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Abstract. Feature selection is an important preprocessing step in data
mining, which has an impact on both the runtime and the result quality
of the subsequent processing steps. While there are many cases where hi-
erarchic relations between features exist, most existing feature selection
approaches are not capable of exploiting those relations. In this paper,
we introduce a method for feature selection in hierarchical feature spaces.
The method first eliminates redundant features along paths in the hier-
archy, and further prunes the resulting feature set based on the features’
relevance. We show that our method yields a good trade-off between
feature space compression and classification accuracy, and outperforms
both standard approaches as well as other approaches which also exploit
hierarchies.

Keywords: Feature Subset Selection, Hierarchical Feature Spaces, Feature Space
Compression

1 Introduction

In machine learning and data mining, data is usually described as a vector of
features or attributes, such as the age, income, and gender of a person. Based on
this representation, predictive or descriptive models are built.

For many practical applications, the set of features can be very large, which
leads to problems both with respect to the performance as well as the accuracy
of learning algorithms. Thus, it may be useful to reduce the set of features in a
preprocessing step, i.e., perform a feature selection [2, 8]. Usually, the goal is to
compress the feature space as good as possible without a loss (or even with a
gain) in the accuracy of the model learned on the data.

In some cases, external knowledge about attributes exist, in particular about
their hierarchies. For example, a product may belong to different categories,
which form a hierarchy (such as Headphones < Accessories < Consumer Elec-
tronics). Likewise, hyponym and hyperonym relations can be exploited when
using bag-of-words features for text classification [3], or hierarchies defined by
ontologies when generating features from Linked Open Data [10].

In this paper, we introduce an approach that exploits hierarchies for feature
selection in combination with standard metrics, such as information gain or
correlation. With an evaluation on a number of synthetic and real world datasets,
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we show that using a combined approach works better than approaches not using
the hierarchy, and also outperforms existing approaches for feature selection that
exploit the hierarchy.

The rest of this paper is structured as follows. In section 2, we formally define
the problem of feature selection in hierarchical feature spaces. In section 3, we
give an overview of related work. Section 4, we introduce our approach, followed
by an evaluation in section 5. We conclude with a summary and an outlook on
future work.

2 Problem Statement

We describe each instance as an n-dimensional binary feature vector 〈v1, v2, ..., vn〉,
with vi ∈ {0, 1} for all 1 ≤ i ≤ n. We call V = {v1, v2, ..., vn} the feature space.

Furthermore, we denote a hierarchic relation between two features vi and vj
as vi < vj , i.e., vi is more specific than vj . For hierarchic features, the following
implication holds: vi < vj → (vi = 1→ vj = 1) , (1)

i.e., if a feature vi is set, then vj is also set. Using the example of product
categories, this means that a product belonging to a category also belongs to
that product’s super categories. Note that the implication is not symmetric, i.e.,
even if vi = 1→ vj = 1 holds for two features vi and vj , they do not necessarily
have to be in a hierarchic relation. We furthermore assume transitivity of the
hierarchy, i.e., vi < vj ∧ vj < vk → vi < vk (2)

The problem of feature selection can be defined as finding a projection of V to
V ′, where V ′ ⊆ V . Ideally, V ′ is much smaller than V .

Feature selection is usually regarded with respect to a certain problem, where
a solution S using a subset V ′ of the features yields a certain performance p(V ′),
i.e., p is a function p : P(V )→ [0, 1], (3)

which is normalized to [0, 1] without loss of generality. For example, for a clas-
sification problem, the accuracy achieved by a certain classifier on a feature
subset can be used as the performance function p. Besides the quality, another
interesting measure is the feature space compression, which we define as

c(V ′) := 1− |V
′|
|V |

(4)

Since there is a trade-off between the feature set and the performance, an overall
target function is, e.g., the harmonic mean of p and c.

