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Abstract

Applications in our modern, pervasive computing environments have to adapt

themselves or their context in order to cope with changes. In the process, these

pervasive applications should be as unobtrusive as possible, i.e., their adapta-

tion should be automatic. In dynamic multi-user systems with shared resources

and interactive applications, such adaptations cannot be scripted in advance.

Instead, they have to be calculated at runtime. However, the necessary calcula-

tions quickly exceed the complexity that can be handled in real-time, i.e., without

causing significant delays. The concept of proactive adaptation allows to change

applications and/or context based on prediction of context and user behavior.

Hence, proactive adaptation can reduce adaptation delays and avoid context in-

terferences by determining coordinated adaptation plans ahead of time, instead

of reactively when adaptation becomes necessary. Further, it helps to provide a

seamless service to the user, while optimizing the overall system utility.

This thesis presents a general framework and middleware-based system sup-

port for coordinated proactive adaptation in dynamic multi-user pervasive sys-

tems. The framework consists of five major components. The context interaction

model and corresponding context broker offers context information, prediction,

as well as actuation in a uniform fashion. The application configuration model

allows applications to specify their requirements towards their context, as well

as detail user preferences and duration-dependent utility and cost functions for

adaptation optimization. Configuration algorithms calculate and rate all adap-

tation alternatives of an application given a current or predicted context and the

specified rating functions, before coordination algorithms find interference-free

adaptation plans for situations in which multiple applications share a context

space. Finally, the adaptation control component combines the individual com-

ponents of the framework in a two-dimensional control loop for proactive and

fallback reactive adaptation. The prototype framework is evaluated in real-time

simulations of an interactive pervasive system using recorded user traces.
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1 Introduction

This chapter introduces the present thesis with a motivation, the statement of

its research questions and contributions, and gives an overview of its remaining

structure. Afterwards, Chapter 2 discusses the theoretical background.

1.1 Motivation

In the modern computing landscape, a multitude of connected computational

devices, ranging from embedded sensors over smartphones up to all-purpose com-

puters, form interactive, IT-augmented environments. In such pervasive environ-

ments or systems, applications can adapt to changes in the environment, such as

physical conditions, available computing resources and services, user-related in-

formation, or simply any information deemed relevant for their situation – their

so-called context – in order to provide a better service to their users. Adap-

tation frameworks, such as 3PC [46], Aura [39], and Gaia [92], support these

context-aware applications by providing access to context information, mediat-

ing between applications and resources, as well as assuming responsibilities with

regard to adaptation calculation and control.

Typically, adaptation in pervasive systems is reactive, i.e., the adaptations

are determined and executed after a change in an application’s context forces a

reaction. Proactive adaptation allows to change applications and/or their context

based on prediction of context and user behavior, reducing adaption delay and

frequency in order to provide a seamless service to the user. Especially dynamic

multi-user systems, in which adaptations to certain situations can not be scripted,

are application scenarios that can benefit from proactive adaptation. Examples

are interactive workspaces at universities, or smart environments in public spaces

like libraries, hospitals, or government agencies. Applications could, for example,

bind external I/O devices and adjust the meeting room’s lighting accordingly,

before the user actually enters the room.

1



1.1 Motivation

However, the concept of proactive adaptation is very challenging. The adapt-

ing entity has to be aware of upcoming context changes, i.e., be able to predict

various context time series, as well as determine possible adaptations to cope

with these changes. As adaptations are not limited to the adapting entity itself,

it needs to be aware of available actuators and resources, including their respec-

tive capabilities. In order to optimize adaptation decisions, the set of possible

adaptation alternatives has to be rated. As predictions are fluid and change

frequently, this process has to be repeated over and over again. Additionally,

adaptation in multi-user environments requires coordination in order to avoid

oscillating effects.

Without suitable system support, the applications themselves are the adapting

entities, leaving the challenges above to the application developers. This thesis

presents a general framework, including middleware-based system support, for

coordinated proactive adaptation in multi-user pervasive systems that eases ap-

plication development by providing uniform access to context predictions and

services, as well as calculating, rating, coordinating, and instructing adaptations

for the applications.

Control 

Technique 

Time 

Reactive 

Manual 

Automatic 
Proactive 

Behavior Context Composition 

Figure 1.1: The topic of this thesis in the context of the dimensions of application-
level adaptation in pervasive systems.
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1.2 Research Questions

1.2 Research Questions

In a nutshell, applications in pervasive systems can adapt their behavior, their

composition, as well as their context. Hereby, the adaptation control lies on a

spectrum between manual, i.e., initiated by the user, and automatic adaptation,

i.e., executed by the underlying system. Finally, adaptations can be proactive

or reactive, i.e., before or after they become necessary. The goal of this thesis

is to provide system support for automatic proactive adaptation in multi-user

pervasive environments. Figure 1.1 visualizes the thesis’ topic with regard to

the different dimensions of application-level adaptation described above. More

specifically, the thesis will answer the following research questions:

1. How can context sensing, predicting, and actuating services be accessed in

a uniform fashion to support proactive adaptation?

2. How can an upcoming adaptation/adaptation sequence of an application

be pre-calculated and optimized?

3. How can pre-calculated adaptation alternatives be coordinated to avoid

interferences and oscillating effects while preserving optimization?

4. How can proactive and fallback reactive adaptation be combined in one

automatic control loop?

5. How beneficial is proactive adaptation at what cost?

1.3 Contributions

This thesis presents a general framework and middleware-based system sup-

port for proactive adaptation in multi-user pervasive systems. The main contri-

butions contained in this thesis are as follows:

First, a context interaction model including a set of service-transparent context

queries based on the abstraction of context variables is developed in Section 5.2.

The model supports proactive adaptation through its uniform access to sensing,

predicting, and actuating services in the environment.

Second, an application configuration model with time-dependent utility and

cost metrics is introduced in Section 5.3. The model allows to specify an appli-

cation’s context dependencies and optimize adaptation decisions with regard to

the duration the respective application configuration is instantiated.

3



1.4 Structure

Third, a set of configuration and coordination algorithms for automatic adap-

tation are developed in Sections 5.4 and 5.5, respectively. The configuration

algorithms search for all possible adaptation alternatives of an application based

on current or predicted context. The coordination algorithms find interference-

free adaptation plans for multiple applications in a shared context space, while

optimizing the overall system utility.

Forth, a control loop is designed in Section 5.6 that combines automatic adap-

tation control for proactive and fallback reactive adaptation.

Finally, a prototype system is evaluated in extensive simulations of an inter-

active environment using real user traces in Chapter 7. The evaluation shows the

benefits and costs of the framework, as well as proactive adaptation in general.

1.4 Structure

The remainder of this thesis is structured as follows. Chapter 2 introduces

the theoretical background of the thesis. Afterwards, Chapter 3 reviews related

work. Chapter 4 discusses the system model of the present thesis, as well as

the adaptation support and the requirements of the framework for proactive

adaptation. Based on this foundation, Chapter 5 presents the framework and

system support for proactive adaptation in pervasive systems. Chapter 6 details

the prototype implementation of the framework, before Chapter 7 evaluates it.

Finally, Chapter 8 closes the thesis with a conclusion as well as an outlook on

future research challenges.

4



2 Background

The last chapter motivated the present thesis, specified its research questions,

and listed its contributions. This chapter introduces the theoretical background

of the thesis, addressing the concepts of pervasive computing in Section 2.1,

context-aware computing in Section 2.2, adaptation in pervasive systems in Sec-

tion 2.3, proactive computing in Section 2.4, and context prediction in Section

2.5. Afterwards, Chapter 3 discusses related work.

2.1 Pervasive Computing

The terms pervasive or ubiquitous computing describe the paradigm shift away

from traditional desktop computing to the current stage of the modern computing

landscape, in which connected computational devices become interwoven with ar-

tifacts in our everyday life. Such IT-augmented environments were first described

by Mark Weiser in 1991 [120]. Weiser argued that every prevailing technology

evolves over time and, in that process, eventually reaches an ubiquitous state.

Even earlier in 1978, Jef Raskin described the concept of information appliances

in an internal document at Apple (according to [13] and [69]), anticipating a sim-

ilar development away from all-purpose computers to task-specific devices, e.g.,

portable media players, digital cameras, and smartphones.

Already, the computer literate generation naturally uses information technol-

ogy, adapting quickly and readily to innovations [49]. However, pervasive com-

puting is not limited to human-computer interaction (HCI). Beyond fundamen-

tally changing the way humans and computers interact, essentially by reducing

the conscious interaction to a minimum, pervasive computing aims at the smart

integration of independent computing devices. For this, processing, sensing, ac-

tivation, and communication is embedded into devices and environments that

interact with each other in order to provide a higher level of service to their

users, forming smart environments. In such smart environments, devices detect

5



2.2 Context-aware Computing

and analyze their physical surroundings, and applications adapt themselves as

well as the physical world automatically. Finally, the users control these systems

implicitly without even thinking about using a computer.

Next, the concept of context-aware computing is introduced, including a brief

overview of the field’s evolution.

2.2 Context-aware Computing

The concept of context, and therefore also its definition, has evolved steadily

since the field of context-aware computing has emerged. In 1994, Schilit et al.

[104] defined context in a top-down manner by formulating questions concern-

ing the information that is vital for context-aware computing. They identified

the user’s location, the user’s social group at the same location, and the nearby

resources as the three key factors. Then, context-aware software adapts accord-

ing to changes to this information. In the years following this initial definition,

similar example-based definitions were given, all primarily focusing on the user’s

location, environment, identity, and times, e.g., in [18], [95], and [106]. Within

the CyberDesk project [31], Dey extended the list even further by adding the

user’s emotional state, focus of attention, orientation, as well as the time of day.

The set of identified context variables can be categorized as follows:

• Physical environment, such as location, time, and lighting,

• Individual-related information, such as the user’s attention and social status

at a specific location, and

• Available computing resources and services, such as network access-points,

projectors, and printers.

However, definitions based on examples have the problem that newly identi-

fied variables, which influence the user’s/application’s context and, therefore, are

relevant for context-aware software, may not fit any of the categories. In 1999,

Dey and Abowd formulated a general definition, which focuses on HCI:

Context is any information that can be used to characterize the

situation of an entity. An entity is a person, place, or object that

is considered relevant to the interaction between a user and an appli-

cation, including the user and application themselves. [32]
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In analogy to the variety of definitions given for context, there are several dif-

ferent points of view about what context-awareness actually means. In 1995, as

one of the first to address this topic, Schilit [105] described context-aware com-

puting as the application’s ability to detect context changes and react to them.

In contrast, Dey [31] describes a context-aware user interface, leaving the adap-

tation decision to the human. More specifically, the system provides information

and services according to the context and the user’s task, but the adaptation de-

cision itself is made by the user. Other projects focus on the system’s flexibility

[97], it’s behavior [119], information selection [95] and tagging [79], as well as

automated actions [17], to name a few. The range of context-aware applications

can be categorized as follows:

• Presentation of information and services to a user,

• Selection of information and services,

• Tagging of context to information for later retrieval, and

• Automatic execution of a service for a user.

From the various research directions in the late 90’s, Dey and Abowd again

derive a general definition:

A system is context-aware if it uses context to provide relevant in-

formation and/or services to the user, where relevancy depends on the

user’s task. [32]

This definition of context-awareness is very inclusive regarding the specific ap-

plication of context information. Further, it purposefully leaves out how context

information is actually obtained, allowing a distribution of functionalities between

context-aware applications and their underlying system (cf. context models and

management systems in Section 3.3). More comprehensive surveys on context-

aware computing can, for example, be found in [10], [23], and [53].

Next, adaptation in pervasive systems is discussed in more detail, before Sec-

tion 2.4 compares the concepts of proactive adaptation and proactive computing.

2.3 Adaptation in Pervasive Systems

In pervasive systems, mobile applications are able to use resources beyond the

boundary of the devices they are running on. For example, they can make use of
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I/O services in their environment, such as speech input and video output, as well

as control physical conditions in the space using temperature or lighting regula-

tion services. This capability of mobile applications to dynamically incorporate

services into their runtime environment, as well as change their own behavior

based on their context, is referred to as application adaptation. (The pervasive

system itself can adapt on the network and system level [46]. Typically, such

network and system level adaptations are reactions to broken links, high laten-

cies, etc., and are not directly related to the user. Both network and system level

adaptations are not in the scope of this thesis.)

The above mentioned examples of making use of services in the environment,

context-aware changes in an application’s behavior, and regulating physical con-

ditions are different types of adaptation with regard to their technique. Hence,

adaptation technique distinguishes between the adaptation of a component’s be-

havior, its composition, and the adaptation of context itself [46]. Behavior adap-

tations target the parameters of the application, e.g., output volume or user no-

tification styles, whereas composition adaptations target the application’s struc-

ture, e.g., substituting I/O components or migrating application parts. Context

adaptations, in contrast, target the environment outside the boundaries of the

application using suitable actuators.

Adaptation control ranges from manual adaptation by the user to automatic

adaptation by the underlying system. Satyanarayanan [101] refers to this as the

application-awareness of adaptation, with the laissez-faire strategy representing

adaptation on the application side, and the application-transparent strategy rep-

resenting adaptation by the system. The laissez-faire adaptation strategy leaves

the responsibility of adaptation to the individual applications. On the one hand,

this strategy allows a great deal of flexibility, as even very application-specific

functionalities and structures can be adapted. On the other hand, it increases the

complexity of the application development process and, hence, that of the overall

system. All adaptations, as well as their respective effects, have to be considered

by all applications in the system, and implemented by the developers themselves.

Examples for the laissez-faire approach are Speakeasy [34] and Prism [112]. Both

approaches offer means for adaptation, but see the responsibility in the hands

of the applications, i.e., the application developers. The application-transparent

adaptation scheme takes the responsibility of adaptation from the applications by
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offering a suitable runtime environment. For this, the application and adaptation

logic are separated, and the system allows adapting the applications via suitable

application architectures and infrastructure services. This allows adapting both

the composition of the application, i.e., from which services on which devices it

is composed of, as well as the behavior of the application, e.g., replacing a visual

with a text-to-speech output. Examples for the application-transparent approach

are PCOM [9] and Gaia [92]. Both use component-based application models that

allow to adapt the structure of an application by (ex)changing their respective

components in use. In case a bound component becomes unavailable, the systems

automatically replace the missing component with one or a combination of sev-

eral other components, respectively, that offer an equally suitable service. Other

adaptive systems feature both laissez-faire and application-transparent aspects.

For example, the middleware systems MobiPADS [21] and SOCAM [44] combine

the concept of self-responsible individual application adaptation with system-wide

adaptation in the responsibility of the middleware using defined profiles.

However, further research in the field has shown that a more specific classifica-

tion of laissez-faire adaptation is needed. Manual adaptation requires interaction

from the user, whereas adaptations that an application automatically instructs

– e.g., based on user preferences – are human supervised. In [9], Becker et al.

address the need and describe three levels of adaptation support:

1. Manual adaptation: The application presents adaptation possibilities to the

user, who makes the decision.

2. Application-specific automatic adaptation: Each application has its own au-

tomated adaptation routines, which were implemented by the programmer.

Although this approach increases user experience, predefined and, therefore,

inflexible routines bear issues in changing environments.

3. Generic automatic adaptation: Application programmers define a set of

required services their application needs for execution. The service provi-

sion, however, is in the responsibility of the underlying system, e.g., the

operating system or middleware. Additionally, the user may be able to list

preferences, which influence the decision in case of multiple options.

Finally, adaptations can be reactive or proactive with regard to the adaptation

time [46]. That is, an adaptation can either be determined and executed as a

reaction to changes in the application’s context that prevent the application from
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Figure 2.1: Categorization of Adaptation in Pervasive Systems

continuing its execution, i.e., after the event, or in anticipation of such changes,

i.e., before an application can no longer be executed.

In summary, adaptation in pervasive systems is characterized by the four di-

mensions control, level, technique, and time. Figure 2.1 gives an overview of

the individual adaptation categories grouped by these four dimensions. Further

discussions on adaptation can, for example, be found in [7], [23], [46], and [61].

The next section reviews the differences between proactive adaptation and

proactive computing, before Section 2.5 introduces context prediction.

2.4 Proactive Adaptation vs. Proactive Computing

In the context of pervasive computing, the term proactive computing was first

introduced by Tennenhouse [114] in 2000. It is used to describe the evolution

away from interactive computing, i.e., from classical human-centered workstation

settings to human-(un)supervised pervasive computing scenarios. In [118], Want

et al. further discuss proactive computing as well as the differences to autonomic

computing. The aim of proactive computing are unobtrusive systems that con-

nect to the physical world and require as little human interaction as possible.

Further, they should anticipate the user’s needs and act on his/her behalf. For

this, Want et al. identify seven principles as foundations of proactive systems,
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namely connecting with the physical world, deep networking, macro-processing,

dealing with uncertainty, anticipation, closing the control loop, and making sys-

tems personal. Despite leading to similar techniques, autonomic computing, in

contrast, describes the discipline of managing the complexity of a heterogeneous

system through appropriate system design principles.

In [98], Salovaara et al. present their view of the concept of proactive comput-

ing. They suggest that a system can act proactively, if it has a hypothesis about

what its user’s goals are. In order to achieve these goals, the system makes use of

different resources. The authors present a classification of six different types of

proactive resource management in order to become a proactive system, namely

preparation, optimization, advising, manipulation, inhibition, and finalization of

user’s resources.

Proactivity from an application adaptation perspective, on the other hand,

is defined as modifications of an application performed before an application can

no longer be executed [46]. Although this description of proactive adaptation in-

terleaves with Tennenhouse’s proactive computing, it is not congruent. As an

example, in [115], the system automatically adjusts the lighting of the environ-

ment based on what it anticipates the user’s desire is. The system connects to

the physical world and acts on the user’s behalf using anticipation, dealing with

the uncertainty that comes with any type of reasoning. Hence, it is a classical

example of proactive computing. However, it does so after it notices a change in

the environment, i.e., in a reactive manner from an adaptation standpoint. In

the adaptation terminology, acting on the user’s behalf is a form of automatic

adaptation, either application-specific automatic or generic automatic. Hence, in

pervasive computing research, the term proactive can either refer to before the

user acts, or before the triggering event happens, respectively. The main differ-

ence is that in order to act before an event takes place, the system must have

knowledge of that event, which requires context prediction in addition to reason-

ing about the user’s intent. Although small, this differentiation becomes rather

important when discussing and classifying related research, as Chapter 3 will do.

For instance, going back to the example above, [115] is not proactive in the terms

of this thesis, but reactive with application-specific automatic adaptation control.

The next section discusses context prediction as a specific form of reasoning

that aims at continuing context time series as accurately as possible.
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2.5 Context Prediction

Proactive adaptation is based on predicted context information. The adapt-

ing entities prepare themselves for future context events, e.g., by pre-computing

alternative runtime configurations. This includes forecasting the state of the per-

vasive environment as well as the availability of context services. The problem of

context prediction is not one of the research questions of this thesis. Instead, as

described in Section 6.4, the framework implements a set of popular approaches

from which one is selected at runtime based on the specific prediction task.

There are two major categories within the overall task of predicting context

for proactive adaptation. The first category is anticipating the future state of

a context variable. This includes the anticipation of when a context variable

will reach a certain state and how long it will remain in that state. Prominent

techniques used in context prediction are, for example, probability models and

pattern matching algorithms. [12] uses variable order Markov models to pre-

dict the most probably context state transitions. Petzold’s state predictor [83]

constructs a state machine per context variable that should be predicted. In his

alignment approach [110], Sigg utilizes pattern matching techniques originating in

computational biology to find the recorded context sequence most similar to the

observed context sequence. Similarly, support vector machines [19] calculate the

distance between the vectors of the observed and the recorded time series. Other

approaches utilize self-organizing maps [59], such as in [111], and autoregressive-

moving average models [121], such as in [55]. In general, the future sequence

of context states, including the duration that a variable remains in a state, is

projected forward by analyzing the history of the context variable.

The second category is forecasting the movement of users and objects, espe-

cially objects that provide sensor and actuator services. Predicting the movement

of a single object is less challenging. In tracking systems, for example, location

predictions are calculated based on movement trajectories using dead reckoning

[122, 62]. Based on the movement vector of an object, i.e., its direction and

speed, the algorithm provides an estimated pattern on which the object will

move. In [76], the authors extend fingerprinting – a positioning approach using

the signals of WiFi access points – by particle filter models in order to calculate

trajectories. In contrast, anticipating the movement of object groups is far more
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complex. In the group mobility model approach [116], single objects are clustered

into mobility groups by recognizing mobility patterns and object relationships.

Finally, there are several different context prediction approaches regarding

user presence, interest, and availability that use various data as input, such as

calendar information, booking systems, weather prediction sources, and social

networks [54]. Comprehensive surveys on state-of-the-art context prediction can,

for example, be found in [16] and [109].

This chapter discussed the theoretical background of this thesis regarding the

fields of pervasive, context-aware, and proactive computing, as well as adapta-

tion in pervasive systems and context prediction. The next chapter builds on

this background while examining related work on context-aware applications and

adaptive architectures, as well as the more specific fields of context modeling and

management, application configuration modeling, and adaptation control theory.
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3 Related Work

The previous chapter reviewed the theoretical background of this thesis. This

chapter examines related work. First, context-aware systems and adaptive archi-

tectures are discussed and categorized with regard to the analysis of the respective

disciplines in Chapter 2. Afterwards, individual approaches to context modeling

and management, application modeling, and adaptation control are discussed,

before Chapter 4 presents the system model of this thesis, and derives the re-

quirements towards system support for proactive adaptation.

3.1 Context-aware Systems

Context-aware applications and systems have been subject to research for more

than two decades, with the context-aware actions ranging from presentation of

information to automatic execution of services. Section 3.1.1 discusses context-

aware presentation and selection, before Section 3.1.2 reviews research on context-

aware tagging and execution.

3.1.1 Presentation and Selection

In recent years, there has been an increasing number of applications in the field

of so-called proactive services, e.g., [52, 85, 22, 80]. Here, services are selected

based on the current context of the user as well as his/her preferences. The user

preferences are, for the most part, not explicitly specified by the users themselves,

but rather reasoned about based on previous user behavior, which achieves a

higher level of unobtrusiveness. Subsequently, the list of selected services are

proactively suggested to the user, i.e., without the user having to request them.

As discussed in Section 2.4, this type of proactiveness is, from an adaptation

standpoint, an automatic action.
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In Proactive Sensor Networks (PSNs) [2], sensors and actuators form so called

context overlays in order to make distributed decisions, i.e., without a centralized

entity, such as a context management, in the system. The network is proactive in

that the sensors themselves – by themselves or in collaboration – pre-process their

sensed data to the needs of the respective actuators. Such collaboration of sensors,

e.g., in order to infer high from low level context, is referred to as distributed

context decisions. PSNs are not a traditional context-aware application, as the

users in this work are actuators rather than humans. SOCAM [44], on the other

hand, automatically adapts context information based on rules depending on

the specific domains an application goes through. That is, it transforms the

information between different domains of the context ontology, as well as their

level of abstraction.

The first work on proactive service selection was presented by Pitkäranta et al.

in 2005 in the DYNAMOS project [85]. The system matches services based on

their description to the context of its users, and proactively notifies them about

critical situations of predefined interests. In [91], the authors report on their ex-

periences of applying DYNAMOS for boaters in a marine community. Examples

for selected information are discounts on gasoline or location-aware wind warn-

ings. In [80], Pawar et al. present a geographically distributed patient monitoring

system that utilizes proactive service selection techniques for their context-aware

emergency response service. The approach is limited to the response service,

which makes it application-specific.

In [52], Hong et al. present an agent-based framework, that aims at providing

personalized services to its users based on their respective context history. It is

proactive in the sense that it does this automatically using context reasoning,

instead of being based on manually defined preferences. Therefore, the main

challenge in this work is to infer the user preferences for the current situation

from past situations, and then find a matching service. Similarly, ProWMS [22]

is a context-aware web service pre-fetching strategy for mobile devices based on

user preferences. The preferences are automatically computed from the service

request history considering the current context.

In [88], Rasch et al. present an approach to proactive service selection specif-

ically for pervasive environments. Central to the work is their formal context

model called Hyperspace Analogue to Context. They model the capabilities of
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services as well as user preferences as multidimensional geometric structures.

