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Abstract

In this study, we analyze a task scheduling problem with small time windows
and care workers with different levels of qualification in a nursing home. A set
of care tasks has to be assigned to a given number of care workers, so that the
total earliness and tardiness from the nursing home residents’ preferred time is
minimized.

To optimally solve this scheduling problem, we formulate a mixed integer pro-
gram (MIP) and develop a dynamic programming (DP) approach. The numerical
analysis shows the reliability of this optimization approach as well as of a heuris-
tic DP approach. A sensitivity analysis with real-world demand data shows the
impact of hierarchical qualification levels and large-scale scheduling.
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1 Introduction

The share of public spending on health care has become a central issue in most
western countries. An important reason for this is that the number of elderly
citizens in need of long-term care is expected to rise significantly over the next
decades (Geerts et al., 2012; Colombo et al., 2011). As nursing homes play an
important role in the provision of long-term elderly care (Spilsbury et al., 2011),
they face the challenge of providing reliable, high-quality care while at the same
time lowering their costs. According to Moeke and Verkooijen (2013), most nurs-
ing home facilities struggle to give substance to these two conflictive goals.

When it comes to nursing home care, the concept of quality of care is difficult to
capture (Spilsbury et al., 2011; Courtney et al., 2009). As stated by Moeke and
Verkooijen (2013) and Moeke et al. (2014), the goal of a client-centered nursing
homes is to provide their residents with the care they require in such way that it
becomes possible for them to live the life they prefer. The optimization problem
that arises in this context is to design schedules for the delivery of health care
tasks that meet the time preferences of the clients as closely as possible.

We distinguish between two types of health care tasks: (1) Tasks for which it is
possible to make a fairly detailed planning in advance, based on the needs and
preferences of the client, e.g., giving medicine and help with getting out of bed
in the morning (care by appointment), (2) tasks in response to stochastic demand,
e.g., assistance with toileting (care on demand, see van Eeden et al., 2014). In
practice, both problems are usually treated separately with dedicated care workers.

In this study we focus on care by appointment. We model the clients’ time pref-
erences for each task under consideration by a preferred start time which is sur-
rounded by a penalty function for earliness and tardiness and by a narrow time
window. Each task has a known duration and requires a certain qualification level
(QL) of the respective care worker. The QLs are hierarchical, i.e., a care worker
with a higher QL is able to perform tasks with a lower qualification requirement
as well. This is also referred to as skill substitution (De Bruecker et al., 2015).
An overview of the QLs and examples for the respective tasks, as can be found in
practice, are given in Table 1.

We aim to assign each task to a qualified care worker and to a start time within the
time window and as close as possible to the preferred start time. Our objective is
to minimize the total earliness/tardiness penalties of all task assignments from the



QL Typical tasks

QL 1 Bringing food and drinks, cleaning, transferring,
bed cleaning

QL 2 Getting in and out of bed, eating, toileting,
making the beds, washing

QL 3  Giving medication, simple medical check ups

Table 1: Overview of care worker qualification levels

preferred start time. For this decision, the shifts for the care workers are already
defined.

To model this scheduling problem, we present a mixed integer programming
(MIP) formulation. As standard solvers are not able to solve real-world instances
to optimality, we develop a dynamic programming (DP) approach. We use real-
world demand data to show that the obtained task schedules significantly increase
the service quality (i.e., the total earliness and tardiness in the respective schedule)
compared to First Come First Serve (FCFS) scheduling heuristics, which closely
resemble the current way of working.

The contribution of this study can be summarized as follows:

e We define a practice-driven task scheduling problem with time windows and
hierarchical QLs,

e we propose a MIP formulation, an exact dynamic programming approach,
and an heuristic dynamic programming approach, and

e we test our approach using real-world demand data and perform a sensitivity
analysis.