For most problems, we expect the optimal features to be somewhere in the
middle of the hierarchy, while the most general features are often too general
for predictive models, and the most specific ones are too specific. The hierarchy
level of the most valuable features depends on the task at hand. Fig. 1 shows a
small part of the hierarchical feature space extracted for dataset Sports Tweets
T (see section 5.1). If the task is to classify tweets into sports and non sports
related, the optimal features are those in the upper rectangle, if the task is to
classify them by different kinds of sports, then the features in the lower rectangle
are more valuable.
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Fig. 1: An example hierarchy of binary features

3 Related Work

Feature selection is a very important and well studied problem in the literature.
The objective is to identify features that are correlated with or predictive of
the class label. Generally, all feature selection methods can be divided into two
broader categories: wrapper methods and filter methods (John et al. [4] and Blum
et al. [1]). The wrapper methods use the predictive accuracy of a predetermined
learning method to evaluate the relevance of the feature sub set. Because of
their large computational complexity, the wrapper methods are not suitable
to be used for large feature spaces. Filter methods are trying to select the most
representative sub-set of features based on a criterion used to score the relevance
of the features. In the literature several techniques for scoring the relevance of
features exist, e.g., Information Gain, χ2 measure, Gini Index, and Odds Ratio.
However, standard feature selection methods tend to select the features that have
the highest relevance score without exploiting the hierarchical structure of the
feature space. Therefore, using such methods on hierarchical feature spaces, may
lead to the selection of redundant features, i.e., nodes that are closely connected
in the hierarchy and carry similar semantic information.

While there are a lot of state-of-the-art approaches for feature selection in
standard feature space [8], only few approaches for feature selection in hierarchi-
cal feature space are proposed in the literature. Jeong et al. [3] propose the TSEL
method using a semantic hierarchy of features based on WordNet relations. The
presented algorithm tries to find the most representative and most effective fea-
tures from the complete feature space. To do so, they select one representative
feature from each path in the tree, where path is the set of nodes between each
leaf node and the root, based on the lift measure, and use χ2 to select the most
effective features from the reduced feature space.

Wang et al. [13] propose a bottom-up hill climbing search algorithm to find
an optimal subset of concepts for document representation. For each feature in
the initial feature space, they use a kNN classifier to detect the k nearest neigh-
bors of each instance in the training dataset, and then use the purity of those
instances to assign scores to features. As shown in section 5.3, the approach is
computationally expensive, and not applicable for datasets with a large number
of instances. Furthermore, the approach uses a strict policy for selecting features
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Algorithm 1: Algorithm for initial hierarchy selection strategy.

Data: H: Feature hierarchy, F : Feature set, t: Importance similarity threshold,
s:= Importance similarity measurement {”Information Gain”,
”Correlation”}

Result: F : Feature set
1 L := leaf nodes from hierarchy H
2 foreach leaf l ∈ L do
3 D := direct ascendants of node l
4 foreach node d ∈ D do
5 similarity = 0
6 if s == ”Information Gain” then
7 similarity = 1-ABS(IGweight(d)-IGweight(l))
8 else
9 similarity =Correlation(d,l)

10 end
11 if similarity ≥ threshold then
12 remove l from F
13 remove l from H
14 break

15 end

16 end
17 add direct ascendants of l to L

18 end

that are as high as possible in the feature hierarchy, which may lead to selecting
low-value features from the top levels of the hierarchy.

Lu et al. [6] describe a greedy top-down search strategy for feature selection
in a hierarchical feature space. The algorithm starts with defining all possible
paths from each leaf node to the root node of the hierarchy. The nodes of each
path are sorted in descending order based on the nodes’ information gain ratio.
Then, a greedy-based strategy is used to prune the sorted lists. Specifically, it
iteratively removes the first element in the list and adds it to the list of selected
features. Then, removes all ascendants and descendants of this element in the
sorted list. Therefore, the selected features list can be interpreted as a mixture
of concepts from different levels of the hierarchy.

