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Frequent sequence mining is one of the fundamental building blocks in data mining. While the problem has
been extensively studied, few of the available techniques are sufficiently scalable to handle datasets with
billions of sequences; such large-scale datasets arise, for instance, in text mining and session analysis. In this
article, we propose MG-FSM, a scalable algorithm for frequent sequence mining on MapReduce. MG-FSM
can handle so-called “gap constraints”, which can be used to limit the output to a controlled set of frequent
sequences. Both positional and temporal gap constraints, as well as appropriate maximality and closedness
constraints, are supported. At its heart, MG-FSM partitions the input database in a way that allows us to
mine each partition independently using any existing frequent sequence mining algorithm. We introduce
the notion of w-equivalency, which is a generalization of the notion of a “projected database” used by many
frequent pattern mining algorithms. We also present a number of optimization techniques that minimize
partition size, and therefore computational and communication costs, while still maintaining correctness.
Our experimental study in the contexts of text mining and session analysis suggests that MG-FSM is
significantly more efficient and scalable than alternative approaches.
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1. INTRODUCTION

Frequent sequence mining (FSM) is a fundamental component in a number of impor-
tant data mining tasks. In text mining, for example, frequent sequences can be used
to construct statistical language models for machine translation [Lopez 2008], infor-
mation retrieval [Zhai 2008], information extraction [Tandon et al. 2011], or spam
detection [Kant et al. 2012]. Word associations have also been applied to relation ex-
traction [Nakashole et al. 2011]. In Web-usage mining and session analysis [Srivastava
et al. 2000], frequent sequences describe common behavior across users (e.g., frequent
sequences of page visits). In these and similar applications, inputs to FSM can get very
large and may involve billions of sequences. For example, Microsoft provides access to
an n-gram collection based on hundreds of billions of web pages, and Google published
a corpus of more than 1 billion n-grams. Similarly, in web companies with millions of
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users, the amount of usage data can be substantial. At such massive scales, distributed
and scalable FSM algorithms are essential.

Given a collection of input sequences of items, the goal of FSM is to find all subse-
quences that “appear” in sufficiently many input sequences. In text mining, for exam-
ple, each input sequence corresponds to a document (or a sentence) and each item to a
word in the document. The definition of appears is application-dependent; for instance,
the goal of n-gram mining is to find frequent consecutive word sequences of length
n, whereas the goal of word association mining is to find combinations of words that
frequently appear in close proximity (but not necessarily consecutively). As another
example, in session analysis, input sequences correspond to user sessions and items to
user actions (often with an additional timestamp). Depending on the application, we
may be interested in sequences of either consecutive or nonconsecutive actions that are
sufficiently close (e.g., few actions in between or temporally close). This requirement
of closeness is addressed by gap-constrained frequent sequence mining [Srikant and
Agrawal 1996], in which FSM is parameterized with a maximum-gap parameter γ .
Informally, for a given input sequence, we consider only subsequences that can be gen-
erated without skipping more than γ consecutive items. We obtain n-gram mining for
γ = 0, word association mining for (say) γ = 5, and unconstrained FSM [Zaki 2001b]
for γ = ∞.

In this article, we propose a scalable distributed (i.e., shared-nothing) FSM algorithm
called MG-FSM.1,2 Although scalable algorithms exist for n-gram mining [Huston et al.
2011; Berberich and Bedathur 2013], MG-FSM is the first distributed algorithm that
supports general gap constraints. MG-FSM targets MapReduce [Dean and Ghemawat
2004]—which constitutes a natural environment for text mining and analysis of user
access logs—but is also amenable to other distributed data processing platforms. At a
high level, MG-FSM carefully partitions and rewrites the set of input sequences in such
a way that each partition can be mined independently and in parallel. Once partitions
have been constructed, an arbitrary gap-constrained FSM algorithm can be used to
mine each partition; no postprocessing of results across partitions is needed.

MG-FSM extends the notion of item-based partitioning, which underlies a number of
frequent pattern mining algorithms, including FP-growth [Han et al. 2004] as well as
the distributed algorithms by Buehrer et al. [2007] and Cong et al. [2005] for frequent
itemset mining, to gap-constrained frequent sequence mining. In more detail, we first
develop a basic partitioning scheme that ensures correctness but allows for flexible par-
tition construction. This flexibility is captured in our notion of w-equivalency, which
generalizes the concept of a “projected database” used by many FSM algorithms. We
also propose a number of novel optimization techniques that aim to reduce compu-
tational and communication costs, including minimization (prunes entire sequences),
reduction (shortens long sequences), separation (splits long sequences), aggregation (of
repeated sequences), and lightweight compression.

We also discuss various extensions to MG-FSM for special application scenarios.
First, we show how MG-FSM can efficiently handle datasets in which input sequences
are very long. Second, we discuss methods to support temporal sequence mining, in
which items are annotated with timestamps. This allows MG-FSM to handle temporal
gaps (such as “at most one minute” for session analysis). Finally, we extend MG-
FSM to support mining only maximal and closed sequences with small overhead. Such
sequences concisely represent the set of all frequent sequences and can significantly
reduce the number of frequent sequences being mined with minimal loss of information.

1A preliminary version of this article appeared in Miliaraki et al. [2013].
2The source code of MG-FSM is publicly available at MG-FSM [2014].
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Our experiments, in which we mine databases with more than 1 billion sequences,
suggest that MG-FSM is multiple orders of magnitude faster than baseline algorithms
for general gap-constrained FSM and is competitive to state-of-the-art algorithms for
n-gram mining.

The remainder of this article is organized as follows. In Section 2, we formally define
the problem of gap-constrained frequent sequence mining and establish the notation
used throughout this work. In Section 3, we outline the MG-FSM algorithm and in-
troduce the notion of w-equivalency on which MG-FSM is based. In Section 4, we
describe in more detail the partition construction step of MG-FSM. Section 5 discusses
an extension of MG-FSM for mining maximal or closed sequences. Section 6 includes
implementation details, as well as a discussion on how to handle long input sequences
and temporal sequences. Section 7 describes the results of our experimental study. We
discuss related work in Section 8 and conclude in Section 9.

2. PRELIMINARIES

2.1. Problem Statement

A sequence database D = { S1, . . . , S|D| } is a multiset of input sequences.3 A sequence
is an ordered list of items from some dictionary � = { w1, . . . , w|�| }.4 We write S =
s1s2 · · · s|S| to denote a sequence of length |S|, where si ∈ � for 1 ≤ i ≤ |S|. Denote by
�+ the set of all nonempty sequences constructed with items from �. In what follows,
we will often use symbol T to refer to an input sequence in the database and symbol S
to refer to an arbitrary sequence.

We now formally define the problem of gap-constrained frequent sequence mining
considered in this article. We make use of three main parameters which control the
set of sequences being mined: the support threshold σ , the maximum-gap parameter
γ , and the length threshold λ. In a nutshell, σ controls when a sequence is considered
frequent, γ controls whether contiguous sequences (γ = 0) or sequences with gaps
(γ > 0) are to be mined, and λ places a length restriction on the output sequences. The
choice of values for these parameters is application dependent; we give some examples
at the end of this section.

Denote by γ ≥ 0 a maximum-gap parameter. We say that S is a γ -subsequence of T ,
denoted S ⊆γ T , when S is a subsequence of T and there is a gap of at most γ between
consecutive items selected from T . Standard n-grams correspond to 0-subsequences.
Formally, S ⊆γ T if and only if there exist indexes i1 < · · · < i|S| such that: (i) sk = tik for
1 ≤ k ≤ |S|, and (ii) ik+1 − ik − 1 ≤ γ for 1 ≤ k < |n|. For example, if T = abcd, S1 = acd
and S2 = bc, then S1 ⊆1 T (but S1 �⊆0 T ) and S2 ⊆0 T .