The remainder of this paper is structured as follows. In the following section, we
provide an overview of related literature. In Sections 3 and 4 we present a formal
description of the underlying optimization problem and develop a DP solution
approach. Next, in Section 5 we examine our approach numerically. Section 6
concludes this paper and points out possible directions for further research.



2 Related literature

2.1 Research in nursing homes

Although nursing home residents are often highly dependent on assistance with
basic activities in daily living, they still have little or no influence on the actual
delivery of health care (Simmons et al., 2011; Persson and Wasterfors, 2009).
Because very little research has been undertaken on task scheduling in nursing
homes, scheduling in practice is still done manually without explicitly taking into
account the time preferences of the residents.

In the Netherlands, most nursing homes consist of several independent care pro-
viding departments (Decision Making Units or DMUs), each of which are respon-
sible for their own workforce planning. Often, a DMU is further divided into sev-
eral clusters and each cluster schedules its care tasks separately, i.e., they perform
small-scale scheduling. However, by pooling the demand of clusters or depart-
ments it becomes more likely that high demand from one resident will be balanced
out by low demand from another (Eppen, 1979; Wallace and Whitt, 2004). The
studies by Vanberkel et al. (2012) and Wright and Mahar (2013) examines pooling
effects on the nursing staff in a hospital setting. The study of Moeke et al. (2014)
examines scale efficiencies in a nursing home context.

Furthermore, most nursing homes make use of so-called differentiated practice,
i.e., health care tasks are assigned only to care workers with that specific QL
(Jansen et al., 1997). Studies on skill substitution (also referred to as skill-mix
or hierarchical qualifications) are provided by Gibbs et al. (1991) and Spilsbury
et al. (2011) in a hospital setting, and by Moeke et al. (2014) in a nursing home
setting. Different from this paper, these studies do not provide an optimization
approach for the task scheduling problem at hand and they focus on the impact of
skill substitution on staffing costs. The paper at hand focuses on improvements of
service quality.

2.2 Research on task scheduling problems

Task scheduling can be considered a subproblem of workforce planning, see the
framework for workforce planning in Ernst et al. (2004). They separate the task
scheduling problem from the superordinate planning problems by combining “in-



dividual tasks into task sequences that could usefully be carried out by one per-
son” to derive an aggregated demand. There are dedicated literature reviews on
workforce planning in health care (Burke et al., 2004; Cheang et al., 2003), but
they focus solely on staffing decisions. As they consider an aggregated demand
for workers rather than individual tasks, they do not consider detailed scheduling
with respect to the clients’ time preferences.

De Bruecker et al. (2015) provide a broad overview of papers on workforce plan-
ning, including both, planning of individual tasks and planning with hierarchical
skills, but none of the references therein considers the same combination of as-
sumptions as the problem at hand. Baker and Scudder (1990) review scheduling
problems with homogeneous resources, earliness/tardiness penalties, and a pre-
ferred starting time but without a hard time window. Task scheduling problems
with multiple resources which take either different qualifications (also referred
to as skills) or time preferences into account can be found in the literature for
different areas of application:

Task scheduling with different qualifications

Bellenguez-Morineau and Néron (2007) present a project scheduling problem that
assumes a given workforce with hierarchical skill levels. As they do not consider
time preferences for individual tasks, the objective is to minimize the makespan.
Krishnamoorthy et al. (2012) present a task scheduling problem with hierarchical
skill levels. They assume fixed start times for all tasks as a hard constraint. Their
objective is to find the minimum required workforce to obtain a feasible schedule.
This paper, on the contrary, assumes a given workforce composition and variable
start times for tasks.

Schimmelpfeng et al. (2012) present a task scheduling approach for rehabilitation
hospitals with different qualifications and precedence constraints between tasks,
but they do not consider time preferences for individual tasks. A general differ-
ence between a hospital and a nursing home is that patients usually visit hospitals
only for a short period of time, therefore hospitals can focus on high resource
utilization rather than on meeting time preferences.