4 Approach

Following the implication shown in Eq. 1, we can assume that if two features
subsume each other, they are usually highly correlated to each other and have
similar relevance for building the model. Following the definition for ”relevance”
by Blum et al. [1], two features vi and vj have similar relevance if 1− |R(vi)−
R(vj)| ≥ t, t→ [0, 1], where t is a user specified threshold.

The core idea of our SHSEL approach is to identify features with similar rele-
vance, and select the most valuable abstract features, i.e. features from as high as
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possible levels of the hierarchy, without losing predictive power. In our approach,
to measure the similarity of relevance between two nodes, we use the standard
correlation and information gain measure. The approach is implemented in two
steps, i.e, initial selection and pruning. In the first step, we try to identify, and
filter out the ranges of nodes with similar relevance in each branch of the hier-
archy. In the second step we try to select only the most valuable features from
the previously reduced set.

The initial selection algorithm is shown in Algorithm 1. The algorithm takes
as input the feature hierarchy H, the initial feature set F , a relevance similarity
threshold t, and the relevance similarity measure s to be used by the algorithm.
The relevance similarity threshold is used to decide whether two features would
be similar enough, thus it controls how many nodes from different levels in the
hierarchy will be merged. The algorithm starts with identifying the leaf nodes
of the feature hierarchy. Then, starting from each leaf node l, it calculates the
relevance similarity value between the current node and its direct ascendants d.
The relevance similarity value is calculated using the selected relevance measure
s. If the relevance similarity value is greater or equal to the similarity thresh-
old t, then the node from the lower level of the hierarchy is removed from the
feature space F . Also, the node is removed from the feature hierarchy H, and
the paths in the hierarchy are updated accordingly. For the next iteration, the
direct ascendants of the current node are added in the list L.

The algorithm for pruning is shown in Algorithm 2. The algorithm takes as
input the feature hierarchy H and the previously reduced feature set F . The
algorithm starts with identifying all paths P from all leaf nodes to the root node
of the hierarchy. Then, for each path p it calculates the average information gain
of all features on the path p. All features that have lower information gain than
the average information gain on the path, are removed from the feature space F ,
and from the feature hierarchy H. In cases where a feature is located on more
than one path, it is sufficient that the feature has greater information gain than
the average information gain on at least one of the paths. This way, we prevent
removing relevant features. Practically, the paths from the leafs to the root node,
as well as the average information gain per path, can already be precomputed
in the initial selection algorithm. The loop in the lines 3 − 6 is only added for
illustrating the algorithm.

Fig. 2a shows an example hierarchical feature set, with the information gain
value of each feature. Applying the initial selection algorithm on that input
hierarchical feature set, using information gain as a relevance similarity mea-
surement, would reduce the feature set as shown in Fig. 2b. We can see that all
feature pairs that have high relevance similarity value, are replaced with only
one feature. However, the feature set still contains features that have a rather
small relevance value. In Fig. 2c we can see that running the pruning algorithm,
removes the unnecessary features.

For n features and m instances, iterating over the features, and computing
the correlation or information gain with each feature’s ancestor takes O(am),
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Algorithm 2: Algorithm for pruning strategy.

Data: H: Feature hierarchy, F : Feature set
Result: F : Feature set

1 L := leaf nodes from hierarchy H
2 P := ∅
3 foreach leaf l ∈ L do
4 p = paths from l to root of H
5 add p to P

6 end
7 foreach path p ∈ P do
8 avg = Information gain average of path p
9 foreach node n ∈ path p do

10 if IGweight(n) < avg then
11 remove n from F
12 remove n from H

13 end

14 end

15 end

0.7

IG=0

0.5

0.1

0.4

0.6

0.6 0.67

0.12 0.12

0.1 0.1 0.15 0.10.15

0.51

0.45

0.2

0.71

0.2
0.4

a) Initial Feature Space b) SHSEL Initial Selection c) SHSEL Pruning

Fig. 2: Illustration of the two steps of the proposed hierarchical selection strategy

given that a feature has an average of a ancestors.1 Thus, the overall compu-
tational complexity is O(amn). It is, however, noteworthy that the selection of
the features in both algorithms can be executed in parallel.