The γ -support Supγ (S,D) of S in database D is given by the multiset

Supγ (S,D) = {T ∈ D : S ⊆γ T }.
Denote by fγ (S,D) = |Supγ (S,D)| the γ -frequency of sequence S. Our measure of
frequency corresponds to the notion of document frequency in text mining, that is, we
count the number of input sequences (documents) in which S occurs (as opposed to the
total number of occurrences of S). For support threshold σ > 0, we say that sequence
S is (σ, γ )-frequent if fγ (S,D) ≥ σ . Since many applications of FSM need to consider

3We indicate both sets and multisets using { }; the appropriate type is always clear from the context. The
operators �, �, and \+ correspond to multiset union, multiset intersection, and multiset difference.
4A more general variant of this problem is often considered in the literature, in which sequences are formed
of itemsets rather than of individual items. We focus on the important special case of individual items in this
article (e.g., textual data, user sessions, event logs). Our methods can potentially be used to mine sequences
of itemsets as well; see the discussion in Section 6.6.
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only short frequent sequences, we introduce an additional length parameter λ; only
sequences of length at most λ are output.

The gap-constrained frequent sequence mining problem considered in this article is
as follows.

Given a support threshold σ ≥ 1, a maximum-gap parameter γ ≥ 0, and a
length threshold λ ≥ 2, find the set Fσ,γ,λ(D) of all (σ, γ )-frequent sequences
in D of length at most λ. For each such sequence, also compute its frequency
fγ (S,D).

For database D = { abcaaabc, abcbbabc, abcccabc }, we obtain F3,0,2(D) = {a, b, c,
ab, bc}, F3,1,2(D) = { a, b, c, ab, ac, bc }, and F3,2,2(D) = { a, b, c, ab, ac, bc, ca }.

The appropriate choice of parameter values depends on the application. The Google
n-gram corpus [Brants and Franz 2006], for example, consists of sequences of at most
5 words that occur contiguously at least 40 times in a large document corpus; this
setup corresponds to σ = 40, γ = 0, and λ = 5. A slight increase in γ lifts the
contiguity requirement; this is useful for word association mining and allows to find
frequent phrases that do not necessarily occur consecutively (e.g., “celebrate birthday”
occurs nonconsecutively in “They celebrate his 23rd birthday.” for γ = 2). In other
applications, much larger values of γ may arise. For example, consider the problem of
mining frequent sequences of user actions (e.g., buying a product, visiting a webpage,
listening to a song) from log files; here successive actions should occur in close temporal
proximity (say, within hours, days, or weeks). As we describe in Section 6.6, such
temporal gap constraints can be rewritten into positional gap constraints as defined
before (which are then often large).

2.2. MapReduce

MapReduce, developed by Dean and Ghemawat [2004] at Google, is a popular frame-
work for distributed data processing on clusters of commodity hardware. It operates on
key-value pairs and allows programmers to express their problem in terms of a map
and a reduce function. Key-value pairs emitted by the map function are partitioned
by key, sorted, and input into the reduce function. An additional combine function can
be used to pre-aggregate the output of the map function and increase efficiency. The
MapReduce runtime takes care of execution and transparently handles failures in the
cluster. While originally proprietary, open-source implementations of MapReduce, most
notably Apache Hadoop, are available and have gained widespread adoption.

2.3. Naı̈ve Approach

A naı̈ve approach to gap-constrained FSM in MapReduce modifies WORDCOUNT, which
determines how often every word occurs in a document collection and is often used to
explain how MapReduce works, as follows. In the map function, which is invoked on
each input sequence, we emit all distinct γ -subsequences of length at most λ that occur
in the input sequence. In the reduce function, we count how often every subsequence S
has occurred, thus determining fγ (S,D), and emit it if frequent. The method is gener-
ally inefficient and not scalable since it creates and communicates large intermediate
data: For example, if |S| = n and λ ≥ n, the naı̈ve approach emits per input sequence
O(n2) key-value pairs for γ = 0 and O(2n) key-value pairs for γ ≥ n.

3. THE MG-FSM ALGORITHM

The idea behind item-based partitioning is to create one partition Pw for every σ -
frequent item w ∈ �; we refer to w as the pivot item of partition Pw. In the context
of frequent itemset mining, item-based partitioning is exploited in the well-known
FP-growth algorithm [Han et al. 2004] as well as the distributed frequent itemset
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ALGORITHM 1: The MG-FSM algorithm
Require: Sequence database D , σ , γ , λ, f-list Fσ,0,1(D)
1: MAP(T ):
2: for all distinct w ∈ T s.t. w ∈ Fσ,0,1(D) do
3: Construct a sequence database Pw(T ) that is (w, γ, λ)-equivalent to { T }
4: For each S ∈ Pw(T ), output (w, S)
5: end for
6:
7: REDUCE(w,Pw):
8: Fσ,γ,λ(Pw) ← FSMσ,γ,λ(Pw)
9: for all S ∈ Fσ,γ,λ(Pw) do
10: if p(S) = w and S �= w then
11: Output (S, fγ (S,Pw))
12: end if
13: end for

miners of Buehrer et al. [2007] and Li et al. [2008]. In our setting of frequent sequence
mining, partition Pw is itself a sequence database (also called projected database) and
captures relevant information about (some) frequent sequences containing pivot w.
We first describe the MG-FSM algorithm in general. MG-FSM is based on the notion
of w-equivalency which we introduce in Section 3.3. In particular, w-equivalency is a
necessary and sufficient condition for the correctness of MG-FSM, which we establish
in Section 3.4.

3.1. Algorithm Overview

MG-FSM is divided into a preprocessing phase, a partitioning phase, and a mining
phase; all phases are fully parallelized. In the preprocessing phase, we gather basic
statistics about the data. In the partitioning phase, we construct w-equivalent parti-
tions for all frequent items w in �. Each of these partitions is mined independently
and in parallel in the mining phase using an FSM algorithm of choice. The final out-
put is obtained by filtering the output of the FSM algorithm locally at each partition.
MG-FSM is given as Algorithm 1; the notation is described next and in Section 3.3.

Preprocessing. In the preprocessing phase, we compute the frequency of each item
w ∈ � and construct the set Fσ,0,1(D) of frequent items, commonly called f-list. This
can be done efficiently in a single MapReduce job (by running a version of WORDCOUNT

that ignores repeated occurrences of items within an input sequence). At this point, we
can already output the set of frequent sequences of length 1; we subsequently focus on
sequences of length 2 and above.

In MG-FSM, we use the f-list to establish a total order < on �: Set w < w′ if f0(w,D) >
f0(w′,D); ties are broken arbitrarily. Thus items are ordered by decreasing frequency.
Write S ≤ w if w′ ≤ w for all w′ ∈ S and denote by �+

≤w = {S ∈ �+ : w ∈ S, S ≤ w}
the set of all sequences that contain w but no items larger than w. Finally, denote by
p(S) = minw∈S(S ≤ w) the pivot item of sequence S, that is, the largest item in S. Note
that p(S) = w ⇐⇒ w ∈ S ∧ S ≤ w ⇐⇒ S ∈ �+

≤w. For example, when S = abc,
then S ≤ c and p(S) = c; here, as well as in all subsequent examples, we assume order
a < b < c < · · · .

