usage easier and more convenient.

Figure 3.5.: The S6 Web Interface.

47

Chapter 3 SOFTWARE SEARCH AND RECOMMENDATION

3.3. Excursus: Recall and Precision

Basic Measures in Information Retrieval

The information retrieval (IR) community has established two basic performance

measures – Precision and Recall – to evaluate the e�iciency of retrieval algorithms

or systems (for a thorough introduction to information retrieval see for example

the book from Baeza-Yates and Ribeiro-Neto [BR08]). Since there is still no other

broadly accepted benchmark for so�ware search engines on the horizon [HJ12],

the so�ware search and retrieval community still solely rely on these measures:

Recall =
|Relevant and Retrieved Documents|

|Relevant Documents|

Precision =
|Relevant and Retrieved Documents|

|Retrieved Documents|

To estimate the recall for a query, it is necessary to obtain detailed knowledge

of all the documents in the repository [BR08]. Modern so�ware repositories

contain far too many components to perform a manual inspection and it seems

infeasible to calculate a value for the recall of queries to modern so�ware search

engines.

In the context of this thesis, we therefore focus on precision, which is more

important to the users of so�ware reuse and recommendation systems than

recall. Namely, the success of earlier published systems shows that developers

obviously prefer to receive no results at all than to get a set with incorrect results

that induce a significant amount of manual inspection.

48

Test-Driven Reuse 3.4

3.4. Test-Driven Reuse

Past search-driven so�ware reuse approaches failed to take o� due to the lack

of high precision results. Although the new code search engines that appeared

since the 2000s indexed vast swashes of reusable code (thanks to the success of

open source so�ware) and o�ered be�er retrieval mechanisms with improved

precision (see Table 3.2 and Table A.1), the ratio of suitable to non-suitable

components in their search results was still relatively low. Our experiments

presented in [HJA07] showed that Merobase’s interface-based search approach

was more precise than the searches of Google, Yahoo, Google Codesearch and

Koders, but there is still room for improvement.

�ery Google Yahoo GCS Koders Merobase
Average Precision 12.2 % 17.9 % 29.5 % 5.9 % 53.7 %
Standard Deviation 13.3 % 18.9 % 26.5 % 7.8 % 22.4 %

Table 3.2.: Comparison of Code Search Engines [HJA07].

Another issue was that the e�ort involved in manually inspecting each result

for suitability was relatively high since it involved the examination not only

of their names and interfaces but also their behavior. Hence, there was also

room for improvement to the cost-risk-e�ort-benefit balance in order to make

e�ort invested in reuse more worthwhile. In his seminal work on Semantic

Component Retrieval in So�ware Engineering [Hum08] Hummel describes a new

approach that provides be�er results and reduces the e�ort involved in result

inspection. In particular, he presents an approach called Test-Driven Reuse, which

ultimately utilizes the fact that a so�ware component is not only a simple textual

document but an executable artifact with an observable behavior, as described

by Mili et al. [MMM98].

Based on the ideas from Extreme Programming, where developers are encour-

aged to write test cases before the actual production code, test-driven reuse

implements the philosophy of evaluating a so�ware component’s fitness for

49

Chapter 3 SOFTWARE SEARCH AND RECOMMENDATION

purpose by checking whether it passes the test case(s) provided by the devel-

oper [HA04].

Figure 3.6.: Process of Test-Driven Reuse [HA04; Hum08]

The process overview depicted in Figure 3.6 outlines the process of test-driven

reuse in its original form. Based on the design of the considered system, so�ware

developers create appropriate test cases whose required interface inherently

contains a description of the interface of the desired so�ware components in

terms of call and use relationships. Suppose, for example, that a developer

wants to create a payment system that accepts credit card payment and where

Listing 3.1 is a fragment of a JUnit 3 test case for such a credit card component.

This test can serve as an input query to a test-driven reuse system.

A search engine like Merobase is able to extract all necessary information from

the test case – namely: 1. the required interface of the test case, which describes

a credit card class that can parse a credit card number, return the vendor id

50

Test-Driven Reuse 3.4

Listing 3.1: JUnit �ery Snippet for a Credit Card.

1 public class CreditTest extends TestCase {
2 public void setUp () {
3 cc = new CreditCard ();
4 }
5
6 public void testVendor1 () {
7 long number = cc.parseNumber("4111 1111 1111 1111");
8 long vendorId = cc.getVendorId(number);
9 assertEquals("Visa", cc.getIssuerName(vendorId));

10 assertNotSame("MasterCard", cc.getIssuerName(vendorId));
11 ...
12 long number = cc.parseNumber("12345678");
13 long vendorId = cc.getVendorId(number);
14 assertTrue(cc.getIssuerName(vendorId).
15 toLowerCase ().contains("error"));
16 }
17 }

and the issuer name, and 2. a very concrete description of the functionality of

the required component by specifying test case values and expected results.

Similar to the famous caterpillar’s fate [Ker95], the short and simple interface

description contained in the test case obviously requires some non-trivial code in

the component in order to parse the credit card number or recognize the issuer

and vendor of a card.

The extracted interface is used to issue a standard web search with an arbitrary

web2 or dedicated so�ware search engine. Although it is theoretically possible to

omit the name descriptors contained in the interface description during search

(which then solely relies on the signature of the methods), this strategy is rather

impractical (see, e.g., [Hum08]): although the number of potentially reusable

results grows by several orders of magnitude, the precision drops to a relatively

low level (e.g., from ≈ 21.7% to ≈ 1.7% for a Stack [Hum08]) because most

candidates turn out to be unsuitable (i.e., higher recall is dearly bought with lower

precision). Merobase therefore employs relaxed interface-based searches which

has a higher precision. Table 3.3 compares the average precision of signature

matching, text-based, name-based and interface-driven component retrieval

2 Google, e.g., supports the search for Java files with the keyword “filetype:java”.

51

Chapter 3 SOFTWARE SEARCH AND RECOMMENDATION

using the examples from Table A.1. To be e�icient, a so�ware search engine

should rank the results based on the distance of their actually provided interface

to the one used in the query. This allows for faster, incremental result delivery.

Si
gn

at
ur

e

Te
xt

-B
as

ed

N
am

e-
B

as
ed

In
te

rf
ac

e-
D

ri
ve

n

Average Precision 0.9% 16.3% 17.2% 53.7%
Standard Deviation 1.8% 21.9% 19.3% 22.4%

Table 3.3.: Comparison of Retrieval Techniques [HJA07].

Once the initial interface-based search results are available, the test-driven

search process looks for candidates that can be compiled without errors. Every

time the provided test case can be compiled and executed successfully against

the reuse candidate, the system regards it as a working implementation of the

functionality specified by the developer’s test case.

In addition to the idea of test-driven reuse depicted in Figure 3.6, as enhanced

versions of test-driven search we already envisaged the creation of so-called

so�ware-reuse environments [HJ13; JHA14]. An initial implementation of such

a so�ware-reuse environment was realized through our Code Conjurer Eclipse

plug-in for the Merobase Component Finder [Jan07]. The plug-in features a

background agent which automatically creates and submits a query to the search

engine and present a list of evaluated results within the IDE. Developers can

then inspect the reuse candidates and choose the most appropriate one for their

task at hand.

When two developers are assigned the task of implementing the same function-

ality it is unlikely that they will create classes that have equivalent interfaces.

This issue also applies in test-driven search, where it is unlikely that a potentially

52

Summary 3.5

reusable component implements an interface that fully matches the require-

ments of a new project. Hence, it is necessary to develop additional technologies

that fit the reusable assets into their new environment. In the following chapter

we will address this issue in more detail, describe a possible solution and present

our implementation of an automated adaptation system.

3.5. Summary

In this chapter, we have taken a closer look at the ideas of so�ware search and

reuse in general with a special focus on those technologies that are the basis

for our work. A�er introducing typical so�ware search scenarios, we gave an

overview of the most prominent search engines for so�ware reused developed

in academia over the last decade. In addition, we briefly discussed the problem

of interface mismatches in so�ware reuse and presented the initial work from

this area [Hum08; HA10].

Contribution of this chapter

• Literature review and introduction of typical so�ware search scenarios.

• Review of so�ware search research over the past four decades.

• An improved approach for the automated adaptation of so�ware compo-

nents, which is necessary for the automated evaluation of reusable so�ware

tests and their integration into new applications.

53

“ Programming today is a race between so�ware engineers,

striving to build bigger and be�er idiot-proof programs,

and the Universe trying to produce bigger and be�er idiots.

So far, the Universe is winning.”

The Wizardry Compiled

Rick Cook, Sci-Fi author

4
Automated Interface Adaptation

The idea of test-driven reuse assumes that only the relevant results of a search

for reusable assets are presented to developers. The relevance of a component

is thereby defined by its ability to pass the test case defined by the developer.

This strategy, however, obviously generates the problem that the execution of a

component with an incompatible interface to the one required by the test case

will fail and therefore it will be rejected, even if it de-facto provides the required

functionality. An example for an interface mismatch is given in Table 4.1, which

compares the required interface of the test case from Listing 3.1 to the provided

interface of a search result.

Although the CreditCardTest is able to instantiate the CreditCard class (same

constructor definition), it cannot test the methods responsible for parsing a credit

card number, recognizing the vendor or issuer of the card. Nor is it able to format

the number to a readable string (which usually divides the credit card number

into groups of four). The component would be immediately rejected and never

55

Chapter 4 AUTOMATED INTERFACE ADAPTATION

Test Requires Result Provides Match
CreditCard() CreditCard() X
parseNumber(String):long parseDirtyLong(String):long ×
getVendorId(long):long recognizeVendor(long):long ×
getIssuerName(long):String issuerAsString(long):String ×
forma�edNumber(long):String toPre�yString(long):String ×

Table 4.1.: API Mismatch of Test and Candidate

considered as a possible search result, even if it provided the desired functionality.

As long as the test and the components are wri�en using meaningful names,

however, a human would be able to map the meaning of the method definitions

correctly and recognize that the component is a valid result. For a computer

system, however, this is a challenging task.

4.1. Distributed Automated Adaptation System

Based on the adapter pa�ern initially presented by the so-called Gang of Four

[Gam+94], Hummel described the idea of the automated adaptation of so�ware

components for reuse [Hum08; HA10], utilizing a rather naïve and ine�icient

algorithm. For our investigations on Search-Enhanced Testing, presented in

Chapter 9, the automated adaptation of the provided interface of a so�ware

component to match the required interface of a test case is an essential ingredient.

Therefore this section explains our improvements to automated adaptation in

the context of the Merobase Component Finder. In particular, we introduce an

enhanced version of the automated adaptation process, which is depicted in

Figure 4.1. This process is more scalable than the previous approach and our

implementation for Merobase is capable of performing the adaptation task much

faster than the original system presented by Hummel [Hum08].

A�er the Merobase Component Finder has extracted the required interface of a

developer’s test case (as, e.g., presented in the first column of Table 4.1), the reuse

candidates returned by the interface based search need to be evaluated for their

fitness for purpose. In the original implementation of test driven search [Hum08]

56

Interface Adaptation 4.2

this evaluation was performed on a separate test server where the candidate

components were compiled and tested using the developer’s original test case.

In our improved approach, the execution environment is split into a client-server

architecture that supports job distribution. The test server keeps a list of all

candidate components, their current status – whether the result is tested, not

tested or is under test – and the appropriate results.

Lightweight clients poll the server for a test / compilation task and if there

are jobs in the queue, the server sends a candidate component to the client

accompanied by the original test case. At this point it marks the job as being

under test, associates it with the client and stores the current time. If the client

does not return a result within a given time frame, the server considers the

execution failed, increments the fail counter of this job and re-queues it. If a job

fails more than three times, the server considers the corresponding class under

test as potentially harmful, since it may have crashed the client’s sandbox. The

candidate is marked as a fail and therefore removed from the list of potential

results.

On the client side the system investigates the required interface of the test

case and the provided interface of the class under test. If there is an interface

mismatch, the client creates new in-between classes, which map the calls from the

test case to the appropriate methods of the candidate class. These in-between

classes are also known as adapters [Gam+94; HA10], while the adapted class is

the so-called adaptee.

4.2. Interface Adaptation

The easiest way to automatically generate the necessary glue code between the

test and the reuse candidate would be using an algorithm that basically maps

every method of the adaptee to every method in the test case. However, it is

obvious that such a brute-force approach will not be very e�icient, i.e., it will

involve a lot of unnecessary executions resulting in increased resource consump-

tion and longer duration. Hummel reported test-driven searches running more

57

Chapter 4 AUTOMATED INTERFACE ADAPTATION

Figure
4.1.:Test-D

riven
R

euse
w

ith
D

istributed
A

daptation.

58

Interface Adaptation 4.2

than 24 hours [Hum08] using a naïve approach for automated adaptation of

reuse candidates, which makes any kind of reuse-tools integrated into the IDE

useless.

The input for our adaptation algorithm are two sets: Mr – one is the set of

methods contained in the required interface of the test case and the other is the

set of the methods contained in the adapter class and Mp, which is the set of

methods provided by the adaptee’s interface. Their cardinality is defined by the

number of methods contained in each particular interface:

n = |Mp| (4.2.1)

k = |Mr| (4.2.2)

Mapping n methods of an adaptee onto k methods of an adapter class is a

combinatorial problem, which is known as k-permutation or partial permutation

[TT10]. Since a partial permutation is defined as a bijection between two sets

[Str83] the adaptation task is to assign exactly one element from (a subset of)

Mp to one element from Mr. In the literature i-partial permutations are defined

as originating from permutations of m. They are obtained by ignoring every

element j > i [Ehr73].

To estimate the overall number of possible associations between a test case and

the appropriate reuse candidate, we need to calculate the k-permutation nPk of

the methods using the following formula:

nPk :=
n!

(n− k)!
, especially nPn := n! (4.2.3)

The special case results from the fact that 0! is defined as 1.

To give an impression of the complexity of the automated adaptation of reusable

assets, we consider a class containing n = 12 methods1 and a test case whose

1 If, for example, developers adhere to the principle of information hiding and create ge�ers and
se�ers for all class a�ributes, four a�ributes would already result in eight methods.

59

Chapter 4 AUTOMATED INTERFACE ADAPTATION

required interface expects k = 10 methods. Therefore we calculate that there

are

12P10 =
12!

(12− 10)!
=

479, 001, 600

2
= 239, 500, 800 (4.2.4)

possible combinations to map each method from the adaptee to the test case, and

each of them has to be compiled, executed and evaluated. Even if the creation,

compilation and execution of an adapter consumed only 1ms, this single task

would consume more than 21/2 days. To make things worse, the initial (name-

and signature-based) search usually returns a large set of candidate components

many of which require adaptation.

Obviously, this task is an enormous challenge even for modern computer systems

and it is not possible to expect users to wait for the results such a long time. In

the above case it is likely that developers will complete the implementation of

the desired functionality well before the test-driven search results are available.

Hence, to speed up the process we need a twofold strategy in which we: 1) reduce

the number of considered candidates, and 2) distribute the load to a scalable

number of clients as discussed above. Although the distribution to a virtually

unlimited number of client systems is a theoretic option, in practice this is limited

due to cost, management overhead on the server side, bandwidth limitations

and ecologic constraints, etc. Thus we approach the problem from the so�ware

side and investigate possible optimizations. A smarter strategy for generating

the appropriate adapters in a reasonable time with less overhead is outlined in

Algorithm 4.1.

In order to prevent adaptation in situations where this is inappropriate, the

adaptation algorithm has to ensure that it is only executed if the cardinality

of Mp = n is less or equal to the cardinality of Mr = k. Actually, it only makes

sense to perform an adaptation in case where k ≤ n since in the case of k > n

it would be necessary to map one method from the adaptee to m ≥ 2 adapter

methods. In the context of our example, this would mean that the getIssuerName

method of the test case would have to execute both – the vendorToString and the

toPre�yString – methods. Moreover, it remains unclear how the return value of

60

Interface Adaptation 4.2

Algorithm 4.1: Test and Adaptation Algorithm

AIF := adapter interface based on the required interface of the query test
case;
if candidate tested successful then

return pass;
end
if k > n then

return tooManyMethods;
else

Mr := methods in AIF;
Mp := methods in adaptee;
L := new list of type-compatible methods in adapter and adaptee;
foreach mi ∈Mr do

foreach amj ∈Mp do
if sig(amj) ≡ sig(mi) then

add mi → amj to L;
end

end
end
forall the entries in L do

create adapter;
if adapter tested successful then

return adapter and flag as passed;
end

end
return noMatch;

the adapter method should be obtained from those of the two adaptee methods.

Obviously this case does not make sense in an automated environment and in

such a case no adaptation is performed2.

Hence, first and foremost the algorithm checks if the adapter’s method count

is less or equal to the adaptee’s method count. Since we defined the mapping

between adapter and adaptee as a bijection, the cardinality of the set of methods

in the adapter and adaptee have to be equal. If the adaptee contains more

2 Mathematics support this finding: 5P6 =
5!

(5−6)! =
5!

(−1)! has no solution, since the factorial is
defined for non-negative integers only.

61

Chapter 4 AUTOMATED INTERFACE ADAPTATION

methods than the adapter, the resulting mapping will consider a subset of the

adaptee’s methods [Ehr73].

If there is a smaller or equal number of adapter methods to the number of

adaptee methods, the algorithm iterates over all methods in the adapter and

builds a list of adaptee methods that have a compatible method signature, i.e.,

where the types of the parameters and that of the return value of an adaptee

method amj are equivalent to those in the adapter’s method mi. Subsequently,

the mappings of type-compatible methods are used to create all possible adapters.

Once they have been generated, the adapters are executed and if the system

finds an adapter that passes the test case, it stops further adaptation and marks

the test of the candidate as successful. In the case of stateless tests, a further

optimization strategy is to test the methods independently: if an adapter method

has no adequate counterpart in the adaptee, the search stops and other methods

remain unexamined. In the best case, the first adapter method fails to find a

match. In the worst case, all adapter methods are executed before the adaptation

a�empt fails.

As we have shown in [JA12], this strategy e�ectively helps reduce the amount

of unnecessarily compiled and tested classes (i.e., adapters). Our prototype

implementation of the adaptation engine has been incorporated into Merobase,

which is now capable of delivering the results of a test-driven search much

faster than before. This is achieved by the aforementioned improvements to

the adaptation engine (i.e., the upstream filtering of infeasible adaptations),

as well as by the revised system architecture that facilitates load balancing

and distribution of the work to several CPU cores and machines through client

systems. A test-driven search for a credit card component, using a similar test

to the one in Listing 3.1, adapted and tested 1.000 candidate components in less

than a minute on a dual-core AMD Opteron processor with 2.6GHz and 8GB

main memory.

The client returns the result of the test execution to the server, reporting whether

it was necessary to adapt the candidate component or not. If adaptation was

necessary, the client transfers the appropriate adapter. In the case of successful

test execution / adaptation, the server stores the appropriate result and marks

62

Improvements to Test-Driven Search 4.3

the job as finished. In case the result reported by the client was negative, the

server removes the candidate from the set of potentially reusable components.

If a client does not return a�er a specified timeout, the job is marked as open

again and the fail counter is incremented by one. If an adaptation job fails

more than three times, it is abandoned and considered as useless. Finally, those

adapters that were successfully executed using the provided test case are re-

turned to Merobase, which collects the list of working results and delivers them

to Code Conjurer. There the results are presented to the developers who choose

the desired component, suitable for the context of their development task.

4.3. Improvements to Test-Driven Search

We have carried out a number of initial experiments to determine whether the

approach of automated-adaptation is feasible and if it delivers significantly more

results than test-driven search without adaptation. In Table 4.2 we present some

examples that illustrate the improvement of test-driven search with adaptation

to test-driven search without adaptation. The first column of the Table outlines

the required interface of the desired component defined by a test case, while the

second column (TD) shows the number of reusable so�ware components returned

for a plain test-driven search. The third column (TDA) contains the number of

results returned for test-driven searches with automated result adaptation. For

this purpose, we looked at the first fi�y candidates returned by Merobase.

These example searches demonstrate the benefits of enhancing test-driven reuse

with automated adaptation. While the search for a Calculator, Stack and Prime

class could have been achieved by a simple test-driven search without adaptation,

the slightly more complex search for a Document fails completely without

adaptation. With adaptation it returns 14 results which pass the user’s test

case. An e�icient adaptation algorithm such as that implemented in Merobase

therefore enables test-driven searches to return significantly more results in a

given period of time.

63

Chapter 4 AUTOMATED INTERFACE ADAPTATION

Required Interface TD TDA
CreditCard(

validate(long):boolean; 0 / 50 2 / 50

)

Calculator(

add(int,int):int; 3 / 50 6 / 50

subtract(int,int):int;

)

Stack(

pop():Object;

push(Object):void; 7 / 50 11 / 50

isEmpty{}:boolean;

)

Prime(

isPrime(int):boolean; 1 / 50 3 / 50

)

Document(

Document(String,String,int);

getAuthor():String; 0 / 50 14 / 50

getTitle():String;

getYear():int;

)

Table 4.2.: Exemplary Searches With and Without Adaptation.

The execution of the examples from Table 4.2 could be performed in less than

10 seconds, making the overall process of code search by Merobase and re-

sult presentation by Code Conjurer su�iciently fast for on-demand component

recommendation.

4.4. Summary

Based on the ideas presented in the literature, we have developed and presented

an enhanced system for the automated adaptation of so�ware components.

64

Summary 4.4

In order to develop an e�icient test-reuse environment, which returns result

in a reasonable time, it was necessary to enhance the existing approaches for

automated adaptation. We described the enhanced process and sketched the

idea of distributed adaptation on multiple adaptation clients in Figure 4.1 on

page 58. Finally, the result of our investigation was a system for automated com-

ponent adaptation, which is significantly faster than the initial implementation

in Merobase [Hum08].

In the following chapter, we will discuss possible approaches for improving the

way so�ware search is integrated into developers’ workflows. We will survey

modern reuse-oriented code recommendation systems and distill the necessary

properties for a recommendation system for so�ware tests.

Contribution of this chapter

• In the context of the Merobase code search engine, we presented an im-

proved approach for the automated adaptation of so�ware components,

which utilizes pre-adaptation filtering for e�iciency improvement.

• We introduced a client-server architecture for automated adaptation that

ensures high scalability for the automated adaptation of so�ware compo-

nent interfaces and supports be�er performance for test-driven searches.

65

“ The three most dangerous things in the world are

a programmer with a soldering iron, a hardware type

with a program patch and a user with an idea.”

The Wizardry Consulted

Rick Cook, Sci-Fi author

5
Reuse-Oriented Code

Recommendation Systems

Most recommendation systems in so�ware engineering aim to leverage data

acquired by mining previous so�ware projects and experience factories with a

view to enhancing the decision making process of engineers and managers in new

so�ware projects. The decisions involved can include the creation of so�ware

implementations and tests, the development of requirements and designs, or

indeed any other activity in so�ware engineering. However, in most cases the

artifacts from which the data were mined are not directly reused in new so�ware

projects, only the knowledge that was mined from them. Since we are going

to develop a reuse-oriented recommendation system for so�ware tests later in

this thesis, this chapter presents the state of the art for reuse-oriented code

recommendation (ROCR) systems [JHA14].

67

Chapter 5 REUSE-ORIENTED CODE RECOMMENDATION SYSTEMS

5.1. Recommendation Systems for Code Reuse

Reuse-oriented recommendation systems use data derived from the artifacts in

so�ware repositories and project archives with a view to pointing out opportuni-

ties for reusing the original artifacts themselves. A subcategory of reuse-oriented

recommendation systems focuses on suggesting opportunities for reusing exe-

cutable code. In a sense, ROCR systems are a special case of the more general

form of recommendation engines. Their “mined” data is executable so�ware.

However, the artifacts recommended by such systems need not just be func-

tional production code. All kinds of executable so�ware used in the lifecycle of a

project such as tests, prototypes, frameworks, environments etc. can be reused.

Moreover, reuse can take many forms ranging from the direct inclusion of the

artifact in the new so�ware product to the use of the artifact to test the so�ware

product or provide oracle data to drive the testing process.

Before thinking of the creation of a recommendation system for test reuse, it is

necessary to identify the requirements for such a system. Since the idea of test

reuse represents a special case of so�ware reuse in general, the same challenges

and obstacles may apply to it and should be investigated in more detail. The

development of an e�icient test reuse and recommendation system thus needs to

deal with the well-known challenges from traditional component reuse [HJA08;

JHA14], which include

• the availability of a su�iciently large source of reusable artifacts (the so-

called repository problem [FHR91; Sea99; Hum08]),

• the ability to e�ectively store and represent the reusable material (the

so-called representation problem [FP94]),

• the ability to retrieve meaningful results from a repository of reusable

artifacts (the so-called retrieval problem [MMM98; Hum08]),

• and the influence of the make-versus-reuse decision so that reuse is more

cost-e�ective than the creation of artifacts from scratch.

68

So�ware Reuse Process 5.2

A great deal of progress has been made in the mentioned areas over the last

few years [HA06], and solutions to these problems have laid the foundation

for the new generation of so�ware search engines that appeared at the end of

the first decade of the 2000s. However, while so�ware search capabilities are

an essential prerequisite for code recommendation tools, plain search engines

cannot be regarded as code recommendation engines. They are necessary, but

not su�icient. A true code recommendation system must also include a proactive

agent that monitors the activities of a developer and unobtrusively issue queries

in the background that can yield recommendations matching the context of the

developer’s code. Ideally, a code recommendation engine should also automate

the process of evaluating / testing reuse candidates and of including them into

the developer’s new applications.

In this chapter we discuss the range of opportunities, challenges and techniques

that reuse-oriented code recommendation engines can contribute to the so�ware

engineering process and survey the existing landscape of well-known academic

tools. Building on the insights on so�ware search technologies from Section 3 and

the characteristics that state-of-the-art code search engines can provide today,

we investigate how modern code recommendations systems are constructed.

We continue by discussing the overall goal of code reuse in order to identify the

requirements that a code recommendation tool should fulfill, which requirements

have already been met, and which are yet to be considered. In the main part of the

chapter we then discuss each of the existing research code recommendation tools

in turn, describing their motivation, architecture and strengths / weaknesses.

Finally, we conclude this chapter with a summary and some thoughts about

where the future lies for the code recommendation technology.

5.2. So�ware Reuse Process

In the literature, there are numerous publications dealing with so�ware reuse, its

foundations and possible improvements. Almeida et al. [Alm+04], for instance,

defined a comprehensive framework for so�ware reuse, which cleanly described

its key ingredients. Besides the need for a repository and search infrastructure,

69

Chapter 5 REUSE-ORIENTED CODE RECOMMENDATION SYSTEMS

they describe a generic so�ware reuse process and various best practices for

e�ective so�ware reuse. The main obstacle to so�ware reuse today is no longer

the lack of components to reuse or the ability to retrieve them e�iciently. The

main obstacle is the balance between the e�ort needed to evaluate and incor-

porate components into new applications and the likely benefit (including the

risk that a reuse candidate will turn out not to be suitable). This is where code

recommendation tools come in. Their role is to non-intrusively and reliably find

quality reusable code artifacts and to help developers integrate them into their

systems with minimal e�ort.

Based on the lessons learned from the typical code search use cases described in

the previous chapter, we can identify the most important characteristics that

reuse-oriented code recommendation systems should provide and distinguish

them from traditional code search engines. One of the major problems with code

search engines is that developers have to leave their normal working environment

to issue searches, which interrupts their development workflow. Moreover, since

queries have to be executed in a di�erent application (i.e., the web-browser) to

the one where the system is developed (i.e., the developer’s IDE) there is also

the problem of media change.

Without access to the immediate context of the code under development, it

is a demanding task for a developer to formulate queries that define his/her

goal and find reusable assets that fit into the new application. In addition,

developers have to fully understand how the search engines work to be able

to formulate adequate queries that will deliver precise results. And, last but

not least, developers have to invest a significant amount of e�ort to manually

evaluate and integrate reusable assets into their new applications. To try out any

of the recommendations, they have to switch between at least two windows, and

may even lose track of their original work and ideas during the search process.

All of the aforementioned issues related to code reuse need to be reflected within

a reuse-oriented code recommendation system, which ideally supports the full

automation of the reuse process as well as the responses to developers’ inputs.

70

So�ware Reuse Process 5.2

decision to
search

description of
request

search recommendation
selection

reuse &
maintain

Figure 5.1.: Overview of the Micro-Process of So�ware Reuse [JHA14].

A simplified visualization of the process of so�ware reuse is sketched in Figure 5.1.

The process itself is generic and applies to manual as well as tool-supported

so�ware search and reuse. It comprises five major steps, each of which will be

elaborated in more detail in the following description:

decision During a so�ware project it is advisable to reuse existing so�ware

assets in order to save e�ort. As we already know from Section 3.1, there is

a wide variety of potentially reusable artifacts and this list will be enhanced

in Section 5.4. Hence, if the general decision for reuse has been made, it

is necessary to decide in particular what kind of assets can actually be

reused. Based on these general decisions, so�ware engineers can decide

during the development lifecycle to search for reusable existing artifacts.

description Once there was the decision to look for reusable so�ware artifacts,

an abstract description of what should be reused needs to be created.

This specification should ideally comprise all required information that is

necessary to find useful reusable assets.

search The description serves as the query to a search engine. Sophisticated

algorithms should be able to automatically refine and adapt queries in order

to filter out all useless artifacts and ensure that all useful ones are included.

71

Chapter 5 REUSE-ORIENTED CODE RECOMMENDATION SYSTEMS

This is almost impossible without tool support, as it would consume a

lot of time to create a query, inspect the results, refine and re-issue the

query . . . This cycle may have to be repeated several times and is obviously

not very e�icient when done manually.

selection From the “raw” set of search results, the developer needs to choose

whether any of the results are useful and if there are any candidates

that fulfill the given criteria. If there is more than one, the developer has

to select the best match which can be a very tedious task since it may

involve the trial use of a large number of possible candidates. If this is

carried out manually, it involves the copying of the code from the search

engine, looking for necessary dependencies, possibly adapting the provided

interface of a reused class and finally trying it out. This must be performed

for every candidate in order to find the most suitable candidate.

reuse and maintain Once a candidate has been selected for reuse and inte-

grated into the developer’s system, the micro-process of code reuse is

completed. Nevertheless, the reused candidates are now part of the devel-

oper’s project development lifecycle and should be subject to all the same

policies and processes as the other parts of the system like testing and

maintenance.

Although the micro-process of reuse is complete, Figure 5.1 shows that reuse

should not be a one-o� event, in accordance with the ideas expressed in the

literature (e.g., Krueger’s seminal work on so�ware reuse [Kru92]). It should

rather be continuously applied throughout the project development.

The following subsection provides an overview of state-of-the art recommen-

dation systems for reusable code. In order to develop a reuse-oriented recom-

mendation system for so�ware tests, we will review them in the context of the

aforementioned micro-process and identify their most outstanding characteris-

tics. This will help us identify a general set of requirements for reuse-oriented

code and test recommendation systems in so�ware engineering.

72

State of the Art Systems 5.3

5.3. State of the Art Systems

To provide a more detailed insight into the state-of-the-art in code recommen-

dation we give an overview of a set of prominent research tools that emerged

over the last two decades. Based on this review, we will give a general overview

of the characteristics that need to be fulfilled by modern Reuse-Oriented Code

Recommendation Systems.

In addition to Figure 3.2, which shows the scientific milestones of the last twenty

years in code search and recommendation, Table 5.1 presents a chronological

overview on ROCR systems, their main author, recommendation type and the

year of their first or most influential publication. In the remainder of this

section, we will briefly survey the listed tools and identify the most common and

important properties of past recommendation systems. Based on these insights,

we will identify and distill the most essential requirements of reuse-oriented

code recommendation systems (cf. Section 5.5).

Name Authora Recommendation Type Yearb

Code Finder [FHR91] Henninger So�ware Objects 1991

CodeBroker [Ye01; YF02] Ye Reusable Components 2001

Strathcona [HM05] Holmes Source Code Examples 2005

Code Genie [Lem+07] Lemos Reusable Components 2007

PARSEWeb [TX07] Thummalapenta Invocation Sequences 2007

Code Conjurer [Jan07; HJA08] Janjic Reusable Components 2007
a Naming the main author of the particular project according to available publications.
b Year of first recognized publication.

Table 5.1.: Code-Based Recommendation Systems.

5.3.1. Code Finder

Code Finder [FHR91; Hen93] was the first widely known interactive code recom-

mendation tool available to developers. It was one of two influential products

73

Chapter 5 REUSE-ORIENTED CODE RECOMMENDATION SYSTEMS

from Gerhard Fischer’s group at Boulder University (USA) along with CodeBro-

ker which will be introduced in the subsequent subsection. Created as part of

the PhD of Sco� Henninger, Code Finder was presented in a research paper at

the International Conference on So�ware Engineering in 1991, which elaborated

on the whole chain of requirements to create an e�icient code reuse system.

Figure 5.2.: The user interface of CodeFinder showing matching items to a user’s
query who wants to draw a circle. Taken from [FHR91].

Starting from the problems involved with the creation of a well structured reposi-

tory, which is essential for the performance of a code reuse and recommendation

system, Fischer et al. introduce their strategy for building the “backbone” for

Code Finder and define the requirements of a user who wants to find something

to reuse. At that time, in the early 1990s, none of the modern database and

information retrieval system were available. Hence, the authors of Code Finder

had to essentially create the underlying index manually. While this was possible

74

State of the Art Systems 5.3

on a small set of reusable artifacts, it is impractical for today’s large scale search

engines.

Nevertheless, Code Finder represented an important milestone in the area of

so�ware search and reuse as it brought back a�ention to this field of research.

As we have seen in the short overview depicted in Figure 3.2, during the following

quarter of a century so�ware search and reuse gained a lot of a�ention. Moreover,

a lot of fruitful work has evolved from the ideas of Fischer and Henninger.

5.3.2. CodeBroker

Although the idea of reusing knowledge stored in existing components is not

new, Yunwen Ye’s CodeBroker was one of the first tools to explore this idea

in the form of a proactive invocation service tightly integrated into the well-

known Emacs editor [Ye01; YF02]. While developers work on their source code,

CodeBroker o�ered coding suggestions based on information garnered from

similar components in the repository. Ye identified two fundamentally distinct

ways of ge�ing this information from the repository:

• the classic pull or reactive approach, in which a user actively browses or

searches for information, and

• the push or proactive approach, in which a tool monitors the user’s activities

and o�ers information it considers useful in a specific context.

CodeBroker basically has three components: Listener – a continuously running

background agent which monitors the developer’s input and automatically ex-

tracts queries from doc comments and signatures. To illustrate the functionality

of the system, we consider a developer who wants to implement a card deck

class for a game and writes the partial implementation shown in Figure 5.3.

Once the developer has wri�en the declaration of the getRandomNumber method,

Listener will extract an appropriate query from the source code. The retrieval

process itself is carried out by the second part of the CodeBroker architecture –

Fetcher – which queries the CodeBroker repository for matching components.

Fetcher thereby makes use of the so-called Okapi technique [Wal+98] and

75

Chapter 5 REUSE-ORIENTED CODE RECOMMENDATION SYSTEMS

Figure 5.3.: CodeBroker’s Presenter [YF02].

Latent-Semantic Indexing [LFL98] to compute the concept similarity value of

each component in the repository to the query. With the standard se�ings,

Fetcher returns the top 20 components identified as relevant. Subsequently, the

Presenter shows the retrieved components within Emacs in the RCI-display . This

is shown in the view located below the source code editor, which is depicted on

the screenshot in Figure 5.3.

The Presenter not only shows results matching the tight context of the im-

plemented class or method, but takes the larger context of the developer’s

application into consideration. This is necessary since programmers o�en do not

comment their code very well. Therefore CodeBroker creates a discourse model

and captures the developer’s context. To be e�icient, however, this discourse

model needs further action from the developer to specify the task at hand more

precisely. In addition to the programming context (i.e. the project / system under

development), Ye also introduced a model of the user’s knowledge of the reuse

repository in CodeBroker.

76

State of the Art Systems 5.3

Basically, in the context of his work on the CodeBroker system, Ye has identified

four levels of knowledge about reusable so�ware components:

1. Well-known components – these components are well-known to the devel-

oper and may be regularly reused. CodeBroker does not regard them as

relevant recommendation results since they may repress components of

which the user is not aware. Ye calls these components reuse-by-memory

components.

2. Vaguely-known components – these components are reused rather seldom

by the developer, who has a vague recall of them and has maybe used

them from time-to-time but has not memorized them very well. Further

investigation or approval is necessary before the developer uses such a

component again.

3. Anticipated components – the user may have a certain belief about the

component repository. The third level addresses this fact and incorporates

the user’s expectations about the repository. This may even mean that

such components do not exist. At least they are hard to access due to the

lack of concrete knowledge about them.

