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Abstract

The deep modeling tool Multi-level Modeling and Ontology Engineering En-

vironment (Melanee) developed by the Software Engineering Group of the

University of Mannheim allows clean and strict meta-modeling across multi-

ple classification levels within Eclipse. Modeling with Melanee comprises two

dimensions, a linguistic and an ontological dimension. As Melanee is fully

embedded in the Eclipse Modeling Framework, it is usable with the Object

Constraint Language (OCL).

However, the current OCL implementation is not aware of multi-level mod-

eling features like the distinction between ontological and linguistic classifica-

tion and the existence of multiple ontological levels. The aim of this thesis

is to extend the current OCL implementation so that it is multi-level aware.

First, a deep OCL dialect is elaborated which takes deep modeling features

into consideration. Based on this dialect, an implementation of an interactive

level-agnostic OCL Console will enable queries of different values of different

model elements.
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1. Introduction

The software engineering methodology of Model-Driven Development (MDD) is a well

established development approach and highly appreciated among software developers and

researchers. MDD focuses on models which have a major impact on the quality of software.

One of the main pillars in MDD is the Unified Modeling Language (UML) [29]. In the

past, however, fundamental weaknesses of the UML have been revealed like the limitations

of considering only one form of classification [9] and supporting only two ontological levels

when modeling a problem domain ([7], [24]). As a consequence, new frameworks and tools

have been developed in order to address these weaknesses.

The Level-agnostic Modeling Language (LML), specified by Atkinson et al. [6], is a

concrete definition of a language which also was motivated by the weaknesses of the

UML and designed to support deep modeling. Despite its weaknesses and limitations, the

modeling features and the concrete syntax of the UML are de facto standard so that LML’s

concrete syntax is adhering to its paradigms. In order to give practitioners the possibility

to create LML models in an interactive way, a LML model editor based on the Orthogonal

Classification Architecture (OCA) was developed by the Chair of Software Engineering

at the University of Mannheim. This editor is referred to as the Multi-level Modeling

and Ontology Engineering Environment (Melanee) [5]. Melanee was steadily extended in

the past so that it currently consists of several other software components besides the

ability of creating LML models, for example a multi-level aware transformation support.

Moreover, LML models can be queried in the Object Constraint Language (OCL) [31] by

a built-in OCL console.

In general, OCL enables queries on model elements as well on its properties and the

definition of constraints. Regarding this, the capabilities of OCL can also add additional

value when creating and managing LML models in Melanee. Nevertheless, the current

OCL implementation is not multi-level aware which means that the distinction between

ontological and linguistic dimension as well as the support of multiple ontological levels

is not taken into consideration.

The aim of this thesis is to extend the existing OCL implementation in Melanee so

that it is multi-level aware. A foundation of this implementation will be laid by the

specification of a deep OCL dialect which takes multi-level features into account. This

dialect is realized by the implementation of a level-agnostic OCL console which allows

queries of different values of different model elements in a LML diagram.

The first part of this thesis describes the foundations of the work. They are necessary

to have a basic knowledge in the ensuing chapters. In the next chapter, the specification

of a deep OCL dialect is elaborated. Requirements for the evaluation of OCL expressions

and the definition and validation of constraints are examined and proposals for these

1



1. Introduction

requirements are given. In chapter 4, the core concepts of the implementation of the level-

agnostic console and its underlying OCL service are explained. Furthermore, the current

status of the deep OCL validation service is shown. Chapter 5 presents the evaluation of

the level-agnostic OCL console. Referring to the Royal and Loyal example introduced by

Warmer and Kleppe [39], OCL expressions are entered in the implemented console and

their results are evaluated. In the next chapter, proposals for future work are made and

related work in research is presented. Finally, the thesis closes with a conclusion.

2



2. Foundations

In this chapter the foundations are described which build the basis of this thesis. At first,

the concept of Model-Driven Development is introduced. After this, the principles of

deep modeling are explained. Then, the Object Constraint Language is presented. Next,

Eclipse plug-in development is described. Hereafter, the Eclipse Modeling Framework

and some of its components which are relevant with respect to this thesis are presented.

Finally, Melanee which is the tool upon which the work of this thesis is built is introduced.

2.1. Model-Driven Development

This section deals with the software engineering methodology Model-Driven Development

(MDD). At first motivation and definitions of this methodology are described. After

this the most important standardization approach concerning MDD the Model Driven

Architecture (MDA) is presented. Finally the concept of meta-modeling and its meaning

in MDD are illustrated.

2.1.1. Motivation and Definition

According to France and Rumpe [22], the most important factor in developing software

is the gap between problem domain and implementation domain. They state that such a

“gap exists when a developer implements software solutions using abstractions that are

at a lower level than those used to express the actual problem” [22]. This behavior can

invoke significant accidental complexities meaning that the developer uses implementa-

tion specific workarounds to map the problem domain onto the systems implementation

technology so that the actual problem gets blurred.

Because of the aforementioned gap, many software engineering researchers are focusing

their work on the importance of models. Selic [36] claims that “models help us understand

a complex problem and its potential solutions through abstraction” and that models “are

much closer to the problem domain relative to most popular programming languages” [36].

As reported by France and Rumpe [22], models help to depict a human understandable

form of a system or also to show information so that it is interpretable for machines.

Furthermore “the potential benefits of using models are significantly greater in software

than in any other engineering discipline” [36].

With respect to the importance of models, the term of Model-Driven Development has

emerged. Stahl et. al [37] refer to Model-Driven Software Development (MDSD) instead

of MDD, France and Rumpe [22] are regarding MDD as synonymous to Model-Driven

engineering (MDE). In the following, however, the term MDD will be used.

Selic [36] states that “MDD’s defining characteristic is that software development’s pri-

mary focus and products are models rather than computer programs” [36]. Referring to

3



2. Foundations

Atkinson and Kühne [3], the MDD approach does not demand the complete implementa-

tion specific knowledge from the developers but let them model what the functionalities

are and what architecture the system should have. This is in accordance to France and

Rumpe [22] which argue that a major goal of MDD research “is to produce technologies

that shield software developers from the complexities of the underlying implementation

platform” [22] so that developers model the problem domain on a more abstract level.

Stahl et. al [37] highlight the distinction between Model-Based Development (MBD) and

MDD. For them models are not only necessary for documentation, they are also a part of

the software meaning that the software is driven by models. So MDD is enabling to model

on a abstract but comprehensible level which then can be “systematically transformed to

concrete implementations” [22] which is the key idea to close the gap between problem

domain and implementation domain.

The automation of the transformation of the model towards a concrete program is a

main pillar in MDD research. For example, Selic [36] claims that “a key premise behind

MDD is that programs are automatically generated from their corresponding models”

[36]. According to Atkinson and Kühne [3], one goal among others of MDD is to automate

complex but routine programming tasks which result in increased development speed and

higher software quality.

Another aspect in MDD research is standardization “as it provides a significant impe-

tus for further progress because it codifies best practices, enables and encourages reuse,

and facilitates interworking between complementary tools” [36]. The most relevant stan-

dardization initiative focusing on MDD is the Model-Driven Architecture (MDA) which

is presented in the next section.

2.1.2. The Model-Driven Architecture

The Object Management Group (OMG) [26] announced the Model-Driven Architecture

[27] which supports MDD or can be regarded as a framework for MDD [22]. The OMG

is an open-membership concortium working on establishing standards for the computer

industry which was founded in 1989.

Essentially, the MDA has five main goals respectively motivations [37]. First of all,

the interoperability of software systems so that they are independent of their manufac-

turers. Another aspect is the platform independence of software systems. Furthermore

the provision of guidelines and standards for defining system functionality specifications

aims to establish an improved maintainability of software artifacts. This is achieved by

a separation of concerns (on the one hand functionality specifications, on the other hand

system specifications) and by an improved manageability of technological changes. In the

following some core concepts of the MDA are described roughly.

4



2.1. Model-Driven Development

The aforementioned separation of concerns results in basically three kinds of models

which are arranged in a consecutive way. The most abstract model is the Computation

Independent Model (CIM) which represents the domain of the model without regarding

computational complexities. The CIM provides the basis for the Platform Independent

Model (PIM) which describes the architecture and the behavior of the system platform in-

dependently. The subsequent model is the Platform Specific Model (PSM) which contains

the required information concerning platform specific technologies.

The Meta Object Facility (MOF) [30] constitutes the core of the MDA. The MDA

uses the MOF as its meta meta-model and thus serves as formal basis for the definition of

meta-models (see 2.1.3). Moreover, it is the industry standard-environment for transport-

ing models from one application to another, storing them in and retrieving them from

repositories, rendering them in different formats, e.g. in the OMG’s XML based stan-

dard format for model transformation XML Metadata Interchange (XMI), and finally for

transforming as well as generating code from them. Several implementations of the MOF

have been developed which can be considered as subsets of the MOF. The probably most

known example is the Essential MOF (EMOF) which evolved as a consequence of the

influence of the ECORE meta meta-model of the Eclipse Modeling Framework (EMF)

introduced in chapter 2.5.1.

The Unified Modeling Language (UML) [29] is the OMG’s most used specification and

provides, besides the MOF, the key foundation of the MDA. The aim of the UML “is

to provide system architects, software engineers, and software developers with tools for

analysis, design, and implementation of software-based systems as well as for modeling

business and similar processes” [29]. Basically, the UML is perceived as an instance of

the MOF and thus the MOF forms the UML meta-model (see 2.1.3).

Another concept established in the MDA is the Query View Transformation (QVT)

specification [28], which forms a standardization of how models are transformed into

models, i.e. so called model-to-model transformations. QVT itself is a part of the MOF

and enables the transformation of MOF-based models.

Moreover, there are further technologies besides the Object Constraint Language (OCL)

(see detailed description in 2.3) belonging to the MDA which are not mentioned here

because they are not important in the context of this thesis.

2.1.3. Meta-Modeling

With respect to Stahl et al. [37], meta-modeling is one of the most important aspects of

MDD. Meta-models are models of models meaning that they describe the formal structure

of a model. This refers to the so called abstract syntax. In contrast to this, the concrete

syntax defines how the model should be represented visually. Meta-modeling knowledge

helps to meet MDD challenges [37] which are roughly explained in the following.
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Figure 1: The OMG’s four layer infrastructure adapted from [3].

Meta-modeling helps in the construction of Domain Specific Languages (DSL) as it

scribes their abstract syntax. According to France and Rumpe [22] a DSL “consists of

constructs that capture phenomena in the domain it describes” [22] and can help to close

the gap between the problem domain and the corresponding implementation. Addition-

ally, meta-modeling enables model validation through constraints defined in meta-models

which then can be checked. Another challenge supported by meta-modeling are model-

to-model transformations which can be defined by rules in the meta-model. Finally, code

generation can be realized by generation templates specified in the meta-model.

As UML is used today for modeling in many cases, it is of practical relevance to clarify

the concept of meta-modeling in the context of the UML. The UML is part of the OMG’s

modeling infrastructure which consists of four layers respectively meta-levels presented in

Figure 1.

Layer M3 is the OMG’s meta meta-model also referred as MOF. The MOF serves to

specify modeling languages on M2 for which UML is a famous example. However, UML

is only one modeling language out of many possible modeling language approaches. So

the key idea and advantage of this infrastructure is that other domain-specific languages

and standardized modeling languages compatible to the MOF can be easily defined ([37],

[3]). Consequently, the interchange between MOF-based models is supported. Another

example for a modeling standard besides the UML on the M2 is the Common Warehouse

Metamodel (CWM). Elements of the M1 model are instances of elements in the M2 (e.g.

the construct Class of the UML). Atkinson and Kühne [3] refer to user concepts concerning

the M1. They state that the user concepts on the M1 hold the model for the concrete

user data which reside at the M0.

Stahl et al. claim [37] that, despite the fact that UML can be simply regarded as

instance of the MOF, various details have to be considered which are roughly discussed

next. First of all UML was designed before the MOF and in the beginning the UML was

not formally defined. Because of this, the MOF was created to define the UML formally.
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Thus the initial artifact was the UML, not the MOF. Furthermore another potential for

misunderstandings originates from the fact that the MOF uses the concrete syntax of the

UML, the language it formally models. Finally, there are some elements which exist in

both the UML and the MOF. Although these elements have the same name, they are not

identical.

2.2. Deep Modeling

In this section the basis for the approach of deep modeling is established. At first, the

underlying motivation and the concept of deep modeling is introduced. After this, the

Level-Agnostic Modeling Language (LML) is presented which is a modeling language fol-

lowing the paradigm of deep modeling.

2.2.1. Motivation and Concept

Several researches ([8], [13], [24]) revealed profound limitations in meta-modeling adhering

to the four layer infrastructure, which was mentioned in the previous section. The funda-

mental problem of this infrastructure is that only one kind of instance-of relationship is

considered and that it is restricted to only two meta-levels at the same time. According

to De Lara et al. [13], two meta levels are enough to cover the lingusitic case meaning the

abstract syntax of a model, but not to address the ontological case where the instance-of

relationship refers to a logical domain.

As a result of this dilemma, modelers are forced to squeeze models into two levels

which would naturally encompass multiple levels. Thus, they have to build workarounds

to model the problem domain. An example for such a workaround is depicted in Figure 2.

In the example there are two domain specific kinds of instance-of relationships. SportsCar

is an instance of a CarType, whereby MyPorsche is an instance of SportsCar. Despite

the fact that there are three meta-levels in this example, the modeler has to manage the

problem domain with only two levels which leads to more complex models and also creates

an overhead for developers. This is referred to accidental complexity which is complexity

not induced by the complexity of the problem domain but caused by the complexity

of the solution approach [33]. For example, the users of the model have to deal with

two kinds of instance-of relationships: The is-of-type relationships like the relationship

between Car and CarType and the instance-of relationship between language types and

language instances like the relationship between SportsCar and CarType. The is-of-type

relationships has to be manually maintained by the developers as there is no language

support for typechecking the domain instances regarding their domain types. Furthermore

the element Car is an artificial pattern which does not represent any element in the original
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Figure 2: Example of squeezing three domain levels into two.

domain. It is compulsory in the two level model and its objective is to serve as class for

the domain instance MyPorsche.

In order to overcome these weaknesses, the concept of multi-level or deep modeling

arose in MDD research. This thesis will refer to the term of deep modeling. Basically,

the concept of deep modeling is based on two main ideas. The first one encompasses

the principle of dual instantiation ([9], [13]). This means that an element can be both, a

linguistic instance and an ontological instance. The linguistic type defines the structure

and the presentation of an element whereas the ontological type refers to some logical

domain. The second idea is to increase the flexibility of meta-modeling by allowing an

arbitrary number of levels regarding a specific domain. In this context, the concept of

Deep Characterization comes into play. Deep Characterization allows elements of a certain

level in a model not only to control the characteristics of elements of the level below but

also to control the characteristics of elements of all other further levels below. Gonzalez

et al. [24] suggest to achieve Deep Characterization by using Powertypes which is a

mechanism based on the UML. In contrast to this, Atkinson and Kühne [9] are referring

to a mechanism called Deep Instantiation where the concept is “to assign a potency value

to model elements and their fields, indicating how many times they can be instantiated”

[9].

2.2.2. The Level-Agnostic Modeling Language

A concrete definition of a language designed with the primary intention of enabling deep

modeling is the Level-Agnostic Modeling Language (LML) [6]. With respect to Atkinson

et al. [6], it has four major goals. First of all it should be UML-like. Albeit the UML has

fundamental weaknesses like not really supporting the concept of ontological engineering,

its modeling features and its concrete syntax are de facto standard and so it is of prac-

tical relevance to use them. Another goal is to be level-agnostic which basically means

that LML should support deep modeling. The third goal demands to correspond to all
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Figure 3: LML diagram embedded in the OCA.

mainstream modeling paradigms besides the UML. The last goal of the LML is to provide

a unified set of reasoning and checking services.