Partitioning phase (map). The partitioning and mining phases of MG-FSM are per-
formed in a single MapReduce job. We construct partitions Pw in the map phase:
For each distinct item w in each input sequence T ∈ D , we compute a small sequence
database Pw(T ) and output each of its sequences with reduce key w. We require Pw(T )
to be “(w, γ, λ)-equivalent” to T ; see Section 3.3. For now, assume that Pw(T ) = {T }; a
key contribution of this article lies in the refined construction of Pw(T ).
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Mining phase (reduce). The input to the mining phase, which is run in the reduce
step, is given by

Pw =
⊎

T ∈D,w∈T

Pw(T ),

which is automatically constructed by the MapReduce framework. We run an arbi-
trary FSM algorithm with parameters σ , γ , and λ on Pw (denoted FSMσ,γ,λ(Pw) in
Algorithm 1) to obtain the frequent sequences Fσ,γ,λ(Pw) as well as their frequen-
cies. Since every frequent sequence may be generated at multiple partitions, we filter
the output of the FSM algorithm in order to produce each frequent sequence exactly
once. In particular, we output sequence S at partition Pp(S), that is, at the parti-
tion corresponding to its largest item. Observe that with our choice of Pw(T ) = { T },
fγ (S,Pw) = fγ (S,D) for all sequences S with w ∈ S, so that MG-FSM produces the
correct result.

MG-FSM is reminiscent of the distributed frequent itemset mining algorithms
of Buehrer et al. [2007] and Li et al. [2008]; the key difference lies in partition con-
struction (line 3 of Algorithm 1), that is, in our notion of w-equivalency.

3.2. Example

Consider the database

Dex = { acb, dacbd, dacbddbca, bd, bcaddbd, addcd } (1)

and pivot c. Under our running assumption, we set Pc(T ) = { T } if c ∈ T and Pc(T ) = ∅
otherwise. We thus obtain

Pc = { acb, dacbd, dacbddbca, bcaddbd, addcd } . (2)

With such a partitioning, Pc is large so that there is substantial communication cost.
Moreover, the FSM algorithm run on Pc in the mining phase produces a large number
of sequences that do not pass the subsequent filter. For example, F1,1,3(Pc) contains
sequences da, dab, add, and so on, all of which are filtered out (and, in fact, also produced
at partition Pd). Such redundant computation is wasteful in terms of computational
cost. In what follows, we introduce the concept of w-equivalency which will allow us to
significantly reduce both communication and computational costs.

3.3. w-Equivalency

As mentioned earlier, w-equivalency is a necessary and sufficient condition for the
correctness of MG-FSM; the flexibility implied by w-equivalency forms the basis of our
partition construction algorithms of Section 4.

Say that a sequence S is a pivot sequence with respect to w ∈ � if p(S) = w and
2 ≤ |S| ≤ λ. Denote by

Gw,γ,λ(T ) = [
F1,γ,λ({ T }) ∩ �+

≤w

] \ { w }
the set of pivot sequences that occur in T , that is, are γ -subsequences of T . If S ∈
Gw,γ,λ(T ), we say that T (w, γ, λ)-generates (or simply w-generates) S. For example,

Gc,1,2(acbf deacf c) = { ac, cb, cc } .

Recall that our choice of < is based on the f-list, which ultimately aims to reduce vari-
ance in partition sizes: Partitions corresponding to highly frequent items are affected
by many input sequences, but each input sequence generates few pivot sequences (e.g.,
a does not generate any pivot sequence in the previous example). In contrast, partitions
corresponding to less frequent pivot items are affected by few input sequences, but each
input sequence generates many pivot sequences (e.g., f ).
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We also extend the previous definition to sequence databases as follows:

Gw,γ,λ(D) =
⊎

T ∈D

Gw,γ,λ(T ). (3)

Note that Gw,γ,λ(T ) is a set, whereas Gw,γ,λ(D) is a multiset. This difference is a con-
sequence of our use of document frequency, that is, we generate each subsequence at
most once per input sequence but potentially many times per sequence database. We
are now ready to define w-equivalency.

Definition 3.1. Two sequence databases D and Pw are (w, γ, λ)-equivalent (or simply
w-equivalent) if and only if

Gw,γ,λ(D) = Gw,γ,λ(Pw).

Both databases thus generate the same (multiset of) pivot sequences.
Continuing the example of Section 3.2, observe that Pc as given in Eq. (2) is (c, 1, 3)-

equivalent to D (see the discussion at the end of this section). However, so is partition

P ′
c = {acb, acb, acb, bca, bca}, (4)

which is significantly smaller and contains many repeated sequences. In Section 4, we
present a number of rewriting techniques that ultimately produce P ′

c as given before.
The following lemma establishes that a w-equivalent database retains the frequency

(with respect to γ ) of pivot sequences; this property is exploited by our MG-FSM
algorithm.

LEMMA 3.2. If D and Pw are (w, γ, λ)-equivalent, then

fγ (S,Pw) = fγ (S,D)

for all S ∈ �+
w such that 2 ≤ |S| ≤ λ.

PROOF. Denote by f (T ,A ) the frequency of T in multiset A . Note that f counts
input sequences, whereas fγ counts γ -subsequences. Pick an arbitrary pivot sequence
S, that is, p(S) = w and 2 ≤ |S| ≤ λ. Since Pw is (w, γ, λ)-equivalent to D , we have

Gw,γ,λ(Pw) = Gw,γ,λ(D)
=⇒ f (S, Gw,γ,λ(Pw)) = f (S, Gw,γ,λ(D))

⇐⇒ |{ T ∈ Pw : S ∈ Gw,γ,λ(T )
}|

= |{ T ∈ D : S ∈ Gw,γ,λ(T )
}|

⇐⇒ |{ T ∈ Pw : S ⊆γ T
}| = |{ T ∈ D : S ⊆γ T

}|
⇐⇒ fγ (S,Pw) = fγ (S,D),

where we applied the definition of Gw,γ,λ(D) and the fact that S ⊆γ T if and only if
S ∈ Gw,γ,λ(T ) for our choice of S.

Observe that the frequency fγ (S,Pw) of any non-pivot sequence S does not affect
w-equivalency and can thus be arbitrary and, in particular, larger than fγ (S,D). As we
will see, this gives more flexibility for constructing partitions while still maintaining
correctness. Also note that a partition can be w-equivalent to D for more than one item
w. The perhaps simplest, nontrivial partitioning that is w-equivalent to D is given by
Pw = { T ∈ D : w ∈ T }, which corresponds to the partitioning used in the beginning
of this section. It is easy to see there is an infinite number of sequence databases Pw

such that Pw is (w, γ, λ)-equivalent to D . All these databases agree on the multiset
Gw,γ,λ(Pw) of generated pivot sequences.
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3.4. Correctness of MG-FSM

The following theorem establishes the correctness of MG-FSM.

THEOREM 3.3. MG-FSM outputs each frequent sequence S ∈ Fσ,γ,λ(D) exactly once
and with frequency fγ (S,D). No other sequences are output.

PROOF. We first show that, if MG-FSM outputs a sequence S, it does so exactly once.
If |S| = 1, S is output in the preprocessing phase but not in the mining phase (due to
line 7 of Algorithm 1). If |S| > 1, S is output at partition Pp(S) in the mining phase
(passes line 7) but at no other partitions (does not pass line 7).

Now fix some S ∈ Fσ,γ,λ(D). We show that MG-FSM outputs S with correct frequency.
If |S| = 1, then S occurs in the f-list and is output with correct frequency in the
preprocessing phase. Assume |S| > 1 and set w = p(S). We claim that S is output
with correct frequency at partition Pw during the reduce phase of Algorithm 1. First,
observe that Pw is w-equivalent to D since

Gw,γ,λ(Pw) =
⊎

T ∈D

Gw,γ,λ(Pw(T )) =
⊎

T ∈D,w∈T

Gw,γ,λ(T )

=
⊎

T ∈D

Gw,γ,λ(T ) = Gw,γ,λ(D).

Here the first equality follows from Eq. (3) and line 4 of Algorithm 1, the second equality
from the definition of w-equivalency and line 3, and the third equality from the fact that
Gw,γ,λ(T ) = ∅ if w /∈ T . From Lemma 3.2, we immediately obtain fγ (S,Pw) = fγ (S,D).
Since therefore S ∈ Fσ,γ,λ(Pw), S is found by the FSM algorithm run in line 8 of
Algorithm 1 and the assertion follows.

