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BAXTER’S INEQUALITY AND SIEVE BOOTSTRAP FOR
RANDOM FIELDS

MARCO MEYER, CARSTEN JENTSCH, AND JENS-PETER KREISS

Abstract. The concept of the autoregressive (AR) sieve bootstrap is investigated
for the case of spatial processes in Z2. This procedure fits AR models of increasing
order to the given data and, via resampling of the residuals, generates bootstrap
replicates of the sample. The paper explores the range of validity of this resampling
procedure and provides a general check criterion which allows to decide whether
the AR sieve bootstrap asymptotically works for a specific statistic of interest or
not. The criterion may be applied to a large class of stationary spatial processes.
As another major contribution of this paper, a weighted Baxter-inequality for
spatial processes is provided. This result yields a rate of convergence for the finite
predictor coefficients, i.e. the coefficients of finite-order AR model fits, towards
the autoregressive coefficients which are inherent to the underlying process under
mild conditions.

The developed check criterion is applied to some particularly interesting sta-
tistics like sample autocorrelations and standardized sample variograms. A sim-
ulation study shows that the procedure performs very well compared to normal
approximations as well as block bootstrap methods in finite samples.

1. Introduction

We consider stationary real-valued spatial processes in the plane (Xt)t∈Z2 with zero
mean and finite second moments. By imposing only very mild regularity conditions
on the processes the framework of this paper remains very general. Particularly,
without making any parametric/linearity assumptions on the process (Xt)t∈Z2 , we
are interested in fitting spatial autoregressive models of the form

Xt =
∑

k∈Θ(p)
ak(p)Xt−k + et (1.1)

to data, where Θ(p) denotes some suitable finite index set and (et) is some white
noise process. In few words, this paper has two main purposes: Firstly, we will show
that models of the form (1.1) are well-suited to describe the behaviour of very gen-
eral stationary spatial processes since a very large class of these processes possesses
an inherent autoregressive structure. This structure can be approximated well by
models such as (1.1), which will be shown by proving a generalization of Baxter’s
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inequality, cf. Baxter (1962), to the spatial setting. As a second major contribu-
tion of this paper, the concept of the autoregressive sieve bootstrap scheme will be
transferred to the case of spatial processes. In the following, the aforementioned
purposes will be explained in more detail.

By classical results going back to the work of Whittle (1954), general spatial pro-
cesses in the plane Z2 always possess half-plane representations with respect to each
half-plane of Z2 that might be chosen, as long as mild assumptions are fulfilled.
More precisely, there exist one-sided autoregressive (AR) as well as moving-average
(MA) representations

Xt =
∑
k∈Θ

akXt−k + εt, and Xt =
∑
k∈Θ

bk εt−k + εt (1.2)

with respect to some (weak) white noise process (εt), where Θ can be any half-plane
in the sense of Guyon (1995). Throughout this paper we stick to the so-called lower
half-plane representation corresponding to lexicographical ordering of the plane Z2

as described by Helson and Lowdenslager (1958), among others. It is important
to note that choosing this particular half-plane representation is not restrictive at
all because any other choice of the half-plane would be fine as well. It has to be
understood as a suitable vehicle to establish meaningful theory in this paper and the
lower half-plane is just chosen for notational convenience. During the course of this
paper, we will also clarify a common misunderstanding in the discussion of spatial
and time series autoregressions, that should at least be mentioned briefly at this
point: It is often criticized that, for spatial processes, one has to choose a concept
of ’past’ values for one-sided autoregressions, i.e. choose a direction from which the
random variables Xt are influenced. This choice is of course arbitrary. Hence, one
might come to the conclusion that the whole concept of one-sided autoregressions
implies a very specific model assumption which is not fulfilled for real-world data.
However, the opposite is true since our assumptions do not constrain the class of
processes any further than demanding the spectral density to be positive and smooth.

In contrast to our framework, most of the existing literature on autoregressive mod-
eling in the plane is heavily based on the assumption that the underlying spatial
process actually fulfills some specific model structure. Autoregressive processes in
the plane have been pioneered in Whittle (1954), where unilateral and bilateral au-
toregressive models are studied. Correlation properties of these processes have been
studied in Besag (1972) and for some special cases in Basu and Reinsel (1993). Spa-
tial autoregressive processes with a ’quarter-plane past’ form a popular sub-class of
unilateral processes in the plane. These processes have been investigated in detail
by Tjøstheim (1978), Tjøstheim (1981) and Tjøstheim (1983). However, although
the class of spatial AR processes with a quarter-plane past appears to be appeal-
ing at first sight due to its simple structure, we still consider half-plane instead of
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quarter-plane representations in this paper. This is due to the fact that, under very
mild assumptions, general spatial processes are always assured to have half-plane
representations as in (1.2), which is in general not true for quarter-plane representa-
tions (at least not with uncorrelated innovations). Hence, imposing a quarter-plane
past structure on the process (Xt)t∈Z2 turns out to be very restrictive and is there-
fore omitted in this paper. The same is true for models considered in Choi and
Politis (2007), who discuss the properties of models with several regions of support.
Yule-Walker type estimation of spatial AR models has been investigated by Guyon
(1982), Basu and Reinsel (1992) and Ha and Newton (1993), who particularly ad-
dressed an inaccuracy in Tjøstheim (1981).

The crucial property that spatial processes can always be represented as in (1.2)
is also well-known for time series processes (Xt)t∈Z, cf. among others Pourahmadi
(2001). Here, the AR representation corresponding to (1.2) reads

Xt =
∞∑
k=1

akXt−k + εt. (1.3)

To deal with these infinite dimensional autoregressive representations in the time
series case, the famous Baxter-inequality (cf. Baxter (1962) for univariate pro-
cesses and Hannan and Deistler (1988) or Cheng and Pourahmadi (1993) for the
multivariate case) plays a fundamental role and allows for meaningful asymptotic
theory. When fitting AR models of finite order p to time series, for instance by Yule-
Walker estimation, one typically estimates the so-called finite predictor coefficients
a1(p), . . . , ap(p), which are simply the coefficients of the L2-projection of Xt onto
the finite past span{Xt−1, . . . , Xt−p}. Baxter’s inequality provides a connection be-
tween these finite predictor coefficients and the AR coefficients from (1.3) and reads
as follows: Under mild smoothness conditions on the spectral density of the process,
there exists a constant C <∞ and p0 ∈ N such that

p∑
k=1

ν(k) |ak(p)− ak| ≤ C ·
∞∑

k=p+1
ν(k) |ak|, ∀ p ≥ p0. (1.4)

Here, ν(·) denotes a weight function which is connected to the smoothness condition
on the spectral density. Notice that the right-hand side of (1.4) is finite and therefore
converges to zero as p → ∞. Hence, the left-hand side also vanishes for p → ∞
which yields convergence for the predictors ak(p) towards the AR coefficients ak. In
fact, the weights ν(k) determine the rate of convergence. If this rate is fast enough,
then even autoregressive fits of rather small order p are suitable to describe the
process (Xt) properly. The goal in this paper is to derive a similar inequality for the
AR fits of shape (1.1) in connection with representations (1.2).

The original proof of (1.4) for univariate time series is mainly based on the ana-
lytical result of Baxter (1963). One might think that the original proof of Baxter
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(1963) transfers straightforwardly from time series to the spatial case, but this is
not the case. Heuristically, this is due to the following observations. The proof
of Baxter’s inequality for time series is heavily based on the fact that by pre-
dicting Xt based on span{Xt−1, . . . , Xt−p}, the two sets {s : s < t − p} and
{s : s ≥ t} can be separated arbitrarily far apart, for sufficiently large p, by the set
M(p) := {s : t − p ≤ s ≤ t − 1}. Thus, |Cov(Xr, Xq)| becomes arbitrarily small
for sufficiently large p and for Xr ∈ {Xs, s < t− p} and Xq ∈ {Xs, s ≥ t}. For the
spatial case such a separation is no longer possible as no finite subset analogous to
M(p) exists that is capable to separate Z2 in this fashion. As one major contribution
of this paper, we come up with a different approach to prove a version of Baxter’s
inequality that is suitable for spatial processes. This result allows to derive rigorous
asymptotic theory for AR fits of increasing order for spatial processes.

For time series, Baxter’s inequality is a key ingredient when establishing validity
of the AR sieve bootstrap scheme. This procedure was introduced for stationary
univariate linear time series by Kreiss (1988), Kreiss (1992) and Bühlmann (1997)
who established validity for different statistics including autocovariances and auto-
correlations. The main contribution of the AR sieve methodology is to allow the
autoregressive order p = p(n) to increase with the sample size n. Thus, the AR sieve
bootstrap extends the model-based (parametric) AR bootstrap – first considered by
Freedman (1984) – to the much richer (nonparametric) class of AR(∞)-processes.

Paparoditis and Streitberg (1991) established asymptotic validity of the AR sieve
bootstrap to infer properties of high order autocorrelations, and Paparoditis (1996)
established its validity in a multivariate linear time series context. Furthermore, the
AR sieve bootstrap is used for testing for unit roots in Chang and Park (2003) and
Paparoditis and Politis (2005), and in econometrics literature for several purposes
such as e.g. forecasting in Alonso, Pena and Romo (2002) or in the setup of time
series panels in Smeekes and Urbain (2013).

However, while all the aforementioned results were derived under the explicit as-
sumption of an underlying AR(∞) process, Kreiss, Paparoditis and Politis (2011)
extended the range of applicability of the AR sieve significantly. Under very mild
conditions and without having to assume any autoregressive structure of the un-
derlying process, they were able to show that the AR sieve remains valid whenever
the so-called companion process mimics the proper limiting distribution, which con-
stitutes a simple and general check criterion. Recently, Meyer and Kreiss (2014+)
extended the results of Kreiss, Paparoditis and Politis (2011) to the multivariate
case. To generalize their concept, as a second main contribution of this paper, we
introduce a spatial AR sieve methodology in the spirit of Kreiss, Paparoditis and
Politis (2011) and provide rigorous theory.
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The proposed AR sieve bootstrap performs favourably compared to block bootstrap
techniques, as will be shown in a simulation study in this paper. Block bootstrap
and subsampling for random fields were proposed by Hall (1985) and Künsch (1989),
whereas Politis and Romano (1993) addressed block resampling schemes for general
statistics. Zhu and Lahiri (2007) proved bootstrap consistency for the empirical
process of a non-overlapping block bootstrap. Optimal block size and subsample
size selection have been addressed in Nordman and Lahiri (2007) and Nordman and
Lahiri (2004), respectively.

The remainder of this paper is organised as follows: In section 2 we will intro-
duce the basic notations and definitions and formulate the algorithm of the AR
sieve bootstrap procedure precisely. In addition, we will show how the rate of decay
of the autocovariances of a spatial process carries over to its cepstral coefficients –
the Fourier coefficients of the spectral density – and then to the AR coefficients.

In section 3, we will establish sufficiently fast convergence of the finite-order AR
models that are fitted in the course of the sieve bootstrap procedure, to the afore-
mentioned AR coefficients. Here, we will derive a generalisation of Baxter’s in-
equality, cf. Baxter (1962), to the case of random fields. Beyond its application in
connection with the AR sieve bootstrap, this result may be of its own interest.

The conditions for AR sieve bootstrap validity are given in section 4, and the result
will be a check-criterion which allows to decide whether the procedure is asymp-
totically consistent or not; with the criterion being solely based on the asymptotics
of the particular test statistic one is looking at. This result closely resembles the
concept of the so-called companion process introduced by Kreiss, Paparoditis and
Politis (2011). We will apply the derived check criterion in section 5 to some partic-
ularly interesting statistics, including variogram estimators. It follows a simulation
study in section 6 which compares the performance of the AR sieve bootstrap to
normal approximations and the block bootstrap. Section 7 contains the proofs of the
two central theorems, Baxter’s inequality and the result about bootstrap validity,
while all other proofs of auxiliary results are deferred to section 8.

2. Preliminaries

Consider a stationary real-valued spatial process (Xt)t∈Z2 with mean zero and fi-
nite second moments. In the following we will switch between the two equivalent
notations Xt = Xt1,t2 . While the vector index notation Xt allows for a more com-
pact presentation of the results, the notation Xt1,t2 is sometimes necessary if we
want to describe operations on the components of the index vector. For convenience
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reasons, we will also sometimes use a mixed notation, e.g. in expressions such as∑
t1∈A

∑
t2∈BXt.

The autocovariance function of (Xt) at lag h = (h1, h2)T is denoted by γ(h) =
E(Xt+hXt). We assume to have a square-shaped data sample {Xt : 1 ≤ t1, t2 ≤ n}
consisting of n2 observations at hand. Define Π := {t ∈ Z2 : 1 ≤ t1, t2 ≤ n} and
Πh := {t ∈ Z2 : 1 ≤ t1, t2, t1 + h1, t2 + h2 ≤ n}; i.e. Πh describes the set of vectors
t ∈ Z2 such that both t and t+ h are elements of Π. The empirical autocovariance
function can then be stated as

γ̂(h) := 1
|Πh|

∑
t∈Πh

(Xt+h −X)(Xt −X) (2.1)

where X = n−2∑
t∈ΠXt denotes the sample mean.

We now turn to the algorithm of the autoregressive sieve bootstrap for random fields.
Our proposal depends on fitting an autoregressive model of finite order p ∈ N to
the data. Since it is not obvious how such an AR fit would look like in the spatial
setting, we first define the following set of vectors in Z2 which characterises the
collection of sites for the p-th order AR fit:

Θ(p) := {k ∈ Z2 : (1 ≤ k1 ≤ p and k2 = 0) or (−p ≤ k1 ≤ p and 1 ≤ k2 ≤ p)}.
(2.2)

An autoregressive model with sites given by Θ(p) could be stated as

Xt =
∑

k∈Θ(p)
akXt−k + et (2.3)

for some white noise (et). Figure 1 illustrates the shape of these types of AR models
with an example of order p = 3; the index vectors t−k from (2.3) are marked by the
black dots while t can be found at the center. The AR model from (2.3) is one-sided
in the sense of so-called lexicographical ordering of the plane Z2; we will discuss this
property extensively further along the line in this section, but first formulate the
AR sieve bootstrap algorithm.

Let Tn = Tn({Xt : t ∈ Π}) be an estimator for some unknown parameter θ of the
process, based on the given data sample. For an appropriately increasing sequence of
real numbers (cn)n∈N, we assume that the distributions Ln = L(cn(Tn−θ)) converge
to a non-degenerated limiting distribution as n → ∞. Our goal is to estimate the
distribution Ln for some finite number n ∈ N. We propose the following procedure:
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Figure 1. Illustration of the shape of an AR(3)-model with respect
to Θ(3), cf. (2.3); locations of sites t− k marked by the black dots.

The autoregressive sieve bootstrap algorithm for random fields:

(1) Select an order p = p(n) ∈ N, p � n and fit a p-th order autoregressive
model of shape (2.3) to the given observations, for example by Yule-Walker
estimation. Denote the estimated coefficients by {âk(p) : k ∈ Θ(p)}.

(2) Let Π(n, p) := {(t1, t2) ∈ Z2 : p+1 ≤ t1 ≤ n−p, p+1 ≤ t2 ≤ n}, i.e. Π(n, p)
is the set of all vectors t ∈ Π such that (t−k) ∈ Π for all k ∈ Θ(p). Denote the
residuals of the autoregressive fit by ε′t(p) = Xt −

∑
k∈Θ(p) âk(p)Xt−k for all

t ∈ Π(n, p), and let F̂n be the empirical distribution function of the centered
residuals ε̂t(p) = ε′t(p) − ε, where ε = (n − 2p)−1(n − p)−1∑

t∈Π(n,p) ε
′
t(p).

Generate independent random variables ε∗j having identical distribution F̂n,
for example by drawing with replacement from the set of centered residuals.
Use these resampled residuals and the parameter estimators to calculate a
bootstrap sample {X∗t : t ∈ Π} according to the generating equation

X∗t =
∑

k∈Θ(p)
âk(p)X∗t−k + ε∗t . (2.4)

(3) Let T ∗n,(1) := Tn({X∗t : t ∈ Π}) be the same estimator as Tn based on the
pseudo sample {X∗t : t ∈ Π} and θ∗ the analogue of θ associated with the
bootstrap process (X∗t ).

(4) Repeat steps (1)–(3) M times, where M is sufficiently large, in order to
obtain independent realisations T ∗n,(1), . . . , T

∗
n,(M) of the plug-in estimator.

(5) The estimator for Ln is then given by the empirical distribution of L∗n =
L∗(cn(T ∗n − θ∗)), based on the observations T ∗n,(1), . . . , T

∗
n,(M).
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Here, L∗ and E∗ denote probability law and expectation, conditional on the given
data sample.

In the following, we will investigate under which conditions the underlying process
(Xt) possesses one-sided autoregressive representations, since this property is crucial
for showing asymptotic validity of the AR sieve bootstrap. For the remainder of this
chapter we will be working with spatial processes fulfilling the following assumptions.
We use the notation |k|∞ := max{|k1|, |k2|} for the maximum vector norm of each
k ∈ Z2. For any arbitrary subset A of some vector space over R or C, sp(A) denotes
the closed span of all vectors a ∈ A.

Assumption 1. Let (Xt)t∈Z2 be a strictly stationary real-valued basic process, i.e.
Xt 6∈ sp{Xs, s 6= t}, with mean zero and finite second moments. The autocovariance
function γ(·) of (Xt) fulfils ∑k∈Z2(1 + |k|∞)r |γ(k)| < ∞ for some r ∈ N0 to be
specified in the respective results later on. The spectral density of (Xt),

f(λ) = 1
4π2

∑
k∈Z2

γ(k) e−i〈k,λ〉, λ ∈ (−π, π]2,

fulfils the so-called boundedness condition: There exists a constant c > 0 such that
f(λ) ≥ c uniformly for all frequencies λ ∈ (−π, π]2.

Note that this assumption merely requires the spectral density to be positive and
smooth, because the weighted summability condition on the autocovariances just
implies that certain partial derivatives of f exist. For u, v ∈ N with u + v ≤ r we
get from differentiating the Fourier series of f :

∂u+vf

∂λu1 ∂λ
v
2

(λ) = 1
4π2

∑
k∈Z2

(−ik1)u(−ik2)v γ(k) e−i〈k,λ〉.

The derivative of the Fourier series of f on the right-hand side of the latter equation
is absolutely summable because |(−ik1)u(−ik2)v| ≤ (1 + |k|∞)r and because of As-
sumption 1. Therefore, the derivative of f itself, given by the left-hand side, exists
and is equal to the derivative of the Fourier series.

We will now establish the aforementioned one-sided autoregressive and moving aver-
age representations for all processes that fulfil Assumption 1. Here, one-sided refers
to the lexicographical ordering of the plane Z2, cf. Guyon (1995). Defining

Θ := {(k1, k2) ∈ Z2 : (k1 ≥ 1 and k2 = 0) or (k1 arbitrary and k2 ≥ 1)}

one can observe that Z2 can be partitioned as {0} ∪ Θ ∪ (−Θ). Θ is commonly
referred to as the upper half-plane with respect to the origin while −Θ is the lower
half-plane, cf. Helson and Lowdenslager (1958). An illustration is given by Figure
2; the upper half-plane Θ is given by the white dots, the lower half-plane by the
black dots. Obviously, it holds Θ(p)→ Θ, as p→∞.
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Figure 2. Illustration of the upper (white dots) and lower (black
dots) half-plane of Z2.

We now get the following result on one-sided representations for spatial processes:

Lemma 2.1. Let (Xt)t∈Z2 be a spatial process that fulfils Assumption 1 with some
r ≥ 1. Then there exist uniquely determined autoregressive (AR) coefficients (ak)k∈Θ,
uniquely determined moving average (MA) coefficients (bk)k∈Θ and a uniquely de-
termined uncorrelated white noise process (εt), t ∈ Z2, such that (Xt) possesses the
one-sided AR and MA representations

Xt =
∑
k∈Θ

akXt−k + εt, Xt =
∑
k∈Θ

bk εt−k + εt, (2.5)

respectively, and ∑
k∈Θ akXt−k represents the L2-projection of Xt onto sp{Xt−k :

k ∈ Θ}. The white noise process (εt) is called the innovation process of (Xt). The
coefficients in (2.5) fulfil the summability conditions∑

k∈Θ
(1 + |k|∞)r−1 |ak| <∞,

∑
k∈Θ

(1 + |k|∞)r−1 |bk| <∞. (2.6)

It should be noted that the existence of representations (2.5) has already been
proven by Whittle (1954). However, we are especially interested in the summability
conditions (2.6), which are not available in the literature. Hence, we derive these
conditions in the proof of Lemma 2.1, which can be found in section 8.

Remark 2.2. At this point we should clarify a common misunderstanding in the
discussion of spatial and time series autoregressions: For time series, the ’past’ and
the ’future’ of a time value t ∈ Z are naturally defined, and it is generally accepted
that random variables Xt are influenced by its past values Xt−1, Xt−2, . . .. Since this
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is not the case for spatial processes, it is often criticized that one has to choose a
concept of ’past’ values, i.e. choose a direction from which the random variable Xt

is influenced, such as the lower half-plane illustrated by Figure 2. This choice is
of course arbitrary, which is why one might come to the conclusion that the whole
concept of one-sided autoregressions implies a very specific model assumption which
is not fulfilled for real-world data. However, the opposite is true: The AR sieve
bootstrap, as an example, only uses the one-sided autoregressions as a vehicle in the
proof of bootstrap validity. Under the mild conditions from Assumption 1, which
only depend on the spectral density and which do not include any choice of direction
whatsoever, the process (Xt) possesses autoregressive representations with respect
to each half-plane of Z2 that might be chosen. Therefore, the whole procedure is
by no means arbitrary; and the concept of approximating a particular one-sided
autogression does not constrain the class of processes any further than demanding
the spectral density to be positive and smooth. �

In order to prove the summability conditions from Lemma 2.1 we need the following
auxiliary result. The AR and MA coefficients are strongly connected to the so-called
cepstral coefficients of the process, that is the Fourier coefficients of the logarithm
of the spectral density. The following lemma provides a result that carries over the
summability condition from the Fourier coefficients of a function f to the Fourier
coefficients of its logarithm. The result holds not only for spectral densities but for
arbitrary integrable functions, and seems not to be available in the literature so far,
at least not in this explicit form.