Task scheduling with time windows

Gertsbakh and Stern (1978) discuss task scheduling with time windows for a ho-
mogeneous workforce. They do not consider earliness/tardiness penalties. The
objective is to find the minimum required workforce to obtain a feasible schedule.



Mankowska et al. (2014) discuss the Home Health Care Routing and Scheduling
Problem as a Vehicle Routing Problem with Time Windows. Clients are visited
in their homes, therefore sequence-dependent travel times are taken into account.
They consider time preferences and different skills. However, they assume half-
open time windows that do not allow earliness while tardiness is penalized, but
not limited. The objective is to minimize the weighted sum of total travel times,
total tardiness, and maximum tardiness.

There are other Vehicle Routing applications with time windows, but at least one
of the characteristics of the assignment problem at hand is missing. For example,
many papers discuss the Aircraft Landing Problem (ALP), e.g., Beasley et al.
(2000) and Lieder et al. (2015). The predominant objective is to minimize the
total earliness/tardiness penalties, but the resources (runways) are assumed to be
identical.

Appointment scheduling

The problem discussed in this paper has similarities to the appointment schedul-
ing problem, that also aims to minimize the waiting time of clients for a task to
be performed. A review of appointment scheduling literature is given by Cayirli
and Veral (2003). Cayirli et al. (2006) evaluate different appointment rules for
two classes of clients in a simulation study, Kaandorp and Koole (2007) de-
rive appointment schedules with a local search approach, Begen and Queyranne
(2011) calculate optimal start times for a fixed sequence of tasks on a discrete time
axis, and Erdogan and Denton (2013) consider a dynamic appointment schedul-
ing problem, where demand occurs throughout the workday. The main difference
to the task scheduling problem discussed in this paper is that, in appointment
scheduling, the clients cannot choose their preferred start times freely. The are
assigned to a start time or can choose a start time out of a limited number. Fur-
thermore, a single service provider, stochastic task durations, no-shows, and un-
punctual clients are assumed.

3 Problem description and model formulation

In the task scheduling problem at hand, a given set of care tasks has to be assigned
to a set of care workers. For each care task, the respective client has announced a
preferred start time with a feasible time window around. Furthermore, each task
has a known duration and requires a certain qualification level of the respective



care worker. Each care worker has a qualification level. These qualification levels
are assumed to be hierarchical, i.e., care workers with a given level are allowed to
perform tasks that require either the respective level or a lower level.

The scheduling decision to be made is to assign each task to a care worker and to
a start time. To obtain a feasible task schedule, it has to be ensured, that each task
is assigned to a care worker with (at least) the required qualification level and to a
start time within the time window around the preferred start time. A care worker
can only perform one task at a time and preemption of tasks is not allowed.

For each task that is assigned to an earlier or later start time than the preferred start
time, an earliness/tardiness penalty is incurred according to a convex penalty func-
tion. Our objective is to derive a feasible task schedule that minimizes the total
penalties of all task assignments and thereby focuses the clients’ time preferences.

This problem can be formulated as a mixed-integer programming (MIP) model.
The following model is based on Beasley et al. (2000) but considers hierarchical
QLs. The sets, parameters, and decision variables are summarized in Table 2.



Sets:

J tasks
R care workers
V CJxJ pairs of tasks with pre-determined order

Parameters:

pj  preferred start time of task j
e;j  ecarliest start time of task j
l[;  latest start time of task j

d;  duration of task j

¢ cost coefficient

q minimum qualification level required to perform task j
qr qualification level of care worker r

M  sufficiently large number

Variables:

xj  scheduled start time of job j

1, if task j is performed before job j’
S8 = .
0, otherwise.

{1, if tasks j and j’ are performed by the same worker
G =

0, otherwise.

1, if task j is performed by worker r
Yjr = .
0, otherwise.

