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Abstract  

 

Cycles play an important role when analyzing market phenomena. In many markets, both 

overlaying (weekly, seasonal or business cycles) and time-varying cycles (e.g. asymmetric 

lengths of peak and off peak or variation of business cycle length) exist simultaneously. 

Identification of these market cycles is crucial and no standard detection procedure exists to 

disentangle them. We introduce and investigate an adaptation of an endogenous structural 

break test for detecting at the same time simultaneously overlaying as well as time-varying 

cycles. This is useful for growth or business cycle analysis as well as for analysis of complex 

strategic behavior and short-term dynamics. 

 

Keywords structural breaks, cluster analysis, filter, rolling regression, change points, model 

selection, cycles, economic dynamics 

JEL C22, C24, C29, O47, L50  

 
 



1. Introduction  

From the beginning of economics, researchers have been interested in patterns of macro and 

microeconomic time series. Termed cycles, these may occur as seasonal, business or 

Kondratieff cycles in macroeconomics or Edgeworth cycles, asymmetric cost pass-through or 

price war cycles in microeconomics. With regard to cycles in macroeconomic “aggregate 

economic activity”, Burns and Mitchell (1946) developed a set of methods to summarize 

descriptive evidence and to date the business cycle. The methods were later adapted by the 

NBER for their judgments on business cycle turning points. Bry and Boschan (1971) 

approximated these rules by a simple non-parametric algorithm based on a sequence of lead 

and lag slopes as an identification procedure to determine the reference cycle. The major 

rationale is similar for many microeconomic studies using non-parametric approaches to 

identify dynamics. Wang (2009), for example, uses information about troughs and peaks to 

identify cycle lengths and, subsequently, further information, such as cycle amplitudes. In 

contrast to non-parametric methods, abundant contemporaneous studies use parametric 

methods to study cycle characteristics. Macroeconomic methods in this field are either 

devoted to dating structural changes, such as structural break tests and Markov Regime 

Switching,i or are about extracting detected or assumed characteristics of a time series, such 

as the application of moving averages or Fast Fourier Transforms in filtering analysis.ii At the 

microeconomic level, allocation and competitive processes – and also collusive practices –

depend mainly on “temporary opportunities” and a “special knowledge of the opportunities”, 

as Hayek (1945, p.822) put it, and are, therefore, mostly short-term. In many markets, such as 

the sale and distribution of gasoline, food retailing and commodity markets, recurring 
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dynamic characteristics of prices can be observed.iii Methods in this field are similar to 

macroeconomic techniques but concentrate mainly on structural break tests and Markov 

Regime Switching.iv Filter-based methods for measuring business cycles, such as the one 

developed by Baxter and King (1999), require that the researcher begin by specifying the 

characteristics of these cyclical components. Taking seriously the authors’ two questions, 

“How should one isolate the cyclical component of an economic time series?” and “how 

should one separate business-cycle elements from slowly evolving secular trends and rapidly 

varying seasonal or irregular components?”, we try to explore the cyclical characteristics of a 

time series under the least restrictive set of ex ante assumptions on data generating processes. 

In this regard, two important facts should be mentioned about economic cycles. First, 

economic cycles encompass different frequency levels of economic activity. They vary in a 

range of 40 years for Kondratieff cycles, 1.5 to eight years for business cycles and down to 

several weeks or hours for asymmetric cost pass-through and Edgeworth cycles. As a matter 

of fact, a panoply of different cyclical dynamics may simultaneously exist. We term them 

overlaying cycles. Second, cycles – on each of these frequency levels such as hourly and 

weekly or business cycles – may be characterized by varying lengths (or frequencies) over 

time, depending on changes in the data generating process. We term them time-varying 

cycles. 

In our view, the above mentioned methods lack flexibility regarding the possibility to obtain 

information both on the overlaying and time-varying cycles. Methods such as structural break 

tests, Markov Regime Switching and non-parametric methods ignore the possibility of 

simultaneous, overlaying cycles, whereas filtering analysis ignores the time-varying nature of 
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cycles. The first methods focus on determining time-varying cycles and the latter on 

determining overlaying cycles. Thus, these approaches are either in a sense static over time in 

that they (exogenously) assume constant dynamics over an investigated period or they have 

difficulties in disentangling different frequency levels. 

We therefore propose an approach to identify and disentangle the recurring patterns with 

regard to both overlaying as well as time-varying cyclical dynamics. Following the spirit of 

articles such as Zarnowitz and Ozyildirim’s (2006) our approach uses a combination of 

methods, namely rolling endogenous structural break test regressions and an endogenous 

clustering of break indicators. This is applied to a mesh constructed by applying moving 

average filters of varying length to the time series. Inspecting and comparing the information 

of the entire mesh in terms of break dates and lengths between break dates (cycle lengths) 

allow us to identify the different dominant overlaying cycles. At the same time, these cycles 

are allowed to vary over time. We therefore contribute to the literature by presenting an 

approach to simultaneously allowing for both the disaggregation of simultaneously overlaying 

cycles and the determination of time-varying cycles of a time series. Thereby, the proposed 

adaptation of the widespread Bai and Perron test allows, to a high degree, an explorative 

analysis of cyclical time series characteristics. This improves the characterization of long- and 

short-term dynamics, such as growth or inflation analysis, that is important in the field of 

macroeconomic analysis as well as microeconomic analysis, such as the analysis of 

competitive characteristics that change over time, important for work in the fields of strategic 

consumer and supplier behavior, as criticized e.g. by Corts (1999).  
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The next section discusses the weaknesses of current approaches to cycle analysis. After 

presenting our extension of the Bai and Perron (1998) break test in the third section, we 

investigate the impact of our modifications by a direct comparison to the classical Bai and 

Perron, Markov Regime Switching, and Fast Fourier Transform approaches in section four. 

We choose an electricity price time series for an illustration in the microeconomic field. It is 

particularly interesting, because it has, at the same time, several regularities, such as 

overlaying cycles (seasonalities, weekly or hourly cycles) and time-varying cycles due to 

occasional deviations caused, for example, by demand shifts or unforeseen stochastic 

renewable electricity production. In the macroeconomic field, we choose the classical 

example of a national product growth time series with typical features such as seasonal and 

business cycles of varying lengths. Section five discusses the results and section six 

concludes. The Online Appendix contains more simulation studies to give better 

understanding of the characteristics of our approach. 

2. Approaches to Cycle Analysis 

We require that our approach meet one central objective, extract time series cyclical 

information endogenously thereby indicating both dominant overlaying and time-varying 

cycles. It is, therefore, of major importance to us which assumptions a researcher will have to 

accept using contemporaneous methods in the field of cycle analysis and how these methods 

perform with regard to the simultaneous analysis of simultaneously overlaying and time-

varying cycles. 
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Typical time series analytical methods such as the classical Bai and Perron structural break 

test (BP), Markov Regime Switching (MRS) or non-parametric methods focus on analyzing 

time-varying cycles. They mostly ignore the simultaneous, overlaying cycles of a time series 

and identify the cycle with the largest amplitude (e.g. seasonal, daily depending on the time 

series). Also, more advanced structural break tests, such as those of Kejriwal and Perron 

(2008) and Bataa et al. (2013) as well as MRS methods such as Chauvet and Hamilton (2005), 

Chauvet and Pizer (2008) and Altuğ et al. (2013) use parametric tests based on the variance of 

a time series. 

The much simpler non-parametric approach chosen by Harding and Pagan (2002) follows a 

similar intuition in terms of exploiting the variance of a time series. They applied the Bry and 

Boschan algorithm to several time series showing that this method performs well compared to 

MRS methods. This triggered a discussion in Hamilton (2003), Harding and Pagan (2003), 

and Harding and Pagan (2006), making clear that much of the information obtained by 

applying MRS methods is equivalent to the information from a Bry and Boschan algorithm 

application.v Non-parametric approaches, therefore, suffer the same weakness, which is that 

they ignore simultaneous, overlaying cycles. 

Other typical methods such as the Fast Fourier Transformation (FFT) and filtering techniques 

focus on simultaneous, overlaying cycles. In contrast to structural break tests and MRS they 

ignore time-varying characteristics. For example, they have significant problems identifying 

asymmetric phases, such as peak and off peak phases, which are typically characterized by 

different interval lengths. However, in many areas, moving averages, Fourier Transforms, 
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Hodrick-Prescott- and Baxter-King-filters are state of the art.vi Recent developments in this 

field have tried to address this problem but have not found their way to application yet.vii  

Similarly, studies based on dynamic factor model analysis assume certain stochastic processes 

remaining constant over time. For example, Kose et al. (2012) investigate the convergence of 

business cycles, separating them into different components (global, national, etc.) and then 

search for different cyclicalities. Also, similar to the spirit of this article, some authors have 

used combinations of different methods to better capture the characteristics of time series. 