Lemma 2.3. Denote for every integrable function f : (−π, π]2 → R its Fourier
coefficients by f̃k = (1/4π2)

∫
(−π,π]2 f(λ) e−i〈k,λ〉 dλ and its formal Fourier series by∑

k∈Z2 f̃k e
i〈k,λ〉. We define the following classes of functions:

Cr :=
{
f : (−π, π]2 → R, ‖f‖r :=

∑
k∈Z2

(1 + |k|∞)r |f̃k| <∞
}
,

Dr1,r2 :=
{
f : (−π, π]2 → R, ‖f‖r1,r2 :=

∑
k∈Z2

(1 + |k1|)r1(1 + |k2|)r2 |f̃k| <∞
}
.

Assume that f(λ) ≥ c > 0 for all λ ∈ (−π, π]2. Then it holds:
(i) If f ∈ Cr for some r ≥ 2, it follows log f ∈ Cr−1.

(ii) If f ∈ Dr1,r2 for some r1, r2 ≥ 1, it follows log f ∈ Dr1,r2.

Remark 2.4. In Assumption 1 and Lemma 2.3 (i) we use the weight function
ν(k) = (1 + |k|∞)r. This is due to the fact that we will later establish a weighted
version of a Baxter-inequality for spatial processes, cf. Theorem 3.2. The proof
of this Baxter-inequality requires the weights to be strictly non-decreasing in |k|∞,
i.e. ν(k) ≥ ν(j) whenever |k|∞ ≥ |j|∞ or, in other words, whenever j ∈ Θ(p) and
k ∈ Θ\Θ(p). Other weights one might think of, like replacing the | · |∞-norm in ν(k)
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by the Euclidean norm, the 1-norm or letting ν̃(k) = (1 + |k1|)r1(1 + |k2|)r2 , do not
fulfil the property of being strictly non-decreasing in |k|∞ and are, therefore, not
suitable in order to establish a weighted Baxter-inequality. However, for Assumption
1 to be fulfilled, it suffices to check whether ∑k∈Z2(1+|k|)r |γ(k)| <∞ for any vector
norm |k|, since all vector norms are equivalent. One could also switch to any other
vector norm | · |α, but in this case the projection set Θ(p) has to be modified such
that |k|α ≥ |j|α whenever j ∈ Θ(p) and k ∈ Θ \Θ(p). �

Remark 2.5. Classes of functions with weighted absolutely summable Fourier coef-
ficients, such as Cr and Dr1,r2 from Lemma 2.3, are commonly referred to as Beurling
algebras; Cr represents the special case for the weight function ν(k) = (1 + |k|∞)r.
Remark 2.4 explains why we are looking at these particular weights, although we
get the somehow unsatisfactory result that f ∈ Cr does not imply log f ∈ Cr, but
instead log f ∈ Cr−1. While we will only work with assertion (i) from Lemma 2.3
for the remainder of this paper, it is still worthwile to consider the class Dr1,r2

from (ii). Here, we get with analogous arguments as in (i) that f ∈ Dr1,r2 im-
plies log f ∈ Dr1,r2 , i.e. the Fourier coefficients of log f fulfil the same summability
condition as the ones of f . This result is strongly connected to the well-known
Wiener-Lévy-Theorem (cf. Zygmund (2002), Chapter VI, Theorem 5.2); and, for
the special case of φ(f) = log f , our result even represents a slight generalisation of
the latter, with respect to functions in several variables. We will shed some light on
this situation:
Originally, Norbert Wiener proved for functions in one variable that if f 6= 0 has
absolutely summable Fourier coefficients, then the same holds true for 1/f . This
assertion, also known as Wiener’s lemma, can be transferred to functions in several
variables; and, moreover, weighted summability versions in the spirit of Lemma 2.3
are available, cf. Theorem 6.2 in Gröchenig (2007). For functions in one variable,
Paul Lévy generalised Wiener’s result, concluding that if f has absolutely summable
Fourier coefficients, the same holds true for φ(f), where φ is a smooth functional.
This assertion became known as the Wiener-Lévy-Theorem. In contrast to what
happens for φ(f) = 1/f , weighted versions in several variables are much harder to
come by for general functions φ. Typically, one only gets that φ(f) is the element
of a Beurling algebra with weights increasing at a slower rate than the ones of f , cf.
Bhatt and Dedania (2003).
Our proof of Lemma 2.3 (ii) shows that a generalisation to functions in several
variables for the special case of φ(f) = log f is possible. However, the proof relies
heavily on the structure of the logarithmic function and cannot be generalised to
other functions. �

3. Convergence of finite-order model fits

In this section we will establish results that ensure convergence of the estimated
parameters {âk(p) : k ∈ Θ(p)} from step (1) of the AR sieve bootstrap procedure,
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cf. section 2, towards the autoregressive coefficients {ak : k ∈ Θ} of the underlying
process given by Lemma 2.1. We will split up the results in two subsections: The
first one will be concerned with convergence of the finite predictor coefficients of the
process (Xt)t∈Z2 towards {ak : k ∈ Θ}. The finite predictors are the L2-projection
coefficients of random variable Xt to the finite-dimensional space sp{Xt−k : k ∈
Θ(p)}. Here, if A is an arbitrary subset of some vector space over R or C, sp(A)
denotes the span of all vectors a ∈ A. In this context we will introduce a Baxter-
inequality for spatial processes. Section 3.2 deals with conditions which ensure that
the difference between the estimators {âk(p) : k ∈ Θ(p)} and the finite predictor
coefficients vanishes asymptotically in probability. The results from both subsections
combined then yield the desired convergence of the finite-order AR model fits.

3.1. Convergence of finite predictor coefficients.
The finite predictor coefficients with respect to the set Θ(p) are the coefficients
of the L2-projection of Xt onto sp{Xt−k : k ∈ Θ(p)}, and will be denoted by
{ak(p) : k ∈ Θ(p)}. They can be obtained from solving the minimization problem

{ak(p) : k ∈ Θ(p)} := arg min{
ck(p): k∈Θ(p)

}E
Xt −

∑
k∈Θ(p)

ck(p)Xt−k

2

. (3.1)

Solving (3.1) leads to the well-known Yule-Walker equations. We now want to intro-
duce the notation which allows us to write the Yule-Walker equations in a convenient
form: The number of elements in Θ(p) is p̄ := 2p(p+ 1). Let k1, . . . , kp̄ be an arbi-
trary enumeration of the vectors k ∈ Θ(p). Define a(p) := (ak1

(p), . . . , akp̄
(p))T ∈ Rp̄

and Y t := (Xt−k1
, . . . , Xt−kp̄

)T . Note that the indices kj appear in the same order
in both vectors. Due to the projection property it is easy to see that any solution
of (3.1) fulfils

E
(
(Xt − a(p)TY t) · Y T

t ej
)

= 0, j = 1, . . . , p̄, (3.2)

where ej denotes the j-th unit vector. Using the notation Γ(p) := E(Y t Y
T
t ) and

γ(p) := E(Xt Y t), system (3.2) is equivalent to

Γ(p) a(p) =


γ(k1 − k1) · · · γ(k1 − kp̄)

...
. . .

...

γ(kp̄ − k1) · · · γ(kp̄ − kp̄)

 ·

ak1

(p)
...

akp̄
(p)

 =


γ(k1)
...

γ(kp̄)

 = γ(p). (3.3)

System (3.3) is called the Yule-Walker equations. Note that the matrix Γ(p) is sym-
metric, regardless of the order of indices in the vectors Y t and a(p). The following
result ensures the existence of a unique solution of (3.3). Moreover, we establish
a uniform bound for the spectral norms of the inverse matrices Γ(p)−1, which will
turn out to be crucial for proving the Baxter-inequality. The spectral norm of a
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real-valued quadratic matrix A is defined as the square root of the largest eigen-
value of ATA, denoted by ‖A‖spec =

√
σmax(ATA). For symmetric positive definite

matrices this formula can be simplified to ‖A‖spec = σmax(A).

Lemma 3.1. Let (Xt)t∈Z2 be a process that fulfils Assumption 1. Then the matrix
Γ(p) from the Yule-Walker equations (3.3) is invertible for all p ∈ N. Furthermore,
it holds ‖Γ(p)−1‖spec ≤ (4π2c)−1 for all p ∈ N, where c is the lower bound of the
spectral density from Assumption 1, and ‖ · ‖spec denotes the spectral norm.

The previous lemma justifies calling the unique solution {ak(p) : k ∈ Θ(p)} of (3.3)
the finite predictor coefficients of the process for order p. As already mentioned,
it is of critical importance for our sieve bootstrap scheme that the ak(p) converge
towards the autoregressive coefficients {ak : k ∈ Θ} of the underlying process from
(2.5), as p tends to infinity. In particular, we have to ensure that this convergence
is fast enough. Therefore, we introduce the following version of Baxter’s inequality
for random fields:

Theorem 3.2. (Baxter’s Inequality) Let (Xt)t∈Z2 be a process that fulfils As-
sumption 1 with some r ≥ 2 and c > 0. Let {ak(p) : k ∈ Θ(p)} be its finite predictor
coefficients as defined above, and {ak : k ∈ Θ} be its autoregressive coefficients given
by (2.5). Denote by K := ∑

k∈Z2 |γ(k)|. Then it holds for all s ∈ N0 with s + 1 < r

and for all p ∈ N:∑
k∈Θ(p)

(1 + |k|∞)s |ak(p)− ak| ≤
K

2
√

2 π2c
·

∑
k∈Θ\Θ(p)

(1 + |k|∞)s+1 |ak|.

Due to Lemma 2.1 the right-hand side converges to zero as p→∞.

The established convergence of the autoregressive coefficients in Baxter’s inequality
is closely related to a similar convergence of moving average parameters, which shall
be derived in the next step. To do this, we take a look at so-called z-transforms,
also called transfer functions, cf. Brockwell and Davis (1991), section 4.4. Based on
the AR and MA representations from (2.5) with the coefficients (ak) and (bk), we
define the z-transforms

A(z) = 1−
∑
k∈Θ

ak z
k1
1 z

k2
2 , B(z) = 1 +

∑
k∈Θ

bk z
k1
1 z

k2
2 ∀ z ∈ S, (3.4)

where

S := {z ∈ C2 : |z1| = 1, |z2| ≤ 1}.

The series A(z) and B(z) converge absolutely on its domain S because of Lemma
2.1. It is worth noting that we have to make the distinction between z1 and z2 in
S. Since z2 shows up exclusively with exponents k2 ≥ 0 in (3.4), as can be seen
from the definition of Θ in section 2, we have |z2|k2 ≤ 1 for the entire closed disk
|z2| ≤ 1, while z1 shows up with both positive and negative exponents k1. Hence we
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get |z1|k1 ≤ 1, and thus absolute convergence of the series A(z) and B(z), only for
the circle |z1| = 1.

In analogy to the definition of A(z), we now define the z-transform of the finite
predictor coefficients {ak(p) : k ∈ Θ(p)} by

Ap(z) = 1−
∑

k∈Θ(p)
ak(p) zk1

1 z
k2
2 ∀ z ∈ Sp, (3.5)

where

Sp :=
{
z ∈ C2 : p

p+ 1 ≤ |z1| ≤
p+ 1
p

, 0 ≤ |z2| ≤
p+ 1
p

}
.

Note that Ap(z) is defined on an extended domain compared to A(z), but for p→∞
the domains Sp converge to S.

From the proof of Lemma 2.1 we already have B(z) = 1/A(z) for all z ∈ S. In
particular, both A(z) and B(z) are non-zero on their domain S. The next lemma
shows that, for p large enough, the inverse of Ap(z) has a z-transform similar to the
one of B(z).

Lemma 3.3. Let (Xt)t∈Z2 be a process that fulfils the conditions of Theorem 3.2
with some r ≥ 2. Then there exists δ > 0 such that it holds |Ap(z)| ≥ δ uniformly
for all z ∈ Sp and all p large enough. For those p, Bp(z) := 1/Ap(z) can be expressed
as a convergent series of the form

Bp(z) = 1 +
∑
k∈Θ

bk(p) zk1
1 z

k2
2 ∀ z ∈ Sp, (3.6)

for suitable coefficients {bk(p) : k ∈ Θ}.

We conclude this section with a result which transfers the convergence of the au-
toregressive parameters from Baxter’s inequality to the moving average parameters
{bk(p) : k ∈ Θ} and {bk : k ∈ Θ}:

Lemma 3.4. Let (Xt)t∈Z2 be a process that fulfils the conditions of Theorem 3.2
with some r ≥ 2. For all p large enough such that Ap(z) 6= 0 for all z ∈ Sp, let
{bk(p) : k ∈ Θ} be the coefficients as defined in (3.6) and let (ak)k∈Θ and (bk)k∈Θ
be the AR and MA coefficients of (Xt) given by (2.5). Then there exists a constant
C <∞ such that it holds for all p large enough, and for all s ∈ N0 with s+ 1 < r:∑

k∈Θ
(1 + |k|∞)s |bk(p)− bk| ≤ C ·

∑
k∈Θ\Θ(p)

(1 + |k|∞)s+1 |ak|.

Due to Lemma 2.1, the right-hand side converges to zero as p→∞.

The proofs for all lemmas in this section can be found in section 8, except for
Theorem 3.2, which can be found in section 7.
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3.2. Conditions on the fitted-model order p(n) and convergence of esti-
mated coefficients.
It is important for the validity of the AR sieve bootstrap scheme that the parameter
estimators {âk(p) : k ∈ Θ(p)} used in step 1 of the procedure converge towards the
finite predictor coefficients {ak(p) : k ∈ Θ(p)} at a sufficient rate. At this point one
has to keep in mind that the order p of the autoregressive fits actually depends on
the sample size n, which is suppressed in the notation for most parts of this paper
due to convenience reasons. In order to use the results from the previous section, we
need p = p(n)→∞ as n→∞. This implies that the dimension of the Yule-Walker
matrices Γ(p) given by (3.3) also increases for n→∞.

Probably the most popular form of fitting an AR model as in step (1) of the sieve
bootstrap procedure, is Yule-Walker estimation: One replaces the autocovariances
in Γ(p) by its empirical versions, cf. (2.1), and solves the linear system. Informally
speaking, we then have to make sure that p(n) increases slowly enough such that for
n large enough all autocovariances showing up in Γ(p) can be estimated sufficiently
well, in order to obtain a small difference between {âk(p) : k ∈ Θ(p)} and {ak(p) :
k ∈ Θ(p)}.

The following assumption formalizes this condition. Essentially it contains two
assertions: Firstly, the underlying process allows for consistent estimation of the
finite predictor coefficients {ak(p) : k ∈ Θ(p)}. Secondly, by restricting the rate
of increase of p = p(n), we can achieve sufficiently fast uniform convergence of the
estimators {âk(p) : k ∈ Θ(p)}.

Assumption 2. For p = p(n), with p(n)→∞ as n→∞, assume for the following
sequence in n:

p4 ·
∑

k∈Θ(p)
|âk(p)− ak(p)| = OP (1).

In the remainder of this section we will investigate whether the fitted AR models
can also be represented as moving averages of possibly infinite order, which will be
crucial for asymptotic inference later on. Based on the parameter estimators âk(p)
we can define the z-transform Âp(z) analogously to Ap(z) in (3.5) as

Âp(z) = 1−
∑

k∈Θ(p)
âk(p) zk1

1 z
k2
2 ∀ z ∈ Sp.

The following calculations will make sure that Âp(z) is bounded away from zero for
n large enough. Assumption 2 implies

sup
z∈Sp

∣∣∣Âp(z)− Ap(z)
∣∣∣ ≤ ∑

k∈Θ(p)

∣∣∣âk(p)− ak(p)∣∣∣ (p+ 1
p

)|k1|+k2
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≤
(
p+ 1
p

)2p ∑
k∈Θ(p)

|âk(p)− ak(p)|

= 1
p4 OP (1) = oP (1), (3.7)

because ((p+ 1)/p)2p is a bounded sequence (convergent with limit e2), and because
the definition of Sp yields

|z1|k1 ≤


(
p+1
p

)k1
, for k1 ≥ 0(

p
p+1

)k1
, for k1 < 0

 =
(
p+ 1
p

)|k1|
,

|z2|k2 ≤
(
p+ 1
p

)k2

,

for all z ∈ Sp. Assumption 2 ensures p→∞, as n→∞, which implies that Ap(z) is
bounded away from zero for all n large enough, cf. Lemma 3.3. It follows from (3.7)
that Âp(z) is uniformly bounded away from zero in probability for all z ∈ Sp and
for all n large enough. For all those n large enough, the inverse of Âp(z) possesses
the expansion

B̂p(z) = 1
Âp(z)

= 1 +
∑
k∈Θ

b̂k(p) zk1
1 z

k2
2 ∀ z ∈ Sp, (3.8)

in probability, following the same arguments as for (3.6). Hence, the bootstrap
process given by (2.4), which can be described by the transfer function Âp(z), has
the moving average representation

X∗t =
∑
k∈Θ

b̂k(p) ε∗t−k + ε∗t (3.9)

for all n large enough, in probability. The convergence of the parameter estima-
tors âk(p) towards ak(p) in Assumption 2 carries over to the corresponding moving
average parameters, as shows the following lemma.

Lemma 3.5. Let (Xt)t∈Z2 be a process that fulfils the conditions of Theorem 3.2
and Assumption 2. Then, for all n large enough (and thus p large enough) such
that Ap(z) and Âp(z) are bounded away from zero (the latter in probability), it holds
uniformly for all k ∈ Θ and for some C <∞:

∣∣∣b̂k(p)− bk(p)∣∣∣ ≤ C ·
(

1 + 1
p

)−|k1|−k2 1
p4 in probability.

The proof can be found in section 8.

4. Asymptotic validity of the bootstrap

In this section we will derive asymptotic validity of the AR sieve bootstrap proce-
dure under appropriate conditions for a class of statistics which will be specified in



BAXTER’S INEQUALITY AND SIEVE BOOTSTRAP FOR RANDOM FIELDS 17

Assumption 3. Similar to what happens in the time series case, cf. Kreiss, Papar-
oditis and Politis (2011), it turns out that the bootstrap procedure asymptotically
mimics the behaviour of the so-called companion process, a modification of the un-
derlying process (Xt)t∈Z2 . This yields a check criterion which basically says that
the bootstrap procedure works asymptotically for a test statistic Tn, whenever the
asymptotic distributions of Tn applied to the underlying and the companion process
coincide. We will elaborate this, and start with the definition of the companion
process:

Based on representation (2.5) for the underlying process, we define the companion
process of (Xt) as the stationary spatial process (X̃t)t∈Z2 , generated by

X̃t =
∑
k∈Θ

ak X̃t−k + ε̃t, (4.1)

where the coefficients ak are exactly the ones from (2.5) and (ε̃t)t∈Z2 is an i.i.d.
white noise process with identical marginal distribution as (εt), i.e. L(ε̃t) = L(εt).
Therefore, the companion process also possesses the moving average representation

X̃t =
∑
k∈Θ

bk ε̃t−k + ε̃t, (4.2)

with the exact same coefficients bk as in (2.5). The only difference between (Xt) and
(X̃t) is the dependence structure of the respective noise processes (εt) and (ε̃t). While
(ε̃t) is i.i.d., (εt) is strictly stationary but not necessarily independent, the random
variables εs and εt in general are only uncorrelated for s 6= t. Nevertheless, it is easy
to see from (4.2) that all second order properties of (Xt) and (X̃t) are identical, i.e.
the two processes possess identical autocovariances and spectral densities.

In our main theorem we will establish bootstrap validity for a class of statistics which
will be specified in the following Assumption 3. This class is a natural extension of
the so-called functions of generalized means, introduced by Künsch (1989), to the
case of random fields. These statistics will be based on smooth functions g applied
to rectangular-shaped subsamples of the available data sample {Xt : t ∈ Π}, with
Π := {t ∈ Z2 : 1 ≤ t1, t2 ≤ n}. We first specify the necessary notation: For
1 ≤ m1,m2 ≤ n let

S(m1,m2) : =
{
s = (s1, s2)T ∈ N2

0 : 0 ≤ s1 ≤ m1 − 1, 0 ≤ s2 ≤ m2 − 1
}

= {s(1), . . . , s(m1m2)},

i.e. s(1), . . . , s(m1m2) is any fixed enumeration of the m1m2 vectors in S(m1,m2).
We define the m1m2-dimensional random vector

Yt := (Xt+s(1), . . . , Xt+s(m1m2))T .



18 M. MEYER, C. JENTSCH, AND J.-P. KREISS

Observe that for each t with 1 ≤ t1 ≤ n − m1 + 1 and 1 ≤ t2 ≤ n − m2 + 1,
the components of Yt form a rectangular-shaped subsample of dimension m1 ×m2
of the original data sample. We can now specify the class of statistics we will be
investigating.

Assumption 3. Let n̄1 := n−m1 + 1, n̄2 := n−m2 + 1 for some 1 ≤ m1,m2 ≤ n,
and let m := m1m2. Define the statistic Tn as

Tn = f

 1
n̄1n̄2

n̄1∑
t1=1

n̄2∑
t2=1

g
(
Yt

)
where the functions g : Rm → Rk and f : Rk → R, with k ≥ 1, fulfil the following
smoothness conditions: f is continuously differentiable in a neighborhood of θ :=
E g(Yt) and the gradient of f at θ does not vanish, i.e.

∇f(θ) =
(
∂f(x)
∂x1

, . . . ,
∂f(x)
∂xk

)∣∣∣∣
x=θ
6= (0, . . . , 0).

For some h ≥ 1 all component functions g1, . . . , gk of g are h times continuously
differentiable and all h-th-order derivatives satisfy a Lipschitz condition, i.e. for all
i = 1, . . . , k and for all (h1, . . . , hm) ∈ Nm

0 with ∑m
u=1 hu = h the derivative

∂hgi(x)
∂h1x1 . . . ∂hmxm

is Lipschitz.

