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Abstract

We presentMELTT (M denotes Markov logic net-

works) an extension of the log-linear description log-
ics£LTT-LL with concrete domains, nominals, and in-
stances. We use Markov logic networks (MLNS) in or-

ELTT ontology from anME LT knowledge base. In
particular, we develop a novel way to deal with concrete
domains (also known as datatypes) by extending MLN’s
cutting plane inference (CPI) algorithm.

Introduction
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der to find the most probable, classified and coherent
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The study of extending DLs to handle uncertainty and
vagueness has gained momentum recently. There have
been several proposals to add probabilities to various DLs.
Probabilistic DLs can be classified in several dimensions.
One possible classification is on the reasoning mecha-
nism used: Markov logic networks (MLNs), Bayesian net-
works, and probabilistic reasoning. There exist some stud-
ies that employ MLNSs to extend various DLs. The study in
(Lukasiewicz et al. 2012) extendC ™" with probabilistic
uncertainty based on the annotation of axioms using MLNs.
The main focus of this work is ranking queries in descend-
ing order of probability of atomic inferences which is dif-

In description logics (DLs) a concrete domain is a construct ferent from the objective of this paper. Another study in
that can be used to define new classes by specifying restric- (Niepert, Noessner, and Stuckenschmidt 2011), presents a
tions on attributes that have literal values (as opposeé-to r
lationships to other concepts). Practical applicationSlo$ i
usually require concrete properties with values from a fixed @able coherent ontology. In doing so, they have developed a
domain, such as strings or integers, supporting built-@dpr , C ) :
icates. For DLs that are extended with concrete domains, and Niepert 2011). In this study, we extend this work in or-
there exist partial functions mapping objects of the alstra -
domain to values of the concrete domain, and can be used for @nd instances. In databases, MLNs have been used to create
building complex concepts. Concrete domains can be used @ probabilistic datalog called Dataleg —. Itis an extension

to construct complex concepts as for instance, the axiom Of datalog thatallows to express ontological axioms bygisin
Teenager = Person N Jage.(>,13) N Jage.(<,19) de- . C .
fines a teenager as a person whose age is at least 13 andic extension of Datalog/— uses MLNs as the underlying
at most 19. In DLs, concrete domains are also known as Probabilistic semantics. The focus of this work is on scal-
datatypesSeveral probabilistic extensions of DLs opt to ex- ,
clude datatypes while, in fact, it is an essential feature as ©f this work.
several knowledge extraction tools produce weighted rules

probabilistic extension of the DIEL™ T without nominals
and concrete domains in MLN in order to find the most prob-

reasoner for probabilistic OWL-EL called ELOG (Noessnher

der to deal with concrete domains in addition to nominals

rule-based constraints (Gottlob et al. 2013). The prosabil

able threshold query answering which is different from that

Other literatures extend DLs with Bayesian networks.

or axioms that contain concrete data values. Reasoning overSome notable works include: an extension &£ with

these data either to infer new knowledge or to verify cor-
rectness is indispensable. Additionally, recent advairtes
information extraction have paved the way for the auto-

Bayesian networks calleE L is presented in (Ceylan and
Penaloza 2014). They study the complexity of reasoning
under BEL to show that reasoning is intractable. How-

matic construction and growth of large, semantic knowledge ever, their work does not discuss probabilities in the ABox
bases from different sources. However, the very nature of and concrete domains are excluded. On the other hand, in

these extraction techniques entails that the resultingvkno

(d’Amato, Fanizzi, and Lukasiewicz 2008), they added un-

edge bases may contain a significant amount of incorrect, certainty to DL-Lite based on Bayesian networks. Addition-

incomplete, or even inconsistent (i.e., uncertain) kndgés

ally, they have shown that satisfiability test and query an-

which makes efficient reasoning and query answering over swering in probabilistic DL-Lite can be reduced to satisfia-
this kind of uncertain data a challenge. To address these is- bility test and query answering in the DL-Lite family. Fur-

sues, there exist ongoing studies on probabilistic knogded

bases.
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ther, it is proved that satisfiability checking and union of
conjunctive query answering can be done in LogSpace in
the data complexity.