In the following, the core concepts of the LML are described with the help of an example

in Figure 3 which shows a LML Diagram embedded in the Orthogonal Classification

Architecture (OCA). The OCA builds the framework for LML. In contrast to the 4 level

modeling infrastructure of the OMG, the OCA consists of two classification dimensions

which are orthogonal to each other. Each dimension can be divided into a number of levels

in accordance with the principle of strict metamodeling. In respect of Atkinson et al. [2],

adhering to strict meta-modeling means that “instanceOf (classification) relationships can

cross model-level boundaries, and that every element in one level must be a direct instance

of exactly one element of the level above” [2].

There are three levels in the linguistic dimension (L0,L1,L2) and an arbitrary number

of levels in the ontological dimension. The LML resides in the linguistic layer L1. Every

element of L1, independently from its ontological level, is an instance of an element in

the L0. The L0 consists of the Pan-Level Model (PLM) which can be regarded as the

linguistic meta-model and thus the abstract syntax of the LML. The L2 is perceived,

similar to the bottom level in the four layer infrastructure of the OMG, as the real world.

From an ontological point of view, each element is an instance of an element defined in
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the level above (except the elements in O0). For instance, SportsCar is an ontological

instance of CarType.

When there are more than 2 ontological levels, elements in the middle (i.e. elements

neither in O0, neither in the highest ontological level) can have both, a type respectively

class and an object facet. For example, SportsCar is an instance of a CarType but serves

also as type for MyPorsche. In order to address this dual facet, a unified concept was

introduced by Atkinson [4]. This concept is called clabject which combines the two terms

class and object. The meta-type characteristics of a clabject are modeled and defined

in the PLM. Here the clabject is modeled as supertype of an entity and a connection.

Thus, a clabject can be both, either an entity or a connection. According to Atkinson et

al. [6], “the former play a role similar to classes/objects in the UML and the latter play

a role similar to associations/links”. Examples for an entity in Figure 3 are the entities

CarType, Car and SportsCar. An example for a connection is the Production connection,

which in this case is displayed in the so called “dotted” format. Another format is the

exploded format which enables to show more information like attributes of the connection.

Because connections are clabjects and can also have attributes, they are comparable to

association classes of the UML.

Another artifact in the LML is the notion of potency which allows a precise definition of

instance-of relationships over multiple ontological levels and therefore enables the afore-

mentioned mechanism of deep instantiation. A potency takes non-negative integer values.

An instantiation lowers the potency by one which means that the potency of an instance

of an ontological type is one lower than the potency of its ontological type. There are

three kinds of potency which are the potency of a clabject, the potency of a feature and

the potency of an attribute value.

The potency of a clabject specifies over how many levels it can be instantiated. The

CarType in Figure 3 has a potency of two which means that it can have instances over

two more levels (i.e. SportsCar in O1 and MyPorsche in O2). A potency of 0 for a

clabject, like this is the case for a Car, can be regarded as abstract class as it cannot

be instantiated. The potency of a feature is also called durability. The durability of a

feature defines over how many levels this feature is expected to be present in the instances

of the clabject where it is specified. For instance, the attribute cylinderAmount of the

CarType has a potency of two so that is present in the instances of CarType one and two

levels further below. The potency of an attribute value is referred to as the mutability

of an attribute. It specifies over how many levels the value may be changed from the

default. For example in CarType the value of cylinderAmount has a potency of one, but

the Attribute CylinderAmount itself has a potency of two. So in general an attribute’s

mutability can be smaller than its durability, but it must be not greater. In this case,

the cylinderAmount attribute is present over three levels, but it can only be changed in
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CarType (resided in O0) and SportsCar (resided in O1). It is not possible to change the

value of cylinderAmount in MyPorsche resided in O2.

2.3. The Object Constraint Language

This chapter gives an introduction in the Object Constraint Language (OCL) [31] that

helps to establish an understanding in the fundamentals of this language. This com-

prehension is of particular importance to grasp the ideas of this thesis. The section is

structured as follows. At first, the OCL is defined and its main characteristics are out-

lined. After this, the OCL meta-model is presented. Finally, some OCL features are

described.

2.3.1. Definition and Characteristics

The Object Constraint Language (OCL) is the MOF-compliant standard for specifying

expressions that enrich models in software development with additional information. Ac-

cording to Stahl et al. [37], OCL is independent of modeling language so that OCL can

be used at various meta-levels. With respect to the OMG’s four layer infrastructure, OCL

can be used on one hand to refine (meta-)models at M2 for specifying modeling languages,

on the other hand modelers can also use the capabilities of the OCL like in a concrete

UML model, which is resided at M1.

Warmer et al. [39] are referring to four major characteristics of the OCL which are

listed and explained next. At first, OCL is a query and a constraint language. For them

“a constraint is a restriction on one or more values of (part of) an object-oriented model

or system” [39]. Thus, constraints set conditions for values of models which have to be

fulfilled so that these values are valid in the modeled system. In Listing 1, for example,

a car is restricted to have a maximum age of 20 (years).

context Car

inv : s e l f . age <= 20

Listing 1: Example of a constraint in OCL.

Constraints which are placed on elements on the Mn affect elements on the Mn−1.

Therefore, when creating an instance of a car, this instance is only valid if its age is not

greater than 20 years. Constraints are built upon OCL expressions. Every expression

represents respectively returns a value which can be a primitive type like a Boolean or

Integer but also an object or a collection of references to objects. In general, one can state

that every expression of type Boolean can be used as a constraint. Furthermore, OCL

expressions are also used when querying values of a specific model element. For example,

the query “self.age” on a car would return the age of the car.
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The second characteristic is that albeit OCL has a mathematical foundation, it uses

no mathematical symbols. OCL is founded on mathematical theory and predicate logic.

This mathematical precision is of special importance in the context of the MDA where

models need to be transformed. Through the mathematical foundation models are getting

more suitable for automated tools performing model transformation, checking consistency

and generating code. However, a mathematical notation might be not appropriate for a

standard language which is used widely among practitioners with very different back-

grounds. For some of these practitioners a mathematical notation would be to complex to

understand. Therefore, OCL became a well balanced language that consists of a modeling

language precision of mathematics, but also promises the ease of use of a natural language.

In essence, OCL is precise and unambiguous which can be easily read and written by all

people, also those who are not mathematicians or computer scientists.

The third characteristic holds that OCL is a strongly typed language. Most of the OCL

expressions will be written before an executable form of a model exists, so it has to be

possible to check an expression without having to generate an executable version of a

model. As a typed language, this is attainable with OCL so that errors in models also

can be detected at an early stage (e.g. an Integer cannot be compared to a String).

Finally, OCL is a declarative language meaning that it simply states what a constraint

or an expression should do but not how (like this is the case in procedural languages).

In order to achieve this, an OCL expression has no side effects. Thus, OCL expressions

can be made at a high level of abstraction without going into implementation details of

this expression. Nevertheless, OCL remains very precise. Hence, OCL is perceived as an

essential artifact in the domain of platform-independent modeling.

To sum up, the combination of easy to grasp visualized models (consisting of elements

like boxes and arrows) with the previously listed advantages of OCL allows practitioners

to create models, which are easy to understand, but also formal, precise and consistent.

2.3.2. The OCL Meta-Model

With respect to Cadavid et al. [11] the MOF and the OCL are commonly used for

meta-modeling. The MOF is utilized to specify a domain model and the OCL to add

well-formedness rules to the domain. In accordance to this, the MOF core specification

[30] as well as the UML infrastructure [29] which share a common core were developed in

parallel with the OCL specification [31]. The OCL specification “contains a well-defined

and named subset of OCL that is defined purely based on the common core of UML

and MOF” [31]. In context of this thesis, however, it is sufficient to describe the meta-

model of the EssentialOCL which is required to work with the EMOF, the meta-model

on which Melanee (see section 2.6) is based on. According to the OCL Specification [31],

“EssentialOCL is the package exposing the minimal OCL required to work with EMOF”
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Figure 4: The Types package as specified in [31].

[31]. In the following, the meta-model of EssentialOCL as well as its connections to EMOF

are briefly described.

The EssentialOCL depends on the EMOF package as it explicitly references classes

from EMOF. It consists of two packages: the Types package, describing the type system

in OCL and the Expressions package, describing OCL expressions.

The Types Package

OCL is a typed language so that each expression has to conform to a type. Therefore a

meta-model for the type concept is provided in the OCL specification [31], which is shown

in Figure 4.

The types imported from the EMOF package are visualized as boxes with a white

background color. As opposed to this, the colored boxes represent types that are specified

especially for the EssentialOCL. All elements are derived from the type Type which is

imported from the EMOF. This enables type compatibility between OCL and EMOF.

Additional classes adapted from the EMOF package are the classes DataType, Class and

PrimitiveType, for instance Integer or Boolean. Examples for types which are defined

in the OCL context are AnyType and CollectionType. AnyType serves as metaclass for

the type OCLAny which is the supertype of all other types so that all properties of

OCLAny are available for each element in a model (e.g. the operations oclIsTypeOf and

oclIsKindOf). The type CollectionType describes a type storing a collection of elements

of a specific type. There are four collection types. A Set is a collection which has no

duplicate elements. A special kind of a Set is the OrderedSet where the elements are

ordered. A Bag is a collection which also contains duplicate elements. If the elements in

a Bag are ordered, it is called a Sequence.

The Expressions Package

The OCL specification [31] includes also an expression package which is displayed in Figure

5. It allows enriching models built upon the MOF with expressions and constraints.
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Figure 5: The Expressions package as specified in [31].

Classes adopted from the EMOF package are visualized again by a white background

color. In the following the most important artifacts of this package are briefly described.

The basic class is OCLExpression. An OCLExpression always conforms to a type

compatible to the EMOF because it is derived from the class TypedElement which holds

a reference to the already described class Type of the EMOF package. Expressions with a

Boolean type can be used to build constraints, those of AnyType can be used for multiple

purposes (e.g. defining queries, initial attribute values etc.).

A CallExp permits practitioners creating composite OCLExpressions. It refers to a

feature or a predefined iterator for a collection. A feature can be either an operation or

a property which also can consist of a navigation to an AssociationClass. Each CallExp

has exactly one source identified by an OCLExpression. Furthermore, the result value of

a CallExp is the evaluation of the corresponding feature or iterator.

The VariableExp forms the basis for the declaration of variables in the OCL environ-

ment. This expression references a Variable which is a TypedElement for passing data

in expressions. One example for a Variable is self which holds the information for the

contextual instance an OCL expression can be specified for. The LiteralExp is basically

an expression producing a value which is identical with its expression symbol. Examples

are an Integer like 1 or a String like ”this is an LiteralExp”. An IfExp is an expression

which results in one of two alternative expressions depending on the evaluated value of

a condition. A TypeExp enables to refer to an existing type which is used in particular

when invoking the operations oclIsKindOf, oclIsTypeOf and oclAsType.

Connection between EMOF and the OCL Meta-Model

Figure 6 visualizes the connection between EMOF and the OCL meta-model. It is based

on the connection between the MOF and OCL described by Cadavid et al. [11] and

adapted to the EMOF context. The most important concept here is the notion of Expres-
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Figure 6: The Connection between EMOF and OCL.

sionInOCL that binds an element coming from the EMOF core to an OCLExpression. It

is the entry point or the top-level container class representing the top of a abstract syntax

tree in which OCLExpression is defined recursively. Hence, the illustrated connection

between EMOF and OCL is the foundation to define nested OCLExpressions on elements

in models which are based on the EMOF.

2.3.3. OCL Features

This part describes a snippet of the OCL features which are listed in the OCL Quick

reference [10]. Their description is also based on the “Reference Manual” part of the

work by Warmer et al. [39] and the OCL Specification [31]. Those features which are

perceived as most relevant with regard to the subject of this thesis are selected. They

are described with the help of examples written in OCL. First some OCL constructs are

explained. Building on this, OCL expressions and the OCL Standard Library with its

predefined types and operations are presented.

OCL Constructs

A very import construct is built with the help of the keyword context which specifies the

model entity, i.e. the context, for an OCL expression. A context can be a model type

(i.e. type, component, class etc.), an attribute or an operation. Listing 1, for example,

sets the context for an expression to the type Car. Depending on the context, expressions

can have different functions, which also will be shown in this section. The so called

contextual type of an expression refers to the type of the object for which the expression

will be evaluated. In Listing 1, the contextual type is equal to the context which is Car.

In case the context is an attribute or an operation, the contextual type is equal to the

type for which the attribute respectively operation is defined. As OCL expressions are

evaluated on the instance of the contextual type, it is necessary to distinguish between

the contextual type on the one hand and the contextual instance on the other hand.

With regard to the context, different OCL constructs respectively constraints can be

applied. When the context is a type, the two possible constructs are invariants and the

definition of new attributes or operations for this type. Invariants (keyword inv) can be

associated with a type and must be met by all instances of this type, so it acts as a
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constraint for a specific model type. Regarding Listing 1 all instances of Sportcar must

be not older than 20. An OCL expression that expresses an invariant is always of the

type Boolean. Defining attributes or operations (keyword def ) on a type with an OCL

expression implies that the attributes or operations have to be present in the instance of

the contextual type. Listing 2 shows a definition of a Boolean attribute hasAcceptableAge

which evaluates to true if the Car instance is not older than 20.

context Car

def : hasAcceptableAge : Boolean = age <= 20

Listing 2: Example of the definition construct in OCL.

When the context is an attribute, OCL expressions can be used to specify derivation

rules or inital values for attributes. A derivation rule (keyword derive) defines the value

of an attribute which has to evaluate to the value of the corresponding OCL expression.

Listing 3 shows an example where the value of the Integer attribute licensedYearsLeft is

derived by the OCL expression which calculates the difference between 20 and the age of

a Car instance.

context Car : : l i c en s edYea r sLe f t : Integer

derive : 20 − age

Listing 3: Example of the derive construct in OCL.

An initial value (keyword init) can be specified in order to assign an attribute a value

at the moment a contextual instance of a type is created. For example, in Listing 4 the

initial value of the age of a Car instance is meant to be zero.

context Car : : age : Integer

in i t : 0

Listing 4: Example of the init construct in OCL.

In case the context is an operation, OCL expressions can be used either as pre- and

postconditions or as body of query operations. Pre- and postconditions (keywords pre and

post) state conditions which have to be true when an operation starts respectively ends

its execution and thus serve as constraints on operations. In Listing 5 , for instance, it is

specified that at the start of the execution of the startEngine() method there has to be

fuel which can be burned.

context Car : : s ta r tEng ine ( ) : void

pre : fuelAmount > 0

Listing 5: Example of the pre construct in OCL.

The body (keyword body) of query operations can be specified in a single OCL expres-

sion. The evaluation of a query operation results in either a single value or a Set of values.

In Listing 6 the query operation getAge() simply results in the age attribute of Car.
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context Car : : getAge ( ) : Integer

body : age

Listing 6: Example of the body construct in OCL.

OCL Expressions

A fundamental OCL expression refers to the keyword self which explicitly denotes the

contextual instance of a type. For example in Listing 1, self indicates the contextual

instance of a Car. However, the reference to self can be also omitted when referring to

properties of a type like it is done in Listing 2.

OCL expressions are often built upon navigations. A navigation is performed when

accessing attributes, operations or association ends. It is invoked by two operator types,

the ’.’ operator and the ’->’ operator. The ’.’ navigation operator supports navigation

from an object using attributes, operations or association ends. The ’->’ navigation

operator supports navigation from a collection (see next section for further description)

using attributes, operations, association ends or iterations. As aforementioned, in addition

to the possibility to reference attributes and operations also association ends can be

referenced. Thereby, one can navigate over an association on the model to refer to other

model types and their properties starting from a specific model type. The referred model

types themselves are also called navigations. Referencing the association end, can be done

by calling the role name of the association. If the role name is missing, the name of the

connected type can be used. Because navigations (in the sense of referencing association

ends) are treated like attributes the dot notation is also used for accessing them. In order

to avoid ambiguities, all navigation and attribute names must be unique. The value of a

navigation is the Set of objects on the other side of the association end. If the multiplicity

of the association end has a maximum of one, then the value of the expression is of the

type the model type at the association end holds.

Figure 7 shows an example with two associations. A SportsCar has 4 wheels and each

Wheel has an associated Info element. Listing 7 gives an example where a navigation

expression for a contextual instance of SportsCar results in a Set. The navigation from

SportsCar to its wheels is done via the role name. In contrast to this, the navigation

shown in Listing 8 references the association end via the opposite model type name (i.e.