Remark 4.1. The conditions from the previous assumption should be explained
at this point: The class of statistics from Assumption 3 contains, among other
things, the sample mean and versions of the sample autocovariance and sample
autocorrelation. To obtain the latter two statistics, one typically uses a function g

which is not Lipschitz. For example, in the case of sample autocovariances at lag
h = (h1, h2)T , one may choose m1 = h1 + 1, m2 = h2 + 1 and g(x1, . . . , xm) = x1xm.
Then Tn from Assumption 3 translates to taking the empirical mean of observations
Xt+hXt. Now observe that g itself is not Lipschitz, but all of its first order partial
derivatives are. This is the why we allow for non-Lipschitz functions g in Assumption
3, and merely assume that there exists a number 1 ≤ h <∞ such that all derivatives
of order h (but not up to order h) are Lipschitz. �

In order to state the main theorem, we define T̃n and T ∗n as the statistic Tn ap-
plied to samples from the companion process (X̃t) and the bootstrap process (X∗t ),
respectively, i.e.

T̃n := f

 1
n̄1n̄2

n̄1∑
t1=1

n̄2∑
t2=1

g
(
Ỹt

) , T ∗n := f

 1
n̄1n̄2

n̄1∑
t1=1

n̄2∑
t2=1

g
(
Y∗t
)

where
Ỹt := (X̃t+s(1), . . . , X̃t+s(m1m2))T , Y∗t := (X∗t+s(1), . . . , X

∗
t+s(m1m2))T .
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We can prove bootstrap validity under the following assumptions, which ensure
convergence of empirical moments and the empirical distribution function to their
theoretical counterparts for the innovations:

Assumption 4. For all continuity points x ∈ R of the distribution function F of
ε0 it holds

Fn(x) P−→ F (x) as n→∞,

where Fn(x) is the empirical distribution function

Fn(x) = 1
|Π(n, p)|

∑
t∈Π(n,p)

1{εt ≤ x},

and where Π(n, p) := {(t1, t2) ∈ Z2 : p+ 1 ≤ t1 ≤ n− p, p+ 1 ≤ t2 ≤ n}.
Furthermore, it holds E

(
ε

2(h+2)
t

)
<∞, where h is the constant specified in Assump-

tion 3, as well as the following convergence of empirical moments:
1

|Π(n, p)|
∑

t∈Π(n,p)
(εt)2w P−→ E

(
(ε0)2w

)
∀ w ≤ h+ 2.

Theorem 4.2. Let (Xt)t∈Z2 be a process fulfilling Assumptions 2 – 4, as well as
Assumption 1 with r = 4.
Then, for T̃n and T ∗n as defined above, it holds

dK
(
L∗
(
n (T ∗n − f(θ∗))

)
,L
(
n (T̃n − f(θ̃))

))
= oP (1)

as n → ∞, where θ∗ = E∗
(
g(Y∗t )

)
, θ̃ = E

(
g(Ỹt)

)
and dK denotes the Kolmogorov

distance.

This result shows for all statistics from Assumption 3 that the sieve bootstrap pro-
cedure asymptotically approximates the distribution T̃n instead of the one of Tn.
Therefore, the bootstrap procedure works asymptotically if and only if the limiting
distributions of Tn and T̃n coincide. We will give a few examples of the application
of this check criterion in the following section. The proof of Theorem 4.2 can be
found in Section 7.2.

5. Applications

In this section we will give a few examples of prominent statistics to which the
check criterion derived in the previous section can be applied. For a simulation
study concerning sample autocorrelations, see section 6.

Example 5.1. (Sample mean) We can use the AR sieve bootstrap procedure
for the sample mean, even for processes which are not centered as required per
Assumption 1. Let (Zt)t∈Z2 be a strictly stationary process with mean µ which,
other than being non-centered, fulfils the conditions stated in Assumption 1. Since
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all autocovariances of (Zt) and the centered process (Xt) := (Zt − µ) coincide, (Xt)
obviously fulfils Assumption 1. Now let {Zt, t ∈ Π} be a data sample generated
by (Zt). We apply the bootstrap procedure described in section 2 to the data
{Zt, t ∈ Π}, which produces bootstrap samples {X∗t , t ∈ Π}, generated by

X∗t =
∑

k∈Θ(p)
âk(p)X∗t−k + ε∗t .

Then, compute Z∗t := Z + X∗t for all t ∈ Π, where Z := |Π|−1∑
t∈Π Zt (for the

bootstrap data, Z∗ is analogously defined). We can approximate the distribution
of n(Z − µ) by the one of n(Z∗ − Z). Asymptotic validity of this approach can be
established via Theorem 4.2 in the following way:
The companion process associated with (Xt) is denoted by (X̃t) and we define Z̃t :=
X̃t + µ. The functions f and g in assumption 3 can be chosen appropriately such
that Tn is the sample mean of {Xt, t ∈ Π}, and T̃n = X̃ is the mean of {X̃t, t ∈ Π}.
For the linear process (Z̃t), with an obvious notation for Z̃, it is known that

n
(
Z̃ − µ

)
= n

(
X̃
)

= n T̃n
d−→ N

(
0 ,
∑

h∈Z2 γZ̃(h)
)
,

where γ
Z̃

denotes the autocoavariance function of (Z̃t). Noting that Z∗ = Z + X
∗,

it follows immediately from Theorem 4.2

n
(
Z
∗ − Z

)
= n

(
X
∗
)

= nT ∗n
d∗−→ N

(
0 ,
∑

h∈Z2 γZ̃(h)
)

in prob. (5.1)

For the sample mean Z of the actually observed data it holds under suitable regu-
larity conditions that

n
(
Z − µ

)
d−→ N

(
0 ,
∑

h∈Z2 γZ(h)
)
. (5.2)

Now observe that (Zt) and (Z̃t) have identical second order properties per definition.
In particular, γZ(h) = γ

Z̃
(h) for all lags h ∈ Z2. Thus, the limiting distributions in

(5.1) and (5.2) coincide and it follows

dK
(
L∗
(
n
(
Z
∗ − Z

))
,L
(
n
(
Z − µ

)))
= oP (1).

Therefore, the AR sieve bootstrap proposal is asymptotically valid for the sample
mean under the stated conditions. �

In contrast to the preceeding example, the limiting distribution of sample autoco-
variances does not depend exclusively on second-order properties of the underlying
process. This result is well-known, particularly for the time-series case, i.e. d = 1.
Even if the data are generated by a linear spatial process, that is a process of the
form

Xt =
∑
ν∈Z2

αν ut−ν , (5.3)



BAXTER’S INEQUALITY AND SIEVE BOOTSTRAP FOR RANDOM FIELDS 21

with absolutely summable coefficients (αν)ν∈Z2 and an i.i.d. white noise process
(ut)t∈Z2 with finite fourth moments, the limiting variance depends on the fourth-
order cumulants of (ut). This can be verified with analogous calculations as for the
times series case, cf. Brockwell and Davis (1991), Proposition 7.3.4. However, the
situation is different if one switches to sample autocorrelations of linear processes,
instead of autocovariances. Then, the limiting distribution depends only on the
autocorrelations of the underlying process, as shows the following theorem, which
is a direct generalisation of the well-known Bartlett formula for time series, cf.
Brockwell and Davis (1991), Proposition 7.2.1.:

Lemma 5.2. Let (Xt)t∈Z2 be a linear spatial process as defined in (5.3), i.e. with
i.i.d. white noise and finite fourth moments, and with autocorrelation function ρ.
For the sample autocorrelations ρ̂(h) = γ̂(h)/γ̂(0), with γ̂(·) as defined in (2.1), we
define the comparative quantity ρ̌(h) := γ̌(h)/γ̌(0) with

γ̌(h) := 1
|Π|

∑
t∈Π

Xt+hXt,

where Π = {t ∈ Z2 : 1 ≤ t1, t2 ≤ n}. ρ̌(h) and ρ̂(h) are asymptotically equivalent.
Then it holds

n2 Cov(ρ̌(h), ρ̌(k)) −→ V (h, k), as n→∞,

where

V (h, k) =
∑
r∈Z2

{
2ρ(r)2ρ(k)ρ(h)− 2ρ(r + k)ρ(r)ρ(h)− 2ρ(r − h)ρ(r)ρ(k)

+ρ(r − h+ k)ρ(r) + ρ(r + k)ρ(r − h)
}
.

The proof is analogous to the time-series case and can be found in section 8.

Example 5.3. (Sample autocorrelations/correlogram) Let (Xt)t∈Z2 be a spa-
tial process fulfilling Assumption 1 with corresponding companion process (X̃t)t∈Z2 .
We consider the autocorrelation function ρ(h) = γ(h)/γ(0) at lag h, together with
the usual estimator Tn := ρ̂(h) = γ̂(h)/γ̂(0), where γ̂(·) is given by (2.1). For spatial
processes, ρ(h) (and accordingly ρ̂(h)) are often referred to as the (sample) correl-
ogram, cf. Cressie (1993), Section 2.3.2. Note that the autocorrelations of (X̃t)
are given by the function ρ as well. Under suitable assumptions on the dependence
structure of the process, such as weak dependence or mixing conditions, it is known
that

n(ρ̂(h)− ρ(h)) d−→ N (0, τ 2
X), n(T̃n − ρ(h)) d−→ N (0, τ 2

X̃
),

where the limiting variances τ 2
X and τ 2

X̃
in general depend on the fourth order cumu-

lants of (Xt) and (X̃t), respectively. Hence, it follows τ 2
X 6= τ 2

X̃
in general, because

(Xt) and (X̃t) share second order but not fourth order properties. For T ∗n , denoting



22 M. MEYER, C. JENTSCH, AND J.-P. KREISS

the sample autocorrelation applied to the bootstrap sample {X∗t , t ∈ Π}, Theorem
4.2 yields

n
(
T ∗n − f(θ∗)

)
d−→ N (0, τ 2

X̃
).

Therefore, τ 2
X 6= τ 2

X̃
implies that the AR sieve bootstrap in general is asymptotically

not valid for sample autocorrelations.
However, if the data are generated by a linear process (Xt) as given by (5.3), Lemma
5.2 shows that the limiting variance of n(ρ̌(h)− ρ(h)) is given by

τ 2
X =

∑
r∈Z2

{
2ρ(r)2ρ(h)2 − 2ρ(r + h)ρ(r)ρ(h)− 2ρ(r − h)ρ(r)ρ(h)

+ρ(r)2 + ρ(r + h)ρ(r − h)
}
. (5.4)

Since ρ̌(h) and ρ̂(h) are asymptotically equivalent, n(ρ̂(h)− ρ(h)) also has limiting
variance τ 2

X . This expression depends only on the autocorrelations of the underlying
process, which coincide for (Xt) and (X̃t). Thus, it follows for this case τ 2

X = τ 2
X̃

,
and the bootstrap procedure is asymptotically valid for sample autocorrelations of
data generated from linear processes. �

Remark 5.4. When checking for asymptotic validity of the AR sieve bootstrap
procedure, it is of critical importance to ensure that the limiting distributions of Tn
and T̃n are identical, as has been done in the previous examples. In general, this
will be the case whenever the limiting distribution depends only on second order
entities such as autocovariances or the spectral density of the underlying process.
For data generated by a linear process Xt = ∑

ν∈Z2 αν ut−ν , one might be tempted
to conclude that (Xt) and its companion process (X̃t) are identical since (ut)t∈Z2

is already i.i.d.. However, Example 3.2 from Kreiss, Paparoditis and Politis (2011)
shows for the special case of time series that this is not the case. To be precise, the
companion process (X̃t) is always derived from the AR representation (2.5), where
(εt) is the uniquely determined innovation process of (Xt). Even if the process has
linear representation Xt = ∑

ν∈Z2 αν ut−ν with i.i.d. noise (ut), its innovation process
might differ from (ut), and might be only uncorrelated but not i.i.d.. Remark 2.1
of Kreiss, Paparoditis and Politis (2011) gives a specific example of this situation.
Therefore, linear processes are in general not identical to their companion processes,
which makes a careful inspection of the limiting distributions as in the previous
examples a necessity. �

Example 5.5. (Standardized sample variogram) Let (Xt)t∈Z2 be a spatial pro-
cess fulfilling Assumption 1 with autocovariance function γ. The variogram at lag
h ∈ Z2 is defined as

V (h) = Var(Xt −Xt+h) = E
(
(Xt −Xt+h)2

)
= 2γ(0)− 2γ(h)
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for centered fields, and V (s)(h) := V (h)/γ(0) is called the standardized variogram.
Using the notation from (2.1), two classical estimators for V (h) are given by

V̂1(h) = 2γ̂(0)− 2γ̂(h), V̂2(h) = 1
|Πh|

∑
t∈Πh

(Xt −Xt+h)2,

which are asymptotically equivalent, cf. Cressie (1993), Section 2.4. In particular,
one can easily check that

n
(
V̂1(h)− V̂2(h)

)
= oP (1). (5.5)

Versions of both of these estimators are included in the class of functions of gen-
eralized means, as given by Assumption 3. Furthermore, both V̂1(h) and V̂2(h)
can be used to construct standardized sample variogram estimators via V̂ (s)

j (h) :=
V̂j(h)/γ̂(0), j = 1, 2. It holds

V̂
(s)

1 (h) = 2− 2ρ̂(h).

Now assume the data are generated by a linear process. Then it follows from Ex-
ample 5.3, with τ 2

X as defined there,

n
(
V̂

(s)
1 (h)− V (s)(h)

)
= (−2) · n

(
ρ̂(h)− ρ(h)

)
d−→ N (0, 4τ 2

X),

and n
(
V̂

(s)
2 (h) − V (s)(h)

)
has the very same limiting distribution due to (5.5). An

analogous argumentation as in Example 5.3 therefore yields asymptotic validity of
the AR sieve bootstrap procedure for the standardized sample variogram, as long
as the data are generated by a linear spatial process. �

Remark 5.6. Our main result Theorem 4.2 provides a check criterion for asymp-
totic validity of the AR sieve bootstrap for all statistics from Assumption 3. This
class of statistics contains, among other things, the statistics from Examples 5.1-5.5.
However, we conjecture that analogous results can be proven, in the same spirit as
in the proof of Theorem 4.2, for a much wider class of statistics beyond those cov-
ered by Assumption 3. If Tn denotes an estimator for some parameter θ, under the
condition that L

(
cn(Tn − θ)

)
has a non-degenerated limiting distribution for some

sequence (cn), we conjecture that the AR sieve bootstrap procedure is asymptoti-
cally valid, as long as the limiting distribution depends on second order properties
of the underlying process, only.
For example, according to Section 4.5 in Guyon (1995), one can prove central limit
theorems for kernel-based nonparametric spectral density estimators for strictly sta-
tionary spatial processes under appropriate mixing conditions. The limiting distri-
bution then depends exclusively on the spectral density of the underlying process,
which is a second order quantity, and we conjecture that the AR sieve bootstrap is
asymptotically valid in this situation. �
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6. A simulation study

In this section, we will present simulation results that compare the performance
of the AR sieve bootstrap to classic normal approximations and block bootstrap
methods. First, we generated square-shaped samples {Xt = Xt1,t2 : 1 ≤ t1, t2 ≤ n}
as defined in section 2, where the sample size is set to be n = 15 which corresponds
to 15 × 15 = 225 observations. The samples are generated by a moving average
model given by

Xt1,t2 = et1,t2 + 0.5 · et1+1,t2 − 0.2 · et1−1,t2 + 0.3 · et1,t2+1 + 0.1 · et1,t2−1, (6.1)

where (et)t∈Z2 is an i.i.d. white noise process with marginal distribution N (0, 1).
The process (Xt)t∈Z2 fulfils the conditions of Assumption 1. Furthermore, each
realisation Xt depends on noise terms from four different directions, two from the
lower and two from the upper half-plane, cf. section 2. This means that the process
is not ’tailor-made’ for an AR approximation in the direction of the lower half-plane
as performed in the AR sieve algorithm. In fact, the data generating process from
(6.1) does not ’favor’ any direction of one-sided autoregressive fits; one could as well
fit models that are one-sided with respect to the upper, left or right half-plane.

The statistic that we investigated is the sample autocorrelation ρ̂(h) as defined in
Example 5.3, with h = (1,−1)T . For the process from (6.1), the true autocorrelation
is given by ρ(1,−1) = 0.13/1.39. We approximated the distribution of

n
(
ρ̂(1,−1)− ρ(1,−1)

)
(6.2)

for n = 15 with a normal approximation and with the AR sieve bootstrap, via
the empirical distribution of n(ρ̂ ∗(1,−1) − ρ̂(1,−1)). To implement the normal
approximation, we considered the limiting distribution of (6.2) given by N (0, τ 2

X)
with τ 2

X from (5.4), cf. Example 5.3. For the process (Xt) from (6.1) one can easily
verify that τ 2

X is given by

τ 2
X =

∑
|r|∞≤2

{
2ρ(r)2ρ(1,−1)2 − . . .

}
, (6.3)

since all summands with |r|∞ := max{|r1|, |r2|} > 2 vanish due to ρ(r) = 0 for all
|r|∞ > 2. Hence, we estimated τ 2

X by replacing ρ with ρ̂ in (6.3). It should be noted
that this approach represents a best-case szenario for the normal approximation
because we used the additional information that for the present data τ 2

X has the
special form (6.3), i.e. we chose the optimal point of cutting off the infinite sum
in (5.4). For real-world data, this information would not be known, and one would
have to estimate τ 2

X based on equation (5.4) by cutting off the infinite sum at some
non-optimal point which would generate an additional error in the estimation.

In Figure 3, the display in the top left corner shows the comparison of three different
choices for the order p of the AR sieve bootstrap. We simulated the 95%-quantile
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Figure 3. Top left: Approximations of the 95%-quantile of the dis-
tribution of n(ρ̂(1,−1)−ρ(1,−1)) for n = 15, data generated by model
(6.1); boxplots based on N = 50 iterations. Boxes 1 to 3: AR sieve
bootstrap (based on M = 500 repetitions) with p = 1, p = 2 and
p = 3, followed by the normal approximation in box 4. Target value
given by the horizontal dashed line.
Top right: Same setting as in top left; approximation of the 95%-
quantile with the AR sieve bootstrap in box 1, approximations with
the block bootstrap and block sizes l = 2, . . . , 8 in boxes 2, . . . , 8 (each
bootstrap with M = 500 repetitions).
Bottom left: Same setting as in top left; approximation of the vari-
ance of n(ρ̂(1,−1)−ρ(1,−1)). Box 1: AR sieve bootstrap with p = 2.
Boxes 2 and 3: Block bootstrap with block sizes l = 5, 6. Box 4:
Normal approximation.
Bottom right: Approximations of the 95%-quantile of the distribution
of n(ρ̂(1,−1) − ρ(1,−1)) for n = 25, data generated by model (6.4);
boxplots based on N = 50 iterations and each bootstrap method based
on M = 300 repetitions. Box 1: AR sieve bootstrap with p = 4. Boxes
2, 3, 4: Block bootstrap with block sizes l = 8, 9, 10. Box 5: Normal
approximation.



26 M. MEYER, C. JENTSCH, AND J.-P. KREISS

of the distribution of (6.2) for n = 15. In each iteration, we generated M = 500
bootstrap samples to approximate this quantile, subsequently using the AR sieve
bootstrap with orders p = 1, p = 2 and p = 3. We also calculated the normal
approximation estimate of the quantile in each iteration as described previously. All
of this was carried out for N = 50 independent iterations to generate boxplots of
the locations of the estimates. The three AR sieve approximations with p = 1, 2, 3
are shown in the boxplots 1, 2, 3 in the top left display of Figure 3, while the normal
approximation values are given boxplot 4. The target value, i.e. the 95%-quantile of
the distribution of (6.2), is determined from Monte-Carlo simulations with 500, 000
repetitions and illustrated by the horizontal dashed line. One can see that the AR
sieve bootstrap works very well compared to the normal approximation, even for
small orders p and even though the normal approximation is already improved by
additional information, as was explained earlier.

In the aforementioned setting, we also compared the performances of the AR sieve
bootstrap and block bootstrap techniques (each based on M = 500 repetitions).
The target was again the 95%-quantile of the distribution of (6.2) for n = 15. The
order of the AR sieve bootstrap was fixed to p = 2 and we considered block sizes
of l = 2, . . . , 8. Here, the block size refers to square-shaped blocks, i.e. a block size
of l means drawing blocks of l × l observations from the original data sample and
then sticking the blocks together to form a sample of size n × n. The result can
be seen in the top right corner in Figure 3. Boxplot 1 corresponds to the AR sieve
bootstrap and the results for the block bootstrap are given in boxes 2, . . . , 8 with
block length l depicted in box l. Arguably the best result for the block bootstrap is
achieved for l = 4; however, the AR sieve bootstrap performs considerably stronger
than all block bootstrap approaches implemented here.

In order to show that the results obtained so far are not only specific to the 95%-
quantile but to the distribution of (6.2) as a whole, we will now look at an approx-
imation of the variance of this distribution instead of a single quantile. The picture
in the bootom left corner of Figure 3 shows these approximations of the variance
with all parameters as before. The AR sieve bootstrap (p = 2) is depicted in box
1, the block bootstrap in boxes 2 and 3 (block lengths l = 5, 6) and the normal
approximation in box 4. Similar to what happens for the 95%-quantile, the AR
sieve bootstrap outperforms the other methods.

To conclude this section, we modified some of the parameters from the simulations
performed so far. The data are still generated by a moving average model, but now
following the model equation

Xt1,t2 = et1,t2 + 4 · et1+1,t2 − 5 · et1−1,t2 + 3 · et1,t2+1 − 2 · et1,t2−1, (6.4)
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where the noise is no longer symmetricly distributed but has an i.i.d. centered
exponential distribution. In this model, the dependence of neighbouring random
variables is higher than in model (6.1). For example, the true autocorrelation at lag
h = (1,−1)T is here given by ρ(1,−1) = 0.4 compared to ρ(1,−1) ≈ 0.094 in model
(6.1). We also increase the sample size to n = 25 – corresponding to 25× 25 = 625
observations – and choose the order p = 4 for the AR sieve bootstrap. The picture
in the bottom right corner of Figure 3 shows the results for the approximation of
the 95%-quantile of the distribution of (6.2) for n = 25; box 1 shows the AR sieve
bootstrap, boxes 2, 3, 4 the block bootstrap with l = 8, 9, 10 and box 5 the normal
approximation. It can be seen that, for this increased sample size, the normal
approximation is close to its limit which, however, differs considerably from the true
quantile of the finite sample distribution. This is mainly due to a negative bias for
the distribution of (6.2) which can be obtained from the Monte Carlo simulations
that were performed to determine the 95%-quantile. The block bootstrap clearly
does not show desirable results, this might stem from the increased dependence
between neighbouring realisations in the present model compared to the model used
previously. However, the AR sieve bootstrap performs very well for this choice of
(increased values of) n and p. This emphasizes the fact that convergence of the AR
sieve bootstrap can be achieved as long as p = p(n)→∞ at an appropriate rate.