5 Evaluation

We perform an evaluation, both on real and on synthetic datasets, and com-
pare different configurations of our approach to standard approaches for feature
selection, as well as the approaches described in Section 3.

5.1 Datasets

In our evaluation, we used five real-world datasets and six synthetically gener-
ated datasets. The real-world datasets cover different domains, and are used for
different classification tasks. Initially, the datasets contained only the instances

1 a is 1 in the absence of multiple inheritance, and close to 1 in most practical cases.
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with a given class label, which afterwards were extended with hierarchical fea-
tures.

For generating the hierarchical features, we used the RapidMiner Linked
Open Data extension [11], which is able to identify Linked Open Data resources
inside the given datasets, and extract different types of features from any Linked
Open Data source. In particular, we used DBpedia Spotlight [7], which annotates
a text with concepts in DBpedia, a structured data version of Wikipedia [5]. From
those, we can extract further features, such as the types of the concepts found
in a text. For example, when the concept Kobe Bryant is found in a text, we can
extract a hierarchy of types (such as Basketball Player < Athlete < Person),
as well as a hierarchy of categories (such as Shooting Guards < Basketball <
Sports). The generation of the features is independent from the class labels of
the instances (i.e., the classification task), and it is completely unbiased towards
any of the feature selection approaches.

The following datasets were used in the evaluation (see Table 1):

– Sports Tweets T dataset was used for existing Twitter topic classifier2, where
the classification task is to identify sports related tweets. The hierarchical
features were generated by extracting all types of the discovered DBpedia
concepts in each tweet.

– Sports Tweets C is the same dataset as the previous one, but using categories
instead of types.

– The Cities dataset was compiled from the Mercer ranking list of the most
and the least livable cities, as described in [9]. The classification task is
to classify each city into high, medium, and low livability. The hierarchical
features were generated by extracting the types for each city.

– The NY Daily dataset is a set of crawled news texts, which are augmented
with sentiment scores3. Again, the hierarchical features were generated by
extracting types.

– The StumbleUpon dataset is the training dataset used for the StumbleUpon
Evergreen Classification Challenge4. To generate the hierarchical features,
we used the Open Directory Project5 to extract categories for each URL in
the dataset.

To generate the synthetic datasets, we start with generating features in a
flat hierarchy, i.e. all features are on the same level. The initial features were
generated using a polynomial function, and then discretizing each attribute into
a binary one. These features represent the middle layer of the hierarchy, which
are then used to build the hierarchy upwards and downwards. The hierarchical
feature implication (1) and the transitivity rule (2) hold for all generated features
in the hierarchy. By merging the predecessors of two or more neighboring nodes

2 https://github.com/vinaykola/twitter-topic-classifier/blob/master/training.txt
3 http://dws.informatik.uni-mannheim.de/en/research/identifying-disputed-topics-

in-the-news
4 https://www.kaggle.com/c/stumbleupon
5 http://www.dmoz.org/
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Table 1: Evaluation Datasets.

Name Features # Instances Class Labels # Features

Sports Tweets T DBpedia Direct Types 1,179 positive(523); negative(656) 4,082

Sports Tweets C DBpedia Categories 1,179 positive(523); negative(656) 10,883

Cities DBpedia Direct Types 212 high(67); medium(106); low(39) 727

NY Daily Headings DBpedia Direct Types 1,016 positive(580); negative(436) 5,145

StumbleUpon DMOZ Categories 3,020 positive(1,370); negative(1,650) 3,976

Table 2: Synthetic Evaluation Datasets.