Consequently, as discussed above, most of the studies that
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involve extending description logics to deal with uncertyi extended to all concepts and roles as follows:
by using either Bayesian or MLNs often excluded concrete

T _ AT
domains. This is partly due to either the lack of supporting (T =4
features or the difficulty in dealing with them. In this paper (L)E =9
we study a novel way of dealing with uncertainty involving I T
concrete domains. Henceforth, we provide an extension to ({a})” ={a"}
ELTF-LL with concrete domains, nominals and instances. (cnbD)yt =c*nD*

(AR.0) ={zr e AT |Fyec AL
Preliminaries (z,y) € R Ay € CT}
_ _ _ (3Fr)t ={zec AT |FveD: (2z,v) € F*

In this section, we present a brief summary 6%£", Ar(v))
Markov logic networks, cutting plane inference, ahgd* ™ -
LL. For a detailed discussion on these subjects, we refer the (cc DY} =c*cDp?

reader to (Baader, Brandt, and Lutz 2005; Richardson and I _pI,.... ,pT T
Domingos 2006; Riedel 2012; Niepert, Noessner, and Stuck- (Rio-oRy L R)" =Ryo--oR CR
enschmidt 2011) and the references therein. Knowledge about specific objects can be expressed using
concept and role assertions of the fofiia) and R(a, b).
The axioms and assertions are contained in the TBox and
ECctt ABox, respectively, which together form a knowledge base
(KB). An ££1" knowledge base (or ontology) = (T, A)
EL7T is the description logic underlying the OWL 2 profile ~ consists of a sef” of general concept inclusion axioms
OWL-ELL (TBox) and role inclusion axioms, and possibly a gebf
assertional axioms (ABox). A concept nafid@n an ontol-
ogy O, is unsatisfiablgff, for each interpretatiol of O,
CT = (). An ontologyO is incoherentff there exists an un-
satisfiable concept nan@in O, i.e.,C = L (Flouris et al.

Syntax Given a set of concept namiig;, role named\g,
individualsNy, and feature namesy, ££1 concepts and

roles are formed according to the following syntax: 2006).
To simplify the translation of probabilisti&£ ™™ KB into
C :=T|L|A|CND|3R.C|{a}|3Fr FOL, we first obtain thexormal form of the KB in such a

way that satisfiability is preserved (Baader, Brandt, ant Lu
A concept in€L** is either a top, bottom concept, an  2005; Krotzsch 2011). AGL ™™ KB is in normalform if its

atomic concept or a complex concept (formed by conjunc- @xioms are in the following form:

tion and existential restriction). Given a datatype restn Cl(a) R(a,b) AC L TCCO

r = (o,v) andz € D, we say that: satisfiesr and write ’ - -

r(z) iff (x,v) € o, whereo € {<,<,>,>,=}, o is inter- AC{c} {a}C{¢ ACC ANBLC
preted as the standard relation on real numbersZandR JRACC AC3IRB ACdFr JFrC A
is a concrete domain (Despoina, Kazakov, and Horrocks RiCRy RioRyCR

2011). In this work, we consider only numerical concrete
domains and leave out the others for future work g™+
TBox contains a set of GCI (General Concept Inclusion) ax-

I;Ti ,I'_i"gk % }lz) as well as role inclusion axioms, i.e., using MLNs. AnE L™ KB can be seen as a set of hard con-
» i o straints on the set of possible interpretations: if an preta-

The semantics of L™ concepts and roles is given by tjon violates even one axiom or assertion, it has zero proba-
an interpretation functio = (A*,.%) which consists ofa pjjity. The basic idea in MLNSs is to soften these constraints
non-empty (abstract) domails” and a mapping functiort i.e., when an interpretation violates one axiom or assertio
(Baader, Brandt, and Lutz 2005). in the KB it is less probable, but not impossible. The fewer

axioms an interpretation violates, the more probable it be-
Semantics The semantics of L7+ concepts and roles is ~ comes. Each axiom and assertion has an associated weight

where A, B,C € N¢,R,R1,R2s € Ng,F € Np,risa
datatype restriction, and b, ¢ € Ny.
Itis possible to provide a probabilistic extensiorfaf ™+

given by an interpretation functidh = (AZ,.Z) which con- that reflects how strong a c_onstraint is: th_e higher the V\teigh
sists of a non-empty (abstract) domai# and a mapping the greater the dlffe_rence in log _probablhty between an in-
that assigns to each atomic concept N¢ a subset ofAZ, terpretation that satisfies the axiom and one that does not,
to each abstract rol& € Ny a subset oAZ x AZ, to each other things being equal (Richardson and Domingos 2006).
concrete relatiod € N a subset oAZ x D, and to each .