Following this line, Zarnowitz and Ozyildirim (2006) filter a time series, thereby deriving a 

phase average trend (75-months-trend), and then apply the Bry and Boschan algorithm. 

Compared to typical filtering techniques, they found that their approach captured short-term 

details of the time series better. 

All of these methods are problematic due to several reasons concerning their respective 

necessary assumptions. In addition to their focus on either simultaneously overlaying or time-

varying cycles (see Table 1), they require substantial arbitrary ex ante judgment on assumed 

stochastic processes – except maybe for the case of the non-parametric methods.  

 

Table 1 Focus of methods analyzing time-varying and simultaneously overlaying cycles 

 

 

With regard to MRS, Altug et al. (2013), for example, mention judgment issues concerning 

the number of states or the variability of transition probabilities. The detection of overlaying 

cycles is also not possible. Temporal variance dependent MRS could partly resolve problems 

Bai and Perron Markov Regime Switching Fast Fourier Transformation Adapted Bai and Perron
Vertical, overlaying dimension x x

Horizontal, time-varying dimension x x x
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of static state definition. However, this would also be an ex ante, exogenous assumption 

because variance dependence would be estimated on the basis of the entire time series. In a 

similar way, Harding and Pagan (2003) criticize the implicit assumption of a reference cycle 

being necessary for MRS. The other methods involve arbitrary judgment with respect to filter 

specification, pre-selection of frequency levels and cycle lengthsviii or the static application of 

test criteria, such as is the case for BP structural break tests, MRS and also non-parametric 

dating methods. By this token, these methods define test characteristics for the entire time 

series. Break tests, Regime Switching or factor analysis, in this sense, remain static instead of 

dynamically adapting to a time series’ evolution and a possibly changing data generating 

process. We see this as a serious restriction of time series data analysis because the ex ante 

assumptions regarding the data generating process made by these methods pre-determine their 

results. When coming to real life applications, these processes typically change over time due 

to economic reasons. This is the case, for example, for structural demand changes, the 

introduction of substitutes or new technologies and the habit formation of consumers. It may, 

therefore, be equally important for both macroeconomic and microeconomic analysis to have 

methods at hand imposing less severe restrictions and assumptions on the data generating 

process. 

3. Modeling Framework 

The modeling framework is laid out in three steps. First, filtering by means of moving 

averages is described. This serves to isolate time series characteristics at different average 

cycle lengths or frequency levels. Furthermore, the intuition of the classical Bai and Perron 

7 
 
 

 

 



(1998) test statistic is sketched. Second, the identification of time-varying characteristics by 

means of rolling endogenous break test regressions for each of the filtered versions of a time 

series is demonstrated. How the distribution of all cumulated break dates can be used to 

identify definite, robust and representative break dates is discussed. For this purpose, 

endogenous cluster analysis is applied to the results of the rolling break tests for the 

corresponding averaged time-series. The section lengths between these definite break dates 

then provide the corresponding economic cycles. Repeating this for different averaging 

windows, we obtain the distribution of the frequency of occurrence of corresponding cycles. 

This is described in a last, third step. 

3.1. Adaption of Bai and Perron’s Endogenous Break Test for Detecting Overlaying 

Cycles  

Bai and Perron (1998) developed a structural break test, which estimates coefficients in a 

structural break model.ix For each partition (T1, ... , Tm) of structural break dates, an associated 

least-squares estimate is obtained by minimizing the sum of squared residuals  (𝑆𝑆𝑆𝑆𝑆𝑆 = ∑𝑢𝑢𝑡𝑡
2) 

with m as the break index and t as the usual time index. Here, the intuition is to identify 

additional breaks whenever the reduction of SSR is significant. Bai and Perron developed the 

following test statistic for the nth additional break to measure the significance of an additional 

structural break: [SSR(n-1)-SSR(n)]/MSE(n) with MSE as the mean squared error, respectively 

the mean of the squared residuals (1
𝑇𝑇
∑𝑢𝑢𝑡𝑡2). Hence, the structural break dates identify 

partitions with similar patterns or, in other words, partitions with the most significant variance 

reduction separating the longest continuous horizontal intervals.x The length of the time 
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interval between two successive break dates can be regarded as a certain cycle of a time 

series, which encompasses a relatively homogenous pattern. For the purposes of this article, 

an economic cycle is defined as a relatively homogenous time interval with respect to some 

measure (mean, variance and so forth), which is separated by structural changes. Moreover, 

cycles shall be defined in reference to certain average cycle lengths or frequency levels as 

borrowed from Fourier Transform terminology. Each of these frequency levels shall comprise 

sufficiently homogenous cycles. We call these frequency levels a time series’ overlaying 

characteristics. At each of these levels, however, the cycles may alter their duration. These are 

the economic cycles or the time-varying characteristics of a time series. 

Real data time series are usually not smooth and are often characterized by overlaying and 

varying short-term, high frequency cycles. Due to this fact, the ratio between the SSR 

reduction with an additional break and the MSE can vary within a wide range. This is caused 

by several overlaying cycles. In the case of a sufficiently large SSR reduction in relation to the 

MSE, the sum of squared residuals reduces significantly and the test statistic will indicate an 

additional break date. In the case of a small SSR reduction in relation to the MSE, the test will 

stop with less structural break dates.xi Therefore, on the one hand, the Bai and Perron test may 

identify a relatively large number of structural breaks and only very small cycles. Phases with 

high volatility or strongly increasing or decreasing data values are typical phases for which 

this effect will occur. On the other hand, there is the possibility that the Bai and Perron test 

will identify relatively few structural breaks. This will occur in phases with low volatility or 

decreasing/increasing trends relative to the time series’ length, or, in other words, the entire 

time series’ SSR. To cope with these problems and to extend the Bai and Perron test for 
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identifying structural breaks in overlaying cycles, we will adapt this test using rolling 

averages before applying the structural break test to each of the averaged series. The adapted 

structural change model is then  

𝑦𝑦𝑡𝑡𝑤𝑤 = 𝑥𝑥𝑡𝑡′𝛽𝛽 + 𝑧𝑧𝑡𝑡𝑤𝑤′𝛿𝛿𝑗𝑗𝑤𝑤 + 𝑢𝑢𝑡𝑡𝑤𝑤,                          (1) 

 𝑡𝑡 = 𝑇𝑇𝑗𝑗−1 + 1,  … ,  𝑇𝑇𝑗𝑗 ,  for 𝑗𝑗 = 1,  … ,  𝑚𝑚 + 1,  𝑇𝑇0 =
𝑤𝑤
2

 and 𝑇𝑇𝑚𝑚+1 = 𝑇𝑇 −
𝑤𝑤
2

 

𝑥𝑥𝑡𝑡xii and 𝑧𝑧𝑡𝑡𝑤𝑤 = covariates;𝛽𝛽 and 𝛿𝛿𝑗𝑗𝑤𝑤 = coefficients;𝑚𝑚 = number of breaks and 𝑦𝑦𝑡𝑡𝑤𝑤 is 

calculated as  

𝑦𝑦𝑡𝑡𝑤𝑤 =
1
𝑤𝑤

� 𝑦𝑦𝜏𝜏

𝜏𝜏=𝑡𝑡+𝑤𝑤2

𝜏𝜏=𝑡𝑡−𝑤𝑤2

 

Here, w denotes the length of the moving window for the calculation of the rolling averages. 

The size of w has a number of obvious effects. An increasing w reduces the number of 

observations for the structural break test and reduces the volatility of the time series. Diagram 

1 illustrates the application of different lengths of w on a simulated time series consisting of 

different overlaying sine cycles (15 days, 180 days and a vertical shift of 10 for the last 180-

day sine cycle). Here, the size of window 1 is greater than the size of window 2.  
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Diagram 1 Original values of a simulated time series; rolling averages of the same time series with averaging 

windows of w=90 and w=180 days 

Regarding the test statistic, it is obvious that possible reductions of the SSR are much smaller 

for large window lengths w. Thus, the question of which sizes of w to employ in the analysis 

arises. A priori, each and every possible size of w could be used for the determination of 

structural break dates. Subsequently, significant changes in the number of structural breaks 

between the different versions of the filtered time series could be identified. Depending on the 

length of the time series regarded, this could lead to many calculations and high 

computational effort. In this case, grid approaches are useful to overcome problems of 

computational time. Usually, equidistant grids are most suitable when no information on a 

time series’ economic cycles exists. In cases of searching for specific cycles, the grid can be 

adapted accordingly. 