Info). As it has a multiplicity of one, for a contextual instance of Wheel this expression

results in the single element of type Info.
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SportsCar Wheel Info4 1wheels

Figure 7: An association example

context SportsCar

s e l f . wheels

Listing 7: Example of a navigation resulting in a Set.

context Wheel

s e l f . I n f o

Listing 8: Example of an navigation resulting in a single value.

If more than one association with a multiplicity bigger than one is navigated, then per

definition it results in a so called Bag (i.e. a Set which can have duplicate elements).

Another expression is the if-then-else expression which consists of a condition and two

expressions. The result of the expression is either the evaluation of the expression in

the then part or in the else part depending on the evaluation of the Boolean value in

the condition (if part). The else part is mandatory because an OCL expression has to

end in a value as it is a typed language. In Listing 9, the ageCategory is derived by an

if-then-else expression which evaluates to “Young Car” if the age is smaller than 5 and

else to “Old Car”.

context Car : : ageCategory : String

derive : i f age < 5 then ‘ ‘Young Car ’ ’ else ‘ ‘ Old Car ’ ’ endif

Listing 9: Example of an if-then-else expression in OCL.

A further expression is the let-in expression which is useful to define local variables

which can be used in an OCL expression. Listing 10 has the same meaning like Listing 9

with the difference that it uses a let-in expression which defines the local variable young.

However, variables declared in a let-in expression are only known in this expression.

context Car : : ageCategory : String

derive : l et young : Boolean = age < 5

in young then ‘ ‘Young Car ’ ’ else ‘ ‘ Old Car ’ ’ endif

Listing 10: Example of an let-in expression in OCL.

OCL Standard Library

In addition to the user defined model types such as the types SportsCar or Wheel which

were previously introduced, OCL contains a number of predefined types. These types

and their operations are specified in the OCL Standard Library. In the following, only an

excerpt of the types and their corresponding operations are presented. A full overview of
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^deposit(amt))Type Values Operations
Boolean falsez)true orz)andz)xorz)notz)=z)<>z)implies

Integer L10z)0z)10z)…
=z)<>z)<z)>z)<=z)>=z)cz)Lz)Cz)Uz)
modS„z)divS„z)absS„z)maxS„z)
minS„z)roundS„z)floorS„Real L1w5z)3w14z)…

String „Carmen‟
=z)<>z)concatS„z)sizeS„z)
toLowerS„z)toUpperS„z
substringS„

Figure 8: Basic primitive types in OCL adapted from [10].

Operation Description

count(o)
execludes(o)
excludesAll(c)
includes(o)
includesAll(c)
isEmpty()
notEmpty()
size()
sum()

Number of occurrences of o in the collection (self)
Is o not an element of the collection?
Are all the elements of c not present in the collection?
Is o an element of the collection?
Are all the elements of c contained in the collection?
Does the collection contain no element?
Does the collection contain one or more elements?
Number of elements in the collection
Addition of all elements in the collection

Figure 9: Standard Collection Operations adapted from [10].

them is given by the OCL Specification [31] or in a shorter version by the OCL Quick

Reference [10].

The OCL Standard Library contains four basic primitive types which are the types

Boolean, Integer, Real and String (see Figure 8). There exists an additional type called

UnlimitedNatural which is used to encode non-Integer multiplicities like ’*’. Each of

these types provides different operations which can be invoked when referring to them.

Examples are the ’and’ operation for Boolean, the ’+’ operation for Integer and Real or

the ’substring’ operation for String.

Additionally, the OCL Standard Library specifies collection types. Thereby a collection

is the abstract supertype of all collection types. Each collection type is parameterized by

’T’ and can be concreted by replacing ’T’ with Integer or SportsCar , for example, which

creates a collection of Integer values respectively SportCars. Each occurrence of an object

refers to an element of the collection. There are four collection types: Set, OrderedSet,

Bag and Sequence. These types were already described in section 2.3.2. There are several

standard operations which can be executed on Sets, OrderedSets, Bags and Sequences

which are listed in Figure 9.

On the other hand, there are also operations which have different meaning respectively

different preconditions depending on the collection type or are only invokable for particular

collection types. Figure 10 lists such operations and also depicts for which types of

collection they can be invoked. For instance, the first or the last operation can be only

executed on OrderedSets and Sequences because they have an order, in contrast to Sets

or Bags.
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Operation Set OrderedSet Bag Sequence
=
<>
-
append(o)
asBag()
asOrderedSet()
asSequence()
asSet()
at(i)*
excluding(o)
first()
flatten()
including(o)
indexOf(o)
insertAt(i,yo)
intersection(c)
last()
prepend(o)
subOrderedSet(l,yu)
subsequence(l,yu)
symmetricDifference(c)
union(c)

O
O
O

O
O
O
O

O

O
O

O

O
O

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

O
O
O

O

O
O

O
O
O
O

O

O
O

O

O

O
O

O
O
O
O
O
O
O
O
O
O
O
O

O
O

O

O

Figure 10: Collection Operations adapted from [10].

An example for a operation with a different meaning concerning the different collection

types is the equal operation which can be called on all collection types. For a Set it

evaluates to true if all elements in both Sets are the same. For a Bag elements must occur

the same number of times. In case of a Sequence or a OrderedSet the order of the elements

have to be the same. The union operation is an example for a collection operation that

has different preconditions for different collection types. Bags and Sets are allowed to

be unified. However, this operation is only callable for OrderedSets and Sequences if the

argument is an OrderedSet respectively a Sequence too.

As opposed to collection operations which are called on the whole collection, iteration

operations iterate over the elements of a collection and evaluate the expression for each of

them. All iteration operations are presented in figure 11. Basically, all of these operations

are based on the iterate operation. Iteration operations either result in a new collection

(like select, reject,collect,collectNested and sortedBy), in a single element (like any) or in

a Boolean value (like forAll, exists, one, isUnique).

The type on which all types (model types, primitive types and collection types) are

derived from is called OCLAny. Hence, OCLAny is the supertype for all types of the

OCL Standard Library. Because of this, operations defined for OCLAny are accessible

for all types. Some of these operations are oclIsTypeOf, oclIsKindOf, oclAsType and

allInstances.

The oclIsTypeOf operation evaluates to true if the type of the contextual instance is

equal to the argument. The oclIsKindOf operation returns true if the type of the contex-

tual instance is identical to the argument or one of the arguments’s subtypes. Figure 3
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Operation Description

anyDexprb
collectDexprb

collectNestedDexprb

existsDexprb
forAllDexprb
isUniqueDexprb
iterateDx:mS;my:mT|mexprb
oneDexprb
rejectDexprb

selectDexprb

sortedByDexprb

Returnsmanymelementmformwhichmexpr ismtrue
Returnsmamcollectionmthatmresultsmfrommevaluatingm
expr formeachmelementmofmself
Returnsmamcollectionmofmcollectionsmthatmresultm
frommevaluatingmexpr formeachmelementmofmself
Hasmatmleastmonemelementmformwhichmexpr ismtrue?
Ismexpr truemformallmelements?
Doesmexpr hasmuniquemvaluemformallmelements?
Iteratesmovermallmelements
Hasmonlymonemelementmformwhichmexpr ismtrue?
Returnsmamcollectionmcontainingmallmelementsmform
whichmexpr ismfalse
Returnsmamcollectionmcontainingmallmelementsmform
whichmexpr ismtrue
Returnsmamcollectionmcontainingmallmelementsm
orderedmbymexpr

Figure 11: Iterations Operations adapted from [10].

also contains the super/subtype relationship between Car and SportsCar. Assuming the

contextual instance is an instance of the type SportsCar, “self.oclIsTypeOf(SportsCar)”

would evaluate to true, but “self.oclIsTypeOf(Car)” would not. However, “self.oclIsKindOf(Car)”

would return true.

By using the oclAsType operation a type cast can be performed. The argument of

this operation can be of any model type defined in the model. The oclAsType operation

changes the static type. Nevertheless, the object on which the operation is called results

in the same object and its actual type remains the same. If the argument not conforms

to the actual type at evaluation time (i.e. the oclIsKindOf operation evaluates to false),

the operation results in OCLInvalid. Casting to subtypes provides visibility of features

not defined in the context of an expression’s static type. Casting to a supertype, however,

does not allow the access to hidden or overridden features as the actual type stays the

same.

Finally, the allInstances operation of the type OCLAny is a predefined operation for

every model element which results in all the instances of the element and its subtypes.

2.4. Eclipse Plug-in Development

The tool which was extended by a multi-level aware OCL implementation as part of this

thesis is called Melanee (see chapter 2.6). As this tool is an Eclipse plug-in, it is necessary

to get the basic concepts of Eclipse plug-in development [12] which are explained in this

chapter.

In general Eclipse “is a community for individuals and organizations who wish to col-

laborate on commercially-friendly open source software” [19]. The Eclipse Foundation

is a non-profit corporation that hosts several projects. The Eclipse major project is the
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Eclipse platform which is a multi-language software development environment serving also

as Integrated Development Environment (IDE).

The Eclipse platform is constructed in a very modular design. It basically consists

of a small kernel and several plug-ins which are building the modular units in Eclipse

development. The kernel is responsible for managing the loading and execution of plug-

ins. Each plug-in contributes to the functionality of the Eclipse platform. On one hand

a plug-in may rely on services provided by other plug-ins, on the other hand it also can

provide its services to other plug-ins. In order to allow this mutual extensibility, the

concept of extension points and extensions was introduced. The idea behind this concept

is that each plug-in can expose extension points which then can be extended by other

plug-ins by providing an extension. The plug-in structure of the Eclipse platform enables

developers to write their own plug-ins. Thereby, they can adapt , for example, the Eclipse

IDE to their needs.

The minimal set of plug-ins necessary to create a so called rich client application is

the Eclipse Rich Client Platform (RCP) [18]. This set is composed of two plug-ins, the

org.eclipse.ui and org.eclipse.core.runtime, and their prerequisites. According to McAffer

et al. [34], “rich clients support a high-quality end-user experience for a particular domain

by providing rich native user interfaces (UIs) as well as high-speed local processing” [34].

They support functionalities like drag and drop, system clipboard, navigation as well as

customization. The Eclipse RCP is a generic platform or framework for running appli-

cations which provides opportunities like a flexible UI paradigm, scalable UIs, extensible

application, help support, error handling etc. [34]. The most prominent example for an

application built on the Eclipse RCP is the Eclipse IDE which is written by the Eclipse

team. However, also developers outside the Eclipse team can take advantage of the capa-

bilities of the Eclipse RCP to develop their own rich client application (e.g. Melanee is

based on the Eclipse RCP). They can achieve this by assembling a collection of plug-ins

from the Eclipse base and elsewhere and adding the plug-ins they have implemented.

2.5. Eclipse Modeling Project

The Eclipse Modeling Project (EMP) is a project at Eclipse [21] which is a collection of

frameworks, tools and standard technologies related to the MDD approach. EMP consists

of five major components: abstract syntax development, concrete syntax development,

model transformations, model development tools and generative modeling technologies.

Figure 12 shows how these components are arranged in the overall EMP structure. At

the core resides the Eclipse Modeling Framework (EMF) which provides abstract syntax

development capabilities. Model transformation technologies are built on top of this core.

These are divided into model-to-model (M2M) and model-to-text (M2T) technologies.

The outer layer of EMP is formed by concrete syntax development technologies, like
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the Graphical Modeling Framework (GMF) and Textual Modeling Framework (TMF).

Model development tools and generative modeling technologies are surrounding the basic

EMP structure. The model development tools focus on providing modeling tools based

on industry standards like e.g. the MDA whereas the generative modeling technologies

focus more on developing research-based components concerning MDD. In the following

sections, EMF and GMF which were used to develop Melanee and the Eclipse OCL Project

which was utilized for implementing the deep OCL dialect are described in more detail.

Figure 12: The structure of EMP [25].

2.5.1. Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) [20] is a modeling framework supporting MDD

activities which “exploits the facilities of Eclipse” [38]. With respect to Gronback [25],

the EMF serves for developing the abstract syntax of DSLs. The meta meta-model which

is used to create such meta-models in EMF is called Ecore which is in accordance with

the EMOF. As EMOF is a subset of the MOF, Ecore can be perceived as MOF compliant.

Based on Ecore, EMF enables the definition as well as the manipulation of meta-models

by using a generic meta-model editor, the serialization of meta-models, the generation of

Java implementation classes created from EMF models and much more. The importance

of EMF in the MDD environment is highlighted by Stahl et al. [37] which perceive EMF

as a de facto industry standard when building MDD tools.

2.5.2. Graphical Modeling Framework

The Graphical Modeling Framework (GMF) [17] originated from the need for an easier

way to create graphical editors using the Graphical Editing Framework (GEF) which are
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based on EMF models [25]. The GEF itself provides the technology to create graphical

editors and views within Eclipse. With the help of GMF such graphical editors can be

created automatically for EMF meta-models. The process of this creation is roughly

described by Stahl et al. [37]. At first, a meta-model is defined with the help of EMF.

After this, an additional model is created describing how the graphical editor should look

like and behave. Then by using these two models, the GMF generator is able to create

the graphical editor. Finally, some custom visualization or specific behavior can be added

to the generated editor.

2.5.3. Eclipse OCL Project

The Eclipse OCL Project [16] is part of the MDT project and is an OCL implementation

of the OMG’s OCL standard for models based on the EMF. This project consists of a

core component and additional OCL examples and editor components.

The core component helps integrating OCL in EMF based models and has several

capabilities. Besides a generic abstract syntax model API (independent of any specific

meta-model) it also makes available a particular Ecore as well as an UML implementation

of the OCL abstract syntax (see section 2.3.2). Based on this, it specifies interfaces

for the definition, parsing and evaluation of OCL queries and constraints on Ecore and

UML models, but also any other model. Furthermore, the Eclipse OCL Project allows

developers to extend the API for parsing and evaluating OCL queries and constraints, so

that they can implement a custom behavior when parsing and evaluating OCL expressions.

Moreover, a visitor API is provided for inspecting and analyzing the abstract syntax tree

of parsed OCL expressions. Additionally, Eclipse OCL supports the serialization of parsed

OCL expressions so that they can be persisted.

The additional provided examples and components enable an interactive OCL support

when building EMF models. For example, an Xtext editor for specifying OCL expressions

and an interactive OCL console for the evaluation of OCL expressions on Ecore or UML

models is provided.

2.6. Melanee

The Multi-level Modeling and Ontology Engineering Environment (Melanee) ([35], [5], [32],

[23]) is a LML (see section 2.2.2) editor enabling the creation and manipulation of LML

diagrams like the one in Figure 3. In essence, Melanee comprises real-time interactive

deep modeling. The tool was developed by the Chair of Software Engineering of the

University of Mannheim.

The PLM which serves as meta-model or abstract syntax was realized in EMF (see

section 2.5.1). It is a Ecore model and forms the meta-model for the LML. Furthermore,
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meta-model operations were implemented as OCL operations. Those and also meta-

model attributes are accessible in the interactive OCL console which allows live queries

on the LML model. The visualization respectively the concrete syntax of the editor was

implemented in GMF (see section 2.5.2).

Melanee consists of several software components which add additional capabilities in

addition to the pure creation of LML models. Reasoning and checking services help to

validate ontologies for correctness and also to infer types from instances or inheritance

relationships between elements of the model. The LML can be defined graphically (graph-

ical DSL) or textually (textual DSL). Moreover, these can also be used simultaneously.

Regarding the graphical DSL capability, the rendering of elements can be customized to

create a domain-specific notation or the general-purpose LML rendering can be applied.

This approach is referred as symbiotic language support. The emendation mechanism

helps to automatically keep the ontology consistent when a model element is changed by

observing the effects to the whole ontology after a single element is manipulated. Finally,

Melanee also provides a multi-level aware transformation support so that multi-level to

multi-level as well as multi-level to two-level transformations can be achieved.

