
University of Mannheim

Department of Economics

Doctoral Thesis

Essays in Nonparametric Instrumental

Variable Regression

Petyo Bozhidarov Bonev

Supervisors: Professor Gerard J. van den Berg, Professor Enno Mammen

Mannheim, September the 8th, 2014



Referenten: Professor Dr. Gerard van den Berg, Professor Dr. Paul Gans, Professor Dr.
Enno Mammen, Professor Dr. Volker Nocke

Abteilungssprecher: Professor Dr. Eckhard Janeba
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General introduction

Endogeneity hampers the econometric evaluation of economic causal relationships. Broadly
speaking, an economic model is affected by endogeneity when unobserved factors influencing
the dependent variable of interest are also related to (observed) independent variables. In
such cases, the causal effect of the observables cannot be separated from the causal effect of the
unobservables even if there are infinitely many data observations. Endogeneity is the result of
the complexity of human behavior and of the impossibility to observe all relevant information.
It is inherent in all economic disciplines. In labor economics for example, the level of
intelligence of an individual is generally unobservable and is related to the level of education
and other predictors of economic success. In the economics of education, school resources,
such as the quality of teachers or class sizes, might be related to the economic background
of students or the level of parents’ support. The latter factor of school achievement is often
unobserved to the econometrician. In health studies, researchers are often concerned with
the dependence between genetic factors and behavior when they try to predict the individual
economic wellbeing or the accumulation of human capital.

These are only three out of many examples that demonstrate that the importance of
methods that can solve the problem of endogeneity cannot be overstated. When experiments
are not possible (due to political, financial or ethical reasons), instrumental variable methods
are one major potential solution to it. Instrumental variables (or simply instruments) are
variables that i) are observable, ii) are related to the observed independent variables and
iii) influence the dependent variable only through the independent ones. Variation in the
instruments can be used to ”extract” the exogenous variation of the observed covariates,
which is then used to estimate the causal relationship of interest.

In my thesis, I contribute to the literature on instrumental variable(IV) methods in several
ways. First, I develop a new nonparametric IV method for treatment evaluation in the context
of duration models. Second, I provide a characterization of a broad class of nonparametric
penalized minimum distance IV estimators as projections and derive results about their
asymptotic properties. These contributions are the subjects of the two different chapters of
my thesis. I now give a brief outline of the structure and particular content of my work.

Chapter 1 of my thesis is based on the paper ”Nonparametric instrumental variable
methods for dynamic treatment evaluation”, a joint project with Gerard Van den Berg and
Enno Mammen. The main object of interest is the distribution (or some functions of it)
of a duration variable. In a policy treatment evaluation framework, our identification and
estimation methods allow for two types of endogeneity. The first type arises from the decision
of agents based on unobservables to take or refuse an assigned treatment. The second type
arises over time due to selective exits of agents out of the population of interest. Both types of
endogeneity are inherent to economic policy evaluation but there is no method thus far that
tackles them both at the same time in a nonparametric way. Existing methods either ignore
one of the types of endogeneity or impose restrictive parametric structure. Our instrumental
approach can deal with both types of endogeneity in a completely nonparametric way. It relies
on random inflow into the population of interest. Furthermore, we do not assume separability
or independence of observed and unobserved covariates. In addition, our methods can deal
with censoring of the duration variable. We provide estimation procedures and derive their
asymptotics. In addition to the identification and estimation results, we also demonstrate
how to use our framework for the analysis of endogeneity.
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The second chapter of my thesis is based on my paper ”The effects of class size on school
performance: a nonparametric study with new shape-constrained instrumental variable
methods”. The main econometric focus of this chapter is the nonparametric shape analysis of
the mean regression function under endogeneity. Imposing shape constraints in estimation
has two main advantages. First, when a certain shape is predicted by economic theory,
imposing shape constraints on the estimates may be necessary for the interpretation of the
data in a policy evaluation context. Second, shape-constrained nonparametric estimators
are still much more flexible than parametric counterparts. An important question in the
econometric analysis in this context is what are the asymptotic properties of constrained
nonparametric estimators. I provide three main theoretical results. First, monotonically
constrained and unconstrained Tikhonov estimators are asymptotically equivalent when
the regression function is an inner point of the constrained set. In this case, imposing a
constraint does not lead asymptotically to a change in the behavior of the estimator. Second,
a broad class of penalized minimum distance estimators can be shown to be the projection
of the unconstrained counterparts on the constrained set. An important consequence is that
in some weak norm the constrained estimators, provided they exist, converge at least as
quickly to the model solution as the unconstrained estimators. For a certain subclass of
those estimators it can be further shown, that they are two-step projection estimators in the
following sense. In a first step, project in some general vector space the data on the set of
all potential regression functions to obtain the unconstrained estimator. In a second step,
project this projection on the constrained set to obtain the unconstrained estimator. The
third result is a demonstration of an application of the projection property. Consistency of
constrained estimators is shown to be related to properties of the model solution and the
conditional expectation operator. In addition, I suggest an empirical procedure for testing
for monotonicity.

Both chapters of my thesis contain simulations of the proposed methods. They differ
substantially in their purpose. In chapter 1, we show through a simulation study that in
a particular policy context, violations of the assumption of independent censoring of the
duration variable do not influence the performance of the estimator. This finding is of a great
importance for applied research as the independent censoring assumption is not testable. In
section 2, I derive through a simulation study the optimal choices of the estimation parameters
in a sieves estimation approach and monotonicity constraint. These choices depend on the
sample size, the degree of endogeneity, the strength of the instrument and the functional
form of the regression function. The second part of the simulation study also shows that the
proposed ad hoc testing procedure works very well in finite samples.

Both the methodological and simulation parts of my thesis have clear application motiva-
tions. Their usage is demonstrated in two extensive empirical investigations in two important
economic disciplines: labor and education. In chapter 1, we evaluate a labor policy reform
that i) introduces active labor market policy measures for unemployed, such as training and
counselling, and ii) abolishes digression in unemployment insurance payments. The two
measures induce incentives with opposite direction and it is not clear what the overall im-
pact on the duration of unemployment would be. We use our IV approach for the evaluation
and find that the reform had a positive effect on the unemployment dynamics. In chapter
2, I find that the effect of class size on test scores in two different data sets is non-monotone.
Building on that novel finding, I suggest a simple educational production function that can
generate non-monotone causal effects.
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The last result completes the chain econometric theory - simulation - empirical investiga-
tion - economic theory. It reflects my understanding of an integrated scientific process and
demonstrates that I have developed a broad set of skills during my PhD time.
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Chapter 1

Nonparametric instrumental variable
methods for dynamic treatment
evaluation

1.1 Introduction

Identification of dynamic treatment effects is hampered by three major problems. First,
suppose the treatment is randomized at t = 0, the point in time of inflow of individuals in some
state of interest. If unobservable factors of the outcome interact with the treatment status,
then, at some later point in time t > 0, the distributions of the unobserved characteristics
among survivors will differ across different treatment arms, Meyer (1996), Ham and LaLonde
(1996) and Eberwein, Ham, and LaLonde (1997). Additionally, if individuals can choose a
treatment status different from the one that has been assigned to them and if their decision
is related to unobserved characteristics, then estimation results will suffer from the standard
selection bias. We refer to these endogeneity causes as dynamic and static endogeneity.
Lastly, duration variables are often subject to censoring, a problem which is difficult to tackle
with standard regression methods. In this paper, we develop an instrumental variable (IV)
approach for identification and estimation of dynamic treatment effects on the conditional
survival function and the hazard of a duration variable. Our method solves the dynamic
and static endogeneity problems and allows for censoring. We do not adopt parametric or
semiparametric structure. We also do not impose independence or separability of observed
and unobserved characteristics.

We embed our IV approach in a dynamic regression discontinuity setting. A single
comprehensive treatment is assigned at a specific calendar point in time to all individuals
in some state of interest. A typical example is a labor market reform which changes the
structure of unemployment benefits. Cohorts of individuals receive the treatment at the
same point in time but at different elapsed durations of their spells. Due to dynamic selection
the distribution of unobserved characteristics at the moment of treatment will differ across
cohorts. Additionally, we allow for noncompliance. We achieve identification by using
the duration between inflow and treatment of the different cohorts as an instrument for the
endogenous dynamic treatment status. The identifying assumptions are that different cohorts
have equal distributions of the frailty at the moment of inflow conditional on observables
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and that individuals do not anticipate the point in time of treatment or do not act upon this
information.

Additionally, our identification strategy can be applied to a setup in which individual
spells have the same starting point in time but the agents receive the treatment at different
(random) points in time. The latter setting is common to the Swedish practice of Active Labor
Market Policies (ALMP), see Sianesi (2004).

By dealing with both dynamic and static selection, our paper provides the link between
the standard (static) LATE literature and the literature on dynamic treatment evaluation.
On the one hand, our main result can be interpreted as a dynamic generalization of the
one-sided noncompliance identification result by Bloom (1984). On the other hand, our
strategy generalizes the method of Van den Berg, Bozio, and Dias (2014) by allowing for
static selection.

We suggest estimation procedures and derive their asymptotic properties. Our estimators
are dynamic versions of the Wald estimator.

We use our method to evaluate the French labor market reform PARE from 2001. On July
1 2001 the digression of the unemployment benefits over time was abolished and a package
of active labor market policy (ALPM) measures was introduced. The estimated treatment
effect of this reform on the conditional survival function is positive and increases over time.
In an exhaustive study, we defend the plausibility of our assumptions. We address the non-
testable random censoring assumption in a simulation study. Imposing of random censoring
is necessary due to a nonidentification result by Tsiatis (1975). Our simulation results indicate
that the estimator is robust to violations of the non-testable assumption. The reason is that
violations which are likely to occur in the PARE setting have opposite directions and offset
each other’s impact on the estimates. This is a novel result.

Finally, we provide a novel framework for analysis of endogeneity. The main purposes
are 1) to assess whether noncompliance is endogenous and 2) to measure the bias that would
be induced if the endogeneity is ignored. Understanding the selection process is important
in numerous economic applications. First, better knowledge of the reasons for the non-take
up of a policy reform help improve the policy design and increase its efficiency. Second,
evaluating pilot projects with noncompliance can be used to derive bounds for the effect of a
comprehensive policy reform (with perfect compliance). And third, better understanding of
endogeneity can be used to model selection explicitly in more complex models. Our methods
are based on a comparison of untreated noncompliers with a whole nontreated cohort at the
same elapsed duration. We evaluate the non-take up of the PARE reform. Our results indicate
that selection is endogenous and that one major reason for noncompliance is the expectation
of a quick exit. These findings are in line with previous empirical and theoretical studies, see
e.g. Blasco (2009).

The remainder of this paper is structured as follows. In section 2, we discuss the related
literature. We present our IV approach in section 3. In section 4, we apply our IV method
to the French labor market reform PARE. Section 6 concludes. All proofs are left for the
appendix.
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1.2 Literature overview

The related literature can be divided into a theoretical and empirical strands. Our identi-
fication approach is related to the theoretical literature on regression discontinuity design.
Some recent developments in this field are those by Hahn, Todd, and van der Klaauw (2001),
Porter (2003), Frölich (2007) and Van den Berg, Bozio, and Dias (2014). The first three ap-
proaches do not incorporate censoring. The paper of Van den Berg, Bozio, and Dias (2014)
deals with censoring and dynamic selection. We generalize their model by allowing for
noncompliance. Our IV approach is related to the IV methods with a binary treatment such
as those in Imbens and Angrist (1994) and Imbens and Rubin (1997). These papers pose the
analysis in a static framework and do not consider censoring and dynamic endogeneity. IV
methods for duration data are considered for example in Robins and Tsiatis (1991), Chesher
(2002), Bijwaard and Ridder (2005), Bijwaard (2008) and Abbring and van den Berg (2005).
Typically, these studies adopt a semiparametric or a parametric structure. In their numerous
settings, Abbring and van den Berg (2005) either preclude dynamic selection by looking at
the unconditional survival function or adopt a semiparametric structure. Next, our paper is
related to the literature on dynamic matching estimators, see e.g. Sianesi (2004), Fredriksson
and Johansson (2008) and Crépon, Ferracci, Jolivet, and Van den Berg (2009), and to the
literature on dynamic discrete choices, see e.g. Heckman and Navarro (2007). These papers
assume full compliance. We discuss in detail their assumptions and results in section 1.3.2.

On the empirical side, we contribute to the literature on the influence of the structure of
unemployment insurance benefits on the unemployment duration, see for example Lalive
(2008), Lalive, van Ours, and Zweimüller (2006) and Katz and Meyer (1990). Commonly, the
unemployment insurance expires after some predetermined period of time. This has driven
the literature to consider the impact of maximal length of the period of payments and the
amount of the (flat) entitlement on the unemployment duration hazard. Comparing flat with
digressive benefits, we contribute to this literature by giving insights on the influence of the
interim structure of the unemployment insurance payments on the employment dynamics.
A related question is studied in Prieto (2000) and Dormont, Fougère, and Prieto (2001), but
their econometric approaches involve the (semi-)parametric specifications of the Proportional
Hazards model and the Mixed Proportional Hazards model, respectively, which are hard to
justify with economic theory, Van den Berg (2001). Our methods avoid such restrictive
assumptions and rely solely on the timing of the treatment. Our paper contributes also to
the empirical literature on the effects of ALMP on the probability to find a job. The measures
introduced by the PARE reform include training, subsidized jobs, skill assessment and job
search assistance. Some studies considering training are Gritz (1997), Richardson and den
Berg (2001), Crépon, Ferracci, and Fougère (2007) and Crépon, Ferracci, Jolivet, and Van den
Berg (2009). Studies on the effectiveness of counselling can be found in Gorter and Kalb
(1996), Blundell, Dias, Meghir, and Reenen (2004), as well as in Crépon, Dejemeppe, and
Gurgand (2005), Van den Berg and Van der Klaauw (2010) and Van den Berg, Kjærsgaard,
and Rosholm (2012). Studies considering subsidized jobs are Gerfin and Lechner (2002) and
Blundell, Dias, Meghir, and Reenen (2004). For a general overview see Bonnal, Fougère, and
Sérandon (1997), Heckman, LaLonde, and Smith (1999) and Kluve (2010). A common feature
of most of these studies is the assumed parametric or semiparametric functional form of the
hazard. Lastly, another related branch of the literature focuses on the threat effects of ALMP.
Some recent papers are those of Black, Smith, Berger, and Noel (2003), Lalive, Zweimüller,
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and van Ours (2005), as well as Rosholm and Svarer (2008), Crépon, Ferracci, Jolivet, and
Van den Berg (2010) and Bergemann, Caliendo, van den Berg, and Zimmermann (2011).

1.3 Identification and estimation of dynamic treatment effects

1.3.1 Notation and a framework for dynamic treatment evaluation

Assume that all agents in some state of interest O are assigned to receive a treatment at a
specific calender point in time r > 0. We are interested in the causal effect of this treatment
on the distribution of the duration of stay in O. We embed our analysis in a framework
with dynamic potential outcomes. We assume that potential outcomes of the individual i
depend on pretreatment characteristics Xi and Vi, of which the q-dimensional Xi is observed,
q ≥ 1, and the one-dimensional Vi not. Let the random variable Zi denote the time from
inflow to the assigned point in time of treatment and Si the elapsed duration in O at which
individual i actually receives the treatment. Si is a choice variable whereas Zi is exogenous.
For each X = x,V = v,Z = z,S = s, denote with Ti(s, z,x,v) the potential duration of stay
in O of individual i if he or she had characteristics (x,v) and received (z,v) as values for
(Z,S). We allow Ti(s, z,x,v) to be a random variable. This assumption reflects some intrinsic
uncertainty in the transition, not necessarily observed and/or controlled by the agent, see
Lancaster (1990) for a discussion. Throughout the paper, we assume that Z is an exclusion
restriction in the sense that Ti(s, z,x,v) = Ti(s,x,v). For notational simplicity, we will suppress
the dependence on X and V as well as the individual index i.

This setup corresponds to a labor market program implementation, in which a policy
reform is administered at a fixed point in time. Our methods however, as shown in the
discussion below, can be extended to a setup with ongoing programs, in which the treatment
is assigned at random points in time to different individuals. The latter setting is common
to the Swedish practice of Active Labor Market Policies (ALMP), see Sianesi (2004). In a
labor market context, X might be education, gender, number of siblings, age and experience
at inflow, whereas V might be the ability of an unemployed or his or her motivation. In a
medical study, X might be some observed health marker, whereas V might be some genetic
unobserved component. X and V obtain values in ΩX and ΩV.

We enrich this dynamic framework by allowing the agents to opt out of the assigned
treatment. We refer to this opting out as static selection. To fix ideas, for each z ∈ R+ and each
(x,v) ∈ ΩX × ΩV, let the random variable S(z,x,v) denote the potential compliance status
of an individual with observed and unobserved characteristics x and v, respectively, given
that the treatment z is assigned to that individual. For notational simplicity, we write S(z).
S(z) can be interpreted as the potential elapsed duration in O at which an agent would like
to be treated, if he or she was assigned to be treated at elapsed duration z. To make the
model tractable, an agent is only allowed to accept or reject an assigned treatment, and the
treatment is only offered once (see assumption A1 in the following subsection, as well as
the corresponding discussion). Thus, for each z ∈ R+, S(z) may take only the values z ( the
case of compliance) and ∞ (the case of noncompliance).1 Agents are allowed to have an

1Alternatively, we might restrict the maximal potential duration of the state of interest to be equal to some

positive real number S̄. In that case, noncompliers receive S(z) = S̄. We do not differentiate between these two
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arbitrary time structure of their compliance preferences. A cancer suffering patient might be
reluctant to accept a new therapy at an early stage of the disease, but his or her preference
might change at an advanced stage of the disease. Similarly, an unemployed person might
refuse a training early in the unemployment spell and be willing to attend it later on. To
account for the possibility of changing preferences, we refer to individuals who would be
willing to receive a treatment at some elapsed duration z, given that they were asked to do so,
as z-compliers. This notion generalizes the static compliance definition. This very general
framework allows us also to incorporate individual expectations about the own potential
outcome at different points in time.

Allowing for static selection is common in the standard literature on (static) treatment
evaluation, see Heckman and Vytlacil (2007). In a labor market program, unemployed
individuals might decide not to accept an offer for a training or a counselling service. An
often quoted example is the Job Training Partnership Act (JTPA) program, see Bloom, Orr,
Bell, Cave, Doolittle, Lin, and Bos (1997). In a medical study, patients assigned to drop out
from a therapy might be able to participate in a substitute program. Selection into or out
of a certain treatment status creates a potential endogeneity problem, which has given rise
to the development of the Local Average Treatment Effect (LATE) literature, see Imbens and
Angrist (1994). Typically, the randomized treatment assignment is used as an instrument for
the endogenous actual treatment status.2

While the standard LATE literature poses the evaluation problem as a static problem and
the time dimension is ignored, there is a branch of the econometric literature that focuses on
dynamic selection and precludes the possibility of static selection, see for example Eberwein,
Ham, and LaLonde (1997),Abbring and van den Berg (2003), Heckman and Navarro (2007)
for different methods of accounting for dynamic selection, as well as Abbring and Heckman
(2007) for an overview of dynamic treatment evaluation methods. Dynamic selection may
arise even when the experiment has been perfectly randomized at some initial point in time
t = 0 of the state of interest. If the unobserved heterogeneity interacts with the treatment
status, then its distribution at a later point in time t > 0 might differ between the different
treatment arms due to differences in the dynamics of transitions, see also Abbring and
van den Berg (2005). We develop a framework that deals with both static and dynamic types
of selection. Thus, we provide the link between the two branches of literature.

Let T be the actual duration of the spell. T might be right censored by a random variable
C. Define T̃ ∶= min{T,C} and the censoring indicator δ ∶= 1{T̃ = T}. We observe (T̃, δ) and
not directly (T,C). We assume access to an i.i.d. sample

(T̃1,S1,Z1,X1, δ1), . . . , (T̃n,Sn,Zn,Xn, δn),

where Si is missing if Si > T̃i.

Remark
Unless explicitly otherwise stated, we will denote with t, s, z elapsed durations in O (and not
calender time). Thus, for example, 0 refers to the point in time of inflow of an agent into O.
Furthermore, we do not need a binary process Di(t) that denotes the treatment status of an
agent i at time t. Before the calender point in time r, nobody is treated. After r, all compliers

cases and write ∞.
2In line with the biometry literature, this instrument is also called Intention-to-Treat (ITT)
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are treated, that is, all individuals whose value of S is equal to the corresponding value of Z.
Therefore, the treatment status can be deduced from S, Z and the calender time.

The treatment effect of interest is

P(T(s) ∈ [t, t + a) ∣ T(s) ≥ t′,X,V) − P(T(s′) ∈ [t, t + a) ∣ T(s′) ≥ t′,X,V), (1.3.1)

that is, the additive effect of replacing the treatment s′ with the treatment s on the probability
to exit the state of interest between t and t + a conditionally on surviving up to t′. The case
s′ = ∞ induces a comparison between those treated at s and those never treated. Another
special case is the limit case a→ 0, t′ = t. Denote with θT(s)(t ∣ X,V) the hazard of T(s) at t for
an individual with characteristics X and V. Then the individual additive treatment on the
hazard at t is defined as

θT(s)(t ∣ X,V) − θT(s′)(t ∣ X,V). (1.3.2)

It reflects the additive change in the exit rate induced by a change of the treatment from s′ to
s. Additive effects on the distribution of the potential outcome are common in the literature,
see for example Fredriksson and Johansson (2008) and Crépon, Ferracci, Jolivet, and Van den
Berg (2009) for an effect on the unconditional survival function, Abbring and van den Berg
(2005) for an effect on the conditional survival function, Van den Berg, Bozio, and Dias
(2014) for an effect on the hazard. One appealing feature of additive treatment effects is their
intuitive interpretation. To see this, write P(T(s) ∈ [t, t + a) ∣ T(s) ≥ t′) = E[1{T(s) ∈ [t, t + a)} ∣

T(s) ≥ t′,X,V]. The indicator function is a Bernoulli random variable and its distribution is
completely determined by its expectation.

Traditionally, the literature has focused on identifying the (additive) effect on the uncon-
ditional survival function, that is, t′ = 0:

P(T(s) ∈ [t, t + a) ∣) − P(T(s′) ∈ [t, t + a)), (1.3.3)

see Fredriksson and Johansson (2008), Crépon, Ferracci, Jolivet, and Van den Berg (2009) and
Abbring and van den Berg (2005). This approach precludes dynamic selection, see Abbring
and van den Berg (2005) for a discussion.3 Often though it might be of interest to identify
the effect of a treatment assigned at a later point in time only for those who actually would
receive the treatment. In the labor market example, such a case would arise if a treatment is
targeted at longterm unemployed individuals. In the medical example, due to its side effects,
a therapy might be targeted only at patients who are at an advanced stage of a disease. For
this reason, we consider the general case of conditioning on survival up to a point t′ = t for
0 ≤ t = s < s′ ≤∞, that is

P(T(t) ∈ [t, t + a) ∣ T(t) ≥ t,X,V) − P(T(s′) ∈ [t, t + a) ∣ T(s′) ≥ t,X,V). (1.3.4)

We do not impose a parametric form on the distribution of T(s) and we allow for separability
and general dependence of observed and unobserved covariates X and V, respectively. The
restriction t = s is necessary to ”unify” the dynamic selection between treated and untreated,
as discussed in the next subsection. By redefining s to be the time to dropout of a treatment,
we can analyze the effect of the length s of a treatment on the distribution of T(s).

3Abbring and van den Berg (2005) consider a case with conditioning on a positive elapsed spell duration,

t′ > 0, that is, conditioning on T(s) > t′, t′ > 0, and derive bounds for the effect.
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There are two limitations we have to consider. First, not specifying the dependence of the
distributions of T(s) and the unobservables V makes it impossible to identify the individual
treatment effect 1.3.4. The price to pay for the functional form generality is that we have to
average V out. Due to dynamic selection, the distribution of the unobservables might 1) be
different in the subpopulation of survivors at some point in time t > 0 from the distribution
in the whole population and 2) differ among different treatment arms. Therefore, it arises
the question over which distribution of V to average. Van den Berg, Bozio, and Dias (2014)
suggest the following treatment effects:

E[P(T(s) ∈ [t, t + a) ∣ T(s) ≥ t,X,V) − (1.3.5)
P(T(s′) ∈ [t, t + a) ∣ T(s′) ≥ t,X,V) ∣ T(s) ≥ t,X]

E[P(T(s) ∈ [t, t + a) ∣ T(s) ≥ t,X,V) − (1.3.6)
P(T(s′) ∈ [t, t + a) ∣ T(s′) ≥ t,X,V) ∣ T(s′) ≥ t,X]

E[P(T(s) ∈ [t, t + a) ∣ T(s) ≥ t,X,V) − (1.3.7)
P(T(s′) ∈ [t, t + a) ∣ T(s′) ≥ t,X,V) ∣ T(s) ≥ t,T(s′) ≥ t,X].

The authors refer to those effects as Average Treatment Effect (ATE) on the Treated Survivors,
ATE on the nontreated survivors, and ATE on the survivors respectively. We will adapt these
definitions to our framework.

A second limitation is that, due to the possibility of static selection, one can observe only
the t-compliers with the treatment. This problem has been discussed in the literature on static
treatment effects, see Imbens and Angrist (1994). Their solution is to consider only a treatment
effect on the subpopulation of compliers. We adapt this restriction to our dynamic concept
of compliance. We condition on S(t) = t. This restricts the analysis to the subpopulation of
t-compliers, that is, to those individuals who would take the treatment at an elapsed duration
of t if they were asked to do so. With these considerations, we define the Average Treatment
Effect on the Treated Complying Survivors, shortly TE, as

TE(t, t′a) ∶= E[P(T(t) ∈ [t, t + a) ∣ T(t) ≥ t,S(t) = t,X,V) − (1.3.8)
P(T(t′) ∈ [t, t + a) ∣ T(t′) ≥ t,S(t) = t,X,V) ∣ T(t) ≥ t,S(t) = t,X].

The effects on the nontreated and on the whole population are defined analogously.4 The
positive constant a is chosen such that a < t′ − t. This restriction insures a comparison of
treated with nontreated individuals. Similarly, the treatment effect on the hazard (HTE) is
defined as

HTE(s, s′) ∶= E[θT(s)(t ∣ S(t) = t,X,V) − (1.3.9)
θT(s′)(t ∣ S(t) = t,X,V) ∣ T(s) ≥ t,S(t) = t,X].

Remark
An alternative treatment effect that can be considered in this framework is a relative effect
on the hazard rate at t, θT(s)(t ∣ X,V)/θT(s′)(t ∣ X,V). Abbring and van den Berg (2005) prove
identification of this treatment effect under multiplicative unobserved heterogeneity, that is,
under θT(s)(t ∣ X,V) = θ∗T(s)(t ∣ X).V. We do not pursue this approach here.

4In fact, they coincide under the assumptions introduced in the next subsection, see proposition 1.3.1.

14



1.3.2 Identification of dynamic treatment effects

In this section, we show that there exists a function that links the joint distribution of the
observables with the treatment effect. As a result, the treatment effect is identified. We derive
this function explicitly. Thus, our identification strategy is constructive in the sense that it
provide a guidance for estimation. We adopt the following assumptions:

A1 (Single treatment) : for any t it holds either S(t) = t or S(t) = +∞.

A2 (No anticipation) : For each real t′ ≥ t ≥ 0 and each X,V holds

ΘT(t′)(t ∣ X,V,S(t) = t) = ΘT(∞)(t ∣ X,V,S(t) = t),

where ΘT(s) is the integrated hazard of T(s). Similarly, we assume ”no anticipation” on
the set of noncompliers {S(t) =∞}, and on all other subpopulations that occur below.

A3 (Randomization) : For the instrument Z it holds

i) Z y {T(s),S(t)} ∣ X,V and ii) Z y V ∣ X.

A4 (Consistency) For all t, s ∈ R+⋃{+∞}

i) Z = t⇒ S(t) = S

ii) S = s⇒ T(s) = T

1. Assumption A1 defines the possible types of noncompliance. Agents are only allowed
to choose between being treated at the assigned point in time and being never treated.
A1 precludes the type of choices S(t) = t′ for some t′ ≠ t with t′ <∞. A1 is compatible
with a setup where the treatment is administered at a single point in calender time
and agents have no access to an alternative treatment. This setup corresponds to a
one-sided noncompliance in the static treatment evaluation literature. Assumptions
A1 and A4 imply together that the actual elapsed duration at which the treatment is
received, S, can be either equal to Z or to ∞.

2. Assumption A2 states basically that future treatments are not allowed to influence the
past. The assumption can be rewritten in the more intuitive way P(T(t) ≥ t ∣ X,V,S(t) =
t) = P(T(t) ≥ t ∣ X,V,S(t) = t). It implies that the individual probability of a survival up
to t is the same for any two future treatments t′, t′′, t ≤ t′, t′′. In a model with forward
looking agents, A2 requires that agents either have no knowledge on the point in time
of treatment (i.e. they do not anticipate it) or that they do not act upon that knowledge.5

Technically, jointly with assumption A3, the ”no anticipation” assumption is used to
ensure equal pretreatment patterns of dynamic selection in the different treatment
arms. Thus, it plays a similar role as the sequential randomization assumption. The
”no anticipation” assumption has been used in the biostatistics literature in a stronger
form and then adopted by the econometric dynamic treatment literature, see Abbring
and van den Berg (2003) for a discussion. Although it is a strong assumption, it appears
to be plausible in numerous settings in labor market context. First, often the start of

5Or that their actions are ineffective.
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a training program and the assignment to treatment are dictated by budget and other
administrative reasons and appear to the unemployed as random. Those assigned to
the treatment might be chosen at random from all eligible unemployed. Moreover, the
assignment may occur without a preliminary notice so that the timing is unexpected
to the unemployed. An example for such a setting is found in Fitzenberger, Orlanski,
Osikominu, and Paul (2013) who analyze the effect of short term training measures
in the German unemployment system. Second, the exact content and point in time
of implementation of a policy reform are often a subject to persistent debates. The
resulting uncertainty might deter agents from building an anticipation about start and
content of the reform. In our empirical application, we argue that this argument in fact
holds in the case of the French policy reform PARE.