It has to be mentioned that the different smoothing windows do not change the overlay of the 

different dynamics. Averaging is centered, leading to a symmetric extension of the averaging 

window around a certain date t. The different averaging windows help to visualize the 

0 100 200 300 400 500 600 700
40

60

80

100

120

140

time

va
lu

es

 

 

original
window 1
window 2

11 
 
 

 

 



movements at the respective, envisaged cycle length (or frequency level). In section 3.3, it 

will be shown how these identified cycles from respective filtered versions of the time series, 

i.e. at different envisaged average cycle lengths or on different frequency levels, and their 

cumulated number of occurrences will be used as a measure for the importance of the 

respective cycle lengths. As this is done simultaneously with the identification of time-

varying cycles, the next section describes how the rolling structural break tests applied to the 

different filtered versions of the time series will help identify respective cycles on each 

frequency or average cycle length level. 

3.2. Adaption of Bai and Perron’s Endogenous Break Test for Detecting Time-Varying 

Cycles  

The above adaptation addresses the problem of detecting overlaying cycles but still ignores 

time-varying characteristics. To address this problem, we again use a rolling estimation 

method according to the work of Officer (1973) and Fama and MacBeth (1973). Analogous to 

the methods proposed by these authors, we take a subsample of the time series and apply the 

structural break test for this subsample. This is done for every subsample that can be 

constructed from the time series. The number of subsamples – and thereby structural break 

tests – depends on the ratio of the lengths of the original time series and the subsample. The 

resulting break dates for each regression will be memorized. The structural change model 

evolves to 

𝑦𝑦𝑡𝑡𝑟𝑟(𝜏𝜏) = 𝑥𝑥𝑡𝑡′(𝜏𝜏)𝛽𝛽 + 𝑧𝑧𝑡𝑡𝑟𝑟
′(𝜏𝜏)𝛿𝛿𝑗𝑗𝑟𝑟(𝜏𝜏) + 𝑢𝑢𝑡𝑡𝑟𝑟(𝜏𝜏),∀𝜏𝜏 ∈ �𝑟𝑟

2
, … ,𝑇𝑇 − 𝑟𝑟

2
�     (2) 
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 𝑡𝑡 = 𝑇𝑇𝑗𝑗−1 + 1,  … ,  𝑇𝑇𝑗𝑗 ,  for 𝑗𝑗 = 1,  … ,  𝑚𝑚 + 1,  𝑇𝑇0 = 𝜏𝜏 −
𝑟𝑟
2

 and 𝑇𝑇𝑚𝑚+1 = 𝜏𝜏 +
𝑟𝑟
2

 

𝑦𝑦𝑡𝑡𝑟𝑟 = observed variable; 𝑥𝑥𝑡𝑡 and 𝑧𝑧𝑡𝑡𝑟𝑟 = covariates;𝛽𝛽 and 𝛿𝛿𝑗𝑗𝑟𝑟 = coefficients;𝑚𝑚 =

number of breaks. 

 

Diagram 2 Rolling endogenous structural break test window and averaged time series (at the level of w=90 days 

rolling average) 

Diagram 2 illustrates the principle of the rolling regression in our case, where the small black 

box indicates the subsample. The break test regressions are repeated along the time dimension 

starting on each of the successive dates of the entire time series from 1+w/2 up to T-w/2. This 

is then repeated for each of the filtered versions of the time series. The choice of the size of 

this subsample is crucial and can be optimized according to Foster and Nelson (1996). Similar 

to the case of using rolling averages, one could calculate the rolling tests for all possible 

subsample sizes – for each of the filtered versions of the time series. Again, a grid approach is 

useful to avoid computational problems. As a result, we obtain the structural break dates of 

each subsample as a result of the rolling regressions applied to the filtered time series. 

Diagram 3 illustrates the distribution of the occurrence of all cumulated break dates. 
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Diagram 3 Cumulated break date indicators of rolling endogenous structural break tests (black bars) and w=180 

days rolling average time series (blue line) 

In a second step, definite break dates of the time series will be extracted from this cumulative 

distribution of break dates. Accumulation points have to be determined to derive definite 

break dates. Endogenous cluster analysis will serve for this purpose.xiii In most cluster 

techniques, the number of clusters is predetermined. The optimal number of clusters can be 

determined e.g. by using error measures (cf. Tibshirani et al. 2001). Here, we choose the 

number of clusters according to the silhouette method (cf. Rouseeuw 1987). The silhouette’s 

value is a measure of similarity within one cluster and is calculated as 

𝑆𝑆𝑖𝑖 =
(𝑏𝑏𝑖𝑖 − 𝑎𝑎𝑖𝑖)

max(𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖)
 

with 𝑎𝑎𝑖𝑖 being the average distance from point i to other points in the same cluster, and i and 𝑏𝑏𝑖𝑖 

being the minimum average distance from point i to points in the different clusters. A high 

silhouette value is evidence of a good matching of point to cluster. Per definition, the 

silhouette value is between -1 and 1. Here, 1 indicates a perfect match. To derive the optimal 

number of clusters, we repeat the calculation of the silhouette values for different numbers of 

time 
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clusters and calculate the average silhouette value for the partition. The partition with the 

highest silhouette value indicates the optimal number of clusters. 

These clusters determine the definite break dates for each of the filtered versions of the time 

series or, in other words, for each of the different frequency or average cycle length levels. 

3.3. Simultaneous Detection of Overlaying and Time-Varying Cycles  

To address both the varying behavior over time and the overlaying cycles, rolling averages 

and rolling structural break regressions from structural change models (1) and (2) will be 

combined accordingly. 

𝑦𝑦𝑡𝑡
𝑤𝑤,𝑟𝑟(𝜏𝜏) = 𝑥𝑥𝑡𝑡′(𝜏𝜏)𝛽𝛽 + 𝑧𝑧𝑡𝑡

𝑤𝑤,𝑟𝑟′(𝜏𝜏)𝛿𝛿𝑗𝑗
𝑤𝑤,𝑟𝑟(𝜏𝜏) + 𝑢𝑢𝑡𝑡

𝑤𝑤,𝑟𝑟(𝜏𝜏),∀𝜏𝜏 ∈ �𝑟𝑟
2

, … ,𝑇𝑇 − 𝑟𝑟
2
�    (3) 

 𝑡𝑡 = 𝑇𝑇𝑗𝑗−1 + 1,  … ,  𝑇𝑇𝑗𝑗 ,  for 𝑗𝑗 = 1,  … ,  𝑚𝑚 + 1,  𝑇𝑇0 = 𝜏𝜏 −
𝑟𝑟
2

 and 𝑇𝑇𝑚𝑚+1 = 𝜏𝜏 +
𝑟𝑟
2

 

𝑦𝑦𝑡𝑡
𝑤𝑤,𝑟𝑟 = 𝑦𝑦𝑡𝑡𝑤𝑤(𝑇𝑇0, … ,𝑇𝑇𝑚𝑚+1); 𝑥𝑥𝑡𝑡 and 𝑧𝑧𝑡𝑡

𝑤𝑤,𝑟𝑟 = covariates;𝛽𝛽 and 𝛿𝛿𝑗𝑗
𝑤𝑤,𝑟𝑟 = coefficients; 

𝑚𝑚 = number of breaks and yt𝑤𝑤 is calculated as the rolling average mentioned above. 

As a result of this model, we obtain the definite break dates by applying the cluster analysis 

on the results of the rolling break tests for the corresponding averaged time-series. The section 

lengths between these definite break dates then provide the corresponding economic cycles. 

Repeating this for different averaging windows, we obtain the distribution of the frequency of 

occurrence of corresponding cycles. 
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The number of maximum possible break dates and the corresponding cycles differ at each 

(subsequently changing) size of the averaging window and according to the subsample’s size. 

Thus, the absolute frequency of a certain cycle has to be evaluated in relation to the total 

number of cycles detected at a certain frequency level. The maximum absolute frequency at a 

certain level is given by the number of possible definite break dates plus one. Thereby, we can 

calculate the relative, level-specific frequency of occurrence of a certain economic cycle. 

Diagram 4 illustrates the comparison of the absolute frequency to the relative frequency of 

occurrence. Longer economic cycles have an increased frequency when relative frequencies 

are used for the analysis (rhs diagram). 

