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1 General Introduction

This thesis consists of three single-authored essays that address open research
questions in the empirical analysis of network industries. Empirically analyzing
these markets is extremely difficult. Because of several industry particularities
standard economic and econometric models can generally not be applied to examine
network industries. Switching costs and network effects are two prominent examples
of these market characteristics.

A switching cost is a one-time utility loss that consumers incur when buying a
different product today than in the previous period. This creates an incentive for
consumers to continue to buy from the same firm over time. Throughout this thesis
the term network effect denotes a direct firm-specific network effect, i.e. the utility
from using a particular product increases in the number of other consumers who
use the same product. This creates an incentive for consumers to coordinate and
conform with the crowd.

In isolation, switching costs and network effects have been analyzed extensively,
both theoretically and empirically, cf. Farrell and Klemperer (2007). However, in
most network industries, switching costs and network effects occur simultaneously
and interact.

Regulators around the world are often concerned with network industries. In most
cases, demand exhibits massive consumer inertia providing empirical evidence that
it is easy for incumbent firms to defend their dominating position and potentially
exploit locked-in consumers. A prime example for such an industry is the wireless
industry. In order to design effective policies, it is important to know where the
inertia comes from because policy implications may be very different depending on
the sources of the inertia.

Empirically disentangling these sources is a very challenging task. Switching costs
link consumers’ decisions across periods and therefore call for modeling demand

1



1 General Introduction

using a dynamic model. In terms of both identification and estimation, these models
are much more involved than static frameworks. The identification of network effects
is extremely intricate, mostly because of the reflection problem (Manski 1993). The
reflection problem comes from the fact that a network effect tries to explain the
market structure, i.e. the distribution of market shares, by market shares leading to
severe econometric identification problems.

In Chapter 2 and 3, I present structural demand models which allow to disentangle
different sources of consumer inertia based only on group-level data. The availability
of group-level data allows me to observe market shares and churn rates disaggregated
by different demographic consumer types and local markets. This type of data is
usually much easier to acquire on a large scale than individual-level data. One of
the main contributions of this thesis is to show that group-level data is powerful
enough to separate the effects of switching costs and network effects from preference
heterogeneity. Although my models are tailored towards the US wireless industry,
they are applicable to a broad range of network industries.

Chapter 2 presents the basic empirical framework to estimate demand. In contrast
to Chapter 3, consumers are myopic, i.e. their previous choice affects current behavior,
but individuals are not forward-looking. The use of group-level data allows me to
identify preference heterogeneity from consumer type-specific market shares and
switching costs from churn rates. Identification of a localized network effect comes
from comparing the dynamics of distinct local markets. The central condition for
identification is that neither the characteristics defining consumer heterogeneity
nor the characteristics defining reference groups are a (weak) subset of the other.
Applying my framework to the US wireless industry, I find that both switching costs
and network effects play an important role: Estimates of switching costs range from
US-$ 316 to US-$ 630. The willingness to pay for a 20 percentage point increase
in an operator’s market share is on average US-$ 22 per month. Counterfactual
simulations illustrate that both effects are important determinants of consumers’
price elasticities potentially translating into market power that helps large carriers
in defending their dominant position.

Chapter 3 extends the framework proposed in Chapter 2 by allowing consumers
to be forward-looking when buying a product. In most high-tech consumer goods
industries, it is much more realistic to assume that consumers are forward-looking
rather than myopic. I discuss the additional assumptions for identification of the
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network effect in a dynamic model and estimate it using group-level data on the US
wireless industry. Ex-ante, it is not clear how the estimates would change when going
from a myopic to a dynamic model. Qualitatively, the results from the dynamic
model are in line with the ones from Chapter 2. Both switching costs and network
effects are significant. In comparison to the myopic model, estimates of switching
costs and network effects are on average 30% to 50% lower. When analyzing the
demand effects of perfect network compatibility or a reduction in switching costs,
forward-looking consumers react less strongly but much faster than in the myopic
model.

Switching costs and network effects do not only have significant effects on demand.
They also affect firms’ pricing strategies because an installed customer base is a
valuable asset. Consequently, supply side behavior should be inherently dynamic,
independently of whether consumers are myopic or forward-looking. Therefore,
static models are inappropriate to analyze firm behavior and to estimate marginal
costs.

Chapter 4 addresses this issue. I outline an empirical model of dynamic platform
competition. When setting prices, firms face a trade-off between a harvest and
an investment motive. On the one hand, setting high prices will increase current
profits by harvesting locked-in consumers. On the other hand, lowering prices
can be profitable as it draws in consumers today. Due to the network effect,
additional consumers will be attracted to the firm leading to a larger installed
base which can be harvested in the future. Recent theoretical research shows that
this non-trivial trade-off has important implications for the industry dynamics.
I outline how marginal costs can be estimated when firms optimize dynamically.
The estimation algorithm combines two-step estimation and forward-simulation
techniques. The implementation is computationally very intensive and therefore
left for future research. When combined with the demand models in Chapter 2 or
Chapter 3, the supply side model allows for rich counterfactuals. For example, one
can assess how firms’ pricing strategies change, when switching costs or network
effects are regulated. Moreover, the model could shed light on the effects of mergers
in network industries which is a regularly and heavily debated topic.
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2 Disentangling Sources of
Consumer Inertia - Network
Effects and Switching Costs in
the US Wireless Industry

2.1 Introduction

In many high-tech consumer goods industries purchase decisions are characterized by
the presence of both switching costs and network effects. The individual importance
of both effects has been studied extensively, cf. Farrell and Klemperer (2007).
While switching costs create consumer lock-in via a consumer’s own previous choice,
network effects make a consumer prefer a product that many other consumers already
use. Although not necessarily the case, this often leads to inefficient outcomes and
substantially alters the nature of competition generally favoring large incumbent
firms.

The interaction between switching costs and network effects is much less studied.
However, it is exactly this interplay that can be particularly problematic. In fast-
changing industries like the wireless service industry, consumers are usually not able
to forecast the technology evolution well over a longer horizon. When switching
costs impede consumers from re-optimizing quickly, network effects and switching
costs may amplify each other giving large firms not only extensive but also very
persistent market power. In these types of industries, the typical concentrated
market structure with only few firms and heavy consumer inertia constantly raises
regulators’ concern. In order to design effective policies, it is crucial to know where
consumer inertia comes from. For example, policies reducing switching costs, such
as number portability in the wireless industry, may not have a big effect on customer
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2 Disentangling Sources of Consumer Inertia

mobility if inertia is mostly due to network effects.

By only looking at the aggregate industry structure, it is usually hard to empirically
disentangle whether consumers stick with a dominant firm because of preference
heterogeneity, switching costs or network effects. In this context, the identification
of network effects is particularly problematic, especially when only aggregate data
are available. These problems are very similar to Manski (1993)’s reflection problem:
the fact that market shares occur on both sides of an regression equation requires
additional model structure and more sophisticated identification arguments compared
to analyzing demand dynamics in non-network industries. These difficulties have led
most of the literature to make restrictive assumptions or to ignore one of the effects
in order to quantify the others. Restricted models are likely to result in confounded
estimates and wrong conclusions for economic policy, however.

To tackle these problems, I develop an empirical framework that allows me to
separately identify preference heterogeneity from direct network effects and state-
dependence due to switching costs. Throughout this thesis, the term network
effect denotes a direct, anonymous, firm-specific network effect. It measures the
effect of a product’s aggregate market share within a consumer’s reference group,
i.e. the group of individuals a consumer cares about, on this consumer’s flow utility
from using that product. I model heterogeneous consumers in a discrete-choice
framework with decisions being driven by products’ observed and unobserved quality
characteristics, an individual consumer’s choice in the previous period as well as the
contemporaneous average behavior of her reference group.

In the identification section, I demonstrate under which assumptions the reflection
problem can be transformed into a well-studied endogeneity problem and how
switching costs and certain kinds of network effects - especially those that are similar
to a local spillover - can be separately identified from preference heterogeneity. I
argue that the reflection problem and the associated endogeneity problem can be
overcome as long as neither the determinants of consumer heterogeneity nor the
determinants of the reference group are a weak subset of the other. The implications
of this condition are twofold. First, it enables me to observe individuals with identical
preferences in different network environments yielding the necessary variation in the
data. Second, demand shifters that affect different consumer types within a reference
group differently can serve as exclusion restrictions and the basis for instruments for
a product’s market share.
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2.1 Introduction

I estimate the model analyzing demand for wireless services in the US focusing on
geographically localized network effects. For the estimation, I use a panel of group-
specific market shares constructed from a large-scale survey. The detailed group-level
data contain market shares disaggregated by different demographic types and different
local markets which allows me to identify consumers’ preference heterogeneity from
type-specific market shares. Aggregate churn rates, i.e. the fraction of consumers
who cancel their contract within a period, identify the switching cost parameters.
In my model, the switching cost measures a one-time utility loss associated with the
switching process. Differences in the evolution of separated local markets identify a
localized network effect. As long as consumers’ preference heterogeneity does not
systematically differ across local markets and time and consumers’ reference groups
consists of at least 2 different types, the model can be estimated using an extension
of the classical framework by Berry, Levinsohn, Pakes (1995, henceforth BLP).

My estimates of both switching costs and network effects are large and significant.
Switching costs vary across consumer types from US-$ 316 to US-$ 630 revealing
substantial heterogeneity. The willingness to pay for a 20%-point increase in an
operator’s market share within a consumer’s reference group is around US-$ 22 per
month varying across consumer types from US-$ 18 to US-$ 25. Estimating the model
ignoring either switching costs or network effects results in implausibly large estimates
of the other effect and a substantially worse model fit. In counterfactual simulations,
I demonstrate that network effects and switching costs are important determinants of
consumers’ price elasticities. Implementing perfect network compatibility results in
lower own-price elasticities and much more homogeneous cross-price elasticities. Not
surprisingly, decreasing switching costs results in significantly larger price elasticities.
Short-run elasticities almost triple and the difference between medium-run and
long-run elasticities diminishes. In both simulations, the smaller operators (Sprint
and T-Mobile) would gain substantial market share with T-Mobile generally profiting
most.

This paper is related to several strands of literature. There is a wide range of
studies on switching cost and network effects in the wireless industry most of which
follow a static and reduced-form approach. Moreover, almost all studies focus only on
either switching costs or network effects, but not both simultaneously. In contrast to
the reduced-form studies, for example by Kim and Kwon (2003) and Kim, Park, and
Jeong (2004), I follow a structural approach that allows me to conduct counterfactual
analysis and explicitly take the dynamic nature of subscription decisions into account.
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2 Disentangling Sources of Consumer Inertia

Grajek (2010) estimates product-specific network effects and compatibility in the
Polish wireless market. While he follows a structural approach his model is restrictive
as he does not allow consumers to switch operators. Cullen and Shcherbakov (2010)
estimate a structural demand model for bundles of handsets and service provider,
but abstract from consumer heterogeneity and the presence of network effects. Yang
(2011) is to the best of my knowledge the only study that considers direct network
effects and switching costs simultaneously in a dynamic model. However, he does
not take into account consumer heterogeneity and the reflection problem is not dealt
with.

In contrast, I provide identification arguments for a structural demand model
with consumer heterogeneity, switching costs and direct network effects exploiting
detailed group-level data. My model allows me to estimate network effects within an
extension of the methodology by Berry, Levinsohn, and Pakes (1995) complemented
with dynamic panel techniques and elements from the dynamic demand literature.
Shcherbakov (2013) and Nosal (2012) use a dynamic demand framework to quantify
consumer switching costs in non-network industries (cable TV and health plan
choice). The structural identification of network effects shares some features with
the sorting problems dealt with in the housing market literature. For example Bayer
and Timmins (2007) quantify local spillovers in a static model of location choice.
Identification issues in their model arise because all variation in choices can be
explained by a vector of location fixed effects. Similar to my method, they apply an
instrumental variable approach in the style of BLP to decompose the location-fixed
effects into spillovers and unobserved quality characteristics. Lee (2013) quantifies
indirect network effects in the video game industry. For estimating direct network
effects, I rely on similar moment conditions as his paper.

The remainder of this paper is structured as follows: The next section describes
important characteristics of the US wireless industry. Section 2.3 presents the
economic model. Section 2.4 describes the data used for the estimation. Section
2.5 develops the identification arguments and outlines the estimation strategy.
Estimation results and counterfactual experiments are presented in Sections 2.6 and
2.7. Section 2.8 concludes.
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2.2 Industry characteristics

2.2 Industry characteristics

During my sample period (2006-2010), the US wireless industry was a prime example
of an industry in which switching costs and network effects interact. Two large
mergers in 2004 (AT&T and Cingular) and 2005 (Sprint and Nextel) led to an
oligopolistic market structure with 4 dominant players and constant scrutiny by
the FCC. The two biggest operators (AT&T and Verizon) still have a joint market
share of almost 70 %, while each of the two smaller operators (Sprint and T-Mobile)
controls 10-15 % of the market. The remaining market is shared by several smaller
operators often with limited regional coverage mostly in rural areas. While the
smaller operators usually sell more specialized products, the four major carriers offer
only slightly differentiated service bundles with respect to contract types, payment
schemes, tariff structure, handsets subsidized and customer service. However, carriers
can differ significantly in local coverage quality.1

Operator market shares vary significantly across local markets, but are very
persistent over time. In addition, my micro data indicate that the vast majority of
cellphone users has not switched their provider for more than 3 years. The FCC
has been concerned about this consumer inertia and attributed it to the presence
of switching costs. Policy measures, such as number portability in 2003, have
been undertaken to reduce switching costs. However, customer mobility across
operators remains low with average monthly churn rates mostly below 1-2 %. In
addition, large carriers generally have substantially lower churn rates than smaller
ones. Switching costs in the wireless industry can be explicit, for example in the
form of early-termination-fees or implicit through hassle costs that consumers incur
when switching their operator. During my sample period all post-paid contracts
specified an early-termination-fee of up to US-$ 350 that a consumer had to pay
to end her contract prematurely. Implicit hassle costs constitute an additional
component of switching costs because consumers in general have to find out how to
cancel a contract and incur opportunity costs of time, for example for filling out the
necessary paper work.

Network effects in modern wireless communications services are largely tariff-
mediated, i.e. generated by the predominant contract structures. Postpaid contracts
in the US typically take the form of 24-months contracts specifying a monthly fee

1For a detailed description of variation in local coverage quality see the discussion in Sinkinson
(2011).
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2 Disentangling Sources of Consumer Inertia

plus some included number of anytime minutes that can be used to make calls at
any time to any network (for example a 400-anytime-minute package for 40 US-$ per
month). During my sample period, most of these contracts included unlimited night
and weekend minutes as well as free calls to an operator’s own network.2 My data
reveals that at the beginning of my sample period (January 2006) the majority of
consumers (more than 75%) had plans with free on-net calls. This number decreased
continuously to slightly above 50% at the end of my sample period (December 2010).
Afterwards, network effects in the form of on-net call discounts have continued to
decline as wireless carriers shifted their business models from selling phone services
to data plans bundled with unlimited anytime-minutes. Given the historical contract
structures and the fact that many consumers stick to their old contracts for years,
on-net discounts should still have played a substantial role during my sample period.

The mere presence of on-net discounts however need not generate network effects as
operators could adjust their prices in such a way that small operators compensate for
their smaller network by lower prices. Interestingly, several papers found that even
after controlling for price differentials, consumers perceive networks as incompatible,
i.e. they seem to appreciate being on a larger network per se (Grajek 2010; Kim and
Kwon 2003; Birke and Swann 2006). This may be due to several reasons. First, it is
not clear, that operators really charge fully off-setting prices. Second, there can be
more subtle contract features from which consumers benefit more easily if they are
on the same network. For example, under a receiving-party-pays regime3 as in the
US, consumers can have an incentive to coordinate on symmetric contract features,
for example on identical relative prices for voice minutes and text messages as this
facilitates coordinating on a preferred mode of communication. These features are
usually slightly different across operators but are identical across contracts within
an operator. In addition, consumers may appreciate a large network as an insurance
against having to buy more expensive off-net minutes in case of unanticipated calls.
Finally, they may simply derive psychological utility from conforming with their
peers (Grajek 2010).

2For an overview of typical contract features during my sample period see Section 2.5 in the
Appendix.

3While in a receiving-party-pays regime both, the caller and the receiver, are charged for airtime,
under a calling-party-pays regime, only the caller is charged for making a call.
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2.3 Model

2.3 Model

In this section, I present a structural discrete-choice model in which consumer
decisions are driven by both switching costs and network effects. The framework
extends the literature on estimating demand models with state-dependence by
incorporating direct network effects. Although in general applicable to a broad range
of network industries, I tailor the model towards the US wireless industry.

Each period, consumers can choose a wireless network to subscribe to. There are
4 major operators and a fringe of smaller operators which constitute the outside
option. This yields a choice set with 5 different products in total. Modeling the
technology adoption decision as in Grajek and Kretschmer (2009) or Goolsbee and
Klenow (2002) is conceptually straightforward and can be done by splitting up the
choice not subscribing to the major 4 into subscribing to a small operator and no
wireless service at all. Given that the wireless penetration rate was already very
high (over 90%) during my sample period, I abstract from the adoption decision
and assume that every consumer is subscribed to a wireless carrier. In contrast to
Cullen and Shcherbakov (2010), I abstract from consumers’ specific handset choice.
In addition, I do not model the decision of which specific plan to choose. Each
consumer is assigned to a local market based on his residency. I classify geographic
markets similarly to Nielsen’s DMA-definition. A DMA (designated market area) is
defined as a collection of counties of similar magnitude as a metropolitan statistical
area. The time period of observation is a quarter.