Name Feature Generation Strategy # Instances Classes # Features

S-D2-B2 D=2; B=2 1,000 positive(500); negative(500) 1,201

S-D2-B5 D=2; B=5 1,000 positive(500); negative(500) 1,021

S-D2-B10 D=2; B=10 1,000 positive(500); negative(500) 961

S-D4-B2 D=4; B=2 1,000 positive(500); negative(500) 2,101

S-D4-B5 D=4; B=5 1,000 positive(500); negative(500) 1,741

S-D4-B10 D=4; B=10 1,000 positive(500); negative(500) 1,621

from the middle layer, we are able to create more complex branches inside the
hierarchy. We control the depth and the branching factor of the hierarchy with
two parameters D and B, respectively. Each of the datasets that we use for the
evaluation contains 1000 instances, and contains 300 features in the middle layer.
The datasets are shown in Table 2.

5.2 Experiment Setup

In order to demonstrate the effectiveness of our proposed feature selection in
hierarchical feature space, we compare the proposed approach with the following
methods:
– CompleteFS : the complete feature set, without any filtering.
– SIG : standard feature selection based on information gain value.
– SC : Standard feature selection based on feature correlation.
– TSEL Lift : tree selection approach proposed in [3], which selects the most

representative features from each hierarchical branch based on the lift value.
– TSEL IG : this approach follows the same algorithm as TSEL Lift, but uses

information gain instead of lift.
– HillClimbing : bottom-up hill-climbing approach proposed in [13].We use k =

10 for the kNN classifier used for scoring.
– GreedyTopDown: greedy based top-down approach described in [6], which

tries to select the most valuable features from different levels of the hierarchy.
– initialSHSEL IG and initialSHSEL C : our proposed initial selection ap-

proach shown with Algorithm 1, using information gain and correlation as
relevance similarity measurement, respectively.

– pruneSHSEL IG and pruneSHSEL C : our proposed pruning selection ap-
proach shown with Algorithm 2, applied on previously reduced feature set,
using initialSHSEL IG and initialSHSEL C, respectively.

For all algorithms involving a threshold (i.e., SIG, SC, and the variants of
SHSEL), we use thresholds between 0 and 1 with a step width of 0.01.

For conducting the experiments, we used the RapidMiner machine learning
platform and the RapidMiner development library. For SIG and SC, we used the
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Table 3: Results on real world datasets
Sports Tweets T Sports Tweets C StumbleUpon Cities NY Daily Headings

NB KNN SVM NB KNN SVM NB KNN SVM NB KNN SVM NB KNN SVM

Classification Accuracy

CompleteFS .655 .759 .797 .943 .920 .946 .582 .699 .730 .625 .562 .684 .534 .586 .577

initialSHSEL IG .836 .768 .824 .974 .768 .953 .661 .709 .733 .671 .609 .674 .688 .629 .635

initialSHSEL C .819 .765 .811 .946 .937 .953 .689 .723 .732 .640 .671 .683 .547 .580 .596

pruneSHSEL IG .791 .793 .773 .909 .909 .946 .717 .695 .737 .687 .669 .689 .688 .659 .671

pruneSHSEL C .786 .791 .772 .946 .918 .935 .711 .707 .732 .656 .687 .646 .665 .659 .661

SIG .819 .788 .814 .966 .936 .940 .681 .707 .729 .656 .640 .671 .675 .652 .668

SC .816 .765 .813 .937 .918 .932 .587 .711 .726 .625 .656 .677 .534 .583 .606

TSEL Lift .641 .740 .787 .836 .855 .893 .570 .613 .690 0 0 0 .498 .544 .565

TSEL IG .632 .734 .782 .923 .909 .935 .579 .661 .724 .640 .580 .580 .521 .560 .610

HillClimbing .528 .647 .742 .823 .836 .876 .548 .653 .683 .622 .562 .551 .573 .583 .530

GreedyTopDown .658 .788 .800 .943 .929 .944 .582 .698 .727 .625 .562 .679 .534 .570 .595