7. Proofs of the main results

The proof of Theorem 4.2 depends in large parts on some auxiliary results that will
be collected in the following lemmas. We will make use of a truncated version (X∗t,M)
of the bootstrap process, which is based on the moving average representation of
(X∗t ) from (3.9). For arbitrary M ∈ N we define

X∗t,M =
∑

k∈Θ(M)
b̂k(p) ε∗t−k + ε∗t , (7.1)

where the finite collection of sites Θ(M) is defined in (2.2), whereas the non-
truncated version (X∗t ) has the infinite collection of sites Θ. Analogously, a truncated
version (X̃t,M) of the companion process can be defined by replacing Θ with Θ(M)
in (4.2). As a natural extension of the definition of Y∗t and Ỹt, we denote by

Y∗t,M := (X∗t+s(1),M , . . . , X
∗
t+s(m1m2),M)T , Ỹt,M := (X̃t+s(1),M , . . . , X̃t+s(m1m2),M)T .

With the notations introduced so far we can state the following auxiliary results:

Lemma 7.1. Let the Assumptions 1 - 4 be fulfilled with r = 4 and h as specified in
Assumption 3. Let c ∈ Rk be arbitrary. Then it holds:

•
∑
k∈Θ

(1 + |k|∞)2
∣∣∣b̂k(p)∣∣∣ = OP (1), (7.2)

• E∗
(
|ε∗t |2w

)
P−→ E

(
|εt|2w

)
∀w ≤ h+ 2, (7.3)
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•
(
X∗t1 , . . . , X

∗
td

)T d∗−→
(
X̃t1

, . . . , X̃td

)T
in P -prob. (7.4)

for all d ≥ 1 and all t1, . . . , td ∈ Z2,

• E∗
(∣∣∣cTg(Y∗t,M)

∣∣∣2+2/(h+1))
= OP (1), E

(∣∣∣cTg(Ỹt,M)
∣∣∣2+2/(h+1))

≤ C (7.5)
uniformly for all t ∈ Z2,

• Cov∗
(
cTg(Y∗h,M), cTg(Y∗0,M)

)
P−→ Cov

(
cTg(Ỹh,M), cTg(Ỹ0,M)

)
(7.6)

for all h ∈ Z2.

• The series Σ(u,v) :=
∑

h∈Z2 Cov
(
gu(Ỹh), gv(Ỹ0)

)
converges (7.7)

absolutely for all 1 ≤ u, v ≤ k.

The following auxiliary result will also be used several times:

Lemma 7.2. Let the Assumptions 1 - 4 be fulfilled with r = 4. Let W ⊂ Θ ∪ {0}
be any subset of vectors in the upper half-plane Θ or in the origin. We define Ỹ(W )

t

and Y∗(W )
t to be truncated versions of Ỹt and Y∗t , respectively, where

Ỹ(W )
t := (X̃(W )

t+s(1), . . . , X̃
(W )
t+s(m1m2))

T , Y∗(W )
t := (X∗(W )

t+s(1), . . . , X
∗(W )
t+s(m1m2))

T ,

and

X̃
(W )
t :=

∑
k∈W\{0}

bk ε̃t−k + ε̃t 1{0∈W}, X
∗(W )
t :=

∑
k∈W\{0}

b̂k(p) ε∗t−k + ε∗t 1{0∈W}.

Then there exists C <∞, such that it holds for any t ∈ Z2 and any v = 1, . . . , k
∥∥∥gv(Ỹt)− gv(Ỹ(W )

t )
∥∥∥

2
≤ C ·

 ∑
k∈Θ\W

|bk|+ 1{0 6∈W}

 ,
∥∥∥gv(Y∗t )− gv(Y∗(W )

t )
∥∥∥
∗2
≤ OP (1) ·

 ∑
k∈Θ\W

∣∣∣b̂k(p)∣∣∣+ 1{0 6∈W}

 ,
where ‖z‖2 :=

(
E(z)2

)1/2
and ‖z‖∗2 :=

(
E∗(z)2

)1/2
denote the usual L2-norms.

The previous lemma explicitly incorporates the two cases 0 ∈ W and 0 6∈ W , both
of which will be needed in the proofs later on. The proofs of the lemmas from this
section can be found in section 8, the proof of Theorem 4.2 in section 7.2.

7.1. Proof of Theorem 3.2. In order to write the Yule-Walker equations (3.3)
in compact form we denoted p̄ = 2p(p + 1) and introduced the arbitrary but fixed
enumeration k1, . . . , kp̄ of the vectors k ∈ Θ(p). Now we extend this enumeration to
the infinite but countable set Θ, by choosing an arbitrary enumeration kp̄+1, kp̄+2, . . .

of the vectors k ∈ Θ \Θ(p) such that

Θ = {k1, . . . , kp̄} ∪ {kp̄+1, kp̄+2, . . .}.
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While the finite predictor coefficients (ak(p))k∈Θ(p) are given by (3.3), Lemma 2.1
shows that the autoregressive coefficients (ak)k∈Θ determine the L2-projection of Xt

onto sp{Xt−k : k ∈ Θ}. Therefore, Xt −
∑
k∈Θ akXt−k is orthogonal to each Xt−s,

s ∈ Θ. Equivalently, with the introduced enumeration of Θ this means

Cov
(
Xt −

∞∑
j=1

akj
Xt−kj

, Xt−km

)
= γ(km)−

∞∑
j=1

akj
γ(km − kj) = 0 ∀m ∈ N.

From this system of equations we consider only those ones with m = 1, . . . , p̄, which
is equivalent to

Γ(p) ·


ak1
...

akp̄

+
∞∑

j=p̄+1
akj


γ(k1 − kj)

...

γ(kp̄ − kj)

 =


γ(k1)
...

γ(kp̄)

 .
Since the right-hand sides of this system and (3.3) coincide, we can infer

ak1
(p)− ak1
...

akp̄
(p)− akp̄

 = Γ(p)−1 ·
∞∑

j=p̄+1
akj


γ(k1 − kj)

...

γ(kp̄ − kj)

 . (7.8)

In the following we will denote the (n, r)-th entry of Γ(p)−1 by (Γ(p)−1)(n,r). We are
interested in a weighted sum of the absolute values of the entries on the left-hand
side of (7.8). For s ∈ N0 such that s+ 1 < r we get

p̄∑
n=1

(1 + |kn|∞)s |akn
(p)− akn

|

=
p̄∑

n=1
(1 + |kn|∞)s

∣∣∣∣ ∞∑
j=p̄+1

akj

p̄∑
r=1

(Γ(p)−1)(n,r) γ(kr − kj)
∣∣∣∣

≤
∞∑

j=p̄+1
|akj
|

p̄∑
r=1
|γ(kr − kj)| max

r=1,...,p̄

p̄∑
n=1

(1 + |kn|∞)s
∣∣∣(Γ(p)−1)(n,r)

∣∣∣ (7.9)

We denote the max-column-sum norm of an arbitrary n × n-matrix B by ‖B‖1 =
maxj=1,...,n

∑n
i=1 |B(i,j)|. It is well-known that ‖ · ‖1 is submultiplicative which allows

us to derive

max
r=1,...,p̄

p̄∑
n=1

(1 + |kn|∞)s
∣∣∣(Γ(p)−1)(n,r)

∣∣∣
=

∥∥∥ diag
[
(1 + |k1|∞)s, . . . , (1 + |kp̄|∞)s

]
· Γ(p)−1

∥∥∥
1

≤ max
n=1,...,p̄

(1 + |kn|∞)s ·
∥∥∥Γ(p)−1

∥∥∥
1
.

Hence, (7.9) can be bounded from above by∥∥∥Γ(p)−1
∥∥∥

1
·
∞∑

j=p̄+1
max
n=1,...,p̄

(1 + |kn|∞)s |akj
|

p̄∑
r=1
|γ(kr − kj)|
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≤
∥∥∥Γ(p)−1

∥∥∥
1

∑
k∈Z2

|γ(k)| ·
∞∑

j=p̄+1
max
n=1,...,p̄

(1 + |kn|∞)s |akj
|.

Since our numeration was chosen such that Θ(p) = {k1, . . . , kp̄} and Θ \ Θ(p) =
{kp̄+1, kp̄+2, . . .}, the inequality derived so far reads∑

k∈Θ(p)
(1 + |k|∞)s |ak(p)− ak|

≤
∥∥∥Γ(p)−1

∥∥∥
1

∑
k∈Z2

|γ(k)| ·
∑

k∈Θ\Θ(p)
max
v∈Θ(p)

(1 + |v|∞)s |ak|. (7.10)

Per definition of Θ(p) we have

max
v∈Θ(p)

(1 + |v|∞)s = (1 + p)s ≤ (1 + |k|∞)s ∀ k ∈ Θ \Θ(p), (7.11)

as |k|∞ ≥ p + 1 for all k ∈ Θ \ Θ(p); this is why we need a weight function strictly
nondecreasing in |k|∞. Furthermore, it holds ‖A‖1 ≤

√
n ‖A‖spec for all n × n-

matrices A, i.e. ‖Γ(p)−1‖1 ≤
√

2p(p+ 1) ‖Γ(p)−1‖spec and√
2p(p+ 1) ≤

√
2 (p+ 1) <

√
2 (1 + |k|∞) ∀ k ∈ Θ \Θ(p).

Therefore, and due to (7.11) and Lemma 3.1, (7.10) can be bounded by√
2p(p+ 1)

∥∥∥Γ(p)−1
∥∥∥

spec

∑
k∈Z2

|γ(k)| ·
∑

k∈Θ\Θ(p)
(1 + |k|∞)s |ak|

≤ 1
2
√

2 π2c

∑
k∈Z2

|γ(k)| ·
∑

k∈Θ\Θ(p)
(1 + |k|∞)s+1 |ak|,

which completes the proof. �

7.2. Proof of Theorem 4.2. The basic structure of this proof resembles the proof
of Theorem 3.3 in Bühlmann (1997). At first, we will neglect the outer function f

in T ∗n and show for the bootstrap quantities

(n̄1n̄2)−1/2
n̄1∑
t1=1

n̄2∑
t2=1

(
g(Y∗t )− E∗

(
g(Y∗t )

))
d∗−→ N (0,Σ) in prob., (7.12)

where the entries of Σ are given by Σ(u,v) := ∑
h∈Z2 Cov

(
gu(Ỹh), gv(Ỹ0)

)
, for u, v =

1, . . . , k. Note that (7.7) guarantees that this expression is well-defined. Since the
companion process (X̃t), just as the bootstrap process, is a linear spatial process
(recall that the innovations (ε̃t) are i.i.d.), one can follow the exact same arguments
as in proving (7.12) to derive

(n̄1n̄2)−1/2
n̄1∑
t1=1

n̄2∑
t2=1

(
g(Ỹt)− E

(
g(Ỹt)

))
d−→ N (0,Σ) (7.13)

with the very same limiting distribution as above. We will therefore restrict ourselves
to providing a thorough reasoning of (7.12) and omit the proof of the CLT for the
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companion process. In the end we will incorporate the function f by applying the
delta method to both CLT’s which will complete the proof of Theorem 4.2 since
(n̄1n̄2)1/2 and n are asymptotically equivalent.

The strategy for proving (7.12) is the following: Firstly, one can observe that (7.12)
follows if we can show

1
n

n∑
t1=1

n∑
t2=1

(
g(Y∗t )− E∗

(
g(Y∗t )

))
d∗−→ N (0,Σ) in prob., (7.14)

since the expressions in both assertions are asymptotically equivalent per definition
of n̄1, n̄2. We will invoke the Cramér-Wold device and, in the first step, consider
the truncated quantity (Y∗t,M) based on the truncated process (X∗t,M) introduced in
(7.1). For arbitrary M ∈ N and for all c ∈ Rk we will show

1
n

n∑
t1=1

n∑
t2=1

(
cTg(Y∗t,M)− E∗

(
cTg(Y∗t,M)

))
d∗→ N

(
0, cTΣM c

)
in prob., (7.15)

where

Σ(u,v)
M :=

∑2M+m1−1
h1=−2M−m1+1

∑M+m2−1
h2=−M−m2+1 Cov

(
gu(Ỹh,M), gv(Ỹ0,M)

)
.

In order to establish the limiting variance in (7.15), we first recall that (X∗t,M) is
strictly stationary as can be seen from (7.1) and the (conditional) i.i.d. property of
(ε∗t ). Therefore, (Y∗t,M), and consequently (cTg(Y∗t,M)), are also strictly stationary
processes in t. Hence, standard calculations yield

Var∗
( 1
n

n∑
t1=1

n∑
t2=1

(
cTg(Y∗t,M)− E∗

(
cTg(Y∗t,M)

)))

= 1
n2

n∑
t1=1

n∑
t2=1

n∑
v1=1

n∑
v2=1

Cov∗
(
cTg(Y∗t,M), cTg(Y∗v,M)

)

=
n−1∑

h1=−(n−1)

n−1∑
h2=−(n−1)

(
1− |h1|

n

)(
1− |h2|

n

)
Cov∗

(
cTg(Y∗h,M), cTg(Y∗0,M)

)

A close inspection of the definition of Y∗t,M , which depends only on a finite number of
random variables ε∗t+j, together with the i.i.d. property of (ε∗t ), shows that g(Y∗h,M)
and g(Y∗0,M) are independent whenever |h1| ≥ 2M+m1 or |h2| ≥M+m2. Therefore,
for all n ≥ min{2M +m1,M +m2} the last right-hand side equals

2M+m1−1∑
h1=−2M−m1+1

M+m2−1∑
h2=−M−m2+1

(
1− |h1|

n

)(
1− |h2|

n

)
Cov∗

(
cTg(Y∗h,M), cTg(Y∗0,M)

)
= cTΣM c+ oP (1),
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as can be seen from (7.6). This establishes the correct asymptotic variance in (7.15),
and by abbreviating

v∗n := Var∗
( 1
n

n∑
t1=1

n∑
t2=1

(
cTg(Y∗t,M)− E∗

(
cTg(Y∗t,M)

)))
assertion (7.15) follows from Slutsky’s Theorem if we can show

1
n
√
v∗n

n∑
t1=1

n∑
t2=1

(
cTg(Y∗t,M)− E∗

(
cTg(Y∗t,M)

))
d∗−→ N (0, 1) in prob. (7.16)

The strategy is to use a blocking technique. We define sequences of integers a(n), b(n) ∈
N with a(n)→∞, b(n)→∞ and b(n)/a(n)→ 0 as n→∞. Also, we assume that
a(n) and b(n) increase slowly enough such that

N(n) := n

a(n) + b(n) −→∞, as n→∞,

and assume without loss of generality N(n) ∈ N for all n. The idea is to split
up the n2 summands in (7.16) into dominating, square-shaped blocks Aj1,j2 of size
a(n) × a(n), and negligible remainder terms Bj1,j2 and Cj1,j2 . In the following, we
will often abbreviate a = a(n), b = b(n) and N = N(n) in order to simplify the
notation. (7.16) can be decomposed as

1
n
√
v∗n

N∑
j1=1

N∑
j2=1

(
Aj1,j2 +Bj1,j2 + Cj1,j2

)
d∗−→ N (0, 1) in prob., (7.17)

where

Aj1,j2 :=
j1a+(j1−1)b∑

t1=(j1−1)(a+b)+1

j2a+(j2−1)b∑
t2=(j2−1)(a+b)+1

(
cTg(Y∗t,M)− E∗

(
cTg(Y∗t,M)

))
,

Bj1,j2 :=
j1(a+b)∑

t1=j1a+(j1−1)b+1

j2a+(j2−1)b∑
t2=(j2−1)(a+b)+1

(
cTg(Y∗t,M)− E∗

(
cTg(Y∗t,M)

))
,

Cj1,j2 :=
j1(a+b)∑

t1=(j1−1)(a+b)+1

j2(a+b)∑
t2=j2a+(j2−1)b+1

(
cTg(Y∗t,M)− E∗

(
cTg(Y∗t,M)

))
.

We will now establish moment bounds for these three expressions. For the constant
h from Assumption 3, define δ := 2/(3h+ 3). Writing A1,1 := ∑

t1 ηt1 with

ηt1 :=
a∑

t2=1

(
cTg(Y∗t,M)− E∗

(
cTg(Y∗t,M)

))
, t1 = 1, . . . , a ,

we get from Theorem 1 in Yokoyama (1980) that E∗(|ηt1|2+2δ) = a(n)1+δOP (1)
uniformly in t1, since ηt1 consists of a(n) summands which are centered, (M +m2)-
dependent in t2 and fulfil the required moment assumption E∗(|cTg(Y∗t,M)|2+3δ) =
OP (1) (uniformly) due to (7.5). In other words, we get

E∗
(∣∣∣∣ ηt1
a(n)1/2

∣∣∣∣2+2δ)
= OP (1),
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i.e. the (2M +m1)-dependent sequence (ηt1/a(n)1/2)t1 itself fulfils the conditions of
Theorem 1 in Yokoyama (1980) which yields

E∗
(
|A1,1|2+δ

)
= a(n)1+(δ/2) · E∗

(∣∣∣∣ a∑
t1=1

ηt1
a(n)1/2

∣∣∣∣2+δ)
=
(
a(n) · a(n)

)1+(δ/2)
OP (1).

With analogous calculations we get the bounds

E∗
(
|B1,1|2+δ

)
=

(
a(n) · b(n)

)1+(δ/2)
OP (1),

E∗
(
|C1,1|2+δ

)
=

(
(a(n) + b(n)) · b(n)

)1+(δ/2)
OP (1).

Note that we can not apply Yokoyama’s Theorem directly to A1,1, but have to take
the intermediate step with ηt1 as performed above, because the a2 many summands
in A1,1 can not be transformed into an M -dependent sequence, regardless of the
ordering of the summands.

In the preceeding part of this proof we have shown v∗ = cTΣM c + oP (1), and we
can assume cTΣM c 6= 0 (in the case cTΣM c = 0 the desired assertion (7.15) would
follow trivially). Hence, we have 1/v∗ = OP (1). We will now use this assertion, as
well as the established moment bounds, to show that Bj1,j2 and Cj1,j2 in (7.17) are
asymptotically negligible. The blocks Bj1,j2 are identically distributed and, for n
large enough such that a(n), b(n) > 2M , independent. Standard calculations yield
for any ε > 0:

P ∗
{∣∣∣∣ 1
n
√
v∗n

N∑
j1=1

N∑
j2=1

Bj1,j2

∣∣∣∣ > ε
}
≤ 1

n2ε2v∗
Var∗

( N∑
j1=1

N∑
j2=1

Bj1,j2

)

≤ N2

n2ε2v∗

(
E∗
(
|B1,1|2+δ

))2/(2+δ)

≤ a(n) · b(n)
(a(n) + b(n))2 OP (1) = oP (1). (7.18)

The same assertion can be shown for the Cj1,j2-blocks. Therefore, Slutsky’s Theorem
implies (7.17) if we can show

τN
n
√
v∗n
· 1
τN

N∑
j1=1

N∑
j2=1

Aj1,j2
d∗−→ N (0, 1) in prob., (7.19)

where

τN :=
( N∑
j1=1

N∑
j2=1

Var∗(Aj1,j2)
)1/2

.

Observe that, for n large enough such that b(n) > 2M , the Aj1,j2-blocks are inde-
pendent random variables, and in the following we will only consider those n. Per
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definition, we can decompose

τ 2
N

n2 = v∗n + Var∗
( 1
n

N∑
j1=1

N∑
j2=1

(Bj1,j2 + Cj1,j2)
)

−2 Cov∗
( 1
n

N∑
j1=1

N∑
j2=1

(Aj1,j2 +Bj1,j2 + Cj1,j2), 1
n

N∑
j1=1

N∑
j2=1

(Bj1,j2 + Cj1,j2)
)

= v∗n + oP (1), (7.20)

which follows from n−2 Var∗(∑j1

∑
j2(Bj1,j2 + Cj1,j2)) = oP (1), cf. the calculations

leading up to (7.18). Therefore, the first factor on the left-hand side of (7.19)
converges to 1 in probability.
We will apply Lindeberg’s central limit theorem to the second factor in (7.19),
recalling that the Aj1,j2-blocks are i.i.d. random variables for n large enough. Using
N = (n/a(n)) · O(1) and the moment condition for A1,1 established earlier, as well
as the fact that (7.20) implies n/τN = OP (1), we can check the Lyapunov condition:

1
τ 2+δ
N

N∑
j1=1

N∑
j2=1

E∗
(
|Aj1,j2|2+δ

)
= N2

τ 2+δ
N

a(n)2+δOP (1)

=
(
n

τN

)2 (a(n)
n
· n
τN

)δ
OP (1) =

(
n

τN

)2+δ ( 1
N(n)

)δ
OP (1) = oP (1).

This yields (7.19) and, consequently, (7.15).

We will invoke Proposition 6.3.9 of Brockwell and Davis (1991) to show that (7.15)
implies (7.14). The next step is to prove Σ(u,v)

M → Σ(u,v), as M →∞. It holds

Σ(u,v)
M =

2M+m1−1∑
h1=−2M−m1+1

M+m2−1∑
h2=−M−m2+1

Cov
(
gu(Ỹh), gv(Ỹ0)

)

+
2M+m1−1∑

h1=−2M−m1+1

M+m2−1∑
h2=−M−m2+1

(
Cov

(
gu(Ỹh,M), gv(Ỹ0,M)

)
− Cov

(
gu(Ỹh), gv(Ỹ0)

))
.