Table 2: Sets, parameters, and variables of the MIP



Min. Z :Z fxj—pj) (1)

jeJ

subject to

ej <x;<lj vjied (2)
8y +8y;=1 Vj#JexJ) 3)
Sy =1 v (j,J) eV )
xj+dj-zjy <xp+M-8;; Vj#j e(xJ) 5)
Do vir=1 Vjed 6)
i =2j; VjedJ VjeJ (7
Zjj > yir+ypr—1 VjeJ VjeJ VreRr )
(gr—q7™) - yjr >0 VjeJ VreRr ©)
a;>0 vjeJ (10)
8, zjj, yjir €{0,1} VjeJ VjeJ VreRr (11)

The Objective (Eq. 1) is to minimize the total earliness/tardiness penalties of
all task assignments. The general cost function, f(x; — p;), calculates the ear-
liness/tardiness penalty for each task, j, depending on the difference between
scheduled start time, x;, and preferred start time, p;. For example, it can be de-
fined as

f(xj=pj) = c-lxj—pjl, (12)
where ¢ is a given cost coefficient. Eq. (2) ensures that all tasks start within

their respective time windows. Eq. (3) defines the order in which the jobs are
performed.

We can divide tasks into task types, depending on their duration and required QL.
It can be shown that, for problem instances that have a feasible solution, there
is always an optimal solution in which all tasks of the same type are assigned in
FCES discipline (Briskorn and Stolletz, 2014). Hence, we can define a set of all
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pairs of tasks with a pre-determined order of start times, either because they have
the same duration and QL or because their order is implied by their time windows:

V={j,j €JxJ|(d(j)=d(j)Nd}]" =q7" Apj<py)V(j<ey+d;)} (13)
This partial order is fixed by Eq. (4). Eq. (5) makes sure that two tasks, per-
formed by the same care worker, cannot overlap. Eq. (6) assures that each task
is performed by exactly one worker. Eq. (7) assures consistency of the variables
z;jj and zjr;, that indicate whether a pair of tasks is performed by the same care
worker. Eq. (8) relates the y-variables, that indicate which task is performed by
which care worker, to the z; 7-variables. The binary z;; is ensured to be 1 of both
tasks are done be the same worker. Eq. (9) assures that tasks are performed by a
care worker with at least the requested QL. The remaining equations (Eq. 10 and
11) define the domains of the variables.

4 Dynamic Programming Approach

In the following, we define the states and transitions of the DP. Afterwards, we
discuss how the actual number of states could be significantly reduced. To cope
with large problem instances, we also present heuristic solution approaches that
build upon this DP approach and on FCFS rules.

Lieder et al. (2015) developed an optimization algorithm for the Aircraft Landing
Problem with homogeneous recourses which we adapt to model the task schedul-
ing problem with hierarchical skills as a DP. An additional difference is that we
allow earliness, i.e., the assignment of start times with x; < p; is allowed.

4.1 States and transitions

We divide the set of tasks to be scheduled into task types a € A, depending on
their duration and required qualification level. We denote the task type of task j
by a(j) and the set of tasks of type a by J,. The planning horizon, T, is divided
into small time intervals, ¢ € T, of the same length, such that the task durations are
multiples of the interval length, and the preferred start times are at the beginning
of an interval.



Each state, s, of the dynamic program is defined as a tuple

(nl,...,na,...,nw,tl,...,tr,...,t‘R|), (14)

where

- ng € {0,...,|J4|} is the number of tasks of type a € A, that are already as-
signed and

— t, € T is the point in time, when care worker r € R is available for the next
task assignment.

The tuple (t1,...,1g)) is referred to as a resource occupation profile (ROP). These
profiles were introduced by Baptiste (2000), who proposed a polynomial algo-
rithm for scheduling identical tasks on parallel resources. Note that the informa-
tion on how many tasks of a particular type have already been assigned implies
which of the respective tasks are assigned, because we can assume FCFS for tasks

of the same type. The initial state, sg, of the program is (O'A‘,t!)R'), i.e., no tasks
are assigned yet and all workers are available at the beginning of the shift under
consideration, namely #.