4. Unknown components – these components are totally unknown to the

developer. Without a search engine and an assisting tool, it is nigh on

impossible for the developer to find and reuse them without a lot of e�ort.

By incorporating this model into the logic of CodeBroker, the system is able to

refine the result list in to include components about which the developer has

rather vague or no knowledge. In this context, the recommendations are of a

higher value to the developer than a list of results which are all well-known.

In the la�er case, the value added by the system would be rather low and

would have nevertheless required inspection e�ort from the developer. Although

CodeBroker was a very sophisticated tool when it was introduced, its repository

never grew beyond a few hundred classes [Ye01] and thus it’s performance is

very hard to compare to modern code recommendation systems. Nevertheless,

the lessons learned from this system inspired almost all developers in their

creation of modern code recommendation systems: Google Scholar lists the

77

Chapter 5 REUSE-ORIENTED CODE RECOMMENDATION SYSTEMS

ICSE publication of CodeBroker as having 190 citations (as of February 2013).

Unfortunately the tool is no longer available for download.

5.3.3. Strathcona

Strathcona is an example recommendation tool for source code within the Eclipse

Java IDE, which was developed by Reid Holmes at the University of British

Columbia [HM05]. Instead of following the established source code recommen-

dation approaches that existed at the time, Strathcona tool focused on another

problem: the lack of documentation accompanying the wide variety of frame-

works and so�ware libraries that were rapidly becoming an essential part of

application development. This resulted in developers spending large amounts of

time and frustration trying to find out how to solve a given task using such a

framework. It is a tedious work for developers to navigate the huge number of

libraries, understand how to use the provided classes and – especially – which

sequence of method calls accomplishes a certain task or delivers the desired

result. Without the assistance of a tool, developers would o�en spend hours

figuring out how to write the “right five lines” of code.

The Strathcona example recommender assists users by retrieving usage examples

that are relevant to the developer’s context. Therefore it does not create new

hurdles for users – like the definition of a new query language that has to be

learned – but extracts all necessary information from the code of the developer.

The system basically consists of two parts: a server-side implementation of the

tool, which holds the example repository and selects the relevant examples for a

user’s query and an Eclipse client, which is the front-end to the developer and

extracts the structural context of the code under development.

In their seminal work on Strathcona, Holmes and Murphy gave di�erent example

situations in which their system may help developers avoid ge�ing stuck due

to a lack of knowledge of how to solve a programming task with a framework.

One of them is very familiar to Eclipse developers who try to create an abstract

syntax tree (AST) from a piece of source code: a look into the API documentation

leads to the setSource method of the ASTParser class, which seems to fulfill the

78

State of the Art Systems 5.3

desired functionality. Nevertheless, even if the developers have identified this

method, they may still not be aware of the three steps needed to complete the

task in hand: (a) the parser needs to be created by using a factory method, (b)

the parser needs to be made aware of the source code and (c) the AST has to be

created. To trigger a search for an appropriate example with Strathcona, it is

su�icient that the developer inserts the following seed statement into the code

editor:

Listing 5.1: Strathcona Seed Example [HM05].

1 private void createASTFromSource(String source) {

2 ASTParser.setSource(source.toCharArray ());

3 }

From this seed, the Strathcona Eclipse client will extract the structural context of

the seed and identify the class, its parents, method calls and possibly existing field

declarations to form a query. This is used to apply di�erent matching heuristics

at the server to find structurally matching code in the example repository. The

server looks up possible example recommendations using PostgreSQL and returns

the top 10 examples to the recommender client. As part of a small evaluation, in

the same publication the authors presented the code from fragment in Listing 5.2

as a result selected by developers.

Listing 5.2: Example Recommendation for the ASTParser [HM05].

1 private CompilationUnit parseCompilationUnit

2 (char[] source , String unitName , IJavaProject project) {

3 ASTParser parser = ASTParser.newParser(AST.LEVEL_2_0);

4 parser.setSource(source);

5 parser.setUnitName(unitName);

6 parser.setProject(project);

7 parser.setResolveBindings(true);

8 return (CompilationUnit) parser.createAST(null);

9 }

79

Chapter 5 REUSE-ORIENTED CODE RECOMMENDATION SYSTEMS

The developers‘ work is obviously not complete when they are recommended an

example code snippet. They also need to inspect the suggested components and

take care of the following aspects:

Responsibility The developer has the responsibility to ensure that the recom-

mended code snippet does not induce any (possibly malicious) unwanted

behavior in the system under development.

Code Understanding Developers must understand what the code that they

have added to their project actually does. This involves reading additional

comments and documentation of the example in hand and, and as a side

e�ect, identifying possibly superfluous parts of the code.

Cleanup Since the recommended examples come from other contexts than

the developer’s one, the developer usually has to clean up the code. This

may involve the removal of previously identified superfluous parts, where

method invocations are performed which are not necessary for the part

the developer was interested in, and changing the names of objects to fit

into the developer’s coding guidelines.

Most recommendation tools also leave these three major tasks to developers. The

following example shows the severe side e�ects that can arise by simple copy and

pasting recommended usage pa�erns into a new application. Figure 5.4 shows a

screenshot of the Strathcona Eclipse plug-in, which calls a stub implementation

of a method that should update the Eclipse status bar. The user has identified

the responsibility of the IStatusLineManager class for executing this task and

Strathcona recommends the following piece of code to get this done:

getViewSite().getActionBars().getStatusLineManager().setMessage(msg);

If users do not inspect this recommendation in more detail, they will not be

aware of a fact that is unveiled by a look into the API documentation of the

getViewSite call: this method may return a null value, which means that the

above chain of invocations would lead to a NullPointerException at runtime and

consequent system crashes. To avoid this, the user has to manually extend

80

State of the Art Systems 5.3

Figure 5.4.: Strathcona plug-in for Eclipse [HM05].

the code with an if-statement that ensures that none of the calls returns null.

Although Strathcona was a major milestone in research on example-oriented

code recommendation, it is unfortunately no longer available via its project’s

website. Thus this section solely relies on the examples given by the authors in

the cited publications.

5.3.4. Code Genie

CodeGenie, developed at the University of California, Irvine, is a recommendation

tool for reusable source code that followed the idea of testing the behavior of

reusable artifacts. It allows developers to leverage the paradigm of Test-Driven

Development (TDD) by first writing test cases before production code. Instead of

implementing the desired functionality manually, the CodeGenie system enables

81

Chapter 5 REUSE-ORIENTED CODE RECOMMENDATION SYSTEMS

the developer to search for reusable assets that match the behavior specified by

the test cases. The results are woven into the developer’s project and the tests

executed in this context.

Figure 5.5.: CodeGenie Test-Driven Search Process [Lem+07].

CodeGenie relies on Sourcerer – an internet-scale search infrastructure for source

code developed by the same group [Baj+06]. It uses the search engine for the

retrieval of reuse candidates. Figure 5.5 depicts the process by which CodeGenie

helps developers incorporate a new feature into their application:

1. A developer’s project should be enhanced with a new feature.

2. The feature is described with a test case without implementing the feature

itself.

3. Based on the test case a search for reusable code is triggered with Code-

Genie. The plug-in issues a search via the Sourcerer search engine which

returns possibly reusable artifacts.

4. On the client side the results are explored by the user and examined by

weaving and local testing.

5. If a reuse candidate provides the desired feature and is recognized as being

"fit-for-purpose", the new feature is incorporated into the project.

82

State of the Art Systems 5.3

This simplified process description is, of course, based on the assumption that the

desired feature can be found as a reusable artifact. In the case that Sourcerer and

CodeGenie cannot find a reusable artifact, the developer will have to implement

the feature manually.

Listing 5.3: Partial JUnit test for a number converter class [Laz+09].

1 public class RomanTest extends TestCase {

2 public void testRoman1 () {

3 assertEquals("I", Util.roman (1));

4 }

5 ...

6 public void testRoman6 () {

7 assertEquals("M", Util.roman (1000));

8 }

9 }

To understand the idea of Test-Driven Searches (TDS) in the context of CodeGenie,

we take a small example from the literature1. The screenshot in Figure 5.6 shows

the CodeGenie Eclipse Plug-In returning possible results to the test case partially

depicted in Listing 5.3. The RomanTest test case is the basis for CodeGenie’s

search and recommendation engine. The tool parses the test case that requires

the following interface:

Util

+ roman(int) : String

The information about the tested interface is then used to issue a search request

to Sourcerer, which will return a set of ranked candidates. These can be inspected

by the user and, as shown in the screenshot,tested by weaving them into the

developer’s project and executing the above test on the woven code slice.

1 CodeGenie and Sourcerer are no longer available under the published URLs.

83

Chapter 5 REUSE-ORIENTED CODE RECOMMENDATION SYSTEMS

Figure 5.6.: Screenshot of CodeGenie for a Number Converter [Laz+09].

5.3.5. PARSEWeb

Strathcona was an early implementation of a code recommender that helps

developers understand the usage of so�ware libraries. It inspired many other

projects like PARSEWeb [TX07] or, later, the Code Recommenders Project . Unlike

the Strathcona recommender, which focuses on usage examples for concrete

calls, PARSEWeb is a tool that is designed to support developers in using an

unfamiliar API by specifying an object conversion task (α→ γ).

To be�er understand the functionality of PARSEWeb, we can, for instance, refer

back to the task in the Strathcona subsection. There the goal of the developer

was to create an AST from a String containing source code: instead of specifying

a pseudo-API call to the ASTParser, in PARSEWeb the developer needs to specify

the String as the source object and the CompilationUnit as the target object. The

tool is fully client oriented and works without any special server. To install it

into Eclipse2, however, the user needs to have Firefox installed with the FireBug

plug-in, set a working path in the system and copy two files to that location.

As an example, suppose a programmer faces the task of using the Eclipse JDT

API to create a CompilationUnit (γ) object from an ICompilationUnit (α) ob-

2 Eclipse 3.5.0 is the last version o�icially supported by PARSEWeb. The manual is tailored to a
Windows installation.

84

State of the Art Systems 5.3

Figure 5.7.: PARSEWeb ICompilationUnit to CompilationUnit [TX07].

ject [TX07]. This problem may be very familiar to anyone who has tried to use

the Java parser of the Eclipse project and usually involve significant time in API

reading and unsuccessful trials before a working result is produced. In our ex-

ample the user is now required to translate the given problem into a PARSEWeb

query: ICompilationUnit → CompilationUnit

PARSEWeb o�ers a query window for query formulation and a�er triggering a

search, it interacts with a code search engine to find relevant code samples. In

the primary publication for PARSEWeb, the authors found that their approach

performed best with Google Codesearch [TX07]. This search engine, however,

has been shut down [Goo11] and since there is no other information available,

it is not clear whether the tool is still usable.

For the given query a search considers only those classes to relevant which have

a usage relation with the object types specified in the query. To analyse the

sources, an Abstract Syntax Tree is built as well as a Directed Acyclic Graph that

is used to represent control-flow information in the artifact. This is traversed to

generate a list of method calls that use the source object α as initial type and

conclude with the destination type γ as end node. A�er finishing the process,

PARSEWeb creates a method invocation result (cf. Figure 5.7).

The necessary sequence of method invocations is rather short in this case. It

starts with a call to the setSource method of the ASTParser which takes as a

parameter the source object α. The second invocation is a call to the createAST

85

Chapter 5 REUSE-ORIENTED CODE RECOMMENDATION SYSTEMS

method that returns the destination object γ a�er a downcast. Although the

authors claimed in their publication on PARSEWeb that the tool performs be�er

than other competing tools [TX07], the results still need inspection by the user

and it is not clearly stated whether they reveal all possible / reasonable steps.

Moreover, the context of the user’s query is not examined.

A quick look at the JDT Documentation reveals that there are some more options

which may be very interesting to a user performing the given task. For example

the parser can be told which Java version should be used while performing the

transformation. Therefore three more lines of code would be necessary and it is

not clear how one could specify a query for them to PARSEWeb:

Listing 5.4: Relevant Invocations Missed by PARSEWeb.

1 Map options = JavaCore.getOptions ();

2 JavaCore.setComplianceOptions(

3 JavaCore.VERSION_1_5 , options);

4 parser.setCompilerOptions(options);

Although the tool focuses on Eclipse integration, we regard it as a recommen-

dation system in the broad sense. The user’s responsibilities mentioned in the

section on Strathcona apply for this tool as well, but it hardly meets the require-

ments stated in Section 5.3 to be considered a full-featured recommendation

tool (as mentioned, there is no context awareness for example).

Although the tool is still downloadable at

http://research.csc.ncsu.edu/ase/projects/parseweb/

the available version dates back to 2009 and the installation manual only consid-

ers a Windows installation on Eclipse 3.5.0. which is no longer provided by the

Eclipse Foundation.

86

http://research.csc.ncsu.edu/ase/projects/parseweb/

State of the Art Systems 5.3

5.3.6. Code Conjurer

Code Conjurer is our own implementation of a ROCR system [Jan07; HJA08] and

one of the rare systems considered in this chapter that are still available today. It

incorporates the early ideas of a so-called So�ware-Reuse Environment [Gar+06].

The tool is driven by the Merobase component search engine to retrieve results

to search queries for programming language units from various open source

code repositories (such as SourceForge, the Eclipse project, JavaForge, or the

Apache projects) as well as the open Web. It can be installed into Eclipse using

Eclipse’s built-in marketplace and requires no additional e�ort except se�ing a

Merobase username and password.

Within the Eclipse IDE, Code Conjurer presents itself through a small icon

showing a conjurer’s hat and a Reuse Recommendations View, which is used to

display and examine possible reuse candidates a�er a search. The tool supports

two basic modes of operation, which themselves have di�erent characteristics.

The first mode is the so called interface-driven mode, in which Code Conjurer

monitors a developer writing the implementation of a task. When the background

agent is turned on, it reacts on any change to the interface to the current class

under development.

To protect the intellectual property of the developer, the tool extracts only the

necessary structural information of the class under development and sends it to

the Merobase server for a search for reuse candidates. While the user is writing,

results are retrieved and displayed in the Recommendations View. The user can

click on any result and either inspect the whole component or expand the result

tree and see a preview of any of the contained methods.

To reuse one or more of the artifacts, the user can insert the code using drag and

drop from the Reuse View to the Java Editor of Eclipse or, if a class should be put

in a di�erent package than the one currently edited, the Package Explorer. Code

Conjurer will automatically integrate the code into the developer’s application

and automatically a�empt to resolve necessary imports required by the reused

artifact.

87

Chapter 5 REUSE-ORIENTED CODE RECOMMENDATION SYSTEMS

Figure 5.8.: Code Conjurer Recommendations Based on a UML [HJA08].

Consider a common scenario such as the one depicted in Figure 5.8 in which a

developer defines the desired component API at the design stage. Code Conjurer

can deliver implementation recommendations directly from the component’s

UML representation and, when set to proactive mode, it can issue new search

requests each time the developer adds, removes, or changes an interface-defining

part of the component. Code Conjurer then presents the retrieved components in

the lower le� Recommendation box. The user can explore any recommendation

further by expanding its implementation in the lower right box.

Furthermore, it is also possible that the developer does not want to use one

of the recommended components as is, but the information embedded in the

recommended components is still useful for the development and improvement

of the overall so�ware design. Therefore, Code Conjurer not only returns a

list of matching components but also analyzes them using various clustering

techniques to create a characteristic design picture of the result set. Using this

information, Code Conjurer can suggest the typical set of methods implemented

88

State of the Art Systems 5.3

by components matching the partial interface defined by the user. In addition

to the described capabilities, our tool is capable of assisting the developer with

quick fixes when types within the developer’s code cannot be resolved. Code

Conjurer o�ers to search for the missing types using Merobase and to recommend

them if available. Thus a developer implementing a Matrix which specifies a

Vector type which is not yet implemented can look for one with the help of the

recommendation tool.

Listing 5.5: JUnit Test Case Fragment for a Credit Card [JA12].

1 public class CreditTest extends TestCase {

2 public void setUp() {

3 cc = new CreditCard ();

4 }

5 public void testVendor1 () {

6 long number = cc.parseNumber("4111 1111 1111 1111");

7 long vendorId = cc.getVendorId(number);

8 assertEquals("Visa", cc.getIssuerName(vendorId));

9 assertNotSame("MasterCard",

10 cc.getIssuerName(vendorId));

11 }

12 public void testErrorOnWrongNumber () {

13 long number = cc.parseNumber("12345678");

14 long vendorId = cc.getVendorId(number);

15 assertTrue(cc.getIssuerName(vendorId).

16 contains("error"));

17 }

18 }

Nevertheless, the most prominent feature of Code Conjurer is its ability to

perform test-driven searches in conjunction with automated adaptation of the

reuse candidates [HJA08; JA12]. This approach was driven by the idea of a

so�ware search system, which is able to present only relevant results to its users.

This means, that only those classes whose behavior matches the one specified in

the test case (i.e., search query) are considered as relevant results and presented

as recommendation to the user. To illustrate this approach, we refer to one

of our publications, where we have shown the practicability of this idea using

89

Chapter 5 REUSE-ORIENTED CODE RECOMMENDATION SYSTEMS

Code Conjurer. In the given scenario, we consider a developer who wants to

implement a credit card component [JA12] and who is writing a test case for

such a component. The corresponding example for a credit card test (i.e., the

search query) is shown in Listing 5.5.

Code Conjurer will use this test case to query Merobase for possible reuse

candidates by examining the test’s required interface, which describes the class

under test (CUT). The set of candidates is then sent to an automated test and

adaptation service which evaluates the result’s fitness-for-purpose by trying to

execute the provided tests on it. If the tests are not successful because of an

interface mismatch, the automated adaptation engine will try to create “glue

code” between the test and the candidate in order to map the calls from the

test to the provided interface of the retrieved code artifact. We have discussed

this process already in more detail in Section 4. A�er the search has finished,

Code Conjurer will provide all reusable classes in the Recommendation view

presented at the bo�om of Figure 5.9.

The results can be inspected and reused in exactly the same way as the earlier

described searches. One additional possibility, however, is the exploration of

the adapter code, if it has been created. If it was necessary to adapt the reuse

candidate’s interface to the provided test case, Code Conjurer will deliver the

additional code and when the user drags the result selected for reuse into the

Package Explorer of Eclipse, the adapter will be automatically inserted along

with the reuse candidate, the so-called adaptee. In this case no manual changes

to the code are necessary and the developer can execute the primarily wri�en

test straight away and check that the reused component behaves correctly.

The possibility of reusing external components as “black boxes” whose imple-

mentation is unknown to the developer is a two-edged sword. It can bring great

benefits but also great dangers. As the reuse of components becomes easier,

the developer has a growing responsibility to be aware of the dangers and take

appropriate counter measures (like code inspection). Developers must under-

stand what they are reusing and what possible e�ects their use can have on

their systems, especially if their use is just a “drag and drop" away.

90

State of the Art Systems 5.4

Figure 5.9.: Test-Driven Search for a Credit Card Component [JA12].

To summarize, since developers do not want to have their workflow disturbed

by leaving their IDE to issue code searches (e.g., they do not want to open a

web browser window and to enter a query in a search engine that requires

them to manually transfer possibly matching results into their project) [Gar+06],

Code Conjurer tries to integrate the reuse task seamlessly into the IDE and to

recommend reuse candidates only when there is a high likelihood that they are

useful to the developer.

The tool is available as open-source so�ware hosted at SourceForge and has

been continuously maintained and improved since 2007. Currently, the addition

of an ex ante evaluation of the results based on the ideas of speculative analysis

[Muş+12b] is under investigation. This measure should further improve the user

experience when looking for reusable artifacts. More information about Code

Conjurer can be obtained from codeconjurer.sourceforge.net.

91

http://codeconjurer.sourceforge.net

Chapter 5 REUSE-ORIENTED CODE RECOMMENDATION SYSTEMS

5.4. Usage Scenarios

The term so�ware reuse is usually associated with the integration of existing

so�ware (i.e., code) into a project under development. When using a (code) search

engine, this is usually performed in a copy-and-paste approach [LM89], which is

also known as code scavenging when contiguous blocks of source code are copied

to the new system [Kru92]. The underlying goal of these techniques – which

are known by di�erent names and are subsumed under the term pragmatic

reuse [HW07] – is to copy as much code as possible from already existing

projects.

This is, however, not the only kind of reuse that is possible. There are many

other forms of so�ware reuse like design scavenging, where large blocks of code

are reused and subject to major internal changes. This diversity in motivation

for reuse leads to di�erent varieties of reuse-oriented code recommendation

systems. ROCR systems were designed to support other forms of reuse than just

to copy pre-existing code. For example, some systems recommend automatically

created code fragments by leveraging knowledge from pre-existing source code

or other so�ware artifacts. From our above survey on reuse-oriented code

recommendation tools, we can identify di�erent groups of scenarios for so�ware

reuse tools. Based on the above discussion, these systems can roughly be grouped

into two camps – those whose goal is to provide advice to developers on how to

use already identified code (e.g. frameworks and libraries) and those whose goal

is to help developers find, evaluate and reuse as yet unknown code.

5.4.1. Component Reuse

The most obvious use-case for a ROCR system is to present previously wri�en

code assets to developers. These artifacts may have di�erent levels of granularity

ranging from code snippets, methods, classes up to whole subsystems and

systems. A well known member of this family is Code Conjurer [HJA08] which

o�ers developers the possibility to find reusable code artifacts from the Merobase

source code repository [Jan+13]. When using this Eclipse plug-in in its pro-active

92

Characteristics of ROCRs 5.5

mode, developers are o�ered suggestions for reusable methods and classes which

fit into their programming context and they can simply drag-and-drop the best

match into their project. By o�ering the possibility of automatic dependency

resolution, where classes are accompanied by those classes which they make use

of (e.g., by instantiation or method invocation), Code Conjurer even o�ers the

automated reuse of (smaller) systems, which we call components in the sense of

component-based so�ware development [Atk+08a].

5.4.2. Library Reuse

Especially within object-oriented development projects, developers constantly

utilize pre-fabricated building blocks provided in the form of libraries by invoking

some of their functionality. This is very convenient at first sight, since libraries

form a cohesive piece of so�ware that usually incorporates a lot of reusable

objects with their dependencies. Although they can make the development of

new so�ware much easier, there are, however, numerous obstacles to their usage

that every developer experiences on a regular basis.

�estions like “how is this library used”, “which objects do I need”, “how are

they created” and “what sequence of calls do I have to make” arise almost every

time a new framework, API or library is used. Tools like Strathcona [Hol04] or

Prospector [Man+05] explicitly addressed this problem by recommending code

snippets that show examples of how libraries can be used or which call sequence

is necessary to transform an object from one type into another type (e.g., a File

into an AbstractSyntaxTree).

5.5. Characteristics of ROCRs

Form the observations made in our survey, we can now identify a few minimum

requirements that have to be met by modern code recommendation tools to

make code reuse more convenient.

93

Chapter 5 REUSE-ORIENTED CODE RECOMMENDATION SYSTEMS

HelloTest.java UML.diagHello.java

1!
2!
3!
4!
5!
6!
7!
8!
9!

10!
11!
12!
13!
14!
15!
16!
17

public class Hello {!
!
 /*!
 * Hello Recommendations Example!
 *!
 */!
!
 public void sayHello() {!
!
!
!
}

Complete stub!
Insert method!
Complete class!
System.out.println!
Insert JFrame

String hello = "Hello" +!
 "World!";!
!
System.out.println(hello);

Figure 5.10.: IDE Auto-Complete Recommendation.

In other words, we have obtained the necessary insights for the creation of our

own reuse-oriented recommendation system for so�ware tests and identified

the requirements that such a system needs to implement:

Pro-Activeness Reuse-oriented recommendation systems for code should con-

stantly monitor the user’s development progress and pro-actively decide

when to trigger a search for recommendable artifacts. This should hap-

pen without any trigger by the user, who should not be disturbed by this

action. Since it is the key feature of a recommendation system, this proac-

tive behavior needs to be well designed and will play the biggest role in

determining whether the recommendation system will be a success.

Context awareness An important driver for the proactive behavior of a rec-

ommendation engine is the ability to analyze context data to judge when

to make recommendations. Depending on the kind of recommendation

system, this may be range from the immediate environment of the cursor

to the source code of the whole project. Recommendation systems perform

di�erent types of assessment on context information and usually rank their

results according to either fixed, automatically derived (this could be, e.g.

the user’s feedback on previous recommendations) or user-defined criteria.

94

Characteristics of ROCRs 5.6

IDE integration A Code-Reuse Environment should ensure full integration of

the reuse process into the developer’s IDE. This can only be achieved if

a tool has access to the developer’s workspace and project in order to

understand the context of a class under development and, possibly, also

the developer’s behavior. It is also possible to filter out which classes and

types are in the reuse-by-memory space of a developer and need not be

recommended by the system. This ensures that the workflow of the user is

not broken but reuse can be more easily integrated into the development

life-cycle.

Autonomous Evaluation Ideally a code recommendation tool should predict

the consequences of the inclusion of any of the suggested reuse candidates

into the developer’s project. Therefore, ideally a recommendation tool

should perform Speculative Analysis [Bru+10] and autonomously apply

possible recommendations in the background and evaluate their e�ect on

the system’s development state. Combined with a sophisticated ranking

algorithm, this should significantly reduce the e�ort that developers have

to put into evaluating recommendations.

Ready on-demand Developers do not want to wait for code recommendations.

A recommendation system for code reuse must ensure that the reusable

artifacts are available exactly when they are needed. If it takes more

time for a system to find reusable artifacts and propagate them to the

developer than it takes for him to implement a task himself, the reuse

recommendation system will be useless.

We can imagine reuse-oriented code recommendation systems as advisers for

so�ware developers. They provide their users with an easy to use interface

for sophisticated search engines and mining tools. Recommendations need to

be unobtrusive and preferably appear immediately when demanded. However,

they should not require high cognitive decisions or a significant amount of

e�ort. Ideally, recommendations should also be presented in the context of

their potential application. For example, reusable code can show up in the auto-

complete feature of the code editor. An example for this editor integration is

sketched in Figure 5.10.

95

Chapter 5 REUSE-ORIENTED CODE RECOMMENDATION SYSTEMS

5.6. Summary

These given examples illustrate that there are di�erent forms of reuse-oriented

code recommendation systems supporting di�erent services and use cases, rang-

ing from copy & paste reuse, library reuse and example recommendation up to

the idea of this thesis to reuse the knowledge bound up in previously wri�en

so�ware tests. Clearly, the given list of examples cannot be complete, nor can

we today foresee what kinds of reuse-oriented code recommendation systems

may arise in the future. Nevertheless, based on the generic definition of a rec-

ommendation system from Robillard et al. [RWZ10], it is possible to formulate

the following definition of reuse-oriented code recommendation systems:

Definition 5.1. A Reuse-Oriented Code Recommendation (ROCR) system is a tool

that autonomously recommends code artifacts of any kind and size to developers

in their particular development context.

The last part of the definition concerning the development context leads to the

observation that

Observation 5.1. ROCR systems are assistant tools for developers, which are

seamlessly integrated into the developers’ so�ware development process and envi-

ronment.

As we have learned earlier in this thesis, tools that are not integrated into the

developers’ so�ware development environments are usually doomed to failure

and many of the aforementioned systems were not able to acquire a wide user

base. Due to the missing context information and constant disruption of their

workflows, users still unfortunately seemed to have opted primarily for the

“make” option in the traditional make or reuse dilemma.

The main obstacle to so�ware reuse is no longer the lack of components to

reuse or the ability to retrieve them e�iciently. Many projects have shown that

this is feasible with modern technology [Baj+06; HM05; HJA08; Rei09]. The

main obstacle is rather the balance between the e�ort required to evaluate and

incorporate components into new applications and the likely benefit (including

96

Summary 5.6

the risk that a reuse candidate will turn out to be unsuitable). This is where code

recommendation tools come in. Their role is to non-intrusively and reliably find

and recommend high quality code artifacts leveraging so�ware reuse and to

help developers integrate them into their systems with minimal e�ort.

Based on these observation we have identified a minimum set of requirements

that have to be met by modern code recommendation tools to make code reuse

more convenient. These “best practices” should be standard features of ROCR

systems as they contribute to higher acceptance of such systems among users.

This chapter has provided a survey of the state-of-the-art in reuse-oriented code

recommendation systems and the search engines that o�en lie behind them.

The properties of reuse-oriented recommendation systems that we identified

in this chapter represent a sound foundation for the following chapters, where

we develop our approach for reuse-oriented test recommendation, especially a

reuse-oriented test recommendation system for the Eclipse IDE (cf. Chapter 8).

Contribution of this chapter

• Survey on existing reuse-oriented code recommendation systems.

• A definition of the so�ware reuse process.

• A set of general characteristics for code recommendation tools.

97

Part III.

Reuse of So�ware Tests

99

“ Garbage-in equals garbage-out is

no explanation for anything except our failure

to test the system’s tolerance for bad data.”

So�ware Testing Techniques

Boris Beizer, So�ware Engineer

6
Infrastructure for Test Reuse

6.1. Obtaining Reusable Test Cases

To provide an e�icient system for (semi-)automated test reuse, it is necessary

to build an appropriate infrastructure that allows for the analysis, indexation,

storage and retrieval of existing test cases. In addition to the ever-present

problems faced by the code reuse community, such as ine�icient or imprecise

retrieval techniques, test reuse imposes some new challenges that have to be

overcome. One is the creation of an e�ective parsing mechanism for test cases,

another is the question of retrieving suitable results.

In contrast to traditional so�ware reuse, where usually either textual comments

are made searchable [Ye01] or (parts of) the provided interface of a reusable

artifact are extracted and stored [ZW95; Hum08], it is not possible to apply the

same techniques directly to tests. Whereas object-oriented development is a

widespread paradigm for production code, there is no similar paradigm on the

101

Chapter 6 INFRASTRUCTURE FOR TEST REUSE

horizon for writing tests and test cases. Even worse, today there are very few

limitations on the way tests have to be defined. Hence, there are uncountable

di�erent possibilities to test the same piece of functionality (cf. Section 2.2).

Figure 6.1.: The TIOBE Programming Community Index [TIO14]

In this chapter we will discuss the possibilities of leveraging the knowledge

embedded in existing test cases and develop the necessary techniques and

heuristics to extract the information they contain. For our purposes, the tests are

collected via the internet from projects stored by open source hosting services.

The size of the repositories that are created from these sources demonstrates that

the technology developed in this thesis is applicable to internet-scale repositories,

as this is common practice of the reuse approaches of the last decade [Baj+06;

Hum08; Rei09]. Throughout the remainder of this thesis, we will focus on the

JUnit testing framework for Java, since it is a widespread, commonly used testing

framework for one of the most popular programming languages (as indicated,

e.g., by the TIOBE programming community index [TIO14] or the RedMonk

Programming Language Ranking [Red13]).

102

Obtaining Reusable Test Cases 6.1

Although their methodologies to obtain the programming language usage statis-

tics are questionable, these communities confirm practical experience such as

the fact that Java is very popular among GitHub projects [Bar13] or that it is the

main language in development of Android OS apps. A�er all, since the underly-

ing ideas and methodologies developed and applied within this thesis are very

general they should be applicable to other languages and testing frameworks as

well.

6.1.1. Potential of Open Source Repositories

In the earlier parts of this thesis, we discussed the problems faced in so�ware

reuse and identified the fact that, today, far from having “too few” components

(i.e., the repository problem), we now almost have “too many” available. The prob-

lem is not the shear number but the fact that reusable so�ware is unstructured

and sca�ered over multiple data stores around the world. The early literature in

so�ware reuse advocated centralized repositories which o�ered “the right com-

bination of e�iciency, accuracy, user-friendliness and generality to a�ord us a

breakthrough in the practice of so�ware reuse” [MMM98]. These ideas, however,

were already challenged by Seacord at the end of the 1990s, who stated, that

“problems with this approach include limited accessibility and scalability of the

repository, exclusive control over cataloged components, oppressive bureaucracy,

and poor economy of scale (few users, low per-user benefits, and high cost of

repository mechanisms and operations)” [Sea99]. This statement has to be read

in the context that at that time Seacord et al. published one of the first widely

recognized code search engines [SHW98].

The purpose of Agora, as they called their system, was to provide a search en-

gine that supports searches for components based on the description of their

properties contained in their interfaces. Another argument in favor of the usage

of specialized search engines over centralized directories was the fruitless invest-

ment in the creation of the UDDI Business Registry (UBR), which according to

Hummel et al. did not contain a lot of usable material [HA06], and its shutdown

in January 2006 a�irmed these findings. Furthermore the timeline presented in

103

Chapter 6 INFRASTRUCTURE FOR TEST REUSE

Section 3.2, where we gave an overview of the history of so�ware search and

reuse, shows that search engines have dominated the last decade of this research

area, while centralized repositories neither gained public recognition nor were

reported as being successful.

In the following section, we will investigate the feasibility of creating a searchable

index of reusable tests from freely available code in open source repositories. In

the preparative work for our search engine SENTRE, which supports the search for

reusable so�ware tests, we harvested projects from several open source hosting

platforms, mainly from the widely used GitHub [Git14], SourceForge [Med14]

and Bitbucket [Atl14] source code hosting services. While the sources obtained

from GitHub and Bitbucket are relatively new (project downloads were per-

formed in summer / fall 2013), our index additionally contains the sources from

the Merobase dataset [Jan+13], which was built in 2006 and revised in 2010 with

files from various sources such as SourceForge, apache.org and Google Code.

The Content of Open Source Repositories

To provide an impression of the amount of code available in open source hosting

services, we provide some up-to-date statistics, which can be regarded in the

context of the research of Hummel et al. [HA06; Hum08; HJA08], whose findings

date back more than half a decade. GitHub is one of the fastest growing project

hosting services, with an impressive growth rate. In April 2011 they published

the number of 2,000,000 repositories in 1.1 million projects1, while we counted

approximately 6.5 million projects in July 2013 and the latest run of our scripts

from January 2014 lists 16,143,093 projects. The rapid growth of GitHub may,

however, also be related to the way in which developers have to use the service.

In general, developers who want to contribute to a project need to fork the

project, which results in a new project under their user account. This project fork

contains the code that the developers can work on and where they contribute new

features, translations, etc. If they feel that their work would be a contribution

to the original project they have to send the original author a pull request. In

1 https://github.com/blog/841-those-are-some-big-numbers

104

https://github.com/blog/841-those-are-some-big-numbers

Extracting Knowledge from Test Cases 6.2

contrast, for example, SourceForge organizes project contributions by allowing

developers to provide patches to existing projects and / or join projects.

Some facts about the major sources of code for our test search engine are

presented in Table 6.1. We obtained the information either directly from the

hosters website, if available, or by counting the code modules ourselves during

the extraction processes (marked with a small black triangle J).

These numbers show that the availability of reusable artifacts is no longer an

obstacle to the creation of viable repositories. Nevertheless, we will see that the

success of reuse is still related to the quality of the reusable material in terms of

programming quality and style. This applies in particular to the reusability of

so�ware tests.

Hoster Projects Hosted Forked Projects Users
GitHub [Git14] 16,143,093J 6,954,849J 2,301,480J

SourceForge [Med14] > 324,000 n/a 3,400,000
Bitbucket [Atl14] 206,882J 34,163J 128,389J

Table 6.1.: Open Source Hosters Facts.

6.2. Extracting Knowledge from Test Cases

As we have already seen in Section 2.2, knowledge extraction from JUnit test

cases can be a relatively simple task, when the test cases are self-contained, when

the CUT ideally does not rely on further dependencies and when the developer

of a test adheres to the coding guidelines defined by the framework. However,

our investigations show that this is the exception rather than the rule, and it is

very likely that the tests analyzed during the creation of our search engine will be

much more complex and ambiguous. Therefore, this section develops an overall

structure of a generic meta-model for so�ware tests that is consistent to the

previously defined testing terminology. Hence, the primary goal of our work is to

105

Chapter 6 INFRASTRUCTURE FOR TEST REUSE

identify and describe the information necessary for building a general purpose

search engine for tests, whilst omi�ing concrete language- or framework-binding,

which is not relevant for this particular task. Subsequently, we describe how this

meta-model can be used in a derived model of the JUnit framework, to give a

concrete usage example.

6.2.1. A Meta-Model for So�ware Tests

From the preceding chapters and sections, we have learned that the main goal

of a test reuse system is to support e�icient and e�ective searches for reusable

assets. However, this requirement is very vague in terms of what should be the

focus of a search. A valuable test reuse system should be able to cover a variety

of search scenarios in order to assist its users in di�erent situations. A system

for reuse-assisted so�ware testing should be able to process similar searches to

those known from the “classic” reuse of production code. This means that in

addition to the well-known keyword- or name-based searches, such a system also

needs to support more sophisticated queries. We have already mentioned our

work where we have shown that using interface descriptions as search queries,

for example, leads to be�er results than the aforementioned approaches [HJA07]

and it is no surprise that well known code search engines like Merobase, Sourcerer

or S6 support this form of query formulation.