The first summand on the right-hand side converges to Σ(u,v), as M → ∞, due to
(7.7). As for the second summand, we have

2M+m1−1∑
h1=−2M−m1+1

M+m2−1∑
h2=−M−m2+1

∣∣∣∣Cov
(
gu(Ỹh,M), gv(Ỹ0,M)

)
− Cov

(
gu(Ỹh), gv(Ỹ0)

)∣∣∣∣
≤
∑
h1

∑
h2

∣∣∣∣Cov
(
gu(Ỹh,M)− gu(Ỹh), gv(Ỹ0,M)

)
+ Cov

(
gu(Ỹh), gv(Ỹ0,M)− gv(Ỹ0)

)∣∣∣∣
≤
∑
h1

∑
h2

(∥∥∥∥gu(Ỹh,M)− gu(Ỹh)
∥∥∥∥

2

∥∥∥∥gv(Ỹ0,M)
∥∥∥∥

2
+
∥∥∥∥gu(Ỹh)

∥∥∥∥
2

∥∥∥∥gv(Ỹ0,M)− gv(Ỹ0)
∥∥∥∥

2

)

≤ C ·
2M+m1−1∑

h1=−2M−m1+1

M+m2−1∑
h2=−M−m2+1

∑
k∈Θ\Θ(M)

|bk|, (7.21)
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for some generic constant C < ∞ (which, from now on, may change from line to
line). The latter inequality can be derived from Lemma 7.2 (with W = Θ(M)∪{0}),
using the fact that∥∥∥∥gu(Ỹh)

∥∥∥∥
2
≤
∥∥∥∥gu(Ỹh)− gu(Ỹ(∅)

h )
∥∥∥∥

2
+
∥∥∥gu(0)

∥∥∥
2
≤ 1 +

∑
k∈Θ
|bk|+

∣∣∣gu(0)
∣∣∣ <∞

follows also from Lemma 7.2 (with W = ∅), the same being true for ‖gv(Ỹ0,M)‖2.
For (7.21) it holds

C ·
2M+m1−1∑

h1=−2M−m1+1

M+m2−1∑
h2=−M−m2+1

∑
k∈Θ\Θ(M)

|bk|

≤ C ·
∑

k∈Θ\Θ(M)
M2 |bk|

≤ C ·

 ∞∑
k1=M+1

M∑
k2=0
|k1|2 |bk|+

−M−1∑
k1=−∞

M∑
k2=0
|k1|2 |bk|+

∞∑
k1=−∞

∞∑
k2=M+1

|k2|2 |bk|


≤ C ·

∑
k∈Θ\Θ(M)

(1 + |k|∞)2 |bk|,

which converges to zero, as M →∞, due to (2.6) and the assumption r = 4. Hence,
we have shown that Σ(u,v)

M → Σ(u,v), as M →∞.

Now we apply Proposition 6.3.9 of Brockwell and Davis (1991) to the bootstrap
quantities from (7.15), i.e. we show that it holds

lim
M→∞

lim sup
n→∞

P ∗
{∣∣∣∣ 1n

n∑
t1,t2=1

cT
(
g(Y∗t )− g(Y∗t,M)− E∗

(
g(Y∗t )− g(Y∗t,M)

))∣∣∣∣ > δ
}

= 0

in P -probability, (7.22)

for any δ > 0. Then (7.14) follows from said Proposition 6.3.9, using the Cramér-
Wold device. For condition (7.22) to hold, it is sufficient to show

Var∗
( 1
n

n∑
t1=1

n∑
t2=1

(
cTg(Y∗t )− cTg(Y∗t,M)

))
≤ 1
M2 OP (1). (7.23)

We abbreviate Z∗t,M := cTg(Y∗t )− cTg(Y∗t,M) and observe that (Z∗t,M) is a stationary
spatial process. Standard calculations yield

Var∗
( 1
n

n∑
t1=1

n∑
t2=1

Z∗t,M

)
=

n−1∑
h1=−(n−1)

n−1∑
h2=−(n−1)

(n− |h1|)(n− |h2|)
n2 Cov∗(Z∗0,M , Z∗h,M)

≤
∞∑

h1=−∞

∞∑
h2=−∞

∣∣∣Cov∗(Z∗0,M , Z∗h,M)
∣∣∣

≤ 2
∞∑

h1=−∞

∞∑
h2=0

∣∣∣Cov∗(Z∗0,M , Z∗h,M)
∣∣∣,
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noting that Cov∗(Z∗0,M , Z∗h,M) = Cov∗(Z∗0,M , Z∗−h,M). Hence, to obtain (7.23), it
suffices to show

∞∑
h1=0

∞∑
h2=0

∣∣∣Cov∗(Z∗0,M , Z∗h,M)
∣∣∣ ≤ 1

M2 OP (1), (7.24)

since the remaining part ∑−1
h1=−∞

∑∞
h2=0 |Cov∗(Z∗0,M , Z∗h,M)| can be treated analo-

gously. In order to show (7.24) we will make use of three different truncated ver-
sions of Z∗t,M , which we will denote by Z

∗[1]
t,M , . . . , Z

∗[3]
t,M . The truncation points will

depend on h1 and h2, the indices showing up in (7.24), which will be suppressed
in the notation. Each of the truncated versions is generated in a natural way from
truncated versions of X∗t and X∗t,M . To be precise, we set

Z
∗[j]
t,M := cTg(Y∗[j]t )− cTg(Y∗[j]t,M), j = 1, 2, 3 ,

where

Y∗[j]t := (X∗[j]t+s(1), . . . , X
∗[j]
t+s(m1m2))

T , Y∗[j]t,M := (X∗[j]t+s(1),M , . . . , X
∗[j]
t+s(m1m2),M)T

and, setting b̂(0,0)(p) := 1 and b̂(k1,0)(p) := 0 for k1 < 0,

X
∗[1]
t :=

∞∑
k1=−∞

h2−m2∑
k2=0

b̂k(p) ε∗t−k · 1{h−m2≥0} +
bh1/2c∑
k1=−∞

∞∑
k2=(h2−m2+1)∨ 0

b̂k(p) ε∗t−k,

X
∗[2]
t :=

∞∑
k1=−bh1/2c+m1

∞∑
k2=0

b̂k(p) ε∗t−k,

X
∗[3]
t :=

∞∑
k1=−∞

h2−m2∑
k2=0

b̂k(p) ε∗t−k · 1{h−m2≥0}.

The versions X∗[j]t,M , j = 1, 2, 3, can be obtained from the corresponding definitions
of X∗[j]t , by replacing each b̂k(p) with b̂k(p) · 1{k∈Θ(M)}.
With these definitions we can now split up the expression in (7.24) as

∞∑
h1=0

∞∑
h2=0

∣∣∣Cov∗(Z∗0,M , Z∗h,M)
∣∣∣

≤
∞∑

h1=0

∞∑
h2=0

∣∣∣Cov∗(Z∗0,M , Z∗h,M − Z
∗[1]
h,M)

∣∣∣+ ∞∑
h1=0

∞∑
h2=0

∣∣∣Cov∗(Z∗[2]
0,M , Z

∗[1]
h,M)

∣∣∣
+
∞∑

h1=0

∞∑
h2=0

∣∣∣Cov∗(Z∗0,M − Z
∗[2]
0,M , Z

∗[3]
h,M)

∣∣∣
+
∞∑

h1=0

∞∑
h2=0

∣∣∣Cov∗(Z∗0,M − Z
∗[2]
0,M , Z

∗[1]
h,M − Z

∗[3]
h,M)

∣∣∣
=: I + II + III + IV.

A close inspection of the definition of the different truncated versions Z∗[j]0,M and Z∗[j]h,M

shows that Z∗[2]
0,M and Z

∗[1]
h,M are independent random variables because they depend
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on disjoint sets of variables ε∗t (this is why the truncated versions are defined as
they are), and the (ε∗t ) are i.i.d.. With the same argument, Z∗[3]

h,M is independent of
both Z∗0,M and Z

∗[2]
0,M . Thus, the expressions II and III are identical zero. We can

therefore prove (7.24) by showing

I ≤ 1
M2 OP (1), IV ≤ 1

M2 OP (1). (7.25)

Using the notation ‖ · ‖∗2 introduced in Lemma 7.2, we have for I
∞∑

h1=0

∞∑
h2=0

∣∣∣Cov∗(Z∗0,M , Z∗h,M − Z
∗[1]
h,M)

∣∣∣ ≤ ∥∥∥Z∗0,M∥∥∥∗2
∞∑

h1=0

∞∑
h2=0

∥∥∥∥Z∗h,M − Z∗[1]
h,M

∥∥∥∥
∗2
,

and
∞∑

h1=0

∞∑
h2=0

∥∥∥∥Z∗h,M − Z∗[1]
h,M

∥∥∥∥
∗2

≤
∞∑

h1=0

∞∑
h2=0

(∥∥∥∥cTg(Y∗h)− cTg(Y∗[1]
h )

∥∥∥∥
∗2

+
∥∥∥∥cTg(Y∗h,M)− cTg(Y∗[1]

h,M)
∥∥∥∥
∗2

)

≤
∞∑

h1=0

∞∑
h2=0

k∑
u=1
|cu|

(∥∥∥∥gu(Y∗h)− gu(Y∗[1]
h )

∥∥∥∥
∗2

+
∥∥∥∥gu(Y∗h,M)− gu(Y∗[1]

h,M)
∥∥∥∥
∗2

)

≤
∞∑

h1=0

∞∑
h2=0

k∑
u=1
|cu|

OP (1) ·
∞∑

k1=bh1/2c+1

∞∑
k2=(h2−m2+1)∨ 0

∣∣∣b̂k(p)∣∣∣
 (7.26)

where the OP (1)-expression on the right-hand side does not depend on h, u or M .
The latter inequality follows directly from Lemma 7.2. The last right-hand side can
be bounded by

OP (1) ·
∞∑

h1=0

∞∑
h2=0

∞∑
k1=bh1/2c+1

∞∑
k2=(h2−m2+1)∨ 0

∣∣∣b̂k(p)∣∣∣
≤ OP (1) ·m2

∞∑
h1=0

∞∑
h2=m2−1

∞∑
k1=bh1/2c+1

∞∑
k2=h2−m2+1

∣∣∣b̂k(p)∣∣∣
≤ OP (1) ·m2

∞∑
h1=0

∞∑
k1=bh1/2c+1

∞∑
k2=0

(k2 + 1)
∣∣∣b̂k(p)∣∣∣

≤ OP (1) ·m2

∞∑
k1=1

∞∑
k2=0

2k1 (k2 + 1)
∣∣∣b̂k(p)∣∣∣

≤ OP (1) · 2m2
∑
k∈Θ

(1 + |k|∞)2
∣∣∣b̂k(p)∣∣∣ = OP (1),

using (7.2). Thus, we have

I ≤
∥∥∥Z∗0,M∥∥∥∗2 · OP (1).
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We also get from Lemma 7.2

M2 ·
∥∥∥Z∗0,M∥∥∥∗2 ≤ M2 ·

k∑
u=1
|cu|

∥∥∥∥gu(Y∗0)− gu(Y∗0,M)
∥∥∥∥
∗2

≤ OP (1) ·M2 ∑
k∈Θ\Θ(M)

∣∣∣b̂k(p)∣∣∣
≤ OP (1) ·

∑
k∈Θ

(1 + |k|∞)2
∣∣∣b̂k(p)∣∣∣ = OP (1), (7.27)

uniformly for all M ∈ N, due to (7.2) and M < |k|∞ for all k ∈ Θ\Θ(M). It follows

I ≤ 1
M2 OP (1).

Turning to expression IV , we can decompose

IV ≤
M∑
h1=0

M∑
h2=0

∣∣∣Cov∗(Z∗0,M − Z
∗[2]
0,M , Z

∗[1]
h,M − Z

∗[3]
h,M)

∣∣∣
+

∞∑
h1=M+1

∞∑
h2=M+1

∣∣∣ . . . ∣∣∣+ M∑
h1=0

∞∑
h2=M+1

∣∣∣ . . . ∣∣∣+ ∞∑
h1=M+1

M∑
h2=0

∣∣∣ . . . ∣∣∣
=: A+B + C +D.

With the same techniques as in (7.27) we get

M2 · A ≤ M2 ·
M∑
h1=0

M∑
h2=0

(∥∥∥Z∗0,M∥∥∥∗2 +
∥∥∥Z∗[2]

0,M

∥∥∥
∗2

)(∥∥∥Z∗[1]
h,M

∥∥∥
∗2

+
∥∥∥Z∗[3]

h,M

∥∥∥
∗2

)

≤ OP (1) ·M2
M∑
h1=0

M∑
h2=0

2
∑

k∈Θ\Θ(M)

∣∣∣b̂k(p)∣∣∣
2

≤ OP (1) ·
 ∑
k∈Θ\Θ(M)

(M + 1)2
∣∣∣b̂k(p)∣∣∣

2

≤ OP (1) ·
∑
k∈Θ

(1 + |k|∞)2
∣∣∣b̂k(p)∣∣∣

2

= OP (1) (7.28)

uniformly for all M ∈ N. Since we are interested in an asymptotic result for M →∞
in (7.22), we can, from now on, consider only those M large enough such that
−b(M + 1)/2c+m1− 1 < 0 and M −m2 + 2 ≥ 0. With the same calculation as for
‖Z∗h,M − Z

∗[1]
h,M‖∗2 in (7.26), we can derive

∥∥∥Z∗0,M − Z∗[2]
0,M

∥∥∥
∗2
≤ OP (1) ·

−bh1/2c+m1−1∑
k1=−∞

∞∑
k2=0

∣∣∣b̂k(p)∣∣∣,
∥∥∥Z∗[1]

h,M − Z
∗[3]
h,M

∥∥∥
∗2
≤ OP (1) ·

bh1/2c∑
k1=−∞

∞∑
k2=(h2−m2+1)∨ 0

∣∣∣b̂k(p)∣∣∣
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≤ OP (1) ·
∞∑

k1=−∞

∞∑
k2=(h2−m2+1)∨ 0

∣∣∣b̂k(p)∣∣∣.
With these bounds and for all M large enough as defined before, we get for B:

M2 ·B

≤ M2 ·
∞∑

h1=M+1

∞∑
h2=M+1

∥∥∥Z∗0,M − Z∗[2]
0,M

∥∥∥
∗2

∥∥∥Z∗[1]
h,M − Z

∗[3]
h,M

∥∥∥
∗2

≤ OP (1) ·M2
∞∑

h1=M+1

−bh1/2c+m1−1∑
k1=−∞

∞∑
k2=0

∣∣∣b̂k(p)∣∣∣ · ∞∑
h2=M+1

∞∑
k1=−∞

∞∑
k2=h2−m2+1

∣∣∣b̂k(p)∣∣∣
= OP (1) ·B1 ·B2,

where

B1 := M
∞∑

h1=M+1

−bh1/2c+m1−1∑
k1=−∞

∞∑
k2=0

∣∣∣b̂k(p)∣∣∣
= M

−b(M+1)/2c+m1−1∑
k1=−∞

∞∑
k2=0

2
∣∣∣k1 −

(
− b(M + 1)/2c+m1

)∣∣∣ ∣∣∣b̂k(p)∣∣∣
≤ 2

−b(M+1)/2c+m1−1∑
k1=−∞

∞∑
k2=0

M |k1|
∣∣∣b̂k(p)∣∣∣

≤ 8m1
∑
k∈Θ

(1 + |k|∞)2
∣∣∣b̂k(p)∣∣∣ = OP (1), (7.29)

and

B2 := M
∞∑

h2=M+1

∞∑
k1=−∞

∞∑
k2=h2−m2+1

∣∣∣b̂k(p)∣∣∣
= M

∞∑
k1=−∞

∞∑
k2=M−m2+2

∣∣∣k2 − (M −m2 + 1)
∣∣∣ ∣∣∣b̂k(p)∣∣∣

≤
∞∑

k1=−∞

∞∑
k2=M−m2+2

M |k2|
∣∣∣b̂k(p)∣∣∣

≤ (m2 + 1)
∑
k∈Θ

(1 + |k|∞)2
∣∣∣b̂k(p)∣∣∣ = OP (1), (7.30)

uniformly for all M large enough. The latter inequalities in (7.29) and (7.30) hold
because

M |k2| ≤ (k2 +m2 − 2) k2 ≤ (m2 + 1)(k2 + 1) k2 ≤ (m2 + 1) (1 + |k|∞)2

for all k2 ≥M −m2 + 2, and, with similar calculations,

M |k1| ≤ 2m1 (2|k1|+ 1) |k1| ≤ 4m1 (1 + |k1|) |k1| ≤ 4m1 (1 + |k|∞)2

for all k1 ≤ −b(M + 1)/2c + m1 − 1. Altogether, this yields B ≤ (1/M2)OP (1),
and, with exactly the same arguments as for A and B, we can also show C ≤
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(1/M2)OP (1) and D ≤ (1/M2)OP (1). This implies (7.25) and, therefore, (7.24)
and (7.23). Hence, the proof of (7.12) is completed.

Using analogous arguments as for the bootstrap quantities in (7.12), one can show
(7.13) for the non-bootstrap quantities. Since

∥∥∥θ∗ − θ̃∥∥∥ :=
k∑
v=1

∣∣∣E∗(gv(Y∗t ))− E(gv(Ỹt)
)∣∣∣ = oP (1) (7.31)

follows with the same arguments as in the proof of (7.6) (by simply replacing covari-
ances with expectations), we can incorporate the outer function f from the definition
of T̃n and T ∗n , cf. Assumption 3, with the delta method. It follows from (7.12), (7.13)
and (7.31) that (n̄1n̄2)1/2(T ∗n−f(θ∗)) and (n̄1n̄2)1/2(T̃n−f(θ̃)) have identical limiting
(normal) distributions. Therefore, since (n̄1n̄2)1/2 is asymptotically equivalent to n,
we have

sup
x∈R

∣∣∣P ∗{n(T ∗n − f(θ∗)) ≤ x
}
− P

{
n(T̃n − f(θ̃)) ≤ x

}∣∣∣ = oP (1),

which completes the proof. �

8. Proofs of the auxiliary results

Proof of Lemma 2.1:
Finding one-sided AR- and MA-representations as in (2.5) is closely related to find-
ing a spectral factorization f(λ) = |B′(λ)|2 of the spectral density, where B′ is a
complex-valued function with one-sided Fourier series in the sense of the half-plane
Θ, i.e.

B′(λ) =
∑

k∈Θ∪{0}
b̃k e

−i〈k,λ〉. (8.1)

Under Assumption 1 the spectral density f is equal to its absolutely convergent
Fourier series f(λ) = ∑

k∈Z2(γ(k)/4π2) ei〈k,λ〉. Lemma 2.3 shows that log f ∈ Cr−1
and, in particular, log f is equal to its absolutely convergent Fourier series,

log f(λ) =
∑
k∈Z2

dk e
i〈k,λ〉,

say. Whittle (1954) showed that the spectral factorization of f can be obtained from
the Fourier series of log f by letting

B0(z) := exp
(
L(z)

)
, L(z) := d0

2 +
∑
k∈Θ

dk z
k1
1 z

k2
2 ∀ z ∈ S, (8.2)

where S = {z ∈ C2, |z1| = 1, |z2| ≤ 1}. Identifying B′(λ) := B0(e−iλ1 , e−iλ2) gives
the spectral factorization f(λ) = |B′(λ)|2, since one can easily verify

B0(e−iλ1 , e−iλ2) ·B0(e−iλ1 , e−iλ2) = f(λ)
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(note that log f(−λ) = log f(λ) implies dk = d−k ∈ R for all k ∈ Z2). Through
straightforward multiplication and grouping of like summands one can easily verify
that each power L(z)j, j ∈ N0, has a series representation with respect to the upper
half-plane Θ ∪ {0}, only, i.e.

L(z)j := d0(j)
2 +

∑
k∈Θ

dk(j) zk1
1 z

k2
2 ∀ z ∈ S.

Using this, and expanding B0(z) in (8.2) via exp(L(z)) = ∑∞
j=0 L(z)j/j! yields

B0(z) =
∑

k∈Θ∪{0}
b̃k z

k1
1 z

k2
2

for suitable coefficients b̃k. B′(λ) = B0(e−iλ1 , e−iλ2) then gives the desired form (8.1)
of the Fourier series of B′(λ). The series B0(z), and therefore also the series in (8.1),
converge absolutely because the Fourier series of log f converges absolutely and the
power series of the exponential function converges absolutely in C. Furthermore,
it holds |zk1

1 | ≤ 1, |zk2
2 | ≤ 1 for all z ∈ S and all k ∈ Θ (note that Θ contains

only vectors k with k2 ≥ 0). From (8.2) it is obvious that B0(z) 6= 0 for all z
with |z1| = 1, |z2| ≤ 1 and we can define A0(z) := 1/B0(z) on this region which,
analogously to B0, has a one-sided series representation with absolutely summable
coefficients (ãk)k∈Θ∪{0}, i.e.

A0(z) = 1
B0(z) = exp

(−d0

2 +
∑
k∈Θ

(−dk) zk1
1 z

k2
2

)
=

∑
k∈Θ∪{0}

ãk z
k1
1 z

k2
2 . (8.3)

From the definitions of A0 and B0 it follows immediately ã0 = exp(−d0/2) 6= 0 and
b̃0 = exp(d0/2) 6= 0 and we get the standardized versions

A(z) := A0(z)
ã0

= 1−
∑
k∈Θ

ak z
k1
1 z

k2
2 , B(z) := B0(z)

b̃0
= 1 +

∑
k∈Θ

bk z
k1
1 z

k2
2 , (8.4)

where ak := −ãk/ã0 and bk := b̃k/b̃0 for all k ∈ Θ. (8.4) yields exactly the z-
transforms defined in (3.4). We now consider the functions A′ and L′ on (−π, π]2
which are, just as B0 and B′, defined via A′(λ1, λ2) := A0(e−iλ1 , e−iλ2), L′(λ1, λ2) :=
L(e−iλ1 , e−iλ2). Per definition, it holds B′(λ) = exp(L′(λ)) and A′(λ) = exp(−L′(λ)).
Using the submultiplicative Cr−1-norm defined in Lemma 2.3, as well as the fact that
log f ∈ Cr−1 implies L′ ∈ Cr−1, we can infer

‖B′‖r−1 =
∥∥∥∥ ∞∑
j=0

1
j! (L

′)j
∥∥∥∥
r−1
≤
∞∑
j=0

1
j!‖L

′‖jr−1 = exp(‖L′‖r−1) <∞.