This tool is implemented on top of the Eclipse framework so it builds basically a set

of Eclipse plug-ins and is based on the Eclispe RCP (see section 2.4). Because of this,

Melanee is extensible through third party technologies and can be adapted and customized

individually.
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3. Interpretation and Application of OCL in Deep Models

OCL is a powerful language for the query of model elements and their properties and for

the definition of constraints on model elements. An introduction of OCL in general is

given in section 2.3. The OCL specification [31] is tailored for the application of OCL in

two-level models.

However, as the goal of this thesis is to develop a level-agnostic OCL console, the

interpretation and the application of OCL in deep models have to be examined in order

to elaborate a deep OCL dialect. This is done in this chapter. An example of a deep

LML model depicted in Figure 13 helps to describe the principles and concepts of a

deep OCL dialect. In essence, the ontology of the example describes the relation of

cars between its wheels and between the company which produces them. The company

itself employs employees. Due to the lack of space, the obligatory wheels for the clabjects

MyPorscheBoxster and MyPorscheCayenne in 02 are omitted here. The example is further

introduced in the discourse of this chapter when describing the particular artifacts of a

deep OCL dialect.

3.1. Requirements for the Evaluation of OCL Expressions in a Deep

OCL Dialect

OCL expressions form the basis of OCL as queries as well as constraints are built upon

them. In order to create a profound and consistent specification of a deep OCL dialect,

the peculiarities of deep modeling environments have to be considered.

These peculiarities evoke requirements for the evaluation of OCL expressions in a deep

OCL dialect which are examined in this section.

3.1.1. Dual Facet of Clabjects

When evaluating OCL expressions, it is very important to consider the dual facets of

model elements in a deep modeling environment. In the LML, this duality of model

elements is represented by a unified concept, called clabject. A clabject captures both,

the type and instance facet of a model element.

However, in the two-level modeling case a model element is either a type or an instance

but never both. In conformance to this, OCL proposes the terms of contextual type and

contextual instance (see section 2.3.3). OCL expressions are defined for a conceptual type

and evaluated on a particular instance of this type. This works fine in a two-level model

as properties are defined on the type level and only enriched with specific values on the

instance level which then can be queried and evaluated.
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Figure 13: Example of a deep model modeled with the LML.
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Figure 14: Dual facet of model elements.

But as mentioned before, the strict separation regarding a model element as either a

type or an instance is not possible in deep models. This is illustrated in Figure 14. With

respect to the entity SportsCar, on the one hand it is a type of MyPorscheCarrera but

on the other hand also an instance of a CarType. From an instance point of view, the

typeSpecifier attribute specified in CarType is instantiated by attaching a value to it

(’#SC’). From a type’s viewpoint, the attribute acceleration is defined and additionally

a value of 5 is already specified here.

When now the context is set to SportCar, this would mean that the contextual type is

also SportCar which is in accordance with Warmer and Kleppe [39] who claim that ”when

the context itself is a type, the context is equal to the contextual type”. The SportsCar

also holds an instance facet, however, as it can be regarded as an instance of CarType.

Thus, it has to be discussed if the notion of contextual type is still valid here.

Besides this difficulty, let us assume that the OCL expression “self.acceleration” should

be evaluated on SportCar. Referring to Warmer and Kleppe [39] as well as to the OCL

Specification [31], this expression would be evaluated on single objects respectively in-

stances of the contextual type. The contextual type in this case would be SportsCar and

the evaluation of the expression would be conducted on its contextual instances, e.g. on

MyPorscheCarrera. In this regard, the question arises how to get the value of the acceler-

ation attribute of SportsCar because this value is already attached to the attribute when

it is just defined in SportsCar and hence it is not accessible on its instances.

The presented example use cases demonstrate that the OCL concepts of contextual type

and conceptual instance are difficult to apply in a deep modeling environment. Therefore,

a revised concept concerning the evaluation context of OCL expressions which is adapted

to the dual facets of clabject has to be elaborated in a deep OCL dialect.

28



3.1. Requirements for the Evaluation of OCL Expressions in a Deep OCL Dialect

CarType

SportsCar:CarType

MyPorscheCarrera:SportsCartypeSpecifier)=)E.ScE

acceleration)=)5

1

0

instance)of
instance)of

instance)of
O

0

O
1

O
2

L0)(PLM)

L1)(LML)

2
0

Clabject
potency
..........

getAllAttributes()
..........

Entity

Figure 15: Linguistic dimension example.

3.1.2. Ontological and Linguistic Dimension

The previous section described the dual facet of model elements in the ontological dimen-

sion which captures the actual problem domain. In the deep modeling approach, however,

there exists another dimension called the linguistic dimension.

Linguistic types describe the structure, i.e. the abstract syntax, of model elements inde-

pendent from their ontological level. This is visualized in Figure 15. CarType, SportsCar

and MyPorscheCarrera are all linguistic instances of the entity meta-type which itself is

a subtype of the clabject meta-type. These and other meta-types are defined in the PLM

which resides in the linguistic layer L0. A clabject has attributes such as potency and also

methods such as getAllAttributes which, as the name is indicating, delivers all attributes

of a particular clabject instance. In contrast to the ontological dimension (see previous

chapter), the linguistic instance-of relationship between L0 and L1 is of a two-level nature

and so the OCL principle of contextual type and contextual instance is applicable here.

Assuming the context is set to SportsCar, from a linguistic perspective the contextual

type would be the entity type. SportsCar has a concrete value for potency (indicated by

green color) and also a set of concrete attributes (indicated by blue color). Thus, from

the linguistic perspective, SportsCar can be regarded as contextual instance of entity so

that OCL expressions would be evaluated here.

It is of particular importance to provide the possibility to query not only ontological

properties but also linguistic ones in a deep OCL dialect. Therefore, a solution has to be

found which allows to switch from ontological to linguistic perspective.

3.1.3. Deep Characterization

In the ontological dimension of the OCA architecture an arbitrary number of levels is

allowed which helps to reflect a specific problem domain.
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In chapter 2.2 the concept of Deep Characterization is introduced. This concept refers

to the existence of multiple levels in an ontology and permits elements not to control only

elements the level below but also elements further levels below. Hence, model elements

can also have deep instances in addition to instances . Considering the example in Figure

14, a CarType has a potency of two and thus can be instantiated over two more levels.

SportsCar is placed a level below and is an instance of CarType. MyPorscheCarrera

is placed in the O2. It is an instance of SportsCar but also can be perceived as deep

instance of CarType. Taking the opposite viewpoint, SportsCar can be considered as

type of MyPorscheCarrera but CarType as deep type of MyPorscheCarrera.

With respect to a deep OCL dialect, the concept of Deep Characterization has to be

taken into account regarding the operations oclIsTypeOf, oclIsKindOf, oclAsType and

allInstances of the OCLAny type (see section 2.3.3). Those operations are suitable and

applicable in the context of two-level modeling as there is only one type and one instance

level. In deep modeling environments, however, Deep Characterization and thus the

existence of deep types and instances in the ontological dimension has to be taken into

consideration when specifying these operations for a deep OCL dialect.

3.1.4. Navigation in the LML

An important aspect of OCL is navigation on associations between model elements. Start-

ing from a specific element, navigation enables to refer to other elements and the corre-

sponding properties.

In the LML, associations are represented by the concept of connections. They are

defined in the PLM as subtype of a clabject. Therefore, they also can have attributes

and methods. Connections can refer to an arbitrary number of particpants (i.e. clabjects)

which are connected by a related particpation holding role name as well as lower and upper

multiplicity. In comparison to the UML, connections can be considered as association

classes.

However, the standard OCL specification is not aware of the connection construct.

Hence, a deep OCL dialect has to take connections into account. First of all, a specification

has to be developed of how navigation can be conducted syntactically and semantically.

Figure 16 presents the entities CarCompany and Employee which are connected by the

connection Employment, visualized in exploded form. In this example, three different

kinds of navigations are visualized.
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Figure 16: Three different kinds of navigation.

The navigations between CarCompany and Employee, CarCompany and BankAccount

as well as BankAccount and Employee represent examples of a particpant-to-particpant

navigation. Examples for connection-to-particpant navigations are the ones from Employ-

ment to CarCompany, from Employment to BankAccount as well as from Employment

to Employee. The last kind of navigation is the particpant-to-connection navigation. Ex-

amples for this kind of navigation are the navigations from CarCompany to Employment,

from BankAccount to Employment as well as from Employee to Employment. In regard

to a deep OCL dialect, it has to be elaborated how these kinds of navigation can be

performed.

Based on this, a deep OCL dialect also has to specify in which cases a navigation eval-

uates to which results. This means that this dialect has to define under which conditions

a navigation results in a single clabject or a collection of clabjects and in the latter case

also what kind of collection it is.

Furthermore, the dual facet of clabjects has to be considered. As mentioned before,

connections are clabjects and thus also have a type and instance facet. Figure 17 visualizes

this fact with an example.
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Figure 17: Navigation on the type and instance facet.
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Figure 18: Example of 2 instantiations of a connection with different role names.

In the example two connections are shown (both in dotted form). The first connec-

tion associates a SUV with SUVWheel. SUV, SUVWheel and its connection all have

a type facet. All of them are also instances, however, as SUV is an instance of Car-

Type, SUVWheel is an instance of WheelType and the connection is an instance of the

shown connection the level above. This second connection associates a CarType with

WheelType.

When now navigating from SUV to SUVWheel, this navigation could be perceived as a

type facet navigation or an instance facet navigation in a deep OCL dialect. Therefore, it

has to be elaborated how these two different facet viewpoints concerning navigation can

be conducted syntactically and how these affect the evaluation of the navigation.

Furthermore, a deep OCL dialect has to be aware of the fact that connections can have

multiple instances on the level below and that their names as well as the role names of

their participations can be changed when they are instantiated. An example for this case

is illustrated in Figure 18.

Here, a connection is instantiated twice. First a connection is instantiated which rep-

resents the connection between SportsCar and NarrowWheel which are in the front (role

name frontWheel). Moreover, a connection is instantiated which represents the connec-

tion between SportsCar and BroadWheel which are in the rear (role name rearWheel).

The question arises if it is possible to not only navigate from the SportsCar to the front

respectively rear wheels but to all its wheels. This question relates to the aforementioned

type facet and instance facet navigation and has also to be answered in the specification

of a deep OCL dialect.
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SportsCar:CarType

acceleration : Real = 5

1

Figure 19: SportsCar entity with attribute acceleration of type Real.

3.1.5. Datatypes in the LML

According to the OCL Standard Library (see section 2.3.3), there are four primitive basic

datatypes known in the OCL which are Boolean, Integer, Real and String.

These types are also available when setting types of attributes for clabjects in a LML

model. In the current PLM specification, however, values of attributes are defined as

String independent from their actual ontological datatype.

Figure 19, for instance, shows the SportsCar entity which holds an acceleration attribute

of the type Real. Assuming the OCL expression “self.acceleration” should be evaluated on

a SportsCar, an ambiguity arises. Regarding the PLM specification, the attribute value

is defined as String (linguistic definition). Nevertheless, the actual ontological datatype

of acceleration in this example is Real (ontological definition). A deep OCL dialect has

to take this into consideration and has to specify to which datatype OCL expressions like

the one above evaluate.

3.2. Proposals for the Evaluation of OCL Expressions in a Deep OCL

Dialect

In this chapter a specification for a deep OCL dialect concerning the evaluation of OCL

expressions is elaborated. The specification adheres to the requirements for the evaluation

of OCL expressions which were described in the previous chapter and also tries to follow

as much of the principles and definitions of the OCL specification [31] as possible.

3.2.1. Supporting Dual Facet of Clabjects

Section 3.1.1 discussed the difficulty of applying the OCL concepts of contextual type

and contextual instance in a deep modeling environment. Therefore, a deep OCL dialect

unifies those two concepts by referring to a conceptual clabject when evaluating OCL

expressions.

As a consequence, when the context is set to a specific clabject all attributes and

methods of the clabject can be queried by OCL expressions regardless of whether those

were instantiated or were just defined in the clabject.
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In regard to Figure 14 for example, the context could be set to SportsCar and the value

of typeSpecifier which is an instantiated attribute (defined already in CarType) and also

the value of acceleration which was just specified in SportsCar can be queried.

3.2.2. Accessing Ontological and Linguistic Dimension

As described in section 2.2.2, clabjects in the LML reside in the OCA and therefore have

two dimensions, an ontological and a linguistic one. A deep OCL dialect should be able

to adopt the perspective of both dimensions which allows the query of ontological but

also linguistic properties with OCL expressions.

The default perspective of a deep OCL dialect should be the ontological one, as the

focus of deep modeling lies on representing an ontological problem domain. A switch

from the ontological to the linguistic perspective in a deep OCL dialect can be done by

invoking the “ l ” property of a clabject.

Assuming that the context is set to SportsCar, per default all ontological properties

of SportsCar are accessible (for example typeSpecifier). However, the properties of the

linguistic type (i.e. entity) can not be called. In order to obtain them, a perspective

switch has to be performed. This is done, for instance, in Listing 11.

context SportsCar

s e l f . l . potency −− 1

Listing 11: Example of accessing the linguistic dimension in a deep OCL dialect.

In this case, the potency, a linguistic attribute defined in the clabject meta-type (and

therefore also available in the entity meta-type), of SportsCar is queried which is 1.

Hence, the proposed syntax of the deep OCL dialect provides a flexible mechanism of

accessing ontological and linguistic dimension which allows the query of all properties, be

it ontological or linguistic ones, of clabjects in the OCA.

3.2.3. Application of OCLAny Operations

In this section, the effects of deep modeling environments on the interpretation and ap-

plication on the operations oclIsTypeOf, oclIsKindOf, oclAsType and allInstances of the

type OCLAny are discussed. Hereby, the existence of multiple levels in the ontological

dimension as well as the existence of the two dimensions in the OCA has to be taken

into account. In the following, each of these operations and their behavior in a deep OCL

dialect with regard to the aforementioned peculiarities are described.

oclIsTypeOf/oclIsKindOf

Concerning the ontological dimension, the oclIsTypeOf and the oclIsKindOf operation

can be applied in a deep OCL dialect in a two-level window and thus are interpreted like

in the two-level modeling case which was described in section 2.3.3. In Figure 20, for
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Figure 20: Example usage of oclIsTypeOf/oclIsKindOf in a deep OCL dialect.

example, two ontological levels (01 and 02) are shown. In O1, there are three clabjects

which are SportsCar and SUV as well as their supertype Car. In 02 resides the clabject

MyPorscheCarrera, an instance of SportsCar.

Referring to MyPorscheCarrera as context, the operations oclIsTypeOf and oclIsKindOf

are invoked with each of the other clabjects in this example as argument. A call of the

oclIsTypeOf operation only evaluates to true with the argument SportsCar (indicated by

the green color). In the two other cases the result is false (indicated by the red color).

Invoking the oclIsKindOf operation, evaluates to true when passing SportsCar and Car

as argument, but to false when passing SUV.

These two operations, however, can only be used in a two-level window in a deep model.

As described in section 3.1.3, besides ontological types defined in the direct level above,

clabjects can also have deep ontological types defined the levels further above. Thus, it

should be also possible to check deep types in a deep OCL dialect. Because of this, the

operations oclIsDeepTypeOf and oclIsDeepKindOf are introduced in the dialect.

In Figure 21, an example usage of these operations is presented, where three ontological

levels are visualized. In the O0 are the clabjects CarType and VehicleType whereas

CarType is a subtype of VehicleType. The entity MyPorscheCarrera in 02 is a deep

instance of CarType which can be instantiated in O1 and O2.

Referring now to MyPorscheCarrera as context, the oclIsDeepTypeOf and oclIsDeep-

KindOf operation can be invoked to check its deep types. In this example, the oclIsDeep-

Type operation is called with the argument CarType and VehicleType. In the first case

it evaluates to true, in the second case to false. The same is done for the oclIsDeepKind

operation. For both arguments it evaluates to true.
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Figure 21: Example usage of oclIsDeepTypeOf/oclIsDeepKindOf in a deep OCL dialect.

Moreover, the oclIsTypeOf and oclIsKindOf operation can also be applied regarding

the linguistic dimension. In the deep OCL dialect, this is done by first accessing the

linguistic dimension with “ l ” (see previous chapter) and then invoking one of the two

operations. An example is shown in Figure 22.