3. Assumption A3 is a randomization assumption. A3 i) implies that once we condition
on observables and unobservables, there is no selection into the different treatment
assignments. Taken together, i) and ii) imply the conditional independence assumption

Z y {T(s),S(t)} ∣ X. (1.3.10)

In the labor market example, A3 requires a stable (macro-) economic environment in
the period of consideration. Economic structural brakes and mass layoffs might cause
a violation of A3. The implication 1.3.10 is testable.

4. The consistency assumption implies that a potential outcome corresponding to a given
treatment is observed if the treatment is actually assigned. Another way to write it is
T = T(S),S = S(Z). A4 provides the link between potential outcomes and observations
and is necessary for identification. It can be related to a structural interpretation of
potential outcomes, see Pearl (2000) for a discussion.

In addition to assumptions 1-4, we implicitly assume that all expressions below exist. This
amounts to common support assumptions such as 0 ≤ P(S = t ∣ X,V,Z = t). These assumptions
imply either that S and Z are discrete or that at least they have a positive probability mass on t
and t′. Whether discrete Z and S impose a restriction on the distribution of T depends on the
concrete application. In the medical treatment example, a specific therapy might be assigned
only at predetermined, common for everybody, elapsed time intervals of the disease, whereas
the life or disease duration itself is a continuous variable. In the labor market example, the
administrative duration of unemployment is always discrete. Nevertheless, it is usually
modeled in the literature as a continuous variable, especially when it is measured on a daily
basis. On the other hand, labor market treatments such as training and counselling measures
or financial penalties might be designed to come into force only at coarser time intervals.
Therefore, it might be practical to model them as discrete variables.

Suppose for the moment that T is observable. The case with right censoring is considered
at the end of this subsection. As a motivation for our identification strategy, consider first
the following naive candidates for a treatment effect:

P(T ∈ [t, t + a) ∣ T ≥ t,X,S = t,Z = t) − P(T ∈ [t, t + a) ∣ T ≥ t,X,S =∞,Z = t) (1.3.11)

and

P(T ∈ [t, t + a) ∣ T ≥ t,X,S = t,Z = t) − P(T ∈ [t, t + a) ∣ T ≥ t,X,S = t′,Z = t′). (1.3.12)
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Writing 1.3.11 in the form

E[P(T ∈ [t, t + a) ∣ T ≥ t,X,S = t,Z = t,V) ∣ T ≥ t,X,S = t,Z = t] −
E[P(T ∈ [t, t + a) ∣ T ≥ t,X,S =∞,Z = t,V) ∣ T ≥ t,X,S =∞,Z = t]

makes it clear that it compares averages over two different subpopulations of the same
cohort: the t-compliers and the t-noncompliers. These two subpopulations might have
different distributions of the unobserved heterogeneity V because the treatment status S is
a choice variable. As a consequence, it would hold V á S ∣ T ≥ t,X,Z = t. We will refer to
this consequence as static endogeneity or static selection. The (potential) endogeneity arises
immediately with the decision to accept or refuse the treatment. As a result, 1.3.11 would
capture not only the treatment effect but also the bias from the static selection. We use the
naive treatment effect 1.3.11 to analyze the nature of endogeneity. We compare it to our
IV estimator to construct a test for exogeneity, see section 1.3.5 for details. The difference
between 1.3.11 and the IV estimator is informative about the selection process. A better
understanding of the selection might be used to impose more structure on the model. In our
empirical application, an estimator of 1.3.11 is shown to underestimate the positive treatment
effect. Hence, the control group must contain many quick exits, which sheds light on the
reasons for the non-take up of the reform.

The naive treatment effect 1.3.12 compares the average outcome of the t-compliers from the
younger cohort {Z = t} with the average outcome of the t’-compliers of the older cohort {Z =

t′}. Due to dynamic selection, this comparison amounts to averaging over two potentially
different distributions of V. 1.3.12 can be used to shed light on the nature of this dynamic
selection process.

Both examples demonstrate the importance and difficulty of the choice of a treatment
and a control groups in a setting with static and dynamic selection. Previous studies either
preclude static selection by imposing perfect compliance, or preclude dynamic selection
through conditioning on T > 0 6. We propose a strategy that can deal with both types of
selection. The intuition for this strategy is as follows. An appealing choice for a treatment
group is the set of compliers from the cohort {Z = t}: consistency links observed outcomes of
the treated compliers with the potential outcomes. Suppose for the moment that we observe
the potential compliance status at any point in time. Then, one possible control group for
the treated t-compliers from cohort {Z = t} would be the not yet treated group of t-compliers
from the older cohort who survive at least t time units. The intuition behind this choice is
the following. If the the unobserved heterogeneity V has the same distribution in the two
cohorts at the point in time of inflow, and if these distributions evolve over time in the same
way, then V will have the same distribution in the two cohorts at a later pretreatment elapsed
duration t > 0. The equality of the distributions of V at t = 0 is ensured by the randomization
assumptions A3 i) and ii). The dynamics is controlled by the ”no anticipation” assumption
A2. This idea is first developed in Van den Berg, Bozio, and Dias (2014) for the case of perfect
compliance. It amounts to a direct comparison of the average outcomes of two cohorts. The
method is closely related to the Regression Discontinuity approach developed by Hahn, Todd,
and van der Klaauw (2001) but has the main advantage that it can incorporate censoring and
deal with dynamic selection. In a first step, we adapt the result of Van den Berg, Bozio, and
Dias (2014) to a setting with endogenous compliance.

6Instead of conditioning on T > t for some t > 0.
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Proposition 1.3.1. Let F be a cdf. Under Assumptions A2 to A4, it holds for all ∞ ≥ t′ ≥ t ≥ 0

FV∣T(t)≥t,X,S(t)=t = FV∣T(t′)≥t,X,S(t)=t = FV∣T≥t,X,S=t,Z=t.

Proposition 1.3.1 states that the unobservables have the same dynamics for two potential
treatments on the set of t-compliers. It also links the distribution of V given a potential
treatment to the distribution of V in the subpopulation of observed t-compliers, {S = t,Z = t}.
There are two immediate consequences of 1.3.1. First, the treatment effects on the treated
survivors, on the nontreated survivors and on all survivors, respectively, coincide. Second,
the following result holds:

Corollary 1.3.2.1.

TE(t, t′, a) = P(T(t) ∈ [t, t + a) ∣ T(t) ≥ t,X,S(t) = t)

−P(T(t′) ∈ [t, t + a) ∣ T(t′) ≥ t,X,S(t) = t)

Corollary 1.3.2.1 provides a direct hint how to choose the treatment group. t-compliers
from the cohort {Z = t} reveal their preferences at the point in time of treatment. We can
therefore link potential and observed outcomes using A4, proposition 1.3.1 and corollary
1.3.2.1. We show in the proof of proposition 1.3.2 that

P(T(t) ∈ [t, t + a) ∣ T(t) ≥ t,X,S(t) = t) = P(T ∈ [t, t + a) ∣ T ≥ t,X,S = t,Z = t). (1.3.13)

The main obstacle for constructing a control group is that we do not observe the compliance
status of individuals in the older cohort {Z = t′} at elapsed duration t. Agents reveal their
preferences at the time of treatment. In line with the argumentation above, due to dynamic
selection, the subpopulation of t’-compliers differs from the subpopulation of t-compliers in
terms of the distribution of V. The key to identification is the observation, that the potential
outcome corresponding to a certain treatment is the sum of potential outcomes of compliers
and noncompliers, weighted by their proportions:

P(T(t′) ∈ [t, t + a) ∣ T(t′) ≥ t,X) = (1.3.14)
P(T(t′) ∈ [t, t + a) ∣ T(t′) ≥ t,X,S(t) = t)P(S(t) = t ∣ T(t′) ≥ t,X) +

P(T(t′) ∈ [t, t + a) ∣ T(t′) ≥ t,X,S(t) =∞)P(S(t) =∞ ∣ T(t′) ≥ t,X),

or, in a simplified notation,
F0 = FC,0PC + FN,0PN, (1.3.15)

where the zero indicates the no-treatment case7, t′ > t + a, and, with a temporary abuse
of notation, C and N denote compliers and noncompliers, respectively. In order to link
FC,0 = (F0 −FN,0PN)/PC to observables, it is sufficient to express F0,PC,PN and FN,0 in terms of
observables. Due to the consistency assumption A4, F0 is equal to P(T ∈ [t, t+ a) ∣ T ≥ t,X,Z =

t′).8This is an intuitive result. F0 is the potential outcome when the treatment t′ is assigned

7The correct expression should be ”not yet treated-case”. Under the ”no anticipation” assumption, however,

this distinction does not matter in the interval [t, t + a).
8All formal proofs can be found in the appendix.
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whereas P(T ∈ [t, t + a) ∣ T ≥ t,X,Z = t′) is the actual outcome corresponding to the same
treatment. Next, due to the assumptions A2 and A3, PC and PN do not depend on the future
treatment t′ ≥ t. Therefore, it holds PC = P(S(t) = t ∣ T(t) ≥ t,X) and PN = P(S(t) =∞ ∣ T(t) ≥
t,X). Furthermore, agents from the cohort {Z = t} who survive until elapsed duration t reveal
their preference at T = t. Hence, P(S(t) = t ∣ T(t) ≥ t,X) and P(S(t) = ∞ ∣ T(t) ≥ t,X) can
be linked via the consistency assumption to the observed average outcomes of the compliers
and noncompliers of the cohort {Z = t}. Finally, we make the important observation that
t-noncompliers should have the same average potential outcome at T = t when the assigned
treatment is either t or t′ > t+a. This is an implication of the ”no anticipation” and consistency
assumptions. In both cases they are not treated between t and t + a. Therefore, it holds

P(T(t′) ∈ [t, t + a) ∣ T(t′) ≥ t,X,S(t) =∞) = P(T(t) ∈ [t, t + a) ∣ T(t) ≥ t,X,S(t) =∞). (1.3.16)

The right-hand side of 1.3.16 can be linked to observables via A4. F0 is observed directly in
the cohort {Z = t′} whereas PC,PN and FN,0 are identified from the cohort {Z = t}. In the
following proposition we state the main result of our paper.

Proposition 1.3.2. Let a ≤ t′ − t. Under Assumptions A1-A4, TE(t, t′, a) is nonparametrically

identified and it holds

(1.3.17)

TE(t, t′, a) =
P(T ∈ [t, t + a) ∣ T ≥ t,X,Z = t) − P(T ∈ [t, t + a) ∣ T ≥ t,X,Z = t′)

P(S = t ∣ T ≥ t,X,Z = t)

The proof is in the appendix. Expression 1.3.2 has an intuitive interpretation. It adjusts
the difference between the average observed outcomes in the two cohorts by the probability
to be a complier. The adjustment takes account of the fact, that any difference between the
two cohorts can be caused only by the compliers. The exogenous Z acts as an instrument for
the endogenous S. Thus, our result is a dynamic generalization of the standard static LATE
literature. Expression 1.3.2 appears to be similar to the static one-sided noncompliance result
of Bloom (1984). This resemblance seems natural in a setting where agents are allowed to
refuse an assigned treatment but are not able to select into an alternative treatment arm (i.e.
choose a different point in time of treatment).

Unlike in the static treatment evaluation models, randomization alone is not enough to
ensure identification. An experiment might be randomized at t = 0 but due to dynamic
selection endogeneity arises over time. The ”no anticipation” assumption precludes this
possibility. As a result, our model deals successfully with both static and dynamic selection
and thus it provides the link between the standard LATE literature and the literature on
dynamic treatment evaluation.
Remark

A special case of 1.3.2 is the limit case a → ∞. We devote a separate section on its
identification and estimation because of the importance and specifics of hazards.
Remark 2

An implicit consequence of the assumptions A1-A4 is that the treatment effects do not
depend on t′ as long as t′ > t. Therefore, we omit the dependence on t′ and write TE(t, a) and
HTE(t).
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A comparison to related methods should highlight the advantages of our approach and
the tradeoff between the strength of assumptions and the generality of results. The recent
literature on dynamic treatment evaluation can be roughly divided into (dynamic) match-
ing estimators, dynamic discrete choice models and the Timing-of-Events approach.9 Some
influential studies in the first category are the papers of Sianesi (2004), Fredriksson and Jo-
hansson (2008) (henceforth abbreviated as FJ) and Crépon, Ferracci, Jolivet, and Van den
Berg (2009) (CFJB). All of them achieve nonparametric identification of an additive average
treatment effect.10 Sianesi (2004) assumes that there is no unobserved heterogeneity and
adapts a conditional independence assumption (CIA). Similarly, FJ assume that the unob-
served heterogeneity does not jointly determine the employment and treatment assignment.
Thus, both methods require very rich data sets. Additionally, FJ do not develop a method
for constructing the standard errors. CFJB adopt a CIA and a ”no anticipation” assumption.
All three papers assume perfect compliance.

Next, some important contributions in the literature on dynamic discrete choice models
are made for example in Taber (2000) and Heckman and Navarro (2007)(HN). See Abbring
and Heckman (2007) for additional references. These approaches typically heavily rely on
the ”identification at infinity” approach, which assumes that the support of the exclusion
restriction is very large. We discuss only HN here (its reduced form model). The biggest
advantage of their approach is the complex nature of the identified treatment effects. First,
they are able to consider potential outcomes Y(s, t), t ≥ s, where t is the point in time of
realization of the outcome (such as e.g. age of the agent) and s is the point in time at which
the treatment is received. We only consider the case t = s.11 This is not a serious drawback of
our approach though: by redefining S to be the duration of a stay in a certain treatment, we
are also able to analyze the effect of the duration of the treatment. More importantly, HN are
able to identify the joint distributions of the counterfactuals. This is an important advantage
as it allows answering more complex policy questions. Furthermore, HN’s approach allows
for a very general time-varying nature of the unobservables. Their identification is based
on an explicit modelling of the selection, as well as on a factor structure of the unobserv-
ables. There are several potential restrictions of their approach. First, the explicit modelling
of selection requires large variation in the exclusion restriction (”identification at infinity”).
Moreover, their identification strategy crucially depends on the separability and indepen-
dence of observed and unobserved covariates. We allow X and V to be arbitrary dependent
and need no separability assumptions. Next, the price to pay for the identification of joint
distributions is the factor analysis assumptions. Normalization and exclusion restrictions
are rather arbitrary, unless a measurement system for the choice equations (proxies for the
factors) is available. In addition, and maybe most importantly, the approach of HN considers
only perfect compliance.

The last category of methods, the Timing-of-Events approach, is developed in the influ-
ential paper of Abbring and van den Berg (2003). Similarly to HN, the main advantage of this
method is the generality of the treatment effect that can be identified. Identifications relies on
the semiparametric structure of the Mixed Proportional Hazard (MPH) method and on the
independence of unobserved and observed covariates. As in the previous papers discussed

9See Abbring and Heckman (2007) for a survey.
10A direct effect, E[Y1 − Y0], or a distributional one.
11In particular, in the hazard case a→ 0 this amounts to considering only an instantaneous treatment effect.
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here, noncompliance is not considered.
Thus far, we have assumed we can observe the whole length of spells in the state of

interest, T. A typical feature of duration data is that observations might be censored. In this
paper, we consider right censoring.12 In labor market studies, right censoring typically arises
when at the end of the study the individuals are still unemployed, so the unemployment
spell has an unknown length. The unemployed might also simply stop attending the training
and drop out of the study (sample attrition). In addition, the job search might be interrupted
by a transition out of the labor force due to maternity, sickness, military service or other
reasons. In biomedical studies, and particularly in clinical trials, spells are right-censored
when patients die from another cause (competing risks) or withdraw from treatment. We
introduce formally right censoring in the following way: let C be a real nonnegative random
variable. We observe (T̃, δ) and not directly (T,C). It is not possible to recover nonpara-
metrically the joint distribution of T and C from the distribution of (T̃, δ) without additional
assumptions. The reason for this impossibility is a nonidentification result that goes back to
Cox (1962) and Tsiatis (1975), namely that to each pair of latent variables (Td,Cd) there exists
an independent pair of variables (Ti,Ci) that is observationally equivalent to (Td,Cd). To
achieve identification, we adopt the following additional standard assumption:

A5) (Random censoring)
C y (T,S) ∣ X,Z.

Assumption A5 is nontestable due to the nonidentification result of Tsiatis (1975). In the
context of our empirical application, we show with a Monte Carlo simulation that plausible
violations of A5 offset each other. Thus, our estimation results are likely to be robust against
violations of A5. With A5, we can prove the following proposition:

Proposition 1.3.3. Under assumptions A1 - A5 TE(t,X) is identified.

The proof of 1.3.3 is straightforward. The probabilities P(T ∈ [t, t + a) ∣ T ≥ t,X,Z = j) for
j ∈ {t, t′} can be written as differences of survival functions and be estimated consistently
with a Kaplan-Meier estimator, see section 1.3.3 for details. Note also that S is observed
whenever T̃ ≥ t, so that due to A5

P(S = t ∣ T ≥ t,X,Z = t) = P(S = t ∣ T ≥ t,C ≥ t,X,Z = t) = P(S = t ∣ T̃ ≥ t,X,Z = t). (1.3.18)

The last probability in 1.3.18 contains only observables and can be consistently estimated
from the data.

1.3.3 IV estimation of dynamic treatment effects

To ease notation, probability and survival functions concerning the cohorts {Z = t} and
{Z = t′} are denoted with an index 1 and 2, respectively. For example, we write P1(T ∈

[t, t + a) ∣ T ≥ t,Z = t) instead of P(T ∈ [t, t + a) ∣ T ≥ t,Z = t). Furthermore, we ignore the
dependence on observed covariates X. Assumptions A2 and A3 are adapted accordingly.
The generalization to the case with covariates is straightforward. Denote with F̄1 and F̄2

12Extensions to left or interval censoring are straightforward.
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the survival functions of T in the two cohorts, F̄i(t) ∶= Pi(T > t). A starting point for our
estimation procedure is the equality

TE(t, a) =
1

P1(S = t ∣ T ≥ t)
(

F̄2(t + a)
F̄2(t)

−
F̄1(t + a)

F̄1(t)
), (1.3.19)

which holds under assumptions A1-A4. It follows from the result in proposition 1.3.2 together
with Pi(T ∈ [t, t + at) ∣ T ≥ t) = 1− F̄i(t+ a)/F̄i(t). T might be censored so that we only observe
(T̃, δ). F̄i(t) can be consistently estimated with the Kaplan-Meier estimator. Under the
independent censoring assumption A5 and additional mild regularity conditions, it holds

̂̄
iF(t) = F̄i(t) + op and (1.3.20)

√
n ( ̂̄

iF(t) − F̄i(t))
d
→ N(0, σi(t)) as n→∞, (1.3.21)

where σi(t) is the asymptotic variance of the Kaplan-Meier estimator. The additional regu-
larity conditions can be found in standard references for survival analysis, see e.g. Andersen,
Borgan, Gill, and Keiding (1997), chapter IV.3 or Kalbfleisch and Prentice (2002), chapter 5.6.
We refer to them as KM conditions and do not state them explicitly (all results hold for both
continuos and discrete time).

Next, under the independent censoring assumption, it holds

P1(S = t ∣ T ≥ t) = P(S = t ∣ T ≥ t,Z = t,C ≥ t) = P1(S = t ∣ T̃ ≥ t) =∶ p > 0. (1.3.22)

p contains only observables and is nonparametrically identified. Let p̂ ∶= P̂1(S = t ∣ T̃ ≥ t) be a
consistent nonparametric estimator of p. We define the IV-estimator T̂E(t, a) of TE(t, a) as

T̂E(t, a) =
1
p̂
(
̂̄

2F(t + a)
̂̄

2F(t)
−

̂̄
1F(t + a)
̂̄

1F(t)
). (1.3.23)

Its properties follow from the properties of the Kaplan-Meier estimator. The following
proposition states the consistency of 1.3.23.

Proposition 1.3.3.1. Under assumptions A1-A5 and the KM conditions, it holds

T̂E(t, a) − TE(t, a) = op

for each admissible pair (t, a).

This result follows directly from the continuity of the function G(a, b, c,d, e) = 1
e (

a
b −

c
d),

the Continuous Mapping Theorem and the consistency of F̄i(t) and p̂.
Consider the Null hypothesis

H0 ∶ (Ineffective treatment)
F̄2(t + a)

F̄2(t)
−

F̄1(t + a)
F̄1(t)

= 0. (1.3.24)
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Under 1.3.24, it holds

√
nT̂E(t, a) =

√
n

p̂
(
̂̄

2F(t + a)
̂̄

2F(t)
−

̂̄
1F(t + a)
̂̄

1F(t)
) =

=

√
n

p̂
(
̂̄

2F(t + a)
̂̄

2F(t)
−

F̄2(t + a)
F̄2(t)

) −

√
n

p̂
(
̂̄

1F(t + a)
̂̄

1F(t)
−

F̄1(t + a)
F̄1(t)

)

For i = 1,2 the Taylor expansion of
̂̄

iF(t+a)
̂̄

iF(t)
around F̄i(t+a)

F̄i(t) can be written as

̂̄
iF(t + a)
̂̄

iF(t)
=

F̄i(t + a)
F̄i(t)

+
1

F̄i(t)
( ̂̄iF(t + a) − F̄i(t + a)) −

F̄i(t + a)
F̄2

i (t)
( ̂̄iF(t) − F̄i(t))

+O[( ̂̄iF(t + a) − F̄i(t + a))( ̂̄iF(t) − F̄i(t)) + ( ̂̄iF(t) − F̄i(t))2],

and therefore
√

n(
̂̄

iF(t + a)
̂̄

iF(t)
−

F̄i(t + a)
F̄i(t)

) =

√
n

F̄i(t)
( ̂̄iF(t + a) − F̄i(t + a)) −

F̄i(t + a)
√

n
F̄2

i (t)
( ̂̄iF(t)

−F̄i(t)) +O[
√

n( ̂̄iF(t + a) − F̄i(t + a))( ̂̄iF(t) − F̄i(t)) +
√

n( ̂̄iF(t) − F̄i(t))2].

The last term converges to zero in probability.

With 1.3.21, the terms
√

n
SF̄i(t)

( ̂̄iF(t + a) − F̄i(t + a)) and
F̄i(t + a)

√
n

F̄2
i (t)

( ̂̄iF(t) − F̄i(t))

are asymptotically normally distributed with mean 0 and variances

1
F̄2

i (t)
σi(t + a) and

F̄2
i (t + a)
F̄4

i (t)
σi(t), respectively.

With the independence of the random variables D1 and D2, where Di =
̂̄

iF(t+a)
̂̄

iF(t)
, i = 1,2, we can

now state the following proposition.

Proposition 1.3.3.2. Let assumptions A1-A5 and the KM conditions hold. Then, under the null

1.3.24, it holds

T̂E(t, a)
d
→ N(0,

1
p2

2

∑
i=1

(
1

S2
i (t)

σi(t + a) +
F̄2

i (t + a)
F̄4

i (t)
σi(t) +

F̄i(t + a)
F̄3

i (t)
σi(t, t + a))), (1.3.25)

where σi(t, t + a) is the covariance of ̂̄
iF(t) and ̂̄

iF(t + a).

Confidence bands can be constructed by replacing the unknown terms in the variance with
consistent estimates, for example using the Greenwood’s formula, see Andersen, Borgan,
Gill, and Keiding (1997). It follows from 1.3.25 that the precision of the estimator is inversely
related to p. The bigger the compliance probability p, i.e. the stronger the instrument Z for
the endogenous S, the smaller the variance of the IV-estimator. This intuitive result is in line
with the standard static IV literature. 1.3.23 can be interpreted as a dynamic version of the
Wald estimator. A generalization to the case of covariates can be achieved by replacing the
unconditional Kaplan-Meier estimator with the conditional estimator of Gonzalez-Manteiga
and Cadarso-Suarez (2007), following the same steps as here.
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1.3.4 Identification and estimation of additive treatment effects on the hazard

In this subsection, we state conditions under which the treatment effect on the hazard, 1.3.9,
is identified and develop the estimation theory. The HTE deserves a special attention for
two reasons. First, the hazard of the duration variable represents the most interesting feature
of its distribution in multiple applications, see Van den Berg (2001) for various examples
and a discussion. Second, estimation of hazard effects in a treatment evaluation framework
involves estimation at the boundary of the admissible domain. We develop an estimator that
takes into account the region of estimation and does not lead to an increased bias.

Identification

Write W = (X,V) and let ΩW be the set of possible values for W. Further, write Ψ(t ∣ X) ∶=

HTE(t,X) (we stress explicitly the dependence on X) and define θ(t ∣ X) ∶= limdt→0 P(T ∈

[t, t+dt ∣ T ≥ t,X))/dt (all expressions are assume to exist). The rest of the notation is the same
as in the last sections. Again we assume access to an i.i.d. sample

(T̃1,S1,Z1,X1, δ1), . . . , (T̃n,Sn,Zn,Xn, δn).

Our first result is the following

Proposition 1.3.4. Let the measurable function g ∶ ΩW → R
+ fulfill E[g(W)] <∞ and ∣ θ(t ∣ w) ∣≤

g(w) for each w ∈ ΩW. Then, under assumptions A1-A5, Ψ(t ∣ X) is identified and it holds

Ψ(t ∣ X) ∶=
θ(t ∣ X,Z = t) − θ(t ∣ X,Z = t′)

P(S = t ∣ T ≥ t,X,Z = t)
. (1.3.26)

Under the Lebesque dominated convergence theorem,

θ(t ∣ X) = lim
dt→0
E[P(T ∈ [t, t + dt) ∣ T ≥ t,X,V)/dt ∣ T ≥ t,X] = E[θ(t ∣ X,V)],

and the proof follows directly from proposition 1.3.2. Thus, as expected, the HTE is revealed
to be the limit case of the general treatment effect TE, HTE = limdt→0TE/dt. In the case of a full
compliance, that is P(S = t ∣ T ≤ t,X,Z = t) = 1, HTE reduces to θ(t ∣ X,Z = t) − θ(t ∣ X,Z = t′)
which is the result of Van den Berg, Bozio, and Dias (2014).

Estimation

Henceforth, we denote with θ1(t ∣ X) the hazard θ(t ∣ X,Z = t of the younger cohort , {Z = t},
and with θ2(t ∣ X) the hazard θ(t ∣ X,Z = t′) of the older cohort. If the treatment is effective,
there will be a structural break in the hazard at the moment of treatment. Hence, when
estimating Ψ(t ∣ X), only the observations T̃ that are bigger than or equal to t are informative
about θ1(t ∣ X).13This leads to estimating a hazard at the left boundary of the interval [t, T̄)

where T̄ is some maximum duration, possibly ∞. Smooth hazard estimators that use a
symmetric kernel would have a large bias at t, a problem called boundary effect in the

13This does not apply to θ2(t ∣ X).
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literature, Müller and Wang (1994). Without loss of generality, let [0,1] be the set of possible
values of the duration variable and b = b(n) a bandwidth of a kernel estimator, b < 0.5. The set
BL ∶= {t ∶ 0 ≤ t < b} is called a left boundary region (we do not discuss problems arising at the
right boundary here). Employing a symmetric kernel to estimate the hazard at a point from
that region could lead to a high bias, because the support of the kernel exceeds the range of
the data. In the interior (0,1), this is only a finite sample problem. At the boundary t = 0,
the problem persists with increasing sample size n. Boundary problems are not endemic to
hazards, they arise also in the estimation of a density function, see Karunamuni and Alberts
(2005). Müller and Wang (1994) develop a class of asymmetric kernels and use them to adapt
the unconditional Ramlau-Hansen estimator to the boundary case. The kernels vary with
the point of estimation and have a support that does not exceed the range of the duration
variable. These kernels are referred to as boundary kernels. Following this approach, we
adapt the conditional kernel hazard estimator of Nielsen and Linton (1995) to the case of
estimation at the boundary by using boundary kernels. For simplicity, we assume that we
estimate Ψ(t ∣ x) at an interior point x of ΩX. Let k be a symmetric one-dimensional density
function with support [−1,1], that is

∫
1

−1
k(y)dy = 1 and ∫

1

−1
yk(y)dy = 0

and define k1 and k2 as

k1 = ∫
1

−1
y2k(y)dy and k2 = ∫

1

−1
k2(y)dy.

Define the q-dimensional product kernel K(x) = Π
q
i=1k(x(i)), where x = (x(1), . . . ,x(q)). Next,

let k+ denote the asymmetric kernel function

k+ ∶ [0,1] × [−1,1]→ R

(h, y)→
12

(1 + h)4 (y + 1)[y(1 − 2h) + (3h2 − 2h + 1)/2].

This is a boundary kernel function as defined in Müller and Wang (1994). The support of
k+(h, .) is [−1,h]. In analogy to the symmetric kernel k, we define the second moments of
k+(0, .) as

k+1 = ∫
0

−1
y2k+(0, y)dy and k+2 = ∫

0

−1
k2
+(0, y)dy.

Using standard counting processes notation, define for i = 1, . . . ,n the observed failure process
of the ith individual at time t, Ni(t) ∶= 1{T̃i ≤ t,Ti ≤ Ci} and the individual process at risk,
Yi(t) ∶= 1{T̃i ≥ t}. To differentiate between observations from the cohorts 1, that is {Z = t},
and 2, that is {Z = t′}, we add a subscript 1 or 2, respectively. For example, X1,i denotes an
observation of X that comes from the cohort {Z = t}. Then our estimator Ψ̂(t ∣ x) of Ψ(t ∣ x)
is defined as

Ψ̂(t ∣ x) ∶=
1

̂p1(t ∣ x)
(
∑n

i=1 K(
x−X1,i

b ) ∫ k+(t, t−s
b )dN1,i(s)

∑n
i=1 K(

x−X1,i
b ) ∫ k+(t, t−s

b )Y1,i(s)ds
(1.3.27)

−
∑n

i=1 K(
x−X2,i

b ) ∫ k+(t, t−s
b )dN2,i(s)

∑n
i=1 K(

x−X2,i
b ) ∫ k+(t, t−s

b )Y2,i(s)ds
),
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where ̂p1(t ∣ x) is a consistent nonparametric estimator for p1(t ∣ x) ∶= P(S = t ∣ T ≥ t,X =

x,Z = t). The term

θ̂ j(t ∣ x) ∶=
∑n

i=1 K(
x−X j,i

b ) ∫ k+(t, t−s
b )dN j,i(s)

∑n
i=1 K(

x−X j,i
b ) ∫ k+(t, t−s

b )Y j,i(s)ds

for j = 1,2 is a conditional smooth hazard estimator for θ j(t ∣ x) developed in Nielsen and
Linton (1995) and adapted to the boundary case. Define

θ∗j (t ∣ x) ∶=
∑n

i=1 K(
x−X j,i

b ) ∫ k+(t, t−s
b )θ j(s ∣ X j,i)Y j,i(s)ds

∑n
i=1 K(

x−X j,i
b ) ∫ k+(t, t−s

b )Y j,i(s)ds
j = 1,2 (1.3.28)

and
Ψ∗(t ∣ x) =

1
̂p1(t ∣ x)

(θ∗1(t ∣ x) − θ∗2(t ∣ x)). (1.3.29)

We need the following assumptions.

