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This paper analyses identification for multivariate unobserved components models in which the
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1 Introduction

Traditionally, in unobserved components (UC) models with stochastic trend and autoregressive

(AR) cycle the innovations to the state variables were assumed to be uncorrelated, e.g. Harvey

(1985), Clark (1987). Balke & Wohar (2002) and Morley, Nelson & Zivot (2003) allowed for

correlation of the UC shocks. The latter authors state that identification in a univariate setting

can be achieved if the lag polynomial in the cycle is at least of second order.

This paper demonstrates how identification can be derived for multivariate correlated UC

models as the natural generalization of the univariate setting to higher dimensions, e.g. Sinclair

(2009). The multivariate case allows analysing richer economic interactions and provides a larger

information set for the purpose of decompositions and forecasts, e.g. Oh, Zivot & Creal (2008).

Further papers in the literature using models treated here comprise Morley (2007), Startz &

Tsang (2010), Weber (2011), Klinger & Weber (2014).

We clarify the role of uniqueness of the reduced-form vector autoregressive integrated moving

average (VARIMA) model and present a rigorous treatment of the order and rank conditions.

To the best of our knowledge identification of correlated UC models has only been discussed

with respect to the order condition with the exception of the univariate UC model in Morley

et al. (2003).

We find identification for given lag lengths larger than one. This criterion has to be fulfilled

for all cyclical components. However, the lag structure does not have to be complete, i.e. the

parameters associated with lower lags can be zero. Furthermore, we address UC models with

common features and extend the usual UC specification with separate cyclical dynamics to the

interesting case of a non-diagonal VAR cycle.

The paper is structured as follows. The subsequent section introduces the framework of

correlated UC models. Section 3 discusses identification. This comprises our general approach,

the order and rank criteria as well as the cases of common features and dynamically interacting

cycles. The last section concludes.
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2 Correlated Unobserved Component Model

Consider the following correlated UC model of for the K× 1 random vector yt, see Morley et al.

(2003) and Sinclair (2009) for univariate and multivariate cases, respectively,

yt = τt + ct

τt = µ+ τt−1 + ηt (1)

ct = B1ct−1 + · · ·+Bpct−p + εt,

with

vt =

ηt
εt

 ∼ iidN(0,Σv), (2)

where

Σv =

Ση Σηε

Σ′ηε Σε

 .

Thus, the trend component τt follows a multivariate random walk, while the cyclical com-

ponent ct has a vector autoregressive (VAR) structure for which we make the following assump-

tions. The parameter matrices B1, . . . , Bp are diagonal with typical diagonal elements bkk,i,

i = 1, . . . , p, k = 1, . . . ,K, and Bp 6= 0 such that

|IK −B1z − · · · −Bpzp| 6= 0 for |z| ≤ 1. (3)

Consequently, the cyclical part of each component in yt is characterized by a stable AR process

of order at most p. This UC model framework is labelled UC-VAR(p) in the following. We will

address the case of a general non-diagonal VAR(p) cycle for ct in subsection 3.6.

The set-up (1) - (3) results in a reduced-form VARIMA(p, 1, p) representation. Its canonical

form, compare e.g. Schleicher (2003), reads as

B(L)∆yt = B(1)µ+B(L)ηt + ∆εt (4)

= c+ Θ(L)ut, (5)
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where B(L) = B0−B1L−· · ·−BpLp and Θ(L) = Θ0+Θ1L+ · · ·+ΘpL
p are K-dimensional lag-

polynomials of order p with B0 = Θ0 = IK , and c = B(1)µ. The polynomials in row i and column

j of B(L) and Θ(L) will be denoted by bij(L) and θij(L), respectively. Accordingly, the i-th row

of Θ(L) is given by Θi•(L) = [θi1(L), . . . , θiK(L)]. Moreover, we have ut ∼ iidN(0,Σu). The

representation (5) is due to a multivariate version of Granger’s Lemma, compare e.g. Lütkepohl

(1984, Lemma 1). The reduced-form autocovariance structure of the vector MA part mt =

Θ(L)ut is described by the matrices Γh = E(mtm
′
t−h) =

∑p−h
i=0 Θi+hΣuΘ′i, h = 1, 2, . . ., such

that Γh = 0 for h > p.