individual ¢ € Ny an element ofAZ. The mapping? is Markov Logic Networks

Markov Logic Networks (MLNs) combine Markov net-
works and first-order logic (FOL) by attaching weights
*htt p: // www. w3. or g/ TR/ owl 2- profil es/ to first-order formulas and viewing these as templates for



features of Markov networks (Richardson and Domingos
2006). An MNL L is a set of pairF;, w;) where F; is

a formula in FOL andw; is a real number representing a
weight. Together with a finite set of constadtsit defines

a Markov NetworkM7, ., whereM,  contains one node
for each possible grounding of each predicate appearing in
L. The value of the node isif the ground predicate is true,
and0 otherwise. The probability distribution over possible
worlds z specified by the ground Markov netwoil;, ¢ is
given by:

P(X

=1) =

1 F
EGXP( Z wmi(x))
i=1

whereF is the number of formulas in the MLN and(z) is

the number of true groundings &f in «. The groundings of

a formula are formed simply by replacing its variables with
constants in all possible ways. Tlterbrand Universed

for an MLN L is the set of all terms that can be constructed
from the constants ir.. The Herbrand BaselB is often

defined as the set of all ground predicates (atoms) that can be

constructed using the predicatedirand the terms irf. In
this paper we focus on MLNs whose formulas are function-
free clauses.

In order to compute a maximum a-posteriori (MAP) state
of an MLN, we formulate the problem as an integer linear
program (ILP) using the cutting plane inference algorithm.

Cutting Plane Inference (CPI)

A MAP query corresponds to an optimization problem with
linear constraints and a linear objective function. Hetiice,
can be formulated and solved as an instance of an integer
linear program (ILP). (Riedel 2012; Noessner, Niepert, and
Stuckenschmidt 2013) introduced cutting plane infereisce a
a meta algorithm that transforms an MLN into ILP. The ba-
sic idea of CPl is to add all constraints to the ILP that vielat
the current intermediate solution. This process is rejgeate
until no (additional) violated ground clauses exist. An ILP
solver resolves the conflicts by computing an optimal truth
assignment for an MLN. Hence, the solution of the final ILP

corresponds to the MAP state. It is necessary to execute sev-

eral iterations as the intermediate solution changesedieh
iteration and more violated clauses might be detected.é\t th
beginning of each CPI iteration it is necessary to determine
the violated ground clausékthat are specified by the MLN
and are in conflict with the intermediate solution. A binary
ILP variablez, € {0,1} gets assigned to each grounded
predicate occurring in a violated clauges G. The value of

the the variable:, is 1 if the respective literal is true and

0 when it is false. These variables are used to generate ILP
constraints that are added to the ILP for each violated gtoun
clause. For each claugee G, we defineL™(g) as the set

of ground atoms that occur unnegategiandZ~(g) as the

set of ground atoms that occur negateg.ifhe transforma-
tion scheme depends on the weight € R of the violated
clauseg. It is also necessary to create a binary variahle
for everyg with w, # oo that is used in the objective of the
ILP. For every ground clausgwith w, > 0, the following

constraint has to be added to the ILP.

Z Ty + Z (1—1'€)22g

LeLt(g) LeL—(g)

A ground aton? that is set to false (true if it appears negated)
by evidence will not be included in the ILP as it cannot fulfil
the respective constraint. For everyith weightw, < 0,

we add the following constraint to the ILP:

Yoowmet Y (L—z) < (L (9)l+ L7 (9))z

LeLt(g) LeL—(g)

The variablez, expresses if a ground formugais true con-
sidering the optimal solution of the ILP. However, for every
g with weightw, = oo this variable can be replaced with 1
as the respective formula cannot be violated in any solution

Z T+ Z (I—xp)>1

teL+(g) LeL=(g)

Finally, the objective of the ILP sums up the weights of
the (satisfied) ground formulas:

max E Wgzg

geg

The MAP state corresponds to the solution of the ILP in
the last CPI iteration. It can be directly obtained from the
solution as the assignment of the variahtesan be directly
mapped to the optimal truth values for the ground predicates
i.e.,z; = true if the corresponding ILP variable isand

x; = fal se otherwise. The MAP state of afL+t-LL
TBox can be computed by a reduction into CPI.