H1 E[Yi(s)] = u(s) and u(.) is continuous

H2 i) f (t,x)u(t) is positive on a neighbourhood U of (0,x0), where x0 is an interior point
of ΩX and f is the density function. ii) θ j is twice continuously differentiable on U iii)
f u is continuously differentiable on U.

H3 nbq+1 →∞ and b = b(n)→∞ as n→∞.

The following proposition states the pointwise asymptotic properties of Ψ̂(0 ∣ x0).

Proposition 1.3.5. Under assumptions H1-H3, the following results hold:

i)
√

nbq+1(Ψ̂(0 ∣ x0)−Ψ∗(0 ∣ x0))
d
→ N[0, k+2 kq

2
1

p2
1(0∣x0)

(θ1(0 ∣ x0)/ f1(0,x0)+θ2(0 ∣ x0)/ f2(0,x0))]

iii) nbq+1

̂p1(0∣x0)
2 ∑

2
j=1

∑n
i=1 K2(

x0−Xj,i
b ) ∫ k2+(−s

b )dN j,i(s)

(∑n
i=1 K(

x0−Xj,i
b ) ∫ k+(−s

b )Y j,i(s)ds)2

p
→ k+2 kq

2
1

p2
1(0∣x0)

(θ1(0 ∣ x0)/ f1(0,x0)+θ2(0 ∣ x0)/ f2(0,x0))

Result i) gives the asymptotic distribution of the estimator, ii) characterizes the bias and
iii) provides the standard errors for confidence bounds around Ψ∗. If the bandwidth is
chosen to be of o(n−1/(q+5)), then the asymptotic bias is negligible and proposition 1.3.5 can
be used to construct confidence bands for Ψ.

1.3.5 Framework for the analysis of endogeneity

Understanding the nature of selection is important for setting up and evaluating a policy
reform. Often a comprehensive policy reform is preceded by a small scale pilot study that
allows for noncompliance. Understanding the non-take up of the pilot study might help
better design the reform and derive bounds for its effect under perfect compliance. Better
understanding of the endogeneity reasons can be used to model explicitly the selection
process in more complex (e.g. general equilibrium) models. We develop a framework for
answering the following two questions:
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i) Is there endogenous selection caused by the decision of the agents to accept or refuse
the treatment?

i)) If yes, in which direction would be the bias caused by the endogenous selection?

Answering the first question requires a specification of the possible channels of (static) endo-
geneity. In our framework, there are two potential endogeneity channels. First, unobserved
characteristics of the agents determine both potential outcomes and the potential compliance
decision. Second, the potential outcome itself (that is, after ”controlling” for observed and
unobserved individual characteristics) might influence the potential compliance status. The
first channel amounts to a violation of

S(t) y {T(s)} ∣ X (1.3.30)

and the second of
S(t) y {T(s)} ∣ X,V (1.3.31)

We preclude the possibility of a violation of 1.3.31: we assume that the only way the potential
outcome might influence the decision S(t) is that the agent might have a knowledge of T(s)
and use it in the decision process. This individual knowledge of the potential outcome (or
its distribution) is unobserved by the econometrician. It is therefore included in V.14 With
these considerations, we define the following null hypothesis:

H0 ∶ S(t) y {T(s)} ∣ X (1.3.32)

For Borel-measurable sets B, 1.3.32 implies the following relation:

H̃0 ∶ P(T(∞) ∈ B ∣ T(∞) ≥ t,X,S(t) = t) − P(T(∞) ∈ B ∣ T(∞) ≥ t,X,S(t) =∞) = 0. (1.3.33)

Using A1-A4 and following the steps in proof of proposition 1.3.2, we obtain the equivalent
relation

H̃0 ∶ P(T ∈ B ∣ T ≥ t,X,Z = t′) − P(T ∈ B ∣ T ≥ t,X,S =∞,Z = t) = 0. (1.3.34)

Intuitively, if there is no selection, then the average observed outcomes of nontreated com-
pliers and noncompliers should be the same. As a result, the average observed outcome of
the whole cohort {Z = t′} under no treatment (the left-hand side of 1.3.34) should be equal to
the average observed outcome of the noncompliers from the cohort {Z = t} (the right-hand
side of 1.3.34). Equation 1.3.34 contains only observables. Deriving a distribution of a test
statistics in the case B = [t, t + a) follows precisely the same steps as for the null hypothe-
sis 1.3.24. We omit it here. A simplified testing procedure would induce a comparison of
survival functions. The corresponding null hypothesis is

H̃0 ∶ P(T ≥ t ∣ X,Z = t′) − P(T ≥ t ∣ X,S =∞,Z = t) = 0. (1.3.35)

A test statistics is constructed by replacing the theoretical probabilities with their Kaplan-
Meier estimators.

14We have to assume that the agent does not learn about the potential outcomes over time. With a time-varying

V, we would lose identification.
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To answer question ii), we can compare the (theoretical proper) treatment effect 1.3.24 to
the naive treatment effect 1.3.11. Written in the simplified notation of section 1.3.2, this is
a comparison of a) FC,1 − FC,0 and b) FC,1 − FN,0. This ad hoc approach can be justified with
1.3.33. Recall that FC,0 = (F0 − FN,0PN)/PC. Subtracting b) from a), we obtain

(FC,1 − (F0 − FN,0PN)/PC) − (FC,1 − FN,0) =

(FN,0PC + F0,NPN − F0)/PC = (FN,0 − F0)/PC.

The nominator (FN,0 − F0) of the last expression is precisely the left-hand side of 1.3.33.

1.4 Empirical Application: the French PARE labour market reform

from 2001

1.4.1 Research question and description of the reform

We combine the IV method we developed in section 1.3 with a unique empirical strategy to
analyze the effect of a reform in the French unemployment insurance system on the duration
of unemployment. The new system, called Plan d’Aide au Retour á l’Emploi (PARE hereafter),
brings about two main changes. First, the insurance benefit digression is abolished. Under
the old system, called Allocation Unique Degressive (AUD), the size of the payments depends
on the elapsed duration of unemployment and decreases stepwise at the end of predefined
intervals. Under the new system, benefits remain at a fixed level for the whole payment
period. Second, the new system introduces a variety of ALMP measures. The first one
is compulsory meetings on a regular basis with a caseworker. During the first meeting, a
personal plan called Plan d’Action Personalisé (PAP) is established. It captures in a contract
the details about the degree of assistance provided by the caseworker to the unemployed as
well as the targeted job type and the region of search. This contract is updated periodically
if the individual remains unemployed, typically every six months. During the first meeting
the unemployed is also assigned to one of different types of services such as counseling and
training, see Freyssinet (2002) for a detailed description of the reform.
The PARE reform has two unique characteristics. First, individuals whose unemployment
spells started before the implementation of the reform and were still unemployed during
its commencement were given the option to choose whether they want to stay in the AUD
regime or switch to PARE. If an unemployed decides to stay in AUD, his benefits payments
remain in the digression scheme and no further changes of the status quo take place. If an
unemployed decides to switch to PARE, his benefit payments are fixed at the last level payed
and no further digression occurs until the end of the payment period (or unemployment
exit).15 This option does not apply to spells starting after the 1st of July 2001, the day of
coming into force of PARE. All new unemployed are automatically assigned to the new
system.
Second, the new system is unique in terms of its generosity. Although the meetings with
the case worker were mandatory, there was no actual monitoring of the job search efforts.

15The individuals indicate their decision per mail.
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Furthermore, the individuals could generally refuse to take part in assigned training or
counseling measures without incurring any sanctions. Thus, the better financial conditions
of PARE were not linked to a real reinforcement of ALMP measures.

Ex ante it is not clear what the overall effect of the reform would be. On the one hand,
abolishing the digression of benefits removes an incentive for a high search effort. There-
fore it can be expected that the exit rate from unemployment to employment will decrease.
This intuition is incorporated in theoretical models on optimal unemployment insurance
design, see e. g. Pavoni and Violante (2007). There is also some empirical evidence for it,
for example in Prieto (2000) and Dormont, Fougère, and Prieto (2001). These papers use a
parametric specification (of the PH and MPH models, respectively) to compare the French
unemployment insurance system from 1986-1992, which is characterized by a single drop in
benefits, with its successor, the digressive AUD system. Dormont, Fougère, and Prieto (2001)
conclude that under AUD the return to employment is slowed down. Further insights about
the influence of the structure of the insurance system on the unemployment dynamics can
be gained when a change from a system with several drops in the entitlement to a system
with a single drop is interpreted as a combination of several changes in the potential benefit
duration and the entitlement amount. Papers on the influence of the potential duration of
unemployment benefits generally find that prolonged benefit duration increases the duration
of unemployment, see Lalive (2008) and Lalive, van Ours, and Zweimüller (2006) for studies
with Austrian data and Katz and Meyer (1990) for a study with US data. Similarly, studies on
the effect of the amount of the benefit entitlement find that a benefit reduction has a positive
effect on the exit rate out of unemployment, see for example Lalive, Zweimüller, and van
Ours (2005) for a study with Swiss data and Lalive, van Ours, and Zweimüller (2006) for a
study with Austrian data.
On the other hand, active labor market policies are supposed to enhance the job search
and increase the exit rate to employment. A vast body of empirical literature investigates
the effects of training, counseling and subsidized wages on the employment dynamics, see
Heckman, LaLonde, and Smith (1999) and Kluve (2010) for an overview. The results of the
training literature are quite heterogeneous. While in a study of Swedish policy Richardson
and den Berg (2001) find significant positive effects of a vocational training on the transition
rate to work, Gritz (1997) finds that a participation in a private training program in the US
can induce very different results across genders, and Crépon, Ferracci, and Fougère (2007)
and Crépon, Ferracci, Jolivet, and Van den Berg (2009) find little or no effect in studies with
French labor market data. Similarly, Crépon, Dejemeppe, and Gurgand (2005) and Van den
Berg, Kjærsgaard, and Rosholm (2012) find a significantly positive impact of counseling on
the exit rate to unemployment, while Van den Berg and Van der Klaauw (2010) establish at
best a small effect. Wage subsidies on the contrary are shown generally to have beneficial
influence, see Blundell, Dias, Meghir, and Reenen (2004), Gerfin and Lechner (2002) and
Kluve (2010). Additionally to these direct of effects, the thread effects of ALMP should be
taken into account. Such effects can be positive, see e. g. Rosholm and Svarer (2008), or
negative, Crépon, Ferracci, Jolivet, and Van den Berg (2010).
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1.4.2 The Data

The data sample we use is taken from a matching of two administrative data sets: the Fichier
Historique (FH) data set, which contains information about the unemployment spells and is
issued by the French public employment agency (Agence nationale pour l’emploi, ANPE),
and the Déclaration Anuelle de Données Sociales (DADS) data set, which contains the em-
ployment information of all individuals employed in the private sector and is issued by the
French Statistical Institute (Insee). We extract a set of variables, rich enough to account for
the socio-economic status of the individuals , namely age, gender, marital status, number of
children, educational level, professional experience, description of the job position/type in
the last employment spell, reason for entering unemployment, exit direction (out of unem-
ployment), and unemployment history. Details about the construction and content of the
variables can be found in appendix 1.6.2.

To preclude geographical heterogeneity we restrict our sample to the administrative re-
gion Îll de France, which contains Paris and consists of the administrative departments 75,
77, 78, 91, 92, 93, 94 and 95. Because of its size and specific infrastructure, this region might
differ from the rest of France in terms of labor market dynamics (mobility, unemployment
structure, wages) and in terms of the implementation of the reform. Moreover, the macroe-
conomic conditions in this region are stable over the period of consideration, which insures
the comparability of the cohorts, see subsection 1.4.4.

The choice of the cohorts is restricted by the available data. There is no administrative
variable that captures the compliance status of the unemployed. Moreover, due to budget
reasons, there was a considerable time variation in giving the treatment across individuals.
Thus, some individuals might have exited the state of unemployment before receiving their
assigned treatment. We develop a novel empirical strategy to deal with this problem. We
choose the younger cohort {Z = t} such that its first due payments drop under AUD should
coincide with the start of the new reform.16 Its inflow is six months before the start of PARE.17

The choice of the older cohort (the untreated) is more flexible as we do not need to observe
the compliance. The main restrictions have macroeconomic considerations: a good choice
of a cohort does not violate the randomization assumption. Busyness cycles or mass layoffs
due to bankruptcies of big firms are examples for possible causes for structural changes
in the distribution of heterogeneity in the unemployment inflow over time. Bearing these
considerations in mind, we choose the cohort of the untreated to be 3 months older.18 This
time lag is long enough for policy analysis, as typically a big part of the exits occurs in the first
3 months. Moreover, the cohorts begin their unemployment spells in a fairly economically
stable time interval, see subsection 1.4.4 for a discussion.
With these choices we end up with 537 (311) spells in the treated (nontreated) cohort. From
these 116 (76) are censored. In the younger cohort there are 250 compliers (the compliance

16One can take also a subsequent digression period, but at the cost of having less observations.
17The time length from inflow until the first digression day can vary depending on characteristics of the

unemployed, such as number of working days in the last twelve months, age, etc., see Freyssinet (2002) for

details.
18This has an implication for the time interval of comparison. Conditional on survival up to 6 months, one can

compare the two cohorts only in an interval of 3 months. After the 3rd month, the older cohort will also receive

the treatment, and one would no longer compare treated with untreated.
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indicator for the second cohort is not of interest).

1.4.3 Estimation results

We now turn to our main results. With the choice of cohorts described in 1.4.2 the treatment
effect which we estimate is equal to

TE(6, a) = P(T(6) ∈ [6,6 + a) ∣ T(6) ≥ 6) − P(T(9) ∈ [6,6 + a) ∣ T(9) ≥ 6), (1.4.1)

where a varies between 0 and 3 months. The upper limit three months follows from the time
difference of the inflows of the two cohorts. Any comparison beyond this interval would
involve two treated groups. The treatment effect gives thus the difference in the probabilities
to find a job in the interval [6,6+ a), conditionally on surviving up to the 6th month, between
the old and the new system. Letting a go to 0 would give a comparison of hazards, which is
not very informative as it consists of a single point.

Figure 1.1: An IV estimator of the treatment effect. Time measured in days.

The result is shown on figure 1.1. On the x-axis time is measured in days. Each (x, y)-
point represents a pair (a,ATE(a)). The estimated treatment effect is positive and increasing
which indicates that the program was effective. The estimates are a. e. significant. The
results are similar for different subpopulations, see figures 1.2a and 1.2b. Our results are
compatible with the findings in the existing literature. Crépon, Ferracci, and Fougère (2007)
find that training does not accelerate exit out of unemployment but increases the length of
the subsequent employment spell. The authors’ finding is related to the idea that training
increases human capital and improves matching process between firms and unemployed.
Crépon, Dejemeppe, and Gurgand (2005) find that three out four counselling schemes have
a positive effect on the unemployment hazard. One possibility is that jointly these two
types of services offset the negative impact of the generous benefit system. It must be noted
that our evaluation subsumes several different treatments into one single treatment. Not
all of the compliers received the full treatment. A big percentage exit unemployment after
the first meeting with the caseworker. We interpret our evaluation as averaging over the
different treatment schemes. Furthermore, even if there was no real monitoring, it is likely
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Figure 1.2: Estimates conditional on qualification and education

(a) White vs Blue collar (dashed) (b) Low vs High educated (dashed)

that the regular meetings with the caseworker were perceived as monitoring. Averaging over
different treatment types is not uncommon in the literature, see for example Blundell, Dias,
Meghir, and Reenen (2004) and Van den Berg, Bozio, and Dias (2014) for evaluations of the
New Deal for Young People program in the UK.

1.4.4 The validity of the assumptions

We start with the randomization assumption A3. To verify that the cohorts are similar at
their inflows, we compare

1. the distributions of the observed characteristics,

2. the layoff reasons and

3. the macroeconomic conditions

of the two cohorts at the points in time of their inflow. First, we perform chi-square test for
equality of distributions of level of education, years of experience, number of children and
gender. The corresponding p-values are 0.6037, 0.98, 0.5112 and 0.581, which indicates that
the differences between these distributions are statistically insignificant. This is reflected in
their histograms, see figures 1.3a, 1.4a, 1.5a, 1.6a. Second, the same test is performed also for
the layoff reasons. The null (equality of distributions) is rejected, but in this case this could
be due to the large number of categories and small number of observations in each category.
A histogram of aggregated categories indicates that the cohorts are indeed similar, see figure
1.7a. Third, the next we show the average level of unemployment in the administrative
region Îll de France in the first three quarters of 2001 is constant and equal to 6.4%, which is
evidence for a fairly stable macroeconomic environment19.

19Source: http://www.insee.fr/en/bases-de-donnees/bsweb
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Figure 1.3: Histograms level of education

(a) Treated (b) Untreated

Figure 1.4: Histograms level of qualification

(a) Treated (b) Untreated

Next, the ”no anticipation” assumption is fulfilled when individuals do not anticipate
the moment in time of treatment or do not act upon this information, see for a discussion
Abbring and van den Berg (2003). Although it was known that a reform is going to take
place, there was a lot of debate and uncertainty over its content. Unemployed were informed
about the exact content and launch date on the 18th of June 2001, that is, less than two weeks
before the start of the program, so they had practically no time to react upon this information,
see Freyssinet (2002). Further, when an individual decides to switch to the new system, the
assignment to a specific treatment depends mostly on the social worker in charge and on the
slots available, so that the unemployed has no knowledge of it in advance, see also Crépon,
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Figure 1.5: Histograms of years of experience

(a) Treated (b) Untreated

Figure 1.6: Histograms of number of children

(a) Treated (b) Untreated

Dejemeppe, and Gurgand (2005). Combined with a very short time span between assignment
and launch of a treatment is very short, which precludes acting upon the anticipation.

The last important assumption is that of independent censoring. It cannot be tested
directly, as revealed by a nonidentification result of Tsiatis (1975). Over 70% of all censored
spells are contributed by the censoring categories ”no control”, ”other cases” and ”other
stop of search”. Since there is no further information for these cases, it appears plausible to
assume independence. In subsection 1.4.6 we conduct a simulation study, in which plausible
deviations from the independence assumptions are generated. It turns out that the estimator
is robust towards such violations.
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Figure 1.7: Histograms of layoff reasons

(a) Treated (b) Untreated

Remark: one implicit implication of the assumptions A2 and A4 is that noncompliers who
refuse the treatment behave in the same way as if they were not assigned to the treatment. It is
plausible particularly in the cases, in which individual do not comply in order not to change
their behavior. In the PARE reform, it is plausible to assume that individuals do not comply
because they anticipate a soon exit and because they want to avoid higher search effort or
other related participation costs, see the next subsection for an analysis of noncompliance.
In both cases, assignment to the treatment together with a selection out of it is not likely to
change their behavior.

As a summary, we can conclude that the assumptions adopted for identification and
estimation of the treatment effect of the PARE reform can be considered as plausible.

1.4.5 Analysis of endogeneity

In this subsection we tackle the static endogeneity issue arising from noncompliance. Non-
compliance is important not only for the evaluation of a program but also in the light of its
effectiveness. The non take-up of a policy often reduces the effectiveness of a program, see e.
g. Blasco (2009). It is therefore important to understand what drives noncompliance.

We start with an estimation of the naive treatment effect 1.3.11. The corresponding
estimator is defined as

N̂E(t, a) ∶= P̂(T ∈ [t, t + a) ∣ S = t,Z = t) − P̂(T ∈ [t, t + a) ∣ S =∞,Z = t), (1.4.2)

where t is equal to 6 months and a varies between 1 day and 3 months and the separate
probabilities are estimated with a Kaplan-Meier estimator. 1.4.2 amounts to a direct com-
parison of the average outcome of compliers and noncompliers from the cohort {Z = 6}.
The estimate is shown in figure 1.8. It is positive and increasing until the 80th day after
treatment (which is the 260th day of unemployment), and then slightly decreasing. At the
first 40 days after treatment the effect is practically zero, at its maximum it is around 0.08,
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Figure 1.8: A naive estimator: noncompliers as control group. Time measured in days.

and at day 60 after treatment (that is, after 8 months of unemployment) around 0.025. This
implies that the probability for a complier to find a job before the end of the first month after
treatment, conditional on having been unemployed for 6 months, is almost the same as for a
noncomplier, before the end of the second month it is with 2.5 percentage points higher, and
at its peak it is 8 pp. higher.20 As a result, if we evaluate PARE using the naive estimator
1.4.2, we would conclude that the reform was beneficial for the duration of unemployment
but that the effect is rather modest.

Using the methods developed in section 1.3.5, we answer now the following questions:

• Is the non take-up of PARE driven by an endogenous selection?

• If yes, in which direction is the bias of the naive estimator caused by this endogenous
selection?

To answer the first question, we perform the simplified test for exogeneity from section 1.3.5.
The null hypothesis is

H0 ∶ F̄1(6 ∣ S =∞) − F̄2(6). (1.4.3)

It amounts to comparing the survival function at t = 6 of the noncompliers from cohort
{Z = 6} with the survival function at t = 6 of the whole cohort {Z = 9}. The test statistics is
defined as T = ̂̄F1(T > 6 ∣ S =∞) − ̂̄F2(6), where ̂̄Fi, i = 1,2 are the Kaplan-Meier estimators of
F̄i.

The test rejects the null at 5 % level. As a result, untreated compliers and noncompliers
are significantly different in terms of potential outcomes, which induces a static selection
bias in the naive estimator. To evaluate the bias of 1.4.2, we plot T̂E(6, a) and N̂E(6, a) for a
varying between 0 and 3 months. The result is shown in figure 1.9. N̂E(6, a) has a negative
bias for all a. To find the reason for this negative bias, it is helpful to interpret it in the frame

20Controlling for observed covariates such as gender, education and type of job (white vs. blue collar) yields

similar results, see figures 1.14, 1.15a and 1.15b in appendix 1.6.3. Due to the small sample size available, we

conduct the study mainly unconditionally.
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Figure 1.9: Comparison of the IV estimator (red line) and the naive estimator (black line).

Time measured in days

of existing studies on policy take-up, see e.g. Moffit (1983), Currie (2004) and Blasco (2009).
An empirical analysis of the take-up of the PARE reform is done by Blasco (2009), who also
uses a theoretical model. She finds stigma, informational issues and the expectation of a soon
exit to be the main reasons for noncompliance. One explanation for the negative bias in line
with Blasco (2009) would be therefore the expectation of a short spell among noncompliers.
Individuals who anticipate to find quickly a job or who have even already signed a contract
at the time of the reform start would be reluctant to comply since they wouldn’t benefit from
the generosity of the new program. Thus, there is a selection of quick exits into the group of
noncompliers which leads to the negative bias of the naive estimator.

1.4.6 Dependent Censoring: a Simulation Study

To assess the impact of the assumption of independent censoring, a small simulation study
is conducted. Deviations from C ⊥ S and C ⊥ T are constructed, where C again is a censoring
random variable. The first one influences the estimator of the probability to be a complier,

P(S = t ∣ T ≥ t,X,Z = t),

while the second one influences the estimator of the difference

P(T ∈ [t, t + a) ∣ T ≥ t,X,Z = t) − P(T ∈ [t, t + a) ∣ T ≥ t,X,Z = t′).

We are interested in their marginal impacts as well as in the influence of their interplay.
Two cohorts are simulated, the treated and the nontreated, each with 10000 individuals.
Both cohorts consist of compliers and noncompliers and in each cohort the probability to be a
complier is 80%. Noncompliers dominate stochastically the compliers when both groups have
not received the treatment. This reflects our finding in section 1.4.5 that noncompliance might
occur due to the expectation of a short spell. The treatment is obtained by the compliers of the
first cohort on the 20th day after inflow and it shifts their duration distribution from N(60,15)
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to N(30,10) in line with the estimation results from section 1.4.321. The noncompliers are
not influenced by the treatment and have a duration distribution N(45,15). The compliers
from the second cohort do not receive the treatment too. Their duration distribution is equal
to the duration distribution of the compliers of cohort 1 before treatment, N(60,15). Figure

Figure 1.10: An IV estimator of the treatment effect. Time measured in days. Day 0 corre-

sponds to the day of treatment (day 20).

1.10 shows the theoretical treatment effect, depicted by the thick black line. The dashed red
line represents the IV estimator in a case with independent censoring with a distribution
N(40,10) (the second argument is henceforth the standard deviation) . This is the benchmark
estimator.
Next, a dependence of the censoring on the compliance is introduced. The different choices
of distributions are described in table 1.1.

Table 1.1: Simulation of dependences between censoring and compliance

Line description Censoring distribu-

tion compliers

Censoring distribu-

tion noncompliers

Green dashed line N(30,15) N(50,15)

Red dotted line N(30,15) N(40,15)

Blue long dashed line N(40,15) N(30,15)

Grey two dashed line N(50,15) N(30,15)

Notes: The second argument of the normal distribution is its standard deviation

The resulting estimators are shown in figure 1.11. The solid black line is theoretical effect.
21Negative values are replaced by their absolute values.

38



The figure reveals the relationship between bias of the treatment effect and dependence of

Figure 1.11: An IV estimator of the treatment effect. Time measured in days. Day 0 cor-

responds to the day of treatment (day 20). The black solid line is the theoretical treatment

effect. Different curves correspond to different dependences of censoring and compliance,

see table 1.1. The solid black line is theoretical effect.

censoring and compliance. When the compliers are at higher risk of censoring, the treatment
effect is (a. e.) underestimated. The higher this discrepancy in the risk exposure, the bigger
the bias. Similarly, when the noncompliers are at higher risk of censoring, the treatment effect
is overestimated.

Next, the relationship between bias and time dependence of the censoring is exploited.
We simulate three different levels of dependence. In all three cases long spells have a higher
risk of being censored than short spells. This is in line with typical situations in applied
survival analysis. For example, long term unemployed might have smaller incentives to
meet criteria (e. g. administrative control of search, regular visits at the agency, etc.) to stay
on an unemployment insurance list. The three specifications are defined in table 1.2. Each
row represents one specification.

The corresponding estimators are depicted in figure 1.12. Approximately until day 15
the IV estimator performs fairly well in all three cases. Afterwards it underestimates the
treatment effect. The bias increases in absolute value with increasing time dependence
(defined as the difference in the means in the two groups of spells).

It is interesting to simulate and analyze a combination of these two types dependences.
We simulate four patterns of such an interplay. The concrete distributions are described in
table 1.3. The results are shown in figure 1.13. The blue and the grey lines are closer to
the theoretical effect than the other two estimators. This indicates, that a violation in the
censoring assumption C ⊥ S might partially offset a violation in the assumption C ⊥ T. This
is a novel result.

In the French labor market reform it is difficult to argue which type of dependence there
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Table 1.2: Simulation of dependences between censoring and time

Line description Censoring distribution

T ≤ 40

Censoring distribution

T > 40

Green dashed line N(40,20) N(30,20)

Red dotted line N(40,20) N(25,20)

Blue long dashed line N(40,20) N(20,20)

Notes: The second argument of the normal distribution is its standard deviation

Figure 1.12: An IV estimator of the treatment effect. Time measured in days. Day 0 corre-

sponds to the day of treatment (day 20).The black solid line is the theoretical treatment effect.

Different curves correspond to different dependences of censoring and time, see table 1.2.

The solid black line is theoretical effect.

is likely to be. Noncompliers contain many quick exits, and if longer spells have a higher
censoring risk than shorter spells, than noncompliers should be less exposed to censoring
than compliers. This would correspond to the fourth case of table 1.3. Thus the simulation
results provide evidence, that the IV estimator is robust to a violation in the independent
censoring assumption.
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Table 1.3: Simulation of dependences between censoring and compliance and time

Line description K, T ≤ 30 K, T > 30 N, T ≤ 30 N, T ≤ 30

Green dashed line N(50,20) N(30,20) N(30,20) N(20,20)

Red dotted line N(40,20) N(30,20) N(30,20) N(20,20)

Blue two dashed line N(30,20) N(20,20) N(40,20) N(30,20)

Grey long dashed line N(30,20) N(20,20) N(50,20) N(30,20)

Notes: K stays for compliers, N for noncompliers.

Figure 1.13: An IV estimator of the treatment effect. Time measured in days. Day 0 corre-

sponds to the day of treatment (day 20). The black solid line is the theoretical effect in the

absence of censoring. Different curves correspond to different dependences of censoring and

time, see table 1.2. The solid black line is theoretical effect.

1.5 Summary and Discussion

In this paper we developed a nonparametric IV framework for the evaluation of dynamic
treatment effects. Our methods solve the problems of dynamic and static endogeneity and
allow for censoring. The corresponding estimators have a natural interpretation and are re-
lated to the Wald-type statistics. We also suggest a framework for analysis of noncompliance.
We used our methods to evaluate the French labor market reform PARE. The estimated effect
of the reform on the conditional survival function of the unemployment variable is posi-
tive, which is in line with the findings in the existing literature. In an exhaustive study, we
showed that the assumptions for our approach are valid. Our results reveal that neglecting
of endogeneity would lead to a negative bias. An interesting question for future research
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would be to incorporate equilibrium effects. Comprehensive policy reforms are likely to
induce equilibrium effects through positive or negative externalities. It is often desirable to
distinguish between the direct effects of a reform and the equilibrium effects. More work on
this topic has to be done.