Consumers have heterogeneous preferences as a function of their individual de-
mographic characteristics d. This results in a discrete number of consumer types
which may for example be defined by age and income. The flow utility of consumer
i belonging to demographic group d in geographic market m from being subscribed
to operator j in quarter t is given by a multiplicative function in usage quantity qdjmt
and quality. I treat usage quantity as fixed and exogenously given. Quality is mod-
eled as a linear function in observable product characteristics (X) and unobserved
demand shocks (ξ). Due to the presence of network effects, a large network size (srdj )
increases consumers’ utility of being subscribed to operator j. Here, rd indexes a
consumer’s reference group which need not be equal to her type d, i.e. consumers
are allowed to also care about other types than their own. I assume that consumes
are myopic so that they do not form explicit beliefs about the future evolution of
the industry. However, the model has a dynamic component as consumers incur a
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2 Disentangling Sources of Consumer Inertia

switching cost (ψ) when choosing a different provider today than in the previous
period. The per-period utility function is specified as follows:

uijmt = (Xd
jmtβ

d + γdpdjt + ξdjmt + αdsrdjmt)q
d
jmt︸ ︷︷ ︸

δdjmt

+ψd1{ait−1 6=ait} + εijmt

where Xd
jmt contains operator-fixed effects and observed product quality characteris-

tics varying by local market m and consumer type d, pjt denotes the average price
per unit of phone service of operator j in period t. The structural parameters (β,γ,
α, ψ, ξ) differ across demographic types, but are constant within a group d. In
order to reduce the number of parameters to be estimated, I impose that the price
coefficient is a decreasing function of a type’s income. More specifically, the price
coefficient of type d is modeled as γd = α

log(yd)

Across time and local markets, wireless carriers can differ substantially in various
quality dimensions. Such differences are often observed by the agents, but not by
the econometrician. In the model, they are captured by ξdjmt which is a real-valued
unobserved vertical characteristic. I assume that ξ evolves according to an exogenous
AR(1)-process with a mean-zero innovation ν:

ξdjmt = ιξdjmt−1 + νdjmt

where ι is a nuisance parameter to be estimated. Such a specification is justified by
noting that typical components of ξ, like brand-reputation, customer service and
unobserved components of carriers’ infrastructure are very persistent across quarters.
εijmt is an iid logit shock drawn from a type-1 extreme value distribution capturing
individual-specific shocks to the utility from each product.

ψd represents a consumer’s switching cost that has to be paid once she decides
to be on a different network in the current period than in the previous period. It
comprises all hassle costs associated with the switching process, i.e. transaction costs
for canceling a subscription, explicit early termination and start-up fees, costs of
buying new equipment and potential learning costs. If applicable, poaching payments,
i.e. one-time payments made by an operator to whom a consumer switches, for
example in the form of handset subsidies, reduce the switching costs. Therefore,
ψd should be interpreted as a net switching costs. Moreover, I do not distinguish
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between quitting and start-up costs. As the definition of my outside good does not
allow consumers to be in a switching cost free state, I assume that all switching
costs are paid when quitting an operator’s service. Although ψd may in principle
differ across markets and products, I treat it as constant in those dimensions.

The network effect operates through srdj , the market share of operator j in the
reference group of consumer d. If affects a consumer’s utility in two ways. First, it
explicitly lowers a consumer’s monthly bill because a higher network size generally
implies a lower need for buying more expensive off-net minutes. Second, as argued
in Section 2, consumers may derive explicit additional utility from being on a larger
network. The parameter αd will capture the sum of all these effects after controlling
for the average price per minute and usage quantity. In Appendix A, I show how
the price effect associated with network size can be disentangled from other network
effect components when additional data are available.

In the context of network effects, the specification of the reference group is crucial.
In principle, the reference group can be specified by an arbitrary interaction of local
market and observed demographic characteristics. Identifying restrictions on the
composition of the reference group to overcome the reflection problem are discussed
in Section 2.5.1. For the empirical application, I assume that a consumer’s reference
group consists of all consumers in her local market m. This assumption is plausible
as for many people, their social network is likely to be localized within their home
region.4 There is also empirical evidence on the local market being an important
reference group. For example, a report from Teletruth, a consumer advocacy group,
indicates that in 2008 local calls made up two thirds of an average phone bill.

As I analyze anonymous network effects, I assume that each demographic group d
consists of a continuum of consumers so that individuals do not act strategically but
take the equilibrium as given. The timing of consumer decisions between periods
t− 1 and t is as follows:

1. Each consumer i observes the industry structure Ωt = (Xt, ξt, st−1) and his
idiosyncratic shock εit.5

4Similar ideas underlie Hoernig, Inderst, and Valletti (2014), Birke and Swann (2006) and Maicas,
Polo, and Sese (2009).

5Implicitly, this specification abstracts from problems of limited information as in Sovinsky
Goeree (2008). In my model, people are perfectly informed about product characteristics and
prices.This information structure can be justified by noting that wireless carriers heavily engage
in advertising and marketing so that consumers can get an accurate picture of the market
environment easily.
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2. Given (1), consumers form rational expectations on the choices of consumers
in their reference group: E[srdjt |Ωt] =

∫
i′∈r Pr(ai′t = j)dG(i′). Given the

assumption of a continuum of consumers, there is no uncertainty in the
aggregate so that rational expectations are equivalent to perfect foresight
consumers.

3. Based on their expectations from (2) consumers simultaneously choose their
utility maximizing alternative. Market shares st and churn rates ct are realized
such that the observed market shares are the outcome of a self-consistent
equilibrium (Brock and Durlauf 2003) and one of possibly several fixed points
of a mapping Ψ that maps the industry structure and expectations on market
shares into realized market shares (st = Ψ(Ωt,E[st]))

This timing and information structure provides a justification for using observed
market shares as measures for consumers’ expectations on network size. The presence
of social effects is likely to result in the existence of multiple equilibria which can
be a severe problem for identification and estimation. Therefore, I assume that
within each reference group, consumers coordinate on a single equilibrium. In my
application, this assumption can be justified: I analyze the industry in a mature
stage, so that consumers plausibly had enough time to learn about the market
environment and coordinate successfully. This assumption is less restrictive than
the often-used single-equilibrium in the data assumption as my framework allows
different reference groups, for example different local markets, to play different
equilibria.

The structure of the model and the distribution of the iid error term result in
closed-form solutions for consumers’ conditional choice probabilities as a function of
mean flow utilities δ and the switching cost parameters ψ:

Pri(not switch) = Pri(j|j) =
exp(δijt)

exp(δijt) +
∑

l 6=j exp(δilt − ψi)

Pri(switch from k to j) = Pri(j|k) =
exp(δijt − ψi)

exp(δikt) +
∑

l 6=k exp(δilt − ψi)
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Consequently, market shares and churn rates can be computed recursively:

sijt =
∑
j′

P i(j|j′)sij′t−1

cijt = 1− Prit(j|j)

These predictions can be taken to the data to form moment conditions.

2.4 Data

To estimate the model, I combine group-level panel data constructed from a large-
scale repeated cross-section survey and operator-level statistics from the Global
Wireless Matrix, an industry report by Merrill Lynch Research. The sample period
is from January 2006 to December 2010.

Global Wireless Matrix The Global Wireless Matrix contains quarterly data on
operational and accounting figures for the major 4 carriers as well as the most
important regional operators. These are not broken down by regional market, but
only available on the national level. I use these data to construct average price
indices for each operator and quarter from aggregate usage and revenue data. In
addition, I consider information on the cost side, in particular EBITDA (earnings
before interest, taxes, depreciation, and amortization) and revenue data to construct
instruments for the subscription prices charged by operators.

Survey data My main data source is a survey conducted quarterly by Comscore,
a market research firm. It surveys more than 30,000 cellphone users throughout the
US in each quarter. The survey is stratified in order to allow for a representative
projection for the whole US market. It contains detailed information on the operator
choice of individual consumers as well as their demographic characteristics such as
age, income, ethnicity or employment status.

Information on the specific contracts chosen by individuals is limited to the type
of contract (individual, family plan, prepaid) and the monthly expenditure for the
wireless bill. Unfortunately, the data do not contain detailed information on the
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2 Disentangling Sources of Consumer Inertia

Figure 2.1: Constructed price index
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specific pricing structure of each contract. Previous papers on the wireless industry
have mostly assumed individuals to consume identical quantities and taken the
average revenue per user as price to be paid. I improve upon the existing approaches
by constructing a price index for an average service bundle, for example a 100-minute
package on a particular network j in quarter t. More specifically, using the firm-level
data from the Global Wireless Matrix, I divide Average Revenue per User by Average
Minutes-of-Use for each quarter-operator observation to get a price index pjt. The
resulting price index is displayed in Figure 2.1. The resulting proxy for monthly
subscription price still abstracts from the complicated two-part pricing schemes
observed in the telecommunications industry. However, it seems to be consistent
with anecdotal industry evidence. For example, the price index is significantly higher
for AT&T and Verizon who usually offer higher quality service at higher prices
while T-Mobile which is known for pricing more aggressively has the lowest price
index. Franchetti (2014) argues that given the plethora of different pricing structures,
an average price index may actually be what consumers take into account most.
Assuming that every consumer faces the same average price, I can compute the
average usage quantity of each consumer by dividing total expenditure by the price
index. For simplicity, I treat this usage quantity as fixed throughout the estimation
and the counterfactuals. One could extend the model to a continuous-discrete choice
framework as in Schiraldi, Seiler, and Smith (2011) by modeling quantity as the
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Figure 2.2: Comparison of market shares: survey sample vs. GWM
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outcome of a static optimization problem.

Consumers are also asked about their switching behavior, in particular how long a
consumer has been subscribed to her current operator. If a respondent reports being
subscribed to her operator for less than 3 months, I treat this consumer as having
switched in this period. There is also a question about their previous operator.
Unfortunately, only very few consumers respond to this question. Consequently, I
cannot reliably construct the full matrix of conditional choice probabilities. Therefore,
I develop an estimation strategy that relies only on unconditional choice probabilities
contained in the market shares and the subset of the conditional choice probabilities
contained in the churn rates.

Summary statistics of the survey respondents’ characteristics split up by four
consumer types are displayed in Table 2.1. The first two columns display consumers’
age (in years) and yearly household income (in US-$ 1,000) followed by the monthly
expenditure for wireless plans (in US-$). MoU100 displays how long survey respon-
dents use their cellphone per month (in 100-minutes). The last column contains
information on what fraction of people switch their operator within a month.

Table 2.1: Descriptive statistics: Consumer type characteristics

ctype Statistic Age Income Expenditure MoU100 Switch

>45 years-poor Mean 56.24 29.33 53.08 8.70 0.03
>45 years-poor SD 13.45 11.73 32.71 5.63 0.16
>45 years-rich Mean 53.41 87.89 69.75 11.02 0.02
>45 years-rich SD 12.34 21.59 32.49 5.41 0.13
<45 years-poor Mean 24.00 27.50 66.32 11.13 0.05
<45 years-poor SD 5.61 12.25 31.37 5.78 0.22
>45 years-rich Mean 24.23 84.10 73.45 11.88 0.03
>45 years-rich SD 6.18 21.11 30.93 5.43 0.18

Finally, the survey contains information on consumers’ satisfaction with the
quality of the provided wireless service rated on a scale from 1 to 10. In my
estimation, operator fixed effects control for differences in the national mean of
quality characteristics. To control for variation in local coverage quality, I use
information on the average satisfaction level of all customers of an operator within
a local market as proxy for this operator’s network quality in this region. This
variable does not necessarily capture physical signal quality but rather an aggregate
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index of perceived service quality by a particular type of consumer. Kim, Park, and
Jeong (2004) and Kim and Yoon (2004) provide evidence that in the Korean market
customer satisfaction and call quality are highly correlated.

In using these variables, I cannot rule out biased reporting due to consumer
selection. For example, more demanding consumers may choose higher quality
operators but may also be more critical in rating service quality. To solve this
problem, I do not use the absolute level of satisfaction, but take the normalized
deviation of the average rating within a region by a specific consumer type d from
the national average rating of this type-operator combination. As the fixed-effects
capture operators’ mean quality level, the satisfaction deviation measure should
appropriately control for regional variation in service quality. Descriptive statistics
of the original satisfaction variable and the constructed proxy for local coverage
quality are summarized in Table 2.17 in Appendix B.

Unfortunately, the survey is not a panel, but a repeated cross-section. This
limits the possibilities for using the individual-level data directly to analyze demand
dynamics. Therefore, I construct a panel of demographic group-specific market
shares. For data availability reasons, I focus on four consumer types (see Table
2.2) and the biggest local markets (see Table 2.18 in the Appendix). This leaves
me with 20 geographically separated markets consisting mostly of the urban areas
around the largest US cities. These markets differ in several respects, for example in
their local age or income distribution. However, they are relatively similar in other
dimensions, like the degree of urbanity, the wireless penetration rate (of almost 100%)
or market size. Therefore, I expect market size effects not to play a significant role.
As I exclude very rural areas, the market shares constructed from the survey differ
slightly from the market shares reported in aggregate industry reports. However,
the differences are plausible, for example AT&T which is relatively strong in some
less densely populated areas has a lower market share in my sample while T-Mobile
which focuses on densely populated urban markets has a higher market share in my
sample. The geographical size and distribution of the local markets is illustrated in
Figure 2.3.
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Figure 2.3: Overview of local markets used in the estimation

2.5 Identification and estimation

2.5.1 Identification

In this subsection, I show under which assumptions the parameters of the demand
model are identified. In particular, I show how switching costs and localized network
effects can be disentangled from preference heterogeneity and that the reflection
problem does not occur under certain conditions.

Consumer heterogeneity in the form of consumer type-specific coefficients is
identified by differences in type-specific market shares. As in Berry, Levinsohn, and
Pakes (1995), variation in the choice sets across local markets and time identifies
type-specific price and quality coefficients. For separately identifying switching costs
and network effects, I rely on two key assumptions that are implicit in my model:

Assumption 2.5.1. Conditional on a consumer type d, consumers have homo-
geneous preferences. Preferences are constant across time or local markets (or
both).

Assumption 2.5.2. Each consumer has one reference group rd the average behavior
of which she takes into account. Neither the determinants of rd nor the determinants
of d are a (weak) subset of the other.

As in Yang (2010), the key data to identify switching costs are churn rates. The
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model’s churn rate predictions are given by one minus the conditional choice proba-
bilities of sticking to a product. This subset of the conditional choice probabilities
contains more detailed information than the unconditional choice probabilities im-
plicit in the market shares. Under Assumption 2.5.1, this allows for comparing the
choice probabilities of consumers with identical preferences but different choices in
the previous period: If switching costs are zero, the unconditional choice probabilities
should be identical to the conditional choice probabilities. Positive switching costs
will drive a wedge between the two which will identify switching costs.

The identification of network effects is more complicated and runs into several
problems. First, similar to the well-known endogeneity problem of price, reference
group market shares will be correlated with the unobservable demand shocks which
requires finding appropriate instruments. After normalizing for usage quantity and
redefining the mean flow utility per unit, δdjmt =

δdjmt

qdjmt
can be decomposed as:

δdjmt = Xd
jmtβ

d + γdpdjt + αdsrdjmt + ξdjmt(2.1)

where d, j,m and t index consumer type, operator, local market and time respectively.
Valid instruments for srdjmt have to be correlated with the endogenous regressor but
uncorrelated with the unobserved error term. An additional problem arises, because
mean utilities are not observed in the data. As in the literature on pure switching cost
models (Shcherbakov 2013; Nosal 2012), they have to be inferred from market share
data. Knowing the contemporaneous market shares smt and previous period’s market
shares for type d is sufficient for computing the values of type d’s mean utilities
in market m and period t (δdmt) so that δdjmt = f(smt, s

d
mt−1). The instruments for

reference group market shares must not enter equation 2.1 directly, in particular the
market share variables needed to back out δdmt cannot be used as instruments. If
these were the only available shifters of srdjmt, the reflection problem would occur in
equation 2.1 and network effects could not be identified.

My key assumption for identifying a localized network effect is Assumption
2.5.2. Intuitively, this assumption requires two things: First, a reference group
characteristic that allows one to observe individuals with identical preferences in
different network environments. The prime example for such a characteristic is the
local market. The second requirement is that there is some heterogeneity across the
consumers within a reference group. This heterogeneity can be used to construct the
necessary exclusion restrictions and instruments: With −d denoting all consumer
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types within d’s reference group except for d itself, the reference group market share
for type d is a function of the lagged market shares of types d and −d as well the
weights (Dmt) of the different demographic types in her market.

While s−dmt shifts the mean utility for type d in period t directly, srdmt−1 is excluded
from the utility of type d in period t. Lagged market shares of type d affect sdmt and
δdmt through both the switching costs as well as the network effect. Therefore, looking
at own-type lagged market shares will not be sufficient to separately identify the
network effect α. In contrast, s−dmt−1, will affect sdmt only if there is a network effect.
This motivates using lagged market shares of types −d as instruments for current
period’s reference group market shares for type d. These variables are correlated
with srdmt as long as there is some sort of state-dependence in consumer choices.
Lagged market shares of types −d would be uncorrelated with ξdmt if the ξ-terms
were either uncorrelated across demographic groups or time periods. However, it is
likely that the unobserved quality characteristics are correlated in both dimensions.
To construct valid moment conditions, I exploit the dynamic panel data structure
by interacting the instruments from lagged periods with contemporaneous values of
ν, the exogenous innovation in the ξ-process, instead of its levels.

Intuitively, one can think of the identification strategy as comparing the behavior
of the same consumer type d under the dynamics of different network environments.
In my application the variation in networks occurs over time and local markets.
Local markets differ with respect to the initial conditions, the evolution of local
service quality and the distribution of demographic characteristics Dmt.

The initial conditions reflect different market histories that cause operators to
start the sample period with different network sizes in different markets. These
different histories contain variation due to exogenous differences across operators
and local markets, for example in spectrum availability, tower and antenna locations
or regulation of land use.

Furthermore, local markets differ in the evolution of operators’ local service
quality. I assume that this evolution is determined by an exogenous technological
process. Across different markets, different operators roll out specific service features
differently across time. This may result in different consumer types evaluating the
stand-alone service quality of an operator within a market differently. As described
in Section 2.4, I capture type-specific perceived quality with a proxy based on the
survey’s satisfaction measure. While the effect of a type’s own perceived quality will
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be informative about her valuation for quality, the perceived quality of other types
in her reference group will help identifying the magnitude of the network effect. To
consider an illustrative example, assume that only younger consumers care about
high data speed. If AT&T can roll out its LTE network in New York, but not in
Georgia, comparing the reaction of the older consumers in the two markets should
contain information on the strength of the network effect.

Finally, demographic distributions Dmt, such as the age and income distribution,
are plausibly exogenous and vary across local markets and time. Variation in the
demographic composition will lead to different weightings of the distinct types
within a reference group. These weightings make two markets with the same quality
characteristics different and so introduces additional exogenous variation which shifts
reference group market shares.

