
Realizing Automated Test Recommendations in
Software Development Environments

Diploma Thesis

by

Oliver Erlenkämper

presented at

Chair of Software Engineering
Prof. Dr. Colin Atkinson

Department of Business Informatics and Business Mathematics
University of Mannheim

Supervisor:
Dipl.-Wirtsch.-Inf. Werner Janjic

15.06.2013

Chair of Software Technology ⇧ Prof. Colin Atkinson, Ph. D.
Department of Business Informatics and Business Mathematics

University of Mannheim

Abstract

Software testing is a mainly manually performed and thus very labour intensive process. Beside time, it
demands a high amount of domain knowledge, concentration and problem awareness from the developer.
Although software reuse is a well examined area –in both academia and industry – it is mainly focussed
on the reuse of different kinds of documentation and program code. In this thesis we create a client-side
recommendation system for the novel idea for an automated test recommendation approach that is based
on lessons learned from traditional software reuse and recommendation. While most existing testing-
assistance systems help a developer by providing information about various coverage criteria only ex
post, we want to support the developer pro-actively while writing the test and create as little overhead
as possible during his work. Thereby we benefit from the lessons learned in the area of ”traditional”
software reuse and apply them in a kind of test reuse for test recommendation approach. To validate our
theoretical considerations, we present a tool that will help writing tests with less effort.

iii

Contents

List of Figures

List of Tables 1

1 Introduction 1

2 Foundations 3
2.1 Software Testing . 3

2.1.1 Motivation for Testing . 3
2.1.2 Classification by type . 4
2.1.3 Classification by level . 6
2.1.4 Testing Techniques . 8
2.1.5 Coverage Criteria . 11
2.1.6 Implications . 13

2.2 JUnit . 13
2.2.1 Difference between JUnit 3 and JUnit 4 . 14
2.2.2 Test Suites . 15
2.2.3 Test Cases . 15
2.2.4 Test Methods . 17
2.2.5 Other interesting Annotations . 18
2.2.6 IDE integration . 20

2.3 Software Reuse . 20
2.3.1 Types of Reuse . 20
2.3.2 Benefits & Constraints . 23
2.3.3 Test Reuse . 25
2.3.4 Tool support . 25

2.4 Speculative Analysis . 25
2.5 Summary . 27

3 Design 29
3.1 Domain . 30

3.1.1 Problem domain . 30
3.1.2 Objectives and Positioning . 30

3.2 Preparations . 31
3.2.1 Test Preparation . 32
3.2.2 Component Under Test Discovery . 32
3.2.3 Application and Interaction . 33

3.3 Search . 33
3.3.1 Query format . 34
3.3.2 Result structure . 34
3.3.3 Test Recommendations . 36

3.4 Speculative Analysis . 36

v

3.4.1 Coverage Criteria Selection & Adjustment . 37
3.4.2 Coverage Calculation . 38
3.4.3 Basic Coverage . 40
3.4.4 Continuous JUnit Coverage . 40

3.5 Proposal Generation . 41
3.5.1 Assertion Proposals . 42
3.5.2 Method Proposals . 43
3.5.3 Exception Proposals . 43
3.5.4 Proposal Computer Integration . 44

3.6 Summary . 45

4 Implementation 47
4.1 Eclipse Plugin . 47

4.1.1 Extension Points . 47
4.1.2 Views . 47
4.1.3 Proposal Computer . 49
4.1.4 Preferences . 49
4.1.5 Runtime Environment . 49

4.2 Database . 50
4.2.1 Preparation of the data . 50
4.2.2 Utilization of the Data Transfer Objects . 51

4.3 Architecture . 51
4.3.1 Application Layer . 52
4.3.2 Domain Layer . 52
4.3.3 User Interface Layer . 54
4.3.4 Utilities & other classes . 55

4.4 Work Flow . 56
4.4.1 Surveillance & Test preparation . 57
4.4.2 Performing a search . 58
4.4.3 Generating proposals & Calculating coverage 58

4.5 Visitor Patterns . 59
4.5.1 InformationParser . 60
4.5.2 TestParser . 61

4.6 Summary . 63

5 Evaluation & Related Work 65
5.1 Theoretical Evaluation . 65

5.1.1 Testing . 65
5.1.2 Reuse . 66
5.1.3 Speculative Analysis . 67
5.1.4 Ranking . 67

5.2 Practical Evaluation . 67
5.2.1 Assisted Test Reuse . 68
5.2.2 System Performance . 68

5.3 Summary . 69

6 Conclusion & Future Work 71
6.1 Conclusion . 71
6.2 Future work . 72

Index i

Bibliography iii
Appendix A . vii

List of Abbreviations

API . Application Programming Interface

AST . Abstract Syntax Tree

CC . Code Conjurer

CUT . Component Under Test

DTO . Data Transfer Object

FQDN . Fully Qualified Domain Name

IDE . Integrated Development Environment

JDK . Java Development Kit

JRE . Java Runtime Environment

OO . Object-Oriented

SDD . Search-Driven Development

SR . Software Reuse

ST . Software Testing

TDD . Test-Driven Development

TT . Test Tenderer

UI . User Interface

List of Figures

2.1 V-Model . 7
2.2 Applicability of testing types for each level . 10
2.3 Graph example . 12
2.4 Example JUnit 4 Test . 16
2.5 Test Run Result . 17
2.6 Example JUnit results . 20

3.1 A typical Reuse scenario . 31
3.2 Test Tenderer Target Scope . 32
3.3 Interrelationship of Tests and ComponentsUnderTest . 33
3.4 Interface signature/Query format . 34
3.5 Data Transfer Object used by SENTRE / TT . 35
3.6 Search View . 36
3.7 Speculative Analysis . 38
3.8 Test Tenderer coverage settings menu . 39
3.9 Coverage View . 41
3.10 JUnit indicator . 42
3.11 Assertion Proposal - textual representation . 43
3.12 Test Tenderer proposal computer . 44

4.1 Application layer structure . 52
4.2 Domain Layer Structure . 54
4.3 User Interface layer structure . 56
4.4 Utilities layer structure . 56
4.5 Test Preparation . 57
4.6 Search . 58
4.7 Proposals & Coverage Generation . 60

List of Tables

2.1 Implications derived from Testing theory . 14
2.2 Benefits & Constraints of the selected Reuse approach . 24

3.1 Comparison of Coverage Calculation Tools . 40

1

CHAPTER 1
Introduction

Over the last decades, both Testing and Reuse have become valuable companions in Software Engineer-
ing. Nowadays, there is no doubt, that goal-oriented, comprehensive and organized testing increases the
quality of software [1] and it is thus very important for successful software development [2]. Testing
is widely supported by mature testing frameworks [3] as integral part of today’s software development.
Reuse is also considered significantly beneficial as it reduces defect density and thus increases produc-
tivity [4], which has even been confirmed for industrial practice [5, 6]. While the combination of these
promising technologies is considered beneficial as well [7], a unified implementation of Test Reuse is also
still missing [8]. Interestingly, there is support available for both disciplines (e.g. [9,10] respectively [3]),
but not for both together. Reasons for this can be found in inadequate databases, unattractive, pure web
search engines or simply too high effort for the adaptation of reuse candidates to own needs [11].

This consequently means that developers are expected to discover even the most subtle failure on the
one, but also, that they can not fall back on support for this issue on the other hand. It is striking that
an adequate, unified, and integrated solution could tackle this deplorable state of affairs and thus provide
rich benefit for test developers.

In this work the prototypical tool Test Tenderer is introduced, which aims to shift Test Reuse to appli-
cation level. Test Tenderer is designed as an Eclipse plugin and utilizes the popular JUnit framework for
unit testing in Java. It utilizes information about tested components, methods, and assertion statements
extracted from test cases of a cooperating database. With information collected from the local project
Test Tenderer is capable of searching for appropriate artifacts, adapting them to the project-specific needs,
investigating their impact on the test under development, and finally of providing convenient insertion
functionality for the specific knowledge.

In order to provide the user with rich value, Test Tenderer is also designed to speculatively analyze
the assertion proposals and to provide ex-ante coverage information for each proposal. This enables
this plugin to illustrate the impact of insertion before it actually takes place. Besides that, the user will
be provided with the opportunity to inspect the source code of suitable reuse candidates. Finally, Test
Tenderer automates continuous testing by recurring background JUnit runs and is hereby able to provide
developers with non-intrusive live feedback about their testing effort.

The following chapters lay the foundations for this work, explain design and implementation details,
and finally summarize the impact of this work on the field of Test Reuse: Chapter 2 presents the theoret-
ical background, especially for Reuse, Testing, JUnit and Speculative Analysis. In chapter 3, the design
of the developed plugin is illustrated. In particular the steps of Preparation, Search, Speculative Analysis
and Proposal Generation are highlighted. Chapter 4 provides an insight into the implementation, starting
with the integration of the plugin into Eclipse. Furthermore details about the communication with the
database are given followed by particulars about the architecture. Finally, the work flow is illustrated.
Chapter 5 evaluates the results against the theoretical background. In addition, the system performance

1

as well as Assisted Reuse is subject to this assessment. Chapter 6 concludes the work and provides
starting points for future work and improvements.

2

CHAPTER 2
Foundations

In this chapter the foundations of this work are presented. These primarily include the areas of Testing,
JUnit, Reuse and Speculative Anlyse. In the respective sections a broad insight into the subject is initially
provided. At the end of each section the information presented above are combined and reduced to the
specific application scenario of this work. Finally, a brief summary of the main findings follows at the
end of the chapter.

2.1 Software Testing

In short, Software Testing (ST) is “the process of executing a software system to determine whether
it matches its specification and executes in its intended environment” [2]. In more detail, it is also
discovering and eliminating errors, ensuring consistent functionality and avoiding rework requirements.
Goal-oriented, comprehensive and organized testing avoids unnecessary costs [12, 13], increases the
quality of software [1] and is thus very important for successful software development [2]. ST should
thus be an essential companion of any software development process.

2.1.1 Motivation for Testing

Some studies indicate that the cost to fix a software problem after delivery is up to 100 times higher than
if the problem had been detected and eliminated during the design phase [12]. In addition, sometimes
between 40 and 50 percent of the total project budget are spent on avoidable rework. If funds are no
longer available at the end, faulty software may even be delivered to the customer. According to [12]
up to 50% of software contains non-trivial defects. The problem here is that these bugs often become
apparent only when they are reported by the user.

Reasons for failure

Assumed, a reported bug is in fact an error, the reason for a missed early discovery may be one of the
following:

- the code executed by the user was not tested
- the execution order of statements in the actual usage differs from the tested one
- the particular user input was not tested
- the applicability to the user’s operating environment was not tested

Certainly, this list could be expanded by numerous situations. The underlying problem is nevertheless the
same: inadequate testing. However, 60% of the defects may be eliminated through peer review and the

3

defect introduction rate is reduced by up to 75% through the use of suitable personnel with appropriate
testing discipline [12].

Consequences of failure

Besides the already mentioned financial consequences of reworking effort, even bigger problems could
result from inadequate tested software. These so-called "war stories" clearly show how important it is to
test. The following examples were taken from [14] and [1].

• In 1999, the Mars lander, respectively the Mars Climate Orbiter, crashed when the landing proce-
dure was initiated. The reason for the loss of this 338 kilogram NASA space probe was a software
design error. Two independently developed modules were designed with different units of mea-
sure, which led to a “misunderstanding” between these software units. While one of them used the
English units to compute thruster data, the other module expected metric units. This failure lead
to the loss of much money and prestige.

• In 1996 the Ariane 5 rocket exploded 40 seconds after take off. Reason for this safety self-
destruction was a system crash caused by a software failure. The internal reference system tried
to convert a 64 bit floating point number to a 16 bit unsigned integer. Unfortunately the result of
32.767 was beyond the limits of this 16 bit machine and the conversion failed. The loss amounted
to $ 7 billion.

• The London Ambulance system was equipped with a new dispatch control software in 1992. Un-
fortunately the system was not able to cope with the huge volume of 1.500 emergency calls per
day and the software broke down. Even worse: the system didn’t crash, but behaved incorrectly.
Positions of vehicles were incorrectly recorded, with the consequence that a possibly large number
of ambulances were sent to the same location, while other emergencies were completely ignored
for several hours. The assumed repair cost was about £9 million, what almost sounds affordable
compared to the fact that 20 lives could have presumably be saved.

These examples show the need for full and adequate software testing at each development stage. Not
only against the background of impending (although supposedly insured) costs of repair or compensation
payments, but also because human lives may depend on it.

2.1.2 Classification by type

When classified according to type, software testing can be divided into four categories which are inde-
pendent from but complementary to each other [14]. Consequently, Security Testing, Reliability Testing,
Performance Testing, and Correctness Testing can be distinguished.

Security Testing

The goal of security testing is to discover weaknesses of the system, which may be used to harm the
system, from an internal as well as an external perspective. Consequently, the following disciplines have
to be taken into account:

- Security Auditing & Scanning
The subjects of investigation are the operating systems on which the software is to run, as well as the
one it was developed on. The goal is to identify weaknesses in these systems and, if applicable, in the
network.

- Vulnerability Scanning
This task is usually accomplished with the help of standardized software. The goal is to identify
possible leaks which may harm the system.

4

- Risk Assessment
Risk Assessment aims at estimating the risk of using the software. It is accomplished by analyzing
the necessities and requirements of the potential users. The goal is to identify the probability of loss
related to these risks.

- Posture Assessment
This analysis type aims at the identification of the position among competitors in the context of security.

- Penetration Testing
Penetration Testing is conducted in order to recognize whether a system provides potential loopholes.
The goal is to secure these vulnerabilities and thus to prevent the access of unauthorized users to the
system.

- Ethical Hacking
The attempt to access the system without permission is in the focus of Ethical Hacking. With a large
number of penetration tests ethical hackers try to discover leaks of the system and therewith to intrude
into the system. For this purpose ethical hackers use the same techniques that would also be used by
unauthorized hackers.

Performance Testing

Performance testing deals with the feasibility of a system to serve the users in a timely and reliable
manner [14]. It thus aims to evaluate the performance of the system with respect to real world scenarios.
In order to test the performance of a system, two particular methods are mainly applied.

- Load testing
The key object of Load Testing is the ability of the system to handle the requests, respectively the
number of users accessing the system [14]. A load test provides the system with maximum load and
investigates whether the system is able to handle it. Load tests are often conducted for web applications,
as the server needs to be able to bear the load even during peak hours [14].

- Stress testing
Stress Testing applies load tests beyond the limits of the system and hereby provides the opportunity
to inspect the behavior of the system under unanticipated conditions. For this purpose, the system is
“stressed” with random operation sequences, huge load, partly beyond the limits, for long periods [14].
This technique therefore also serves reliability measurement purposes.

Reliability Testing

The main purpose of reliability testing is the discovery of failures of a system before deployment [1,14].
A key subject of investigation is the robustness of the system, which can be determined with Robustness
Testing. Together with stress testing, the overall reliability of the system can be assessed and the risk of
using the software can be estimated. The deployment of the system can then be finally initiated on the
basis of this information.

- Robustness testing
In order to test the robustness of a system several non-expected values may be applied to check the
behavior of the software. These can be purely invalid values, as well as values below the specified
minimum and beyond the required maximum [14]. The goal of robustness testing is to determine
whether the system is able to handle invalid parameters in order to avoid failure or unexpected output
values [14].

5

Correctness Testing

Besides Reliability Testing, Correctness Testing is the second major area of interest [15]. The goal here
is to ensure a correct behavior of the system. Common testing approaches of this technique are White-
Box Testing, Black-Box Testing, and Gray-Box Testing, although their applicability is not limited to this
testing type.

- White-Box Testing
In a White-Box Testing scenario, the structure and the source code of the component under test are
known [1]. For this reason, this testing technique is also known as Structural Testing [14]. The goal
is to derive oracles from the inspected implementation in order to build appropriate tests [1, 14, 15].
These oracles are subsequently tested against the de-facto behavior of the units under test to check
their functionality for correctness. Appropriate test cases are usually created by the developer often
already during the development of the tested system.

- Black-Box Testing
In contrast to White-Box Testing, in a Black-Box Testing scenario only the functionality and the inter-
faces of the components under test are known. The internal structure is completely hidden. Tests can
be derived from external software descriptions, such as specifications, requirements and design [1].
For this reason, black-box testing is also known as functional testing [14]. Tests are usually conducted
by specific testers, which are usually not the developers of the system under test.

- Gray-Box Testing
This testing technique represents a mixture of these both approaches. It combines the openness of the
white-box approach with the structured and functionality-oriented methodology of Black-Box Test-
ing. For this purpose, the test cases are derived by the developer, but designed only based on the
functionality of the system. This procedure ensures that that no potentially error-prone statements are
neglected.

2.1.3 Classification by level

Testing takes place at several stages in software development. A popular model for the different imple-
mentation and testing stages is the v-model (Figure 2.1, in the version of [14]), which supposedly goes
back to Barry Boehm in the late 1960’s. This model exists in numerous versions, but two key points
are present in all current versions. (1) there are four1 different levels of testing, namely Unit Testing,
Integration Testing, System Testing, and Acceptance Testing and (2) testing is to be considered from
the early development stages2.In other words, adequate tests should be designed accordingly even in the
early design phases of the software product. Of course, the testing process can only take place when
the software is implemented. Nevertheless should the outcomes of these test lead to refinements of the
regarding design.

Unit Testing

Unit Testing is viewed as essential for software quality, because with this technique even subtle or deeply
hidden failures may be discovered [13]. For this purpose, several “smallest testable piece[s] of software,
which may consist of hundreds or even just a few lines of source code” [16], are tested. The goal of
these unit tests is to check the behavior of the unit under test and thus to ensure, that the specified
functionality and design specifications are met [16]. Typically, units are represented by methods or
(at most) classes. Unit tests are often written by the developer of the corresponding unit [1], which is
useful, because an estimation of functionality and especially of the expected results is much easier for

1in Figure 2.1 the first and second level are summarized
2The dashed arrows indicate the necessity of considering Testing from the early development states

6

Requirement
analysis

Implementation

High level design

Detailed design

Acceptance Testing

System Testing

Unit &
Integration Testing

Development
Test

ing

Figure 2.1: V-Model

the developer than for an uninvolved tester. Unit testing can be done with functional and/or structural
testing techniques [14]. However, unit testing may be problematic, if the tested units are not completely
independent. This requires additional testing effort, because the units possibly need to be modified to be
isolated testable [14].

Integration Testing

The next higher level of consideration is the Integration Testing. In contrast to unit tests, the focus is
on reviewing the overall behavior and interaction of the units. Integration Testing aims at “verifying
that each component interacts according to its specifications as defined during preliminary design” [16].
Subject of according tests is thus usually the interface of the particular unit. The level of dependence
between units is referred to as coupling. The higher the coupling rate, the more tests should be performed
for the overall behavior of the interacting units. This effort is hampered by the fact, that additional code
is likely to be added in order to test the units sufficiently. This is due to possibility, that some states may
not arise in a sequential interaction when the elements show high coupling rates. In contrast, at a low
coupling rate, the interfaces of the units become important. Consequently, these interfaces should then
become the primary test subject. However, there are recommendations for reduction [14], since finally a
good design should have low coupling:

- only data should be passed, not control information
- no undesired data should be passed
- the number of parameters to be passed between two units should be minimized
- no complete data structures should be passed
- no global variables should be declared

All in all, this may be the most complex test step, depending on how accurately the different units
were developed. However, unit and integration testing are the primary subjects of Regression Testing,
which aims at repeating test runs after every alteration and which has been widely scaled up to industrial
systems [17]. Regression tests are continuous automated tests that check the functionality of a unit, a
program or a system with corrective, perfective, adaptive, or preventive changes.

7

System Testing

System testing aims to test the entire software in its expected environment [14] and is performed after
unit and integration testing. The means for an end for this testing level are (not exclusively) functional
testing techniques. Because a system, in contrast to software, is a combination of multiple components,
such as the program, the environment, the hardware, the operation system etc., it is essentially important
to ensure the fulfillment of all functional requirements. Furthermore, non-functional requirements are
taken into account, such as security, performance, reliability, or recovery of the system [16]. This task is
performed by explicit testers. In this phase, design changes are likely not feasible and may cause limited
functionality. However, as this is the first time the whole system is operated in the target environment,
this step is inevitable to ensure final quality [14].

Acceptance Testing

Acceptance Testing may be seen as extension of System Testing [14] and can be started as soon as the
system tests are finished. Usually, system tests are conducted together with the respective customer
[1, 14] and aim to ensure, that the system meets the customer’s needs [1]. For this purpose, the final
product is presented to the customer, who in turn begins to evaluate the usability of the program and how
precisely the requirements have been realized. If the product is not designed for a specific customer but
for anonymous users, acceptance testing is not feasible. In such cases, the software is tested by potential
customers with the help of two alternative procedures:

• Alpha Testing
Alpha Testing is performed by a distinct number of selected potential customers under the super-
vision of developers. It generally takes place at the developer’s site.

• Beta Testing
Beta testing is usually accomplished by many different users without any involvement of the de-
velopers. The versions for this type of testing are called beta-versions. The goal is to gather up
information about the performance as well as possible failures of the system.

In summary, acceptance tests are tests conducted about the whole system with the goal of meeting the
customers’ requirements. The main focus of this test step is the usability of the system and the intent is to
“verify that the effort required from end-users to learn to use and fully exploit the system functionalities
is acceptable” [16].

2.1.4 Testing Techniques

Static Testing

Especially in the early stages of software development, static testing methods are widely applicable. All
methods, that do not require the execution of the program, respectively any code, fall in this category.
Established in the early phases of software development, this method gives good results at reasonable
cost [14]. This technique is often used for the inspection of documents and documentations created in
each development phase. This testing technique therefore serves the purpose of verifying the software.

Dynamic Testing

Dynamic Testing includes all techniques that require the execution of the software. Subject of this
technique is therefore the functionality of the system. For that reason, it serves the purpose of validation,
by which the functionality is tested against real world environments. Consequently, domain-specific
knowledge is necessary [1]. It is only with dynamic testing methods that failures can be experienced and
the reasons for these may be identified [14]. Dynamic testing is thus inevitable to ensure the reliability
of the system.