In contrast to the previous examples, the linguistic dimension is displayed with the two

linguistic levels L0 and L1. In the L0 are shown the linguistic types Entity, Connection and

its supertype Clabject. In the L1 the MyPorscheCarrera entity is presented. Ontological

levels are not shown in this example.

Assuming the context is SportsCar, the oclIsTypeOf and oclIsKindOf is invoked with

each of the presented linguistic types as argument. The linguistic perspective is adopted

by invoking “ l ” before. The oclIsTypeOf operation evaluates to true only with the

argument Entity. The oclIsKindOf operation, however, evaluates also to true with the

argument Clabject.

oclAsType

The oclAsType operation is, like the operations oclIsTypeOf and oclIsKindOf, also only

applicable in a two-level window of a deep model representing an ontological domain. The

operation has the same meaning like defined in the OCL specification [31]. This means

that the static type can be changed by this operation while the actual time remains the

same. If the argument not conforms to the actual type, i.e. the oclIsKindOf operation

evaluates to false, OCLInvalid is returned.

With respect to Figure 20, for instance, in all cases in which oclIsKindOf evaluate to

true the oclAsType operation and so a type cast can be accomplished successfully. This
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Figure 22: Example usage of oclIsTypeOf/oclIsKindOf in the linguistic dimension in a
deep OCL dialect.

is illustrated by Listing 12. In this case, the cast to Car shows a supertype cast. A cast to

a subtype cannot be shown yet as the concept of navigation in a deep OCL dialect needs

to be introduced first. Therefore, an example of this case is given in section 3.2.4.

context MyPorscheCarrera

s e l f . oclAsType ( SportsCar ) −− v a l i d

s e l f . oclAsType (Car ) −− v a l i d

s e l f . oclAsType (SUV) −− OCLInvalid

Listing 12: Example of using the operation oclAsType in a deep OCL dialect.

In order to cast to a deep ontological type, an additional operation needs to be intro-

duced for the deep OCL dialect called oclAsDeepType. In accordance to the two-level

case, casting to a deep type only causes a change of the static type while the actual type

stays the same. If the argument not conforms to the actual type, i.e. oclIsDeepKindOf

evaluates to false, OCLInvalid is returned.

Regarding Figure 21, a deep type cast with oclAsDeepType can be conducted in both

cases as SportsCar is a deep kind of both, CarType and VehicleType. Listing 13 shows

how the operation is invoked. It also shows that a deep type cast to SportsCar evaluates

to OCLInvalid. This is because MyPorscheCarrera is not a deep kind of Sportscar, albeit

it is a kind of SportsCar.

context SportsCar

s e l f . oclAsDeepType (CarType ) −− v a l i d

s e l f . oclAsDeepType ( VehicleType ) −− v a l i d

s e l f . oclAsDeepType ( Spor t s car ) −− OCLInvalid

Listing 13: Example of using the operation oclAsDeepType in a deep OCL dialect.
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In compliance to the operations oclIsTypeOf and oclIsKindOf, the oclAsTypeOf oper-

ation can also be used in the linguistic dimension. This is accomplished by first obtaining

the linguistic perspective by “ l ” and then invoking the oclAsType operation.

Respecting Figure 22, this means that in all cases in which “ l .oclIsKindOf” evaluates

to true a type cast can be done, otherwise OCLInvalid is returned. Listing 14 shows the

particular calls of “ l .oclAsType” and its associated results.

context MyPorscheCarrera

s e l f . l . oclAsType ( Entity ) −− v a l i d

s e l f . l . oclAsType ( Clab j ec t ) −− v a l i d

s e l f . l . oclAsType ( Connection ) −− OCLInvalid

Listing 14: Example of using the operation oclAsType in the linguistic dimension in a

deep OCL dialect.

allInstances

The meaning of the allInstances operation needs to be discussed in a deep modeling

environment. By definition, the allInstances operation can be invoked for every element

in a model and it returns a set of all instances of the element and all its subtypes (see

section 2.3.3).

Applying this to a deep OCL dialect with regard to the ontological dimension means

that the allInstances operation returns a set of all instances of a clabject and all its sub-

types the direct level below. Thus, when invoking, for example, allInstances on CarType,

this returns SportsCar and SUV which is shown in Listing 15.

CarType : : a l l I n s t a n c e s ( ) −− SportsCar and SUV

Listing 15: Example of using the operation allInstances referring to the ontological

dimension in a deep OCL dialect.

However, the query of only ontological instances of a clabject might be not enough in a

deep model as every clabject also can have deep ontological instances, which was indicated

in section 3.1.3. Therefore, another operation is introduced for each clabject concerning

the ontological dimension in a deep OCL dialect which is called allDeepInstances. This

operation returns deep instances of a clabject, i.e. the instances of the clabject which are

instantiated on a level which is more than one below the level where the clabject itself was

instantiated. Listing 16, for instance, shows that invoking allDeepInstances on CarType

returns MyPorscheCarrera, MyPorscheBoxster and MyPorscheCayenne which are in the

02 (see Figure 13).
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CarType : : a l lDeep In s tance s ( ) −− Set {MyPorscheCarrera , MyPorscheBoxster ,

MyPorschCayenne}
CarType : : a l lDeep In s tance s (1 ) −− Set {MyPorscheCarrera , MyPorscheBoxster ,

MyPorschCayenne }

Listing 16: Example of using the operation allDeepInstances referring to the ontological

dimension in a deep OCL dialect.

When there are more than three levels in a deep model, a clabject can also have deep

instances over more than one level. Hence, deep instances have a certain degree. So,

for example, MyPorscheCarrera, MyPorscheBoxster and MyPorscheCayenne are deep in-

stances of CarType of degree one. If there would be another ontological level 03 below

02 with deep instances of CarType, these would have a degree of two. This degree can

be passed as argument to the allDeepInstances operation like it is done, for instance, in

the second expression of Listing 16 which have the same meaning like the first expression

in this case. It is also possible to pass two arguments, whereas the first argument spec-

ifies the lower degree and the second argument specifies the upper degree so that deep

instances of the clabject are returned whose degree is within the specified degree range.

Furthermore, the allInstances but not the allDeepInstances operation can be invoked

also on linguistic meta-types. Calling “Clabject::allInstances()”, for example, would re-

turn all clabjects of a whole ontology regardless their ontological level.

3.2.4. Conducting Navigation in Deep Models with OCL

Section 3.1.4 reveals several issues concerning navigation in a deep model a deep OCL

dialect must be aware of. This section aims to solve these issues by specifying how

navigation can be interpreted and applied in a deep OCL dialect.

Navigation Kinds

Figure 16 visualizes the different navigation kinds in the LML which are participant-to-

participant, connection-to-participant and participant-to-connection.

Navigation from a participant of a connection to another participant can be done ei-

ther by referring to the role name of the participation or to the name of the associated

participant. Listing 17 shows both variants when navigating from a CarCompany to an

Employee. But in case the role name is missing, the name of the participant has to be

used in order to navigate.

context CarCompany

s e l f . employs −− Employee

s e l f . Employee −− Employee

Listing 17: Example for a participant-to-participant navigation.
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A connection-to-participant navigation is done like in the participant-to-participant

case either by the role name or the name of the participant. Listing 18 presents these

variants by navigating from Employment to Employee.

context Employment

s e l f . employs −− Employee

s e l f . Employee −− Employee

Listing 18: Example for a connection-to-participant navigation.

A navigation from a participant to its associated connection can be conducted by re-

ferring to the name of the connection. Listing 19 presents an example where a navigation

from the entity CarCompany to the connection Employment is performed.

context CarCompany

s e l f . Employment −− Employment

Listing 19: Example for a participant-to-connection navigation.

Result Types

With respect to the OCL specification [31], navigation can either result in a single model

element or a Set of model elements. In accordance to this, the navigation in a deep OCL

dialect either results in a single clabject or in a Set of clabjects.

The result type of a participant-to-participant and connection-to-participant connec-

tion depends on the multiplicity of the associated participation. If its multiplicity is at

most one, the result conforms to the clabject to which the navigation refers. If the mul-

tiplicity is greater than one, the result type is a Set. Hence, with regard to Figure 16, for

example, a navigation from CarCompany to Employee results in a Employee Set whereas

the navigation from Employment to CarCompany results in a single CarCompany.

When navigating from a participation to a connection, the multiplicities of the other

participations of the navigated connection have to be taken into account. If any of the

other participations has a multiplicity higher than one, the result type is a Set, otherwise

it is a single clabject. A navigation such as the one from CarCompany to Employment

leads to a Set of Employments as the participation from Employment to Employee has a

’*’ multiplicity. As opposed to this, a navigation from Employee to Employment results

in a single Employment as the participation from Employment to BankAccount as well

as the one from Employment to CarCompany has a multiplicity of at most one.

When a navigation is performed over more than one clabject with a multiplicity greater

than one, the result is a Bag.

Type and Instance Facet Navigation

Figure 17 reflects the duality of type and instance facet when navigating in a deep OCL

dialect with an example navigation from SUV to SUVWheel. In the following, it is

described how type and instance facet navigation can be realized in a deep OCL dialect.
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A type facet navigation is done by simply conducting a navigation like for instance the

one from SUV to SUVWheel shown in Listing 20.

context SUV

s e l f . wheels −− Set {SUVWheel}
s e l f . SUVWheel −− Set {SUVWheel}

Listing 20: Example for a type facet navigation.

As mentioned before, the result evaluates to a Set of SUVWheels because the multiplic-

ity is four and thus higher than one. Nevertheless, the result is a Set containing only one

SUVWheel as navigation is done from a type facet point of view in this case and there is

actually only one SUVWheel entity modeled on this level, serving as type for entities the

levels below.

In addition to this type facet, however, the connection between SUV and SUVWheel

forms also an instantiation of the connection between CarType and WheelType the level

above. Taking an instance point of view, a SUV with four SUVWheels is instantiated

here. Therefore, in a deep OCL dialect also an instance facet navigation has to be allowed.

In order to do this, a so called level cast is introduced in the deep OCL dialect. A level

cast enables a clabject to access navigation properties of its types and deep types which

makes instance facet navigation possible. But it is important to consider that a level

cast never changes the actual contextual clabject. Listing 21 shows an example where an

instance facet navigation from SUV to SUVWheel type is done.

context SUV

s e l f . CarType . wheels −− Bag{SUVWheel , SUVWheel , SUVWheel , SUVWheel}
s e l f . CarType .WheelType −− Bag{SUVWheel , SUVWheel , SUVWheel , SUVWheel}

Listing 21: Example for an instance facet navigation.

In this case, a level cast to CarType with the help of the notion “ CarType ” is applied.

In general, the syntax of a level cast consists of a clabject name surrounded by ’ ’ (see

defintion 1). The instance facet navigation in this example evaluates to a Bag of four

SUVWheel entities.

Definition 1 <level cast> ::= ’ ’ <ClabjectName> ’ ’

In respect of section 3.1.4 and the example in Figure 18, the question arose how naviga-

tion from a SportsCar to all its wheels can be done. In this case, two instantiations of the

connection between CarType and WheelType exist which also have different role names

(frontWheels and rearWheels). Now, this can be answered with the help of the level cast

construct and an accompanying instance facet navigation. In Listing 22, for example,

the first instance facet navigation from SportsCar results in a Bag of two NarrowWheels

and two BroadWheels. In the second expression only the NarrowWheels of this Bag are

selected and thus the result is a Bag of two NarrowWheels.
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context SportsCar

s e l f . CarType . wheels −− Bag{NarrowWheel , NarrowWheel , BroadWheel ,

BroadWheel}
s e l f . CarType . wheels−>s e l e c t ( a | a=NarrowWheel ) −− Bag{NarrowWheel ,

NarrowWheel}

Listing 22: Examples for a instance facet navigation having two instantiations of a

connection.

It has to be regarded that the result in the expressions in Listing 21 and Listing 22 are

Bags, not Sets. Although the simple navigation from CarType to its wheels would result

in a Set, in these cases it results in a Bag. This is because an instance facet navigation

is used here which could return identical clabjects such as 2 NarrowWheels in Listing 18.

This requires a Bag as this collection type can store identical elements. Thus, the result

of an instance facet navigation in a deep OCL dialect is always a Bag if the multiplicity

of the opposite participation is bigger than one.

In Listing 23 the context is set to an instance of SportsCar which is MyPorscheCarrera

in this case (see visualization in Figure 13). MyPorscheCarrera has four wheels which are

FrontLeft, FrontRight, RearLeft and RearRight. The connection between MyPorscheCar-

rera and FrontLeft respectively FrontRight is an instantiation of the connection between

SportsCar and NarrowWheel, whereas the connection between MyPorscheCarrera and

RearLeft respectively RearRight is an instantiation of the connection between SportsCar

and BroadWheel. Listing 23 contains two instance facet navigations. The first one enables

to retrieve the two front wheels which are FrontLeft and FrontRight. The second shows

a level cast to the deep type CarType and returns all four wheels of MyPorscheBoxster.

context MyPorscheCarrera

s e l f . Sport sCar . f r on t −−Bag{FrontLeft , FrontRight }
s e l f . CarType . wheels −− Bag{FrontLeft , FrontRight , RearLeft , RearRight}

Listing 23: Another example for an useful instance facet navigation.

In the following, the application of a type cast and another usage of level cast is pre-

sented when conducting an instance facet navigation. Figure 23 shows the association

between CarCompany and Car on the ontological level O1. According to this, a CarCom-

pany can produce multiple Cars. In the O2 Car, CarCompany and its connection are

instantiated. In this level, Porsche relates to MyPorscheCarrera, MyPorscheBoxster and

MyPorscheCayenne.

Assuming the context is Porsche, Listing 24 presents different OCL expressions in a

deep OCL dialect using instance facet navigation which are described hereafter. The first

expression simply returns all Cars of the 02 produced by Porsche which are MyPorscheCar-

rera, MyPorscheBoxter and MyPorscheCayenne. In the second expression only those Cars

of kind SportsCar are selected which are MyPorscheCarrera and MyPorscheBoxster. The
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Figure 23: Association between a CarCompany and Cars

third expression accesses the acceleration attribute defined in SportsCar in the O1. How-

ever, this is not possible as the static type in this case is Car which does not have an ac-

celeration attribute. Therefore, in the fourth expression a type cast is done which changes

the static type to SportsCar and thus enables accessing the acceleration attribute. As the

prior select statement ensures that the actual type is SportsCar, this expression delivers a

result (and so not OCLInvalid) which is a Bag containing 3.8 and 5. The fifth expression

makes use of a select expression which delivers a Bag containing only the specific clabject

MyPorscheCayenne. In the next expression, the personalSUVRank attribute is accessed

which was defined just in MyPorscheCayenne resided in the O2. This is not valid as

the static type Car does not have any attribute called personalSUVRank. In order to

overcome this problem, in the last expression a level cast from Car to MyPorscheCayenne

is conducted enabling the access to the personalSUVRank attribute. Because the actual

clabject resulting from the select statement is MyPorscheCayenne, a result is delivered

(and so not OCLInvalid) which is a Bag containing 1. This expression highlights that a

level cast not only allows static casting to clabjects which are types or deep types, but

also to clabjects which are instances and deep instances of the current clabject.
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context Porsche

s e l f . CarCompany . produces −− (1) Bag{MyPorscheCarrera , MyPorscheBoxster ,

MyPorscheCayenne}
s e l f . CarCompany . produces−>s e l e c t ( oc l I sKindOf ( SportsCar ) ) −− (2) Bag{

MyPorscheCarrera , MyPorscheBoxster}
s e l f . CarCompany . produces−>s e l e c t ( oc l I sKindOf ( SportsCar ) ) . a c c e l e r a t i o n −−

(3) not p o s s i b l e

s e l f . CarCompany . produces−>s e l e c t ( oc l I sKindOf ( SportsCar ) ) . oclAsType (

SportsCar ) . a c c e l e r a t i o n −− (4) Bag {3 .8 , 5}
s e l f . CarCompany . produces−>s e l e c t ( a | a=MyPorscheCayenne ) −− (5) Bag{

MyPorscheCayenne}
s e l f . CarCompany . produces−>s e l e c t ( a | a=MyPorscheCayenne ) . personalSUVRank −−

(6) not p o s s i b l e

s e l f . CarCompany . produces−>s e l e c t ( a | a=MyPorscheCayenne ) . MyPorscheCayenne

. personalSUVRank −− (7) Bag{1}

Listing 24: Different Examples for an instance facet navigation.