  
Diagram 4 Distribution of frequencies of identified economic cycles (section lengths between definite break 

dates); a) unweighted (lhs), b) weighted relative to the level-specific maximum frequency of occurrence of 

breaks (rhs) 

The dominant cycles of the time series can then be derived from this distribution. The 15-day 

cycles are dominant, whereas the longer cycle is only moderately detected. This can be 

attributed to the fact that long (180-day) cycles only occur four times in the original time 

series.xiv It is clear that this structural change model can be estimated for every size of the 

moving window for the rolling averages and also for every size of the subsample for the 

rolling break tests. Since economic cycles are regularities and, thus, should not change 
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extremely fast, in our view, it is sufficient to run the model for an equidistant grid of moving 

window and corresponding subsample sizes. 

An illustration of the operation of the method for three different simulated time series is given 

in the Online Appendix. 

4. Application  

To demonstrate the impact of our approach to identify and disentangle the recurring patterns 

with regard to both overlaying as well as time-varying cycles, we chose a time series in a 

microeconomic and a macroeconomic area for the application. The results will be compared 

to other approaches such as the classical Bai and Perron (BP), Markov Regime Switching 

(MRS) and Fast Fourier Transform (FFT) methods.  

4.1. Data 

Microeconomic Time Series: Hourly Electricity Prices 

For an illustration of the properties of the developed approach for dating breaks and detecting 

economic cycles and for a subsequent comparison to the other methods, we take data for 

electricity spot prices in Germany traded at the European Energy Exchange (EEX). Spot 

prices for electricity have some periodic characteristics. First, prices can be classified as 

working and weekend days and have different demand characteristics. Second, within days, a 

further distinction in peak and off-peak hours is possible, with peak hours from 8 a.m. to 8 

p.m. on working days and off-peak hours in the complementary time interval according to the 

EEX definition. Larger cycles such as seasonalities do exist but will not be addressed in our 
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application for reasons of clarity. We will concentrate on hourly and daily cycles and, 

therefore, choose the prices during March 2010 for our application. 

Diagram 5 EEX day ahead electricity prices, March 2010; source: EEX 

Diagram 5 shows the EEX price data and illustrates the periodic weekend cycle as well as 

peak and off-peak prices. The latter vary with demand (in contrast to the 8 a.m. to 8 p.m. 

definition of the Energy Exchange) and, therefore, show a noon and an afternoon peak. 

Moreover, the time series has properties favorable for our analysis. For example, the working 

day-weekend cycle is recognizable, but deviations from the regular cycles do exist, such as 

the Friday of the second week, which is more similar to the weekend than to the other 

working days. The different methods shall identify exactly such time-varying irregularities of 

regular economic cycles, in addition to the separation of overlaying cycles such as weekly, 

working day or hourly cycles. 

Macroeconomic Time Series: National Product Growth 
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For application in the macroeconomic area, we take data for US product growth from January 

1996 to July 2015 on a monthly basis. Product growth reflects the value of different products 

and services. Thus, product growth contains different cycles, such as seasonalities or longer 

business cycles.   
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Diagram 6 US product growth, January 1996 to July 2015; source: Reuters 

Diagram 5 shows the product growth data and illustrates the existence of seasonal and yearly 

cycles as well as longer cycles of five or six years. Shorter seasonalities are irregular, but, 

frequently, very short-term cycles of about six months are observable. This is especially true 

for the turbulent years after 2000 and after the dip of the economic crisis in 2008. However, 

cycles are not stable during the remainder of the time series either. Short-term cycles typically 

range from six months to one year.  

4.2. Comparison: Fast Fourier Transform and Markov Regime Switching 

Fast Fourier Transform 
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The FFT converts a finite list of equally spaced samples of a function into a list of coefficients 

of a finite combination of complex sinusoids. It is ordered by frequencies (of the sample 

values). Thereby, it converts the sampled function from the original domain (often a time or 

position along a line) to the frequency domain. The Discrete Fourier Transform is part of the 

Fourier analysis and used for empirical purposes. 𝐻𝐻(𝑓𝑓) = ∑ ℎ(𝑡𝑡)𝜔𝜔𝑁𝑁
(𝑡𝑡−1)(𝑓𝑓−1)𝑁𝑁

𝑡𝑡=1  is the Fourier 

Transformation of ℎ(𝑡𝑡) = 1
𝑁𝑁
∑ 𝐻𝐻(𝑓𝑓)𝜔𝜔𝑁𝑁

−(𝑡𝑡−1)(𝑓𝑓−1)𝑁𝑁
𝑓𝑓=1  where 𝜔𝜔𝑁𝑁 = 𝑒𝑒

−2𝜋𝜋𝜋𝜋
𝑁𝑁  is an Nth root of unity, 

ℎ(𝑡𝑡) is a function of time t and 𝐻𝐻(𝑓𝑓) is a function of frequency f. Inverting the support 

(frequencies) provides signals (amplitudes, prices) in the period space. 

Frequencies directly refer to different cycle lengths of the time series in the time domain, and 

amplitudes give information regarding their significance.  

Markov Regime Switching  

MRS regressions assume several states indicating a different data generating process in each 

state. In the simplest form, level changes are investigated, but more complicated formulations 

considering e.g. autoregressive characteristics are possible. For the purpose of this article, the 

formulation considering level switches with two states is sufficient. 

𝑝𝑝𝑡𝑡 = �𝛼𝛼0 + 𝛽𝛽𝑝𝑝𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 ,              𝑠𝑠𝑡𝑡 = 0
𝛼𝛼0 + 𝛼𝛼1 + 𝛽𝛽𝑝𝑝𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 ,    𝑠𝑠𝑡𝑡 = 1

    (4) 

with transition probabilities 

𝑷𝑷 = �𝑃𝑃
(𝑠𝑠𝑡𝑡 = 0|𝑠𝑠𝑡𝑡−1 = 0) 𝑃𝑃(𝑠𝑠𝑡𝑡 = 1|𝑠𝑠𝑡𝑡−1 = 0)

𝑃𝑃(𝑠𝑠𝑡𝑡 = 0|𝑠𝑠𝑡𝑡−1 = 1) 𝑃𝑃(𝑠𝑠𝑡𝑡 = 1|𝑠𝑠𝑡𝑡−1 = 1)� = �
𝑝𝑝00 𝑝𝑝01
𝑝𝑝10 𝑝𝑝11�.   (5) 
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States can, thus, take the values 𝑠𝑠𝑡𝑡 = {0,1}, and 𝑝𝑝𝑡𝑡 denotes the price in period t. Matrix 𝑷𝑷 

contains the transition probabilities between the respective states. The price equation is 

characterized by a regime switch, which leads to a level shift of 𝛼𝛼1. The absolute term is 

(𝛼𝛼0 + 𝛼𝛼1) for state 1 instead of 𝛼𝛼0 for state 0. The parameters of the model, 𝑷𝑷 and 𝜽𝜽 =

(𝛼𝛼0,𝛼𝛼1,𝛽𝛽), can be estimated via maximum likelihood estimation.  

The dates of transitions between 𝑠𝑠𝑡𝑡 = 0 and 𝑠𝑠𝑡𝑡 = 1 are the “structural breaks” we use for the 

comparison. 

4.3. Results and Comparison 

Microeconomic Time Series: Hourly Electricity Prices 

Overlaying and Time-Varying Economic Cycles 

We apply the Bai and Perron (BP), adapted Bai and Perron (ABP), Markov Regime Switching 

(MRS) and Fast Fourier Transform (FFT) to electricity price data. For the ABP we use an 

equidistant grid of 10 time steps. The following diagrams illustrate the differences between 

the methods. The solid black line depicts the EEX electricity prices of March 2010 in all of 

the four diagrams. The rectangle areas indicate breaks and state changes – or economic 

cycles. They extend below or above the mean of the time series depicted by the fine 

horizontal line. Every time the indicator line crosses the mean line, the respective method 

finds a state switch, and the rectangle areas between the lines change their position from 

below to above and vice versa. The magnitude of the indicator line has no meaning; it is 

solely used to indicate breaks. 
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Diagram 7 EEX day-ahead electricity prices, March 2010; identified economic cycles according to the different 

approaches (a) Bai and Perron endogenous structural break test, b) adapted Bai and Perron test, c) Markov 

Regime Switching, d) Fast Fourier Transform 

The BP and MRS do not explicitly differentiate between different frequency levels of 

economic cycles. In other words, in a one-shot procedure they judge all cycles according to 

one single decision criterion – the reduction in residuals. These cycles will only be identified 

if and only if they are sufficiently important with respect to this criterion. In contrast, the ABP 

and FFT find a multiplicity of economic cycles because they decompose the time series 

vertically, i.e. according to overlaying cyclical information. Three partitions for exemplary 

nodes (window sizes) of the grid are depicted in the graphs.xv  
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It is evident that the BP and the MRS search for level shifts in the time series. Whereas the BP 

reduces the overall squared residuals of the time series by adding additional breaks and 

inserting horizontal regression lines with variable intercepts, the MRS uses two (or more) 

states over the entire time series with identical intercepts in the respective states. Therefore, 

the identified states are similar for BP and MRS during large parts of the time series, such as 

the first time interval until about hour 170 and the interval from 530 until the end. 