The relation between these structures is used to calculate a service to preference

matching metric. Finally, the system presents a ranked list of services to the

user. Fenza et al. [35] address proactive service discovery as well, focusing on the

healthcare domain. This work aims at providing personalized services depending

on the patient’s state of health, which is acquired from a network of wearable

sensors. The two main technologies are Semantic Web for service and context

modeling – specifically the Web Ontology Language (OWL) extension OWL-S –

and fuzzy logic for context reasoning. Again, the system’s output is a ranked list

of services that match the patient’s health context.

3.1.2 Tagging and Execution

The Stick-e Note system [79] – inspired by Post-It notes – allows users to attach

digital information to physical objects, creating so-called situated information

spaces. In similar fashion, the Augment-able Reality system [89] enables its users

not only to consume augmented information, but also dynamically attach virtual

information to real objects. Further, this augmented information is accessible via

standard desktop PCs as well as wearable computers, which notify their users in

case of new information in their environment.

In [28], Cooperstock et al. describe the evolution of a standard conference

room into a smart, reactive environment in three iterations. The room supports

its users by detecting intentions via triggering events and offering task-based

support. Similarly, the smart meeting room system EasyMeeting [25] provides

six context-aware services in support of both the speaker and the audience of

a presentation, namely speech recognition, presentation, lighting control, music,

greeting, and the so-called profile display service that shows the audience per-

sonalized information. In both systems, the execution of a service is triggered

manually. In contrast, MobiPADS [21] offers automatic execution of services. For

this, developers specify sets of rules in form of profiles, which are then used for

triggering services in case predefined events were detected.

In the MavHome project [27], Cook et al. explore an agent-based smart home

management system that acts on the user’s behalf or supports the user in his/her

task. The agents have a set of defined actions that are triggered based on the

17



3.1 Context-aware Systems

Project
Action Control

P S T E M A

CyberDesk [31] + +

Cyberguide [1] + + (+)

GUIDE [30, 26] + + (+)

SOCAM [44] + +

PSNs [2] + +

DYNAMOS [85] + +

Pawar et al. [80] + +

Hong et al. [52] + +

ProWMS [22] + +

Rasch et al. [88] + +

Fenza et al. [35] + +

Stick-e Note [79] + + (+)

Augment-able Reality [89] + + (+)

Cooperstock et al. [28] + +

EasyMeeting [25] + +

MobiPADS [21] + +

MavHome [27] (+) + +

Action: P = Presentation, S = Selection, T = Tagging, E = Execution
Control: M = Manual, A = Automatic
+ = Explicit feature, (+) = Implicit feature

Table 3.1: Overview and Classification of Context-aware Systems

predicted next user task/goal, such as, for example, starting the lawn sprinklers

or placing a food order. For this, it combines the strength of several prediction

approaches into the meta predictor Predict2. MavHome offers implicit context

adaptation via actuators, such as automated blinds, but is an action-based frame-

work and not an adaptive architecture. That is, the system does not feature a

control loop that specifically monitors and adapts a certain context, but aims at

automating the actions that the inhabitant would instead have to carry out.

3.1.3 Overview and Classification

Table 3.1 shows a classification of context-aware systems with regard to their

context-aware action (presentation, selection, tagging, and execution), as well as

control (manual and automatic). The systems for automatic service selection
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typically apply learning-based algorithms to reason about the user’s preferences,

utilize this information to filter out unwanted services, and let the user choose

which service should be employed. The systems offering service execution, on the

other hand, typically apply pre-defined rules for offering actions to their users, or

automatically triggering actions on behalf of their users, respectively. MavHome

additionally incorporates context prediction to reason about the user’s next task.

The next section reviews adaptive architectures with the focus on application-

level adaptation.

3.2 Adaptive Architectures

Various adaptive frameworks have been developed over the past decade. They

enable mobile applications to adapt their behavior, incorporate remote resources

and services, as well as actuate context at runtime. Next, Section 3.2.1 discusses

reactive adaptation architectures, before Section 3.2.2 reviews proactive adapta-

tion architectures.

3.2.1 Reactive Architectures

There exists a variety of research on adaptation frameworks for pervasive en-

vironments. For reactive adaptation, there are, for example, 3PC [46], Aura [39],

and Gaia [92]. All three provide support for behavior and composition adapta-

tions, even beyond the application level. They each feature a layered architecture

made up of single components with different adaptation responsibilities.

In the 3PC project, the middleware BASE [11] – designed for so-called smart

peer groups that do not rely on infrastructure – automatically switches between

network plug-ins depending on the state of the respective link. SANDMAN [103]

adapts the system by forming service clusters based on group mobility, in which

redundant services are set to sleep in order to achieve higher energy-efficiency.

The PCOM layer [9] offers generic automatic adaptation of its component-based

applications using contracts. Finally, COMITY [63] coordinates individual appli-

cation adaptations in case of context interferences. (As the basis for adaptation

coordination in this thesis, COMITY is discussed in more detail in Section 5.5.1.)
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Similarly, Aura’s Odyssey [100] and Coda [102] offer adaptation at the net-

work and system level, respectively. On the application level, Spectra [37] au-

tomatically distributes functionalities amongst entities in light of the resource

restrictions of mobile devices. Finally, the task manager Prism [112] adapts the

application’s composition proactively using task to tool mappings. Prism is dis-

cussed in more detail in Section 3.2.2.

Within Gaia, the reflective object request broker dynamicTAO [93] adapts

the communication protocols and policies that are used by applications accord-

ing to changes in the environment. Above, the Model-Presentation-Controller-

Coordinator (MPCC) application framework [48] decouples the individual appli-

cation components for manual adaptation, e.g., substitution of services. Finally,

Olympus [87] complements MPCC to offer automatic application composition

adaptation based on predefined functionality to service mappings.

Many other reactive systems exist that adapt automatically on different levels

using different techniques. With Speakeasy [34], users can manually adapt the

composition of their applications. The RUNES middleware [29] offers dynamic

reconfiguration of components, i.e., adaptation on the system level, as well as

the composition of components that form an application, i.e., adaptation on the

application level. Similarly, P2Pcomp [36] and REFLECT [108] create adaptable

applications by using late binding of components, i.e., at runtime, instead of at

compile time using predefined component dependencies. Additionally, applica-

tions in the REFLECT system are able to adapt their behavior individually.

One.world [43, 42] and O2S [78] focus on the development of adaptive ap-

plications. More specifically, one.world provides a comprehensive runtime archi-

tecture that aims at simplifying the development process, e.g., by offering data

management and event processing. In O2S, on the other hand, applications are

goal -oriented and adapt their behavior by substituting the technique(s) they use

– not to be confused with the adaptation techniques – to reach their goals.

Similar to PCOM, iROS [56] supports automatic adaptation of the composi-

tion of its loosely coupled applications. That is, iROS’ event heap selects ap-

propriate components from its repository based on their descriptions. In case

of errors, for example crash of a component, the system resends events to an

alternative component with the same capabilities, if available.
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In [20], Byun et al. present an approach that learns user preferences for human

supervised environment control from context history. The system is application-

specific automatic instead of generic automatic, as it is not a framework for

applications, but monitoring and adapting the context is the application itself.

The authors further discuss different uncertainty issues in general with regard

to control and adaptation, and propose possible solutions for these problems.

Similarly, Vainio et al. [115] present automatic context adaptation based on fuzzy

logic techniques for smart home environments. That is, the system monitors the

state of an adaptable context, such as lighting and temperature, learns the user’s

routines, and subsequently adapts the context under the user’s supervision. Due

to the use of fuzzy rules, the system can control the environment even in situations

of uncertainty, i.e., ones it has not yet learned. As in the work by Byun et al.,

controlling the environment is the application itself.

Adaptation in the above systems is reactive, i.e., they determine and execute

the adaptations after the triggering event. As an exception, Aura’s task manager

Prism anticipates adaptations for some aspects of the system, such as network

load and data distribution. Prism and proactive frameworks are discussed next.

3.2.2 Proactive Architectures

Prism [112] – the task manager in the Aura [39] architecture – prepares adap-

tations on the application level that are related to the next anticipated user tasks.

For example, the system uses approximate location predictions based on location

data in calendar entries in order to prepare data transfer to a specific location.

For this, Prism uses a set of tasks to application mappings, e.g., edit text to

Microsoft Word, that are provided by the system administrator. The adaptation

itself is then triggered by the user.

Adaptable Pervasive Flows (APFs) [47] are workflow-like models of an entity’s

activity that adapt with regard to that entity’s situation. The flows consist of a

series of tasks – either representing atomic services or a subflow – that are con-

nected by so-called context-aware transitions, i.e., transitions defined by context

events, such as a location change. Adaptation in the APF system is generic-

automatic. Developers define a set of goals and constraints for each flow, and

the flow system calculates the specific adaptations of a flow’s composition. These
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Project
Technique Control Time

B COM CTX M A G P R

Mayrhofer [66] + + +

Speakeasy [34] + + +

MPCC (Gaia) [48] + + +

Prism (Aura) [112] + + +

RUNES [29] + + +

O2S [78] + + +

one.world [43, 42] + + + +

REFLECT [108] + + + + +

Spectra (Aura) [37] + + +

Olympus (Gaia) [87] + + +

iROS [56] + + +

PCOM (3PC) [9] + + +

P2Pcomp [36] + + +

APFs [47] + + +

Byun et al. [20] + + +

Vainio et al. [115] + + +

CALCHAS [15] + + +

COMITY (3PC) [63] (+) (+) + + +

Technique: B = Behavior, COM = Composition, CTX = Context
Control: M = Manual, A = Appl.-specific automatic, G = Generic automatic
Time: P = Proactive, R = Reactive
+ = Explicit feature, (+) = Implicit feature

Table 3.2: Overview and Classification of Application Adaptation Architectures

are either horizontal adaptations of the flow in case re-planning is necessary, or

vertical adaptations in case a task is substituted by a subflow or its mapping to

an atomic service became invalid. The APF system uses context prediction in

order to anticipate these adaptations.

In his dissertation [66], Mayrhofer presents a general architecture for context

prediction that allows applications to query future context information in order

to proactively assist its users. The focus of the work is a five step prediction

process: (1) gather context information from a heterogeneous network of sensors,

(2) extract features, (3) classify, (4) label, and (5) predict. As the framework

specifically offers an interface for applications to access predictions, it is not only

an approach to context prediction, but also an adaptive architecture.
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In [15], Boytsov and Zaslavsky present the CALCHAS system, which offers

context predictions to applications that, in turn, use actuators to adapt their

context. In order to support proactive adaptation, they further present an exten-

sion to the context spaces theory [77] with the concept of context adaptation via

actuators. The authors see proactive adaptation as reinforcement learning tasks

that aim at improving both the predictions as well as the adaptation decisions.

Actually, the focus of the work is on the quality of the predictions and decisions,

and not on the framework for adaptation. The system follows the laissez-faire/

application-specific automatic approach to application adaptation, as it provides

the predicted context information to the applications, but does not adapt the

context itself.

3.2.3 Overview and Classification

Table 3.2 shows an overview and classification of adaptive architectures with

regard to their adaptation technique (behavior, composition, and context), their

adaptation control (manual, application-specific automatic, and generic auto-

matic), and their adaptation time (proactive and reactive). The overview shows

that the research community predominantly focuses on the compositional adapta-

tion of applications, i.e., creating applications from individual, interacting com-

ponents in the pervasive system, and adapting their structure by substituting

individual services. Further, the classification indicates that proactive architec-

tures are not yet fully researched.

Next, work in the fields of context modeling and management, application

configuration modeling, and adaptation control theory is discussed.

3.3 Context Models and Management

Context models define how systems and applications interact with their phys-

ical environment, whereas context management describes the acquisition, pro-

cessing, and distribution of context information. Context management systems

handle heterogeneous context sources that differ in their data representation, in-

terface, etc. Processing of the acquired data includes composing datasets from
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single data, reasoning about higher context based on defined rules, e.g., recogniz-

ing situations from audio and location data as in [25], as well as distributing data

throughout the environment. There are several different approaches and architec-

tures depending on the type of context information and use case(s) of the system.

In the following, a set of popular approaches are discussed as representatives of

the field.

Nexus [51] is a platform for location-aware applications. The objective of the

collaborative research center’s project was to model the real world, plus addi-

tional virtual objects associated with locations, into so-called augmented areas,

and provide this information to location-aware applications via a suitable archi-

tecture. Integrated prediction algorithms, especially dead reckoning, allow not

only to query recorded information, but also request location predictions. How-

ever, Nexus does not offer any adaptation support beyond acquiring location

data.

In Aura [39] – the middleware-based system that is designed to support its

users in everyday tasks – Prism [112] manages the user’s tasks using a task-

based application model, and monitors the respective task-relevant context, e.g.,

location and available resources. That is, Prism’s context observer component

reports changes in the monitored context to the task and environment managers,

and the system subsequently offers adaptation options to its users for manual

selection according to the changes.

CoBrA [25] is a context reasoning and distribution approach for defined smart

spaces, such as smart meeting rooms. The system uses an ontology-based context

model based on SOUPA [24]. Using ontology-based reasoning, the centralized

context broker provides predefined services to scenario-specific applications, such

as the smart meeting room system EasyMeeting. Although CoBrA allows appli-

cations to automatically and actively influence their context, e.g., dimming the

light or starting the presentation, these adaptations are limited to an application-

specific and static set of services. Context prediction is not addressed.

SOCAM [44] is a middleware-based framework for context-aware applica-

tions that offers context information and reasoning as distributed services in

dynamic environments. Central to SOCAM is its context interpreter that fea-

tures ontology-based context reasoning. The CONON ontology [45] includes,
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in contrast to SOUPA, information quality metrics that could be extended to

support context prediction. However, in its current state, SOCAM does not of-

fer context prediction. Further, context actuation is in the responsibility of the

applications.

Even though context management systems are a well researched topic, they do

not offer sufficient support for proactive adaptation. Most approaches do not ad-

dress context adaptation via actuators. Further, traditional context management

systems do not provide desirable support for context prediction, e.g., monitoring

of context and notifications in case of updates. A more extensive discussion and

categorization of approaches can, for example, be found in [5], [58], and [96].

3.4 Application Configuration Models

Application configuration models – or simply application models – are used

to automatically calculate valid runtime configurations of applications based on

descriptions of their respective requirements – a prerequisite of generic automatic

adaptation. As with context models and management systems, the approaches

vary depending on the system-specific objectives.

Olympus [87] is an abstract programming model for Gaia’s active spaces. With

it, the developer can specify requirements of an application without knowledge

of how they are implemented. The system uses the modeled requirements to

configure the active space using a utility model to select the best implementa-

tion. Mukhtar et al. [67, 68] present an approach for configuring multimedia

services based on user preferences and device capabilities. In order to compare

the devices’ usability for a task, the user preferences are transformed into a tree

structure, with the leaves representing the accumulated user rating. Similarly,

in PCOM [9] and iROS [56], applications are composed of services based on

service descriptions, and the systems automatically adapt the application’s com-

position, if necessary, as discussed in Section 3.2.1. Finally, MADAM [40, 38]

is a middleware specifically developed for mobile and adaptive applications in

highly dynamic environments. In MADAM, applications are also component-

based. The components that form an application are selected using a utility

function following a maximum utility strategy.
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Next to adapting ahead of time, proactive adaptation aims at optimizing adap-

tation decisions based on the future progression of the context time series, in-

cluding the respective duration of a context. However, in the application models

above, utility and costs over time are not considered. Hence, they are not fully

suitable to support proactive adaptation.

3.5 Adaptation Control Theory

In adaptation control theory, there are three reference control cycles. First,

there is the MAPE-K control loop [4, 57], as in the phases of monitor, analyze,

plan, and execute, as well as the loop’s underlying knowledge base. Second, the

Autonomic Control Loop [33], consisting of the similar collect, analyze, decide,

and act. Finally, the more generic Observer/Controller Architecture [90] that

aims at highly complex systems with unexpected behavior.

Naturally, any approach to adaptation control features the same succession

of stages. However, adaptation control for proactive adaptation (see Section

5.6) differs in three aspects. First, it suspends its cycle during the plan/decide

stage until the triggering event happens. That is, appropriate adaptations to

anticipated changes in the context are calculated and stored for later retrieval.

However, the specific decision on which adaptation is to be executed, if multiple

options exist, is made at the time of the actual change. Second, the first phases

leading up to that suspension, i.e., monitor, analyze, and the calculating part

of plan, form a smaller loop themselves. For each predicted context change, the

system iterates through this smaller loop and stores the resulting adaptation

plans. Finally, proactive adaptation control additionally requires a fallback loop

in order to be able to adapt reactively. That is, in case there is no pre-calculated

adaptation plan – whatever the reason – the system has to calculate and execute

one immediately.

This chapter reviewed related work with regard to context-aware applications,

adaptive architectures, context modeling and management, application modeling,

and adaptation control. The next chapter presents the system model of the

present thesis, discusses its adaptation support, and derives the requirements

towards a framework for proactive adaptation.
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4 Proactive Adaptation in Pervasive Systems

The last chapter discussed related work regarding context-aware applications

and adaptive architectures. This chapter first describes the thesis’ underlying

system model as well as its level of adaptation support. Afterwards, it derives

the requirements towards a general framework and system support for proactive

adaptation, which is subsequently presented in Chapter 5.

4.1 System Model

In this thesis, a pervasive system consists of a set of users, devices, and perva-

sive applications that provide services to their users. These pervasive applications

make use of the available resources, functionalities, and context services in the

environment. They are context-aware and able to adapt to changes in their con-

text. That is, the set of resources, functionalities, and context services that an

application can respectively use to provide its service are referred to as a func-

tional configuration. The applications are able to switch between their functional

configurations, depending on how the resources, functionalities, and context ser-

vices change. The active set of resources, functionalities, and context services is

referred to as the application’s (functional) configuration instantiation.

The applications in the system are able to specify their requirements towards

their context – as further discussed in Section 5.3 – in order for a centralized

entity to reason about all application requirements/functional configurations.

The requirements describe the physical conditions at the location of the appli-

cation, as well as required external services, based on context variables, such as

TEMPERATURE or VISUAL OUTPUT. Further, the pervasive applications are assumed

to be cooperative. That is, applications are truthful about their requirements and

their functional configurations’ respective utility functions, as well as compliant

with all adaptation instructions they receive from the centralized entity. The

compliance aspect also holds true for actuators and any other services.
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4.2 Adaptation Support

In order to participate in the system, all devices are equipped with appropriate

system software, in this instance the middleware BASE [11]. BASE is a middle-

ware that has been specifically designed for pervasive environments. It has a

lightweight but extensible core, which enables its operation on resource-poor de-

vices, such as embedded systems, but also supports costly functionalities running

on full-fledged devices, such as desktop computers. Devices which are equipped

with BASE are able to detect each other and form a spontaneous network. In

order to build and execute pervasive applications, BASE models functionalities

and device capabilities as services and provides a uniform access. Each (remote)

service can be accessed via local proxies implementing a defined interface. More-

over, BASE enables remote communication while shielding applications from the

underlying communication technologies, interoperability protocols, and commu-

nication models.

Further, the existence of a location model such as [99] or [6] is assumed. The

location model provides symbolic location descriptions with room-level granular-

ity, e.g., as provided by the Active Badge system [117], and allows for position,

distance, range, and nearest neighbor queries [8]. Finally, this work assumes

highly dynamic environments, in which any device and service may frequently

leave and (re-)enter the network. BASE already provides dynamic environment

support on the communication layer, but the framework needs to cope with the

unavailability of services as well.

The next section discusses the level of adaptation support that should be

provided by the framework with regard to the categorization of adaptation derived

in Section 2.3.

4.2 Adaptation Support

In this thesis, adaptation is limited to the application level, i.e., network and

system level adaptation are not addressed. For this, the pervasive applications

instantiate different functional configurations. Switching between different func-

tional configurations may require using several adaptation techniques. The adap-

tation can have an effect on how the application behaves, which external resources

the application uses, i.e., its composition, as well as directly influence the physical

environment via actuators, i.e., the application’s context.
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Figure 4.1: The adaptation support provided by this thesis with regard to the
categorization of adaptation in pervasive systems.

Depending on the specific technique, different forms of adaptation control are

used. Ideally, the adaptation framework should calculate and instruct adapta-

tions based on the application’s requirements (generic automatic adaptation).

However, with the exception of context adaptation via actuators, the actual ex-

ecution of a behavior or composition adaptation is in control of the applica-

tion. Hence, this thesis introduces an additional control type called application-

controlled automatic adaptation. It describes the distribution of responsibilities

between the centralized management entity, which determines the adaptation

plan, and the application that executes the adaptation instructions. User adap-

tations, i.e., rerouting him/her, are an exception when it comes to the adaptation

control. It is reasonable to assume cooperative applications, but neither realistic

nor desirable to assume cooperative humans. In this work, user adaptations are

suggestions by the framework in case the requirements of the user’s application

can not be fulfilled. Hence, they can be regarded as manual adaptations.
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Finally, proactive adaptation is defined as adapting before an application can

no longer be executed. This not only requires knowledge of the changes that

will take place, but also exactly when they will take place in the magnitude of

milliseconds, in order to instruct the adaptation at that point in time. Unfor-

tunately, such precision in context prediction is not feasible as soon as human

behavior/decision making is involved. However, it is possible to prepare for the

upcoming changes and trigger the adaptation as soon as the corresponding event

takes place. Hence, in this thesis, adapting to a pre-calculated functional config-

uration, i.e., without the delay of determining the adaptation, is considered to

be a proactive adaptation.

Figure 4.1 summarizes the adaptation support provided by the framework

developed in this thesis with regard to the prioritization of the single categories.

The primary approach is proactive application adaptation using any technique

with adaptation control in the responsibility of the system as much as possible,

including a mixture of adaptation techniques and controls per adaptation. As a

fallback option, e.g., in case a context event was not predicted, the framework

additionally provides reactive adaptation.

Next, the requirements of providing the described level of adaptation support

are derived, before the framework is presented in the following chapter.

4.3 Requirements

As stated in the research questions in Section 1.2, the problem of providing

system support for proactive adaptation in pervasive system can be categorized

into three major components. First, a context model and management system

must provide a suitable abstraction to context. Second, an application model

must allow applications to specify their context and external resource dependen-

cies, such that the framework can calculate the application’s adaptation options.

Third, an adaptation control component must be able to monitor the environment

and trigger necessary adaptation procedures.

In the following, Section 4.3.1 discusses the requirements towards these three

components in detail, before Section 4.3.2 presents the requirements towards the

configuration and coordination algorithms.
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4.3.1 Component Requirements

This section presents the requirements of system support for proactive adap-

tation towards the three central components of the framework.

4.3.1.1 Context Model and Management

A context management system’s basic responsibility is to acquire information

via the sensors deployed throughout the environment, process it to fit the abstract

context model, and finally provide it to the context-aware consumers. However,

several context management approaches have an increased functionality, e.g., they

offer smart environment services. In this work, the system’s responsibility is also

enhanced to the extent that it manages all context interaction, in order to create

a single point of access for all entities in the system. For this increased role, the

management’s interface, or query set, respectively, becomes a key component of

the system. Extending the traditional set of requirements – context acquisition

and provision, a suitable interface, and dynamic environment support – three ad-

ditional requirements are identified that enable a context model and management

component to support proactive adaptation.

1. Automatic Update Notification: Predictions by adaptive approaches

– i.e. ones capable of learning – change with their respective data set,

e.g., with newly learned information or changes to the pervasive environ-

ment. This has implications for requesting applications as well as chains

of interdependent predictions. However, regular update requests by these

components can lead to flooding. Hence, the system should offer means for

automatic update notifications.

2. Context Adaptation as a Service: Proactive adaptation is not re-

stricted to preparing for future context events, but also includes influencing

or preventing them. To do so, applications use so-called context actuators,

such as light switches, air conditioners, or computing resource coordina-

tors. Comparable to the task of context provision, the system should offer

context adaptation as a service.

3. Uniform Abstraction: In a proactive system, applications must not only

be able to request current and reasoned-about context from the responsible
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components, but also influence context via actuators. That is, interaction

between applications and their context is now bidirectional. Hence, the ab-

stract interaction model must support both directions – ideally in a uniform

fashion.

4.3.1.2 Application Model

With generic or application-controlled automatic adaptation control, deter-

mining the adaptation of an application based on the application’s requirements

is in the responsibility of the framework. In general, application models allow

applications to specify their runtime requirements. In an adaptive framework,

these runtime requirements are specifications of physical conditions as well

as necessary resources and context services.