A few remarks on the potential breakdown of my identification strategy are in
order. The second part of Assumption 2.5.1 states that consumers’ preferences
do not change either over time or across local markets. If my model allowed
for systematically different consumer preferences in both dimensions, one could
perfectly explain a higher market share in some market by a change or differences in
preferences for a particular operator in that market. This implies that I can allow
for market- or time-specific preferences but not both. In my application, I control
for consumer heterogeneity in the arguably most important dimensions, age and
income.6 Therefore the assumption that consumers have identical preferences across
local markets and time can be justified.

Moreover, my identification approach would fail, if consumers’ reference groups
consisted only of their own type as then the set of exclusion restrictions and
instruments based on types −d would be empty. This is a restrictive assumption
that prohibits me from identifying all potential kinds of network effects.

A particularly delicate issue is to separate network effects from the effects of
unobserved quality differences. Even though I control for local service quality in a
broad sense, one may argue that there are additional unobserved characteristics that
I am not able capture in the data. Such attributes may also comprise advertising
intensity or promotion activities. In that case, one may worry that my estimates
of the network coefficients pick up the effects of these unobservables. To see how I

6My data is rich enough to conduct additional robustness checks in this dimension. For example
one could have preferences differ across ethnicities, education or employment status.
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mitigate this problem, note that any unobserved quality attribute, call it υdjmt, will
enter into the structural demand error ξ̃.

δdjmt = Xd
jmtβ

d + γdpjt + αdsrdjmt + υdjmt + ξdjmt︸ ︷︷ ︸
ξ̃djmt

Consequently, srdjmt will be correlated with ξ̃djmt. Using moments based on the
first-differenced equation will control for all persistent differences in unobserved
quality across local markets, for example a constantly high advertising intensity of
some operators in some markets.

∆δdjmt+1 = ∆Xd
jmt+1β

d + αd∆srdjmt+1 + νdjmt+1︸ ︷︷ ︸
∆ξdjmt+1+∆υdjmt+1

While ∆srdjmt+1 will still be correlated with νdjmt+1, lags in levels and first-differences
of other types’ market share distributions can be used as instruments. Due to the
sequential exogeneity assumption on ν, the instruments will be uncorrelated with
the error term νt+1.

The implications of the sequential exogeneity of ν are twofold. First, it is crucial
that νt contains only factors that cannot be anticipated by consumers before t. In the
wireless industry, this is not unreasonable. Typical components of ξ and ν are brand
reputation and the introduction of new service features that often have properties of
experience goods. Innovations to these characteristics are usually hard to evaluate
before they are actually realized. In contrast, easily verifiable characteristics like
information on coverage quality (towers and antennas), new handsets or subscription
prices are captured by the observables X which are explicitly controlled for.

A second assumption is that ν cannot be chosen or influenced by firms based
on market characteristics. This would however be the case if firms react to their
market position by adjusting any (unobserved) component of ν. For example,
identification would break down if one allows firms to adjust unobserved quality
levels or advertising intensity based on the instruments used for network size. This
would lead to a correlation between the instruments and the unobserved error
term even in first-differences, as then ∆vdjmt+1 = f(s−djmt−1, Dmt−1). In general, one
can alleviate this problem by imposing an additional timing assumption on firms’
strategies. One could assumes that firms choose νt+1 only based on the most recent
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realization of the state variables in period t. Using instruments based on realizations
of the state variables in period t− 1, will then deliver valid moment conditions. If
one is concerned about the effects of advertising or store infrastructure specifically,
one could incorporate explicit data on operator’s marketing intensity across different
local markets and over time.7

2.5.2 Estimation

The estimation routine consists of three steps. In the first step, I back out the mean
utilities similarly to BLP by matching predicted to observed market shares. The
type-specific market shares in my model can be written as:

sdjmt =
∑
j′

Prd(j|δdmt, adt−1 = j′) · sdj′mt−1

where at−1 denotes a consumer’s choice in the previous period. The conditional
choice probabilities for type d are a function only of the mean utilities of type d (δd)
and the switching cost parameter ψd:

Prd(j|δdmt, adt−1 = j̄) =
exp(δdjmt − 1j 6=j̄ψ

d)∑
j′ exp(δdj′mt − 1j′ 6=j̄ψd)

∀d, j,m, t

When implementing the estimation, I use an iterative mapping similar to BLP.
Conditional on the structural parameters θ, I solve for a fixed point of:

f(st, st−1, θ) [δt] = δt + log (st)− log (St(st−1, θ, δt))(2.2)

where st and St denote observed and predicted market shares respectively. In
contrast to the standard BLP-mapping, I take into account the presence of switching
costs and network effects. Switching costs imply that I have to solve for market share
predictions recursively period-by-period. In addition, I ensure that upon convergence
of the predicted and observed market shares, market share predictions are consistent
with the structure of the mean utilities decomposed into a standalone utility δ̂ and
utility from the network effect: δdjmt = δ̂djmt + αdsrdjmt with srdjmt =

∑
d′∈rd w

d′
mts

d′
jmt

being a weighted average of the actual predicted market shares of the different types
in a market. As upon convergence of the mapping, observed and predicted market

7These data are for example available in the Ad$pender data base by Kantar Media.
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shares are identical, this is equivalent to plugging in observed market shares. The
classical proof of BLP can be extended to prove the existence of fixed point of
equation 2.2. However, as in the literature on dynamic demand estimation, one
cannot formally prove uniqueness using BLP’s arguments.8

Conditional on the resulting vector of mean utilities, I compute a churn rate
prediction error ζ, i.e. the difference between predicted and observed churn rates:

cdjmt − C d
jmt(δt, ψ) = ζdjmt(2.3)

Afterwards, I directly form moment conditions based on ζ and include them into
the criterion function. Consequently, I treat ζ as a nonstructural error term that
comprises structural parts as well econometric overfitting error. I choose this
specification because in my data churn rates are likely to be measured with error.
Most problematic is that on a very disaggregated level some churn rates in the data
are zero. The structural model will never predict this unless switching costs are
infinity.9

In the second step, I decompose the mean utilities to back out the structural error
terms ξ and ν:

→ ξdjmt = δdjmt −Xd
jmtβ

d − γdpdjmt − αds
rd
jmt(2.4)

→ νdjmt = ξdjmt − ιξdjmt−1(2.5)

In the final step, I use the method of GMM to estimate the parameters. The set
of moments used is based on interacting the error terms ξ, ν and ζ with appropriate

8In robustness checks, I searched for fixed points of equation 2.2 starting from several different
starting values and always converged to the same solution.

9Two ad-hoc solutions for this measurement error or zero-problem would be to treat the zero
observations as missing values and impute these values or to simply aggregate the observed
churn rates up to a level where the zero-problem does not occur anymore. This would allow me
to proceed as in Yang (2010). He uses a double contraction mapping to back-out mean utilities
and the switching cost for each observation.
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2.5 Identification and estimation

instruments Z:

E[G1(ξ, Z1)|Θ0] = 0

E[G2(ν, Z2)|Θ0] = 0

E[G3(ζ, Z3)|Θ0] = 0

Moments based on ξ will identify quality and price coefficients with Z1 containing
operator dummies, exogenous product characteristics as well as instruments for
subscription prices. The network effect will be backed out interacting ν with
instruments (Z2) based on the exclusion restrictions discussed in the previous
subsection. The last set of moments exploits the churn rate prediction error ζ.
Because of its nonstructural character ζ can be interacted with the superset of all
instruments used in Z1 and Z2.

To solve the typical endogeneity problem of price, I instrument subscription prices
pjt using cost side information. Similar to Yang (2010) I use firms’ revenue and
EBITDA to compute a proxy for short-run variable costs. I use short-run variable
cost per subscriber as an instrument. A drawback of cost side data is that it is only
available on the national level, and does not exhibit a lot of variation. Therefore,
I include additional instruments based on the average characteristics of operators’
subsidized handset portfolio (BLP-instruments). The attractiveness of competitors’
handset portfolios shifts an operator’s price-cost margins and is therefore a valid
instrument for price.

Based on the logic of the exclusion restrictions discussed in the previous subsection,
I instrument the reference group market share relevant for type d (srdjmt) with the
lagged market shares among other types than d in d’s reference group, weighted by
their demographic mass:

Zd
jmt =

∑
d′∈rd,d′ 6=d

sd
′

jmt−1 ·Dd′

mt−1

In a myopic model, the values of Zd
jmt are fully determined in t− 1. So by definition

they must be uncorrelated with νt+1. Moment conditions in the form of E[Zd
jmt ·

νdjmt+1]|θ0] = 0, should therefore be valid and be sufficient to identify the network
effect. Similar moment conditions are used in Lee (2013) and Schiraldi (2011) in
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2 Disentangling Sources of Consumer Inertia

slightly different contexts. Arellano and Bover (1995) and Blundell and Bond (1998)
demonstrate that using both lagged variables in levels as well as first-differences
is much more powerful than relying on instruments in levels alone. Therefore, I
use first (pseudo-)differences in Zd

jmt additionally. Analogously, I could include the
perceived quality ratings of other types as instruments. Controlling for the perceived
quality of type d directly, the ratings of other types should only affect the mean
utility of types −d through the network effect. In my application, adding these
moments did not significantly alter the results.

Specification details For the main estimation I choose the following specification:
d = {age} × {income}, both measured in a binary way. Consequently, I allow for
four different consumer types as describd in Table 2.2. A consumer’s reference

Table 2.2: Overview of consumer types

d Age Income

1 >45 below median income
2 >45 above median income
3 <45 below median income
4 <45 above median income

group consists of all individuals in her home region, i.e. rd = (local market) and
so comprises 4 different consumer types and each consumer within a local market
faces the same reference group. One can narrow down the definition of the reference
group by defining it on an interaction of local market and either age or income
characteristics.10 Refining consumers’ reference groups further to a narrowly-defined
demographic group, for example to an interaction of age, income and ethnicity can
lead to two problems. First, from an empirical perspective it is hard to construct
reliable estimates of narrow demographic-group specific market shares even with an
enormous amount of observations. Second, one may question that an individual’s
reference group consists only of consumers that are of exactly the same type. For
example, family members might be in a different age group, friends may have a
different ethnicity or fall into a different income group.

I treat preferences as constant across time and local markets. The set of observable
10Qualitatively, the results for these specifications did not differ from the baseline specification.
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2.5 Identification and estimation

product characteristics Xd
jmt includes nation-wide operator-fixed effects, an iPhone

fixed effect that is equal to one for the quarters in which AT&T exclusively offered
the iPhone on its network. In addition, proxies for local service quality and the
number of exclusively available smartphones on an operator’s network are used.
The latter variable should capture the attractiveness of an operator’s subsidized
handset portfolio. As I have only limited pricing and contract data I have to make
simplifying assumptions on the composition of consumers’ monthly expenditure: I
assume that consumers pay according to a linear pricing scheme. As discussed in
Section 2.4, I construct the price index such that monthly expenditure is perfectly
explained by Ri

jt = pjt ·qijt. Throughout the estimation and the counterfactuals, I use
the observation weights to correct for the survey’s stratification when aggregating
across types and markets.

Multiplicity of equilibria A well-known problem with models of social interactions
is that there may be multiple equilibria. My setup differs from the multiplicity issues
that typically occur when dynamic games are estimated using two-step methods or
when choice probabilities are used directly to construct likelihood functions. In my
estimation routine, I back out a vector of mean utilities by inverting the market
share equation market-by-market. I do not pool market shares before doing the
inversion step: In case of equilibrium multiplicity, the market share mapping may
be a correspondence with multiple predictions for smt. However, each of these
predictions will be associated with a different mean utility vector.

As I assume that there is no coordination failure and that the observed market
shares come from an equilibrium, I know from the data which equilibrium is played in
each market. I back out only the mean utility vector associated with the equilibrium
actually played. I pool the mean utilities of all markets only in the second step
when decomposing the mean utilities in the effect of the different factors such
as quality, price or network effects conditional on a particular equilibrium being
played. In this step, multiplicity of equilibria may actually help in identifying the
network effect because it introduces an additional source of variation into the model.
Therefore, multiplicity of equilibria across different markets will not be problematic
for the estimation. However, for doing counterfactual analysis, the issue persists.
A computational intensive, but feasible solution is to try to compute all equilibria
starting from different consumer beliefs and so get bounds on measures such as
welfare gains or simulated market share distributions.
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2 Disentangling Sources of Consumer Inertia

2.6 Results

Tables 2.3 and 2.4 display the results for the myopic logit model. The last column
translates the coefficients into monetary willingness-to-pay using the marginal utility
of money derived from the estimated price coefficient. For the switching costs, the
last column displays the monetary equivalent of a one-time utility loss from switching
operators once. For the network effects, it displays the average monthly willingness
to pay for an increase of an operator’s market share within a consumer’s reference
group by 20 percentage points. Almost all coefficients have the expected sign

Table 2.3: Results for myopic model (non-linear parameters)

Point Estimates Standard Error P-Values WTP in US-$

Network effect, d=1 0.3336 0.0046 0.0000 18.87
Network effect, d=2 0.2537 0.0085 0.0000 24.05
Network effect, d=3 0.2537 0.0076 0.0000 17.98
Network effect, d=4 0.2551 0.0137 0.0000 25.81
Switching cost, d=1 3.2107 0.1454 0.0000 316.77
Switching cost, d=2 4.8007 0.1959 0.0000 626.30
Switching cost, d=3 4.5503 0.1971 0.0000 439.77
Switching cost, d=4 2.9879 0.2948 0.0000 385.88

Table 2.4: Results for myopic model (linear parameters)

Point Estimates Standard Error P-Values

Local service quality, d=1 0.0023 0.0002 0.0000
Local service quality, d=2 -0.0022 0.0003 0.0000
Local service quality, d=3 0.0108 0.0035 0.0021
Local service quality, d=4 0.0091 0.0036 0.0120

Log(subscription price), d=1 -0.0618 0.0242 0.0108
Log(subscription price), d=2 -0.0468 0.0183 0.0108
Log(subscription price), d=3 -0.0631 0.0248 0.0108
Log(subscription price), d=4 -0.0472 0.0185 0.0108

and are highly significant. Local service quality enters with a positive coefficient
for all types except for type d = 2 (>45, above median income). The estimates for
network effects imply reasonable magnitudes in terms of willingness-to-pay: For an

30



2.6 Results

Table 2.5: Overview on consumer types and average expenditure

d Age Income Monthly expenditure

1 >45 below median income US-$ 53
2 >45 above median income US-$ 70
3 <45 below median income US-$ 66
4 <45 above median income US-$ 73

increase in an operator’s local market share by 20 percentage points, which is the
typical difference in market shares between one of the two big operators and the
smaller ones, consumers would be willing to pay between US-$ 18 and US-$ 26 per
month with richer consumers paying more attention to network size than the poor
consumers. Compared to the average quarterly expenditure for wireless plans in the
US (cf. Table 2.5), my estimation suggests that network effect account for almost
30% of expenditure. This seems large, but comprises the compound effect of all
potential channels through which network effects may operate (after controlling for
average price differentials across operators). In Appendix A, I outline how one can
decompose this effect further if additional data are available.

Finally, the estimates reveal that switching costs are large and very heterogeneous
across consumer types. For d = 1 (>45, below median income) switching costs are
lowest (US-$ 317), most likely because these consumers often have a very basic plan
that is easy to transfer to another operator. For d = 2 (>45, above median income)
who often have large plans that comprise several lines and devices, switching costs are
highest (US-$ 626). For younger consumers, switching costs are more homogeneous
and on average a bit lower. Interestingly, d = 3 (<45, below median income) have
lower switching costs than d = 4 (<45, above median income). This may be due to
consumers of the latter type often having the most expensive handsets. The fact
that subsidies for handsets effectively reduce the switching costs, can explain the
higher switching cost for poorer young consumers. Relatively speaking switching
costs are roughly on the order of 6 to 9 months’ average expenditure.

To get an idea on how the magnitudes of switching cost and network effects relate
to each other, consider the following back-of-the-envelope calculation: A customer of
one of the large carriers compares her current operator with another operator with
the same quality but 20 percentage points lower market share. In order to switch
to the small operator this customer will require a discount that compensates for
switching costs to be paid immediately and the accumulated benefits from network
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2 Disentangling Sources of Consumer Inertia

size over the consumer’s time horizon. Assuming that the consumer cares about the
next 2 years, my estimation results imply that this discount would range between
US-$ 700 and US-$ 1200 depending on the consumer type. Roughly 50% of the
discount would compensate for the switching costs, the other half for the foregone
network effect.

2.6.1 Price elasticities

Both switching costs and network effects are likely to result in consumer lock-in and
potentially make consumers insensitive to price increases. Because of the presence
of switching costs and network effects, there does not exist a closed-form formula
for the price elasticities. Computing these requires resolving the model at different
levels of prices. Tables 2.6-2.8 describe the implied price elasticities in the short run
(6 months), medium run (2 years) and long run (5 years). These results are based
on recomputing market shares for every period after an operator has increased its
price index by 10% in every period. In principle, the price elasticities may depend
on which specific time periods are compared. Robustness checks looking at different
time periods did not result in significantly different elasticities.

Table 2.6: Short-run price elasticities

Other AT&T Verizon Sprint T-Mobile

pAT&T 0.1071 -0.1679 0.0353 0.0585 0.0743
pVerizon 0.1053 0.0464 -0.1614 0.0530 0.0704
pSprint 0.1127 0.0585 0.0423 -0.2484 0.0848

pT-Mobile 0.1010 0.0444 0.0310 0.0552 -0.3146

Table 2.7: Medium-run price elasticities

Other AT&T Verizon Sprint T-Mobile

pAT&T 0.0909 -0.6830 0.2387 0.2662 0.2305
pVerizon 0.0952 0.2758 -0.6144 0.3039 0.2776
pSprint 0.0723 0.2585 0.2462 -0.9551 0.2337

pT-Mobile 0.0594 0.2106 0.1983 0.2220 -1.0536
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Table 2.8: Long-run price elasticities

Other AT&T Verizon Sprint T-Mobile

pAT&T 0.1305 -1.9168 1.1146 0.5416 0.4813
pVerizon 0.2362 1.3067 -2.0908 0.8968 0.9393
pSprint -0.1188 0.3949 0.6252 -2.1111 0.0698

pT-Mobile -0.0919 0.4556 0.7741 0.1451 -2.4705

As expected, switching costs lead to very low own-price elasticities (-0.16 to -0.31)
in the short-run with elasticities for the smaller operators being larger than for
the big ones. On a two-year horizon elasticities become larger (-0.61 to -1.05). In
the long-run consumers react strongly to price increases with elasticities around -2.
These fairly large elasticities suggest, that in the long-run consumer lock-in may
actually not be as strong as suggested by the large point estimates for switching
costs. The long-run cross-price elasticities are largest for the bigger operators, i.e. no
matter which carrier raises its price, consumers are much more likely to substitute
to one of the two large firms.