8

Functional Testing

In an functional testing scenario, the structure of the component under test is unknown. This is why
the functionality is the central point of investigation. This testing technique is therefore also called
Black-Box Testing. Functional testing aims primarily at finding test cases that make the software fail
[14]. Furthermore, every possible functionality is attempted to test. As the execution of the program
is inevitable for this technique, it also serves validation purposes. It is applicable to every testing level
and thus helps testers to efficiently and effectively find software faults [14]. Subcategories of functional
testing are [14]:

• Boundary Value Analysis
Boundary Value Analysis is a popular testing technique which focuses on the creation of a test on
or close to boundary values of the system, which have a higher probability of detecting a fault in
the software [14].

• Equivalence Class Testing
The idea of this testing technique is the clustering of test cases into categories of same behavior,
since usually numerous tests exist for the basically same code.

• Decision Table Based Testing
Decision Table Based Testing is popular for the testing of complex logical relationships, especially
under circumstances where the output depends on many conditions and decisions [14]. The derived
decision tables serve as a blueprint for the generation of the test cases, as every possible conditional
state represents one test case.

• Cause-Effect Graphing Technique
This technique is a systematic method for the creation of test cases. Decision graphs are created
on the basis of the inputs a program expects and the decision-based output it produces (=effect). It
is practically only usable for limited unit testing of small programs, because the complexity of the
cause-effect graph quickly increases.

Structural Testing

Structural testing can be equated with White-Box Testing, as the structure of the component under test
forms the basis for any investigations. Test cases are usually designed from the source code, which
hereby becomes the central document for investigation. The goal is to understand the implementation
details as well as the internal structure. This also means that test cases can be created much easier and
more targeted, what makes this a very popular technique [14]. Common testing methods are:

• Control Flow Testing
This technique is very popular, as it is simple and effective. It is based on the identification of
paths, which are sequences of statements in the program under test. A quality measure for control
flow testing is the coverage, i.e. the “percentage of source code that has been tested with respect
to the total source code available for testing ” [14].

• Data Flow Testing
In order to test every statement of a program, Control Flow Testing may be not sufficient. Variables
may be initialized outside the tested unit and the data flow may not be testable with the previous
technique. Data Flow Testing aims to test the variable specific flow during execution, respectively
the path between definition and usage of a specific artifact and thus takes global variables into
account. A popular approach is the test of all definition-usage-paths (du-paths) [1, 14].

• Slice based testing
This technique simplifies the testing process through the partitioning of the program into slices

9

with respect to the variables and their location inside the program. These slices may be executed
independently.

• Mutation Testing
This testing technique is basically a measure of test quality. For the generation of the so called
“mutants‘” particular statements in the source code are altered. The modified components are
subsequently tested. If the test fails, this mutant is called a “killed mutant”, whereas those passing
the test are denoted with “live mutant”. The resulting mutation score is the quotient of the number
of killed mutants divided by the amount of total mutants and represents the quality of the testing
suite. Ranging from 0 to 1 this value indicates how sensible the test suite actually is. A value near
1 indicates, that the test responds to nearly any change, whereas a score near 0 means, that the test
absolutely neglects changes in the source code. Such a test would then be considered a bad test.

hi
gh

lo
w

Unit Integration System Acceptance

Performance Testing

Reliability Testing

Correctness Testing

Security Testing

Testing Level

Applicability

Figure 2.2: Applicability of testing types for each level

Figure 2.2 attempts to illustrate the previous findings, especially to map the applicability of the testing
types to the different phases. However, due to the high level of generality, there may be valid scenarios
that do not conform to this scheme.

Due to the scope of this work the following relates to the dynamic testing of the structure and the
corresponding control flow of units based on source code, regarding their correctness in a white-box
scenario.

10

2.1.5 Coverage Criteria

Since “complete testing” is an impossible task due to an effectively infinite number of inputs, formal
coverage criteria need to come into play [1]. However, with the help of these quality measures it is
feasible to find faults and to assure, that the software is of high quality and reliability [1]. Graph coverage
criteria are the major quality measures in use [1]. They aim to inspect a graph representation of source
code on how many of its branches and nodes are “visited” by a test. For that purpose, the source code has
to be transformed into an abstract graph, which is usually the control flow graph. Based on these abstract
representations, several criteria can be applied to measure the test quality. Figure 2.3 shows an exemplary
graph representation with nodes n0 to n2 and edges e1 to e3. The nodes may represent statements as well
as methods, the edges represent conditional and/or sequential dependencies. At node n0, for example,
two subsequent steps are possible depending on the decision taken in this node. Consequently, either
edge e1 will lead to the execution of node n1 or edge e2 to the execution of node n2. In the following,
selected structural graph coverage criteria will be introduced. If applicable, the appropriate measure is
exemplary explained with the help of the simple example given in figure 2.3. To better understand the
following sections various graph theoretical definitions are given here [1]:

• Node
A node often represents a statement or basic block in a testing context. In graph theory a node is
sometimes also called a vertex.

• Edge
In testing scenarios edges are usually identified with the structure they represent, often as branches.
In graph theory, edges are sometimes denoted with arc.

• Path
A path is a sequence of nodes, where each node pair is connected by an edge of the graph. Paths
have a start node and an end node. The length of the path is the number of contained edges.

• Test Path
A test path usually represents the execution of a test case. However, a single test path may corre-
spond to many test cases as well as no test case, if the path is unfeasible.

• Simple Path
Paths are called simple, if every included node only occurs once.

• Independent Path
An independent path has, compared to all other paths, at least one new node or an edge in its
sequence from the starting node to its final node [14].

• Prime Path
A path is considered prime path if it is a simple path and is not contained in any other simple path.
With other word, a prime path is a simple path of maximum length.

Node coverage

A familiar and simple criterion is given with node coverage. The basic idea is to visit every statement in
the source code and thus to ensure fully executed functionality. In order to achieve full node coverage,
the control flow paths of a set of tests need to cover every possible node in the graph. Generally, this
criterion is not only applicable to statements, but also to methods in a class. However, not every test will
execute every statement what derives a percentage measure for the entirety of tests. Using the example
of figure 2.3 a full node coverage may be achieved with a path {n0, n1, n2}. Not exclusively two distinct
measures may be defined based on this coverage criterion:

• Instruction Coverage
The instruction coverage provides information about the de facto amount of executed instructions

11

n0

n1

n2

e1

e3

e2

Figure 2.3: Graph example

by a test in a source code. For this purpose the amount of executed statements in contrast to the
total number of statements in the test serves as measure. This value can be calculated for any root
of the tree, i.e. for methods or whole classes. Since this is a structure-based criterion, the value
may be calculated as sum of the value of its leafs. In other words: the instruction coverage for a
class is the sum of the instruction coverages of its methods.

• Method Coverage
In contrast to instruction coverage this indicator points at the visiting of the methods. The cal-
culation here is quite simple. The comparison of the overall amount of methods in a class to the
number of methods that are actually executed by a test serves as measure. However, multiple
method invocations do not result in a different value, what limits the significance of this criterion.
Furthermore the meaningfulness for the quality of the test is limited. Nevertheless this criterion
may help to identify “dead code” [1].

Edge Coverage

This quality measure represents the number of visited edges when using a specific test path. Compared
to the total amount of edges in the tested unit, a percentage value can be derived indicating the coverage
value. Using the example of figure 2.3 and assuming the edges e1 and e2 are complementary, a full
edge coverage can only be achieved by two tests. The respective test paths would be {n0, n1, n2} and
{n0, n2}. At this point the difference to node coverage is obvious: all nodes could be visited without
the usage of all edges, as only the first path would satisfy node coverage. For this reason, edge coverage
is a stronger criterion than node coverage. The common implementation of Edge Coverage is Branch
Coverage, which reflects this criterion in a programmatic environment. Branches are usually initiated
by if-statements or other conditional statements in the source code. However, this can be a deceptive
criterion as the else statement is not always used. This particular characteristic can lead to an incomplete
coverage value and should thus be considered for coverage enhancements attempts.

Line Coverage

Line Coverage quantifies the number of code lines visited in relation to all lines of code. A line is
recognized as visited as soon as only one statement in it is executed. As to achieve maximum coverage
both all nodes and all edges must be visited, Line Coverage is thus an intermediate criterion between node
coverage and edge coverage. It basically has the same requirements as those two criteria, but provides
more realistic results, because non-existent branches will not cause a deterioration of the result.

Prime Path Coverage

The usage of this criterion keeps the number of test cases down, but its application can be problematic.
Although a prime path may contain feasible simple paths, the path itself may be unfeasible [1]. In this

12

case the prime path needs to be resolved to its simple paths. The coverage criterion indicates how many
prime paths are covered with a particular test. The value represents the ratio to the total number of prime
paths.

Complete Path Coverage

The basis for the calculation of this coverage value are all paths of a program, respectively the relation
of paths covered by a test and the overall amount of paths. Although this criterion seems to be extensive,
it is often not feasible since graphs with cycles cause an infinite number of paths and hence an infinite
number of test requirements. For this reason, this criterion is usually not used in practice.

Cyclomatic Complexity Coverage

The Cyclomatic Complexity represents the number of independent paths through a program [14]. This
measure was introduced in 1976 by Thomas J. McCabe and uses the cyclomatic number as basis for
calculation [18]. The complexity of a graph is based on the number of edges, nodes and connected
components and is a measure for interdependence of units. The cyclomatic complexity can be calculated
with V (G) = e � n + 2p where V (G) is the cyclomatic complexity, e the number of edges, n the
number of nodes, and p the number of connected components [14]. If a graph is a SESE3 graph, and
every node and every edge is reachable from the entry node, the number of connected components is
one. The Complexity Coverage represents a measure for the missed complexity in relation to the overall
complexity of the tested unit [19]. In other words: this criterion measures the amount of independent
paths covered by the test and provides a percentage value related to the total number of independent
paths. For example, figure 2.3 has a cyclomatic complexity of two. An independent path {n0, n1, n2}
would lead to an incomplete complexity coverage, although e.g. node coverage would be fully achieved.
In summary, this measure takes the overall structure, the different paths, and the interconnectedness of
different components of the program into account and is thus more reliable than solely node or edge
coverage.

2.1.6 Implications

Based on the considerations in this section various requirements for the implementation of a proposed
solution can be derived (see Table 2.1). Especially the integration into an Integrated Development Envi-
ronment (IDE), an inspection opportunity for the source code as well as the usage of different coverage
criteria are recommended.

2.2 JUnit

JUnit4 was initially created by Kent Beck and Erich Gamma in the late 1990’s. Over the years, it has
evolved to the de facto standard testing framework [20]. As the name indicates, JUnit applies Unit
Testing to Java. JUnit is applicable to basically any type, such as individual methods, classes or even
complete complex components. For this purpose JUnit also provides functionality for the set up of
the test, the initialization of variables and dependent classes, and finally compares the returned values
of the tested components with particular predefined values. It is thus a valuable companion for Test-
Driven Development (TDD). The complexity of the data structure determines the difficulty of writing
appropriate tests. However, even for complex structures JUnit is fully applicable. There are basically
two different types of JUnit, which still exist in coexistence today. With the evolution of JUnit 3.x to
JUnit 4 the architecture and the semantics have changed. In order to still be compatible to existing
tests designed for the earlier version, the current fourth version contains all the functionality that was

3Single Entry - Single Exit (SESE) graphs have exactly one entry node and one final node
4http://www.junit.org

13

Aspect Implications

Unit Testing Since unit tests are usually created by the developer of the component under
test, an integration into an IDE should be pursued to foster the ease of use.

Dynamic Testing The previous recommendation is supported at this point. As this technique
demands the execution of tests, an IDE integration is appropriate.

White-Box Testing For the derivation of tests the developer must be able to inspect the test code
for the derivation of test cases. This opportunity should thus be given in an
implementation.

Structural Testing For the assessment of the control flow the coverage criteria introduced in 2.1.5
should be integrated to provide a measure of quality.

Table 2.1: Implications derived from Testing theory

already given in version 3. However, the JUnit 4 framework provides more flexibility and is therefore
more suitable for large and complex projects. In the following the structure and functionality of JUnit
4 will be in the focus, since it is downward compatible and thus JUnit 3 tests can be executed as well.
Nevertheless, hints regarding the JUnit 3 equivalent will be given in relevant places.

2.2.1 Difference between JUnit 3 and JUnit 4

The major differences between JUnit 3 and JUnit 4 are of a structural nature. JUnit 3 depends on various
requirements for the naming of methods, or the need for the extension of the TestCase class, whereas
JUnit 4 provides much more flexibility. The main differences are:

• No TestCase extension needed
While in JUnit 3 tests still need to extend the org.junit.TestCase class, JUnit 4 has abandoned this
requirement. Due to this need for inheritance in JUnit 3, freedom was severely restricted. The
test and the Component Under Test (CUT) always need to be implemented in separate documents.
In contrast, JUnit 4 offers the possibility to integrate test methods directly into the CUT and thus
enables “built-in testing”. A distinction into test classes and CUT classes is thus not necessary -
although still possible and useful.

• Naming conventions omitted
The requirements for the naming are quite strict in JUnit 3. Thus, the test methods must neces-
sarily begin with "test" otherwise they will not be executed. Even the preparatory and subsequent
functions - each for the test and for its methods - must follow a precise naming. Through the
introduction of annotations in JUnit 4 this necessity has been abolished.

• Annotations included
JUnit 4 makes use of the Annotations introduced in Java 5.0. The use of these supplements allows
the inclusion of metadata into the Java source code. Consequently JUnit 4 is able to omit the
naming requirements and the resulting rigid test structure, and provides flexibility and built-in
testing. The fixed methods for preparation and clean-up are replaced by the corresponding remarks.
The name of the method is therefore irrelevant.

• Exception testing
Exception testing is simplified, as test methods may be annotated with an expected exception to
be thrown. For that purpose, the @Test annotation accepts the inclusion of a parameter expected,

14

which indicates the throw of a subsequently defined exception. The need for try/catch blocks
within the methods is thus omitted. However, this is primarily useful for simple exception tests. A
detailed exception testing may nevertheless demand a more complex method structure.

• Parameterized testing
Since JUnit 4 parameterized tests can be implemented. Therefore a factory method may be chosen,
which produces the input data for the test. When a test run is started, instances for the cross-product
of these data items and the test methods are created. This enables to reuse data and thus decreases
the effort of test writing. In addition, this allows the generation of random values for the test in a
central place and a simple way.

• Theories
A special feature introduced in JUnit 4 is Theories. They allow more flexible and expressive asser-
tions, since a Theory is able to capture the behavior of a test in multiple scenarios. Assumptions
may be defined, which have to be met by given DataPoints before the test will continue to run.
However, if a DataPoint does not satisfy these prerequisites the system silently continues exe-
cution with the next item and the test may still succeed. The DataPoints can be either directly
specified or with the help of corresponding annotations generated by a factory class. The use of
Theories is therefore very flexible, reduces cost and provides broader results.

2.2.2 Test Suites

Test suites represent an accumulation of test cases. Usually the test cases are grouped by their scope and
target. That means, that all tests concerning a specific component under test are grouped into one test
suite. The goal of this consolidation is to automate testing and thus to foster regression testing [20]. The
sufficient annotation is given with @Suite in conjunction with the @RunWith(Suite.class) annotation.

2.2.3 Test Cases

The structure of a JUnit test is completely equivalent to other Java classes. In the test cases the package
is declared first, followed by imports, then the class definition with its fields, variables, and methods.
When creating a JUnit 4 test the only things to pay attention to is the correctness and completeness of
JUnit-specific imports, and that the path of the JUnit library is included in the class path. JUnit 4 provides
several annotations for test fixture, each two for the marking of set-up and tear down methods, and each
on class level and for test methods. Hereby is is possible to prepare the data for the whole test, or for
each method, and to perform different cleaning activities after each method, respectively at the end of the
whole test [3]. Figure 2.4 shows an example JUnit 4 test containing methods with distinct annotations.
For the fixture of a test the following annotations are available:

@BeforeClass Methods with this annotation are executed before any testing activity is started.
It is helpful for the preparation of data, the instantiation of variables etc.

@AfterClass This annotation is the counterpart of @BeforeClass. Accordingly, the cor-
responding method is invoked after all tests have been executed. It is use-
ful for clean-up activities, for the safeguarding and, if required, for the re-
establishment of a consistent system state.

@Before Methods annotated with this type are executed prior to each test method. It may
be used to reset variables or objects.

15

Figure 2.4: Example JUnit 4 Test

@After This annotation is the counterpart of @Before. Methods annotated with that
type are executed after each test method. It is helpful for temporary clean-ups
and the recovery of initial values.

@Test Test methods are marked with this annotation. During a test run gradually all
methods annotated with @Test are executed. If methods with @Before/@After
annotations exist, these are executed prior/after each test method.

The usage of these annotations is not exclusive, which means, that methods can be provided with several
annotations. It may possibly make sense, for example, to perform the same operations before and after
each test method. In this case, the appropriate method would simply be annotated with @Before and
@ After, which would lead to a preceding and subsequent execution. In a JUnit 3 environment these
options are not available because the corresponding methods for preparation and follow-up activities are
dependent on a predetermined, explicit naming. The method names used in figure 2.4 correspond to the
requirements of JUnit 3 except the test methods. The test methods must by convention start with "test"

16

to be executed. In addition, the test class must extend the junit.framework.TestCase class to act as JUnit
3 test at all. The use of multiple methods for a particular purpose or the reuse of individual methods for
multiple purposes is therefore excluded. However, the order of execution of the methods does not differ.
A test run with the exemplary test of 2.4 would thus deliver the output of figure 2.5.

@BeforeClass
@Before
@Test firstTestMethod
@After
@Before
@Test secondTestMethod
@After
@AfterClass

Figure 2.5: Test Run Result

This illustrates the order of processing. For a JUnit 3 compliance this example had to be appropriately
adapted, but would then be fully functional and the processing would take place in the same order.
If all relevant preparations have been made and all clean-up functionality has been integrated, the test is
ready to be filled with test functionality. The task of testing itself is handled by the method annotated
with @Test. A test may contain any number of test methods, which are processed sequentially.

2.2.4 Test Methods

The testing itself takes place in the test methods. Within these methods every desired functionality can
be included. This comprises the instantiation of variables, the modification of fields, usage of libraries
and so on. As long as a method can be fully executed and no exception occurs, it satisfies the test. This
may be sufficient for certain scenarios, but usually the state or the value of a variable or an object, or
the result of some function is much more interesting and worth testing than the ability of the compiler
to create objects and map modifications. For the inspection of these states and values JUnit provides
different predefined statements to check whether a value or condition meets the expectations. If the
particular assertions are fulfilled, the test run is regularly continued. Otherwise the test fails and stops
with a distinct message. The syntax of these statements is quite simple. The majority of the statements
are passed an expected and an actual value, of which the latter is usually the result of some calculation
and is thus often represented in form of a method invocation statement. Both values are compared on
execution. The type of statement here determines the comparison method. The assertion statements may
be equipped with an additional argument as first parameter holding a particular message to be displayed
on test failure.

In the following the different assertion types are introduced with their specific details:

• assertTrue(condition)
This assertion statement simply checks, whether a condition is true or not. Consequently this
operation expects one boolean argument and causes the test to fail, if this argument is false.

• assertFalse(condition)
This statement represents the opposite of the previous statement, although its behavior is compa-
rable. However, it fails if the condition is true.

• assertEquals(expected, actual)
This statement is one of the most used commands. Both expected and actual can be represented
by many different data types. However, the same type must be used. It comprises inter alia the

17

classes Object and String, as well as the primitives int, double, float, long, boolean, byte, char, and
short. Due to the capability of comparing Objects, this command is universally applicable. For
the comparison of floating point data types (such as double or float) the statement can be equipped
with a delta value representing the threshold in which the comparison shall be. In the latest version,
this information is required for these types.

• assertNull(object)
As the name indicates, this statement evaluates, whether the object is null. If this condition is met,
the test continues execution without notice. The argument may be of any type.

• assertNotNull(object)
This assertion type is the opposite of the previous statement for convenience. Consequently, this
assertion fails, if the object is null.

• assertSame(expected, actual)
This particular assertion type compares two objects at their identity. That means, that two objects
of same type, with same content, but of different instance will not be considered equal. Both
expected and actual may be represented by any Object, what makes this statement universally
applicable.

• assertNotSame
The opposite of the previous statement is given with this type for convenience. This assertion is
fulfilled, if the Objects are not equal based on their identity.

• assertArrayEquals(expected, actual)
This statement compares two arrays for similarity. In contrast to the preceding assertion types this
statement refers to the values and thus two different arrays with the same content will be perceived
equal. Both expected and actual may be an arrays of any type of Object or of any primitive type.

Basically the different assertion statements are interchangeable. Thus, for example, the statements “as-
sertEquals(expected, actual)” and “assertTrue(expected.equals(actual))” are fully equivalent in terms of
the test result. However, JUnit provides additional useful information when using assertEquals which
can improve the quality of the test. Only in this case, a notice is issued, which value was taken by the
actual argument. That information is not provided when using assertTrue. In addition, at the example
above two comparisons had to be made: first, whether actual equals expected, and secondly, whether the
result is true. This is likely to adversely affect the running time. Since version 4.5 a new assertion type
found its way into JUnit:

• assertThat(value, matcher)
This assertion statement was built on top of a project called JMock1 and utilizes the instrumen-
tation of org.hamcrest.CoreMatchers. Through subject-oriented syntax of the Matcher, this state-
ment primarily improves readability of statements and failure description. In addition, this as-
sertion type is given a special meaning in conjunction with Theories, likewise introduced in this
version. A combined usage of these two techniques allows an automated generation of test values,
as the Theories principle acts as a filter that uses assumptions about values to dismiss inappropriate
entries.