A state transition

! I /
(”1;---,”|A\7t1a---;t|R\) —>(j.r,t) (nlv"'7n|A|’t17"'7t|R|) (15)

v "~
N s/

corresponds to adding an assignment, (j,7,¢), to the partial schedule represented
by state s. That is, we have

° n;/ =Ny for eaCh al 7& a(j)’

o 1/, =n,+1 for a = a(j) and with n/, < |J,|,
e t/, =max{t,7,} for each r' # r, and
o i =t+d;witht, <t, e; <t <l;and g, > q;(zin'

In essence, transitions exist for all assignments, (j,r,7), where j is the earliest
unassigned task of type a, care worker r is available and qualified, and 7 lies

10



within task j’s time window. By forcing the ROP (tl,...,t‘ R‘) to always be not
smaller than 7, we enforce a forward-directed scheduling.

The transition is associated with the penalty c(s; —¢) for the additional assign-
ment. The total penalties of state s can be calculated via a Bellman recursion
as

Z(s)= min (Z(s')+c(s;—1)) (16)
II(s,j,rt)

where I(s, j,r,t) is the set of states which can be transformed into state s by
adding assignment (j,r,7), and Z(s9p) = 0. We can derive the schedule corre-
sponding to a state, s, by tracking all transitions (and the corresponding task as-
signments) from the initial state, s, to s.

Let ;e be the set of terminal states with s = (|J1],...,|J/|,t1, .-, 2 g|) for each
§ € Iierm, i.e., all states with all tasks being assigned and with no outgoing tran-
sitions. To solve the task scheduling problem to optimality, (i.e., to derive a com-
plete feasible schedule with minimal total penalties), we need to find a state, s*,
out of IT;ey,, with minimal Z(s™).

4.2 State space reduction

In the following, we present four methods to reduce the problem’s number of
states and transitions in order to improve the computation time of the DP ap-
proach.

(1) Avoid creating sub-optimal states:
To ensure optimality, we have to assign a particular task, j, to all possible start
times within its time window, T;. However, there are two exceptions:

(a) It cannot be optimal to assign j to a start time later than the preferred start
time, (x i>p j), unless the respective worker, r, is busy up to x;. Otherwise,
penalty could be reduced and the respective ROP could be improved by
scheduling j earlier.

(b) If task j’ is the direct predecessor of task j, i.e., both tasks are assigned
to the same worker with no task scheduled in between, and ;' is scheduled
early (i.e.,, xj < pj), then task j has to be assigned immediately afterwards
(xj = xj +dj). Otherwise, j could have been scheduled later, thereby
reducing penalty without changing the ROP.

11



Figure 1 shows examples of these sub-optimal assignments.

@) A

IIIIIiIIIIIIlIIIIIIIIIIIII t
0 5 10 15 20 25
j=1 §E j=2
c(xj—pj)=5 c(xj—pj)=5
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII‘t
0 5 10 15 20 25 30 35 40

Figure 1: Examples of sub-optimal task assignments

(2) Detect and remove sub-optimal states:
We know that a state, s, cannot be transformed into the only minimum-cost final
state, if there exists another state, s’, that fulfills the following criteria:

— At least the same number of tasks of each task type has been assigned
(na(s') > ng(s) Ya € A),

— all workers are available at the same or earlier (7,(s") <t,(s) Vr € R), and

— the total penalties so far are not higher (Z(s") < Z(s)).

In this case, s’ can be transformed into a final state with the same total penalties
as s, or less. Therefore, s can be removed from the state space without losing
optimality.

(3) Detect symmetry:

Whenever there are two or more care workers with the same QL, there are multiple
states that represent the same schedule, only with a different assignment of tasks
to care workers. To eliminate this redundancy, we sort the availability times of
each ROP in non-descending order within each qualification level. This way, the
pairwise comparison described in (2) also detects and removes symmetric states.