2.6.2 Comparison with restricted models

Table 2.9: Comparison with restricted models - point estimates

Full Model No network effects No switching costs

Log(subscription price), d=1 -0.0618 -0.0760 0.6759
Log(subscription price), d=2 -0.0468 -0.0575 0.5112
Log(subscription price), d=3 -0.0631 -0.0776 0.6900
Log(subscription price), d=4 -0.0472 -0.0580 0.5164

Network effect, d=1 0.3336 - 1.8618
Network effect, d=2 0.2537 - 3.6584
Network effect, d=3 0.2537 - 1.9800
Network effect, d=4 0.2551 - 2.1315
Switching cost, d=1 3.2107 8.8927 -
Switching cost, d=2 4.8007 8.8677 -
Switching cost, d=3 4.5503 6.7558 -
Switching cost, d=4 2.9879 8.4559 -

J-statistic 0.0478 0.8730 1.7745
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Table 2.10: Comparison with restricted models - WTP

Full Model No network effects No switching costs

Network effect, d=1 18.8711 - -9.6357
Network effect, d=2 24.0523 - -31.7323
Network effect, d=3 17.9812 - -12.8395
Network effect, d=4 25.8078 - -19.7294
Switching cost, d=1 316.7690 714.1376 -
Switching cost, d=2 626.2952 941.6527 -
Switching cost, d=3 439.7651 531.4504 -
Switching cost, d=4 385.8769 888.8896 -

In order to highlight the importance of being able to disentangle the effects of
different sources of state-dependence, I re-estimate my model restricting either the
network effects or switching costs to zero keeping everything else fixed. Table 2.9
and 2.10 display a comparison between the unrestricted model and the two restricted
versions. As expected, ignoring either one of the effects results in very different and
arguably implausibly large estimates of the other effects. When ignoring network
effects, switching costs on average almost double which gives evidence for the fact
that parts of the network effect are picked-up by the switching cost coefficient. When
ignoring switching costs, the coefficients on network size increase by a factor of
10. In addition, the price coefficients become positive so that comparing monetary
magnitudes becomes meaningless. Moreover, the GMM J-statistic, a measure of the
violation of the moment conditions increases dramatically by a factor of 20 to 40
when estimating models that focus only on one of the two effects.

2.7 Counterfactual analyses

In a series of counterfactuals I analyze how network effects and switching costs affect
consumer behavior. In particular, I evaluate consumers’ price elasticities, when
switching costs are regulated with the level of network effects unchanged. I contrast
this setting with a situation in which switching costs remain constant, but perfect
network compatibility is implemented, i.e. consumers enjoy the network effect based
on the joint network size of all inside goods.
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Figure 2.4: Perfect network compatibility: market share differences
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Perfect network compatibility In the following, I analyze the effects of making
the networks of all inside goods perfectly compatible. More specifically, I simulate
the following change: Carriers charge the same average subscription prices and
consumer buy the same quantities as in the observed data, but the network effect
works on the cumulative market share of all inside goods.

With perfect network compatibility, price elasticities decrease significantly com-
pared to the baseline. This is in line with Doganoglu and Grzybowski (2013) and
supports the fact that network effects amplify shocks to the industry, for example due
to a price increase. Own-price elasticities become only slightly more homogeneous
across operators. More interestingly, cross-price elasticities become substantially
more homogeneous so that under perfect network compatibility, consumers seem
to substitute almost equally across operators. When looking at changes in market
shares, the short-run effects of perfect network compatibility are relatively minor
as switching costs prevent consumers from re-optimizing immediately. Among the
major four operators the effect is monotone in network size. While AT&T’s market
share is basically unaffected, Verizon, the biggest carrier, loses 5 percentage points
in market share until the end of the sample period. Sprint and T-Mobile gain
significantly; mostly on the expense of the small operators summarized in the outside
good which basically disappear after 2 years.
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One should be careful in interpreting this simulation as actual policy experiments
because of several limitations. Most importantly, I treat the supply side and
consumers’ quantity choice as fixed. Nevertheless, the demand side counterfactuals
in this chapter reveal that network effects have a significant effect on consumer
behavior in the wireless industry. Endogenizing consumers’ quantity choice goes
beyond the scope of this thesis, but is an interesting topic that I plan to pursue
in future research. Chapter 4 outlines an empirical framework to endogenize firms’
pricing strategies.

Table 2.11: Short-run price elasticities - perfect network compatibility

Other AT&T Verizon Sprint T-Mobile

pAT&T 0.1707 -0.1639 0.0534 0.0638 0.0758
pVerizon 0.1486 0.0557 -0.1589 0.0606 0.0753
pSprint 0.1638 0.0670 0.0615 -0.2290 0.0880

pT-Mobile 0.1945 0.0625 0.0600 0.0709 -0.2873

Table 2.12: Medium-run price elasticities - perfect network compatibility

Other AT&T Verizon Sprint T-Mobile

pAT&T 0.1620 -0.4236 0.1348 0.1546 0.1566
pVerizon 0.1611 0.1453 -0.4145 0.1593 0.1568
pSprint 0.1655 0.1678 0.1549 -0.5397 0.1825

pT-Mobile 0.2061 0.1830 0.1697 0.1975 -0.6047

Table 2.13: Long-run price elasticities - perfect network compatibility

Other AT&T Verizon Sprint T-Mobile

pAT&T 0.1634 -0.5699 0.2041 0.2098 0.2079
pVerizon 0.1501 0.2146 -0.6412 0.2162 0.2159
pSprint 0.1981 0.2281 0.2298 -0.7679 0.2426

pT-Mobile 0.2721 0.3025 0.3019 0.3247 -0.9405

Reduction of switching costs There are several ways one could think of policy
measures to reduce consumer switching costs. A regulator could prohibit early-
termination fees, or force operators to provide a transparent switching procedure.
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Figure 2.5: Regulation of switching costs: market share differences
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From an operator’s point of view, consumer switching costs could be overcome by
subsidizing switching, for example in the form of poaching payments. A scenario in
which switching costs are completely eliminated is very unrealistic as consumers will
always incur hassle costs and opportunity costs of time when switching providers.
Therefore, I analyze the effect of a reduction of switching costs by 50% which would
be equivalent to a switching subsidy of roughly US-$ 150 to US-$ 300 (depending
on the consumer type).

Compared to the baseline elasticities, consumers react much more strongly and
quickly to a price increase. Short-run elasticities triple, while medium-run elasticities
almost double. The difference between medium- and long-run elasticities basically
disappears. Heterogeneity in own-price elasticities across operators measured by the
difference between the largest and smallest elasticity increases by a factor of 2 when
switching costs are decreased.

Not surprisingly, market shares become more volatile in the absence of switching
costs. In general, the two big operators tend to lose market share. After two years,
AT&T and Verizon both lose about 7 percentage points in market shares. Market
shares of the fringe and Sprint are basically unaffected. T-Mobile gains significantly:
It’s market share rises by 5 percentage points in the short-run and by 10 percentage
points after two years. Reducing switching costs results in an increase of consumer
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surplus by 11% (net of the costs for the subsidy).

Table 2.14: Short-run price elasticities - subsidized switching costs

Other AT&T Verizon Sprint T-Mobile

pAT&T 0.1134 -0.5061 0.2178 0.1842 0.2353
pVerizon 0.0767 0.1981 -0.6005 0.2281 0.2696
pSprint 0.0359 0.1553 0.2101 -0.8626 0.1796

pT-Mobile 0.1058 0.1862 0.2652 0.2426 -0.8896

Table 2.15: Medium-run price elasticities - subsidized switching costs

Other AT&T Verizon Sprint T-Mobile

pAT&T -0.0895 -1.4877 0.8077 -0.0051 0.0154
pVerizon 0.2577 0.9741 -2.0429 0.5584 1.1600
pSprint 0.0430 -0.0759 0.7256 -1.3018 0.1646

pT-Mobile 0.0112 0.2954 0.9994 0.4687 -1.6157

Table 2.16: Long-run price elasticities - subsidized switching costs

Other AT&T Verizon Sprint T-Mobile

pAT&T -0.2150 -1.8322 0.6480 -0.5042 0.9392
pVerizon -0.0587 0.3582 -4.1493 -0.4471 3.3838
pSprint -0.0486 0.6997 0.5944 -1.6420 -0.0521

pT-Mobile 0.2005 2.9865 0.2084 0.3025 -2.2231

Again, this counterfactual ignores possible reactions on the supply side. While
one should be careful in interpreting the simulated industry structure, the results
highlight once more the importance of consumer switching costs in the US wireless
industry.

2.8 Conclusion

In this chapter, I developed an empirical framework to disentangle different sources
of consumer inertia in the US wireless industry. The use of detailed group-level panel
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data allows me to identify preference heterogeneity from type-specific market shares
and switching costs by matching the model’s churn rate predictions to the observed
counterparts. Identification of a localized network effect comes from comparing the
dynamics of distinct local markets. The central condition for identification is that
neither the characteristics defining consumer heterogeneity nor the characteristics
defining reference groups are a weak subset of the other. The prime example of such
a setting is looking at geographically separated markets with reference groups that
consist of at least two types of heterogeneous consumers. If this condition is fulfilled,
network effects can be estimated using a combination of the seminal framework by
Berry, Levinsohn, and Pakes (1995) and dynamic panel techniques.

Even though the model was tailored towards the US wireless industry, my model is
general enough to be applied to other industries where switching costs and network
effects interact. In addition, my setup can be extended in several dimensions. First,
in Chapter 3 I show how the framework can be generalized to a model in which
consumers are forward-looking and have beliefs about the future industry evolution.
Second, my model and my data are rich enough to be extended to a continuous-
discrete choice model that allows for endogenous quantity choice in the style of
Schiraldi, Seiler, and Smith (2011).

A framework that allows for separately identifying switching costs and network
effects is not only necessary for obtaining correct estimates of price elasticities.
Reliable demand side estimates are also essential when analyzing firms’ pricing
strategies in the spirit of Cabral (2011) and Chen (2014). In Chapter 4, I propose
an empirical model of dynamic platform competition to endogenize carriers’ pricing
strategies. Supplementing my demand model with a full supply side model will allow
for additional and much richer counterfactuals.

Estimation results from my demand model reveal that during my sample period
(2006-2010) the market was characterized by the presence of both significant network
effects and large switching costs. Switching costs range from US-$ 320 to US-$ 630.
My estimates of network effects illustrate that on average consumers are willing to
pay around US-$ 22 per month to be on one of the larger networks compared to a
smaller one. I highlight the importance of being able to disentangle network effects
and switching costs by comparing my results to models that ignore either one of
the effects. When network effects are ignored, estimates of switching costs double.
When switching costs are ignored, the magnitude of network effects increases by
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a factor of 10. To evaluate the importance of both effects further, I investigated
the short- and long-run effects of reducing switching costs and of perfect network
compatibility. The counterfactuals confirm that both switching costs and network
effects are extremely important determinants of consumers’ price elasticities and the
market structure in the US wireless industry.

Appendix A Modeling network effects with

additional data

If one has more detailed data on usage behavior and prices, one can allow consumers
to buy different quantities of on-net and off-net minutes (qdjmt = qd,offjmt + qd,onjmt ) at
different prices ponjt and poffjt :

δdjmt = (Xd
jmtβ

d + γdponjt + α̃dsrdjmt + ξdjmt)q
d
jmt + γd(poffjt − ponjt )qd,offjmt

α̃ should be interpreted as the pure network effect, that consumers get from simply
being on a larger network net of the price effect on the monthly bill through a higher
fraction of cheaper on-net minutes.

When on- and off-net quantities as well as on- and off-net prices are observed, one
can re-write the total flow utility into a flow utility per service-unit:

δdjmt = (Xd
jmtβ

d + γdponjt + α̃dsrdjmt + ξdjmt)q
d
jmt + γd(poffjt − ponjt )qd,offjmt(2.6)

δdjmt
qdjmt

= (Xd
jmtβ

d + γdponjt + α̃dsrdjmt + ξdjmt) + γd(poffjt − ponjt )(1− f(srdjmt))(2.7)

δ̃djmt = Xd
jmtβ

d + γdpoffjt + α̃dsrdjmt − γd((poffjt − ponjt ))f(srdjt ) + ξdjmt(2.8)

f(srdjt ) =
qd,offjmt

qdjmt
denotes the ratio of off-net to total minutes and can be explicitly

computed for any given calling pattern. In the most simple case of a random calling
pattern, equation 2.8 simplifies to:

δ̃djmt = Xd
jmtβ

d + γdpoffjt + (α̃d − γd(poffjt − ponjt ))︸ ︷︷ ︸
αd

srdjmt + ξdjmt(2.9)

Equation 2.9 is similar to the linear regression equation which I use after having
backed-out the mean utilities δ and normalized for usage quantity. If detailed data
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on prices and quantities were available, one could take the more structural equation
2.8 to the data instead of the equation used in my estimation.
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Appendix B Additional descriptive statistics

Table 2.17: Satisfaction measure and proxy for coverage quality

ctype Statistic satisfaction qproxy

>45 years-poor Mean 8.02 0.00
>45 years-rich Mean 7.88 0.00
<45 years-poor Mean 7.60 0.00
>45 years-rich Mean 7.70 -0.00
>45 years-poor SD 2.05 0.26
>45 years-rich SD 1.90 0.24
<45 years-poor SD 2.04 0.27
>45 years-rich SD 1.89 0.25
>45 years-poor Min 1.00 -0.88
>45 years-rich Min 1.00 -0.88
<45 years-poor Min 1.00 -0.87
>45 years-rich Min 1.00 -0.88
>45 years-poor Max 10.00 0.31
>45 years-rich Max 10.00 0.35
<45 years-poor Max 10.00 0.38
>45 years-rich Max 10.00 0.38

42



Appendix

Table 2.18: Number of survey respondents across markets

DMA N

ATLANTA 12192
BALTIMORE 5962
BOSTON 14182
CHICAGO 19726
CLEVELAND 10154
DALLAS-FT. WORTH 15787
DETROIT 11425
LOS ANGELES 25006
MIAMI-FT. LAUDERDALE 6993
MINNEAPOLIS-ST. PAUL 10444
NEW YORK 38692
PHILADELPHIA 17981
PHOENIX 10990
PITTSBURGH 8153
SACRAMENTO-STOCKTON-MODESTO 6808
SALT LAKE CITY 5015
SAN FRANCISCO-OAKLAND-SAN JOSE 13009
SEATTLE-TACOMA 10753
TAMPA-ST. PETERSBURG 13010
WASHINGTON DC 9050
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2 Disentangling Sources of Consumer Inertia

Appendix C Differences in price elasticities

Table 2.19: Differences in short-run price elasticities - perfect network compatibility

Other AT&T Verizon Sprint T-Mobile

pAT&T 0.0637 0.0040 0.0182 0.0053 0.0015
pVerizon 0.0434 0.0092 0.0026 0.0076 0.0049
pSprint 0.0511 0.0084 0.0191 0.0194 0.0032

pT-Mobile 0.0934 0.0181 0.0290 0.0157 0.0273

Table 2.20: Differences in medium-run price elasticities - perfect network compati-
bility

Other AT&T Verizon Sprint T-Mobile

pAT&T 0.0712 0.2594 -0.1039 -0.1115 -0.0739
pVerizon 0.0659 -0.1306 0.1998 -0.1447 -0.1207
pSprint 0.0933 -0.0907 -0.0913 0.4153 -0.0512

pT-Mobile 0.1467 -0.0276 -0.0286 -0.0244 0.4488

Table 2.21: Differences in long-run price elasticities - perfect network compatibility

Other AT&T Verizon Sprint T-Mobile

pAT&T 0.0330 1.3469 -0.9105 -0.3318 -0.2734
pVerizon -0.0861 -1.0921 1.4496 -0.6807 -0.7233
pSprint 0.3169 -0.1668 -0.3954 1.3432 0.1728

pT-Mobile 0.3640 -0.1531 -0.4723 0.1795 1.5300
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Table 2.22: Differences in short-run price elasticities - subsidized switching costs

Other AT&T Verizon Sprint T-Mobile

pAT&T 0.0064 -0.3382 0.1825 0.1256 0.1610
pVerizon -0.0286 0.1516 -0.4390 0.1750 0.1991
pSprint -0.0768 0.0968 0.1678 -0.6142 0.0948

pT-Mobile 0.0048 0.1418 0.2342 0.1875 -0.5750

Table 2.23: Differences in medium-run price elasticities - subsidized switching costs

Other AT&T Verizon Sprint T-Mobile

pAT&T -0.1803 -0.8047 0.5690 -0.2713 -0.2151
pVerizon 0.1626 0.6982 -1.4286 0.2545 0.8824
pSprint -0.0293 -0.3344 0.4793 -0.3467 -0.0691

pT-Mobile -0.0482 0.0848 0.8011 0.2467 -0.5621

Table 2.24: Differences in long-run price elasticities - subsidized switching costs

Other AT&T Verizon Sprint T-Mobile

pAT&T -0.3455 0.0846 -0.4666 -1.0458 0.4580
pVerizon -0.2949 -0.9485 -2.0585 -1.3439 2.4446
pSprint 0.0702 0.3048 -0.0308 0.4691 -0.1219

pT-Mobile 0.2923 2.5309 -0.5657 0.1573 0.2475
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2 Disentangling Sources of Consumer Inertia

Appendix D Market share graphs and tables

Table 2.25: Observed market shares

Other AT&T Verizon Sprint T-Mobile

Q1-2006 0.1148 0.2556 0.2771 0.2188 0.1336
0.1132 0.2638 0.2779 0.2078 0.1374
0.1350 0.2479 0.2706 0.2063 0.1403
0.1254 0.2487 0.2839 0.1989 0.1432

Q1-2007 0.1299 0.2441 0.2802 0.2002 0.1456
0.1345 0.2366 0.2846 0.1956 0.1487
0.1314 0.2403 0.2851 0.1926 0.1506
0.1327 0.2419 0.2891 0.1867 0.1496

Q1-2008 0.1382 0.2462 0.2904 0.1764 0.1488
0.1411 0.2393 0.2854 0.1750 0.1592
0.1454 0.2500 0.2869 0.1646 0.1531
0.1392 0.2448 0.2904 0.1687 0.1569