ECTT-LL

ELTT-LL (Log-linear ££7T) is a probabilistic extension

of ££71 without nominals, instances and concrete do-
mains (Niepert, Noessner, and Stuckenschmidt 2011). Each
ELTT-LL TBox axiom is either deterministic (i.e., axioms
that are known to be true) or uncertain (i.e., axioms that
have a degree of confidence). The uncertain axioms have
associated weight. Formally, & "-LL TBox is given

by T = (TP, 7Y), whereT? and TV, is a set of pairs

of (S, ws) whereS is an axiom andvg is its real-valued
weight, denote deterministic and uncertain axioms respec-
tively.

The semantics of aB£™"-LL TBox is given by a joint
probability distribution over @oherent€ £+ TBox. Given
TBoxesT = (TP, TY) andT’ over the same vocabulary,
the probability of7” is given by:

(oo Sy )
{V(S,ws)ETV:T" =S}

if 7"=TPAT L
otherwise

Eexp
P(T') =

0

In order to generate the most probable, coherent and
classified TBox using MLNEL™" completion rules and
ELTT-LL TBox axioms are translated into FOL formulae.
In the following, we show how to extenflL™-LL with
nominals, instances, and concrete domains.



Extending ££1F-LL with Nominals,
Instances and Concrete Domains

In (Niepert, Noessner, and Stuckenschmidt 2011), the au-
thors claim that their approach is extensible to the Horg-fra
ments of DLs (look (Krdtzsch 2011) for instance). To take
advantage of this claim, we exted*"-LL with proba-
bilistic knowledge expressed through nominals, individua
and concrete domains. The syntax of this extension (that we
call MELTT) is the same as that ¢f£* " -LL, basically,

it is the syntax o £ with weights attached to each un-
certain axiom and assertion. ALt KB has two com-
ponents: deterministikB” and uncertaifK BY knowledge
bases. In order to provide semantics, we assuméiBat is
coherent. The semantics @bherentMEL™ KBs is given

by a probability distribution as defined below.

Definition 1 Given an MEL'T knowledge bas&B
(KB”,KBY) over a vocabulary oN¢, Ng, N, and Ny,

the semantics of aoherentKB; = (KB, KBY) over the
same vocabulary is given by a probability distribution:

Eexp< > wj)

P(KB) = {V¥(0;,w;)EKBY:KB;|=0,}

(KB) if KB; |=KB” AKB; £ L
0 otherwise

Example 1 Consider anMELT KB = (KB, KBY):

KB = { Toddler N Adult T 1},

KBY = {(Toddler C Jage.(<,3), 0.8),
(Jage.(<,3) C Person, 0.7),
(Toddler C Adult, 0.1), (age(john,2), 0.7)}

The probabilities of the axioms and assertions can be com-
puted as follows:
1
P({Toddler C Jage.(<,3)}) = Eexp(0.8)

P({Toddler C Adult}) =0

P({Toddler C Jage.(<,3),age(john,2),
1
Jage.(<,3) C Person}) = Eexp(2.2)

1
P({}) = exp(0)
P({Toddler M Adult C L}) =1
7Z = exp(0.8) + exp(2.2) + exp(0.7) + exp(0)
In order to derive the most probable, classified and co-
herent€£*™ ontology from anMELTT KB, we trans-
form the KB, TBox completions rules (Baader, Brandt, and

Lutz 2005), concrete domains, and ABox completion rules
(Krotzsch 2011) into FOL formulae.

Nominals

(Un)certain axioms that contain nominals can be translated
into FOL in MNL by using Definition 2. Inference in MNL

can be done by converting the completion rule CR6 (Baader,
Brandt, and Lutz 2005) into FOL and enforcing that each
nominala; € Nj is distinct. Alternativelyunique name as-
sumptiorfor individuals names can be enforced by using the
axiom{a}{b} C L for all relevantindividual namesand
b. In addition, the transformation of TBox completion rules
into FOL in MNL is given in Table 1.

By using nominals, instance knowledge can be added to
an ABox.

ABoOX

Since the description logi€£*" is equipped with nomi-
nals. ABox knowledge can be converted into TBox axioms.
Thus, with nominals, ABox becomes syntactic sugar:

C(a) & {a} T C, R(a,b) < {a} C IR.{b}

Instance checking in turn is directly reducible to subsump-
tion checking in the presence of nominals. There exist two
ways to represent uncertain ABox assertions, ¢q) and
R(a,b), in MLN:

i. transform ABox assertions into TBox axioms using nom-
inals as follows:
(Cla),w1) & ({a} C C,uwn)
(R(a,b),w2) < ({a} C IRAb}, wo)

iii. introduce two new predicates for each instance type as:

(C(a),wr1) = inst(a,C) wy
(R(a,b),ws) + rinst(a, R,b) ws

This approach requires transforming ABox completion
rules into FOL, so as to generate classified ontologies.

