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ABSTRACT
In a remote surveillance system, a high resolution surveil-
lance camera streams its video to a user’s handheld device.
Such devices are unable to make use of the high resolution
video due to their limited display size and bandwidth. In this
paper, we propose a method to assist the mobile operator
of the surveillance camera in focusing on sensitive regions
of the video. Our system automatically identifies relevant
regions. We introduce a pan and zoom strategy to ensure
that the operator is able to see fine details in these areas
while maintaining contextual knowledge. Regions of inter-
est are identified using foreground detection as well as face
and body detection. The efficacy of the proposed method is
demonstrated through a user study. Our proposed method
was reported to be more useful than two comparable ap-
proaches for getting an understanding of the activities in a
surveillance scene while maintaining context.

Categories and Subject Descriptors
I.4.9 [Image Processing and Computer Vision]: Appli-
cations

General Terms
Algorithms

1. INTRODUCTION
Remote video surveillance systems use high resolution cam-

eras to monitor security-critical areas like a parking lot or
the entrance to a home. The captured video is streamed
to a remote place where an operator can view it using a
handheld device. In such scenarios, it may be undesirable
to transmit the full resolution video to a bandwidth-limited
handheld device. The screen of the device may also be too
small to distinguish important details in the full view of the
scene. Zooming into certain regions on the other hand comes
with the risk of missing critical events in non-visible parts
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of the video and context from the surrounding may be lost.
The user of a remote surveillance system thus needs to make
a compromise between zooming in on detail and obtaining
contextual information. This form of manually controlling
the zooming and panning is tedious.

We propose a system to assist a user in remote surveillance
with a handheld device. If no explicit control input is given
by the user, the system automatically selects a region of in-
terest (ROI) to zoom into and periodically displays the com-
plete view to provide the necessary context. This selection
is performed on the surveillance site to save bandwidth for
transmission. Throughout this paper, we use the term sensi-
tivity to denote the relevance of a certain part of the scene to
the surveillance task. Sensitive regions are identified in real-
time by employing a foreground detection method and by
detecting faces and human bodies. In addition to the com-
puted sensitivity, we allow user-defined static sensitivity. A
user may for example find an entrance to a building rele-
vant even if there are currently no people walking by. User-
defined sensitivity also allows to avoid non-security critical
areas with large amounts of motion, like trees moving in the
wind. Our assistant selects the ROI that currently has the
highest combined sensitivity and zooms into it. After a cer-
tain amount of time, it zooms out again to provide context.
It then continues with the next sensitive region. The sensi-
tivity of a region that has already been viewed is penalized
to avoid selecting the same region twice. This penalty is
lessened over time to allow the ROI to be selected again.

A field of research that is related to our work is video
retargeting. Techniques in this field adapt high resolution
videos to devices with a small display size like smartphones.
The general goal is to fit as much of the “important” content
as possible into the retargeted video. Importance may be
measured from low level features such as saliency, contrast
and gradients, or from higher level processing like face detec-
tion. Kopf et al. [4] give an overview of the vast number of
existing approaches. Due to space limitations, we can only
focus on the most prominent ones here.

The method presented in [5] crops and scales the frames
of a video based on the importance of the pixels. This is
done in a way that balances the loss of detail that occurs
when downscaling with the loss of content when cropping.
The currently shown area can be moved over the input video
to create artificial pans and cuts whenever appropriate.

Techniques based on Seam Carving (see for example [3])
detect partially contiguous seams of less important pixels
inside a frame and remove them. The size of the video is



thus reduced by removing unstructured areas between the
important objects. Similarly, approaches based on Warp-
ing (see [9]) subdivide video frames into a rectangular mesh
grid and transform each cell non-uniformly. Cells containing
high importance remain mostly unchanged while unimpor-
tant cells may be warped. The advantage of Warping and
Seam Carving over cropping is that content may be removed
from the inside of a frame as opposed to only from the bor-
der. However, they also change the content of the frame,
which makes them unsuitable for surveillance. The distance
between objects may change which may have a severe impact
on the context.