Further, a major benefit of proactive adaptation is the possibility of optimizing

adaptations and adaptation sequences. To do so, the different adaptation options

need to be rated using a comparable, duration-dependent metric, such as

goodness, reconfiguration costs, and user preferences, that reflects the benefits

and costs of an application configuration instantiation depending on how long

the context will be in the respective state. Hence, the application model in this

thesis should provide means for applications developers and/or users to specify

such parameters and functions.

4.3.1.3 Adaptation Control

Section 3.5 discussed adaptation control theory, and briefly described differ-

ences between the traditional reactive control loops and a proactive control loop.

These differences emerge from the additional requirements of managing pre-

calculated adaptations and providing a fallback reactive adaptation loop.

That is, next to the reactive (fallback) loop – i.e., monitoring context, analyzing

situations, planning adaptations, and executing adaptation instructions in one

continuous process – an adaptation control component for proactive adaptation

has to run through two smaller, discontinuous loops simultaneously. In the first,

it has to monitor context predictions, pre-calculate and pre-coordinate adapta-

tions, and store the results for later retrieval. In the second, it has to monitor

context changes and trigger the pre-determined adaptations.
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4.3.2 Algorithm Requirements

Adaptation in multi-user environments involves two search problems, both of

which part of the system support framework. First, the framework has to cal-

culate the adaptation alternatives per application given one context – current or

future – and the respective application requirements towards its context, i.e., de-

termine adaptations. Second, in the case that multiple users/applications share

a context space, the framework has to find an assignment of adaptation alterna-

tives to applications without conflicting instructions, i.e., coordinate adaptations.

However, in contrast to isolated applications and reactive systems, it is not suf-

ficient to find one solution per search problem, respectively. In a framework

for proactive adaptation in multi-user systems, the search algorithms have the

following requirements:

1. Complete Search: For both search problems, the algorithms should be

guaranteed to find a solution if one exists.

2. Exhaustive Search of Adaptation Alternatives: The set of deter-

mined adaptation alternatives of all applications in the same situation are

the input of the adaptation coordination search algorithm. In order to not

forestall possible solutions during the coordination search, the determina-

tion search should output all solutions to its respective search problem,

regardless of its utility or any other factor.

3. Optimal Solution for Coordination Problem: As mentioned, the op-

timization of adaptations is essential to proactive adaptation. Hence, the

coordination algorithm should find the optimal solution to its search prob-

lem. However, as the optimal assignment of adaptation alternatives to ap-

plications would be chosen every time per distinct situation, the algorithm

may terminate after finding the optimal solution.

This chapter presented the system model, featured adaptation support, and

requirements of this thesis. The next chapter presents the theoretical frame-

work and centralized system support for proactive application adaptation in the

previously described pervasive system.
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5 System Support for Proactive Adaptation

The preceding chapter discussed the system model of this thesis and derived

the requirements of providing system support for proactive adaptation. This

chapter subsequently presents a general framework for proactive adaptation, in-

cluding system support in form of a generic middleware extension. First, Section

5.1 gives an overview of the various aspects of the framework, as well as their

structuring in separate components. Afterwards, Section 5.2 describes the con-

text interaction model, and presents the centralized context broker that mediates

all context interaction, ensuring uniformity. Section 5.3 presents the configu-

ration model for applications in the system, including how applications specify

their context requirements, and how the framework rates adaptations based on

cost and utility metrics. Based on these application requirements and the given

context, Section 5.4 determines the adaptation alternatives of an application us-

ing constraint satisfaction modeling and backtracking-based algorithms, enabling

generic automatic adaptation. In Section 5.5, the individual adaptation alterna-

tives are then coordinated in order to avoid context interferences in the multi-user

system. Finally, Section 5.6 presents the adaptation control loop that combines

the individual components of the framework by monitoring context and context

predictions based on the applications’ requirements, triggering (pre-)calculation

and (pre-)coordination of adaptations, and issuing adaptation instructions to the

respective entities, before Section 5.7 closes the chapter with a summary.

5.1 Framework Overview

Proactive adaptation in pervasive environments requires several steps. First,

the adapting entity needs to be aware of its current context, as well as upcoming

changes. Second, the entity has to be able to determine necessary adaptations

based on this information. That is, the entity needs a specification of its so-called

functional configurations. Functional configurations are sets of environment con-
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ditions, such as lighting levels or temperatures, and necessary remote services

and resources, such as audio inputs or visual outputs, that define the behav-

ior, composition, and context influences of the entity. Based on these functional

configurations and the current/predicted context, the entity needs to calculate

adaptations that lead to a valid configuration instantiation in the entity’s cur-

rent/future circumstances. Such adaptations can be limited to the entity itself,

i.e., switching to a different functional configuration, and/or include adapting

the entity’s context via actuators. In case of context adaptations, the adapting

entity additionally needs to be aware of the available actuators in the environ-

ments, as well as their respective capabilities. Third, the entity has to enforce

the adaptations, e.g., change its own behavior and give instructions to actuators.

However, this already challenging process only describes a basic proactive

adaptation scheme. Ideally, adaptations should be optimized for a series of up-

coming context events in order to avoid frequent switches of configuration instan-

tiations. As an example, the best decision might be to switch to a configuration

instantiation that is not ideal for a short period, but is valid throughout a se-

ries of context changes. As a result, the entity should go through the process

for all predicted events – immediate and beyond – as well as compute and rate

all possible adaptation alternatives for each of them. This leads to a constant

effort of monitoring predictions, finding all solutions, and deciding on a strategy.

Further, adaptation in multi-user environments requires coordination in order

to avoid oscillating adaptations caused by so-called context interferences. Such

context interferences occur when two or more entities influence a shared context

differently, without being aware of the fact. The need for coordination also holds

true for proactive adaptation. In addition to alternately preventing the entities

from providing their respective functionality, the oscillating effects further nullify

any benefits from the proactive scheme, resulting in the waste of resources.

Handling all the required steps for proactive adaptation is not sensible for

single applications running on the typical resource-restricted devices that make

up pervasive environments. The complexity of the necessary algorithms, as well as

communication and managerial overhead, result in high delays and short battery

lives. The framework presented in this thesis offers middleware-based support

for proactive adaptation via centralized services. Hereby, the framework builds

on existing work on context-aware frameworks and context prediction.
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Figure 5.1: Framework Overview

Figure 5.1 shows a rough overview of the framework with references to the

sections, in which the respective components/areas are presented in detail. The

context management component (Section 5.2) provides context interaction – i.e.,

sensor and actuator services – as well as context prediction, in a uniform, distribu-

tion transparent fashion. That is, the component offers its services via a defined

query language that uses a variable-based context abstraction. In case of predic-

tion requests, the component selects the best-fit prediction approach based on the

specific prediction task. For any of the information queries, consumers can sub-

scribe to update notifications. In order to use the framework, applications have

to provide their respective runtime model in the form of requirements and pref-

erences (Section 5.3). Requirements specify the context dependencies of an ap-

plication, e.g., certain physical conditions the application/user needs, or external

services the application has to use in order to provide its function. The framework

then uses its configuration algorithms (Section 5.4) to determine and rate the set

of possible adaptation alternatives, each ensuring the execution of the respective

application in isolation. However, pervasive environments are rarely populated by
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one application alone. In shared environments, context dependencies from mul-

tiple applications can interfere with each other. Hence, adaptations in multi-user

environments must be coordinated. That is, the framework uses its coordination

algorithms (Section 5.5) to determine the set of adaptation alternatives – one

per application – that maximizes the global utility in the environment. Finally,

the adaptation control component (Section 5.6) implements the adaptation con-

trol loop. For all applications that register with their respective requirements,

the component monitors relevant context information/predictions, triggers con-

figuration and coordination algorithms, and instructs necessary adaptations to

either the context management component in case of context adaptations, or the

respective application in case of behavior or composition adaptations.

The following sections present the theoretical concepts behind interaction in

the system and the various modelings, as well as the algorithms and processes

used in the framework. Afterwards, Chapter 6 describes implementation details

of the prototype system.

5.2 Context Interaction Model

Context is defined by its identity, location, and point in time – commonly

referred to as the primary context [10]. In the well-researched reactive systems,

identity and location are handled by context and location models, respectively

[5, 8]. The point in time often is right now by default and not regarded in these

systems. Further, the systems are only designed to provide context information to

applications, not influence the context. In order to support proactive adaptation,

it is necessary to be able to query context regarding other points in time, e.g., in

the future while requesting predictions, as well as explicitly adapt the context,

i.e., instructing changes instead of querying states.

This section presents a uniform context interaction model – i.e., accessing (dis-

tributed) sensing, predicting, and actuating services – that is suitable for proac-

tive adaptation. For this, the abstraction of context variables as an extension of

location models are introduced. Then, all context services in the environment are

linked to their respective variable and location using service descriptions, and a

set of service-transparent context queries are used for context interaction via a

centralized context broker.
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Figure 5.2: Variable-based Context Interaction.

5.2.1 Variable-based Abstraction

In order to abstract context into a representation that can be stored and

processed, each context object must be modeled. That is, every context entity is

given a standardized label for naming and addressing purposes. The chosen model

strongly depends on the system’s goals. Ontologies, as defined sets of domain-

specific vocabularies, for example, are the most widespread way of abstracting and

representing context for smart environment applications, such as EasyMeeting

[25]. Sophisticated ontologies are powerful in terms of modeling the relation

between contexts and allow rule-based context reasoning. However, there is a

trade-off between this functionality and their large overhead.

In this work, a model is needed that allows applications to (i) access current

context from sensors, (ii) request predicted context from the responsible com-

ponent, (iii) influence context via actuators, and (iv) specify their requirements

towards their context, without specific knowledge about the individual services

in the environment that provide the functionality. In other words, the model

has to allow to simply get a context (prediction) and set a context state, as

well as express terms of first-order logic. This is achieved by introducing context

variables as an abstraction layer for distribution-transparent interaction between

applications and their context.
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Figure 5.2 illustrates the concept of variable-based context interaction. The

idea behind context variables is to extend location models with variables that

represent the different types of context that are present at each location, and

associate all available services with the respective variables. The concept takes

advantage of the location’s primary characteristic for context, as well as the typi-

cal spatial restriction of a smart environment. That is, applications are typically

only dependent on the context at one location at a given point in time. Hence,

location can be used as a natural index in order to decrease the complexity in the

system. Further, a centralized context broker can maintain a service registry that

maps individual services to context variables based on their descriptions, and in

turn offer the services’ capabilities to the applications in a uniform fashion.

Next, the set of queries for communicating with the centralized context broker,

i.e., querying context information and instructing context changes, are presented.

5.2.2 Context Queries and Subscriptions

Context queries are one of the key components of context-aware systems. They

allow context-aware entities to request the information they need in order to adapt

to the environment. In proactive systems, queries are also used to acquire con-

text predictions and instruct context adaptations. Hence, this section will define

context information as well as context adaptation queries, with the former used to

obtain information about context variables, while the later group addresses how

context variables can be influenced. More precisely, the context location query

allows an application to acquire the position of an object, while the context state

query returns information on an object’s state, and the context time query is

used to anticipate when an object will be in a certain state. Finally, the context

adaptation capability query gives information on which context variable can be

influenced, while the context adaptation instruction query is used to instruct a

context change. In the query descriptions, the term context configuration is used

to describe a set of context variables and their respective context variable states.

As an example, weather conditions are defined by temperature, humidity, precip-

itation and cloud level. One weather configuration would be 20◦C, 65%, slight

rain and cloudy. Further, the term confidence is used instead of probability, in

order to include the quality of measured context, e.g., the reliability of a sensor.
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The context location query QL allows applications to determine at which lo-

cation a set of context variables are in a specified context configuration during a

given time interval, including the location of the requesting application itself.

Definition 5.2.1 (Context Location Query). Query QL = {V, S, t1, t2, P}, t1 ≤
t2 is a 5-tuple, where V = {v1, v2, . . . , vn} is a set of context variables, S =

{s1, s2, . . . , sn} a set of context variable states, t1, t2 denote a timeframe, and

P = {p1, p2, . . . , pq} a set of QoS parameters. Result RL = {L,Γ,Σ2} is a 3-

tuple, where L = {l1, l2, . . . , lm} is a set of locations, Γ = {γ1, γ2, . . . , γm} a set

of confidences, and Σ2 = {σ2
1, σ

2
2, . . . , σ

2
m} a set of variances.

The context state query QS aims at the context configuration of context vari-

ables with regard to time and location.

Definition 5.2.2 (Context State Query). Query QS = {V, l, t1, t2, P}, t1 ≤ t2

is a 5-tuple, where V = {v1, v2, . . . , vn} is a set of context variables, l a location,

t1, t2 denote a timeframe, and P = {p1, p2, . . . , pq} a set of QoS parameters.

Result RS = {S,Γ,Σ2} is a 3-tuple, where S = {s1,1, . . . , s1,n, . . . , sm,n} is a

m×n matrix of context variable states, Γ = {γ1, γ2, . . . , γm} a set of confidences,

and Σ2 = {σ2
1, σ

2
2, . . . , σ

2
m} a set of variances.

The context time query QT provides context-aware applications with a predic-

tion, when a specified context configuration will occur at a given location.

Definition 5.2.3 (Context Time Query). Query QT = {V, S, l, P} is a 4-tuple,

where V = {v1, v2, . . . , vn} is a set of context variables, S = {s1, s2, . . . , sn} a

set of context variable states, l a location, and P = {p1, p2, . . . , pq} a set of QoS

parameters. Result RT = {T,Γ,Σ2} is a 3-tuple, where T = {t1,1, . . . , tm,1, tm,2},
ti,1 ≤ ti,2 ∀ i, 1 ≤ i ≤ m is a 2 ×m matrix of timeframes, Γ = {γ1, γ2, . . . , γm} a

set of confidences, and Σ2 = {σ2
1, σ

2
2, . . . , σ

2
m} a set of variances.

The context adaptation capability query QAC provides information about the

possibility to influence context variables. The result may vary between simple

Boolean values, i.e., true and false, and more complex specifications, such as

gradually, infinitely variable or approximately.
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Definition 5.2.4 (Context Adaptation Capability Query). Query QAC =

{V, l, t1, t2, P}, t1 ≤ t2 is a 5-tuple, where V = {v1, v2, . . . , vn} is a set of con-

text variables, l a location, t1, t2 denote a timeframe, and P = {p1, p2, . . . , pq}
a set of QoS parameters. Result RAC = {A,Γ,Σ2} is a 3-tuple, where

A = {a1,1, . . . , a1,n, . . . , am,n} is a m × n matrix of adaptation capabilities,

Γ = {γ1, γ2, . . . , γm} a set of confidences, and Σ2 = {σ2
1, σ

2
2, . . . , σ

2
m} a set of

variances.

The context adaptation instruction query QAI , in contrast to all the others,

does not retrieve information or predictions, but initiates a context change. The

effect of an issued instruction can be monitored by use of the context state query

QS. Hence, it does not require a result object.

Definition 5.2.5 (Context Adaptation Instruction Query). Query QAI =

{V, S, l} is a 3-tuple, where V = {v1, v2, . . . , vn} is a set of context variables,

S = {s1, s2, . . . , sn} a set of context variable states, and l a location.

By use of the five queries defined above, an application can request location-,

identity-, and time information, query which environment adaptation is possible,

and trigger such an adaptation. Hence, it can access predictions on the three

primary contexts in order to adapt ahead of time, as well as actuate context.

Rarely are applications interested in a current or predicted context informa-

tion once at a certain time. Instead, they monitor the information that is relevant

to them. To ease the applications’ workload, the framework additionally offers to

subscribe to context queries. It provides this notification service for context pre-

diction updates, as well as for current context information and context services.

Applications – or any other entities in the system – that make use of this service

must implement the subscriber interface, as specified in Section 5.2.4.

Essentially, subscribers use the same queries as for conventional information

requests, but add the desired update period and total lifespan of the subscription.

Additionally, entities subscribing to context location and context state predictions

can choose between two time-related operation modes. First, the fixed timestamp

mode provides updates for a prediction that is fixed on a specific time. That is,

the time specified in the query remains static in the updates, while the prediction

itself and/or its quality may vary. Second, the leading state mode offers updates
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Method Query
Parameters

Return Updates
v s l t γ σ

queryLocation QL + + + l, γ, σ
subscribeLocation QL + + + subID l, γ, σ
queryContext QS + + + s, γ, σ
subscribeContext QS + + + subID s, γ, σ
queryTime QT + + + t, γ, σ
subscribeTime QT + + + subID t, γ, σ
queryService QAC + + + + CS
subscribeService QAC + + + + subID CS
queryAdaptation QAI + + + void

reportContext + + + + + + void

cancelSubscription subID void

v = context variable, s = context variable state, l = location, t = time,
γ = confidence, σ = variance
CS = Context Service
subID = subscription task identification number

Table 5.1: The Context Broker Interface

for predictions in a preceding fashion. That is, the time specified in the query is

not fixed but denotes the preceding interval, which in turn stays static, i.e., the

time specified in the query is increased every update period by the update period.

To illustrate, an example use case for this leading state mode is an application

that issues alerts in case it is about to rain in x minutes.

As result to the subscription request, the subscriber receives an identification

number for the subscription for future reference. Subsequently, the first update

is sent to the subscriber as well, in order to avoid an additional query in case the

subscriber needs the information immediately. Finally, updates are only sent in

case of changes to preserve bandwidth and resources on the subscriber side.

Next, the interface of the centralized context broker is developed based on the

set of context queries.

5.2.3 Context Broker Interface

Table 5.1 presents the interface of the central context broker, including the

parameters of the query, the resulting information and, in case of a subscrip-
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tion, the information provided by the updates. Results and updates, except

for subscription identification numbers, are either embedded into the generic

ContextInformation object, which consists of one context variable and a dy-

namic list for each of the other parameter types, or the generic ContextService

object in case of a service query/subscription. This is done for two reasons. First,

the result and update objects are uniform, which allows the use of a two method

interface for context subscribers, one method for information updates and one for

service updates. Second, and more importantly, the result and update objects

may have a different timestamp than the query, either in the case that the context

information was retrieved from the database following the most recent informa-

tion strategy, or in the case that the subscription of a context prediction is in

the leading state mode. In addition to the context queries stated in Section 5.2.2

and the subscription of these queries, the context broker also provides a method

to report context, i.e., bring knowledge into the system in a push fashion. A

possible scenario for exploiting this functionality are very resource-poor devices,

e.g., solar powered sensors, that may not be queried for measurements at will,

but rather report the condition of their respective context variable regularly.

Next, the architecture of the context interaction model is described.

5.2.4 Component Architecture

Typically, pervasive systems are designed as smart environments, consisting

of centralized services on resource-rich machines, statically deployed sensors and

actuators, and context-aware applications running on mobile, resource-limited

devices. In this work, similar smart environments are assumed, in which con-

text interaction is offered by a centralized brokering entity. However, all context

requesting-, providing-, and altering services are considered to be mobile, and

they may frequently join and leave the environment (cf. System Model in Chap-

ter 4). Therefore, the context interaction model is built on top of the BASE

middleware [11], which is designed for highly dynamic environments featuring a

range of resource-limited to resource-rich devices.

Figure 5.3 shows the architecture of the context interaction model. The com-

ponents are divided into three tiers based on their roles. The context tier holds

the central context management, as well as sensor- and actuator services, which
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Figure 5.3: Architecture of the Context Interaction Model

are the components directly interacting with the environment’s context. The

application tier, on the other hand, holds the context-aware applications, i.e.,

the components requesting context interaction. Finally, the middleware tier, fea-

turing BASE and the components’ respective proxies, handles the environment’s

devices and the communication between them. In the following, the key compo-

nents of the context tier are described in more detail.

The context broker is the access point of the context management. Context

consumers use the context broker proxy to invoke the queries defined in Section

5.2.2, as well as subscribe to these queries. That is, consumers – including context

prediction components and the configuration management component presented

in Section 5.4 – can request context state-, location-, and time information, as

well as context services, either directly or as a customizable subscription. By

subscribing to their respective data set, prediction components are notified upon

updates and can react to them, e.g., learn and recompute previous predictions.
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interface Subscriber {
void update(long taskID, ContextInformation ci);

void update(long taskID, ContextService cs);

}

Figure 5.4: The interface to be implemented by all subscribing entities.

In any case, the context broker distributes incoming queries to the responsible

component(s). To do so, the broker dissects the query by examining the specified

parameters. During this analysis, the broker also checks for corrupt queries.

Context acquisition and representation is the most basic functionality of a

context management in general, and the responsibility of the context information

component. That is, the component provides access to sensor services as well

as predictions on the future availability of sensor services, and administrates the

context database. The actual procedure of the context information component

depends on the time parameter specified in the query it receives. Historic infor-

mation is directly retrieved from the context database, whereas queries for future

information, i.e., context predictions, are forwarded to the context prediction en-

gine. For current context, the component triggers – if available – a suitable sensor

service. Otherwise, it returns the most recent database entry.

The context adaptation component provides information on which context can

be adapted at a specified location and time. Hence, it differentiates between

queries aimed at current actuation and those requesting future information. For

present, i.e., immediate actuation, a simple service look-up via the service registry

is sufficient and the component forwards adaptation instruction queries to suitable

actuator services. For the availability of future actuator services, the adaptation

component requests a location prediction for all suitable services and matches the

requested with the predicted location. However, this approach does not consider

services entering or leaving the network. Hence, applications should subscribe

to this information and take action upon possible updates. In any case, if no

suitable service was found, the component returns a no service available message

to the querying application.

For each subscription, the context subscription component creates a timer task

object as a local representation of the requesting component. The timer task

queries the information according to its subscription type and notifies the sub-
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interface ContextService {
Location getLocation();

ContextVariable getContextVariable();

ContextServiceType getContextServiceType();

}

Figure 5.5: The interface that is implemented by all context services.

scriber in case of an update. Figure 5.4 depicts the necessary subscriber interface

that the consuming entities need to implement. As described in Section 5.2.2,

the subscription type parameter includes update period, total lifespan, and sub-

scription mode. Consumers can either request updates for a static point in time

or a dynamic window. The latter mode keeps a static distance between time of

subscription and the initially passed time frame. The context adaptation instruc-

tion query (QAI) can not be subscribed, as it represents a single action in the

present. Finally, subscriptions can be canceled and context information can be

pushed into the system.

All context services share a common interface (see Figure 5.5). It provides

means to acquire (i) the location of the service, (ii) the context variable associated

with it, and (iii) its service type. The broker’s context service registry maintains

a dynamic directory of all services in the environment by use of that interface.

By default, the system features the three service types sensor, actuator, and

predictor. However, the list is extensible, as other service types, e.g., predicting

sensors, are conceivable as well. Chapter 6 discusses the context broker and the

other components of the system as it pertains to their implementation details.

The next section presents the application configuration model that allows ap-

plications to specify their requirements towards their context – in order for the

system to (pre)calculate the adaptation alternatives for the applications based

on these requirements – as well as introduces a duration-dependent cost-utility-

model as a metric for the quality of an adaptation decision in proactive systems.

5.3 Application Configuration Model

With generic automatic and application-controlled automatic adaptation, an

external entity accessible through the underlying system determines the adapta-
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tion decision for the application. For this, the deciding entity needs a specification

of the application’s requirements towards its context. Further, the application

should be able to provide additional information on the value of the fulfillment

of a requirement, e.g., in the form of user preferences or utility functions, in case

there are multiple adaptation options to choose from. This section presents the

application configuration model. First, the application requirements definition

allows to model the application’s context dependencies. The framework later

uses these requirements specifications to determine all possible adaptation alter-

natives of the respective applications. Second, the time-dependent utility and

cost model introduces a metric for rating application configurations with regard

to the duration the configuration is instantiated. With such a metric, the frame-

work can further optimize adaptation decisions based on adaptation strategies,

such as minimal energy consumption, minimal network link loss, or maximal user

experience.

5.3.1 Application Requirements

The application requirements model is based on the concept of context vari-

ables – as introduced in the previous section – and consists of two steps. The

requirements’ specification, in turn, is designed to be used as input of the config-

uration algorithms.