Now fix some S /∈ Fσ,γ,λ(D). We show that MG-FSM does not output S. If |S| = 1,
then S = w and fγ (w) < σ so that S is neither output in the preprocessing phase (not
σ -frequent) nor in the mining phase (filtered out in line 7). If |S| > λ, we also do not
output S since it is too long to be produced by FSMσ,γ,λ in line 8 of Algorithm 1. Finally,
if 2 ≤ |S| ≤ λ, then S could potentially be output at partition Pw, where w = p(S).
However, by the preceding arguments, we have fγ (S,Pw) = fγ (S,D) < σ , so that
S /∈ FSMσ,γ,λ(Pw).

4. PARTITION CONSTRUCTION

Recall that MG-FSM rewrites each input sequence T into a small sequence database
Pw(T ) for each w ∈ T . We have shown that MG-FSM produces correct results if Pw(T )
is w-equivalent to T , that is, if Gw,γ,λ(T ) = Gw,γ,λ(Pw(T )). In this section, we propose
rewriting methods that aim to minimize the overall size of Pw(T ). In fact, the smaller
the Pw(T ), the less data needs to be communicated between the map and reduce phases
of MG-FSM, and the less work need be performed by the FSM algorithm in the mining
phase.

To see the need for rewriting, assume that we simply set Pw(T ) = { T } as before.
Such an approach is impractical for a number of reasons.

(1) Input sequence T is replicated to d partitions, where d corresponds to the number
of distinct items in T ; this is wasteful in terms of communication cost.

(2) Every frequent sequence S ∈ Fσ,γ,λ(D) will be computed multiple times: If S con-
tains d distinct items, it is first computed by the FSM algorithm at each of the d
corresponding partitions but then output at partition Pp(S) only; this is wasteful in
terms of computational cost. S may also be computed (but not output) at partitions
corresponding to distinct items that do not occur in S.
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(3) The choice of Pw(T ) = { T } leads to highly imbalanced partition sizes: Partitions
corresponding to frequent items are large (since these items occur in many input
sequences), whereas partitions corresponding to less frequent items will be smaller
(since these items occur in less input sequences).

Our rewrites address each of these points. (1) To reduce communication cost, we do
not replicate T completely to d partitions. Instead, we send only the “relevant part”
of T to that subset of the d partitions in which T generates pivot sequences. (2) Our
rewrites ensure that partition Pw does not contain any items larger than w and only
those items less than w that contribute to pivot sequences. If S contains d distinct items,
it is mined and output only at that partition corresponding to the least frequent item w
of these items. As before, S may be mined (but not output) at partitions corresponding
to items that do not occur in S, but now only at those partitions corresponding to items
that are less frequent than w. This greatly reduces computational cost. (3) Finally,
our rewrites ensure that partitions corresponding to frequent items will contain many
short sequences with few distinct items, whereas those corresponding to infrequent
items contain few long sequences with many distinct items. Although we do not make
any formal claims, our experiments in Section 7.2 suggest that this approach drastically
reduces variance in partition sizes.

To get some insight into potential rewrites, consider input sequence T = cbdbc.
Each of the following sequence databases is (c, 0, 2)-equivalent to T : P1 = {cbdbc},
P2 = {cbbc}, P3 = {cbc}, and P4 = {cb, bc}. Note that, in P4, the frequencies of both b
and c increased by one since they occur in two sequences; our notion of w-equivalency
allows for such cases.5 It is not obvious which of these databases is best overall. On
the one hand, P3 appears preferable to P1 and P2 since it contains less items. On the
other hand, the maximum sequence length P4 is smaller than the one of P3 (i.e., 2
versus 3).

In what follows, we propose a number of properties that are useful in partition
construction: minimality, irreducibility, and inseparability. Since it is computationally
expensive to satisfy all of these properties, we give efficient rewriting algorithms that
satisfy weaker, practical versions.

4.1. Minimality

In this and subsequent sections, we assume that we are given an input sequence T and
aim to produce a w-equivalent sequence database Pw(T ). Unless otherwise stated, our
running assumption is that Pw(T ) is w-equivalent to T .

Minimality, as defined shortly, ensures that Pw(T ) contains no irrelevant sequences,
that is, sequences that do not generate a pivot sequence.

Definition 4.1 (Minimality). A sequence database Pw(T ) is (w, γ, λ)-minimal if

Gw,γ,λ(S) �= ∅ for all S ∈ Pw(T ).

Clearly, any sequence S ∈ Pw(T ) for which Gw,γ,λ(S) = ∅ does not contribute to
w-equivalency; we can thus safely prune such irrelevant sequences. Minimality also
allows to prune entire input sequences, even if they contain the pivot. Consider, for
example, input sequence T = addcd with pivot c. For γ = 1 (and any λ ≥ 2), T does
not generate any pivot sequences so that we can set Pc(T ) = ∅. Note that, for this
reason, the choice of Pw(T ) = { T } does not guarantee minimality. For any γ > 1, T
does generate pivot sequence ac so that Pc(T ) becomes nonempty.

5Since b and c are not pivot sequences, their frequencies do not affect w-equivalency: We have Gc,0,2({T }) =
{cb, bc} = Gc,0,2(P4) and thus {T } and P4 are w-equivalent. MG-FSM uses this property to split long
sequences into shorter ones.
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In general, we prune sequences that either do not contain the pivot or in which each
occurrence of a pivot is surrounded by sufficiently many irrelevant items, that is, items
larger than the pivot. In particular, Gw,λ,γ (T ) �= ∅ if and only if there is at least one
occurrence of some item w′ ≤ w within distance γ + 1 of an occurrence of pivot w.
Length parameter λ does not influence minimality. If a sequence is irrelevant for some
choice of γ , it is also irrelevant for all γ ′ < γ ; the opposite does not hold in general.
Thus minimality pruning is most effective when γ is small.

4.2. Irreducibility

Irreducibility is one of the main concepts employed by MG-FSM. We say that a sequence
is irreducible if there is no shorter way to write it.

Definition 4.2 (Irreducibility). A sequence S is (w, γ, λ)-irreducible if there exists no
sequence S′ with length |S′| < |S| such that

Gw,γ,λ(S) = Gw,γ,λ(S′).

If such a sequence S′ exists, we say that S reduces to S′. Moreover, we say Pw(T )
is irreducible if all sequences S ∈ Pw(T ) are irreducible. Consider, for example, the
sequences S = acdeb and S′ = acb and pivot c. Here S′ is obtained from S by removing
all irrelevant items, that is, all items larger than the pivot. Then S′ is a (c, 2, 2)-
reduction of S; it is not, however, a (c, 1, 2)-reduction of S. This is because cb ∈ Gc,1,2(S′)
but cb /∈ Gc,1,2(S). Thus, perhaps contrary to expectation, we cannot simply remove all
irrelevant items to obtain a reduced sequence: Whether an irrelevant item can be
dropped depends on the particular choice of γ and λ. Note that the shortest (c, 1, 2)-
reduction of S is given by ac.

We can reduce sequences in more sophisticated ways than by simply removing ir-
relevant items. For example, S = cbac can be (c, 0, 2)-reduced to acb, but cannot be
(c, 0, 2)-reduced to any sequence S′ ⊂∞ S. Thus reduction can be non-monotonic, that
is, may require reordering of items. As an additional example, consider the sequence
S = acadac which (c, 0, 2)-generates sequence ac twice. Since repeated generations
do not affect w-equivalency, we can reduce S to aca. Both detection of non-monotonic
reductions and (exhaustive) detection of repeatedly generated pivot sequences appear
computationally challenging. Since we perform sequence reduction for every input se-
quence, we need it to be extremely efficient. We thus make use of a weaker form of
irreducibility which does not consider such sophisticated rewrites.