The Test Model

In order to create a search engine for reusable tests, we need a data model that

is capable of capturing all those facets of a so�ware test, which are necessary

to reconstruct the test at reuse time. In this section we are going to develop

a meta-model for tests that can be instantiated for di�erent test frameworks.

In subsequent subsections we will give examples of its use for the extraction

of information from tests using the JUnit framework. In order to keep the

model manageable, we use the idea of component decomposition, i.e., we will

decompose the so�ware test model into smaller artifacts that can be addressed

106

Extracting Knowledge from Test Cases 6.2

separately. The particular artifact of interest in each UML class diagram will be

annotated with the stereotype «subject».

contains
1..*

contains
1..*

«subject»
TestModel

+ name

Component

+ name

TestSuite
TestCase

+ name
+ componentUnderTest

Figure 6.2.: The Test Model Contains Test Suites and Required Components.

The root element of our meta-model is the TestModel, which can be regarded

as some kind of container that incorporates components and especially test

suites. The diagram in Figure 6.2 depicts the structures related to a TestModel: a

Component has a name a�ribute and a TestSuite is a specialization of a Component

which inherits its characteristics. Later we discuss the structure of Component

in more detail, as well as the decomposition of a TestSuite into TestCases and

their related artifacts.

Naturally, the execution of a test suite involves the satisfaction of the test suite’s

required interface, which represents its dependencies to other components and

needs to be captured in order to build a meaningful database of reusable tests.

When we instantiate the model to JUnit, the TestSuite element corresponds

to di�erent concepts: recalling definition 2.5 – which defines a test case as a

container for tests – it is clear that JUnit 3 is too coarse-grained when defining a

whole test class as a test case2. JUnit 4’s introduction of the @Test annotation,

which precedes every method containing tests, improved the situation since it

2 e.g., public class MyTest extends TestCase {...}.

107

Chapter 6 INFRASTRUCTURE FOR TEST REUSE

maps the definition of a test case to the method level. Since it therefore allows

a component to contain its own test cases expressed in methods, the concept

of a test case in our model corresponds to JUnit’s test method. On the other

hand, the test class and test suite in JUnit are both an instance of the TestSuite.

We have already given a comparison of the testing terminology and the naming

conventions of JUnit on page 21 in Chapter 2.1.

has
0..*

requires
0..*

type
1

returns0..* parameter0..*

«subject»
Component

+ name

TestSuite

+ componentUnderTest

Value

+ name
+ value

Operation

+ name
+ parameter
+ returnValue

Figure 6.3.: The Decomposition of a Component.

Component Relations

The diagram in Figure 6.3 shows the structure of a Component. Inspired by

Szyperski’s discussion about the nature of components [Szy02] and driven by

the goal to be as generic as possible, we define a composition relationship

between Component and Operation. Actually, we are not strictly following his

component model, since we are dealing with object-oriented tests that may be

wri�en, e.g., in Java and JUnit and therefore we need to be able to represent them

adequately. In the Java programming language, a�ributes are used to represent

108

Extracting Knowledge from Test Cases 6.2

important information, given the language’s principle that (almost) everything

is an object and objects have an observable state exposed through their publicly

visible instance a�ributes [Boo+98].

Although there is no specific definition of component a�ributes in our model that

would allow for an observable state, our meta-model is still capable of handling

Java / JUnit or other object-oriented languages and testing frameworks. Instead

of directly accessing a�ributes, we assume them to be private and exploit the

design principle of information hiding introduced by Booch et al. in their famous

book on object-oriented analysis and design [Boo+98]. We therefore assume that

so-called ge�er and se�er operations are used to access private a�ributes in Java

classes. Beside the general description of dependencies between components,

our data model must be capable of handling dependency information about

the components required for the execution of tests. Therefore, the conceptual

class TestSuite inherits the self-association from Component, which captures

information about all required components and operations that are used by

the tests contained in the test suite. This association represents the so-called

required interface of any component captured by the model. Hence, it is used to

represent the contextual dependencies of a component. Naturally, a test case

makes use of the requires association at least once – namely, to describe the

class under test.

Referring to the example in Listing 2.2 (pp. 23–25), the required interface of

the distance calculator’s JUnit test case can be described with the help of the

Merobase �ery Language (cf. MQL on page 44) as

Euclid(dist(double):double);

which corresponds to the provided interface of the distance calculator class from

Listing 2.1.

The information about the required interface also enables us to represent existing

inheritance relations, for example, when a JUnit test case is defined as a child

class of another test case. It is not unusual that developers of test cases define

their own JUnit test cases that extend the TestCase class, in order to follow their

109

Chapter 6 INFRASTRUCTURE FOR TEST REUSE

own naming conventions and for maintenance reasons. Therefore, an instance

of our data model is able to capture test class definitions using multi-level

inheritance relationships, as shown in the following:

public class MyTest extends MyOldTest {...}

Here, the MyTest class inherits from MyOldTest, which itself extends the TestCase

class provided by JUnit 3 framework.

To fully describe the structure of a required interface, we refer again to Szyper-

ski’s concept of a so�ware component [Szy02] and the findings of Hummel et

al. [HJA07; Hum08]. The diagram depicted in Figure 6.3 describes the required

interface of a Component by its name and the information exposed by its con-

tained operations, i.e., their provided interface. The provided interface of an

operation itself is composed of the operation’s name, its return type and param-

eters. A cardinality of 0 on one of the associations between an operation and

the value class corresponds to a void return type or an empty input parameter

list, respectively.

Decomposition of the TestSuite class

One of the most important pieces of information for a test search engine is

the association of TestSuite to the component under test. Since it is our goal

to provide users the possibility to search for reusable tests using the interface

declaration of their own components, it is necessary that the search system

is able to compare their provided interface with the interface required by the

potentially reusable tests.

Although there are obviously many more properties of so�ware components,

many of them are out of the scope of this thesis and are not required in this

context. Thus, they do not need to be stored in a data model for so�ware tests.

A component’s source code, for instance, can be obtained directly from the file

system when necessary and does not need to be redundantly saved in a database.

The information about a test suite’s required components is, however, very useful.

110

Extracting Knowledge from Test Cases 6.2

Its main use is to enable users to search for reusable tests using the interface of

the component under test and to enable our test parser to resolve return types

of method invocations, which are declared in their corresponding classes and

cannot be derived from an invocation unambiguously. In the following, we will

investigate the concept of test suites and test cases in more detail and describe

how the information contained within test suites is captured.

The structural view depicted in Figure 6.4 shows the containment hierarchy in

our model starting from the TestSuite. It also helps to explain the structural

decomposition of a Test, which is marked with the aforementioned subject stereo-

type. Since TestSuite is a specialization of Component, it inherits its concept of

operations, which are preferably utilized to set up and prepare the test environ-

ment for the ensuing test cases and tests. An operation may also serve, however,

as a container for tests. An instantiation of this meta-model for JUnit therefore

maps the TestSuite class to the JUnit TestCase, because JUnit TestCases are Java

classes which encapsulate tests (assertions) in test methods which correspond

to the Operation class contained in Component. Although JUnit documentation

demands developers to implement a method for each test3, this scenario tends to

be rather the exception than the rule. Hence, we have to create a corresponding

mapping in our meta-model.

Now we can take a closer look at the decomposition of Test. It contains three

classes, which represent the main concepts associated with tests: 1. an invocation

of the class under test, 2. the definition of an expected result, and 3. an unspecified

number of statements. Naturally, a test only makes sense if there is something

to be tested. Hence, there has to be (at least) one invocation of the class under

test. Figure 6.4 annotates the association between a test and a corresponding

invocation of the CUT with a multiplicity of 1 to emphasize and reflect that

a test is intended to inspect the behavior of one invocation of the component

under test for particularly defined input values (i.e., the test case values). This

apparent constraint, however, does not stop the model from capturing more

complex tests. Therefore, a test is also associated with the Statement class, which

3 see, e.g., http://junit.sourceforge.net/junit3.8.1/javadoc/junit/framework/TestCase.
html: “For each test implement a method [. . .]”

111

http://junit.sourceforge.net/junit3.8.1/javadoc/junit/framework/TestCase.html
http://junit.sourceforge.net/junit3.8.1/javadoc/junit/framework/TestCase.html

Chapter 6 INFRASTRUCTURE FOR TEST REUSE

contains1..*

encloses1..*

performs1

defines1

performs0..1

0..*

0..* returns0..1

TestCase

+ name

TestSuite

+name

«subject»
Test

+ name

CUTInvocation

ExpectedResult Invocation

Statement

contains0..*

Value

+ name
+ type
+ value

TestCaseValue

Operation

+ name

pa
ra

m
et

er

returns
0..1

provides
0..*

executes 1..*

Figure 6.4.: The Decomposition of a Test Suite.

can be instantiated to any type of statement like assignment- or if-statements.

The introduction of this concept allows more sophisticated tests to be captured

such as, for example, conditional tests or tests depending on the state of the

system under test.

Although the execution of statements may be a requirement of a test, it is also

possible that a test case contains only one invocation of the class under test (i.e.,

one test) in its code. Nevertheless, at runtime this test code may result in a large

number of tests being executed, if the test statement is for instance contained in

a loop. Thus, we have decided to contain the Statement class within the TestCase

112

Extracting Knowledge from Test Cases 6.2

instead of within the Test. In addition to that, we define a link between Test

and Statement in order to capture the statements relevant to the context of the

CUTInvocation. The setup- and tear-down-operations of a test case are covered

by the inheritance relation between the TestSuite and the Component class, i.e.,

they are described using the Operation class of a Component.

A test cannot be complete without the declaration of an expected value, which

has to be compared to the actual result created by the CUT’s invocation using

test case values. The structural view of our model depicted in Figure 6.4 defines

an inheritance relation between the Invocation and the node representing the

expected value. While such a relationship is quite natural for the invocation of

the CUT, it is not so obvious why we declare this also in the case of the expected

value. To explain this we refer to the example in Listing 6.1, which originates from

a JUnit test case for a distance calculator obtained from a GitHub project4.

Listing 6.1: Example of a Calculated Expected Value.

1 assertEquals(java.lang.Math.pow (2*2*2 + 1*1*1 ,1.0/3.0) ,
2 d1.distance(v1,v2), 0.0001);

If our model only captured literals as expected values, it would not be possible

to reflect situations like these in which the expected value is the result of the

execution of an operation. The above example uses the static pow operation of

the Math class from the Java standard toolkit in order to obtain the expected

value. One reason why the author of the test may have done this is to make

it maintainable, and the calculation using concrete values is much more self-

explanatory than providing the plain result of the calculation. We can also

imagine a test that reads the expected value from an input file or that obtains the

required information from a web-service. Since our model has to consider such

situations we therefore define the ExpectedResult as a child class of Invocation.

4 https://github.com/Zephyr-Trail/KDD-lingpipe/blob/master/xinghuangxu.lingpipe/
src/com/aliasi/test/unit/matrix/MinkowskiDistanceTest.java

113

https://github.com/Zephyr-Trail/KDD-lingpipe/blob/master/xinghuangxu.lingpipe/src/com/aliasi/test/unit/matrix/MinkowskiDistanceTest.java
https://github.com/Zephyr-Trail/KDD-lingpipe/blob/master/xinghuangxu.lingpipe/src/com/aliasi/test/unit/matrix/MinkowskiDistanceTest.java

Chapter 6 INFRASTRUCTURE FOR TEST REUSE

Figure 6.5.: Exemplary Meta-Model Instantiation.

An Invocation node subsumes the execution of an operation and the associated

values. For a CUTInvocation, it is necessary that the invocation provides the

test case values to the tested operation and that it returns the value obtained

by the execution of the CUT’s operation. The node TestCaseValue is therefore

introduced for two reasons: for convenience, in order to be�er reflect the terms

defined in this thesis within our meta-model and in order to make test case

values a separately searchable criterion within the database.

For the expected result there are two possible scenarios that are covered by

the invocation. The “traditional” scenario, where the expected result is a literal,

which can be covered by declaring the called operation to be responsible for

an instantiation of the particular type of the expected value. Hence, for a

JUnit test case where the expected value is the integer value ‘5’, the invocation

contains the Integer() constructor as operation, no provided parameter and ‘5’

114

Index Creation 6.3

as the return value. On the other hand, an expected result derived from a

concrete invocation like the one in Listing 6.1, would result in the node storing

the Math.pow invocation as operation, the provided input values and the result

delivered by the operation.

Summary

In order to evaluate the introduced model, we implemented it in Eclipse ECore

model and successfully validated it for consistency. The screenshot in Figure 6.5

shows an Eclipse model editor derived from our meta-model which can be used

to model JUnit test cases. In this particular case, we show an example of a single

test for a Roman numeral calculator contained within an enclosing JUnit test

case.

Naturally, neither our meta-model nor its instantiations are intended to check

whether a test suite and the contained tests actually make sense. It exclusively

serves to capture the necessary information in existing tests and allows us to

represent them adequately in a database. In the following section, we will discuss

the creation of a search index for JUnit test cases which drives the SENTRE search

engine for reusable tests.

6.3. Index Creation

Based on the ideas presented in Section 3.2 and the lessons learned from other

so�ware search engines this section describes the creation of a search index for

reusable so�ware tests. This index will be the backend driver for SENTRE, storing

the information captured by our data model and enabling users to e�iciently

search for reusable tests. The database so�ware we use is MongoDB5, which

is a document-oriented, so-called NoSQL database. It enables us to represent

our models as JSON documents. JSON is a format that is human-readable,

yet easy to generate and parse by machines [JSO14]. The MongoDB backend

5 http://www.mongodb.org/

115

http://www.mongodb.org/

Chapter 6 INFRASTRUCTURE FOR TEST REUSE

is capable of storing the large amount of data we acquired from the GitHub

repositories and makes it e�iciently searchable. Not only the data is stored as

JSON documents, but also all the database-operations and queries are formulated

using this format.

Database optimization is a crucial factor for the retrieval e�iciency of a search

engine. The usage of indexes in MongoDB allows SENTRE to respond to search

requests quickly and e�icient. For our purposes, we create indexes on the fields

a�ected by our query language, i.e., for the class names, method names and their

parameters and return value respectively. Nevertheless, the usage of indexes

cannot speed up result retrieval in all situations. Since MongoDB uses B-trees

during index creation, searches with leading wildcards are slower than queries

with trailing ones, i.e., in the case worst they take as long as if there was no

index created at all.

Listing 6.2: JSON Representation of a Component.

1 {
2 _id : <ComponentId >,
3 name : "Euclid",
4 operations : [
5 name : "dist",
6 parameter :
7 [
8 { type:double name:x1 }, { type:double ,name:y1 },
9 { type:double ,name:x2 }, { type:double ,name:y2 }

10],
11 returnValue : { type : double }
12]
13 }

The JSON-style storage format of MongoDB simplifies the translation of informa-

tion captured in the previously introduced data model into database entries. The

classes from the model are represented as so-called collections, while the concrete

entries are stored as documents within them. To provide a be�er understanding

of how a test can be captured, we recall the JUnit test from Listing 2.2 which

116

Index Creation 6.3

we partially translate to MongoDB’s JSON format. Due to the implementation

of MongoDB, which makes searches in nested arrays rather complicated, we

stick to storing the information from our conceptual classes in separate entries.

Furthermore, in order to reflect the associations between the classes, we refer-

ence them by a unique id wherever this is appropriate. This allows the relevant

information contained in the referenced test code to be represented as MongoDB

entries according to Listing B.9 in the appendix. Listing 6.2 shows an example

representation of a CUT and its operation.

6.3.1. Index Content

Now that we have defined an information model and defined the technology

used to store the information represented using this model, we refer to the

discussion from Section 6.1 and describe the building of the SENTRE search

index. Subsequently, we describe what we actually have stored in our backend.

While other examples from the literature used to find reusable assets with the

help of tools like nutch, we eschew a web crawler and instead draw our reusable

assets from the major open source so�ware hosters. In particular, we utilize a

set of Linux shell scripts, to retrieve all available projects from GitHub. This was

carried out in three main steps: 1. using the GitHub web API, we created a list of

projects available on GitHub, 2. to reduce network tra�ic we only downloaded

the master branch of each project without history, and 3. a�er download we

inspected every project for Java files.

GitHub o�ers a web API to access its services programmatically6. With a li�le

shell script, we were able to retrieve the provided information about all projects

publicly hosted on GitHub, including project id, creator, fork information, html

url and repository url. Although GitHub provides information about the language

used in a project, its automatic recognition seems to be rather imprecise. For

example, it appears that Java web application projects that are accompanied

with files wri�en in HTML, JavaScript, etc. are not reliably recognized as Java

6 Accessible via https://api.github.com/<command>.

117

https://api.github.com/<command>

Chapter 6 INFRASTRUCTURE FOR TEST REUSE

Source Java Files JUnit Files TFR Size
GitHub 98,767,946 13,380,472 13.5 % 14.5 TB
Merobase [Jan+13] 2,427,029 121,988 5.0 % 49 GB
Bitbucket 1,368,830 259,798 19.0 % 147 GB∑

102,563,805 13,762,258 13.4 % 14.7 TB

Table 6.2.: Repository Content of SENTRE.

projects. Hence, we have to download the files of each project and scan them

for Java files.

In contrast to earlier search engines like Merobase, which was able to checkout

the full repositories of SourceForge, the content provided by GitHub is far too

large to download and store using limited academic resources. Since we are

not (primarily) interested in the evolution of the files to be parsed and do not

collect information about their evolution over di�erent versions, we download

only the latest version of the master branch of each project and do not clone

each project’s Git repository. Nevertheless, to create SENTRE we still had to

download over 100TB of data. Each downloaded zip file was inspected for Java

files and only those projects were extracted to our local repository storage which

contained at least one Java file. Although these measures reduced the amount

of data we actually store, the whole SENTRE code repository still consumes

≈ 14.5TB of storage space. As a comparison, the repository of the research

project Merobase.com consumes just about ≈ 49GB.

The whole SENTRE repository is composed of data from di�erent sources, which

are listed in Table 6.2. While the projects acquired from GitHub form the major

part of the repository, we have also incorporated the repository of Merobase

and projects from BitBucket. As described in the literature [Hum08; Jan+13] the

Merobase repository itself is mainly composed of projects from SourceForge and

the Apache projects. In total we inspected more than 100 million files, amongst

which we found more than 13.5 million JUnit test cases. The third column of the

table above shows the test-file-ratio (TFR), while the size of all projects is listed

in the last column.

118

Index Creation 6.3

In addition to that, we have listed some code metrics based on a per line analysis7

in Table 6.3. Although the lines of code are usually regarded as a weak metric,

they allow us to compare SENTRE to commercial systems like Ohloh.com, which

claims on its home page to contain more than 21 billion lines of code in 102

programming languages8, as of April 2014. They do not state, however, whether

these are “productive” code lines or whether this number includes comments and

blank lines, for example, as well. For comparison, SENTRE contains more then

17.5 billion lines of code in Java files, among which we counted approximately 7

billion commented or blank lines.

Source LOC CLOC Blank Total
GitHub 10,419,125,210 4,498,517,183 2,351,307,353 17,268,949,746
Merobase 212,947,748 107,680,663 49,253,236 370,881,648
Bitbucket 109,208,265 44,587,998 23,522,939 177,319,202∑

10,741,281,223 4,650,785,844 2,424,083,528 17,816,150,595

Table 6.3.: Lines of Java Code in the SENTRE Repository Grouped by Source.

The following subsection describes how we extract the relevant information from

the retrieved files to store them in the SENTRE search index, before we discuss

the e�ective and e�icient retrieval of results from this index.

6.3.2. A File Parser for JUnit Tests

In Section 2.2 we have discussed some of the ways in which a Java class can be

tested, and we demonstrated that there are many pitfalls to be considered when

trying to automatically extract relevant test information. The technology we

utilize to extract a test suite’s features is the Java Compiler API, which o�ers

a straightforward technology to access the abstract syntax tree (AST) of a class,

which is a tree representation of the syntactic structure of a particular source

7 Data obtained using the open source utility CLOC from http://cloc.sourceforge.net
8 cf. https://www.ohloh.net/languages

119

http://cloc.sourceforge.net
https://www.ohloh.net/languages

Chapter 6 INFRASTRUCTURE FOR TEST REUSE

code asset. Furthermore, the Java Compiler API allows us to e�iciently visit the

AST’s tree nodes and derive the relevant test information.

The parsing process itself is split into three phases: 1. find all Java files on

the file system and recognize the declared classes, 2. resolve dependencies,

and 3. parse the recognized test cases, i.e., extract and store the contained

information. First, the system searches for all Java source files on the file system

and subsequently extracts some basic structural information. An overview of

the features stored is provided in Table 6.4. We have chosen to use a relational

database for this step, since the information schema is fixed and predictable. In

addition to the path of the class on the file system, we store its canonical name

(e.g., com.example.MyClass), an MD5 hash of the class body, the canonical name

of the super-type and whether the class is recognized as a JUnit test case.

Descriptor Content
path file system path
fqdn canonical name
md5 MD5 hash of code
supertype class super-type (fqdn)
isTestCase true if class is a JUnit test case, false otherwise

Table 6.4.: Java File Table.

During the initial file system scan it is not possible to reliably recognize all JUnit

test cases, since their Java nature allows inheritance hierarchies of test cases

to exist, as well as to mix di�erent versions of JUnit. Thus, only classes, that

directly inherit from the class junit.framework.TestCase, can be recognized

as JUnit 3 tests during the first pass, as well as all those that contain the @Test

annotation from JUnit 4. Hence, we need a second pass to recognize JUnit test

cases in deeper hierarchy levels and during this second step, our system inspects

the entries of our Java file table and looks for unresolved super-types.

The code snippet in Listing 6.3 shows an excerpt of a JUnit test case that cannot

be identified as such in the initial run:

120

Index Creation 6.3

Listing 6.3: Unrecognized JUnit Test Case

1 import com.example.special.MySpecialTest;

2 public class MyVerySpecialTest extends MySpecialTest {

3 public void testMyVerySpecialTestMethod () {

4 ...

5 }

6 }

The code of MyVerySpecialTest neither contains a reference to the TestCase

class from the JUnit 3 framework, nor does it contain an annotation that would

reveal it to be a JUnit 4 test case. Hence, we need to inspect the inheritance

structure of MySpecialTest (cf. Listing 6.4), which we find inherits from MyTest

and can therefore also not be recognized as a JUnit test case.

Listing 6.4: Superclass of MyVerySpecialTest

1 public class MySpecialTest extends MyTest {

2 public void tearDown () {

3 ...

4 }

5 }

As we can see in Listing 6.5, the class MyTest inherits from the TestCase class,

which is contained in the JUnit 3 framework, and therefore it is recognized

as a test case during the initial file inspection. Now, in the next run of the

parser, we scan the Java file table, forclasses with unresolved super-types –

in the example case this is MyVerySpecialTest and MySpecialTest. These are

inspected recursively, i.e., the system walks through the whole inheritance tree

until it arrives at TestCase or the basic Java type Object. Using this strategy, our

algorithm recognizes both example classes as a successor of TestCase which is

reflected by the “true” value of the isTestCase flag (see Table 6.4).

121

Chapter 6 INFRASTRUCTURE FOR TEST REUSE

Listing 6.5: Class Inherits from junit.framework.TestCase

1 import junit.framework.TestCase;

2 public class MyTest extends TestCase {

3 public void setUp() {

4 ...

5 }

6 }

Subsequently, the parser processes each test case file in order to extract the

test information captured by the previously introduced data model. As already

discussed before, JUnit test cases are usually not wri�en in accordance with

the recommendations of the developers of the framework. Thus the following

subsection discusses heuristics that help to maximize the information yield from

each test case.

Information Extraction from JUnit Test Cases

Earlier in this thesis we have discussed some of the many ways of writing

JUnit test cases (see Section 2.2). Since JUnit neither provides language ele-

ments that help to describe the nature of a test case, nor does it contain any

meta-information, the development of a parser for JUnit test cases involves

the implementation of di�erent heuristics in order to extract the appropriate

information from the test case. To be able to build a database of reusable tests,

first and foremost it is necessary to “understand” what a test actually tests, i.e.,

the parser needs to unambiguously recognize the class under test (CUT).

By definition, JUnit does not make the class under test any kind of “first class

citizen” among the dependencies of the test class (i.e., the JUnit test case).

Before we consider more sophisticated approaches for recognizing the class

under test, we first assume adherence to the guidelines in the literature [BG14]:

a JUnit test case should reflect the name of the class under test in its own name.

Consequently, the examples from the JUnit documentation shown in Listing 6.6

call the test case of a Money class MoneyTest.

122

Index Creation 6.3

Listing 6.6: Example from the JUnit Documentation [BG14].

1 class Money {
2 private int fAmount;
3 private String fCurrency;
4 public Money(int amount , String currency) {
5 fAmount= amount;
6 fCurrency= currency;
7 }
8 public int amount () {
9 return fAmount;

10 }
11 public String currency () {
12 return fCurrency;
13 }
14 public Money add(Money m) {
15 return new Money(amount ()+m.amount (), currency ());
16 }
17 }
18
19 public class MoneyTest extends TestCase {
20 // ...
21 public void testSimpleAdd () {
22 Money m12CHF = new Money(12, "CHF"); // (1)
23 Money m14CHF = new Money(14, "CHF");
24 Money expect = new Money(26, "CHF");
25 Money result = m12CHF.add(m14CHF); // (2)
26 Assert.assertTrue(expect.equals(result)); // (3)
27 }
28 }

The documentation example also shows that a JUnit test mainly consists of

three parts: (1) the testing context, which is also called a test’s fixture, (2) an

execution of the objects created in the fixture, and (3) a result verification. It is

also necessary to note that this is only a very basic definition, since the authors

do not consider static references to the class under test, for example. Thus, if

the code of the JUnit test case contains a reference to a type with a name that

is equal to the test case’s class name without the Test extension, the parser

can assume that the class under test has been discovered. Nevertheless, it is

recommended to apply additional inspection to confirm this assumption and

combine the individual indications into a unified result.

123

Chapter 6 INFRASTRUCTURE FOR TEST REUSE

Another useful piece of information for CUT detection are the tests contained in

the test case, i.e., the information contained within the assertion statements. The

JUnit framework defines a set of assert statements which expect a given set of

parameters for result evaluation. The most important ones9 are listed in Table 6.5

on page 124. Additionally, Figure 6.6 depicts the percentage distribution of the

JUnit assert statements contained in the SENTRE repository sources acquired

from GitHub. We counted a total number of 157,368,390 assert statements,

among which the assertEquals statements represent the largest group with a

total of 93,861,398 appearances. Together with the assertTrue statements, they

represent more than 80% of the assert statements contained in our sources, while

the remaining six assert-types form a less significant portion of the repository.

Statement Parameters Explanation
assertTrue boolean condition Inspects whether the condition parameter

is true.
assertFalse boolean condition Inspects whether the condition parameter

is false.
fail Fails a test.
assertEquals Object expected,

Object actual
Compares whether two objects are equal.
Defined also for primitives and arrays.

assertNotNull Object object Tests whether object is not null.
assertNull Object object Tests whether object is null.
assertNotSame Object expected,

Object actual
Tests whether two objects do not refer to the
same object.

assertSame Object expected,
Object actual

Tests whether two objects do refer to the
same object.

Table 6.5.: Digest of the JUnit assert Statements.

In the code example from Listing 6.6, line 26 contains an assert statement whose

inspection reveals that it references two objects created by instantiating the

Money class. Therefore our CUT detection algorithm is able to identify Money as

the class under test for this JUnit test case.

9 obtained from http://junit.sourceforge.net/javadoc/org/junit/Assert.html

124

http://junit.sourceforge.net/javadoc/org/junit/Assert.html

Index Creation 6.3

60.0%
Equals

22.0% True

7.0%
False

6.
0%

N
ot

N
ul

l

3.
0%

N
ul

l

2.
0%

Sa
m

e

Figure 6.6.: Distribution of assert Statements.

With the help of the previously created AST the JUnit test parser is able to inspect

the assert statements and to analyze their parameters. In line 26 of our example,

where the call of assertTrue expects one boolean parameter, it becomes obvious

that inspection of the assert statement alone may not be enough. In our case,

the boolean value is obtained by a call to the equals method of the expect

object, which is of the type Money. This method is, however, not defined by the

class Money, but inherited from Object. Hence, the parser needs to inspect the

full AST of the test case in order to track all objects that are created and, in

order to support stateful tests, it must also track the (order of) changes to these

objects (i.e., the operations which they are involved in). The data model from

Section 6.2.1 reflects this requirement with the introduction of statements that

are contained in test cases and associated with tests.

Finally, Listing 6.7 shows an example of a rather “bad test” from the point of view

of an automated code parser. First, the test class is called OrderTest although

there is no Order class referenced in its source code. Additionally, the assert

125

Chapter 6 INFRASTRUCTURE FOR TEST REUSE

statement compares two integers, although the intention of the author was not

to test the correctness of this primitive data-type, but rather to find bugs in

the CollectionUtil class from line 8, whose static sort method is called with

an integer array as parameter. To make the situation even worse, the assert

statement is utilized with wrong parameter order, since the first parameter

should be the expected value, while the second parameter should be the test

result.

Listing 6.7: JUnit Test for Sort

1 import static org.junit.Assert.assertEquals;
2 import org.junit.Test;
3
4 public class OrderTest {
5 @Test
6 public void testOrder () {
7 int[] collection = new int[] { 4, 2, 5, 1, 3 };
8 CollectionUtil.sort(collection);
9 for (int i = 0; i < 5; i++) {

10 assertEquals(collection[i], i + 1);
11 }
12 }
13 }

In such a situation neither the strategy of name comparison, nor the information

obtained from the assert statement helps to identify the class under test. Never-

theless, we are still able to deal with this issue by implementing a context-aware

heuristic that checks the origin of the objects and values, which are referenced

by the assert statement. If they are included in the standard Java libraries, it is

very likely that they are not what the author of the test case wanted to inspect.

Hence, we have to look back in the abstract syntax tree and investigate where

they originate from, e.g., whether they are a parameter or the result of a method

invocation.

In this case, the system finds that the int array collection is a parameter to the

sort method of the CollectionUtil class, and since there is no other reference

126

Index Creation 6.3

to it, chances are good that the class under test has been discovered. Obviously

this strategy does not work when the test case under consideration creates

multiple objects from di�erent self-defined complex types and two or more of

them manipulate the object inspected by the assertion. Even a human examiner

would have di�iculties understanding what is actually tested so such a test case

has to be considered to be of bad quality and should be abandoned.

Although it is very convenient – especially for developers – that JUnit simply

allows standard Java to be used to test Java classes, the drawbacks arising from

this freedom should not be underestimated. As our investigations show, only a

small fraction of developers and testers actually adhere to the recommended

conventions for test cases outlined by the authors of the JUnit framework. The

freedom to use Java can therefore be both blessing and curse, and there is a need

to either enhance the framework with structures that embody meta-information

or tools like Test-Sheets [Atk+08b] need to become mainstream in testing.

Information Extraction from So�ware Tests

When the class under test has been identified from a test case, the extraction

of other relevant information stored in the test case is a straightforward task.

However, there is one fundamental constraint related to the nature of object-

oriented programming: so�ware tests may test the functionality of a program

that does not rely on states or they may test so�ware that shows di�erent

behavior in di�erent states. While the former is usually found in algorithms that

perform some sort of calculation (e.g., a Roman numeral converter or a distance

calculator), the la�er are related to more complex business objects (e.g., a stack,

a shopping cart or a customer).

Nevertheless, in principle the process of information extraction from so�ware

tests is not a�ected by this distinction. The consideration of the state-awareness

is more relevant and important during the retrieval of reusable tests, when new

tests are composed from existing ones. More specifically, for stateless tests the

order of the invocations performed on methods of the class under test is not

important, i.e., the order of the tests is commutative. Nevertheless, event for

127

Chapter 6 INFRASTRUCTURE FOR TEST REUSE

Listing 6.8: Example for Stateless Tests.

1 public class RomanNumeralTest extends TestCase {
2
3 RomanNumeral r = new RomanNumeral ();
4 String ten = "X";
5 int hundred = r.fromRoman("C");
6
7 public void testThere () {
8 assertEquals (10, r.fromRoman(ten));
9 assertEquals (100, hundred);

10 assertEquals (1000, r.fromRoman("M"));
11 }
12
13 public void testBackAgain () {
14 assertEquals (1000 , r.fromRoman("M"));
15 assertEquals (100, hundred);
16 assertEquals (10, r.fromRoman(ten));
17 }
18
19 }

these tests it is necessary to consider eventually present set-up and tear-down

operations. State-aware tests, however, strongly depend on the execution order

which must not be transposed.

An example of a stateless test is given in Listing 6.8, where both test methods

testThere and testBackAgain induce the same behavior of the class under test

and both show equal behavior (i.e., discover the same bugs if present). In the

following we use this example to describe how information is extracted from a

test case. The principal information extracted by the parser is the name of the

class under test. In our case, the system recognizes an instance of a RomanNumeral

class, which is also defined by the name of the test case. Further analysis shows

that no other objects are instantiated and therefore the algorithm unambiguously

recognizes the RomanNumeral as the class under test. Subsequently, the system

inspects all statements of the test case and stores any call to a method of the

CUT in an ordered list (cf. Table 6.6).

Since the assertions do not necessarily contain all calls to the CUT, it is necessary

to store all calls performed in the test case. Furthermore it is clear that it is

128

Index Creation 6.3

No. Method Parameters Result
1 init RomanNumeral
2 fromRoman "C" 100
3 fromRoman "X" 10
4 fromRoman "M" 1000
5 fromRoman "M" 1000
6 fromRoman "X" 10

Table 6.6.: List of Calls to the CUT in Listing 6.8.

necessary to inspect any assignment that is related to the CUT. In the given ex-

ample the integer variable hundred is assigned the return value of the fromRoman

method when it is called with the string parameter "C". This is very important

if we want to recognize all tests contained in the test case, since the assert state-

ments in line 9 and 15, respectively, do not compare the return value of a call to

the class under test with an expected value. Instead, they compare the literal

value 100 to the value of the integer variable hundred and if the parser was not

aware of the fact that hundred contains the return value of the CUT’s fromRoman

method, it would miss the test. As a consequence, based on the invocation order

of the CUT operations, the tests recognized by our parser are as follows:

fromRoman: (C)→ 100;

fromRoman: (X)→ 10;

fromRoman: (M)→ 1000;

In order to support the reuse of tests for state-aware business objects, the

database must not only contain the mappings of test case values to expected

results, but also all state-related information derived from the test case. This

information has to be stored along with the corresponding test and delivered

by the search engine upon request. When the tests are stored in an appropriate

order, it is clear that any test n in the chain requires the execution of test n− 1

before it is executed, while n − 1 requires n − 2, etc. up to the first test. This

ensures the reconstruction of the appropriate state of the tested object for every

test in the set.

Due to the given reasons, the reuse of state-aware tests can so far only be

performed on a per test case level, i.e., at the current state of the art it seems

129

Chapter 6 INFRASTRUCTURE FOR TEST REUSE

hard to recommend single tests for state-aware objects. This is a highly complex

problem which seems hard to solve since the automated assembly of test cases

for stateful objects from independent test cases requires a deeper understanding

of the domain of the CUT and of the evolution of any arbitrary state through

method calls. Nevertheless, with our technology it is still possible to recommend

complete test cases. This is as valid for test reuse as the recommendation of

classes instead of single methods is for traditional so�ware reuse.

Handling Exception Tests

Before we conclude this chapter, we want to introduce another important as-

pect in the way information is extracted from test cases in JUnit. The Java

programming language supports the concept of throwing exceptions upon the

malfunction of a program. These exceptions are not necessarily thrown at the

level of the Java Virtual Machine (JVM), but can also be declared in the code of

a Java program and indicate an invalid input, for example. The JUnit framework

supports testing Java code for exceptions, and therefore it is a mandatory require-

ment for the creation of a searchable index of JUnit so�ware tests that these

exception tests are also covered. Exception tests present a very valuable source

of information for reuse-assisted so�ware testing. Since so�ware testing is some

kind of “destructive” activity in the so�ware development process (testers are

happy when they find a bug), we are especially interested in such test case values

that are capable to cause the system under test to fail.

The code snippet in Listing 6.9 contains an example of a JUnit test case that actu-

ally verifies whether the RomanNumeral class throws a RomanNumeralException if

its fromRomanmethod is called with an invalid input value. Therefore the test code

calls the given method with an illegal input string and, if the program continues or

throws any other exception type than the self-defined RomanNumeralException,

it calls the fail method of JUnit. A�er the parser has again initially recog-

nized the class under test, it examines the try-catch block contained in the

test method and observes that it contains an invocation of the class under test.