1.6 Appendix

1.6.1 Proofs of propositions

Proof of Proposition 1.3.1

1. First we show that from the no anticipation assumption the following result holds:

P(T(t) ≥ t ∣ X,S(t) = t) = P(T(t′) ≥ t ∣ X,S(t) = t). (1.6.1)

This is so because

P(T(t) ≥ t ∣ X,S(t) = t,V) = exp(−ΘT(t)(t ∣ X,S(t) = t,V)) =

No anticipation
= exp(−ΘT(t′)(t ∣ X,S(t) = t,V)) = P(T(t′) ≥ t ∣ X,S(t) = t,V)

so that we obtain

P(T(t) ≥ t ∣ X,S(t) = t) = IE [I{T(t)≥t} ∣ X,S(t) = t] =

= IE [IE [I{T(t)≥t} ∣ X,S(t) = t,V] ∣ X,S(t) = t] =
= IE [P(T(t) ≥ t ∣ X,S(t) = t,V) ∣ X,S(t) = t] =

= IE [P(T(t′) ≥ t ∣ X,S(t) = t,V) ∣ X,S(t) = t] =

= IE [IE [I{T(t′)≥t} ∣ X,S(t) = t,V] ∣ X,S(t) = t] = P(T(t′) ≥ t ∣ X,S(t) = t)

where I{T(s)∈B} is an indicator function equal to 1 when T(s) ∈ B (of course from these
steps we also see that P(T(t) ≥ t ∣ X,S(t) = t,V) = P(T(t′) ≥ t ∣ X,S(t) = t,V)).

2. Next, using result 1.6.1, we show FV∣T(t)≥t,X,S(t)=t = FV∣T(t′)≥t,X,S(t)=t. Let B be a Borel set.
With result 1.6.1, it holds

P(V ∈ B ∣ T(t′) ≥ t,X,S(t) = t) = P(V ∈ B ∣ T(t) ≥ t,X,S(t) = t).

3. Now we show FV∣T(t)≥t,X,S(t)=t = FV∣T≥t,X,S=t,Z=t. First we observe that Z y {T(s),S(z)} ∣

X,V and Z y V ∣ X together imply Z y {T(s),S(z)} ∣ X (Weak Union, see Pearl (2000)).
Then, we have

P(V ∈ B ∣ T(t) ≥ t,X,S(t) = t) =
P(V ∈ B ∣ X,S(t) = t)P(T(t) ≥ t ∣ X,S(t) = t,V ∈ B)

P(T(t) ≥ t ∣ X,S(t) = t)
.

We study the separate components of the right-hand side of the last expression.
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(a) With assumptions A3 and A4, it holds

P(V ∈ B ∣ X,S(t) = t) = P(V ∈ B ∣ X,S = t,Z = t).

(b) Further,

P(T(t) ≥ t ∣ X,S(t) = t,V ∈ B) = P(T ≥ t ∣ X,S = t,V ∈ B,Z = t).

(c) Using Z y {T(s),S(z)} ∣ X instead of Z y {T(s),S(z)} ∣ X,V, we obtain

P(T(t) ≥ t ∣ X,S(t) = t) = P(T ≥ t ∣ X,S = t,Z = t)

So finally we get the equality

P(V ∈ B ∣ T(t) ≥ t,X,S(t) = t) =

=
P(V ∈ B ∣ X,S = t,Z = t)P(T ≥ t ∣ X,S = t,V ∈ B,Z = t)

P(T ≥ t ∣ X,S = t,Z = t)
=

= P(V ∈ B ∣ T ≥ t,X,S = t,Z = t)

◻

Proof of corollary 1.3.2.1
With proposition 1.3.1,

TE(a, t) = IE[P(T(t) ∈ [t, t + a) ∣ T(t) ≥ t,X,V,S(t) = t) ∣ T(t) ≥ t,X,S(t) = t] −

− IE[P(T(t′) ∈ [t, t + a) ∣ T(t′) ≥ t,X,V,S(t) = t) ∣ T(t′) ≥ t,X,S(t) = t] =

= P(T(t) ∈ [t, t + a) ∣ T(t) ≥ t,X,S(t) = t) − P(T(t′) ∈ [t, t + a) ∣ T(t′) ≥ t,X,S(t) = t).

Proof of proposition 1.3.2
First, consider the conditional distribution of the duration variable for the treatment group,
FT(t)∣T(t)≥t,X,S(t)=t. Set B = [t, t + a). With randomization and consistency, it holds

P(T(t) ∈ B ∣ X,S(t) = t) = P(T ∈ B ∣ X,S = t,Z = t)
P(T(t) ≥ t ∣ X,S(t) = t) = P(T ≥ t ∣ X,S = t,Z = t),

so that
P(T(t) ∈ B ∣ T(t) ≥ t,X,S(t) = t) = P(T ∈ B ∣ T ≥ t,X,S = t,Z = t) (1.6.2)

where the r.h.s of 1.6.2 consists only of observables. In the simplified notation of section
1.3.2, this gives us FC,1, that is, the average outcome of the treated t-compliers. To obtain the
average outcome of the nontreated t-compliers FC,0, write

P(T ∈ B ∣ T ≥ t,X,Z = t′) (1.6.3)
= P(T ∈ B ∣ T ≥ t,X,Z = t′,S(t) = t)P(S(t) = t ∣ T ≥ t,X,Z = t′) +

+ P(T ∈ B ∣ T ≥ t,X,Z = t′,S(t) =∞)P(S(t) =∞ ∣ T ≥ t,X,Z = t′),

where P(T ∈ B ∣ T ≥ t,X,Z = t′) contains only observables. Our identification proof contains
the following steps:
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1. Show that P(T ∈ B ∣ T ≥ t,X,Z = t′,S(t) = t) is equal to P(T(t′) ∈ B ∣ T(t′) ≥ t,X,S(t) = t)
and is therefore the expression we want to identify.

2. Show that

P(T ∈ B ∣ T ≥ t,X,Z = t′,S(t) =∞) = P(T ∈ B ∣ T ≥ t,X,Z = t,S(t) =∞),

i.e. the noncompliers of the two cohorts have identical potential duration distributions
at t.

3. Show that P(S(t) = t ∣ T ≥ t,X,Z = t′) and P(S(t) = ∞ ∣ T ≥ t,X,Z = t′) are identified
(these are the proportions of compliers and noncompliers at t).

4. Solve for P(T ∈ B ∣ T ≥ t,X,Z = t′,S(t) = t) in 1.6.3 and relate it to osbervables via steps
1-3.

Let’s proof these points. First, It holds

P(T ∈ B ∣ X,Z = t′,S(t) = t) =
= P(T ∈ B ∣ X,Z = t′,S(t) = t,S = t′)P(S = t′ ∣ X,Z = t′,S(t) = t) +
+P(T ∈ B ∣ X,Z = t′,S(t) = t,S =∞)P(S =∞ ∣ X,Z = t′,S(t) = t) =
Consistency

= P(T(t′) ∈ B ∣ X,Z = t′,S(t) = t,S = t′)P(S = t′ ∣ X,Z = t′,S(t) = t) +
+P(T(∞) ∈ B ∣ X,Z = t′,S(t) = t,S =∞)P(S =∞ ∣ X,Z = t′,S(t) = t) =
Consistency

= P(T(t′) ∈ B ∣ X,Z = t′,S(t) = t,S(t′) = t′)P(S(t′) = t′ ∣ X,Z = t′,S(t) = t) +
+P(T(∞) ∈ B ∣ X,Z = t′,S(t) = t,S(t′) =∞)P(S(t′) =∞ ∣ X,Z = t′,S(t) = t) =
No anticipation

= P(T(t′) ∈ B ∣ X,Z = t′,S(t) = t,S(t′) = t′)P(S(t′) = t′ ∣ X,Z = t′,S(t) = t) +
+P(T(t′) ∈ B ∣ X,Z = t′,S(t) = t,S(t′) =∞)P(S(t′) =∞ ∣ X,Z = t′,S(t) = t) =

= P(T(t′) ∈ B ∣ X,Z = t′,S(t) = t) Randomization
= P(T(t′) ∈ B ∣ X,S(t) = t).

Next, using exactly the same steps as in the previous point, it follows

P(T ∈ B ∣ T ≥ t,X,Z = t′,S(t) =∞) = P(T ∈ B ∣ T ≥ t,X,Z = t,S(t) =∞) (1.6.4)
= P(T ∈ B ∣ T ≥ t,X,Z = t,S =∞).

Further, with assumptions A2-A4

P(T ≥ t ∣ X,Z = t′) = P(T ≥ t ∣ X,Z = t) (1.6.5)
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for all t′ ≥ t.22 Its validity can be proved as follows:

P(T ≥ t ∣ X,Z = t′) = P(T ≥ t ∣ X,Z = t′,S = t′)P(S = t′ ∣ X,Z = t′) +
+ P(T ≥ t ∣ X,Z = t′,S =∞)P(S =∞ ∣ X,Z = t′) =

Consistency
= P(T(t′) ≥ t ∣ X,Z = t′,S(t′) = t′)P(S(t′) = t′ ∣ X,Z = t′) +
+ P(T(∞) ≥ t ∣ X,Z = t′,S(t′) =∞)P(S(t′) =∞ ∣ X,Z = t′) =

Randomization
= P(T(t′) ≥ t ∣ X,S(t′) = t′)P(S(t′) = t′ ∣ X) +

+ P(T(∞) ≥ t ∣ X,S(t′) =∞)P(S(t′) =∞ ∣ X, ) =
No anticipation

= P(T(∞) ≥ t ∣ X,S(t′) = t′)P(S(t′) = t′ ∣ X) +

+ P(T(∞) ≥ t ∣ X,S(t′) =∞)P(S(t′) =∞ ∣ X, ) =
= P(T(∞) ≥ t ∣ X)

If we set t′ = t and follow exactly the same lines we get

P(T ≥ t ∣ X,Z = t) = P(T(∞) ≥ t ∣ X)

and finally P(T ≥ t ∣ X,Z = t′) = P(T ≥ t ∣ X,Z = t).
Using relation 1.6.5 together with 1.6.4 and randomization, we obtain:

P(S(t) =∞ ∣ T ≥ t,X,Z = t′) = P(S(t) =∞ ∣ T ≥ t,X,Z = t).

Taking into account that

P(S(t) = t ∣ T ≥ t,X,Z = t′) = 1 − P(S(t) =∞ ∣ T ≥ t,X,Z = t′)

we finally obtain the equalities

P(S(t) =∞ ∣ T ≥ t,X,Z = t′) = P(S =∞ ∣ T ≥ t,X,Z = t), (1.6.6)
P(S(t) = t ∣ T ≥ t,X,Z = t′) = P(S = t ∣ T ≥ t,X,Z = t). (1.6.7)

Taking into account the results 1-3 and solving 1.6.3 for FC,0, we obtain

P(T(t′) ∈ B ∣ T(t′) ≥ t,X,S(t) = t) =
P(T ∈ B ∣ T ≥ t,X,Z = t′) − P(T ∈ B ∣ T ≥ t,X,Z = t,S =∞)P(S =∞ ∣ T ≥ t,X,Z = t)

P(S = t ∣ T ≥ t,X,Z = t)
.

Finally, the treatment effect is equal to FC,1 − FC,0 which after simplification is equal to

P(T ∈ B ∣ T ≥ t,X,Z = t) − P(T ∈ B ∣ T ≥ t,X,Z = t′)
P(S = t ∣ T ≥ t,X,Z = t)

.

◻

Proof of proposition 1.3.5

22This we will refer to this result as empirical no anticipation relation.
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For notational simplicity we drop the dependence on 0 and x0. First note, that the results
of Theorem 1 Nielsen and Linton (1995) remain valid at the boundary when we replace the
symmetric kernel k with its boundary counterpart k+ and adapt the constants. The validity

of 1.3.5 i) follows from
√

nbq+1((Ψ̂−Ψ∗) =
√

nbq+1

p̂1
((θ̂1 −θ

∗
1)− (θ̂2 −θ∗2)), the independence of

(θ̂1 − θ
∗
1) and (θ̂2 − θ∗2), and the adapted proof of Theorem 1 i) in Nielsen and Linton (1995).

Next, it holds

b−2(Ψ∗ −Ψ) =
b−2

p̂1
((θ∗1 − θ1) − (θ∗2 − θ2)) + b−2(θ1 − θ2)(

1
p̂1

−
1
p1

). (1.6.8)

The second term on the right-hand side of 1.6.8 is equal to op(1) when b is of order O(n−1/(q+5))

or o(n−1/(q+5)). Result 1.3.5 ii) follows with Theorem 1 b) in Nielsen and Linton (1995). Finally,
1.3.5 iii) follows directly from the adapted proof of Theorem 1 c) Nielsen and Linton (1995)
and the continuous mapping theorem.

1.6.2 Description of variables

The variables used in our application have been constructed in the following way:

• The variable age gives the age at the begin of the unemployment spell and is defined
as the year in which the spells begins minus the year of birth.

• Marital status consists of four categories: single, married, divorced and widowed.

• the variable for educational level summarizes the 31 categories used in the administra-
tive data set into 6 categories according to the highest degree attained. The correspon-
dence is roughly as follows: value 1 if the degree is in niveau I and II (university degree,
maı̂trise and licence), value 2 if the degree is in niveau III - BTS and DUT (brevet de
technicier supérieur and diplôme univeritaire de technologie, respectively, both tech-
nical degrees obtained in 2 years after high school), value 3 for all Baccalauréat (high
school degree, the general part of lycée) diplomas and for all dropouts from niveau III,
4 for all BEP ,CEP (professional Baccalauréat, specialised part of lycée) and all dropouts
from Baccalauréat, 5 for BEPC (brevet d’études du premier cycle, junior high school),
and 6 for below.

• The variable experience states the number of years of experience in the job (type and
position), which the individual is looking for. The types of jobs are specified in an
administrative nomenclature table (ROME table). There are several hundred different
types.

• The job type variable contains general information about the type of the activity in
the job preceding the current unemployment spell. It summarizes the 9 administrative
categories into 6 categories: white collar skilled, white collar unskilled, technical, su-
pervisor (a production team leader) and manager. This summarized categorization is
in line with existing literature, see for example Crépon, Ferracci, Jolivet, and Van den
Berg (2010). The initial administrative variable is contained in the FH data set. This
holds also for the variable, which states which job is the unemployed looking for, while
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the following employment type and position is contained in the DADS data set. Un-
fortunately, there is no clear matching between the variables from the two different
data sets, which leads to some unclarity regarding the question whether the unem-
ployed actually found the job he/she was looking for. This restricts our definition of
censoring. Therefore, in this application each observation with known job destination
is considered uncensored.

• Censoring indicator: there are several possibilities, when an observation is considered
as censored. These are:

– when the unemployment spell in the data set is not finished at the time of the data
collection, or

– when the individual exits the labor market. This includes exits to maternity, ac-
cident, illness or invalidity, invalidity pension, military service, administrative
change of insurance status, attrition because of nonsufficient administrative con-
trol, dropout because of nonregular notifications, and other, nonspecified reasons.
While reasons such as maternity, military services and invalidity pension are nor-
mally known well in advance by the unemployed and can therefore be related to
search activity (as well as to compliance behavior), they represent a small fraction
of the observations.

• Unemployment history: it is constructed as a binary variable which equals 1 if the
individual had been already unemployed before the last employment spell. There are
various ways to define unemployment history. One example is the total length of previ-
ous unemployment spells. Alternatively, one could take the number of unemployment
spells, or both. All possibilities suffer from disadvantages. The last possibility seems
to provide the most complete information, but it also demands more data, since it pro-
vides many different categories. The total length of previous unemployment lacks any
information about the lengths of the separate spells, and the number of spells alone
doesn’t give any information about the length of unemployment. The binary indicator
also does not provide any information at all about the dispersion of previous unem-
ployment, but it is easy to understand and requires only two categories, which makes
it computationally attractive. Additional, more serious drawback for the other two in-
dicators is, that the data set is left censored: the earliest information about employment
is from 1993. This problem is less severe, if one only looks at the indicator of having
been unemployed.

1.6.3 Analysis of endogeneity

47



Figure 1.14: A naive estimator. Male vs. Female. Time measured in days.

Figure 1.15: A naive estimator for subgroups

(a) Education. Low educated dashed line (b) Qualification. Blue collars dashed line
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Chapter 2

Class size and school performance: a

nonparametric IV shape analysis

2.1 Introduction

In this paper, I study the effect of class size on school achievement in two datasets on school
achievement: i) a US dataset studied in Cho, Glewwe, and Whitler (2012) applying the
random enrollment variation method developed in Hoxby (2000); and ii) an Israeli dataset
studied by Angrist and Lavy (1999) with an administrative maximum class-size rule as
instrument. These studies represent two influential instrumental variables strategies and are
comparable with respect to the age of the evaluated children (3rd - 5th degree) and the type
of schools (public schools).

One main difficulty in evaluating the effect of class size on test scores is the endogeneity
of class size. Class size might vary with other, typically unobserved, determinants of school
success. Examples of such educational inputs are unobserved human capital investments
made by the parents, as well as teacher quality. One way in which the endogeneity of the
class size has been addressed is by using instrumental variables (IV). However, despite a
considerable body of IV literature on this topic, there is still no general consensus on the
direction of the effect and its significance, see Averett and McLennan (2004) for an overview.

The main contribution of my paper is to show that model specification error can poten-
tially explain the differences in the literature. My empirical analysis consists of three parts.
First, I analyze graphically the regression function using unconstrained and monotonically
constrained nonparametric IV estimators. The unconstrained estimator is increasing up to
class size of approximately 25 students and then decreasing. The (decreasing) constrained
estimator is concave and deviates substantially from the unconstrained counterpart. Second,
I develop an empirical test for monotonicity of a regression function under endogeneity and
apply it to both data sets. The results of both my graphical and empirical testing analysis
indicate that the regression function is non-monotone. Hence, a nonlinear way of modeling
the causal relationship is required. Third, I show that second degree polynomials approxi-
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mate the causal effect astonishingly well on a range containing 25 % of all observations. To
make these graphical findings legal, I test for parametric specifications under endogeneity.
Both quadratic and cubic polynomials are shown to be robust specifications.

In a small simulated example I demonstrate how a non-monotone causal relationship
together with differences in the class size distributions can potentially explain the controversy
that exists within the literature. The magnitude of the model specification error depends
sensitively on the range of observed class sizes and the form of the regression function.

Non-monotone class-size effects are difficult to explain with existing theoretical literature.
Economic theories generally model class education either as a private good, Brown and Saks
(1980), or as a public good subject to congestion, Lazear (2001). In the former case, the teacher
pays less attention to each student when the class size increases, whereas in the latter case, the
probability of a lesson’s impediment (due to a disruption or question) increases with the class
size. In both cases, a higher class size leads to a decrease in the quality of the educational
process. Theories predicting a positive relationship usually attribute this to interactions
with peers, see Schunk (1991) and Sacerdote (2011).1 The empirical evidence provided in
this paper suggests that the overall effect of class size on test scores is a combination of
opposite effects that dominate in different class-size ranges. I develop a simple model of an
educational production function that can generate the non-monotone pattern found in the
empirical analysis.

My paper makes also several contributions to the literature on constrained nonparametric
instrumental variable regression.

First, I show that a broad class of constrained penalized minimum distance (PMD) esti-
mators are projections of the corresponding unconstrained estimators on the constrained set
with respect to some (weak) norm. This class of estimators includes Tikhonov regulariza-
tion estimation procedures. The characterization as a projection provides predictions for the
properties of constrained estimators. In addition, I develop a framework that reveals a class
of constrained Tikhonov estimators as two-step projection (TSP) estimators: in a first step,
the dependent variable is projected on the set of unconstrained functions of the independent
variable. In a second step, this projection is projected on the set of functions which fulfill
the constraint. This characterization provides a theoretical framework for the study of the
properties of constrained estimators.

Second, I analyze the properties of constrained PMD estimators based on sieves and
kernels. These two frameworks are chosen because they are popular approaches in the
nonparametric IV literature, see e.g. Blundell, Chen, and Kristensen (2007) and Chen and
Pouzo (2012) for sieves and Darolles, Fan, Florens, and Renault (2011) for kernels. In both
cases, I utilize the above discussed projection property to provide sufficient conditions for
the consistency of the constrained estimator m̂C. I show that these conditions are implied by
assumptions that are related to both the rate of ill-posedness of the inverse problem and the
smoothness of the model solution. Intuitively, a strong instrument and a smooth regression
ensure the consistency of m̂C. Under these assumptions, no further requirements on the
constrained set C are necessary (apart from the indirect requirements that m̂C exists and that

1Lazear (2001) acknowledges that higher class size potentially yields positive peer effects. However, he argues

that since increasing class size reduces costs, if students pay the value of the education they receive, adding extra

students will generally take place for class sizes where the negative effect of class size dominate the positive one.
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the model solution is in C). This is a novel result.2

Third, for a series-based estimation procedure, I derive in an exhaustive simulation the
optimal cutoff parameter and the optimal regularization constant for different function forms,
sample sizes, degree of endogeneity and strength of the instrument. I use my findings to out-
line a guideline for applied research. The constrained estimator is shown to outperform the
unconstrained counterpart, provided that the true regression function is in the constrained
set. The advantage increases ceteris paribus both i) with an increasing degree of endogeneity
and ii) with a decreasing strength of the instrument. This small-sample weak-instrument sim-
ulation result complements the theoretical findings for the behavior of constrained estimators
under low endogeneity and/or strong instruments.

Fourth, I show that when the model solution is an inner point of the monotonically
constrained set, the unconstrained Tikhonov estimator fullfils the constraint w.p.t.1. As a
result, constrained and unconstrained Tikhonov estimators are asymptotically equivalent.
Thus, in this case there are no gains from imposing a constraint for the convergence rates.

I utilize the constrained sieves IV estimator in two different ways. First, I use it to
perform the graphical analysis of the causal effect of class size on test scores. Second, I use
it to construct the empirical ad hoc test for monotonicity. I adapt the framework developed
in Breunig (2012) and Breunig (2013) to the case of monotonicity. Intuitively, the test statistic
is based on an empirical measure of distance between the data and the ”closest” estimated
monotone function. Big values of the test statistic indicate deviations from monotonicity.
The test is shown in an extensive simulation study to have good consistency and power
properties. I construct both alternatives that have a small (non-monotone) dip on a large
range and alternatives that have a deep dip on a small interval. In both cases, the procedure
achieves the theoretical values when the sample size increases.

The remainder of this paper is structured as follows. In section 2, I relate my paper to the
existing literature. In section 3, I discuss the endogeneity of the class size and present the
econometric framework. Section 4 develops the econometric theory. I present the simulation
results in section 5. In section 6, I conduct my empirical investigation with the Minnesota
data set. Section 7 concludes. In the appendix, I prove the assertions from section 4 and
analyze the Israeli data set.

2.2 Related Literature

There is a vast and still growing literature on the effect of class size on test scores and IV
studies constitute a considerable part of it. Table 2.1 gives a (non-exhaustive) overview of this
literature. Three often used instrumental variable strategies are administrative maximum
class-size rules, average class size (in each school on a school level or grade level), and random
variation in the population. Interestingly, even studies sharing the same instrumental strategy
often depart in their findings. For example, Dobbelsteen, Levin, and Oosterbeek (2002) find
small positive significant or no significant effects, Hoxby (2000) finds insignificant effects and
Angrist and Lavy (1999) and Gary-Bobo and Mahjoub (2006) find negative significant effects,
all using a maximum class-size rule. Similarly, Akerhielm (1995) and Bressoux, Kramarz,

2typically properties of constrained estimation procedures are developed in the context of closed and convex

constraints.
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Table 2.1: Overview of empirical IV literature analyzing the effect of class size on test scores

Study Country data Instrument

Akerhielm (1995) U.S. (NELS) (grade specific) average class

size in each school

Angrist and Lavy (1999) Israel Administrative maximum

class-size rule (Maimonides’

rule)

Case and Deaton (1999) South Africa District pupil /Teacher ratio,

racial composition at district

level

Hoxby (2000) U.S. Random population varia-

tion and maximum class-size

rule

Boozer and Rouse (2001) U.S. (NELS) Average student/Teacher ra-

tio in the state

Dobbelsteen, Levin, and Oosterbeek (2002) Netherlands

(PRIMA)

Administrative rule on the

number of teachers in a

school

Bonesrøinning (2003) Norway Administrative maximum

class-size rule

Gary-Bobo and Mahjoub (2006) France Administrative maximum

class-size rule

Wößmann and West (2006) 18 countries

(TIMMS)

Average class size at respec-

tive grade

Bressoux, Kramarz, and Prost (2009) France Average class size in the

school

Cho, Glewwe, and Whitler (2012) U.S. Random population varia-

tion

and Prost (2009) find negative significant effects using an average class-size as an instrument,
while the study of Wößmann and West (2006) finds in 4 of 18 countries negative, in 1 positive
and otherwise insignificant effects using the same instrument. As a further example, Hoxby
(2000) finds no significant effects with a random population variation as an instrument, while
the estimates in Cho, Glewwe, and Whitler (2012) are negative and significant. All those
papers obtain their estimates with a linear specification in a 2SLS framework. I contribute to
the IV literature on the effect of class size on test score by showing that a model specification
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error might be the source of the discrepancy.
My empirical test utilizes the framework of Breunig (2012) and Breunig (2013) by adapting

it to the case of monotonicity. It is also related to the testing procedures in Horowitz (2006)
and Horowitz (2012).

This study also builds on the literature on TSP frameworks for constrained estimation.
The paper of Mammen, Marron, Turlach, and Wand (2001) develops a TSP framework for
simple smooth and the papers of Mammen and Thomas-Agnan (1999) and Mammen, Marron,
Turlach, and Wand (2001) characterize constrained smoothing splines as projections. I extend
their ideas to the case of Tikhonov regularized estimation procedures.

2.3 The Endogeneity of the Class Size and the Econometric Model

Denote with Yi the test score of a student i, with Xi the class size of the class of student i and
with εi some other characteristics which are unobservable to the econometrician and which
also influence the test scores. An example for εi is the ability of student i. Consider the model

Yi = m0(Xi) + εi, (2.3.1)

where m0 summarizes the causal effect of Xi on Yi and is unknown.3 Alternative definition
of this model is with Yi being the average test score in a class i. This aggregated formulation
is often imposed in the literature because of the lack of information on an individual level,
see Angrist and Lavy (1999) for a discussion. I will use it throughout this paper without
elaborating on the issues related to it. For now suppose that an i.i.d. sample (Yi,Xi, εi) is
drawn from the distribution of (Y,X, ε).

The major difficulty in identifying the causal effect m0 of class size on test scores is that
the class size might be endogenous, that is, E[ε ∣ X] ≠ 0. The following exposition of the
reasons for endogeneity of X is based on the references in section 2.2. The class size is
endogenous if there is a systematic difference between the observables along different class
sizes. As an example schools with smaller classes might attract better teachers which will
lead to a negative estimation bias. In general, the channels through which endogeneity might
occur can be divided into two groups: between-schools selection and within-school selection.
Between-schools selection occurs for example when

• Schools with overall better resources (such as better teachers) attract more students,
which potentially leads to higher class sizes. This would induce ceteris paribus a
positive spurious correlation of class size and test scores.

• Parents who invest more into the human capital of their children might also make
more efforts to get them into smaller classes (an underlying assumption is that parents
actually believe that smaller classes are better). This could lead to a negative bias.

• Parents trying to compensate for/reinforce the low/high ability of their child might
choose schools with smaller classes.

3For expositional simplicity, I abstract in this section from other observed covariates. In the empirical section,

I impose and discuss a model that also includes other observed covariates.

53



• In rural areas schools might have systematically different class sizes than those in
urban areas. If also the distributions of the (usually unobserved) ability differ then the
estimates would capture these differences.

• In general, well-off families might choose to purchase their residences in areas with
better schools. This is referred to as Tiebout sorting. It poses a problem for the
identification of m0 when the better schools systematically differ from the other schools
in terms of class size.

Within-school selection can occur for example when

• Teachers/directors assign students with learning difficulties to smaller classes.

• Parents who care more for the school achievement bargain more aggressively with the
teachers/school directors to get their children into smaller classes.

• In areas with population from a lower sociological background and lower quality
students, teachers/school directors/local policy makers might treat preferentially high
skilled students and students from well-off families to prevent them from leaving the
area.

The list of possible reasons is not exhaustive. The endogeneity is generated in the interplay
of all education stakeholders and in most cases it is difficult to say in which direction the bias
would be.

An instrumental variable strategy to tackle the endogeneity issue is to use a variable W
which fulfills

E[ε ∣ W] = 0. (2.3.2)

Combined 2.3.1 and 2.3.2 give the instrumental variable equation

E[Y ∣ W] = E[m0(X) ∣ W]. (2.3.3)

Assuming a differentiable regression function, the question whether the class size effect
is monotone is equivalent to the question whether m′ ≤ 0 a.e. on the domain of X (or
alternatively m′ ≤ 0), where m′ denotes the first derivative of m.

The class-size/test-scores regression function is typically modeled in the literature as a
linear function. An estimator is obtained, roughly speaking, by inverting the right-hand side
and replacing the unknown expectations with their sample counterparts. In most of this
paper, I do not impose a parametric form for m0.

2.4 Shape constraints in minimum distance penalized procedures:

estimation and testing

2.4.1 The framework for constrained estimation

Assume model 2.3.1 and assume that there is an observable variable W such that the restric-
tion 2.3.2 holds. Suppose further that Q ∶= Q(m) is a population criterion that is uniquely
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minimized at the ”true” regression function m0. An ill-posed inverse problem exists, when
there is a sequence of admissible functions (=potential regression functions) {mk} such that
Q(mk)→ Q(m0) but d(mk,m0)↛ m0, where d is some metric on the space of admissible func-
tions. This is for example the case when the inverse of Q is not continuous (for more general
definition of well-posed and ill-posed inverse problems see for example Engl, Hanke, and
Neubauer (1996). A typical solution is to regularize the sample criterion with a penalty term.
To be more concrete, define the operator T as

T ∶ L2
X Ð→ L2

W

φÐ→ Tφ(w) ∶= E[φ(X) ∣ W = w],

where L2
X ∶= {φ ∶ E[φ(X)2] < ∞} and L2

W ∶= {g ∶ E[g(W)2] < ∞}. Suppose that h(w) ∶= E[Y ∣

W = w] is in L2
W. Then the model 2.3.3 can be written as

Tm = h. (2.4.1)

In this paper, I consider regularized minimum distance estimators of the type

m̂ = argmin
m∈G

∥T̂m − ĥ∥2
H + αn∥m∥2

G = argmin
m∈G

Fm, (2.4.2)

where H and G are Hilbert spaces, ∥.∥G is a norm on G and ∥.∥2
H is some minimum distance

criterion, for example a norm on H. αn is a constant that depends on the sample size n
(throughout this paper I will omit the index indicating the dependence of the estimator on n
) and T̂, ĥ are estimators of T and h, respectively.