Q1-2009 0.1284 0.2471 0.3064 0.1551 0.1630
0.1361 0.2470 0.3071 0.1514 0.1584
0.1362 0.2495 0.3126 0.1467 0.1550
0.1407 0.2567 0.3122 0.1384 0.1521

Q1-2010 0.1426 0.2565 0.3078 0.1387 0.1544
0.1467 0.2575 0.3104 0.1348 0.1506
0.1484 0.2631 0.3055 0.1362 0.1467
0.1411 0.2693 0.3116 0.1267 0.1514
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Table 2.26: Predicted market shares

Other AT&T Verizon Sprint T-Mobile

Q1-2006 0.1144 0.2557 0.2773 0.2189 0.1337
0.1136 0.2637 0.2777 0.2077 0.1373
0.1348 0.2479 0.2707 0.2063 0.1403
0.1264 0.2483 0.2835 0.1987 0.1430

Q1-2007 0.1299 0.2441 0.2802 0.2002 0.1456
0.1347 0.2366 0.2845 0.1955 0.1487
0.1318 0.2402 0.2850 0.1925 0.1505
0.1325 0.2420 0.2892 0.1867 0.1496

Q1-2008 0.1376 0.2464 0.2906 0.1765 0.1489
0.1408 0.2394 0.2855 0.1750 0.1592
0.1458 0.2499 0.2866 0.1646 0.1531
0.1391 0.2448 0.2904 0.1687 0.1569

Q1-2009 0.1286 0.2470 0.3064 0.1551 0.1629
0.1359 0.2471 0.3072 0.1514 0.1584
0.1359 0.2496 0.3128 0.1467 0.1550
0.1409 0.2566 0.3121 0.1383 0.1520

Q1-2010 0.1432 0.2563 0.3076 0.1387 0.1543
0.1466 0.2575 0.3105 0.1348 0.1506
0.1484 0.2631 0.3055 0.1362 0.1467
0.1411 0.2693 0.3115 0.1267 0.1513
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2 Disentangling Sources of Consumer Inertia

Figure 2.6: Observed and predicted market shares
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Table 2.27: Perfect network compatibility - predicted market shares

Other AT&T Verizon Sprint T-Mobile

Q1-2006 0.0308 0.2729 0.2871 0.2414 0.1677
0.0094 0.2814 0.2860 0.2372 0.1859
0.0052 0.2697 0.2796 0.2448 0.2007
0.0025 0.2654 0.2830 0.2392 0.2099

Q1-2007 0.0019 0.2617 0.2769 0.2423 0.2171
0.0017 0.2550 0.2764 0.2422 0.2248
0.0014 0.2572 0.2713 0.2402 0.2299
0.0015 0.2590 0.2703 0.2371 0.2322

Q1-2008 0.0016 0.2626 0.2689 0.2336 0.2332
0.0016 0.2545 0.2629 0.2351 0.2459
0.0019 0.2637 0.2621 0.2315 0.2408
0.0015 0.2589 0.2583 0.2363 0.2450

Q1-2009 0.0014 0.2575 0.2660 0.2241 0.2509
0.0016 0.2583 0.2648 0.2265 0.2489
0.0018 0.2585 0.2664 0.2265 0.2469
0.0019 0.2663 0.2619 0.2232 0.2467

Q1-2010 0.0018 0.2628 0.2566 0.2275 0.2514
0.0017 0.2632 0.2569 0.2286 0.2496
0.0017 0.2665 0.2515 0.2330 0.2474
0.0014 0.2689 0.2521 0.2262 0.2514
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2 Disentangling Sources of Consumer Inertia

Table 2.28: Perfect network compatibility - predicted differences in market shares

Other AT&T Verizon Sprint T-Mobile

Q1-2006 -0.0840 0.0173 0.0100 0.0226 0.0340
-0.1038 0.0176 0.0082 0.0295 0.0485
-0.1298 0.0218 0.0090 0.0385 0.0605
-0.1229 0.0168 -0.0009 0.0403 0.0668

Q1-2007 -0.1280 0.0176 -0.0033 0.0421 0.0715
-0.1328 0.0184 -0.0083 0.0466 0.0761
-0.1299 0.0168 -0.0138 0.0476 0.0793
-0.1312 0.0171 -0.0188 0.0504 0.0826

Q1-2008 -0.1366 0.0165 -0.0216 0.0573 0.0844
-0.1395 0.0152 -0.0225 0.0601 0.0867
-0.1436 0.0137 -0.0247 0.0669 0.0877
-0.1377 0.0140 -0.0320 0.0676 0.0880

Q1-2009 -0.1271 0.0104 -0.0404 0.0690 0.0880
-0.1345 0.0112 -0.0423 0.0751 0.0905
-0.1344 0.0089 -0.0462 0.0798 0.0919
-0.1387 0.0097 -0.0503 0.0848 0.0946

Q1-2010 -0.1408 0.0063 -0.0512 0.0888 0.0970
-0.1449 0.0057 -0.0536 0.0938 0.0990
-0.1467 0.0034 -0.0541 0.0968 0.1006
-0.1397 -0.0004 -0.0595 0.0995 0.1001
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Figure 2.7: Perfect network compatibility: market shares

Jun
 20

06

De
c 2

00
6

Jun
 20

07

De
c 2

00
7

Jun
 20

08

De
c 2

00
8

Jun
 20

09

De
c 2

00
9

Jun
 20

10

De
c 2

01
0

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30
Perfect Network Compatibility: Predicted Market Shares

AT&T
Verizon
Sprint
T-Mobile

Jun 2006

Dec 2
006

Jun 2007

Dec 2
007

Jun 2008

Dec 2
008

Jun 2009

Dec 2
009

Jun 2010

Dec 2
010

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12
Perfect Network Compatibility: Market Share Differences

AT&T
Verizon
Sprint
T-Mobile

51



2 Disentangling Sources of Consumer Inertia

Table 2.29: Regulation of switching costs - predicted market shares

Other AT&T Verizon Sprint T-Mobile

Q1-2006 0.1139 0.2367 0.2757 0.2042 0.1694
0.1174 0.2813 0.2532 0.1570 0.1911
0.1741 0.1766 0.2213 0.2032 0.2248
0.1394 0.1665 0.2744 0.1906 0.2291

Q1-2007 0.1407 0.1610 0.2672 0.1814 0.2496
0.1530 0.1278 0.2569 0.1745 0.2877
0.1325 0.1470 0.2508 0.2074 0.2624
0.1250 0.1484 0.2834 0.1860 0.2572

Q1-2008 0.1314 0.2016 0.2555 0.1442 0.2673
0.1388 0.1352 0.2584 0.1758 0.2917
0.1495 0.1801 0.2340 0.1606 0.2759
0.1203 0.1650 0.2242 0.1996 0.2910

Q1-2009 0.0951 0.1755 0.2988 0.1304 0.3003
0.1244 0.1894 0.2586 0.1263 0.3013
0.1376 0.1688 0.3011 0.1226 0.2700
0.1522 0.1920 0.2475 0.1056 0.3027

Q1-2010 0.1351 0.1766 0.2367 0.1232 0.3283
0.1245 0.1750 0.2478 0.1488 0.3039
0.1305 0.1808 0.2403 0.1507 0.2977
0.1057 0.2347 0.2412 0.1179 0.3004
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Table 2.30: Regulation of switching costs - predicted differences in market shares

Other AT&T Verizon Sprint T-Mobile

Q1-2006 -0.0009 -0.0189 -0.0014 -0.0146 0.0358
0.0042 0.0175 -0.0247 -0.0508 0.0538
0.0391 -0.0712 -0.0494 -0.0031 0.0846
0.0140 -0.0822 -0.0095 -0.0083 0.0859

Q1-2007 0.0109 -0.0831 -0.0130 -0.0188 0.1040
0.0184 -0.1088 -0.0277 -0.0210 0.1391
0.0011 -0.0934 -0.0343 0.0148 0.1118
-0.0077 -0.0935 -0.0057 -0.0007 0.1077

Q1-2008 -0.0068 -0.0446 -0.0349 -0.0322 0.1184
-0.0022 -0.1041 -0.0270 0.0009 0.1325
0.0041 -0.0699 -0.0529 -0.0040 0.1228
-0.0189 -0.0799 -0.0662 0.0309 0.1340

Q1-2009 -0.0334 -0.0716 -0.0077 -0.0247 0.1373
-0.0117 -0.0576 -0.0485 -0.0251 0.1429
0.0013 -0.0807 -0.0115 -0.0241 0.1150
0.0115 -0.0646 -0.0648 -0.0328 0.1507

Q1-2010 -0.0075 -0.0799 -0.0711 -0.0155 0.1740
-0.0222 -0.0825 -0.0626 0.0140 0.1533
-0.0179 -0.0823 -0.0652 0.0145 0.1509
-0.0353 -0.0346 -0.0704 -0.0087 0.1491
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2 Disentangling Sources of Consumer Inertia

Figure 2.8: Regulation of switching costs: market shares
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Appendix E Empirical evidence on contract

structures and calling patterns

Figure 2.9 and 2.11 display information on postpaid cellphone contracts in the
US at various years during and shortly after my sample period (2006, 2008 and
2011). This information was crawled from the Internet by using the Internet Archive-
Waybackmachine (http://web.archive.org). The term mobile-to-mobile minutes
denotes the minutes available for making and receiving calls from people with
the same provider. Although not every contract offers unlimited mobile-to-mobile
minutes, many operators do have at least some contract with on-net discounts in
some form throughout my sample period and beyond. My survey data does not
contain explicit information on the number of consumers that are subscribed to
contracts with free mobile-to-mobile minutes. In order to get an idea on these
numbers, I obtain information on the characteristics of the most common contracts
from Internet archives. A lower bound for the number of people who have on-net
discounts in their contract would be those who pay less for their plan that the costs
of the most basic unlimited-minutes plan. At the beginning of my sample period
these unlimited plans started at around US-$ 70-80 while at the end of the sample
period these contracts were already available for around US-$ 50.11 Based on these
numbers, I conjecture that at the beginning of my sample period, at least 75% of
consumers had contracts with on-net discounts in some form, while at the end of
my sample, still more than 50% should have had contracts with on-net discounts.
This supports the claim that tariff-mediated network effects have played a role in
the US wireless market during my sample period.

11Source: http://www.costhelper.com/cost/electronics/cell-phone-plans.html
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2 Disentangling Sources of Consumer Inertia

Figure 2.9: Information on wireless contracts from 2006

Source: http://cell-phone-providers-review.toptenreviews.com
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Figure 2.10: Information on wireless contracts from 2008

Source: http://cell-phone-providers-review.toptenreviews.com
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2 Disentangling Sources of Consumer Inertia

Figure 2.11: Information on wireless contracts from 2011

Source: http://www.phonearena.com

58

http://www.phonearena.com


3 Quantifying Network Effects
and Switching Costs in
Dynamic Demand Models

3.1 Introduction

In this chapter, I extend the framework proposed in Chapter 2 to a model of
forward-looking consumers. In most high-tech consumer goods industries, it is very
plausible to assume that consumers are at least partially forward-looking. In the
wireless industry, carriers continuously introduce new service features and expand
their coverage quality while consumers are usually locked-in into a contract for 24
months. When individuals are aware that contemporaneous decisions affect future
payoffs, they should take into account their expectations on the future.

For example, consumers may choose to subscribe to a low-quality product today
if they expect it to become sufficiently better in the future. Analyzing this aspect
requires a model of forward-looking consumers who not only consider instantaneous
payoffs, but maximize a discounted lifetime utility given their beliefs about the
future industry state.

A dynamic and a myopic model can be considered as equivalent when consumers are
forward-looking, but have static expectations. In this case, running counterfactuals
with the myopic model should yield correct results. However, the interpretation of
the estimates is not clear in such a model. The myopic utility function contains both
flow pay-off components, such as utility from coverage quality or network effects,
and the one-time utility component of the switching cost. Meaningfully comparing
for example the relative magnitude of switching costs and network effects becomes
impossible. To tackle these problems, I incorporate direct network effects into a
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3 Network Effects and Switching Costs in Dynamic Demand Models

dynamic demand model in the style of Gowrisankaran and Rysman (2012).

A dynamic model is much more involved both in terms of identification arguments
and the estimation. I discuss the additional assumptions under which the identifica-
tion strategy from Chapter 2 can be extended to a dynamic model. In essence, my
identification strategy for the network effect requires that the sequentially exogenous
instruments for reference group market shares are not a direct state variable in
consumers’ value functions. In a model without unobserved preference heterogeneity
in which all state variables evolve according to an AR(1)-process, the identifying
assumptions are satisfied.

Ex-ante, it is not clear how the estimates from a myopic model will compare to
the ones obtained from estimating a dynamic model. In my application to the US
wireless industry, the results from the dynamic model are qualitatively in line with
the ones in Chapter 2. Although estimates for both switching costs and network
effects are large and significant, they are generally 30%-50% lower than the ones
obtained from a myopic model. When evaluating the demand side effects of perfect
network compatibility or a reduction in switching costs, the smaller carriers generally
gain market share. However, in comparison to the myopic model, forward-looking
consumers react less strongly but much faster.

In Section 3.2, I present the dynamic extension of the demand model developed in
Chapter 2. I discuss the assumptions necessary to identify network effects in Section
3.4. Section 3.5 outlines the estimation algorithm. The following two sections discuss
the estimation results and the counterfactual outcomes when regulating switching
costs or network effects. Section 3.8 concludes.

3.2 Model

In this section, I present a dynamic discrete-choice model in which consumer decisions
are driven by both switching costs and network effects. The framework extends the
recent literature on dynamic demand models by incorporating direct network effects.
The model is tailored to capture key aspects of the US wireless industry, although it
is generally applicable to a broad range of network industries.
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3.2 Model

3.2.1 Static components

As in Chapter 2, the per-period utility function is given by:

uijmt = (Xd
jmtβ

d + γdpdjmt + ξdjmt + αdsrdjmt)q
d
jmt︸ ︷︷ ︸

δdjmt

+ψd1{ait−1 6=ait} + εijmt

where i indexes an individual consumer, d denotes a (demographic) consumer type,
m the local market, t the time period and ait−1 consumer i’s choice in period t− 1.
Following the notation in Chapter 2, X denotes observable product characteristics, p
the quarterly subscription price, ξ an unobservable (to the econometrician) vertical
product characteristic, srd the market share within a consumer’s reference group
and q the (exogenously given) usage quantity.

3.2.2 Model of forward-looking consumers

The dynamic extension of my model is based on a recent series of papers on dynamic
demand (Gowrisankaran and Rysman 2012; Shcherbakov 2013; Nosal 2012; Conlon
2011). Consumer i’s infinite-horizon decision problem can be described by a value
function:

V i(j̃, εit,Ωt) = max{δi
j̃t

+ εij̃t + βE[V i(j̃,Ωt+1)|Ωt)],

max
j 6=j̃
{−ψi + δijt + εijt + βE[V i(j,Ωt+1)|Ωt]}}

with β denoting the discount factor and j̃ the product owned at the beginning of
the period. A consumer can be subscribed to exactly one wireless carrier. If she
subscribes to a new operator, the old contract is canceled at a cost included in the
switching cost ψi. Ω denotes the industry state which contains all payoff-relevant
information. So the relevant state space of a consumer is characterized by (j̃, εit,Ωt).
Product characteristics such as coverage quality, call rates and network size may
change every period. Therefore δi

j̃t
is not fixed to be the same as in the initial

purchase period in contrast to the models by Gowrisankaran and Rysman (2012) or
Conlon (2011).

I assume that the industry characteristics Ω evolve according to an exogenous
Markov process g(Ωt+1|Ωt). This implies assuming that from the perspective of
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3 Network Effects and Switching Costs in Dynamic Demand Models

an individual consumer, also the evolution of reference group market shares are
exogenous. This can be justified if an individual consumer does not have a substantial
effect on the market share distribution. This is the case if each (disaggregated)
market share observation is generated by a continuum of consumers.

Because of the logit error structure the ex-ante value function of owning product
j̃ at the beginning of period t can be written in closed-form as:

E(V i(j̃,Ωt)) = vi(j̃,Ω) = log[exp(δi
j̃

+ βE[V i(j̃,Ω′)|Ω]) + exp(∆i(j̃,Ω))]

which is obtained by integrating over the iid shock ε. The inclusive value ∆i captures
the present discounted value of choosing the best alternative today except for the
one currently owned and can be written as:

∆i(j̃,Ω) = log

∑
j 6=j̃

exp(δij − ψi + βE[V i(j,Ω′)|Ω])


In order to compute consumers’ beliefs one needs to specify how they perceive

the transition of the state variables. In fast-moving high-tech industries it is very
unlikely that consumers have perfect foresight on the industry structure. Therefore,
most of the literature models state transitions in a bounded rationality framework.
Consumers’ predictions of future state variables are a simple function of contem-
poraneous state variables, such as product characteristics, prices, switching costs
and market shares. The coefficients of the transition functions are estimated in
auxiliary regressions imposing that individuals are correct on average. Such a speci-
fication need not be consistent with an economic model of the supply side, but it is
computationally tractable.

I follow the literature in applying a bounded rationality approach. I assume
that observed operator characteristics evolve according to an AR(1)-process. Also,
the unobserved product characteristic ξ follows a (stable) AR(1)-process with a
mean-zero innovation ν implying that E(ξt+1) = ιξt with ι < 1.

An additional complication in my model is that consumers need not only forecast
exogenous product characteristics but also future market shares. Once consumers
know Ωt, market shares in period t + 1 are not stochastic anymore. Instead they
can be computed as the fixed point of a mapping from the industry structure and
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3.2 Model

beliefs on reference group market shares to market shares:

srdjmt+1 =
∑
d′∈rd

wd
′

mtEsd
′

jmt+1

=
∑
d′∈rd

wd
′

mt

∑
j′

Prd
′
(j|j′)sd′jmt

Fully modeling this aspect is problematic because the presence of multiple equilibria
can lead to multiple fixed points. With forward-looking consumers this is a more
complicated issue than in the myopic case. The estimation of such a dynamic model
would require finding all the solutions of the value function and then selecting one
equilibrium which makes the model substantially more complicated and harder to
compute (cf. Section 3.5). To circumvent this problem, I assume that consumers
forecast market shares in the same boundedly rational way as the exogenous product
characteristics. This results in a unique equilibrium prediction and is therefore much
easier to compute. Tackling the issue of multiple equilibria with a more sophisticated
belief structure is left for future research.