130

Summary 6.4

Listing 6.9: Test Expects an Exception.

1 public class RomanNumeralTest extends TestCase {
2
3 RomanNumeral r = new RomanNumeral ();
4
5 public void testBilbo () {
6 try {
7 r.fromRoman("Bilbo Baggins");
8 fail();
9 } catch (RomanNumeralException rne) {

10 System.out.println("Test Passed!");
11 } catch (Exception e) {
12 fail();
13 }
14 }
15
16 }

Consequently, it stores the exception test in the SENTRE database for retrieval

upon a search, e.g., for a RomanNumeral.

6.4. Summary

In this chapter, we have introduced the challenges presented by the creation of

a repository of reusable test cases, discussed how to obtain reusable assets and

we investigated the potential of mining open source so�ware repositories for

test cases. The inspection of some of the most prominent open source hosting

platforms revealed that a large number of JUnit test cases is present in modern

open source projects, and supported our initial findings from [JHA10]. We

introduced the structure of JUnit test cases and discussed problems arising from

the many ways in which they can be wri�en. Subsequently we introduced a

generic meta model and described how it is instantiated to a concrete data model

for JUnit test cases. Finally, we gave an overview of how the index of the SENTRE

search engine was created and which strategies and heuristics a file parser needs

to apply to recognize the class under test.

131

Chapter 6 INFRASTRUCTURE FOR TEST REUSE

Based on our experiences during the creation of a parser for JUnit test cases,

we recommend future research in the area of test representation. Although the

JUnit framework has gained a lot of popularity it was obviously not developed

with reuse in mind. Since the main a�raction of JUnit origins from the fact that

tests can be expressed in the same language as the code being tested, one option

would be to enhance JUnit with such things as new annotations that specify

the class under test and add more meta-information for the tests of state-aware

objects.

Contribution of this chapter

• We have defined a meta-model for test reuse, which captures the necessary

aspects of object-oriented so�ware-tests. To this end we have modeled the

domain of so�ware tests according to the definitions from Chapter 2.

• We have pointed out the issues involved in instantiating the meta-model

for Java / JUnit and instantiated the meta-model for JUnit using ECore in

Eclipse and demonstrated its feasibility with an example test case.

• We described how test-related knowledge can be extracted from JUnit test

cases an presented a set of heuristics for test parsers to identify the class

under test in an existing so�ware test.

• For the recognized class under test, we have presented inspection tech-

niques used by our parser in order to extract the appropriate test case

values and corresponding expected results.

• We have explained how exception tests are recognised and extracted from

JUnit test cases.

• An investigation of the GitHub source code showed, that – with a share

of 60 % – the assertEquals statement is the most o�en utilized assert

statement from the JUnit framework.

• The work conducted in this chapter has unveiled some problems arising

from the high degree of freedom that is o�ered by JUnit, which allows its

users to write test cases using plain Java code.

132

“ First law: The pesticide paradox.

Every method you use to prevent or find bugs leaves a

residue of subtler bugs against which those methods are ine�ective.”

Boris Beizer

So�ware-Engineer

7
Reuse-Assisted So�ware Testing

In the preceding chapters we have explained that so�ware search engines have

received a tremendous boost through the availability of large-scale repositories

of reusable source code and have observed that these repositories also contain

large numbers of potentially reusable test cases. Having provided the conceptual

foundations for exploiting the knowledge bound up in existing (JUnit) test cases,

in this chapter we look at possible usage scenarios for test search engines and

describe the implementation of a search engine that benefits from our earlier

findings. The search engine SENTRE1 was developed as part of this thesis

and serves as a proof-of-concept implementation that enables its users to find

reusable assets stored in a code repository. In this chapter we describe the

search and retrieval mechanisms implemented in our search engine. We take

a look at the principles underlying each of the techniques, explain their usage

in the context of SENTRE and describe how the retrieved results can be ranked

appropriately in order to maximize their value for users.
1 Search-ENhanced Testing with REuse.

133

Chapter 7 REUSE-ASSISTED SOFTWARE TESTING

7.1. Usage Scenarios for Test Search Engines

Beside the question about the benefit, the two most important aspects of any

newly developed approach in the area of so�ware engineering are the questions

about “who is going to use the newly introduced technology” and “when can

it be applied” in the so�ware development process. We have partially touched

upon these issues in Section 3.1 (see pp. 34) while discussing search scenarios in

so�ware engineering. In this section, we identify usage scenarios for the reuse of

so�ware tests and describe how developers and testers can benefit from them.

So�ware Life Cycle Phases

Analysis Design Implement. Testing Deployment MaintenanceScenario

Specification

Smoke Testing

TDD / TDR

Code Validation

Testing

Definitive Search Speculative Search

Figure 7.1.: Test Search & Reuse Scenarios in So�ware Engineering.

To illustrate when it may be appropriate to apply our tools and techniques, we

have outlined usage scenarios for test search and reuse in Figure 7.1 similarly to

those we defined for so�ware search and reuse. Again we divide the possible

scenarios into the two groups of definitive and speculative searches, where the

former rely on precise specification of what is desired while the la�er provide

a way of exploring “what is around” in the repository. Obviously, the reuse of

so�ware tests makes most sense during the main development and testing phase,

but it can be of some assistance in the early phases of a so�ware project. It

does not play a significant role during the deployment and maintenance phases,

however, since all tests should have been wri�en by then. At most, new tests

may be added to the search repository for reuse in future projects.

134

Usage Scenarios for Test Search Engines 7.1

7.1.1. Analysis & Design

For the specification of a so�ware project, reusable tests that have been wri�en

for a similar scenario and domain are most likely to help to be�er understand

how a similar previously created system works. This understanding bears the

potential to help so�ware engineers to write be�er specifications for a newly

developed system. The participants in the so�ware project can use previously

created tests as a common basis of understanding how the system should work

and create a be�er specification of the system. Reusable test cases for similar

systems can also help to define acceptance tests and lower the likelihood that a

so�ware is being delivered that does not match the customer’s requirements.

During the design phase, the reusable tests can similarly assist the system archi-

tects as traditional code reuse does, where they can obtain design inspirations

from previously created systems. The application of test reuse in this scenario

can, for instance, help to improve a system’s design due to functional- and

non-functional-requirements. The former may be directly expressed in unit tests

while the la�er, e.g., can be transported in test suites that are developed for the

performance of stress tests.

7.1.2. Implementation

Since the development of a new application rarely starts with a green field,

legacy systems o�en provide the basis for requirements definition and design.

Such systems also provide a potential source of test cases that can be reused

during implementation and the early testing phase. The reuse of tests from

legacy systems can be very valuable to developers and testers and is a potentially

convenient way of supporting smoke testing.

Test reuse can also be interesting during implementation when applied in con-

junction with test-driven development or test-driven reuse. In both approaches,

tests are wri�en before the actual production code is wri�en. In the la�er case,

developers can use existing tests to define be�er (i.e., more precise) queries for

test-driven code search engines in less time. While searches for reusable tests

135

Chapter 7 REUSE-ASSISTED SOFTWARE TESTING

are assumed to be more speculative in character in the early stage of develop-

ment (when there is li�le concrete information available), they are expected to

become more concrete (definitive) relatively quickly and therefore more valuable

to developers.

By reusing the knowledge contained in existing tests, developers can benefit

from the knowledge that other persons – presumably domain experts – have

invested in developing them. These tests can help to gain be�er insights into how

a particular kind of component should behave. A natural implication of this idea

also represents an enhancement to test-driven search: developers can inspect

test cases similar to their own and decide whether the semantic description of

the class under test suits their application. If it does, they may decide to reuse

the test case and class under test at the same time. Although this idea seems

appealing, it introduces once again all the issues related to “traditional” so�ware

reuse such as the not-invented-here syndrome.

The literature strongly recommends that so�ware developers should not test their

own code (i.e., testers and developers should be di�erent persons, as stated by

Myers [Mye79]). This is, however, a rather expensive and inconvenient approach

in the (early) phases of a project where developers may try out di�erent ideas to

solve a given task.

Test reuse can be a means to bridge the gap between testers and developers, by

o�ering the la�er a tool to perform testing at development time without having

to write the tests themselves. In the later phases of implementation, this tool

support can help to address the “standard” tests for the class under development,

allowing testers to concentrate on the “hard stu�”, i.e., those parts of the code

that are not amenable to reusable tests and those assets for which no reusable

tests could be found.

Reuse-assisted code recommendation during the development of production

code is also the main scenario targeted by this thesis: developers should be

enabled to test their code without needing to be domain experts. In other words,

the expert knowledge bound up in existing test cases can become an important

cornerstone for the improvement of code quality during implementation.

136

Result Retrieval Techniques for Test Reuse 7.2

7.1.3. Testing

The previously suggested idea that smoke testing can be performed by developers

using previously wri�en test cases may also apply in the early phases of testing.

Before testers start writing more thorough tests, they might want to analyze

the delivered so�ware for general correctness without investing a lot of e�ort.

Reusable test cases are a simple tool that developers can use to identify so�ware

that does not perform the basic functionality that it was intended for. Although

definitive searches for reusable tests may still occur later in testing, we do not

expect reuse-assisted test recommendation to be the tool of choice for testing

experts. Nor do we expect it to be the tool of choice for project management. It is

important to remember that testing experts are paid to evaluate so�ware based

on their specifications and there are more aspects of testing than unit testing –

like stress testing, penetration testing, testing non-functional requirements, . . .

It would be dangerous to (solely) rely on reused tests in any of these cases.

During the deployment and maintenance phases of a system’s lifecycle, the

potential for test reuse is rather low. One could imagine customers that reuse

tests from a legacy system to validate the functionality of a new system during

acceptance testing, but we have not performed further investigations in this

area. The activities performed during the maintenance phase are likely to create

new input to a test repository rather than to benefit from test reuse. If and

when a bug is discovered within the so�ware, the corresponding tests need

to be persisted in the repository. The tests created during deployment and

maintenance can further enrich the test repository of the test search engine

and serve future developers for their purposes and help them to reuse tests that

contain the knowledge obtained from earlier so�ware failures.

7.2. Result Retrieval Techniques for Test Reuse

Earlier in this thesis we already mentioned the highly influential survey on “the

storage and retrieval of reusable assets” by Mili et al., who describe a classification

system of retrieval methods for so�ware reuse [MMM98]. Based on their insights,

137

Chapter 7 REUSE-ASSISTED SOFTWARE TESTING

in this section, we will introduce a couple of retrieval mechanisms for test

reuse systems and investigate their strengths and weaknesses. Furthermore

we describe how the identified and developed retrieval techniques have been

implemented in the SENTRE reuse system for so�ware tests and give an overview

of how users of the system can create appropriate search queries. Finally, we

will also discuss the possibilities of result ranking. This is necessary in order

to provide users with be�er and more valuable results with regards to their

particular context.

Before we go into more detail, we identify the following three search strategies

for the retrieval of reusable so�ware tests:

Interface-Based Searches The required interface of the user’s test suite is

used as a search query for reusable tests.

Value-Based Searches The search for reusable so�ware tests is based on the

mappings of test case values to their corresponding expected results, both

of which are extracted from the user’s test suite.

Code-Driven Searches The developer’s production code serves as the input

query. Candidates for test reuse are evaluated against the developer’s CUT

and grouped by their execution profile.

Although the la�er variant looks like the opposite of test-driven reuse, the

strategy behind this technique is quite di�erent. The evaluation of potentially

reusable test cases and so�ware tests involves more than answering the simple

binary question of whether a search result is suitable or not. The results obtained

by applying a reused test case to the developer’s class under test need to be

examined in a more di�erentiated way as we will discuss later in this section.

At the beginning of this section, we examine the “traditional” techniques used

for the retrieval of reusable code – the interface-based search. We will describe

query formulation issues, introduce query refinement techniques and discuss

how to rank the retrieved results. Subsequently, we focus on a new form of

search whose goal is to identify reusable tests based on the mapping of test-case

values to the corresponding expected result.

138

Result Retrieval Techniques for Test Reuse 7.2

7.2.1. Interface-Based Searches

Over the last decade, the rise of modern code search engines helped to establish

a set of common retrieval techniques for reusable so�ware. One of them is

the idea of interface-based searches, where components are usually retrieved

based on a textual description of their (publicly visible) interface. The SENTRE

test search engine, which is developed as a part of this thesis, also supports

interface-based searches and therefore provides an easy and self-explanatory

query format. However, in contrast to code search engines that rely on the

provided interface of a component, the SENTRE query is a representation of the

required interface of reusable so�ware tests. This di�erence between test search

engines and search engines using the provided interface of a component also

means, that a system for test reuse actually relies on information contained in

the code and that the required interface describes the uses- and calls relations

to a component under test, i.e., a test case contains, inter alia, a subset of the

provided interface of the corresponding component under test.

According to the classification scheme of Mili et al. [MMM98], interface-based

search can be classified as a member of the denotational semantics methods. This

category subsumes retrieval techniques that are based on formal specifications,

as well as those that are based on signature descriptions. We have chosen to

integrate this technique in SENTRE, since the interface description of a so�ware

component does not involve any additional e�ort during development and main-

tenance, as already stated by Meyer in his seminal work on the application of

the principle of design by contract [Mey92].

Following these arguments, the provided interface is amenable to automatic

extraction as an abstract part of the code. Therefore, it can easily be extracted by

a parser and stored in the search engine’s index as a descriptive element for the

tests contained in the underlying repository. Earlier in this thesis we described

our data model for a test search engine and already presented some examples of

interface-based queries. Now we are going to look at query formulation in more

detail, explain the process of result retrieval, automated query refinement and

the ranking of search results.

139

Chapter 7 REUSE-ASSISTED SOFTWARE TESTING

�ery Formulation

As an example we assume that a developer needs to write a Java class to convert

Roman numerals to Arabic numerals. We also assume that the chosen approach

to achieve this is test-driven development. Thus the developer might write an

initial JUnit test case something like the one presented in Listing 7.1.

Listing 7.1: Excerpt of a Test Case for a Roman Numeral Converter.

1 public class RomanNumeralTest {

2 @Test

3 public void testOne () {

4 assertEquals (1, RomanNumeral.toInt("I"));

5 }

6 }

requires
RomanNumeralTest

+ testOne() : void

RomanNumeral

+ toInt(String) : Integer

Figure 7.2.: Provided and Required Interface of the Test in Listing 7.1.

The Java code of this test uses a RomanNumeral class, or more precisely, it invokes

the static toInt method with the string parameter "I". The assertEquals

statement expects the CUT to return the integer value 1. From this information

the system infers that the developer potentially wants to search for tests that

inspect a class exposing the interface depicted in the UML class diagram in

Figure 7.2. To describe the CUT’s provided interface, we use a format similar to

the Merobase �ery Language MQL, which allows us to use the following query

to describe the test’s required interface

RomanNumeral(toInt(String):int;)

and which triggers the search for the appropriate tests.

140

Result Retrieval Techniques for Test Reuse 7.2

However, this is not the only scenario envisaged during the creation of our search

infrastructure. Especially for speculative searches it is not realistic to expect users

to provide completely formulated queries. It is more likely that they only have

a limited idea of the interface and the method signatures of the component

they are looking for. Therefore, it is necessary to provide an additional degree of

freedom in query formulation, which is accomplished with the provision of a

wildcard symbol for queries.

If a user is not sure about the classname for a roman numeral converter, it is

possible to use the following query, where the dollar sign serves as a wildcard:

$(toRoman(int):String;)

This query searches for any test of any arbitrary class that contains a toRoman

method, which requires an integer value as parameter and returns a string

object.

Result Retrieval

Internally, SENTRE converts the query into an appropriate JSON-style repre-

sentation that serves as a request to the database infrastructure. Before the

search is actually performed, the system checks whether the request represents

a well-formed query. If it does, the query is then decomposed into its structural

elements (i.e., the classname, method names and signature information) and

a search query is generated similar to the MongoDB query presented in the

subsequent Listing 7.2.

Line 2 of the listing contains the description of the classname. Since we have

chosen to append a wildcard to the word Roman, the query parser translates the

query using a regular expression, and the same strategy is applied for the method

name. The method parameter is provided without any degree of freedom, as

well as the return value of the query.

141

Chapter 7 REUSE-ASSISTED SOFTWARE TESTING

Listing 7.2: MongoDB �ery in JSON-style Format.

1 {
2 "name" : { $regex : "^roman .*" },
3 {
4 "operations.name" : { $regex : ".*" },
5 "operations.parameter" : "String",
6 "operations.returnValue" : "Integer"
7 }
8 }

�ery Refinement

Naturally, it is convenient for the users of a search engine if they can put all

available information from their task in hand into one search query. Nevertheless,

this imposes the problem that the addition of (non-redundant) information to

search queries may reduce the size of the retrieved result set. Even worse, a well

specified and detailed query may ultimately lead to an empty result set. Hence,

it is necessary to apply a strategy for query reformulation and refinement, which

is able to deal with over-specified queries and stops when the retrieved result set

contains a minimal number of elements or no further refinement is possible.

To avoid a situation in which the user has to perform the query reformulation,

we have implemented an automated relaxation algorithm that handles the

refinement of the initial query. When a pre-defined minimum number of results

is discovered, the algorithm stops and the query is not relaxed any further. If

there is an insu�icient number of results, the system will relax the query in the

way shown in Algorithm 7.1. The relaxation strategy applied in SENTRE is based

on the following steps:

1. Search for exact matches of the query (no relaxation).

2. Add wildcards to the method names.

3. Search for the classname and the method signatures.

4. Search for exact classname matches.

5. Add wildcards to the classname.

142

Result Retrieval Techniques for Test Reuse 7.2

We have chosen to apply relaxation first to the methods and then to the class-

name due to the fact that method names may di�er a li�le but still belong to

the same context. This addresses, for example, the scenario where the index

contains test cases for two distinct RomanNumeral classes, where one contains a

fromRomanToInt method, while the other one contains a toInteger method.

Algorithm 7.1: Smart-Search �ery Relaxation.

Data: q ← query
Data: S ← relaxation subject
Data: n← minimum number of results
foreach si ∈ S do

qc ← relax query q with si ;
search with query qc ;
foreach search result r do

add r to global result set R ;
end
if |R| ≥ n then

exit loop ;
end

end
Return R ;

When the search is performed SENTRE presents an overview of all matching

test cases. Each test case result shows the name of the class under test and a

table that contains the corresponding tests and method invocations.

These invocation tables are inspired by the test-sheet metaphor [Atk+08b], which

envisages the presentation of test cases in a spreadsheet like format. Figure 7.3

shows the results of an example search using SENTRE, where the first column

of the test sheet contains the name of the CUT’s method which is part of

the required interface of the original test case. The second column shows the

expected result of the test and the following columns contain the test case values

of the method invocation.

143

Chapter 7 REUSE-ASSISTED SOFTWARE TESTING

Typically, a search result is composed of a method invocation using test case

values and the appropriate expected result. In addition to that, our SENTRE

search engine o�ers the possibility to deliver so-called exception tests for the

class under test. In Java, programs may throw an exception when they face an

unexpected condition such as an invalid input.

With JUnit it is possible to test whether a program throws an exception for given

test case values and our parser is able to recognize these tests. Consequently,

our search engine delivers exception tests in a separate result table, next to

the result test-sheet. Since exception tests tend to be more complex than plain

value mappings, we will take a closer look at them in Section 8.3, when we also

discuss the usage and potential of exception tests in the context of a test-reuse

environment in the Eclipse IDE.

Figure 7.3.: Screenshot of a SENTRE Result Table.

144

Result Retrieval Techniques for Test Reuse 7.2

Result Ranking

To provide users with be�er results, it is convenient to reorder the retrieved

results by their relevance. In order to define a relevance function it is necessary

to first identify relevance criteria. For searches based on the required interface of

reusable tests we can obviously utilize the degree to which the provided interface

of the CUT matches the required interface of the tests.

Since the interface of a class is basically formed by the classname and the

contained methods, we have decided to split the description into its parts and

base the calculation of result relevance on them.

In order to define a relevance function for the n results returned by a query and

a weighted set of criteria c1, . . . , ck, we utilize the well-known formula for the

weighted sum: the relevance R of the nth result is therefore defined as

Rn =

k∑
i=1

wi · ci (7.2.1)

where wi represents the corresponding weight of each criterion ci. Each crite-

rion is defined as a value between 0 and 1. This value indicates how well the

search result matches the query with respect to the particular criterion. For the

relevance of a full test case, the upper part of Table 7.1 gives an overview of the

ranking criteria and their corresponding weight.

No. Criterion Weight
1 classname 6
2 method interface 4

No. Criterion Weight
2.1 method name 5
2.2 method signature 5

Table 7.1.: Criteria and Weights for Result Ranking.

145

Chapter 7 REUSE-ASSISTED SOFTWARE TESTING

SENTRE calculates the relevance of a result in two steps. First, it calculates the

relevance of each method. A method is only included in the calculation of the

relevance of a result if it has a non-zero relevance itself. The distance between

each method and the query is therefore determined with the help of the weights

from Table 7.2. Class- and method names are assigned a value between 0 and 1,

depending on the similarity between the result and the query.

If the name of the result is exactly the same as the corresponding name in the

query, we assign it the value of 1. If only a leading or trailing wildcard needs to

be appended to the query’s name to match the result name the value of .75 is

assigned. The ranking algorithm also examines the names for camel case and

extracts the words contained. If all words in a query’s class- or method-name

match the words in the name of the CUT, this is assigned the value .5, while a

match of a subset of the words contained in the query result in the value .25. If

the classname of the query and the CUT do not match at all, the classname is

assigned the value 0. This happens as well if no method of the CUT matches

any method declaration from the query.

Criterion Match Value
Name Exact Match 1

Trailing / Leading Wildcard .75
All Words Match .5
Subset of Words .25
Nothing Matches 0

Signature Exact Match 1
Only Parameter Types Match .5
Only Return Type Matches .5
No Match 0

Table 7.2.: Distance Weights for Methods and �eries.

A�er the method names of the CUT and the query have been examined, the

algorithm compares the signatures of the methods that were assigned a value of

.25 or greater. If the signature is an exact match, it is assigned the value 1. If only

146

Result Retrieval Techniques for Test Reuse 7.2

the parameter types or only the return types match, the signature is assigned

the value .5.

If neither the parameter types nor the return type match, the signature is consid-

ered a mismatch and assigned the value zero. Subsequently, these values allow

the algorithm to calculate the relevance of each method declared in the query

and to sum them up to the value of the method interface in the upper part of

Table 7.1, which accounts for 40 % of the total result relevance. The comparison

of the required classname of the result and the classname defined by the query

is also performed with the help of Table 7.2 and contributes 60 % to Rn.

Wrappers for Primitve Data Types

Although Java is generally associated with the idiom that “everything is an object”,

this is not entirely true. The Java language specification defines eight primitive

data types that are not considered to be objects in the narrow sense of the word.

While Java objects are created through the instantiation of a class using the

keyword new, primitive data types are usually assigned a literal value. The Java

Language Specification (JLS), however, introduces additional wrapper classes for

the primitive data types, which are listed in Table 7.3 along with instantiation

examples.

Since Java 1.5, the so-called autoboxing feature implements the automatic conver-

sion between primitives and their wrapper classes. Hence, a distinction between

primitives and wrappers is no longer necessary and the parser always stores the

wrapper class when a primitive data type is found in a method signature.

We have chose to disregard the di�erences between the primitive data types

and their wrappers and the underlying index of our SENTRE test search engine

only makes use of the wrapper classes regardless of whether the original search

interface was specified using primitive data or their corresponding wrapper type.

Although we are well aware of the di�erence between primitive data types and

their wrapper classes, this does not play a role for the results returned by the

search engine, as they are in any case expressed as literals.

147

Chapter 7 REUSE-ASSISTED SOFTWARE TESTING

Primitive Wrapper Instantiation
byte Byte byte b = 2; Byte b = new Byte("2");
short Short short s = 5; Short s = new Short("5");
int Integer int x = 2; Integer x = new Integer(2);
long Long long l = 5L; Long l = new Long(5);
float Float float f = 2f; Float f = new Float(2);
double Double double d = 5d; Double d = new Double(5);
char Character char c = ’c’; Character c = new Character(’c’);
boolean Boolean boolean b = true; Boolean b = new Boolean(true);

Table 7.3.: Java Primitive Data Types and Wrapper Classes.

Evaluation of Interface-Based Searches

As we have shown in earlier publications, interface-based searches are an im-

provement over plain keyword- or signature-based searches [HJA07]. Never-

theless, it is obvious that they have some drawbacks as well. One of their

major weaknesses is their dependency on the names chosen by developers and

searchers when looking for reusable artifacts. This problem is not new to the in-

formation retrieval community and in the literature there are many suggestions

to tackle this such as through the application of similarity thesauri [BR08]. In his

seminal work in semantic component retrieval, Hummel provided an overview

of these technologies and describes the implications of these drawbacks on the

area of so�ware reuse [Hum08].

Naturally, the technology applied in test-driven reuse cannot be directly trans-

ferred to the reuse of so�ware tests. Although the evaluation of the developer’s

CUT against reusable test cases seems feasible, the outcome does not suite our

needs. We are interested in the scenario in which a developer searches for tests

by providing the CUT from the project under development, in the same way

when a test case is provided as a search query in test-driven reuse. Based on such

a query, the search engine finds candidate reusable tests and applies them to

the CUT in question. The CUT may pass all the tests without failing or may fail

one or more of the tests from the test case. In test-driven reuse, the successfully

passed test case would consider the CUT to be a suitable reusable component,

148

Result Retrieval Techniques for Test Reuse 7.2

but test reuse has a di�erent focus: since the goal of so�ware testers is to find

bugs, they regard failed tests as successful goal achievement.

Nevertheless, before we discuss possible improvements to the precision of search

results, we will introduce other search and retrieval techniques that help us find

potentially reusable assets. In the following, we will discuss a new way to express

search criteria, which neither solely relies on class- or method names nor does

it only consider type information from method signatures. Instead, it uses the

test case values and expected results of the execution of the class under test to

find relevant reuse candidates. This strategy shi�s the focus from structural to

semantics-based searches for reusable so�ware tests.

7.2.2. Value-Based Searches

Although we have seen that interface-based search can be more precise than

keyword- or signature-based searches [HJA07], there is still room for improve-

ment. Therefore we introduce a new kind of search which is not based on

structure, but on the behavioral information provided by a test. Earlier in this

thesis, we discussed the nature of so�ware tests and that they can basically

be regarded as comparisons of test results against expected values. The test

result is obtained by executing an operation of the system under test, while the

expected result is provided by some kind of oracle. Based on this observation,

we introduce another form of query for reusable tests which relies on test case

values and expected results instead of structural information. Hence, in contrast

to interface-based searches, these value-based searches utilize the behavioral

information contained within the test cases and the tests respectively.

The earlier referenced classification scheme of Mili et al. [MMM98] does not

directly mention a retrieval method corresponding to value-based searches.

However, the authors mention so-called operational semantics methods for asset

retrieval, which take into account the fact that so�ware components are di�erent

from textual documents. As well as the structural di�erence, they emphasize that

so�ware components are executable and therefore operational semantics methods

utilize the executability of components to select reusable assets. Although our

149

Chapter 7 REUSE-ASSISTED SOFTWARE TESTING

approach of value-based searches does not fully accommodate the notion of asset

execution, we characterize this approach as a specification-based operational

semantics method. While it does not involve the execution of the retrieved assets,

the criterion for asset selection is the behavior of the class under test.

�ery Formulation

Just as we did earlier, we start by providing an exemplary JUnit code snippet that

is used to demonstrate the usage of value-based queries in the SENTRE search

engine. Listing 7.3 shows a test case for a roman numeral converter, which tests

the conversion of four Roman numerals (I, X, C, M) into their corresponding

Arabic numeral counterpart (1, 10, 100, 1000).

Listing 7.3: Excerpt of a Test Case for a Roman Numeral Converter.

1 public class RomanNumeralTest {
2 @Test
3 public void testToInt () {
4 assertEquals (1, RomanNumeral.toInt("I"));
5 assertEquals (10, RomanNumeral.toInt("X"));
6 assertEquals (100, RomanNumeral.toInt("C"));
7 assertEquals (1000, RomanNumeral.toInt("M"));
8 }
9 }

Our goal is to make the search engine as easy and intuitive to use as possible.

This applies to query formulation as well, since the formulation of a query is

the first way in which a user interacts with the search engine. To create our

value-based query language we draw upon the definitions from Section 2.1,

where we described a test as an invocation

ξ : (α1, α2, . . . , αn)→ Γ

of method ξ with the test case values α1, . . . , αn that leads to the expected result

Γ. Since this notation transports all necessary information in a very minimalistic

150

Result Retrieval Techniques for Test Reuse 7.2

and intuitive form, we can take the above form as a basis for the value-based

query language. Hence, the example code from Listing 7.3 can be translated to

the following query description

(I)->1;

(X)->10;

(C)->100;

(M)->1000;

where the semi-colon marks the end of a test. Thus, the search could have been

wri�en in one line as well. The query is, however, not yet complete, since it

does not unambiguously indicate whether the user wants to find test cases that

contain any of the above tests or whether the search results have to contain all

of the tests. To o�er users the possibility to search for test cases that contain a

subset of the specified tests, but at least one, we introduce the search operator

v: that is prepended to the query. To enforce strict adherence of the query, the

operator vs: ensures that all tests from the query are contained in any of the

results retrieved by the search engine. A query that uses the strict value-based

search operator is depicted in Figure 7.4, together with the first two results and

a result test-sheet.

If we take a look at the results that are returned by SENTRE in response to

the above query, we find that the second search result requires the following

interface from the class under test:

RomanNumbers

+ toString(Integer) : String
+ valueOf(String) : Integer

Thus, an interface-based search such as the one presented on page 141 would

not have found this test case, as it requires a method name that contains the

151

Chapter 7 REUSE-ASSISTED SOFTWARE TESTING

Figure 7.4.: Strict Value-Based Search with Result List.
152

Result Retrieval Techniques for Test Reuse 7.2

word roman. This is not the case with the above interface, however. Value-

based searches therefore represent a useful enhancement to pure interface-based

queries. When applied jointly, the approaches complement each other and help

to improve the recall of search results.

Regular Expressions

Although the previously introduced value-based searches o�er a convenient way

to specify behavioral characteristics of the search results, pure reliance on fixed

values might not be the best way to achieve be�er recall. Given the search from

above, our search algorithm might miss those test cases where the authors have

chosen other test case values than those specified in the query. In so�ware

testing there are no first-class citizens for test case values, meaning that no test

is be�er than another.

Though we are aware of the many testing techniques that have become estab-

lished in so�ware testing. Boundary value testing techniques and the like, which

require testers to define a fix set of tests at the boundaries of equivalence classes,

can certainly improve the e�ectiveness of a test suite, but it is almost like a

law of nature that none of these techniques can guarantee the discovery of all

possible bugs. As Fred Brooks stated in his famous book [Bro87], there is “no

silver bullet”.

Since errors in program code may have many di�erent origins, from developer

negligence to purposely inserted malicious code, each test case value in an

equivalence class has the same potential to discover a bug in a program and

therefore the rule the more we test the be�er is our test case is certainly not without

virtue. If the designer of a test decides to use di�erent values to those specified

in a searcher’s value-based search, our search engine will miss these results.

We tackle this serious problem by an enhancement of our query format with a

more formal way of specifying test case values and expected results. Instead of

only allowing users to enter concrete values in their queries, the operator rex:

indicates the usage of regular expressions in the query. Regular expressions are

a well-known and widely adopted technique for pa�ern matching which are

153

Chapter 7 REUSE-ASSISTED SOFTWARE TESTING

o�en used by input validation algorithms2. They allow us to specify input values

in a more general way. In the appendix we have enclosed a short overview of

the most important operands and example queries. More general information

on regular expressions can be found in the literature, e.g., in Friedl’s book on

Mastering Regular Expressions [Fri02].

Value-based queries with regular expressions allow general rules to be specified

rather than mappings between specific test case values and expected results. To

clarify this we will show how to formulate a general rule for our Roman numerals

example:

A Roman numeral is made up of a combination of the Latin le�ers I, V, X,

L, C, D and M. A test of a translation of a Roman numeral to Arabic numeral

therefore maps a Roman numeral to the corresponding Arabic numeral, which

is composed of at least one digit between 0 and 9.

To translate this general rule to a value-based test with regular expressions we

can exploit the fact that SENTRE supports the whole set of rules, delimiters and

meta-characters for regular expressions implemented in Java. The query for our

Roman numerals example can thus be wri�en as follows:

rex:("^[IVXDCLM]+$")->"\d+";

The prefixed rex operator tells the system to switch to value-based search with

regular expressions, which allows the regular expressions to be embedded within

quotation marks. Besides, the query structure is the same as for pure value-

based searches – including the semi-colon at the end of each test. It is therefore

possible to unify multiple criteria under the umbrella of one value-based search

with regular expressions and even mix them with pure value-based searches.

Just as with the v: and vs: operator, a search enhanced with regular expressions

can require a result to contain at least one of the search criteria or all of them.

The former e�ect is achieved using the operator rex:, while the la�er kind of

search is performed with a prepending rexx: operator.

2 SENTRE uses regular expressions itself to identify malformed search queries.

154

Result Retrieval Techniques for Test Reuse 7.2

Result Ranking

Obviously, the relaxed searches, where not all search criteria have to be met by

a reuse candidate, may discover reusable test cases that contain only one of the

specified tests from the query. Even worse, this test case may be intended to

test a completely di�erent abstraction and therefore contain other tests that

have nothing to do with the user’s class under test. In Chapter 9.3 we present

an approach to eliminate such false-positive results and do not consider them

further in our current discussion.

Nevertheless, it is necessary to rank the results obtained using value-based

searching3 by some criteria. The most obvious criterion is the degree of overlap

between the tests defined in the search and those contained by a reuse candidate.

Those test cases that contain all specified mappings of test case values to expected

results are ranked first, while the remaining are listed in descending order

depending on the number of query mappings contained.

Although this strategy seems appealing at first sight, a closer look tells us that

it is not appropriate. More specifically there appears to be no reason to rank

results higher just because they contain the tests specified in the search query,

as the user has obviously already discovered the specified tests. Remembering

our arguments from above that there are no first-class citizens in so�ware tests,

we cannot ignore the fact that test cases with less query overlap can still contain

tests that are as good as those with full query overlap. Hence, we need some

other criterion for result ranking.

As we have seen, the search and retrieval of so�ware tests can be improved by

the application of value-based searches. Especially the fact that the dependence

on names can be omi�ed is a major improvement. Nevertheless, the approach

also relies on historic execution data and can therefore be classified as a hybrid

of structural and behavioral searches.

The following section introduces code-based searches, which extends the previ-

ously introduced search strategies with dynamic execution to searches.

3 In the current context we apply the term value-based searching to both kinds of searches, i.e.,
with and without regular expressions.

155

Chapter 7 REUSE-ASSISTED SOFTWARE TESTING

7.2.3. Code-Based Searches

Until the end of the 1990s the so�ware reuse community developed a large set of

methods for the retrieval of reusable so�ware components [MMM98]. However,

researchers in this area were not satisfied with the rather low precision of the

existing search techniques and engines [HJA07]. Over the last decade, one of

the most promising new approaches for improving precision was based on the

idea of executing reuse candidates and evaluating their fitness for purpose using

so�ware tests [Lem+07; HJA08; Rei09]. Interface-based searches for so�ware

tests can be regarded as equivalent to the same kind of searches in code reuse.

The introduction of value-based searches for so�ware tests represents a potential

improvement to this approach, but we have also seen that this technology still

relies on static information.

Therefore, the idea of code-based search for test reuse, which represents a kind of

symmetric technology to test-driven search in classic so�ware reuse, is to exploit

the executability of so�ware tests to improve the quality of the result set. While

test-driven search uses test cases as queries and evaluates the retrieved reuse

candidates by executing the tests cases, we are going to use the actually existing

implementation of a developer to evaluate potentially reusable test cases.

In contrast to test-driven reuse, in code-based searches the test search engine

regards the class under test as a supplementary part of the search process. A�er

an interface- and / or value-based search has been performed, the potentially

reusable tests are evaluated against the class under test. Since the CUT is an

untested potentially buggy piece of so�ware, the results of this evaluation have

to be treated only as an indication of the test’s fitness for purpose; they are

by no means an evidence for it. In this discussion, we consider the following

possible outcomes of a CUT-based result candidate evaluation:

1. The CUT passes none of the tests of the candidate test case.

2. The CUT passes a subset of the tests of the candidate test case.

3. The CUT passes all tests of the candidate test case.

156

Result Retrieval Techniques for Test Reuse 7.3

In case that a CUT fails on all tests contained in a test case, it is very likely that

the CUT’s problem domain is di�erent to the test case’s domain. This is, however,

only an assumption and at first sight one might challenge it and state that the

failing tests reveal serious problems in the CUT like, for instance, a problem at

the very start of the program. Nevertheless, if the search returns a couple of

test cases and all others contain at least some passing tests, the assumption of a

totally broken CUT becomes weaker. Hence, we consider the first criterion to be

a “rule-out” criterion for reuse candidates, although this may lead to so-called

“false negatives” under some circumstances.