One appealing feature of these estimation procedures is that constraints can be easily
imposed on the solution. If C is a subset of G, then the constrained estimator m̂C is defined as

m̂C = argmin
m∈C

Fm. (2.4.3)

Whereas the focus of the empirical study is whether m′ ≤ 0 holds, I first consider the broader
problem of estimating m0 under (general) shape constraints in the context of ill-posed inverse
problems.

Imposing a shape constraint on an estimator might be useful for several reasons. Often
economic theory does not predict a concrete parametric form, but implies a shape constraint.
For example, we may have no reasons that a demand for a good is linear in its price, but it
might be plausible to assume that the demand is negatively related to the price, i.e. that it is
monotonically decreasing. In that case, imposing a constraint might be necessary to perform
policy analysis. Further, imposing constraints on an estimate matters especially in small
samples, where deviation from the (assumed) property are likely to occur on random basis.
Then, if we believe the constraint must be fulfilled in the population, constrained nonpara-
metric estimators might be the better choice compared to their unconstrained counterparts.
Next, opposite to parametric estimates, shape estimates might reveal properties we have not
imposed on them. A monotone estimate of a demand function might reveal that the demand
is concave. To summarize, on the one hand, constrained nonparametric estimation is more
agnostic and flexible than parametric estimation and on the other hand, it might be more
useful in small samples than the unconstrained nonparametric estimation.
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This section has three main parts. First, I analyze the asymptotic relation between uncon-
strained and monotonically constrained Tikhonov estimators (section 2.4.3) when the model
solution m0 is an inner point of the constrained set. Next, I derive a projection property of
a broad class constrained estimates for a broad class of constraints, see sections 2.4.4 and
2.4.5. And third, this projection property is applied to derive sufficient conditions for the
consistency of constrained estimators, see sections 2.4.6 and 2.4.7.

2.4.2 Notation

Unless otherwise stated, G and H represent Hilbert spaces, and ∥.∥G, ∥.∥H the norms on
these spaces. T denotes the conditional expectation operator. X,Y,W are one dimen-
sional real-valued random variables defined on some common set. If A is a sigma field
and µ a measure over a set Ω, then Lp(Ω,A , µ) represents the set of µ-measurable p-
integrable (with respect to µ functions over Ω. In general, if X is a random variable, then
ΩX is its domain and Lp

X denotes the set of functions {φ ∶ ΩX → R,E[∣ φ(X) ∣p< ∞]}.
Denote with Hk

X ∶= {m ∈ L2(X) ∶ m( j) exists and is in L2(X) for j = 1 . . . k}, where m( j)

denotes the jth weak derivative of m (and accordingly with Hk ∶= Hk
λ(Ω) the set {m ∈

L2(Ω, λ) ∶ m( j) exists and is in L2(Ω, λ) for j = 1 . . . k}). ∥.∥Lp denotes the standard norm
on Lp, ∥m∥ = (∫Ω ∣ m ∣p dµ)1/p where the set Ω and the measure µ are for simplicity omitted
and taken from the context. Next, if X,Y are random variables (vectors), then their conditional
probability functions (c.d.f) are denoted with fX, fY (FX,FY), and fX∣Y(x ∣ y) (FX∣Y(x ∣ y)) de-
notes the conditional probability density (c.d.f) of X given Y = y evaluated at X = x. If {an},
{bn} are two sequences, then an ≍ bn means that both {an/bn} and {bn/an} are bounded. I use
the big-O little-o notation and the order of probability notation in a standard way. Further
notation is introduced where necessary.

2.4.3 Asymptotic equivalence in the case of constraints on the derivatives for a

smooth subclass of regression functions

An important question in the context of constraint estimation is whether imposing a constraint
has an impact on the convergence rates of the estimator. This question is technically very
demanding and is not in the scope of this paper. However, In this subsection, I show that
under an additional smoothness condition, imposing constraints on the derivatives in the
case of m being an inner point of the constraint monotone set asymptotically leads to the
same estimate as in the unconstrained estimation. Thus, the constrained estimator inherits
all properties from the unconstrained one. Let in the definition of 2.4.2 G = H2

X[0,1] and
H = L2

W[0,1], both endowed with their standard norms. Suppose further that the density
fX is bounded and bounded away from zero. Let C ∶= {m ∈ G ∶ m′ ≤ 0}. Further, define the
unconstrained and constrained estimators as in section 2.4.1, where T̂n and ĥn are consistent
estimators of T and h and αn is chosen such that ∥m̂n − m0∥H2

X
= op(1). Example for such an

estimator based on kernels can be found in Grasmair, Scherzer, and Vanhems (2013) and on
sieves in Chen and Pouzo (2012). It holds the following result.
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Proposition 2.4.1. Suppose that the model solution m0 fulfils m0 ∈ G and m′
0 ≥ c > 0. Then, as n

goes to infinity, it holds

m̂n = m̂n,c (2.4.4)

almost everywhere with probability tending to one.

This result can be extended analogically for constraints on higher derivatives, such as
convexity. One implication for applied research is that the importance of imposing a con-
straint on the nonparametric estimator decreases with increasing sample size. One of the
purposes of the simulation study in section 2.5 is to provide evidence on how quickly this
importance decreases.

Although the smoothness assumption is rather strong, it illustrates well the importance of
the properties of the model solution for the relation between constrained and unconstrained
estimators.

2.4.4 Constrained Tikhonov estimation as a projection

Simple smooths can be shown to be a projection of the data in some general vector space,
Mammen, Marron, Turlach, and Wand (2001). This interpretation has the advantage that
constraints are easy to incorporate. In this setting, constrained estimators are revealed to be
two-step projection estimators. In addition, constrained smoothing splines are shown to be
the projection of the unconstrained counterpart on the set of constrained functions, Mammen
and Thomas-Agnan (1999) and Mammen, Marron, Turlach, and Wand (2001). In this and the
next subsection, I extend the results of Mammen and Thomas-Agnan (1999) and Mammen,
Marron, Turlach, and Wand (2001) to the case of Tikhonov estimators.

Assume (H, ∥∥H), (G, ∥∥G) are two Hilbert spaces, F ∶ H → G is a bounded linear operator,
h is an element of G representing the (true, perturbated or estimated) data and C is a subset
of H. Define m̂ and m̂C as

m̂ = argmin
m∈H

∥Fm − h∥2
H + αn∥m∥2

G (2.4.5)

m̂C = argmin
m∈C

∥Fm − h∥2
H + αn∥m∥2

G. (2.4.6)

As in the previous section, I refer to 2.4.5 and 2.4.6 as to unconstrained and constrained
(Tikhonov) estimators, respectively. Existence of m̂ and m̂C is assumed throughout this
section. Uniqueness is not necessary for my arguments, it only makes notation and exposure
easier. Existence and uniqueness are typically closely related to closed and convex constraints.

The following proposition is the central result of this subsection. It gives a useful charac-
terization of the constrained solutions.

Proposition 2.4.4.1. It holds m̂C = argminm∈C∥F(m̂ −m)∥2
H + αn∥(m̂ −m)∥2

G.

This result can be interpreted as follows: the constrained solution m̂C is a projection of
the unconstrained solution m̂ on the constrained set C. The following corollary makes this
interpretation legal.
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Corollary 2.4.4.1. The map <,>V ∶ H ×H Ð→ R,< m, g >V ∶=< Fm,Fg >G +α < m, g >H is for each

fixed α a positive definite bilinear form. In the induced norm ∥.∥V it holds

m̂C = argmin
m∈C

∥m̂ −m∥V . (2.4.7)

An immediate consequence is the following

Corollary 2.4.4.2. If the true regression function m0 is in C, then for 0 < K ≤ 2

∥m̂C −m0∥V ≤ K∥m̂ −m0∥V . (2.4.8)

If C is closed and convex, then K = 1.

Thus, in the norm ∥∥V , the constrained estimator inherits convergence and convergence
rates from the unconstrained estimator. Under the additional assumptions of closedness and
convexity of C, m̂C converges at least as fast as m̂ towards m0. This result gives the intuition
for the findings in the simulation study in section 2.5. There, in the case of monotonicity
constraint, the constrained estimator is shown to outperform its unconstrained counterpart
in terms of convergence rates.

Remark: It is desirable to translate these results to the standard norm ∥.∥H on H as typ-
ically asymptotic properties are stated with respect to it. In general though the norm ∥.∥V

is weaker than the norm on G. On the one hand , due to ∥m∥V ≤ (∥F∥(1 + αn)∥m∥G), so that
convergence w.r.t ∥m∥G implies convergence w.r.t ∥m∥V (the sequence {αn} is a null sequence
and is hence bounded). On the other hand, equivalence of the two norms would imply that
T is bounded from below and hence its inverse is continuous, which is a contradiction to
the chosen setting. Nevertheless, I demonstrate in sections 2.4.6 and 2.4.7 how result 2.4.4.2
can be used to obtain consistency under general constraints in sieves and kernel estimation
procedures, respectively.

Remark: Sufficient for proposition 2.4.4.1 is that ∥.∥G and ∥.∥H are induced by symmetric
positive semidefinite bilinear forms. In this case, corollary 2.4.4.2 holds with K = 2.

2.4.5 Two-Step projection framework

The previous section revealed m̂C as the projection of m̂ on the set C with respect to the norm
∥.∥V . The fact that m̂ itself is obtained via minimization leads naturally to the question whether
there exists a vector space (V, ∥.∥V), which contains the data vector Y = (Y1, . . . ,Yn), the
estimators Tikhonov constrained and unconstrained estimators m̂ and m̂C respectively in such
a way that m̂ coincides with the projection of Y on some subspace U, m̂ = argminm∈U∥Y−m∥V
and m̂C coincides with the projection of Y on a subset C ⊂ U, m̂C = argminm∈C∥Y −m∥V, both
with respect to the norm ∥.∥V. In this setting, the Pythagoras’ rule yields

∥Y −m∥2
V = ∥Y − m̂∥2

V + ∥m̂ −m∥2
V, (2.4.9)

58



and thus
m̂C = argmin

m∈C
∥m̂ −m∥V, (2.4.10)

Thus, the constrained estimator m̂C is a two-step projection (TSP) estimator in the following
sense: first project the data vector on the space U (unconstrained estimator) and then project
this projection on the set of all functions which fulfill the constraint. A two-step projection
(TSP) framework was developed in Mammen, Marron, Turlach, and Wand (2001) in the con-
text of simple smooths. In this subsection, I build on their idea to construct a TSP framework
in the context of constrained Tikhonov IV estimators.

Sufficient conditions Suppose that (V, ∥.∥) is a Hilbert space, that U is a closed subspace
of V and that C is a closed and convex subset of U. Then, using well known relationships
from functional analysis, there exists a unique projection m̂ of Y on U and a unique projection
m̂c of m̂ on C . In what follows, I give a concrete example for (V, ∥.∥V),U and C which fulfill
the sufficient conditions.

A concrete TSP framework: Define H1 ∶= H1
λ([0,1]) Consider the vector space V

V ∶= {
→
m (x) =

⎛
⎜
⎜
⎜
⎝

m1(x)
m2(x)
. . .
mn(x)

⎞
⎟
⎟
⎟
⎠

∶ m ∈ H1}.

I borrow it from Mammen, Marron, Turlach, and Wand (2001). It contains the subspaces Vm ∶=

{
→
m (x) ∈ V ∶ m1 = . . .mn} and Vm,c ∶= {

→
m (x) ∈ V ∶ m1 = . . .mn = const}. The realization of the

data vector
→
Y∶= (Y1, . . . ,Yn)

T is treated as a vector of constant functions of x. All observations
Yi,Xi,Wi are treated as given (deterministic) realizations. Consider the following bilinear
form on V:

< ., . >V ∶ V ×V Ð→ R

(
→
m,
→
g)Ð→

1
n ∫

(
n
∑
i=1

Ai(w)mi(Xi))(
n
∑
i=1

Ai(w)gi(Xi))dw +

αn

n
∑
i=1

1
n ∫

m′
i(x)g′i(x)dx,

where Ai are nonnegative weights functions. Define ∥
→
m∥V ∶=

√

<
→
m,
→
m>V. Below I show for

the space (V, ∥.∥V that the sufficient condition TSP 1 is fulfilled.

Example With Ai a kernel function, for elements of Vm the expression ∥
→
Y −

→
m∥2

V corre-
sponds to the functional ∥T̂m − ĥ∥2

L2 + αn∥m∥2
µ,H1 in Grasmair, Scherzer, and Vanhems (2013),

where T̂ and ĥ are kernel estimators of T and h, respectively and ∥.∥2
µ,H1 is the weighted

Sobolev norm ∥m∥2
µ,H1 = ∥m∥2

L2 + µ∥m′∥2
L2 (here with the choice µ = 0). See subsection 2.4.7 for

a detailed study of this example.
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One technical hurdle in this framework is to show completeness of V with respect to ∥.∥V.
The crucial aspect is to bound the norm of the function with the norm of the derivative. I
achieve this through a modified version of the Poincaré’s inequality.

Proposition 2.4.5.1. The space V is a Hilbert space with respect to the norm ∥.∥V. The subspace Vm

is closed in V with respect to the topology induced by ∥.∥V.

A direct consequence of proposition 2.4.5.1 is the following

Corollary 2.4.5.1. (Pythagoras relationship) In (V, ∥∥V) there exists a unique projection
→
m̂ of

→
Y on

Vm. For each
→
m∈ Vm it holds

∥
→
Y −

→
m∥2

V = ∥
→
Y −

→
m̂∥2

V + ∥
→
m −

→
m̂∥2

V. (2.4.11)

Note that the projection
→
m̂ is a vector-valued function with i-th component equal to

argminm∈H1∥T̂m− ĥ∥2
L2+αn∥m∥2

µ,H1 , i = 1, . . . ,n. As the next corollary shows, this representation
has the important advantage of a straightforward incorporation of constraints (here with the
example of monotonicity constraint). Define m̂C ∶= argminm∈H1∶m′≥0∥T̂m − ĥ∥2

L2 + αn∥m∥2
µ,H1

Corollary 2.4.5.2. (Monotonicity constraint) Let C ⊂ Vm, C ∶= {
→
m∈ Vm ∶ m

′
≥ 0}. Then C is convex

and closed in V w. r. t. ∥.∥V. Therefore there exists a unique element
→
m̂C∈ C with

→
m̂C= argmin

→
m∈C

∥
→
Y −

→
m∥V. (2.4.12)

It holds the relationship
→
m̂C= argmin

→
m∈C

∥
→
m̂ −

→
m∥V, (2.4.13)

and the i-th element of
→
m̂C is equal to m̂C, i = 1, . . . ,n.

2.4.6 Application of the projection property: an example with a sieves estimator

In this subsection, I give a first illustration of how the projection property can be utilized
to show strong convergence of an IV estimator under shape constraints. Convergence is
inherited from the unconstrained estimation. The analysis is set in the Penalized Sieve
Minimum Distance framework of Chen and Pouzo (2012). In particular, the estimation
procedure corresponds to their infinite-dimensional sieve case with a least squares series
estimator. In the following, G is a reflexive Hilbert space - either L2(X) or the Sobolev space
of functions Hk

X ∶= {m ∈ L2(X) ∶ m( j) exists and is in L2(X) for j = 1 . . . k}, where m( j) denotes
the jth weak derivative of m. Let {b j(.)} be a sequence of basis functions in L2

W. For J = J(n)
denote with b̄J the vector (b1(.), ..., bJ(.))′. Further define BJ ∶= (b̄J(W1), ..., b̄J(Wn))

′, and
with (B′JBJ)

− the Moore-Penrose pseudoinverse of B′JBJ. Following Chen and Pouzo (2012),
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equation 11)) define the Least Squares Estimator of (Tm − h)(w) = E[m(X) ∣ W = w] −E[Y ∣

W = w] as

(T̂m − ĥ)(w) ∶= b̄J(w)(B′JBJ)
−

n
∑
i=1

b̄J(Wi)(m(Xi) −Yi). (2.4.14)

Let C some subset of G. Define the unconstrained and the constrained estimators as

m̂ ∈ argmin
m∈G

{n−1
n
∑
i=1

(T̂m(Wi) − ĥ(Wi))
′(T̂m(Wi) − ĥ(Wi)) + αnP(m)} (2.4.15)

m̂C ∈ argmin
m∈C

{n−1
n
∑
i=1

(T̂m(Wi) − ĥ(Wi))
′(T̂m(Wi) − ĥ(Wi)) + αnP(m)}, (2.4.16)

where P(m) = ∫ m2(x)dx when G = L2(X) and P(m) = ∑k
j=0 ∫ ∣ m( j)(x) ∣2 dx with m(0) ∶= m if

G = Hk
X (the domain of X is specified below).

The existence of m̂C depends on the properties of the set C. The functional Fm ∶=

n−1∑n
i=1(T̂m(Wi)− ĥ(Wi))

′(T̂m(Wi)− ĥ(Wi))+αnP(m) is convex and sequentially lower semi-
continuous with respect to ∥.∥ and hence it is also sequentially lower semicontinuous with
respect to the weak topology on G. It is also coercive and bounded from below, and because
G is a reflexive space, a sufficient condition for the existence of m̂C is that the set C is weakly
closed in G, see for example Engl, Hanke, and Neubauer (1996). Also alternative conditions
can be found there.

Examples: i) Let G = L2(X) and let C be the subset of all positive functions, C = {m ∈ H ∶

m ≥ 0 a.e.}. C is closed and convex and hence weakly closed in G. ii) Let G = H1
X and let C be

the subset of all non-decreasing functions, C = {m ∈ H ∶ m′ ≥ 0 a.e.}. This set is also closed4

and convex and hence weakly closed. iii)The weak closedness of a constrained set of C is
typically obtained through convexity. Grasmair, Scherzer, and Vanhems (2013) give prove
weak closedness in the case of the nonconvex integrability constraints of a demand function.
The integrability constraints of a demand function g = g(x) for a vector of goods x under
prices p and budget z follow from deriving the demand function through a maximization of a
utility function u under the budget constraint z. The integrability constraints are defined in the
following way: a) g is homogeneous of degree 0: g(tx) = g(x) for every t > 0, b) the demand
satisfies the equality p′g(x) = z, that is, the solution of the utility maximization problem is
at the boundary and c) the Slutsky matrix Sg(x) ∶= ∇pg(x) + ∂zg(x)g(x)′ is symmetric and
negative semidefinite. Grasmair, Scherzer, and Vanhems (2013) show that due to condition c)
the set of integrable demand funcitons is nonconvex, see Remark 2.1 in Grasmair, Scherzer,
and Vanhems (2013), but is nevertheless weakly closed in the sobolev space H1(Rk) with k
the dimension of x, see Lemma 2.2 in Grasmair, Scherzer, and Vanhems (2013).

Consider the following collection of assumptions from Chen and Pouzo (2012):
Assumption 1 For m0 it holds Tm0 = h.

4Let the sequence {mn} of functions in C converge to m ∈ G. If m′ is negative on a λ-nonnull set M, then the

set ⋃∞n=An with An ∶= {m′ ≤ −1/n} has a positive measure and therefore at least one of the sets An must have a

positive measure, which is a contradiction to the convergence.
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Assumption 2 T is bounded and if for some m Tm = h then ∥m −m0∥G = 0.

Assumption 3 i) X and W attain values on [0,1]. ii) The densities fX and fW of X and W
are bounded and bounded away from zero. iii) The joint distribution of (X,W) is dominated
by the products of its margins and ∫ ∣ fX,W ∣2 d fx ⊗ fy < ∞. iv) Y is square integrable. v)
(Yi,Xi,Wi), i = 1,2, . . . ,n is an i.i.d. random sample from the distribution of (Y,X,W).

Assumption 4 i) sup j∈{1,...,Jn}E[∣ b j(X) ∣2] ≤ CJ, where {CJ}J∈N is a sequence of positive
constants. ii) The smallest eigenvalue of E[b̄Jn(W)b̄Jn(W)′] is bounded away from zero for
all Jn ∈N. iii) supw∈[0,1]{b2

1(w) + ⋅ ⋅ ⋅ + b2
Jn
(w)} = o(n/Jn).

Remark: Denote with m̂n = m̂(n) the unconstrained estimator 2.4.15 corresponding to a
given sample size n. Assume that n−1∑i=1(T̂m0 − ĥ)2 = Op(αn). By definition of m̂n

n−1
∑
i=1

(T̂m̂n − ĥ)2 + αnP(m̂n) ≤ n−1
∑
i=1

(T̂m0 − ĥ)2 + αnP(m0),

and therefore exists a constant C0 such that αnP(m̂n) ≤ αnC0. Note that the assumptions
of Lemma A.3 ii) in Chen and Pouzo (2012) imply even P(m̂n) = P(m0) + op(1). This jus-
tifies the definition of the following set. Define for some arbitrary small ε > 0 the set
HM0 ∶= {m ∈ G ∶ αnP(m) ≤ αnM0} where 0 < M0 < ∞ is chosen so that m0 ∈ HM0 and
P{m̂n ∈ HM0} ≥ 1 − ε for all n ≥ n0 (n0 depends on ε).

Assumption 5 There exist constants k ∈ (0,1] and 0 < K <∞, so that

max
1≤ j≤Jn

E[(b j(W))2supm′∈HM0 ∶∥m′−m∥G≤δ{(m′(X) −m(X))2}] ≤ K2δ2k (2.4.17)

for all m ∈ HM0 and all δ > 0, δ = o(1).
Discussion of Assumptions: Assumption 1 states the model equation. Assumption

2 is maintained for (global) identification of m0. Under Assumption 2, the conditional
expectation operator T is injective and m0 is the unique solution of the model a.e.. The
assumption corresponds to the notion of complete statistic, see Darolles, Fan, Florens, and
Renault (2011) for a discussion. Assumption 3 iii) is Assumption A.1 from Darolles, Fan,
Florens, and Renault (2011). It ensures that T, its adjoint operator T*, as well as TT* and T*T
are compact. Necessary condition for it to hold is that W and X have no elements in common
(or in the one dimensional case, that X ≠ W). Assumption 3 iv) is a sufficient condition that
h = E[Y ∣ W] is in L2(W). Assumption 3 v) can be relaxed to (Yi,Xi,Wi) strictly stationary
ergodic. Assumption 5) is first used in Chen, Linton, and Keilegom (2003). It is an extension
of the type IV class functions assumption in Andrews (1994). In Chen, Linton, and Keilegom
(2003) it is referred to as locally uniformly L2(W)-continuity. This condition has been used
also by Breunig (2013). Further, under assumptions 1-5, there are positive finite numbers
K,K′, such that

KE[∣Tm(W) − h(W)∣2] −Op(δ
2
n) ≤ n−1

n
∑
i=1

(T̂m(Wi) − ĥ(Wi))
2 (2.4.18)

≤ KE[∣Tm(W) − h(W)∣2] +Op(δ
2
n)
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uniformly over the set Hos which is defined below, where δ2
n = max{Jn/n, b2

Jn
} and bJn is the

bias of the series estimator, see lemma 3.2 Chen and Pouzo (2012).
In the following result, I impose a high-level condition, under which the consistency

of the unconstrained estimator implies the consistency of the constrained estimator. This
relation is a consequence of the projection property of the constrained estimator. Note that
the high-level condition is not a direct condition on the set C.

Proposition 2.4.2 (Consistency). Let mC exist and assumptions 1-5 be fulfilled. If

n−1
n
∑
i=1

(T̂(m̂ −m0))
2 = op(α), (2.4.19)

then ∥m̂C −m0∥G = op(1)

I now show that the high-level assumption 2.4.19 is implied by low-level conditions that
are directly related to the smoothness of the model solution m0 and the rate of ill-posedness
of the inverse problem. We first need to introduce the following notation and assumptions.
Define Hos as Hos ∶= {m ∈ G ∶ ∥m − m0∥G ≤ ε, ∥m∥G ≤ M1} for M1 > 0 and ε such that that
P{m̂0 ∈ Hos} > 1 − ε and m0 ∈ Hos. Note that due to the definitions of G and ∥.∥G, this set is
convex and assumption 4.1 of Chen and Pouzo (2012). Let {δ2

n} be a sequence of positive
decreasing numbers such that δ2

n = max{Jn/n, b2
Jn
} and bJn and 2.4.18 holds uniformly over

Hos(Such sequence exists due to assumptions 1-5, see Lemma C.2 in Chen and Pouzo (2012)).
Further, define δ∗m,n to be the optimal convergence rate of E[∣ Tm − h − (T̂m − ĥ) ∣2] uniformly
over Hos.

Assumption 6 max{δ2
n, αn∥m̂ −m0∥G} = O(δ2

n).

Under assumptions 1-6, ∥m̂ −m0∥G = Op((δ2
n,Hos)), where

(δ2
n,Hos) ∶= sup

m∈Hos∶E[∣E[m(X)−m0(X)∣W]∣2]
∥m −m0∥G (2.4.20)

is a measure of ill-posedness of T called the sieve modulus of continuity, see Blundell, Chen,
and Kristensen (2007). Let {q j(.)} j ∈N be a Riesz basis functions in G. The following as-
sumption states the rate of the approximation error of the projection on subspace spanned
by finite many basis functions (this is assumption 5.3 Chen and Pouzo (2012)).

Assumption 7 There exist finite constants M > 0 and α > 0, and a strictly increasing
positive sequence {v j} j∈N, such that ∥m −∑k

j=1 ⟨m, q j⟩G q j∥G ≤ M(vk+1)
−α.

Assumption 8 There exist a finite constants D > 0 and a continuous strictly increasing
function φ ∶ R+ → R+, such that for all m in Hos, it holds

√
E[∣ E[m(X) −m0(X) ∣ W] ∣2] ≤

D∑∞
j=1φ(v−2

j ) ∣ ⟨m −m0, q j⟩G ∣2.

Assumptions 7 and 8 are related to the smoothness of the model solution m0 and to the
rate of ill-posedness of the inverse problem. Combined, they provide an upper bound for
the sieve modulus of continuity, see Chen and Pouzo (2012) corollary.
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Note that assumptions 1-8 are used to derive the convergence rates of the unconstrained
estimator in a Hilbert space. Provided that m0 is in C, they are only indirectly related to the
constrained set C. The following result states, that provided that the estimation problem is
enough well-behaved, no further assumptions on C are necessary to ensure consistency of
the constrained estimator (apart from its existence).

Proposition 2.4.3. Suppose that assumptions 1-8 hold and that the inverse problem is mildly ill-posed

in the sense, that φ(x) = xs for some s > 0. In addition, assume that

(i) α − 2s > 0

(ii) Tm̂ − Tm0, T̂m0 − Tm0 and ĥ − h suffice the uniform law of large numbers.

Then 2.4.19 holds.

Ceteris paribus, α controls the rate of the approximation error on the shrinking set. The
function φ(x) links the behaviour of the conditional expectation operator to the smoothness
of the model solution. Assumption 8 i) can be therefore interpreted as a local ill-posedness
condition. Condition ii) can be ensured by assuming that there exist numbers r, q and mea-
surable square integrable such that Tm0 ∈ Hr

W and ĥ ∈ Hq
W and that the consistent estimators

T̂m0, Tm̂ and ĥ are bounded there for sufficiently large n by an envelope function, see e.g.
Van de Geer (2000).

2.4.7 Application of the projection property: an example with a kernel estimator

In this subsection, I utilize the projection property in a kernel based estimation approach. As
in the last example, I state an assumption, under which convergence of the unconstrained
estimator implies the convergence of the constrained estimator, provided it exists, regardless
of the type of constraint. As before, I state sufficient conditions for this assumption to hold.
These conditions are related to the smoothness of the true function and the ill-posedness of
the problem.

Using the notation of the projection section 2.4.4, let G = L2
X([0,1]), H = L2

W([0,1]), where
both spaces are endowed with their standard norms. To define estimators, first consider the
following definition of a generalized kernel function (compare Darolles, Fan, Florens, and
Renault (2011)).

Let σ = σ(n)→ 0 and define the function Kσ(., .) with the following properties:

i) Kσ(u, t) = 0 for u > t and u < t − 1,

ii) σ−1
∫

t
t−1 Kσ(u, t)du = 1,

iii) σ−1+ j
∫

t
t−1 u jKσ(u, t)du = 0 for j = 1,2 . . . , l − 1

Kσ is called a univariate generalized kernel of order l and σ is the bandwidth. The multivariate
generalized kernel of order l is defined as a product of univariate generalized kernels of order

64



l. The kernel estimators of the densities are defined as

f̂YW(y,w) =
1

nσ2

n
∑
i=1

KY,σ(y −Yi, y)KW,σ(w −Wi,w),

f̂XW(x,w) =
1

nσ2

n
∑
i=1

KX,σ(x −Xi,x)KW,σ(w −Wi,w),

f̂W(w) =
1

nσ

n
∑
i=1

KW,σ(w −Wi,w),

while the estimators of T and r are

T̂m(w) = ∫ m(x)
f̂XW(x,w)

f̂W(w)
dx,

r̂(w) = ∫ y
f̂YW(y,w)

f̂W(w)
dx, .

The functional to be minimized over C is now defined as

F̂n(m) ∶= ∫ ∣ T̂m(w) − r̂(w) ∣2 λ(dw) + αn∫ ∣ m(x) ∣2 λ(dx).

The unconstrained and constrained estimators are defined as m̂ = argminm∈L2
X
F̂n(m) and

m̂C = argminm∈C F̂n(m), where C denotes some subset of L2
X. The following collection of

assumptions is borrowed from Darolles, Fan, Florens, and Renault (2011).

Assumption K1
1) (Yi,Xi,Wi), i1 = 1, . . . ,n is an i.i.d. sample of (Y,X,W).
2) The density fY,X,W is l times continuously differentiable in the interior of its domain and
fX,W is bounded and bounded away from zero on [0,1] × [0,1].
3) E[ε ∣ W = w] is uniformly bounded on [0,1]

Assumption K2
The operator T is an injective bounded linear operator.