First, the contexts that are relevant for the application are identified, e.g.,

VISUAL OUTPUT and LIGHTING. Second, for each of these variables, those states

that are functional for the application are specified. These states may either

be defined by symbolic labels, numeric categories, or continuous scales. For the

VISUAL OUTPUT, for example, this may be the display size in inches, as well as

the resolution either measured in pixels or by labels such as Full-HD. For the

LIGHTING, a certain range on the lumen scale makes sense. Each pair of context

variable and its set of valid states is referred to as an atomic requirement. In order

to check the satisfiability of the set of atomic requirements, they are expressed

in boolean logic:

LIGHTING ∧ VISUAL OUTPUT (5.3.1.1)

The conjunction of all atomic requirements of an application describes a func-

tional configuration of that application.
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In some cases context variables are interchangeable, i.e., an application may

either require context A or context B. This is especially the case if the context

variables are related to each other. A navigation application, for example, may

use a visual and an audio output, or one or the other. The relation here is that

both are output devices. In boolean logic, interchangeability is expressed by

disjunction:

LIGHTING ∧ (VISUAL OUTPUT ∨ AUDIO OUTPUT) (5.3.1.2)

Including these disjunctions, requirements can specify flexible configurations, in-

cluding using different adaptation techniques for satisfying the same atomic re-

quirement. In the navigation application example, a switch from a visual to an

audio output may be both a compositional as well as a behavioral adaptation.

The display embedded in the dashboard is needed by a different application, so

the navigation application on the user’s phone unbinds the display and unmutes

the phone’s speakers. Flexible configurations can result in multiple adaptation

options. However, conditional requirements do not have to be specifically mod-

eled here. Instead, they are implemented through the respective ratings of the

possible configurations and the subsequent decision on the best-fit alternative.

A configuration is only functional if all atomic requirements are satisfied. This

is best determined by checking the satisfiability of requirements in conjunction.

Thus, the set of functional configurations are expressed in disjunctive normal form

(DNF) – i.e., as the disjunction of the conjunction of the atomic requirements:

(VISUAL OUTPUT ∧ LIGHTING) ∨ (AUDIO OUTPUT ∧ LIGHTING) (5.3.1.3)

Figure 5.6 depicts the model of the functional configuration of an applica-

tion. Each application has at least one term made up of at least one atomic

requirement, where the atomic requirements are connected through conjunction

that form a term, and the terms are connected through disjunction. The atomic

requirements are either numeric or symbolic, and are linked via their type to

the respective context variable. The requirements’ attributes store the current

state of the context, as well as a set of states that the application can also use.

Overall, the set of requirements form a boolean expression in DNF. As shown in

[50], any logic term can be expressed in DNF. Therefore, the requirements model

is sufficient in terms of expressiveness.
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Figure 5.6: Requirements Modeling

The framework’s configuration algorithms later on evaluate the boolean ex-

pressions in search of possible adaptation alternatives. Hence, the decision how

to model the set of requirements has an effect on the algorithms’ runtime. Us-

ing DNF, the entire set of terms – i.e., the set of functional configurations –

can be evaluated in O(n), where n is the number of disjunctions in the set

of terms. Equation 5.3.1.3, for example, is evaluated in two steps. First, the

algorithm tries to satisfy (VISUAL OUTPUT ∧ LIGHTING), and in the second step

(AUDIO OUTPUT∧LIGHTING). The algorithm is discussed in detail in Section 5.4.2.

The next section models the utility and costs of an application configuration

with regard to the duration the configuration is expected to be instantiated.

5.3.2 Utility and Cost over Time

The concept of proactive adaptation includes optimizing adaptation decisions

based on the expected future. In other words, the goal is not only to pre-compute

all possible adaptations, but additionally to determine the adaptation that maxi-

mizes the ratio between the utility of the configuration and the costs of switching

to and maintaining it, i.e., fixed and running costs. This ratio depends on the du-

ration of the configuration’s instantiation. For one, the utility of a configuration
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– a numerical value expressing the benefit for the user – may change over time.

That is, even though services deliver a consistent quality, they can have different

effects on human variables, such as attention span or motivation. However, the

duration mainly has implications on the costs part of the ratio. Especially in

the context of pervasive computing, where most devices are resource-restricted.

That is, a configuration with high fixed costs and low running costs will at some

point become more beneficial than one with low fixed costs but high running

costs. Taking all this into account, modeling a utility-cost ratio for proactive

adaptation is a new challenge.

5.3.2.1 Utility and Preferences

Different users have different work habits as well as preferences, and, therefore,

a different perception of a system’s utility. They need to be taken into account

when comparing an application’s configurations. This section presents the mod-

eling of utility functions and user preferences for proactive adaptation. These

utility functions and preferences may, for example, be specified by the developer

and customized by the user. During runtime, they may also be evaluated and

modified, for example using reinforcement learning techniques. However, support

for specifying and maintaining utility functions and user preferences is not in the

scope of this thesis. Work on how to determine the preferences of a user via

graphical user interfaces can, for example, be found in [113].

As described in Section 5.3.1, a configuration consists of a conjunction of

atomic requirements towards the state of a context variable, where the state of

the context variable and, therefore, the atomic requirement can either be sym-

bolic or numerical, i.e., discrete or continuous, respectively. Hence, the model

describing the utility of a configuration based on the preferences of a user must

also support both types. First, let Xdis = {xdis1 , xdis2 , ..., xdisn } be the set of sym-

bolic context variables and Xcon = {xcon1 , xcon2 , ..., xconm } be the set of numeric

context variables. Then, Ddis
i is the domain of the discrete context variable xdisi

with Ddis
i = {ddisi,1 , d

dis
i,2 , ..., d

dis
i,k }, and Dcon

j is the domain of the continuous context

variable xconj with Dcon
j = [dconj,min, d

con
j,max]. With this, it is possible to define the re-

spective discrete or continuous utility functions that return a utility from [0, 100]

for any ddisi ∈ Ddis
i or dconj ∈ Dcon

j , respectively. To illustrate, assume there is
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the discrete context variable xdisres describing the resolution of a projector and the

continuous context variable xconvol describing the volume of an audio output. Then,

the utility function for the discrete variable xdisres has the form

udisres(d
dis
res) =


10 if ddisres = ’320p’

20 if ddisres = ’480p’

50 if ddisres = ’720p’

100 if ddisres = ’1080p’

(5.3.2.1)

whereas the utility function for the continuous variable xconvol – in this instance

using the Gaussian distribution to describe the utility of a volume output – has

the form

uconvol (d
con
vol ) = (

1

σ
√

2π
e−

(dconvol −µ)
2

2σ2 ) ∗ 100, µ ∈ Dcon
vol . (5.3.2.2)

With this and irrespective of the type of variable, let U(X, t) be the set of

utility functions for variables X and duration t, with

U(X, t) = {ux1(d1,1, t), ..., ux1(d1,k, t), ..., uxn(dn,l, t)} (5.3.2.3)

such that uxi(di,j, t) specifies the utility of variable xi instantiated with state

di,j for a duration of t. Figure 5.7 illustrates such duration-dependent utility

functions.

The utility functions determine the utility of a single context variable, respec-

tively the context variables’ states. However, users have different perceptions of

which aspects of an application are important. In the movie theater, for example,

one user might prefer the best acoustic, whereas another user would rather have

the most comfortable view. Hence, simply accumulating the single utilities in

order to determine the configuration’s utility is not a valid approach. Instead, it

should be able to attach weights that represent the importance of each aspect.

These weights may also change with the duration of the context. Similar to the

utility, the equation

W (X, t) = {wx1(t), wx2(t), ..., wxn(t)} (5.3.2.4)

is defined as the set of weight functions, such that wxl(t) specifies the weight that

should be assigned to the utility of variable xl depending on the duration t of
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Figure 5.7: Example of Duration-dependent Utility Functions.

the context. The weights are relative. That is, they can be any natural number,

they are then divided by the sum of all weights in order to reach an accumulated

weight of 1, i.e.,
∑n

l=1wxl(t) = 1.

Subsequently, the utility of a configuration is the weighted sum of the sin-

gle utilities. Let Y = (X,D) be a configuration with a set of variables

X = {x1, x2, ..., xn} instantiated with the corresponding states in domain D =

{d1, d2, ..., dn}. Then, the utility of configuration Y for duration t is

u(Y, t) =
n∑

i=1

(wxi(t) ∗ uxi(di, t)). (5.3.2.5)
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Together, the set of utility and weight functions then form the preferences of a

user. Accordingly, P (X, t) specifies a preferences description, with

P (X, t) = {U(X, t),W (X, t)}. (5.3.2.6)

5.3.2.2 Costs

As mentioned above, the costs of an adaptation are a very important aspect

when dealing with resource-restricted devices. These resources, such as CPU,

memory, bandwidth, and battery, are the predominant cost factors. They are

related to the level of service the application offers its user. People commonly

use a more energy-efficient setting of their laptops in mobile scenarios, or switch

off mobile network connectivity in order to save their phones’ battery. This

work assumes that the applications have knowledge about their different resource

profiles and the profiles of the services they use, as well as which level of service,

i.e., utility, they provide with them.

However, there are other cost factors in pervasive environments besides re-

sources. [14] identifies the time it takes to adapt as costs. They depend on the

complexity of the adaptation. For example, a behavioral adaptation, e.g., switch-

ing to silent mode, is less complex than a compositional one, e.g., switching an

I/O device. Hence, the time needed for an adaptation depends on the previous

configuration instantiation of an application. Typically, the similar the previous

configuration is, the less complex the adaptation. Additionally, [3] identifies the

distraction of the user due to an adaptation as costs. The user is not only forced

to pause during, but also needs effort on his/her part to cope with the adaptation,

e.g., reorientation. However, this cost factor varies from user to user and can not

be measured easily.

In order to compare the costs of various adaptation alternatives over the dura-

tion of a context, it is necessary to be able to specify the fixed costs for switching

to, as well as the running costs of maintaining the new configuration. In case

new services become available, they can then be compared to the current config-

uration by considering the current configuration to be an adaptation with zero
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fixed costs. Equation

c(Ynew, Yold, t) = cfix(Ynew, Yold) + crun(Ynew, t) (5.3.2.7)

defines the cost function, with cfix(Ynew, Yold) as the fixed transition costs from

the current to the new configuration, and crun(Ynew, t) as the running costs of

the new configuration depending on the duration t of the new context. The fixed

transition costs cfix(Ynew, Yold) depend on the resources spent, the time needed

for the adaptation, and the distraction of the user. Each of these factors are

difficult to estimate and, thus, should best be learned by the specific system. The

running costs crun(Ynew, t), on the other hand, are easier to handle. They consist

only of the resources the application consumes in the respective configuration. As

described above, each application is able to provide their resource profile as well as

that of the services they use. However, the different resources are measured using

different units, e.g., clocks for CPU and bytes for memory. In order to determine

one accumulated running costs value, it is necessary to normalize them to a value

in [0, 100]. That is, assuming there are three alternative configurations with

running CPU costs cCPU1 = 5560 clocks, cCPU2 = 6280 clocks, and cCPU3 = 1200

clocks. Then it is possible to determine cCPUmax = 6280 clocks, and normalize all

costs with c′CPUi
= cCPUi ∗ 100

cCPUmax
. The normalized costs are then c′CPU1

= 88.54,

c′CPU2
= 100, and c′CPU3

= 19.10. After doing the same with other resources, it is

possible to accumulate all running costs to one value using

crun(Ynew, t) =
n∑

i=1

c′yi ∗ t. (5.3.2.8)

In order to adjust the function to the devices characteristics, the normalized costs

of the different resources can additionally be weighted, e.g., using the amount of

the total or currently available resources of the device.

The next section combines the utility and cost functions to cost-utility ratios.

5.3.3 Duration-dependent Cost-Utility-Ratios

After the configuration algorithms have determined all adaptation alternatives

for an application, i.e., its set of functional configurations that are viable in the
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Figure 5.8: Example of Duration-dependent Cost-Utility-Ratios.

predicted context, it is necessary to decide on which configuration to instantiate.

The previous sections presented an approach to modeling utility and costs of

a configuration considering the duration the configuration will be active. This

section shows how to apply the cost and utility functions to a set of alternative

configurations.

Figure 5.8 illustrates such a rating for the two alternative configurations Y1

and Y2, with the costs on the y-axis, the utility on the z-axis, and the duration

of the context on the x-axis. In this example, alternative Y1 has the higher fixed

costs, but Y2 becomes more expensive after a certain point due to its higher

running costs. The same is true for the utilities of Y1 and Y2. Hence, the factor

determining which alternative has the higher or lower costs/utility depends on the

expected duration. With the cost and utility functions, it is possible to determine

a cost-utility-ratio for each configuration and any expected duration(s), indicated

in the figure using colored dots. To further illustrate this ratio, the dots are

projected to the area between the y and the z-axis. Splitting the area into two

triangles with c = u distinguishes between cost-utility-ratios ( c
u
) of 1, > 1, and

< 1. Naturally, it is preferable to minimize this ratio, getting the most utility per
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cost. However, there exist scenarios in which the user might, for example, define

a lower boundary for the application’s utility and accept a higher ratio in order

to exceed that boundary. As shown in Section 5.4.3, the rated configurations

are therefore forwarded to a decision component that applies certain user-specific

adaptation strategies.

As both utility and costs are modeled as functions, rating a single context

variable assignment happens in constant time O(1). A configuration Y is a set

of context variables instantiated with a state from its domain. Hence, rating a

configuration is linear in the number of its context variables, i.e., O(|Y |). In

order to make a decision, it is necessary to rate all configuration alternatives.

Let Z = (Y1, Y2, ..., Yp) be the set of alternative configurations and |Y |max be

the maximum size of any Yq ∈ Z. Then, the complexity of rating all alternative

configurations is O(|Z||Y |max).

The next section presents the configuration algorithms that find all possible

adaptation alternatives of an application given a certain context. Afterwards,

Section 5.5 shows how to coordinate the adaptation of multiple applications in a

shared environment, before Section 5.6 presents the adaptation control loop.

5.4 Comparable Adaptation Alternatives

This section presents the configuration algorithms that search for all possi-

ble adaptation alternatives of an application based on the current or predicted

context in the environment. That is, for any given context – i.e., the physical

conditions and available services at a location – the algorithms search for all

valid configurations. For this, the problem of finding adaptation alternatives is

formulated as a constraint satisfaction problem, and subsequently solved using

a backtracking-based algorithm, an ordering heuristic, as well as a context ser-

vice index structure. Finally, the section gives an architectural overview of all

components involved in searching for and rating adaptation alternatives.

5.4.1 Application Configuration as Constraint Satisfaction

The validity of an application configuration is determined by the application’s

requirements and the environment’s adaptation capabilities. Both set constraints
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towards the search space. First, a configuration must satisfy all application re-

quirements. Second, the environment must provide the necessary resources and

adaptation capabilities to satisfy the configuration. Hence, the problem of finding

a valid application configuration is a constraint satisfaction problem.

Based on [94], a constraint satisfaction problem (CSP) is a triple (V,D,C),

where V = {V1, . . . , Vn} is a finite set of variables and D = {D(V1), . . . , D(Vn)}
is a set of finite domains, such that D(Vi) is the finite set of potential values for

Vi. Furthermore, C = {C1, . . . , Cx} is a finite set of constraints, where each Cy is

a pair (ty, Ry) with ty = (vy1 , . . . , vyz) being a z-tuple of variables and Ry being a

z-ary relation over D. A solution of an instance of a CSP is a function f : V → D

such that ∀(ty, Ry) : f(ty) = {f(vy1), . . . , f(vyz)} ∈ Ry.

The adaptation capabilities of the environment can differ at each location.

For example, a meeting room usually has a projector, whereas a typical office

does not. However, these capabilities constitute the variables and respective

domains of the CSP. Hence, the CSP has to be constructed and solved for each

location individually. With this in mind and the previous definition, the problem

of finding a valid application configuration for a single location can be modeled

as the following CSP:

Let L be the finite set of locations L = {L1, . . . , Lp} in the environment. Then,

let V Lq be the finite set of context variables V Lq = {V Lq
1 , . . . , V

Lq
n } at location Lq,

and let DLq be the set of finite domains DLq = {DLq(V
Lq
1 ), . . . , DLq(V

Lq
n )}, where

DLq(V
Lq
i ) = {SLq

i1
, . . . , S

Lq
im
} is the finite domain of V

Lq
i , namely the finite set of

possible context variable states (S
Lq
ij

) for V
Lq
i . Further, C = {C1, . . . , Cx} is a

finite set of constraints, namely the set of terms in the application’s requirements,

where each Cy is a pair (ty, Ry) with ty = (vy1 , . . . , vyz) being a z-tuple of variables

– i.e., the context variables in the respective term – and Ry being a z-ary relation

over DLq – i.e., a specific instantiation of the context variables. Finally, a solution

to the problem of finding a valid application configuration is an instantiation

of each context variable in the application’s requirements’ term with a context

variable state that is both permitted by the constraints, and possible for the

environment to provide, i.e., in the set of domains of the location.

The next section presents the adaptation alternative search algorithm that

finds all possible adaptation alternatives for every location in the environment.
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5.4.2 Adaptation Alternative Search Algorithm

There are various approaches to solving CSPs, e.g., the set of hybrid back-

tracking-based algorithms by Prosser [86] or variations of local search algorithms

[94]. The choice, which approach to use, depends on the specific characteristics

of the problem, as well as the desired result. For example, Prosser’s algorithms

aim at finding a solution as fast as possible, whereas local search algorithms are

used for finding a near optimal solution without traversing the entire search space

(cf., for example, hill climbing or simulated annealing). The goal in this work is

to select the best possible adaptation option ahead of time, coordinated for all

applications in the shared environment, using the utility and cost metrics. As

a result, the entire set of possible adaptations for any given situation should be

readily available, in order to (i) keep the adaptation delay minimal, as well as

(ii) provide all adaptation options of every application to the adaptation coordi-

nation algorithms (see Section 5.5). Otherwise, possible adaptation plans could

be forestalled. Hence, it is necessary to find all possible solutions, instead of

terminating after a solution, or a subset of solutions was found. Moreover, as all

solutions are to be found, the individual ratings of the solutions are irrelevant

during the search – i.e., solution optimization techniques do not apply – and,

therefore, can be calculated afterwards.

Next, a backtracking-based adaptation alternative search algorithm is pre-

sented, which conducts an exhaustive search, i.e., finds all possible solutions to

the problem. Afterwards, an ordering heuristic is introduced, which optimizes

the search sequence during the search process by calculating a complexity index

for each context type, and the context service index structure is described, which

is used to minimize the number of context service queries posed to the context

management component during the search.

5.4.2.1 Exhaustive Search

Due to the individual composition of the context at each location, it is neces-

sary to solve one CSP per location, and gradually obtain all solutions from the

environment. That is, the search is conducted in p iterations, where p is the

number of locations in the environment (cf. the definition of the search problem
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in Section 5.4.1). At the start of each iteration, the algorithm replicates the con-

text situation of the location in question, by initializing the set of variables at

that location and their respective domains, and solves the CSP. The set of con-

straints, however, is constant during the whole search process, as the application’s

requirements are location-independent.

The search space of the CSP of a location can be thought of as a tree. Each

level of this tree structure describes a context variable at the given location, and

the nodes on that level represent the variable’s domain, i.e., the states that the

context can become. Then, a possible combination of all context instantiations is

a path from the root node to a leaf of the tree. However, not all context variables

in the tree are relevant for the application. That is, if the variable in question is

not contained in the application’s requirements, its instantiation has no influence

on the validity of the combination. To avoid unnecessary steps, those irrelevant

context variables can be bypassed by removing them from the set of variables

V Lq of the CSP prior to the search iteration regarding location Lq. Moreover,

not every location in the environment may have the necessary context services in

order to satisfy the application’s requirements. For example, if the application

needs a visual output, such as a projector or a public display, and the location in

question can not provide such a component, it is automatically eliminated from

the solution space. Hence, such locations can also be bypassed. In any case,

if a given combination is valid, i.e., it satisfies all the constraints posed by the

application’s requirements, it is called configuration or solution.

The exhaustive search is conducted by a backtracking-based algorithm, more

specifically a depth-first search-based (DFS) algorithm, as shown in Algorithm 1.

The algorithm builds all possible combinations of acceptable context states that

are feasible for the context services at the location in question. That is, for each

location and requirement term, the algorithm conducts a depth-first search on the

respective domains of the local context variables. As discussed above, variables

that are irrelevant for the application can be bypassed, and locations that do

not offer adaptation capabilities for all variables in the requirement term can not

provide solutions. Hence, only the domains of those variables are used, which are

also contained in the term (cf. Line 8), and the search skips the current location

and term pairing, in case the resulting number of domains is less than the number

of variables in the term (cf. Lines 10-12). The algorithm starts at the root of
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Algorithm 1 Exhaustive DFS-based Configuration Search
1: procedure e-dfs(appID)
2: solutions ← null
3: locations ← getLocationsInEnvironment()
4: appReqs ← getApplicationRequirements(appID)
5: for all location ∈ locations do
6: for all term ∈ appReqs do
7: status ← ”unknown”
8: domains ← getDomainsInTerm(location, term)
9: n ← getNumberOfLiterals(term)

10: if domains.size < n then
11: status ← ”impossible”
12: end if
13: consistent ← true
14: i ← 1
15: while status = ”unknown” do
16: if consistent then
17: i ← dfs-label(i, consistent)
18: else
19: i ← dfs-unlabel(i, consistent)
20: end if
21: if i > n then
22: i ← i - 1
23: solutions.add(getHeadsOfCurrentDomains())
24: currentDomains[i].removeHead()
25: consistent ← currentDomains[i] 6= null
26: else if i = 0 then
27: status ← ”known”
28: end if
29: end while
30: end for
31: end for
32: return solutions
33: end procedure

the tree and proceeds towards its leaves by labeling its nodes (see Algorithm 2).

For this, there are the two sets named domain and current domain. The domain

is the entire set of possible values per context variable and remains constant,

whereas the current domain is a subset that the algorithm operates on. In case

a value in the current domain of a variable is acceptable for the application, i.e.,

the value is contained in the requirement term, the algorithm has found a new

partial solution, and continues with the next variable. Otherwise, the algorithm

backtracks by unlabeling the current node, i.e., it restores the current domain of

that variable and continues the search at the preceding level (see Algorithm 3).

During the search, the algorithm stores all valid configurations (cf. Algorithm 1,
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Algorithm 2 Exhaustive DFS Label
1: procedure e-dfs-label(i, consistent)
2: consistent ← false
3: while currentDomains[i] 6= ∅ ∧ ¬consistent do
4: consistent ← inTerm(currentDomains[i].head)
5: if not consistent then
6: currentDomains[i].removeHead()
7: end if
8: end while
9: if consistent then

10: return i+1
11: else
12: return i
13: end if
14: end procedure

Algorithm 3 Exhaustive DFS Unlabel
1: procedure e-dfs-unlabel(i, consistent)
2: h ← i-1
3: currentDomains[i] ← domains[i]
4: currentDomains[h].removeHead()
5: consistent ← currentDomains[h] 6= null
6: return h
7: end procedure

Lines 21-25). As soon as the algorithm returns to the root of the tree, it has

explored the entire solution space, and continues with the next term and/or

location, until it terminates.

5.4.2.2 Ordering Heuristic

It is possible that specific requirements of applications can only be satisfied in

a few locations in the environment. If a single requirement literal of a require-

ment term can not be satisfied at a location, it is unnecessary to continue the

configuration search for that term and location. Hence, such requirements should

be checked first, in order to recognize that there are no possible solutions at the

location in question, as early as possible. The ordering heuristic uses a most

constraint variable heuristic-based approach (cf. [94]) to optimize the search se-

quence for the application’s requirements. That is, the literals in a requirement

term are ordered such that the literals that can most likely not be satisfied by the

current location’s context resources, are checked first. As a result, the validation

process for the current location terminates faster. The earlier a non-fitting loca-

62



5.4 Comparable Adaptation Alternatives

tion is excluded from the search space, the lower is the arising overhead through

pursuing non valid locations.

The ordering heuristic needs a metric in order to compare the requirements

with each other, and determine in which order they should be processed. There-

fore, a so-called complexity index is calculated for each context variable in the

application’s requirements, representing their respective potential to diminish the

search space. That is, the complexity index estimates the success rate of the con-

sistency check by comparing the respective sizes of the sets of context states that

are acceptable for the application, and those providable by the environment, as-

suming a uniform distribution of the likelihood of each context state being both

desirable and feasible. For comparability, the index has to be bound to a certain

range. Assuming that the context states in the applications’ requirements are

a subset of the possible states in the environment, the quotient of the number

of acceptable and possible states is a float number in the interval (0,1], with a

low complexity index suggesting a strong potential for reducing the search space.