3 Identification of Multivariate UC Models

3.1 Identification approach

We analyse whether the parameters of a given structural UC model with a diagonal cycle can

be identified from its implied reduced-form VARIMA (5). The label ’given UC model’ refers in

particular to a given set of orders {p1, . . . , pK} of the individual AR cycles. This is a common

assumption in the literature, see e.g. Hotta (1989), Morley et al. (2003), Sinclair (2009).

Identification of the UC model parameters is complicated by the fact that VARMA models

are not generally identified, see e.g. Lütkepohl (2005, Ch. 12). It is not automatically guaranteed

that the VAR and vector MA (VMA) components in (5) are uniquely separable. Hence, it does

not seem reasonable to directly assume that the reduced-form VAR parameters are known (and

equal to the structural VAR parameters in (4)).

However, VARMA models with a diagonal VAR component and instantaneous parameter

matrices B0 = IK and Θ0 = IK are identifiable if there are no common roots to bkk(z) and

Θk•(z) for none k = 1, . . . ,K, i.e. if there is no value z∗ such that bkk(z
∗) = 0 and Θk•(z

∗) = 0,

see Dufour & Pelletier (2011, Assumption 3.13, Theorem 3.14). Nevertheless, it may be possible

that such common roots are present if Σηε 6= 0.1 Accordingly, there could exist a reduced-

form VARIMA representation with a set of lower AR orders. To simplify the discussion in the

following we assume for a moment that the orders of all cyclical components in the given UC-

1If the structural error term vectors ηt and εt were indeed uncorrelated, then common roots in the VAR and
MA lag operators are ruled out, compare Harvey (1989, Section 4.4) for the univariate case.
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VAR(p) are equal to p and that the same common roots are present in all K components. Then,

in case of common roots a reduced-form VARIMA(p∗, 1, p∗) with p∗ < p exists.

This lower-order VARIMA would correspond to a (potentially infinite) set of observation-

ally equivalent structural UC model parametrizations with a VARMA(p∗, p∗−1) cycle, UC-

VARMA(p∗, p∗− 1), in which the MA component may be absent.2 Hence, the original UC-

VAR(p) model is over-parametrized in the sense that alternative UC models with an implied

lower-order VARIMA representation exist. Therefore, it is not reasonable to rely on the UC-

VAR(p). If a UC-VAR(p∗) model exists, then this model is identified whenever p∗ ≥ 2 according

to our results obtained in the following subsections. The treatment of identification of UC-

VARMA models is beyond the scope of this note. However, a UC-VARMA(p∗, p∗−1) would not

be identifiable due to the failure of the corresponding necessary order condition, see e.g. Morley

et al. (2003), Oh et al. (2008) for the univariate case.

In empirical applications the existence of common roots can be analysed by relying on the

estimation results of the reduced-form VARIMA for a given set of AR lag orders and a VMA

lag order equal to p. Therefore, we assume in line with the foregoing discussion that the lag

orders of the individual AR cycles in the UC-VAR(p) model are minimal in the sense that yt

has no reduced form VARIMA representation with lag orders such that p∗k < pk for at least

one k = 1, . . . ,K. Then, the VAR component in (5) can be uniquely separated from the MA

component. Therefore, we regard the reduced-form VAR parameters as given.

The latter result allows us to discuss identification within a system of linear equations that

relates reduced-form and structural variance parameters, see subsections 3.2 to 3.4. To be

precise, we only need to deal with the relevant necessary order and sufficient rank conditions.