3.2.5. Retrieving Attribute Values

In section 3.1.5 the ambiguity when retrieving values of clabject attributes concerning the

ontological and linguistic dimension was indicated. Referring to the example in Figure

19, this means that despite the fact that the datatype of the acceleration attribute of

the SportsCar entity is defined as Real (ontological definition), the value of a clabject

attribute in general is defined as String in the PLM (linguistic definition).

The deep OCL dialect considers this ambiguity and evaluates to the ontological specified

datatype when taking in an ontological perspective and to a String when taking in a

linguistic perspective.

Listing 25 presents an example where an ontological attribute value is accessed. As the

acceleration attribute is defined as Real the expression returns a value of type Real which

is 5 in this case.

context SportsCar

s e l f . a c c e l e r a t i o n −− 5

s e l f . a c c e l e r a t i o n + 2 .3 −− 7.3

Listing 25: Examples of accessing an ontological attribute value.

A deep OCL dialect also enables to invoke all operations which are specified for the

basic primitive datatypes (see Figure 8). Therefore, for instance, the ’+’ operation for

adding another value to the acceleration attribute can be used like this is the case in the

second expression of Listing 25.

In Listing 26 the attribute acceleration is accessed via the linguistic dimension. Hereby,

the expression evaluates to a String which is in accordance with the specification of an
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attribute value in the PLM. Therefore, for example, the ’+’ operation cannot be invoked

but the concat operation which is defined for the String datatype.

context SportsCar

s e l f . l . g e tA l lA t t r i bu t e s ( )−>any (name= ‘ ‘ a c c e l e r a t i o n ’ ’ ) . va lue −− ‘ ‘ 5 ’ ’

s e l f . l . g e tA l lA t t r i bu t e s ( )−>any (name= ‘ ‘ a c c e l e r a t i o n ’ ’ ) . va lue + 2 .3 −− not

v a l i d

s e l f . l . g e tA l lA t t r i bu t e s ( )−>any (name= ‘ ‘ a c c e l e r a t i o n ’ ’ ) . va lue . concat ( ‘ ‘ t e s t

’ ’ ) −− ‘ ‘5 t e s t ’ ’

Listing 26: Examples of accessing a linguistic attribute value.

3.3. Requirements for the Definition and Validation of OCL

Constraints in a Deep OCL Dialect

Besides its purpose as a query language for model elements and their properties, another

important aspect of OCL is to specify constraints (see also 2.3.1). Constraints are based on

OCL expressions and “ when the value of an expression is of Boolean type, it may be used

as constraint” [39]. OCL enables specifying constraints for model elements (invariants)

but also for their operations (pre- and postconditions). With respect to the scope of this

thesis, the focus is placed on invariants.

The specification of OCL is mainly designed for the definition and validation of con-

straints in a two-level modeling environment. Therefore, a specification for a deep OCL

dialect has to be elaborated which defines how definition and validation of constraints are

interpreted and applied in a deep modeling context.

With respect to Warmer and Kleppe [39], constraints which are set on model elements

on the level Mn affect elements on the Mn−1. Regarding invariants in particular, the

OCL specification [31] states that an invariant is referred to a type and must be true for

all instances of this type at any time. Thus, constraints are set on the type level and

validated on the instance level in two-level models.

In a deep model, however, there can be more than two levels which means that there is

no type and instance level like in the two-level case. Therefore, a deep OCL dialect has

to define where in deep models constraints can be specified.

Moreover, the principle of Deep Characterization has to be taken into account when

validating constraints in deep models. Deep Characterization refers to the fact that model

elements in a deep model not only control instances the level below but also elements

further levels below. Hence, the question arises which effect Deep Characterization has

on the validation of constraints in a deep modeling environment. With respect to this, a

deep OCL dialect has to specify on which respectively over how many levels constraints

are checked in deep models.
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Figure 24: Definitions of constraints in a deep model.

3.4. Proposals for the Definition and Validation of OCL Constraints

in a Deep OCL Dialect

This section develops a specification for the definition and validation of constraints in a

deep OCL dialect. Thereby, the requirements regarding deep model features which were

elaborated in the previous chapter are considered.

3.4.1. Definition of Constraints

In a two-level model, constraints are specified on the type level and validated on the

instance level. As a deep model can contain more levels then just a type and instance

level, a deep OCL dialect has to clarify where constraints can be defined in a deep model.

Each level of a deep model consists of clabjects which have an instance and type facet.

Referring to the two-level based OCL specification [31] which amount that constraints are

set for types, it is decided that on every clabject in the model constraints can be defined

as clabjects always can be perceived as types. In essence, this means that constraints can

be specified on every level for every clabject in a deep OCL dialect.

Figure 24 shows the entity InfoType which is instantiated over two ontological levels.

Instances respectively deep instances of InfoType are NarrowWheelInfo and FrontLeftInfo

which are also shown here. InfoType has an attribute quality which has a durability of

two and therefore is present in instances the direct level below and one further level below.

The example illustrates that an invariant can be set for this attribute regardless at which

level the holding clabject resides.

In the next section, it is discussed at which levels and over how many levels constraints

are validated and how redefinitions of constraints like in Figure 24 are interpreted.
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Figure 25: Examples of potency and potency ranges for invariants in a deep OCL dialect.

3.4.2. Validation of Constraints

Constraints in a two-level model are validated on the instances of the instance level. A

deep model, however, can consist of more than two levels and because of this there exists

no instance level in particular like in the two-level modeling approach.

As clabjects always have an instance facet in addition to the type facet (except those

in O0), constraints can be checked on every clabject and thus on every level in a deep

OCL dialect.

In deep models, clabjects can be instantiated over multiple levels. Hence, a deep OCL

dialect has to specify over how many levels a constraint should be validated. This can be

referred to as a deep validation of constraints.

A possible approach can be to define potencies or potency ranges for constraints on

clabjects. Figure 25 shows the application of this concept with different examples.

In the first example, the potency of the invariant is 0 so that this invariant is only

checked for the InfoType and its subtype SubInfoType. As the quality is 20, the invariant

is not fulfilled so that this clabject and its subtype are not valid in this case. The second

example has an invariant of potency 2 so that this invariant is validated for all deep
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Figure 26: Example of the evaluation of a redefined invariant in a deep OCL dialect.

instances of InfoType two levels below which is in this example FrontLeftInfo. It has a

quality of 50 and so the invariant is fulfilled for this clabject. In the third example, a

potency range from 1 to 2 is specified for the invariant. This means that the invariant is

checked for the instances the level below and the deep instances two levels below. In this

case, the invariants are fulfilled and therefore the instantiated clabjects are considered to

be valid. The last example uses the complete range so that the invariant is checked for

the clabject itself where the invariant was defined and on all its instantiations and deep

instantiations.

In general, the potency respectively the upper potency of a constraint must neither

exceed the potency of the clabject where it is defined nor the durability of any property

of a clabject which is used in the constraint. If no potency or potency range is given, the

constraint is validated for the clabject where it is defined and all its instances and deep

instances if it has any. This is the same behavior like the example 4 in Figure 25.

The previous section has shown that constraints can be redefined in a deep OCL dialect.

With respect to this, it holds that if two constraints concern the same property of a

clabject the constraint is validated which was defined on a higher ontological level. This

is illustrated in Figure 26. In this case, the invariant for the quality attribute which is

set for InfoType is checked for InfoType and NarrowWheelInfo. As it is redefined for

FrontLeftInfo, however, it is not checked for this clabject. Instead of this, the redefined

invariant is validated.
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The major goal of this thesis was to enrich the Melanee workbench (see section 2.6)

with an interactive level-agnostic OCL console which enables live queries on LML models

adhering to a deep OCL dialect presented in the previous chapter.

Therefore, an Eclipse plug-in was developed, i.e. org.melanee.ocl.service, which defines

2 extensions. These are listed in the plugin.xml file of this plug-in which is shown in Listing

27. The first extension, specified from line 4 to 10, provides the core of Melanee with an

OCL service which enables to evaluate OCL expressions based on a deep OCL dialect.

The second extension, specified from line 11 to 17, makes use of the first extension and

builds the underlying implementation of the aforementioned level-agnostic OCL console.

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <? e c l i p s e version=” 3 .4 ”?>

3 <plug in>

4 <extens i on

5 po int=”org . melanee . core . c on s t ra in t l anguage . s e r v i c e ”>

6 <s e r v i c e

7 c l a s s=”org . melanee . o c l . s e r v i c e . OCLService”

8 id=”org . melanee . o c l . s e r v i c e ”>

9 </ s e r v i c e>

10 </ extens i on>

11 <extens i on

12 po int=”org . e c l i p s e . u i . c on so l e . c on s o l eFa c t o r i e s ”>

13 <conso l eFactory

14 c l a s s=”org . melanee . o c l . s e r v i c e . c on so l e . c on s o l eFa c t o r i e s .

LMLOCLConsoleFactory”

15 l a b e l=”LML OCL”>

16 </ conso l eFactory>

17 </ extens i on>

18

19 </ p lug in>

Listing 27: Plugin.xml file of the org.melanee.ocl.service plug-in.

In the following, first the usage of this console within Melanee is described. After this its

implementation is explained. Then the implementation of the underlying OCL service is

presented. In the end, the current state of another plug-in, the org.melanee.validation.service,

is briefly addressed as it also makes use of the OCL service. This plug-in aims to enable

the validation of specified constraints in a LML model.

4.1. Usage of the Level-agnostic OCL Console in Melanee

Figure 27 shows a screenshot of an example usage of the level-agnostic OCL console within

Melanee.
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Figure 27: Screenshot of the usage of the level-agnostic OCL console within Melanee.
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Figure 28: Necessary classes for the level-agnostic OCL console implementation.

The console can be selected from a list of available consoles. In the screenshot, the list

is displayed in the bottom right corner. When the console was selected, the console page

is shown, which contains an output field at the top and an input field at the bottom.

After the selection of a context element in the LML diagram, an OCL expression can be

entered in the input field of the console page. In order to help users in the creation of a

syntactic and semantic correct expression, a content assistant was implemented which is

also shown in the screenshot. The results of the evaluation of an expression are presented

in the upper field of the console page, the output field, to the user. A detailed user manual

of the level-agnostic OCL console can be found in the Appendix.

4.2. Implementation of the Level-agnostic OCL Console

In order to implement the level-agnostic OCL console, basically three classes are necessary.

These and their interplay are visualized in Figure 28.
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The starting point for the level-agnostic OCL console implementation is the LMLO-

CLConsoleFactory class which implements the IConsoleFactory interface. Implementing

this interface, the class serves as a console factory extension by extending the extension

point org.eclipse.ui.console.consoleFactories (see also Listing 27). This extension is shown

in the menu of the console view displayed in the bottom right corner of the screenshot

in Figure 27. Moreover, it is responsible for opening a console in the console view by

invoking the openConsole method.

The console is implemented by the LMLOCLConsole class. It extends the Abstract-

Console class which implements the IConsole interface. This interface encompasses a

createPage method which returns a new page (i.e IPageBookViewPage) for this console.

Hereafter, the page is presented in the given console view.

The LMLOCLConsolePage class forms a implementation for a console page. It is

a subclass of the class Page which implements the IPageBookViewPage interface. By

providing, for example, an ISelectionListener which listens whether a new context element

was selected and a InputKeyListener which helps to register when the user is typing in the

input field of the console, the LMLOCLConsolePage class manages user interactions. For

example, it is recognized when the enter button is pressed which leads to an evaluation

of the specified expression whose result is displayed in the output field of the console.

4.3. Implementation of the OCL Service

The OCLService class provides an extension for the org.melanee.core.constraintlanguage.service

extension point, listed in Listing 27. It implements the IConstraintLanguageService and

thus has to provide two evaluate methods. The definitions of these methods in the ICon-

straintLanguageService interface are presented in Listing 28.
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1 public interface IConstra intLanguageServ ice {
2

3 /∗∗
4 ∗ Eva lua tes an expre s s i on in a con s t r a i n t language

5 ∗
6 ∗ @param con tex t the c l a b j e c t on which the expre s s i on i s e va l ua t ed

7 ∗ @param expre s s i on the expre s s i on to e va l ua t e

8 ∗
9 ∗ @return The r e s u l t o f the e va l ua t i on

10 ∗/
11 public Object eva luate ( C lab j ec t context , S t r ing expr e s s i on ) throws

Exception ;

12

13 /∗∗
14 ∗
15 ∗ @param de f i n i t i onCon t e x t the con t ex t on which the expre s s i on i s

de f ined ( e . g . i f an in va r i an t i s de f ined on a h i gher l e v e l )

16 ∗ @param con tex t the c l a b j e c t on which the expre s s i on i s e va l ua t ed

17 ∗ @param expre s s i on the expre s s i on to e va l ua t e

18 ∗
19 ∗ @return The r e s u l t o f the e va l ua t i on

20 ∗/
21 public Object eva luate ( C lab j ec t de f in i t i onContex t , C lab j ec t context

, S t r ing exp r e s s i on ) throws Exception ;

22

23 }

Listing 28: The IConstraintLanguageService interface.

The first evaluate method has two arguments and evaluates an OCL expression on a

given contextual clabject. The second one has three arguments and evaluates an OCL

expression, which was defined on another definition contextual clabject, on a given con-

textual clabject. This method is useful, for instance, when a constraint is defined on a

higher level clabject than the given contextual clabject.

The evaluation in the aforementioned methods is done by using the API for parsing

and evaluating OCL expressions provided by Eclipse OCL Project, which was described

in section 2.5.3. The API is presented in Figure 29.

The central element and entry point of the API is the OCL class. It encompasses an

Environment and an EvaluationEnvironment which are created by an EnvironmentFac-

tory.

The Environment, for example, stores variables which are created during the evaluation

of an OCL expression and maintains the selected context element. The implemented

LMLEnvironment class is an environment adapted to the features of LML. It extends the

AbstractEnvironment class which implements the Environment interface.
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Figure 29: Eclipse OCL API for parsing and evaluating OCL expressions.

The EvaluationEnvironment manages the current values of variables and also enables

navigation to property values or associations. The LMLEvaluationEnvironment class is

a LML specific implementation of the AbstractEvaluationEnvironment class which imple-

ments the EvaluationEnvironment interface.

The LMLEnvironmentFactory is a concrete implementation of the AbstractEnviron-

mentFactory which implements the EnvironmentFactory. It enables the creation of the

described environments, the LMLEnvironment and the LMLEvaluationEnvironment.

The OCLHelper API is mainly designed for parsing OCL expressions whereas the inten-

tion of the Query API is to evaluate these parsed OCL expressions. Listing 29 indicates

how the parsing and evaluation of an expression is done in the evaluate method of the

OCLService class.

1 public class OCLService implements IConstra intLanguageServ ice {
2 private OCL<EPackage , EObject , EObject , EObject , Enumeration , EObject ,

EObject , Cal lOperat ionAction , SendSignalAction , Constra int , EObject ,

EObject> o c l ;

3 OCLHelper<EObject , EObject , EObject , Constra int> he lpe r ;

4 /∗∗
5 ∗ Constructor

6 ∗/
7 public OCLService ( ) {
8 o c l = OCL. newInstance (new LMLEnvironmentFactory ( ) ) ;

9 he lpe r = oc l . createOCLHelper ( ) ;

10 }
11 @Override

12 public Object eva luate ( C lab j ec t context , S t r ing expr e s s i on ) throws

Exception {
13 return eva luate (null , context , exp r e s s i on ) ;
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14 }
15 @Override

16 public Object eva luate ( C lab j ec t de f in i t i onContex t , C lab j ec t context

, S t r ing expr e s s i on ) throws Exception {
17 . . .