In general, video retargeting techniques have a different
focus and are thus not applicable to a surveillance scenario.
This is due to the following reasons. Low-level visual im-
portance is generally not a good indicator for sensitivity in
surveillance. A highly structured but static background may
be interesting to a casual viewer but may have little rel-
evance for security purposes. Also, video retargeting may
discard certain areas of a video entirely as long as the result
is aesthetically pleasing. In surveillance, discarding content
is unacceptable. However, preservation of content can be
achieved at the expense of aesthetics, e.g., by introducing
artificial zooms. Furthermore, the common assumption of
availability of the entire video beforehand is not valid in a
real-time surveillance scenario.

An approach that is specific to retargeting of real-time
surveillance videos was presented in [2]. After detecting sen-
sitive areas from the difference of two consecutive frames,
the video is cropped and zoomed to the target size using
a moving ROI. Artificial cuts may be introduced if neces-
sary. The work is based on a scenario where the retargeted
video is shown in a small area on a big screen, where an
overview of the entire scene is also available. This is not the
case when showing the video on a mobile device. Further-
more, the simple form of sensitivity map that is being used
without considering user preferences may lead to a bias to-
wards moving high-contrast objects, even when they are not
relevant to security (e.g., a flag waving in the background).

2. VIDEO SURVEILLANCE ASSISTANT
Our assistant for video surveillance on handheld devices

consists of three components that work together: Sensitiv-
ity map computation, ROI selection, and presentation. It
uses a buffer of ω frames which allows it to look into the
future when selecting an ROI. This introduces a latency of
ω frames, which is in the order of five to ten seconds. In a
remote surveillance system, where the user is typically far
away from the site under surveillance, such a latency is un-
critical. Note that the buffer is located at the surveillance
site; no buffer is required on the mobile device.

The sensitivity map component obtains the latest frame
from the camera and calculates a sensitivity map S for the
frame. Over the course of ω frames, the S are summed up to
an accumulated sensitivity map Sω which is then passed on
to the ROI selection component. We use the ω superscript
to denote maps that are used only once every ω frames. The
ROI selection component combines Sω with the static user
input U and the penalty map Pω. The result is a decision
map Dω from which the ROI to be displayed is calculated.
This ROI is passed on to the presentation component, which
now processes the end of the video buffer. Over the duration
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Figure 1: Overview of our proposed remote video
surveillance assistant. A sensitivity map is calcu-
lated for every frame. It is accumulated over ω
frames and then passed to the ROI selection. The
sensitivity, penalty and user input maps are com-
bined to select a ROI. The presentation component
operates with a delay of ω frames. It zooms into the
ROI over the course of ω frames.

of ω frames, the presenter smoothly zooms into the selected
ROI and zooms out again. The resulting resized frames are
sent over the network to the handheld device. See Figure 1
for an overview of the system.

The sensitivity map component and the presenter operate
in sync with each other and the frame rate of the camera,
but with ω frames delay between camera and presentation.
ROI selection is triggered each time ω frames have been
accumulated. Details on the three components is given in
the following sections.

2.1 Sensitivity Map
In a surveillance scenario, humans are generally the main

focus of attention. In order to recognize humans in a video,
further attention must be paid to their faces. In addition to
that, objects moving relatively to the static background, i.e.
foreground objects, are also interesting. Our sensitivity map
is thus computed from the results of face detection, human
body detection and foreground object detection.