2.2.5 Other interesting Annotations

In addition, the JUnit framework provides several annotations for the creation of tests, for the work
flow, and for behavioral changes to test methods. The most flexible of these annotation is the @Rule
annotation. Rules provide very flexible modification of the behavior of any test method. Besides the
opportunity to extend existing or implement custom Rules the Base Rules provided with the current JUnit

18

distribution contain a variety of functionality. The @Rule annotation enhances the following classes of
the org.junit.rules package [3]:

• TemporaryFolder
Annotated objects of type TemporaryFolder allow a simple creation of temporary files and folder,
which are guaranteed to be deleted after the completion of the test.

• ExternalResource
Components may be annotated indicating, that the marked class provides individual set-up and
tear-down methods. These classes have to extend the ExternalResource class and thus inherit an
after and a before method. These methods are invoked before respectively after each test method.
This allows to reset classes that interact with the test, e.g. as tested component or as supporting
provider of information and/or functionality.

• ErrorCollector
The ErrorCollector Rule enables a continued execution of tests, even if a previous test reported a
failure. For this, a special ErrorCollector has to be declared, which collects the reported errors.

• Verifier
The Verifier class basically works like the ErrorCollector, but provides verification checking for a
whole test. With the help of the verify method the result of the test can be examined in detail.

• TestWatcher
With the help of a TestWatcher a detailed investigation of the testing action can be applied. It
provides methods for any event, that may occur during a test run. Hereby customized messages
and actions are applicable, e.g. if a test fails, succeeds, starts, or finishes.

• TestName
Utilizing the class TestName makes the current test name available to test methods. Hereby a fine
grained supervision of the test method behavior is possible. In addition, this helps to customize
error messages for convenience.

• TimeOut
With the help of the TimeOut rule it is possible to set a time-out counter for each test methods. If
the test run exceeds the specified limit, the test automatically fails. This helps to prevent deadlocks
and thus to avoid failing termination.

• ExpectedException
The utilization of this class allows to specify expected exception types in-test. It basically works
like the ErrorCollector class and ensures the continuation of the test, since the collected exceptions
can be queried finally.

• RuleChain
The class RuleChain allows the chain up and ordering of different TestRules and hereby serves
structuring and readability purposes.

Another introduced annotation is the @ClassRule. It is similar to the ExternalRessource Rule, but on
class level. This statement leads to an invocation of the required before() and after() methods just be-
fore any other action is performed. These methods are even executed before the method annotated with
@BeforeClass, respectively after the @AfterClass method in the test. It thus serves the purpose of prepa-
ration of interacting components. The utilization of this annotation is especially lucrative if the required
processing is expensive and thus otherwise an interference with the running test is threatening.

19

2.2.6 IDE integration

JUnit is fully integrated in many IDEs, as well as in Eclipse. It offers a graphical User Interface (UI)
and hereby simplifies testing. The UI provides detailed information about the tests that have been run,
occurred errors, and reported failures. An indicator bar directly informs about the success or the failing of
a test by color. If a test passed, the bar is shown in bright green, whereas a dark red bar indicates a failed
test run. Another text field provides information about the reasons for failure, if this is the case. Figure
2.6 shows the visual representation of a successful, respectively a failed JUnit run. However, Janjic and
Atkinson complain, that existing tools evaluate test quality only ex post [21] and thus a valuable support
is limited. In addition they propose an enhancement of the idea of continuous testing [1] to provide the
user with valuable information about the benefits of intended testing efforts beforehand [21].

2.3 Software Reuse

Software Reuse (SR) generally refers to the use of existing software artifacts instead of newly im-
plementing the desired functionality. Already in the 1960s the demand for reusable components has
been proposed to solve the problem of realizing large and reliable software systems quickly and cost-
effectively [22]. Although the principle of Reuse has been widely acknowledged so far [4, 23], a
widespread, systematic Reuse is still lacking [5]. Even though Reuse is considered significantly ben-
eficial as it reduces defect density and thus increases productivity [23], which has even been confirmed
for industrial practice [6, 24], there are still difficulties in finding and utilizing components meeting the
desired requirements [11]. A reason may be, that the utilization of Reuse is more than the provision of
an appropriate search engine for tests [21].

2.3.1 Types of Reuse

According to [5] there are numerous conceptual facets of which to view SR. They are categorized into
six perspectives:

Figure 2.6: Example JUnit results

20

Substance Perspective

Idea Reuse This type of Reuse refers formal ideas or concepts, such as generic algo-
rithms. Since the re-used knowledge is not tied to components or systems,
the areas of application for this Reuse type is virtually universal. However,
the reused knowledge has yet to be made programmatically available, which
is associated with considerable effort.

Artifacts Reuse The Reuse of parts is one of the most promising approaches and particularly
in demand in Object-Oriented (OO) technology. Characteristics for the suit-
ability of artifacts are quality and reliability. Besides these requirements the
ability of adaptation, and domain-specific collections are crucial for success-
ful Reuse.

Procedures Reuse This type of Reuse deals with the formalization and encapsulation of proce-
dures, which are to be accommodated in appropriate collections. However,
the preparation of the data is challenging. Nevertheless, this enables the
combination of different reusable processes for the purpose of creating new
and more complex ones.

Scope Perspective

Vertical Reuse Vertical Reuse denominates the Reuse within the same domain or application
area. The goal is to develop generic models for the creation and assembly
of the systems. The better defined the domain is, the bigger advantages of
Reuse are assumed. However, the analysis of the domain as well as the iden-
tification and development of appropriate models are crucial for application.

Horizontal Reuse Horizontal Reuse focuses, in contrast to vertical Reuse, on the transfer of
generic parts of components to different application scenarios. The ma-
jor tasks in this category are the establishment of libraries, the creation of
classification principles and the improvement of interoperability. In the end
horizontal Reuse may be applied in component markets [11].

Mode Perspective

Planned Reuse This paradigm focuses the level of formalism, with which Reuse is applied.
For Planned Reuse, the number of regulations, the details of guidelines and
systematic, as well as the existence of performance measurement tools for
Reuse are relevant. Planned Reuse is usually instrumented on project or
company level and often linked to economical performance indicators.

Ad-hoc Reuse This form of Reuse is basically the state of practice. It represents the infor-
mal mechanism of Reuse of components from general libraries and is thus
also called opportunistic Reuse. It is practiced by individuals rather than on
project or on company level. As the fragments in public databases are usu-
ally not designed for Reuse, an adaptation is often inevitable. Thus, room
for improvement exists in the enhancement of the corresponding databases,
in the simplification of search opportunities, and in the empowerment of
retrieval mechanisms.

21

Technique Perspective

Compositional Reuse This Reuse type focuses on the composition of existing artifacts as functional
modules for the assembly of new systems. It relies on well known collec-
tions, reliable repositories, and standard interfaces. Besides its applicability
to almost any software component, compositional Reuse is mainly applied
to source code. Main tasks for a beneficial application are sufficient compo-
nent selection and retrieval capabilities as well as component adaptation and
integration feasibilities.

Generative Reuse This type refers to the application of Reuse on specification level. Specifi-
cations can be utilized e.g. for the generation of code and thus offer high
potential. However, the investigation of the domain, the processes, and the
architecture as well as the derivation of vocabularies, grammars and meta
generators is challenging and thus a scale up to industrial level is difficult.

Intention Perspective

Black-Box Reuse Black-Box Reuse denotes the Reuse of components without any modifica-
tion. Usually, these components are packaged but provide well-defined in-
terfaces for interaction. This approach is very promising in reliability and
quality, but the development of reusable components may be expensive. Es-
pecially the verification and the attestation of performance of the component
is complex under differing conditions. Nevertheless, Black-Box Reuse com-
ponents are promising for a usage in component markets [11].

White-Box Reuse The most common Reuse approach is White-Box Reuse. It allows the mod-
ification and adaptation of software components and thus to tailor the arti-
facts to individual needs. White-box Reuse is often used in ad-hoc scenarios.
Nevertheless, knowledge of the domain is needed to be able to presort com-
ponents and enable a straight-forward adaptation.

Product perspective

The type of artifact to be reused ranges from source code, structures, specifications, up to documenta-
tions (text) [4]. Each of these “products” provides pros and cons for Reuse.

Source Code Reuse The Reuse of code is state of practice. Most of today’s tools and methods
focus on code Reuse. Although the utilization of source code for Reuse is
surely possible and impartially, this can be a labor-intensive task. With the
evolution of higher-ordered Reuse artifacts, this methodology will become
obsolete. However, for the creation of these artifacts, code Reuse may be
useful.

Design Reuse The Reuse of designs is basically promising - but also challenging. Espe-
cially the applicability in the target environment is to be considered deci-
sively. At least Reuse may be partially or indirectly possible with the help
of OO methodology. However, finding suitable components is a central as-
pect to performance. Therefore, a fixed specification of the functionality is
essential.

Specification Reuse On the basis of generative Reuse the Reuse of specifications is most promis-
ing. However, their design and code-specific implementations have to be
available and capable for Reuse.

22

Object Reuse The Reuse of objects becomes increasingly important, as it fits seamlessly
into OO programming. This approach is already used today for the develop-
ment of libraries. However, Reuse at object level is struggling with the same
challenges as any Reuse of composite artifacts. Thus, the implementation of
suitable interfaces and the creation of adequate repositories with appropriate
retrieval functionality is essential.

Text Reuse The Reuse of text seems promising, since nearly all documents are created
for humans and thus Reuse potentially promises huge benefits. Information
retrieval and text mining technologies provide assistance for the indexing
and manipulation of text.

Architecture Reuse As whole architectures represent the most coarse-grained units for Reuse,
an application is very challenging. However, investigations on the specific
domain and the identification of generic designs and subordinate units may
be sufficient.

This work deals with a white-box Reuse of artifacts on the basis of source code in an ad-hoc scena-
rio and use the acquired information for a compositional refactoring of the functionality in a vertical
application scenario.

The reason for this categorization is the objective of this work: the automated Reuse of tests. For this
purpose a database is used, which currently includes approximately 200,000 Java tests using the JUnit
framework [8]. Considering the fact, that JUnit tests are reused to enrich JUnit tests, a vertical character
can be identified. Since the existing classes are only given with their source code, a Reuse can only
take place on the basis of these code artifacts. Due to this fact, it is also essential, that these artifacts
are visible to the user to provide the opportunity of inspection and adaptation. Although it is our goal to
prepare the code to be inserted as well as possible for the user, this corresponds to a white-box character
of Reuse. Nevertheless, these data have to be analyzed in structure and content to have a starting point
for systematic Reuse. This step is inevitable, since the goal is to integrate the Reuse functionality into
an Eclipse plugin for the purpose of automated evaluation and easy application of these artifacts. As the
Reuse itself happens spontaneously through the use of the Eclipse proposal computer (and by basically
any user) the Reuse mode can be considered ad-hoc. Using the data provided, the user is therefore able
to enrich an existing or to compose a new test. These specific requirements are shown in figure 2.2
together with the corresponding recommendations for successful Reuse.

2.3.2 Benefits & Constraints

Applying the fixation of the type of the previous section, several benefits and constraints exist for the
application of Reuse. To start first with the requirements as derived from the constraints of table 2.2, the
following conditions must be met to facilitate a valuable Reuse:

• The reused resources have to be highly adaptable

• A set-up of domain specific collections, which means the creation of a test database, is inevitable

• Targeted preparation of the supporting database in order to provide all needed information

• An open-source character reveals from the nature of white-boxed Reuse, this may but foster the
participation of yet uninvolved contributors

• The data has to be processed to ensure high integration feasibility

• The domain needs to be fixed, or intensively examined

23

Aspect Benefits Constraints

White-box Reuse
+ high adaptability
+ opportunity of inspection
+ often open-source licensed

- possibly the need for adaptation
- protection of intellectual property

difficult (cf. [11])

Artefacts Reuse
+ widely used
+ supporting technology directly

available (e.g. database)

- adaptation ability required
- domain-specific collections

Source Code Reuse
+ state of practice
+ no preprocessing needed
+ tool support

- labour intense
- becomes obsolete with the provi-

sion of higher-order artifacts

Ad-hoc
+ state of practice
+ informal
+ spontaneously available

- fragments in public libraries usually
not designed for Reuse

- adaptation usually necessary
- possibly insufficient databases

Compositional
+ modular application
+ no specifications needed

- sufficient component retrieval capa-
bilities needed

- adaptation and integration feasibili-
ties needed

Vertical
+ applicability increased by same do-

main affiliation
+ system models do possibly already

exist

- laborious domain analysis

Table 2.2: Benefits & Constraints of the selected Reuse approach

24

These requirements serve as a blueprint for the composition and implementation of the required compo-
nents. In particular, the preparation of data and the adaptation to the specific needs must not be neglected.
Furthermore, it is important to well define the interfaces of the database to obtain a simple, fast and use-
ful source of information. Despite these supposedly high requirements Reuse offers great potential in its
application to tests. It is additionally needful to consider the maintaining of existing benefits:

• The opportunity to manually adapt and inspect the recommended source code needs to be offered

• The user shall not be demanded to pre-process the received information

• The lookup and query process needs to be simple in order to support informal, spontaneous usage

• Any specifications needed have to be extracted from the existing project to avoid the need of
manual definition

These findings represent a template for the implementation of a suitable solution. Consequently they
influence the structure of the database, the design of search result objects as well as the functionality of
the Eclipse plugin Test Tenderer.

2.3.3 Test Reuse

Basically the findings of 2.3.2 are also applicable to Test Reuse due to their general applicability. How-
ever, as Test Reuse is specific within the field of Reuse, several additional requirements exist. One
possible source for enhancements can be found in the field of automated adaptation. Especially for tests,
the name of a class or a method is basically irrelevant for the determination of congruence in functional-
ity. Thus, the behavior of a test, respectively a testing artifact, is much more interesting and promising
than the name [8]. Although this statement is generically valid for the field of Reuse, this issue is espe-
cially supported by the existence of behavioral knowledge about the tested component in the test itself.
This results in the opportunity to analyze tests and therewith to enhance the recommendation quality [8].

2.3.4 Tool support

Information from tests, or tests themselves are nowadays already used to search for suitable Reuse can-
didates. For this purpose search engines are available (e.g. Merobase [10] or Sourcerer [25], which also
offer appropriate IDE integration (e.g. Code Conjurer [9] or CodeGenie [26]). However, these tools offer
a search for suitable components, not for tests. But the application to tests is promising, not only because
the Reuse of test cases saves tedious work [7]. With the use of functional test information the process
of test-driven search will continue to improve and lead to more and better results [8]. However, also
for this purpose an IDE integration is inevitable, since “pure web-based search interfaces do not attract
developers” [21].

2.4 Speculative Analysis

The idea of this technique is both simple and promising. Basically it provides the opportunity to inves-
tigate future actions the developer may perform [27]. For this purpose, today standardized hardware,
multi-core architecture, or cloud-computing can be used to calculate consequences of possible actions
in the background. The user can be given ex-ante feedback about the effects of the changes they may
be considering to the software [27]. As the user is therewith able to make better founded decision, this
technique increases software quality as well as developer productivity [27]. However, today’s testing
software focuses on the investigation and assessment of past or present states and neglect future devel-
opment states.

25

Application areas

This methodology can be applied to various scenarios. Brun et al. provide examples for the “quick fix”
support of common IDEs and version control systems [27], but the potential scope is unrestricted.

• Quick Fix
Current IDE’s provide some kind of “quick fix” support, that helps the user to perform distinct ac-
tions depending on the current situation. This may be an auto completion proposal for incomplete
statements, integration or creation of new artifacts, or other modifications. The great difficulty for
the user is to identify the impact of each change on other components or the system. It could for
example happen, that given tests will not succeed with the changes, or even that the project no
longer compiles or the structure becomes inconsistent. In that case the user would have to undo
the changes in order to hopefully restore the previous, functioning system state. However, with
the help of Speculative Analysis these risks can be avoided. The IDE can to estimate the effect
of each quick fix and to deliver this information to the user beforehand. The basis for decisions
will therewith be significantly wider for the user, which results in a lower probability of incorrect
decisions and thus certainly also avoids unnecessary reversal processes.

• Version Control
For the support of collaborative working nowadays several version control systems exist. They
provide users with the opportunity to simultaneously work on distributed projects. However, this
can also be associated with problems. If, for example, two collaborators work on the same artifact,
the merging of these files may cause conflicts, compilation errors, or tests that fail, although they
could previously be successfully executed. Speculative Analysis can hence help to avoid such
constraints by simulating the merging process. If the analysis showed, that problems would likely
exist, the developer is able to postpone the merger or to directly eliminate the reason for failure.

Speculative analysis has been applied to the collaboration system Crystal [28, 29] and provides precise
results [29].

Applicability for tests

Speculative Analysis can also be applied to tests. In this conjunction, beneficial information would be
whether the test succeeded or failed or the consequences of the changes to the test coverage. However,
this scenario only makes sense if Reuse is applied. Otherwise, the question arises, why a user should
speculatively analyze the future impact of a test, if it is simply possible to run this test and to inspect
the result. Furthermore the input would have to be derived from somewhere or specified by the user. In
short, this scenario is senseless without Reuse. However, speculative analysis provides unprecedented
opportunities. If a user was provided with proposals for tests and could therewith estimate the impact on
the coverage of the test suite, this information could be used especially for the selection of appropriate
candidates. This would not only help to save work, but also to increase the test quality.

Challenges

A key challenge for Speculative Analysis is the breadth of speculation [27]. Since basically any state
may be examined, the set of possibilities quickly increases. Another driver for the size of the set is
the analysis depth, since basically the speculative processing may be conducted with several iterations.
However, with the increase of the possible future actions the cost for the analysis increase excessively. It
is therefore inevitable to actively manage (and if necessary reduce) the set of possibilities. Furthermore,
technical issues need to be addressed in order to ensure feasibility and consistency [27].

• Breadth & Depth
As the program perhaps needs to be executed for every single calculation, the speculative analysis

26

process requires significant computation to explore a large number of sets [27]. However, both
the breadth and the depth influence the overall effort. With breadth, the amount of simultaneously
available (or applied) different scenarios is denoted, whereas depth refers to the number of itera-
tions, the speculative analysis is performed for. Using b as the number of concurrent possibilities
and d as iteration counter, the number of overall computations Cd,b is given with Cd,b = b

d. As-
suming, that for every iteration 10 possible options exist, a iteration depth of only 2 would cause
100 potentially complete runs of the system. Depending on the complexity of the system this
task is likely not feasible in an appropriate time span. Solutions for this problem can be found in
an active reduction of the set of possibilities, and a limitation of the depth, e.g. to 1. The latter
also makes sense as the possible modification candidates may change from step to step and thus a
recalculation can be anyway necessary.

• Shared resources
Another issue to tackle is the usage of shared resources. The main objective is to ensure consis-
tency and to avoid failure through unavailable or blocked components. This may for example be
project files, that are needed for the calculation and which may be locked by the file system when
one process requests access [27]. In this case, the file system will usually block the usage of the
particular file to avoid inconsistencies. If the speculative analysis process is not feasible to handle
such situations, a parallel computation will not be possible. This again leads to longer overall
execution time, since the different possibilities can only processed sequentially. In the worst case,
the whole task may even fail. A means to an end may be in memory compilation or advantages in
rapid cloning of the project’s development states [27].

2.5 Summary

In this chapter the foundations for the remainder of this work were illustrated. The treated areas include
Testing, JUnit, Reuse and Speculative Analysis. Derived from the findings the following assumptions
have been made:

• Testing
The Testing focus of in this work lies on dynamic testing of the structure and the corresponding
control flow of units based on source code on their correctness in a white-box scenario. The
various implications of Table 2.1 should be reflected in an IDE implementation in order to provide
maximum benefit.

• Reuse
Reuse will be conducted in form of a white-box Reuse of artifacts on the basis of source code
in an ad-hoc scenario and use the acquired information for a compositional refactoring of the
functionality in a vertical application scenario. For this purpose, both a suitable database as well
as an effective IDE integration are profitable.

• JUnit
JUnit 4 is an extensive and reliable tool for the testing of Java units. Because of backward com-
patibility the handling of a JUnit 3 tests can as well be guaranteed.

• Speculative Analysis
Speculative Analysis has been identified as a suitable technology to shift continuous testing from
an ex-post usage to ex-ante application. However, some obstacles have to be considered in order
to create a workable solution.

In addition, one issue is to be mentioned in this section as it is relevant for the remainder of this work, but
neither fits into another section nor provides enough scope to be represented in a separate section. Since
the goal of this work is to develop an Eclipse IDE plugin for the Reuse of Tests and to integrate these

27

recommendations into the Eclipse Proposal Computer, the Ranking of the proposals also influences the
quality and usability of the recommendations.

• Ranking
A survey conducted about intelligent code completion system showed that recommendations,
which are context-sensitively ranked and thus more relevant for the user, dramatically outper-
form unranked proposals and thus have the potential to enhance a developer’s productivity [30].
Consequently, this issue must also be remembered for the design of the plugin.

28

CHAPTER 3
Design

In this chapter the design of our program Test Tenderer (TT) will be described. Beside the clarification
of the desired target functionality the project structure will be explained not only to enable the reader
to understand and reproduce our approach but to offer the opportunity to extend the developed tool. In
addition, details about the functionality will be given, especially how it processes the information from
the test-driven search to provide the user with various features.

The main objectives of this tool are (1) the utilization of Search-Driven Development (SDD) and
Reuse with the help of a code database, (2) to combine both techniques and apply this to tests, and (3) an
integration into the Eclipse framework to simplify the Test Reuse process. To achieve these goals a
plugin for the Eclipse Integrated Development Environment (IDE) was developed since this constitutes
a popular framework and provides needful starting points for the integration of a new functionality. This
approach allows us to shift the search process to the background and thus to fully automate. As a result
the user is constantly supported with suitable tests, classes, and methods found in the database. Based on
these data the user is offered the opportunity to inspect, verify or “crib” code fragments – or simply to get
inspired by the way other users solved a specific task. Additionally, our tool generates, ranks, integrates,
and – as an output – recommends valuable completion proposals in form of JUnit assertion statements
to simplify the testing process. Alongside these primary tasks, to enable Test Tenderer to offer test
recommendations and generate appropriate proposals, several complementary tasks had to be fulfilled.
Despite these, or maybe because of these, additional value was created by supplementary features. As a
result e.g. a feature called Continuous Coverage Calculation, a function that automatically evaluates the
test results and calculates the current coverage of the currently edited document in the background and
thereby provides the user with instant feedback about his testing efforts, could be added.