18 he lpe r . setContext ( context ) ;

19 OCLExpression<EObject> parsed = he lpe r . createQuery ( exp r e s s i on ) ;

20 Query<EObject , EObject , EObject> query = oc l . createQuery ( parsed ) ;

21 return query . eva luate ( context ) ;

22 }
23 }

Listing 29: Parsing and evaluation of OCL expressions in the evaluate method of the

OCLService class.

At first, an OCL environment is produced in the constructor of the class in line 11 which

is suitable for parsing and evaluating OCL expressions on a LML model. In the next line,

a helper object is created. This helper object is needed in the evaluate method in order

to parse the OCL expression. After the contextual clabject for the helper is set in line 21,

the given expression is parsed in line 22. Hereby, the createQuery method of the helper

can throw a ParserExeption in case of syntactic or semantic errors in the expression.

If the parsing succeeds, an OCLExpression is returned. As described in section 2.3.2,

this is the basic class for all OCL expressions like visualized in Figure 5. During the

implementation, all of these expressions which are represented by abstract classes (e.g.

IFExp, PropertyCallExp, IteratorExp etc.) in the Eclipse OCL API as well as OCL types

(e.g. AnyType, SetType etc.) visualized in Figure 4 were extended and adapted to the

deep modeling environment so that they support the linguistic and ontological dimension

and are multi-level aware. Afterwards, a query object is built in line 23 by passing the

parsed OCLExpression. In line 24, the query object evaluates the OCLExpression on the

contextual clabject by utilizing internally the LMLEvaluationEnvironment and the result

is finally returned.

4.4. The Deep OCL Validation Service

The deep OCL validation service is another plug-in for Melanee which allows the validation

of constraints in a LML model. It makes use of the org.melanee.core.constraintlanguage.service

extension point by using the evaluate method of the IConstraintLanguageService interface

which has three arguments. As constraints are based on OCL expressions, the evaluate

method is used here to evaluate the result of the expression on a given contextual clabject

and thus checks if the constraint is fulfilled. The other contextual clabject which is passed

in the method is the clabject for which the constraint was defined.
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Figure 30: Example usage of the deep OCL validation service in Melanee.

The work on this plug-in is still in progress and the proposals made in section 3.4 has

to be taken into account in the implementation. However, the plug-in already offers some

functionality so that invariants can be defined for clabjects which are validated on them

and its instances as well as its deep instances.

Figure 30 shows a screenshot displaying how invariants currently can be set for clabjects

and how they can be validated in Melanee. In this example, the invariant “self.quality>20”

is set for the entity InfoType. The definition of the invariant is done in the property view

which is placed at the bottom in this example. In order to validate invariants of the LML

diagram, the edit menu has to be opened which can be found in the upper left corner in

Figure 30. In this menu, the menu point validate can be clicked invoking the validation

of invariants. If clabjects are not valid, this is visualized by a red sign in the according

clabject visualization. For instance, the InfoType clabject is not valid because its quality

is not greater than 20. Nevertheless, the NarrowWheelInfo clabject is a valid instance of

InfoType because the quality is 50 and thus greater than 20.
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5. Evaluation of the Level-Agnostic OCL Console

This chapter presents the evaluation of the implemented level-agnostic OCL console. The

evaluation is done with the help of the well known Royal and Loyal example introduced

by Warmer and Kleppe [39] which is used by them to explain the OCL.

The ontology of this example only consists of one level and because of this the ontology

is extended to three ontological levels in order to have a deep model available for the

evaluation. The whole ontology, modeled in LML with the help of Melanee, is shown in

Figure 31, whereas the original Royal and Loyal example resides in the O1. In comparison

to the original example, the utility class Date, the enumeration Color, all attributes of

type Date or Color and all operations are omitted. Furthermore, the role name levels has

no ordered annotation as this is not supported in Melanee yet. Due to the lack of space

regarding the name of clabjects, the instance of relationships between clabjects in the O1

and the ones in O0 are visualized by dotted lines and not by a ’:’ after the clabject name.

In chapter 2 of [39], OCL constructs like invariants, pre- and postconditions, initial

values etc. are explained with the help of example expressions referring to the Royal and

Loyal model. The majority of these expressions are entered in the implemented level-

agnostic OCL console while referring to clabjects of the LML diagram in Figure 31 as

context.

Taking in the two-level viewpoint of the original model, all of the example expressions

chosen by Warmer and Kleppe [39] are intended to be evaluated on the instances of the

contextual types where they are defined. Because of this when querying these expressions

with the help of the level-agnostic OCL console, in most of the cases the context is set

to clabjects which are concrete instantiations, resided in the O2, of the original contexts

specified in the book.

Taking in a multi-level perspective, however, the deep OCL dialect supports the evalua-

tion of OCL expressions also on the type facet of clabjects as described in 3.2.1. Therefore,

in some examples the context of the expression evaluation is also set to the original con-

text given in the book. The main focus of the Royal and Loyal example lies on association

between model elements and how navigation is done via OCL which provides an ideal way

to test the concept of navigation in a deep OCL dialect (see section 3.2.4) with the help

of the level-agnostic OCL console.

As the adapted expressions created by Warmer and Kleppe do not cover a full evaluation

of the deep OCL dialect, additional expressions where entered in the level-agnostic console

in order to analyze other deep OCL characteristics.
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Figure 31: The Royal and Loyal example [39] extended to three ontological levels.
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5.1. Evaluation of Example Expressions

In this section, example OCL expressions are queried on clabjects of the extended Royal

and Loyal example, visualized in Figure 31, with the help of the level-agnostic OCL

console. Their results are interpreted regarding the capabilities and peculiarities of the

deep OCL dialect which are discussed in chapter 3. At first, expressions adapted from

Warmer and Kleppe [39] are used. In the second part, additional expressions are created

and evaluated.

5.1.1. Adapted Expressions

The first expression inspired by the book which is entered in the input field of the imple-

mented console is listed in Listing 30. The expression concatenates the title and name

of a Customer instance navigated from a CustomerCard instance. The context is set to

the clabject CC1, an instance of the CustomerCard located in O1. As a navigation is

performed and thus an instance facet navigation (see 3.2.4) needs to be done, the original

expression is slightly modified by applying a level cast from CC1 to CustomerCard. The

navigation results in C1 and the whole expression evaluates to “Mrs. Smith” which is

the expected result. In this example, the concat method of the primitive type String is

successfully used.

context CC1

CustomerCard . owner . t i t l e . concat ( ’ ’ ) . concat ( CustomerCard . owner . name) −−
‘ ‘Mrs . Smith ’ ’

Listing 30: Concatenate owner information of CC1.

As the Customer clabject in O1 already holds values for the name and title attributes,

the evaluation of the previous discussed OCL expression can also be done in the context

of the CustomerCard. This is shown in Listing 31. In contrast to the previous expression,

in this expression a type facet navigation is performed. Executing the query, the correct

result in the output field of the console, which is “Mr. Miller”, is displayed. This also

shows that the direct evaluation of OCL expressions on contextual clabjects enables the

access to values of attributes which are just defined for a clabject like name and title in

this case.

context CustomerCard

owner . t i t l e . concat ( ’ ’ ) . concat ( owner . name) −− ‘ ‘Mr. Mi l l e r ’ ’

Listing 31: Concatenate owner information of CustomerCard.

Listing 32 presents the next expression which is evaluated within the level-agnostic

OCL console. The original expression created by Warmer et al. [39] is used to define the

body of an operation for instances of a LoyaltyProgram. Hence, the context is set to LP1

which is an actual instance of the LoyaltyProgram. In the expression, a navigation from
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a LoyaltyProgram over its ProgramPartners to their Services is conducted. In order to

perform the navigation from LP1, an instance facet navigation is done with the help of

a level cast to LoyaltyProgram. The navigation in this example results in a Bag of two

S1 and one S2. Applying the asSet operation works and transforms the collection from a

Bag to a Set, containing one S1 and one S2.

context LP1

LoyaltyProgram . par tne r s . d e l i v e r edS e r v i c e s−>asSet ( ) −− Set {S1 , S2}

Listing 32: Get all services of partners for LP1.

In contrast to Listing 32, in Listing 33 the context is set to LoyaltyProgram and the

original expression without a level cast is queried in the console’s input field. In this case,

a type facet navigation is perfomed. The result of the navigation is again a Bag and the

result of the whole query is a Set, including the Service clabject.

context LoyaltyProgram

par tne r s . d e l i v e r edS e r v i c e s−>asSet ( ) −−Set { Serv i c e }

Listing 33: Get all services of partners for LoyaltyProgram.

The next expression is used in the book to define a body of another operation for

instances of LoyaltyProgram. Moreover, an argument of the type ProgramPartner is

passed to define the operation body. In order to evaluate the expression within the

implemented console, the context is set to LP1 and the argument of type ProgramPartner

is represented by PP2 which is an instance of ProgramPartner. The expression itself is

an if-then-else expression and is shown in Listing 34. The original expression of the book

should deliver a Set of services provided by the passed ProgramPartner if it is included in

the contextual LoyaltyProgram. If it is not included, the result should be an empty Set.

As an instance facet navigation is conducted here, however, the result type is expected

to be a Bag and not a Set, like it is specified in 3.2.4. After typing the expression in the

console’s input field and evaluating it, the output of the console presents a Bag including

S1 and S2 which is the expected result of this example. Additionally, the if-then-else

expression and also the includes operation for collections is successfully applied here.

context LP1

i f LoyaltyProgram . partners−>i n c l ud e s (PP2)

then PP2 . ProgramPartner . d e l i v e r e dS e r v i c e s

else Bag{}
endif −− Bag{S1 , S2}

Listing 34: Get services of a partner if it is included in LP1.

In the next example in Listing 35, the context is an instance of LoyaltyAccount which

is LA1 here. The expression collects the values of the attribute amount of all transactions

of LA1 and builds its sum. The iteration operation collect is implicitly and the collection

59



5. Evaluation of the Level-Agnostic OCL Console

operation sum is explicitly used here. Querying this expression with the level-agnostic

OCL console results in 90.75 which is the expected result. Furthermore, the example

shows that the amount attribute is correctly treated as a Real type.

context LA1

LoyaltyAccount . t r an s a c t i on s . amount−>sum( ) −− 90.75

Listing 35: Add up the amount of the transactions of LP1.

Another expression inspired by Warmer and Kleppe [39] is shown in Listing 36. It

should return all available services for a specific level, selected by a given level name, of

an instance of LoyaltyProgram. The level name “Medium” is chosen and the context is

set to LP1. The output field of the console presents the correct result which is a Bag

including S1 and S2. Moreover, in this example the iteration operation select is utilized

which works as expected.

context LP1

LoyaltyProgram . l e v e l s−>s e l e c t (name= ‘ ‘Medium ’ ’ ) . a v a i l a b l e S e r v i c e s −− Bag{
S1 , S2}

Listing 36: Get services of available services of LP1 by selecting level name.

Listing 37 shows an OCL expression which checks if the age of the Customer instance

C1 is greater than or equal to 18. After evaluating this expression, the console displays

the correct result which is true in this case as the age of C1 is 32. The age attribute is

correctly interpreted as an Integer and also the >= operation for the Integer type works

properly.

context C1

age >=18 −− t rue

Listing 37: Check age of C1.

The expression in Listing 38 is quite similar to the one of the previous example but this

time the context is set to an instance of CustomerCard which is CC1 in this example.

The expression checks if the owner of the card is 18 or older than 18. A prerequisite for

this check is that the navigation results in a single clabject and not in a collection. In this

case, like specified in 3.2.4, the navigation results in a single clabject which is C1 here

because the multiplicity of the connection between CustomerCard and Customer is one.

The whole expression evaluates to true as the owner of CC1, who is C1, is 32.

context CC1

CustomerCard . owner . age >=18 −− t rue

Listing 38: Check age of owner of CC1.

In the next expression presented in Listing 39 it is verified if the levels of LP1 are

including all the levels of the memberships where LP1 is involved. In this example, two
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navigations are used which are presented in the second and the third expression of the

Listing. The second navigation results in a Bag including SL1 as well as SL2 and the

third one results in a Bag containing only SL2. The result of the first expression shown

in the console’s output is true which is the expected result as the Bag containing SL1 and

SL2 includes SL2 which is the only clabject in the bag resulted from the third expression.

This example shows a successful application of a navigation over a connection adhering

to the deep OCL dialect and the use of the collection operation includesAll within the

level-agnostic OCL console.

context LP1

LoyaltyProgram . l e v e l s−>i n c l ud e sA l l ( LoyaltyProgram . Membership .

cu r r entLeve l ) −− t rue

LoyaltyProgram . l e v e l s −− Bag{SL1 , SL2}
LoyaltyProgram . Membership . cur r entLeve l −− Bag{SL2}

Listing 39: Check if levels of LP1 are including all levels of memberships where LP1 is

involved.

Listing 40 presents an expression where the contextual clabject is the connection MS1,

an instance of Membership. In this example two kinds of navigations are conducted. One

from the connection to one of its participants (“ Membership .participants”) and one to

another clabject over another connection (“ Membership .card”). The expression should

check if the cards of the participants of MS1 include the card of MS1. The result visualized

in the console’s output field is true which is the expected value. Hence, navigation from

a connection works properly with the help of the level-agnostic console in this example.

context MS1

Membership . p a r t i c i p an t s . cards−>i n c l ud e s ( Membership . card ) −− t rue

Listing 40: Check if cards of participants of MS1 include the card of MS1.

The expression in Listing 41 should return the size of the delivered services of partners

of LP1. As described already before in this section, the result of the navigation over

partners to delivered services is a Bag containing two S1 clabjects and one S2 clabject.

The result of the size operation is 3 which is the correct value in this case.

context LP1

LoyaltyProgram . par tne r s . d e l i v e r edS e r v i c e s−>s i z e ( )

Listing 41: Get size of services of partners of LP1.

The next expression shown in Listing 42 is a bit more extensive. In essence, it checks

that when all delivered services of partners of LP1 have neither points earned nor points

burned, then this implies that its membership must have no account. In this example,

three different OCL operations are tested in the implemented console which are the it-

eration operation forAll, the collection operation isEmpty and the operation implies for
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the type Boolean. All of these operations are successfully applied here. The result of

the full expression is true which is the expected result as both services resulting from the

navigation, S1 and S2, contain either points earned or points burned.

context LP1

LoyaltyProgram . par tne r s . d e l i v e r edS e r v i c e s−>f o rA l l ( pointsEarned=0 and

pointsBurned=0) implies LoyaltyProgram . Membership . account−>isEmpty ( )

−− t rue

Listing 42: Check that membership has no account when services of partners of LP1 have

no earned and burned points.

The next example expression inspired by Warmer and Kleppe [39] shown in Listing 43

cannot be executed within the console because it invokes the first operation on a Bag

which is not possible as it is not ordered. In the original Royal and Loyal example the

navigation to levels from a LoyaltyProgram is meant to result in an ordered collection

indicated by the ordered annotation. Concerning the LML diagram in Figure 31 , however,

the result of the navigation in this example is a Bag and not a Sequence as the ordered

annotation is not supported yet in Melanee.

context LP1

LoyaltyProgram . l e v e l s−> f i r s t ( ) . name = ‘ ‘ S i l v e r ’ ’ −− throws

ParserExcept ion

Listing 43: Calling the first operation for collections.

In Listing 44, the context is set to an instance of ProgramPartner which is PP2 in this

example. In the first expression, the points of all transactions created by the services of

PP2 are accumulated without regarding the type of the transaction. The level-agnostic

console presents 170 as result in its output field, which is the correct sum of the trans-

actions E1 and B1. In contrast to the first expression, the second expression in Listing

44 selects those transactions which are instances of the clabject Earning. In this case, a

select statement in combination with the oclIsTypeOf operation is successfully applied.

The result is 50 which is correct as this is the amount of points of the only instance of

Earning which is E1.

context PP2

ProgramPartner . d e l i v e r e dS e r v i c e s . t r an s a c t i on s . po ints−>sum( ) −− 80

ProgramPartner . d e l i v e r e dS e r v i c e s . t r an sac t i on s−>s e l e c t ( oclIsTypeOf ( Earning

) ) . po ints−>sum( ) −−50

Listing 44: Get points for transactions of services delivered by PP2.