Even though this assumption typically holds true, it must not always be the case.

However, as the heuristic tries to eliminate search space by checking the most

restricted variables first, i.e., those with a low complexity index, the index can

simply be forced into the (0,1] interval, without losing its effect.

When calculating the complexity index, the heuristic has to distinguish be-

tween symbolic and numeric requirements. The complexity index ksym of a sym-

bolic context variable V sym
i is the quotient of asym

V symi
and usym

V symi
, where asym

V symi
is the

number of states of V sym
i that are acceptable for the application, i.e., the states

specified in the requirements and constituted in the constraints, and usym
V symi

is the

number of states in the universe of V sym
i , i.e., the size of the union of states for

variable V sym
i that are possible in the environment.

ksym
V symi

= min(
asym
V symi

usym
V symi

, 1) = min(
|vsymij

∈
⋃x

w=1Rw|
|
⋃p

q=1D
Lq(V sym

i )|
, 1) (5.4.2.1)

In case of a numeric requirement, the required and the possible states of a

context variable V num
i are defined by value ranges, instead of sets of discrete val-

ues. The relation between two such value ranges is defined by their respective

sizes or diameters (�), i.e., the absolute differences between the respective end-
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points. Hence, the complexity index knum of a numeric context variable V num
i is

calculated by dividing anumV numi
by unumV numi

, where anumV numi
and unumV numi

are the absolute

values of the distances in the value ranges of the required and the possible values

for the numeric variable V num
i , respectively.

knumV numi
= min(

anumV numi

unumV numi

, 1) = min(
�{vnumij

∈
⋃x

w=1Rw}
�
⋃p

q=1D
Lq(V num

i )
, 1)

= min(
|max({vnumij

∈
⋃x

w=1Rw})−min({vnumij
∈
⋃x

w=1Rw})|
|max(

⋃p
q=1D

Lq(V num
i ))−min(

⋃p
q=1D

Lq(V num
i ))|

, 1)

(5.4.2.2)

Finally, in order to use the ordering heuristic during the search, Algorithm 1

additionally gets Line 4a orderByComplexityASC(appRegs), which orders the

set of requirement literals in each of the requirement terms by their respective

complexity index in ascending order. The order, in which the application terms

are iterated through, remains irrelevant, as they are independent from each other

and must all be accounted for, in order to not forestall any possible solutions

during the adaptation coordination phase.

5.4.2.3 Context Service Index Structure

The search algorithm uses a context service index structure to minimize the

communication overhead during the search process. The index structure can be

thought of as a basic context service registry. For each location, it stores all nec-

essary information regarding the environment’s context services that is relevant

for the search process. This includes information about the location’s context

service types, the sensor/actuator identification information for measuring and

performing environment changes, as well as the so-called actuator capabilities

that define the states or value ranges, respectively, that the actuators provide.

With this information, the algorithm is able to calculate all solutions without any

additional data, instead of constantly having to query the context management

component for the needed information.

However, using such an index structure requires a constant maintenance effort.

In order to assess whether the communication overhead to maintenance trade-off
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is beneficial, it is necessary to compare the respective data load that must be

transferred to support the search algorithm. The individual data load is coherent

to the frequency, in which the algorithm searches for adaptation alternatives, and

the amount of environment information data that is necessary for one search.

That is, a high frequency of searches, e.g., due to a highly dynamic environment,

suggests a positive effect of the index structure. Hence, a suitable metric for

estimating the dynamism of the system is the number of executed adaptation

calculations over time. On the other hand, the smaller the environment is – in

terms of the number of locations in it – and the lower the context service density

in the environment is, the lower is the amount of environment data needed for one

search. In this case, the constant maintenance effort might be disadvantageous.

Even though it is possible to reason about the data load, it is necessary to say

that both metrics depend entirely on the actual environment.

There are four aspects that affect the data load of an adaptation alternative

search:

1. the size of the complete environmental service information ccomplete,

2. the size of a single context service information update ci,

3. the number of adaptation calculations in a certain period of time at, and

4. the number of context service updates in the same period of time ut.

Using these factors, the data load of the naive algorithm without the index

structure (Xnaive) is described in Equation 5.4.2.3, and the data load of the

algorithm with the index structure (Xindex) in Equation 5.4.2.4.

Xnaive = ccomplete · at (5.4.2.3)

The data load for the naive algorithm is the product of the complete context

service information ccomplete and the number of adaptation calculations in a certain

period of time at.

Xindex = ci · ut + ccomplete (5.4.2.4)

For the index structure-based algorithm, the data load depends on the product

of the number of updates regarding the context services in the environment per

time unit ut and the size of a single context service update message ci. As an

initial set of data is needed, the size of all context service information ccomplete is

added.
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Assuming ccomplete is N -times the size of ci, with N being the number of

context services in the environment, it is possible to approximate equation of the

two data loads if N · at ≈ ut, as shown in Equation 5.4.2.5. Hence, if the number

of context service updates in a certain period of time is lower than N -times the

number of adaptation calculations in the same period – a reasonable assumption

considering a typical environment will feature dozens of context services – then

the communication overhead to maintenance trade-off of the context service index

structure is beneficial in favor of the index.

Xnaive = Xindex

ccomplete · at = ci · ut + ccomplete

ccomplete · (at − 1) = ci · ut
N · ci · (at − 1) = ci · ut

N · (at − 1) = ut

N · at ≈ ut

(5.4.2.5)

To summarize, the algorithm using the index structure has an advantage in

large environments with a large number of context services, and in case of many

adaptation alternative search runs. Not using the index structure is only superior

in environments with many context service updates, but very few search runs.

The performance of the variations of the algorithm during simulation is presented

and discussed in Chapter 7.

5.4.3 Component Architecture

Figure 5.9 shows the architecture of the configuration management component

in the context of the overall system architecture. Above the component are the

pervasive applications that make use of its capabilities. The applications register

at the component with their respective set of requirements and preferences via

the component’s interface (see Figure 5.10). In turn – disregarding adaptation

coordination for now – the applications receive their rated adaptation alterna-

tives from the component, whenever their current or predicted context changes

(cf. Section 5.3). Below is the context management, which delivers context sensor
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Figure 5.9: Architecture of the Configuration Management Component

and actuator information on demand or by subscription (cf. Section 5.2). Specif-

ically the subscription service of the context management component is used for

keeping the index structure up to date. Whenever a context service enters or

leaves the network, or changes its location, the configuration management com-

ponent receives a notification and can update the context service index structure

accordingly.

The component’s workflow is as follows. It first analyzes the requirements and

preferences of the application. Thereupon, the system determines the possible

configurations based on the requirements and the (predicted) context informa-

tion, which is received through the context data component. After that, the

resulting configurations are forwarded to the configuration rating component,

which also communicates with the context data component in the same manner.

Additionally, the configuration rating component receives the analyzed prefer-

ences of the context-aware application. Based on these inputs, the configuration

rating component determines the best adaptation alternative based on their re-
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interface ConfigurationManagement {
long registerApplication(

ApplicationRequirements appReqs,

UserPreferences userPrefs,

ReferenceID refID);

}

Figure 5.10: The Interface of the Configuration Management Component

spective utility and costs, as well as the preferences of the user regarding an

adaptation strategy. The decision is returned to the context-aware application,

which executes the adaptation.

The next section presents the adaptation coordination algorithms that find

so-called adaptation plans for multiple applications that share their context, in

order to prevent oscillating adaptations and optimize the global utility of the

environment. Afterwards, Section 5.6 combines the individual components into

the overall adaptation control loop.

5.5 Coordinated Adaptation Plans

Adaptation in multi-user environments requires coordination, as isolated adap-

tations of single applications that share context often leads to so-called context

interferences, which force subsequent re-adaptations and, thus, lead to oscillating

effects. With proactive adaptation, such interferences would further negate any

benefits of pre-calculating adaptation alternatives. In order to avoid such situ-

ations, the set of predetermined adaptation alternatives should be coordinated

beforehand as well. That is, after each calculation of adaptation alternatives, the

system should find all interference-free combinations of adaptation alternatives

– referred to as adaptation plans – for the location, for which the adaptation

alternatives were calculated.

The COMITY framework [63, 64, 65] offers interference detection and reso-

lution for applications in multi-user environments. However, it is not sufficient

to run the COMITY framework in parallel for two reasons. First, it is a re-

active adaptation coordination framework, which means it monitors the active

functional configurations of the applications in the environment, and only coor-

dinates the applications in the case an interference actually occurs, instead of
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preventing them. Second, COMITY’s interference resolution algorithm termi-

nates as soon as an interference-free adaptation plan was found, without regard

to the utilities of the individual configurations of the applications. Hence, in order

to coordinate the adaptation alternatives that were calculated by the configura-

tion management component ahead of time, while optimizing the global utility in

the environment, a new set of tree-based resolution algorithms are developed for

this framework, which use COMITY’s interference detection to check the validity

of the adaptation plans.

This section first gives an overview of the COMITY framework, including a

brief discussion of context interferences, the concept of context contracts, as well

as the interference detection and resolution approach. Afterwards, it presents

the set of tree-based resolution algorithms that optimize the global utility of the

environment. Finally, the section shows how to derive context contracts from

application requirements, in order to be able to utilize the interference detec-

tion approach. The integration of adaptation coordination into the configuration

management are part of Section 5.6, which presents the overall adaptation control

loop.

5.5.1 Adaptation Coordination with COMITY

COMITY is a middleware-based adaptation coordination framework for per-

vasive environments. The applications in the environment submit their context

influences and dependencies to the coordinator – similar to the way they submit

their requirements and preferences to the configuration management component

in this work – and the coordinator monitors for and resolves interferences in the

shared context.

5.5.1.1 Interferences

The parallel execution of pervasive applications poses challenges in multi-

platform pervasive systems. The problems arise from the fact that pervasive

applications interact with a shared context. Consider the situation in which

application Appi has changed the context according to its needs. Afterwards,

application Appj is started and discovers that the shared context does not satisfy
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its requirements. Consequently, Appj also adapts the context according to its

needs. This action changes the basis on which Appi chose its active functional

configuration. Since its current configuration is not anymore viable in the changed

context, Appi is forced to react, leaving it with two options: It can adapt the

context again according to it’s own needs or it can adapt itself. The first option

may result in a cycle where the two applications take turns adapting the context,

which results in an oscillation of the context between two states and with each

change one of the applications is not able to operate – comparable to a deadlock.

The second option may prove to be suboptimal because another configuration

may not satisfy the user’s requirements. Moreover, it may be possible that no

viable functional configuration can be found at all for Appi.

The problem described above – an application-induced context that in turn

forces other application(s) to adapt – is referred to as an interference. Interfer-

ences occur when applications make configuration decisions, and as a consequence

thereof adapt the context according to their needs, without considering that other

applications may be executed in parallel.

5.5.1.2 Context Contracts

A context contract defines the interaction of an application with its context

depending on a functional configuration. That is, a context contract is the specifi-

cation of all context relations – dependencies and effects – of a functional configu-

ration. For application coordination, each application provides the active context

contract for its current configuration, and at least one alternative context contract

for alternative functional configurations. The active context contract is required

for interference detection, whereas the list of alternative context contracts is used

for interference resolution. Context contracts consist of two mandatory parts, the

interference specification and the context influences.

The first part of a context contract is the interference specification. It defines

the context states that pose an interference for an application. Figure 5.11 shows

an example interference specification of a presentation application. The interfer-

ence specification models three context states that the application encounters as

an interference. The first one is a temperature that is below 19 ◦C. The second

specifies an interference, if a presentation takes place in the environment and the
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BEGIN

temperature < 19.0 Celsius

OR

activity = video presentation AND light.intensity != dimmed

OR

activity = video presentation AND audio.volume > 55 decibels

END

Figure 5.11: An Example Interference Specification

lights are not dimmed. The third one models an interference when a presentation

is held and the audio volume is greater than 45 decibels. As with the application

requirements, the interference specifications of an application are defined by the

application developer.

The second part of the context contracts are the application’s context influ-

ences. Context influences explicitly specify the effects an application has on the

shared context. Figure 5.12 shows an example context influence definition of a

video presentation. The context influences state that the application sets the

activity of the environment to video presentation, dims the lights, and outputs

speech with an intensity of 55 decibels.

Next, COMITY’s interference detection and resolution approaches are briefly

explained, before the interference resolution algorithm that maximizes the envi-

ronments utility is presented.

5.5.1.3 Interference Detection and Resolution

In COMITY, the interference detection process is triggered every time there is

a change to the set of interference specifications or the context itself. It evaluates

all active interference specifications with regard to the current context. In case an

interference specification is satisfied, a description of the interference is composed.

The description includes the satisfied interference specification, the contributing

context and all applications that are involved. Once the description is created,

the interference resolution process is triggered.

Interference resolution in COMITY is a two-staged process. First, an inter-

ference resolution plan is computed, which determines how applications have to

adapt in order to resolve a detected interference. If each application fulfills its
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CI = {activity = video presentation,

light.intensity = dimmed,

audio.type = speech,

audio.volume = 55 decibels}

Figure 5.12: An Example Context Influence Definition

respective assignment, the interference is resolved and an interference-free sys-

tem state emerges. In order to determine such a plan, the interference resolution

component searches for a context contract for each application, such that the de-

tected interference is resolved and no new interferences are created. That is, an

assignment needs to be found for each application such that (i) the context influ-

ences of the application do not satisfy any then active interference specification

– which can change as part of the resolution plan – and (ii) the new interference

specification of the application is not satisfied by the then existing context. As

with the adaptation alternative search, the problem of finding such a resolution

plan is modeled as a CSP. The original COMITY resolution algorithm finds a res-

olution plan with the minimal number of necessary adaptations. It starts from

the last functional set of context contracts, and appends the ones causing the

interference at the end. The algorithm then alternates the context contracts of

those applications first, which caused the interference. If this first step is not

successful, the algorithm uses a backtracking-based approach – combined with a

pruning technique similar to backjumping – in order to find a resolution plan.

Once a resolution plan has been obtained, the COMITY framework instructs

applications to adapt according to the plan.

Next, the tree-based interference resolution algorithms for proactive adapta-

tion coordination are presented.

5.5.2 Tree-based Interference Resolution Algorithms

A resolution plan with minimal adaptations is desirable, when there is

an actual interference in the system. However, this is not the case during

pre-coordination of adaptation alternatives, eliminating the starting point of

COMITY’s resolution algorithm. Further, the approach is not consistent with

the concept of proactive adaptation, of which the goal is to predetermine all al-

ternatives in order to be prepared and make the best possible decision. This
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section presents a set of tree-based algorithms for finding an interference resolu-

tion plan. First, it describes a resolution algorithm that implements the explicit

forward checking with conflict-directed backjumping strategy [86], which makes

use of information gained in the process of finding subsolutions. Afterwards, it

presents a modification of that algorithm that does not terminate after finding

a solution, but continues the search process to find the optimal solution, while

pruning the search space using the branch and bound strategy, in order to improve

its runtime.

5.5.2.1 Interference Resolution as Constraint Satisfaction

As defined in [63], the problem of computing an interference resolution plan

can be modeled as a constraint satisfaction problem as follows:

Let V be the set of applications App = {App1, . . . , Appn} which are ac-

tive in the environment, and let D be the set of finite domains CC(App) =

{CC(App1), . . . , CC(Appn)}, where CC(Appi) = {(CIi1 , ISi1), . . . , (CIim , ISim)}
is the finite domain of Appi, namely the finite set of possible context contracts

(CC) for Appi where CI are the context influences and IS is the interference

specification of the contract. Furthermore, let C = (t, R) be the single constraint

with t = (App1, . . . , Appn) and R =
⋃n

i=1CIij ∪ CTXnat(
⋃n

i=1 ISij) |= 0. Thus,

a solution to the problem of computing an interference resolution plan is a selec-

tion of a context contract for each application, such that the union of the context

influences of all applications in combination with the natural context (CTXnat)

does not satisfy the union of all interference specifications.

A set of tree-based algorithms are used to solve the CSP. Each of these al-

gorithms manages a set of context contracts for applications App0, ..., Appi that

is gradually extended with contracts for applications Appi+1, ..., Appn, until a

consistent combination of contracts – consistency in terms of a CSP equals an

interference-free state in the system – is found. For this, the context contracts

are activated at the coordinator, the context data is adjusted according to the

context influences in those contracts, and the interference detection process is

triggered. However, the actual context is not affected – i.e., no adaptation in-

structions are issued – and the active functional configurations of the applications

do not change, until a plan is found and the applications are instructed to adapt.
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At the beginning, the set only contains the contract of the first application. Af-

ter each extension, the combination is checked for interferences and, if none are

found, is extended once more, until all applications have a contract assignment.

Thus, there are so called partial solution at each step, and a full solution after

extending the combination of contracts for each application.

Next, the basic informed search algorithm is described, before it is modified

in order to find the optimal solution.

5.5.2.2 Informed Search

The basic algorithm for finding a resolution plan as fast as possible follows the

explicit forward checking with conflict-directed backjumping (FC-CBJ) strategy

[86]. For traversing through the search tree, it uses the two basic functions label

and unlabel. The label function is a forward step that tries to extend the existing

consistent partial solution with a contract from the domain of the next applica-

tion. As in the adaptation alternative search algorithms, there are the two sets

domain and current domain. However, here the domain at each level is the entire

set of contracts for an application and remains unchanged, whereas the current

domain is a subset that only contains contracts that are consistent with the con-

sistent partial solution. The unlabel function is a backward step. Backward steps

are executed if there is no further extension possible for a partial solution. Hence,

changes in the preceding part of the combination of contracts are retracted until

the next consistent partial solution is found. After a successful label step on the

last application, the algorithm found an interference-free solution.

While extending the partial solutions, it is possible to gather information

about the relation between the contracts of the various domains. Based on this

information, different forward- and backward stepping strategies are possible in

order to decrease the number of steps necessary to find a solution. Of these

strategies, the most informed backtracker named conflict-directed backjumping

(CBJ), as well as the look ahead strategy explicit forward checking (FC) are

used, as they are shown to have the best performance [86].
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FC uses a special labeling algorithm in order to decrease the number of

steps necessary to find a solution. While iterating through the contracts of

CCcurrent(Appi) during the label step for Appi, it already checks the consistency

between the current contract (CIik , ISik) and all contracts of the succeeding ap-

plications Appi+1, ..., Appn. In case such a consistency check fails, for exam-

ple between (CIik , ISik) of Appi and (CIjl , ISjl) of Appj, FC removes contract

(CIjl , ISjl) from CCcurrent(Appj). As a result, the current domains of the fu-

ture applications become smaller and the algorithm has to check less contracts

moving forward. If the current domain for any application in Appi+1, ..., Appn

results in being empty, no solution is possible that includes contract (CIik , ISik).

In this case, FC reverts all changes to CCcurrent(Appi+1), ..., CCcurrent(Appn) that

were caused by labeling Appi with (CIik , ISik), and (CIik , ISik) is removed from

CCcurrent(Appi). As soon as FC finds a contract in CCcurrent(Appi) that is con-

sistent with at least one contract from each future domain CCcurrent(Appi+1), ...,

CCcurrent(Appn), it proceeds with labeling Appi+1. In case CCcurrent(Appi) be-

comes empty during labeling, the algorithm unlabels Appi.

CBJ, on the other hand, acquires information along the way about the consis-

tency between the contracts in CC(Appi) and those part of the partial solution

consisting of App0, ..., Appi−1. This information is stored for each application in

so-called conflict sets. In case no consistent setting could be found for the partial

solution and Appi, CBJ unlabels applications Appi, ..., Apph where h < i and h is

the deepest variable in the conflict set of Appi. Hence, the algorithm jumps over

all the combinations possible from Apph+1, ..., Appi−1 that standard backtracking

checks, even though their involvement can not lead to a solution, as the inconsis-

tency is caused by Apph and Appi. Further, CBJ carries the conflict set of Appi

upwards to Apph during unlabeling. This way, CBJ is able to jump backwards

multiple times, if necessary. In contrast, backjumping is only able to jump back

once and then defers to standard backtracking. During unlabeling, CBJ restores

the conflict sets and current domains of the applications it jumped over.

Finally, FC-CBJ combines the forward move approach of FC with the informed

backtracking of CBJ. Hence, it iterates through smaller current domains during

labeling, and jumps over more applications while unlabeling. The algorithm

terminates as soon as it finds a solution or CCcurrent(App0) becomes empty.
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5.5.2.3 Optimizing Search

The adaptation alternatives determined by the configuration management

component have cost-utility-ratios reflecting their utility for the user. These indi-

vidual ratings are used to optimize the individual adaptation decision. However,

as previously discussed, isolated adaptation decisions can cause interferences in a

multi-user system. Hence, optimizing the adaptation decision must be considered

during the coordination phase as well. Representatively, in this work, optimiz-

ing means maximizing the global utility of the system, although more complex

approaches, for example, involving user hierarchy or any type of credits are pos-

sible as well. Subsequently, the CSP becomes a constraint optimization problem

and the goal is to find a solution with maximum utility. In order to be able to

optimize the solution, a field for a utility value – in this case the cost-utility ratio

– was added to the context contract object.

In order to find the interference resolution plan that leads to the maximum

global utility, the informed search algorithm described above was modified follow-

ing the branch and bound approach. That is, rather than terminating after find-

ing a solution, the modified algorithm continues its search until all solutions have

been found, or all potential solutions have been discarded based on their utility.

Further, they follow a breadth-first search (BFS) approach. During labeling, the

algorithms iterate through the current domain based on the utility of the contracts

in descending order. Finally, the algorithms keep track of the global utility of each

(partial) solution – which is the sum of the utility of all active context contracts –

and backtracks as soon as the known maximum can not be outdone. That is, after

successfully labeling Appi and calculating the utility of the partial solution in-

cluding applications App0, ..., Appi, the algorithms estimate the final global utility

using the closest lower bound |Appi+1, ..., Appn| ∗max(
⋃n

k=i+1CCcurrent(Appk)).

If the estimate is smaller than the best known value, the algorithm discards that

partial solution and backtracks. As an example, assume the algorithm has labeled

the first three of five applications with utilities of 0.6, 0.7, and 0.5, respectively,

accumulating to a global utility of this partial solution of 1.8. As there are two un-

labeled applications left, and the maximal possible utility left in their respective

current domains is 0.8, 1.6 is added to the global utility of the partial solution,

and the closest lower bound heuristic is 3.4. If the global utility of the best known
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Algorithm 4 Optimal FC-CBJ-based Interference Resolution
1: procedure o-fc-cbj(n, status)
2: consistent ← true
3: status ← ”unknown”
4: maxUtility ← 0
5: solution ← null
6: btFlag ← false
7: i ← 1
8: sortCurrentDomainsByUtilityDSC()
9: while status = ”unknown” do

10: if consistent then
11: i ← o-fc-cbj-label (i, consistent, btFlag)
12: else
13: i ← o-fc-cbj-unlabel (i, consistent, btFlag)
14: end if
15: if i > n then
16: if currentUtility > maxUtility then
17: maxUtility ← currentUtility
18: solution ← getHeadsOfCurrentDomains()
19: end if
20: btFlag ← true
21: i ← i - 1
22: deactivateCC(currentDomains[i].head)
23: currentDomains[i].removeHead()
24: consistent ← currentDomains[i] 6= null
25: else if i = 0 then
26: if solution 6= null then
27: status ← ”optimal solution”
28: else
29: status ← ”impossible”
30: end if
31: end if
32: end while
33: return solution
34: end procedure

solution up to that point is lower than 3.4, the algorithm continues with labeling

the fourth application. If it is higher or equal, the algorithm will not be able to

surpass it by labeling the remaining two applications and can therefore discard

the current partial solution.