We begin by obtaining the latest frame from the camera
and storing it in the buffer for later use by the presentation
component. The approaches [8] and [1] are then used on the
frame to detect faces and human bodies, respectively. Faces
and bodies are represented by bounding boxes containing
them. From these, we create two binary images If and Ib
that are 1 in areas where faces and bodies were detected
and 0 otherwise. Moving foreground objects are detected
using the Gaussian mixture model presented in [7]. The
result is a binary image Io with pixels belonging to a moving
foreground object being 1. The sensitivity map S for the
frame is then calculated as S = If + Ib + Io. Calculating S
like this automatically prioritizes faces over human bodies



Figure 2: The top left image shows a frame from a
surveillance video. The top right frame shows the
accumulated sensitivity map Sω. The person in the
center gets chosen as the next ROI. As a result of
the chosen ROI, the penalty map on the bottom left
gets updated. After ω frames, the previously chosen
region gets penalized in the sensitivity map and will
not be chosen again (bottom right).

(because If ⊆ Ib) and moving bodies over moving objects
(when Ib ⊆ Io). The face of a person walking through the
scene for example would be included in S three times.

Our system needs to detect the area of the video with the
highest sensitivity over the course of ω frames. For this rea-
son, the sensitivity maps for each frame in this timespan are
summed up into an accumulated sensitivity map Sω. Accu-
mulating the sensitivity also eliminates spuriously detected
faces and human bodies and reduces the impact of noise
in Io. Once Sω has been accumulated over ω frames, it is
passed on to the ROI selection component.

2.2 ROI Selection
The sensitivity map Sω as defined above cannot always

identify the most important aspects of the scene. Impor-
tance also depends on context, which is difficult to assess
algorithmically. In a hallway for example, the entrance area
is more important to focus on than the walls. A surveillance
video of a parking lot might also include parts of the adja-
cent road which could be outside of the scope of surveillance.
It is thus important to include user input into the decision
making process. We model the user input as a map U of
the same size as Sω which gives an offset to the sensitivity.
Since this information is mostly static, it needs to be defined
only once when the system is set up.

In order to not display the same region over and over, we
give a penalty to the sensitivity of a region that has been
presented to the operator before. Our penalty map Pω has
values between zero and one with higher values meaning a
higher penalty. After having selected an ROI to display,
we calculate a 2D Gaussian function for the chosen ROI.
Its mean is the center of the ROI, and the variances are
chosen relative to the width and height of the ROI. This
Gaussian function is added to Pω. The process of penalizing
a previously chosen ROI is illustrated in Figure 2. Every
ω frames when a new ROI is selected, the penalty map is
multiplied by a factor α ∈ [0, 1] to decrease the penalty over
time. The sensitivity of a selected ROI is thus reduced at

first, and its sensitivity then slowly increases back to its
original value.

When a new Sω is available – once every ω frames – it is
combined with the user input and the penalty map to form
a final decision map. The decision map Dω is defined as

Dω = (1− Pω) · (Sω + U). (1)

All operators used here process the maps pixel-wise.
For the purpose of ROI detection, Dω is converted into

a binary image by applying a low threshold. Morphological
operations are then used to reduce noise. Next, the system
extracts contours from white areas in the binary image and
merges adjacent contours if necessary. The bounding boxes
of the connected contours are the potential regions of interest
to zoom into. For each potential ROI, we compute a decision
value. It is calculated by summing up all values inside the
ROI in the original unthresholded Dω. This allows ranking
of the potential ROIs according to the amount of sensitivity
they contain. The ROI with the highest decision value is
selected and sent to the presentation component.

2.3 Presentation
The presentation component creates the output frames

that are sent to the remote operator. At the beginning of
each block of ω frames, it is given an ROI for the entire
block. The frames of the block are contained in the buffer.
Note that the ROI selection may give rectangular areas with
an arbitrary aspect ratio. The aspect ratio φ = w/h of the
ROI is generally not identical to the target aspect ratio φt.
φ < φt means that the chosen ROI is too high. We thus
increase the width of the ROI as w = φth, so that the aspect
ratios match again. The case φ > φt is handled analogously.
This guarantees that the selected region is fully contained
in the created view.