5.1.2. Additional Expressions

In deep models there exists another dimension in addition to the ontological one, the

linguistic dimension. This dimension respectively its properties can be accessed in a deep
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OCL dialect (see section 3.2.2). Listing 45 shows two expressions accessing linguistic

properties of the clabject Service. These expressions are queried within the level-agnostic

OCL console and the correct results are returned. The result of the first expression is 1

which is the actual potency of Service. The second query returns all linguistic attributes

of Service.

context Se rv i c e

l . potency −− 1

l . g e tA l lA t t r i bu t e s ( ) −− Set {pointsBurned , d e s c r i p t i on , pointsEarned ,

serv iceNr , cond i t i on }

Listing 45: Accessing linguistic properties.

A deep OCL dialect enables type checking over more than one level which is described

in section 3.2.3. In Listing 46 the context is set to LA1. The first expression checks if the

deep type of LA1 is AccountType, the second expression examines if the deep kind of LA1

is AssoPropertyType. Listing 47 presents the same expressions but this time the context

is ServiceLevel. Both expressions are queried on both contexts within the implemented

console and the expected results are delivered. Both, LA1 and SL1, are a deep kind of

AssoPropertyType, but only LA1 has the deep type AccountType.

context LA1

oclIsDeepTypeOf (AccountType ) −− t rue

oclIsDeepKindOf ( AssoPropertyType ) −−t rue

Listing 46: Deep type checking in the deep OCL dialect.

context SL1

oclIsDeepTypeOf (AccountType ) −− f a l s e

oclIsDeepKindOf ( AssoPropertyType ) −−t rue

Listing 47: Deep type checking in the deep OCL dialect.

Listing 48 shows different OCL expressions which are evaluated on the context MS1

with the help of the level-agnostic OCL console. In the first expression, a level cast to

the deep type AssociationType of MS1 is conducted. Then, a navigation to Association-

PropertyType is done. Executing this expression, delivers all associated clabjects of MS1

which are of the deep type AssociationPropertyType. In the second expression, the first

expression is extended by selecting only those clabjects which are of the deep type Ac-

countType. In this case, a Bag containing only the clabject LA1 is returned which is the

expected result. In the next expression the value of the attribute points is tried to access.

Querying the expression within the console throws a ParserException which is a correct

behavior as clabjects in the resulting Bag are of the static type AssoPropertyType which

has no attribute points. In order to overcome this problem, a deep type cast is executed

in the last expression. By doing this, the value of the points attribute can be fetched.

Finally, the correct value of 20 is shown in the output field of the console.
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context MS1

Assoc ia t ionType . AssoPropertyType −− Bag{CC1, LA1, SL1}
Assoc ia t ionType . AssoPropertyType−>s e l e c t ( oclIsDeepTypeOf (AccountType ) ) −−

Bag{LA1}
Assoc ia t ionType . AssoPropertyType−>s e l e c t ( oclIsDeepTypeOf (AccountType ) ) .

po in t s −− throws ParserExcept ion

Assoc ia t ionType . AssoPropertyType−>s e l e c t ( oclIsDeepTypeOf (AccountType ) ) .

oclAsDeepType (AccountType ) . po in t s −− Bag{20}

Listing 48: Deep type cast in the deep OCL dialect.

In deep models, clabjects can have instances as well as deep instances. Therefore, in

the deep OCL dialect the static operation allDeepInstances for clabjects is introduced

besides the standard OCL operation allInstances (see section 3.2.3). Listing 49 shows

two example expressions of this kind which are evaluated within the level-agnostic OCL

console. Both expressions work properly in this case as the first expression results in

all instances of AssoPropertyType in O1 and the second expression results in all deep

instances of AssoPropertyType which are all located in O2 in this example. The third

expression results in the same Set of clabjects like in the second expression because all

deep instances of AssoPropertyType have a degree of one in this example since there are

only 3 ontological levels.

AssoPropertyType : : a l l I n s t a n c e s ( ) −− Set {LoyaltyAccount , Serv i ceLeve l ,

CustomerCard}
AssoPropertyType : : a l lDeep In s tance s ( ) −− Set {LA1, SL2 , SL1 , CC1}
AssoPropertyType : : a l lDeep In s tance s (1 ) −− Set {LA1, SL2 , SL1 , CC1}

Listing 49: Querying instances of a clabject in the deep OCL dialect.

Listing 50 presents an example where the allInstances operation is invoked on a linguis-

tic meta-type which is Entity in this case. The evaluation of this expression within the

console delivers all entities of the ontology regardless in which ontological level they are

placed. This is the expected result of the query.

Entity : : a l l I n s t a n c e s ( ) −− Set {ProgramPartner , LP1 , AssoPropertyType . . . }

Listing 50: Querying instances of the linguistic meta-type Entity.
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In this thesis, a deep OCL dialect was specified and a level-agnostic OCL console for

querying OCL expressions in LML diagrams as well as a deep OCL validation service for

the definition and validation of constraints were implemented, based upon this dialect.

However, there are still missing parts in both implementations which reveal the potential

for future work. These parts are described in the following.

6.1. Query of OCL Expressions in LML Diagrams

The focus in this thesis was primary set on accessing attribute or navigation values, when

querying properties of clabjects in a deep OCL dialect. In the future, also queries of

operations respectively their body should be taken into account.

In the PLM, operations are called methods so this term will be used in the following.

The body of a method can be set via the property view in Melanee and is currently defined

as String in the PLM. When querying the method in the level-agnostic OCL console, only

the String is returned without any further interpretation of it. The body of a method,

however, can be compared to the body expression in OCL which defines the result of

an operation. According to the OCL specification “ the expression must conform to the

result type of the operation” [31]. As long as methods in Melanee have no datatype, this

conformance check is not necessary. Nevertheless, when accessing a method of a clabject,

the body should be interpreted as an OCL expression in the future so that the result of

the query is the result of the expression defined in the method body.

In the LML particpations of connections cannot be annotated as ordered yet. Because of

this, navigations executed in the level-agnostic OCL console never result in an OrderedSet

or a Sequence at the moment. Consequently, the specific operations of these collection

types (e.g. first, last, append, prepend) can also not be used. Therefore, expanding the

characteristics of participations so that they can be annotated as ordered would enable

to make use of the OCL collection types of OrderedSets as well as Sequences and its

operations.

6.2. Definition and Validation of Constraints in LML Diagrams

As indicated in 4.4, the work on the deep OCL validation service is not finished yet.

Currently, an invariant can be specified for a clabject and is validated on its instances and

its deep instances. The concept of potency and potency ranges for constraints described

in section 3.4 needs to be implemented in the future in order to determine at which levels

the invariant should be evaluated.
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In the LML, participations between connections and their participants have multiplici-

ties. These can be regarded as a shorthand form of an OCL constraint. The participation

in Figure 13, for instance, with the role name wheel of the connection between CarType

and WheelType has a multiplicity of 4. This can also be expressed in OCL like shown in

Listing 51.

context CarType

inv : s e l f . wheel−>s i z e ( )=4

Listing 51: Example for expressing a multiplicity constraint in OCL.

Hence, another feature which could be implemented in Melanee is that multiplicities in

LML diagrams are transformed into OCL constraints so that they are validated the levels

below. Furthermore, users must be able to assign potencies respectively potency ranges

to the multiplicity constraints like it is possible in Nivel [1], which is described in chapter

7.2.

Other OCL Constructs

Every OCL construct is based upon OCL expressions. In this thesis a deep OCL dialect

was implemented so that these expressions can be used and evaluated. In the current

state, the only construct that can be utilized in the deep OCL validation service is the

invariant construct. This means that constraints can be defined for clabjects in Melanee.

Nevertheless, OCL offers also the possibility to specify constraints for operations with

the help of pre- and postconditions. In the context of LML and Melanee, it has to be

examined in the future if and how these kinds of constraints for operations can also be

supported.

Other OCL constructs which are also not considered yet in the deep OCL validation

service are derivation rules, initial values, definition of new attributes and methods and

body of methods. As these constructs are no real constraints, but rather supplement the

diagram with additional properties, it is not of particular importance to implement them

in the near future for the deep OCL validation service.
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In this chapter three other deep modeling frameworks are presented and a comparison is

conducted between them and Melanee regarding their capabilities of setting constraints to

models. Furthermore, the analysis of these frameworks should discover which constraint

languages are used and how they are meant to be interpreted, adapted and applied in the

respective framework under consideration and in deep models in general.

7.1. MetaDepth

MetaDepth is introduced by de Lara and Guerra [13]. It is a tool which supports textual

modeling allowing an arbitrary number of ontological levels and the dual instantiation

regarding ontological and linguistic dimension. MetaDepth enables the specification and

evaluation of derived attributes and constraints across multiple ontological levels. The

constraint construct is defined in the linguistic meta-model. The Epsilon Object Language

(EOL), which extends the OCL with imperative constructs such as assignments, is used

to define constraints. The authors claim to make the EOL multi-level aware. Concerning

this, de Lara et al. [14] list two differences to the standard OCL implementation.

First, a potency can be set for constraints or derived attributes. The potency indicates

at which level the constraint or the derived attribute is evaluated. In contrast to two level

models, in deep models this potency can be higher than one. Moreover, de Lara et al. [14]

state that “our constraints can use methods and attributes of the linguistic meta-model”

[14]. Linguistic properties are accessed like ontological ones and if the name of a linguistic

and ontological property collides the prefix ’ˆ’ is taken in order to refer to the linguistic

one.

In contrast to the approach presented in this thesis, a constraint in MetaDepth can

only be evaluated on one ontological level but not on multiple levels which is allowed, for

example, by potency ranges for constraints described in 3.4.2. Nevertheless, the definition

of derived attributes is possible, which is not supported in Melanee yet.

Furthermore, when invoking linguistic properties of a clabject in the deep OCL dialect

elaborated in this thesis, this has to be done explicitly by referring to the “ l ”-property

of a clabject. In MetaDepth, however, an explicit invocation of a linguistic property has

only to be done in the case of name clashes of linguistic and ontological properties.

As mentioned before, MetaDepth uses EOL which reuses the OCL but the syntax is

slightly changed in some parts (e.g. isTypeOF in constrast to oclIsTypeOF). In this

thesis, first a deep OCL dialect was elaborated which forms the foundation for the imple-

mentation of query OCL expressions and defining constraints in LML models. Concerning

the MetaDepth tool, no further general investigation of a potential adaption of EOL ex-

pressions regarding deep modeling environments is done. For instance, it is not examined
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how operations of the AnyType like isTypeOf can be applied and extended using them

in deep models which was examined for OCL in section 3.2.3.

7.2. Nivel

Another multi-level framework is Nivel which is presented by Asikainen and Männistö [1].

Models in Nivel are created with the help of the weight constraint rule language (WCRL)

which is a general purpose knowledge representation language. Nivel enables to specify

so called cardinality constraints. These are constraints affecting instances of associations

holding values for the cardinality and potency. The potency defines at which meta-level

the cardinality constraint applies.

Nevertheless, the authors admit that “Nivel defines no constraint language of its own”

[1] and so the construct of cardinality constraints remains the only possibility of adding

constraints in Nivel. Albeit the authors suggest that WCRL could be used to formalize

constraints, they also reject this suggestion as they think that the potential users of Nivel

are not familiar with WCRL. Furthermore, they also claim that OCL not might be suitable

for expressing constraints in a knowledge representation language as users also might be

not familiar with it.

In the context of Melanee, however, modeling can be done in a graphical editor which

allows building LML models which supports the look and feel of the UML. Because of

this, modelers creating LML models might be more familiar with OCL which initially was

meant to be the “formal language used to describe expressions on UML models” [31].

To sum up, the capabilities of Nivel in defining constraints are limited and no profound

elaboration is done of how interpreting and applying a constraint language in deep models.

Nevertheless, the concept of cardinality constraints is a useful concept which could be

adapted to Melanee when defining multiplicities of participations.

7.3. Cross-Layer Modeler

The cross-layer modeler is another deep modeling tool introduced by Demuth et al. [15].

It allows modeling an arbitrary number of ontological levels but it does not follow the

mechanism of deep instantiation so that potencies are not known and applied here. In

contrast to the other described deep modeling tools respectively frameworks in this section,

the cross-layer modeler is a graphical model editor. OCL is used to define constraints.

There are two kinds of constraints, which are constraint templates and fixed constraints.

Fixed constraints “are used to check properties that are equal for all instances of a type”

[15]. This kind of constraint could be used when setting constraints for direct instances

of model elements. Template constraints “are automatically instantiated to create con-
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straints that check properties that are not known in advance” [15]. This kind of constraint

could be used to set constraints on deep instances two levels below.

However, it is not clarified how to set constraints for elements more than two levels

below. This might be difficult to implement in this tool as deep instantiation is not

considered yet. Moreover, as opposed to this thesis, no comprehensive elaboration of the

interpretation and application of OCL in deep models is made. Additionally, the focus is

only set on how setting constraints on models. No possibility is mentioned that enables the

query of model elements and its properties with the OCL which is also a query language

and not only a constraint language as mentioned in section 2.3. Especially in a graphical

editor a console for OCL expressions, for instance, is a useful textual extension.
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8. Conclusion

The LML was created to overcome the limitations of the UML identified by several re-

searchers. It is embedded in the OCA and allows modeling an arbitrary number of on-

tological levels so that deep modeling is supported. The LML model editor Melanee was

developed in order to provide researchers, modelers and software engineers with the pos-

sibility to experience the LML. Melanee was extended step by step by various features so

that it offers users a comfortable way of building LML models.

However, the existing OCL implementation for Melanee was not multi-level aware and

in the available OCL console only linguistic properties could be queried. As a consequence,

in this thesis a specification of a deep OCL dialect was elaborated. Requirements for the

evaluation of OCL expressions as well as for the definition and validation of constraints

concerning deep models were examined. Based on this, proposals for these requirements

in a deep OCL dialect were made.

As a next step, the deep OCL dialect was implemented which served as the foundation

for the development of the level-agnostic OCL console. The evaluation part of this thesis

has proven that the implemented console allows queries of linguistic as well as ontological

properties. Moreover, it takes the principles of deep modeling into account.

Additionally, based on the deep OCL dialect, the implementation of a deep OCL val-

idation service has been started which enables modelers to define constraints in LML

models. Currently, this service already provides useful functionality.

Nevertheless, the OCL validation service is still in the initial phase so that the current

implementation has to be refined in the next development steps. The level-agnostic OCL

console is already in a more mature stage but still has some room for improvements.

The specified deep OCL dialect is the first result of a comprehensive analysis of the OCL

interpretation and application in deep models and needs to be further investigated in

future research.

70



References

References
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A. Level-Agnostic OCL Console User Manual

The level-agnostic OCL console is an Eclipse plug-in which serves as an extension for

the Melanee workbench. The tool can be downloaded from http://melanee.org/. Fur-

thermore, an installation guide and a walkthrough showing the creation of a new LML

diagram are provided. In the following, the usage of the level-agnostic OCL console in

the interplay with a LML model within Melanee is presented.

A.1. Walkthrough: Using the Level-Agnostic OCL Console

Open the console view in case it is not opened yet. Select “Window” (Figure 32, 1.) →
“ShowView” (2.) → “Other” (3.) . In the “Show View” dialogue select “Console” (4.)

and click on “OK” (5.).

Figure 32: Opening the console view.

Now, in the console view click the “Open Console” button (Figure 33, 1.) and select

“LML OCL” (2.) so that the level-agnostic OCL console page will open.

After the console page has opened, select a clabject which should be the context for

the OCL query by clicking on it in the LML diagram (Figure 34).

OCL expressions can be entered in the input field of the console which is the lower

field of the console page. After each ’.’-operator, ’->’-operator or by pressing “Ctrl” +

“Space”, a content assistant is shown (Figure 35). By pressing “Enter”, the specified

expression will be evaluated.
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Figure 33: Opening the console view.

Figure 34: Select contextual clabject in LML diagram.

After the evaluation of the OCL expression, its result is shown in the output field which

is the upper field of the console page Figure 36.
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Figure 35: Entering an OCL expression with the help of the content assistant.

Figure 36: Result of an OCL expression in the console’s output field.
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