The subsections 3.2 to 3.4 also show that knowledge of the autocovariance structure of the VMA

component of the reduced-form VARIMA (5) is sufficient to identify the structural (variance)

parameters. Hence, there is no need to identify the MA parameter matrices Θ1, . . .Θp by the

2There always exist at least one UC-VARMA(p, p−1) representation for any given VARIMA(p, 1, p) model, see
Morley et al. (2003), Cochrane (1988) for the univariate case. However, there does not need to exist a UC-VAR(p)
representation for a given VARIMA(p, 1, p) since the UC-VAR(p) is a restricted version of a UC-VARMA(p, p−1).
We call two model parametrizations observationally equivalent if they give rise to the same joint density function
of {yt}Tt=1. Obviously, the lower-order VARIMA(p∗, 1, p∗) would be observationally equivalent to the original
reduced-form VARIMA(p, 1, p). Hence, the UC representations of the VARIMA(p∗, 1, p∗) are observationally
equivalent to the given UC-VAR(p).
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commonly applied invertibility restriction on the VMA polynomial.

3.2 Order condition

The UC model (1) - (3) satisfies the order condition for identification as can be seen as follows.

TheKp parameters inB1, . . . , Bp are always identified since the VAR polynomial can be obtained

from the reduced form (5). Therefore, the parameter vector µ is also identified. There remain

2K2 + K structural variance parameters in Σv to be identified. Equating the autocovariance

structures of B(L)ηt + ∆εt and Θ(L)ut provides us with a link of these structural parameters

to the reduced-form variance parameters, compare (4) and (5). Due to the symmetry of Γ0,

the reduced form contains (K2 + K)/2 + K2p pieces of variance information in Γ0,Γ1, . . . ,Γp.

Thus, the order condition is satisfied for p ≥ 2 since [(K2 + K)/2 + K2p] ≥ [2K2 + K] in this

case. Except for p = 2 and K = 1, there are more reduced-form than structural-form variance

parameters.

3.3 Rank condition: diagonal VAR(2) cycle

It remains to show that the structural variance parameters in Σv can indeed be uniquely re-

covered from the reduced-form VMA variance matrices Γ0,Γ1, . . . ,Γp. This requires to meet

the relevant rank condition related to the system of equations linking the reduced-form and

structural parameters. To simplify the understanding of the corresponding proof we start with

the case p = 2. The proof relies on the construction of a particular submatrix that has full rank.

This is easily achieved for a diagonal VAR(2) by assumption. The construction of the full rank

submatrix is more involved for a VAR(p) cycle with p > 2 as as shown in subsection 3.4.
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From the equivalence of (4) and (5) we first obtain

vec(Γ0) = γ0 = [IK2 + (B1 ⊗B1) + (B2 ⊗B2)]vec(Ση) + 2vec(Σε)

+ [(IK2 + CKK) + (IK ⊗B1) + CKK(IK ⊗B1)] vec(Σηε)

vec(Γ1) = γ1 = [−(IK ⊗B1) + (B1 ⊗B2)]vec(Ση)− vec(Σε)

− [CKK + (IK ⊗B1)− (IK ⊗B2)]vec(Σηε)

vec(Γ2) = γ2 = −(IK ⊗B2)vec(Ση)− (IK ⊗B2)vec(Σηε),

(6)

where the vec-operator stacks the columns of a matrix below each other and Cmn is the (mn×mn)

commutation matrix with vec(A′) = Cmnvec(A) for any (m× n) matrix A.

As Γ0 is symmetric, γ0 can just provide 1
2K(K + 1) linearly independent equations. There-

fore, we consider γ∗0 = vech(Γ0) in the following, where the vech-operator is defined to stack

columnwise the elements on and below the main diagonal of a square matrix below each other.

Let DK be the (K2 × 1
2K(K + 1)) duplication matrix such that vec(A) = DKvech(A) for any

symmetric (K ×K) matrix A and define D+
K = (D′KDK)−1D′K . Since D+

Kvec(A) = vech(A) if

A is symmetric, see Lütkepohl (1996, Section 9.5), we can re-write system (6) as

γ∗ = B∗σ∗, (7)

where γ∗ = [γ∗′0 : γ′1 : γ′2]
′, γ∗0 = D+

Kγ0, σ
∗ = [vech(Ση)

′ : vec(Σε)
′ : vec(Σηε)

′]′, and

B∗=


D+
K(IK2 +B1 ⊗B1 +B2 ⊗B2)DK 2D+

K 2D+
K(IK2 + IK ⊗B1)

(−IK ⊗B1 +B1 ⊗B2)DK −IK2 −(CKK + IK ⊗B1 − IK ⊗B2)

−(IK ⊗B2)DK 0(K2×K2) −IK ⊗B2

 . (8)

We will show below that the (K∗ × K∗) matrix B∗, K∗ = 2.5K2 + 0.5K, has full rank.