Analogously, the same argument delivers A′ ∈ Cr−1 which yields (2.6).
We can now define the process (εt)t∈Z2 via

εt := Xt −
∑
k∈Θ

akXt−k
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which is obviously an L2-convergent series with spectral density

fε(λ) = |ã−1
0 A′(λ)|2 · f(λ) = ã−2

0 , ∀λ ∈ (−π, π]2,

since f(λ) = |B′(λ)|2 = 1/|A′(λ)|2. Hence, (εt) is uncorrelated white noise. Further-
more, the backshift operators of εt and Xt coincide and 1/(ã−1

0 A′(λ)) = b̃−1
0 B′(λ)

implies

Xt =
∑
k∈Θ

bk εt−k + εt.

It remains to show that (εt) is the innovation process, i.e. that ∑k∈Θ akXt−k is the
L2-projection of Xt onto Ht(X) := sp{Xt−k : k ∈ Θ}. Let j ∈ Θ be arbitrary. We
show that Xt −

∑
k∈Θ akXt−k is orthogonal to Xt−j via

Cov
(
Xt −

∑
k∈Θ

akXt−k , Xt−j

)
= Cov

(
εt , εt−j +

∑
k∈Θ

bk εt−j−k

)
= 0,

since (εt) is white noise. It remains to show that the coefficients in (2.5) are uniquely
determined. Assume there was a different sequence of coefficients (a′k)k∈Θ such that

Xt =
∑
k∈Θ

a′kXt−k + εt.

Then we get from (2.5) ∑k∈Θ(ak − a′k)Xt−k = 0. If there exists s ∈ Θ such that
as 6= a′s it follows

Xt−s = −
∑

k∈Θ, k 6=s

ak − a′k
as − a′s

Xt−k ∈ sp{Xj, j 6= t− s},

which contradicts the basic process condition from Assumption 1. Therefore, the
coefficients (ak) are unique. Analogously, assume the MA representation in (2.5)
was also fulfilled with coefficients (b′k), bs 6= b′s. Then we get

εt−s = −
∑

k∈Θ, k 6=s

bk − b′k
bs − b′s

εt−k.

Since fε(λ) > 0 implies Var(εt) > 0 this yields a contradiction via

0 < Cov(εt−s, εt−s) = Cov
(
εt−s , −

∑
k∈Θ, k 6=s

bk − b′k
bs − b′s

εt−k

)
= 0,

as (εt) is white noise. Hence, the coefficients (bk) are uniquely determined. �

Proof of Lemma 2.3:
For any r ≥ 0 and arbitrary functions g, h ∈ Cr the Fourier series of gh is given by∑
k∈Z2(∑j∈Z2 g̃jh̃k−j) ei〈k,λ〉, and from

(1 + |k|∞)r ≤ (1 + |j|∞ + |k − j|∞ + |j|∞ · |k − j|∞)r

= (1 + |j|∞)r · (1 + |k − j|∞)r
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one can easily see that ‖ · ‖r is submultiplicative, i.e.

‖gh‖r ≤ ‖g‖r · ‖h‖r. (8.5)

Since f ∈ Cr for r ≥ 2, its formal Fourier series ∑k∈Z2 f̃k e
i〈k,λ〉 converges absolutely

and is therefore equal to f(λ) everywhere on (−π, π]2. Also, f is twice continuously
differentiable and the derivatives are equal to their respective Fourier series

∂f

∂λj
(λ) =

∑
k∈Z2

ikj f̃k e
i〈k,λ〉,

∂2f

∂λ1∂λ2
(λ) =

∑
k∈Z2

(−k1k2) f̃k ei〈k,λ〉

as well, since these series are obviously absolutely convergent. To be more precise,
one has from |k1| · |k2| ≤ |k|2∞ that∥∥∥∥ ∂2f

∂λ1∂λ2

∥∥∥∥
r−2

=
∑
k∈Z2

(1 + |k|∞)r−2 |k1| |k2| |f̃k| ≤
∑
k∈Z2

(1 + |k|∞)r |f̃k| <∞,

i.e. the second order derivative is in Cr−2. The same holds true for the first order
derivatives, and Theorem 6.2 in Gröchenig (2007) (the weight function (1 + |k|∞)r
obviously fulfils the required GRS-condition) implies ‖1/f‖r <∞ and in particular
(1/f) ∈ Cr−2. Since f(λ) ≥ c > 0, log f is also twice continuously differentiable and
it holds

∂2 log f
∂λ1∂λ2

(λ) = 1
f 2(λ) ·

(
∂2f

∂λ1∂λ2
(λ) · f(λ)− ∂f

∂λ1
(λ) · ∂f

∂λ2
(λ)

)
.

With this representation, (8.5) and the results established so far we can now infer∥∥∥∥∂2 log f
∂λ1∂λ2

∥∥∥∥
r−2
≤
∥∥∥∥ ∂2f

∂λ1∂λ2

∥∥∥∥
r−2
·
∥∥∥∥ 1
f

∥∥∥∥
r−2

+
∥∥∥∥ ∂f∂λ1

∥∥∥∥
r−2
·
∥∥∥∥ ∂f∂λ2

∥∥∥∥
r−2
·
∥∥∥∥ 1
f

∥∥∥∥2

r−2
<∞.

The same holds true for the first order derivatives ∂ log f/∂λj. Now let (dk) be the
Fourier coefficients of log f . As seen above, ∂ log f/∂λj and ∂2 log f/∂λ1∂λ2 have
Fourier coefficients ikj dk and −k1k2 dk, respectively. Hence, it holds∑
k∈Z2

(1 + |k|∞)r−2 |k1| |k2| |dk| <∞,
∑
k∈Z2

(1 + |k|∞)r−2 |kj| |dk| <∞, j = 1, 2. (8.6)

For k1, k2 ∈ Z \ {0} it holds 1 + |k|∞ ≤ 2 |k|∞ ≤ 2 |k1| |k2|. Analogously, 1 + |k|∞
can be bounded from above by 2 |k1| if k1 6= 0, k2 = 0 and by 2 |k2| if k2 6= 0, k1 = 0.
Therefore, we obtain

‖ log f‖r−1 ≤ |d0| +
∑
k1 6=0

(1 + |(k1, 0)′|∞)r−2 2 |k1| |dk|

+
∑
k2 6=0

(1 + |(0, k2)′|∞)r−2 2 |k2| |dk|

+
∑

k1,k2 6=0
(1 + |k|∞)r−2 2 |k1| |k2| |dk|

which is finite due to (8.6). This completes the proof of assertion (i). Assertion (ii)
can be proven with analogous arguments for all r1, r2 ≥ 1. �
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Proof of Lemma 3.1:
As a preliminary consideration we recall for the vectors k1, . . . , kp̄ from (3.3) and
arbitrary r, s ∈ {1, . . . , p̄}

∫
(−π,π]2

exp(i〈kr − ks, λ〉) dλ =

4π2 , r = s

0 , r 6= s
, (8.7)

because kr = ks if and only if r = s. Let d ∈ Rp̄ be arbitrary with d 6= 0 and
denote by w(λ) := (exp(i〈k1, λ〉), . . . , exp(i〈kp̄, λ〉))′. Observe that |d′w(λ)|2 =∑p̄
r,s=1 dr ds exp(i〈kr − ks, λ〉). Using (8.7) as well as γ(h) =

∫
(−π,π]2 f(λ) ei〈h,λ〉 dλ

and f(λ) ≥ c > 0, cf. Assumption 1, we can derive

d′ Γ(p) d =
∫

(−π,π]2
f(λ) |d′w(λ)|2 dλ

≥ c ·
∫

(−π,π]2
|d′w(λ)|2 dλ

= c ·
p̄∑

r,s=1
dr ds

∫
(−π,π]2

exp(i〈kr − ks, λ〉) dλ

= 4π2c · d′ d.

On the one hand this shows that Γ(p) is positive definite and therefore invertible for
each p ∈ N. On the other hand it follows

d′ Γ(p) d
d′ d

≥ 4π2c,

which implies for the smallest eigenvalue σmin(Γ(p)) ≥ 4π2c, cf. Lütkepohl (1996),
5.2.2 (2). This yields for the largest eigenvalue of the inverse matrix σmax(Γ(p)−1) ≤
(4π2c)−1 for all p ∈ N. The spectral norm of the symmetric matrix Γ(p)−1 is given
by its largest eigenvalue, i.e. ‖Γ(p)−1‖spec ≤ (4π2c)−1 for all p ∈ N, which yields the
desired assertion. �

Proof of Lemma 3.3:
Let p ∈ N be arbitrary. For any z = (z1, z2) ∈ Sp we define z̃ = (z̃1, z̃2) as the unique
vector in S that minimizes the distance to z componentwise. To be more precise,
let

z̃1 := arg min
|u1|=1

|u1 − z1|, z̃2 := arg min
|u2|≤1

|u2 − z2|.

In the first step we derive an expression D(p) such that

sup
z∈Sp

∣∣∣Ap(z)− A(z̃)
∣∣∣ ≤ D(p). (8.8)
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For any z ∈ Sp we have∣∣∣Ap(z)− A(z̃)
∣∣∣ ≤ ∑

k∈Θ(p)

∣∣∣ak(p) zk1
1 zk2

2 − ak z̃k1
1 z̃k2

2

∣∣∣+ ∑
k∈Θ\Θ(p)

|ak| |z̃1|k1 |z̃2|k2

≤
∑

k∈Θ(p)
|ak(p)|

∣∣∣zk1
1 zk2

2 − z̃k1
1 z̃k2

2

∣∣∣+ ∑
k∈Θ(p)

|ak(p)− ak| |z̃1|k1 |z̃2|k2

+
∑

k∈Θ\Θ(p)
|ak| |z̃1|k1 |z̃2|k2 ,

which implies

sup
z∈Sp

∣∣∣Ap(z)− A(z̃)
∣∣∣ ≤ ∑

k∈Θ(p)
|ak(p)| sup

z∈Sp

∣∣∣zk1
1 zk2

2 − z̃k1
1 z̃k2

2

∣∣∣
+

∑
k∈Θ(p)

|ak(p)− ak|+
∑

k∈Θ\Θ(p)
|ak|, (8.9)

since |z̃1|k1 = 1 and |z̃2|k2 ≤ 1 for any k ∈ Θ(p). In order to get a bound for the
remaining supremum on the right-hand side, consider the following: For arbitrary
z ∈ Sp, if |z2| ≤ 1, it follows per definition z̃2 = z2, and thus |zk2

2 −z̃k2
2 | = 0. However,

if |z2| > 1, we can write z2 = r eiϕ for some −π < ϕ ≤ π and some 1 < r ≤ (p+1)/p.
For this z2, it holds z̃2 = eiϕ and therefore∣∣∣zk2

2 − z̃k2
2

∣∣∣ =
∣∣∣rk2 eik2ϕ − eik2ϕ

∣∣∣ = rk2 − 1 ≤
(
p+ 1
p

)k2

− 1.

Similarly, one can show that∣∣∣zk1
1 − z̃k1

1

∣∣∣ ≤ (p+ 1
p

)|k1|
− 1,

for any z ∈ Sp, which yields

sup
z∈Sp

∣∣∣zk1
1 zk2

2 − z̃k1
1 z̃k2

2

∣∣∣ ≤ sup
z∈Sp

(∣∣∣zk1
1

∣∣∣ ∣∣∣zk2
2 − z̃k2

2

∣∣∣+ ∣∣∣z̃k2
2

∣∣∣ ∣∣∣zk1
1 − z̃k1

1

∣∣∣)

≤
(
p+ 1
p

)|k1|
·
((

p+ 1
p

)k2

− 1 +
(
p+ 1
p

)|k1|
− 1

)
.

Inserting this inequality into (8.9) yields (8.8) with

D(p) :=
∑

k∈Θ(p)
|ak(p)|

(
p+ 1
p

)|k1|
·
((

p+ 1
p

)k2

+
(
p+ 1
p

)|k1|
− 2

)

+
∑

k∈Θ(p)
|ak(p)− ak|+

∑
k∈Θ\Θ(p)

|ak|.

In the next step we show D(p)→ 0, as p→∞. In order to handle the first summand
in the definition of D(p), consider that it holds for any p ∈ N and any k ∈ Θ(p)∣∣∣∣∣

(
p+ 1
p

)|k1|
·
((

p+ 1
p

)k2

+
(
p+ 1
p

)|k1|
− 2

)∣∣∣∣∣ ≤ 4
(
p+ 1
p

)2p
≤ 4 e2. (8.10)
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This, together with |ak(p)| ≤ |ak|+ |ak(p)− ak|, yields

D(p) ≤
∑

k∈Θ(p)
|ak|

(
p+ 1
p

)|k1|
·
((

p+ 1
p

)k2

+
(
p+ 1
p

)|k1|
− 2

)

+(4 e2 + 1)
∑

k∈Θ(p)
|ak(p)− ak|+

∑
k∈Θ\Θ(p)

|ak|. (8.11)

For the latter two summands on the right-hand side we immediately get from The-
orem 3.2 for some constant C <∞

(4 e2 + 1)
∑

k∈Θ(p)
|ak(p)− ak|+

∑
k∈Θ\Θ(p)

|ak| ≤
(
C(4 e2 + 1) + 1

) ∑
k∈Θ\Θ(p)

(1 + |k|∞)|ak|,

which converges to zero, as p → ∞, due to summability condition (2.6) and since
Θ(p) → Θ. For the first summand on the right-hand side of inequality (8.11) we
can apply Lebesgue’s dominated convergence theorem because (8.10) provides a
dominating and summable sequence via

∑
k∈Θ

1{k∈Θ(p)}|ak|
∣∣∣∣∣
(
p+ 1
p

)|k1|
·
((

p+ 1
p

)k2

+
(
p+ 1
p

)|k1|
− 2

)∣∣∣∣∣
≤ 4 e2 ∑

k∈Θ
|ak| <∞.

Hence,

lim
p→∞

∑
k∈Θ

1{k∈Θ(p)}|ak|
(
p+ 1
p

)|k1|
((

p+ 1
p

)k2

+
(
p+ 1
p

)|k1|
− 2

)

=
∑
k∈Θ
|ak| lim

p→∞

(
p+ 1
p

)|k1|
((

p+ 1
p

)k2

+
(
p+ 1
p

)|k1|
− 2

)
= 0.

Therefore, we have D(p) → 0, as p → ∞. From the representation of A(z̃) as
an exponential of a bounded function, cf. (8.4) and (8.3), we have |A(z̃)| ≥ 2δ
uniformly for all z̃ ∈ S and for some δ > 0. Then, choosing p large enough such
that D(p) ≤ δ, (8.8) implies

|Ap(z)| ≥ δ ∀z ∈ Sp, (8.12)

which is the first assertion of Lemma 3.3.
Now let p be large enough such that (8.12) holds, but fixed. We will derive the series
representation of Bp(z) = 1/Ap(z) as in Lemma 3.3. Using the equivalent notations
ak(p) and a(k1,k2)(p) for the coefficients, we can write

Ap(z) = 1 +
∑

k∈Θ(p)
ak(p) zk1

1 z
k2
2 =

p∑
k2=0

α(z1, k2) zk2
2 ,
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where

α(z1, k2) :=
p∑

k1=−p
a(k1,k2)(p) zk1

1 ,

with a(0,0)(p) := 1 and a(k1,0)(p) := 0 for all k1 < 0. Let z1 be fixed with p/(p +
1) ≤ |z1| ≤ (p + 1)/p. Then, since Ap(z1, z2) is a polynomial in z2 (for each fixed
z1) with a finite number of complex roots, which is bounded away from zero on
|z2| ≤ (p + 1)/p, it actually has no complex roots on a slightly larger open disk
|z2| < (p+ 1)/p+ ε, and Bp(z1, z2) = 1/Ap(z1, z2) is an analytic function (in z2) on
this open disk |z2| < (p + 1)/p + ε. Thus, Bp(z1, z2) can be represented as a power
series (in z2)

Bp(z1, z2) =
( p∑
k2=0

α(z1, k2) zk2
2

)−1
=

∞∑
k2=0

β(z1, k2) zk2
2 , (8.13)

which converges absolutely on |z2| ≤ (p + 1)/p. The coefficients β(z1, k2) can be
determined recursively from

1 =
p∑

k2=0
α(z1, k2) zk2

2 ·
∞∑
k2=0

β(z1, k2) zk2
2 =

∞∑
k2=0

( p∧k2∑
l2=0

α(z1, l2) β(z1, k2 − l2)
)
zk2

2 .

For example, if p ≥ 2, one can derive

β(z1, 0) = 1
α(z1, 0) , β(z1, 1) = −α(z1, 1)

α(z1, 0)2 , β(z1, 2) = α(z1, 1)2 − α(z1, 0)α(z1, 2)
α(z1, 0)3 ,

and so on. In general, one can obtain that

β(z1, k2) = η(z1, k2)
α(z1, 0)k2+1 , (8.14)

where η(z1, k2) is some finite linear combination of certain k2-fold products of the
coefficients α(z1, 0), . . . , α(z1, p). Hence, it is easy to see that each η(z1, k2) can be
expressed as

η(z1, k2) =
pk2∑

k1=−pk2

c(k1,k2)(p) zk1
1 , (8.15)

defined on p/(p+ 1) ≤ |z1| ≤ (p+ 1)/p, for suitable coefficients c(k1,k2)(p).
We will now develop Laurent series expansions (in z1) for each β(z1, k2). At first,
observe that in (3.4) the z-transform A(z1, z2) was defined on the domain S, i.e. on
|z1| = 1, |z2| ≤ 1, because the series converges absolutely on S due to

|A(z1, z2)| ≤ 1 +
∑
k∈Θ
|a(k1,k2)|

∣∣∣zk1
1

∣∣∣ ∣∣∣zk2
2

∣∣∣ ≤ 1 +
∑
k∈Θ
|a(k1,k2)| <∞.

Note that in the series expansion in (3.4), only exponents k2 ≥ 0 but both positive
and negative exponents k1 show up. However, for z2 = 0 fixed, the series reduces to

A(z1, 0) = 1 +
∞∑
k1=1

a(k1,0) z
k1
1
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with only positive exponents k1. Therefore the series expansion A(z1, 0) actually
converges absolutely not only on the unit circle |z1| = 1, but on the entire disk
|z1| ≤ 1. Analogously, Ap(z1, 0) reduces to a polynomial

Ap(z1, 0) = 1 +
p∑

k1=1
a(k1,0)(p) zk1

1 ,

which is defined not only on the ring p/(p+ 1) ≤ |z1| ≤ (p+ 1)/p but on the closed
disk |z1| ≤ (p+1)/p. Again, from the representation of A(z1, 0) as an exponential of
a bounded function, cf. (8.4) and (8.3), we get that |A(z1, 0)| is uniformly bounded
away from zero on |z1| ≤ 1. Also, with the very same technique as for showing (8.8),
we can derive

sup
|z1|≤1

∣∣∣Ap(z1, 0)− A(z1, 0)
∣∣∣ ≤ D(p),

and therefore, for the fixed p large enough chosen above, we have

|Ap(z1, 0)| ≥ δ ∀ |z1| ≤ (p+ 1)/p.