While users of test-driven search engines consider themselves fortunate when a

reuse candidate passes all the tests of the query’s test case, in our case this is

not the most desirable situation. Although it might be satisfying for developers

to see that their code passes other people’s tests, the goal of tests is to discover

faults and not to prove that a program is free of bugs [Mye79].

Therefore, the second category contains the most interesting candidates. A

significant number of successful tests is a good indicator that the candidate test

case fits in to domain of the CUT, while the failing tests are those that can add

new value to a developer’s test cases. When a test from a reusable test case fails

during execution, the chances are high that it has discovered a bug in the class

under test. Thus, the a�ected code needs to be inspected by the developers who

have to revise the potentially faulty code and fix it accordingly.

Naturally, it may also happen that a failing test is faulty itself and that the

class under test has returned a correct result. However, if we assume that the

tests contained in the repository are created by professional testers and domain

experts, this should be the exception rather than the rule. Moreover, in this

case the reuse of so�ware tests o�ers the opportunity to improve the quality of

existing projects: a faulty test should be corrected upon discovery and the new

version propagated to other projects using this test. Finally, the faulty test also

needs to be updated in the search engine’s repository so that it is not returned

in future searches.

157

Chapter 7 REUSE-ASSISTED SOFTWARE TESTING

7.3. Retrieval of Exception Tests

When describing how JUnit test cases are analyzed, we explained how exception

tests are recognized and relevant information is extracted from them. Since the

exception tests are strongly related to their original class under test, they are

included in the results of any of the previously introduced retrieval techniques.

Therefore it is not necessary to discuss any special kind of additional retrieval

mechanism, but there is one important aspect that needs to be addressed. As

we have seen earlier in this thesis, an exception test verifies whether the call of

a method of the class under test results in the program throwing a pre-defined

exception.

The example in Listing 6.9 on page 131 explicitly required the CUT to throw a

RomanNumeralException. Although the specified exception is usually contained

in the source code repository from which the reusable test was obtained, it is

doubtful whether developers want to incorporate a potentially large number of

foreign exception types instead of their own programs, since they might have

already wri�en their own exception types for their class under test. Hence,

we consider it more reasonable to deliver exception tests at a higher level of

abstraction. Instead of testing for a specific exception type, we refactor the test

and require it to expect the generic Exception type, which is inherited by any

individual exception class.

Figure 7.5.: An Exception Test in SENTRE.

Nevertheless, it is not necessary to hide the identity of the original exception

type from users. If they want to deploy the foreign exception type within their

158

Test Reuse Process 7.5

project, they should still be able to reuse the exception test in its original form.

Figure 7.5 shows a screenshot of SENTRE presenting an exception test for a

Roman numeral converter that verifies that invalid input is rejected properly.

7.4. Test Reuse Process

In Chapter 5, we introduced and described a process for so�ware reuse. This

process outlines the major steps involved in so�ware reuse in general. At this

point, we want to review the steps from the decision to search and the description

of the subject of the search up to the selection of a reusable asset in the context

of the reuse of so�ware tests. Therefore, the fundamental process of acquiring a

test recommendation is outlined in Figure 7.6.

Basically, the process begins once the developer has wri�en a class and starts

to write tests (1) that, as well as implicitly describing how to test the class, also

describe its intended behavior (i.e., the developer provides a syntactic and a

semantic description of the system under development). Subsequently the de-

veloper performs a reverse search using the test search engine, whereas “reverse”

means that it does not look for components providing a specific interface, but

returns those tests that require a similar interface to the one declared in the

query, i.e., provided by the class under test (2).

The system judges their fitness for purpose (3) and those tests that pass this

step represent possible test recommendations which are subsequently ranked

(4) and delivered to the user. If necessary, the involved interfaces can be dy-

namically adapted using the technology we introduced in earlier (cf. Section 4,

pp. 55). Finally, the user inspects the recommended set of tests and decides

which test(s) should be reused in the current project (5). By reusing a test and

abandoning other recommendations, developers provide valuable feedback to the

system, which can be automatically analyzed and used to improve the backend’s

evaluation algorithms and influence future result ranking.

159

Chapter 7 REUSE-ASSISTED SOFTWARE TESTING

Figure 7.6.: Micro-Process of Test Reuse.

160

Implementation 7.5

7.5. Implementation

Throughout this thesis we have referred to SENTRE which embodies the results

of our theoretical considerations and practical experiences from research on

the reuse of previously created so�ware tests. Although we have given insights

on its implementation at various points, it is necessary to briefly describe the

architectural design of SENTRE and mention some facts about the current

implementation. Naturally, the development of such a sophisticated tool in a

completely new area of research is always a challenge and demands a lot of

endurance and patience during its emergence. From the initial investigation of

technologies and APIs, appropriate database implementations and finally tool-

assisted test reuse in the IDE a lot of di�iculties had to be overcome. Not only

the information extraction from JUnit tests sometimes ended with disappointing

results, but also the server-side implementation contained many pitfalls like the

problems arising during the search for reusable assets within nested arrays in a

MongoDB collection. Having said that, we do not want to go into all details and

pitfalls of the implementation, but rather present “the big picture”.

Some technical information about SENTRE should make it easier for future

researchers, who want to follow-up on our work, to build similar and enhanced

systems. For the current parser, we have chosen to utilize the Java Compiler

API4 which provides a set of tools to access the abstract syntax tree (AST) of

Java files. With its TreeVisitor it provides an easy way to inspect a given Java

file, based on the concept of the visitor pa�ern [Gam+94]. The information

extracted by the test parser is stored in a MongoDB collection, which provides

a convenient way to store documents with dynamic structures and o�ers fast

index-based searches. Furthermore it supports searches with regular expressions,

which made the translation of search queries much easier.

The SENTRE search engine is implemented using the Java Enterprise Edition and

deployed on a JBoss 7.1 application server running on a Linux operating system.

The underlying hardware (as of April 2014) comprises an Intel Core i7-2600 CPU

4 h�p://docs.oracle.com/javase/7/docs/jdk/api/javac/tree/com/sun/source/util/package-
summary.html

161

Chapter 7 REUSE-ASSISTED SOFTWARE TESTING

Database / MongoDB

Application Server / JBoss AS

Web Server / Apache

Browser Eclipse Plug-In

Figure 7.7.: System Architecture Sketch of SENTRE.

with 3.40 GHz, 16GB of RAM available and approx. 20TB harddisk space for the

system and the code repository. To communicate with external client so�ware,

we have implemented a web service using the capabilities of the JBoss AS. All

access to the application server is performed via an Apache server using the

AJP module. SENTRE is therefore based on a multi-tier architecture, where the

services are separated and encapsulated.

The architecture of the reuse-assisted test recommendation system is visualized

in Figure 8.3, which shows the di�erent tiers of the system. The client tier,

containing the Eclipse plug-in, will be the subject of the following chapter.

Although SENTRE o�ers a browser UI, we have already discussed in Chapter 5

that an appropriate IDE integration is essential for e�ective utilization and

adoption of so�ware search engines by developers.

7.6. Summary

At the beginning of this section we discussed and identified typical scenarios

for using dedicated test search engines.. We identified potential use cases

for these systems and discussed them in the context of the traditional phases

of the so�ware development lifecycle. Subsequently, we introduced a set of

complementary retrieval techniques that can be used to search for previously

wri�en test cases, based on the well-known idea of using interface descriptions

of the class under test. Furthermore, we introduced the idea of value-based

162

Summary 7.6

searches that rely on a user’s specification that describes the mapping of test

case values to their corresponding expected results. With the introduction of

regular expressions as an extension to value-based searches, more general queries

can be specified and the values can be described as pa�erns.

While the preceding retrieval techniques rely on static content analysis, the

description of code-based searches introduced dynamic evaluation of reuse

candidates to test search engines. Based on the application of potentially reusable

test cases to the user’s class under test, the system can identify and rank valuable

tests. A�er describing the retrieval of exception test, the chapter concluded with

an overview of the architecture and current implementation of SENTRE, our

search engine for reusable so�ware tests.

In the following chapter we are going to describe the implementation of an

Eclipse plug-in for test reuse that automates the search for reusable so�ware

tests, integrates it into the developer’s IDE and makes the whole process more

user friendly.

Contribution of this chapter

• We have discussed and identified a set of archetypal usage scenarios for

dedicated search engines for so�ware tests.

• We have presented interface-based searches for test reuse and an approach

to automatic query refinement and ranking.

• We have discussed searches for reusable so�ware tests based on mappings

of test case values to expected results.

• In addition to value-based searches, we have enhanced this retrieval tech-

nique with a pa�ern-based value specification using regular expressions.

This strategy potentially improves the recall compared to plain value-based

searches, where the test case values and expected result must be a perfect

match.

• We have introduced the idea of code-based searches for so�ware tests that

can be used for dynamic result evaluation of reusable so�ware tests.

163

Chapter 7 REUSE-ASSISTED SOFTWARE TESTING

• Based on our considerations of a so�ware reuse process, we have intro-

duced a micro-process for the reuse of so�ware tests.

• We have described the system architecture and implementation of SENTRE,

our search engine for reusable test data.

164

“ So is it with programming and bugs:

I have them, you have them, we all have them –

and the point is to do what we can to prevent

them and to discover them as early as possible.”

So�ware Testing Techniques [Bei90]

Boris Beizer, So�ware Engineer

8
Reuse-Assisted Test

Recommendation

So�ware search engines are only as good as the underlying technologies used to

drive their repositories, the parsers used to build their indexes and the retrieval

algorithms used to search for results. However, in Chapters 3 and 5 we learned

that although good solutions to these challenges are necessary for a successful

search engine, they are not su�icient. A successful search engine must also

provide a user friendly interface and environment that automates the process

of reuse to the greatest extent possible. Over the past decade a lot of research

has been conducted in the area of so�ware search, but only a minor proportion

has focused on the requirements for reuse-oriented recommendation systems in

so�ware engineering.

Based on our work conducted on Code Conjurer [Jan07; HJA08] and on the

characterization of similar tools [JHA14], in this chapter we introduce a reuse-

165

Chapter 8 REUSE-ASSISTED TEST RECOMMENDATION

oriented test recommendation system for Eclipse. The plug-in acts as a client

to SENTRE and utilizes its capabilities to provide on-demand test recommen-

dations [JA13; Erl13]. First, we discuss the requirements for a reuse-oriented

test recommendation system and outline the general process of tool-supported

test reuse. Subsequently, we describe the design and implementation of the

tool, before we present some usage examples of our prototype implementation

accompanied with a couple of screenshots.

8.1. Characteristics

Earlier in this thesis we discussed the general characteristics of so-called reuse-

oriented code recommendation systems and presented our findings also in a

chapter of the book on Recommendation Systems in So�ware Engineering [JHA14].

This chapter will therefore focus on adapting such systems for test reuse. Our

goal is to focus on their implementation and how the idea of a reuse-oriented

test recommendation system can actually be realized.

As already mentioned, the implementation of a recommendation system for

reusable so�ware tests needs to be seamlessly integrated into the development

environment of its users. In order to minimize the barriers to its use, the sys-

tem needs to “feel” familiar to developers and needs to be non-intrusive. If a

recommendation system for so�ware tests disturbs the workflow of the user by

continuously demanding a�ention users may quickly become annoyed and de-

activate or remove the system. Hence, it is necessary that the recommendations

o�ered by the system are well integrated into the IDE and are ready on demand

whenever the user desires them.

Therefore, like the reuse-oriented code recommendation system Code Con-

jurer [Jan07; HJA08], a recommendation system for so�ware tests needs to

implement an autonomous background agent which continuously monitors the

developer’s actions. More specifically, it needs to inspect the test cases associated

with the class under development and unobtrusively spring into action, when

166

Characteristics 8.1

the user edits them. Autonomous background agents are therefore a central part

of our test-reuse environment that we will introduce below (cf. Section 8.3).

Based on our findings in Chapter 5, we emphasize that a recommendation system

for reusable so�ware tests needs to fulfill the following requirements:

Proactive service The test-reuse environment needs to constantly monitors

the users’ testing activities and becomes active when a test case is opened

in the editor. The system autonomously decides when to trigger a search

for potentially reusable assets, i.e., when to start the process depicted in

Figure 8.1. The user should not be aware of the system’s activity and should

not be diverted from their normal workflow in any way.

Context awareness In order to work appropriately, a reuse-oriented test rec-

ommendation system needs to be aware of the developer’s context. For

example, since the JUnit assertions in a developer’s tests usually contain

just method invocations or literals as expected values, the type of the ex-

pected result is not obvious. Nevertheless, this information can be obtained

from the class under test via its interface declaration.

IDE integration The test-reuse environment should provide seamless IDE in-

tegration. In other words, the users should not need to learn any new

concepts to learn it and should become familiar with the system with

as li�le e�ort as possible. For example, a single assert statement can be

recommended using the auto-complete feature of the IDE.

Candidate evaluation Recommendation systems are only useful, when they

provide valuable results to their users. This applies even more to reuse-

oriented systems, since they need to tip the make or reuse dilemma in

favor of reuse. Hence, the test-reuse environment needs to evaluate the

potentially reusable tests and create a ranked list with the potentially most-

useful recommendations on top. As a failing test potentially represents

the discovery of a bug in the CUT, these tests should be ranked first, but

nevertheless also inspected carefully.

Ready-on-demand The evaluation of tests can potentially be time consuming.

In order to be useful for developers, a test-reuse environment must be re-

167

Chapter 8 REUSE-ASSISTED TEST RECOMMENDATION

sponsive and provide results as quickly as possible. Therefore we utilize the

idea of speculative analysis [Bru+10] and perform background evaluation

of potential results even before the user requests them.

Feedback evaluation The system needs to examine whether the user was

satisfied with its recommendations. Since recommendations are usually

ranked using a weight function, the system can adjust the corresponding

weights for future result evaluation and ranking.

8.2. Process Outline

Before we come to the actual implementation of our reuse-oriented test recom-

mendation system for the Eclipse IDE, we define the process for tool-supported

test reuse based on the outline depicted in Figure 8.1 (i.e., we identify the nec-

essary actions and components, as well as the moment when they have to be

executed).

The process of tool-supported test reuse comprises eight steps, from which the

main portion is carried out automatically in background. At the beginning of

this process, we consider a developer who is writing code and/or tests in the

IDE, as well as a recommendation system that constantly monitors the editor

content (1) and triggers either a search for reusable so�ware tests or performs a

re-evaluation of the results of a previous search. The autonomous decision to

search is mainly driven by

• the change of an interface-defining part of the class under test,

• the change of the order of the tests in the editor, or

• the addition of a new test or removal of an existing test.

Thereby, the last aspect also covers the modification of an already existing test

in the developer’s project, since a change can be achieved through a removal

and an addition.

168

Process Outline 8.2

automaticmanual

Figure 8.1.: Process of Tool-Supported Test Reuse. The parts of this process,
which are carried out automatically (1–6), are highlighted with a
light gray background color, while the manually performed actions
(7 and 8) are blue-shaded.

When the interface of the class under test changes, a new search might reveal

new reusable test cases and therefore it needs to be triggered by the system. If

the order of the tests changes, this may merely be related to a di�erent state of

the tested object so is not necessary to perform a new search (if the required

interface and utilized values are the same). It is only necessary to re-evaluate

the previously retrieved results in the context of this possibly new state. When

the system triggers a search for reusable tests, it formulates appropriate queries

and sends them to the test search engine (2). Subsequently, the search engine

performs a search and returns a set of potentially reusable tests (3).

A�er an initial server-side evaluation of the results, they are retrieved by the

recommendation system for further processing (4). Usually, code recommen-

dation systems tend to provide lists of possibly reusable assets to developers,

from which they have to choose the right one for their task in hand. This is a

very tedious duty since it involves the manual inspection of the provided results

and a judgement for each of them, whether they add value to the actual project,

i.e., support the developer’s work. In the case of test reuse, this inspection cor-

responds to the investigation of whether a test improves the e�ectiveness and

169

Chapter 8 REUSE-ASSISTED TEST RECOMMENDATION

quality of the test case under development by, for example, discovering a bug or

at least increasing the level of test coverage.

To enhance the value provided by recommended systems for reusable so�ware

tests, our system automatically evaluates the candidates’ fitness for purpose

using a technique introduced by Brun et al., which is called speculative analy-

sis [Muş+12a; Muş+12b]. The approach envisages to utilize unused computation

power to examine future development states of a system in background in order

to support the user’s decision process, which alternative is appropriate in a

particular situation. In our system, a background service adds the retrieved

reusable tests to the test suite of the project under development and examines

the outcome of their execution (5). Based on the results of these “dry runs”, the

search results have to be ranked by their context relevance, which is influenced

by the following aspects: a) whether a test fails and potentially discovers a bug,

b) how it contributes to coverage metrics, and c) the kind of test, i.e., whether it

is the mapping of test case values to an expected result or an exception test. The

background process prepares all this information for the test recommendation

system (6), which displays the ranked and reusable tests to the user upon request

(7). A�er a user has requested the recommendations, he or she inspects the

recommended tests and chooses the most appropriate for the given context.

Based on the user’s choice, the recommendation system integrates the selected

test (8) into the developer’s project, including any adapters that were necessary

to execute the test on the so�ware under test. If the user has chosen a result

other than the topmost in the list of recommendations, the system should inves-

tigate whether other values for the weights used in the ranking algorithm would

have assessed this result as the most appropriate. This investigation enables

the system to adjust to the user’s preferences and therefore to create be�er and

more user-centric recommendations in the future.

8.3. Implementation

Driven by the ideas developed for recommending code for reuse, our goal is to

suggest useful test cases to developers and help them write be�er tests for the

170

Implementation 8.3

so�ware they are developing. This is only helpful, of course, if the application

of such an approach requires less e�ort and time than the original approach.

Therefore, as with traditional code recommendation systems, it is important

that such a system does not require developers to significantly change their

traditional behavior while creating so�ware. It should avoid generating further

overhead by demanding developers to write any additional specifications or

learn any new query languages. Thus we extract all necessary information from

the context of the code under development – including the main functional

so�ware that will be part of the final product – and the test cases that will be

used to test it.

8.3.1. Eclipse Plug-In

In this section we introduce our Eclipse plug-in for the reuse of JUnit so�ware

tests, which realizes the previously mentioned requirements for reuse-oriented

code recommendation systems in general, as well as those identified specifically

for the reuse of so�ware tests. The system relies on the so�ware test search

engine SENTRE, which we described earlier in this thesis. The screenshot in Fig-

ure 8.2 shows an example of our plug-in, while it is recommending reusable test

cases acquired from the SENTRE search engine. As the screenshot of the plug-in

shows, the tool seamlessly integrates into the Eclipse development environment

and although it adds two additional views to the IDE, the recommendations are

non-intrusively integrated using the auto-complete feature of the Eclipse editor.

This approach makes access to the recommendations as easy as a keystroke.

Moreover, they are presented using a familiar layout and users can discard them

very easy, since the recommendations disappear while the users continue to

type in their own code.

The plug-in architecture, as depicted in Figure 8.3, basically consists of a Back-

ground Agent, a Communication Stack and an Analyzer. The Background agent is

aware of the project context of the test under development and uses di�erent

heuristics to determine the identity of the class under test. These heuristics

are similar to those that we described earlier in Chapter 6.2 and were required

171

Chapter 8 REUSE-ASSISTED TEST RECOMMENDATION

to develop a parser for test cases. Hence, our system is capable of performing

name-based searches by a�empting to match the name of the test to the name

of a class included in the same package as the test.

Figure 8.2.: IDE Auto-Completion for Testing Single Operations. Upon request,
the plug-in displays a list of test reuse recommendations and ad-
ditionally presents the corresponding coverage contribution of the
selected result.

Preliminary experiments on our initial data set containing 65, 003 test files re-

vealed successful name matching for 56, 930 cases (i.e., ≈ 87.5% of the time). In

cases where this is not successful, the system eliminates all standard imports

from the JDK (since we assume that developers usually do not try to test the

standard toolkit or, e.g., Object) and tries to identify the class under test amongst

the remaining artifacts in the project.

If the class under development is recognized the system displays it in a small

field. If not, the user has the possibility to intervene and guide the process.

172

Implementation 8.3

During the development of a test, the background service constantly monitors

the code input by the user, extracting all method invocations on the class under

test and storing the invocation parameter tuples (α1, . . . , αn) along with the

return value Γ.

Based on the gathered information the Background Agent triggers a search via

the Communication Stack in order to retrieve reusable test cases. The Com-

munication Stack is basically a web service client, which incorporates all the

logic needed to communicate with SENTRE and to use the retrieval techniques

described earlier in Chapter 3 of this thesis.

Eclipse Platform

Test Reuse Plug-In

Communication Stack

Analyzer Background Agent

User Interface

Figure 8.3.: Layered Architecture Schema of the Eclipse Plug-In.

Upon result retrieval, the Analyzer performs a speculative analysis in which it

evaluates the potentially reusable tests. Therefore it appends each test to the

test currently wri�en by the developer and executes the newly created test case

in the context of the whole project. Basically, there are three possible outcomes

according to which the list of recommendations is created to provide as much

value as possible. The two main factors involved in evaluating a result’s fitness

for purpose are (a) whether its is able to discover a potential bug and (b) how it

contributes to the overall test coverage.

The tests retrieved and evaluated by our Eclipse plug-in also contain exception

tests, and these are recommended to the developer where appropriate. The

173

Chapter 8 REUSE-ASSISTED TEST RECOMMENDATION

ranking of the recommendations is performed in the Analyzer, which utilizes

the JaCoCo1 framework to determine a reusable test’s contribution to the future

development state of the test under development. This is done by evaluating

various coverage measures, such as line and branch coverage. To create a user-

centric ranking of the recommendations, users are provided with a preference

page that allows the weights of the applied coverage criteria to be adjusted. If

the user wishes, however, it is also important that the system can re-adjust these

values automatically based on the chosen recommendation to improve future

rankings. Therefore the results need to be re-evaluated using other weights and

the calculated ranking has to be compared with the actual decision of the user.

8.3.2. Continuous Speculative Testing

Using speculative analysis, we have developed a novel approach for so�ware

testing. This approach goes beyond the traditional ex post evaluation usually

applied in test development. It leverages in-background evaluation of reusable

so�ware tests by automatically applying them in the context of the user’s test

under development. This ex ante evaluation consequently foresees, that the

system “knows” the contribution of available reusable tests to the quality and

e�ectiveness of the developer’s test case even before any of them is considered

by the user.

With our approach, we enhance the idea of continuous testing [SE05; AO08],

which originally envisaged the continuous execution of developed tests in the

background to see if a performed change in the code has broken the system. We

have combined continuous testing with speculative analysis and merged them

in our approach to continuous speculative testing of reusable so�ware tests.

Coverage Calculation for Recommended Tests

As already mentioned, with our Eclipse plug-in it is not only possible to receive

test recommendations instantly, but with the help of continuous speculative

1 a standard framework for coverage calculation: h�p://www.eclemma.org/jacoco/

174

Implementation 8.3

testing, the system ranks and accompanies each result with additional informa-

tion. This information illustrates the impact the application of the test would

have to the overall future coverage quality of the developer’s test case. The

screenshot in Figure 8.2 shows this information appearing in a yellow box next to

the result list. The box displays each kind of coverage supported by the system,

the new coverage rate for each of these and the improvement achieved with the

application of the selected recommendation.

If the user selects and applies a recommendation from the list, the background

agent validates the test case and the system updates the coverage information

view in Eclipse, similar to the screenshot in Figure 8.4.

Figure 8.4.: View for Continuous Testing.

Thereby, the information in the coverage view is calculated based on the test

case under development and is updated whenever a new test is added, even

those manually wri�en by the user. If a test case reaches a 100% coverage value

for any of the given criteria, the symbol in front of the appropriate coverage

method turns green. Additionally, with the information from the coverage view,

developers do not need to repeatedly execute their test cases manually, since

they are continuously informed about the test results by the system.

175

Chapter 8 REUSE-ASSISTED TEST RECOMMENDATION

8.3.3. Exception Tests

As we have already seen, the SENTRE search engine supports the retrieval of

exception tests from previously created tests, i.e., it o�ers the possibility to find

reusable test data on which a system should fail with an exception. Naturally,

our Eclipse plug-in incorporates this capability as well and o�ers exception tests

in the list of recommendations. An example of such an exception test recom-

mendation is shown in Figure 8.5, where the system has decided to recommend

that a test be introduced to check that the system under development throws

an exception on invalid input.

Figure 8.5.: Exception Test in Eclipse.

As we can see, reusing exception tests is as simple as reusing existing tests that

are expressed as assert statements. When the user requests auto-completion,

the test reuse system shows retrieved exception test recommendations in the

auto-complete list and displays a fragment of the original test case in the tooltip

box. When the user decide to integrate the exception test into his own test case,

176

Implementation 8.3

the test is integrated at the current cursor position, while the test’s required

interface is adapted to that of the test under development.

8.3.4. Algorithmic Outline

So far, we have discussed all relevant aspects of the implementation of our

test-reuse environment (i.e., our Eclipse plug-in for reuse-oriented recommen-

dation of so�ware tests). To sum up our discussion, the general steps in the

recommendation process are outlined in Algorithm 8.1.

Algorithm 8.1: Outline of Object-Oriented Test Recommendation.

prov ← provided interface of class under test ;
cand← set of potentially reusable test cases ;
forall the test cases in cand do

forall the object o in test case do
req ← required interface of test case for object ;
if req matches prov then

forall the method invocation on req do
store mapping (α1, . . . , αn)→ Γ ;
/* α1, . . . , αn is the in-parameter vector */
/* Γ is the return value of the invocation */

end
end

end
end
R← result set from search for matching test cases ;
forall the r ∈ R do

do speculative analysis for r ;
rank result with respect to user-preferred weights ;
store result ;

end
show recommendations in order of ranking ;
store user’s choice and readjust ranking weights ;

177

Chapter 8 REUSE-ASSISTED TEST RECOMMENDATION

Beginning with the provided interface of the class under test, the system triggers

a search and obtains a set of potentially reusable test cases and inspects their

required interface (i.e., it looks for instantiations of the class under test). If a

matching object is recognized, all invocations to the CUT are stored along with

the corresponding test case values and expected results. Subsequently, during

speculative analysis the set of matching tests is applied to the class under test

and the results are ranked accordingly.

Finally, the user chooses tests from the result set and integrates them into the

test currently being wri�en. With their integration into the new test, the process

starts again from the beginning and the user can either manually add more tests

or choose to integrate the next potentially valuable recommendation.

8.4. Summary

In this chapter we have introduced and described our implementation of a reuse-

oriented test recommendation system, which is integrated into the Eclipse IDE.

To define the requirements that such a test-recommendation tool should meet,

we adapted our previous considerations about the requirements of reuse-oriented

code recommendation systems in general to the context test reuse.

In our considerations, we have stressed that failing tests are the kind of reusable

artifact users might be most interested in. Nevertheless, it is also clear that a

failing test does not necessarily mean that a bug in the system under development

has been discovered. It is also possible that the test itself is erroneous. There

is, however, an even worse scenario for a reuse-oriented test recommendation

system. It is possible that some of the recommended tests fail because they were

intended to test code from a completely di�erent domain. Hence, we need to

find a mechanism that reduces false positive results to a minimum and therefore

increase the quality of the recommendations presented to the user.

In the following chapter we introduce the idea of oracle-based filtering, which

relies on the so-called approach of Search-Enhanced Testing. This approach is

an enhancement to the ideas of n-version programming and back-to-back testing,

178

Summary 8.4

supported by test-driven reuse. With the help of automatically obtained test

oracles, we will present an approach that bears the potential to e�ectively remove

false positives from the list of search results.

Contribution of this chapter

• This chapter presented a definition of the main characteristics of a test-

reuse environment.

• We have introduced a micro-process of tool-supported test reuse.

• We have described the application of dedicated evaluation and ranking

mechanisms in a test-reuse environment, utilizing the ideas of continuous

testing and especially focusing on the benefits of speculative analysis.

• Based on our earlier considerations, we have presented a working proof-of-

concept implementation of a test-reuse and recommendation system as an

Eclipse plug-in.

179

“ In summary, the claims that our critics did not

get our results are unsupported and appear to be

based more on wishful thinking than scientific analysis.”

A Reply to the Criticisms of the Knight & Leveson Experiment

John C. Knight & Nancy G. Leveson

9
Search-Enhanced

Recommendation Improvement

The occurrence of false-positive results during a search for reusable tests is a po-

tential weakness that should not be underestimated. Although it is not possible

to generally provide a quantification of how o�en false positives may occur, as

the results of a search are the product of many variables, they are responsible

for at least two undesirable scenarios: a) developers are forced to inspect recom-

mendations that are totally useless for them losing time they could have spent

in the development of own tests; b) unsuitable tests are incorporated into the

quality assurance lifecycle of the system under development and may lead to

wrong behavior of a test suite (e.g., falsely indicating defect components).

It is therefore an essential requirement that so�ware testers and developers

reusing tests always show a high level of responsibility and inspect what they

reuse. For the success of a recommendation system, however, the benefits of

181

Chapter 9 SEARCH-ENHANCED RECOMMENDATION IMPROVEMENT

using it, have to outweigh the “costs”. In this chapter we consider possibilities

for automatically removing false positive results by discovering discrepancies

between expected results described in search results and “real” test results

provided by test oracles. The filtering mechanism exploits the approach of

Search-Enhanced Testing [AHJ11], abbreviated as SET, which we introduce in the

following section.

9.1. Using Oracles in So�ware Testing

In the preceding chapters, we have discussed some of the main issues in so�ware

testing and explained how it is possible to benefit from earlier investment in

so�ware tests by reusing them.. Thus it is only natural to apply so�ware testing

as well to try to resolve the issue of false positive results appearing in a set of

recommended tests. In this context we recall that so�ware testing has always

had the basic problem of finding an “oracle” that is able to define the expected

result of a test [Wey82]. Despite the fact that there are techniques for automati-

cally generating partial oracle information from formal specifications of systems

(e.g., the pre- and post conditions of an operation) [AO08], this information is

unfortunately o�en limited and the development of the required kinds of speci-

fications is expensive. The reuse of already existing tests is also an inappropriate

solution, as we would end up by trying to create a perpetual motion machine

where reusable tests would be inspected by reusable tests recursively.

To address this situation we take a look at so�ware engineering approaches

that involve the building of numerous functionally equivalent implementations

of the same so�ware. This is mainly carried out in the domain of mission

and safety critical domains, where redundant implementations can serve as

fully automated oracles for a system and their use can help systems to recover

from malfunction [CA78]. The strategy behind this idea is called n-version

programming [Avi95] or NVP, and involves the implementation of a decision

algorithm to produce a consensus result from the results delivered by the n ≥ 2

versions implemented in a system. Incidentally, this approach has been the

subject of an extensive academic dispute between Avižienis vs. Knight and

182

Using Oracles in So�ware Testing 9.1

Leveson [KL86; KL90]. This dispute, however, does not a�ect the forthcoming

considerations and we refer the interested reader to the original sources. For

the sake of completeness, we give a short summary of the Knight & Leveson

experiment at the end of this section.

In addition to Avižienis work on NVP, Vouk also describes the creation of n ≥ 2

functionally equivalent versions of a program as a potentially cost-e�ective way

of evaluating a so�ware system’s fitness for purpose [Vou90]. He calls this

approach back-to-back testing which, as the “testing” in its name implies, is not

a strategy to be applied at runtime like NVP, but serves as a means to discover

faults during development time.

In the case of automatically assisted test reuse, it is not feasible to expect

developers or testers to provide multiple implementations of the system under

test, which would serve as comprehensive oracles for the inspection of reusable

test candidates. A�er all, test reuse is about lowering the workload of developers

and testers – it is not meant to impose additional e�ort. However, instead of

expecting developers to create the multiple versions required, the idea behind

Search-Enhanced Testing is to harvest oracles with next to zero e�ort from open

source repositories, as described in our work published at ICSE and SUITE1 in

2011 [AHJ11; Jan+11]. Although we do not need these oracles to validate the

system under test (which can be done by using SET), we utilize the approach to

leverage the reuse of tests by improving the quality of test recommendations

and filtering unsuitable reuse candidates.

1 ICSE workshop on Search Users Infrastructure, Tools and Evaluation (http://resuite.org)

183

http://resuite.org

Chapter 9 SEARCH-ENHANCED RECOMMENDATION IMPROVEMENT

9.1.1. Excursus: The Knight and Leveson Experiment

In this excursus, we give a short overview of the outcome of Knight and Leveson

Experiment by summarizing [KL86]. For the experiment, which was performed

jointly by the University of California, Irvine (UCI) and the University of Virginia

(UV), 27 students with di�erent backgrounds were told to program a simple

anti-missile system. Their result should have been 27 di�erent programs which

behave equally to the same input.

The programs were tested by executing one million tests on them and the outputs

(241 in total for every program) were compared to a 28th so-called “gold” program

which was used to automatically determine the only correct answer to an input.

According to definition of statistical independence

P (X|Y) = P (X) (9.1.1)

the probability that there would be no program failures on a given test case

would be

P (f = 0) = P0 =

27∏
n=1

1− pn (9.1.2)

where f is the number of programs producing a fault on the same test input

data and pn the probability of failure for the n-th version. The probability that

there was exactly one program failing is described by the following equation:

P (f = 1) = P1 =

27∑
n=1

P0pn
1− pn

(9.1.3)

The overall goal of the experiment was to show that there are faults that occur

in two or more equivalent implementations of a program simultaneously. More

precisely, Knight and Leveson were interested in the probability of more than

one fault per test input. Using the following equation, they describe this kind of

probability:

184

Using Oracles in So�ware Testing 9.1

P (f ≥ 2) = Pmore = 1− P0 − P1 (9.1.4)

For one million test inputs, it happened 1255 times that more than one of the

programs failed on the same input data. Although Knight and Leveson do not

describe the nature of all of these faults, they state that it is more important

that a failure occurred than why it occurred.

If f was the number of failing programs on the same test input data and n the

number of overall test runs, under the hypothesis of independent failures, there

would be a binomial distribution for f with parameter Pmore and since the set of

executed tests was large enough, they could use a normal approximation to the

binomial distribution. As a consequence they state that

z =
f − n · Pmore√

f · Pmore · (1− Pmore)
(9.1.5)

has a distribution that is closely approximated by the standard normal distribu-

tion. With the data derived from the experiment (f = 1255 and n = 106; Pmore

was not published), they calculated a z-value of 100.51, which is far more than

2.33 that represents the 99% value in the standard normal distribution. Thus

they rejected the null hypothesis that the above model was correct with a confi-

dence level of 99% meaning that the model was wrong due to the assumption of

independence. Therefore the assumption of independence had to be rejected.

In the context of this thesis, the findings of Knight and Leveson therefore mean

that Search-Enhanced Testing is a technique that supports testers but still de-

mands manual e�ort, i.e., developers and testers should not solely rely on auto-

matically derived or reused so�ware tests.

185

Chapter 9 SEARCH-ENHANCED RECOMMENDATION IMPROVEMENT

Figure 9.1.: Process of Search-Enhanced Testing.

186

Search-Enhanced Testing 9.2

9.2. Search-Enhanced Testing

One of the key obstacles to NVP and back-to-back testing are the high costs in-

volved in creating multiple equivalent implementations of functionally equivalent

(critical parts of a) system. Nevertheless, the advent of specialized, internet-scale

code search engines and their ability to find reusable assets based on the specifi-

cation provided by test cases has changed the situation. These search engines

are the basis for test-driven search, which is the key enabling technology for

Search-Enhanced Testing and the process depicted in Figure 9.1. The particular

actions performed during each step can vary slightly, depending on the desired

balance of automated versus manual e�ort in the test evaluation processes. In

the following subsections, we will explain the outlined steps in greater detail,

before we switch our a�ention to the application of SET in reuse-assisted so�-

ware testing. A copy of our poster, which was presented at ICSE 2011 and which

describes the process of SET, is included as Figure A.1 in appendix A of this

thesis.

Characterizing Test Case

As Search-Enhanced Testing depends on test-driven reuse, which by definition

expects a test case as input to its process of searching for reusable so�ware

components2 (as depicted in Figure 3.6), the initial step for Search-Enhanced

Testing is to define a test case that “characterizes” the component under test –

we will call this a characterizing test case3. In accordance with the definition of

TDR in Section 3.4 this test is used to find virtually all classes with the desired

functionality, yet discard those with similar interfaces but di�erent functionality.