The presentation of a block of frames always starts and
ends with a fully zoomed out overview. Within the block, it
zooms into the ROI, stays zoomed in for a certain amount
of time and then zooms out again. Zooming is implemented
as an interpolation between the parameters of the full frame
and the chosen ROI. We use cubic spine interpolation for
smooth zooming. Like this, an interpolated ROI for the
current frame is calculated. The presenter takes the oldest
frame from the buffer and crops it according to the interpo-
lated ROI. The cropped frame is then scaled to the target
resolution and sent over the network.

3. EXPERIMENTAL RESULTS
The main goal of our approach is to resize the video from a

surveillance camera so that it can be used for remote mon-
itoring on a mobile device with a small screen size. We
evaluated our approach in a user study with 22 male and 7
female non-expert subjects. The average age was 25 with
a standard deviation of 4. Four surveillance videos with a
resolution of 1920 × 1080 and a length of one minute were
used. They were taken from the VIRAT database, which
was designed for performance assessment of activity detec-
tion algorithms [6]. Representative frames from the four
scenarios are shown in Figure 3.

As the target resolution, we chose 384 × 216, which is
1/5 of the original resolution. Three different videos of the
target resolution were created for each scenario: A scaled



Statement Scaled Pan Only Proposed

1 3.1 (1.4) 3.3 (1.0) 4.5 (0.9)

2 2.6 (1.2) 3.3 (0.8) 4.3 (1.0)

3 2.6 (1.2) 3.2 (1.0) 4.5 (0.8)

4 3.7 (1.0) 3.1 (1.0) 2.1 (1.2)

5 2.7 (1.3) 3.3 (1.0) 4.4 (0.8)

Table 1: Agreement scores for the five statements
and the three approaches. The values are averaged
over the four scenes and all participants, with the
standard deviation given in parentheses.

down version of the original video which served as a base-
line for the evaluation (“scaled”), the video created by the
proposed method (“proposed”), and a video that uses the
proposed ROI selection, but only pans between the ROIs
without zooming out to the full overview in between (“pan
only”).

The users were given a brief introduction. Their task was
to assume the role of a security operator who monitors the
area and detects abnormal activities. All three versions of
the scenario were shown next to each other simultaneously.
After watching the videos, the users were given five state-
ments about each version. They had to rate each statement
on a scale from 1 (strongly disagree) to 5 (strongly agree).
The statements were:

1. the video provides full coverage of the site,

2. the video provides all details of the site,

3. the camera motion was helpful in monitoring the area,

4. the video is boring, and

5. it is easy to understand the activities in the video.

The website we used for the study can be found at 1.
Table 1 shows the results of our study. Since the users’

ratings were similar across all four scenarios, we only show
the averaged values here. From the table, it can be seen
that our approach achieves better results than the two com-
pared methods in all five considered categories. Note that
for statement 4 (the video is boring), a lower value is better.
Out of the two other approaches (scaled and pan only), the
video that pans between the ROIs seems to be more useful.
This is due to the small output resolution. The scaled ver-
sion was too small to be useful for monitoring. In statements
1 to 3 and 5, our approach obtains an average score between
4.3 and 4.5. This indicates that the participants of the study
generally found our retargeting approach to provide videos
that were helpful in the given surveillance task.

4. CONCLUSIONS
We proposed a smart assistant for remote video surveil-

lance on a handheld device. A high-resolution surveillance
video was retargeted to a smaller resolution to be displayable
on a small screen and save bandwidth. This was done by first
identifying regions of interest in the video and then zoom-
ing into these regions one after another. An overview of

1https://sites.google.com/site/acm2014ssa/

Figure 3: Example frames from the four scenes used
in the study. All are outdoor surveillance scenes
and the camera is static. The fourth scene (bottom
right) is a parking lot. Here, the adjacent road was
out of the scope of surveillance. By specifying user
input, the motion outside the parking lot is ignored
when selecting an ROI.

the entire sceen is given periodically to provide the neces-
sary context to the operator. The results of our user study
show, that the proposed method provides full coverage of
the scene while also showing the detail that is necessary for
understanding the activities therein. The users generally re-
ported that the smart assistant system was helpful in remote
monitoring a scene under surveillance.
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