In this paper, we consider the second approach (ipxt,
we show how concrete domains are translated into the MLN
framework.

Concrete Domains

Reasoning over uncertain concrete domains can be done by
transforming the datatype predicates in the axioms and as-
sertions into mixed integer programming as shown in (Strac-
cia 2012). However, in this work, we introduce an efficient
approach that transforms the predicates into a test fumctio
that evaluates ttrue or false based on the grounding gen-
erated by an extension of the CPI algorithm. Inference in-
volving axioms that contain concrete domains can be done
according to the deduction rules given below:

AC B BLC3F.(o,v)

A C 3F.(o,v)
A C 3F. s dF. y C B
C JF.(o1 Ujl); = (02, v2) eval(oy,v1,02,02)
_ C
ar (0,01)1;(;; F(a,vz) eval (0, v1, =, v2)
A(a) AC3F(=,v)
F(a,v)

2\We leave a comparison of the two approaches as a future work.



Fy —Fy Referto Table 2 in (Niepert, Noessner, and Stuckenschroitit R

Fio Ve, d, a,r : subNom(e, a) A subNom(d, a) A rsup(c, r,d) — sub(c, d)

Fiy Ve, d,a,r,b: subNom(e, a) A subNom(d, a) A rsupNom(b, r,d) — sub(c, d)

Fiq Ve, d, f,o,v :sub(c,d) A rsupEx(d, f,0,v) = rsupEx(c, f,0,v)

I3 Ve, d, f,o0,v : rsupEx(c, f,01,v1) A rsubEx(f, 02, v2,d) A eval(o1, v1, 02, v2) = sub(c, d)
Table 1: TBox completion rules.

Fiy  Vzx,A, B :inst(z, A) Asub(A, B) = inst(z, B)

Fi5  Vax, Ay, Ag, B :inst(x, A1) Ainst(x, A2) Aint(Aq, As, B) = inst(z, B)

Fig Va,y,R, A, B :rinst(z, R, y) Ainst(y, A) Arsub(A, R, B) = inst(x, B)

Fi7  Va,y,R,S :rinst(x, R, y) A psub(R, S) = rinst(z, R, y)

Fis  Vx,y,z, Ry, R, Rs : rinst(z, Ry, y) Arinst(y, Ra, 2) A pcomp(Ry, Ra, R3) = rinst(z, R, 2)

Fi9 Vz,a,B :ninst(x,a) Ainst(z, B) = inst(a, B)

Fy Vz,a, B :ninst(x,a) A inst(a, B) = inst(z, B)

Fy  Vz,a,z, R :ninst(x,a) Arinst(z, R, ) = rinst(z, R, a)

Fyy  Va, A, B :sub(T,A)Ainst(x, B) = inst(z, A)

Fys  Va,2',R, A, B :inst(z,a) Arsup(4, R, B) = rinst(z, R, a’)

Fyy Va,2',R, A, B :inst(z,a) Arsup(4, R, B) = inst(a’, B)

Fys  Vf,op,v,C : rsupEx(f,op,v,C) Arinst(a, f,v") A eval(v, op,v’) = inst(a, A)

Fy  Va, A, f,v:inst(a, A) ArsubEx(A, f,=,v) = rinst(a, f,v)

Fy;  VYa, A1, Ag, f,v:inst(a, A1) Aldnst(a, A2) A intEx(Aq, Ag, f,0p,v) = rinst(a, f,v)

Table 2: ABox completion rules.

whereeval(...) checks if all possible values of the first
operator-valugpair (o1, v1 ) are covered by the possible val-
ues of the secondperator-valuepair (o2, v2), when so, it
evaluates to true otherwise false. The functionl(...) is
defined based on a datatype i.e., N or Z or R, and al-
gebraic operators. Some of the algebraic comparisons, com-
puted viaeval(...), that are useful to determine inference
are listed below:

eval(<,v1, <,v2) =11 < U2
eval(<,v1, <, v9) =11 < g
eval(=,v1, <,v2) =11 < V2
eval(=,v1,<,v2) =01 < g
eval(=,v1,=,v2) (=01 = vy
eval(=,v1,>,v2) (=01 > vy
eval(=,v1,>,v2) (=01 > vy
eval(>,v1,>,v2) (=01 > vy
eval(>,v1,>,v2) =11 > v
eval(>,v1,>,v2) =11 > v

This function is computed on-demand after each CPI itera-
tion as discussed in the next section. The translation of the
deduction rules into FOL is given in Table 1 and Table 2.