To avoid confusion with repeated items, we explain our reduction techniques using
indexes instead of items. Let T = s1 · · · sl and consider pivot w. We say that index i
is w-relevant if si is w-relevant, that is, si ≤ w; otherwise index i is w-irrelevant. In
sequence abddc, for example, indexes 3 and 4 are c-irrelevant. Since irrelevant indexes
do not contribute to a pivot sequence, it suffices to keep track of the fact that an index
i is irrelevant, that is, we do not need to retain value si. We thus replace all items at
irrelevant indexes by a special blank symbol, denoted “ ”; in what follows, we assume
that w < for all w ∈ �. Using blanks, sequence abddc is written as ab c (for pivot c).
As discussed in Section 6, our use of a blank symbol is helpful in an implementation of
MG-FSM since it enables effective compression of irrelevant items (e.g., abddc can be
written as ab 2c).

In what follows, we describe a number of reductions that reduce T by removing items
or blanks (while still maintaining correctness). Our first reduction, termed unreach-
ability reduction, removes unreachable items, that is, items that are “far away” from
any pivot. Fix an input sequence T = s1 · · · sl and pick any index 1 ≤ i ≤ |T |. To deter-
mine whether index i is unreachable, we consider the “distance” of i to its surrounding
pivots. Suppose there is a pivot at an index i′ < i, that is, si′ = w, and denote by iprev
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the largest such index. Informally, the left distance lw,γ,λ(i | T ) of index i is given by
the smallest number of items that we need to “step onto” when moving from iprev to
i via: (1) relevant items and (2) by skipping at most γ items in each step. If no such
path exists or if its length is larger than λ, we set lw,γ,λ(i | T ) = ∞. Similarly, we define
the right distance rw,γ,λ(i | T ) of index i as the distance to the closest pivot to the right
of index i. A formal definition of left and right distances is given in Appendix A. For
example, we obtain the following left and right distances for pivot c, γ = 1, and λ = 4.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
si c a b a b a c a
lc,1,4 1 2 (2) 3 4 4 1 (2) (2)
rc,1,4 1 4 4 3 (3) 2 (2) 1

Here blank entries indicate infinite distance and entries in parentheses indicate irrel-
evant items (which cannot be “stepped onto”). For example, the closest pivot to the left
of index 5 occurs at index 1. We can reach index 5 from index 1 via the items at the
four indexes 1 · 2 · 4 · 5 (but not via 1 · 3 · 5 because index 3 is irrelevant); thus the left
distance of index 5 is four.

Definition 4.3 (Reachability). Let T = s1 · · · sl. Index i is (w, γ, λ)-reachable if

min
{

lw,γ,λ(i | T ), rw,γ,λ(i | T )
} ≤ λ.

Continuing the prior example, indexes 1–12 are (c, 1, 4)-reachable, indexes 1–4 and
6–12 are (c, 1, 3)-reachable, and indexes 1–3 and 8–12 are (c, 1, 2)-reachable.

LEMMA 4.4 (UNREACHABILITY REDUCTION). Let T = s1 · · · sl and denote by I the set of
all (w, γ, λ)-unreachable indexes in T . Then

Gw,γ,λ(T ) = Gw,γ,λ(T−I),

where T−I is obtained by removing the items at indexes I from T .

A proof of this lemma is given in Appendix A. The lemma asserts that, in fact, we can
simply remove all unreachable indexes at once. In our example, we obtain ca a c for
λ = 2 (removing indexes 4–7, 13, and 14) and ca bb a c for λ = 3 (removing indexes
5, 13, and 14).

The computational cost of our unreachability reduction mainly depends on the time
required to compute left and right distances. This can be done efficiently as follows: We
compute the left distances in a forward scan of T , and right distances in a subsequent
backward scan. During each scan, we keep track of the position i and distance d of the
most recently processed relevant item; we also keep track of the index i′ of the most
recently processed relevant item at distance d − 1. This information is sufficient to
compute the distance of the currently processed item. With this approach, computation
of distances takes time linear in |T |.

Reconsider the sequence T = ca a c from before. Clearly, the two blanks at the
end do not carry useful information so that we would like to reduce T to ca a c. The
following lemma asserts that we can do so, that is, we can drop prefixes and suffixes of
irrelevant items.

LEMMA 4.5 (PREFIX/SUFFIX REDUCTION).

Gw,γ,λ( l1 T l2 ) = Gw,γ,λ(T ).

See Appendix B for a proof of this lemma. Prefix/suffix reduction is particularly
effective in conjunction with unreachability reduction. In fact, irrelevant items that
are not part of a prefix or suffix in T can become so after removing unreachable items.
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In our ongoing example, this is the case for the irrelevant items at indexes 11 and 12,
which became part of the suffix only after the removal of indexes 13 and 14. In fact, if
T contains exactly one pivot, and T ′ is obtained from T by an unreachability reduction
followed by a prefix/suffix reduction, one can show that |T ′| ≤ 2(γ + 1)λ, a quantity
that is independent of |T |.

The following lemma asserts that we can shrink long sequences of blanks.

LEMMA 4.6 (BLANK REDUCTION). For k > γ + 1,

Gw,γ,λ(T1
kT2) = Gw,γ,λ(T1

γ+1T2).

The proof is similar to that of Lemma 4.5 and omitted. Thus every sequence of k > γ +1
blanks can be replaced by exactly γ+1 blanks. Note that blank reduction can be effective
only when T contains multiple occurrences of the pivot (since otherwise T does not
contain more than γ blanks after our unreachability and prefix/suffix reductions).

The preceding reductions are not complete, that is, they do not necessarily produce
irreducible sequences. For example, sequence ca a c is (c, 1, 2)-reducible to ca ac (and,
in fact, to aca); this reduction is not covered by our techniques. In our experiments,
however, we found that the simple reduction techniques described earlier already lead
to a significant reduction of partition sizes.

4.3. Aggregation

Reconsider the example database Dex given in Eq. (1). If we apply all the reduction
techniques given before, we obtain

P ′′
c = { acb, acb, acb bca, bca }

for pivot c, σ = 1, γ = 1, and λ = 3. Observe that sequence acb is repeated in P ′′
c ,

even though Dex does not contain any repeated sequences. To reduce communication
cost, we can aggregate such repeated sequences and represent them using (sequence,
frequency)-pairs. Thus we obtain

P ′′′
c = {(acb, 2), (acb bca, 1), (bca, 1)}.

Compression of repeated sequences can be performed efficiently by exploiting the com-
bine functionality of MapReduce. When the FSM algorithm run in the mining phase
is able to exploit frequency information, computational cost and memory consumption
may also reduce; see Section 6 for details.

4.4. Inseparability

Recall the set P ′′
c provided earlier. We show next that sequence acb bca ∈ P ′′

c can
be “split” into two sequences acb and bca without sacrificing (c, 1, 3)-equivalency to
Dex. Such sequence splitting, which we refer to as separation, is meant to increase the
effectiveness of aggregation. In fact, if we perform the preceding split and aggregate,
we obtain partition {(acb, 3), (bca, 2)} which is compact and constitutes an aggregated
version of the partition of Eq. (4) that we promised to obtain in Section 3.3.

Definition 4.7 (Separability). An input sequence T is weakly (w, γ, λ)-separable if
there exist sequences T1 and T2 such that Gw,γ,λ(T ) = Gw,γ,λ({ T1, T2 }), Gw,γ,λ(T1) �= ∅,
and Gw,γ,λ(T2) �= ∅; otherwise it is weakly (w, γ, λ)-inseparable. T is strongly (w, γ, λ)-
separable (or simply (w, γ, λ)-separable) if additionally |T1| + |T2| ≤ |T |.