Algorithm 4 shows the optimizing search algorithm called O-FC-CBJ. In it,

three variables, namely maxUtility that stores the maximal known utility, solu-

tion that stores the solution with the maximal known utility, as well as btFlag

were added. The flag is necessary in order to indicate whether the unlabel pro-

cedure should follow its respective backtracking approach, i.e., conflict-directed
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backjumping, or simply backtrack one level in case the unlabel is called as part

of the optimization. The details of the flag are discussed momentarily. Fur-

ther, the BFS approach, i.e., choosing the domain with the highest utility first,

is realized by sorting the current domain list in descending order and always

retrieving the head element. This way, the algorithm needs n ∗ O(m logm),

where m = max(|CCcurrent(Appi)|) once for ordering the domains, instead of

O(|CCcurrent(Appi)|) at each labeling. This shortcut is possible due to the static

nature of the utility values of the predetermined adaptation alternatives. With

dynamic values, a traditional BFS approach at each labeling would be required.

Finally, the algorithm does not terminate as soon as a solution has been found,

i.e., consistent = true and i > n. Instead, it updates maxUtility and manipu-

lates itself to continue its search. That is, the algorithm deactivates the current

contract of the last application at the coordinator, removes it from the current

domain list, and decrements the level i. Subsequently, the search proceeds in one

of two scenarios: (i) The current domain of the last application is not empty.

In this case, it proceeds as if it had just successfully labeled the next to last

application, by labeling the last application again. (ii) The current domain of

the last application is empty. Here, the btFlag comes into play. In this case,

an unlabeling is necessary. However, the algorithm should not unlabel as with

a conflict, i.e., use the conflict set to determine where to proceed, as this could

lead to jumping over potential solutions. Instead, the algorithm should find the

next node in the search tree. This can be achieved by proceeding with standard

backtracking until an application was successfully labeled again, which then is

indicated by deactivating the btFlag.

Algorithm 5 shows the O-FC-CBJ label function. While the current domain

is not empty and the algorithm has not found a consistent state yet, it checks

forward and manages the respective conflict sets. In case the algorithm finds

a consistent extension, it estimates the partial solution’s maximal utility and

only proceeds if that estimation is greater than the known maximal utility. If

the estimation – which is always an overestimate – is less than the maximal

known utility, it is necessary to backtrack one level instead of following the CBJ

approach, as described above. That is, in case of O-FC-CBJ, for example, the

algorithm unlabels Appi−1 instead of the maximum level in the conflict set of Appi

(see Algorithm 6). Again, this is done by maintaining the btFlag that indicates,
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Algorithm 5 Optimal FC-CBJ Label
1: procedure o-fc-cbj-label(i, consistent, btFlag)
2: consistent ← false
3: while currentDomains[i] 6= ∅ ∧ ¬consistent do
4: consistent ← true
5: activateCC(currentDomains[i].head)
6: for j = i + 1→ n do
7: consistent ← checkForward(i,j)
8: end for
9: if not consistent then

10: deactivateCC(currentDomains[i].head)
11: currentDomains[i].removeHead()
12: undoReductions(i)
13: conf-set[i] ← union(conf-set[i], past-fc[j-1])
14: end if
15: end while
16: if consistent then
17: btFlag ← false
18: if currentUtility + estimate ≥ maxUtility then
19: return i+1
20: else
21: consistent ← false
22: conf-set[i] ← i-1
23: return i
24: end if
25: end if
26: return i
27: end procedure

whether the next unlabel is due to a non-consistent setting, or a discard based

on the utility estimation of that setting. Hence, in case of a successful labeling,

the procedure always sets btFlag to false in Line 17.

Depending on the state the btFlag, the unlabel procedure (see Algorithm 6)

either jumps backwards following the CBJ strategy, or conducts a standard back-

tracking step. That is, level h is either the maximum level from the conflict set

of Appi, or simply one level above i. In the latter case, the CBJ-specific for -loop

is not executed, as h+ 1 = i, resulting in a standard backtracking.

Both tree-based interference resolution algorithms, i.e., the informed and the

optimizing search, are evaluated in detail in Section 7.1.2. Next, the applica-

tion requirements are mapped to context contracts in order to use COMITY’s

adaptation coordination approach in this work.
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Algorithm 6 Optimal FC-CBJ Unlabel
1: procedure o-fc-cbj-unlabel(i, consistent, btFlag)
2: if btFlag then
3: h ← i-1
4: else
5: h ← max(max-list(conf-set[i],max-list(past-fc[i]))
6: end if
7: conf-set[h] ← remove(h,union(conf-set[h],union(conf-set[i],past-fc[i])))
8: for j = h + 1→ i do
9: deactivateCC(currentDomains[j].head)

10: conf-set[j] ← 0
11: undoReductions(j)
12: restoreCurrentDomains(j)
13: end for
14: undoReductions(h)
15: currentDomains[h].removeHead()
16: consistent ← currentDomains[h] 6= null
17: return h
18: end procedure

5.5.3 Application Requirements to Context Contracts Mapping

As described in Section 5.5.1.2, COMITY operates on so-called context con-

tracts. For each application and functional configuration, a contract specifies the

application’s respective context influences, and which context states create an

interference for that configuration of the application – the so-called interference

specification.

As is the case with the application requirements, the COMITY framework

receives information on context influences and interference specifications from

the applications themselves. In contrast, however, the literals in the require-

ments may define multiple states, and the actual configurations are calculated

at runtime. As a result, the relationship between one term of the application

requirements and possible configurations is 1:n, whereas COMITY’s contracts

and configurations have a 1:1 relationship. Adding contracts to this framework’s

interface for the applications to declare would take away the possibility to use

multi-state literals in the requirements term, resulting in an exponential increase

in the number of terms. However, assuming global knowledge of the possible

context states, and that the execution of an application can not be interfered

with by a context type that is not in the application’s requirements definition, it

is possible to derive the context contracts automatically.
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Figure 5.13: Scheme for Deriving Context Contracts from Application Require-
ments and Adaptation Alternatives

Figure 5.13 depicts the application requirements modeling on the left, as well as

the mapping scheme from application requirements and the respective adaptation

alternative to the context contracts that are needed for COMITY’s interference

detection. The context influences of the derived contract are simply the set of

adaptation instructions of the adaptation alternative. The interference specifi-

cation, on the other hand, is constructed from the application’s requirements as

the set of the absolute complements of the specified contexts in each term. That

is, if A is the set of context states in the literals of one term, and universe U is

the set of all possible context states of the variables in the term, then U \ A is

the interference specification of that application requirement term.

Following the algorithms for finding all possible adaptation alternatives of a

single application in Section 5.4, and the algorithms for coordinating the adap-

tations of multiple applications in this section, the next section finally presents

the adaptation control loop that integrates the individual components.

5.6 Adaptation Control

The previous sections of this chapter discussed the individual components that

are necessary for supporting proactive adaptation. This section, finally, presents

the adaptation control loop, which combines the components’ functionalities into

the adaptation lifecycles of the applications in the environment. The section

starts by giving an overview of the entire adaptation process. Afterwards, the
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individual steps are discussed in more detail. Throughout the section, the simple

terms future location and future context are used for the output of location and

context prediction algorithms, without suggesting certainty of the predictions.

5.6.1 Adaptation Control Process

The adaptation control loop is compiled by the individual components pre-

sented in the previous sections. Figure 5.14 shows an overview of the adaptation

control process of one loop cycle. The adaptation control lifecycle for an applica-

tion starts when it registers at the Configuration Management (CM) component

and specifies its requirements (1). Subsequently, the CM subscribes to all rele-

vant context information, as well as predictions on their respective future changes,

based on the application’s requirements (2). For each unique prediction request

– defined by the specified context and a set of prediction tasks – the Context Bro-

ker (CB) selects the most suitable prediction approach from a pool, and creates

and trains a new predictor implementing that approach. With any change to the

knowledge base, the corresponding forecasting algorithms learn and update their

predictions (3). In case of updates to subscribed current or predicted context

information, the CB sends notifications to the CM (4). The CM’s event handler

checks the update type, i.e., future or current location/context, and initiates the

subsequent procedures. In case of a prediction event, the handler triggers the pre-

calculation of adaptation alternatives for the application associated to the update

(5). The core task of the CM is to calculate all possible adaptation alternatives

of an application based on the predicted context, i.e., proactively, as well as the

current context, i.e., reactively (6). The calculated adaptation alternatives are

passed to the Adaptation Coordination (AC) component (7), which subsequently

computes interference-free adaptation plans (8) and adds them to the plan base

(9). Interference-free adaptation plans are sets of adaptation alternatives – one

per application – such that no context influence in the plan interferes with any

requirement of another application. In case of a current information event, the

handler triggers the adaptation procedures of the AC (10). If there is a pre-

calculated adaptation plan for the current situation in the plan base, the AC

instructs the set of necessary adaptations (11). If no pre-calculated plan exists,

for example because the current situation was not predicted correctly, the AC

triggers a second cycle through the adaptation control loop (12), i.e., the system
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falls back to the reactive approach. Finally, the adaptation instructions are re-

layed through the context broker to the adapting entity, i.e., actuators, services,

and applications (13). As discussed in Section 4.1, all entities in the system are

assumed to be cooperative and execute the given instructions.

5.6.2 Context and Prediction Monitoring

Location is one of the natural indexes of context. Except for resources or

services that are location-independent, an application is only concerned with

the local circumstances. The framework makes use of this by structuring the

context and prediction monitors along the respective application’s current and

future locations. That is, for each application, the CM component first extracts

the list of all context variables contained in the application’s set of requirements.

Second, the CM subscribes to updates regarding the application’s actual location,

as well as its most likely next locations. Finally, for each resulting location, the

CM subscribes to information on the current and predicted states of the set of

context variables.

As a result, the CM monitors six different types of context events, namely

C LOC and F LOC for the current and future locations, as well as their combina-

tions with current and future context C CTX C LOC, F CTX C LOC, C CTX F LOC,

and F CTX F LOC. Table 5.2 shows a brief overview and summary. With these

monitors, the system can react to the actual situation, as well as pre-calculate

adaptation alternatives for future situations, whether at the current location or

at future ones. The next section describes the specific handling of each of the six

update events.

Location Context
Event Type Current Future Current Future

C LOC +
F LOC +
C CTX C LOC + +
F CTX C LOC + +
C CTX F LOC + +
F CTX F LOC + +

Table 5.2: Overview and Summary of Context Event Types
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Algorithm 7 C LOC Event Handling
1: procedure handleC LOC(SubscriptionUpdate su)
2: appID ← su.getAppID()
3: location ← su.getLocation()
4: current ← true
5: updateMonitorsForLocation(location, current)
6: oldLocation ← locationRegistry.getLocation(appID)
7: if oldLocation 6= NULL then
8: optimization ← true
9: triggerAdaptationAtLocation(oldLocation, optimization)

10: end if
11: locationRegistry.updateLocation(appID, location)
12: updateTracker.reset(appID)
13: end procedure

5.6.3 Event-based Adaptation Control

Depending on the type of information update the CM receives, it triggers the

appropriate handling procedure. Each procedure gets a SubscriptionUpdate

object, that includes the monitor’s ID, the ID of the associated application, and,

finally, a ContextInformation object containing the actual update. Next, the

respective handling procedure are described in detail.

5.6.3.1 C LOC Event Handling

In case of a C LOC event, the associated application has just changed its lo-

cation. This transition makes the monitors regarding the former location obso-

lete. Hence, all monitors regarding the application’s current location are updated

first, i.e., the C CTX C LOC and F CTX C LOC monitors. Second, the event handler

tries to optimize the global configuration at the application’s former location,

as the application may have restricted configurations of other applications with

higher utilities. Additionally, the CM’s internal location registry that keeps track

of the current location of all registered applications is updated, and the CM’s

application-specific update tracker is reset. The update trackers are used for in-

formation bundling in the C CTX C LOC procedure. Even though the application

may need to adapt to the new location, and the applications at the new location

with it, no further adaptations are triggered here. If necessary, these will be

initiated from the C CTX C LOC procedure. Algorithm 7 shows the C LOC event

handling in pseudocode.
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Algorithm 8 F LOC Event Handling
1: procedure handleF LOC(SubscriptionUpdate su)
2: Locations ← su.getLocations()
3: current ← false
4: while Locations.hasNext() do
5: location ← Locations.next()
6: updateMonitorsForLocation(location, current)
7: end while
8: end procedure

5.6.3.2 F LOC Event Handling

With each change of the current location of an application, the knowledge base

of the location predictors for that application also change. The predictors learn

of the change and recalculate their predictions. In most cases, this will result

in a different set of expected location transitions and subsequently create F LOC

events. As with the C LOC event, the event handler mainly updates the respective

monitors. However, depending on the prediction task properties, the update may

contain a sequence of next locations, or a set of next location predictions that,

for example, accumulate to a confidence rate of 90%. Hence, the handler needs to

update the monitors for each of the predicted locations (see Algorithm 8). Again,

the necessary further steps, like pre-calculating adaptation alternatives, will be

triggered by the respective procedures that receive context state updates.

5.6.3.3 C CTX C LOC Event Handling

The C CTX C LOC events are the most complex to handle in that the procedure

can be triggered in various cases. First, it can be the consequence of changes

to the application’s environment by either natural effects, e.g., the setting sun,

or by other applications joining the environment. Second, it can be due to the

transition to a different runtime environment after a preceding location change.

For both cases and for each event, the event handler first updates the situation of

the application (see Section 5.6.4). Afterwards, the handler checks the necessity

of adapting, as the new context may still satisfy the active requirements term of

the application. If it does not satisfy the term, an adaptation is indispensable.

If it does, an adaptation is not necessary per se, but there may be potential for

optimizing the system’s overall configuration. Hence, the handler triggers the
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Algorithm 9 C CTX C LOC Event Handling
1: procedure handleC CTX C LOC(SubscriptionUpdate su)
2: appID ← su.getAppID()
3: location ← su.getLocation()
4: if location 6= locationRegistry.getLocation(appID) then
5: return
6: end if
7: type ← su.getVariableType()
8: state ← su.getVariableState()
9: current ← true

10: updateSituOfApp(appID, location, type, state, current)
11: updateTracker.addUpdate(appID, type)
12: Variables ← ApplicationRegistry.getDistinctVariables(appID)
13: if ¬updateTracker.containsAll(appID, Variables) then
14: return
15: end if
16: optimization ← false
17: activeTerm ← ApplicationRegistry.getActiveTerm(appID)
18: if SituationManagement.satisfies(location, activeTerm) then
19: optimization ← true
20: end if
21: triggerAdaptationAtLocation(location, optimization)
22: end procedure

adaptation process regardless, indicating the necessity using the optimization

flag. The effects of the flag on the adaptation process are described in Section

5.6.5. In the second case only, i.e., C CTX C LOC events subsequent to a location

change, the handler should wait for complete information about the new situation

before taking action. For this, the CM tracks the updates for each application at

its current location. The information on the new situation is complete as soon as

the CM receives an update for each context variable in the requirements of the

application, and the event handler can proceed with its procedure.

Finally, debugging has shown that the CM might receive outdated context up-

dates, especially if the simulation is accelerated. This is due to the asynchronous

communication in the system. However, it is only significant for C CTX C LOC

events, as they do not trigger pre-calculations, but instead actual adaptations.

Hence, the handler needs to filter out such outdated messages, which it does using

location filters. Algorithm 9 shows the entire event handling procedure.
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Algorithm 10 F CTX C LOC Event Handling
1: procedure handleF CTX C LOC(SubscriptionUpdate su)
2: appID ← su.getAppID()
3: location ← su.getLocation()
4: if location 6= locationRegistry.getLocation(appID) then
5: return
6: end if
7: type ← su.getVariableType()
8: state ← su.getVariableState()
9: current ← false

10: situation ← updateSituOfApp(appID, location, type, state, current)
11: triggerpre-calculation(appID, location, situation)
12: end procedure

5.6.3.4 F CTX C LOC, C CTX F LOC, and F CTX F LOC Event Handling

The final three update event types each trigger the pre-calculation of adap-

tation alternatives (see Section 5.6.4). The data that the three respective event

handling procedures receive contains both context and location information, from

which at least one is a prediction.

In case of predicted context changes at the current location of the application,

i.e., a F CTX C LOC event, the received information is first relayed to the situation

management component. Afterwards, the handler triggers the pre-calculation of

adaptation alternatives based on the received information, which is either the pre-

dicted context at the current location, the current context at a predicted location,

or the predicted context at a predicted location, respectively. For F CTX C LOC

events, the handler additionally checks for outdated updates due to delays stem-

ming from the asynchronous communication pattern, again using location filters.

This filtering is not possible for events including predicted locations, as there

may be more than one valid future location the system wants to prepare for.

Algorithm 10 shows the procedure for handling F CTX C LOC events as the repre-

sentative for all three update types. The other two procedures differ in that they

do not filter for outdated messages (Lines 4-6). Additionally, in the procedure for

handling C CTX F LOC events, current gets true (Line 9), as the event relates to

current information.

The next section describes how the component manages the pre-calculated

adaptation alternatives and coordinated adaptation, and provides fast access to

them.
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5.6.4 Adaptation Alternative and Plan Management

The event handling procedures presented in the previous section trigger the

configuration algorithms of the framework whenever adaptations have to be

(pre-)calculated. As presented in Section 5.4, these algorithms find all possi-

ble adaptation alternatives of an application – including location adaptations –

given the application’s requirements, the context in the environment (current or

predicted), and the adaptability of the context at each location in the environ-

ment. The search for adaptation alternatives is modeled as a CSP, and various

backtracking-based algorithms find all solutions through a complete search pro-

cess. Subsequently, each adaptation alternative gets a utility value assigned to

it based on either user preferences or duration-dependent utility and costs met-

rics. As a result, the framework has to handle a huge set of application and

situation-specific adaptation options.

In order to manage these calculated adaptation alternatives efficiently, i.e.,

storing them in a data structure with random access for fast retrieval, the adapta-

tion control does not only use the application ID and location as indexes, but also

the concept of situations. A situation is the combination of the set of context vari-

ables and their respective active state at a location, e.g., VISUAL OUTPUT:=IDLE,

AUDIO OUTPUT:=BUSY at AUDITORIUM 1. The set of context variables included in

the specific situation depends on the requirements specification of the individual

application. That is, if an application is only dependent on the state of two of

several context variables, only those two define the situation for the application.

Each situation is identified by the hash value of its context combination. To

make these situation IDs comparable and reproducible so that they are suitable

as an index of the adaptation alternatives data structure, the variable-state-pairs

are comparable and organized in a tree set, which guarantees ordering. With

the situation ID as an additional index, the adaptation control can retrieve all

adaptation alternatives of an application at a given location with the given condi-

tions in constant time (O(1)), or check whether there are adaptation alternatives,

respectively. Further, the tree set structure of the Situation objects allows to

check whether the situation in question satisfies a specified requirements term

of an application in O(|var|), where |var| is the number of context variables the

application relies on.
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All current and projected situations for each application at each location are

administered by the Situation Management (SM) component. That is, the com-

ponent contains two registries, one for the current situation at each location in

the environment, and one for the future situation at each location. The registries

track the actual situation of each application, as well as which situation is ex-

pected either through a change of the context at the location of the application,

or through a location change of the application itself. The SM receives all in-

formation and prediction updates from the event handler’s respective procedures

(see Section 5.6.3).

Adaptation in multi-user environments additionally requires coordination, as

isolated adaptations of single applications that share context often leads to os-

cillating effects. For this, Section 5.5 showed how to integrate the COMITY

framework for adaptation coordination, i.e., derive COMITY’s context contracts

from the application requirements in order to use COMITY’s interference de-

tection. Further, it presented a new set of tree-based interference resolution

algorithms that are able to optimize the global utility in the environment. After

each calculation of adaptation alternatives, the adaptation control automatically

triggers the coordination algorithms that compute all interference-free adaptation

plans for the location for which the adaptation alternatives were calculated. Even

though one interference-free adaptation plan would ensure the execution of the

applications, the goal is to optimize the environment’s global utility. Hence, the

framework has to test all combinations of adaptation alternatives for interferences

and subsequently resolve them. This includes all the different combinations of

applications, as the set of pre-computed adaptation plans should include those

for the case that the set of applications at the location suddenly changes. Ac-

cordingly, the process of computing coordinated adaptation plans is as follows.

First, the framework (pre-)calculates all adaptation alternatives of an application

for the given context/prediction at location l, and adds them to the plan base.

Second, it takes the set S of applications currently at l, as well as those predicted

to join l, and form the set S ′ of all nonempty subsets of S, i.e., the power set of

S excluding the empty set. For each set S ′i in S ′, the framework then loads the

context contracts of all adaptation alternatives for location l of all applications

in S ′i into COMITY’s coordination component. Then, the framework triggers

the resolution algorithms for maximizing the global utility of the system, and
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receives a set of adaptation plans – including the optimal one – for the set of

applications in S ′i at location l. After doing this for all sets in S ′, and adding the

solutions to the plan base each time, the adaptation control either terminates the

pre-calculation process, or proceeds to the adaptation process in case this cycle

is part of a fallback reactive adaptation.

The plan base itself contains a registry that stores the coordinated adapta-

tion plans with random access. For this, it uses the location identifier and the

respective set of application identifiers, for which the adaptation plan applies, as

indexes. As with the situation ID, the application combination ID – as the hash

value of a sorted list – is comparable and reproducible.

The next section discusses the adaptation process, i.e., when and how to fetch

and distribute adaptation instructions, before Section 5.6.6 presents the architec-

ture of the adaptation control component.

5.6.5 Adaptation Process

Adaptation in the system occurs following two types of update events. First,

a C CTX C LOC event results in a situation, in which at least one application at

that location can not continue to provide its service. In this case, an adapta-

tion is indispensable. Further, a joining application that is still able to use its

instantiated functional configuration, as well as a context change due to natural

effects instead of actuation, may result in a functional but non-optimal overall

configuration. These two optimization situations are recognized while handling

C CTX C LOC events as well. Second, an application has transitioned to a different

location, as indicated by a C LOC event. This also potentially creates room for

optimizing the total utility, albeit of the remaining applications at the previous

location.

As discussed in the previous section, adaptation in multi-user systems must be

coordinated and target all applications at a location. Hence, the adaptation pro-

cess starts by getting the set of application identifiers that are currently present

at the location in question, respectively the application combination ID of that

set. With that ID, the framework can then query the plan base to see, whether

a pre-computed adaptation plan exists or not. If so, it chooses the plan with

the highest total utility and proceeds to instruct the set of adaptations. If no
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Figure 5.15: Flow Chart of the Adaptation Process

pre-computed plan exists, for example, because the current situation forcing the

adaptation was not predicted correctly, the framework tries to adapt reactively.

That is, if it is unknown whether there exists an interference-free adaptation plan

for the set of applications in the current situation, the adaptation plan compu-

tation is triggered at this point in time. If no solution is possible, or none have

been found in the reactive cycle, respectively, the framework proceeds to adapt

the location of the applications, and, hence, the location of their users. As dis-

cussed in Section 4.1, user adaptations are merely suggestions by the framework.

In this instance, suggestions of where the users’ applications can provide their

services. Nevertheless, the framework searches for alternative locations that can

fulfill the applications’ requirements. To do so, it calculates the adaptation al-

ternatives for each location in the environment in the order of their respective

distance to the current location, starting with the nearest one. The utility of

all alternatives is then weighted using the respective distance, and the users are

informed of his/her options. In the case that there is also no location adapta-

tion possible, the respective application can currently not run as intended at any

location in the environment. If the reactive adaptation plan computation cycle

was successful, the framework again proceeds to instruct the set of adaptations.

Figure 5.15 shows the overall adaptation process as a flow chart.
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The instructions in the adaptation plan are executed sequentially for each

application in no particular order. That is, the adaptation thread gets the set of

adaptation alternatives making up the plan – one per application – and instructs

them. These adaptation alternatives contain a mapping of context variable types

to context variable states that represent a specific functional configuration of its

application, as well as what type of adaptation the respective mapping is. An

example of an adaptation alternative is as follows:

AA = {VISUAL OUTPUT:=PROJECTOR 4, COM;

AUDIO OUTPUT:=SPEAKER 2, COM;

VOLUME:=60dB, CTX;

LIGHTING:=LOW, CTX;

TEMPERATURE:=20, CTX}

The adaptation instructions are relayed through the environment’s central context

broker. The broker uses the annotated adaptation type to direct the instructions

correctly. In case of behavior or composition adaptations, the broker informs the ap-

plications of how they should adapt (cf. application-controlled automatic adaptation in

Section 4.1). In case of context adaptations, it directly instructs suitable actuators at

the target location, which is passed along to the broker with the instructions.