Nevertheless, according to the MRS, many higher frequency interruptions of the respective 

current state are identified. Higher-frequency jumps, which are relatively large with respect to 

the intercept’s difference of the two identified states, lead to this result. Moreover, the 

identified sections between breaks are asymmetric. This uncovers the short-term, time-

varying characteristics of the time series. In contrast, the recursive logic and the test statistic, 

building on the overall sum of squared residuals of the BP, interrupt the search for breaks 

earlier and have higher degrees of freedom regarding the choice of intercepts.xvi However, 

both the BP and the MRS find time-varying economic cycles. 

The ABP and FFT decompose dominant economic cycles of the time series explicitly on 

different frequency levels. The ABP identifies slow cycles as depicted by the pale rectangle 

areas in the background of the diagram. This economic cycle corresponds to a cycle of three 

and four days. The medium frequency is a little faster and finds daily cycles as well as some 

1.5-day cycles. Both of these frequencies are similar to the ones identified by the classical BP. 

The highest frequency level depicts 12- and 18-hour cycles as well as a shorter cycle of only a 

few hours (6 to 8 hours). These faster economic cycles are similar to the cycles found with the 

MRS. It should be noticed that the cycles found are of varying speed over the time series. This 
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is evident when the higher frequency interval at about hour 200 is compared to the lower 

frequency interval at about hour 300. The FFT is not able to identify cycles of varying length. 

The three FFT-economic cycles are absolutely regular according to the circular signal 

transformation. The cycles found on different frequency levels by signal decomposition 

correspond to regular weekly, 24-hour and 12-hour cycles. 

Distribution and Representativeness of Identified Economic Cycles  

The following diagrams depict the cumulative distributions of the section lengths between the 

respective break dates for BP, MRS and ABP. In contrast, the FFT diagram depicts the 

coefficients of equation 𝐻𝐻(𝑓𝑓) = ∑ ℎ(𝑡𝑡)𝜔𝜔𝑁𝑁
(𝑡𝑡−1)(𝑓𝑓−1)𝑁𝑁

𝑡𝑡=1 , which indicate the relevance of the 

respective frequency of the periodic cycles in explaining the time series. All four approaches, 

therefore, analyze time intervals with a frequency notion. 
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Diagram 8 Distribution of frequencies of identified economic cycles in EEX electricity prices; a) Bai and Perron 

endogenous structural break test, b) adapted Bai and Perron test, c) Markov Regime Switching, d) Fast Fourier 

Transform 

The BP diagram shows the distribution of the section lengths between the breaks determined 

by the applied BP endogenous structural break test. Section lengths are equally weighted 

because each of them occurs only once. Different clusters are observable with some cycles 

around 24, 42 and 80 to 96 hours as well as some single cycles at about six, 120 and 168 

hours. We can, thus, roughly detect 24-hour, 48-hour, 96-hour sections and one 120-hour and 

one 168-hour section, sections that, for some cases, deviate from the typical 24-hour cycle. 

These deviations are often about six hours long, indicating nighttime off-peak sections or 

daytime peak sections of a short duration. 
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The distribution of the ABP with its successively applied rolling break tests on different 

frequency levels, exhibits much more vertical variation. Peaks at the cycles of six to seven, 16 

to 17 and 22 to 24 hours are more clearly identifiable regarding the short-term economic 

cycles. Medium-term cycles are discovered at approximately 30 and 54 hours with some 

longer cycles at approximately 72, 84 and 96 hours. Finally, two recognizable long-run cycles 

are identified at 150 and 196 hours. The identified long-term cycles are relatively insignificant 

in amplitude. The application of the ABP in this form, i.e. weighting each filtered version of 

the time series equally before cumulating respective breaks, ignores the vertical variation of 

each filtered version (its minimum-maximum price spread). With respect to their contribution 

to the explanation of the time series’ overall price variation however, these long-term cycles 

are more important because their minimum-maximum spread is relatively large compared to 

that of higher frequency levels (using shorter moving average filters). This is demonstrated by 

an application of the alternative amplitude based weighting of respective frequency levels in 

section 5. Another noticeable aspect is the wide, more uniform variation of cycle distribution 

found between six to seven and 16 to 17 hours. This additional information is useful to 

understand that short-term cycles do not strictly follow the asymmetric distribution 

characterized by the two peaks at six to seven and 16 to 17 hours. 

The MRS diagram shows an interesting pattern. Only section lengths up to about one day are 

detected. The dominant lengths are, again, six to seven and 17 to 18 hours. The MRS 

completely fails to determine lower frequency cycles because of the magnitudes of the price 

movements on the different frequencies. In other words, were the amplitudes of cyclical 

26 
 
 

 

 



movements larger for longer cycles (larger moving average filters), the MRS would find these 

economic cycles instead and ignore the short-term cycles identified here. 

The last diagram describing the FFT results shows coefficients h(t) of the cyclical patterns 

determined for the time series. The requirement that the periodicity of the time series remains 

constant throughout the time series leads to the result that the shorter varying section lengths 

of six to seven and 17 to 18 hours determined by MRS and ABP are leveled out. Instead, the 

FFT offers 12- and 24-hour cycles. In contrast, it has no difficulty with non-varying lower 

frequency cycles (80 and 168 hours). 

 

Macroeconomic Time Series: National Product Growth 

Overlaying and Time-Varying Economic Cycles 

We now apply the BP, ABP, MRS and FFT to US product growth. For the ABP, we use an 

equidistant grid of five time steps. The following diagrams illustrate the differences between 

the methods. The diagrams are analogous to the microeconomic time series diagram 7. The 

solid black line depicts the US product growth in all of the four diagrams. 
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Diagram 9 US product growth, January 1996 to July 2015; identified economic cycles according to the different 

approaches (a) Bai and Perron endogenous structural break test, b) adapted Bai and Perron test, c) Markov 

Regime Switching, d) Fast Fourier Transform 

In general, the results are similar to the electricity price time series. ABP and FFT decompose 

dominant cycles of the time series explicitly on different frequency levels, which provides 

information on the different simultaneously overlaying cyclicalities. BP and MRS do not 

provide this information. The long ABP and FFT cycles correspond to lengths of about 50 to 

60 months, whereas shorter cycles are found to be about 12 months for the FFT and range 

between six and 14 months for the ABP. Some longer cycles are found by the ABP, up to 72 

months, whereas extremely short cycles can be as short as two to three months. These faster 
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cycles are similar to the cycles found with the MRS. The FFT is not able to identify varying 

cycles. The three FFT-economic cycles are absolutely regular according to the circular signal 

transformation. 

Shorter time-varying cycles are detected by BP, ABP and MRS after the 2008 (month 156 and 

subsequent months) crisis. However, after the shock in year 2000 (month 60 and subsequent 

months), only the ABP detects the turbulence characterized by a series of shorter cycles 

during the subsequent months. The BP test does detect a different, longer period of product 

growth level shift. The MRS does not detect any of the shorter cycles because of the relatively 

low variation of product growth compared to later shifts in the time series, i.e. the 2008 crisis 

and its aftermath. 

Distribution and Representativeness of Identified Economic Cycles 

The following diagrams depict, analogous to diagram 7, the cumulative distributions of the 

section lengths between the respective break dates for BP, MRS and ABP.  
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Diagram 10 Distribution of frequencies of identified economic cycles in US product growth; a) Bai and Perron 

endogenous structural break test, b) adapted Bai and Perron test, c) Markov Regime Switching, d) Fast Fourier 

Transform 

As above, the BP diagram shows the distribution of the section lengths between the BP 

breaks. Section lengths are equally weighted because each of them occurs only once. 

The distribution of the ABP with its successively applied rolling tests on different frequency 

levels exhibits significant vertical variation. More clearly, peaks at the cycles of about three 

and six to nine and 12 months are identifiable regarding the shorter-term seasonal cycles. 

Longer-term business cycles are identified to range regularly between 36 and 72 months. 

Some exceptions occur at 24, 48 and 90 months. 
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The MRS fails to detect long-term cycles of more than 36 months. In contrast, it finds the 

most extreme, short-term dips of two months to the most regularly occurring cycle of the time 

series. Shorter cycles of five and eight months and then medium-term cycles of 16, 20 and 34 

months are found. 