The first section describes the domain and depicts the problems related to today’s Reuse efforts.
Section 3.2 to section 3.5 depict an overview of the features. Starting with the Preparations (3.2) the
significance and the characteristics of the search process (3.3) will be discussed in detail. Based on the
results from this section the application of Speculative Analysis (3.4) will pave the way for the Proposal
Generation (3.5). In these passages different aspects of provided functionality and the obstacles, which
have been overcome, will be highlighted. Finally this chapter closes with a summary in section 3.6.

29

3.1 Domain

The domain of our work is actually composed of several smaller areas of interest. Specifically, it com-
bines the areas of Software Reuse (SR) (in particular Test Reuse), Testing and Search-Driven Develop-
ment (SDD). The domain of this topic therefore includes all the actors and actions of those individual
areas.

Developer Creator of a specific program or functionality and/or associated tests
Test Code to test a specific component
Component the component which is created/tested
Repository Knowledge storage with code artifacts for reuse, e.g. internet, database
IDE Integrated Development framework the developer works with, e.g. Eclipse
Quality Measure for excellence of the developed code

The entities Test and Component are directly connected with each other since there is no point in a test
without a tested object. Even with a Test-Driven Development (TDD) approach this condition can exist
only temporarily, because sooner or later a test needs to be targeted to one ore more specific components.
On the other hand the opposite situation is basically possible but neglected in the context of our work: as
the reuse of tests is primary scope of this work a developmental behavior without testing is not assumed.
The Repository represents any structured storage such as an online database. The item Quality represents
a generalized measure of excellence. In a testing context the code coverage of a test serves as benchmark.
With Developer the actual subject of observation respectively the addressee of the support offered by our
plugin is marked. Figure 3.1 depicts the required activities for the reuse of tests a developer usually has
to comply with.

3.1.1 Problem domain

Today commendable development of software includes the likewise creation of code and tests at par.
These two tasks also exist independently of whether the code is written first or a TDD approach is
applied. Either way, the developer must start with one of both and can not neglect the other part. To not
“reinvent the wheel” the developer will likely perform SDD and reuse existing artifacts which may be
found in different repositories within the internet. Without the use of specialized code search engines, the
developer is likely to use a default search engine and herewith try to achieve adequate results. However,
this is probably a Sisyphean task. Additionally the user may not necessarily know how to use specialized
search engines since they may have distinct requirements for the structure of a query. In general, these
machines are already at a loss at differing names because they often only look for textual matches and
a lookup by functionality is not part of the search process. Furthermore, if results are provided, these
must not necessarily be reliable. Related to the reuse of tests this fact is even more aggravated. But
let us suppose the developer was lucky and found appropriate artifacts to his requirements, even then
he still is responsible for the the inspection and evaluation of the results, by which the applicability is
still dramatically reduced. Again supposed, that even this task was manageable and successful, the user
is still responsible for the validation of the test, particularly whether the inserted code fulfills the needs
and improves the quality. Despite this, however, the fact remains that the user still has to interrupt his
work to search for and evaluate the relevant information. These exactly are the points where TT joins by
supporting the user with automated lookup and evaluation processes.

3.1.2 Objectives and Positioning

To bridge these problems TT is designed to target and support all relevant tasks in the reuse scenario of
Figure 3.1. More precisely, TT aims to abolish the manual search process by the provision of autonomous
background searching. Subsequently the display of the discovered code leads to decreased effort for
the user to inspect the results, especially since an automated evaluation can be performed beforehand.

30

&

Figure 3.1: A typical Reuse scenario

Additionally the integration of discovered fragments will be simplified by the integration into the IDE.
This also leads to drastically reduced distraction as the user does not need to “leave” the IDE to perform
a search. Finally an automated validation of the specific test completes the profile.

To simplify SDD for the user the tool Code Conjurer (CC) is currently already available, which
significantly simplifies and automates the search process. For this purpose CC comes as an Eclipse
plugin and provides the user with code recommendations based on a background database search for
specific possibly reusable artifacts and an integrated display in the IDE. Thus CC bridges the gap of
distraction related to conventional search behavior, i.e. searching in a web browser. CC works in the
latest version for components under development as well as for tests as point of origin for a search.
However, there are two issues with CC, and its debatable whether these can be considered flaws, which
TT aims to target. The first one is that CC is only able to recommend components and not tests. And
secondly, CC provides its suggestions only in a View and neglects the opportunity to even more increase
the ease of use by integrating into Eclipse’s proposal system. These issues provide starting points for
TT to automatically and systematically apply Reuse to tests. Consequently and complementary to CC,
TT’s task is to find just tests for given components and tests. To not retackle an already solved issue, TT
needs to work in an integrated environment, too. Similar to CC the Eclipse framework is found a feasible
environment for TT. To even more reduce distraction of the user TT integrates into the recommendation
process of Eclipse to enable quick access to the recommendations.

3.2 Preparations

In order to provide the user with valuable results, several conditions must be met. For this purpose the
local artifacts need to be prepared. Thus, the recognition of the corresponding Component Under Test
(CUT), whose functionality the test aims to check, is inevitable. This information is the centerpiece of
any further investigation. In addition the JUnit test type needs to be clarified. The difference in the type
of test may be considered as negligible in many cases, and to only refer to a different type of structure

31

Component Test

Code
Conjurer

Component⇤

Test
Tenderer

Test⇤

*
Se

ar
ch

-E
nh

an
ce

d

Search-Driven Development

Figure 3.2: Test Tenderer Target Scope

and syntax. But since JUnit 4 tests may be included directly in the CUTs this means, however, that Test
and CUT would originate in the same artifact. For the information collection and object creation process
code visitor patterns (4.5) were widely used

3.2.1 Test Preparation

First of all, the determination whether the user is working on a test is inevitable. As only tests are pro-
cessed herewith all stands and falls. The second required information is the JUnit test type since different
kinds of tests require different processing. Furthermore, knowledge about the tested components is es-
sential. And lastly the interface signature (cf. fig. 3.4) of the test needs to be calculated. For all of
these issues again different code visitor elements (4.5) are used which can be queried for the desired
information. If the fragment is recognized as test additional investigation is instituted. Although the type
signature of the test is rather uninteresting for the further process it is feasible to calculate it. It serves,
due to its uniqueness, as perfect identifier for a specific test. The way more critical and interesting analy-
sis is the investigation for CUTs and their interface signature, since ultimately not identically structured
tests, but the ones testing the same components shall be found. Finally, a Test object is thus obtained
that, apart its own information (such as type signature and test characteristics), also contains information
about the objects of the tested components and thus serves as starting point for further examination and
structural assessment, especially for the search process.

3.2.2 Component Under Test Discovery

One of the most essential tasks for the whole capabilities of TT is the correct discovery of the CUTs
that belong to a test. They form the key objects of any investigation since they are the starting point
for any further information creation activities. As simple as it may sound, however, the identification of
suitable candidates is not trivial. That is, because in addition to the (1) identification of these prospects,
(2) the associated paths have to be resolved, (3) the code of the detected targets has to be examined, the

32

1 0..*

Test

+ getFQDN() : String
+ getComponentsUnderTest() : ArrayList<>
+ getSignature() : String
+ getJunitResult() : Result
+ isTest() : boolean
+ isJUNIT3Test() : boolean
+ isJUNIT4Test() : boolean

ComponentUnderTest

+ getFQDN() : String
+ getTest() : Test
+ getSignature() : String
+ getSearchResult() : SearchResult
+ getComponentCoverage() : double[]
+ getInvocationVariable() : String

Figure 3.3: Interrelationship of Tests and ComponentsUnderTest

information has to be (4) structured and finally (5) connected to the Test to ensure consistent objects
for further processing.The role of the discovery mechanism is therefore manifold and crucial. To make
matters worse, Tests and CUTs can be more closely interlinked than expected. This happens primarily
through the use of JUnit 4 tests that are located within the tested component. In this case, the Test
and CUT objects refer to the same object, resulting in that the test (as seen from the model view) is
“self testing”. For the purpose of discovery the test is observed for instantiations of classes and analyze
their role in the test. Helpful information for this are also the results from the test preparation task. If a
component is actually tested or at least a usage is suspected, and it is thus recognized as a CUT, a specific
object for further application and instrumentation is created.The inspection of the imports is additionally
serviceable as well as the identification of the assigned variable.

3.2.3 Application and Interaction

If the current component under development is recognized as a test a specific Test object is created
which enriches itself with additional information. This information includes, among other things, the
test properties, the Fully Qualified Domain Name (FQDN) as well as the type signature. The Test object
additionally investigates its own source code to determine the CUT candidates and subsequently creates
ComponentUnderTest objects for every recognized aspirant. Besides the Test-sided setting of association
variables (i.e. the test and the invocation variable) this object again fills its information containers on its
own and therewith prepares for further processing. On initiation of the search an independent retrieval
process is conducted for each of the components a test holds, based on their individual signature. The
objects are afterwards enriched with the information received from the server and consequently after the
lookup process every CUT holds its own individual search result. However, some information place-
holders remain vacant at this point and are filled up during further activities. An example for this is the
component coverage, that is not set until the first basic coverage generation is accomplished. This also
applies to the JUnit result in the Test objects. To obtain the interrelationship structure of figure 3.3 this
principal is even applied if a Test is considered a JUnit 4 test and thus also represents its correspond-
ing CUT. In this case, two objects are created though, although both objects to be filled with information
from the same source. In summary, these two types in the end contain all the relevant information needed.
Figure 3.3 illustrates the interdependence of the Test and ComponentUnderTest objects and provides an
exemplary insight into the internal structure of these objects.

3.3 Search

For the lookup process the SENTRE1 database was enhanced and configured to closely interact with TT
and to cope with the specific requests. To ensure further instrumentation and provide the opportunity to

1SENTRE - Search-ENhanced Testing with REuse, http://sentre.se-testing.info/

33

C
i

�
m1(p(1,1), . . . , p(1,n)) : r1; . . .mk

(p(k,1), . . . , p(k,n)) : rk;| {z }
signature of method k

�

Ci : class name mk : method name
p(k,n) : parameter types rk : return type

Figure 3.4: Interface signature/Query format

extend the application area to other tools and services the required Application Programming Interface
(API) of SENTRE was accordingly designed. It thus accepts simple signature requests and returns
complex data structures holding the desired information.

3.3.1 Query format

The reduction of the server’s demands for the request to the plain usage of the interface signature helps
to preserve easy application and usage. The relevant signature here is but the one of the corresponding
CUT, not of the test itself, or of all of the CUTs if more than one component is tested at once. The reason
for this is, that the interface signature of a class contains the class name, the methods, and their parameter
and return types and thus marks a similar structure and herewith again announces similar functionality.
And this is just the similarity necessary as the search is conducted just to find the variety of tests that all
test functionally equivalent objects. The signature of the test itself would hence not lead to reasonable
result. To this effect the signature of the CUTs is the only interesting information. For a successful
interaction with the server the signature must correspond the scheme of fig. 3.4. The Ci in this case
represent the names of the classes, which in turn usually contain several methods that are given with their
method signature. The methods pattern is encapsulated into parenthesis to provide a comprehensive and
clear structure. The several single method signatures start with the method name mk. Moreover, all its
parameters (pn) and the output type (rk) are considered. The different parameter types are subordinated
to the method, again in parentheses, and separated by commas. The output type is symbolically separated
by a colon from the method to emphasize the result type character. Therefore, the method signature is
reminiscent of a method call or the methods interface description. The different methods are separated by
semicolons and the last method entry is terminated by a semicolon, too. A closing parenthesis marks the
end of the signature. Notwithstanding this formal definition the composition of a signature in practice
is much more intuitive. To give an example, the signature Calculator(add(int,int):int;sub(int,int):int;)
refers to a Calculator class with the methods add and sub, both expecting two primitive integers as
parameters and returning again a primitive integer.

3.3.2 Result structure

After the submission of the query the server processes the request and searches for corresponding
matches in its repository. To ensure the most comprehensive supply the server supports two search
modes: a standard search and a relaxed search. While in standard mode the query is not relieved and
thus only results exactly matching the original request are returned, the response from the relaxed search
is much richer. By unclenching the class name matching process a lot of more candidates are found and
returned in the results set. This leads to significant larger result sets, but at the expense of accuracy. That
means, returned to the example above, that not only Calculators but, for example, also CalculatorTests,
CalculatorFactorys, MortageCalculators, or TemperatureCalculators etc. qualify for recommendation.

34

- requiredInterfaceList1

*

- cutsFromMerobase 1

*

- methodInterfaces
0

*

- assertions0

*

- assertionType
01

- methodInvocationList0

*

- exceptionTests
0

*

- catchList0

*

CutFromMerobase

adapterCode : String

Test

+ cutsFromMerobase : List<CutFromMerobase>
+ requiredCutInterfaces : List<RequiredCutInterface>

RequiredCutInterface

+ exceptionTests : List<ExceptionTest>
+ methodInterface : List<MethodInterface>
+ numberOfMethods : int

JavaFile

+ filename : String
+ lastModification : String
+ loc : String
+ md5 : String
+ name : String
+ packageName : String
+ path : String
+ sourceCode : String

«enum»
AssertionType

NULL
ASSERT_TRUE
ASSERT_FALSE
ASSERT_EQUALS
ASSERT_ARRAY_EQUALS
ASSERT_NULL
ASSERT_NOT_NULL
ASSERT_SAME
ASSERT_NOT_SAME

MethodInterface

+ assertions : List<AssertionStatement>
+ name : String
+ returnType : String
+ numberOfAssertions : int
+ parameterTypes : List<String>

AssertionStatement

+ assertionType : AssertionType
+ expectedValue : String
+ methodInvocationList : List<MethodInvocation>

MethodInvocation

+ parameterValues : List<String>

ExceptionTest

+ catchList : List<ExceptionCatch>
+ fail: String
+ tryBlock : String
+ finallyBlock : String

ExceptionCatch

+ exception : String
+ block : String

Figure 3.5: Data Transfer Object used by SENTRE / TT

This may be stimulating for a developer, but it is not necessarily helpful since the desired functionality
may not be covered by the received contents – even if the similar method signature suggests similar
results. In the latest version the relaxed search is offering an additional parameter as threshold which
allows the only usage of this search type. Since initially a strict search is automatically performed and
the search is only relaxed if the number of results go below the specified limit, the currently implemented
relaxed search satisfies all needs and simplifies the search process and the implementation. The threshold
is basically adjustable but currently set to 1. In practice, this means that in TT the relaxed search is only
performed if a strict search does not deliver any result.

If the search process has been successful and results exist, the information exchange between server
and plugin is processed by the use of a Data Transfer Object (DTO) the server creates. This object is
then transferred to the requesting client and there transmuted into new complex objects with additional
properties and capacities. Regrettably the DTOs are not able to map complex data structures and are
thus basically only information containers. Nevertheless, with additional processing the information

35

from the DTOs is encapsulated and enriched by functionality. This enables us to quickly derive and
display structured and finished information for the exposure of tests and the integration into the proposal
computing process. Figure 3.5 shows the simplified2 class structure of the results as received from the
server.

3.3.3 Test Recommendations

Figure 3.6: Search View

The enriched search objects serve as basis for the provision of the search result information. The
objective here is to provide the user with structured and detailed information and thus to enable a simple
inspection of the provided code. The advantages are obvious: users may get inspired by the work of
others, resolve deadlocks, discover new paths to the goal, or simply get hints how to solve a specific
issue. For targeted and easy use the tests are assigned the names of the methods of the CUT, and not
the identifier of the test methods itself. The idea here is that the user probably will not care about the
name of the test methods, since he is usually looking for tested methods, or methods that he wants to
test, respectively. With this result the different classes, their methods with the attached assertions, as
well as the discovered exception tests are displayed to the user in the Search View registered in Eclipse.
This view is bisected: on the left side the view presents the result set in a tree structure with additional
information in attached tables. On the right side additional information is displayed, such as the source
code of the test or method which is selected in the tree. Here, the tests represent the highest levels and
form the roots of each test sub-tree. Attached as nodes are the methods that have been found in the
parsing process of the corresponding class and which are called by assertion statements in the original
test. Those instructions again form nodes of the respective method and therewith the leafs of the test
sub-tree. In addition the Exception Tests found in the database are subordinated to the tests itself. On
selection of these nodes the user is also displayed information in the right preview pane, here in form of
the try/catch-block of the exception. Figure 3.6 shows this structure implemented in TT. This hierarchy
easily enables users to browse the different results, to possibly identify additional methods, observe the
testing behavior of other developers, or to obtain ideas how to test a specific method - or even to “crib”
code. Summarized, to comply with the principle of Reuse.

3.4 Speculative Analysis

Undoubtedly most scientists will agree that it is not possible, in general, to predict the future. This is
because it is impossible to know all the (mostly unknown) variables and to estimate or simulate their

2In the original data structure, all variables are private or protected, and there are corresponding getter and setter methods.
For the purpose of illustration these methods were completely excluded and the variables were set to public.

36

interaction. Similarly, it seems at the first glance impossible to determine the influence of a proposal on
the coverage of a test before it is inserted in the code. But since precisely that is a particular goal of our
work, i.e. to provide assistance with the selection of an appropriate proposal to the user, the coverage
information is inevitably needed beforehand. Some kind of “clairvoyant method” had thus somehow to
be found to simulate the usage of the proposals and to estimate the potential coverage change. Fortunately
unlike the real future, the “future” of a test, however, can be estimated at predictable effort since the
variables are rather well known and manageable. By these requirements the means to our end was found
with Speculative Analysis. Using this methodology we are able to assess the impact of the application of
a proposal for the test in advance. For the calculation of the coverage the speculative analysis algorithm
of figure 3.7 evolved. Our first approach was to start with the creation of a temporary copy of the project
in order to avoid any interference or damage to the original code. For that we simply copied each file and
each directory from the original project to the system’s temporary folder. This resulted in redundancy as
the libraries are copied as well. On the other hand this ensured that every component was always up-to-
date and simplified the recomposing of the project’s class path and its dependencies for the temporary
project. In the latest implementation the speculative analysis is performed in-memory. This eliminates
any hard disk transfer delay and cost and speeds up the analysis process dramatically. For every assertion
proposal we have received from the performed search we create a temporary java objects. It is an exact
copy of the original source the user wants to insert the proposal in, but with a new randomly generated
name to avoid conflicts. In this code we insert the proposal on the appropriate position. We now have a
source to speculatively analyze. As we are working with a copy of the original source the next step is not
a breeze. Basically with the information about class path settings and used packages from the original
project the Java compiler is easily able to compile the generated file, but this step was quite tricky
during the implementation. Especially to find a way to systematically unravel the original class path,
the imported packages, the used libraries, and to ensure the consistency of all dependencies was quite
challenging. With that information we are able to equip the compiler with all the information needed
for successful compilation. Since we want to calculate the coverage of this test we have to observe the
corresponding CUTs. At first glance this may sound odd – but since the test with its assertion statements
basically only invokes methods in its CUTs and different assertions execute different code and thus lead
to different code coverage the observation of the CUTs is the key.

The coverage of a test is the accumulated coverage of its components under test.

When the compilation of the temporary test is successful, the generated class file object is loaded by a
custom class loader and then executed by a JUnit Core, which starts the test and collects information
about the test result – especially if a test fails or succeeds. In background, with the help of the JaCoCo
library (compare Table 3.1), we collect data and therewith prepare information about the coverage. This
knowledge is finally stored in the proposal objects for further processing and displaying.

3.4.1 Coverage Criteria Selection & Adjustment

The TT preferences menu offers users the possibility to individually calibrate the sorting and displaying
methodology. The user may select one of the following criteria as a dominant sorting criterion. Accord-
ing to the chosen entry TT ranks the proposals in an appropriate way. The order indicates increasing
significance. In addition to discrete coverage criteria, TT provides a calculated coverage criterion that
enables the user to customize the desired weighting of the “standard” coverage criteria and so the sorting
of the results. The different weights can be accelerated via the settings menu of TT (3.8). The pro-
posals are subsequently sorted by and displayed in the order of the calculated individual relevance. For
each criterion a percentage can be assigned to adjust the intensity of impact of the respective measure
size. TT offers the following six coverage criteria: Method Coverage, Branch Coverage, Line Coverage,
Instruction Coverage, Complexity Coverage, and Mixed Coverage.

37

1 create temporary copy of project⇤;
2 for every proposal in search result do
3 create temporary copy of original source / file⇤;
4 insert proposal into temporary object;
5 compile temporary file;
6 if compilation was successful then
7 calculate coverage;
8 store coverage information in proposal object;
9 end

10 end
11 delete temporary project⇤;

⇤only necessary for off-memory compilation

Figure 3.7: Speculative Analysis

All of them, except for Mixed Coverage, are fixed coverage criteria and hence an individual adjust-
ment is not contemplated. The static techniques used (1-4) are of limited significance since they do not
take the program flow into account – but they are time-efficient and thus suitable for our live recom-
mendation system. Nevertheless – or exactly for this reason – these criteria are supplemented by (5) the
control-flow criterion Complexity Coverage. The last item (6) but points to the individually weighted
scale mentioned above. On selection the user is granted access to the acceleration panel of the settings
menu (fig. 3.8) where the weights of the desired other “standard” criteria may be adjusted. The favored
weight is accordingly computed. In the settings menu the users are also able to apply two different filters:
(a) to show only proposals that improve the coverage, and (b) to mask proposals that fail the JUnit test
. At this point it should be noted that the exclusion of failed tests primarily serves clarity. Indeed, it is
precisely these tests, which are valuable because they are questioning the existing implementation.

In the development phase the failing tests are in fact the most valuable tests.