Note that separation is possible only because we allow for an increase of frequencies
on nonpivot sequences in Pw(T ). If a sequence is w-separable, we can safely write it in
terms of multiple shorter sequences which we refer to as splits. As indicated previously,
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both strong and weak separation improve the effectiveness of aggregation, and strong
separation additionally reduces the overall partition size.

Revisiting S = acb bca, we observe that S is (c, 1, 3)-separable into splits { acb, bca }.
In general, one can test for weak separability as follows: Construct the set Gw,γ,λ(S)
and create a graph (V, E), where V = Gw,γ,λ(S) and edge (S1, S2) ∈ E if there exists
an item w′ ∈ � and a sequence S′ of form ww′ or w′w such that S′ ⊆0 S1 and S′ ⊆0
S2. If the resulting graph is connected, S is not (even weakly) (w, γ, λ)-separable.
Intuitively, this is because any input sequence that generates Si, i ∈ { 1, 2 }, will also
generate S′. Since S′ is a pivot sequence, however, we must not generate it in more than
one split, which implies that S1 and S2 must be generated by the same split. In our
example, we have Gc,1,3(S) = { ac, acb, cb, bc, bca, ca }; the corresponding graph has two
connected components so that S is (c, 1, 3)-separable. As a final remark, one can show
that any sequence S can be separated into k splits, where k is the number of connected
components in the graph corresponding to the pivot sequences generated by S.

As with reduction, there are quite sophisticated cases of separable sequences. As a
pathological example, it is possible that an irreducible sequence is weakly separable
only into irreducible sequences of larger length. Consider, for example, sequence T =
abc, pivot c, γ = 1, and λ = 3. Here T is irreducible and can be separated into splits
{ ac, a bc } in which each sequence is again irreducible. Separations such as this one
appear counterproductive. Moreover, the weak separation detection method outlined
before is too expensive in practice since it generates Gw,γ,λ(S). In what follows, we
present a simple separation technique, called blank separation, that is efficient and
handles cases such as sequence acb bca discussed earlier.

Assume S is of form S1
k1 S2

k2 · · · kn−1 Sn, where ki > γ for 1 ≤ i < n, that is,
consists of subsequences separated by sufficiently many blanks. Our blank separation
technique first breaks up S into the set B(S) = { S1, . . . , Sn }; irrelevant subsequences
(i.e., subsequences that do not generate a pivot sequence) are not included in B(S). For
example, B(acb bca) = { acb, bca } for γ = 1. Since the Si are separated by at least
γ + 1 gaps in S, every pivot sequence in S is generated by one or more of the Si (i.e., it
does not span multiple Si). Thus D(Gw,γ,λ(B(S))) = Gw,γ,λ(S), where D(A) denotes the
set of distinct sequences in multiset A. We now consider the Si as candidate splits and
proceed as previously: We first construct a graph G = (V, E), where V = D(B(S)) and
(Si, Sj) ∈ E, i �= j, if Si and Sj generate a joint pivot sequence.6 Denote by B1, . . . , Bk
the connected components of G. We output a single sequence S′

i for component Bi by
stitching the subsequences in Bi with sufficiently many blanks as

S′
i = Bi,1

γ+1 Bi,2
γ+1 · · · γ+1 Bi,|Bi |,

where Bi, j refers to the j-th sequence in Bi. In our ongoing example, we have B1 =
{ acb }, B2 = { bca } and thus S′

1 = acb and S′
2 = bca. As another example, consider the

sequence bcb bca ac bca c for γ = 0 and λ = 3. Then B1 = { bcb, bca } and B2 = { ac },
and thus S′

1 = { bcb bca } and S′
2 = { ac }. Thus blank separation is able to detect (to

some extent) repeated subsequences as well as irrelevant subsequences.
In combination with our reduction techniques, blank separation is only effective if

S contains more than one occurrence of a pivot. This is because our reduction tech-
niques ensure that otherwise S does not contain more than γ consecutive blanks. On
datasets in which items are rarely repeated, blank separation is therefore not effec-
tive. For example, we found that in our experiments on text data (where each sequence
corresponded to a single sentence), the overall effect of blank separation was marginal.

6This can be tested efficiently as follows. We compute once for each split Si the set Li (Ri) of the γ + 1 items
to the left (right) of the pivot in Si (if there is more than one occurrence of a pivot, repeat for each occurrence
and union). Two splits Si and Sj generate a joint pivot sequence if and only if Li ∩ Lj �= ∅ or Ri ∩ Rj �= ∅.
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4.5. Summary

Algorithm 2 integrates all of our rewrites into a single algorithm; this approach is more
efficient than performing the rewrites one after the other.

We start with a backward scan of the input sequence to obtain all right dis-
tances (lines 2–4); distance computation is performed incrementally as described in
Section 4.2. We then perform a forward scan of T to compute the set B(T ) of candi-
date splits for blank separation (lines 6–37). During the scan, we maintain a current
candidate split S which we incrementally grow as we see more items. In particular, for
each encountered item, we first compute its left distance (line 11). If the item is not
reachable, we ignore it (unreachability reduction; lines 13–15 and 22–24). Otherwise,
the item is reachable. If it is also relevant, we append it to the candidate split (line 20).
If it is irrelevant, we proceed as follows. If the item occurs at the beginning of the
candidate split, we ignore it (prefix reduction; lines 22–24). Otherwise, we remember
that we have seen an irrelevant item, that is, a blank (line 25). As soon as we see γ + 1
consecutive blanks (blank separation; lines 26–32), we store the current candidate split
in B(T ) if it is relevant (thereby ensuring minimality; lines 27–29, also lines 35–37)
and start a new candidate split (lines 30–31). Only if we see a relevant item after a
series of ≤γ blanks do we actually append blanks to candidate split S (suffix reduction;
lines 16–19).

Once the candidate splits have been computed, we proceed as in Section 4.4 to
compute Pw(T ) by stitching together overlapping candidate splits (lines 40–45). Note
that if blank reduction is not used, we simply stitch together all candidate splits in
B(T ) to obtain a single rewritten output sequence.

5. MAXIMALITY AND CLOSEDNESS

Frequent sequence mining from large datasets can potentially generate a large number
of sequences, especially when the support threshold is low and the length parameter
large. A standard approach [Yan et al. 2003; Fournier-Viger et al. 2013] to reduce the
number of mined sequences without losing information is to output only sequences
that are maximal or closed. Such sequences compactly represent the set of all frequent
sequences along with their exact frequency (closed sequences) or a lower bound thereof
(maximal sequences). In this section, we show how MG-FSM can be adapted to mine
maximal or closed sequences in a scalable fashion.

5.1. Definitions

The key motivation behind maximal and closed sequence mining is that knowing that a
sequence S′ is frequent also provides information about whether certain subsequences
of S′ are frequent. In more detail, set

γ − =
{

0 if γ < ∞
∞ if γ = ∞.

The following lemma describes the relationship between the frequency of a sequence
S′ and the frequency of (some of) its subsequences.

LEMMA 5.1 (SUPPORT MONOTONICITY). Let S and S′ be two sequences such that S ⊆γ −

S′. For all sequence databases D , we have

Supγ (S,D) ⊇ Supγ (S′,D).