Feature Space Compression

initialSHSEL IG .456 .207 .222 .318 .708 .288 .672 .843 .642 .781 .902 .779 .858 .322 .631

initialSHSEL C .231 .173 .290 .321 .264 .228 .993 .445 .644 .184 .121 .116 .285 .572 .790

pruneSHSEL IG .985 .986 .969 .895 .907 .916 .976 .957 .975 .823 .466 .452 .912 .817 .817

pruneSHSEL C .971 .965 .965 .897 .857 .861 .966 .968 .959 .305 .265 .308 .519 .586 .566

SIG .360 .741 .038 .380 .847 .574 .940 .615 .604 .774 .775 04 .240 .289 .565

SC .667 .712 .635 .887 .710 .792 .585 .821 .712 .631 .704 .598 .632 .927 .620

TSEL Lift .247 .247 .247 .511 .511 .511 .412 .412 .412 0 0 0 .956 .956 .956

TSEL IG .920 .920 .920 .522 .522 .522 .471 .471 .471 .126 .126 .126 .926 .926 .926

HillClimbing .770 .770 .770 .748 .748 .748 .756 .756 .756 .817 .817 .817 .713 .713 .713

GreedyTopDown .136 .136 .136 .030 0.030 .030 .285 .285 .285 .048 .048 .048 .135 .135 .135

Harmonic Mean of Classification Accuracy and Feature Space Compression

initialSHSEL IG .590 .326 .350 .480 .737 .442 .666 .770 .684 .722 .727 .723 .764 .426 .633

initialSHSEL C .360 .282 .427 .479 .412 .368 .814 .551 .686 .286 .205 .199 .375 .576 .679

pruneSHSEL IG .877 .879 .860 .902 .908 .931 .827 .805 .840 .749 .549 .546 .784 .729 .737

pruneSHSEL C .869 .869 .858 .921 .886 .896 .820 .817 .830 .416 .383 .417 .583 .620 .610

SIG .500 .764 .073 .545 .889 .713 .789 .658 .660 .710 .701 08 .354 .401 .612

SC .734 .738 .713 .911 .801 .856 .586 .762 .719 .628 .679 .635 .579 .716 .613

TSEL Lift .356 .370 .376 .634 .640 .650 .479 .493 .516 0 0 0 .655 .693 .711

TSEL IG .749 .817 .846 .667 .663 .670 .520 .550 .571 .211 .207 .207 .667 .698 .735

HillClimbing .626 .703 .756 .784 .790 .807 .636 .701 .718 .706 .666 .658 .635 .641 .608

GreedyTopDown .225 .232 .232 0.058 .058 .058 .383 .405 .409 .089 .088 .089 .216 .219 .221

built-in RapidMiner operators. The proposed approach for feature selection, as
well as all other related approaches, were implemented in a separate operator
as part of the RapidMiner Linked Open Data extension. All experiments were
run using standard laptop computer with 8GB of RAM and Intel Core i7-3540M
3.0GHz CPU. The RapidMiner processes and datasets used for the evaluation
can be found online6.

5.3 Results

To evaluate how well the feature selection approaches perform, we use three clas-
sifiers for each approach on all datasets, i.e., Näıve Bayes, k-Nearest Neighbors
(with k = 3), and Support Vector Machine. For the latter, we use Platt’s sequen-
tial minimal optimization algorithm and a polynomial kernel function [12]. For

6 http://dws.informatik.uni-mannheim.de/en/research/feature-selection-in-
hierarchical-feature-spaces
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Fig. 3: Runtime (seconds) - Real World Datasets

each of the classifiers we were using the default parameters values in RapidMiner,
and no further parameter tuning was undertaken. The classification results are
calculated using stratified 10-fold cross validation, where the feature selection is
performed separately for each cross-validation fold. For each approach, we report
accuracy, feature space compression (4), and their harmonic mean.