Example 2 Consider anMELTT KB = {(2YearOld C

Jage.(=,2),0.7), Bage.(<,3) E Toddler,0.8)} that con-
tains axioms expressed using concrete domains. From the
KB, the axiom2Y earOld C Toddler can be inferred since
eval(o1,v1,02,v2) IS true, i.e.eval(=,2,<,3) := 2 < 3.

So far we have discussed how axioms and assertions can be
translated into FOL. Next, we show how the most probable
KB is derived using MAP inference.

Computing a Most Probable KB

To derive the most probable classified and coherent ontology
from a weightedS£ ™" KB, we proceed by transforming
TBox and ABox completion rules, schema axioms, and as-
sertions into function-free FOL formulae. The formulae-cor
responding to the translation of completion rules into FOL
are shown in Table 1 and Table 2. The formulae fréin
through Fy are taken from (Niepert, Noessner, and Stuck-
enschmidt 2011). Additionally, bijectivemapping function
is provided in Definition 2 to transform axioms and asser-
tions into formulae. Of particular interest for us is projpgs
a novel way to deal with concrete domains under MLN by
modifying the Cutting Plane Inference (CPI) algorithm.
In£L1T, itis possible to build incoherent TBox axioms
due to the presence of the bottom concépffor instance,
consider the axior{a} C L, this cannot be satisfied by
any interpretation. To filter out such incoherencies in ni®de



generated by MLN, we include the formula : —sub(c, L)
(formula Fy in Table 1) to the translation of the comple-
tion rules into FOL. This technique has already been used in
(Niepert, Noessner, and Stuckenschmidt 2011).

Definition 2 [Mapping MELTT KB into Ground FOL
predicates] The functiony translates a normalized
MELTT knowledge base KB into FOL formulae in MLN
as follows:

C(a) = inst(a, C)
R(a,b) — rinst(a, R, b)
ALC 1L —sub(4, 1)
TEC—sub(T,C)

A C {c} — subNom(4, {c})
{a} E {c} — sub({a}, {c})
ACCwrsub(4,0)
ANBLC Cw int(4,B,C)
JR.AC C —rsub(A, R, C)
AC3JR.B+— rsup(4, R, B)

A C 3JF.(o,v) — rsupEx(A, F, 0,v)
JF.(o,v) C A+ rsubEx(F,0,v, A)
R CE Ry — pSle(Rl, Rg)

Ry 0o Ry C R+ pcom(Ry, Ro, R)

int({a;},{a;}, L) wherea;,a; € Nyandi # j

wherea,b,c € N1, A,B,C € N¢, R,R1,Ry € Ng, F €
N, 0 € {<,<,>,>,=}, andv € R (set of real numbers).

Lemma 1 The translation of ar€£™" KB into FOL and
vice versa can be done in polynomial time in the size of the
knowledge base (Lukasiewicz et al. 2012).

From the above Lemma, we see that the translation of
MELTT KB completion rules, axioms, and assertions into
FOL in MLN does not affect the complexity of inference in
MLN. Besides, asyped variablesandconstantgreatly re-
duce size of ground Markov nets. We introduce types to all
of the predicates shown in Tables 1 and Table 2.

Theorem 1 Given anMEL™ ontologyKB = (T, .A) and
KB’ C KB, a Herbrand interpretatiori is a model oKB’,
i.e.,1 = KB’ if and only if there exist a mapping function
¢ such thatp(H) = KB'.

So far we have introduced a mapping functignfor
KB assertions and axioms and completion rules as formu-
lae (F—F»7). The next step requires using MAP inference
of MLN to obtain the most probable ontology of a given
MELTT KB.