It directly follows that fγ (S,D) ≥ fγ (S′,D). Thus, if S′ is frequent and S is a γ −-
subsequence of S′, then S must also be frequent. In particular, if γ = ∞, every sub-
sequence of S′ is frequent. If γ < ∞, the consecutive subsequences of S′ are frequent.
The lemma is proven in Appendix C.
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ALGORITHM 2: Partition construction
Require: Input sequence T = s1 . . . sk, w, γ , λ, f-list Fσ,0,1(D)
Ensure: Pw(T )
1: // backward scan
2: for i ← k downto 1 do
3: Compute right distance rw,γ,λ(i | T )
4: end for
5:
6: // forward scan, compute candidate splits (blank separation)
7: B(T ) ← ∅ // set of candidate splits
8: S ← ∅ // buffer for next candidate split
9: blanks ← 0 // number of consecutive blanks seen
10: for i ← 1 to k do
11: Compute left distance lw,γ,λ(i | T )
12: if si ≤ w then // relevant item
13: if index i is not (w, γ, λ)-reachable then // unreachability reduction
14: continue
15: end if
16: if blanks > 0 then // suffix reduction
17: Append blanks to S
18: blanks ← 0
19: end if
20: Append si to S
21: else // irrelevant item
22: if S = ∅ or i is not (w, γ, λ)-reachable then // prefix/unreachability reduction
23: continue
24: end if
25: blanks ← blanks + 1
26: if blanks ≥ γ + 1 then // blank reduction, blank separation
27: if |S| > 1 then // minimality test
28: B(T ) ← B(T )

⊎ { S } // candidate split found
29: end if
30: S ← ∅ // start new candidate split
31: blanks ← 0
32: end if
33: end if
34: end for
35: if |S| > 1 then // minimality test
36: B(T ) ← B(T )

⊎ { S } // candidate split found
37: end if
38:
39: // compute splits: test for separability and stitch candidate splits
40: Pw(T ) ← ∅
41: Construct graph G = (V, E) with V = D(B(T )) and (Si, Sj) ∈ E for i �= j iff Si and Sj

generate a joint pivot sequence
42: for each connected component { S1, . . . , Sl } of G do
43: S′ ← S1

γ+1S2
γ+1 . . . γ+1Sl

44: Pw(T ) ← Pw(T ) ∪ { S′ }
45: end for
46:
47: return Pw(T )

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 8, Publication date: June 2015.



8:16 K. Beedkar et al.

Note that we carefully distinguished the cases γ = ∞ and γ < ∞. The reason is
that, perhaps contrary to intuition, not every subsequence of a frequent sequence is
necessarily frequent as well. To see this, consider the database

Dex = { abc, abec, abcd, abc f d } , (5)

and its set of (2, 1, 4)-frequent sequences:

F2,1,4(Dex) = {a(4), b(4), c(4), d(2), ab(4), ac(4), bc(4),
cd(2), abc(4), acd(2), bcd(2), abcd(2)}.

Here we also provide frequencies (which are not formally part of F2,1,4(Dex)). Observe
that sequence S = abcd is frequent whereas some of its subsequences are not. In
particular, sequence bd ⊆1 S is not frequent, even though bd is a γ -subsequence (but
not a γ −-subsequence) of S. As asserted by Lemma 5.1, all consecutive subsequences
of S are indeed frequent (a, ab, abc, . . . ).

Consider a frequent sequence S′ ∈ Fσ,γ,λ(D) of length l. The prior lemma implies
that, when γ = ∞, each of the 2l − 1 nonempty subsequences of S′ are also frequent.
Similarly, when γ < ∞, each of the l(l + 1)/2 nonempty consecutive subsequences of
S are frequent. The goal of mining maximal sequences is to avoid outputting these
“redundant” sequences. In particular, a sequence is maximal if and only if it is not
redundant.

Definition 5.2 (Maximality). A sequence S is (σ, γ, λ)-maximal if S is (σ, γ, λ)-
frequent and there is no sequence S′ ⊃γ − S which is also (σ, γ, λ)-frequent. The set
of (σ, γ, λ)-maximal sequences is given by

Fmax
σ,γ,λ(D) = {

S ∈ Fσ,γ,λ(D) | ¬∃S′ ∈ Fσ,γ,λ(D) : S ⊂γ − S′ } .

For our running example, we obtain

Fmax
2,∞,4(Dex) = {abcd(2)},
Fmax

2,1,4(Dex) = {acd(2), abcd(2)}. (6)

As alluded to previously, we can reconstruct the set of all frequent sequences from
the set of maximal sequences:

Fσ,γ,λ(D) = {
S | S ⊆γ − S′, S′ ∈ Fmax

σ,γ,λ(D)
}
.

This is true because: (1) every γ −-subsequence of a maximal sequence must be (σ, γ, λ)-
frequent and (2) every (σ, γ, λ)-frequent sequence must be a γ −-subsequence of some
maximal sequence. Here (1) holds by Lemma 5.1, and (2) holds by definition of Fmax

σ,γ,λ(D).
A similar reasoning can be applied to closed sequences. Here we want to be able to

reconstruct from the set of closed sequences the set of frequent sequences along with
their frequencies. The following notion of closedness allows for such reconstruction.

Definition 5.3 (Closedness). A sequence S is (σ, γ, λ)-closed if S is (σ, γ, λ)-frequent
and there is no (σ, γ, λ)-frequent sequence S′ ⊃γ − S of the same frequency, that is, with
fγ (S′,D) = fγ (S,D). The set of (σ, γ, λ)-closed sequences is given by

Fclosed
σ,γ,λ (D) = {

S ∈ Fσ,γ,λ(D) | ¬∃S′ ∈ Fσ,γ,λ(D) : S ⊂γ − S′ ∧ fγ (S,D) = fγ (S′,D)
}
.

For our running example, we obtain

Fclosed
2,∞,4 (Dex) = {abcd(2), abc(4)},

Fclosed
2,1,4 (Dex) = {ac(4), abc(4), acd(2), abcd(2)}. (7)
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Ignoring frequencies, observe that Fmax
σ,γ,λ(D) ⊆ Fclosed

σ,γ,λ (D) ⊆ Fσ,γ,λ(D) so that reconstruc-
tion of frequent sequences is still possible. The frequency of a reconstructed sequence is
the maximum of the frequencies of its closed consecutive supersequences. For example,
f1(bc) = max{ f1(abc), f1(abcd)} = max{4, 2} = 4.

5.2. Mining Maximal Sequences

One way to adapt MG-FSM to mine maximal sequences is to first compute the set
of all frequent sequences Fσ,γ,λ(D) and subsequently filter out sequences that are not
maximal. This approach is not efficient, however: First, we mine too many sequences
from each partition (i.e., sequences that cannot possibly be maximal). Second, a naı̈ve
approach for the subsequent filtering step takes O(|Fσ,γ,λ(D)|2) time. In what follows, we
propose a more suitable approach which integrates the maximality constraint directly
into MG-FSM. We refer to this adaptation as MG-FSM+.

Recall that MG-FSM creates one partition Pw for each item w. Let S be a pivot
sequence for Pw; that is, p(S) = w and 2 ≤ |S| ≤ λ. Then MG-FSM guarantees
fγ (S,Pw) = fγ (S,D). Now suppose S is frequent so that MG-FSM outputs it when
mining Pw. Ideally, we would like MG-FSM+ to output S if and only if it is also
maximal. Unfortunately, we cannot test for maximality locally in each partition because
the frequencies fγ (S′,Pw) of supersequences S′ ⊃γ − S may not (and usually will not)
coincide with the corpus frequency fγ (S′,D) when p(S′) �= w. To see this, fix σ , γ , and
λ and denote the output of MG-FSM at partition Pw by

Fw(Pw) = {
S ∈ Fσ,γ,λ(D) | p(S) = w ∧ S �= w

}
.

For our example database Dex of Eq. (5) and σ = 2, γ = 1 and λ = 4, we have

Fc(Pc) = {
ac(4), bc(4), abc(4)

}
.

Now consider frequent sequence S = abc ∈ Fc(Pc). Sequence S is not maximal since
sequence S′ = abcd ⊃0 S is frequent in Dex. However, S′ /∈ Fc(Pc) so that we cannot
decide locally at Pc whether or not S is maximal.