Results on Real World Datasets Table 3 shows the results of all approaches.
Because of the space constrains, for the SIG and SC approaches, as well as
for our proposed approaches, we show only the best achieved results. The best
results for each classification model are marked in bold. As we can observe from
the table, our proposed approach outperforms all other approaches in all five
datasets for both classifiers in terms of accuracy. Furthermore, we can conclude
that our proposed approach delivers the best feature space compression for four
out of five datasets. When looking at the harmonic mean, our approach also
outperforms all other approaches, most often with a large gap. From the results
for the harmonic mean we can conclude that the pruneSHSEL IG approach, in
most of the cases, delivers the best results

Additionally, we report the runtime of all approaches on different datasets
in Fig. 3. The runtime of our approaches is comparable to the standard feature
selection approach, SIG, runtime. The HillClimbing approach has the longest
runtime due to the repetitive calculation of the kNN for each instance. Also, the
standard feature selection approach SC shows a long runtime, which is due to
the computation of correlation between all pairs of features in the feature set.

Results on Synthetic Datasets Table 4 shows the results for the different
synthetic datasets. Our approaches achieve the best results, or same results as
the standard feature selection approach SIG. The results for the feature space
compression are rather mixed, while again, our approach outperforms all other
approaches in terms of the harmonic mean of accuracy and feature space com-
pression. The runtimes for the synthetic datasets, which we omit here, show the
same characteristics as for the real-world datasets.

Overall, pruneSHSEL IG delivers the best results on average, with an impor-
tance similarity threshold t in the interval [0.99; 0.9999]. When using correlation,
the results show that t should be chosen greater than 0.6. However, the selection
of the approach and the parameters’ values highly depends on the given dataset,
the given data mining task, and the data mining algorithm to be used.
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Table 4: Results on synthetic datasets
S D2 B2 S D2 B5 S D2 B10 S D4 B2 S D4 B5 S D4 B10

NB KNN SVM NB KNN SVM NB KNN SVM NB KNN SVM NB KNN SVM NB KNN SVM

Classification Accuracy

CompleteFS .565 .500 .500 .700 .433 .530 .600 .466 .610 .666 .600 .560 .566 .566 .600 .533 .466 .630

initialSHSEL IG 1.0 .833 .880 1.0 .766 .850 1.0 .866 .890 1.0 .866 .880 1.0 .936 .870 .956 .733 .910

initialSHSEL C .666 .633 .833 .700 .633 .740 .666 .633 .780 .766 .666 .740 .600 .633 .730 .633 .533 .860

pruneSHSEL IG 1.0 .933 .920 1.0 .800 .910 1.0 .833 .960 1.0 .866 .960 1.0 .866 .980 1.0 .800 .986

pruneSHSEL C .866 .666 .910 .866 .700 .900 .800 .766 .900 .800 .766 .910 .933 .833 .880 .933 .666 .930

SIG .960 .900 .830 1.0 .800 .900 .930 .766 .933 1.0 .833 .933 1.0 .900 .966 1.0 .733 .966

SC .700 .700 .733 .700 .666 .733 .730 .600 .700 .733 .666 .700 .700 .666 .766 .700 .700 .733

TSEL Lift .553 .500 .540 .633 .666 .630 .400 .500 .540 .566 .533 .540 .500 .566 .510 .466 .533 .480

TSEL IG .866 .533 .810 .666 .566 .700 .733 .500 .770 .766 .666 .720 .533 .600 .700 .500 .566 .710

HillClimbing .652 .633 .630 .633 .636 .580 .633 .566 .640 .676 .566 .620 .676 .534 .586 .689 .523 .590

GreedyTopDown .666 .600 .800 .703 .633 .780 .633 .466 .830 .703 .566 .820 .752 .700 .850 .833 .500 .830