A dynamic model in which consumers keep track of each state variable individually
is computationally infeasible. Usually, the literature adopts an inclusive value
sufficiency assumption that allows consumers to track only the mean utility of
their current product as well as a summary statistic of the market. In general, the
inclusive value assumption is restrictive as two industry states with very different
future paths can result in the same inclusive value. In industries where the choice
set consists of many different products, the IVS assumption is indispensable.

In my model, there are just 4 inside goods. At a significant but manageable
increase in computational complexity, it should be possible to replace the IVS
assumption by the weaker assumption that consumers track the mean utilities of all
products. I leave the estimation of this model for future research. For this chapter,
I follow Gowrisankaran and Rysman (2012) in imposing the logit inclusive value
sufficiency assumption:

∆i(Ω) = ∆i(Ω̂)

⇒ g∆(∆(Ω′)|Ω) = g∆(∆(Ω̂′|Ω̂))

63



3 Network Effects and Switching Costs in Dynamic Demand Models

For the evolution of the flow utility of the good currently owned, the LIV assumption
implies:

δij(Ω) = δij(Ω̂)

⇒ gδ(δ
i(j,Ω′)|Ω) = gδ(δ(j, Ω̂′|Ω̂))

While it is rather unlikely that the industry actually evolves in such a way, this
specification can be interpreted as consumers being able only to track a summary
statistic of the overall market and the evolution of their own product (Gowrisankaran
and Rysman 2012). This is a plausible behavioral assumption in highly dynamic
industries such as the wireless industry.

The evolution of the summary statistics are modeled as two stationary AR(1)-
processes:

∆t+1 = γ1 + γ2∆t + ν∆t+1

δjt+1 = τ0 + τ1δjt + νδt+1

where γ and τ are nuisance parameters to be estimated in auxiliary OLS-regressions.
In order to compute the model’s market share predictions, define the utility of
consumer i when choosing product j in period t net of any switching costs as:

wijt = δijt + βE(V i(j,Ωt+1)|Ωt)

With i’s previous period’s choice given by j̃, the conditional choice probabilities can
be written as:

Prit(j̃|j̃) =
exp(wi

j̃t
)

exp(wi
j̃t

) + exp(∆i(j̃,Ω))

Prit(j|j̃) =
exp(wijt − ψi)

exp(wijt − ψi) + exp(∆i(j,Ω))
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Consequently, market share and churn rate predictions can be computed recursively:

sijt =
∑
j′

Prit(j|j′)sij′t−1

cijt = 1− Prit(j|j)

These model predictions can be taken to the data to form moment conditions.

3.3 Data requirements

The estimation of the dynamic model is based on the same data that is used in
Chapter 2 to estimate the model with myopic consumers.

3.4 Identification arguments

In the previous chapter, I focused on the identification arguments for a model with
myopic consumers. In the following, I discuss the additional assumptions under
which my identification strategy can be generalized to a model with forward-looking
consumers.

In the myopic model, I used the lagged market shares of other consumer types in i’s
reference group as instruments for the contemporaneous reference group market share
of consumer type i. With forward-looking consumers, additional identification issues
arise. The key problem with a dynamic model is that the sequentially exogenous
instruments used to identify the network effect are excluded from the instantaneous
flow utility, but they may be state variables in the value function. In this case,
the value functions would be a direct function of the instruments used to identify
the network effect. As the value functions are required to back out the structural
demand error ξ, the instruments could shift a consumer’s utility not only through
the network effect, but also directly through the value function. Consequently,
the exclusion restrictions discussed in the myopic model may be violated if the
state space of the value function is unrestricted. Therefore, I make the following
assumption on the state space of consumers’ value functions.
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3 Network Effects and Switching Costs in Dynamic Demand Models

Assumption 3.4.1. The instruments Z used for reference group market shares are
not explicit state variables in the value functions. In addition, consumers forecast
the evolution of the state variables only based on the most recent value of the state
variables. In particular, information contained in the instruments for reference group
market shares are not used to forecast future state variables.

Vj({δj,∆j)}Jj=1, Z) = δj + β

∫
V ({δ′j,∆′j)}Jj=1, Z

′)f({δ′j,∆′j)}Jj=1, Z
′|δ,∆, Z)

= δj + β

∫
V ({δ′j,∆′j)}Jj=1)f({δ′j,∆′j)}Jj=1|δ,∆)

Assumption 3.4.1 is implied by the assumption that consumers have homogeneous
preferences within a consumer type and the assumption that all state variables evolve
according to an AR(1)-process. This implies that the current state is a sufficient
statistic for the past so that state realizations from period t − 1 do not provide
additional information to forecast the future.

Under Assumption 3.4.1, the algorithm backing out ξdt+1 from sdt+1, s
−d
t+1, sdt and

V d(Ωt+1) will not depend directly on s−dt−1. Together with the sequential exogeneity
assumption on ν, this implies that the moment conditions used for the myopic model
are also valid in a dynamic model with forward-looking consumers.

In general, the assumptions made to reduce the state space in dynamic demand
models are made purely for computational reasons. Admittedly, they have a more
restrictive role in my application. They are required not only to implement the
estimation, but also as part of the identification arguments. I require some form of
boundedly rational consumers to identify the network effect. For high-tech consumer
goods industries, this assumption may not be a bad one. Given the fast evolution
of these industries, consumers may quickly forget about previous periods’ industry
state and only base their decision on the most recent realization of the state variables.
If one has strictly, not just sequentially, exogenous instruments, one could relax
this assumption. For example, if one had exogenous quality characteristics that
affect only a subset of consumer types within a reference group and not others,
these characteristics would be much better instruments for carriers’ network size.
Unfortunately these instruments are hard to come up with in my application.

Additional identification issues in dynamic models As the discount factor is
generally not identified, I set it to β = 0.975 which is equivalent to a yearly discount
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factor of 0.9. The identification of dynamic demand in general is a very important
but still open issue in the literature. In a dynamic model with forward-looking
consumers not all products (across firms and time) are substitutes. Therefore, it is
not possible to extend the classical proof of a unique fixed point by Berry, Levinsohn,
and Pakes (1995), cf. Gowrisankaran and Rysman (2012). I follow the literature
in imposing the assumption that this system has a unique fixed point and check
empirically that different starting values always result in the same solution. Formally
proving the uniqueness of the fixed point of the dynamic system is a challenging but
extremely important topic for future research.

3.5 Estimation algorithm

The dynamic model can be estimated using either a nested fixed-point (NFXP)
algorithm or the more efficient MPEC approach (see Appendix A). For the estimation
in this chapter, I adopt the NFXP routine as used by Gowrisankaran and Rysman
(2012) and Nosal (2012). The estimation algorithm consists of three levels:

Inner loop The inner loop takes a guess for the parameters θ and a level of
per-period flow utilities δ as given. These are used to solve the dynamic program-
ming problem resulting in updated guesses for the predicted choice probabilities.
Technically, this step involves finding a joint fixed point of the following set of
equations:

1. Value functions / Bellman equations (for each consumer type i)

2. Logit inclusive values: ∆i(j,Ω) for every market share observation

3. AR(1)-regressions for the evolution of ∆i and δi (for each consumer type i)

For solving the value functions, one needs to discretize the state space for (δ,∆)

and take meaningful starting guesses for the value functions, the inclusive values ∆

and the AR(1)-regression coefficients. In practice, I discretize each state variable
into 50 grid points. I solve the value function on this 50× 50 grid and use linear
interpolation to compute the values between the grid points. The bounds of the grid
are chosen such that the inner loop never hits the boundaries.
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The initial guesses for the value functions and the inclusive values are based on a
model with static expectations. For the value function, I set it to the contempora-
neous flow utility normalized with 1

1−β . Initial values for the inclusive values are
calculated based on these value functions.

In order to compute the continuation values, one needs to simulate the evolution
of both state variables. For each grid point, I draw ns = 80 shocks for each state
variable and compute the value function at the simulated states. The continuation
value is calculated as the average over the ns simulated outcomes.

Middle loop The middle loop executes the inversion step similarly to Berry,
Levinsohn, and Pakes (1995). It is based on parameter guesses passed in from
the outer loop and choice probability predictions from the inner loop. The middle
loop takes market share and churn rate predictions and finds the fixed point of the
inversion equation by updating the mean flow utilities δ. The updated mean utilities
are sent back to the inner loop. Therefore, convergence of the middle loop implies
joint convergence of the inner loop (the individual dynamic programming problems)
and the middle loop (the BLP-style inversion step). Following the literature on
dynamic demand estimation I adjust the updating algorithm by a tuning parameter
υ, so that:

f(st, st−1, Vt, θ) [δt] = δt + υ [log (st)− log (St(st−1, θ, δt, Vt))]

υ is set to 1 − β and dampens the adjustment of the δ-vector. The intuition for
using this parameter is the following. In order to justify differences in market shares
small changes in the flow utilities are sufficient because, consumers take into account
not only the instantaneous payoff, but the accumulated lifetime utility of a product.
After convergence the middle loop outputs values for the unobservable demand
shocks ξ(θ) and the churn rate prediction errors ζ(θ) to the outer loop.

Outer loop The outer loop takes the error terms ξ(θ) and ζ(θ) as functions of
the structural parameters and interacts them with instruments to form moment
conditions.

Equilibrium multiplicity with forward-looking consumers In a model with
forward-looking consumers, equilibrium multiplicity is a more problematic issue than
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in a myopic model unless restrictive assumptions on consumers’ beliefs are imposed.
Equilibrium multiplicity requires the inner loop to compute all solutions to the value
function which makes it computationally much more involved. A potential solution
to this problem may be to use computationally efficient homotopy methods similar
to Judd, Renner, and Schmedders (2012) to find all equilibria which I leave as a
topic for future research.

3.6 Results

Ex-ante it is not clear how the results of a dynamic and a myopic model would
compare. For example, switching cost estimates could increase or decrease when
going from a myopic to a dynamic model. This depends on a variety of factors and
their interaction, among others, the joint distribution of consumer beliefs on the
evolution of products’ quality and firms’ churn rates.

Table 3.1 and 3.2 display the results for the estimation of the dynamic model.
The last column translates the point estimates into a monetary willingness-to-pay
using the marginal utility of money derived from the estimated price coefficient. For
the switching costs, the last column displays the monetary equivalent of a one-time
utility loss from switching operators once. For the network effects, it displays the
average monthly willingness to pay for an increase of an operator’s market share
within a consumer’s reference group by 20 percentage points.

Table 3.1: Results for dynamic model (non-linear parameters)

Point Estimates Standard Error P-Values WTP in US-$

Network effect, d=1 1.5485 0.0016 0.0000 7.14
Network effect, d=2 1.7896 0.0005 0.0000 10.92
Network effect, d=3 1.1775 0.0006 0.0000 5.32
Network effect, d=4 1.2568 0.0027 0.0000 7.59
Switching cost, d=1 2.1026 0.0003 0.0000 145.45
Switching cost, d=2 5.3236 0.0010 0.0000 486.96
Switching cost, d=3 2.8735 0.0002 0.0000 194.72
Switching cost, d=4 3.7385 0.0014 0.0000 338.52
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Table 3.2: Results for dynamic model (linear parameters)

Point Estimates Standard Error P-Values WTP in US-$

Local service quality, d=1 0.1000 0.0033 0.0000 6.9176
Local service quality, d=2 -0.2424 0.0039 0.0000 -22.1708
Local service quality, d=3 0.0352 0.0006 0.0000 2.3873
Local service quality, d=4 0.1202 0.0005 0.0000 10.8884

Log(subscription price), d=1 -0.0882 0.0274 0.0013 -
Log(subscription price), d=2 -0.0667 0.0208 0.0013 -
Log(subscription price), d=3 -0.0900 0.0280 0.0013 -
Log(subscription price), d=4 -0.0674 0.0210 0.0013 -

Table 3.3: Overview on consumer types and average expenditure

d Age Income Monthly expenditure

1 >45 below median income US-$ 53
2 >45 above median income US-$ 70
3 <45 below median income US-$ 66
4 <45 above median income US-$ 73

3.6.1 Comparison with myopic model

Qualitatively, the results are similar to the ones obtained from the myopic model in
Chapter 2. Switching costs and network effects are highly significant for all consumer
types. Network effects are stronger for older and richer consumers. While older
consumers with high income (d = 2) are willing to pay around US-$ 11 per month
(15% of the average monthly wireless bill) for a 20%-point increase in an operator’s
market share, young and poor consumers (d = 3) are willing to pay only US-$ 5
(7.5% of the average monthly wireless bill) for this increase in market share. In
comparison to the myopic model, network effects are on average 50% lower.

Estimates of the switching costs range from US-$ 145 (for d = 1, older and poor
consumer) to US-$ 486 (for d = 2, older and rich consumers). Relatively speaking
switching costs amount to roughly three to seven times the average monthly wireless
expenditure. Analogously to the results for the network effect, switching cost
estimates are lower than in the myopic model. For young and rich consumers (d = 4)
switching costs decrease by 10%. For poor consumers (d = 1 and d = 3) switching
costs decrease by more than 50%.
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In order to compare the relative magnitude of switching costs and network effects,
one can use the same thought experiment as in Chapter 2, i.e. compute the subsidy
that a consumer with a time horizon of 2 years requires in order to switch from
a large operator to one with identical quality and prices but 20 percentage points
lower market shares. For types with high income this subsidy would have to be
roughly US-$ 500 for younger consumers and US-$ 700 for older consumers. In both
cases 40% of the subsidy would compensate for the foregone network effect and 60%
for the incurred switching cost. For poorer consumers, the subsidy would have to be
around US-$ 300 with roughly 45% of the subsidy compensating for the network
effect.

Overall, the estimates from the dynamic model are slightly more plausible than the
ones obtained from the myopic model. For example, in the myopic case, consumer
type d = 4 (young and rich) had lower switching costs than young and poor
consumers. In the dynamic model, this ranking changed, with richer consumers
consistently having larger switching costs than poor consumers from the same age
group.

3.6.2 Price elasticities

In dynamic models, there does not exist a closed-form formula for the price elasticities.
Computing these requires resolving the model at different levels of prices. Tables
3.4-3.6 describe the implied price elasticities in the short-run (6 months), medium-
run (2 years) and long-run (5 years). These results are based on simulating market
shares for every period after an operator has permanently increased its price by 10%.

Table 3.4: Short-run price elasticities (dynamic model)

∂s0 ∂s1 ∂s2 ∂s3 ∂s4

∂p1 0.4407 -1.1907 0.3115 0.4228 0.5211
∂p2 0.4001 0.3591 -1.0096 0.3741 0.4576
∂p3 0.4109 0.4140 0.2975 -1.5223 0.5325
∂p4 0.2703 0.2675 0.1743 0.2719 -1.4630

Switching costs lead to relatively low own-price elasticities (around -1) in the
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Table 3.5: Medium-run price elasticities (dynamic model)

∂s0 ∂s1 ∂s2 ∂s3 ∂s4

∂p1 0.9684 -3.4084 1.0116 1.2671 1.2205
∂p2 0.9573 1.2036 -3.0188 1.5029 1.3547
∂p3 0.7236 0.8701 0.8189 -4.1900 1.0597
∂p4 0.6134 0.6911 0.6292 0.8412 -3.7765

Table 3.6: Long-run price elasticities (dynamic model)

∂s0 ∂s1 ∂s2 ∂s3 ∂s4

∂p1 1.2152 -4.6920 1.8530 1.7248 1.6065
∂p2 1.3777 2.1051 -4.3626 2.2691 1.9675
∂p3 0.6207 0.8479 0.9734 -5.5781 0.9327
∂p4 0.6558 0.8578 1.0769 0.8479 -5.0709

short-run with elasticities for the smaller operators being larger than for the big
ones. However, short-run elasticities in the dynamic model are much larger than in
the myopic model. This is very plausible given that I simulate a permanent price
change. While consumers in a myopic model take into account the change only for
the current period, forward-looking consumers anticipate the discounted lifetime
loss of the price increase and therefore react much faster. On a two-year horizon
elasticities become larger (between -3 and -4). In the long-run consumers react even
more strongly to price increases with elasticities around -5.

These elasticities indicate that consumer lock-in may actually not be as strong as
suggested by the large point estimates for switching costs. The long-run cross-price
elasticities are generally largest for the bigger operators, i.e. no matter which carrier
raises its price, consumers are much more likely to substitute to one of the two large
firms. However, differences in cross-price elasticities are by far not as pronounced as
in the myopic model.

3.7 Counterfactuals

In this section, I conduct a series of counterfactuals using the dynamic model to
analyze how network effects and switching costs affect consumer behavior and price
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elasticities.

Figure 3.1: Perfect network compatibility: market share differences
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Perfect network compatibility First, I simulate the following change: Carriers
charge the same average subscription prices and consumer buy the same quantities
as in the observed data, but the network effect works on the cumulative market
share of all inside goods.

Price elasticities decrease under perfect network compatibility, but the decrease is
less pronounced than in the myopic model. Especially in the long run, cross-price
elasticities shift in favor of the smaller operators, in particular cross-price elasticities
become largest for the smaller operators.

Large switching costs restrain consumers from adjusting immediately. Among
the major four operators the effect is monotone in network size. While AT&T’s
market share increases by only 1 percentage point, Verizon, the biggest carrier,
loses marginally until the end of the sample period. Sprint and T-Mobile gain most
(about 5 percentage points in market share each); mostly on the expense of the small
operators summarized in the outside good. In comparison to the myopic model,
forward-looking consumers adjust more quickly to perfect network compatibility,
but overall the changes in market shares are less pronounced.

As in Chapter 2, the explanatory power of the counterfactual is limited because I
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continue to treat the supply side and consumers’ quantity choice as fixed. However,
this exercise reveals that network effects continue to have a significant effect on
consumer behavior when consumers’ beliefs on the future industry evolution are
explicitly incorporated into the model.