With regard to the premise implied by TDR that the characterizing test is not

meant to be a tool for bug detection but a behavioral description of the CUT, the

e�ort involved in writing it should be far less than the e�ort involved in writing

and composing normal tests using traditional testing approaches.
2 By “component” we mean any cohesive and compact unit of functionality with a well defined

interface. For Java this will typically be a class.
3 For consistency reasons and according to the definitions from Section 2.1 we will not use the

terms used in the aforementioned publications, where it is called characterizing test.

187

Chapter 9 SEARCH-ENHANCED RECOMMENDATION IMPROVEMENT

Since the technology of test-driven search engines is still in its infancy, there have

been few, if any, evaluations that clarify the criteria for how a test case should

be wri�en to define the “minimal” characterizing test case. A programming

language agnostic method to do so would be to use test sheets [Atk+08b] or the

use of algebraic specifications (see, e.g., [Som10]) as the basis for defining such

tests. Algebraic specifications are a well known technique for writing relatively

comprehensive, yet compact, black-box definitions of a component or system’s

behavior and seem to satisfy the aforementioned requirements. The example

in Listing 9.1 is an algebraic specification of a classic stack component, which

fully specifies the externally visible properties of this data structure in terms of

method relationships.

Listing 9.1: Algebraic Specification of a Stack.

TYPE Stack;
IMPORTS Boolean;
FUNCTIONS

Stack : → Stack × void;
push : Stack × Object → Stack × void;
pop : Stack → Stack × Object;
isEmpty : Stack → boolean;

AXIOMS
∀ s:Stack, o:Object
(A) pop(push(s,o).state).retval = o;
(B) pop(push(s,o).state).state = s;
(C) pop(Stack().state).retval

→ ArrayIndexOutOfBoundsException;
(D) isEmpty(Stack().state).retval = true;
(E) isEmpty(push(s,o)) = false;
(F) isEmpty(pop(push(Stack().state,o).state).state) = true;

The section named FUNCTIONS describes the signatures of the component’s oper-

ations in terms of their input and output types. The AXIOMS section defines the

expected behavior for each operation in relation to another one. The first axiom

(A), for example, defines the relationship between the pop and push function

such that one pop is the inverse of one directly preceding push. A transformation

188

Search-Enhanced Testing 9.2

of this specification to JUnit can be performed with li�le e�ort and the resulting

test case is illustrated in Listing 9.2.

Listing 9.2: Algebraic Specification as JUnit Test Case.

1 public class StackTest extends TestCase {
2 Stack s = null; Object obj = null;
3 public void setUp() {
4 s = Util.getStack ();
5 obj = Util.getRandomObject (); }
6 public void testAxiomA () {
7 s.push(obj);
8 assertEquals(obj , s.pop()); }
9 public void testAxiomB () {

10 s = new Stack();
11 assertEquals(null , s.pop()); }
12 public void testAxiomC () {
13 s = new Stack();
14 assertTrue(s.isEmpty ());}
15 public void testAxiomD () {
16 s.push(obj);
17 assertFalse(s.isEmpty ()); }
18 public void testAxiomE () {
19 s = new Stack();
20 s.push(obj); s.pop();
21 assertTrue(s.isEmpty ()); }
22 public void testAxiomF () {
23 int before = s.size();
24 s.push(obj); s.pop();
25 assertEquals(s.size(), before); }
26 }

A test case like this would naturally be very limited in its capability to detect

defects in a class under test and it would hardly meet the coverage criteria

normally applied in practice as the for all quantifier actually used within the

axioms of the algebraic specification is not transformed into brute-force tests that

invoke the CUT with all possible (combinations of) inputs. Instead, they are each

transformed into one single test. However, the results achieved by test-driven

search indicate that for the purpose of finding multiple versions of a system such

a test case is su�icient [HJA07; Hum08]. Furthermore, for the purpose of finding

189

Chapter 9 SEARCH-ENHANCED RECOMMENDATION IMPROVEMENT

multiple versions of a system that can be used for back-to-back style testing, it is

not essential that every version used in the process be a perfect replica because

the voting system ensures a reasonable result is obtained if some of the versions

return spurious results from time to time. This can even be used to manually

double-check those “suspicious” invocations that have caused dissent amongst

the oracles and to ensure that the CUT executes them correctly as desired. We

will address this issue in the subsequent sections on multi-version testing and

result inspection.

Test-Driven Search and Multi-Version Testing

Once the characterizing test case is defined, a test-driven search enabled code

search engine is used to find suitable oracles for multi-version testing (MVT). In

our experimental work on Search-Enhanced Testing, we utilize the Merobase

Component Finder [Jan+13] due to its capabilities in test-driven search, which

include the search for reusable assets, automated interface adaptation and de-

livery of the adapter and adaptee class. Especially the delivery of necessary

adapters is useful for search-enhance testing, since in many cases the character-

izing test requires some other interface than the one provided by a semantically

matching class. Since the process in Figure 9.1 envisages the human testers to

be involved only during the specification of the characterizing test case and on

result inspection, the adaptation of the oracles has to be done automatically.

The results obtained from a search for a stack, driven by the above test case

derived from algebraic specification, are summarized in the first row of Table 9.1.

This shows that from a total of 25,000 candidates found in the index (i.e., exe-

cutable components with matching methods profiles), 656 functioning versions

of a stack that passed the characterizing test were found.

In the second row the table shows how many functionally equivalent components

are returned when a more elaborate test is used to drive the search. As expected,

the number of results is lower because fewer components were able to pass the

more stringent tests. However, the manual e�ort that is required to define such

a test is much greater.

190

Search-Enhanced Testing 9.2

Technique Candidates Equivalent Versions
Algebraic Test Suite 25.000 656
Traditional Test Suite 25.000 454

Table 9.1.: Results of a Test-Driven Search for a Stack.

Multi-Version Testing with Random Test Case Values

In the introductory publication, the idea of discrepancy-driven testing4 envisaged

di�erent usage scenarios for the components “harvested” through test-driven

search. One of these scenarios was to use the harvested components as a

unified “body of knowledge” that together form an oracle that determines the

“correct results” for randomly generated test case values. At the same time,

the component under test is tested using the same test case values and, as

depicted in Figure 9.2, its test results are compared to those delivered by this

pseudo-oracle [Hum+06].

Figure 9.2.: Harvested Components as Oracle [Hum+06].

During the introduction of the technique, the authors of the original publication

on discrepancy-driven testing mention that with large numbers of components

from internet-scale repositories, it should be easy to improve on the findings

4 The terms discrepancy-driven testing and multi-version testing are used synonymously.

191

Chapter 9 SEARCH-ENHANCED RECOMMENDATION IMPROVEMENT

of the Knight-Leveson experiment [Hum+06]. Later experimentation with test-

driven reuse [Hum08], however, showed that we cannot generally expect very

large numbers of e�ectively reusable oracles. This leads us to conclude that the

findings from Knight and Leveson can not be discarded lightly. Therefore in

Search-Enhanced Testing, we do not aggregate the voting of the components

into to such a pseudo-oracle, but instead we record so-called voting profiles,

which we will introduce in the subsequent section.

In general, the multi-version testing step has three sub-steps depending on

the level of manual involvement that is desired in the final analysis phase of

the process: a) the selection of a subset of the list of oracles retrieved with

test-driven search, b) execution of discrepancy-driven testing, and c) the elimi-

nation of outliers and eventual replacement with unused oracles. The level of

manual e�ort in the final analysis phase can range from virtually zero, when

all judgments about results are made automatically, to relatively high, when

all detected discrepancies are evaluated manually. Nevertheless, Hummel et al.

already emphasized that it is impossible to completely trust the results generated

during the voting process, which makes a certain amount of human inspection

inevitable [Hum+06].

To illustrate the idea and to demonstrate our implementation of Search-Enhanced

Testing, we refer to the illustrative example of a converter class that transforms

an Arabic numeral into a Roman numeral. With the help of test-driven search

the Search-Enhanced Testing environment is able to retrieve a set of suitable

replicas (see, e.g., appendix B, Listings B.2 – B.7 for those used hereina�er) of

the class under test (Listing B.1) and Search-Enhanced Testing continues with

multi-version testing, i.e., the behavior / test results of the CUT and those of

the n harvested replicas (i.e., oracles) are compared using techniques inspired by

back-to-back testing.

Since Search-Enhanced Testing demands a high level of automation, we have

implemented a system to demonstrate the viability of the approach using the

technologies available today. Figure 9.3 shows a screenshot of our Multi-Version

Testing Environment (MVTE), which enables users to match a class under test

against a set of oracles. The system involves the automatic generation of a test

192

Search-Enhanced Testing 9.2

broadcaster service, which mediates calls from a test driver object to the test

oracles and the CUT and logs the observed behavior (i.e., the test results returned

by the test oracles and the CUT) for later inspection. In order to provide an

interface which conforms to that of the component wri�en by the developer (and

also to the oracles), the broadcaster class has to have the same name and contain

the same operations as the CUT, which can be achieved with automated interface

adaptation (cf. Section 4. Any object that makes calls to the CUT and invokes

its methods will consequently be able to perform the same invocations on the

broadcaster, and such an object is called an execution driver of the broadcaster.

Figure 9.3.: Multi-Version Testing of a Roman Number Converter.

The creation of the broadcaster involves several automated code generation

steps. First the system has to integrate the CUT and the harvested test oracles

into a package structure such that the CUT is stored in package p1 and the n

test oracles in the subsequent packages p2 . . . pn+1. The test oracles have to be

available as binaries so that the broadcaster can instantiate them. However, to

193

Chapter 9 SEARCH-ENHANCED RECOMMENDATION IMPROVEMENT

be compliant with the interface of the CUT, the test oracles may need some

adaptation before they can be used and compiled.

Our previously introduced implementation of an automated adaptation ser-

vice [JA12] can be utilized in order to perform this task. A�er the test oracles

and the CUT have been prepared, the MVTE generates a broadcaster class which

maps any method invocations to the corresponding methods of the test oracles

and the class under test. During this process of multi-version testing the returned

values are collected and held in the test results logger. The complete source code

of this broadcaster class can be found in Listing B.8 in the appendix.

Subsequently an execution driver starts making calls to the multiplexer, which

forwards these calls to the oracles and the CUT. The execution driver should

ideally contain a large number of (randomly generated) invocations to cover

a variety of scenarios. Since the broadcaster handles distinct instances of the

oracles and the CUT, their state is preserved and the execution driver can also

perform a state-aware comparison of their behavior. This is especially useful for

the inspection of stateful components, which are not commutative in terms of

the order of their method invocations. An in memory integer-adder, for example,

delivers di�erent intermediate results on the calls (3, 5, 2) and (2, 3, 5): the former

returns 8 a�er the first two inputs, while the la�er returns 5 despite the fact that

the third call leads both to the result of 10.

Figure 9.4.: Discrepancy-Driven Testing [Hum+06].

194

Search-Enhanced Testing 9.2

Obviously our approach makes it possible for the developer to not only execute

the multiplexer from a specially wri�en test, but it may also be deployed within

the system for which the CUT is developed, so that Search-Enhanced Testing can

be run in a real-world se�ing. With every invocation that the execution driver

class performs on the broadcaster, a new row of data is created in the invocation

table (see, e.g., Figure 9.3) that contains the returned values of the oracles and

the CUT for the input parameters provided by the execution driver. These return

values are stored in an XML file which can be processed by the multi-version

testing environment to create a discrepancy table of the form shown in Table 9.3.

The MVTE performs an analysis of the table and looks for discrepancies between

the results returned by the oracles and the CUT. The discrepancies are classified

by their discrepancy category, which allows a ranking of the discrepancies in

the discrepancy table. As depicted in Figure 9.4, it is the disputed test cases

which are logged for further human inspection and thus the multi-version testing

environment highlights them.

Result Analysis

To obtain usable results from the “en mass” invocation of the previously described

functionally equivalent components, the resulting discrepancy table needs to be

analyzed. The results of any invocation are classified by an invocation profile. We

will use the Roman numerals example to introduce these groups in Table 9.2:

CUT Oracles Name

1 M M M M M M Full Agreement
2 M M X M M M CUT with majority
3 M X X X M X CUT with minority
4 M X X X M M Draw
5 M X X X X X CUT alone
6 M M X C X C Disagreement
7 M X C V C X Disagreement & CUT alone

Table 9.2.: Invocation Profile Categories.

195

Chapter 9 SEARCH-ENHANCED RECOMMENDATION IMPROVEMENT

If all implementations, including the self-developed CUT, deliver the same result

for a specific method invocation (this group is called “Full Agreement" in the

table) there is obviously no discrepancy. This result is uncritical except in the

exceptional case that all implementations are faulty and return the same false

value to the same given test case values. Nevertheless, this situation is by

definition out of scope of discrepancy-driven testing and not further discussed.

Therefore it is, however, clear that Search-Enhanced Testing has to be applied in

conjunction with other testing techniques, which help uncover such (inscrutable)

bugs that spread among a large variety of implementations and may represent a

common misunderstanding of the domain.

The other groups from Table 9.2 are all subject to further investigation, either

(semi-) automated or manual, and have to be treated di�erently. Taking group

2, for instance, it seems rather uncritical if only one or a few (up until a cer-

tain threshold) of the components disagree from the majority and the CUT is

with the majority. Nevertheless, there is no guarantee that the majority of the

implementations returns the correct result and it is obviously sensible not to

consider a single invocation separately from the whole set. Hence, it is best to

perform a context-aware assessment of the test results: if there is, for example,

one outlier that votes against the other implementations most of the time, it is

very likely that it is an implementation of some other functionality that passed

the test-driven search by chance. Therefore it might be advisable to remove this

component from the set of oracles.

At the other end of the spectrum, with group 6 and 7, we find more interesting

cases as well. It can be assumed that if several oracles in the pool deliver sca�ered

results, the discrepancy-driven testing system has discovered a critical set of

input values. Obviously, a number of programmers have come to di�erent

conclusions about how they should be processed and there is consequently a

high risk that the implementation of the CUT may be faulty as well. Or in other

words, it is certainly worth the e�ort of a human engineer to determine the

correct outcome for this input and to check whether this has been delivered by

the CUT as well.

196

Search-Enhanced Testing 9.2

Furthermore, it is theoretically possible that this invocation profile appears

throughout the process, which would consequently lead to a manual investiga-

tion of every single invocation, which is not feasible. Even worse, this undesired

situation could indicate that there has been a significant problem during the

oracle selection process rather than the fact that the programmers of the har-

vested oracles have not understood the problem domain for most of the possible

inputs. If it turns out that this is the case, the characterizing test case needs to

be revised and the whole process has to be repeated.

Another special case is certainly the one where only the CUT has voted against

all oracles (group 5, CUT alone). This can basically imply two things: either

that the CUT contains a serious error and needs to be corrected or – and this is

probably the more problematic case – that the CUT is correct, but the harvested

test oracles are wrong, which leads to the same consequence as discussed before

– it is necessary to revise the characterizing test case. It is, however, advisable to

apply the same technique as mentioned before and automatically investigate

the voting history of the CUT and the oracles, to determine whether this voting

profile occurs repeatedly. If this is not the case, the result should simply be put

into the discrepancy table for analysis by a human tester.

A�er the automatic process of analyzing the invocation table has finished and

the identified discrepancies have been evaluated and ranked, the MVTE creates

a discrepancy table which lists those invocations that have lead to discrepancies

among the test oracles. In our example, the analysis reveals that the CUT is not

implemented correctly. For the number 4000, which does not adhere to the rule

that Roman numerals must not contain the same le�er more than three times

in a row, the CUT returns MMMM, although it should return an error (category 4 –

CUT alone).

Therefore the system will flag this as a discrepancy so that the developer can

inspect the results obtained for this component. The other interesting case is

the one for −1492. Since the other oracles not only disagree with the CUT but

also with each other as well, this is obviously an interesting test which has

to be examined by the human tester. The problem relates to the fact that the

negative numbers were introduced as early as the 7th century by the Indian

197

Chapter 9 SEARCH-ENHANCED RECOMMENDATION IMPROVEMENT

mathematician and astronomer Brahmagupta, which is more than a century

later than the fall of the Roman Empire in AD476 [SO03].

When the process of discrepancy analysis has finished, the developer sees a table

similar to Table 9.3 that shows potentially interesting tests that the developer

can analyze further by hand. The invocations with the integers 1890 and 2320

are recognized as a vote from the first invocation profile group where all oracles

agree. These are therefore regarded as less interesting test cases and would be

removed from the discrepancy table presented to the human. The final step of

the Search-Enhanced Testing process is the analysis of the information gathered

in the discrepancy table by a human tester, when a final verdict on the outcome

of the tests is decided. The human tester simply has to analyze the discrepancies

and make a judgment about the results provided by the CUT.

Invocation CUT O1 O2 O3 . On #
toRoman(1890) MDCCCXC MDCCCXC MDCCCXC MDCCCXC . MDCCCXC 1
toRoman(2320) MMCCCXX MMCCCXX MMCCCXX MMCCCXX . MMCCCXX 1
.
toRoman(-1492) MCDXCII ERROR -1492 NaN . ERROR 3
.
toRoman(4000) MMMM ERROR ERROR ERROR . ERROR 4
.

Table 9.3.: Discrepancy Table for the Roman Numerals Example.

In other words, the testers act as final arbiters (i.e., the golden oracle) in cases

where there is any doubt about the results. Our assumption is that this judgment

process takes less e�ort than the writing of test cases using a traditional testing

approach, or alternatively, is more e�ective at uncovering faults. This is because

the e�ort of the human tester is focused on analyzing tests that have actually

caused discrepancies rather than on trying to identify “high-quality” test cases

using the “hit-and-miss” heuristics provided by traditional testing techniques.

198

Filtering False-Positives 9.3

Benefits for Test Reuse

A key feature of Search-Enhanced Testing is that the test data used to drive

the testing process is generated automatically using random values and that no

human intervention is needed. However, this also means that this approach is not

able to use domain knowledge to select appropriate test case values but follows

a kind of brute force philosophy. Nevertheless, the idea of Search-Enhanced

Testing is valuable to the reuse of so�ware tests, when it comes to the filtering

of so-called false positive search results. In the next section we will therefore

look at how to transfer the idea of executing multiple implementations of the

same functionality and use it for the evaluation of previously wri�en tests, i.e.,

to inspect their “fitness-for-purpose” to help developers improve their so�ware

and testers to find bugs.

9.3. Filtering False-Positives

Although the threats arising with test reuse are di�erent to those related to

the reuse of production code, it is nevertheless important to be aware of the

pitfalls and issues related to it. Developers in “classic” reuse scenarios who

a�empt to exploit previously wri�en components must ensure that they do not

add malicious code to their system under development (which, while remaining

undetected, might be critical in releases of the system), that the code does

not introduce unwanted side-e�ects to the system under development (e.g.,

instabilities) and that the resource consumption at runtime is e�icient.

Although all of these are naturally inherent to test reuse, an e�icient system for

test recommendations must primarily ensure that false positive recommenda-

tions are eliminated to the greatest possible extent. This not only helps build up

confidence in systems for test reuse it also helps to reduce the e�ort involved

in result inspection. The la�er, in particular, helps to make the process less

time consuming and tips the balance in favor of the “make” choice rather than

“buy”.

199

Chapter 9 SEARCH-ENHANCED RECOMMENDATION IMPROVEMENT

To give an example of the occurrence of false positive recommendations, we refer

again to the Roman numerals examples. Suppose a developer is using the test

recommendation system within the Eclipse IDE and the reuse recommendation

algorithm starts searching for reusable artifacts immediately a�er the first

available test. In this case we have defined a test that checks whether the integer

10 is correctly converted to the Roman numeral X. When triggering a search for

reusable tests, the system will deliver 19 results, from which 18 are reusable test

sets for Roman numeral converters. There is, however, also one test case out of

19 which was intended to test a class for a board game and was just retrieved

due to the fact that the search query contains the one single mapping

(10)->X; (9.1.)

The retrieved false positive result for this query is shown in Listing 9.3. It shows

a test for a board game which just happens to map the value of 10 to an ‘X’ and

therefore was retrieved as a reuse candidate.

Listing 9.3: False Positive Original Test Code.

1 @Test

2 public void shouldCopyItself () throws Exception {

3 board.populate(’X’, 10);

4 Board newBoard = board.copy();

5 assertEquals(’X’, newBoard.charAt (10));

6 board.populate(’O’, 11);

7 assertEquals(’O’, newBoard.charAt (11));

8 }

Without a filtering mechanism for this kind of results, a user of our Eclipse

plug-in would be recommended to use a test that expects the value of ‘O’ for

the test case value of ‘11’ (i.e., with the application of interface adaptation the

following recommendation would appear):

assertEquals(’O’, roman.convert(11));

This is obviously a wrong recommendation and a system o�ering such poor

suggestions would be of low benefit for its users.

200

Filtering False-Positives 9.3

Naturally, a refinement of the above query could improve the search results and

prevent this particular result from appearing in the list of candidates. However,

this involves a restriction of the search space and the exclusion of potentially

useful results which by chance do not adhere to the more narrow query. Hence,

it is desirable to apply a kind of “hybrid” approach, where the query should

contain as few restrictions as possible, yet as many as necessary, and the results

are evaluated against concrete implementations.

9.3.1. Oracle-Based Filtering

Naturally, situations in which the system recommends unsuitable tests cannot

be entirely excluded. Nevertheless, to improve the user experience, in this section

we are going to develop a filter mechanism that is built around the original ideas

of Search-Enhanced Testing. Instead of using a characterizing test case to find

replicas of the class under test, we can use the CUTs of the recommended tests

for this purpose.

A reusable test case is usually associated with a corresponding class which it was

originally wri�en to test. In the case of our Roman numerals test cases, where

19 results were retrieved, we have 19 test cases τi with 19 CUTs ζj . Our goal is to

retrieve the CUTs of these test cases and use them as oracles θk (i, j, k = 1..19).

Algorithm 9.1 shows the general way in which the inspection and evaluation of

potentially reusable tests works. At first sight, this algorithm can be interpreted

as some kind of inverse variant of test-driven search – although it is not used to

find reusable assets, but to identify misbehaving test cases. The test case under

examination executes the oracles (i.e., it executes the CUTs of the other test cases

in the result set) and marks those on which it does not execute successfully by

storing them in a list of mismatching oracles. If the size of this list is larger than

a previously defined mismatch threshold, the test case has to be removed from

the set of possible reuse recommendations. The mismatch threshold t should

not be too high (and naturally smaller than the number of oracles available),

since a higher number makes it more likely that a false positive is delivered to

users which passes fewer oracles. With a threshold of 1, as depicted in Figure 9.5,

201

Chapter 9 SEARCH-ENHANCED RECOMMENDATION IMPROVEMENT

a candidate is abandoned if it fails on all oracles (except its own CUT). This is,

however, still quite restrictive, as the chances are high that a single test in the

test case under examination fails on most or all oracles and thus the whole test

case is rejected.

Algorithm 9.1: Oracle-Based Inspection for One Test Case.

Data: test case τn, CUT ζn of τn, n fixed.
Data: set of m oracles θ1..m, x = 0 counter, t ≥ 1 mismatch threshold.
Result: L = List of oracles not passing τn
while x < m do

x = x+ 1;
if θx 6= ζn then

if interface of θx does not match τn then
adapt provided interface of θx;

end
run τn against θx;
if τn runs with errors then

add θn to L;
end

end
end
if |L| == m− t then

remove τn from recommendations;
end

In the subsequent section we will discuss in more detail how the evaluation of

test cases can be di�erentiated. In general, we can say that if there are enough

“good” results in the set of reusable tests, false positives can almost certainly

be excluded (an exception to this rule is the unlikely case that most or even all

results of a search for reusable tests are testing the same wrong implementation).

There may also be some false-negatives, however (i.e., test cases that would have

fit in the users’ context but caused an issue with at least one of the oracles).

202

Filtering False-Positives 9.3

Obviously, the former is a desired e�ect, which outweighs the loss of a small

fraction of reusable assets that, by chance, caused some issue with one or more

of the oracles.

9.3.2. Test Case Evaluation

The previously described evaluation of tests based on the CUTs associated with

the retrieved results is very general and restrictive (a test case is expelled when

its execution yields an error), as the only variable influencing the rejection of a

candidate is the given threshold (i.e., the number of oracles making the test case

fail). In this subsection we will review the rejection process of a test case in a

more concrete way, i.e., we will define what the criteria for rejection are.

For demonstration purposes, we stick to our Roman numerals example and

utilize the following value-based query

("^[IVXDCLM]\$")->"[1-9]+\d*"; (I)->1; (9.2.)

which looks for the mapping of a Roman numeral (composed of the allowed

characters) to an Arabic numeral. For sanity reasons the query ensures that the

Arabic numeral does not start with a 0 and, additionally, there is a check that ‘1’

is mapped to ‘I’, which is expected to appear in any reasonable test for Roman

numerals. With this query we obtained eight results from SENTRE on which

we applied our challenge algorithm. Each of the test cases (τi, i ∈ [1; 8]) was

executed against the CUTs of all other tests (ζn, n ∈ [1; 8], n 6= i), while counting

the successful tests. The results presented in Table 9.4 and in Table 9.5 clearly

show that this approach helps to identify outliers like τ7.

In Table 9.5 we have visualized the results obtained from the execution of the

test cases against the CUTs ζ1 . . . ζ8 and the colors of the particular cells visualize

to what extent the test cases were successfully executed on the CUTs. The

“red cross” spanning over row τ7 and column ζ7 impressively marks the useless

test case τ7, which was just retrieved by chance and the two light red fields at

(τ7, ζ1) and (τ7, ζ8) are just lucky hits in which the mapping of an irregular input

203

Chapter 9 SEARCH-ENHANCED RECOMMENDATION IMPROVEMENT

Test Case τ1
CuT ζ1

Oracle θ1

Test Case τ2
CuT ζ2

Oracle θ2

Test Case τ3
CuT ζ3

Oracle θ3

Test Case τ4
CuT ζ4

Oracle θ4

Test Case τ5
CuT ζ5

Oracle θ5

Test Case τ6
CuT ζ6

Oracle θ6

Test Case τ1
CuT ζ1

Oracle θ1

Test Case τ2
CuT ζ2

Oracle θ2

Test Case τ3
CuT ζ3

Oracle θ3

Test Case τ4
CuT ζ4

Oracle θ4

Test Case τ5
CuT ζ5

Oracle θ5

Test Case τ6
CuT ζ6

Oracle θ6

× τ2 rejected by oracles θn, n = 1, 3, 4, 5, 6.

× θ2 excluded from further usage.

× τ2 not executed on own CuT ζ2 = θ2.

X τ5 passed filtering.

X Approved by oracles θn, n = 1, 3, 4, 6.

× Rejected by Oracle θ2.

Figure 9.5.: Schema of Oracle-Based Filtering for Test Reuse.

204

Filtering False-Positives 9.3

Candidate ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8

τ1 — 29/29 29/29 29/29 29/29 29/29 0/29 29/29
τ2 10/46 — 10/46 10/46 10/46 10/46 0/46 10/46
τ3 25/25 25/25 — 25/25 25/25 25/25 0/25 25/25
τ4 7/7 6/7 7/7 — 7/7 7/7 0/7 6/7
τ5 14/14 14/14 14/14 14/14 — 14/14 0/14 14/14
τ6 12/12 12/12 12/12 12/12 12/12 — 0/12 12/12
τ7 1/11 0/11 0/11 0/11 0/11 0/11 — 1/11
τ8 5/6 4/6 4/6 4/6 4/6 4/6 0/6 —

Table 9.4.: Evaluation of the Results for �ery 9.2.

value (‘A’) to the 0-value matched the two CUTs’ behavior. The fields over the

diagonal are intentionally le� white since in all of these cases the test case fully

matched it’s own class under test. Although it might be interesting to further

investigate how to deal with test cases that reveal defects in their own CUTs (or

are themselves erroneous), we leave this to future research as this is out of the

scope of this thesis. To us, it is much more important that for the given example,

the four reusable test cases τ1, τ3, τ5 and τ6 seem to be “fit for purpose” and do

not need any further intervention from the user.

ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8
τ1 —
τ2 —
τ3 —
τ4 —
τ5 —
τ6 —
τ7 —
τ8 —

100%
80 - 100%
60 - 80%
10 - 60%
0 - 10%

0%

Table 9.5.: Visualization of the Evaluation Results.

Manual inspection of the retrieved test cases shows that our algorithm works

correctly for the aforementioned scenario and that the four test cases marked

205

Chapter 9 SEARCH-ENHANCED RECOMMENDATION IMPROVEMENT

with a green color contain valid and correct tests for a Roman numeral class.

Finally, Table 9.6 shows the tests contained in the test cases retrieved by SENTRE

which have not been rejected by our algorithm. If the search was performed using

our Eclipse plug-in, these results are executed in the developer’s context against

the class under test and subsequently ranked during speculative analysis.

α1 Γ α1 Γ α1 Γ

I 1 II 2 III 3

IV 4 V 5 VI 6

VII 7 VIII 8 IX 9

X 10 XIV 14 XIX 19

XX 20 XXIV 24 XXXIII 33

XXXIV 34 XXXIX 39 XL 40

XLV 45 XLIX 49 L 50

LI 51 LXVII 67 LXXXIX 89

XC 90 XCIX 99 C 100

CXLIX 149 CLXXXIX 189 IVXLCDM 334

CCCXLIX 349 CD 400 CDLVI 456

D 500 DXLV 545 DCIV 604

DCCCXLIX 849 DCCCLXXXIX 889 CM 900

CMIV 904 CMXLIV 944 CMXCIX 999

M 1000 MVII 1007 MCCLIX 1259

MDCLXVII 1667 MCMLXXII 1972 MCMXCIX 1999

MMVIII 2008 MMXI 2011 MMCXXIV 2124

MMDCCCVI 2806 MMCMXCIX 2999 MMMMCMXCIX 4999

MMMMMCMXLII 5942

Table 9.6.: Roman Numerals Tests for �ery 9.2.

9.4. Summary

In this chapter we have tackled the problem of providing be�er results to the

users of our search engine SENTRE. To convince users of the value of a new

206

Summary 9.4

technology it is necessary to provide a su�iciently high level of reliability to

them (i.e., the technology should reliably save them e�ort when performing a

specific task). The major threat for any search engine, regardless of whether it

provides reusable production code or reusable test cases, is the time required for

result inspection. If the system presents a list of n potentially reusable assets, it

is unlikely that users will inspect more than a couple of them, especially if the

first ones do not provide any value or are useless in the user’s context. Hence,

we have introduced the idea of oracle-based filtering which helps to eliminate

false-positive results from a search and delivers only valuable results to the user.

The introduced technology relies on the ideas presented in our earlier work

on Search-Enhanced Testing, which utilizes multiple versions of a program as

oracles in order to identify possible defects in an implementation.

Our technology retrieves the appropriate CUTs with the test cases identified

as reuse candidate. This means, that n reusable test cases deliver n oracles.

Each potentially reusable test case is executed n − 1 times (i.e., once against

each oracle except its own). If a test case fails on the majority (or all) of the

oracles, it is classified as an outlier and therefore discarded from the list of

results. Although this technique may lead to the exclusion of a small number of

potentially appropriate test cases, it is be�er to present less more trustworthy

test cases than more test cases that are less trustworthy.

In the following chapter we conclude our contribution before briefly discussing

open issues and presenting a roadmap for future work in the reuse of so�ware

tests.

Contribution of this chapter

• We have presented the ideas behind Search-Enhanced Testing and gave an

overview on the underlying techniques.

• We have shown an approach to combine test-driven search with multi-

version testing using random test case values.

• Furthermore we have introduced a set of discrepancy tables and voting

profiles for multi-version so�ware testing. Based on our considerations,

207

Chapter 9 SEARCH-ENHANCED RECOMMENDATION IMPROVEMENT

we have shown a working tool for Search-Enhanced Testing, which auto-

matically generates discrepancy tables for given code artifacts and charac-

terizing tests.

• Based on the ideas of Search-Enhanced Testing, we have developed and

described an approach for oracle-based evaluation of reusable tests and

the determination of their fitness for purpose. With this approach we can

e�ectively remove wrong results from the list of recommended tests in a

reuse-oriented test recommendation system.

208

Summary 9.4

209

Part IV.

Epilogue

211

“ Ever tried, ever failed, no ma�er!

Try again, fail again, fail be�er!”

Worstward Ho

Samuel Beckett

Winner of the 1969 Nobel Prize in Literature.

10
Epilogue

We started this thesis with a quote by Brian Kerninghan who stated that debug-

ging is twice as hard as writing the code itself and he concludes that this means if

developers put all their intellect into writing their code, they are by definition not

smart enough to debug it. Guided by this finding, this dissertation has focused

on tackling this problem with a new approach based on the idea of reusing the

knowledge of somebody else. The goal is that collectively, this knowledge will

be smart enough to help users of reuse-oriented test recommendation tools to

find and remove bugs in their code.

10.1. Retrospective

The central goal of the work conducted in this thesis was to develop a solution for

reuse-assisted so�ware testing – that is an approach that enhances (automated)

so�ware testing by leveraging so�ware reuse techniques. We started with a

213

Chapter 10 EPILOGUE

motivation of our idea and explained its raison d’être. Our literature survey

showed that the most important underlying motivation of the so�ware testing

community is driven by the goal to reduce manual e�ort for testers and to find

e�ective and e�icient strategies to automatically generate test data. Although

there have been many approaches for tackling this problem, none has strictly

focused on the reusability of previously wri�en so�ware tests.

Within the scope of this thesis, we therefore developed this idea and presented

initial considerations on the creation of an internet-scale repository of so�ware

tests, discussed the representation of these in a searchable database and iden-

tified techniques for extracting the knowledge contained in existing JUnit test

cases. Our findings and solutions were also accompanied with a description of

the challenges we faced in our work and how we were able to solve them. With

the presentation of the SENTRE search engine for so�ware tests, we demon-

strated the practical results of our work in the aforementioned area and also

introduced a set of retrieval techniques that were either tailored to or newly

developed for the search of reusable so�ware tests.

As well as creating the SENTRE search engine, we have also developed a dedi-

cated client application that seamlessly integrates into the well-known Eclipse

development environment. With the help of the plug-in, developers can reuse

previously wri�en tests by simply using the auto-complete feature included in

the Eclipse editor. Finally, we concluded our work with the presentation of a

multi-oracle testing approach that significantly enhances the trustworthiness

of search results by automatically excluding “false positives” (i.e. wrong reuse

candidates) from the list of reusable tests.

10.2. Contributions

In the first chapter, we introduced our research objective and presented a list

of contributions we wanted to accomplish with this thesis. As evidenced by

the results presented in the preceding chapters we can conclude that we have

214

Contributions 10.2

fulfilled the identified goals. More specifically, the concrete results of the work

carried out during this PhD research are as follows:

1. We have conducted a survey on reuse-oriented code recommendation

systems and presented their characteristics in order to identify a general

set of characteristics for future systems of this kind.

2. We have created a meta-model that captures the relevant information

needed to support the reuse of knowledge contained in previously wri�en

so�ware tests.

3. Based on this meta-model, we created a parser for JUnit test cases that

stores the extracted information in an e�iciently searchable database. Fur-

thermore, we identified unfortunate drawbacks of JUnit which make it

particularly hard to automatically recognize the class under test from a

given test case.

4. By defining typical usage scenarios for our approach in the so�ware devel-

opment lifecycle, we have also identified various potential applications of

the approach in future so�ware projects.

5. We presented SENTRE – a sophisticated search engine for reusable so�ware

tests. Since it is based on our generic test meta-model, the data available

through SENTRE is language independent, i.e., the knowledge extracted

from a Java project can easily be reused for so�ware wri�en in other

languages, such as a newly created C# project, for instance.

6. Based on the findings that interface-based searches are handicapped by

their dependence on names, we have introduced a new set of retrieval tech-

niques that are value- and pa�ern based. Furthermore we presented the

possibility to reverse the ideas from test-driven search and use production

code to find corresponding reusable so�ware tests.

7. We presented a test reuse environment implemented as an Eclipse plug-in

which fulfills the characteristics for modern reuse-oriented recommenda-

tion systems identified earlier in this thesis.

215

Chapter 10 EPILOGUE

8. We have enhanced the usefulness of the approach by providing a model of

the micro-process for the reuse of code and so�ware tests. This also shows

the relationship between the “traditional” reuse of code and the reuse of

so�ware tests.

9. Based on the ideas of n-version programming and back-to-back testing,

we developed the ideas of Search-Enhanced Testing and a tool that utilizes

reusable so�ware components as oracles to generate discrepancy tables.