Feature Space Compression

initialSHSEL IG .846 .572 .864 .948 .907 .880 .861 .810 .886 .914 .789 .740 .929 .868 .746 .912 .750 .918

initialSHSEL C .267 .557 .875 .104 .888 .938 .279 .956 .656 .441 .893 .890 .831 .742 .786 .627 .805 .805

pruneSHSEL IG .930 .911 .796 .925 .933 .824 .899 .944 .850 .956 .877 .877 .955 .969 .863 .956 .873 .791

pruneSHSEL C .697 .896 .800 .639 .636 .667 .781 .696 .823 .795 .776 .849 .692 .726 .742 .731 .826 .750

SIG .922 .922 .861 .842 .842 .753 .865 .930 .865 .886 .595 .708 .891 .719 .525 .900 .704 .704

SC .717 .909 .880 .693 .900 .159 .750 .692 .869 .379 .493 .769 .628 .736 .742 .667 .727 .289

TSEL Lift .750 .750 .750 .706 .706 .706 .687 .687 .687 .857 .857 .857 .827 .827 .827 .814 .814 .814

TSEL IG .836 .836 .836 .866 .866 .866 .856 .856 .856 .926 .926 .926 .965 .965 .965 .970 .970 .970

HillClimbing .770 .770 .770 .751 .751 .751 .805 .805 .805 .792 .792 .792 .776 .776 .776 .795 .795 .795

GreedyTopDown .399 .399 .399 .370 .370 .370 .356 .356 .356 .470 .470 .470 .404 .404 .404 .438 .438 .438

Harmonic Mean of Classification Accuracy and Feature Space Compression

initialSHSEL IG .917 .679 .872 .973 .831 .865 .925 .837 .888 .955 .826 .804 .963 .901 .803 .933 .741 .914

initialSHSEL C .381 .592 .853 .182 .739 .827 .394 .762 .713 .560 .763 .808 .697 .683 .757 .630 .641 .832

pruneSHSEL IG .964 .922 .854 .961 .861 .865 .946 .885 .901 .977 .871 .916 .977 .915 .918 .977 .835 .878

pruneSHSEL C .773 .764 .851 .736 .666 .766 .790 .729 .859 .797 .771 .878 .795 .776 .805 .819 .737 .830

SIG .940 .911 .845 .914 .820 .820 .896 .840 .898 .940 .694 .805 .942 .799 .680 .947 .718 .815

SC .708 .791 .800 .696 .766 .262 .740 .642 .775 .500 .567 .733 .662 .700 .754 .683 .713 .415

TSEL Lift .636 .600 .628 .667 .685 .665 .505 .579 .605 .682 .657 .662 .623 .672 .631 .593 .644 .604

TSEL IG .851 .651 .822 .753 .685 .774 .790 .631 .810 .839 .775 .810 .687 .740 .811 .660 .715 .820

HillClimbing .706 .695 .693 .687 .689 .654 .709 .665 .713 .730 .660 .695 .723 .633 .668 .738 .631 .677

GreedyTopDown .499 .479 .533 .485 .467 .502 .456 .404 .499 .564 .514 .598 .526 .513 .548 .574 .467 .573

6 Conclusion and Outlook

In this paper, we have proposed a feature selection method exploiting hierarchic
relations between features. It runs in two steps: it first removes redundant fea-
tures along the hierarchy’s paths, and then prunes the remaining set based on
the features’ predictive power. Our evaluation has shown that the approach out-
performs standard feature selection techniques as well as with recent approaches
which use hierarchies.

So far, we have only considered classification problems. A generalizing of the
pruning step to tasks other than classification would be an interesting extension.
While a variant for regression tasks seems to be rather straight forward, other
problems, like association rule mining, clustering, or outlier detection, would
probably require entirely different pruning strategies.

Furthermore, we have only regarded simple hierarchies so far. When features
are organized in a complex ontology, there are other relations as well, which
may be exploited for feature selection. Generalizing the approach to arbitrary
relations between features is also a relevant direction of future work.
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