12



(4) Detect infeasibility:

For each state, before developing its successors, we check whether it is possible
to assign the first unassigned task of each task type to a qualified worker within
its respective time window. If that is not the case for at least one task, it is not
possible to transform the current state into a feasible solution. Thus the state can
be removed from the state space.

4.3 Heuristic solution approaches

Truncated DP approach

The state space of the presented DP approach has a high dimensionality that can
result in a very large number of states on each stage, despite the described checks
for sub-optimality, feasibility, symmetry, and dominance. Thus, depending on the
size and structure of the problem instance, the computation time of the approach
may become prohibitively long. We can reduce the number of states on each stage,
and therefore reduce the computational effort, by pruning all but a limited number
of states, s, per stage. To decide, which states to keep and which to prune, we
store all states, s, on the same stage in non-descending order of their respective
total penalties so far, Z(s), and we prune all but the s™** states with the lowest
total penalties.

FCFS scheduling rules

We will compare the results of both DP-approaches with two simple FCFS schedul-
ing rules. The list of tasks is assigned in non-decreasing order of preferred start
times p;. For each task, we check if a qualified care worker is available at the
task’s preferred start time in FCFS rule (a). In this case, the task is assigned to
the respective worker and the preferred start time. Otherwise, the qualified care
worker who becomes available next is assigned immediately to this task. If there
is no worker available with the required (or a higher) qualification between p; and
[;, the rule results in an infeasible solution.

As rule (a) does not use early assignments, it reduces the size of the tasks’ feasible
time windows. In FCFS rule (b), the earliest time of the task e; is used instead
of the preferred start time p;. To reduce earliness penalties in a feasible solution,
we go through the schedule for each care worker backwards. The start time of a

13



task with earliness is shifted towards the preferred start as long as the task does
not overlap with the successive task.

S Numerical study

5.1 Study design

In this numerical study, we first compare the performance of MIP, exact DP, trun-
cated DP, and the FCFS rules presented in this article (Section 5.2). Afterwards,
we examine the benefits of skill substitution over an inflexible worker assignment,
as performed in practice (Section 5.3) and the benefits of large-scale scheduling
(Section 5.4).

For the purpose of this study, we use real demand data from two separate DMUs of
a Dutch nursing home. Each DMU consists of two clusters with separate rooms
for each client and supplied demand data from six work days. We do not have
the actual workforce compositions and task schedules at our disposal, hence we
chose workforce compositions that are in line with staffing policies applied in the
Netherlands (Hingstman et al., 2012). The optimized task schedules are compared
to an FCFS scheduling policy. This approximates the current policy how tasks are
performed in nursing homes.

We assume a hard time window of 15 minutes around the preferred start time
of each task and a penalty of ¢ = 1 MU per minute of earliness/tardiness (f(x; —
pj) = |xj — pj|; see Figure 2). All task durations and preferred start times are
given in S-minute intervals.

penalty

L B e e e B e e
-20 -15 -10 5 0 5 10 15 20 delay

Figure 2: Convex, piecewise linear penalty function

We analyze a morning shift (from 7:00 am to 11:00 am), as a significant part
of the daily care is provided during this period of the day (Moeke et al., 2014;

14



Sloane et al., 2007). The size of the data sets (in terms of number of tasks and
task types) and the respective numbers of present care workers are shown in Table
3. All computations were performed on an Intel i5 CPU with 2.5 GHz and 8 GB
RAM. The MIP was implemented in GAMS and solved by CPLEX 12.2, the DP
approach was implemented in Java JDK 1.7. The time limit for all calculations
was set to three hours.