We described the approach and how it can help to reduce the manual e�ort

in so�ware testing.

10. With the help of Search-Enhanced Testing, we finally presented an ap-

proach that filters wrong results from the list of reusable tests (also known

as false positives). We have shown the feasibility of our approach and

presented an algorithm that describes the strategy behind it.

10.3. Future Work

Like all research that tries out new ideas, the work we presented in this disserta-

tion is just the first stepping stone towards fully automated recommendations

of reusable so�ware tests. We have identified and described several challenges

that need to be resolved by future researchers to make this vision a reality in

mainstream so�ware engineering projects. The SENTRE search engine and our

test recommendation plug-in for Eclipse are successful proof-of-concept imple-

mentations that demonstrate the feasibility of e�ective and e�icient searches

for reusable so�ware tests and their preparation for use in new projects. Based

on our findings, the next step is to scale the approach to larger entities. While

we have successfully applied our system on unit tests, further investigations

need to explore the possibilities of reusing more coarse-grained so�ware tests

and of using them to test larger components.

Our initial implementation relies on a large repository harvested from the inter-

net. Although this o�ers a large data set for further research in the area of test

216

Future Work 10.3

reuse, we strongly encourage the evaluation of our approach in an industry set-

ting, where professional testers and domain experts create large sets of reusable

tests. We envisage an experiment, where two groups of developers are asked

to write tests for di�erent sets of programs in a given time frame in order to

discover as many (purposely seeded) defects in the code as possible. A�erwards,

they are introduced to the reuse-oriented test recommendation tool. Thereby,

the time necessary for the introduction needs to be taken into account, when

the overall performance is measured. Subsequently, the groups’ program sets

are switched and the developers are asked once again to find as many defects as

possible in the code using the test recommendation system. Initially, we propose

the following two hypothesis:

1. A developer using a reuse-oriented test recommendation system will find

more bugs, B, in a program, P, within a given time frame, T, than a developer

who writes the tests using best practices:

Btool ≥ Bmanual, Ttool = Tmanual.

2. In program P, a developer using a reuse-oriented test recommendation

system will discover a fixed number of known bugs, B, more quickly than

a developer who is writes the tests using best practices:

Ttool ≤ Tmanual, Btool = Bmanual.

To explore the potential of test reuse, another experiment that needs to be

carried out is the e�ectiveness of so�ware tests that exist in so�ware projects

compared to such tests that are created using automated test recommendation.

In particular such an experiment should investigate whether a test case that is

generated by reusing existing so�ware tests outperforms those tests that were

particularly wri�en for distinct components. A possible approach to seed bugs

in the existing code is the utilization of mutant generators, while the mutant kill

rate is a valid measure for test suite e�ectiveness [ABL05].

Finally, the example from Listing 6.7 on page 126 has shown that the JUnit testing

framework is not very reuse-friendly. Since the framework does not include

techniques and conventions that support the reuse of test cases, it is a challenging

task to make the information bound up in them available to developers. Future

217

Chapter 10 EPILOGUE

work on a reuse-friendly testing framework needs to enhance the reusability of

JUnit test code whilst retaining JUnit’s simplicity and familiarity to developers.

It is especially important to clearly identify the class under test in the code of

the test case, which could be accomplished either by the introduction of a new

annotation or a convention that the first variable declaration in the class always

identifies the CUT.

10.4. Concluding Vision

Along with other techniques for enhancing the quality of so�ware, testing is

undoubtedly one of the most e�ective and important instruments in the arsenal

of quality assurance engineers. No mainstream so�ware development process

should underestimate the importance of e�ectively testing the system under

development. Nevertheless, it still remains a very labor intensive and tedious

task, which has to be carried out manually to a large extent. In this dissertation

we have discussed a new approach that is a first step towards an integrated test

reuse environment. Beside the pure reuse of so�ware tests, we envisage a more

extensive speculative analysis mechanism that is able to evaluate the fitness

for purpose of reusable artifacts and to learn from users’ choices. Furthermore,

such a test recommendation system should not represent a single, isolated

island of functionality in a developers environment, but should play a proactive

part in the evolution of the repository of reusable information. In particular,

when a developer discovers a wrong test and corrects it, the system should

propagate the new version to the repository so that other users can benefit from

the improvement.

The idea of combining so�ware reuse with so�ware testing can also be a first

step towards a more integrated approach to so�ware development and so�ware

testing, where the development of a system is influenced by previously created

tests. Similar to the ideas from test-driven development, a newly created class

can be developed according to the behavioral description of an already existing

test suite. Even further, the tests contained in a repository can be used as an

additional search criterion for reusable components to support the search for

218

Concluding Vision 10.4

previously developed programs. Through the work described in this dissertation

we have therefore delivered an initial tool set that opens up a whole set of future

research perspectives, not only in the area of test reuse, but also in the further

automation of so�ware testing and so�ware reuse in general.

219

Chapter 10 EPILOGUE

220

Was ich noch zu sagen hä�e. . .

When I started as a research assistant in the group of Colin Atkinson, one of the

first things he told me was that writing a PhD is di�erent to writing a diploma

thesis. He said that – in contrast to the diploma thesis – there is nobody anymore

who tells one what to do, but that it is now time to conduct my own research

work, supported by him as my supervisor. And that’s what I did!

The ideas for the topic of this thesis already emerged in the last months of

the year 2009 and they were first mentioned in our SUITE publication [JHA10]

presented in Cape Town, South Africa during my first ICSE. Since then, a lot of

work has been conducted and I would have never been able to carry all this load

on my own. Therefore, it is time to say thank you to all the people, who made

it possible for me to conduct the exciting research on this topic and to finally

finish the work on this thesis. The next page is for them!

Finally, my main motivation for this thesis was, to explore the possibilities to

extract the large and precious amount of knowledge contained in previously

created test cases and make this knowledge available to so�ware developers. I

considered it a waste of resources to write test cases and only use them in the

context of one dedicated so�ware system and project. Therefore I conducted the

work presented in this thesis, which is yet foundational research and there is

still a lot of space le� to future researchers. . . I hope they will enjoy it as much

as I did!

Bad Dürkheim, May 2014

Werner Janjic

221

222

Thank you. . .

Colin Atkinson, who gave me the opportunity to do this work.

Oliver Hummel, for many fruitful discussions, his support and faith in this idea.

Reid Holmes, for coming from overseas to report on this work.

Christoph Giess, for supplying me with BitBucket sources, providing momentum

and keeping me running.

The former and current sta� of the So�ware-Engineering Group – Gabi, Dietmar,

Marcus, Olli, Ralph, and all colleagues and friends – for the open and friendly

atmosphere.

Giovanni, for introducing me into the world of so�ware architecture and a great

time during the joint Navy project.

All my students, for their commitment.

My father Zvonimir and my stepmother Yvonne, for all their support, faith and

trust in me. A further thank to my grandmother Theresia, who passed away just

before I could defend this thesis, leaving us in sadness.

And finally

Silke, my beloved wife and friend, who made many sacrifices to enable me

to conduct the work on this dissertation. Thank you for being by my side,

supporting me and my work through all these years.

The biggest emotion in creation is the bridge to optimism.

Brian May, musician and astrophysicist.

223

Appendices

225

List of Figures

2.1 Input-Processing-Output Model of Program Tests [Som10]. 16

2.2 Generic Structure of a Class Interface. 18

3.1 Search Scenarios in So�ware Engineering [JHA10]. 36

3.2 Milestones in Source Code Search and Recommendation. 42

3.3 Initial System Architecture of Merobase [Hum08]. 45

3.4 The Architecture of the Sourcerer Infrastructure [Baj+06]. 46

3.5 The S6 Web Interface. 47

3.6 Process of Test-Driven Reuse [HA04; Hum08] 50

4.1 Test-Driven Reuse with Distributed Adaptation. 58

5.1 Overview of the Micro-Process of So�ware Reuse [JHA14]. 71

5.2 The user interface of CodeFinder showing matching items to a

user’s query who wants to draw a circle. Taken from [FHR91]. . . 74

5.3 CodeBroker’s Presenter [YF02]. 76

5.4 Strathcona plug-in for Eclipse [HM05]. 81

5.5 CodeGenie Test-Driven Search Process [Lem+07]. 82

5.6 Screenshot of CodeGenie for a Number Converter [Laz+09]. . . . 84

5.7 PARSEWeb. 85

5.8 Code Conjurer Recommendations 88

5.9 Test-Driven Search for a Credit Card Component [JA12]. 91

5.10 IDE Auto-Complete Recommendation. 94

6.1 The TIOBE Programming Community Index [TIO14] 102

227

App.

6.2 The Test Model Contains Test Suites and Required Components. . 107

6.3 The Decomposition of a Component. 108

6.4 The Decomposition of a Test Suite. 112

6.5 Exemplary Meta-Model Instantiation. 114

6.6 Distribution of assert Statements. 125

7.1 Test Search & Reuse Scenarios in So�ware Engineering. 134

7.2 Provided and Required Interface of the Test in Listing 7.1. 140

7.3 Screenshot of a SENTRE Result Table. 144

7.4 Strict Value-Based Search with Result List. 152

7.5 An Exception Test in SENTRE. 158

7.6 Micro-Process of Test Reuse. 160

7.7 System Architecture Sketch of SENTRE. 162

8.1 Process of Tool-Supported Test Reuse. 169

8.2 IDE Auto-Completion for Testing Single Operations. 172

8.3 Layered Architecture Schema of the Eclipse Plug-In. 173

8.4 View for Continuous Testing. 175

8.5 Exception Test in Eclipse. 176

9.1 Process of Search-Enhanced Testing. 186

9.2 Harvested Components as Oracle [Hum+06]. 191

9.3 Multi-Version Testing of a Roman Number Converter. 193

9.4 Discrepancy-Driven Testing [Hum+06]. 194

9.5 Schema of Oracle-Based Filtering for Test Reuse. 204

A.1 Poster about Search-Enhanced Testing. Presented at ICSE 2011. . 232

228

List of Tables

2.1 Terms in So�ware Testing and Java / JUnit. 22

3.1 Motivation for code search by target size [USL08]. 35

3.2 Comparison of Code Search Engines [HJA07]. 49

3.3 Comparison of Retrieval Techniques [HJA07]. 52

4.1 API Mismatch of Test and Candidate 56

4.2 Exemplary Searches With and Without Adaptation. 64

5.1 Code-Based Recommendation Systems. 73

6.1 Open Source Hosters Facts. 105

6.2 Repository Content of SENTRE. 118

6.3 Lines of Java Code in the SENTRE Repository Grouped by Source. 119

6.4 Java File Table. 120

6.5 Digest of the JUnit assert Statements. 124

6.6 List of Calls to the CUT in Listing 6.8. 129

7.1 Criteria and Weights for Result Ranking. 145

7.2 Distance Weights for Methods and �eries. 146

7.3 Java Primitive Data Types and Wrapper Classes. 148

9.1 Results of a Test-Driven Search for a Stack. 191

9.2 Invocation Profile Categories. 195

9.3 Discrepancy Table for the Roman Numerals Example. 198

9.4 Evaluation of the Results for �ery 9.2. 205

229

App.

9.5 Visualization of the Evaluation Results. 205

9.6 Roman Numerals Tests for �ery 9.2. 206

A.1 Comparison of the Precision of Search Engines (relevant / candi-

dates) [HJA07; Hum08]. 235

230

A
Materials

This appendix contains accompanying material referenced in this thesis, which

was too voluminous to be contained within the original text. The following

sections contain figures, text and tables.

231

App. A MATERIALS

Figure A.1.: Poster about Search-Enhanced Testing. Presented at ICSE 2011.

232

Regular Expressions A

A.1. Regular Expressions

Regular Expressions are a powerful tool that allow its users to describe and parse

text using almost a kind of mini programming language [Fri02]. The SENTRE

search engine for so�ware tests enables its users to use this tool in search queries

to describe test case values and expected results in an abstract and more formal

way.

This section gives a short overview about the most common and relevant elements

of regular expressions that enables the readers of this thesis to create some basic

queries themselves.

^ The “hat” symbolizes the beginning of a text element. The following expression

cannot be preceded by any other set of characters.

$ The “dollar” sign is the counterpart of the hat. It symbolizes the end of a text

element, i.e., no character can follow a�er this.

+, * The + and * quantifiers can be used to express that the preceding element

has to appear one or more times (+) or zero or more times (*), respectively.

{n} The number n between braces describes that the preceding element has to

appear n times.

\d The meta-character \d substitutes the digits 0− 9.

\w Represents any alpha-numeric character and the underscore _ symbol.

[A-Z] The bracket expression matches any single character that is contained

within the squared brackets.

233

App. A MATERIALS

A.1.1. Examples of �eries with Regular Expressions

To provide the reader an impression of value-based queries with regular expres-

sions, we list a set of queries together with corresponding assert-statements

from JUnit test cases.

When test case values or expected results are defined using regular expressions,

the asserts serve as representatives for any statements that match the query.

rexx:(2000)->true;(2100)->false;

assertEquals(true, isLeapYear(2000));

assertEquals(false, isLeapYear(2100));

rexx:("\d{4}")->boolean;

assertEquals(true, isLeapYear(2004));

assertEquals(false, isLeapYear(1999));

rexx:("^[IVXDCLM]+$")->"\d{2}";

assertEquals(10, valueOf("X"));

assertEquals(51, valueOf("LI"));

assertEquals(99, valueOf("XCIX"));

rexx:("^[A-Za-z]*$")->"\d+";

assertEquals(0, length(""));

assertEquals(10, valueOf("HelloWorld"));

234

Comparison of Retrieval Precision A

A.2. Comparison of Retrieval Precision

�ery Google Yahoo
Google
Code-
search

Koders Merobase

copyFile(String,
String):void

1 / 25 2 / 25 7 / 25 0 / 25 18 / 25

gcd(int,int):int 10 / 25 7 / 25 12 / 25 2 / 25 17 / 25
isLeapYear(int):boolean 8 / 25 12 / 25 3 / 25 2 / 25 14 / 25
md5(String):String 0 / 25 0 / 25 4 / 22 0 / 25 12 / 25
isPrime(int):int 6 / 25 15 / 25 7 / 25 4 / 25 5 / 25
randomNumber(int,int):int 0 / 25 3 / 25 2 / 7 0 / 7 14 / 25
randomString(int):String 4 / 25 2 / 25 6 / 25 4 / 16 5 / 25
replace(String,String,

String):String
2 / 25 8 / 25 14 / 25 3 / 25 22 / 25

reverseArray(int[]):int[] 1 / 10 3 / 23 1 / 1 0 / 4 5 / 7
sort(int[]):int[] 0 / 25 0 / 25 5 / 20 0 / 25 20 / 25
sqrt(double):double 5 / 25 4 / 25 4 / 25 1 / 25 11 / 25
getMinMax(int[]):int[] 0 / 15 0 / 22 0 / 0 0 / 25 2 / 4
Stack(

push(Object):void,
pop():Object,
size():int

)

1 / 25 2 / 25 0 / 0 1 / 25 6 / 25

Average Precision 12.2% 17.9% 29.5% 5.9% 53.7%
Standard Deviation 13.3% 18.9% 26.5% 7.8% 22.4%

Table A.1.: Comparison of the Precision of Search Engines (relevant / candidates)
[HJA07; Hum08].

235

“ Beware of bugs in the above code;

I have only proved it correct, not tried it. ”

Donald Knuth

Computer Scientist, author of TEX.

B
Listings

The following pages contain the listings referenced in the text of this thesis. If a

listing contains code that was harvested from the internet, the first line contains

the origin. For convenience and readability, all parts which are not essential

for understanding or are dead-code, i.e., if they are not called or executed at

runtime, were removed from these listings. You may, however, still refer to the

original URL. Furthermore, the source code of externally acquired classes may

have been altered and adapted by algorithms like those in test-driven search,

which adjust the provided interface of reuse candidates to the one required by

the search query.

237

App. B LISTINGS

Listing B.1: Excerpt of the Class Under Test

1 // Origin: http :// musicbrainzws2 -java.googlecode.com/svn -history/r34/

↪→ mc2java/src/org/mc2/Roman.java

2 // @author Ben Clifford

3 public class RomanNumber {

4 public class SymTab {

5 /** Roman symbol */

6 char symbol;

7 /** Numerical value */

8 int value;

9 public SymTab(char s, int v) {

10 this.symbol = s;

11 this.value = v;

12 }

13 };

14

15 public RomanNumber.SymTab syms[] = {

16 new SymTab(’M’, 1000), new SymTab(’D’, 500),

17 new SymTab(’C’, 100), new SymTab(’L’, 50),

18 new SymTab(’X’, 10), new SymTab(’V’, 5),

19 new SymTab(’I’, 1) };

20

21 public String toRoman(int n) {

22 int i;

23 String s;

24 s = "";

25 while (n > 0) {

26 for (i = 0; i < syms.length; i++) {

27 if (syms[i].value <= n) {

28 int shift = i + (i % 2);

29 if (i > 0 && shift < syms.length

30 && (syms[i - 1]. value - syms[shift]. value) <= n) {

31 s = s + syms[shift]. symbol + syms[i - 1]. symbol;

32 n = n - syms[i - 1]. value + syms[shift]. value;

33 i = -1;

34 } else {

35 s += syms[i]. symbol;

36 n -= syms[i].value;

37 i = -1;

38 } } } }

39 return s;

40 }

41 }

238

B

Listing B.2: Excerpt of Oracle 1

1 // https ://svn.apache.org/repos/asf/jena/Import/Jena -SVN/ARQ/tags/ARQ -2.0-

↪→ beta/src/com/hp/hpl/jena/sparql/util/RomanNumeral.java

2 public class RomanNumber {

3 int intValue;

4 public static String i2r(int i) {

5 if (i <= 0)

6 throw new NumberFormatException ();

7 if (i > 3999)

8 throw new NumberFormatException ();

9 StringBuffer sbuff = new StringBuffer ();

10 i = i2r(sbuff , i,"M" ,1000, "CM" ,900, "D" ,500, "CD" ,400);

11 i = i2r(sbuff , i,"C" ,100, "XC" ,90, "L" ,50, "XL" ,40);

12 i = i2r(sbuff , i,"X" ,10, "IX",9, "V",5, "IV" ,4);

13 while (i >= 1) {

14 sbuff.append("I");

15 i -= 1;

16 }

17 return sbuff.toString ();

18 }

19 public String toRoman(int value) {

20 try {

21 return i2r(intValue);

22 } catch (Exception e) {

23 return "ERROR";

24 } }

25 static class RValue {

26 static RValue [] table = new RValue [] {

27 new RValue(’M’, 1000),

28 new RValue(’D’, 500), new RValue(’C’, 100),

29 new RValue(’L’, 50), new RValue(’X’, 10),

30 new RValue(’V’, 5), new RValue(’I’, 1) };

31 char lex; int val;

32 RValue(char s, int v) {

33 lex = s; val = v;

34 } } }

239

App. B LISTINGS

Listing B.3: Excerpt of Oracle 2

1 // http :// wiki.hsr.ch/SimpleCode/files/RomanNumber.java

2 public class RomanNumber {

3 private final static char[] ROMANNUMBERS = { ’I’, ’V’, ’X’, ’L’, ’C’, ’

↪→ D’, ’M’ };

4 private final static int[] DECNUMBERS = { 1, 5, 10, 50, 100, 500, 1000

↪→ };

5 private final static int POS_CHANGE = 2;

6 private final static int[] SPECIALDEC = { 4, 5, 9 };

7 public String toRoman(int inputNumber) {

8 StringBuffer returnValue = new StringBuffer ();

9 if (inputNumber == 0) return returnValue.toString ();

10 int restThousand = inputNumber % DECNUMBERS [6];

11 int thousand = inputNumber / DECNUMBERS [6];

12 int dividend = DECNUMBERS [2]; int oldDividend = 1;

13 for (int index = 0; index <= DECNUMBERS.length - POS_CHANGE; index

↪→ += POS_CHANGE) {

14 int restAkt = restThousand % dividend;

15 int rest = restAkt; int aktPos = 0;

16 if (rest == SPECIALDEC [2] * oldDividend) {

17 char[] addChars = { ROMANNUMBERS[index],

18 ROMANNUMBERS[index + POS_CHANGE] };

19 returnValue.insert(aktPos , addChars);

20 aktPos += 2;

21 rest -= SPECIALDEC [2] * oldDividend;

22 } else {

23 if (rest == SPECIALDEC [0] * oldDividend) {

24 char[] addChars = { ROMANNUMBERS[index],

25 ROMANNUMBERS[index + 1] };

26 returnValue.insert(aktPos , addChars);

27 aktPos += 2;

28 rest -= SPECIALDEC [0] * oldDividend;

29 } else if (rest >= SPECIALDEC [1] * oldDividend) {

30 returnValue.insert(aktPos , ROMANNUMBERS[index + 1]);

31 rest -= SPECIALDEC [1] * oldDividend; aktPos ++;

32 } }

33 for (; rest > 0; rest -= oldDividend)

34 returnValue.insert(aktPos , ROMANNUMBERS[index]);

35 oldDividend = dividend;

36 dividend = dividend * DECNUMBERS [2];

37 restThousand -= restAkt; }

38 for (int i = 0; i < thousand; i++)

39 returnValue.insert(0, ROMANNUMBERS[ROMANNUMBERS.length - 1]);

40 return returnValue.toString ();

41 } }

240

B

Listing B.4: Excerpt of Oracle 3

1 // http ://www.dcs.bbk.ac.uk/~ roman/sp1/java/RomanNumber.java

2 public class RomanNumber {

3 public String convert(int n) {

4 if ((n >= 1) && (n <= 3999)) {

5 int thousand = (n % 10000) / 1000;

6 int hundred = (n % 1000) / 100;

7 int ten = (n % 100) / 10;

8 int unit = (n % 10);

9 String roman = "";

10

11 // Convert the thousandth number into a Roman numeral

12 if (thousand == 1) {

13 roman += "M";

14 } else if (thousand == 2) {

15 roman += "MM";

16 } else if (thousand == 3) {

17 roman += "MMM";

18 }

19 // end of if for thousand

20 // [...]

21 if (unit == 1) {

22 roman += "I";

23 } else if (unit == 2) {

24 roman += "II";

25 } else if (unit == 8) {

26 roman += "VIII";

27 } else if (unit == 9) {

28 roman += "IX";

29 }

30 // end of if for unit

31 return roman;

32 } // end of valid range

33 else {

34 return "ERROR";

35 }

36 }

37

38 // Adapter method

39 public String toRoman(int value) {

40 RomanNumber rn = new RomanNumber ();

41 return rn.convert(value);

42 }

43 }

241

App. B LISTINGS

Listing B.5: Excerpt of Oracle 4

1 // https :// code.google.com/a/eclipselabs.org/p/jcinetheque/source/browse/

↪→ trunk/JCinetheque/src/main/java/utils/RomanNumber.java?r=41

2 public class RomanNumber {

3 private final static String [] BASIC_ROMAN_NUMBERS = { "M", "CM", "D", "

↪→ CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I" };

4 private final static int[] BASIC_VALUES = { 1000, 900, 500, 400, 100,

↪→ 90, 50, 40, 10, 9, 5, 4, 1 };

5 private int value;

6 private String romanString;

7

8 public String toRomanValue () {

9 if (this.romanString == null) {

10 this.romanString = "";

11 int remainder = this.value;

12 for (int i = 0; i < BASIC_VALUES.length; i++) {

13 while (remainder >= BASIC_VALUES[i]) {

14 this.romanString += BASIC_ROMAN_NUMBERS[i];

15 remainder -= BASIC_VALUES[i];

16 }

17 }

18 }

19 return this.romanString;

20 }

21

22 public Integer getValue () {

23 return this.value;

24 }

25

26 public String toRoman(int value) {

27 if (1 <= value && value <= 3999) {

28 RomanNumber rn = new RomanNumber(value);

29 return rn.toRomanValue ();

30 } else {

31 return "ERROR";

32 }

33 }

34 }

242

B

Listing B.6: Excerpt of Oracle 5

1 // https :// github.com/froderik/roman_numeral_katas/blob/master/java/

↪→ RomanNumber.java

2 public class RomanNumber {

3 private int number;

4 public String toString(int number) {

5 this.number = number;

6 String result = "";

7 int thousands = this.number / 1000;

8 result += times(thousands , "M");

9 int hundreds = this.number / 100 % 10;

10 result += times(hundreds , "C", "D", "M");

11 int tens = this.number / 10 % 10;

12 result += times(tens , "X", "L", "C");

13 int ones = this.number % 10;

14 result += times(ones , "I", "V", "X");

15 if (value > 2999 || result.contains("ERROR")) {

16 return "ERROR";

17 }

18 return result;

19 }

20 private String times(int number , String character) {

21 String result = "";

22 for (int i = 0; i < number; i++) {

23 result += character;

24 }

25 return result;

26 }

27 private String times(int number , String onesChar , String fivesChar ,

↪→ String tensChar) {

28 switch (number) {

29 case 0 : return "";

30 case 1 :

31 case 2 :

32 case 3 : return times(number , onesChar);

33 case 4 : return onesChar + fivesChar;

34 case 5 :

35 case 6 :

36 case 7 :

37 case 8 : return fivesChar + times(number - 5, onesChar);

38 case 9 : return onesChar + tensChar;

39 default: return "ERROR";

40 }

41 }

42 }

243

App. B LISTINGS

Listing B.7: Excerpt of Oracle 7

1 // Original: http :// grepcode.com/file_/repo1.maven.org/maven2/org.jodd/

↪→ jodd /3.2.5/ jodd/format/RomanNumber.java/?v=source

2 // Copyright (c) 2003 -2011 , Jodd Team (jodd.org). All Rights Reserved.

3 public class RomanNumber {

4 public static final int[] VALUES = new int[] { 1000, 900, 500, 400,

↪→ 100, 90, 50, 40, 10, 9, 5, 4, 1 };

5 public static final String [] LETTERS = new String [] { "M", "CM", "D", "

↪→ CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I" };

6

7 /**

8 * Converts to roman number.

9 */

10 public String toRoman(int value) {

11 try {

12 StringBuilder roman = new StringBuilder ();

13 int n = value;

14 for (int i = 0; i < LETTERS.length; i++) {

15 while (n >= VALUES[i]) {

16 roman.append(LETTERS[i]);

17 n -= VALUES[i];

18 }

19 }

20 return roman.toString ();

21 } catch (Exception e) {

22 return "ERROR";

23 }

24 }

25 }

244

B

Listing B.8: Broadcaster Class for Discrepancy-Driven Testing

1 public class RomanNumber {

2 public static ArrayList <RomanNumberInterface > components =

3 new ArrayList <RomanNumberInterface >();

4 public static Long start;

5 public static Long end;

6

7 public RomanNumber () {

8 components.add(new oracles.cut.RomanNumber ());

9 components.add(new oracles.o1.RomanNumber ());

10 components.add(new oracles.o2.RomanNumber ());

11 components.add(new oracles.o3.RomanNumber ());

12 components.add(new oracles.o4.RomanNumber ());

13 components.add(new oracles.o5.RomanNumber ());

14 components.add(new oracles.o6.RomanNumber ());

15 components.add(new oracles.o7.RomanNumber ());

16 }

17

18 public String toRoman(int n) {

19 ArrayList <Long > durations = new ArrayList <Long >();

20 ArrayList <String > callSource = new ArrayList <String >();

21 ArrayList <String > answers = new ArrayList <String >();

22

23 for (RomanNumberInterface c : components) {

24 callSource.add(c.getClass ().getName ());

25 start = System.nanoTime ();

26

27 String answer =

28 ((interfc.RomanNumberInterface) c).toRoman(n);

29 end = System.nanoTime ();

30 answers.add(answer);

31 durations.add(end - start);

32 }

33

34 Object [] params = new Object [] { n };

35 TestResultsLogger.log("RomanNumber", 1, "toRoman(int n)",

36 "String", new String [][] {

37 { "n", "int", "" + n }

38 }, "toRoman(" + n + ")", params ,

39 answers , durations , callSource);

40

41 return answers.get(0);

42 }

43 }

245

App. B LISTINGS

Listing B.9: Excerpt of the JSON Representation of a JUnit Test.

1 { _id : <TestModelId >,

2 name : "EuclidTest",

3 components : [<ComponentId >],

4 tests : [<TestSuiteId1 >]

5 } {

6 _id : <ComponentId >,

7 name : "Euclid",

8 operations : [<OperationId >]

9 } { _id : <OperationID >,

10 name : "dist",

11 parameter :

12 [{ type : double ,name : x1 }, { type : double ,name : y1, },

13 { type : double ,name : x2 }, { type : double ,name : y2 }],

14 returnValue : { type : double }

15 } { _id : <TestSuiteId >,

16 name : "EuclidTest",

17 componentUnderTest_id : <ComponentId >,

18 testCases : [<TestCaseId1 >, <TestCaseId2 >, ...]

19 } { _id : <TestCaseId >,

20 name : "testDistanceCalculation",

21 tests : [<TestId >],

22 statements : [<StatementId1 >],

23 } { _id : <TestId >,

24 preStatements : [<StatementId1 >],

25 postStatements : [],

26 cutInvocation : <CUTInvocationId >,

27 expectedResult : <ExpectedResultId >

28 } { _id : <CUTInvocationId >,

29 operation : [<OperationId >],

30 provides : [<ValueId1 >, <ValueId2 >, <ValueId3 >, <ValueId4 >],

31 returns : <ValueId5 >

32 } { _id : <ValueId1 >,

33 name : "x1", type : double ,

34 value : "4"

35 } { _id : <ValueId2 >,

36 name : "y1", type : double ,

37 value : "2"

38 } { _id : <ValueId3 >,

39 name : "x2", type : double ,

40 value : "8"

41 } { _id : <ValueId4 >,

42 name : "y2", type : double ,

43 value : "5"

44 } { _id : <ValueId5 >,

45 type : double ,

46 value : 5

47 }

246

C
Bibliography

References

[Alm+04] Eduardo Santana de Almeida et al. “RiSE project: towards a robust

framework for so�ware reuse”. In: Proceedings of the 2004 IEEE

International Conference on Information Reuse and Integration, 2004.

IRI 2004. 2004, pp. 48–53. doi: 10.1109/IRI.2004.1431435.

[AO08] Paul Ammann and Je� O�u�. Introduction to so�ware testing. Cam-

bridge University Press, 2008.

[ABL05] J.H. Andrews, L.C. Briand, and Y. Labiche. “Is mutation an appro-

priate tool for testing experiments?” In: Proceedings of the 27th

International Conference on So�ware Engineering, 2005. ICSE 2005.

May 2005, pp. 402–411. doi: 10.1109/ICSE.2005.1553583.

247

http://dx.doi.org/10.1109/IRI.2004.1431435
http://dx.doi.org/10.1109/ICSE.2005.1553583

App. C BIBLIOGRAPHY

[AHJ11] Colin Atkinson, Oliver Hummel, and Werner Janjic. “Search-enhan-

ced testing (NIER Track)”. In: Proceedings of the 33rd International

Conference on So�ware Engineering. ICSE ’11. Waikiki, Honolulu, HI,

USA: ACM, 2011, pp. 880–883. isbn: 978-1-4503-0445-0. doi: 10.1145/

1985793.1985932. url: h�p://doi.acm.org/10.1145/1985793.1985932.

[Atk+08a] Colin Atkinson et al. “Modeling Components and Component-

Based Systems in KobrA”. In: The Common Component Modeling

Example. Ed. by Andreas Rausch et al. Vol. 5153. Lecture Notes

in Computer Science. Springer Berlin Heidelberg, 2008, pp. 54–84.

isbn: 978-3-540-85288-9. doi: 10.1007/978-3-540-85289-6_4. url:

h�p://dx.doi.org/10.1007/978-3-540-85289-6_4.

[Atk+08b] Colin Atkinson et al. “Specifying high-assurance services”. In: IEEE

Computer 41.8 (2008), pp. 64–71.

[Atl14] Atlassian. Bitbucket. Jan. 2014. url: h�p : / /www.bitbucket . org

(visited on 01/22/2014).

[Avi95] Algirdas Avižienis. “The methodology of n-version programming”.

In: So�ware fault tolerance 3 (1995), pp. 23–46.

[BR08] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information

Retrieval. 2nd. USA: Addison-Wesley Publishing Company, 2008.

isbn: 0321416910, 9780321416919.

[Baj+06] Sushil Bajracharya et al. “Sourcerer: a search engine for open source

code supporting structure-based search”. In: Companion to the 21st

ACM SIGPLAN symposium on Object-oriented programming systems,

languages, and applications. OOPSLA ’06. Portland, Oregon, USA:

ACM, 2006, pp. 681–682. isbn: 1-59593-491-X. doi: 10.1145/1176617.

1176671. url: h�p://doi.acm.org/10.1145/1176617.1176671.

[Bar13] Adam Bard. Top Github Languages for 2013 (so far). Aug. 2013. url:

h�p://adambard.com/blog/top-github-languages-for-2013-so-far/

(visited on 08/30/2013).

[Bec03] Kent Beck. Test-driven development: by example. Addison-Wesley

Professional, 2003.

248

http://dx.doi.org/10.1145/1985793.1985932
http://dx.doi.org/10.1145/1985793.1985932
http://doi.acm.org/10.1145/1985793.1985932
http://dx.doi.org/10.1007/978-3-540-85289-6_4
http://dx.doi.org/10.1007/978-3-540-85289-6_4
http://www.bitbucket.org
http://dx.doi.org/10.1145/1176617.1176671
http://dx.doi.org/10.1145/1176617.1176671
http://doi.acm.org/10.1145/1176617.1176671
http://adambard.com/blog/top-github-languages-for-2013-so-far/

References C

[BG14] Kent Beck and Erich Gamma. JUnit Test Infected: Programmers Love

Writing Tests. Mar. 2014. url: h�p://junit.sourceforge.net/doc/

testinfected/testing.htm.

[Bei90] Boris Beizer. So�ware Testing Techniques. 2nd edition. New York,

NY, USA: Van Nostrand Reinhold, 1990.

[Ber07] Antonia Bertolino. “So�ware testing research: Achievements, chal-

lenges, dreams”. In: 2007 Future of So�ware Engineering. IEEE Com-

puter Society. 2007, pp. 85–103.

[Boe81] Barry W. Boehm. So�ware engineering economics. Prentice-Hall

advances in computing science and technology series. Prentice-

Hall, 1981. isbn: 9780138221225. url: h�p://books.google.de/books?

id=VphQAAAAMAAJ.

[Boe88] Barry W Boehm. “A spiral model of so�ware development and

enhancement”. In: Computer 21.5 (1988), pp. 61–72.

[Boo+98] Grady Booch et al. Object-oriented analysis and design with applica-

tions. 2nd edition. Addison-Wesley, 1998.

[Bro87] Frederick P. Brooks. “No Silver Bullet – Essence and Accidents of

So�ware Engineering”. In: IEEE Computer 20.4 (1987), pp. 10–19.

[BMM09] Marcel Bruch, Martin Monperrus, and Mira Mezini. “Learning from

examples to improve code completion systems”. In: Proceedings

of the the 7th joint meeting of the European so�ware engineering

conference and the ACM SIGSOFT symposium on The foundations of

so�ware engineering. ESEC/FSE ’09. Amsterdam, The Netherlands:

ACM, 2009, pp. 213–222. isbn: 978-1-60558-001-2. doi: 10 . 1145 /

1595696.1595728. url: h�p://doi.acm.org/10.1145/1595696.1595728.

[Bru+10] Yuriy Brun et al. “Speculative analysis: exploring future develop-

ment states of so�ware”. In: Proceedings of the FSE/SDP workshop

on Future of so�ware engineering research. FoSER ’10. Santa Fe, New

Mexico, USA: ACM, 2010, pp. 59–64. isbn: 978-1-4503-0427-6. doi:

10.1145/1882362.1882375. url: h�p://doi.acm.org/10.1145/1882362.

1882375.

249

http://junit.sourceforge.net/doc/testinfected/testing.htm
http://junit.sourceforge.net/doc/testinfected/testing.htm
http://books.google.de/books?id=VphQAAAAMAAJ
http://books.google.de/books?id=VphQAAAAMAAJ
http://dx.doi.org/10.1145/1595696.1595728
http://dx.doi.org/10.1145/1595696.1595728
http://doi.acm.org/10.1145/1595696.1595728
http://dx.doi.org/10.1145/1882362.1882375
http://doi.acm.org/10.1145/1882362.1882375
http://doi.acm.org/10.1145/1882362.1882375

App. C BIBLIOGRAPHY

[CA78] Liming Chen and Algirdas Avižienis. “N-version programming:

A fault-tolerance approach to reliability of so�ware operation”.

In: Proceedings of the 8th IEEE International Symposium on Fault-

Tolerant Computing (FTCS-8). 1978, pp. 3–9.