The i.i.d. assumption can be relaxed to weak stationarity. Assumptions K1 and K2 ensure that
the operator T is compact with a single value decomposition. Denote it with {µk, ek, fk}k∈N,
where (µk) is a decreasing positive sequence with µk → 0 and (ek) and ( fk) are sequences
of the corresponding eigenfunctions in L2(X) and L2(W), respectively. The injectivity of T
ensures global identification of m0.

Assumption K3
The true regression function m0 is in C.

Define the following class of functions. For β > 0, denote with Φβ the set of functions m
in G such that ∑∞

i=1⟨m, ei⟩
2
G/µ

2β
i <∞
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Assumption K4
For some β > 0 it holds m0 ∈ Φβ.

Assumption K4 is called a source condition and is related to both the (decay of) singular
values of T and the (decay of) the Fourier coefficients of the function m0, see Darolles, Fan,
Florens, and Renault (2011) and Engl, Hanke, and Neubauer (1996) for a discussion. The
parameter β regulates this relation, ceteris paribus.

Assumption K5
The kernel function satisfies the following properties:
1) Kσ is a univariate generalized kernel of order l.
2) For t ∈ [0,1] supp(Kσ(., t)) = [(t − 1)/σ, t/σ] ∩K , with K not depending on t. Moreover,
supσ>0,t∈[0,1],u∈K ∣ Kσ(σu, t) ∣<∞.
3) It holds log(n)/(nσ4)→∞ and σ→∞.

Remark Assumptions K1 − K5 are sufficient to ensure the consistency of the unconstrained
estimator under suitable choices of the bandwidth and the penalty term, see Darolles, Fan,
Florens, and Renault (2011). Moreover, under such choices of the bandwidth and the penalty
term, there exists ρ ≤ 2 such that ∥T̂ − T∥2 = Op(1/nσ2 + σ2ρ), ∥T̂∗ − T∗∥2 = Op(1/nσ2 + σ2ρ),
and ∥T̂∗r̂ − T̂∗T̂m0∥ = Op(1/n + σ2ρ), where T∗ denotes the adjoint of T and ∥∥ is the operator
norm, see the supplement materials to Darolles, Fan, Florens, and Renault (2011). Note that,
apart from condition K3, none of the conditions K1 − K5 is directly related to the constrained
set. Assumption K4 is implicitely related to C, as it states that m0 ∈ Φβ is also in C.

The following proposition states a sufficient condition that the constrained estimator,
provided it exists, is a consistent estimator for m0 with respect to the norm on G.

Proposition 2.4.4. Let assumptions K1-K6 be fulfilled and let

∫ ∣ T̂(m̂(w) −m0)(w) ∣2 λ(dw) = op(αn) (2.4.21)

hold. Furthermore, let i) αn = o(1) with nα2 → ∞, ii) σ = o(1) with nσ2 → ∞ and iii) β ≥ 1 or

nσ2α
1−β
n →∞. Then, if m̂C exists, it holds

∥m̂C −m0∥G = op(1).

The intuition for the result is similar as the consistency result for constrained sieves
estimators from section 2.4.6. Under the assumptions of proposition 2.4.4, the unconstrained
estimator is consistent and hence αn∥m̂C −m0∥

2
G = op(αn). Together with the condition 2.4.21,

the projection property 2.4.4.2 ensures the consistency of the constrained estimator.
In the following I discuss sufficient conditions for the assumption 2.4.21 to hold. As in the

sieves application, a condition on the smoothness of m0 and on the rate of the ill-posedness
of the inverse problem are revealed to imply it.
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Proposition 2.4.5. Let assumptions K1 −K5 hold and let m̂C exist. If i) αn = o(1) with nα2 →∞, ii)

σ = o(1) with nσ2 →∞ and iii) β > 1, then under optimal choices of the penalty and the bandwidth it

holds

∫ ∣ T̂(m̂(w) −m0)(w) ∣2 λ(dw) = op(αn)

2.4.8 Discussion

The results of sections 2.4.6 and 2.4.7 imply, that convergence of the constrained estimator
is implied by conditions on the smoothness of the model solution m0 and the rate of ill-
posedness of the inverse problem. For sieves, this condition was α − 2s > 0 and for kernels
β > 1. The parameter s controls the degree of ill-posedness in the sieves case. The higher the
s, the higher the rate. α is related to the sieve approximation error. The higher α, the higher
the rate at which the approximation error goes to zero with increasing dimension of the sieve
space. It can be interpreted as a smoothness requirement. A similar relation holds for the
parameter β in the kernel case. The case β > 1 is interpreted in Darolles, Fan, Florens, and
Renault (2011) as a strong instrument case.

One possibility to use further the projection property would be to bound the convergence
rates of the constrained estimators. Suppose that {Rn} is some positive decreasing null
sequence, and that ∥m̂ −m0∥G = op(Rn). In the sieves case, assume that

n−1
n
∑
i=1

(T̂(m̂ −m0))
2 = Op(αn∥m̂ −m0∥G), (2.4.22)

and in the kernel case, assume that

∫ ∣ T̂(m̂(w) −m0)(w) ∣2 λ(dw) = Op(αn∥m̂ −m0∥G). (2.4.23)

In both cases, using the projection property, it would hold ∥m̂C − m0∥G = op(Rn). It is not in
the scope of this paper to discuss the plausibility of assumptions 2.4.22 and 2.4.23, as well as
sufficient conditions for them to hold.

2.5 Simulation study and a guideline for the applied research

2.5.1 Estimation

The simulation study in this section has several purposes. First, it seeks to determine rules
for choosing the estimation parameters in an optimal way. The choice will generally depend
on the underlying functional form (smoothness and curvature of the model solution m0), as
well as on the rate of the ill-posedness of the inverse problem. The latter property is related
to the strength of the instrument and to the level of endogeneity in the model. Therefore, I
simulate (i) different functional forms, (ii) different strengths of the instrument and different
level of endogeneity for (iii) different sample sizes. This framework allows me to formulate
guidelines for applied research for the choice of the estimation parameters when imposing a
constraint is necessary.
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A second purpose of this simulation study is to compare the performances of uncon-
strained and constrained estimators and relate them to the theoretical findings from the
previous sections. Of particular interest is whether there are statistical gains from imposing
a (correctly specified) constraint. I seek to answer the question how these gains change with
increasing n depending on the structure of the model (strength of the instrument, smoothness
of the solution).

The preceding sections in this paper delivered some insights and predictions about the
behavior of the constrained estimator.

1. Due to the projection property, the constrained estimators should perform at least as
good as their unconstrained counterparts.

2. When m0 is an inner point of the constrained set, then constrained and unconstrained
estimators are equal w.p.t.1.

I am using the PSMD sieves estimator discussed in section 2.4.6. Here mn denotes the
number of bias functions used to compute the LS series estimator. The main determinant
of the optimal values of the parameters of the estimator is the functional form of the true
regression. In order to cover a wide range of functional forms, I simulate three models
that have different ”degree” of monotonicity: i) a strictly increasing function (model 1) with
m1(x) = (exp(x))2; ii) a model that has a strictly increasing and a flat part (model2):

m2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5x − 0.5 if x ∈ [−1,−0.7]
−0.625x2 − 0.375x + 0.19375 if x ∈ [−0.7,−0.3]
0.25 if x ∈ [−0.3,0.3]
0.625x2 − 0.375x + 0.30625 if x ∈ [0.3,0.7]
0.5x if x ∈ [0.7,1];

and iii) a constant function, m3 = 0. Fugures 2.1a- 2.2 depict the three models.
Which is the most plausible form will depend on the available theory.
Two further important factors for choosing the parameters of the estimator are the degree

of endogeneity and the strength of the instrument. Whereas the strength of the instrument
can be directly assessed, the degree of the endogeneity is unobservable. To address this
issue, we can rely mainly on economic arguments and indirect evidence. I simulate different
combinations of strength of the instrument and degree of endogeneity in the following way.
The endogenous regressor X is generated according to the rule

Xk,i = β1εi + β2Wu,i + β3Ui,

where εi is the regression error and Ui is exogenous variation of X which is independent of the
instrument. W denotes the instrument. The constant β1 controls the degree of endogeneity,
β2 controls the strength of the instrument, and β3 controls the exogenous variation of X. β1, β2
and β3 are nonnegative and sum up to one. For details of the data generation process see the
appendix. For each functional form I simulate three different degrees of endogeneity: strong
endogeneity- weak instrument (SE-WI), weak endogeneity-strong instrument (WE-SI), weak
endogeneity-weak instrument (WE-WI), compare with table 2.2.
This data generating process has three main advantages. First, the variety of models allows a
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Figure 2.1: Simulated models

(a) Model 1 (b) Model 2

Figure 2.2: Model 3

Table 2.2: Overview case definitions

β1 β2

SE-WI 0.5 0.2

WE-SI 0.2 0.5

WE-WI 0.2 0.2

thorough investigation of the influence of the endogeneity and the strength of the instrument.
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Second, the simplicity of the model facilitates the interpretation of the results. And third, the
values of these two factors are easy to manipulate and adjust according to our theory. The
main questions I will focus on are the following:

• How quickly converges the constrained estimator with increasing sample size com-
pared to the unconstrained estimator (MISE and uniform convergence)?

• What is the influence of endogeneity on this convergence?

• What are the optimal parameters (cutoff parameter Jn and regularization constant αn
for a given functional form of the true function, endogeneity level and sample size?
How do they change when these given conditions change?

The three parameters of the Monte Carlo simulation are the sample size n, the cutoff parameter
Jn and the regularization constant αn. They can attain the following values:

n ∈ {50,100,300,500,700,1000}
Jn ∈ {3,4,5,6,7,8,9,10}
αn ∈ {0.0001,0.0003,0.0005,0.0008,0.001,0.003,0.005,0.008,0.01,0.03,0.08,0.1}.

For each model (1,2,3) and for each triple (β1, β2, β3) ( in total 9 submodels) I simulate N = 100
Monte Carlo samples for each triple (n, Jn, αn) and calculate the empirical counterpart of
MISE.
Comparison of the performance of constrained and unconstrained estimators For each of
the 9 submodels and for each sample size, the MISE-minimizing parameters m and αn for
both constrained and unconstrained estimators are determined and the minimal MISEs are
compared. Tables 2.3 - 2.5 summarize the results for the MISE. A comparison between the
performances of the constrained and unconstrained estimator reveals that the unconstrained
estimator outperforms the unconstrained one for each model and sample size, although the
differences disappear when n gets bigger. Figures 2.3 - 2.5 illustrate these findings. In the case
of model 3, the estimation amounts to simple averaging and the two procedures produce
equivalent results. As expected, the performance of the estimators get worse with rising
endogeneity and decreasing strength of the instrument.

Optimal parameters and guidelines for the applied research
As noted, the choice of a parameter set in a concrete situation should be made according to
the sample size and according to the theory about 1) the functional form of the true regression
function and 2) the degree of endogeneity and the strength of the instrument in the data. The
following observations can be made about the optimal cutoff parameter Jn (see tables 2.6, 2.7
and 2.8 ):

• it grows very slowly with the sample size.

• the higher the degree of endogeneity, the higher Jn

• the stronger the instrument, the smaller Jn

• (trivially) the more ”complex” the functional form the higher Jn

The following observations can be made about the optimal regularization parameter αn (see
tables 2.9, 2.10 and 2.11 ):
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Table 2.3: Simulated MISE WE-SI

Model 1 Model 2 Model 3

n constr. unconstr. constr. unconstr. constrained unconstr.

50 229 354 38 42 22 25

100 134 240 27 29 10 11

300 60 90 14 15 3.6 4.2

500 40 54 11.13 11.73 2.1 2.35

700 34 44 8.95 10.15. 1.32 1.63

1000 25 33 6.46 8.7 1.1 1.2

Table 2.4: Simulated MISE SE-WI

Model 1 Model 2 Model 3

n constr. unconstr. constr. unconstr. constrained unconstr.

50 835 1014 37 38 21 21

100 702 805 24 25 11 11

300 474 738 15 21 3 3

500 472 649 13 15 2 2

700 411 591 12 14 1 1

1000 408 533 9 12 0.8 0.84

Table 2.5: Simulated MISE WE-WI

Model 1 Model 2 Model 3

n constr. unconstr. constr. unconstr. constrained unconstr.

50 742 925 38 44 25 26

100 551 839 27 35 12 12

300 559 700 16 20 3 4

500 479 659 14 17 2 2

700 474 648 10 14 1 1

1000 395 591 9 11 0.9 0.9
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Figure 2.3: MISE Weak endogeneity - strong instrument, Model 1

Figure 2.4: MISE Weak endogeneity - strong instrument, Model 2

• it decreases with increasing sample size, as predicted by the theory

• the higher the degree of endogeneity, the higher αn

• the stronger the instrument, the lower αn

• the closer the true function to the boundary, the higher αn.
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Figure 2.5: MISE Weak endogeneity - strong instrument, Model 3

Table 2.6: Optimal Jn for the constrained estimator, Model 1

n SE-WI WE-SI WE-WI

50 9 4 7

100 8 4 9

300 8 4 5

500 5 4 7

700 7 4 8

1000 7 4 6

Table 2.7: Optimal Jn for the constrained estimator, Model 2

n SE-WI WE-SI WE-WI

50 6 3 8

100 5 3 8

300 10 3 9

500 6 4 3

700 10 4 9

1000 4 4 9
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Table 2.8: Optimal Jn for the constrained estimator, Model 3

n SE-WI WE-SI WE-WI

50 3 4 3

100 4 3 3

300 5 5 7

500 4 4 3

700 3 5 3

1000 4 8 4

Table 2.9: Optimal αn for the constrained estimator, Model 1

n SE-WI WE-SI WE-WI

50 0.003 0.0005 0.0008

100 0.0008 0.0003 0.0003

300 0.0001 0.0003 0.0001

500 0.0001 0.0001 0.0001

700 0.0001 0.0001 0.0001

1000 0.0001 0.0001 0.0001

Table 2.10: Optimal αn for the constrained estimator, Model 2

n SE-WI WE-SI WE-WI

50 0.01 0.01 0.1

100 0.08 0.01 0.03

300 0.03 0.03 0.008

500 0.01 0.0008 0.008

700 0.01 0.0003 0.008

1000 0.0001 0.0003 0.008
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Table 2.11: Optimal αn for the constrained estimator, Model 3

n SE-WI WE-SI WE-WI

50 0.1 0.1 0.1

100 0.1 0.1 0.1

300 0.1 0.1 0.1

500 0.1 0.1 0.1

700 0.1 0.1 0.1

1000 0.1 0.1 0.1
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2.5.2 Testing

Null hypothesis and an empirical testing procedure

In this section, I develop an empirical testing procedure for testing the null hypothesis

H0 ∶ m′
0 ≥ 0 a. e. on [0,1]. (2.5.1)

The alternative is that m′ < 0 on a set with positive measure. To construct an empirical test,
I use the test developed by Breunig (2012) and Breunig (2013) and adapt it to the case of
monotonicity constraint. The intuition of the procedure is as follows. The test is based on an
empirical distance between an estimator that is subject to monotonicity constraint and the
data. Suppose that m̂C is a nonparametric estimator, such that m̂′

C ≥ 0 and ∥m̂C − m0∥S → 0
with n → ∞ whenever m0 is itself monotone (∥.∥S is some norm on the underlying space).
Denote with Y the data and with d(m,Y) some empirical distance between the function m
and the data Y. The idea of the test is to use a distance function, such that d(m,Y) is small
with a high probability when m0 is monotone. Such a comparison potentially faces the hard
task to derive the distribution of the constrained estimator (or of a function of it). I avoid this
problem in the following way. Consider the instrumental equationE[Y ∣ W] = E[m0(X) ∣ W].
If m̂C is consistent under the null, then the distance between Ê[Y ∣ W] and Ê[m̂C ∣ W],
d(Y, m̂C) ∶= ∥Ê[Y ∣ W] − Ê[m̂C ∣ W]∥2, is likely to be small under the null. Using the binomial
formula, the last expression can be split into

∥Ê[Y ∣ W] − Ê[m0 ∣ W]∥2 + 2⟨Ê[Y −m0 ∣ W], Ê[m0 − m̂C ∣ W]⟩ + (2.5.2)
∥Ê[m0 ∣ W] − Ê[m̂C ∣ W]∥2.

If m̂C converges quickly enough to m0, then the distribution of 2.5.2 is determined by its first
term. This idea is used in Horowitz (2006) and Breunig (2012) for testing for a parametric
specification and in Horowitz (2012), Breunig (2012) and Breunig (2013) for testing of the
existence of a smooth regression function in different settings. My contribution is to modify
the test procedure in Breunig (2012) to empirically test for monotonicity.

In particular, suppose that ( f j) is a sequence of functions on H such that

∫
H

f j(w) fk(w)π(dw) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if j = k
0 else.

Further, define the infinite dimensional matrix Ω to have an ijth-element the quantity
E[ε2 fi(W) f j(W)], and ΩJn to be its upper Jn× Jn block. Define bJn = tr(ΩJn) and σJn =

√
Ωt

Jn
ΩJn ,

with At the transposed of a matrix A. In Breunig (2012), the (standardized) test statistic is
defined as

Tn =
nSn − bJn√

2σJn

, (2.5.3)

where Sn = ∑
Jn
j=1 [

1
n ∑

n
i=1(Yi − m̂C(Xi)) f j(Wi)]

2
and m̂C is a nonparametric smooth estimator.
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The idea of Breunig (2012) is to split Sn in the following way

Sn =
Jn

∑
j=1

(n−1
n
∑
i=1

(Yi −m0(Xi)) f j(Wi))
2
+

+2
Jn

∑
j=1

((n−1
n
∑
i=1

(Yi −m0(Xi)) f j(Wi))(n−1
n
∑
i=1

(m0(Xi) − m̂C(Xi)) f j(Wi))) +

+
Jn

∑
j=1

(n−1
n
∑
i=1

(m0(Xi) − m̂C(Xi)) f j(Wi))
2
= In + IIn + IIIn

and to show that if the model solution is sufficiently smooth, then all terms containing
the nonparametric estimator (IIn and IIIn) are asymptotically negligible in the sense that
nIIn = op(σJn) and nIIIn = op(σJn). The distribution of the test statisic is then dominated by
nIn, which behaves like the error term and is normally distributed under the null.

My empirical approach is to take m̂C to be a monotonically constrained estimator. A
necessary condition is that m̂C converges quickly to m0 under the null. I adapt the penalized
sieve minimum distance (PSMD) estimator by Chen and Pouzo (2012) to the case of of mono-
tonicity shape restriction. This estimation procedure is discussed in section 2.4.6. A crucial
observation is that because the constrained set is closed and convex in the original space, the
constrained estimator achieves the convergence rate bound derived for the unconstrained
counterpart. See corollary 5.2 in connection with theorem 4.1 and assumption 3.4 in Chen
and Pouzo (2012). An unconstrained version of this estimator is used in Breunig (2013) to
test for the smoothness of a quantile specification.

I do not provide exact analytical proof for the asymptotic properties of this ad hoc empir-
ical testing procedure. I assess its numerical performance in an exhaustive simulation study
in the next section. The results show that the test performs well under a variety of alternative
forms and under different degrees of endogeneity and strength of the instrument.

Testing: simulation

To assess the power of the test I simulate two different non-monotone models:

• Model 1 is borrowed from the simulation study of Hall and Heckman (2000). The true
function is defined as

m(x) = (15(x − 0.5)3 +M(x − 0.5))I[0,0.5] +M(x − 0.5)I(0.5,1] − exp{−250(x − 0.25)2}I[0,1],

see figure 2.6a,a). The parameter M controls the amount of ”non-monotonicity” with
higher values leading to a function closer to a monotone one. I simulate this model for
M = 0.3.

• Model 2 is borrowed from the study of Bowman, Jones, and van der Gijbels (1998). The
true function is defined over the range (0,1) as

m(x) = 1 + x − a exp{−
1
2
(

x − 0.5
0.1

)
2
},
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Figure 2.6: Simulated models, Testing

(a) Model 1 (b) Model 2

where the parameter a controls the amount of monotonicity: the function is linear for
a = 0 and monotone for a ≤ 0.15, see figure 2.6a,b). I simulate the model for the value
a = 0.35.

These two models incorporate different types of violations of the monotonicity assump-
tion. Whereas in the first model the interval on which the function is decreasing is small with
a big drop, in the second model the drop is moderate but on a longer interval.

I perform the test using the constrained PSMD estimator described in section 2.4.6 with
optimal parameters for a nondecreasing specification, that is, model 2 from the last subsection.
In both models the power approaches the target level of 5 %. The empirical probabilities to
reject the null for M = 0.3 and a=0.35 for different cutoffs are shown in tables 2.12 and 2.13.

To assess the size of the test I simulate for each sample size n N = 100 Monte Carlo samples
of a constant function model. The empirical probabilities to reject the null for a targeted level
of 1% are shown below in table 2.14. Thus, the test has both good power and size properties.
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Table 2.12: Power Model 1, M = 0.3

n Jn = 4 Jn = 5 Jn = 6 Jn = 7 Jn = 8 Jn = 9 Jn = 10

50 0.04

100 0.09 0.11

300 0.36 0.31 0.30 0.28

500 0.65 0.57 0.53 0.50 0.50

700 0.69 0.67 0.70 0.68 0.68 0.67

1000 0.93 0.91 0.94 0.91 0.90 0.88 0.86

Notes: Values calculated only for admissible values of the cutoff parameter (Jn ≤ n
1
3 )

Table 2.13: Power Model 2, a = 0.35

n Jn = 4 Jn = 5 Jn = 6 Jn = 7 Jn = 8 Jn = 9 Jn = 10

50 0.12

100 0.23 0.23

300 0.82 0.80 0.78 0.77

500 0.87 0.92 0.89 0.86 0.84

700 0.98 0.99 0.98 0.97 0.97 0.98

1000 1.00 1.00 0.99 0.99 0.97 0.98 0.95

Notes: Values calculated only for admissible values of the cutoff parameter (Jn ≤ n
1
3 )
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Table 2.14: Size Model 3

n Jn = 4 Jn = 5 Jn = 6 Jn = 7 Jn = 8 Jn = 9 Jn = 10

50 0.01

100 0.01 0.01

300 0.01 0.01 0.03 0.02

500 0.03 0.02 0.02 0.02 0.03

700 0.00 0.01 0.02 0.04 0.04 0.03

1000 0.03 0.02 0.01 0.01 0.00 0.01 0.00

Notes: Values calculated only for admissible values of the cutoff parameter (Jn ≤ n
1
3 )
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2.6 Empirical investigation of the effect of class size on test scores

in a Minnesota data set

The study of Cho, Glewwe, and Whitler (2012) evaluates the effect of class size on test scores in
public elementary schools in the U.S. state Minnesota. Every year beginning with the school
year 1997/98, all 3rd and 5th graders take part in Minnesota Comprehensive Assessment
(MCA) test, a standardized test administered by the state of Minnesota. Around 60000
students in each grade are evaluated at the subjects reading and math.5 The data set contains
class sizes and (school-level) average test scores in 8 school years (1997/1998 - 2004/2005). It
also contains basic school-level demographic information, such as the percentage students
eligible for a subsidized lunch (Free Lunch), the percentage students with limited English
proficiency (lep), the percentage of students in a special educational status, and the proportion
of different minority groups. The initial number of schools is 1116 for the 3rd graders and
1137 for the 5th graders. However, there is attrition due to various reasons, such as missing
demographic information (1-2 %), no publicly available test score data due to too small classes
(8-9 %), and test score data for less than two years (7-8 %) (not usable for estimation with
school fixed effects). Table 2.15 gives an overview of the attrition reasons. By far the most
important attrition reason is missing information on the number of classes in a school. The
class size in a school is obtained via dividing the enrollment by the number of classes. Of both
variables though, only the enrollment size is publicly available. The number of classes were
obtained by the authors of the original study through a telephone survey, however, not for all
schools. Table 2.16 contains a summary of descriptive statistics of the available demographic
information for both schools with and without class size information. The values for means
and standard deviations are very similar. I calculate the p-values for a test for equality of the
means of these variables between the two groups of schools. I find no significant differences
between the two subsamples. Thus, there is no sign for selection induced by the main reason
for attrition.
The final sample contains 2493 3rd grade classes from 484 schools and 2368 5th grade classes

from 460 schools. For 3rd and 5th grade, the minimum class size is 14 and 13, the mean class
size 23 and 25, and the maximum 34 and 37, respectively. Pictures 2.7a and 2.7b depict the
histograms of the corresponding distributions of class size.

2.6.1 A separable econometric model

Denote with X the class size, with Z all other observable variables that influence the school
success (Free Lunch, lep and the ethnical composition), and with ε all relevant unobservables.
Z obtains values in ΩZ. Since Z is observed, I have to specify a model that incorporates these
observed characteristics and define what precisely is the causal effect of class size on test
scores. Consider the fully nonparametric model

Y = m̃(X,Z, ε). (2.6.1)

5In addition, 5th graders are evaluated in a writing test that consists of 4 parts. However, each of the students

is evaluated in only one of these four parts. Therefore, for comparability reasons, this test is excluded from the

analysis in the original study and in my paper.
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Table 2.15: Sample attrition (Source: Cho, Glewwe, and Whitler (2012) )

3rd

grade

5th

grade

Schools that appear in the data at least once between

1997/98 and 2004/05

1116 1137

Of which: schools missing demographic data for every

year

15 32

Schools with < 10 students 88 107

Schools with test participation rate < 90 % 7 7

Schools with <2 years of test score data 80 91

Schools with demographic data, ≥ 10 students, test partic-

ipation ≥ 90% and with ≥ 2 years of test score data

922 895

Of which: schools with < 2 years class size data 420 413

Schools with demographic data, ≥ 10 students, test partic-

ipation ≥ 90% and with ≥ 2 years of test score and class

size data

502 482

Of which: schools with < 5 years of enrollment data 18 22

Number of schools included in the regression analysis 484 460

Figure 2.7: Histogram class size

(a) 3rd grade (b) 5th grade

In this general framework, the main ingredient of causal analysis is the first derivative of m̃
with respect to X, ∂m̃(., z0, ε0)/∂x, where z0 and ε0 are some elements of the domains of Z
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and ε. In general, m̂ and its derivative cannot be identified without additional restrictions,
see Chesher (2003). One way to achieve identification is to impose additive separability of
observed and unobserved covariates, see e.g. Darolles, Fan, Florens, and Renault (2011),

Y = m(X,Z) + ε. (2.6.2)

The derivative can be recovered when a valid instrument for the endogenous class size is
available. The central object of econometric analysis in 2.6.2 the partial derivative∂m(., z0)/∂x.
Model 2.6.2 allows the effect of class size on test scores to vary with observed characteristics.
The empirical test for monotonicity developed in section 2.5 can be easily adapted to that case.
It is not clear, however, for which values z0 the test should be performed. The interpretation
of the results will always depend on the value z0.

To improve the interpretability of the model, I assume additive separability of X and Z
which leads to the model

Y = m(X) + g(Z) + ε. (2.6.3)

In a model with exogenous covariates, the separability assumption is equivalent to imposing
homogeneous additive average treatment effects:

E[Y ∣ x1, z] −E[Y ∣ x2, z] = m(x1) −m(x2).

We observe that the right hand side does not depend on Z. Assuming homogeneous treatment
effects might be at odds with economic theory. An increase of class size might have only a
small effect when the parents are able to compensate via private lessons. On the other hand,
an increase in class size might have a strong negative effect in schools with students from
a predominantly lower social economic background. Thus, there is a tradeoff between the
interpretability/complexity of the model and the plausibility of its assumptions.

Nevertheless, 2.6.3 is still a very general model. I do not specify a parametric form for m
or g. 2.6.3 contains as a special case the linear model

Y = αX + β′Z + ε

which is assumed throughout the literature. To adapt model 2.6.3 to a panel context, I include
school and district random components, so finally I impose the model

Yi, j,k,t = m(Xi, j,k,t) + g(Zi, j,k,t) + S j +Dk + εi, j,k,t, (2.6.4)

where Yi, j,k,t is the average test score for grade i in school j in district k in year t, S j are school
and Dk district random effects, and X and Z as above.
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Table 2.16: Descriptive statistics for schools with and without class size data (Source: Cho,

Glewwe, and Whitler (2012), p-values: own calculations )

Schools Group 1 Schools Group 2

mean sd mean sd p-

value

Grade 3

Enrollment 73.3 43.4 75.9 41.3 0.26

Class size - - 22.4 4.7 -

Black (%) 6.9 14.4 7.2 14.0 0.70

Hispanic (%) 3.8 7.5 3.8 7.3 1.00

Asian (%) 4.9 9.7 5.0 8.8 0.84

Am. Indian (%) 2.3 7.8 2.1 6.9 0.61

White (%) 81.5 24.2 81.3 23.9 0.88

Male (%) 51.2 7.5 51.1 7.2 0.80

Free Lunch (%)6 33.8 22.2 32.3 22.6 0.23

lep (%) 6.0 11.8 6.1 11.1 0.87

Students in special

education (%)

11.8 6.5 11.8 5.9 1

Sample size 922 502

Grade 5

Enrollment 80.1 58.3 80.0 45.7 0.97

Class size - - 24.4 5.4 -

Black (%) 6.9 13.9 7.4 14.5 0.54

Hispanic (%) 3.4 6.6 3.5 6.8 0.79

Asian (%) 5.1 10.0 5.3 9.8 0.72

Am. Indian (%) 2.3 7.6 2.2 6.4 0.93

White (%) 81.7 24.0 81.1 24.4 0.66

Male (%) 51.3 7.3 51.2 7.2 0.80

Free Lunch (%) 33.1 22.1 32.1 22.9 0.43

lep (%) 5.4 10.8 5.6 10.6 0.74

Students in special

education (%)

13.5 6.5 13.4 5.8 0.77

Sample size 895 482

Notes: Group 1: schools with demographic data, high test participation and ≥ 2 years of test data. Group 2:

schools for which there is also data on the number of classes. p-values calculated on the basis of a T-test for

equality of means in independent samples.
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2.6.2 Empirical instrumental strategy: Hoxby’s approach

As discussed in section 2.3, the class size variable X might be endogenous. A key to the
econometric analysis is therefore the availability of an instrument. Since the observations of
X are on a school level, within-school selection is not of a concern. As a result, an instrumental
variable W has to deal successfully only with between-schools selection. Formally, in the
context of model 2.6.4, an instrumental variable W has to fulfill the following exclusion
restriction (ER):

E[g(Zi, j,k,t) ∣ Wi, j,k,t] = E[S j ∣ Wi, j,k,t] =

= E[Dk ∣ Wi, j,k,t] = E[ηt ∣ Wi, j,k,t] = 0.