5.6.6 Component Architecture

Figure 5.16 shows the architecture of the adaptation control component. The various

types of bold lines indicate the main interaction patterns in the component, as they

are described in Sections 5.6.3 and 5.6.5. Of the bold lines, the black ones show the

proactive adaptation cycle with pre-calculated adaptation plans, whereas the gray lines

depict the follow-up reactive cycle if there are no pre-calculated plans.

As described in Section 5.3, applications register at the framework with their re-

quirements. Subsequently, the event handler triggers the necessary management duties,

pre-calculations, and adaptations based on the event updates it receives from the con-

text broker. The five main components of the adaptation control unit are implemented

as threads and thread pools, respectively, as indicated in the figure by rotating ar-

rows. Communication between the individual threads is realized via so-called blocking

queues. This asynchronous implementation guarantees that the components do not

have to wait for each other, and that no update events or calculation/adaptation tasks

are dropped due to busy components. If a thread is/becomes idle, it immediately takes

up its new task if existent, or as soon as a task is added to its queue, respectively.
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Figure 5.16: Architecture of the Adaptation Control Component

Further, the threaded implementation allows to purposefully interrupt a busy

thread. This is especially important for the Reactive Adaptation Plan Threads. For

very complex or unsolvable CSPs, finding a solution or terminating after scouring the

entire search space, respectively, may take up several minutes or hours. By that time,

the situation might have already passed, making the calculation obsolete. Hence, the

framework interrupts a busy thread as soon as the situation at the location in ques-

tion has changed. However, in case the respective calculation thread is busy, but the

situation is not obsolete, it should not be interrupted. Therefore, the framework uses

thread pools for the proactive and reactive adaptation plan calculation threads, with

one thread per location in the environment. In the reactive cycle, the 1:1 location

to thread ratios is sufficient, as with any new task for the thread, the previous one

automatically becomes obsolete. For the proactive cycle, there may exist several tasks

regarding the same location at the same time. The 1:1 ratio worked well in the simula-

tions of the framework evaluation (see Section 7), but the number of threads can easily

be adjusted, if necessary.
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interface Instructable {
void instructAdaptation(

ContextVariableType cvt,

ContextVariableState cvs);

void instructAdaptation(Location l);

}

Figure 5.17: The interface to be implemented by all applications.

For adapting the applications and/or context, the context or location adaptation

thread sends the adaptation instructions to the context broker, who distributes them

to the respective actuators and applications. For this, the applications have to imple-

ment the Instructable interface as shown in Figure 5.17. This interface completes the

framework.

5.7 Summary

This chapter presented a general framework for proactive adaptation with middle-

ware-based system support. The framework offers uniform context interaction and

allows applications to specify their context requirements as well as user preferences.

With this, the framework calculates all possible adaptation alternatives of an applica-

tion based on current or predicted context, and coordinates these adaptation alterna-

tives to form adaptation plans. Finally, the framework monitors relevant context events

based on application requirements, and automatically triggers necessary adaptations.

The next chapter gives implementation details of the prototype system, before

Chapter 7 evaluates the framework.
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The previous chapter presented a general framework with system support for proac-

tive adaptation in pervasive systems. This chapter describes implementation details of

the prototype, before Chapter 7 evaluates the algorithm performance and the overall

prototype in real-time simulations. First, Section 6.1 details the prototype system.

Afterwards, Section 6.2 presents the prototype’s architecture. Details of the context

database are given in Section 6.3, before Section 6.4 presents the task-based predictor

selection scheme. Finally, Section 6.5 discusses limitations of the current prototype

system.

6.1 Implementation Details

All components of the prototype system are implemented as so-called BASE services

in Java, more precisely Java Platform, Standard Edition 6 (Java SE 6 or Java SE 1.6.0,

respectively [72]; Java SE 6 API [75]). Compliant with the resource-restricted nature of

mobile and embedded devices, the four interfaces context service, sensor, actuator and

subscriber do not rely on any Java libraries that are not included in the Java Platform,

Micro Edition (Java ME [71]), more specifically Java ME’s Connected Limited Device

Configuration Version 1.1 (Java ME CLDC 1.1 API [74]). The centralized entities,

on the other hand, are intended to run on resource-rich machines in the space and,

therefore, are not subject to any library limitations. Finally, the context broker is

connected to an instance of the open source database MySQL Community Server 5.1.49

[73].

In total, the prototype system (without BASE) consists of 163 classes and 11, 129

lines of code (abstract devices: 2/200; context broker: 78/4, 915; adaptation control

component including configuration and coordination algorithms: 58/4, 057; context

predictors: 24/1, 838; simulation manager: 1/119).
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Figure 6.1: Architecture of the Framework Prototype

6.2 Prototype Architecture

The prototype system consists of the centralized context broker and adaptation

control component, as well as applications, sensors, actuators, and predictors. Further,

it features a simulation manager for evaluation purposes with its own database instance

that primarily feeds context events into the system, e.g., real user traces, but can also

accelerate the simulation time (cf. Section 7.2).

Figure 6.1 depicts the architecture of the prototype framework. The applications

register with their set of requirements and preferences at the adaptation control compo-

nent via the configuration management interface defined in Section 5.4.3. Subsequently,

the adaptation control sets up all necessary context and prediction monitors by sub-

scribing to the respective context query (cf. Section 5.2.2) at the context broker (cf.

Sections 5.2.3 and 5.2.4), and triggers (pre-)calculations, (pre-)coordinations, as well
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Table temperature
Variable location timestamp state confidence variance
Data type VARCHAR(128) TIMESTAMP VARCHAR(128) DOUBLE DOUBLE

Property
NOT NULL NOT NULL NOT NULL

PRIMARY KEY

Example DE:MA:L15:1-6:723 2010:11:02:12:00:00 21.5 0.9542 0.173

Table 6.1: The structure of the context database schemes.

as adaptations depending on the subscription updates (cf. Sections 5.6.3 and 5.6.5). In

order to receive adaptation instructions, the applications implement the Instructable

interface (cf. Section 5.6.6). During simulation, the simulation manager feeds records

of future context information into the system as if it were a sensor, i.e., using the

broker’s reportContext method. Additionally, it offers its internal clock to all the

other components via the context broker, in case simulation acceleration is activated.

Finally, as described in Section 5.2, all context interaction is mediated by the context

broker in order to provide uniform access.

6.3 Context Database

In order to store and retrieve context information, the prototype’s context broker

is connected to a MySQL database. Table 6.1 shows the structure of the framework’s

context database schemes by example of the context variable temperature. In general,

the 5-tuple consists of the location information, e.g., symbolic coordinates, the times-

tamp of the measurement, the context variable state itself – encoded as text to cover

symbolic and numeric values – as well as the confidence and variance of the informa-

tion. Some sensors and predictors may not be able to provide the two information

quality metrics. Hence, although not desirable, the confidence and variance values may

be null, i.e., empty.

Location and timestamp together form the primary key of each relation. That is,

the combination of location and time is unique in the table and distinguishes the set

of attributes. For each location and point in time, whether sensor measurement or

prediction, the database contains at most one set of context information per context

variable. In case of multiple sensor readings with the same timestamp and location,

the one with the highest quality is inserted/kept in the database. For predictions, the

most recent information is stored. Their information quality metric, e.g., probability

or similarity score, is not absolute, but relative to the other possible outcomes in that
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respective prediction attempt, and hence not comparable. Typically in highly dynamic

environments, predictions become more accurate, the closer they are to the actual

event. Finally, as time progresses, predictions are automatically replaced by sensor

readings.

6.4 Task-based Predictor Selection

In order to determine adaptation alternatives for future context changes, context

prediction is a prerequisite. This includes forecasting the state of the pervasive environ-

ment, as well as the availability of context services. As described in Section 2.5, there

exist several context prediction approaches. However, no single approach is suitable

for all types of prediction tasks [107, 16]. The algorithms, for example, differ in the

data types they can process, e.g., numeric vs. symbolic representation, their ability

to accurately predict events in the short and longterm future, and whether they are

suited for running on patchy data sets. Petzold [83] uses a combination of prediction

approaches in order to support a broad range of prediction tasks. However, the task-to-

approach-mapping is static. In this work, the context broker’s prediction engine uses

a task-based selection scheme that selects the best fit prediction approach from the set

of available predictors at runtime.

For this, the engine uses the following parameters and respective values, that define

a prediction task in the framework. The list of parameters is not meant to be exhaus-

tive, but to distinguish between the set of prediction approaches implemented in the

prototype.

1. Data type: A fundamental difference between context information is their

respective data type. Most low-level context – i.e., raw sensor data, such as

temperature or GPS coordinates – are expressed using numeric values, whereas

high-level context – i.e., inferred or abstracted context – usually is encoded with

symbolic labels. In any case, these different data types are a factor in whether a

prediction method is applicable or not. Hence, the first parameter is data type

= {num, sym}.

2. Dimension: Context time series may be multi-dimensional, i.e., more than one

set of data is needed to describe the context. However, not all prediction ap-

proaches can operate on multi-dimensional datasets, or their runtime complexity

becomes too high for real-time systems. Hence, the parameter dimension = {one,

multi} identifies the predictors that are suitable for multi-dimensional context.
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3. Horizon: The horizon of a prediction describes how far it reaches into the future.

However, in this instance, far does not imply a time interval in seconds per se.

Most of the times, it refers to the amount of state changes to a context that a

prediction approach can output, including only the next, i.e., one. Further, [60]

finds that there is a notable drop-off in quality with some approaches after five

state change predictions. Hence, the parameter is horizon = {next, short, long,

date}, with short ≤ 5, long > 5, and date identifying methods that can predict

context at a specific point in time or in t amount of time, respectively.

4. Dataset: The various prediction methods are differently capable of dealing with

gaps and errors in the recorded context history. For example, pattern matching

approaches are more robust against gaps than transition probability approaches.

The parameter dataset = {reliable, patchy} allows to characterize the dataset.

However, the quality of the dataset has no effect on whether an algorithm is able

to compute an output or not. Hence, the parameter is optional.

5. QoS: Depending on their scenario and current situation, applications may have

different additional requirements towards context prediction. As an example, an

emergency monitoring system may accept a higher false positive rate in return

for a minimal false negative rate. The complexity of a prediction algorithm has

no general implication on the accuracy of its results. However, experimental

results indicate that simple approaches have a very fast response time at the cost

of accuracy. For some applications, a rough but quick estimate may be sufficient.

On the other hand, it is possible to increase the soundness of a prediction at

the cost of response time by aggregating the results of several predictors. An

optional QoS parameter allows to model such additional characteristics. In the

prototype, it is limited to the complexity range with QoS = {simple, complex},
where simple identifies methods with a complexity in O(n2).

The parameter values are not distinctive, i.e., a prediction approach may be applica-

ble for multiple values. More specific, for some parameters, the values have an include

relation. For example, a prediction approach that is suitable for predicting context with

a long horizon also satisfies the characteristics short and next. In terms of set theory,

where Api is the set of prediction approaches satisfying parameter pi, the relation is

Along ⊂ Ashort ⊂ Anext. Similarly, methods that can handle multi-dimensional con-

text time series can also process one-dimensional time series, i.e., Amulti ⊂ Aone, and

methods that compute good results based on patchy datasets also do so on consistent

ones, i.e., Apatchy ⊂ Areliable. Additional classification of numeric data, e.g., assigning

labels such as warm and cold to temperature ranges, allows the relation Asym ⊂ Anum.
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Approach Data Type Dimension Horizon Dataset* QoS*

AA num/sym multi long/date patchy complex
LR num one short/date patchy simple
MM sym multi short reliable simple
SOM num one next patchy complex
SP sym one next reliable simple

* = optional parameter
AA: Alignment Approach, LR: Linear Regression, MM: Markov Model, SOM:
Self-Organizing Map, SP: State Predictor

Table 6.2: Overview of the prediction approaches implemented in the prototype
with regard to their respective prediction task parameters.

However, this comes with information loss and is not implemented in the prototype.

Finally, include relations may also be applicable to QoS parameters, but the values

simple and complex featured in the prototype are distinctive.

The prototype framework features five predictor implementations based on the pre-

diction techniques alignment approach [110], linear regression [41], Markov model [12],

self-organizing map [59], and state predictor [84]. Table 6.2 summarizes the list with

regard to the prediction task parameters that the individual approaches fulfill. The

prediction engine selects the best fit approach from the pool of predictor services in

the environment at runtime based on the specifications in the prediction task. In the

prediction task, the context variable implicitly declares data type and dimension of the

context, whereas the application explicitly specifies the horizon in terms of the amount

of state changes, or a specific date for the prediction, respectively. From the optional

parameters, the application specifies its desired QoS characteristics, whereas the pre-

diction engine itself decides on the reliability of the dataset based on its consistency,

with patchy being the default assessment.

6.5 Limitations

The current prototype framework has the following limitations as it pertains to the

theoretical framework and the extent of the simulations. First, the utility metrics of

the adaptation alternatives and the coordinated adaptation plans used in the prototype

system are not duration-dependent but static, and specified in the application require-

ment terms instead of being calculated for each adaptation alternative using the utility

and cost functions.
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Second, natural effects on context, e.g., the different levels of natural light through-

out the day, are not simulated. As a result, context that has been actuated to a certain

state remains in that state until explicitly changed. However, such natural or any other

effects in a real environment are accounted for by the context monitors in the adapta-

tion control component. As soon as the state of a context changes, the monitors inform

the event handler, which re-actuates the context to fit the current adaptation plan, if

necessary.

Finally, as natural effects are not simulated, unsolvable situations can only emerge

from valid configuration instantiations if a new application joins a location. Hence, the

ensuing search for location adaptations is only conducted for that new application, as

it causes the interference. A productive system should feature a more sophisticated

approach to unsolvable situations, for example, including negotiation.

This chapter detailed the prototype implementation of the framework. The next

chapter evaluates the performance of the search algorithms individually, as well as the

entire framework simulations using real user traces.
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7 Evaluation

The last chapter described implementation details of the prototype framework. This

chapter evaluates the prototype framework on two levels. First, the adaptation alter-

native and adaptation plan algorithms are evaluated in isolation with regard to perfor-

mance metrics such as runtime in ms and number of steps using different problem sets.

Afterwards in Section 7.2, the prototype framework is applied in real-time simulations

of an interactive pervasive system using recorded user traces in order to analyze its be-

havior, benefits, and overhead. Finally, the evaluation chapter closes with a discussion

in Section 7.3.

7.1 Algorithm Performance

In this section, the two main algorithm groups are evaluated in isolation. First,

Section 7.1.1 discusses the adaptation alternative search algorithm and its variations,

which find all adaptations that are possible for an application in the given environment

of current or predicted context. Afterwards, Section 7.1.2 examines the adaptation

coordination algorithms that search for interference-free adaptation plans for multiple

applications in a shared context.

7.1.1 Adaptation Alternative Algorithms

The variations of the adaptation alternative search algorithms are evaluated regard-

ing their scalability and asymptotic behavior with growing complexity of the underlying

CSP. First, a neutral test case with regard to the application requirements’ complexities

and available context services at each location is used to establish a baseline. Then, two

additional test cases are used that are designed to isolate the features of the ordering

heuristic and the context service index structure. The evaluation was conducted us-

ing a standard desktop PC with an Intel Core i5-2500K CPU (four cores with 3.3 GHz

each), 8 GB of main memory, and equipped with a 64-bit Windows 8 operating system.

To evaluate the algorithms’ scalability, their performance was measured for dif-

ferent problem sizes, as defined by the following parameters: (i) the number of lo-
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cations N = {10, 25, 50, 100, 250, 500, 1000}, (ii) the number of context services per

location M = {1, 2, 3, 4, 8}, (iii) the number of locations with solutions for the CSP

R = {1, 10 %, 20 %, 30 %} (1 is absolute; percent values refer to the total number of

locations), and (iv) the least number of possible states for a context service. In order

to compensate for possible variations in the system’s performance, the measurement

results are the average values of ten runs.

The three test cases establish a performance baseline, evaluate the benefits and

overhead of the ordering heuristic as well as the context service index structure, and

analyze the algorithms’ behaviors with growing problem complexity are as follows:

The first test case should provide a baseline performance measurement for the basic

exhaustive search algorithm, i.e., the scenario should be neutral with regard to the

ordering heuristic. In it, the available context services are similar at each location

in terms of their respective context variables, as well as their respective context vari-

able states. Further, the applications’ requirements are constructed to have similar

complexity indexes, minimizing the effect of the heuristic. Hence, the differentiation

between a valid and a non-valid location is only possible via the specific states of each

individual service, forcing the algorithm to traverse almost the entire search tree.

In the second scenario, the similarity of the locations in the environment is reduced.

That is, non-fitting locations have a different context service infrastructure as locations

with solutions and can be disqualified by this property. For example, for an applica-

tion requiring five different context services, the algorithm can directly disqualify all

locations that do not feature at least these five. The complexity of the requirements

themselves is similar to the setup of the first scenario.

In the third scenario, the locations have a similar context service infrastructure. All

locations are fully compatible with the applications’ requirements with regard to the

type of context variables. However, some random services are not able to fulfill the

specific context states that are demanded by the requirements. The complexity indexes

of the requirements correlate to the actual service occurrences in the environment,

simulating more and less frequently used context services. In this test case, the ordered

search should be able to capitalize from its most constraint variable heuristic.

Figure 7.1 depicts the runtimes in ms from the first test case that establishes the

baseline for each algorithm variation, i.e., the exhaustive (E-DFS) and the ordered

search (O-DFS), both with and without the index structure’s caching of available con-

text services (w/ and w/o CSIS). The results show that the ordered search using the

index structure performs best in each situation. Hence, the trade-off between its over-
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Figure 7.1: The results of Test Case 1 for the exhaustive search (E-DFS) and the
ordered search (O-DFS), with and without the context service index
structure (w/ and w/o CSIS), and m = 4.

head and benefits from the combination of the constantly maintained index structure

and the complexity heuristic is more than positive. In contrast, the exhaustive search

without index structure is the slowest algorithm, irrespective of the setup or the number

of locations.

The biggest difference in these baseline performance measurements is between the

algorithm variations using the index structure, and those not using it. Without the

index structure, the algorithm is not able to filter out locations that automatically dis-

qualify for being part of possible solutions based on their context service infrastructure

(cf. Algorithm 1, Lines 8-12). Instead, the algorithm tries to find solutions for those

locations anyway, terminating after the first variable in the requirements can not be

labeled. Hence, the runtimes of both E-DFS w/o CSIS and O-DFS w/o CSIS grow at

a far greater pace than their counterparts E-DFS w/ CSIS and O-DFS w/ CSIS, re-

spectively. Case in point, for 500 locations, O-DFS w/ CSIS is the fastest with 119 ms,

while E-DFS w/o CSIS is the slowest with 4, 042 ms. (The average of all variations is

2, 079 ms.) For 1, 000 locations, O-DFS w/ CSIS takes 230 ms, while E-DFS w/o CSIS

needs 15, 520 ms, constituting growth rates of 194 and 384 %, respectively.

Further, it is notable that even though the context service infrastructure is very

similar at each location, the ordering heuristic already provides a benefit. Initially,

O-DFS w/o CSIS actually performs better than E-DFS w/ CSIS, due to the heuris-

tic’s benefit. However, this changes starting at approximately 25 locations in the en-

vironment, at which point the benefits of the prior filtering of the search space starts

showing its effect, by outweighing the associated maintenance overhead. In general,

the ordering heuristic has a small effect in Test Case 1, as the two variations with IS,

as well as the two without IS, show the same asymptotic growth rates.
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ordered search (O-DFS) with m = {4, 8}.

Figure 7.2 depicts the measurements from the second test case for the exhaustive

and the ordered search, with regard to their behavior facing growing search spaces. In

this test case, the locations’ context service infrastructures differ more strongly than

in the first. Hence, the variations without the context service index structure perform

even worse in comparison. As a reference, E-DFS w/o CSIS takes 40, 571 ms for 1, 000

locations with m = 8. In order to better illustrate the effects of the problem size, the

figure focuses on the two variations with the index structure.

With m = 4, the exhaustive search slightly outperforms the ordered search, needing

100 ms – compared to 128 ms – for the setting with 500 locations. Hence, for smaller

problems, the ordering heuristic has a negative trade-off. However, with m = 8, the

trade-off is positive and the ordered search is the fastest with 486 ms – compared to

1, 074 ms. The overall complexity in this scenario is slightly lower than in the first

one, which shows in the average runtime of all variations of 1, 573 ms – compared to

2, 079 ms – for 500 locations with m = 4.

Further analysis shows that the ordered search is more stable than the exhaustive

search for different r values, i.e., for varying ratios of locations with and without solu-

tions. Table 7.1 gives an overview of the respective runtime measurements. The results

show that the ordering heuristic’s overhead slows down the algorithm in environments

R r = 10 % r = 20 % r = 30 % ∆

E-DFS w/ CSIS 130.5 ms 255.3 ms 386.5 ms 256.0 ms
O-DFS w/ CSIS 219.9 ms 268.9 ms 312.2 ms 92.3 ms

Table 7.1: Runtime comparison of the exhaustive and the ordered search with
regard to the ratio of locations with solutions r ∈ R for 1, 000 locations.
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Figure 7.3: The results of Test Case 3 for the exhaustive search (E-DFS) and the
ordered search (O-DFS) with m = 4.

with few solution containing locations, e.g., r = 10 %. However, with an increasing

ratio of valid locations, the heuristic’s benefits outweigh the overhead, resulting in a

better performance of O-DFS over E-DFS starting at an r value of approximately 23 %.

The third test case has the highest complexity of the test cases with regard to the

variety of capabilities in the context service infrastructure. Figure 7.3 shows the results

of Test Case 3 with regard to the average number of labeling steps for the exhaustive

and the ordered search. As all locations provide all necessary context services – with

regard to their associated context variables, not their respective context variable states’

support – and the figure depicts the number of labeling steps instead of the runtime,

no differentiation between searches with and without the service index structure is ap-

plicable. In general, the ordered search outperforms the exhaustive search, consistently

requiring between 23.3 and 27.8 % of E-DFS’s steps.

Finally, the memory requirements of the different algorithm variations were mea-

sured using highly complex setups with 15, 000 locations and 1-3 context services per

location. As to be expected, O-DFS w/ CSIS has the highest memory consumption.

E-DFS w/o CSIS and O-DFS w/o CSIS have the lowest memory usage, as they work

without the index structure. However, even for this rather large environment, the

configuration management component never exceeded 191 MB of memory usage. For

smaller, more realistic search problems, the component requires approximately 35 MB

of memory. Hence, the memory requirements of any of the algorithm variations is not

an issue for any device that would typically be used as a central instance in a smart

environment.

In summary, the similarity in the context service composition of the locations, as

well as how specific/restricting the applications’ requirements are, are crucial for the

performance of the different algorithm variations. If the context service composition is
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strongly diverse, and the application depends on a very specific composition of services,

using the context service index structure is crucial. Otherwise, if the locations are

equally equipped with services, and the context states required by the application

are rather specific, the ordering heuristic is more beneficial than the index structure.

In total, the ordered search with index structure (O-DFS w/ CSIS) performs best in

almost all cases – except for a few scenarios in the second test case – at modest memory

cost.

7.1.2 Adaptation Plan Algorithms

Interference resolution is by far the biggest factor in the runtime of COMITY’s

adaptation coordination process [65]. COMITY’s original approach to interference

resolution is a backtracking-based algorithm with an additional pruning mechanism

that operates on the last functional combination of configurations. The approach has

the benefit of finding a solution with the minimal number of adaptations. However, the

approach quickly exceeds a runtime of several minutes in pervasive systems with many

applications, or interferences with high complexity, respectively. Further, it terminates

as soon as it has found an interference-free adaptation plan, disregarding the utilities

of the individual configurations of the applications, which proactive adaptation aims to

optimize. Finally, a proactive framework should pre-coordinate all viable combinations

for future situations.

Hence, a new approach to interference resolution was developed for this framework

with the goals of (i) finding the adaptation resolution plan that maximizes the global

utility of the system, (ii) conducting a complete search for pre-coordination, and (iii)

improving the runtime for a fallback reactive adaptation. In order to maximize the

global utility, COMITY’s context contracts were extended by a utility metric, namely

the utility-cost-ratios of the adaptation alternatives. For a complete search, the algo-

rithm simply does not terminate until it has traversed the entire search space. Finally,

in order to achieve a better runtime, the new approach uses informed search techniques

following [86], as well as a branch and bound-based modification of the complete search

algorithm that prunes the search space. With the latter modification, the algorithm

can terminate as soon as the first solution was found in case of a fallback reactive

adaptation, while providing a close to optimal solution.