[CWD08] Rylan Co�rell, Robert J. Walker, and Jörg Denzinger. “Semi-automa-

ting small-scale source code reuse via structural correspondence”.

In: Proceedings of the 16th ACM SIGSOFT International Symposium

on Foundations of so�ware engineering. SIGSOFT ’08/FSE-16. At-

lanta, Georgia: ACM, 2008, pp. 214–225. isbn: 978-1-59593-995-1.

doi: 10.1145/1453101.1453130. url: h�p://doi.acm.org/10.1145/

1453101.1453130.

[CCL06] Ivica Crnkovic, Michel Chaudron, and Stig Larsson. “Component-

Based Development Process and Component Lifecycle”. In: So�ware

Engineering Advances, International Conference on. Oct. 2006, p. 44.

doi: 10.1109/ICSEA.2006.261300.

[DR12] B. Dagenais and M.P. Robillard. “Recovering traceability links be-

tween an API and its learning resources”. In: Proceedings of the 34th

International Conference on So�ware Engineering (ICSE), 2012. June

2012, pp. 47–57. doi: 10.1109/ICSE.2012.6227207.

[Ehr73] Gideon Ehrlich. “Loopless algorithms for generating permutations,

combinations, and other combinatorial configurations”. In: Journal

of the ACM (JACM) 20.3 (1973), pp. 500–513.

[EKR03] Sebastian Elbaum, Srikanth Karre, and Gregg Rothermel. “Improv-

ing web application testing with user session data”. In: Proceedings

of the 25th International Conference on So�ware Engineering. IEEE

Computer Society. 2003, pp. 49–59.

[Erl13] Oliver Erlenkämper. “Realizing Automated Test Recommendations

in So�ware Development Environments”. Diploma Thesis. Chair

of So�ware Engineering, University of Mannheim, Germany, June

2013.

250

http://dx.doi.org/10.1145/1453101.1453130
http://doi.acm.org/10.1145/1453101.1453130
http://doi.acm.org/10.1145/1453101.1453130
http://dx.doi.org/10.1109/ICSEA.2006.261300
http://dx.doi.org/10.1109/ICSE.2012.6227207

References C

[Fal10] Giovanni Falcone. Hierarchy-Aware So�ware Metrics in Component

Composition Hierarchies. Logos Verlag Berlin GmbH, 2010.

[FHR91] Gerhard Fischer, Sco� Henninger, and David Redmiles. “Cognitive

tools for locating and comprehending so�ware objects for reuse”.

In: Proceedings of the 13th international conference on So�ware en-

gineering. ICSE ’91. Austin, Texas, United States: IEEE Computer

Society Press, 1991, pp. 318–328. isbn: 0-89791-391-4. url: h�p :

//dl.acm.org/citation.cfm?id=256664.256813.

[FF95] William B. Frakes and Christopher J. Fox. “Sixteen questions about

so�ware reuse”. In: Communications of the ACM 38.6 (June 1995),

75–�. issn: 0001-0782. doi: 10.1145/203241.203260. url: h�p://doi.

acm.org/10.1145/203241.203260.

[FP94] William B. Frakes and Thomas Pole. “An empirical study of rep-

resentation methods for reusable so�ware components”. In: IEEE

Transactions on So�ware Engineering 20.8 (Aug. 1994), pp. 617–630.

issn: 0098-5589. doi: 10.1109/32.310671.

[FZ12] Gordon Fraser and Andreas Zeller. “Mutation-driven generation of

unit tests and oracles”. In: So�ware Engineering, IEEE Transactions

on 38.2 (2012), pp. 278–292.

[Fri02] Je�rey E. F. Friedl. Mastering Regular Expressions. Ed. by Andy Oram.

2nd ed. Sebastopol, CA, USA: O’Reilly & Associates, Inc., 2002. isbn:

0596002890.

[GO06] Leonard Gallagher and Je� O�u�. “Automatically testing interact-

ing so�ware components”. In: Proceedings of the 2006 international

workshop on Automation of so�ware test. ACM. 2006, pp. 57–63.

[Gam+94] Erich Gamma et al. Design pa�erns: elements of reusable object-

oriented so�ware. Pearson Education, 1994.

[Gar+06] Vinicius C. Garcia et al. “Toward a Code Search Engine Based on

the State-of-Art and Practice”. In: Proceedings of the XIII Asia Pacific

So�ware Engineering Conference. APSEC ’06. Washington, DC, USA:

IEEE Computer Society, 2006, pp. 61–70. isbn: 0-7695-2685-3. doi:

251

http://dl.acm.org/citation.cfm?id=256664.256813
http://dl.acm.org/citation.cfm?id=256664.256813
http://dx.doi.org/10.1145/203241.203260
http://doi.acm.org/10.1145/203241.203260
http://doi.acm.org/10.1145/203241.203260
http://dx.doi.org/10.1109/32.310671

App. C BIBLIOGRAPHY

10.1109/APSEC.2006.57. url: h�p://dx.doi.org/10.1109/APSEC.2006.

57.

[Git14] GitHub. GitHub Collaboration Platform. Jan. 2014. url: h�p://github-

media-downloads.s3.amazonaws.com/GitHub.�ick.Facts.pdf

(visited on 01/18/2014).

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART: directed

automated random testing”. In: ACM Sigplan Notices. Vol. 40. 6.

ACM. 2005, pp. 213–223.

[Goo11] Google. A fall sweep. Oct. 2011. url: h�p://googleblog.blogspot.de/

2011/10/fall-sweep.html (visited on 10/14/2011).

[Hen93] Sco� Henninger. “Locating relevant examples for example-based

so�ware design”. UMI Order No. GAX93-20432. PhD thesis. Boulder,

CO, USA, 1993.

[Hen97] Sco� Henninger. “An evolutionary approach to constructing e�ec-

tive so�ware reuse repositories”. In: ACM Transactions on So�ware

Engineering and Methodology (TOSEM) 6.2 (Apr. 1997), pp. 111–140.

issn: 1049-331X. doi: 10.1145/248233.248242. url: h�p://doi.acm.

org/10.1145/248233.248242.

[Hol04] Reid Holmes. “Using Structural Context to Recommend Source

Code Examples”. Masters Thesis. University of British Columbia,

2004.

[HM05] Reid Holmes and Gail C. Murphy. “Using structural context to

recommend source code examples”. In: Proceedings of the 27th inter-

national conference on So�ware engineering. ICSE ’05. St. Louis, MO,

USA: ACM, 2005, pp. 117–125. isbn: 1-58113-963-2. doi: 10.1145/

1062455.1062491. url: h�p://doi.acm.org/10.1145/1062455.1062491.

[HW07] Reid Holmes and Robert J. Walker. “Supporting the Investigation

and Planning of Pragmatic Reuse Tasks”. In: Proceedings of the 29th

international conference on So�ware Engineering. ICSE ’07. Wash-

ington, DC, USA: IEEE Computer Society, 2007, pp. 447–457. isbn:

252

http://dx.doi.org/10.1109/APSEC.2006.57
http://dx.doi.org/10.1109/APSEC.2006.57
http://dx.doi.org/10.1109/APSEC.2006.57
http://github-media-downloads.s3.amazonaws.com/GitHub.Quick.Facts.pdf
http://github-media-downloads.s3.amazonaws.com/GitHub.Quick.Facts.pdf
http://googleblog.blogspot.de/2011/10/fall-sweep.html
http://googleblog.blogspot.de/2011/10/fall-sweep.html
http://dx.doi.org/10.1145/248233.248242
http://doi.acm.org/10.1145/248233.248242
http://doi.acm.org/10.1145/248233.248242
http://dx.doi.org/10.1145/1062455.1062491
http://dx.doi.org/10.1145/1062455.1062491
http://doi.acm.org/10.1145/1062455.1062491

References C

0-7695-2828-7. doi: 10.1109/ICSE.2007.83. url: h�p://dx.doi.org/10.

1109/ICSE.2007.83.

[Hum08] Oliver Hummel. “Semantic Component Retrieval in So�ware Engi-

neering”. PhD thesis. University of Mannheim, 2008.

[HA04] Oliver Hummel and Colin Atkinson. “Extreme Harvesting: test

driven discovery and reuse of so�ware components”. In: Proceedings

of the 2004 IEEE International Conference on Information Reuse and

Integration, 2004. IRI 2004. Nov. 2004, pp. 66–72. doi: 10.1109/IRI.

2004.1431438.

[HA06] Oliver Hummel and Colin Atkinson. “Using the Web as a Reuse

Repository”. In: Reuse of O�-the-Shelf Components. Ed. by Maurizio

Morisio. Vol. 4039. Lecture Notes in Computer Science. Springer

Berlin Heidelberg, 2006, pp. 298–311. isbn: 978-3-540-34606-7. doi:

10.1007/11763864_22. url: h�p://dx.doi.org/10.1007/11763864_22.

[HA10] Oliver Hummel and Colin Atkinson. “Automated creation and as-

sessment of component adapters with test cases”. In: Component-

Based So�ware Engineering. Springer, 2010, pp. 166–181.

[HJ12] Oliver Hummel and Werner Janjic. “Towards Be�er Comparability

of So�ware Retrieval Approaches Through a Standard Collection

of Reusable Artifacts”. In: Proceedings of the Seventh International

Conference on So�ware Engineering Advances (ICSEA 2012) (Nov.

2012), 450 to 458.

[HJ13] Oliver Hummel and Werner Janjic. “Test-driven reuse: Key to im-

proving precision of search engines for so�ware reuse”. In: Finding

Source Code on the Web for Remix and Reuse. Springer, 2013, pp. 227–

250.

[HJA07] Oliver Hummel, Werner Janjic, and Colin Atkinson. “Evaluating

the e�iciency of retrieval methods for component repositories”. In:

Proceedings of the International Conference on So�ware Engineering

and Knowledge Engineering (SEKE), Boston. 2007.

253

http://dx.doi.org/10.1109/ICSE.2007.83
http://dx.doi.org/10.1109/ICSE.2007.83
http://dx.doi.org/10.1109/ICSE.2007.83
http://dx.doi.org/10.1109/IRI.2004.1431438
http://dx.doi.org/10.1109/IRI.2004.1431438
http://dx.doi.org/10.1007/11763864_22
http://dx.doi.org/10.1007/11763864_22

App. C BIBLIOGRAPHY

[HJA08] Oliver Hummel, Werner Janjic, and Colin Atkinson. “Code Conjurer:

Pulling Reusable So�ware out of Thin Air”. In: IEEE So�ware 25.5

(Sept. 2008), pp. 45–52. issn: 0740-7459. doi: 10.1109/MS.2008.110.

url: h�p://dx.doi.org/10.1109/MS.2008.110.

[HJA10] Oliver Hummel, Werner Janjic, and Colin Atkinson. “Proposing

so�ware design recommendations based on component interface

intersecting”. In: Proceedings of the 2nd International Workshop on

Recommendation Systems for So�ware Engineering. RSSE ’10. Cape

Town, South Africa: ACM, 2010, pp. 64–68. isbn: 978-1-60558-974-9.

doi: 10.1145/1808920.1808936. url: h�p://doi.acm.org/10.1145/

1808920.1808936.

[Hum+06] Oliver Hummel et al. “Improving Testing E�iciency through Com-

ponent Harvesting”. In: Proceedings of the Brazilian Workshop on

Component Based Development: WDBC 2006. CESAR. Recife, Brazil,

Dec. 2006.

[Ino+05] Katsuro Inoue et al. “Ranking Significance of So�ware Components

Based on Use Relations”. In: IEEE Trans. So�w. Eng. 31.3 (Mar. 2005),

pp. 213–225. issn: 0098-5589. doi: 10.1109/TSE.2005.38. url: h�p:

//dx.doi.org/10.1109/TSE.2005.38.

[Jac+99] Ivar Jacobson et al. The unified so�ware development process. Vol. 1.

Addison-Wesley Reading, 1999.

[Jan07] Werner Janjic. “Realising High-Precision Component Recommen-

dations for So�ware-Development Environments”. Diploma Thesis.

Chair of So�ware Technology, University of Mannheim, Dec. 2007.

[JA12] Werner Janjic and Colin Atkinson. “Leveraging so�ware search and

reuse with automated so�ware adaptation”. In: ICSE Workshop on

Search-Driven Development - Users, Infrastructure, Tools and Eval-

uation (SUITE), ICSE’12. June 2012, pp. 23–26. doi: 10.1109/SUITE.

2012.6225475.

254

http://dx.doi.org/10.1109/MS.2008.110
http://dx.doi.org/10.1109/MS.2008.110
http://dx.doi.org/10.1145/1808920.1808936
http://doi.acm.org/10.1145/1808920.1808936
http://doi.acm.org/10.1145/1808920.1808936
http://dx.doi.org/10.1109/TSE.2005.38
http://dx.doi.org/10.1109/TSE.2005.38
http://dx.doi.org/10.1109/TSE.2005.38
http://dx.doi.org/10.1109/SUITE.2012.6225475
http://dx.doi.org/10.1109/SUITE.2012.6225475

References C

[JA13] Werner Janjic and Colin Atkinson. “Utilizing so�ware reuse expe-

rience for automated test recommendation”. In: 8th International

Workshop on Automation of So�ware Test (AST), 2013. IEEE. 2013,

pp. 100–106.

[JHA10] Werner Janjic, Oliver Hummel, and Colin Atkinson. “More archety-

pal usage scenarios for so�ware search engines”. In: Proceedings

of 2010 ICSE Workshop on Search-driven Development: Users, In-

frastructure, Tools and Evaluation. SUITE ’10. Cape Town, South

Africa: ACM, 2010, pp. 21–24. isbn: 978-1-60558-962-6. doi: 10.1145/

1809175.1809181. url: h�p://doi.acm.org/10.1145/1809175.1809181.

[JHA14] Werner Janjic, Oliver Hummel, and Colin Atkinson. “Recommenda-

tion Systems in So�ware Engineering”. In: ed. by Martin P. Robillard

et al. Springer, 2014. Chap. Reuse-Oriented Code Recommendation

Systems.

[Jan+11] Werner Janjic et al. “Discrepancy Discovery in Search-Enhanced

Testing”. In: Proceedings of the 3rd International Workshop on Search-

Driven Development: Users, Infrastructure, Tools, and Evaluation.

ACM. 2011, pp. 21–24.

[Jan+13] Werner Janjic et al. “An Unabridged Source Code Dataset for Re-

search in So�ware Reuse”. In: Proceedings of the Tenth Working

Conference on Mining So�ware Repositories (MSR’13). IEEE Press.

San Francisco, CA, USA, 2013, pp. 339–342.

[JSO14] Yahoo Group on JSON. Introducing JSON. Jan. 2014. url: h�p://

www.json.org/ (visited on 03/24/2014).

[Ker95] Norman L. Kerth. “Pa�ern Languages of Program Design”. In: ed.

by James O. Coplien and Douglas C. Schmidt. New York, NY, USA:

ACM Press/Addison-Wesley Publishing Co., 1995. Chap. Caterpil-

lar’s Fate: A Pa�ern Language for the Transformation from Analysis

to Design, pp. 293–320. isbn: 0-201-60734-4. url: h�p://dl.acm.org/

citation.cfm?id=218662.218684.

255

http://dx.doi.org/10.1145/1809175.1809181
http://dx.doi.org/10.1145/1809175.1809181
http://doi.acm.org/10.1145/1809175.1809181
http://www.json.org/
http://www.json.org/
http://dl.acm.org/citation.cfm?id=218662.218684
http://dl.acm.org/citation.cfm?id=218662.218684

App. C BIBLIOGRAPHY

[KL86] John C. Knight and Nancy G. Leveson. “An experimental evaluation

of the assumption of independence in multiversion programming”.

In: IEEE Transactions on So�ware Engineering 1 (1986), pp. 96–109.

[KL90] John C. Knight and Nancy G. Leveson. “A reply to the criticisms

of the Knight & Leveson experiment”. In: ACM SIGSOFT So�ware

Engineering Notes 15.1 (1990), pp. 24–35.

[KS98] Adam K Kolawa and Roman Salvador. Method and system for gener-

ating a computer program test suite using dynamic symbolic execution

of Java programs. Tech. rep. US Patent 5,784,553. Paraso� Corpora-

tion, July 1998.

[Kru92] Charles W. Krueger. “So�ware reuse”. In: ACM Comput. Surv. 24.2

(June 1992), pp. 131–183. issn: 0360-0300. doi: 10.1145/130844.130856.

url: h�p://doi.acm.org/10.1145/130844.130856.

[LFL98] Thomas K. Landauer, Peter W. Foltz, and Darrell Laham. “An intro-

duction to latent semantic analysis”. In: Discourse Processes 25.2–3

(1998), pp. 259–284.

[LT12] Mathias Landhäußer and Walter F. Tichy. “Automated Test-Case

Generation by Cloning”. In: Proc. of the 7th International Workshop

on Automation of So�ware Test (AST 2012). June 2012.

[LM89] Beth M. Lange and Thomas G. Moher. “Some strategies of reuse

in an object-oriented programming environment”. In: Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems.

CHI ’89. New York, NY, USA: ACM, 1989, pp. 69–73. isbn: 0-89791-

301-9. doi: 10.1145/67449.67465. url: h�p://doi.acm.org/10.1145/

67449.67465.

[Laz+09] Otávio Augusto Lazzarini Lemos et al. “Applying test-driven code

search to the reuse of auxiliary functionality”. In: Proceedings of the

2009 ACM symposium on Applied Computing. SAC ’09. Honolulu,

Hawaii: ACM, 2009, pp. 476–482. isbn: 978-1-60558-166-8. doi: 10.

1145/1529282.1529384. url: h�p://doi.acm.org/10.1145/1529282.

1529384.

256

http://dx.doi.org/10.1145/130844.130856
http://doi.acm.org/10.1145/130844.130856
http://dx.doi.org/10.1145/67449.67465
http://doi.acm.org/10.1145/67449.67465
http://doi.acm.org/10.1145/67449.67465
http://dx.doi.org/10.1145/1529282.1529384
http://dx.doi.org/10.1145/1529282.1529384
http://doi.acm.org/10.1145/1529282.1529384
http://doi.acm.org/10.1145/1529282.1529384

References C

[Lem+07] Otávio Augusto Lazzarini Lemos et al. “CodeGenie: using test-cases

to search and reuse source code”. In: Proceedings of the twenty-

second IEEE/ACM international conference on Automated so�ware

engineering. ASE ’07. Atlanta, Georgia, USA: ACM, 2007, pp. 525–

526. isbn: 978-1-59593-882-4. doi: 10.1145/1321631.1321726. url:

h�p://doi.acm.org/10.1145/1321631.1321726.

[Man+05] David Mandelin et al. “Jungloid mining: helping to navigate the API

jungle”. In: Proceedings of the 2005 ACM SIGPLAN conference on Pro-

gramming language design and implementation. PLDI ’05. Chicago,

IL, USA: ACM, 2005, pp. 48–61. isbn: 1-59593-056-6. doi: 10.1145/

1065010.1065018. url: h�p://doi.acm.org/10.1145/1065010.1065018.

[McI69] M. Douglas McIlroy. Mass Produced So�ware Components. Tech. rep.

NATO, 1969, pp. 138–155.

[MPG10] Collin McMillan, Denys Poshyvanyk, and Mark Grechanik. “Rec-

ommending source code examples via API call usages and docu-

mentation”. In: Proceedings of the 2nd International Workshop on

Recommendation Systems for So�ware Engineering. RSSE ’10. Cape

Town, South Africa: ACM, 2010, pp. 21–25. isbn: 978-1-60558-974-9.

doi: 10.1145/1808920.1808925. url: h�p://doi.acm.org/10.1145/

1808920.1808925.

[Med14] Slashdot Media. SourceForge. Jan. 2014. url: h�p://www.sourceforge.

net (visited on 01/16/2014).

[Mey92] Bertrand Meyer. “Applying ’design by contract’”. In: IEEE Computer

25.10 (1992), pp. 40–51.

[MMM98] A. Mili, R. Mili, and R. T. Mi�ermeir. “A survey of so�ware reuse

libraries”. In: Ann. So�w. Eng. 5 (Jan. 1998), pp. 349–414. issn: 1022-

7091. url: h�p://dl.acm.org/citation.cfm?id=590631.590637.

[Muş+12a] Kıvanç Muşlu et al. “Improving IDE recommendations by consider-

ing global implications of existing recommendations”. In: Proceed-

ings of the 2012 International Conference on So�ware Engineering.

IEEE Press. 2012, pp. 1349–1352.

257

http://dx.doi.org/10.1145/1321631.1321726
http://doi.acm.org/10.1145/1321631.1321726
http://dx.doi.org/10.1145/1065010.1065018
http://dx.doi.org/10.1145/1065010.1065018
http://doi.acm.org/10.1145/1065010.1065018
http://dx.doi.org/10.1145/1808920.1808925
http://doi.acm.org/10.1145/1808920.1808925
http://doi.acm.org/10.1145/1808920.1808925
http://www.sourceforge.net
http://www.sourceforge.net
http://dl.acm.org/citation.cfm?id=590631.590637

App. C BIBLIOGRAPHY

[Muş+12b] Kıvanç Muşlu et al. “Speculative analysis of integrated development

environment recommendations”. In: ACM SIGPLAN Notices 47.10

(2012), pp. 669–682.

[Mye79] Glenford J. Myers. The Art of So�ware Testing. John Wiley & Sons,

Inc., 1979.

[MS04] Glenford J. Myers and Corey Sandler. The Art of So�ware Testing.

John Wiley & Sons, Inc., 2004. isbn: 0471469122.

[Nea96] Lisa Neal. “Structure-based editors and environments”. In: ed. by

Gerd Szwillus and Lisa Neal. Orlando, FL, USA: Academic Press,

Inc., 1996. Chap. Support for so�ware design, development and

reuse through an example-based environment, pp. 185–192. isbn: 0-

12-681890-8. url: h�p://dl.acm.org/citation.cfm?id=242222.242511.

[OB88] Thomas J. Ostrand and Marc J. Balcer. “The category-partition

method for specifying and generating fuctional tests”. In: Commu-

nications of the ACM 31.6 (1988), pp. 676–686.

[Red13] RedMonk. The RedMonk Programming Language Rankings: June 2013.

July 2013. url: h�p://redmonk.com/sogrady/2013/07/25/language-

rankings-6-13/.

[Rei09] Steven P. Reiss. “Semantics-based code search”. In: Proceedings

of the 31st International Conference on So�ware Engineering. ICSE

’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 243–

253. isbn: 978-1-4244-3453-4. doi: 10.1109/ICSE.2009.5070525. url:

h�p://dx.doi.org/10.1109/ICSE.2009.5070525.

[RAO92] Debra J. Richardson, Stephanie Leif Aha, and T. Owen O’malley.

“Specification-based test oracles for reactive systems”. In: Proceed-

ings of the 14th international conference on So�ware engineering.

ACM. 1992, pp. 105–118.

[RWZ10] Martin Robillard, Robert J. Walker, and Thomas Zimmermann. “Rec-

ommendation Systems for So�ware Engineering”. In: IEEE So�ware

27.4 (July 2010), pp. 80–86.

258

http://dl.acm.org/citation.cfm?id=242222.242511
http://redmonk.com/sogrady/2013/07/25/language-rankings-6-13/
http://redmonk.com/sogrady/2013/07/25/language-rankings-6-13/
http://dx.doi.org/10.1109/ICSE.2009.5070525
http://dx.doi.org/10.1109/ICSE.2009.5070525

References C

[Roy70] Winston W Royce. “Managing the development of large so�ware

systems”. In: proceedings of IEEE WESCON. Vol. 26. 8. Los Angeles.

1970.

[SO03] Thomas L. Saaty and Mujgan Ozdemir. “Negative priorities in

the analytic hierarchy process”. In: Mathematical and Computer

Modelling 37.9 (2003), pp. 1063–1075.

[SE05] David Sa� and Michael D. Ernst. “Continuous Testing in Eclipse”.

In: Proceedings of the 27th International Conference on So�ware

Engineering. ICSE ’05. St. Louis, MO, USA: ACM, 2005, pp. 668–

669. isbn: 1-58113-963-2. doi: 10.1145/1062455.1062600. url: h�p:

//doi.acm.org/10.1145/1062455.1062600.

[San96] N. Sanders. “Automated testing using executable formal specifica-

tions”. In: Proceedings of the International Conference on So�ware

Engineering: Education and Practice. Jan. 1996, pp. 176–181.

[Sea99] Robert C. Seacord. “So�ware engineering component repositories”.

In: Proceedings of the International Workshop on Component-Based

So�ware Engineering. 1999.

[SHW98] Robert C. Seacord, Sco� A. Hissam, and Kurt C. Wallnau. “Agora:

A Search Engine for So�ware Components”. In: IEEE Internet Com-

puting 2.6 (Nov. 1998), pp. 62–70. issn: 1089-7801. doi: 10.1109/4236.

735988. url: h�p://dx.doi.org/10.1109/4236.735988.

[SA06] Koushik Sen and Gul Agha. “CUTE and jCUTE: Concolic unit test-

ing and explicit path model-checking tools”. In: Computer Aided

Verification. Springer. 2006, pp. 419–423.

[Soc14] Audio Engineering Society. The Digital Revolution. May 2014. url:

h�p://www.aes.org/aeshc/docs/recording.technology.history/

digital.html (visited on 05/22/2014).

[Som10] Ian Sommerville. So�ware Engineering. 9th ed. Addison-Wesley

Publishing Company, 2010.

259

http://dx.doi.org/10.1145/1062455.1062600
http://doi.acm.org/10.1145/1062455.1062600
http://doi.acm.org/10.1145/1062455.1062600
http://dx.doi.org/10.1109/4236.735988
http://dx.doi.org/10.1109/4236.735988
http://dx.doi.org/10.1109/4236.735988
http://www.aes.org/aeshc/docs/recording.technology.history/digital.html
http://www.aes.org/aeshc/docs/recording.technology.history/digital.html

App. C BIBLIOGRAPHY

[SWH11] Ma� Staats, Michael W. Whalen, and Mats P.E. Heimdahl. “Pro-

grams, tests, and oracles: the foundations of testing revisited”. In:

So�ware Engineering (ICSE), 2011 33rd International Conference on.

IEEE. 2011, pp. 391–400.

[Str83] Howard Straubing. “A combinatorial proof of the Cayley-Hamilton

theorem”. In: Discrete Mathematics 43.2 (1983), pp. 273–279.

[Szy02] Clemens Szyperski. Component so�ware: beyond object-oriented

programming. Pearson Education, 2002.

[TT10] Gerald Teschl and Susanne Teschl. Mathematik für Informatiker:

Band 1: Diskrete Mathematik und Lineare Algebra. Vol. 1. Springer

DE, 2010.

[TX07] Suresh Thummalapenta and Tao Xie. “Parseweb: a programmer as-

sistant for reusing open source code on the web”. In: Proceedings of

the twenty-second IEEE/ACM international conference on Automated

so�ware engineering. ASE ’07. Atlanta, Georgia, USA: ACM, 2007,

pp. 204–213. isbn: 978-1-59593-882-4. doi: 10.1145/1321631.1321663.

url: h�p://doi.acm.org/10.1145/1321631.1321663.

[TIO14] TIOBE. TIOBE Programming Community Index for January 2014. Jan.

2014. url: h�p://www.tiobe.com/index.php/content/paperinfo/tpci/

index.html.

[USL08] M. Umarji, Susan E. Sim, and Cristina Videira Lopes. “Archetypal

internet-scale source code searching”. In: Open source development,

communities and quality (2008), pp. 257–263.

[Vou90] Mladen A. Vouk. “Back-to-back testing”. In: Information and so�-

ware technology 32.1 (1990), pp. 34–45.

[Wal+98] Stephen Walker et al. “Okapi at trec-6: Automatic ad hoc, vlc, rout-

ing, filtering and qsdr.” In: The 6th Text REtrieval Conference (TREC-

6) (1998), pp. 125–136.

[Wey82] Elaine J. Weyuker. “On testing non-testable programs”. In: The

Computer Journal 25.4 (1982), pp. 465–470.

260

http://dx.doi.org/10.1145/1321631.1321663
http://doi.acm.org/10.1145/1321631.1321663
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

References C

[Ye01] Yunwen Ye. “Supporting Component-Based So�ware Development

with Active Component Repository Systems”. PhD thesis. Depart-

ment of Computer Science, University of Colorado, Boulder, CO,

2001.

[YF02] Yunwen Ye and Gerhard Fischer. “Supporting reuse by delivering

task-relevant and personalized information”. In: Proceedings of the

24th International Conference on So�ware Engineering. ICSE ’02.

Orlando, Florida: ACM, 2002, pp. 513–523. isbn: 1-58113-472-X. doi:

10.1145/581339.581402. url: h�p://doi.acm.org/10.1145/581339.

581402.

[Yok+03] Reishi Yokomori et al. “Java program analysis projects in Osaka Uni-

versity: aspect-based slicing system ADAS and ranked-component

search system SPARS-J”. In: Proceedings of the 25th International

Conference on So�ware Engineering. ICSE ’03. Portland, Oregon:

IEEE Computer Society, 2003, pp. 828–829. isbn: 0-7695-1877-X. url:

h�p://dl.acm.org/citation.cfm?id=776816.776972.

[ZW95] Amy Moormann Zaremski and Jeanne�e M Wing. “Signature match-

ing: a tool for using so�ware libraries”. In: ACM Transactions on

So�ware Engineering and Methodology (TOSEM) 4.2 (1995), pp. 146–

170.

261

http://dx.doi.org/10.1145/581339.581402
http://doi.acm.org/10.1145/581339.581402
http://doi.acm.org/10.1145/581339.581402
http://dl.acm.org/citation.cfm?id=776816.776972

D

D
Index

abstract syntax tree, 119

adaptee, 57

adapter, 57

Agora, 41, 103

assertEquals, 124

assertion, 20

assertTrue, 124

AST, 119

autoboxing, 147

B-tree, 116

back-to-back testing, 6, 178, 183

background agent, 52

Brahmagupta, 198

business objects, 127

Caterpillar’s Fate, 51

characterizing test case, 187

class under test, 17, 122

Code Conjurer, 5, 45, 52, 87, 165

Code Finder, 73

Code Genie, 46

code inspiration, 38

Code Recommenders, 84

code scavenging, 92

code-based search, 155, 156

CodeBroker, 75

CodeFinder, 41

CodeGenie, 81

CodeRank, 46

collection, 116

component under test, 17

concolic testing, 4

continuous speculative testing, 174

continuous testing, 174

correct output, see expected result

CUT, 17, 111

DCOM, 17

denotational semantics methods, 139

deployment, 137

design by contract, 139

design prompter, 38

design scavenging, 92

digital revolution, 3

263

App. D INDEX

directed automated random testing, 4

Discourse Model, 76

document, 116

domain expert, 136

drag and drop reuse, 87

dynamic symbolic execution, 4

Eclipse, 78

Eclipse Code Recommenders, 5

Enterprise Java Beans, 17

equivalent mutant, 7

evaluation

ex ante, 7, 91, 174

ex post, 6, 174

everything is an object, 147

example recommendation, 78

exception test, 144

execution, 17

execution driver, 194

expected result, 18, 20

Extreme Programming, 49

false positive, 182, 216

false positives, 199

Fetcher, 75

fixture, 123

function oriented query, 44

Gang of Four, 56

genetic algorithms, 4

GitHub, 117

Glass-Box Reuse, 38

Google Codesearch, 41, 43

goto fail bug, 4, 23

heartbleed bug, 4

human oracle, 6

implementation, 135

in-between class, 57

information hiding, 59

interface mismatch, 55

Invocation, 114

invocation, 17

invocation table, 143

IPO model, 16

Java, 17

JUnit, 17, 20

k-permutation, 59

kiddie testing, 19

Knight and Leveson Experiment, 184

KobrA, 17

Koders.com, 43

Krugle, 43

Listener, 75

maintenance, 137

Merobase, 41, 43, 50, 56, 87, 106, 118

Merobase �ery Language, 44, 109

method, 17

MongoDB, 115

multi-version testing, 190

Multi-Version Testing Environment, 192

mutation testing, 7

n-version programming, 178, 182

non-functional requirements, 137

not-invented-here syndrome, 136

264

D

nutch, 117

NVP, 182

object-oriented query, 44

Ohloh Code, 43

open-source revolution, 33

operation, 17

operational semantics methods, 149

oracle, 6, 19, 20, 40

golden, 19

PageRank, 46

PARSEWeb, 84

PECOS, 17

penetration testing, 137

plain old Java objects, 27

pragmatic reuse, 92

Precision, 48

Presenter, 76

proactive approach, 75

provided interface, 109, 139

pull approach, 75

push approach, 75

�ick Fix, 89

RCI, 76

reactive approach, 75

Recall, 48

regular expression, 153

repository problem, 103

representation problem, 68

required interface, 56, 109

requirements, 135

retrieval, 138

reuse, 5

library, 40

test, 40

test-driven, 39

reuse-by-memory, 77, 95

reuse-oriented recommendation system,

67

reuse-oriented so�ware testing, 6

ROCR, 67

ROCR System, see ROCR

S6, 41, 106

search

definitive, 10, 134, 137

interface-based, 39

speculative, 10, 36, 134, 141

test-driven, 44, 46, 83, 89

value-based, 149, 150

search scenarios, 134

Search-Enhanced Testing, 9, 13, 56, 182

SENTRE, 8, 104, 115, 118, 133

SET, 182

smoke testing, 135

SOFA, 17

so�ware testing, 4, 15

so�ware under test, 17

So�ware-Reuse Environment, 87

Sourcerer, 41, 106

SPARS-J, 43

specification, 135

specification-based operational seman-

tics method, 150

speculative analysis, 7, 170

Strathcona, 5, 78

265

App. D INDEX

stress testing, 137

system under test, 6

test, 19, 20

test automation, 4

test case, 20, 21, 26

test case values, 17, 20, 111, 114

test oracle, 5

test result, 20

test reuse scenarios, 134

test suite, 21

test-driven development, 81, 135

test-driven reuse, 49, 135, 179, 187

test-driven search, 156

test-sheets, 143

testing, 137

discrepancy driven, 40

tests, 21

uses- and calls-relation, 139

wildcard, 141

wrapper class, 147

266

	Abstract
	Zusammenfassung
	Table of Contents
	Introduction
	Introduction
	Motivation
	Research Objective
	Contribution Of The Thesis
	Scope of the Thesis
	Structure of the Thesis

	Software Testing
	Software Testing Terms
	Extracting knowledge from JUnit
	Summary

	Search and Reuse
	Software Search and Recommendation
	Search Scenarios in Software Engineering
	Speculative Searches
	Definitive Searches

	Software Search Engines
	Agora
	Merobase Component Finder
	Sourcerer
	S6

	Excursus: Recall and Precision
	Test-Driven Reuse
	Summary

	Automated Interface Adaptation
	Distributed Automated Adaptation System
	Interface Adaptation
	Improvements to Test-Driven Search
	Summary

	Reuse-Oriented Code Recommendation Systems
	Recommendation Systems for Code Reuse
	Software Reuse Process
	State of the Art Systems
	Code Finder
	CodeBroker
	Strathcona
	Code Genie
	PARSEWeb
	Code Conjurer

	Usage Scenarios
	Component Reuse
	Library Reuse

	Characteristics of ROCRs
	Summary

	Reuse of Software Tests
	Infrastructure for Test Reuse
	Obtaining Reusable Test Cases
	Potential of Open Source Repositories

	Extracting Knowledge from Test Cases
	A Meta-Model for Software Tests

	Index Creation
	Index Content
	A File Parser for JUnit Tests

	Summary

	Reuse-Assisted Software Testing
	Usage Scenarios for Test Search Engines
	Analysis & Design
	Implementation
	Testing

	Result Retrieval Techniques for Test Reuse
	Interface-Based Searches
	Value-Based Searches
	Code-Based Searches

	Retrieval of Exception Tests
	Test Reuse Process
	Implementation
	Summary

	Reuse-Assisted Test Recommendation
	Characteristics
	Process Outline
	Implementation
	Eclipse Plug-In
	Continuous Speculative Testing
	Exception Tests
	Algorithmic Outline

	Summary

	Search-Enhanced Recommendation Improvement
	Using Oracles in Software Testing
	Excursus: The Knight and Leveson Experiment

	Search-Enhanced Testing
	Filtering False-Positives
	Oracle-Based Filtering
	Test Case Evaluation

	Summary

	Epilogue
	Epilogue
	Retrospective
	Contributions
	Future Work
	Concluding Vision

	Acknowledgements
	Appendices
	List of Figures
	List of Tables
	Materials
	Regular Expressions
	Examples of Queries with Regular Expressions

	Comparison of Retrieval Precision

	Listings
	Bibliography
	Index