The condition E[g(Zi, j,k,t) ∣ Wi, j,k,t] is not necessary for identification. It allows to consider a
generalized error term g(Zi, j,k,t) + S j +Dk + εi, j,k,t and treat the observables as unobservables.
Thus, model 2.6.4 is equivalent to model 2.3.1 and the test for monotonicity can be applied
directly. In the rest of the paper, the nonparametric analysis of the functional form of m is
performed unconditionally.7

I adopt the instrumental variable strategy used by Cho, Glewwe, and Whitler (2012). The
idea goes back to the influential study of Hoxby (2000). She follows two different approaches
to identify the effect of class size on test score in elementary schools in Connecticut. In the first
one, she uses random variation in the enrollment and in the second one a maximum class size
rule as an instrument for class size. Since in Minnesota only few districts impose a class-size
caps, only the first approach can be applied to this dataset. The idea for constructing an
instrument can be summarized as follows. The enrollment for each year can be split into
two parts: one part that depends on parents, students and community characteristics and
changes slowly and continuously over time, and a random variation part. Following the
notation of Cho, Glewwe, and Whitler (2012), denote the deterministic part of enrollment in
grade i of school j in district k in year t with ED,i, j,k,t = ED,i, j,k,t(Xi, j,k,t,vi, j,k,t), where Xi, j,k,t and
vi, j,k,t are observed and unobserved parents, students and community characteristics. ED,i, j,k,t
is modeled as a continuous function of time,

ED,i, j,k,t = g(t) (2.6.5)

which can be approximated by a polynomial, log(g(t)) ≈ α0,i, j,k + α1,i, j,kt + ⋅ ⋅ ⋅ + αp,i, j,ktp.8 The
total enrollment is modeled as

Ei, j,k,t = ED,i, j,k,tUi, j,k,t, (2.6.6)

where Ui, j,k,t denotes a random variation component. Taking 2.6.5 and 2.6.6 together yields
the regression equation

log(Ei, j,k,t) = α0,i, j,k + α1,i, j,kt + ⋅ ⋅ ⋅ + αp,i, j,ktp + log(Ui, j,k,t). (2.6.7)

Under the assumption that the number of classes is fixed over time and that the polynomial
specification is correct, log(Ui, j,k,t) is a valid exclusion restriction as it is independent of the

7Nevertheless, I use the observed covariates Z to analyze the validity of the exclusion restriction.
8Cho, Glewwe, and Whitler (2012) approximate g(t) choosing p = 3 for their benchmark estimations and p = 4

for the robustness checks.
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unobserved characteristics vi, j,k,t. The approach of Cho, Glewwe, and Whitler (2012) and
Hoxby (2000) is to estimate equation 2.6.7 with OLS and to use the OLS residuals estimates

̂log(Ui, j,k,t) as instruments for the endogenous class size.9 Cho, Glewwe, and Whitler (2012)
use 17 years of enrollment data (1988/89-2004/05) to obtain estimates for log(Ui, j,k,t).

Analysis of the instrumental strategy A good instrument has two properties: it explains
a considerable part of the variation of the endogenous regressor and it is a valid exclusion
restriction. In this paper, I suggest a new empirical approach for the analysis of these
properties.

First, the correlation of the instrument with the class size is 0.71 for third graders and 0.69
for 5th graders, indicating that the instrument is strong. Figures 2.8a - 2.8b show plots of
the class size against the instrument. Higher (lower) values of random enrollment variations
lead to higher (lower) class sizes, which leads to the strong positive correlation.

Figure 2.8: Correlation between instrument and class size

(a) 3rd grade (b) 5th grade

The exclusion restriction is not testable, but indirect evidence for its plausibility can be
provided. The starting point for my analysis are the possible reasons for a violation of the
exclusion restriction. All three variables - the instrument, the (average) class size and the
(average) test scores are school-level variables and therefore within-school selection is not of
a concern. On a between-schools level, there are two possible reasons for a violation of the
exclusion restriction. First, the change of parents, students, and community characteristics
might be discontinuous. In that case, the approximation with a continuous function 2.6.7
would not be proper. Discontinuities might arise because of a structural break in the time
trend of these characteristics. Possible reasons are big layoffs in the district of the school,
migration waves, unusually large cohorts, or other micro- and macro-level shocks. On the
contrary, Tiebout sorting and other related endogeneity sources do not violate the exclusion
restriction, as long as the patterns of sorting vary smoothly with the district characteristics
over time. Second, a polynomial of third degree might be a poor approximation of the

9Below, I briefly discuss implications of using an estimated instrument.
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underlying continuous evolvement of parents, students, and community characteristics. As
a consequence, the estimated random part might capture some of the influence of these
characteristics.

A first strategy to obtain evidence for (or against) the plausibility of the exclusion restric-
tion is to verify the possible reasons for violations of the exlcusion restriction (an indirect
strategy). One way to address the first problem is to check for structural changes over time
in observed characteristics. Tests for structural breaks in panel data context are developed in
Han and Park (1989) and Kao, Trapani, and Urga (2007). The identification assumption of this
strategy is that observed and unobserved characteristics behave similarly. Thus, the absence
of structural changes in observed characteristics provides indirect evidence that also unob-
served characteristics evolve continuously. I do not have data on observed characteristics for
the 17 years used to calculate the instrument and cannot test for structural break.

One way to address the second problem would be to perform robustness checks with
polynomials from higher degrees. If the coefficients of the higher order terms are small and
insignificant, and if the results from the estimation of the causal effect of class size remain
unchanged under the new specifications, then one could conclude that the initial polynomial
specification is nearly correct. The identifying assumption here is that there are no structural
breaks in observed and unobserved characteristics, i.e. that the first type of violation of the
exclusion restriction is not existent. For the same reason as above, I cannot perform this type
of exercise ( the robustness checks of Cho, Glewwe, and Whitler (2012) in the context of a
linear model reveal stable results).

Instead of checking for a violation of these two sufficient conditions for the validity of the
exclusion restriction (smooth pattern over time and correct polynomial specification), I ad-
dress possible violation of the exclusion restriction itself. My main identification assumption
is that observed and unobserved characteristics behave similarly in the sense, that a violation
of (Z, ε) yW can be verified by checking whether Z yW holds.

I perform a test for independence of observed covariates and the instrument (pairwise).
The test based on a nonparametric metric entropy and is described in Li, Maasoumi, and
Racine (2009) Racine. The test statistic is defined as

Sρ ∶=
1
2 ∫ΩZ

∫
ΩW

(( f̂Z,W)
1
2 − ( f̂Z)

1
2 ( f̂W)

1
2 )2dzdw, (2.6.8)

where f̂ is a kernel estimator of f . Big values of the test statistic indicate deviation from
independence. The distribution of the test statistic is obtained via bootstrapping. Table 2.17
contains the p-values for the (pairwise) independence of the instrument and the observed
covariates lep, Free Lunch and White (the proportion of white students in the school) ob-
tained with 100 bootstrap replications. The p-values are very large and the null hypothesis
(independence) cannot be rejected.

Observe, that independence of the instrument and ε is not a necessary condition for
W to be a valid instrument. W only has to satisfy the much weaker conditional mean
independence assumption,E[ε ∣ W] = 0. Under the same identification assumption as above,
this assumption can be verified by looking at E[Z ∣ W] = 0. In particular,

E[Z ∣ W] = E[Z] (2.6.9)

would provide indirect evidence that E[ε ∣ W] = 0. Since both Z and W are observable, 2.6.9
is a testable hypothesis. I estimate left hand side of 2.6.9 with a Nadaraya-Watson (NW)
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Table 2.17: Testing for independence of instrument and observed characteristics. p-values

obtained with 100 bootstrap replications )

3rd grade 5th grade

lep 0.67 0.70

Free Lunch 0.85 0.74

White 0.49 0.53

kernel estimator and right hand side with a sample mean. The resulting estimates are shown
in figures 2.9a-2.11b. The green thick line is the unconditional estimator of the observed
covariate. The dashed lines are the 95% confidence bounds of the NW estimator. In all
6 cases, the unconditional mean lies between the confidence bounds almost on the whole
range. This finding provides a substantial evidence that the null hypothesis 2.6.9 is plausible,
and by means of the identification assumption, that E[Z ∣ W] = 0 holds.

Figure 2.9: Conditional expectation of Free Lunch

(a) 3rd grade (b) 5th grade

Remark Note that one possibility to reduce the likelihood for a violation of the exclusion
restriction, as suggested by Cho, Glewwe, and Whitler (2012) and Hoxby (2000), is to model
district-level enrollment in equation 2.6.7 instead of school-level enrollment. This strategy
would account for an usually large school enrollment that could otherwise lead to a structural
break if a larger proportion of parents send their children to another school in the district.
Such large fluctuations are also possible on a district level. However, sending the children to
a school in a different district is associated with higher costs and is therefore less likely.10 One

10Nevertheless, to account for this possibility, Cho, Glewwe, and Whitler (2012) use number of births in
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Figure 2.10: Conditional expectation of LEP

(a) 3rd grade (b) 5th grade

Figure 2.11: Conditional expectation of White

(a) 3rd grade (b) 5th grade

drawback associated with the district-level enrollment as an instrument is that it explains a
smaller part of the variation in the class size, that is, it is a weak instrument. I have no data
on the district level and cannot pursue this strategy.

Minnesota cities 8 or 10 years prior to the year of test as an instrument (for 3rd and 5th graders, respectively).

This strategy leads only to a very weak instrument, as indicated by the authors of the original study. Therefore,

I will not pursue it further in my paper.
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2.6.3 Main results: shape analysis of the effect of class size on test scores

After analysing the plausibility of the exclusion restriction, I now present my main results. I
perform shape analysis of the effect of class size on test scores in three different stages. First, I
plot nonparametric unconstrained and constrained estimates of the regression function. The
graphical analysis delivers first key insights about the shape of the causal effect. Second, to
legalize these findings, I test the significance of the result performing the empirical test for
monotonicity developed in section 2.5. Finally, I demonstrate that the causal effect can be
approximated with a polynomial of second degree.

Although I use all observations for the estimations and testing procedures, most of the
graphical analysis (including the search for a parametric specification) is done on the restricted
ranges [18,28] for third grade and [20,30] for 5th grade. Those two ranges contain 95% and
94% of all points respectively, see the histograms of class size on figures 2.7a and 2.7b. The
reason is that at the boundary the nonparametric estimator does not perform well. For the
purposes of the graphical analysis, these ranges are sufficient. In a typical policy analysis,
most decisions are made precisely in those ranges. I will refer to them as ”the middle range”.

Graphical analysis I first estimate the regression function nonparametrically using the
unconstrained penalized sieves estimator 2.4.15 and its constrained nonincreasing version
2.4.16- for different choices of the cutoff parameter J. The estimates for the cutoff parameter
7 and αn = 0.001 for the middle range are depicted in figures 2.12a-2.13b for both math and
reading.

Figure 2.12: Unconstrained and constrained estimates, 3rd grade

(a) math (b) reading

The x-axis represents the class size and the y-axis the test scores. The black thick lines
represent the unconstrained estimates, the red dashed lines their constrained counterpart.
The unconstrained estimates are nonmonotone and concave. At first they are increasing,
indicating a positive effect of class size on test scores, and subsequently decreasing.11

11As noted, the grades are normalized by the standard deviation (therefore they cannot be used to predict

average score for a given average class size).
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Figure 2.13: Unconstrained and constrained estimates, 5th grade

(a) math (b) reading

Although the simulation delivered a clear pattern of how to set the penalty constant, the
choice for the cutoff parameter according to the sample size was not perfectly clear (although
generally also rising with n). The unconstrained nonparametric estimates depend upon the
choice of the cutoff parameter in the following way. Increasing the cutoff parameter (the
number of basis functions used for the Least Squares estimate) for a fixed sample size makes
the estimate more ”nonmonotone”. Figures 2.14a and 2.14b show the estimated regression
function for 3rd grade math the cutoff parameter equal to 5 and 9. The pattern of the
nonmonotonicity remains stable.

Figure 2.14: Unconstrained and constrained estimates, 3rd grade math

(a) M=5 (b) M=9

Remark (sample splitting) An alternative ad hoc way to check graphically for possible

91



nonmonotone effects would be the following method. First split the sample into two parts:
one sample with all observations with class size below a threshold c̄, e.g. x̄ = 25, and one
sample with all observations with class size above the threshold. Then in those two samples
estimate a linear model and compare the slopes. A difference in the signs of the slopes could
be interpreted as a nonmonotonicity. The advantage of this approach is its simplicity. It has
three major disadvantages though. First, the result might depend sensitively on the chosen
threshold. Second, as an average approach it is not appropriate for analysing the overall
functional form of the regression, but only for detecting nonmonotonicity. And third and
most important, the exclusion restriction in each subsample breaks down due to the condition
x ≤ x̄ (x > x̄). To see this, suppose that all random variables in the model are defined on
some probability space (Ω,A ,P) with P being the measure and A a sigma field. Denote with
σ1 ∶= σ(1{X ≤ x̄}) and σ2 ∶= σ(1{X ≤ x̄},W) the sigma fields generated by the random variables
1{X ≤ x̄} and (1{X ≤ x̄},W), respectively. Then σ1 ⊂ σ2 ⊂ A and E[ε ∣ X ≤ x̄,W] = E[ε ∣ σ2].
With the smoothing law of iterated expectations,

E[E[ε ∣ σ2] ∣ σ1] = E[ε ∣ σ1],

or equivalently
E[E[ε ∣ X ≤ x̄,W] ∣ X ≤ x̄] = E[ε ∣ X ≤ x̄].

If E[ε ∣ X ≤ x̄,W] = 0 a.s., then it must hold E[ε ∣ X ≤ x̄] = 0 a.s. which in general is
a contradiction to the endogeneity of X. Therefore, E[ε ∣ X ≤ x̄,W] ≠ 0 and the exclusion
restriction in the subsamples is violated (note, that this conclusion is not true if the threshold x̄
is chosen such that P{X ≤ x̄} = 1). Intuitively, since ε and X are not independent, conditioning
on X will create endogeneity and potentially create a bias in the estimates.

Testing for monotonicity The (unconstrained) graphical nonparametric analysis reveals
a nonmonotonic pattern of the regression function that is common for all grades and subjects
in the middle range of class sizes. In order to assess whether this pattern is significant, I
test for the monotonicity of causal effect using the procedure developed in 2.5. The null
hypothesis is defined as

H0 ∶ m′ ≤ 0.12 (2.6.10)

Table 2.18 summarizes the results. The first column of the table contains the value of the
smoothing parameter of the test statistic M. It specifies the number of basis functions used
to calculate the test statistic. It is allowed to grow with the speed o(n

1
3 ) to ensure that the

null distribution is a standard normal distribution. The columns with header n contain the
sample size. The constrained estimate used for the test has been calculated with a cutoff pa-
rameter equal to 7 and a penalty constant αn = 0.001. p-values that are smaller than 0.00001
are reported as 0, which is here the case for all grades and subjects and test specifications
(m = 4 to m = 9). Therefore the test rejects the monotonicity hypothesis.

This is a novel result. If the exclusion restriction is valid, this finding has two important
implications.13 First, the test rejects the special case m0 = 0. That is, the class size must have a

12I also specify the opposite as a null, namely that the function is monotonically increasing, the results are

similar as those in the first case and are not discussed separately.
13Note, that the instrument has been estimated, which potentially creates endogeneity. However, the estimate

converges to its population value with a parametric rate. Therefore, provided that the population value is a
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Table 2.18: p-Values, test for monotonicity, dataset of Cho et al (2012)

Whole Sample

3rd grade 5th grade

math reading math reading

M n p-value n p-value n p-value n p-value

4 -9 2493 0 2493 0 2368 0 2390 0

significant effect on the average test scores at least on a segment of the class size range. This
conclusion is at odds with the findings of Hoxby (2000), who uses the same instrumental
variable strategy but with a different data set and with a parametric specification. Second,
the test rejects the linear model which is the most common specification in the empirical lit-
erature. Therefore, a more flexible way to model the causal effect is needed. This conclusion
differs from the negative and significant results of Cho, Glewwe, and Whitler (2012)

Parametric specifications One important question for the applied research is whether
there exists a parametric specification that is a good approximation of the causal effect.
Parametric specifications are straightforward to implement and are easier to interpret in
terms of causal analysis. Moreover, they are less data intensive than their nonparametric
counterparts when there are multiple covariates. All these advantages make parametric
specifications attractive tools for policy analysis.

If we assume that the causal effect is continuous, then polynomials are a good starting
point for the search of a parametric specification. First, one can approximate continuous
functions arbitrary well with polynomials. Second, polynomials with degree higher than 2
can generate a nonmonotone regression function, which is a necessary property in view of
the preceding graphical and testing results. I will focus on the middle range of the class sizes,
that is on [18,28] for third grade and [20,30] for fifth grade. The form of the unconstrained
estimator in figures 2.12a- 2.14b indicates that a polynomial of second degree is a potential
candidate for a parametric specification (in the middle range). Second degree approximations
of the causal effect are shown in figures 2.15a-2.16b.

The black continuous lines are as before the unconstrained nonparametric estimates. The
blue dashed lines are obtained via approximating the IV estimates with a second degree
polynomial (estimating a second degree polynomial directly with the data only in the middle
range creates potential endogeneity for precisely the same reason as in the argument with
the sample splitting). The fitted values are obtained by regressing the IV estimates on a
polynomial using ordinary OLS. As the figures reveal, the parametric specification works
surprisingly well.

To exclude the possibility that these findings are only a matter of the concrete sample,
I perform a test for a parametric specification. Typically, the decision how many polyno-

valid exclusion restriction, this does not pose a problem for the asymptotic distribution of the test statistic. I am

thankful to Gerard Van den Berg for pointing this out to me.
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Figure 2.15: Unconstrained and polynomial estimates, 3rd grade

(a) math (b) reading

Figure 2.16: Unconstrained and polynomial estimates, 5th grade

(a) math (b) reading

mial terms to include in the regression is based on the significance of the estimates ot the
coefficients. For example, if the estimate of β4 in the model Y = β0 + β1c + β2c2 + β3c3 + ε is
insignificant and the estimates of β0, β1, and β2 are significant, then c3 is omitted and the
causal relationship is modeled as a polynomial of second degree, see for example Akerhielm
(1995) in the context of splines. The underlying assumption is that the true regression func-
tion belongs to a subclass of the class of polynomials of degree k ≤ 3. The null distributions
of the estimators β̂0, . . . , β̂3 (that is, the distribution of β̂i when βi = 0) are valid only under this
assumption. Although this is a useful check, the motivation of this study is more agnostic. I
do not assume linearity in the coefficients. Instead, I test the parametric specification against
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a nonparametric alternative, that is, I test the whole model. The null hypothesis is

Hp ∶ there exists a polynomial p of degree ≤ k, such that Y = p(c) + ε. (2.6.11)

The alternative is that there is no such polynomial. Tests for parametric specifications are
developed in Horowitz (2006) and Breunig (2012). In both papers, the test is based on an
empirical distance between a parametric IV estimator (the specification under the null) and
the data. I implement the series-based estimator by Breunig (2012). I restrict the analysis to
k = 2 and k = 3, that is, to quadratic and cubic polynomials. Under the null, I estimate the
regression function m0 with the 2SLS method using W, W2, and W3 as instruments for X, X2,
and X3, respectively. The test statistic has the standard normal distribution under the null.
The results are shown in table 2.19. As above, the first column contains the values of the
cutoff parameter of the test statistic. The quadratic specification is rejected for the third grade
reading data and the cubic specification for the 5th grade math, both for the whole sample
and conditionally on LEP. All other specifications have p-values higher than 10%, although
the p-values of the quadratic specification for 5th grade reading are close to 10% (and for
m=6 it is actually below). Based on these results, both quadratic and cubic specifications are
eligible candidates for the functional form describing the causal effect of class size on test
scores.

95



Ta
bl

e
2.

19
:p

-V
al

ue
s,

Te
st

fo
r

Pa
ra

m
et

ri
c

Sp
ec

ifi
ca

ti
on

,d
at

as
et

of
C

ho
et

al
(2

01
2)

W
ho

le
Sa

m
pl

e

3r
d

gr
ad

e
m

at
h

3r
d

gr
ad

e
re

ad
in

g
5t

h
gr

ad
e

m
at

h
5t

h
gr

ad
e

re
ad

in
g

m
n

d=
2

d=
3

n
d=

2
d=

3
n

d=
2

d=
3

n
d=

2
d=

3

4
24

93
0.

18
0.

19
24

93
0.

09
0.

16
23

68
0.

24
0.

26
23

90
0.

14
0.

14

5
24

93
0.

33
0.

16
24

93
0.

08
0.

13
23

68
0.

26
0.

18
23

90
0.

13
0.

46

6
24

93
0.

44
0.

41
24

93
0.

06
3

0.
29

23
68

0.
19

0.
21

23
90

0.
09

0.
35

7
24

93
0.

69
0.

40
24

93
0.

05
1

0.
39

23
68

0.
24

0.
00

1
23

90
0.

13
0.

91

8
24

93
0.

95
0.

82
24

93
0.

04
0.

52
23

68
0.

20
0

23
90

0.
15

0.
65

9
24

93
0.

64
0.

93
24

93
0.

04
0.

71
23

68
0.

15
0

23
90

0.
11

0.
45

%
Li

m
it

ed
en

gl
is

h
pr

ofi
ci

en
cy

≤
m

ed
ia

n
of

%
LE

P

3r
d

gr
ad

e
m

at
h

3r
d

gr
ad

e
re

ad
in

g
5t

h
gr

ad
e

m
at

h
5t

h
gr

ad
e

re
ad

in
g

m
n

d=
2

d=
3

n
d=

2
d=

3
n

d=
2

d=
3

n
d=

2
d=

3

4
18

15
0.

26
0.

27
18

13
0.

11
0.

20
17

56
0.

30
0.

27
17

83
0.

14
0.

14

5
18

15
0.

73
0.

97
18

13
0.

1
0.

17
17

56
0.

37
0.

20
17

83
0.

16
0.

37

6
18

15
0.

85
0.

92
18

13
0.

1
0.

51
17

56
0.

28
0.

26
17

83
0.

12
0.

27

7
18

15
0.

13
0.

21
18

13
0.

07
0.

66
17

56
0.

33
0.

00
2

17
83

0.
17

0.
69

8
18

15
0.

21
0.

28
18

13
0.

06
0.

99
17

56
0.

33
0

17
83

0.
28

0.
82

9
18

15
0.

07
0.

15
18

13
0.

04
0.

25
17

56
0.

27
0

17
83

0.
23

0.
73

%
Su

bs
id

iz
ed

lu
nc

h
≤

m
ed

ia
n

of
%

Su
bs

id
iz

ed
lu

nc
h

3r
d

gr
ad

e
m

at
h

3r
d

gr
ad

e
re

ad
in

g
5t

h
gr

ad
e

m
at

h
5t

h
gr

ad
e

re
ad

in
g

m
n

d=
2

d=
3

n
d=

2
d=

3
n

d=
2

d=
3

n
d=

2
d=

3

4
13

90
0.

42
0.

45
14

02
0.

15
0.

12
13

30
0.

87
0.

77
13

51
0.

29
0.

36

5
13

90
0.

73
0.

64
14

02
0.

11
0.

11
13

30
0.

48
0.

67
13

51
0.

61
0.

46

6
13

90
0.

86
0.

97
14

02
0.

16
0.

12
13

30
0.

50
0.

23
13

51
0.

49
0.

86

7
13

90
0.

96
0.

92
14

02
0.

27
0.

25
13

30
0.

09
0.

05
13

51
0.

45
0.

92

8
13

90
0.

69
0.

74
14

02
0.

23
0.

22
13

30
0.

16
0.

02
13

51
0.

36
0.

90

9
13

90
0.

82
0.

83
14

02
0.

34
0.

58
13

30
0.

02
0.

00
1

13
51

0.
66

0.
43

96



2.6.4 Nonmonotone class size effect: theoretical background and implications

for empirical research

The empirical evidence from the last section is at odds conventional economic theory on the
educational production function. Typically, economic theories predict a negative class size
effect. They provide two main channels for this effect. First, an increasing size leads to a
decrease in the teacher’s attention and learning support that each of the student receives, see
Correa (1993) for an economic model and Blatchford, Bassett, and Goldstein (2003) for an
empirical study. Second, when the class size becomes considerably large, the discipline in
the class during the lessonbecomes worse and there are more often lessons disruptions which
leads to negative external effects, see Lazear (2001). My empirical results revealed, however,
that the regression function is nonmonotone in the middle range: it increases for class sizes
18-25 and decreases for class sizes 25-32. Thus, the increasing part cannot be explained with
conventional economic theory.

A possible solution to this problem might found in social cognitive learning theories.
Theories that that explicitly model peer effects generally predict a positive relationship be-
tween class size and school success, Schunk (1991), Schneeweis and Winter-Ebmer (2007) and
Sacerdote (2011). An increasing class size increases the individual probability for interaction
with peers which has a positive influence on the cognitive and noncognitive abilities. In
addition, in bigger classes there are c. p. more good learners. While poor students profit
from their highly skilled peers, good students seem not to be negatively influenced by the
presence of low achievers, Schneeweis and Winter-Ebmer (2007).

Taking these considerations into account, an integrated theory might be able to explain
nonmontone causal effects. In this subsection, I brieflty discuss possible models of edu-
cational production functions that 1) combine effects predicted by conventional economic
theory and social cognitive learning theories, and 2) generate a nonmonote overall effect. In
particular, I present a simplified production function that incorporates

• the negative effects of an increasing class size resulting from decreasing attention of the
teacher that each student receives,

• the negative effect of an increasing class resulting from decreasing quality of the disci-
pline during the lessons, and

• the positive effect of an increasing class size resulting from an increased intensity of
social interaction.

Any study that analyzes the effects of those (or others) separate channels is faced with
two difficulties. First, data sets rarely contain information about social interactions, teacher’s
behavior and disruptions of the lesson. Second, small classes (in the range 1-15) are almost
never observed, especially in public schools. To build a model of an education production
function that reflects my nonmonotone empirical findings, I follow the intuition incorporated
in standard economic models and consider the findings in the empirical educational and peer
effects studies.

First, it is plausible to assume that the importance of the teacher’s attention is highest
precisely for small class sizes. While the teaching style in small classes resembles private
tutoring, it is likely to be focused on group related activities in bigger classes, see Correa
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(1993) for a model that predicts a switch in the teachers’ behavior. Therefore the loss of
personal learning support or tutoring from one additional student is likely to be highest
for smaller classes and decrease when the class size increases. Figure 2.17 depicts such
a relationship with individual school success due to teachers attention ai(x) modeled as
ai(x) = c1/x1{x ≤ x̄} + x̄1{x > x̄}, where c1 is a constant and x̄ is a threshold class size.

Figure 2.17: The effect of the attention of the teacher on school success

With rising class size the additional school success due to personal mentoring from
the teacher decreases up a threshold. After this threshold, the teacher focuses only on
group activities, so the level of input for the students stays constant. This relation is also is
supported by evidence from the empirical study of Blatchford, Bassett, and Goldstein (2003),
who measures in a unique panel study of the effect of class size on test scores the number of
interactions between a teacher and the students as well as the discipline in a class.

Second, it is likely that disruptions of the class due to bad discipline become particularly
relevant when the class size is very high and are of a less concern for smaller class sizes.
Such considerations can be found in for example Lazear (2001), and are supported by the
empirical findings of Blatchford, Bassett, and Goldstein (2003). It might therefore be plausible
to model the negative discipline effects as a constant up to a threshold class size and as a
decreasing function from the threshold on. Such an effect could be generated by the function
d(x) = dl + 1{x > dl}g(x), where dl is some threshold class size and g(x) is an increasing
continuous function with g(dl) = 0, such as g(x) = x2 − d2

l .
Taking my empirical findings as a starting point, at least on the first part of the middle

range the positive effect should be dominating the other two. In addition, with the above
considerations, the (negative) discipline effect should be modeled as the dominating one
for big class sizes. For smaller class sizes, one has to be agnostic. If we allow the effect
from decreasing teacher’s attention to dominate the positive effects from interaction, then
the regression function will be decreasing for small class sizes, increasing on a segment in
the middle range, and then again decreasing. Such a pattern can be generated for example
by polynomials from third degree, splines, or other flexible functional forms (using splines
or polynomials would also reflect my finding that the causal effect in the middle range is
well approximated by a polynomial of second degree). I now discuss briefly two different

98



possibilities.
Let y be a measure for individual school success, f be the education production function,

x the class size and z all other factors that influence y, such as ethnic composition, school
resources, teacher quality and others. For simplicity, I abstract from interactions of x and z by
fixing z at some level z0. Then a polynomial specification of third degree for f (., z0) = f0(.) is

f0(x) = α0 + α1x + α2x2 + α3x3,

where the coefficients αi might depend on the point z0. Figures 2.18a - 2.18b depict the cubic
2SLS estimates for 5th graders and both subjects in the Minnesota dataset.

Figure 2.18: Cubic polynomials, estimates for 5th grade

(a) math (b) reading

Sufficient conditions on αi for f0 to generate the pattern described above (and depicted on
2.18a - 2.18b) are α3 < 0, α2 − 3α1α3 > 0. This model has the disadvantage that the coefficients
are not directly interpretable. One possibility would be to require additionally α0, α2 to be
positive, α1 to be negative, and to interpret i) α0 as the test score of a student in a one-
student class, ii) α1 as the effect of one additional student on y resulting from decreasing
teacher’s attention, iii) α2 as the social interactions effect and iii) α3 as the discipline effect. By
fixing the coefficients at appropriate values, this would give the dominance described above.
Nevertheless, this interpretation would contradict the nonlinearity of the teacher’s attention
effect and the considerations about the form of the two other effects.