Hence 1/Ap(z1, 0) can be expanded as an absolutely convergent power series on
|z1| ≤ (p+1)/p. Since we also have per definition α(z1, 0) = Ap(z1, 0) and β(z1, 0) =
1/α(z1, 0), it holds

β(z1, 0) = 1
Ap(z1, 0) = 1 +

∞∑
k1=1

b(k1,0)(p) zk1
1 ,

for suitable coefficients b(k1,0)(p). It follows immediately that for each k2 ≥ 1
1

α(z1, 0)k2+1 = β(z1, 0)k2+1 = 1 +
∞∑
k1=1

b̃(k1,k2)(p) zk1
1 ,

for suitable coefficients b̃(k1,k2)(p), the series absolutely convergent on |z1| ≤ (p+1)/p.
This expansion, together with (8.15) and (8.14), shows that for all k2 ≥ 1

β(z1, k2) =
∞∑

k1=−pk2

b(k1,k2)(p) zk1
1 ,

absolutely convergent on p/(p + 1) ≤ |z1| ≤ (p + 1)/p, for suitable coefficients
b(k1,k2)(p). Inserting this into (8.13), and setting b(k1,k2)(p) := 0 for all k1 < −k2p,
yields

Bp(z1, z2) =
∞∑
k2=0

β(z1, k2) zk2
2

= 1 +
∞∑
k1=1

b(k1,0)(p) zk1
1 +

∞∑
k2=1

∞∑
k1=−pk2

b(k1,k2)(p) zk1
1 zk2

2

= 1 +
∑
k∈Θ

bk(p) zk1
1 zk2

2 ,

which completes the proof. �
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Proof of Lemma 3.4:
We will use the space Cr of functions on (−π, π]2 with finite norm ‖ · ‖r as defined
in Lemma 2.3. In the proof of Lemma 2.1 we introduced the functions A′, B′ ∈ Cr−1
which possess the representations

A′(λ) = ã0

(
1−

∑
k∈Θ

ak e
−i〈k,λ〉

)
, B′(λ) = b̃0

(
1 +

∑
k∈Θ

bk e
−i〈k,λ〉

)
,

respectively, as can be seen from (8.4). Hence, the Fourier coefficients of A′, B′ are
given by the autoregressive and moving average parameters ak and bk, up to the
constant non-zero factors ã0, b̃0. In order to simplify the notation in the remainder
of this proof we define for all p ≥ p0 the functions A′p, B′p : (−π, π]2 → R via
A′p(λ) := ã0Ap(e−iλ1 , e−iλ2), B′p(λ) := b̃0Bp(e−iλ1 , e−iλ2) and obtain

A′p(λ) = ã0

(
1−

∑
k∈Θ(p)

ak(p) e−i〈k,λ〉
)
, B′p(λ) = b̃0

(
1 +

∑
k∈Θ

bk(p) e−i〈k,λ〉
)
,

cf. (3.5) and (3.6) for the definitions of Ap(z) and Bp(z). Since ã0 = 1/b̃0, we can
conclude from (8.3) and (3.6) that

A′p(λ) = 1/B′p(λ), A′(λ) = 1/B′(λ) ∀ λ ∈ (−π, π]2. (8.16)

We now have established the necessary notation to prove the assertion of Lemma
3.4. For all s ∈ N0 with s+1 < r we derive, using (8.16) and the submultiplicativity
of ‖ · ‖s established in (8.5),∑

k∈Θ
(1 + |k|∞)s |bk(p)− bk|

=
∥∥∥ (1/b̃0) · (B′p −B′)

∥∥∥
s

(8.17)

= (1/b̃0) ·
∥∥∥B′p · [A′ − A′p] ·B′∥∥∥s

≤ (1/b̃0) ·
(
‖B′p −B′‖s + ‖B′‖s

)
· ‖A′ − A′p‖s · ‖B′‖s. (8.18)

From Baxter’s inequality, cf. Theorem 3.2, we can infer

‖A′ − A′p‖s = ã0 ·
( ∑
k∈Θ(p)

(1 + |k|∞)s |ak(p)− ak|+
∑

k∈Θ\Θ(p)
(1 + |k|∞)s |ak|

)

≤ ã0

(
M

2
√

2 π2c
+ 1

)
·

∑
k∈Θ\Θ(p)

(1 + |k|∞)s+1 |ak| ∀ p ≥ p0. (8.19)

Because the right-hand side converges to zero as p→∞, one can always find p ∈ N
such that ‖A′ − A′p‖s becomes arbitrarily small. In particular, for some arbitrary
δ ∈ (0, 1), choose p1 ≥ p0 such that

‖A′ − A′p‖s · ‖B′‖s ≤ δ
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for all p ≥ p1. Taking the difference of (8.18) and (8.17) we get

‖B′p −B′‖s ≤
‖B′‖2

s · ‖A′ − A′p‖s
1− ‖A′ − A′p‖s · ‖B′‖s

≤ ‖B′‖2
s

1− δ · ‖A
′ − A′p‖s (8.20)

for all p ≥ p2. Since the first factor on the right-hand side of (8.20) does not depend
on p and is finite, applying (8.19) to the second factor yields that there exists C <∞
such that∑

k∈Θ
(1 + |k|∞)s |bk(p)− bk| ≤ C ·

∑
k∈Θ\Θ(p)

(1 + |k|∞)s+1 |ak| ∀ p ≥ p2,

which completes the proof. �

Proof of Lemma 3.5:
Due to Lemma 3.3 and Assumption 2, we can choose δ > 0 and n0 ∈ N large enough
such that ∣∣∣Ap(z)

∣∣∣ ≥ δ,
∣∣∣Âp(z)

∣∣∣ ≥ δ in prob. (8.21)

for all n ≥ n0 and for all z ∈ Sp. For those n, Bp(z) = 1 + ∑
k∈Θ bk(p) zk1

1 z
k2
2

can be expanded as a power series in z2 with coefficients depending on z1. These
coefficients can then be expanded as Laurent series in z1, cf. the proof of Lemma
3.3 for a detailed explanation and and introduction of the notation which will also
be used in this proof. To be precise, we have

Bp(z1, z2) =
∞∑
k2=0

β(z1, k2) zk2
2 , where β(z1, k2) =

∞∑
k1=−∞

b(k1,k2)(p) zk1
1 ,

with b(k1,0)(p) = 0 for k1 < 0 and b(0,0)(p) = 1. Following exactly along the lines
of the proof of Lemma 3.3, we get an expansion with the very same structure for
B̂p(z) = 1 +∑

k∈Θ b̂k(p) zk1
1 z

k2
2 , in probability, as

B̂p(z1, z2) =
∞∑
k2=0

β̂(z1, k2) zk2
2 , where β̂(z1, k2) =

∞∑
k1=−∞

b̂(k1,k2)(p) zk1
1 ,

also with b̂(k1,0)(p) = 0 for k1 < 0 and b̂(0,0)(p) = 1. Then, for any k2 ≥ 0, we have
the Laurent series expansion

β̂(z1, k2)− β(z1, k2) =
∞∑

k1=−∞

(
b̂(k1,k2)(p)− b(k1,k2)(p)

)
zk1

1

in probability, which converges absolutely on the ring R1 := p/(p + 1) ≤ z1 ≤
(p+ 1)/p. Actually, following the same argument as for the function β(z1, k2) in the
proof of Lemma 3.3, the function β̂(z1, k2) − β(z1, k2) is analytic (and the Laurent
series expansion thus valid) on a slightly larger open set which contains the closed
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ring R1 as a subset. Therefore, Cauchy’s inequality for analytic functions yields the
following bounds for the coefficients:∣∣∣∣b̂(k1,k2)(p)− b(k1,k2)(p)

∣∣∣∣ ≤ (
p+ 1
p

)−k1

sup
|z1|=(p+1)/p

∣∣∣∣β̂(z1, k2)− β(z1, k2)
∣∣∣∣ ∀ k1 ≥ 0,

∣∣∣∣b̂(k1,k2)(p)− b(k1,k2)(p)
∣∣∣∣ ≤ (

p

p+ 1

)−k1

sup
|z1|=p/(p+1)

∣∣∣∣β̂(z1, k2)− β(z1, k2)
∣∣∣∣ ∀ k1 < 0

in probability. These two bounds can be combined to obtain∣∣∣∣b̂(k1,k2)(p)− b(k1,k2)(p)
∣∣∣∣

≤
(
p+ 1
p

)−|k1|
sup

p/(p+1)≤|z1|≤(p+1)/p

∣∣∣∣β̂(z1, k2)− β(z1, k2)
∣∣∣∣ (8.22)

in probability, for all k1 ∈ Z. Then, for any z1 ∈ R1, B̂p(z1, z2) − Bp(z1, z2), as a
function in z2, has the power series expansion

B̂p(z1, z2)−Bp(z1, z2) =
∞∑
k2=0

(
β̂(z1, k2)− β(z1, k2)

)
zk2

2 ,

in probability, which converges absolutely on the closed disk |z2| ≤ (p+1)/p. Hence,
Cauchy’s inequality yields the bound∣∣∣∣β̂(z1, k2)− β(z1, k2)

∣∣∣∣ ≤ (
p+ 1
p

)−k2

sup
|z2|=(p+1)/p

∣∣∣∣B̂p(z1, z2)−Bp(z1, z2)
∣∣∣∣ in prob.

Inserting this bound into (8.22), and using (8.21), we get∣∣∣∣b̂(k1,k2)(p)− b(k1,k2)(p)
∣∣∣∣

≤
(
p+ 1
p

)−|k1|−k2

sup
p/(p+1)≤|z1|≤(p+1)/p, |z2|=(p+1)/p

∣∣∣∣B̂p(z1, z2)−Bp(z1, z2)
∣∣∣∣

≤
(
p+ 1
p

)−|k1|−k2

sup
z∈Sp

∣∣∣∣∣Âp(z)− Ap(z)
Âp(z)Ap(z)

∣∣∣∣∣
≤

(
p+ 1
p

)−|k1|−k2 1
δ2 sup

z∈Sp

∑
j∈Θ(p)

∣∣∣âj(p)− aj(p)∣∣∣ |z1|j1 |z2|j2

≤
(
p+ 1
p

)−|k1|−k2(p+ 1
p

)2p 1
δ2

∑
j∈Θ(p)

∣∣∣âj(p)− aj(p)∣∣∣
≤

(
p+ 1
p

)−|k1|−k2 1
p4 · C

in probability, for some C <∞, because of Assumption 2 and since ((p+ 1)/p)2p is
a sequence bounded by e2. �
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Proof of Lemma 7.1, assertion (7.2):
Throughout this proof, we consider only those n large enough such that Ap(z) and
Âp(z) are bounded away from zero on Sp, the latter in probability, cf. Lemma 3.5.
It holds∑

k∈Θ
(1 + |k|∞)2

∣∣∣b̂k(p)∣∣∣ ≤ ∑
k∈Θ

(1 + |k|∞)2 |bk|+
∑
k∈Θ

(1 + |k|∞)2 |bk(p)− bk|

+
∑
k∈Θ

(1 + |k|∞)2
∣∣∣b̂k(p)− bk(p)∣∣∣.

The first summand on the right-hand side is finite due to (2.6) while the second
summand can be bounded with Lemma 3.4 by∑

k∈Θ
(1 + |k|∞)2 |bk(p)− bk| ≤ C ·

∑
k∈Θ

(1 + |k|∞)3 |ak|,

uniformly for all p (and thus all n). The right-hand side, again, is finite due to (2.6).
Hence, the proof can be completed by showing∑

k∈Θ
(1 + |k|∞)2

∣∣∣b̂k(p)− bk(p)∣∣∣ = OP (1).

Due to

(1 + |k|∞)2 ≤ 1 + 3 |k|2∞ ≤ 3 (1 + |k1|2) + 3 (1 + |k2|2)

it suffices to show∑
k∈Θ

(1 + |kj|2)
∣∣∣b̂k(p)− bk(p)∣∣∣ = OP (1), j = 1, 2. (8.23)

Let j = 1. Lemma 3.5 yields∑
k∈Θ

(1 + |k1|2)
∣∣∣b̂k(p)− bk(p)∣∣∣

≤ C · 1
p4

∑
k∈Θ

(1 + |k1|2)
(
p+ 1
p

)−|k1|−k2

≤ C · 1
p4

∞∑
k1=−∞

(1 + |k1|2)
(

p

p+ 1

)|k1|
·
∞∑
k2=0

(
p

p+ 1

)k2

in prob. (8.24)

For any |x| < 1, differentiating the geometric series twice yields
∞∑
m=0

(m+ 2) (m+ 1)xm = 2
(1− x)3 ,

thus, the right-hand side of (8.24) can be bounded by

C · 1
p4 2

∞∑
k1=0

(k1 + 2) (k1 + 1)
(

p

p+ 1

)k1

·
∞∑
k2=0

(
p

p+ 1

)k2

= C · 4
p4 ·

(
1− p

p+ 1

)−3
·
(

1− p

p+ 1

)−1



BAXTER’S INEQUALITY AND SIEVE BOOTSTRAP FOR RANDOM FIELDS 53

= C · 4(p+ 1)4

p4 = O(1).

Since the inequality in (8.24) holds in probability, we have shown (8.23) for j = 1.
The same calculation can be performed for j = 2, which completes the proof. �

Proof of Lemma 7.1, assertion (7.3):
The random variables ε∗t are, conditionally on the given data, uniformly distributed
on {ε̂s(p) : s ∈ Π(n, p)}. Hence, it holds

E∗
(
|ε∗t |2w

)
= 1
|Π(n, p)|

∑
s∈Π(n,p)

|ε̂s(p)|2w,

and the goal is to show that the right-hand side converges to E
(
|εt|2w

)
= E

(
|ε0|2w

)
.

Because of Assumption 4 it suffices to show
1

|Π(n, p)|
∑

t∈Π(n,p)

(
|ε̂t(p)|2w − |εt|2w

)
P−→ 0. (8.25)

We have ε̂t(p) = ε′t(p)− ε with ε′t(p) = Xt −
∑
k∈Θ(p) âk(p)Xt−k and

ε = (1/|Π(n, p)|)∑t∈Π(n,p) ε
′
t(p). Thus, with representation (2.5), we have

ε̂t(p) = ε′t(p)− ε = εt +Qt +Rt − ε,

where

Qt :=
∑

k∈Θ(p)

(
ak(p)− âk(p)

)
Xt−k,

Rt :=
∑

k∈Θ(p)

(
ak − ak(p)

)
Xt−k +

∑
k∈Θ\Θ(p)

akXt−k.

Decomposing |ε̂t(p)|2w = (εt + Qt + Rt − ε)2w with a binomial expansion (with the
notation |d| = d1 + d2 + d3 + d4 for vectors d ∈ N4

0), one can easily see that it holds
for some C <∞ ∣∣∣∣∣∣ 1

|Π(n, p)|
∑

t∈Π(n,p)

(
|ε̂t(p)|2w − |εt|2w

)∣∣∣∣∣∣
≤ C ·

∑
|d|=2w, d1 6=2w

1
|Π(n, p)|

∑
t∈Π(n,p)

|εt|d1 |Qt|d2 |Rt|d3 |ε|d4

≤ C ·
∑

|d|=2w, d1 6=2w
(I)d1/2w (II)d2/2w (III)d3/2w (IV )d4/2w,

where Hölder’s inequality was used in the final step and, moreover,

(I) = 1
|Π(n, p)|

∑
t∈Π(n,p)

|εt|2w, (II) = 1
|Π(n, p)|

∑
t∈Π(n,p)

|Qt|2w,

(III) = 1
|Π(n, p)|

∑
t∈Π(n,p)

|Rt|2w, (IV ) = 1
|Π(n, p)|

∑
t∈Π(n,p)

|ε|2w = |ε|2w.
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Obviously, (8.25) holds true if we can show

(I) = OP (1), (II) = oP (1), (III) = oP (1), (IV ) = oP (1). (8.26)

In the first step we show (IVn) = oP (1). From the definition of ε we get

|ε| ≤

∣∣∣∣∣∣ 1
|Π(n, p)|

∑
t∈Π(n,p)

εt

∣∣∣∣∣∣+ 1
|Π(n, p)|

∑
t∈Π(n,p)

∣∣∣Qt

∣∣∣+ 1
|Π(n, p)|

∑
t∈Π(n,p)

∣∣∣Rt

∣∣∣. (8.27)

The first summand on the right-hand side obviously converges to zero in probability
because of the WLLN (recall that the random variables εt are uncorrelated and
have mean zero). Considering the second summand, we have from Assumption 1
that |Xt| = OP (1) uniformly for all t ∈ Z2, and, since |Θ(p)| = 2p(p+ 1),∑

k∈Θ(p)

∣∣∣Xt−k

∣∣∣ = 2p(p+ 1)OP (1) = OP (p2). (8.28)

It follows∣∣∣Qt

∣∣∣ ≤ ∑
k∈Θ(p)

∣∣∣ak(p)− âk(p)∣∣∣ · ∑
k∈Θ(p)

∣∣∣Xt−k

∣∣∣ ≤ 1
p4 OP (1) · OP (p2) = oP (1), (8.29)

where Assumption 2 was used. Since this bound does not depend on t, we have
1

|Π(n, p)|
∑

t∈Π(n,p)

∣∣∣Qt

∣∣∣ = oP (1). (8.30)

Now consider the third summand on the right-hand side of (8.27). We will need the
following preliminary results: From Theorem 3.2 and summability condition (2.6)
(here, we assume r = 4) we get

p2 ·
∑

k∈Θ(p)
|ak(p)− ak|

≤ C ·
∑

k∈Θ\Θ(p)
p2 (1 + |k|∞) |ak| ≤ C ·

∑
k∈Θ\Θ(p)

(1 + |k|∞)3 |ak| = o(1),

because p ≤ |k|∞ for all k ∈ Θ \ Θ(p), and Θ(p) → Θ, as n → ∞. Hence we have∑
k∈Θ(p) |ak(p)−ak| = o(p−2). Moreover, since |Xt| = OP (1) uniformly for all t ∈ Z2,

we have

p
∑

k∈Θ\Θ(p)
|ak| |Xt−k| ≤ OP (1)

∑
k∈Θ\Θ(p)

p |ak| ≤ OP (1) ·
∑
k∈Θ

(1 + |k|∞) |ak| = OP (1),

due to (2.6). This implies ∑k∈Θ\Θ(p) |ak| |Xt−k| = OP (p−1). Combining these results
and (8.28) we get∣∣∣Rt

∣∣∣ ≤ ∑
k∈Θ(p)

∣∣∣ak − ak(p)∣∣∣ · ∑
k∈Θ(p)

∣∣∣Xt−k

∣∣∣+ ∑
k∈Θ\Θ(p)

|ak| |Xt−k|

≤ o(p−2) · OP (p2) +OP (p−1) = oP (1). (8.31)
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Since this bound does not depend on t, we have
1

|Π(n, p)|
∑

t∈Π(n,p)

∣∣∣Rt

∣∣∣ = oP (1). (8.32)

Combining this with (8.27) and (8.28) gives (IV ) = oP (1).
Since the bounds in (8.29) and (8.31) do not depend on t, it follows immediately

1
|Π(n, p)|

∑
t∈Π(n,p)

|Qt|2w = OP (p−4w), 1
|Π(n, p)|

∑
t∈Π(n,p)

|Rt|2w = oP (1),

i.e. (II) = oP (1) and (III) = oP (1). Furthermore, Assumption 4 guarantees
(I) = OP (1), which delivers the final assertion of (8.26) and completes the proof of
(7.3).
As a byproduct, we get a result about the empirical means of (ε̂t − εt)2, which will
be needed later on. Using the fact that |εt| = OP (1) uniformly for all t ∈ Z2, we
can derive ∣∣∣∣∣∣ 1

|Π(n, p)|
∑

t∈Π(n,p)

(
ε̂t − εt

)2
∣∣∣∣∣∣

=

∣∣∣∣∣∣ 1
|Π(n, p)|

∑
t∈Π(n,p)

(
ε̂ 2
t − ε 2

t

)
− 2 · 1

|Π(n, p)|
∑

t∈Π(n,p)
εt
(
ε̂t − εt

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1
|Π(n, p)|

∑
t∈Π(n,p)

(
ε̂ 2
t − ε 2

t

)∣∣∣∣∣∣+OP (1) · 1
|Π(n, p)|

∑
t∈Π(n,p)

∣∣∣Qt +Rt − ε
∣∣∣

= oP (1), (8.33)

from (8.25) (with w = 1), (8.30), (8.32) and (IV ) = oP (1). �

Proof of Lemma 7.1, assertion (7.4):
This assertion can be obtained following exactly along the lines of the proof of
Lemma 5.5 and Corollary 5.6 of Bühlmann (1997). The only difference to Bühlmann’s
proof is that we decompose

X∗t = X∗t,M + U∗t + V ∗t ,

with X∗t,M as defined in (7.1) and

U∗t :=
∑

k∈Θ(M)

(
b̂k(p)− bk

)
ε∗t−k, and V ∗t :=

∑
k∈Θ\Θ(M)

b̂k(p) ε∗t−k,

analogously for X̃t. The only assertions needed to adapt the proof of Bühlmann’s
Lemma 5.5 are given by (7.2) and (7.3), which correspond to Lemmas 5.1 and 5.3
in Bühlmann (1997), as well as∑

k∈Θ

∣∣∣b̂k(p)− bk∣∣∣ = oP (1) (8.34)



56 M. MEYER, C. JENTSCH, AND J.-P. KREISS

and

ε∗t
d∗−→ εt in prob., (8.35)

which correspond to Lemmas 5.2 and 5.4 in Bühlmann (1997). In the following, we
complete the proof by showing the latter two assertions.
It holds ∑

k∈Θ

∣∣∣b̂k(p)− bk∣∣∣
≤

∑
k∈Θ

∣∣∣b̂k(p)− bk(p)∣∣∣+ ∑
k∈Θ

∣∣∣bk(p)− bk∣∣∣
≤ 1

p4 OP (1) ·
∞∑

k1=−∞

∞∑
k2=0

(
p

p+ 1

)|k1|+k2

+ C ·
∑

k∈Θ\Θ(p)
(1 + |k|∞) |ak|

≤ OP (1) · 2(p+ 1)2

p4 + C ·
∑

k∈Θ\Θ(p)
(1 + |k|∞) |ak|

= oP (1),

due to Lemma 3.4, Lemma 3.5, (2.6) and Assumption 2. This yields (8.34).
As for (8.35), we adapt the proof of Lemma 5.4 of Bühlmann (1997). Let F with
F (x) := P{εt ≤ x} = P{ε̃t ≤ x} be the distribution function of (εt) and let Fn be
the empirical distribution function of {εt : t ∈ Π(n, p)} as defined in Assumption
4. Furthermore, according to step 2 of the AR sieve bootstrap procedure, (ε∗t ) is an
i.i.d. sequence with marginal distribution function F̂n, where

F̂n(x) = 1
|Π(n, p)|

∑
t∈Π(n,p)

1{ε̂t(p) ≤ x},

and ε̂t(p) = ε′t(p)− ε are the centered residuals of the autoregressive fit with ε′t(p) =
Xt −

∑
k∈Θ(p) âk(p)Xt−k and ε = (1/|Π(n, p)|)∑t∈Π(n,p) ε

′
t(p). We use the Mallows

metric d2, cf. Bickel and Freedman (1981), and derive

d2(F̂n, F ) ≤ d2(F̂n, Fn) + d2(Fn, F ).

From Assumption 4 we have convergence of second moments∣∣∣∣∫ x2 dFn(x)−
∫
x2 dF (x)

∣∣∣∣ =

∣∣∣∣∣∣ 1
|Π(n, p)|

∑
t∈Π(n,p)

(εt)2 − E(ε0)2

∣∣∣∣∣∣ = oP (1).