Table 3.7: Short-run price elasticities (dynamic model) - perfect network compatibil-
ity

∂s0 ∂s1 ∂s2 ∂s3 ∂s4

∂p1 0.4403 -1.0011 0.2635 0.3764 0.4193
∂p2 0.4339 0.2812 -0.8661 0.3472 0.3759
∂p3 0.4447 0.3339 0.2681 -1.2109 0.4293
∂p4 0.3606 0.2338 0.1917 0.2898 -1.3169

Table 3.8: Medium-run price elasticities (dynamic model) - perfect network compat-
ibility

∂s0 ∂s1 ∂s2 ∂s3 ∂s4

∂p1 1.3454 -2.5780 0.7690 0.9840 0.9429
∂p2 1.3803 0.8504 -2.3924 1.0941 0.9959
∂p3 1.2429 0.7596 0.7186 -3.1006 0.8759
∂p4 1.2033 0.6540 0.6293 0.8189 -2.9695

Table 3.9: Long-run price elasticities (dynamic model) - perfect network compatibil-
ity

∂s0 ∂s1 ∂s2 ∂s3 ∂s4

∂p1 1.6442 -3.3244 1.1476 1.3974 1.2634
∂p2 1.6590 1.2675 -3.2497 1.5512 1.3785
∂p3 1.2064 0.8798 0.8511 -4.0618 1.0086
∂p4 1.3354 0.8679 0.8982 1.0739 -3.7500

Reduction of switching costs Simulating the effect of a reduction of switching
costs by 50% yields mixed results. As expected, consumers react more strongly
in the short-run, i.e. they react more quickly to a price increase. Moreover, the
difference between medium- and long-run elasticities shrinks substantially. However,
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Figure 3.2: Regulation of switching costs: market share differences
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reducing switching costs seems to make demand less elastic compared to the baseline
elasticities. This is counterintuitive and puzzling, but may be due to the fact that
reducing switching costs results in very volatile market shares both compared to
the actual market shares and compared to the counterfactual scenario with myopic
consumers. The additional volatility is due to consumers having flexible beliefs
on the future industry which makes the simulated price elasticities very noisy and
therefore hard to interpret and compare.

In terms of market shares, the two big operators tend to lose around 5 percentage
points each. The market share of the fringe remains basically unaffected. T-Mobile
and Sprint would gain on average about 5 percentage points although there is no
monotone trend over time. Overall, these results highlight once more the importance
of switching costs for consumer behavior in the US wireless industry.

Table 3.10: Short-run price elasticities (dynamic model) - subsidized switching costs

∂s0 ∂s1 ∂s2 ∂s3 ∂s4

∂p1 0.3092 -1.9614 0.4581 0.5253 0.6220
∂p2 0.7516 0.5519 -1.7528 0.4305 0.7850
∂p3 0.5538 0.4721 0.3334 -1.8146 0.5266
∂p4 0.4844 0.7296 0.5107 0.4555 -2.1881
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Table 3.11: Medium-run price elasticities (dynamic model) - subsidized switching
costs

∂s0 ∂s1 ∂s2 ∂s3 ∂s4

∂p1 0.5017 -2.1789 0.3909 0.6918 0.6688
∂p2 0.7314 0.6624 -2.1306 0.4887 1.0947
∂p3 0.8427 0.5801 0.4287 -2.4020 0.6481
∂p4 0.7736 0.6230 0.5063 0.7944 -2.6036

Table 3.12: Long-run price elasticities (dynamic model) - subsidized switching costs

∂s0 ∂s1 ∂s2 ∂s3 ∂s4

∂p1 0.5635 -2.1741 0.6038 0.5262 0.7725
∂p2 0.7660 0.4815 -2.0712 0.5324 0.7726
∂p3 0.7611 0.6851 0.2706 -2.5434 1.0899
∂p4 0.5823 0.4043 0.5095 0.6438 -2.8126

3.8 Conclusion

In this chapter, I extended the demand model developed in Chapter 2 to a setting
in which consumers are forward-looking. In high-tech consumer goods industries, it
is very likely that consumers behave in a forward-looking way so that static models
of consumer behavior may yield confounded results.

In a model with forward-looking consumers, the identification is more involved and
relies on more restrictive assumptions than in the myopic model. For my application,
I have to assume that the sequentially exogenous instruments used to identify the
network effect do not enter consumers’ value functions as an explicit state variable.
The identification of dynamic demand models in general is still an open question
and an important area for future research

The estimation results of the dynamic model indicate that both switching costs
and network effects are very large and significant, but substantially lower than the
estimates that come from the myopic model. Unfortunately, there is no way to
rigorously test whether a dynamic or a myopic model is the right one because in my
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current model the discount factor is not identified. In a more extensive model, the
discount factor could be identified. If one explicitly models consumers’ bundle choice
of a carrier and a handset, it should be possible to identify the discount factor from
consumers’ reaction in carrier choice to exclusive handsets that become available
later in the future. A similar identification strategy is used by Lee (2013) to identify
the discount factor in the video game industry.

In comparison to the myopic model, forward-looking consumers’ reaction to a
regulation of network effects and switching costs is smaller, but adjustment takes
place much faster. This is intuitive as forward-looking consumers anticipate the
future effects of contemporaneous shocks so that they should adapt immediately.
The biggest caveat with the counterfactuals in both Chapter 2 and Chapter 3 is that
they do not allow for any reaction on the supply side. Most importantly, I assume
that carriers’ pricing strategies remain unaffected in the counterfactual simulations.

In Chapter 4, I outline a model that can be used to endogenize operators’ pricing
strategies. In principle, this framework can be combined with both the myopic
demand model in Chapter 2 as well as the dynamic model from this chapter. However,
without direct information on continuation values, such as for example in Kalouptsidi
(2014), estimating a full industry model with both dynamic demand and dynamic
supply is likely to be computationally infeasible.

Appendix A Reformulation of the estimation in

MPEC framework

The NFXP algorithm is computationally very demanding as the full model has to
be solved for every guess of the parameter values. Su and Judd (2012) propose a
reformulation of the estimation problem as a mathematical programming problem
with equality constraints (MPEC). Conlon (2011) has applied this estimation strategy
in a dynamic demand model of the LCD TV market. Instead of solving for the
model equilibrium for each parameter guess, the MPEC method assures that all
constraints imposed by the economic model are satisfied at the optimal solution.
This estimation strategy works particularly well when the Hessian of the objective
function is relatively sparse. As I estimate group-specific coefficients, this is likely
to be the case in my model and I expect the MPEC form to be much more efficient
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than the NFXP routine. Reformulating my economic model in an MPEC context
implies the following set of constraints ∀i, j, t:

Pri(j̃|j̃) =
exp(wi

j̃t
)

exp(wi
j̃t

) + exp(∆i(j̃,Ω))
(3.1)

Pri(j|j̃) =
exp(wijt − ψi)

exp(wijt − ψi) + exp(∆i(j,Ω))
(3.2)

sijt =
∑
j′

P i(j|j′)sij′t−1(3.3)

vi
j̃t

= log[exp(δi
j̃t

) + βE[V i(δi
j̃
,∆′i

j̃
)|Ω] + exp(∆i

j̃
(Ω))](3.4)

∆i
j̃t

= log(
∑
j 6=j̃

exp(δij − ψi + βE[V i(j,Ω′)|Ω]))(3.5)

E(∆i
jt+1|∆i

jt) = γ̂∆̃i
jt(3.6)

E(δijt+1|δijt) = τ̂ δ̃ijt(3.7)

γ̂i = (∆̃i
′
∆̃i)−1(∆̃i

′
∆̃)(3.8)

τ̂ i = (δ̃i
′
δ̃i)−1(δ̃i

′
δ̃)(3.9)

Estimation adds the following constraints on observed data and model predictions :

sijgt = S i
jgt(3.10)

cijgt = C i
jgt(3.11)

Minimizing the GMM criterion function subject to these constraints yields consistent
estimates of the structural parameters that are identical to ones obtained by applying
a NFXP algorithm.
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Appendix B Observed market shares

Table 3.13: Observed market shares

Other AT&T Verizon Sprint T-Mobile

Q1-2006 0.1148 0.2556 0.2771 0.2188 0.1336
0.1132 0.2638 0.2779 0.2078 0.1374
0.1350 0.2479 0.2706 0.2063 0.1403
0.1254 0.2487 0.2839 0.1989 0.1432

Q1-2007 0.1299 0.2441 0.2802 0.2002 0.1456
0.1345 0.2366 0.2846 0.1956 0.1487
0.1314 0.2403 0.2851 0.1926 0.1506
0.1327 0.2419 0.2891 0.1867 0.1496

Q1-2008 0.1382 0.2462 0.2904 0.1764 0.1488
0.1411 0.2393 0.2854 0.1750 0.1592
0.1454 0.2500 0.2869 0.1646 0.1531
0.1392 0.2448 0.2904 0.1687 0.1569

Q1-2009 0.1284 0.2471 0.3064 0.1551 0.1630
0.1361 0.2470 0.3071 0.1514 0.1584
0.1362 0.2495 0.3126 0.1467 0.1550
0.1407 0.2567 0.3122 0.1384 0.1521

Q1-2010 0.1426 0.2565 0.3078 0.1387 0.1544
0.1467 0.2575 0.3104 0.1348 0.1506
0.1484 0.2631 0.3055 0.1362 0.1467
0.1411 0.2693 0.3116 0.1267 0.1514
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Table 3.14: Predicted market shares

Other AT&T Verizon Sprint T-Mobile

Q1-2006 0.1151 0.2555 0.2771 0.2187 0.1337
0.1141 0.2634 0.2777 0.2074 0.1374
0.1336 0.2483 0.2715 0.2062 0.1404
0.1262 0.2485 0.2836 0.1986 0.1431

Q1-2007 0.1297 0.2441 0.2806 0.1999 0.1456
0.1329 0.2376 0.2851 0.1954 0.1490
0.1309 0.2408 0.2853 0.1921 0.1508
0.1323 0.2424 0.2892 0.1865 0.1496

Q1-2008 0.1377 0.2464 0.2908 0.1762 0.1488
0.1403 0.2398 0.2858 0.1749 0.1592
0.1461 0.2503 0.2865 0.1642 0.1529
0.1397 0.2448 0.2902 0.1683 0.1570

Q1-2009 0.1306 0.2469 0.3051 0.1546 0.1628
0.1384 0.2469 0.3055 0.1508 0.1584
0.1366 0.2497 0.3122 0.1462 0.1551
0.1404 0.2568 0.3125 0.1382 0.1522

Q1-2010 0.1432 0.2567 0.3072 0.1385 0.1544
0.1471 0.2574 0.3101 0.1347 0.1507
0.1501 0.2626 0.3047 0.1361 0.1466
0.1427 0.2693 0.3104 0.1266 0.1510

80



Appendix

Figure 3.3: Observed and predicted market shares
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Appendix C Counterfactual market shares

Table 3.15: Perfect network compatibility - predicted market shares

Other AT&T Verizon Sprint T-Mobile

Q1-2006 0.0988 0.2590 0.2782 0.2238 0.1402
0.0847 0.2679 0.2801 0.2172 0.1502
0.0877 0.2554 0.2755 0.2220 0.1594
0.0719 0.2569 0.2874 0.2174 0.1664

Q1-2007 0.0653 0.2550 0.2851 0.2216 0.1730
0.0588 0.2504 0.2890 0.2208 0.1810
0.0519 0.2545 0.2885 0.2193 0.1857
0.0497 0.2576 0.2912 0.2151 0.1864

Q1-2008 0.0497 0.2615 0.2923 0.2088 0.1878
0.0458 0.2563 0.2875 0.2090 0.2013
0.0469 0.2673 0.2883 0.2014 0.1961
0.0405 0.2627 0.2897 0.2061 0.2010

Q1-2009 0.0344 0.2640 0.3014 0.1933 0.2069
0.0375 0.2647 0.3014 0.1921 0.2043
0.0364 0.2654 0.3067 0.1898 0.2017
0.0363 0.2738 0.3053 0.1837 0.2009

Q1-2010 0.0382 0.2729 0.2997 0.1851 0.2041
0.0386 0.2731 0.3019 0.1849 0.2015
0.0389 0.2779 0.2964 0.1878 0.1991
0.0352 0.2833 0.2989 0.1787 0.2040
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Table 3.16: Perfect network compatibility - predicted differences in market shares

Other AT&T Verizon Sprint T-Mobile

Q1-2006 -0.0160 0.0034 0.0010 0.0050 0.0065
-0.0285 0.0041 0.0022 0.0094 0.0128
-0.0472 0.0075 0.0049 0.0157 0.0191
-0.0535 0.0082 0.0036 0.0185 0.0232

Q1-2007 -0.0645 0.0109 0.0049 0.0214 0.0274
-0.0757 0.0138 0.0044 0.0252 0.0323
-0.0794 0.0142 0.0034 0.0267 0.0352
-0.0831 0.0157 0.0021 0.0284 0.0369

Q1-2008 -0.0886 0.0153 0.0019 0.0324 0.0389
-0.0953 0.0170 0.0021 0.0340 0.0422
-0.0985 0.0173 0.0015 0.0367 0.0430
-0.0987 0.0179 -0.0007 0.0374 0.0441

Q1-2009 -0.0940 0.0169 -0.0051 0.0382 0.0439
-0.0986 0.0176 -0.0057 0.0407 0.0459
-0.0999 0.0159 -0.0059 0.0432 0.0468
-0.1043 0.0171 -0.0069 0.0454 0.0488

Q1-2010 -0.1044 0.0164 -0.0081 0.0464 0.0497
-0.1080 0.0156 -0.0086 0.0501 0.0509
-0.1095 0.0148 -0.0092 0.0516 0.0523
-0.1059 0.0140 -0.0127 0.0520 0.0526
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Figure 3.4: Perfect network compatibility: market shares
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Table 3.17: Regulation of switching costs - predicted market shares

Other AT&T Verizon Sprint T-Mobile

Q1-2006 0.1028 0.2292 0.2625 0.2323 0.1732
0.1185 0.3096 0.2237 0.1468 0.2015
0.1949 0.1408 0.2317 0.2084 0.2242
0.1559 0.1412 0.3269 0.1985 0.1775

Q1-2007 0.1330 0.2003 0.2058 0.2360 0.2249
0.1712 0.1173 0.2376 0.2217 0.2522
0.1348 0.2198 0.2586 0.2101 0.1768
0.1220 0.1775 0.2531 0.2401 0.2074

Q1-2008 0.1336 0.2691 0.1971 0.1722 0.2279
0.1508 0.1273 0.2511 0.1975 0.2732
0.1593 0.2169 0.2409 0.1948 0.1881
0.1152 0.2346 0.2811 0.1855 0.1836

Q1-2009 0.1265 0.2721 0.2877 0.1333 0.1804
0.1523 0.2340 0.2569 0.1976 0.1591
0.1411 0.1711 0.3761 0.1882 0.1237
0.1989 0.2513 0.2297 0.1716 0.1485

Q1-2010 0.2322 0.1876 0.1562 0.2518 0.1723
0.2059 0.1901 0.2481 0.2047 0.1511
0.1897 0.1869 0.2423 0.2565 0.1246
0.1226 0.2685 0.3177 0.1134 0.1778
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Table 3.18: Regulation of switching costs - predicted differences in market shares

Other AT&T Verizon Sprint T-Mobile

Q1-2006 -0.0121 -0.0265 -0.0146 0.0136 0.0396
0.0053 0.0458 -0.0542 -0.0609 0.0641
0.0600 -0.1071 -0.0389 0.0021 0.0839
0.0305 -0.1075 0.0431 -0.0004 0.0343

Q1-2007 0.0031 -0.0438 -0.0744 0.0358 0.0793
0.0367 -0.1193 -0.0470 0.0261 0.1035
0.0034 -0.0205 -0.0265 0.0174 0.0262
-0.0108 -0.0644 -0.0360 0.0534 0.0578

Q1-2008 -0.0047 0.0229 -0.0933 -0.0041 0.0791
0.0097 -0.1120 -0.0343 0.0226 0.1140
0.0139 -0.0330 -0.0460 0.0302 0.0349
-0.0240 -0.0102 -0.0093 0.0168 0.0266

Q1-2009 -0.0019 0.0250 -0.0187 -0.0218 0.0175
0.0162 -0.0130 -0.0502 0.0462 0.0008
0.0049 -0.0785 0.0635 0.0415 -0.0313
0.0583 -0.0054 -0.0826 0.0332 -0.0035

Q1-2010 0.0896 -0.0689 -0.1516 0.1131 0.0179
0.0592 -0.0674 -0.0623 0.0699 0.0005
0.0413 -0.0762 -0.0632 0.1203 -0.0222
-0.0185 -0.0008 0.0061 -0.0132 0.0264
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Figure 3.5: Regulation of switching costs: market shares
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Appendix D Differences in price elasticities

Table 3.19: Differences in short-run price elasticities - perfect network compatibility

∂s0 ∂s1 ∂s2 ∂s3 ∂s4

∂p1 -0.0004 0.1897 -0.0480 -0.0464 -0.1019
∂p2 0.0338 -0.0779 0.1434 -0.0268 -0.0816
∂p3 0.0338 -0.0802 -0.0294 0.3114 -0.1033
∂p4 0.0903 -0.0337 0.0174 0.0179 0.1461

Table 3.20: Differences in medium-run price elasticities - perfect network compati-
bility

∂s0 ∂s1 ∂s2 ∂s3 ∂s4

∂p1 0.3769 0.8304 -0.2426 -0.2830 -0.2776
∂p2 0.4230 -0.3532 0.6264 -0.4089 -0.3588
∂p3 0.5192 -0.1106 -0.1003 1.0894 -0.1838
∂p4 0.5899 -0.0371 0.0001 -0.0223 0.8070

Table 3.21: Differences in long-run price elasticities - perfect network compatibility

∂s0 ∂s1 ∂s2 ∂s3 ∂s4

∂p1 0.4290 1.3676 -0.7054 -0.3273 -0.3431
∂p2 0.2814 -0.8376 1.1129 -0.7178 -0.5890
∂p3 0.5857 0.0320 -0.1222 1.5162 0.0759
∂p4 0.6796 0.0101 -0.1787 0.2260 1.3210
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Table 3.22: Differences in short-run price elasticities - subsidized switching costs

∂s0 ∂s1 ∂s2 ∂s3 ∂s4

∂p1 -0.1315 -0.7707 0.1465 0.1024 0.1008
∂p2 0.3515 0.1929 -0.7432 0.0565 0.3274
∂p3 0.1429 0.0580 0.0359 -0.2923 -0.0059
∂p4 0.2140 0.4622 0.3365 0.1836 -0.7252

Table 3.23: Differences in medium-run price elasticities - subsidized switching costs

∂s0 ∂s1 ∂s2 ∂s3 ∂s4

∂p1 -0.4667 1.2295 -0.6207 -0.5752 -0.5517
∂p2 -0.2259 -0.5412 0.8882 -1.0143 -0.2600
∂p3 0.1191 -0.2900 -0.3903 1.7879 -0.4116
∂p4 0.1602 -0.0681 -0.1228 -0.0468 1.1729

Table 3.24: Differences in long-run price elasticities - subsidized switching costs

∂s0 ∂s1 ∂s2 ∂s3 ∂s4

∂p1 -0.6517 2.5179 -1.2492 -1.1985 -0.8341
∂p2 -0.6117 -1.6236 2.2914 -1.7366 -1.1949
∂p3 0.1404 -0.1627 -0.7027 3.0347 0.1572
∂p4 -0.0736 -0.4535 -0.5674 -0.2041 2.2584
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4 An Empirical Model of Dynamic
Platform Competition in the US
Wireless Industry

4.1 Introduction

This chapter complements the demand models developed in Chapter 2 and Chapter 3
with a model of the supply side. I present a model of dynamic platform competition
in which firms choose prices to maximize discounted lifetime profits.