Hence, the structural variance parameters can be recovered from the reduced-form parameters

by σ∗ = B∗−1γ∗. Note that the off-diagonal elements of the symmetric variance matrix Σε

appear twice in σ∗. However, we analyse identification with respect to a given UC model. Thus,

γ∗ contains the implied, i.e. correct, reduced-form VMA variance parameters such that B∗−1γ∗
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indeed returns two identical sets of off-diagonal elements of Σε.

To show that B∗ is of full rank we have to assume that bkk,2 6= 0 for all k = 1, . . . ,K, i.e. all

K components of ct have to follow AR(2) processes. Furthermore, we introduce the following

notation for easier reference

B∗ =


B∗[1,1] B∗[1,2] B∗[1,3]

B∗[2,1] B∗[2,2] B∗[2,3]

B∗[3,1] B∗[3,2] B∗[3,3]

 , (9)

where the structure of the submatrices B∗[i,j], i, j = 1, 2, 3, corresponds to (8). Corresponding to

the univariate set-up of Morley et al. (2003) one can see that B∗ has a rank deficit only if there

exists a (Kδ × 1) vector δ = [δ′1 : δ′2]
′ with Kδ = 1.5K2 + 0.5K such that

δ′1

(
B∗[1,1] + 2D+

KB
∗
[2,1]

)
+ δ′2B

∗
[3,1] = 0(1× 1

2
K(K+1)) and (10)(

δ′1

(
B∗[1,3] + 2D+

KB
∗
[2,3]

)
+ δ′2B

∗
[3,3]

)
DK = 0(1× 1

2
K(K+1)). (11)

This follows from the fact that B∗[1,2] = 2D+
K , B∗[2,2] = −IK2 , and B∗[3,2] = 0(K2×K2). Note in this

respect that the only way to reduce B∗[1,2] to zero by adding linear transformations of rows of

the second block of columns of B∗ is to add 2D+
KB

∗
[2,2]. Furthermore, any (1×K2) zero vector

created by δ′1

(
B∗[1,3] + 2D+

KB
∗
[2,3]

)
+ δ′2B

∗
[3,3] is transformed into a (1× 1

2K(K + 1)) zero vector

when post-multiplied by DK .

Since δ′1

(
B∗[1,3] + 2D+

KB
∗
[2,3]

)
= 2δ′1D

+
K(IK ⊗ B2) and (IK ⊗ B2) = −B∗[3,3] is of full rank by

assumption, (11) implies δ′2 = 2δ′1D
+
K . Plugging the latter identity into (10) yields

δ′1

(
B∗[1,1] + 2D+

KB
∗
[2,1]

)
+ δ′2B

∗
[3,1]

= δ′1
(
D+
K [IK2 +B1 ⊗B1 +B2 ⊗B2 + 2(B1 ⊗B2)− 2(IK ⊗B1)− 2(IK ⊗B2)]DK

)
= δ′1

(
D+
K [(IK −B1 −B2)⊗ (IK −B1 −B2)]DK

)
= 0(1× 1

2
K(K+1))

(12)

as a requirement for a rank deficit. The second equality follows from Lütkepohl (1996, Sec-

tion 9.5.4, Rule (3)). Since the VAR(2) process is stable, the matrix IK − B1 − B2 has full
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rank. Due to Lütkepohl (1996, Section 9.5.4, Rule (2)) the same holds true for the matrix

D+
K [(IK −B1 −B2)⊗ (IK −B1 −B2)]DK . Therefore, no vector δ can exist that satisfies the

conditions (10) and (11). This implies that B∗ is of full rank K∗. Hence, the rank condition

for identification of the structural parameters is satisfied if every cycle component has an AR(2)

structure.