On application of the settings, TT saves the modifications and uses them for the ranking of the proposals.
As a matter of course TT applies the weighted coverage to the ranking, if Mixed Coverage is chosen.
These settings only concern the proposal generation for the live recommendation process, the display of
the tests in the search view is not affected.

3.4.2 Coverage Calculation

For the calculation of the coverage of source code several tools and libraries exists which, however,
differ in usability, functionality, and the provided measures. Figure 3.1 provides an overview of different
tools, especially about the provided measures for coverage. Most of the inspected tools offer either Line
Coverage (LC) or Statement Coverage (SC). The next widely supported measure is Branch Coverage
(BC) which is anyway part of 2/3 of the tools. The criterion Method Coverage (MC) is only supported by
four of the tools, but thereby still twice as often supported as Relational Coverage(RC) and Complexity
Coverage (Cc) each with two occurrences. Path Coverage (PC) is only supported by the Quilt library.
Besides these informational differences, the usability of the selected library was a dominant criterion. As
a result we decided to use the JaCoCo library as it provides the best fit between functionality, provided
measures and applicability. This package provides different methods for the calculation and provision

38

Figure 3.8: Test Tenderer coverage settings menu

of the coverage by means of different criteria as well as distinct information derived from the inspected
code. In TT we included the criteria provided by JaCoCo one to one. Users may choose a dominant
criterion for the sorting of the resulting proposals. The proposal computer accordingly sorts and displays
the results in the appropriate order. Additionally we define the new coverage criterion Mixed Coverage
that enables the user to set particular weighting and thus to apply individual preferences to the sorting
and display of the proposals. With the computation of the weighted mean (3.1) we are additionally able
to take the users’ preferences into account. The different coverages here are indicated with ci whereas the
wi refer to the assigned weights. Consequently, this means that in our implementation i = 5 as we work
with the five coverage criteria offered by the JaCoCo library. Both the coverages ci and the weights wi

39

iX
(wici)

iX
wi

with 0 c 1 and 0 < w 1 (3.1)

Name URL Year MC LC SC BC RC PC Cc
Grobo http://groboutils.sourceforge.net/ 2003 • •
Quilt http://quilt.sourceforge.net/ 2003 • • • • •
NoUnit http://nounit.sourceforge.net/ 2006 • •
InsECTJ http://insectj.sourceforge.net/ 2005 • •
Cobertura http://cobertura.sourceforge.net/ 2010 • • •
EMMA http://emma.sourceforge.net/ 2005 • • •
CodeCover http://www.codecover.org 2011 • • • •
Coverlipse http://coverlipse.sf.net/ 2009 • •
JaCoCo http://www.eclemma.org/jacoco/ 2013 • • • • •

Table 3.1: Comparison of Coverage Calculation Tools

in this case are floating numbers between 0 and 1 representing a percentage value. This allows to include
the weighting for each of the criteria on the overall score. At the same time this methodology ensures
that if a criterion should be absolutely weighted and the other criteria are neglected the same result is
achieved than if the corresponding criterion is exclusively selected as sorting and weighting measure in
the settings menu (fig. 3.8).

3.4.3 Basic Coverage

With the term Basic Coverage TT denominates the coverage of the test without the insertion of a proposal.
In other words the basic coverage is the current coverage of the test as is. It is both displayed in the
Coverage View and used for the calculation of the improvement value of the proposal in the Proposal
Computer. Here, the difference between the target coverage of the proposal and the basic coverage yields
the deviation. As a matter of fact the basic coverage can only be calculated if the test is compilable. For
this reason several triggers were integrated indicating whether a test is executable or not. In addition
these triggers are able to request an update if the test compilation is not possible at the moment of
request. These requests are subsequently processed as soon a test becomes compilable again.

3.4.4 Continuous JUnit Coverage

Besides the usage of the calculated basic coverage for the ranking of the proposals TT herewith provides
the user with feedback about the currently achieved coverage for the test and thus possibly points out a
way to go. This information is displayed in the Coverage View. Here the user receives detailed informa-
tion about the current coverage subdivided into the different coverage criteria. Additionally the preferred
and individually calculated Mixed Coverage is displayed. Although reasonable trigger mechanisms ex-
ists TT offers a manual refresh function for convenience in this view (fig. 3.9). This functionality has
been integrated because the actualization is not always necessarily required for the view and an ongoing
forced recalculation is not sufficient. However, on changes affecting the coverage this view is updated,
though. Furthermore, the view comes up with a JUnit indicator. This colored feedback bar indicates the
success of a JUnit run as it does the JUnit view as well. This indicator basically handles three different

40

states. If the JUnit run is successful the bar is displayed in bright green, on failure in dark red. If there
are constraints that hamper a JUnit run (e.g. compilation errors) the bar pales to grey. In addition helpful
information is reported in the text field beneath the bar. In case of success the duration of the JUnit run
is displayed, whereas the reason for failure is reported on disappointment. With the help of this view the
user thus gets an instant feedback about the recent testing efforts. As a result this represents a powerful
feature and eases the testing process since recurrent JUnit runs herewith are a thing of the past.

Figure 3.9: Coverage View

3.5 Proposal Generation

Since the proposal of different assertions in a test development scenario can be very advantageous and
helpful, Test Tenderer is designed to provide users with live proposals containing distinct information
about the achievable code coverage that would be attained with the usage of the specific code snippets.
This can be achieved by Speculative Analysis (see section 3.4 for detailed information). Every assertion

41

is processed for potential coverage by a speculative coverage calculation. This information is then used
to provide and recommend the proposals to the user. On activation of the Eclipse Proposal Computer
the calculated information about the target coverage is displayed in form of Assertion Proposals that
can - with one click - easily be inserted in the source code. Another sort of proposals are simultaneously
provided, namely the Method Proposals. Those are suggestions for methods that have been found in tests
and the corresponding CUTs, but are not yet present in the currently tested source code. If, for example,
a user works on a Calculator class and has only implemented an add method so far but in the search
result a test is found containing an assertion testing a subtract method, TT offers the user the opportunity
to directly insert the subtract method taken from the corresponding database CUT into the local CUT.
Last but not least the Exception Tests are mapped into Exception Proposals and subsequently displayed
as well. Of course, they also provide insertion functionality but contrary to the Method Proposals not the
CUT of the test but the test itself is affected by the insertion. To be compatible with the Eclipse Proposal
Computer the Proposal objects have to implement functionality for at least the (a) display of information
in the ProposalComputer and (b) special code modification behavior on application if selected in it.

3.5.1 Assertion Proposals

Measured against the requirements of the Eclipse Proposal Computer interface requirements the Asser-
tionProposal objects are very manageable. Notwithstanding, this class provides a variety of information.
These objects offer, besides different methods for text to be displayed, insertion behavior. Furthermore,
they accommodate access points for retrieval of the associated coverage, the also associated test result or
even simple variables that indicate whether an assertion is actually compilable or whether it is a "improv-
ing" or "worsening" proposal. All this allows TT to provide the users with qualitative information and
thus to provide a basis for decision and thus enabling them to make a sensible choice. An AssertionPro-
posal textually presents itself in the ProposalComputer with the notion given in figure 3.11 for any k-th
assertion. The JUnit indicator ik symbolizes a successful or failed JUnit test run and exists in three ver-
sions: a green check mark, a red and a gray X (Figure 3.10). The green icon indicates that the speculative
analysis with the selected proposal was successful and the test passed the JUnit test run. The successful
speculative analysis can also be read by the red indicator. However, in contrast to its green counterpart,
the test was not successful. If no successful speculative analysis could be performed, this is illustrated
by the gray X in conjunction with an accordant message in the information area. The TK refer to the

JUnit run successful

JUnit run failed

speculative analysis failed

Figure 3.10: JUnit indicator

different AssertionTypes of figure 3.5 which were already used for the DTOs. The variable vk comes
from the associated CUT and is discovered during the parsing process by the TestParser (see section
4.5.2 for details). It is used in the statement to ensure that non-static methods as well may be invoked.
Such a method is denoted with the mk as found in the search result and existing in the CUT. Together
with its arguments (ak) and the assertion type Tk these three variables form a method call, which again
is the first argument of the surrounding JUnit Assert statement. The second argument of this command
is the expected value ek which is compared against the return of the call under the terms prescribed by
the type (see section 2.2 for details). The whole values are derived by the search result and assembled by
the ProposalGenerationJob. Appended to the expression follows the target coverage ck which has been
calculated with Speculative Analysis. For comprehension and display purposes this value is presented in
whole percent without any decimal places. Additionally another information is given with the �k value
that illustrates the enhancement in coverage compared to the currently capped range. The � can theoret-

42

ically be negative, but only if execution fails due to erroneous proposals. Thus, this negative coverages
of the failed proposals are filtered out to not confuse the user with “negative coverage enhancements”.
More convenient examples of such proposal list entries can be found in figure 3.12 which implements
the above definition.

i
k

T
k

(v
k

.m
k

(a
k

), e
k

);| {z }
JUnit Assert statement

- c
k

%(±�
k

%)

ik : JUnit indicator ak : arguments for method in CUT
Tk : assertion type ek : expected value
vk : variable for CUT ck : target coverage
mk : method in CUT �k : delta to basic coverage

Figure 3.11: Assertion Proposal - textual representation

3.5.2 Method Proposals

In contrast to the Assertion Proposals the Method Proposals are not processed, but simply assembled.
For this purpose TT examines the tests from the search result as well as the local CUT and compares the
methods tested and accordingly the methods of the CUT. If in the search result a method is discovered
for which assertions exist, and if such a method cannot be found in the local CUT, a MethodProposal
object is created with the respective information taken from the database. This information includes the
name of the method, the number of assertions found in the search result, and the method body taken from
the database CUT. The method proposals are inserted into the proposal computer subsequently and thus
offer the user to simply enrich the tested object’s source code. To illustrate this from another point of
view: while the assertion proposals aim to evolve the test the method proposals target at the enhancement
of its tested components.

Assertion Proposals and Exception Proposals enrich tests, Method Proposals enhance CUTs

The visual representation in the ProposalComputer is trivial. The icon used is but to be mentioned
as TT indicates Method Proposals with a blue “M” and therewith clearly contrasting with the other
proposals for quick identification and comprehension. But even to display simple text and to enable the
proposal for application, the objects have to store distinct information. As the MethodProposal is only
valid for one component it thus holds a pointer to the CUT it is created for. Due to this it can access
all necessary information from and about the CUT. The method body for the later insertion is already
passed over during the creation of the objects to avoid unnecessary calling and processing effort. Since
practically different implementations for similar methods exist, TT creates several Method Proposals for
ostensibly equal methods. This may – dependent on the specific scenario – lead to an abundance of
proposals, but as they may be de facto different the user has to have the opportunity to choose different
implementations. When the user finally made a choice the desired implementation is inserted in the
corresponding component.

3.5.3 Exception Proposals

Another type of proposal is the Exception Proposal type. During the parsing process the sources in the
database are also investigated for Exception Tests. In the result set of a conducted search these exception
tests are thus also included (cp. fig. 3.5). These tests form the basis for the Exception Proposals. The

43

Figure 3.12: Test Tenderer proposal computer

information held by the exception tests is used to construct a body, which again is used for display and in-
sertion purposes. Therefor the try block, the catch list, the finally block, and information about the type of
exception this exception test aims to handle is extracted from the exception test. The subsequently inter-
nally assembled code body is based on the generic structure of try / catch blocks. During the speculative
analysis it is inserted in the test in order to calculate the relative coverage of this proposal. For this task
the exception body is wrapped into a randomly named method structure to avoid collisions with other
methods or structural boundaries on insertion. The same procedure is used on application by the user,
merely the generated method is inserted into the test itself. Visually the Exception Proposals contrast the
others by the usage of an individual icon – TT indicates this proposal type with a yellow “E”. The textual
representation indicates the behavior on application and is a simple advice that an exception test method
of the distinct type is created in the test. Notwithstanding that the exception type of the original test is
available, a generic Exception catch is inserted to avoid dependency resolution constraints.

3.5.4 Proposal Computer Integration

In Eclipse’s Proposal Computer the generated recommendations are displayed in the order of relevance.
This relevancy is a presentation of the ranking which is applied during the generation process. The As-
sertion Proposals are assigned a relevance according to their coverage improvement, i.e. the difference
of the target coverage compared to the actual coverage. The higher the potential, the higher the rele-
vance, i.e. the ranking. Subsequently the method proposals are placed, finally followed by the Exception
Proposals. The different proposals additionally provide information which may be helpful for the user.
Figure 3.12 exemplary shows proposals generated by TT. On the left side in the proposal list the different
recommendations are presented while the right (light-yellow shaded) information area contains informa-
tion about the selected proposal. The green hook and the red cross respectively indicate whether the
proposal succeeded or failed the JUnit test. A grey cross indicates that the speculative analysis could not
be performed. The blue “M” indicates a method proposal that offers easy application to the local CUT.
Here the method body of the database CUT is used, and on application subsequently inserted. The same
is shown for the Exception Proposals, except that a yellow “E” is used as an identifier. The proposal list
items are when appropriate enriched with additional information for a brief intelligence. So the Asser-
tion Proposals are enriched with coverage information that depend on the selection made in the settings
menu. In addition, the difference to the actual coverage is indicated in brackets. This choice is reflected
in the information area, too, as the desired dominant criterion is highlighted in bold text. Besides this
redundant information the other coverage criteria are displayed as well. This may help the user to get a
feeling for the different criteria and as the case may be adjust the individual preferences. The Method

44

Proposals are in turn equipped with the name of the method. In the information area these proposals
show up with a preview of the code to insert. The Exception Proposals indicate the kind of Exception
tested and provide an insight to the source code of this Exception test method in the information area as
well.

3.6 Summary

With our tool Test Tenderer we are able to tackle some problems of a conventional Reuse approach by
automation. TT provides Assertion Proposals and Exception Proposals for test enhancement, and Method
Proposals for CUT enrichment. In addition TT creates value by the provision of coverage information
in advance of the application of a specific assertion proposal. With the help of this functionality the
demand for an ex-ante evaluation of testing effort as stated in [21] could be satisfied. The user is hereby
able to evaluate the results beforehand and thus to come to an informed decision. Beyond that, TT offers
the opportunity to individually weight the different criteria to adjust the desired measure of excellence.
Finally with the help of the provision of the Continuous Coverage Calculation in the Coverage View
recurrent JUnit runs become obsolete. The concept of continuous testing [1] could hereby be realized.

45

CHAPTER 4
Implementation

In this chapter different aspects of the implementation will be highlighted. The first section is dedicated to
TT as Eclipse Plugin itself starting with the integration into the underlying framework. This is followed
by section 4.2 covering the cooperating database and the interaction with the plugin. In section 4.3 the
architecture as well as selected activities of Test Tenderer (TT) are reviewed. Hereafter, the process
workflow is highlighted in section 4.4. Section 4.5 is dedicated to Visitor Patterns, which were widely
used in the development of TT. The last passage closes with a brief summary about the requirements of
the development and starting points for potential implementation enhancements.

4.1 Eclipse Plugin

The Eclipse Integrated Development Environment (IDE) was identified as the ideal platform for the
development of this tool due to its reliability and availability, but especially since its plugin-driven func-
tionality and its extension ability allows developers to freely contribute to the framework. With this
feasibility TT was assumed to be able to exploit the potential of the available data discovered in the
multitude of tests in the database. This popular framework has its origins in the early 2000s, when a
subsidiary of IBM decided to create an integrated framework. Since then 8 new versions were released.
The latest stable version is Eclipse Juno (version 4.2), which was utilized for the development of TT.

4.1.1 Extension Points

To enable and ensure extendability, Eclipse basically offers the opportunity to “dock” to various so-
called Extension Points in order to extend functionality [31]. For Test Tenderer (TT) the Extension Point
org.eclipse.jdt.ui.javaCompletionProposalComputer was used to register the proposal computer, as well
as org.eclipse.ui.views to contribute the views to the UI. The first “cooperation” aims at an integration
into the recommendation system of Eclipse and allows to contribute customized proposals. The second
linkage offers the opportunity to interact with the user by visually contributing to the framework’s user
interface. As we developed TT as a plugin and decided to offer the users the opportunity to adjust several
settings we also “docked” our preferences to the org.eclipse.ui.preferencePages extension point to ensure
smooth integration in Eclipse’s preferences menu structure.

4.1.2 Views

Views are part of the workbench and fulfill specific UI tasks. While several built-in views, such as a
Package Explorer to browse and display the project structure and its components, or the Console view
that displays the application’s output, exist, developers are enabled to contribute additional Views freely
to the IDE and to equip them with individual displaying features. As the name alludes, Views are part of
Eclipse’s UI. TT makes use of this ability twice.

47

Search View

The first UI extension, the Search View supports the user with the structured results from the search. The
results are displayed in a so called TableTree. The characteristic of those trees is that they are structurally
built like trees, but each node has a table-like substructure. Within this table information can be displayed
in different columns. However, for the tree in the Search View one column is entirely sufficient. TT here
consistently provides the number of nodes subordinated to the respective item. That is in case of a test the
number of different tested methods found for this test, and in case of a method item selection the number
of subordinated assertions. On the right side of the view a multiline org.eclipse.swt.custom.StyledText
pane is used to inform the user about the content of the selection. If e.g. a test class item is selected
in the tree, the source code is displayed on the right. The users can hereby inspect the work of other
developers, gather ideas for their own code development, or can simply copy code snippets from the
displayed source code. In order to foster the comprehensibility of the code, and thus to enable the user
to easily read and understand the displayed source, a code formatting mechanism has been integrated
to “beautify” the result. The text is therewith given the appearance of formatted by an Eclipse code
editor. Thus, for example, words like “package", “class”, “public”, etc. are highlighted in bold. The
applied hierarchical structure and the provided information will enable developers to estimate the value
and appraise the impact of the results in a convenient and comprehensible way.

Coverage View

The second UI contribution is TT’s Coverage View, supporting the user with coverage information about
the test under work. This View makes use of different elements of the org.eclipse.swt.widgets package
to individually model and display the coverage information for each component under test. For the pre-
sentation of the different coverage criteria the Tree class of this package is used. In particular, for every
discovered component under test a single tree is inserted and denoted with the name of the particular
CUT. Subordinated to each root node the different coverages that are achieved by the test for this compo-
nent are displayed. Depending on the particular coverage criterion the leafs indicate the achieved score
with a distinct icon. That means, that TT denotes imperfect coverages with a red cross and completely
covering criteria with a green hook. In addition to this central tree element different Labels are used for
information purposes. The JUnit indicator bar, for example, visually informs the user about the result of
the latest JUnit run with the use of different colors. Other applications of the Label are just to provide
the user with textual feedback, such as result of the JUnit run or whether a test is compilable or not. The
Coverage View updates on demand. That means, if an internal method requests an update, the coverage
information is recalculated and refreshed. This happens on changes to the signature of the test, altered
assertion-statements in the test, or if a search was conducted. If an update is not instantly possible (e.g.
due to a currently not compilable test) a corresponding flag is set to request an early recalculation. When
this particular flag is set, TT triggers the update on any next change event in the editor, such as a key
stroke or the activation of an editor.

Activation Surveillance

One particular aspects will be additionally mentioned as its solution was simple but not trivial. The prob-
lem is, that views can only be addressed and updated if they currently exist in the workbench. If the views
are not active an exception is thrown stating that the “widget is disposed” which can quickly disturb the
update process and thus lead to an inconsistent UI state. A promising approach seemed to be to question
the views instances for whether they are active or not, that means whether they exist in the workbench. If
a view was considered not active it is displayed with the help of the org.eclipse.swt.widgets.Display class
in conjunction with the current org.eclipse.ui.IWorkbenchPage. This approach seemed feasible and ap-
peared to be goal-oriented and cost-effective. However, the remaining task to acquire information about
the state of the view was not trivial to solve. Finally we were able to collect the desired information.
For that purpose the org.eclipse.ui.IPartListener was added to the implemented interfaces, and registered

48

as listener with the IWorkbenchPage, as it provides connecting points for the collection of information
about this view. It holds several serviceable methods, among them a partActivated and a partClosed
trigger method, which are invoked on the particular event. With the use of an internal boolean indicator,
which is modified on the particular events, it was thus possible to appropriately react to the particular
view state and thus to avoid failure by addressing inactive views.

4.1.3 Proposal Computer

The Eclipse IDE provides several proposal computers that simplify the programming process and en-
able the user to comfortably find and observe desired functionality. When activated (by pressing CTRL
+ Space), Eclipse suggests completion proposals enriched by additional information about the specific
functionality of the envisaged component, required constructor details, or possible alternatives. This
proposal mechanism is usually very promising and eases the development process considerably. TT’s
Proposal Computer implements the org.eclipse.jdt.ui.text.java.IJavaCompletionProposalComputer in-
terface and thus provides several triggering and information processing mechanisms. For instance the
interface requires the implementation of the methods computeCompletionProposals, computeContextIn-
formation, getErrorMessages, sessionStarted, and sessionEnded. Since we registered this class with
the Eclipse system these methods are autonomously invoked by Eclipse on demand. In this connec-
tion the first three elements act as information providers for the IDE and supply Eclipse with a list of
org.eclipse.jface.text.contentassist.ICompletionProposal objects, respectively when context information
is requested a list of org.eclipse.jface.text.contentassist.IContextInformation. In our implementation only
the first supplier is used as we are adding the Proposal-specific context information to these objects di-
rectly. Furthermore the proposals are only filtered at this point, since the construction is accomplished
asynchronously in the ProposalGenerator and the actual proposals are hosted in the central singleton
class TestTenderer for simple and cross-class access. That means, that Eclipse’s call of this method is
simply forwarded, the filters applied comply with the settings in the preferences menu. The session-
related methods serve as triggers and are invoke at the beginning of a ProposalComputer session, re-
spectively at the end. Their existence allows to react with preliminary and with follow-up activities. This
ensures, for instance, that with the start of a session no calculation is started if TT is inactive, and that all
jobs are stopped as soon as a session ends.