The last diagram shows the FFT coefficients of the cyclical patterns. The FFT detects 

seasonal six, nine and 12 month cycles as they occur more irregularly than in the electricity 

price time series. Furthermore, very short-term shock dips of about two to three months are 

identified. The business cycles, however, are characterized by shorter lengths of about 24 to 

48 months, compared to the ABP. 

5. Discussion 

5.1. ABP, BP, FFT, and MRS 

The ABP identifies time-varying economic cycles at different frequency levels or, in other 

words, at different filtered versions of the original time series. However, the ABP does not 

seem to give a very clear picture of which section lengths are representative, especially 

concerning very short-term cycles. One might wish to obtain more clearly peaking cycles as, 

for example, is the case for the FFT. This is not a shortcoming. Instead, this result is one of 

the envisaged goals of using the ABP approach, which tries to extract more differentiated 

information about a time series’ properties. This argument is best explained by taking a look 

at the short-term cycles. The density of the frequencies of ABP economic cycles is high over 

the entire interval from hours six to seven up to hours 16 to 17. This demonstrates first that 

large parts of the variation of the entire time series are due to cycles of these lengths and 
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second that there is not a single dominant cycle at one of these short-term frequencies. On the 

other hand, there is still exact information on the distribution of peaks (at hours 6, 16 and 17 

and later at 22/24) and deviations from these peaks.xvii Similarities and differences in 

comparison to the other methods are discussed in the following to highlight the main 

characteristics and their consequences for the respective results obtained. 

The BP determines time-varying characteristics and finds homogeneous periods though the 

time series length influences the partition. This becomes clear from a simple example. A sine 

function of length 2𝜋𝜋 will result in several breaks at 𝜋𝜋 2⁄ . Extending this series to 50𝜋𝜋 will 

not set an additional break to the minimum number of two because there is no significant 

reduction in the overall variation of the time series.xviii In consequence, the number of breaks 

found in a time series depends on the ratio of the series’ length to its variation. The BP is 

constructed in a way that makes it difficult to find breaks in homogenously recurring, periodic 

movements (e.g. sinusoidal functions). It is better suited to situations where shifts are the 

dominant cause of structural heterogeneity. Furthermore, it does not explicitly address 

different frequency levels. It only finds longer cycles if their amplitudes are sufficiently large. 

The ABP, in contrast, may find breaks on different frequency levels by its use of rolling 

regressions. There is also no signal about the importance of a certain economic cycle. 

Weighting on the basis of, for example, the minimum-maximum spreads of a time series on 

each respective frequency level or filtered version of the time series is possible and will 

provide further information on the significance of the contribution of the respective frequency 

level or average cycle length to the overall time series variance. This will be discussed later in 

this section. 
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Similarly, the FFT has the capability of determining different economic cycle levels and 

assigns weights to the frequencies but fails in separating the time series into intervals of time-

varying cycles on a given frequency level (see section 4). This is better performed by the BP, 

the ABP and the MRS. The FFT builds on cyclical frequencies (e.g. combinations of 

sinusoidal functions), which makes it difficult to extract regularly but asymmetrically varying 

processes such as in the 6/18 (MRS), six to seven and 16 to 17 hours (ABP), as compared to 

the 12 and 24 hours for the FFT example above. It is further impossible to date breaks exactly. 

Unlike the other methods, it does not use break dates to determine frequencies but rather 

directly fits the frequencies to the time series and determines coefficients h(t) as amplitudes. 

As already mentioned, the MRS is also capable of finding not only average but also time-

varying cycles, such as the peak/off-peak relation in the above example. However, the MRS 

has some well-known drawbacks (cf. section 2). In this regard, it can be seen as a static 

approach. It assumes the number of states as exogenously given. In contrast to the other 

methods, the MRS cannot, therefore, detect more varying cycles than assumed ex ante. 

Furthermore, in this rudimentary version of the MRS, these states remain fixed over time and 

refer to characteristics of the entire time series, such as the series’ mean. As it does not 

consider different frequency levels, it only finds state changes when values reach a state 

defined as relative to the full amplitude over the time series. Therefore, only economic cycles 

on the frequency level with the maximum amplitude determine the states. In addition, the 

MRS only separates between different levels of states (e.g. high and low in the 2-state case). 

This implies that, unlike the BP and ABP, this method does not search for homogeneous 

periods. In contrast, sufficient changes with respect to the maximum amplitude in the time 
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series will cause a state switch. Hence, once values are in a certain state, the MRS ignores 

small local variation. In its basic version, the MRS – and also the FFT – is a static approach, 

which assumes constant characteristics of the data generating process over the whole time 

series. It has to be mentioned that time-varying MRS versions, which attenuate this problem 

by reducing the reference for the state definition by referring to the local maximum amplitude, 

do exist. However, to our knowledge, it is impossible to address simultaneously overlaying 

cycles. Furthermore, the time-varying MRS makes necessary the definition of the varying 

parameters (e.g. the length of the local time interval for reference), which remain constant 

over time as well.  

5.2. The ABP Approach – Significance of Overlaying and Time-Varying Economic 

Cycles 

The methods compared are suited to different degrees to time varying and overlying analyses 

of economic cycles.  

The FFT is constructed for the decomposition of the overlaying cycles of a time series. It is 

not suited to identify time-varying properties. In contrast, BP and MRS are methods well 

suited to finding the time-varying properties of a time series, ignoring the simultaneous 

existence of its overlaying cycles. The ABP is suited to identifying overlaying and time-

varying economic cycles at the same time. However, due to the involved degrees of freedom 

in the analysis, it does not necessarily perform better than either BP or MRS – given a certain 

frequency level of analysis, i.e. given a certain average cycle length to be analyzed – or than 

the FFT, absent time-varying cycles. 
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As mentioned earlier in this section, the ABP can be enhanced according to the goals of an 

investigation. The contribution of the respective cycles on each frequency level to the overall 

variance of a time series, for example, can be considered by additional weighting of the 

cumulated cycle length distributions of detected cycles on each frequency level by the 

maximum-minimum spreads of corresponding filtered time series values. This is, then, more 

similar to the FFT coefficients. The following diagram contains a comparison between 

unweighted and amplitude weighted frequency levels, i.e. the different filtered versions of the 

EEX electricity price (lhs) and US product growth (rhs) time series. 

  
Diagram 11 Distribution of frequencies of economic cycles in EEX electricity prices (lhs) and US product 

growth (rhs) by the adapted Bai and Perron test (ABP); solid lines represent unweighted and dotted lines 

amplitude weighted (corresponding maximum-minimum spread) cumulated cycle length distributions 

Amplitudes on each frequency level, i.e. the corresponding versions of the filtered time series, 

are measured as the maximum-minimum spread of values of the respective filtered time 

series. Weights are then derived by calculating ratios with reference to the maximum- 

minimum spread of the unfiltered time series. In this application, the highest frequency levels 

for both time series dispose of the largest amplitudes. This is easily seen from the time series 

diagram (see diagram 5). Therefore, these frequencies increase most in value or, in other 

words, gain most significance with regard to the relative frequency distributions of cycle 
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lengths. The other cycle lengths’ relative frequencies also increase, whereas, for the EEX 

electricity prices cycle, lengths between 84 and 96 hours gain most and, for the US product 

growth cycle, lengths of about 36 and between 60 and 90 months gain most. 

Thereby, different weighting procedures can help to identify economic cycles according to the 

researcher’s interest. Still, other weightings could be chosen, such as the average amplitudes 

of the windows over an entire time series or the standard deviation, depending on one’s taste 

for robustness or representativeness. 

5.3. The ABP Approach – Possible Variations 

The ABP approach arbitrarily uses certain methods at different stages. As an alternative to the 

simple rolling averaging approach, other extraction methods could be used, such as band-pass 

filters (cf. Baxter and King 1999). It should be noticed that the band-pass filter application 

would only replace the moving average filtering of our analyses, maintaining all other steps of 

the analysis (rolling BP test application, cumulating break dates, clustering to determine 

definite breaks and analyzing distributions of determined cycle lengths). However, in our 

view, this would only alter the results to a minor degree.  

The other methods of comparison might be extended to achieve more differentiated results 

similar to the ABP. For example, instead of the BP structural break test, one could use the 

MRS on the different frequency levels after filtering. Alternatively, the FFT could be 

decomposed along the time domain. Once the different dominant frequency levels are 

derived, subsections would have to be analyzed separately to obtain time-varying analyses of 
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the economic cycles over the entire time series. However, these analyses are beyond the scope 

of this article. 