3.4 Rank condition: diagonal VAR(p) cycle

For a diagonal VAR(p) cycle we obtain the matrix representation as

γ∗ = B+σ∗,

where γ∗ = [γ∗′0 : γ′1 : · · · : γ∗p ]′, γi = vec(Γi), i = 0, 1, . . . , p, γ∗0 = D+
Kγ0, σ

∗ = [vech(Ση)
′ :

vec(Σε)
′ : vec(Σηε)

′]′, and

B+=



D+
K(IK2 +

∑p
i=1Bi ⊗Bi)DK 2D+

K 2D+
K(IK2 + IK ⊗B1)

(−IK ⊗B1 +
∑p−1

i=1 Bi ⊗Bi+1)DK −IK2 −CKK − IK ⊗B1 + IK ⊗B2

(−IK ⊗B2 +
∑p−2

i=1 Bi ⊗Bi+2)DK 0(K2×K2) −IK ⊗B2 + IK ⊗B3

...
...

...

(−IK ⊗Bp−1 +B1 ⊗Bp)DK 0(K2×K2) −IK ⊗Bp−1 + IK ⊗Bp

−(IK ⊗Bp)DK 0(K2×K2) −IK ⊗Bp



. (13)

The (K+×K∗) matrix B+, K+ = (p+0.5)K2+0.5K, can be re-written using the submatrix-

block structure

B+ =



B+
[1,1] B+

[1,2] B+
[1,3]

B+
[2,1] B+

[2,2] B+
[2,3]

...
...

...

B+
[p+1,1] B+

[p+1,2] B+
[p+1,3]


.

To show that the matrix B+ has full column rank K∗ we first obtain a quadratic (K∗×K∗)

matrix B∗ corresponding to (9) by elementary row operations applied to B+. To be precise,
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a three-by-three submatrix structure is generated with B∗[3,3] being of full rank K2. To this

end, we have to assume that bkk,i 6= 0 for each component k, k = 1, . . . ,K, for at least one

lag i with 2 ≤ i ≤ p. Then, there will always exist an index sequence q1, q2, . . . , qn with

2 ≤ q1 < q2 < · · · < qn ≤ p − 1 and a scalar c ∈ N0 such that Ba =
∑n

s=1Bqs + cBp is of full

rank. Next, define the coefficients ci, i = q1 + 1, q1 + 2, . . . , p+ 1, by ci = s for qs + 1 ≤ i ≤ qs+1

with s = 1, 2, . . . , n and qn+1 = p+ 1. Then, we have
∑p+1

i=q1+1 ciB
+
[i,3] + cB+

[p+1,3] = −(IK ⊗Ba).

Accordingly, the third block of rows of B∗ is generated by B∗[3,j] =
∑p+1

i=q1+1 ciB
+
[i,j] + cB+

[p+1,j]

for j = 1, 2, 3. We set B∗[2,j] =
∑q1

i=2B
+
[i,j] −

∑p+1
i=q1+1(ci − 1)B+

[i,j] − cB
+
[p+1,j], j = 1, 2, 3, in order

to generate the second block of rows. Finally, the first block of rows is given by B∗[1,j] = B+
[1,j],

j = 1, 2, 3.

Equipped with these definitions we have δ′1

(
B∗[1,3] + 2D+

KB
∗
[2,3]

)
= −2δ′1D

+
KB

∗
[3,3] withB∗[3,3] =

−(IK⊗Ba) being of full rank. Plugging this result into (11) yields again δ′2 = 2δ′1D
+
K . Then, from

(10), we obtain δ′1
(
D+
K [(IK −B1 − · · · −Bp)⊗ (IK −B1 − · · · −Bp)]DK

)
= 0(1× 1

2
K(K+1)) as a

requirement for a rank deficit which cannot be satisfied since the VAR(p) cycle in (1) is stable.

It follows that rk(B+) = K∗. Hence, in line with the arguments of the previous subsection,

a correlated UC model with a stable diagonal VAR(p) cycle is overidentified if each individual

cyclical component has at least an AR(2) structure and K > 1.