4.1.4 Preferences

In order to engage in the preferences structure of Eclipse all registered preferences classes have to im-
plement the org.eclipse.ui.IWorkbenchPreferencePage interface and - in order to provide customized be-
havior - to extend the class org.eclipse.jface.preference.FieldEditorPreferencePage. The pages are filled
with different elements from org.eclipse.swt package. For the composition of the preferences classes the
WindowBuilder1 Java GUI designer was used. The implementation was straightforward.

4.1.5 Runtime Environment

To benefit from the latest features of Java we decided also to use the latest version 7 (Update 17). This
decision had actually forces the user to also use this latest version to enable the usage of the plugin.
Since we have to perform various source code changes and thus need additional functionality from the
Java Development Kit (JDK), whose availability is a further and quite major hurdle, the decision whether
to rely on the topicality of the customarily installed Java Runtime Environment (JRE) or to demand
installation became dispensable. That means that the user is required to have a valid JDK installed. If
only a JRE is found on the target system TT displays an appropriate message and denies activation.

1http://www.eclipse.org/windowbuilder/

49

4.2 Database

The data basis for the recommendations afforded the Merobase [9, 10] database, a component search
engine with currently 9.433.422 entries, of which solely 7.898.005 items are Java classes2. These ele-
ments were analyzed for their capacity of a test and – if a test case was found – thoroughly examined.
All discovered tests were subsequently migrated to the SENTRE database. Through the exploration pro-
cess the structure, the signature, and finally the information from the assertion statements was extracted
to offer these data in the web interface as well as to TT for recommendations. Additionally, the tests
were examined for calls on other tested methods. These invocations were examined and the signatures
of the invoked methods were extracted to provide the user with suggestions as to what methods could
also be interesting. Moreover, the data sets were investigated for exception tests, which were also ex-
tracted for further usage. The data thus collected form the basis of the data model that allows structured
representation in the web interface and a purposeful use in TT.

4.2.1 Preparation of the data

The parsing of the tests in the database was accomplished in our group. The main goals were to prepare
the data for a usage in a web search engine and to interact with TT. For the web search scenario especially
a lean data structure, a reliable indexing mechanism and consequently a fast lookup process were the
measure of things. For this purpose the Merobase [9, 10] was used and its data were parsed for tests. As
a result a discrete database on the basis of the collected data could be established. The SENTRE database
is designed for the utilization of tests for reuse. The parsed data were assembled to a more complex,
but consequently better utilizable structures. Figure 3.5 in chapter 3 illustrates this structure. With these
collected information and the corresponding structure we opened the gate to the world of Test Reuse.

Assertion

Since TT besides the display of suitable code also aims to provide the user with assistance via Eclipse’s
proposal computer, the extracted assertion calls available in the JUnit framework were examined in
detail. As described in 2.2, these assertion calls basically all function on the same principle: an Assert
call is passed both an expected value, and an actual value, wherein the later usually is the result of a
method call. JUnit then compares both values and indicates whether the expected value matches the
actual (calculated) value. We thus had to not only look for the assertion itself, but for the arguments
and for the invoked methods, too. If an assertion call was found, the information about the invoking
method and its arguments were extracted and together with the expected value stored in the result set.
The collected data therefore comprise conclusions about the functionality of the tested method – even
though it could depict a failing test.

Methods

The extracted methods exist in SENTRE only with their method signature. These signatures actually
do not represent the methods in the test, but rather methods of the CUT associated with the test, and
originate in previously discovered assertion statements or on the call within JUnit statements.

Exceptions

The information about exception tests needed for the provision of Exception Proposals have been directly
taken from the source code of the test. If a test with a try/catch body was found, the entire code was stored
in the corresponding object.

2as of June 2013

50

4.2.2 Utilization of the Data Transfer Objects

As the results have to be easily transferable via the internet to be available to TT, a straight structure
for the transmission objects was pursued. Consequently, the data sets were packed into Data Transfer
Objects (DTO), for which the structure of figure 3.5 was agreed. To extend the objects of its role as simple
data containers and thus to improve local functionality structurally similar domain objects extending the
search result objects are created by TT, when a search was successful. The creation and transmission of
the objects finally work fine, as long as only data stored in SENTRE is affected. But as we (during the
development of the tool) discovered the need for additional information and especially for data regarding
the corresponding CUTs we had to find a way to integrate the parental information from the Merobase
into our objects. This requirement was initiated by the wish to have the opportunity to reuse the source
code of the original CUT in the Method Proposals and thus, if desired, to be able to display and to insert
the code into the local CUT. To avoid huge redundancy we bypassed the option of storing the whole
project structure in the new database by agreeing on only storing the source code of the respective CUT
in the corresponding object. Although this enrichment was planned, this goal has not been achievable
within the course of this work. The main reasons for this shortcoming have been the requirements to
and thus the complexity of an appropriate parser and the effort this entails. Therefore an alternative
index structure has been created, consisting of value pairs of tests and potentially associated CUTs. This
index is predicated on simple investigations of imports, calls, and variable declarations in the specific
test. In the current implementation, the database request therefore includes two steps. In the first step
the complex object structure stored in SENTRE (and displayed in fig. 3.5) is obtained while in step
two the associated cuts are requested. Internally, the encapsulated SENTRE data objects from step one
are subsequently enriched with the information from step two. Finally therewith TT is able to provide
Method Proposals offering the application of the original method body of the CUT from the database to
the locally tested component. Summarized, TT hence receives all information needed for the generation
of the proposals and the exposing the results. The structure here supports TT to easily find and utilize
the required information. For example, if all assertions shall be found, an iteration over the various
classes and methods is sufficient to retrieve the AssertionStatements for the calculation of the Assertion
Proposals (3.5.1). Likewise this structure finally enables the straightforward calculation of the Method
Proposals (3.5.2) as well as of the Exception Proposals (3.5.3).

4.3 Architecture

In the development of our prototypical application we strictly pursued a layered architecture to facilitate
further improvement and easier maintainability. We thus created distinct layers - Application, Domain,
and UI - in our implementation what is reflected in the package structure. The package names conse-
quently correspond to the respective responsibility: we placed every processing class in the Application
layer, all functionality for user interaction in the UI layer, and the data objects in the Domain layer.
Additionally we added the packages Actions, Util, and Tests. The first of these additional aggregations
contains the actions for Eclipse, such as the ActivationAction which enables TT to run. The Tests pack-
age contains the tests for our program and is located in the main source folder as we abstained to split
the tests to the specific sub packages. In addition, a Util package is available in almost every layer
containing specific utility functionality as well as static methods and constants for the particular pack-
age. Since the search process represents the only transmission process in our application we omitted
a further differentiation of a network/transport layer and the search was placed in the domain layer for
convenience.

51

4.3.1 Application Layer

The application layer contains all the classes and procedures needed for any calculation purposes and
is thus the layer controlling the work flow. Figure 4.1 depicts3 the corresponding package. With the
activation of TT the plugin registers an BackgroundAgent which observes the user behavior on the basis
of performed changes in the currently opened editor. At this juncture it reports to the main class of
the plugin: the central singleton class TestTenderer. This unit acts as the central steering and control
instances. It it responsible for the whole work flow and the integrity of the system. It even contains the
proposal information required by the ProposalComputer, which is registered in and thus questioned for
proposals by Eclipse. For this purpose this servant needs to implement the org.eclipse.jdt.ui.text.java.-
IJavaCompletionProposalComputer interface to interact with the IDE. The ProposalComputer itself has
little independent functionality and basically only acts as an “interface” for the recommendation system
of Eclipse. The reason for this limitation of functionality to a simple filter handler lies in the fact that the
proposals are calculated in the background. Thus this class only acts as an information dealer, not as a
processor as the name may suggest. The proposal generation and coverage calculation tasks are initiated
by the TestTenderer singleton and accomplished with the help of the ProposalGenerator job, respectively
the CoverageGenerator class. On request the different proposals are generated by the ProposalGenerator
which extends the org.eclipse.core.runtime.jobs.Job and therewith inherits the ability to contribute to
Eclipse’s progress bar. This job additionally acts as managing instance for the coverage calculating
CoverageGenerators. These information creators enrich the previously generated domain layer objects
by speculative coverage information. As this is accomplished asynchronously, the CoverageGenerator
implements the java.lang.Runnable interface.

Application
ProposalComputer
TestTenderer
Generators

ProposalGenerator
CoverageGenerator

Listeners
BackgroundAgent

Figure 4.1: Application layer structure

4.3.2 Domain Layer

The domain layer contains all the elements of the domain, i.e. all classes that actually represent “real
world objects” as given in Figure 4.2. The most important and most intensively used objects are the Test
and the ComponentUnderTest. Both are linked with each other in a 1 : n relationship, that means that one
Test may hold multiple ComponentUnderTest, but every CUT object belongs to only one corresponding
test. Both classes provide access to distinct information related to the particular object. Thus, the Test
besides simple information like the simple name or the Fully Qualified Domain Name (FQDN) hosts
knowledge about its associated components, what kind of test it represents, the result of the last JUnit
test run, and of course the source code that represents this object. The latter is, however, is provided
in the form of a org.eclipse.jdt.core.dom.CompilationUnit with which the instances are also constructed.
The same construction requirements are used for the ComponentUnderTest objects, which are addition-
ally passed the parent Test instance to established the mentioned concatenation. A special circumstance

3for the purpose of clearer presentation some helper classes and packages have been removed

52

is that these objects construct themselves. If a test is instantiated with a CompilationUnit as param-
eter, it examines its own source code and enriches itself with information. This task is accomplished
with the help of the TestParser (see section 4.5.2 for details). Furthermore, it examines the source for
possible CUT candidates and creates - if the investigation was successful - appropriate ComponentUn-
derTest objects. The dependencies on objects in the project are resolved within the TestParser, which
procures the CompilationUnits of the candidates on the basis of the given JavaProject. The so created
ComponentUnderTest objects show a similar behavior on creation and examine and enrich themselves
with necessary and useful information. Therefore they come up, in addition to however trivial informa-
tion (such as simple name or FQDN), with knowledge of the associated file, the corresponding search
result, the name of its own methods, the achieved basic coverage from the test, or as the case may be
the variable that was assigned to this component in the associated Test. Because not all bases for in-
formation retrieval are available upon creation, some are amended later. This concerns for example the
coverage information, which can of course only be stored after it has been calculated. In addition, this
also applies to the search result, which understandably can only be assigned, when a suitable search is
performed. Another important participant in the work flow is thus the Search class in the correspond-
ing Search package, which holds functionality for the search itself and operations for the construction
of the desired data structure derived from the search results structure. After the execution of a search
the Search object therefore wraps all the objects in the result set to instrumented counterparts for ad-
vanced processing capabilities. The classes starting with an “i” thus represent those “instrumented”
correspondents of the objects received from the search server and are consequently also located in the
Search package. They provide enriched functionality and are tailored to TT’s specific needs. And they
hereby contain all information needed for the entire processing activities. In addition to the wrapping
functionality the Search class holds several information derived from the search process, e.g whether the
search was successful and the duration of the search process, and provides different connection points
for the retrieval of the result or subordinated information. A further characteristic is additionally worth
mentioning. Given that the Search objects already interact with the Tests instances to perform a dis-
tinct search for each of their CUTs, they simultaneously submit the search result to the corresponding
ComponentUnderTest. Last but not least the Domain layer contains the Proposals package, which again
contains the different types of Proposal, which they all extend. The super class implements three in-
terfaces: (1) the org.eclipse.jdt.ui.text.java.IJavaCompletionProposal interface, which is demanded by
the Proposal Computer to enable integration, utilization and display of the recommendations, (2) the
org.eclipse.jface.text.contentassist.ICompletionProposalExtension2 interface, which adds the opportu-
nity to handle trigger characters with modifiers and to visually indicate the selection of the proposal,
and (3) the org.eclipse.jface.text.contentassist.ICompletionProposalExtension6 interface, which allows
styled ranges in the display string.In conjunction with the necessity of the IDE for the implementation of
the first element, this also provides the general basic functionality. Access points for the string to display,
for the image to use, for the relevance (which determines the rank), for additional information to display
in a supportive information frame, or for contextual information are herewith provided. In addition this
interface encourages to specify the insertion functionality with the demand for a specific apply method.
For convenience additional methods are included in this Proposal class, which provide secondary infor-
mation e.g. whether the Test with the specific proposal passed the JUnit test run or whether its particular
coverage is improving or worsening compared to a given BasicProposal. The classes AssertionProposal,
MethodProposal, and MethodProposal inherit this functionality as they are all used for the recommen-
dation system. The class BasicCoverage in turn extends the AssertionProposal class for convenience, as
this already provides some extra setter and helper methods. In the ExceptionProposal the only deviation
is a method to obtain the underlying iExceptionTest. Besides these mentioned deviations the subtypes
only change the functionality of the superclass Proposal, but do not extend it beyond that. The Con-
text class is an extension of the org.eclipse.jdt.ui.text.java.ContentAssistInvocationContext class, which
is passed by the ProposalComputer as container for contextual information. This information includes
the caret position at which the recommendation process was triggered, the prefix the user already typed

53

in before activation, and the document the proposal request was started in. This information usually has
to be thoroughly extracted. The Context class simplifies this process with the provision of automated
methodology. As the AssertionProposals demand the underlying information for a correct insertion be-
havior the Proposals are contemporaneously with the triggering of the ProposalComputer enriched with
a corresponding Context object.

Domain
Test
ComponentUnderTest
Proposals

AssertionProposal
BasicProposal
ExceptionProposal
MethodProposal
Proposal

Search
Search
iAssertionStatement
iCUT
iExceptionTest

iMethodInterface
iRequiredCutInterface

iTest
Util

Visitors
InformationParser
TestParser

Context

Figure 4.2: Domain Layer Structure

4.3.3 User Interface Layer

The User Interface (UI) layer contains all elements, which contribute to or can be accessed by the Eclipse
workbench (see Figure 4.3). The Activate class implements the org.eclipse.ui.IWorkbenchWindowAction-
Delegate interface to be addressable by Eclipse. This Action is linked to a button in the Eclipse toolbar
and consequently its run method is invoked by a click on the according button. Its functionality is com-
paratively trivial. It just calls an activate method in the TestTenderer singleton and passes whether the
toggle button is selected or not. With that information TT starts or stops the BackgroundAgent. The
UI Listener package is basically only supporting the different components in the Views package. It
just comprises two interfaces and two enumerations. As the naming indicates the CoverageEventLis-
tener interface is implemented by the CoverageView and aims to deal with CoverageEvents, whereas
the SearchEventListener interface is implemented by the SearchView and reacts to SearchEvents. Both

54

interfaces extend the org.eclipse.ui.IPartListener2 interface to enable activity surveillance of the views,
since these have registered with the workbench for this purpose. Additionally both listeners require a
notify method which handle the different event types in the corresponding view. Although each view
is only registered once in the TestTenderer instance and with Eclipse, the decision to appeal the views
with listeners was taken, however, for the purpose of extensibility. The registration of the views is en-
abled by the extension of the org.eclipse.ui.part.ViewPart class, which provides functionality needed
by Eclipse. These features include a method for the creation of the object or the part control, and
the opportunity to focus the contribution in the workbench. With the additional implementation of the
above interfaces the views beyond that become available for the managing TestTenderer instance and
therewith even for the subordinated objects. Besides the two Views the package of same denomination
contains two layout classes, which both serve the SearchView with the layout of the used TableTree.
The TableContentProvider is responsible for the representation of the “table” part of the TableTree,
whereas in turn the TreeContentProvider manages the display of the “tree” component. In order to en-
able interaction with the org.eclipse.jface.viewers.TreeViewer.TreeViewer in the SearchView both have
to implement a distinct interface. In case of the TableContentProvider this is the org.eclipse.jface.-
viewers.ITableLabelProvider interface, for the TreeContentProvider the implementation of the org.-
eclipse.jface.viewers.ITreeContentProvider interface is sufficient. Both interfaces demand functionality
for a structured management of the content, such as the text to display in a distinct column of the table,
or the image to display for a particular node of the tree. The Preferences package contains all elements
needed for the contribution to Eclipse’s preference menu. More precisely, TT subscribes two items to
the preferences. Firstly, the generically named Preferences page with basic adjustments for the search
server and a bug reporting functionality and secondly, the CoveragePreferences providing adjustment
capabilities for the different coverage weights are submitted. Both classes do not differ in functional-
ity, but only in content. They implement the org.eclipse.ui.IWorkbenchPreferencePage interface and are
therewith integrable. In addition, both extend the org.eclipse.jface.preference.FieldEditorPreferencePage
class and therewith indicate the hosting of field editors. Simultaneously with that extension these pages
acquire the ability to provide specialized behavior for application and default value restoring. These
initial default values are held by the PreferenceInitializer class, an extension of the org.eclipse.core.-
runtime.preferences.AbstractPreferenceInitializer. It initializes the different preferred values in the org.-
eclipse.jface.preference.IPreferenceStore provided by the plugin Activator class with the particular de-
fined value. For a structured assignment and retrieval process, the PreferenceConstants class provides
several identifiers, which afford a fail safe variable assignment. In the same way the default values are
restored, if requested.

4.3.4 Utilities & other classes

Furthermore, still two classes exist in the architecture, that are subordinated to any other package due
to their functionality or meaning (see Figure 4.4). The most important item is the Activator class
which represents the interlink between TT and Eclipse. As an extension of the org.eclipse.ui.plugin.-
AbstractUIPlugin class it serves a basic initiator of the plugin and starts TT with the help of the activate
method in the TestTenderer class. The second “homeless” class is the BugReporter which was created
and integrated for bug reporting purposes. This reporter manages the flow of automatically created bug
reports to a dedicated Bugzilla database. Finally, to provide access to globally used methods and ob-
jects a central Commons class is located in the Util package. This class e.g. provides indices for the
different coverage criteria, which are internally usually stored in a double array, simple calculation func-
tionality for the conversion of double values dj with 0 dj 1 to an integer percent representation
ij with 0 ij 100, or retrieval methods for globally used icons and constants.

55

UI
Actions

Activate
Listener

CoverageEventListener
SearchEventListener
CoverageEvent
SearchEvent

Views
CoverageView
SearchView
TableContentProvider
TreeContentProvider

Preferences
Preferences
CoveragePreferences
PreferenceInitializer
PreferenceConstants

Figure 4.3: User Interface layer structure

Test Tenderer
Application
Domain
UI
Util

Commons
Activator
BugReporter

Figure 4.4: Utilities layer structure

4.4 Work Flow

Usually Eclipse hinders plugins to automatically start on launch of the framework to prevent itself e.g.
from memory leaks, performance deficiency, and a too long startup time. This modus operandi is called
lazy start mechanism. But since the support of our plugin is very promising we decided to activate it
by default. Nevertheless, our plugin observes nearly any code change and is thus very “attentive”, so
the opportunity to (at least temporarily) disable the observation seemed reasonable on the other hand.
Accordingly TT may be deactivated via a button we added to Eclipse’s main command bar. However, on
start-up TT registers an BackgroundAgent with the org.eclipse.jdt.core.JavaCore to enable an appropriate
surveillance of the editors. This listener consequently reports to the TestTenderer singleton class and in-
forms about any changes in the editor with the reporting of an org.eclipse.jdt.core.ElementChangedEvent.
TestTenderer subsequently triggers several tasks depending on the actual state of the system. Primarily
this is maintenance, the surveillance of the system and the project the user is working on, the execution
of a search, and the generation, respectively the update, of proposals. Appendix A provides a complete
overview of the work flow. In the following the major activities are presented in detail.

56

4.4.1 Surveillance & Test preparation

On every change event TT inspects the current state of the system and evaluates the current work of the
user. Based on this evaluation TT decides which actions to perform. For this purpose first of all needs to
be clarified, whether the user is actually working on a test. To access the information, TT initially creates
a Test object based on the current editor content. On creation, this object examines the underlying source
code for evidence of a test. Furthermore, the Test class continues self-investigation for corresponding
ComponentUnderTests. If the resource under inspection is not considered a test, no further activities
are started. In this case the SearchView as well as the CoverageView are notified with the corresponding
“NO_TEST” event. These Views subsequently update on their own and display corresponding messages.
If the artifact but is a test, TT continues with the inspection of the Test’s signature. This information con-
sists of the name of the Test and the interface signature of each ComponentUnderTest and thus serves as
identifier. If this signature has not changed since the last evaluation the test is considered not modified
and consequently nothing is done. However, if the newly calculated test identifier changed, it is subse-
quently compared to other signatures TT previously inspected and for which a search has already been
conducted and stored. If such a previously saved search result was found, this data set is re-initiated and
consequently reused. Otherwise a new search is performed. Figure 4.5 provides a detailed insight into
these activities.

TestTenderer

Test

SearchView CoverageView

«Job»
Search

ComponentUnderTest

EditorChangeListenerEditorChangeListener

returnreturn

opt

[isTest == false]

[isTest == true]

opt

[s ignatureChangedNO]

editorChangedNE lementChangedEventO

newNCompilationUnitO

«create»

newNO

«create»isTestNO :boolean

notifyNCoverageEvent.NO_TESTO

notifyNSearchEvent.NO_TESTO

getS ignatureNO :String
getS ignatureNO :String

performSearchNO

newNTestO

«create»

Figure 4.5: Test Preparation

57

4.4.2 Performing a search

In order to avoid unnecessary network traffic a search is only conducted when the signature of the Test
changes and if the “new” signature does not correspond to any previously performed and stored Search.
If these conditions are met, TT creates a new Search and passes in the new Test object. The Search
job subsequently requests all ComponentUnderTest objects from the Test and starts a search for the
particular component. The query here is constructed on the basis of the signature of the concerning
ComponentUnderTest. When this lookup process is finished and the server returns the result set, the
corresponding objects are enriched with the search result. Finally, the Search finishes with the provision
of a SearchEvent to the TestTenderer instance. On that basis TT informs the SearchView, which in turn
updates depending on the type of the reported SearchEvent. Figure 4.6 shows the entire decision and
processing sequence.