6. Conclusions  

This article adapts the endogenous structural break test by Bai and Perron (1998) (BP) and 

successively applies it in rolling regressions in combination with a filtering of a time series. 

This approach offers richer information than classical BP, Markov Regime Switching (MRS) 

or Fast Fourier Transform (FFT) applications to a time series. The presented adaptation of the 

Bai and Perron test (ABP) disaggregates the time series with regard to both time-varying 

cycles, similar to the MRS and BP, and overlaying cycles, similar to the FFT. This allows 

determining time-varying and overlaying cycles without having to form strong assumptions 

on data generating processes ex ante. This can improve empirical analysis, especially in cases 

when there is uncertainty about the economic model driving the behavior of market 

participants or about fundamental market forces. Examples in this regard are the relative 

importance of hourly vs. weekly effects in electricity prices and their cycle variation over time 

or the relative importance of business vs. seasonal cycles in product growth (cf. Gabaix 2011, 

Beaudry and Portier 2014). This information can serve to disentangle effects on different 

overlaying cycle levels to e.g. separate time-varying behavioral supply side impacts on prices, 

which may occur on different frequency levels than demand side effects. This can be the case 

e.g. in electricity wholesaling as analyzed in this article where much strategic conduct takes 

place on an hourly basis, but demand side effects vary with e.g. working week and week-end 

intervals. The identification of time-varying behavior is also of interest in markets of high 
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frequency interaction, such as Internet markets, or markets with cyclical regularities or 

asymmetric cost pass-throughs, which alter over time (Peltzman 2000). In practical 

microeconomic work, it can be used for antitrust policy as, for example, in collusion detection 

(Abrantes-Metz et al. 2006, Harrington and Chen 2006) or in the important field of market 

delineation, which is becoming more prominent again in view of a more (short-term) behavior 

based, “more economic approach”. 

The ABP might also be of use in e.g. business cycle analysis. Here, it is important to 

disentangle the characteristics of a time series at different, a priori unknown and possibly 

dynamically varying, cycle lengths. Thereby, the ABP complements methods using 

exogenous, constant cycle definitions, such as MRS, and avoids their inappropriate features 

for the analysis of overlaying and time-varying cycles as described in Chauvet and Hamilton 

(2005). 

This approach might be extended in various dimensions, such as offering the possibility to 

cope with possibly cointegrated explanatory variables (Kejriwal and Perron 2008, Bataa et al. 

2013). Moreover, a more complete picture with regard to variations of this adaptation 

approach, such as the use of different filtering techniques described in section 5, would be 

desirable. 

 

References 

Abrantes-Metz, R.M., Froeb, L.M., Geweke, J., Taylor, C.T. (2006), A variance screen for collusion, 

International Journal of Industrial Organization, vol. 24(3), 467–486  

38 
 
 

 

 



Altuğ, S., Tan, B., Gencer, G.  (2013), Cyclical dynamics of industrial production and employment: 

Markov chain-based estimates and test. Journal of Economic Dynamics and Control, vol. 36(10), 

1534–1550 

Bai, J., Perron, P. (1998), Estimating and testing linear models with multiple structural changes, 

Econometrica, vol. 66(1), 47–78 

Bai, J., Perron, P. (2003), Computation and analysis of multiple structural change models, Journal of 

Applied Econometrics, vol. 18(1), 1–22 

Bataa, E., Osborn, D.R., Sensier, M., van Dijk, D. (2013), Structural breaks in the international 

dynamics of inflation, Review of Economics and Statistics, vol. 95(2), 646–659  

Baxter, M., King, R.G. (1999), Measuring business cycles: approximate band-pass filters for economic 

time series, Review of Economics and Statistics, vol. 81(4), 575–593 

Beaudry, P., Portier, F. (2014), News-driven business cycles: insights and challenges, Journal of 

Economic Literature, vol. (52), 993–1074 

Borgy, V., Clerc, L., Renne, J.-P. (2014), Measuring aggregate risk: can we robustly identify asset-

price boom-bust cycles? Journal of Banking & Finance, vol. (46), 132–150 

Bry, G., Boschan, C. (1971), Cyclical Analysis of Time Series: Selected Procedures and Computer 

Programs. National Bureau of Economic Research, New York.  

Burns, A.F., Mitchell, W.A. (1946), Measuring Business Cycles. National Bureau of Economic 

Research, New York.  

Canova, F., Alain Schlaepfer, A. (2015), Has the Euro-Mediterranean partnership affected 

Mediterranean business cycles? Journal of Applied Econometrics, vol. (30), 241–262 

39 
 
 

 

 



Chauvet, M., Hamilton, J.D. (2005), Dating business cycle turning points, in “Nonlinear time series 

analysis of business cycles;” ed. Van Dijk, Milas, and Rothman, Elsevier’s Contributions to Economic 

Analysis Series, 1–54 

Chauvet, M., Piger, J. (2008), A comparison of the real-time performance of business cycle dating 

methods, Journal of Business & Economic Statistics, vol. (26), 42–49 

Christiano, L.J., Fitzgerald, T.J. (2003), The band pass filter, International Economic Review, vol. 

44(2), 435–465 

Claessens, S., Kose, M.A., Terrones, M.E. (2012), How do business and financial cycles interact? 

Journal of International Economics, vol. (87), 178–190 

Corts, K.S. (1999), Conduct parameters and the measurement of market power, Journal of 

Econometrics (88), 227–250  

Fama, E.F., MacBeth, J.D. (1973), Risk, return, and equilibrium: empirical tests, Journal of Political 

Economy, vol. 81(3), 607–636 

Foster, D.P., Nelson, D.B. (1996), Continuous record asymptotics for rolling sample variance 

estimators, Econometrica, vol. 64(1), 139–174 

Gabaix, X. (2011), The granular origins of aggregate fluctuations, Econometrica, vol. (79), 733–742 

Haltiwanger, J., Harrington, J.E. Jr. (1991), The impact of cyclical demand movements on collusive 

behavior, RAND Journal of Economics, vol. (22), 89–106 

Hamilton, J.D. (2003), Comment on “A Comparison of Two Business Cycle Dating Methods”, Journal 

of Economic Dynamics and Control, vol. (27), 1691–693 

Harding, D., Pagan, A.R. (2002), Dissecting the cycle: a methodological investigation. Journal of 

Monetary Economics, vol. (49), 365–381 

40 
 
 

 

 



Harding, D., Pagan, A.R. (2003), A comparison of two business cycle dating methods, Journal of 

Economic Dynamics and Control, vol. (27), 1681–1690  

Harding, D., Pagan, A.R. (2006), Synchronization of cycles, Journal of Econometrics, vol. (132), 59–

79 

Harrington, J.E. Jr., Chen, J. (2006), Cartel pricing dynamics with cost variability and endogenous 

buyer detection, International Journal of Industrial Organization, vol. 24(6), 1185–1212 

Hartigan, J.A., Wong, M.A. (1979), Algorithm AS 136: a K-means clustering algorithm, Journal of the 

Royal Statistical Society, Series C (Applied Statistics), vol. (28), 100–108 

Harvey, A.C., Trimbur T.M. (2003) General model-based filters for extracting cycles and trends in 

economic time-series, Review of Economics and Statistics, vol. 85(2), 244–255 

Hayek, F.A. von (1945), The use of knowledge in society, American Economic Review, vol. 35(4), 

519–530 

Hodrick, R.J., Prescott, E.C. (1997), Postwar U.S. business cycles: an empirical investigation, Journal 

of Money, Credit and Banking, vol. 29(1), 1–16 

Kejriwal, M., Perron, P. (2008), The limit distribution of the estimates in cointegrated regression 

models with multiple structural changes, Journal of Econometrics, vol. 146(1), 59–73 

Kim, I.-M. (1997), Detecting the number of structural breaks, Economics Letters, vol. (57), 145–148 

Kose, M.A., Otrok, C., Prasad, E. (2012), Global business cycles: convergence or decoupling? 