3.5 Common Features

Morley (2007) considers common trends (cointegration) and Schleicher (2003) also allows for

common cycles in UC models. In case of common trends we define the trend component by

τt = ατ∗t , where α is a K × r matrix of full column rank and τ∗t is a r-dimensional random

walk with drift: τ∗t = µ + τ∗t−1 + ηt. Hence, there are r common trends, i.e. there exist K − r

linearly independent cointegration relations among the components in yt. Similarly, the set-up

of l common cycles is introduced by ct = βc∗t . Here, β is a K × l matrix of full column rank and

c∗t is a l-dimensional VAR(p) process: c∗t = B1c
∗
t−1 + · · ·+Bpc

∗
t−p + εt.

The common feature models are special cases of the set-up (1) - (3) and are thus identified

whenever the above conditions are met. However, common features reduce the number of

structural-form parameters such that the order condition can be already fulfilled for a lag length
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of one in the cycle. We illustrate this for the case of common trends.

First, we normalize α according to α = (Ir : α∗′)′, where α∗ is a (K − r)× r matrix. Hence,

there are (K − r)r structural parameters in α. Additionally, Σv contains 0.5K2 + (0.5 + r)K +

0.5r2 + 0.5r structural variance parameters since ηt is now a r-dimensional vector. The VAR(1)

cycle provides 1.5K2 + 0.5K reduced-form variance parameters. Hence, the order condition

requires K2 ≥ 2Kr − 0.5r2 + 0.5r. E.g. in case of a single common trend (r = 1), the order

condition holds for K ≥ 2.

Nevertheless, we cannot verify that the rank condition is satisfied: setting up a system like

(6), which links the reduced- and structural-form parameters, and re-writing it in the form of

(7) produces a matrix B∗ which is not of full rank. The same results are obtained for the case

of common cycles.

3.6 Identification of UC models with a general VAR(p) cycle

Let Bi, i = 1, . . . , p, be K × K parameter matrices such that the stability condition (3) is

satisfied. Thus, dynamic spillovers in the cycles are introduced. We further assume that the lag

orders of the VAR cycle of the given UC model are minimal. Then, one needs to additionally

impose some structure on the VAR cycle to ensure that the VAR and MA components of the

implied reduced form VARIMA can be uniquely separated. One potential approach in this

respect is to assume that each of the K rows in the VAR cycle contains at least one term of

order p. Then, the reduced form VARIMA would be in Echelon form with all Kronecker indices

being equal to p, see e.g. Lütkepohl (2005, Section 12.1.2). Therefore, this VARIMA is identified

in the sense that its VAR component can be uniquely separated.

Accordingly, the VAR parameters are regarded as given which allows us to proceed as in

the case of a diagonal cycle. Obviously, the order condition still holds for the current set-up.

Moreover, we can still use the structure of B+ as in (13) and of B∗ as in (9). The rank condition

is met if at least one linear combination of the parameter matrices B1, . . . , Bp has full rank.

This follows from adopting the above approach regarding the diagonal VAR(p). The problem,

however, is to provide primitive conditions on the VAR parameters that ensure the appropriate

full-rank structure. E.g., it is not sufficient to assume that each cycle component has at least
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one AR term of order two or higher.

Nevertheless, in many applications one can expect that the rank condition is satisfied. Con-

sider e.g. a VAR(2) cycle with bkk,2 6= 0 for all k = 1, . . . ,K. It seems reasonable to assume that

the spillovers at lag two, which are captured by the off-diagonal elements of B2, are smaller than

the diagonal elements b11,2, . . . , bKK,2 such that B2 is of full rank K. Then, the rank condition

would be satisfied following the line of arguments in subsection 3.4.

4 Conclusion

We discuss identification in multivariate correlated UC models. In this context, we address

uniqueness of the reduced-form VARIMA model as well as rigorously treat both the order and

rank condition. This adds important theoretical results to the literature.

We extend the analysis to UC models with common features and non-diagonal VAR cycles,

cases especially relevant to macroeconomic applications. In general, our results can provide a

useful basis for growing strands of literature that apply and develop correlated UC models, e.g.

Morley (2007), Sinclair (2009), Startz & Tsang (2010), Weber (2011), Klinger & Weber (2014).
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