TestTenderer TestSearchView

«Job»

Search

ComponentUnderTest

o p t in itiate search

[signature changed]

loop search

[for each ComponentUnderTest]

newPTestE

«create»

getComponentsUnderTestPE :ArrayList<ComponentsUnderTest>

getS ignaturePE :String

searchPsignatureE :SearchResult

setSearchResultPSearchResultE

searchPerformedPSearchEventE

notifyPSearchEventE

[Search.wasSuccessfulPE]:generateProposalsPE

Figure 4.6: Search

4.4.3 Generating proposals & Calculating coverage

The generation of the proposals and the enrichment of the Proposal objects with the respective target cov-
erage information is the most complex task. This step is to be chronologically classified after the search
process. The proposal creation process is only triggered, if the search has been successful. Otherwise
the proposals, if any exist yet, are updated on the target coverage information based on the current test.
It should be mentioned again that the entire update process is interrupted if the current code under devel-
opment is not considered a test or if the signature has not changed. However, we assume that the source
is recognized a test and the search was successful. In that case TT starts with the calculation of the basic

58

coverage by the use of the CoverageGenerator. This generator subsequently calculates the coverage of
the Test as-is and enriches the also passed in BasicProposal. In addition, the CoverageGenerator assigns
each ComponentUnderTest discovered in the Test object their particular coverage. This information is
subsequently used to notify the CoverageView and thus to display the coverage information. The basic
coverage information is also used for the proposals as the coverage improvement the proposals achieve
is also calculated and displayed in the Proposal Computer. After the calculation of this basic reference
values TT generates the different Proposals with the help of the ProposalGenerator job. This object is
responsible for and manages the whole proposal creation and coverage calculation process. Based on the
provided Search and the list of ComponentUnderTest it assembles the different assertion statements and
therewith creates the AssertionProposals. Furthermore the tested methods found in the Search are com-
pared to the methods present in the ComponentUnderTest objects. If a method is found for that on the
one hand tests were found, but on the other hand if such a method does not exist in the ComponentUn-
derTest, a new MethodProposal is created, which provides the source code of the corresponding database
CUT method. With that information these MethodProposals provide functionality for the inspection and
insertion into the local CUT. The same is done with the exception tests found in the Search, with the only
difference, that they address the test and not CUT. Arising objects on this are ExceptionProposals. Once
the proposal generation is completed, the ProposalGenerator starts with the calculation of the coverage.
For this, the java.util.concurrent.ExecutorService is used that takes the thread management based on a
pre-set value. In our implementation we set this value to max(cores, 1) to ensure that constantly enough
computing power, i.e. at least one core, for the IDE is exclusively available. In other words, TT uses
the maximum available power for the calculation, but ensures that there is always enough computing
power for main operations. The Executor then automatically starts a CoverageGenerator and causes the
coverage calculation for each passed proposal. As this task is performed asynchronously the Coverage-
Generator instances report to the ProposalGenerator via the done method as soon as they are finished
with the coverage calculation. Within this computation process the Proposal objects are already enriched
with the distinct coverage information, what enables the parent job to only request for the proposals itself
and prevents from additional computing effort. For each Proposal obtained in such a way the synchro-
nized addProposal in TestTenderer is invoked and the finished proposal is handed over. With this last
step now all required proposals are available in the central TestTenderer instance in order to pass on
the request of the ProposalComputer. Figure 4.7 illustrates the whole proposal generation and coverage
calculation process.

4.5 Visitor Patterns

The need for parsing methodology applies to almost all processes of the work flow. In the phase of
Preparation the source standing for the Test needs to be investigated and the CUTs have to be identified
to create the ComponentUnderTest instances. Besides that specific data, nonetheless also simpler pieces
of information (such as the name or the FQDN) are needed for further processing. However, not only do
the local components need to be examined in a highly structured way, but the search results need to reveal
the required information only by specific investigation. In the Search phase the results, especially the
received source codes, have to be thoroughly investigated for the identification of corresponding tested
components. Underlying this issue is the fact that currently two independent web services have to be
queried, one each for the tests and for the CUTs, and thus the sources of the tested components are not
automatically available. Finally also the provision of method proposals makes use of these structured
investigations, as the method to apply is only given by its source code and the creation of an appropriate
Method object is rather complicated. For the purpose of parsing we make use of the Abstract Syntax
Tree (AST) framework of the Eclipse IDE. It intends to map plain Java source code in a tree form. This
shape is reflected in the org.eclipse.jdt.core.dom.CompilationUnits, which are widely used as joint data
type in TT. These again are subtypes of the org.eclipse.jdt.core.dom.ASTNode class. The ASTNode in
turn is the abstract superclass of all AST node types. For the structured work off of the different nodes

59

TestTenderer TestComponentUnderTest

«Job»

ProposalGenerator

CoverageGenerator

CoverageGenerator

CoverageView

lo o p co verag e calcu latio n

[every Proposal]

opt

[Search<wasSuccessfulB: == true]

loop proposal generation

[every ComponentUnderTest]

newBTestA BasicProposal:

«create»

calculateCoverageBBasicProposal:

setCoverageBdouble[]:

getP roposalB: :Proposal

notifyBCoverageEvent:

newB:

getCurrentTestB: :Test

getSearchResultB: :SearchResult

createProposalsB: :ArrayList<Proposal>

EnewBProposal:

calculateCoverageBProposal:
EdoneBCoverageGenerator:

getP roposalB: :Proposal

addProposalBProposal:

Figure 4.7: Proposals & Coverage Generation

in the AST the org.eclipse.jdt.core.dom package provides an ASTVisitor class, which exactly fulfills this
demands: applied to any ASTNode derivative it starts at the root of the tree and sequentially “visits” all
leaves of the particular node. This class utilizes the principle of Visitor Design Pattern [32] for each
node of the AST. With the help of a specially implemented Visitor that extends the ASTVisitor it is thus
possible to inspect, extract, or even to modify any specific information of the associated AST. In an early
approach several visitors for each specific type of information were used. Therefore, a NameParser, a
CUTParser, a TestParser, a FQDNParser plus a few more existed. In the current implementation the
amount of this parsers has been clearly reduced and they have been aligned with the field of information
they are responsible for. To make this clearer, currently an InformationParser is used, which investigates
a given applicant and subsequently provides every required unstructured information, such as the name
or the FQDN. The TestParser now holds all functionality for the whole preparation process, i.e. the
recognition of a test, its test type, and its tested components.

4.5.1 InformationParser

This ASTVisitor extension acts as central information hoarder for different classes, in different processes
and in different contexts. This is mainly because it is able to examine any given CompilationUnit for
different required unstructured information. Although the information gathered by this parser affects
multiple object creation and other general work flow activities, it basically does not provide functionality
for this purpose itself - clearly contrasting with the TestParser (4.5.2).

60

Competences

Its range of information on offer comprises in particular:

• the simple type name

• the Fully Qualified Domain Name

• a list of the contained methods
(in form of org.eclipse.jdt.core.dom.MethodDeclarations)

• a list of the names of the methods

• the signature of the particular ASTNode

As this parser is basically applicable to any ASTNode, it is thus universally usable. However, the given
AST must contain the desired information. For example, the FQDN may not be resolved for e.g. an
ASTNode, that in fact is a MethodDeclaration, as it just does not contain the required information. That
means that in this aspect a finer gradation leads to a lower information scope. Nevertheless, it is widely
used to enrich existing objects, to compare components, and it is even marginally involved in the creation
of objects in some cases.

Application areas

Specifically, this parser is inevitable for the UI as the displaying of any names and signatures base on
its appropriate competences. In addition, the FQDN retrieval ability is widely used. This applies to the
Preparation, as the Tests and ComponentUnderTests are equipped with this information. Furthermore
the Proposal Generation process is inevitably dependent on the InformationParser, since the Method-
Proposals are created with the original CUT methods from the database.

Procedure

The InformationParser inherits visit methods for only three different types, but is nevertheless able to
calculate and provide the above capabilities. Starting at the root of the AST the visit at an AST node of
type PackageDeclaration is most likely the first opportunity of information retrieval. As this information
is needed for the “assembly” of the FQDN it is thoroughly extracted and stored. By visiting the TypeDec-
laration, the name is read out and stored for direct provisioning and for the compilation of the signature.
Furthermore the name is needed for the construction of the FQDN. Finally, any visit at a MethodDec-
laration AST node serves the purpose of method collecting and method name provisioning. Simply by
this accumulated data all the information required can be calculated and assembled. Thus, the FQDN is
a composition of the package information and the class name. The signature is an assembly of the type
name and information extracted from the MethodDeclarations, such as the type of the parameters and the
return value, which is accessed by further detailed investigation. The lists of methods and corresponding
method names are composed in the same step.

4.5.2 TestParser

This parser serves only one purpose, and the application is limited to only one class. Nevertheless, it
is essential for the whole system, as it is inevitable for the recognition of the type, for the resolving of
dependencies, and thus for the creation of Test objects.

61

Competences

In contrast to the InformationParser this class is not limited to the retrieval of data and thereby to a passive
role in a creation process, but contains an own functionality for the generation of objects. Nevertheless,
different information is provided, and the offering here is wide. Summarized, the TestParser provides
the following functionality:

• evaluation, whether a Test object in fact is a test

• determination of the kind of test (JUnit 3 or JUnit 4)

• identification of accompanying CUTs

• compilation of a list of CUTs, respectively their FQDNs
(for the ability to query the server accordingly)

• creation of the corresponding ComponentUnderTest objects

The use of this parser may be universal, since it depends on the pass of a Test object only for the creation
of the ComponentUnderTest objects . As a consequence, this feature is not available in a generic usage
scenario. All other information may be read from any ASTNodes. However, as already mentioned for the
InformationParser, this can only be done if the desired information is contained in the AST.

Application areas

The field of application is limited to only two scenarios. First, the TestParser helps to create the Test
objects themselves and to fill them with information, and consequently builds the ComponentUnderTest
instances. Secondly, it is used to search for the FQDNs of corresponding CUT candidates within the
source code of the tests contained in the search result. These identifiers are required to get the code
of the candidates, since this information-gathering process is still split in two independent tasks and a
second web service needs to be queried for this specific information. With a refinement of the main web
services that fact is omitted in the future.

Procedure

For the determination whether the source is a test the parser observes the source for JUnit-specific
substance. Furthermore it distinguishes the kind of test by independently searching for JUnit 3 plus
JUnit 4 specific artifacts and derives two independent indicators. For this evaluation task the visit-
methods for the CompilationUnit itself and for MethodDeclarations are overridden. When visiting
a CompilationUnit the TestVisitor is able to query the unit for its superclass. If this equals the ju-
nit.framework.TestCase we consider the test a JUnit 3 test and set the corresponding flag. Similarly,
we used the visitor method for MethodDeclarations to identify JUnit 4 tests. We therefore request the
annotations for every visited method. If just one method contains an org.junit.Test-annotation the Test
is identified as JUnit 4 equivalent. On the basis of this gathered information the test qualities as well
as the test type is derived. For easy application and for quick check an extra variable is used represent-
ing an OR-conjunction of the both indicators. The distinction of the test type is necessary since JUnit
4 provides built-in testing, that means that test methods may reside in the tested component itself. In
other words: since the CUT adheres its own test, the source of the corresponding class basically serves
two roles, namely as base for a ComponentUnderTest and for its own Test object, and thus needs further
processing. This necessity also applies to all other CUTs, which makes the identification mechanism
extremely important. For the purpose of CUT discovery a total of three visit methods are used. Not only
for the imports, respectively the org.eclipse.jdt.core.dom.ImportDeclarations, and the variable declara-
tions, in form of org.eclipse.jdt.core.dom.VariableDeclarationFragments, but also for instructions, i.e.
the org.eclipse.jdt.core.dom.ExpressionStatements, these visit methods are enriched with functionality.

62

As the usage of these methods only serves information-gathering purposes, the creation of the objects is
thus to be done in an additional task. The identification process comprises four steps:

1. Examination of the imports
Here, all imported objects are cached, because at this point it cannot be decided which import may
possibly belong to a CUT candidate

2. Investigation of the declared variables
This is not only necessary to estimate which imports do not refer to a CUT, but also to know
by which variable the CUT may be requested. This particular information is inevitable for the
AssertionProposals, as they have to construct method calls within the assertion statements on that
basis.

3. Analysis of the instruction statements
As the visit(ExpressionStatement) method is called for any instruction, initially those statements
have to be filtered out, that are not representing a JUnit Assert-statement according to the pattern
shown in figure 3.11. This goal is accomplished with the help of regular expressions, respectively
the combination of a java.util.regex.Pattern and a java.util.regex.Matcher. However, if a valid
assertion statement is found, it is further investigated. The tested method as well as the variable
corresponding to the class, that contains the method, are identified. If the variable was already
found in the previous steps, nothing more is done. But if this identifier has not been added so far,
it joins the list of pointers for candidates. At this point the collected import statements are purged.
Imports, that have no corresponding variable declaration in the source code and are not represented
in any assertion statement, are assumed not belonging to a CUT candidate.

4. Creation of the ComponentUnderTest objects
Finally the ComponentUnderTest objects are to be created. For this purpose the information from
the previous steps are processed in reverse order. They are gradually dissolved to ultimately have
pairs of the instantiated variables and the FQDN of the corresponding CUT. The FQDN is either
resolved from the imports, or from the package declaration, depending on where the corresponding
source is located. The FQDN is used to allocate just this corresponding component. If the lookup
was successful, the candidate’s CompilationUnit is used to construct the ComponentUnderTest
object. Finally each of those newly created objects is enriched with the information of which
variable is used in the test to address this particular component, rather than to invoke their methods.

4.6 Summary

Although overall a harmonious tool has been created, the integration of the various functionality was
not always easy. Especially the joining of a search functionality with a speculative analysis, JUnit and
beyond that to integrate this all in one Eclipse plugin was a demanding task. For this purpose, parsing
functionality became a central aspects. In addition, performance-issues had to be solved, because the
system is intended to run in the background and to not affect the user. Finally, a major task was also to
present the results to the user in a clear way. Even if the tool is running stably and meets the expecta-
tions, there are always ways for improvement. The object structure of the search results was discussed
extensively, and there is surely room for improvement in the future. Especially the fact that currently
two different web services need to be addressed in order to get the search result and the sources of tests
and CUTS is not ideal. An enhancement of the parsing mechanisms, both for the local classes and the
database contents would thus increase performance. However, to solve these issues it may be necessary
to leave the Eclipse IDE and the AST framework and to create the entire parsing methodology from
scratch.

63

CHAPTER 5
Evaluation & Related Work

Since no existing recommendation tools focus on the Reuse of tests [21], an evaluation of the tool devel-
oped in this work against other implementations is not feasible. However, a comparison against the basic
principles of Reuse and Testing is possible and consequently conducted in the following. In addition, the
implemented tool Test Tenderer (TT) is evaluated against a classical, unassisted Reuse approach as il-
lustrated in figure 3.1 in section 3.1.1. Furthermore general requirements regarding system performance
and bandwidth efficiency are discussed in this second section.

5.1 Theoretical Evaluation

In the following TT will be evaluated against the demands, requirements, and opportunities of the un-
derlying theoretical foundations. For this purpose already in chapter 2 implications for a goal oriented
implementation were derived. This section thus discusses the degree of realization of these suggestions
in est Tenderer.

5.1.1 Testing

The requirements of 2.1 could be widely met. However, several implications could be derived to support
usability and ease of use. For the purpose of maximal support of the testing process, these implications
had to be realized.

+ The demand for the support of Unit Testing could be achieved by the integration of TT into the
Eclipse framework and furthermore the integration of JUnit into TT. As basically JUnit supports a
standalone integration into Eclipse, this requirement could have been addressed by the JUnit plugin
only. However, TT is able to provide live information about the test result with the help of its Coverage
View and therewith supports continuous testing as claimed in [21]. For this purpose, the underlying
test is autonomously executed in the background and the JUnit result is extracted and subsequently
displayed.

+ In addition, several coverage measures indicate the quality of the test. The criteria Statement Coverage,
Method Coverage, Line Coverage, Branch Coverage, and Complexity Coverage serve the purpose of
indicating the quality. They hereby provide the user with rich instant feedback about recent testing
effort. An additional criterion, Mixed Coverage, could be created to support the application of different
weights for the standalone coverage criteria.

+ Although the calculation of the basic coverage and the actual result of the test is processed au-
tonomously, the user retains full control over any changes to the test. The proposals offered by TT
are given with full source code and either displayed in the Proposal Computer or in the Search View,

65

depending on the actual usage scenario. In the View, complete test cases can be inspected for the
purpose of manual assessment. In the Proposal Computer, the different proposals also provide insight
into their internal structure. This is not only true for the Assertion Proposals, but also for the Method
Proposals and the Exception Proposals.

Besides these valuable implementations, however, some promising approaches remained unattained.

– Unfortunately, very promising approaches like Data Flow Testing could not be implemented. This is
mainly due to the fine granularity of the applied parser, which was just designed to support a general
applicability of the information extracted from the Reuse candidates in the database. In addition, no
coverage measurement tool could be identified, which supports according criteria.

– The promising innovations introduced with JUnit 4.5 remain unattained. This is primarily because the
database contains almost only JUnit 3 Tests. For example, annotated test methods could give hints to
the tested component with their method name, which would ease the parsing process.

– Some coverage criteria could not be applied, such as the valuable Prime Path Coverage. The reason for
that is the limited functionality of open source coverage tools, which do only support distinct criteria.
A means to an end could be the implementation of a high performance coverage measurement tool.

5.1.2 Reuse

Several tools already showed, that Reuse can be successfully conducted [9,26], but only for the develop-
ment of components. Tests to date have not been subject to tool supported Reuse [21]. Nevertheless, this
work has shown that the Reuse of tests is feasible. However, for this purpose several obstacles had to be
overcome in almost any aspect of the chosen approach to exploit the benefits of reuse discovered in 2.3.

+ As the implementation was planned for an Ad-Hoc scenario it had to be ensured, that a sufficient
database provides TT with valuable data. Although the Merobase [10] contained several JUnit test
cases these components could not be used one-to-one as they were not designed for Reuse. As a
consequence the new database SENTRE was created containing only the tests from Merobase.

+ In addition to the newly created database the tests were thoroughly parsed with a very fine gradation.
Only the basic information were taken from the source code to enable universal applicability. With
that approach the domain-specific problems of Reuse could be overcome. This issue was especially
demanded to enable Vertical Reuse.

+ However, due to the fine gradation of the parsing result, the information had to be briefly reassembled
to be usable. Nevertheless this requirement provided the opportunity to simultaneously add adaptation
feasibility by the use of a distinct result object structure. Hereby the need for adaptation could be
satisfied, which was demanded by the Artifact Reuse and the Compositional Reuse aspect.

+ The Reuse of Source Code was considered truly labor-intense. In turn, however, it was implied that
no preprocessing would be required. This may be true for manual source code inspection and reuse,
but was not feasible in an automated scenario. However, as the only source of information was the
source code of the tests in the database, a preprocessing step was separated. With the help of that
upstream process, the information stored in the source code could be extracted time-independent.
Hereby precious time could be saved for the recommendation process since only the adaptation and
the display of the results had to be accomplished on demand.

Although this work showed that automated Reuse of tests is basically possible, several limitations exist:

66

– The code base for TT was built from public open-source repositories and thus the parsing process
delivered very inconsistent results. While some of the acquired projects were very well tested and
consequently various information could be extracted, other projects were not of any usable value. This
may be caused by the open-source character of the artifacts, since it may be assumed, that unprotected
intellectual property will not be of superior quality. A means to an end would here be the application
of a quality filter or a purposeful collecting of components, which are explicitly designed for Reuse.

– Not every test in the database could actually be used. Due to partly complicated dependencies in the
source projects some relations could not be resolved. In addition, dependent libraries which were used
in the source project could not always be accessed. However, if they were accessible in the project,
the internal structure could not be inspected due to the compiled form of libraries.

One issue is especially worth mentioning, since it constitutes a potential source of danger:

Although the interface or the name of a reused component may correspond to the demanded artifact, the
functionality may largely differ from the intended or demanded behavior. As basically every code may
be included in the executable body of the artifact, this represents a significant security risk. This issue is
even aggravated, as the different artifacts may be included in the source code, either as Method Proposals
in the tested component or as Exception Proposals in the test. For example, one method was identified
which contained - for whatever reason - a system console output of a nursery rhyme. Although this
statement was (even in the specific context) totally useless, it could be integrated into the local source
code. However, this could also be a malicious command and thus cause serious damage to the system.
Fortunately, and for that good reason the inspection of the code is possible at all times. To even mitigate
this risk the verification of the code is demanded at all affected areas.

5.1.3 Speculative Analysis

The methodology of Speculative Analysis [27] was fully applied for the simulated calculation of the tar-
get coverage of the Assertion Proposals. As these proposals were to be displayed in the Eclipse Proposal
Computer and a multidimensional presentation is not supported, the simulation depth was consequently
set to one. However, a higher iteration depth was basically possible to further automate the recommen-
dation process. As a consequence it would be possible to offer the opportunity to add several proposals
at once and hereby maximize the target coverage. However, this would mean that the user would be
restricted in his ability to inspect the code since a representation in the Proposal Computer would be
reduced to a summary.

5.1.4 Ranking

As proposed in [30] the proposals were appropriately ranked to provide maximal benefit. Consequently,
a ranking mechanism was implemented that calculates the rank dependent on the improvement of the
respective proposal compared to the basic coverage of the test. As a result, the most improving proposals
are assigned the highest rank and are thus shown on top of the proposal list. As a separate Proposal
Computer was registered with the Eclipse IDE, the demand for context aware ranking could be neglected.

5.2 Practical Evaluation

This section evaluates the practical application of TT. For this purpose the automated support of TT is
compared to an unassisted Reuse approach. Furthermore, it is investigated to what extent TT affects
system performance and whether it hinders the general work flow.