International Economic Review, vol. (53), 511–538 

Maskin, E., Tirole, J. (1988), A theory of dynamic oligopoly II: price competition, kinked demand 

curves, and Edgeworth cycles, Econometrica, vol. (56), 571–599 

41 
 
 

 

 



Neveu, A.R. (2013), Fiscal policy and business cycle characteristics in a heterogeneous agent macro 

model. Journal of Economic Behavior & Organization, vol. (92), 224–240  

Noel, M.D. (2007), Edgeworth price cycles, cost-based pricing, and sticky pricing in retail gasoline 

markets, Review of Economics and Statistics, vol. (89), 324–334 

Officer, R.R. (1973), The variability of the market factor of the New York Stock Exchange, Journal of 

Business, vol. (46), 434–453 

Olsina, F., Weber, C. (2009), Stochastic simulation of spot power prices by spectral representation, 

IEEE Transactions on Power Systems, vol. (24), 1710–1719  

Peltzman, S. (2000), Prices rise faster than they fall, Journal of Political Economy, vol. (108), 466–502 

Preuß, P., Puchstein, R., Dette, H. (2013), Detection of multiple structural breaks in multivariate time 

series. SFB 823 Discussion Paper Nr. 33/2013, University of Bochum. URL: https://eldorado.tu-

dortmund.de/bitstream/2003/30598/1/DP_3313_SFB823_Preu%C3%9F_Puchstein_Dette.pdf    

Rotemberg, J., Saloner, G. (1986), A supergame-theoretic model of price wars during booms, 

American Economic Review, vol. (76), 390–407 

Rouseeuw, P.J. (1987), Silhouettes: a graphical aid to the interpretation and validation of cluster 

analysis, Journal of Computational and Applied Mathematics, vol. (20), 53–65 

Tibshirani, R., Walther, G., Hastie, T. (2001), Estimating the number of clusters in a data set via the 

gap statistic, Journal of the Royal Statistical Society, Series B (Statistical Methodology), vol. (63), 

411–423 

Verlinda, J.A. (2008), Do rockets rise faster and feathers fall slower in an atmosphere of local market 

power? Evidence from the retail gasoline market, Journal of Industrial Economics, vol. (56), 581–612 

42 
 
 

 

 

https://eldorado.tu-dortmund.de/bitstream/2003/30598/1/DP_3313_SFB823_Preu%C3%9F_Puchstein_Dette.pdf
https://eldorado.tu-dortmund.de/bitstream/2003/30598/1/DP_3313_SFB823_Preu%C3%9F_Puchstein_Dette.pdf


Wang, Z. (2009), (Mixed) strategy in oligopoly pricing: evidence from gasoline price cycles before 

and under a timing regulation, Journal of Political Economy, vol. (117), 987–1030 

Zarnowitz, V., Ozyildirim, A. (2006), Time series decomposition and measurement of business cycles, 

trends and growth cycles. Journal of Monetary Economics, vol. (53), 1717–1739 

Zhou, Y., Wan, A.T.K., Xie, S., Wanga, X. (2010), Wavelet analysis of change-points in a non-

parametric regression with heteroscedastic variance, Journal of Econometrics, vol. (159), 183–201 

7. Online Appendix 

For a better understanding of our method, the adapted Bai and Perron test for structural breaks 

(ABP), we apply the method to three simulated time series. Simulating the time series gives 

the advantage that we know the cycles in these time series exactly and can see how the ABP 

will identify these cycles. The first simulated time series is called binary jump. Here, we 

construct a time series that jumps every 20 time steps between zero and 10. Within the 20 

time steps, we modeled some white noise to avoid computational errors. Diagram 12 shows 

the simulated time series and the cycles identified with the ABP. 

  

Diagram 12 a) Values of the simulated time series binary jump (lhs), b) Distribution of frequencies weighted 

relative to the level-specific maximum frequency of the occurrence of breaks (rhs) 
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It is obvious that the 20 time step cycle is the major cycle in the results of the ABP. 

Additionally, we have some small cycles resulting from white noise within the 20 days. Other 

cycles have no significant occurrence. 

The second simulated time series is called sinusoidal jump. Here, we construct a time series 

that jumps every 20 time steps along a sinusoid function with a period of 180 time steps.  

Within the 20 time steps, we again modeled some white noise. Diagram 13 shows the 

simulated time series and the cycles identified with the ABP. 

  
Diagram 13 a) Values of the simulated time series sinusoidal jump (lhs), b) Distribution of frequencies weighted 

relative to the level-specific maximum frequency of the occurrence of breaks (rhs) 

We can again see a major cycle at 20 time steps resulting from the jump. Additionally, we 

have a cycle of 10 time steps. This results from the white noise within the 20 days in 

combination with strong increasing or decreasing phases of the sinusoid. Then, the ABP will 

split up the 20 time steps with white noise in the middle. Another cycle with significant 

occurrence is around 45 time steps. This is the distance of the inflection point of the sinusoid 

function (180/4=45). 

The third simulated time series is called two sinusoids. Here, we construct a time series with 

two overlaying sinusoidal functions. The first one is with a period of 180 time steps. The 
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second one is with a shorter period of 14 time steps. Additionally, the shorter sinusoid has a 

smaller amplitude. Diagram 14 shows the simulated time series and the cycles identified with 

the ABP. 

  
Diagram 14 a) Values of the simulated time series for two sinusoids (lhs), b) Distribution of frequencies 

weighted relative to the level-specific maximum frequency of the occurrence of breaks (rhs) 

We can see a major cycle of 14 time steps resulting from the shorter sinusoid. In addition, we 

have a cycle around 45 time steps. This again results from the distance of the inflection point 

of the longer sinusoid function. We can also see a significant occurrence of cycles around 90 

time steps. This is half of the period length of the longer sinusoid function. 

Endnotes 

i See Bai and Perron (1998) and Chauvet and Hamilton (2005). 

ii Low-pass, high-pass, and band-pass filtering are related techniques, which can be used to 

isolate and extract cyclical characteristics. E.g. Baxter and King (1999) propose a frequency 

domain filter and compare it to other methods in their seminal article to isolate business 

cycles. Further approaches are e.g. Hodrick and Prescott (1997) or Christiano and Fitzgerald 

(2003). Harvey and Trimbur (2003) propose a generalized model-based filter and, similar to 

Baxter and King, apply it to a simple macroeconomic time series (US investment). 
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iii Cf. Peltzman (2000). Beaudry and Portier (2014) study under which circumstances 

decentralized information can translate into cyclicalities and especially business cycles. See 

also Gabaix (2011) for a study on electricity prices. 

iv MRS approaches in microeconomics are used to identify certain patterns, such as positively 

skewed distributions (over time) of prices in asymmetric pricing. See e.g. Noel (2007). These 

asymmetric pricing models consist of asymmetric cost pass-through models (when input price 

or demand changes) and Edgeworth cycle models. See Haltiwanger and Harrington (1991), 

Rotemberg and Saloner (1986), and Maskin and Tirole (1988). 

v Recent application of non-parametric techniques is found, for example, in Neveu (2013) in 

the fiscal policy area; Claessens et al. (2012) compare financial and business cycles, and 

Canova and Schlaepfer (2015) study the business cycle convergence of Mediterranean 

countries. 

vi Cf. applications such as Borgy et al.’s (2014) investigation of housing and stock prices or 

Olsina and Weber’s (2009) analysis of an electricity price time series. 

vii See for example Zhou et al.’s (2010) use of wavelet analysis to determine break points or 

Preuß et al.’s (2013) attempt to separate different sections for which spectral analysis offers 

insights into the variance characteristics of a time series.  

viii Cf. for example, Baxter and King (1999) choosing business cycle lengths of six to 32 

quarters. 

ix The structural change model corresponds to the structural change model in (1) for the 

original time series instead of for the averaged time series, respectively 𝑇𝑇0 = 1 and 𝑇𝑇𝑚𝑚+1 = 𝑇𝑇. 
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x These patterns can be – in the most simple case – the mean characteristics of the partitioned 

series but can also be given by variances, the coefficient of variations or similar measures. 

xi The test “endogenously decides” upon the number of breaks according to its test statistics. 

xii The covariates 𝑥𝑥𝑡𝑡 are not filtered by moving averages because the impact of their exact 

events or value changes shall be measured. The alternative of filtering covariates will measure 

the impact of a wider interval of covariate changes on the dependent variable, including leads 

and lags. 

xiii See Hartigan (1975) and Hartigan and Wong (1979). 

xiv We will discuss alternative weightings such as amplitude based weighting considering the 

maximum-minimum distance of each filtered time series’ version in section 5.2. 

xv The complete mapping of all of the cycles on the different frequency levels is restricted to 

the following diagram for the sake of clarity.  

xvi Regarding the BP, the positions of the rectangles relative to the time series’ mean does not 

indicate a “high” or “low” state because intercepts of the horizontal regression lines between 

the break dates are allowed to vary. Positions of the rectangles only indicate a “high” or “low” 

state for the MRS. 

xvii Alternative weights and their impact on the identification of cycles are discussed later in 

the article. 

xviii This can also be shown analytically by analysing the BP test statistic, assuming a 

symmetric sinusoidal time series. 
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