The adaptation coordination approach was evaluated on three identical desktop

PCs, each with an Intel Core 2 Quad Processor Q6600 CPU (2.40 GHz per core) and

4 GB RAM, running a 64-bit Ubuntu 12.04 operating system.
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In total, the adaptation coordination component features a set of eight inter-

changeable interference resolution procedures that implement a combination of in-

formed search techniques and pruning, namely backtracking (BT), conflict-directed

backjumping (CBJ), explicit forward checking (FC), explicit forward checking with

conflict-directed backjumping (FC-CBJ), as well as their optimal counterparts O-BT,

O-CBJ, O-FC, and O-FC-CBJ. All eight were evaluated using 50 randomly gener-

ated test cases with the following two parameters, which define the pervasive system

as well as the specific interference resolution problem: (i) the number of applications

N = {4, 6, 8, 10, 12, 14, 16, 18, 20}, and (ii) the number of context contracts per appli-

cation that can resolve the interference R = {m/2,m/4}, with the number of context

contracts per application fixed at m = 8. For each application, the context contracts

that can resolve the interferences are distributed randomly among the entire set of con-

text contracts. Additionally, each contract has a random utility value out of [0.1, 1.0]

in steps of 0.1. Further, the number of applications that minimally need to be adapted

is fixed at a = n/2, and the number of attributes per context contract is fixed at

|CI/IS| = 5. Initially, two of the applications are involved in an interference.

The solution space is not defined by any factors with regard to where solutions can

be found. Instead, a set of applications that are not involved in the initial interference

may have to be adapted as well. That is, a combination of contracts that is interference-

free for the applications initially involved may result in interferences with applications

previously not involved. As a result, the search space becomes unpredictable.

Figure 7.4 shows the average number of steps, i.e., the number of consistency checks

that are executed, required by each variation of the two sets of resolution algorithms

with respect to the number of applications n and the size of the solution space defined

by r = m/2. The number of steps is used as the first unit of measurement to show

the relation between the different algorithms, regardless of the specific system they

are running on. The runtime in ms is discussed subsequently. As expected, FC-CBJ

and O-FC-CBJ, respectively, outperform the other algorithms every time. For 20

applications with 8 context contracts each – i.e., a total of 820 possible combinations

– FC-CBJ performs, on average, 32.66 consistency checks with r = m/2 and 33.86

with r = m/4, respectively, in order to find an interference-free combination. While

searching for the combination with the maximum global utility, O-FC-CBJ performs,

on average, 250.3 and 265.7 consistency checks, respectively.

Figure 7.4a shows the traditional set of informed search algorithms that terminate as

soon as the first solution was found for high responsiveness. All algorithms show a run-

time exponential in n, with some noise due to randomness. However, the growth rate
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Figure 7.4: The results of the performance measurements for the two sets of inter-
ference resolution algorithms in # Steps with regard to the number
of applications sharing their context and with r = m/2.

of CBJ and FC-CBJ is substantially lower than that of BT and FC, respectively. Ad-

ditionally, the graphs suggest strong ties between the performances of those algorithms

using the same backtracking strategy. That is, BT and FC, which both backtrack only

one level in case of an inconsistent subsolution, share growth characteristics, as do CBJ

and FC-CBJ, which both do a conflict-directed backjump in case of an inconsistency.

Hence, it is safe to conclude that the level of informed backtracking has the most signifi-

cant effect on the performance of the algorithms. On average, the algorithms combined

find interference resolution plans with between 1.16 and 1.2 additional adaptations

compared to the number that is minimally required.

Figure 7.4b shows the set of algorithms for maximizing the global utility. The

performance characteristics of these four algorithms is similar to those terminating

after they find the first solution. One interesting finding is that with O-CBJ, the effect

of the pruning heuristic greatly improves with n ≥ 10. With less than 10 applications,
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Figure 7.5: The results of the performance measurements for the two sets of in-
terference resolution algorithms in ms with regard to the number of
applications sharing their context and with r = m/2.

the heuristic – even though the smallest possible overestimate – does not prune much

of the relative search space, which shows in the number of consistency checks. Further,

comparing O-CBJ with O-FC-CBJ, the explicit forward checking strategy proves to

have a very positive effect while searching for the maximum global utility.

Figure 7.5 shows the average runtime in ms required by each variation of the two

sets of resolution algorithms with respect to the number of applications n and the size

of the solution space defined by r = m/2. Using this metric, the growth characteristics

are, as one would expect, the same as with the average number of steps. However,

CBJ actually outperforms the other algorithms when it comes to finding a solution as

fast as possible. This is due to the significant forward checking overhead of FC-CBJ.

For 20 applications, CBJ takes 0.17 ms with r = m/2 and 0.21 ms with r = m/4,

respectively, in order to find an interference-free combination. When searching for

the solution with the maximum global utility, O-CBJ initially also proves to be the
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Figure 7.6: The performance of FC-CBJ in situations without solutions in the
search space with regard to the number of applications sharing their
context.

fastest approach. However, O-FC-CBJ eventually outperforms O-CBJ with n ≥ 14

and shows a significantly smaller growth rate. Hence, after this point, the positive

effect of the forward checking strategy outweighs its overhead. For 20 applications,

O-FC-CBJ takes, on average, 2.1 s to find the optimal solution. Further, it finds the

optimal solution in less than one second for as many as 14 applications.

Finally, Figure 7.6 shows the average and maximum runtime (in # Steps and ms,

respectively) of the best performing FC-CBJ in situations where there are no solutions

with n = {4, 8, 12, 16, 20}. For up to 20 applications in the environment, the interfer-

ence resolution process determines such an unresolvable situation consistently in less

than one second, with a maximum value of 2, 157 ms. In these situations, a manual

adaptation or the termination of an application, respectively, becomes necessary.

Overall, the results show a significant improvement in runtime compared to

COMITY’s original approach (cf. [65]) – including the algorithms maximizing the

global utility – at the cost of not finding the adaptation plan with the minimal number

of adaptations. However, this is not necessarily a drawback, as proactive adaptation

tries to pre-coordinate adaptations, i.e., at a point in time where there is no actual

starting configuration to work with.

Next, the entire framework for proactive adaptation is evaluated in extensive simula-

tions using recorded user traces with regard to the number of successful pre-calculations,

the runtimes of the individual adaptation control loops, as well as system utilization

metrics.

114



7.2 Simulation

7.2 Simulation

In this section, the prototype implementation of the proactive adaptation framework

is applied in real-time simulations. First, the evaluation setup is described. Afterwards,

Section 7.2.2 presents various measurement results, including times for proactive and

fallback reactive adaptations, before Section 7.2.3 examines different system load char-

acteristics, such as memory consumption and CPU load.

7.2.1 Simulation Environment

In order to extensively evaluate the framework for proactive adaptation, as well

as the concept of proactive adaptation in general, an interactive environment with

user/application movement is simulated. The environment itself consists of 20 loca-

tions with up to ten context variables each. In it, all context variables have the same

parameterized number of possible states.

Up to ten applications move through the environment based on a modified set of real

user traces from the Augsburg Indoor Location Tracking Benchmarks project [81, 82].

The original set of traces contains recordings for four users. It was enhanced to ten

by duplicating the traces of the three most active users twice – the record of the forth

user is considerably smaller than that of the other three – while substituting their most

frequent location, presumably their respective offices, with new locations. Further,

the traces of the six new users were modified by introducing small random time shifts

up to a few minutes. As a result, the data maintains its patterns of daily workplace

interaction, such as meetings or joint coffee breaks. That is, the users frequently share

the same location, but arrive and leave shorty after each other, creating the situations

in which the users’ applications need to adapt.

Figure 7.7 shows the floor plan of the simulated pervasive environment following the

floor plan in [82] – with adjustments for the additional locations. Further, the figure

visualizes the number of visits per user and location. Naturally, the recorded number

of location events per user for the corridor is inflated, as the users have to pass through

the corridor in order to get from one location to another. Aside from the corridor, the

data shows common gathering points that are ideal for coordinating adaptation plans,

e.g., room 402 and the kitchen, as well as locations that are rarely visited by more

than one user, e.g., rooms 403 and 409. Of the user traces data set, half was used for

training the predictors, and the other half fed into the system at runtime.
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Figure 7.7: The floor plan of the simulated environment (left) and number of
visits per user and location (right).

The applications’ requirements are randomly generated before each run based on the

following parameters: (i) the minimal and maximal number of terms per requirement

tmin and tmax, (ii) the minimal and maximal number of literals per term lmin and lmax,

and (iii) the minimal and maximal number of states per literal smin and smax. The

theoretical effects of these three parameters on the simulation are somewhat conflicting.

While larger min and max values, especially for t and l, create bigger search spaces

for the adaptation alternative and adaptation plan algorithms, they also bring a higher

potential for requirement overlappings, and thus more possible solutions. In contrast,

smaller min and max values, this time especially for s, keep the search space small,

but also reduces the potential for interference-free sets of adaptation alternatives.

All simulations were conducted on a standard desktop PC with an Intel Core i5-

2500K CPU (four cores with 3.3 GHz each), 8 GB of main memory, and a 64-bit

Windows 8 operating system. Each entity in the simulations – i.e., each application,

sensor, actuator, and predictor, as well as the context broker and the adaptation control

component – ran in its own Java Virtual Machine on top of BASE, thereby emulating a

completely distributed system, albeit without network delays. From the two sets of al-

gorithms, E-DFS w/o CSIS and O-FC-CBJ were used. The choice of E-DFS w/o CSIS

for the simulation has several reasons. First, the ordering heuristic of O-DFS would

have no benefit, as all context variables have the same amount of possible states, result-

ing in equal complexity indexes. Second, the index structure – as beneficial as it is by

greatly reducing the necessary interaction between the components in the system – is
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not crucial for smaller environments, while its omission provides an increase in system

load that is desirable in evaluation settings. Finally, in order to be able to accelerate

the simulations that are restricted by the nature of real time data – thus creating long

periods of idling – a timer was used that runs x-times as fast as the host’s internal

clock. In the simulation runs that produced the forthcoming results, a factor of ten

was used for all runs, i.e., a ten hour period was simulated in one hour.

7.2.2 Simulation Results

Evaluating real time systems differs from conducting algorithm performance mea-

surements significantly. The simulations are time consuming and time restricted at

the same time, regardless of the complexity of individual problems, and the individual

executions of procedures do not happen in isolation. That is, on the one hand, the

calculations triggered by a certain event – which is not under the developer’s control

but originates from inside the system itself – may terminate very fast, resulting in idle

time. On the other hand, in case the calculations have not yet come to a conclusion

before the next event happens, time as a resource becomes the issue. In such situa-

tions, the new task can either be queued for later execution, started in a new thread

– thereby creating an additional competitor for the system’s resources – or replace the

ongoing task. As described in Section 5.6.6, the adaptation control component uses

all three alternatives in different situations. Proactive adaptation alternative searches

are queued for execution in application-related threads, whereas proactive adaptation

coordination tasks are queued for execution in location-related threads. All reactive

calculations, in contrast, replace ongoing calculations, as the result is needed as fast as

possible, and the result of the old task automatically becomes obsolete for that reactive

adaptation control cycle. During the conducted simulations, such task replacements

were recorded as reactive calculation interrupts.

In total, 45 simulations were conducted with varying parameter combinations, ran-

dom application requirements generated from these combinations, and differing user

movement patterns from distinct days in the data set. Figure 7.8 depicts the results

of a sample of simulation runs with medium complexity. For comparability, all runs

simulate the same workday, i.e., user movement is the same in each run. Further, each

location has the same ten context variables, with ten possible states each. However,

the runs differ in their setups regarding the parameters t, l, and s as follows:

• Setup 1: t = [1, 10], l = [1, 10], s = [1, 10]

• Setup 2: t = [3, 10], l = [3, 10], s = [3, 10]
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4 0.02 ms 2, 707.00 ms 51, 512.64 ms 177, 285.60 ms
5 0.01 ms 759.00 ms 7, 137.46 ms n/a

Figure 7.8: The evaluation results with regard to the average runtime in ms and
the respective number of events for five different simulation setups.

• Setup 3: t = [5, 10], l = [3, 5], s = [3, 5]

• Setup 4: t = [10, 30], l = [3, 10], s = [1, 3]

• Setup 5: t = [20, 50], l = [5, 10], s = [1, 1]

The results clearly indicate the benefits of the proactive scheme. In all five simula-

tions, fetching a pre-calculated adaptation plan from the plan base takes, on average,

between 0.01 and 0.02 ms, with an absolute minimum of 0.0056 ms, and an absolute

maximum of 0.0625 ms. In contrast, the average time for reactively calculating an

adaptation plan varies from 0.5 to 14.3 s, with an absolute minimum of 45.5 ms, and

an absolute maximum of 30.2 s, constituting a human-perceivable delay that is un-

desirable in pervasive environments. Moreover, in case there are no interference-free

adaptation plans in the search space, the reactive calculations terminate after, on av-

erage, 39.7 s, with an absolute maximum of 530.6 s. Finally, the interrupted reactive

calculations were replaced after, on average, 144.8 s. At this point the timer is reset

to measure the runtime of the new cycle (proactive or reactive), as the situation has

changed.
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Figure 7.9: Growth of the plan base during simulation of Setup 1 in terms of the
number of solutions and kB of memory.

The main factors in the calculation times are the number of users at the same

location, and the level of diversity of the applications’ requirements with regard to

the shared context. As a result, the time difference between a proactive fetch and a

reactive calculation increases significantly in runs with higher complexity. However,

the share of situations without solutions increases as well. In order to be able to

compare the proactive and reactive cycle times, prior knowledge about such unsolvable

situations originating from pre-coordination attempts was discarded during simulation.

In a productive system, this knowledge can be used to avoid a share of the unsuccessful

reactive cycles.

Regardless, during a reactive cycle, there is no indication whether it will be successful

or not. In case the system is not able to fetch a pre-calculated adaptation plan, the

users are forced to wait until the reactive calculation terminates with or without a

solution, including possibly several interruptions. The reactive calculations – with or

without a solution – terminate after an average of 95.1 s with, and 26.1 s without

including interrupts.

Every solution calculated at runtime, regardless of proactive or reactive cycle, is

stored in the plan base. Figure 7.9 shows the growth of the plan base during a sim-

ulation run of Setup 1 with regard to the number of coordinated adaptation plans it

contains, as well as the size of the data structure in memory. After simulating the

ten hour business day period, the plan base contained 24, 161 coordinated adaptation

plans, occupying 19, 233 kB of memory, and seemingly converging to a maximum. For

evaluation purposes, the plan base was reseted for each run. In a productive system,

the adaptation plans should remain in the plan base for some time, so that they do not

need to be re-calculated too often.

119



7.3 Discussion

Finally, assuming the interrupted calculations would not have terminated with so-

lutions, the prototype pre-calculated adaptation plans for 91 % of the situations, in

which a coordinated adaptation was necessary and possible. This share was achieved

using the very generic context prediction algorithms implemented in the prototype. It

stands to reason that the share can be further increased through tailoring the predic-

tors and the prediction process, e.g., using aggregation, validation, etc., to the specific

environment.

7.2.3 System Utilization

Figure 7.10 shows the results of monitoring the Java VM using VisualVM 1.3.8

[70] during a simulation run with the same parameters as Setup 1 (cf. Section 7.2.2).

More specifically, Figure 7.10a depicts the heap space utilization of the configuration

management and adaptation coordination component, which run in the same Java

Virtual Machine. The blue line, which corresponds to the heap space that is actually

used, fluctuates heavily and seemingly forms areas in the graph. This shows the amount

and size of the search spaces that both the adaptation alternative and the adaptation

plan algorithms create, traverse and destroy each time. At its biggest size, the heap

requires just below 1.1 GB of memory. Figure 7.10b depicts the CPU usage and the

activity of Java’s Garbage Collector. The CPU-related graph fluctuates heavily as well,

correlated to the number of simultaneous adaptation alternative and adaptation plan

calculations. During simulation, the CPU usage rate spikes at approximately 93 %.

Further, both graphs show parallel phases of high activity, namely a jump in heap

size, and a significantly high workload in case of the CPU usage, respectively. Moreover,

Figure 7.9 shows a rapid increase in the number of adaptation plans in the plan base.

These extremes coincide with a phase of high user mobility between 10 a.m. and 1 p.m.

The phase of high mobility in the afternoon, however, is not reflected in the graphs,

suggesting a high rate of pre-computed adaptation plans.

Overall, the measurements show the necessity of centralized components in the

system in order to run the complex configuration and coordination algorithms.

7.3 Discussion

Adapting an application or system based on pre-calculated adaptation plans is,

in theory, obviously faster than having to calculate the plan first. Through prior
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Figure 7.10: Output of the Java VM monitoring using VisualVM during a simu-
lation with the parameters t = [1, 10], l = [1, 10], and s = [1, 10].
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calculation, adaptations become scripted, resulting in adaptation times comparable

to those in static environments. The simulation results proved that this assumption

holds true for the prototype implementation of the framework developed in this thesis.

However, the goal of the evaluation, and the thesis in total, was rather to show how

the benefits of the proactive scheme can be achieved in dynamic environments, and at

what cost.

The algorithm performance analysis in Section 7.1 showed that the CSP-based ap-

proach to modeling and solving the two problems of finding all possible adaptation

alternatives of an application, as well as coordinating the adaptation alternatives of

multiple applications in the same context, while optimizing the system’s global utility,

is a viable solution for real-time systems. The algorithms scale well enough with regard

to the problem size for medium to large sized pervasive systems, i.e., several hundred

locations with up to 20 applications in the same context, with average runtimes of at

most 2.1 s for the fastest algorithm variations in the largest settings.

The simulations conducted in Section 7.2 then showed that the prototype framework

is applicable for small to medium sized, office-like environments with ten users and

20 locations. For over 90 % of the total adaptation situations, the framework was

able to fetch a pre-calculated adaptation plan instantly, avoiding reactive adaptation

calculation times of 20 seconds and more. In the process, the total workload was high

at times with almost 1.1 GB of reserved heap space and over 90 % CPU usage rate,

but manageable for a standard desktop PC. However, larger environments should be

managed by more than one central entity.

Beyond these measurements, the simulations provide other observations to reason

about. First, the runtime measurements from the isolated algorithm performance anal-

ysis are not applicable in live systems. While they indicate a certain level of perfor-

mance and are valuable to examine the algorithm’s asymptotic growth, they also create

false expectations. In a live system, these algorithms are often executed in parallel to

others, and are typically part of a larger process with overhead from communication

and concurrency issues. Second, the proactive scheme is not only beneficial in situa-

tions with possible solutions. Prior knowledge about unsolvable situations, i.e., in case

a proactive calculation terminates with no solutions, can be used to avoid these in the

short run, and, even more so, be applied to analyzing the system in order to identify

the lack of certain services in the infrastructure or incompatible applications, making

the environment more intelligent. Avoiding unsolvable situations ties in to the final

observation. The simulation results showcase the importance of accurate context pre-

diction to the concept, and, at the same time, how to compensate for bad predictions.
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The prototype framework achieved a high rate of pre-calculated adaptation plans using

generic pattern matching and Markov Model-based predictors. However, the rate was

increased by using the top three predictions in terms of similarity score and transition

probability, respectively, leading to unnecessary calculations and additional workload.

Further, the framework stores all calculated adaptation plans for later retrieval, instead

of discarding them after the adaptation, which can cover up false predictions. Now,

avoiding unsolvable situations, e.g., by rerouting a user, can decrease the accuracy of

predictions, as the instructed behavior may not be consistent with the natural behavior

of the entity. Nevertheless, prediction accuracy can also be improved by tailoring the

approaches to the specific environment/prediction subject, as well as aggregating the

results of multiple approaches. Case in point, a pattern matching algorithm can miss

on a certain transition, whereas a probability-based approach struggles with predicting

rare events.

In summary, the evaluation of the prototype framework showed that the concept

of proactive adaptation in dynamic pervasive environments is not only beneficial in

theory, but feasible in practice given the necessary system support. The next chapter

closes this thesis with a conclusion and an outlook on future work.
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8 Conclusion and Outlook

The previous chapter evaluated the prototype framework for proactive adaptation

regarding the performance of the search algorithms and the framework’s behavior in

real-time, multi-user pervasive systems. This chapter closes the present thesis with a

conclusion and an outlook on future work.

8.1 Conclusion

Next to the traditional challenges of dynamic distributed systems, such as hetero-

geneous and changing resources, proactive adaptation in multi-user pervasive systems

requires a constant effort of monitoring context information and predictions, as well as

calculating, coordinating, and instructing adaptations. Without suitable architectures

and algorithms, these challenges are hard to overcome. In order to enable proactive

adaptation, this thesis presented a comprehensive framework including middleware-

based system support for automatic coordinated application-level proactive adaptation

in multi-user pervasive systems.

The framework’s context interaction model and corresponding context broker mask

the heterogeneity of resources by offering uniform access to context sensing, predict-

ing, and actuating services based on the abstraction of context variables. Additionally,

the broker’s dynamic service registry handles the changing environment transparently

for applications. Further, the framework reduces the complexity of application devel-

opment by assuming the responsibility of calculating and rating possible adaptation

alternatives of an application with regard to its predicted context. For this, an ap-

plication configuration model was developed that allows applications to specify their

requirements towards their context, including user preferences. Moreover, the model

introduced duration-dependent utility and cost functions, in order to optimize adapta-

tion decisions with regard to the future context time series.

The thesis presented two sets of algorithms in order to predetermine interference-

free adaptation plans. First, for adaptation pre-calculation, the problem of finding

adaptation alternatives was constructed as a constraint satisfaction problem, and an
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exhaustive backtracking-based algorithm including ordering heuristic was developed

that finds all valid application configurations. Second, for adaptation pre-coordination,

the thesis presented a set of tree-based interference resolution algorithms for the appli-

cation coordination framework COMITY that are able to optimize the global utility of

the environment. Equipped with this new set of algorithms, COMITY was then inte-

grated into the framework by mapping application requirements to context contracts,

as well as constructing virtual environments for its interference detection approach.

To complete the framework, its individual models and components were integrated

in an adaptation control loop for proactive adaptation. The control component mon-

itors current and predicted context, triggers calculations and coordinations, manages

adaptation plans, and instructs adaptations in a proactive, as well as a fallback reac-

tive loop. With the presented framework, context-aware applications can participate

in proactive adaptive systems by specifying their configuration model and following

adaptation instructions.

Finally, the evaluation showed that – given suitable system support – proactive

adaptation in multi-user pervasive systems is both feasible and beneficial at the modest

cost of a centralized entity in the class of a standard desktop PC. Most importantly, the

framework helps to reduce adaptation delays and avoids the oscillating effects caused

by context interferences through pre-calculation and pre-coordination, respectively.

8.2 Outlook

There are several interesting research challenges that have emerged during the de-

velopment of this thesis and are worth further exploration.

First, the application configuration model could be extended to feature service com-

position conditional utility and cost functions. That is, instead of accumulating the

application configuration ratings from the individual functions per context variable,

the functions could depend on specific ensembles of context services. As a result, the

ratings would become service composition-dependent themselves, which may reflect the

actual utilities and costs of a configuration more accurately.

Second, in order to make the adaptation search process more efficient, the adapta-

tion control component could utilize the fact that a specific CSP for finding adaptation

alternatives or adaptation plans is unsolvable, which is known after an unsuccessful

search. Additionally, this extension could be used to identify incompatible application
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constellations, which, with this knowledge, could be addressed by application develop-

ers and users.

Third, with regard to optimizing adaptations, there is a non-trivial conflict between

the best series of adaptations for a single application and the maximal global utility of

the system. Adaptation series for a single application can, for example, be optimized

using adaptation strategies and decision trees. Optimization of adaptation series for

multiple applications, on the other hand, requires additional considerations, such as

group mobility and compatibility of individual adaptation strategies.

Finally, enhancements to the theoretical framework could potentially minimize the

number of unsolvable situations and should be explored. Possible additions could

be metrics for measuring/estimating the distance between application configurations,

adaptation plans, and context situations, integration of negotiation protocols, as well

as the concept of compromise.
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