B o DMU 1 DMU 2
E S No. of tasks No. of Workforce No. of tasks No. of Workforce
o Q1,0Q2,Q3 total tasktypes (Q1,Q2,Q3) | (Q1,Q2,Q3) total task types (Q1,Q2,Q3)
1 1 1,19, 13 33 10 1,2,2 11,13, 15 39 12 1,2,2
2 1,17, 12 30 9 1,2,2 8,12, 14 34 12 1,2,2
3 1,17, 12 30 9 1,2,2 8,10, 14 32 11 1,2,2
4 4,20,13 37 12 1,2,2 11, 15,16 42 13 1,2,2
5 2,17, 12 31 10 1,2,2 13,12, 16 41 12 1,2,2
6 2,17, 12 31 10 1,2,2 9,12, 15 36 12 1,2,2
2 1 4,16, 8 28 12 1,2,1 6,6, 11 23 6 1,1,1
2 4,15,8 27 12 1,2,1 4,8,8 20 10 1,2,1
3 4,15,9 28 12 1,3, 1 3,7,8 18 7 1,1,1
4 6,15,9 30 13 1,2,1 9,9,9 27 10 1,1,1
5 7,15, 8 30 12 1,3, 1 4,9,10 22 7 1,2, 1
6 6,17, 8 31 13 1,2, 1 7,10,8 25 10 1,1, 1

Table 3: Properties of the problem instances

5.2 Comparison of solution approaches

Table 4 shows the total penalties and the computation times for the MIP, the exact
DP approach, the truncated DP with s”* = 5,000, and for the FCFS heuristics.

The MIP hit the time limit for 12 instances. The exact DP approach hit the time
limit for 3 instances. The truncated DP approach solved the problem to optimality
in 23 problem instances. In one case, the total penalties are 5 MU higher than in
the optimal solution. Its computation time was below 15 minutes for all instances.

The schedules derived by FCFS rule (a) resulted in infeasible solutions for 14
problem instances. For one instance we obtained an optimal schedule, the re-
maining instances have additional penalties of up to 40 MU. Rule (b) returns
optimal schedules for two instances and non-optimal schedules with additional
penalties up to 70 MU for 16 instances. For the remaining six instances, no feasi-

15



ble solution was found. Thus, FCFS does not seem to be an appropriate solution
method.

In conclusion, the truncated DP shows near optimal solutions in very short com-
putation times. Therefore, we use this approach in the following studies.

) § o MIP Exact DP Truncated DP FCFS
= 3 S Total CPU  Gap Total CPU Total CPU Total penalty
A0 penalty time (s) toLB | penalty time (s) | penalty time (s) | Rule (a) Rule (b)
1 1 1 55 >3h  40% 55 116 55 90 95 60
2 45 >3h  17% 45 9 45 9 65 50
3 45 >3h  16% 45 10 45 9 65 50
4 75 >3h  43% 75 142 75 96 | infeas. 95
5 45 >3h  22% 45 16 45 9 65 50
6 45 >3h  22% 45 16 45 9 65 50
1 2 1 75 1.899 0% 75 4 75 2 infeas. infeas.
2 70 133 0% 70 3 70 2 infeas. infeas.
3 70 41 0% 70 142 70 99 infeas. infeas.
4 105 7.952 0% 105 3 105 2 | infeas. infeas.
5 70 15 0% 70 33 70 17 infeas. infeas.
6 70 416 0% 70 5 70 3 infeas. infeas.
2 1 1 60 >3h  33% — >3h 60 795 | infeas. 120
2 55 >3h  54% 55  10.404 55 686 | infeas. 95
3 55 >3h  18% 55 5.042 55 389 | infeas. 85
4 80 >3h  63% — >3h 85 624 | infeas. 155
5 55 >3h  37% — >3h 55 782 | infeas. 105
6 70 >3h  63% 70 2.645 70 405 | infeas. 110
2 2 1 40 2 0% 40 <1 40 <1 infeas. 45
2 10 2 0% 10 <1 10 <1 10 10
3 15 1 0% 15 <1 15 <1 30 25
4 20 2 0% 20 <1 20 <1 25 20
5 20 2 0% 20 1 20 1 25 25
6 30 2 0% 30 1 30 1 50 40

Table 4: Comparison of solution approaches

5.3 Impact of skill substitution
Without skill substitution, each problem instance can be decomposed into sepa-

rate problems for each qualification level. For the decomposed problem, the total
penalties of all problem instances are shown in Table 5. The used truncated DP
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approach with s = 5,000 solved all instances to optimality in less than a sec-
ond. The reduced flexibility results in a significant increase in total penalties (up
to 45 additional MU) compared to the solutions with skill substitution.