The model is similar in spirit to the theory models of Cabral (2011) and Chen
(2014). In industries in which demand is driven by both switching costs and
network effects, dynamically optimizing firms face a trade-off between harvesting
and investing. Setting high prices will increase profits by harvesting the locked-in
customers while lowering prices may be profitable because consumers are drawn to a
firm’s network today. Due to the presence of network effects, additional consumers
are attracted to the network. This positive externality leads to a larger installed
base which can be harvested in the future. As Chen (2014) has shown in numerical
simulations, this trade-off crucially depends on the relative magnitude of switching
costs and network effects so that different types of equilibria, for example market
tipping or market sharing, may arise.

In order to keep the model tractable, I assume that each firm chooses only a single
subscription price for its wireless service. Prices will be a function of the market
share distribution at the beginning of the period and the (exogenously given) quality
levels of all firms in the market. Even with a very restrictive state space, estimating
dynamic models with strategic interaction is computationally extremely intensive.
Usually, it is infeasible using methods like the nested-fixed-point algorithm because
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these methods require solving a complicated model for every guess of the parameter
vector.

Over the last years, much more efficient two-step methods have been developed
that allow to estimate dynamic games without having to explicitly compute the
equilibrium. Instead, equilibrium policy functions are estimated from the data
directly. Similar to Shcherbakov (2009), I propose to apply the forward-simulation
method by Bajari, Benkard, and Levin (2007) to estimate carriers’ marginal costs.

Combining the demand and supply side will allow for rich counterfactuals including
analyzing the full industry effects of regulating switching costs or perfect network
compatibility. In particular, implementing the model proposed in this chapter,
would allow to investigate how firms will adjust prices in response to a regulation
of switching costs or network effects and whether the market would end up in a
sharing or tipping equilibrium. In addition, one may also use the model to conduct
evaluations of mergers in the wireless industry.

4.2 Model

In this section, I present a dynamic model of platform competition in the US wireless
industry.

4.2.1 Static model

I start by outlining a static model of Bertrand pricing competition with differentiated
products. In this framework, firms’ marginal costs can be easily estimated using
methods as for example in Berry, Levinsohn, and Pakes (1995). It is very restrictive
to assume that firms in network industries do not take into account the future.
However, a static model can serve as a useful reference point. In a static model,
firms will face a strong harvest motive, but they have no incentive to invest by
charging a lower price today. Therefore, given fixed marginal costs, subscription
prices should be unambiguously higher than in a dynamic model.

I model the supply side with 4 players: AT&T, Verizon, Sprint and T-Mobile (the
four big carriers). The fringe carriers constitute the outside good whose behavior is
taken as exogenously given. For simplicity, each firm offers only a single product.
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Demand is modeled as in Chapter 2. Consumers subscribe to exactly one of the
horizontally differentiated operators. Consumers are myopic and can switch in every
period, but switching is costly. In addition to the (exogenous) technological product
characteristics, consumers care about the prices charged by firms. Finally, because
of the network effect, consumers derive utility from other consumers using the same
carrier in this period.

In every quarter, firms maximize their per-period profit given the industry state
that consists of the market share distribution at the beginning of the period and the
quality characteristics of every firm. In order to simplify the notation, I assume that
there is just one local market and that every consumer buys one unit of wireless
service. For the estimation, one can easily incorporate multiple local markets by
aggregating over all the markets and using appropriate weights. Moreover, one can
allow for different consumers types buying different quantities of cellphone service.

A fundamental issue is how to define a firm’s state and strategy space. Fully
optimizing firms should consider the market share distribution and their quality
profile on a very disaggregated level. They should base their pricing decision on
the detailed demographics of their installed base and also set different prices across
different market segments. In the US wireless industry, this is not observed. Carriers
offer the same contracts across all local markets and to all consumer types.1

Therefore, I assume that firms only choose a single subscription price for a unit
of phone service in a given period. In a static model one can allow firms to base
pricing decisions on a very detailed and disaggregated industry state. In a dynamic
model, this becomes more involved, cf. the discussion in Section 4.2.2.

The per-period profit function in period t for firm j can be written as:

max
pj

πjt = Mt(pjt −mcjt)sjt(pt)

where pjt denotes the subscription price that firm j charges, Mt is the market size
and sjt firm j’s market share. mc denotes the marginal costs of serving an additional
customer. The marginal costs are modeled as:

log(mcjt) = wjtγ + ωjt

1Admittedly, there are more subtle strategies which carriers can use to price discriminate, for
example by granting bonus or poaching payments. As I do not have any data on this, it is not
possible to consider these subtleties in my empirical model.
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where wjt is a vector of observable cost shifters such as proxies for physical coverage
quality or customer service. γ is a parameter vector to be estimated. ωjt is a shock
that is unobserved by the econometrician, but observed by firms before setting prices.
As a starting point, I choose a very parsimonious specification for marginal costs
with w containing only indicators for each firm, i.e. I assume that each firm has a
constant marginal cost over time, but marginal costs may differ across firms. It is
straightforward to let marginal costs vary with observed quality characteristics or
incorporate coefficients that very over time.

The static model yields the familiar first-order conditions for every firm and every
period:

∂sjt
∂pjt

[pjt −mcjt] + sjt = 0

pjt = mcjt −
(
∂sjt
∂pjt

)−1

sjt

where
(
∂sjt
∂pjt

)−1

can be computed from the underlying demand model. Substituting
the expression for marginal costs, one can back out the structural cost errors ωjt
conditional on a guess for the cost parameters γ:

ωjt = log(pjt +

(
∂sjt
∂pjt

)−1

sjt)− wjtγ

ωjt = log(pjt +

(
∂sjt
∂pjt

)−1

sjt)− γj

where the last line exploits the simple functional form of the marginal costs with γj
denoting firm j’s mean marginal cost.

The model predictions for ω can be interacted with instruments - in my simple
case these need only be indicators for each firm - to compute a set of moments so
that γ can be estimated in a GMM framework.

The static model is very easy to estimate but neglects an important aspect of
the industry. In the presence of switching costs and network effects, dynamic
considerations become highly important for firms, no matter whether consumers
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are myopic or forward-looking. In the following subsection I outline how one can
incorporate this into the model.

4.2.2 Dynamic model

In a dynamic model, firms maximize discounted lifetime profits and therefore take
into account the effects of their choice today on future profits. The model extension
presented in this subsection is based on Shcherbakov (2009) who applies a forward-
simulation approach to estimate marginal costs of cable TV firms in the US.

As in the static model, firms compete for customers in every quarter by setting
subscription prices for their wireless services. In order to keep the state space
tractable, I assume that firms base their pricing decisions only on their own (ag-
gregate) market share at the beginning of the period (sjt−1), the aggregate market
shares of each of their competitors (s−jt−1) as well as their own and competitors’
quality (summarized by Xt).2

Admittedly, this is a restrictive assumption. It implies that firms with the same
aggregate market share, but potentially different market share distributions across
local markets and consumer types choose the same subscription prices. Obviously,
such a strategy need not be optimal. In principle, the use of a two-step method
allows to relax this assumption a bit, but not by “too much” (cf. the discussion below
on estimating the equilibrium policy functions).

Assuming constant marginal costs, the per-period profit function is identical to
the one from the static model:

πjt(sjt−1, s−jt−1, pjt, p−jt, Xjt) = Djt(sjt−1, s−jt−1, pjt, p−jt, Xjt)(pjt −mcjt)

with Djt denoting the aggregate demand for product j. While firms choose subscrip-
tion prices, quality characteristics evolve according to an exogenous AR(1)-process.
With the simplifying assumptions on the state space, firm j’s dynamic problem can

2The idea of using only a summary statistic of the market is similar to the concept of an oblivious
equilibrium by Weintraub, Benkard, and Van Roy (2008).
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be written as:

W (s0, X0) = max
pjt

E

[
∞∑
t=0

βtπjt(pjt, p−jt, sjt−1, s−jt−1, Xjt)

]
s.t. st = S (st−1, pt, Xt)

where s0 denotes the market share distribution in the initial period. The expectation
is taken over the evolution of the exogenous state variables X() and S is the market
share prediction coming from the demand model.

I assume that firms play a Markov Perfect Equilibrium (MPE) in subscription
prices. Chen (2014) argues for a similar model that the assumptions for the proof
of existence of a symmetric MPE by Doraszelski and Satterthwaite (2010) are
fulfilled. A well-known problem of dynamic games is that there may be multiple
equilibria. Chen (2014) deals with this problem by using an equilibrium selection
rule based on the limit of a finite-horizon version of the game (Chen, Doraszelski,
and Harrington Jr 2009). However, his theoretical model is much more restrictive.
He allows only one customer to switch per period, whereas my demand model allows
for a continuum of consumers to potentially switch every period. In that case, the
problem of equilibrium multiplicity becomes much more severe. I leave the detailed
discussion on this issue for future research and assume that the data used to estimate
firms’ cost functions come from a unique equilibrium. Under these assumptions, the
dynamic problem can be written recursively with W (sjt−1, s−jt−1, Xjt) given by:

W (·) = max
pjt

π(sjt−1, s−jt−1, pjt, p−jt, Xjt) + βE [W (sjt, s−jt−1, Xjt+1|sjt−1, s−jt−1, Xjt)]

(4.1)

The optimal policy functions p(st−1, Xt) can be obtained as the fixed point of the
first order conditions (best-reply functions) of problem (4.1):

∂

∂pjt
π(sjt−1, s−jt−1, pjt, p−jt, Xt) + βE

[
∂W (sjt, s−jt, Xt+1)

∂sjt

]
∂sjt
∂pjt

= 0 ∀j, t

The derivative of the per-period profit can be computed in closed-form as in the
static model. The derivative of firm j’s contemporaneous market share with respect
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to its price can be calculated as a function of consumers choice probabilities:

∂sjt
∂pjt

=
J∑
k=1

skt−1
∂Pr(j|k)

∂pjt
(4.2)

where Pr(j|k) is the conditional choice probability of choosing j after having bought
product k in the previous period. If one allows for different consumer types i, one
can simply compute equation (4.2) for every i. The full effect can then be computed
by aggregating over all i. With αp denoting the price coefficient in the demand
function, the derivative of the choice probabilities in a logit model is given by:

∂Pr(j|k)

∂pjt
= αp

J∑
k=1

skt−1 ·
[
Pr(j|k)− Pr2(j|k)

]

For a similar model, Shcherbakov (2009) highlights that the idea of Hansen and
Singleton (1982) can be applied to form moment conditions. They exploit the fact
that in a rational expectations equilibrium, firms’ first-order conditions should hold
in expectations at the prices observed in the data:

E [hp] = E
[
∂π

∂p
+ β

∂s

∂p
· ∂W
∂s

]
= 0(4.3)

The most difficult challenge in this equation is to compute the derivative of the
continuation values with respect to market shares. A computationally feasible
approach is to combine two-step methods with forward-simulation as proposed by
Bajari, Benkard, and Levin (2007) who extend the method originally proposed by
Hotz and Miller (1993).

This methodology uses the observed data to estimate the equilibrium policy
functions as a function of the observed state variables. Using the estimated policy
functions, one can forward-simulate NS different paths of the exogenous state
variables and the resulting market structure for T periods starting from any given
initial state. Letting p̂() denote the estimates of the policy functions, the continuation
values can be computed as the average over all simulated paths:

Ŵ (sjt−1, s−jt−1, Xt) =
1

NS

NS∑
ns=1

T∑
t=1

βtπ(sjt−1, s−jt−1, Xt, p̂jt, p̂−jt)
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The derivatives of the continuation values can be calculated by finite-differences:

∂Ŵ (sjt, s−jt, Xt+1)

∂sjt
=
Ŵ (sjt + ε, s−jt, Xt+1)− Ŵ (sjt − ε, s−jt, Xt+1)

2ε

where ε denotes a positive small constant.

Forward-simulation is extremely efficient, if the objective function is linear in the
parameters. In this case, the simulation needs to be computed only once for every
basis function. In my simple specification for marginal cost, the per-period profit
can be written as a linear function of the cost parameters γ:

E0 [πjt(sjt−1, s−jt−1, Xt, pjt, p−jt)] = E [sjt · pjt − sjt · exp(γj)]

Therefore, it suffices to simulate two sets of basis functions:

Φ1j(sjt−1, s−jt−1, Xt, p̂jt, p̂−jt) =
1

NS

NS∑
ns=1

T∑
t=1

βtsjt · p̂jt

Φ2j(sjt−1, s−jt−1, Xt, p̂jt, p̂−jt) =
1

NS

NS∑
ns=1

T∑
t=1

βtsjt

Consequently, the derivative can be expressed in terms of Φ:

φjk =
Φkj(sjt−1 + ε, s−jt−1, Xt, p̂jt, p̂−jt)− Φkj(sjt−1 − ε, s−jt−1, Xt, p̂jt, p̂−jt)

2ε
(4.4)

→
∂Ŵ (sjt−1,s−jt−1,Xt)

∂sjt−1

= φj1 − φj2 exp(γj)(4.5)

Combining Equation 4.5 with the analytical expressions for the remaining terms
in the first-order condition, one can calculate the empirical analogue of the Euler
equation (4.3). Minimizing the corresponding GMM objective function will then
yield consistent estimates for the marginal cost parameters γ in a dynamic model.

4.3 Estimation algorithm

The estimation algorithm consists of three steps. In the first step, equilibrium policy
functions and the law of motion for the exogenous state variables are estimated from
the observed data. In the second step, the set of basis functions Φk is computed
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based on the policy function estimates from the previous step and forward-simulation.
In the final step, the simulated basis functions are used to construct the criterion
function (the violation of the Euler equations).

Estimating policy functions and laws of motion Ideally, one would like to
estimate policy functions non-parametrically. In practice, this is often tricky as the
number of observations for each realization of the state space is generally too low
to get reliable estimates. Therefore, I estimate the policy functions parametrically.
More specifically, I assume that optimal prices are a function of the market share
distribution at the beginning of the period, summary statistics of operators’ quality
level (δ̃) and an interaction term:

p̂jt = α0j + α1sjt−1 + α2δ̃jt +
∑
k 6=j

α3kskt−1 +
∑
k 6=j

α4kδ̃kt +
∑
k

α5kskt−1 · δ̃kt

δ̃ could be taken from the estimates of the demand model. Its law of motion is
estimated assuming a stable AR(1)-process:

δ̃djmt = η0j + η1j δ̃djmt−1 + εdjmt

In this specification, I allow the quality level to evolve differently across different
segments of the market. The value of the aggregate state variables can be calculated
by aggregating using the observed weights wdm of different market segments.

Forward simulation step Afterwards, one can simulate forward to compute the
continuation values at every value of the state variables after having discretized the
state space appropriately. In order to compute the continuation values, I need to
generate NS different paths of the industry over T time periods. Using the simulated
series of quality characteristics, the estimated policy functions for subscription prices
from the first step and the parameters from the demand model, one can simulate
the industry structure for T periods and compute the discounted sum of profits. T
is chosen big enough so that the discounted per-period profit βTπt becomes very
small and does not affect the continuation value anymore.

Afterwards, one can compute Ŵ (sjt−1, s−jt−1, Xt) and ∂Ŵ (sjt,s−jt,Xt+1)

∂sjt
as the

average over all simulated paths. As the profit functions can be written as a
linear function of the marginal cost parameters, if suffices to run the simulation only
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once and use the same basis functions for all guesses of the parameter vector.

Data requirements The supply side model can be estimated using the same data
that was used to estimate demand. It does not require any additional data.

4.4 Outlook and conclusion

In this chapter, I sketched an empirical model of dynamic platform competition in
the wireless industry. When demand is characterized by both switching costs and
network effects, firms face a non-trivial trade-off between harvesting their locked-in
consumers by setting high subscription prices and investing in its customer base by
charging low prices.

This trade-off has important implications for the industry dynamics. Therefore,
static models are inappropriate to analyze firm behavior. Nevertheless, a static
model can serve as a useful starting point. For example, marginal cost estimates
from such a model should be lower than the ones obtained from a dynamic one.
As the static first-order conditions ignore firms’ investment incentives, they will
prescribe a higher markup than the dynamic optimality conditions. In order to
justify the same observed prices, a dynamic model should result in higher marginal
cost estimates.

The estimation of a dynamic model is computationally very involved. The
combination of two-step methods to estimate equilibrium policy functions and
forward-simulation techniques to compute continuation values makes the estimation
of firms’ marginal costs in a dynamic framework feasible. In network industries,
equilibrium multiplicity remains a severe problem, however. A detailed discussion of
this issue goes beyond the scope of this thesis and is a highly interesting area for
future research.

Combining the supply side framework of this chapter with the demand model
from Chapter 2, allows for a broad range of highly interesting counterfactuals. In
particular, one can analyze how firms react to the regulation of important industry
characteristics such as switching costs and network effects. In addition, it allows
to evaluate the potential effects of mergers in network industries which is a heavily
debated topic in countries all over the world.
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There are several directions in which one can extend the model of this chapter.
Regarding the wireless industry, there are two issues that are not very much explored
by academic research but that industry experts are concerned about: endogenous
switching costs and endogenous quality levels. For simplicity, the model of this
chapter takes both as exogenously given. In reality, carriers can basically choose the
level of switching costs and their product quality. Extending models of the wireless
industry in these directions is a very promising area for future research.

In conclusion, this chapter is a first but important step to empirically analyze firms’
dynamic pricing strategies in network industries. Given the growing importance
of these markets, they are an excellent field for future theoretical and empirical
research.
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