This, together with Assumption 4, implies d2(Fn, F ) = oP (1), according to Lemma
8.3 of Bickel and Freedman (1981). Now let S be uniformly distributed on the finite
set Π(n, p). For any given realizations of {εt : t ∈ Π(n, p)} and {ε̂t(p) : t ∈ Π(n, p)},
F̂n and Fn are deterministic distribution functions, and it is easy to see that εS has
distribution function Fn and ε̂S(p) has distribution function F̂n. Hence, it holds

d2(F̂n, Fn) ≤ ES
(
ε̂S(p)− εS

)2
≤ 1
|Π(n, p)|

∑
t∈Π(n,p)

(
ε̂t(p)− εt

)2
.
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Therefore, we have for the random variable d2(F̂n, Fn):

d2(F̂n, Fn) ≤ 1
|Π(n, p)|

∑
t∈Π(n,p)

(
ε̂t(p)− εt

)2
= oP (1),

due to (8.33). This implies d2(F̂n, F ) = oP (1), and, therefore, (8.35). �

Proof of Lemma 7.1, assertion (7.5):
Let c ∈ Rk be arbitrary. Using the notation ‖z‖q =

(
E(|z|q)

)1/q
, the goal is to prove

‖cT g(Ỹt,M)‖2+2/(h+1) ≤ C uniformly for all t ∈ Z2. Due to
∥∥∥cT g(Ỹt,M)

∥∥∥
2+2/(h+1)

≤
k∑
v=1
|cv|

∥∥∥gv(Ỹt,M)
∥∥∥

2+2/(h+1)

it suffices to show ‖gv(Ỹt,M)‖2+2/(h+1) ≤ Cv for all v = 1, . . . , k (note that C may
depend on c). We will derive this assertion from a slight modification of Lemma 7.2.
One can easily observe that the assertion of Lemma 7.2 remains true if one replaces
Ỹt with Ỹt,M , i.e. it holds for each W ⊂ Θ ∪ {0}

∥∥∥gv(Ỹt,M)− gv(Ỹ(W )
t,M )

∥∥∥
2
≤ Cv ·

 ∑
k∈Θ\W

|bk|+ 1{0 6∈W}

 .
Now we modify the proof of Lemma 7.2 by choosing W = ∅, which yields Ỹ(W )

t,M = 0,
and by replacing the ‖ · ‖2-norm with ‖ · ‖2+2/(h+1). Then, (8.42) reads:
∥∥∥∥∥Dαgv(0)

α! (Ỹt,M)α

∥∥∥∥∥
2+2/(h+1)

≤ C ·
∥∥∥∥∥Dαgv(0)

α!

∥∥∥∥∥(
2+ 2

h+1

)(
h+2

h+2−|α|

) ·
∑
k∈Θ
|bk|+ 1

|α| .
Note that the expression on the right-hand side does not depend on t and that∥∥∥∥∥Dαgv(0)

α!

∥∥∥∥∥(
2+ 2

h+1

)(
h+2

h+2−|α|

) =
∣∣∣∣∣Dαgv(0)

α!

∣∣∣∣∣ <∞,
because the derivative of gv at the origin is deterministic. Along the lines of the
proof of Lemma 7.2, with the modifications mentioned above, one obtains

∥∥∥gv(Ỹt,M)− gv(0)
∥∥∥

2+2/(h+1)
≤ Cv ·

∑
k∈Θ
|bk|+ 1

 ,
which completes the proof of the second assertion of (7.5) via∥∥∥gv(Ỹt,M)

∥∥∥
2+2/(h+1)

≤
∥∥∥gv(0)

∥∥∥
2+2/(h+1)

+
∥∥∥gv(Ỹt,M)− gv(0)

∥∥∥
2+2/(h+1)

≤
∣∣∣gv(0)

∣∣∣+ Cv ·

∑
k∈Θ
|bk|+ 1

 .
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An analogous modification for the bootstrap quantities in Lemma 7.2 yields

E∗
(∣∣∣cTg(Y∗t,M)

∣∣∣2+2/(h+1))
=
(∥∥∥cTg(Y∗t,M)

∥∥∥
2+2/(h+1)

)2+2/(h+1)
= OP (1),

with exactly the same arguments as for the non-bootstrap quantities. �

Proof of Lemma 7.1, assertion (7.6):
For arbitrary but fixed c ∈ Rk we abbreviate l(x) := cTg(x). Let 0 < K < ∞ be
a constant that will be specified later on. We define the K-truncated version of
function l by

l̃(x) := l(x) · 1{|l(x)| ≤ K}+K · sgn(l(x)) · 1{|l(x)| > K}.

For arbitrary ε > 0 we get from standard calculations

P
{∣∣∣∣Cov∗

(
l(Y∗h,M), l(Y∗0,M)

)
− Cov

(
l(Ỹh,M), l(Ỹ0,M)

)∣∣∣∣ > ε
}

≤ P{ |I| > ε/3 }+ P{ |II| > ε/3 }+ P{ |III| > ε/3 }, (8.36)

where

I := Cov∗
(
l(Y∗h,M), l(Y∗0,M)

)
− Cov∗

(
l̃(Y∗h,M), l̃(Y∗0,M)

)
,

II := Cov∗
(
l̃(Y∗h,M), l̃(Y∗0,M)

)
− Cov

(
l̃(Ỹh,M), l̃(Ỹ0,M)

)
,

III := Cov
(
l̃(Ỹh,M), l̃(Ỹ0,M)

)
− Cov

(
l(Ỹh,M), l(Ỹ0,M)

)
.

Hence, the desired assertion follows if we can, for each δ > 0, specify 0 < K < ∞
and n0 ∈ N such that the right-hand side of (8.36) is smaller than δ for all n ≥ n0.

Per definition, l(x) can be expanded as

l(x) = l̃(x) +
[
l(x)−K · sgn(l(x))

]
· 1{|l(x)| > K}.

Using this, we get

I = Cov∗
(
l̃(Y∗h,M),

[
l(Y∗0,M)−K · sgn(l(Y∗0,M))

]
· 1{|l(Y∗0,M)| > K}

)
+ Cov∗

( [
l(Y∗h,M)−K · sgn(l(Y∗h,M))

]
· 1{|l(Y∗h,M)| > K}, l̃(Y∗0,M)

)
+ Cov∗

( [
l(Y∗h,M)−K · sgn(l(Y∗h,M))

]
· 1{|l(Y∗h,M)| > K},[

l(Y∗0,M)−K · sgn(l(Y∗0,M))
]
· 1{|l(Y∗0,M)| > K}

)
.

The first summand on the right-hand side can be bounded in absolute value with
Hölder’s and Markov’s inequalities by(

E∗
(
l̃(Y∗h,M)2

))1/2
·
(
E∗
(∣∣∣l(Y∗0,M)

∣∣∣2 · 1{|l(Y∗0,M)| > K}
))1/2
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≤ OP (1) ·
(
E∗
(∣∣∣l(Y∗0,M)

∣∣∣2(h+2)/(h+1)))(h+1)/2(h+2)
·
(
P ∗
{
|l(Y∗0,M)| > K

})1/2(h+2)

≤ OP (1) ·
(
E∗
(∣∣∣l(Y∗0,M)

∣∣∣2(h+2)/(h+1)))1/2
·
( 1
K2(h+2)/(h+1)

)1/2(h+2)

= K−1/(h+1) · OP (1),

where the boundedness in probability of the moments is taken from (7.5), noting
that 2(h + 2)/(h + 1) = 2 + 2/(h + 1). The same calculations can be done for the
second and third summand above which yields I = K−1/(h+1) · OP (1). Hence, for
the given δ > 0, there exists S(δ) <∞ such that

P
{
|I| > S(δ)/K1/(h+1)

}
≤ δ/2 ∀n ∈ N,

and for each K > (3S(δ)/ε)h+1 we have

P
{
|I| > ε/3

}
≤ P

{
|I| > S(δ)/K1/(h+1)

}
≤ δ/2 ∀n ∈ N.

By the very same calculations as for I, replacing E∗ with E, one obtains

|III| ≤ C̃ ·K−1/(h+1) ∀n ∈ N

for some C̃ < ∞, using E |l(Ỹt,M)|(2+2/(h+1)) ≤ C, cf. (7.5). Choosing K >

(3 C̃/ε)h+1 gives

P
{
|III| > ε/3

}
≤ P

{
|III| > C̃/K1/(h+1)

}
= 0 ∀n ∈ N,

noting that III is deterministic. Combining the results for I and III, we get from
choosing K > (3 (C̃ ∨ S(δ))/ε)h+1

P
{
|I| > ε/3

}
+ P

{
|III| > ε/3

}
≤ δ/2 ∀n ∈ N. (8.37)

For this fixed K <∞ we will now show II = oP (1). (7.4) implies(
Y∗h,M
Y∗0,M

)
d∗−→

(
Ỹh,M

Ỹ0,M

)
in P -prob.

Hence, we have E∗f(Y∗h,M ,Y∗0,M) → E f(Ỹh,M , Ỹ0,M) in P -probability for each
continuous and bounded function f . It follows

II = E∗
(
l̃(Y∗h,M) l̃(Y∗0,M)

)
− E

(
l̃(Ỹh,M) l̃(Ỹ0,M)

)
+E∗

(
l̃(Y∗h,M)

)
E∗
(
l̃(Y∗0,M)

)
− E

(
l̃(Ỹh,M)

)
E
(
l̃(Ỹ0,M)

)
= oP (1),

since l̃ is continuous and bounded by K. We can therefore find n0 ∈ N such that

P{ |II| > ε/3 } ≤ δ/2 ∀n ≥ n0,

which together with (8.36) and (8.37) completes the proof. �
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Proof of Lemma 7.1, assertion (7.7):
We prove that ∑|h1|,|h2|≤M

∣∣∣Cov
(
gu(Ỹh), gv(Ỹ0)

)∣∣∣ converges to a finite limit as M →
∞, by showing that the series tails

∞∑
h1=M+1

M∑
h2=−M

∣∣∣Cov
(
gu(Ỹh), gv(Ỹ0)

)∣∣∣+ −M−1∑
h1=−∞

M∑
h2=−M

∣∣∣Cov
(
gu(Ỹh), gv(Ỹ0)

)∣∣∣ (8.38)

as well as the remaining tails
M∑

h1=−M

∑
|h2|≥M+1

∣∣∣ . . . ∣∣∣, ∞∑
|h1|,|h2|=M+1

∣∣∣ . . . ∣∣∣ (8.39)

vanish for M → ∞. We will only consider the first summand in (8.38) because
all other expressions, including the ones in (8.39), can be treated with analogous
arguments. In accordance with the definition of the vector Ỹt we define for each h ∈
Z2 the truncated versions Ỹ(l)

h (truncated at the left-hand side) and Ỹ(r)
0 (truncated

at the right-hand side) via

Ỹ(l)
h := (X̃(l)

h+s(1), . . . , X̃
(l)
h+s(m1m2))

T , Ỹ(r)
0 := (X̃(r)

0+s(1), . . . , X̃
(r)
0+s(m1m2))

T ,

where

X̃
(l)
h+s(j) :=

∑
k∈Θ

bk · 1{k1 ≤ bh1/2c −m1} ε̃h+s(j)−k + ε̃h+s(j),

X̃
(r)
0+s(j) :=

∑
k∈Θ

bk · 1{k1 ≥ −bh1/2c} ε̃0+s(j)−k + ε̃0+s(j).

Note that the dependence of Ỹ(r)
0 on h is suppressed in the notation. One can

easily check that Ỹ(l)
h and Ỹ(r)

0 are independent random variables. Hence, the first
summand in (8.38) can be bounded by

∞∑
h1=M+1

M∑
h2=−M

∣∣∣Cov
(
gu(Ỹh)− gu(Ỹ(l)

h ), gv(Ỹ0)
)∣∣∣

+
∞∑

h1=M+1

M∑
h2=−M

∣∣∣Cov
(
gu(Ỹ(l)

h ), gv(Ỹ0)− gv(Ỹ(r)
0 )

)∣∣∣.
Both of these expressions can be treated in the same way. Therefore, we will only
consider the latter summand which can be bounded by

C ·
∞∑

h1=M+1

M∑
h2=−M

∥∥∥gv(Ỹ0)− gv(Ỹ(r)
0 )

∥∥∥
2
,

because ‖gu(Ỹ(l)
h )‖2 ≤ C follows as in (7.5) (here, ‖ ·‖w denotes the usual Lw-norm).

For the remainder of this proof, C will denote a generic constant that may change
from line to line. We get from Lemma 7.2∥∥∥gv(Ỹ0)− gv(Ỹ(r)

0 )
∥∥∥

2
≤ C ·

−bh1/2c−1∑
k1=−∞

∞∑
k2=1
|bk|. (8.40)
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Hence, the previously derived expression is bounded by

C ·
∞∑

h1=M+1

M∑
h2=−M

−bh1/2c−1∑
k1=−∞

∞∑
k2=1
|bk|

≤ C · (2M + 1)
−b(M+1)/2c−1∑

k1=−∞
2
(
− b(M + 1)/2c − k1

) ∞∑
k2=1
|bk|

≤ C ·
−b(M+1)/2c−1∑

k1=−∞

∞∑
k2=1

M |k1| |bk| ≤ C ·
−b(M+1)/2c−1∑

k1=−∞

∞∑
k2=1

(1 + |k|∞)2 |bk|,

since it holds M ≤ 2 |k1| ≤ 2 |k|∞ for all k1 ≤ −b(M + 1)/2c − 1. Note that
the right-hand side converges to zero as M → ∞, because Lemma 2.1 ensures∑
k∈Θ(1 + |k|∞)r−1 |bk| < ∞, and we assume r = 4 in Lemma 7.1. The remaining

expressions in (8.38) and (8.39) can be treated analogously, using the summability
conditions ∑k∈Θ |k2|2 |bk| < ∞ and ∑

k∈Θ |k1 k2| |bk| < ∞ which are fulfilled since
|k2|2 ≤ (1 + |k|∞)2 and |k1 k2| ≤ (1 + |k|∞)2. This completes the proof. �

Proof of Lemma 7.2:
We will perform a Taylor expansion of order h of gv(Ỹt) around Ỹ(W )

t . Let m :=
m1m2. We use the common multi-index notation α = (α1, . . . , αm) ∈ Nm

0 with
|α| = ∑m

i=1 αi and α! = α1! · . . . · αm!. Furthermore, we abbreviate

Dαgv(Ỹ(W )
t ) := ∂|α|gv(x)

∂x1α1 . . . ∂xmαm

∣∣∣∣
x=Ỹ(W )

t

,

and get∥∥∥gv(Ỹt)− gv(Ỹ(W )
t )

∥∥∥
2

≤
∑

1≤|α|<h

∥∥∥∥∥∥D
αgv(Ỹ(W )

t )
α! (Ỹt − Ỹ(W )

t )α

∥∥∥∥∥∥
2

+
∑
|α|=h

∥∥∥∥∥D
αgv(ξt)

α! (Ỹt − Ỹ(W )
t )α

∥∥∥∥∥
2
, (8.41)

where ξt is between Ỹt and Ỹ(W )
t . Note that for each α we find suitable integers

1 ≤ j(1), j(2), . . . , j(|α|) ≤ m such that

(Ỹt − Ỹ(W )
t )α = (X̃t+s(j(1)) − X̃(W )

t+s(j(1))) · . . . · (X̃t+s(j(|α|)) − X̃(W )
t+s(j(|α|)))

and, thus, Hölder’s inequality yields∥∥∥∥∥∥D
αgv(Ỹ(W )

t )
α! (Ỹt − Ỹ(W )

t )α

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥D
αgv(Ỹ(W )

t )
α!

∥∥∥∥∥∥
2(h+2)/(h+2−|α|)

·
|α|∏
k=1

∥∥∥X̃t+s(j(k)) − X̃(W )
t+s(j(k))

∥∥∥
2(h+2)
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≤ C ·

∥∥∥∥∥∥D
αgv(Ỹ(W )

t )
α!

∥∥∥∥∥∥
2(h+2)/(h+2−|α|)

·

 ∑
k∈Θ\W

|bk|+ 1{0 6∈W}

|α| . (8.42)

Here, we have used that it follows, per definition, for any index u∥∥∥X̃u − X̃(W )
u

∥∥∥
2(h+2)

=

∥∥∥∥∥∥
∑

k∈Θ\W
bk ε̃u−k + ε̃u 1{0 6∈W}

∥∥∥∥∥∥
2(h+2)

≤ ‖ε̃0‖2(h+2)

 ∑
k∈Θ\W

|bk|+ 1{0 6∈W}

 (8.43)

from strict stationarity of (ε̃t). Note that ‖ε̃0‖2(h+2) < ∞ follows from Assumption
4. On the other hand, abbreviating q := 2(h + 2)/(h + 2 − |α|), the first factor in
(8.42) can be bounded via another Taylor expansion of order h − |α| around the
zero vector as∥∥∥∥∥∥D

αgv(Ỹ(W )
t )

α!

∥∥∥∥∥∥
q

≤
∑

0≤|β|<h−|α|

∥∥∥∥∥Dα+βgv(0)
α! β! (Ỹ(W )

t )β

∥∥∥∥∥
q

+
∑

|β|=h−|α|

∥∥∥∥∥Dα+βgv(τ 0)
α! β! (Ỹ(W )

t )β

∥∥∥∥∥
q

,

where τ 0 is between 0 and Ỹ(W )
t . The first summand on the right-hand side, anal-

ogous to (8.42) and (8.43), is bounded by

C ·
∑

|β|<h−|α|

1 +
∑
k∈Θ
|bk|

|β| <∞,
since the derivative at zero is constant and q|β| ≤ 2(h + 2). Using the Lipschitz
property of the h-th derivatives of gv, the second summand is bounded by

∑
|β|=h−|α|

∥∥∥∥∥Dα+βgv(0)
α! β! (Ỹ(W )

t )β

∥∥∥∥∥
q

+
∥∥∥∥∥
∣∣∣∣∣Dα+βgv(τ 0)

α! β! − Dα+βgv(0)
α! β!

∣∣∣∣∣ (Ỹ(W )
t )β

∥∥∥∥∥
q



≤
∑

|β|=h−|α|

∥∥∥∥∥Dα+βgv(0)
α! β! (Ỹ(W )

t )β

∥∥∥∥∥
q

+ C ·

∥∥∥∥∥∥
( m∑
j=1

∣∣∣X̃(W )
t+s(j)

∣∣∣) (Ỹ(W )
t )β

∥∥∥∥∥∥
q

 ,
which is finite due to similar arguments as for the first summand. With the same
calculation we can also treat the second sum in (8.41) analogous to the first sum.
Together with (8.42) and (8.43), we finally get

∥∥∥gv(Ỹt)− gv(Ỹ(W )
t )

∥∥∥
2
≤ C ·

∑
1≤|α|≤h

 ∑
k∈Θ\W

|bk|+ 1{0 6∈W}

|α|

≤ C ·

 ∑
k∈Θ\W

|bk|+ 1{0 6∈W}

 , (8.44)
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with a generic constant C <∞, which depends merely on ‖ε̃0‖2(h+2) and on∑k∈Θ |bk|.
Therefore, one can follow along these lines for the second assertion in Lemma 7.2
concerning the bootstrap versions Y∗t and Y∗(W )

t . Since (7.3), Assumption 4 and
(7.2) ensure ‖ε∗t‖∗2(h+2) = OP (1) and ∑k∈Θ

∣∣∣b̂k(p)∣∣∣ = OP (1), it follows with the same
calculation as for (8.44)

∥∥∥gv(Y∗t )− gv(Y∗(W )
t )

∥∥∥
∗2
≤ OP (1) ·

 ∑
k∈Θ\W

∣∣∣b̂k(p)∣∣∣+ 1{0 6∈W}

 ,
which completes the proof. �

Proof of Lemma 5.2:
Suppose (Xt)t∈Z2 is a linear spatial process as given by (5.3) with some suitable
absolutely summable coefficients (αν)ν∈Z2 and an i.i.d. white noise process (ut)t∈Z2

with E(u2
t ) = σ2 ∈ (0,∞) and E(u4

t ) = ησ4 ∈ (0,∞). For the comparative quantity
γ̌(h) defined in Lemma 5.2 it holds

γ̌(h) := 1
n2

n∑
t1=1

n∑
t2=1

Xt+hXt,

which is asymptotically equivalent to γ̂(h). Then, standard calculations as in the
time series case yield for all h, k ∈ Z2

n2 Cov(γ̌(h), γ̌(k))

=
∑

r∈Z2:|r1|<n,|r2|<n

(n− |r1|)(n− |r2|)
n2

((
γ(r − k + h)γ(r) + γ(r + h)γ(r − k)

)

+ (η − 3)
∑
ν∈Z2

αναν−hαν−r+k−hαν−r−h σ
4
)

=
∑
r∈Z2

(
γ(r − k + h)γ(r) + γ(r + h)γ(r − k)

)
+ (η − 3) γ(h)γ(k) + o(1)

=: V (h, k) + o(1),

which leads for the sample autocovariances to

n2Var


 γ̌(0)
γ̌(h)
γ̌(k)


 =

 V (0, 0) V (0, h) V (0, k)
V (h, 0) V (h, h) V (h, k)
V (k, 0) V (k, h) V (k, k)

+ o(1) =: V + o(1).

For the quantities ρ̌(h) = γ̌(h)/γ̌(0), we get(
ρ̌(h)
ρ̌(k)

)
=
(
f1(γ̌(0), γ̌(h), γ̌(k))
f2(γ̌(0), γ̌(h), γ̌(k))

)
,
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where f(x1, x2, x3) = (f1(x1, x2, x3), f2(x1, x2, x3))T = (x2/x1, x3/x1)T . An applica-
tion of the ∆-method leads to

n2Var
((

ρ̌(h)
ρ̌(k)

))
= JfV J

T
f + o(1),

where

Jf =
(
−γ(h)γ(0)−2 γ(0)−1 0
−γ(k)γ(0)−2 0 γ(0)−1

)
,

such that
n2 Cov(ρ̌(h), ρ̌(k))

= [JfV JTf ]2,1 + o(1)
= [Jf ]2,•V [Jf ]T•,1 + o(1)

=
(
−γ(k)γ(0)−2V (0, 0) + γ(0)−1V (k, 0)

) (
−γ(h)γ(0)−2

)
+
(
−γ(k)γ(0)−2V (0, h) + γ(0)−1V (k, h)

)
γ(0)−1 + o(1)

= ρ(k)ρ(h)
∑
r∈Z2

(ρ(r)ρ(r) + ρ(r)ρ(r))− ρ(h)
∑
r∈Z2

(ρ(r + k)ρ(r) + ρ(r + k)ρ(r))

−ρ(k)
∑
r∈Z2

(ρ(r − h)ρ(r) + ρ(r − h)ρ(r))

+
∑
r∈Z2

(ρ(r − h+ k)ρ(r) + ρ(r + k)ρ(r − h)) + o(1)

=
∑
r∈Z2

{
2ρ(r)2ρ(k)ρ(h)− 2ρ(r + k)ρ(r)ρ(h)− 2ρ(r − h)ρ(r)ρ(k)

+ρ(r − h+ k)ρ(r) + ρ(r + k)ρ(r − h)
}

+ o(1).

In particular, the latter quantity depends exclusively on the second order structure
of the linear process (Xt)t∈Z2 . �
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