Maximum A-Posteriori Inference (MAP)

In order to deal with\iELTT datatypes, we introduced a
predicate calledval(...) in the translation o€ £ com-
pletion rules into FOL, depicted in Table 1 and Table 2. The
truth value ofeval(. . .) is computed by evaluating the log-
ical expressions corresponding to datatypes ilV@8L+

KB. For instance, consider theval(...) predicate in Ex-
ample 2. In the following, we show how the expression

(=,2) C (<,3), operator-value pair coverage, i.e., is eval-
uated by extending the CPI algorithm. Thus, we propose
an extension of CPI by incorporating algebraic expressions
In particular, our extension addresses a limitation of MLN
with respect to concrete domains. In general, all (hnumeri-
cal) values are represented as constants in MLN. The only
semantics that are related to constants might be the type
to which they belong. This enables more efficient ground-
ing and leads to smaller MLNs. However, this does hardly
cover the characteristics of numerical values. Therefoee,
exploit the iterative character of CPI in order to evaluate
numerical (in)equalities. The extension can be considered
as additional features that are only used on-demand. It is
formula-specific as it affects the ground values and thétrut
value of specific constraints. Hence, it can be implemented
as an extension of the detection of the violated constraints

The algorithm identifies at the beginning of each CPI it-
eration for each formula all violated groundings consider-
ing the current intermediate solution. Each of the violated
ground clauses has to be translated and added to the ILP.
Therefore, an ILP variable is generated for each ground
predicate as well as additional ILP constraints. Datatype
ground predicatesuval(...) appear during this process as
any other predicates. However, we exploit there semantics t
decide whethetval(. . .) predicates evaluate tnue or false
Depending on the result of the evaluation of the attached
boolean expression of the respective predicate, we decide
whether it is necessary to add the violated ground clause to
the ILP. For instance, if the datatype predicate is positive
(negative) and it appears without negation (or negation) in
the formula, we do not add the ground clause to the ILP
as it is not violated in the current iteration. Otherwise, we
need to add the clause to the ILP but leave out the datatype
ground predicates as they can not fulfil the violated clause,
i.e., the respective literal is false due to evidence. Hence
we do not introduce ILP variables for datatype predicates as
they will not be added to the ILP. Instead, we compute the
truth value of the datatype predicates on-the-fly and only on
demand. Hence, the proposed approach improves the effi-
ciency of processing numerical predicates in a Markov logic
solver without sacrificing the performance. We implemented
this algorithm as an extension to the MLN inference engine
ROCKIT? (Noessner, Niepert, and Stuckenschmidt 2013).
We leave out testing this implementation with different on-
tologies as a future work.

Theorem 2 Given the following:

e an MELTT knowledge base&iB (KB”,KBY)
formed from a vocabulary containing a finite set of in-
dividualsNy, conceptN¢, featuresNg, and rolesNg,

e HB as a Herbrand base of the formuld&ein Table 1 and
Table 2 over the same vocabulary,

e G, as a set of ground formulae constructed fréB~
and

e (G5 as a set of ground formulae constructed frerBY

Shtt ps://code. googl e. cont p/ rocki t/



the most probable coherent and classified ontology is ob-
tained with:
’U}j)

From Theorem 2 and the results in (Roth 1996), finding
the most probable, classified and coher&t€ L™ KB is
in NP. Thehardnessof this complexity bound can be ob-
tained by reducing partial weighted MaxSAT problem into
an MELTT MAP query. Consequently, the MAP problem
for MELTT is NP-hard.

(1)

D

arg max (
(0j,w;)€G2:Il=0;

HBDIEG,UF

Conclusion

In this work, we have extendefiC™*-LL into MELTT

with nominals, concrete domains and instances. In partic-
ular, we proposed an extension to the CPI algorithm in or-
der to deal with reasoning under uncertain concrete domains

Noessner, J.; Niepert, M.; and Stuckenschmidt, H. 2013.
Rockit: Exploiting parallelism and symmetry for map infer-
ence in statistical relational models.Twenty-Seventh AAAI
Conference on Atrtificial Intelligence

Richardson, M., and Domingos, P. 2006. Markov logic net-
works. Machine learnings2(1-2):107-136.

Riedel, S. 2012. Improving the accuracy and effi-
ciency of map inference for markov logicarXiv preprint
arXiv:1206.3282

Roth, D. 1996. On the hardness of approximate reasoning.
Artificial Intelligence82(1):273-302.

Straccia, U. 2012. Description logics with fuzzy concrete
domains.arXiv preprint arXiv:1207.1410

We have implemented the proposed approach and planned to

carry out experiments in the future. We will also investegyat

to extend the proposed approach to other datatypes such as

Date, Time, and so on.
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