67

5.2.1 Assisted Test Reuse

TT was designed from the beginning to reflect a classic Reuse approach, but beyond that to overcome
the associated problems and thus to ease the Test Reuse process. To recap the scenario of Figure 3.1 the
main steps for a Reuse of tests in a unassisted scenario comprise:

(1) repository lookup
(2) code inspection
(3) code insertion
(4) test validation
(5) result evaluation

Preliminary summarized, TT supports all of these steps. In order to get valuable results from code
search engines users often need to “learn” a specific query language. Besides the effort that is caused
by this requirement, pure web-based search interfaces are simply not attractive [21]. For this reason the
repository lookup process was fully automated. TT inspects the source code of the component under test
in the local workspace, constructs an appropriate query and finally questions the SENTRE database for
Reuse candidates. The user does not need to interfere in this process and consequently does not have
to deal with query formats, grammars, or other specific requirements demanded by the search engine.
However, even the web interface of SENTRE provides advantages compared to other search engines, as
the query structure reflects a simple type signature format. It is thus even manually possible to query the
database without huge effort. The task of code inspection is also fully automated. TT investigates the
results returned from SENTRE on their applicability for the current project. As the query was was built an
the basis of the type signature and thus the functionality of the component under test is already reflected,
the quality and the applicability of the search results is likely high. Nevertheless, TT speculatively
simulates a usage and rejects inappropriate candidates in advance. Simultaneously TT calculates the
impact of the insertion of appropriate artifacts on the coverage of the test under development. TT is
consequently able to provide the user with specially tailored proposals of high value on demand. If the
user decides to insert a specific proposal in his code TT automatically inserts the corresponding code at an
appropriate position. Furthermore TT immediately starts a result evaluation in form of a basic coverage
calculation to update the Coverage View, which again informs the users instantly about consequences
of the code insertion. Besides the coverage information TT also indicates, whether the test failed or
succeeded and hereby substitutes for a manual test validation. All these steps are fully automated and do
thus not interfere the work flow.

5.2.2 System Performance

The goal of this work was to implement a non-intrusive system for the Reuse of Tests from remote
repositories. Therefore the computing power consumption of TT had to be constantly paid attention to,
especially sufficient overall system performance had to be guaranteed. This goal was thus consequently
pursued. As a result and due to the high capacities of today’s computer systems, the user usually does not
even notice that background calculations are performed. But not only the computing power is basically
limited, also the caused network traffic or insufficient bandwidth may result in unfavorable constraints.

+ As speculative test runs are not less time-consuming than manual test runs and for every proposal
an individual run needs to be executed, the whole speculative calculation process was shifted to the
background. Furthermore several variables were integrated to always ensure sufficient computing
power for the main work flow.

+ In addition the whole speculative calculation process was strictly parallelised. Consequently every
calculation and every test run is performed in a distinct thread. As a result the system is used with
maximal but non-intrusive effort, but only for a very short period of time.

68

+ In addition, the number of parallel processes was limited to the number of available cores of the
system. This ensures that tasks of high priority, such as the operation system or the user interface, do
not have to suffer from lacking resources.

+ Although it could often be neglected in times of flat rates and high-speed Internet connections yet
a buffer mechanism for the conducted searches was installed. This means that already performed
searches are not repeated, but reused. For this purpose the various proposals have to be recalculated.
However, since this step had to be done anyway for new searches this circumstance is not an additional
time driver.

5.3 Summary

In total, the defined requirements could be widely met. Especially the automation of the Reuse process
provides rich benefit, saves time and supports continuous testing. With a smart arrangement of the
program components and the integration of context-sensitivity a resource efficient implementation could
also be realized.

69

CHAPTER 6
Conclusion & Future Work

6.1 Conclusion

Although both Testing as well as Reuse are widely considered beneficial for Software development, Test
Reuse has been largely neglected - so far. This is also reflected in a respective tool support for each
particular discipline. However, none of them faces the challenge of Test Reuse itself. The reason for
this may be the different peculiarities of each discipline, which result in a distinct number of non-trivial
obstacles. A major constraint for Reuse has been identified in the lack of adequate databases, given that
the few existing are typically difficult to use and only provide reasonably good results. Searches for tests
basically provide great potential for delivering accurate results, since information about the behavior of
the tested components is already given in the tests. The functional information about these components
can then be considered as an ideal indicator for the estimation of similarity. However, an automated
search process plays a crucial role in this process. Beyond that, an automated database lookup process
also provides the opportunity to pre-process the demanded information and thus to automatically adapt
the artifacts to the specific needs of the developer.

The developed plugin Test Tenderer is able to overcome these obstacles and to provide rich function-
ality for an automated Reuse of Tests. For this purpose, the Eclipse Integrated Development framework
is utilized to fully automate the Test Reuse process. The type of support ranges from the inspection of the
local project, an automated lookup for suitable artifacts in the supporting Test Reuse database SENTRE,
and the verification of similarity and applicability to an adaptation of the received components to the
project-specific characteristics. In addition, the plugin continuously provides various information about
the test quality on the basis of six coverage measures. Furthermore, it attains a shift from an ex-post qual-
ity measurement to an ex-ante coverage provision through Speculative Analysis, which renders it capable
of supporting the essential task of regression unit testing in a developer-friendly and non-intrusive way.
As an interruption of the development work flow is to be strictly avoided, Test Tenderer is designed to
work as a backer for unit test developers. Moreover, it instruments the popular unit testing companion
JUnit to instantly provide feedback about recent testing effort to the developer. Test Tenderer does there-
fore not only provide additional features, but also simplifies existing processes. Continuous testing is
herewith no longer just a concept as it is reflected lively in this tool.

Concluded, the developed plugin is truly capable of unifying the principles of Reuse and Testing
in a developer-friendly, non-intrusive, and valuable way. In short: Test Tenderer pulls Test Reuse into
practice.

71

6.2 Future work

Just because TT combines several areas of interest, there are also a variety of starting points for improve-
ments and future work. Although the setup of the SENTRE database was not in the scope of this work,
the development was cooperative. Not just because SENTRE’s primary goal was to serve Test Tenderer,
but also early experience during the development of the tool influenced the structure and the functionality
of the repository. This is the reason why at this point, some recommendations are made in this direction.
As the following pointers to future work concern various areas, they are given in bullet points to better
distinct the different issues.

• Test Tenderer instruments the JaCoCo library for the calculation of the different coverages. Al-
though this library was outstanding among the other examined tools, it basically focuses on control
flow coverage criteria. However, especially data flow based coverage criteria (such as Prime Path
Coverage) are known as beneficial, as they take state-based information into account. Conse-
quently the quality of the testing measures could be enhanced by the integration of appropriate
functionality. One possible solution would be the creation of an extensive quality assessment tool,
providing various coverage measures and integration opportunities.

• The code base of SENTRE is built from open-source repositories and thus the result volume and
quality clearly vary. In addition, several artifacts are not usable due to unresolvable dependencies
of the source project. However, the whole project had to be parsed and even then it could not be
guaranteed that the components are applicable. A means to this end would be a purposeful collec-
tion of components, explicitly designed for Reuse. As the open-source community is widespread
and constantly enjoys greater popularity, an extensive crawling of appropriate repositories could
thus reveal promising candidates.

• The existence of a valuable collection of reusable artifacts would also enable the establishment
of a component-market mechanism as proposed in [11]. If fully functional components or tests
could be provided, the range of usage could probably be extended. In addition, distinct marketing
mechanisms could be applied as well. For example, the integration of user-based recommendations
in the manner of “people who used this artifact also used...” proposals would create additional
value.

• The execution of the code demanded by functional testing is possibly risky. As explained in section
5.1.2, some artifacts which contain partly “strange” functionality were identified in the database.
Although in the particular example the statement triggered only an output to the system console,
this might also be a harmful command. However, a static testing methodology is no alternative
due to the lower quality of derivable information. It would thus be promising to find a way to
protect the user from unwanted consequences. One possible solution might be an execution and a
subsequent investigation in a “sandbox” before the artifact is actually used in the “real” workspace.

• As proposed by [5], the Reuse of higher-order objects is promising. However, the artifacts in this
work are based on source code. The code artifacts have been thoroughly examined and very fine
grained information has been extracted, which provides easier adaptability and fosters universal
applicability. Nevertheless, the Reuse of whole tests, especially an impact and quality assessment,
is still missing. With the integration of entire test cases it would thus be possible to implement
further functionality, such as Search-Enhanced Testing [33].

• On the other hand the users may be currently confused by changing search results. This is due to
the current search mechanism, which awaits the type signature of a component under test to find
appropriate tests for this component. However, even on small signature changes repeated searches
are initiated which are not always coherent. That means that in a subsequent search components
discovered in a previous search are possibly not any longer included. Thus, a matching on method

72

level would increase the stability of the search results. In contrast to the previous demand, this
would lead to a finer gradation. A way out of this predicament might be an automated construction
mechanism, which assembles test cases on demand based on the requirements of the test under
development.

• Currently a relaxed search mechanism ensures that more similar tests are found. For this purpose,
the class name is relaxed in several steps and consequently also “similar” tests are returned as
described in 3.3.2. However, synonymous class names are currently not considered. A means to
this end could be the integration of a lexical database, such as WordNet [34].

• Currently, the tests in the database are investigated on their source code to predict their particular
tested component. However, this is an error-prone task, since practically all classes instantiated
in the test could be the desired artifact. A possible solution could be directly established in the
tests. JUnit is considered the de facto standard testing framework for Java unit tests. Although
several serviceable annotations found their way into this framework (cf. chapter 2.2) with the
latest version, one particular annotation type is missing. An annotation pointing at the respective
components under test would help to ease the identification of the correspondent artifacts. This
would provide developers with additional structure and, moreover, would enable a quite easier
identification of the desired component in the parsing process.

Besides these particular suggestions for the specific Test Reuse scenario, especially the area of Reuse
demands larger improvements. Due to complex object structures, included libraries, reflection and injec-
tion practices, and many other implementation-specific details Reuse is often not applicable to generic
scenarios. Many classes and implementations are just too specific for a different environment. Conse-
quently, Test Reuse faces the same problems, as tests are mostly bound to just that specific components
for specific contexts. Future work should thus primarily focus on enhancements in Reuse itself. A possi-
ble approach could for example be Reuse on method level, as the chances to find compatible components
could be potentially higher. However, these changes and improvements had to be applied to the whole
Reuse process including the databases, the search engines, and finally the tools.

73

Index

Ad-hoc Reuse, 21
Annotations, 14, 18
Application Layer, 52
Artifacts Reuse, 21
Assertion Proposal, 42, 44
AssertionType, 42

Basic Coverage, 40
Black-Box Testing, 6
Branch Coverage, 37, 38

Complete Path Coverage, 13
Complexity Coverage, 13, 37, 38
Compositional Reuse, 22
Control Flow Testing, 9
Correctness Testing, 6
Coverage Criteria

Branch Coverage, 12, 37
Complexity Coverage, 13, 37
Instruction Coverage, 11, 37
Line Coverage, 12, 37
Method Coverage, 12, 37
Mixed Coverage, 37

Coverage View, 40, 48

Domain Layer, 52
Dynamic Testing, 8

Eclipse, 47
Extension Point, 47
Proposal Computer, 49
View, 47

Edge Coverage, 12
Exception Proposal, 42, 43
Exception Test, 43
Extension Point, 47

Instruction Coverage, 11, 37
Integration Testing, 7

JUnit, 13

Layers
Application Layer, 52

Domain Layer, 52
User Interface Layer, 54

Line Coverage, 12, 37, 38

Method Coverage, 12, 37, 38
Method Proposal, 42–44
Mixed Coverage, 37

Node coverage, 11

Prime Path Coverage, 12
Proposal Computer, 44, 49

Ranking, 28
Relational Coverage, 38

Search View, 36, 48
SENTRE, 50
Settings menu, 39
Software Reuse, 20
Software Testing, 3
Source Code Reuse, 22
Speculative Analysis, 25, 29, 36
Statement Coverage, 38
Structural Testing, 9

Test Case, 15
Test Reuse, 25
Test Suite, 15
Test Tenderer, 29

Unit Testing, 6
User Interface Layer, 54

Vertical Reuse, 21
Views, 47

White-Box Reuse, 22
White-Box Testing, 6

i

Bibliography

[1] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge University Press,
January 2008.

[2] J.A. Whittaker. What is software testing? and why is it so hard? IEEE Software, 17(1):70–79,
2000.

[3] JUnit. http://junit.org/. visted 01.06.2013.

[4] Charles W. Krueger. Software reuse. ACM Comput. Surv., 24(2):131–183, June 1992.

[5] R. Prieto-Diaz. Status report: software reusability. IEEE Software, 10(3):61–66, 1993.

[6] Waileung Ha, Hongyi Sun, and Min Xie. Reuse of embedded software in small and medium
enterprises. In 2012 IEEE International Conference on Management of Innovation and Technology
(ICMIT), pages 394–399, 2012.

[7] M. Landhausser and W.F. Tichy. Automated test-case generation by cloning. In 2012 7th Interna-
tional Workshop on Automation of Software Test (AST), pages 83–88, 2012.

[8] W. Janjic and C. Atkinson. Leveraging software search and reuse with automated software adap-
tation. In 2012 ICSE Workshop on Search-Driven Development - Users, Infrastructure, Tools and
Evaluation (SUITE), pages 23–26, 2012.

[9] O. Hummel, W. Janjic, and C. Atkinson. Code conjurer: Pulling reusable software out of thin air.
IEEE Software, 25(5):45–52, 2008.

[10] Werner Janjic, Oliver Hummel, Marcus Schumacher, and Colin Atkinson. An unabridged source
code dataset for research in software reuse. In Proceedings of the 10th Working Conference on
Mining Software Repositories, MSR ’13, page 339–342, Piscataway, NJ, USA, 2013. IEEE Press.

[11] T. Ravichandran and Marcus A. Rothenberger. Software reuse strategies and component markets.
Commun. ACM, 46(8):109–114, August 2003.

[12] B. Boehm and V.R. Basili. Software defect reduction top 10 list. Computer, 34(1):135–137, 2001.

[13] Antonia Bertolino. Software testing research: Achievements, challenges, dreams. In 2007 Future
of Software Engineering, FOSE ’07, page 85–103, Washington, DC, USA, 2007. IEEE Computer
Society.

[14] Yogesh Singh. Software Testing. Cambridge University Press, November 2011.

[15] Jiantao Pan. Software testing. http://www.ece.cmu.edu/ koopman/des_s99/sw_testing/, 1999.
visted 06.06.2013.

[16] Antonia Bertolino and Eda Marchetti. A brief essay on software testing. Software Engineering,
The Development Process. Wiley-IEEE Computer Society Press,, 2005.

iii

[17] Juan Jin and Fei Xue. Rethinking software testing based on software architecture. In 2011 Seventh
International Conference on Semantics Knowledge and Grid (SKG), pages 148–151, 2011.

[18] T.J. McCabe. A complexity measure. IEEE Transactions on Software Engineering, SE-2(4):308–
320, 1976.

[19] Arthur H. Watson, Thomas J. McCabe, and Dolores R. Wallace. Structured testing: A testing
methodology using the cyclomatic complexity metric. NIST special Publication, 500(235):1–114,
1996.

[20] Frank Westphal. Testgetriebene Entwicklung mit JUnit & FIT: Wie Software änderbar bleibt.
Dpunkt Verlag, 1., aufl. edition, November 2005.

[21] Werner Janjic and Colin Atkinson. Utilizing software reuse experience for automated test recom-
mendation. In International Workshop on Automation of Software Test (AST 2013) co-located with
ICSE 2013, San Francisco, USA, May 2013.

[22] M. Douglas McIlroy, J. M. Buxton, Peter Naur, and Brian Randell. Mass-produced software com-
ponents. In Proceedings of the 1st International Conference on Software Engineering, Garmisch
Pattenkirchen, Germany, page 88–98, 1968.

[23] Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. How reuse influences productivity in
object-oriented systems. Commun. ACM, 39(10):104–116, October 1996.

[24] M.T. Baldassarre, A. Bianchi, D. Caivano, and G. Visaggio. An industrial case study on reuse
oriented development. In Proceedings of the 21st IEEE International Conference on Software
Maintenance, 2005. ICSM’05, pages 283–292, 2005.

[25] Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng Dou, Paul Rigor, Pierre Baldi, and Cristina
Lopes. Sourcerer: a search engine for open source code supporting structure-based search. In
Companion to the 21st ACM SIGPLAN symposium on Object-oriented programming systems, lan-
guages, and applications, page 681–682, 2006.

[26] Otávio Augusto Lazzarini Lemos, Sushil Krishna Bajracharya, and Joel Ossher. CodeGenie:: a
tool for test-driven source code search. In Companion to the 22nd ACM SIGPLAN conference on
Object-oriented programming systems and applications companion, OOPSLA ’07, page 917–918,
New York, NY, USA, 2007. ACM.

[27] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. Speculative analysis: exploring
future development states of software. In Proceedings of the FSE/SDP workshop on Future of
software engineering research, FoSER ’10, page 59–64, New York, NY, USA, 2010. ACM.

[28] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. Proactive detection of collaboration
conflicts. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering, page 168–178, 2011.

[29] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. Early detection of collaboration
conflicts and risks. IEEE Transactions on Software Engineering, pages 1–1, 2013.

[30] Marcel Bruch, Martin Monperrus, and Mira Mezini. Learning from examples to improve code com-
pletion systems. In Proceedings of the the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software engineering, ES-
EC/FSE ’09, page 213–222, New York, NY, USA, 2009. ACM.

[31] Eclipse - the eclipse foundation open source community website. http://www.eclipse.org/. visted
02.04.2013.

iv

[32] John Vlissides, R. Helm, R. Johnson, and E. Gamma. Design patterns: Elements of reusable object-
oriented software. Reading: Addison-Wesley, 49, 1995.

[33] C. Atkinson, O. Hummel, and W. Janjic. Search-enhanced testing: NIER track. In 2011 33rd
International Conference on Software Engineering (ICSE), pages 880–883, 2011.

[34] Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database. A Bradford Book, May
1998.

v

vi

Appendix A
T

estT
enderer

Test

S
earchV

iew
C

overageV
iew

«Job»
S

earch

C
om

ponentU
nderT

est

<<Job>>

C
overageC

alculator

C
overageG

enerator

C
overageG

enerator

B
ackgroundA

gent

return
return

loop coverage calculation

[everyP
roposal]

opt

[isT
est==

false]

[isT
est==

true]

loop
proposalgeneration

[every
C

om
ponentU

nderT
est]

loop
search

[every
C

om
ponentU

nderT
est]

optsignature
changed

[signatureC
hanged

==
true]

o
p

tsearch
su

ccessfu
l

[S
earchNw

asS
ucessfulf.==true]

changedfC
om

pilationU
nit.

new
fcom

pilationU
nit.

«create»

new
f.

«create»
isTestf.:boolean

notifyfC
overageE

ventNN
O

_TE
S

T.

notifyfS
earchE

ventNN
O

_TE
S

T.

getS
ignature:N:S

tring

new
fTest.

«create»

getC
om

ponentsU
nderTestf.:A

rrayList<C
om

ponentU
nderTest>

getS
ignaturef.:S

tring

searchfS
tring signature.:S

earchR
esult

setS
earchR

esultfS
earchR

esult.

searchP
erform

edfS
earchE

vent.

notifyfS
earchE

vent.

new
fG

enerationTypeNB
A

S
IC

.

«create»

calculateC
overagefB

asicP
roposal.

setC
overagefdouble[].

getP
roposalf.:P

roposal

notifyfC
overageE

vent.

new
f.

getC
urrentTestf.:Test

getS
earchR

esultf.:S
earchR

esult

createP
roposalsf.:A

rrayList<P
roposal>

new
fP

roposal.

calculateC
overagefP

roposal.

donefC
overageG

enerator.

getP
roposalf.:P

roposal

addP
roposalfP

roposal.

vii

Acknowledgements

“Above all else I especially thank my family for the valuable support during the last year. Your
understanding and your confidence gave me the strength to finally complete my studies – and thus to
finish an important chapter in life.

I also specially thank Werner Janjic for the challenging support, Benjamin John for the valuable
assistance, and Steven Griffiths for his detailed linguistic remarks.

Without all your backing, this probably would not have been possible.”

ix

Ehrenwörtliche Erklärung

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten Quellen
und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit - einschließlich Tabellen,
Karten und Abbildungen -, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach ent-
nommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe. Diese
Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mannheim, 15.06.2013 Oliver Erlenkämper

xi

	List of Figures
	List of Tables
	Introduction
	Foundations
	Software Testing
	Motivation for Testing
	Classification by type
	Classification by level
	Testing Techniques
	Coverage Criteria
	Implications

	JUnit
	Difference between JUnit 3 and JUnit 4
	Test Suites
	Test Cases
	Test Methods
	Other interesting Annotations
	IDE integration

	Software Reuse
	Types of Reuse
	Benefits & Constraints
	Test Reuse
	Tool support

	Speculative Analysis
	Summary

	Design
	Domain
	Problem domain
	Objectives and Positioning

	Preparations
	Test Preparation
	Component Under Test Discovery
	Application and Interaction

	Search
	Query format
	Result structure
	Test Recommendations

	Speculative Analysis
	Coverage Criteria Selection & Adjustment
	Coverage Calculation
	Basic Coverage
	Continuous JUnit Coverage

	Proposal Generation
	Assertion Proposals
	Method Proposals
	Exception Proposals
	Proposal Computer Integration

	Summary

	Implementation
	Eclipse Plugin
	Extension Points
	Views
	Proposal Computer
	Preferences
	Runtime Environment

	Database
	Preparation of the data
	Utilization of the Data Transfer Objects

	Architecture
	Application Layer
	Domain Layer
	User Interface Layer
	Utilities & other classes

	Work Flow
	Surveillance & Test preparation
	Performing a search
	Generating proposals & Calculating coverage

	Visitor Patterns
	InformationParser
	TestParser

	Summary

	Evaluation & Related Work
	Theoretical Evaluation
	Testing
	Reuse
	Speculative Analysis
	Ranking

	Practical Evaluation
	Assisted Test Reuse
	System Performance

	Summary

	Conclusion & Future Work
	Conclusion
	Future work

	Index
	Bibliography
	Appendix A