One other possibility for a flexible functional form of f0 would be to model the three
effects separately and impose additive separability. Using the notation introduced above, the
overall production function could be defined as f0(x) = a(x)−d(x)+i(x), where the interaction
effects with peers are modeled to be proportional to class size, i(x) = c3x. This function is
continuous and by proper choice of c1, c3,dl and g(x) it can generate the pattern depicted
above. If for example x̄ < dl, then by assuming c3 < −∂/d(x)∂x on [dl,∞] and ∂a/∂x+ c3 < 0 on
[0, x̄], one becomes a function decreasing on [0, x̄], rising on [x̄,dl] and decreasing on the rest
of the positive real line.
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Several studies have explicitly or implicitly acknowledged the possibility for a non-
monotone causal effect. The lack of theoretical interest or own empirical support was prob-
ably the reason why these studies did not elaborate on that matter. For example, Lazear
(2001) acknowledges that higher class size potentially yields positive peer effects. He argues,
however, that since increasing the class size decreases the costs, if students pay the value of
the education they receive, adding of extra students will generally take place for class sizes
where the negative effects dominate the positive ones. Thus, the possible non-monotone
relationship is not of interest, because the economic optimization process has ruled out that
decisions are made in the range of class sizes where non-monotonicities occur. As a fur-
ther example, Dobbelsteen, Levin, and Oosterbeek (2002) acknowledge that the effect of an
increase in class size consists of two, opposite in their directions, components. First, with
increasing class size, each of the students receives less attention from the teacher. Second, the
probability to find a similar peer increases. The latter factor leads to an enhanced learning
and thus to a positive effect on the cognitive and noncognitive abilities. The empirical evi-
dence of Dobbelsteen, Levin, and Oosterbeek (2002), however, only supports the dominance
of the second factor.

Estimating a linear model when the causal effect is nonmonotone represents a model
misspecification. The sign and significance of the class size coefficient may depend sensitively
on the form of the regression function. Moreover, differences in the observed range of class
sizes between data sets may lead to substantial differences in the estimates, even if the
regression function does not differ by much. Model misspecification is a potential explanation
of the class size controversy as the following simplified simulated example demonstrates.
Suppose that the true regression function is defined as

m0(x) = −4x3 + 21x2 − 18x − 12, (2.6.12)

see figure 2.19.14 Suppose also that there are two different samples of observations on test

Figure 2.19: Simulated true regression

14The independent variable is scaled on the range [10, 40] via the transformation ax + b, with a = 30/5.3 and

b = 40 − 4a.
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scores and class sizes, A and B, where both samples are drawn from the same true model
2.6.12. Suppose further that the observed class size range in sample A is [10,40], while in
sample B it is [11,40]. This difference might arise for example due to a difference in the
shares of public expenditure for education in two different countries.15 Pictures 2.21a- show
standard linear OLS estimates16. While the estimated slope in sample A is positive and

2.21b

Figure 2.20: Misspecified model on 2 different ranges

(a) Range A (b) Range B

significant, the estimate in sample B is negative and insignificant. The main implication of
this simulated example is that even if the true relationship of class size and test scores is exactly
the same, model misspecification together with differences in the observed distributions of
class size can induce differences in sign and significance of the estimates.

2.7 Conclusion

I analyzed the effect of class size on test scores. The results indicate that the effect of class
size is non-monotone. I demonstrated how a non-monotone causal effect together with
differences in the ranges of observed class sizes can potentially explain the controversy that
exists within the literature. I derived implications for economic theory develop a simple
model for an educational production function that can generate non-monotone a causal
effect. Further, I developed a framework in which a broad class of penalized minimum
distance estimators is revealed as projections of the constrained set on the constrained set. I
utilized this result to find sufficient conditions for the consistency of constrained estimators
for a broad class of constraints in two nonparametric IV estimation approaches: a kernel and
a sieve approach. The sufficient conditions were shown to be related to the smoothness of
the model regression function and to the rate of ill-posedness of the inverse problem. I also

15Class sizes differ between countries, Averett and McLennan (2004).
16For simplicity, there is no randomness and endogeneity in this example
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showed that monotonically constrained and unconstrained Tikhonov estimators coincide
when the model regression is an inner point of the set of monotone functions.

2.8 Appendix

2.8.1 Data generation process (DGP) of the simulation (estimation part)

The (DGP) has the following steps: 1) generate an independent stochastic variation: U1, . . . ,Un
iid
∼

N(0,1), 2) generate the regression error: ε1, . . . , εn
iid
∼ N(0,1), 3) generate the exogenous in-

strument W: first simulate the unscaled variable Wu with Wu,1, . . . ,Wu,n
iid
∼ N(0,1), then scale

it to the interval [−1,1]: Wi =
Wu,i−min(Wu,1,...,Wu,n)

max(Wu,1,...,Wu,n)−min(Wu,1,...,Wu,n) , 4) generate an endogenous regres-
sor: Xk,i = β1εi + β2Wu,i + β3Ui, 5) transform its distribution so that it is uniformly distributed
(insures that we have enough observations at the boundary): Xu,i = F(Xk,i), where F is the
c.d.f of N(0, β2

1+β
2
2+β

2
3), 6) finally, rescale the uniform regressor to [−1,1] according to the rule

Xi =
Xu,i−min(Xu,1,...,Xu,n)

max(Xu,1,...,Xu,n)−min(Xu,1,...,Xu,n) . This is necessary because I choose the Legendre Polynomial
basis in L2.

2.8.2 Proof of propositions

Proof of proposition 2.4.1. Define f̄ = supx∈[0,1]{ f (x)} and f = infx∈[0,1]{ f (x)}. Using the

Sobolev’s Inequality (see e.g Agmon (1965), p.32), there exist positive constants γ and r

and a function m̃n ∈ H2
X with m̃n = m̂n almost everywhere, such that m̃n ∈ C1[0,1] and

∣ m̃′
n(x) −m′

0(x) ∣≤ γ(∥m̃n −m0∥H2
X
+ r∥m̃n −m0∥L2

X
). (2.8.1)

Because of ∥m̂n −m0∥H2
X
= op(1) we obtain

∥m̃n −m0∥H2
X
= op(1) and trivially (2.8.2)

∥m̃n −m0∥L2
X
= op(1), (2.8.3)

and hence

∥m̃′
n(x) −m′

0(x)∥∞ < c. (2.8.4)

with probability tending to one. �

Proof of proposition 2.4.4.1. Following the lines of proof of Mammen and Thomas-Agnan

(1999), let m ∈ H and for some β ∈ R let g = m̂ + β(m̂ − m). Since m̂ is a minimizer of
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∥Fm − h∥2
G + α∥m∥2

H over H, it must hold

∥Fm̂ − h∥2
G + α∥m̂∥2

H ≤ ∥Fg − h∥2
G + α∥g∥2

H, (2.8.5)

where after substituting for g the right hand side can be written as

∥F(m̂ + β(m̂ −m)) − h∥2
G + α∥(m̂ + β(m̂ −m))∥2

H = ∥Fm̂ − h∥2
G + α∥m̂∥2

H +

+2β( < Fm̂ − h,F(m̂ −m) >G +α < m̂ −m, m̂ >H ) +

+β2(∥F(m̂ −m)∥2
G + α∥(m̂ −m)∥2

H),

so that inequality 2.8.5 is equivalent to

0 ≤ 2β( < Fm̂ − h,F(m̂ −m) >G +α < m̂ −m, m̂ >H ) +

+β2(∥F(m̂ −m)∥2
G + α∥(m̂ −m)∥2

H) = βA1 + β
2A2

Dividing both sides by β2 and letting β → 0 from the left and from the right yields A1 = 0.

Now define

R ∶= ∥Fm − h∥2
G + α∥m∥2

H − ∥F(m̂ −m)∥2
G − α∥(m̂ −m)∥2

H.

After throwing out equal terms with opposite signs we obtain

R = 2 < Fm,Fm̂ >G −2 < Fm,Fh >G + < h,h >G −

− < Fm̂,Fm̂ >G +2α < m̂,m >H −α < m̂, m̂ >H=

=< Fm̂,Fm̂ >G + < h,Fm̂ >G + < Fm̂,Fm >G − < Fm,h >G −

−α < m̂, m̂ >H +α < m, m̂ >H −

− < h,Fm̂ >G + < Fm̂,Fm >G − < Fm,h >G +α < m, m̂ >H=

−A1+ < Fm̂ − h,Fm >G − < h,Fm̂ >G +α < m, m̂ >H=

= −A1 −A1 + ∥Fm̂ − h∥2
G + α∥m̂∥2

H = ∥Fm̂ − h∥2
G + α∥m̂∥2

H

and the last expression does not depend on m. �

Proof of corollary 2.4.4.2. It holds

∥m̂C −m0∥V ≤ ∥m̂C − m̂∥V + ∥m̂ −m0∥V ≤ ∥m̂ −m0∥V + ∥m̂ −m0∥V . (2.8.6)
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If additionaly C is convex and closed, then it holds

∥m̂C −m0∥V = ∥ΠCm̂ −ΠCm0∥V ≤ ∥m̂ −m0∥V , (2.8.7)

where ΠC is the projection on the set C. �

For the proof of proposition 2.4.5.1 I need to prove first the following Lemma:

Lemma 2.8.2.1. (A modification of the Poincaré’s inequality) Let φ be bounded and nonnegative on

[0,1], with ∫
1

0 φ(u)du = 1. Then it holds for m1, m2 in H and a positive constant c

∥m1 −m2∥
2
L2
([0,1])

≤ c(∥m′
1 −m′

2∥
2
L2
([0,1])

+ ∫
1

0
(m1(x) −m2(x))2φ(x)dx). (2.8.8)

Proof of Lemma 2.8.2.1. It suffices to show the inequality for functions m j with m j(x) = m j(u)+

∫
x

u m′
j(y)dy. As ∫

1
0 φ(u)du = 1, we have

m j(x) = ∫
1

0
m j(u)φ(u)du + ∫

1

0
(φ(u)∫

x

u
m′

j(y)dy)du

It follows that

∣∫
1

0
(m1(x) −m2(x))dx∣ ≤ ∫

1

0
∣(m1(x) −m2(x))∣dx ≤

∣∫
1

0
(m1(u) −m2(u))φ(u)du∣ + ∫

1

0
∣∫

1

0
φ(u)∫

x

u
(m′

1(y) −m′
2(y))dydu∣dx

≤ ∫
1

0
(m1(u) −m2(u))2φ(u)du + ∥m′

1 −m′
2∥

2
L2
([0,1])

,

where the last inequality follows from a multiple application of the Cauchy-Schwarz inequal-

ity. �

Proof of Proposition 2.4.5.1. Let (
→

m̃p) be a Cauchy sequence in (V, ∥∥V). The Cauchy property

of (
→

m̃p) implies that for each i = 1, . . . ,n the sequence (mpi(Xi)) is a Cauchy-Sequence inR and

the sequence (m′
pi) is a Cauchy sequence in L2

([0,1]). Denote with m0i(Xi) the limit of (mpi(Xi))

in R and with m′
0,i the limit of (m′

pi) in L2
([0,1]). The proof follows using Lemma 2.8.2.1 with

φ(u) = 1
n K(Xi−u

h ). �

Proof of proposition 2.4.2. Define < ., . >Q∶ H × H → R+, (l, g) →< l, g >Q∶= n−1∑n
i=1 l(Wi)g(Wi).

Then this is a positive semidefinite bilinear form and m̂ is a solution to minm∈G < T̂m− ĥ, T̂m−

ĥ >Q +αnP(m). Observe that the proof of proposition 2.4.4.1 only uses the properties of
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a positive semidefinite bilinear form (i.e. positive definiteness is not needed). Therefore,

following identical steps as in its proof, we obtain

m̂C ∈ argmin
m∈C

< T̂(m̂ −m), T̂(m̂ −m) >Q +αnP(m̂ −m), (2.8.9)

and using the Cauchy-Schwarz inequality we obtain

∥T̂(m̂C −m0)∥
2
Q + αnP(m̂C −m0) ≤ 2(∥T̂(m̂ −m0)∥

2
Q + αnP(m̂ −m0)), (2.8.10)

with ∥g∥2
Q ∶=< g, g >Q.

Next, define f̄ ∶= supx∈[0,1]{∣ fX(x) ∣} and f ∶= infx∈[0,1]{∣ fX(x) ∣}. With assumption 3 ii),

0 < f ≤ f̄ <∞. With the definition of the penalty P, we have f P(m) ≤ ∥m∥2
G ≤ f̄ P(m). Under

assumptions 1-5, ∥m̂ − m0∥G = op(1) due to and with < T̂(m̂ − m0), T̂(m̂ − m0) >Q= op(αn) we

obtain

< T̂(m̂ −m0), T̂(m̂ −m0) >Q +αnP(m̂ −m0) = op(αn). (2.8.11)

Finally, using 2.8.10 and 2.8.11, we have P(m̂C −m0) = op(1) and consequently ∥m̂C −m0∥G =

op(1). �

Proof of proposition 2.4.3. In a first step, we write

n−1
n
∑
i=1

(T̂(m̂ −m0)(Wi))
2 = n−1

n
∑
i=1

(T̂m̂(Wi) − Tm̂(Wi) + Tm̂(Wi) − Tm0(Wi)

+Tm0(Wi) − T̂m0(Wi))
2 ≤

3n−1(
n
∑
i=1

(T̂m̂(Wi) − Tm̂(Wi))
2 +

n
∑
i=1

(Tm̂(Wi) − Tm0(Wi))
2 +

n
∑
i=1

(Tm0(Wi) − T̂m0(Wi))
2) = A1 +A2 +A3.

To bound A2, because Tm̂ − Tm suffices the conditions of the uniform law of large numbers,

we have

n−1
n
∑
i=1

(Tm̂(Wi) − Tm0(Wi))
2 → ∥Tm̂ − Tm0∥

2
W almost surely. (2.8.12)

Further, we have ∥Tm̂−Tm0∥
2
W ≤ ∥T∥∥m̂−m0∥

2
X, where ∥.∥ is the operator norm. With a choice

αn ≍ δ∗2
m,n

√
φ(v−2

k ), which in the case φ(x) = xs corresponds to αn ≍ δ
∗1+ s

α+s
m,n , and under the

assumptions 1-8, corollary 5.2 in Chen and Pouzo (2012) holds and

∥m̂ −m0∥X = Op(δ
∗ α
α+s

m,n ). (2.8.13)
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Consequently,

∥m̂ −m0∥
2
X

αn
=

∥m̂ −m0∥
2
X

δ
∗ 2α
α+s

m,n

δ
∗ 2α
α+s

m,n

αn
= Op(1)δ

∗ α−2s
α+s

m,n . (2.8.14)

Therefore, if α > 2s then n−1∑n
i=1(Tm̂(Wi) − Tm0(Wi))

2 = op(αn).

To bound A3, observe that

n−1
n
∑
i=1

(Tm0(Wi) − T̂m0(Wi))
2 = n−1

n
∑
i=1

(h(Wi) − ĥ(Wi) + ĥ(Wi) − T̂m0(Wi))
2 ≤

2n−1
n
∑
i=1

(h(Wi) − ĥ(Wi))
2 + 2n−1

n
∑
i=1

(ĥ(Wi) − T̂m0(Wi))
2 = A3,1 +A3,2.

Because m0 ∈ Hos, then under assumptions 1-5, lemma C.2 in Chen and Pouzo (2012) holds.

Therefore A3,2 ≤ Op(δ2
n) where δ2

n = max{Jn/n, b2
Jn
}. Because the estimators of T and h are least

squares series estimators, it holds δ2
n = Jn/n ≍ b2

Jn
, and with α ≍ δ

∗1+ s
α+s

m,n we obtain A3,2 = op(αn).

To bound A3,1, note that ĥ suffices the conditions of the uniform law of large numbers. Then,

using the same line of reasoning as for A2, we obtain that A3,1 = O(b2
Jn
) and is hence equal to

op(αn).

To bound A1, observe that

n−1
n
∑
i=1

(T̂m̂(Wi) − Tm̂(Wi))
2 ≤ n−1

n
∑
i=1

(T̂ − T)(m̂(Wi) −m0(Wi))
2 +

2
3

A3.

Following the line of reasoning of the previous point, we achieve A1 = op(αn). �

Proof of 2.4.4. From the projection framework, corollary 2.4.4.2, we have

∫ ∣ T̂(m̂C(w) −m0)(w) ∣2 λ(dw) + αn∥m̂C −m0∥
2
H1 ≤ (2.8.15)

∫ ∣ T̂(m̂(w) −m0)(w) ∣2 λ(dw) + αn∥m̂ −m0∥
2
H1 .

Under assumptions K1-K6, αn∥m̂−m0∥
2
H1 = o(αn). With 2.4.21, the right-hand-side of inequal-

ity 2.8.15 is equal to op(αn), and therefore αn∥m̂ −m0∥
2
H1 = o(αn). �

Proof of proposition 2.4.5. It holds

∥T̂(m̂ −m0)∥
2
H = ∥T̂m̂ − Tm̂ + Tm̂ − Tm0 + Tm0 − T̂m0∥

2
H (2.8.16)

≤ 3(∥T̂m̂ − Tm̂∥2
H + ∥Tm̂ − Tm0∥

2
H + ∥Tm0 − T̂m0∥

2
H) (2.8.17)

≤ 3(∥T̂ − T∥2∥m̂∥2
G + ∥T∥2∥m̂ −m0∥

2
G + ∥T̂ − T∥2∥m0∥

2
G) (2.8.18)

= 3(∥T̂ − T∥2(∥m̂∥2
G + ∥m0∥

2
G) + ∥T∥2∥m̂ −m0∥

2
G). (2.8.19)
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Since ∥m̂ − m0∥ = op(1), ∥m̂∥2
G + ∥m0∥

2
G is bounded in probability. Under the assumptions of

this proposition, ∥T̂ − T∥2 = Op(
1

nσ2 + σ
2ρ) and

∥m̂ −m0∥
2 = Op[

1
α2

n
(

1
n
+ σ2ρ) + (

1
nσ2 + σ

2ρ)α
min(β−1,0)
n + α

min(β,2)
n ], (2.8.20)

see theorem 4.1 in Darolles, Fan, Florens, and Renault (2011) and the supplement materials

of Darolles, Fan, Florens, and Renault (2011). Following their considerations, a choice αn ∝

n−1/(min(β,2)+2) leads to the equivalence

1
nα2

n
∼ α

min(β,2)
n ∼ n−(min(β,2)/(min(β,2)+2), (2.8.21)

and to ( 1
nσ2 + σ

2ρ)α
min(β−1,0)
n = O(α

min(β−1,0)
n

nσ2 ), and in particular, under a suitable choice for σ,

this implies 1
nσ2 = O( α

min(β,2)
n

α
min(β−1,0)
n

).

Next, suppose β > 1. Then

∥T̂ − T∥2

αn
=

∥T̂ − T∥2

1
nσ2 + σ2ρ

1
nσ2 + σ

2ρ

αn
= Op(1)o(1) = op(1). (2.8.22)

Further, observe that with this choice of αn, the rate of convergence Op[
1
α2

n
( 1

n + σ
2ρ) + ( 1

nσ2 +

σ2ρ)α
min(β−1,0)
n + α

min(β,2)
n ] is determined by α

min(β,2)
n (due to the considerations described

above). With β > 1, it follows that ∥m̂ −m0∥
2 = op(αn). With ∥T̂ − T∥2 = op(αn) and ∥m̂ −m0∥

2 =

op(αn) in plugged in 2.8.19, we obtain the wished result. �

2.8.3 The Maimonides’ rule: the study of Angrist and Lavy (1999)

As an illustration, I provide evidence for nonmonotone causal effect in a second data set.
The paper of Angrist and Lavy (1999) studies the effects of class size on test scores using
an administrative class size cap rule as an instrument for the endogenous class size. The
paper had a considerable influence on the literature: after it was published in 1999, a number
of other studies used its identification strategy, see for example Hoxby (2000), Dobbelsteen,
Levin, and Oosterbeek (2002), Gary-Bobo and Mahjoub (2006) and Urquiola (2006). The
dataset in Angrist and Lavy (1999) comes from Jewish public secular primary schools. In
1990-1991 fourth graders and fifth graders and in 1991-1993 third graders were evaluated in a
verbal and a math tests. The tests were organized by a testing center under the Israel Ministry
of Education.17 The data set contains, amongst others, school identifier, total enrollment for
each school, class size for each class, average test score in each class, as well as the school-level
socio-economic variable percentage disadvantaged (PD) students. The unit of observation is

17The test was conducted in all primary schools. The sample of the study is restricted to secular Jewish schools.
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the class.18 The benchmark model of Angrist and Lavy (1999) is defined as

Ysc = X′
sβ + nscα + ηs + εsc, (2.8.23)

where Ysc is the average test score in class c for school s in a particular subject, Xs is a vector
of school characteristics, nsc is the class size, ηs is a random school component and εsc is a
class level error term. The identification strategy is based on the following administrative
rule, referred to as the Maimonides’ rule: when in a cohort of p classes the class size of 40
students is exceeded, one additional class is added and the cohort is split into p + 1 classes
of equal size. Formally, the class size fsc assigned to class c in school s for a specific grade is
determined by the formula

fsc = es/[1 + (es − 1)/40], (2.8.24)

where es is the enrollment for that school and grade at the beginning of the school year and for
any r > 0 [r] denotes the largest integer not exceeding r. The rule is illustrated on figure 2.21.
The x-axes is for enrollment size and the y-axis for the class size. The dashed line depicts the

Figure 2.21: Maimonides’ Rule. Source: Angrist and Lavy (1999).

assigned class size as derived by the Maimonides’ rule and the continuous line for effectively
implemented class size. The due-class size function has jumps at 41, 81, 121, and so forth.
Angrist and Lavy (1999) exploit the discontinuities of the assignment rule in a fuzzy regression
discontinuity design (RDD) to identify the causal effect. The method goes back to Trochim
(1984) and the connection to 2SLS was unveiled by van der Klaauw (2002). In the standard
approach with a binary treatment, there is a jump in the probability of the binary treatment
at the cut-off point of the forcing variable. If all other factors vary smoothly with the forcing
variable, a jump in the average outcome at the cut-off point is interpreted as a treatment
effect. Angrist and Lavy (1999) modify the standard approach to a case with a multiple-
valued treatment (here the class size) and multiple cut-off points of the forcing variable (here
the enrollment). As a result, they exploit a change in the average class size and estimate
an average of the treatment effects at three different discontinuities. Their estimations rely

18The data for third graders is on individual level but is not available and therefore I restrict the analysis in

my paper on fourth and fifth graders. The dataset can be downloaded from the homepage of Joshua Angrist,

http://economics.mit.edu/faculty/angrist/data1.
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on a parametric specification of the trend function that consists of smooth covariates, most
importantly of enrollment. A potential problem associated with parametric specifications in
RDD context is that nonlinearities in the regression function might be mistakenly estimated as
a jump (and hence, as a treatment effect). Angrist and Lavy (1999) address this problem with a
robustness check, in which they only use the observations close to the discontinuities, that is,
in the intervals [36,45], [76,85], [116,125] and, alternatively, [38,43], [78,83], [118,123]. The
authors refer to these observations as to the discontinuity sample. Although the choice of the
interval length is arbitrary, narrowing the sample to observations close to the discontinuities
reduces the potential danger for misspecification, provided the regression function is smooth.

The estimates of α are negative in all cases but insignificant for the 3rd graders, most of
the cases for the 4th graders and some of cases for the 5th graders.

A potential source of model specification error is that the treatment effect is assumed to
be linear in the class size. This amounts to estimating a (weighted) average of the treatment
effects at the different discontinuity points. The main advantage of such an aggregation
when the estimation is done only with observation from the discontinuity sample, is that
the observations from all three intervals can be used. Around each cut-off point there are
only few points. For example, for fourth graders there are about 60 observations in the
-3/+3-interval around the cut-off point 120, that is, only 30 observations above and below
the cut-off point.19 Estimating different treatment effects would be associated with high
imprecision. The linearity assumption makes it possible to pool the observations together.
The price to pay for the higher precision is a potential model misspecification. The following
example illustrates a model specification in the context of Cho, Glewwe, and Whitler (2012).
Consider the estimated cubic polynomial for 5th grade math in the data set of Cho, Glewwe,
and Whitler (2012), depicted on figure 2.18a. Suppose that this function summarizes the true
causal effect of class size on test scores, and that it is estimated using the Maimonides’ rule
under the assumption that the regression function is linear in the treatment. The estimated
treatment effect will be a weighted average of the negative effects at the points 40, 80 and
120. Thus, the single estimate will be negative and the information on the magnitude of the
three effects is lost. The non-monotonicity of the treatment effect cannot be detected.

An average class size approach
The main restriction of an empirical strategy based on a maximum class-size rule is that
it provides identification of the treatment effect only at the discontinuities. An alternative
approach is to use the average class size as an instrument. Mainly because of its availability,
this approach has been often explored in the literature, see for example the studies of Aker-
hielm (1995) and Bressoux, Kramarz, and Prost (2009). Another important advantage of this
instrument is that it can potentially explain variation in the endogenous regressor on almost
the whole range of observed class sizes.

If the only source of endogeneity is the within-school selection, then the average class
size is potentially a valid instrument. As between-schools selection generally cannot be
excluded, using the whole sample might bias the estimates. The main threat for the validity
of the exclusion restriction is the selective behavior of parents (selection of teachers apples
similarly). Parents who invest more in the human capital of their children might seek to get

19One of the reasons for this phenomenon is that schools split classes at enrollments that are usually smaller

than 40, 80 and so forth.
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them into schools with on average smaller class sizes. A crucial restriction in the context
of the school system in Israel is that parents are not completely free to move their children
to different public schools. Once the parents have chosen their residence, they can only
give their children to the school in whose catchment area they live.20 Hence, the main
endogeneity concern is that prior to begin of the schooling, parents choose their residence so
as to maximize the educational quality for their children given a budget constraint. Moreover,
although investments in the human capital of the children are not observed in the data, it
is considered to be strongly predicted by the socio-economic status of the parents. One
crucial implication is that the socio-economic composition in a school is likely to be highly
correlated with the initial sorting of the parents. Therefore, comparing schools with a similar
socio-economic composition potentially solves the problem of between-schools selection.
Although there is no complete information on this composition, the variable PD provides a
proxy for it. For this reason I restrict the analysis that follows on subsamples of schools with
similar or equal values of the PD variable.21

Although the exclusion restriction cannot be tested, it can be addressed indirectly in
a framework first developed by Horowitz (2012). Suppose W is a valid instrument with
E[ε∣W] = 0 and that the researcher is interested in testing the hypothesis that there exists a
smooth function m0 that satisfies Y = m0(X) + ε. That is, the null hypothesis is defined as

Hs ∶ There exists a smooth and additively separable in X and ε
function m0 that satisfies Y = m0(X) + ε.

The test statistic has a normal distribution under the null. High values of the test statistic
indicate a model specification error. This error can also be due to a violation of the exclusion
restriction. I implement a modification of this test developed by Breunig (2012) for different
values of the PD ( 3, 5) variables. I use the assigned class size fsc as a potential instrument
instead of the actual class size. The main reason is that the assigined class size depends solely
on the total enrollment in a school, whereas the average class size can be manipulated via
splitting classes or pulling classes together. The resulting p-values vary in the range of 0.3
to 0.8. Thus, there is no evidence for model misspecification eror in the context of the null
2.8.25. At least indirectly, this outcome supports the plausibility of the exclusion restriction.

Testing for monotonicity
As in the previous application, my main focus is to explore the functional form of the causal
effect of class size on test scores. In a first step, I test the hypothesis that the causal effect is
monotone. Then the null hypothesis is

H0 ∶ m′ ≤ 0.22 (2.8.25)

The cutoff parameter and the regularization constant of the constrained estimator are chosen
as in the previous empirical application. The results are shown in table 2.20. The first col-

20As noted by Angrist and Lavy (1999), private schools are not common in Israel outside the Jewish ultra-

Orthodox sector.
21Although Angrist and Lavy (1999) acknowledge the importance of this variable, they use it in a different

context.
22I discuss only the null for decreasing function, the other case goes similarly.
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Table 2.20: p-Values, Test for Monotonicity

m n verbal math n verbal math

PD ≤ 3

4 410 0.0001 0 401 0.006 0.058

5 410 0.0002 0 401 0 0.11

6 410 0.001 0 401 0 0.0003

7 410 0.0002 0 401 0 0

PD ≤ 5

4 682 0.002 0.001 661 0.0002 0.564

5 682 0.006 0.0099 661 0 0.18

6 682 0.001 0 661 0 0

7 682 0 0 661 0 0

8 682 0 0 661 0 0

umn contains information about the cutoff parmeter and the second one about the sample
size. The first part of the table presents the results of the test with the sample with PD ≤ 3
unconditionally. p-values that are smaller than 0.00001 were reported as zero. For all values
of the cutoff parameter in the range 4-7 the test rejects the monotonicity. Conditioning on PD
≤ 5 yields similar results. The p-values are somewhat higher but still below 1%. The only
exceptions are the p-values for the 5th grade math regression in the subgoup PD ≤ 5 for cutoff
values 4 and 5. Altogether, if the exlcusion restriction is valid, then there is a strong evidence
for a nonmonotone causal effect of class size on test scores.

Parametric forms of the regression function
Following the line of arguments in subsection 2.6, I explore the form of the regression function
by testing for parametric specification. As in the previous application, I restrict my search
to polynomials of second and third degree and I follow the same structure as in the case
of testing for monotonicity. The results are shown in table 2.21. Column one contains the
value of the cutoff parameter m of the test statistic, column 2 the sample size. All columns
with a header value d = 2 contain the p-values for a quadratic specification and those with
d = 3 for a cubic one. For 5th grade math and for higher values of the cutoff parameter
(8,9,10) the p-values are between 0.03 and 0.08. For PD ≤ 3 the p-values are similar for all
specifications and higher than 10 % with the exception of the 5th grade verbal case, wher
the test rejects the quadratic specification for higher values of mn. For PD ≤ 5 both quadratic
and cubic specifications yield high p-values for low values of mn and low p-values for high
values of mn. An exception is again the case of 5th grade verbal where the cubic regression
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yield high p-values and the quadratic one is rejected. When I test only with the restricted
sample, the p-values are always higher than 10 %.23 Based on this evidence both quadratic
and cubic polynomials represent a plausible functional for the regression function with the
cubic polynomial being in about 25 % of the cases more robust than the quadratic one.

23With the restricted sample I only condition on PD ≤ 10 as the subgroups PD ≤ 3 and PD ≤ 5 does not contain

enough observations.
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