8 .. DMU 1: Total penalty DMU 2: Total penalty

2 8 || without skill substitution | with skill without skill substitution | with skill

© QL1 QL2 QL3 total | substitution || QL1 QL2 QL 3 total | substitution

1 1 0 45 25 70 55 10 40 40 90 60
2 0 40 20 60 45 10 45 35 90 55
3 0 40 20 60 45 10 20 35 65 55
4 0 85 20 105 75 10 70 35 115 80
5 0 40 20 60 45 10 60 30 100 55
6 0 40 20 60 45 5 45 35 85 70

2 1 20 65 20 105 75 5 5 40 50 40
2 20 60 20 100 70 0 0 10 10 10
3 20 35 35 90 70 0 30 10 40 15
4 20 60 40 120 105 0 30 15 45 20
5 30 55 20 105 70 0 10 15 25 20
6 30 65 20 115 70 0 40 15 55 30

Table 5: Impact of skill substitution

5.4 Economies of scale

In the following we show the possible benefits of large scale scheduling, i.e.,
scheduling two neighboring clusters of the same DMU together instead of schedul-
ing each cluster separately. We pooled the tasks and the workforce of both clusters
of the respective DMU and work day and solved the resulting 12 problem in-
stances with the truncated DP approach with s”** = 5,000. We assume that travel
times between the clusters are negligible, because the clusters are compact and lo-
cated close to each other. The results in terms of total penalties and computation
times are shown in Table 6.

We observe a pooling effect due to the increase in flexibility of the assignments.
Compared to the separate schedules of the respective clusters (Table 4). The com-
putation time increased considerably, but the total penalties could be reduced by
up to 40 MU.

17



o DMU 1 DMU 2
& | Penalty (clusters sched. sep.) Common schedule Penalty (clusters sched. sep.) Common schedule
Cluster 1 Cluster 2 Total | Penalty CPU time (s) || Cluster 1 Cluster 2  Total | Penalty CPU time (s)
1 55 75 130 130 3,534 60 40 100 60 4,540
2 45 70 115 100 2,740 55 10 65 40 4,616
3 45 70 115 110 4,282 55 15 70 50 2,437
4 75 105 180 180 4,017 80 20 100 90 4,544
5 45 70 115 100 3,754 55 20 75 55 6,112
6 45 70 115 100 3,850 70 30 100 65 4,119

Table 6: Economies of scale

6 Conclusions and further research

In this paper, we defined the problem of scheduling care tasks in a nursing home
setting using a given workforce as a mixed-integer program (MIP). We presented
dynamic programming (DP) approaches to obtain schedules that minimize the
total earliness/tardiness penalties for the scheduled start times of all tasks. The
optimizing DP approach with reduction of the state space is applicable to small
problem instances while the truncated DP provides near optimal solutions in short
computation times.

From a practical perspective, this study provides insights into the effects of skill
substitution and large scale scheduling on the overall quality of service by using
real-life nursing home data. Questions with respect to scale are especially promi-
nent as (/) there is an ongoing tendency towards smaller clusters when it comes to
the provision of nursing home care and (2) most nursing homes apply small-scale
scheduling. The results of this study show that, from a client perspective, using
large-scale scheduling and skill substitution is beneficial to the overall quality of
service in terms of total earliness/tardiness in the obtained task schedules.

Further research could be directed into the integration of other client-perspectives,
for example, related to the preferred care workers for some of the tasks. The
integration of the presented approach into a personnel planning framework could
be another fruitful direction for further research.
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