A key ingredient to MG-FSM+ is to test for local maximality and to output in each
partition only those frequent sequences that are locally maximal. Our local maximality
test exploits that, whenever a sequence is not locally maximal, then it is also not
(globally) maximal; we thus do not incorrectly filter out maximal sequences. The set of
locally maximal sequences at partition Pw is given by the following.

Definition 5.4 (Local and Global Maximality). A sequence S with p(S) = w is lo-
cally maximal if S ∈ Fmax

w (Pw), where

Fmax
w (Pw) = {

S ∈ Fw(Pw) | ¬∃S′ ∈ Fw(Pw) : S ⊂γ − S′ } .

Sequence S is globally maximal if S ∈ Fmax
σ,γ,λ(D).

Thus a sequence S with pivot w = p(S) is locally maximal if it is maximal with respect
to the output Fw(Pw) at the partition Pw that mines S. Stated differently, a sequence S
is locally maximal if and only if S is frequent, |S| ≥ 2, and there is no frequent sequence
S′ ⊃γ − S with the same pivot item (i.e., p(S′) = p(S)). For our running example, we
obtain

Fmax
c (Pc) = {ac(4), abc(4)}.

Observe that bc ∈ Fc(Pc) but, since abc ∈ Fc(Pc), bc /∈ Fmax
c (Pc). Also observe that bc

is indeed not maximal. Figure 1 shows the set of locally maximal sequences for each
of the partitions obtained for our example database. The following lemma asserts that
we can safely filter out sequences that are not locally maximal.
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LEMMA 5.5. Every globally maximal sequence S with |S| ≥ 2 is also locally maximal.

A proof of this lemma is given in Appendix D. Note that the opposite does not
necessarily hold, that is, there can exist a sequence S that is locally but not globally
maximal. This happens when: (1) there is no frequent sequence S′ ⊃γ − S with p(S′) = w
but (2) there is a frequent sequence S′′ ⊃γ − S with p(S′′) > w. Note that p(S′′) ≥ w
for all S′′ ⊇ S. Here (1) implies that S is locally maximal and (2) implies that S is
not globally maximal. We refer to such sequences as spurious sequences. In Fmax

c (Pc)
shown before, all sequences are spurious (since both acd and abcd are frequent).

MG-FSM+ (which is given as Algorithm 3) is divided into two steps, each correspond-
ing to a MapReduce job.

(1) Mine and output the set Fmax
w (Pw) of locally maximal sequences for each partition

Pw; this step is similar to MG-FSM. A straightforward approach to obtain Fmax
w (Pw)

for each partition Pw is to first compute Fw(Pw) and then test whether each so-
obtained sequence is locally maximal. A more efficient alternative which we use in
MG-FSM+ is to directly mine locally maximal sequences instead. To do so, we can
use any suitable maximal sequence miner, such as the algorithm of Fournier-Viger
et al. [2013] or the method discussed in Section 6.4.7

(2) Determine the set of globally maximal sequences by identifying and eliminating
all spurious sequences.

The algorithm is illustrated in Figure 1.
In the remainder of this section, we discuss an efficient technique for pruning spu-

rious sequences. Let S+ be a locally maximal sequence with p(S+) = w+; that is,
S+ ∈ Fmax

w+ (Pw+). Furthermore, let S be a γ −-subsequence of S+ and set w = p(S). The
key idea of our approach is as follows: If S is locally maximal, then S+ “proves” that
S is spurious; we refer to such an S+ as a witness for the spuriousness of S. In our
running example, S = ac is a spurious sequence at partition Pc; sequence S+ = acd
from partition Pd is its witness (see also Figure 1). Note that a spurious sequence can
have more than one witness.

To ensure the efficiency of the pruning step, we need to ensure that we find a witness
for each spurious sequence efficiently and in parallel. MG-FSM+ uses the following
observation to restrict search to the set of primary witnesses.

LEMMA 5.6. Let S be a spurious sequence. Then there is a primary-witness sequence
S+ which satisfies:

(1) S ⊂γ − S+, p(S+) > p(S), and S+ is frequent,
(2) S+ is locally maximal,
(3) there is no intermediate sequence S∗ with p(S∗) < p(S+) and S ⊂γ − S∗ ⊂γ − S+.

Again, there can be more than one primary witness for S. The key property exploited
by MG-FSM+ is (3). We provide some intuition on the assertion of the lemma here,
while a formal proof can be found in Appendix E. First, in our example of Figure 1, abc
(from Pc) is a primary witness for spurious sequence ab (from Pb). In contrast, even
though sequence abcd (from Pd) is a witness for ab, it is not a primary witness since
it violates (3) with intermediate sequence abc. In general, the lemma tells us that if
S is spurious, then there is primary witness sequence S+ which contains S as a γ −-
subsequence arranged in a “certain way”. To see how S+ is arranged, let w+ = p(S+).

7This approach is valid if we ensure that p(T ) ≤ w for all T ∈ Pw . Since during rewriting (MAP1, Section 4.2)
we replace all irrelevant items (i.e., items > w) by blanks, this property holds.
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ALGORITHM 3: The MG-FSM+ algorithm
Require: Sequence database D , σ , γ , λ, f-list Fσ,0,1(D), type ∈ { max, closed }
1: MAP1(T ):
2: Same as MAP(T ) in Algorithm 1; removal of irrelevant items required
3:
4: REDUCE1(w,Pw):
5: Ftype

σ,γ,λ(Pw) ← FSMtype
σ,γ,λ(Pw)

6: for all S ∈ Ftype
σ,γ,λ(Pw) do

7: if p(S) = w and S �= w then
8: Output (S, fγ (S,Pw))
9: end if
10: end for
11:
12: MAP2(S+, fγ (S+, D)): // where S+ ∈ Fσ,0,1(D) ∪ ⋃

w Ftype
w (Pw)

13: f + ← fγ (S+,D)
14: l+ ← |S+|
15: for all S ∈ Wγ (S+) do
16: Output (S, 〈l+, f +〉)
17: end for
18:
19: REDUCE2(S, { 〈l, f 〉 }):
20: switch (type)
21: case max:
22: 〈l∗, f ∗〉 ← pair in { 〈l, f 〉 } having maximum length l
23: case closed:
24: 〈l∗, f ∗〉 ← pair in { 〈l, f 〉 } having highest frequency f ;

resolve ties by picking the pair with maximum length l
25: end switch
26: if |S| = l∗ then
27: Output (S, f ∗)
28: end if

If γ < ∞, property (1) implies that S appears consecutively in S+. The spuriousness
of S along with property (3) imply that there is either pivot w+ or the start/end of the
sequence to the left and right of the occurrence of S. Continuing the previous example,
ab occurs consecutively in its primary witness abc and is enclosed by the start of the
sequence to the left and pivot c to the right. Similarly, if γ = ∞, the spuriousness of
S along with property (3) imply that S is obtained from S+ by dropping all pivots w+
from S+.

We are now ready to describe the second step of MG-FSM+ (lines 12–28 of Algo-
rithm 3) which removes spurious sequences. The step is divided into a partitioning
phase which matches primary witnesses with their spurious sequences, and a filtering
phase which produces the final output.

Partitioning phase (MAP2). We map over those locally maximal sequences obtained
in the first step of MG-FSM+ (sequences of length at least 2) as well as over the f-list
(length 1). For each sequence S+, we generate the set of sequences for which S+ can
potentially be a primary witness. By the arguments immediately following Lemma 5.6,
there is only a small set of such sequences. In more detail, set w+ = p(S+) and divide
S+ into nonempty chunks S1, . . . , Sn by splitting at pivots, that is,

S+ = (w+)∗ S1 (w+)+ S2 (w+)+ . . . (w+)+ Sn (w+)∗,
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Fig. 1. Mining maximal sequences with MG-FSM+ (σ = 2, γ = 1, λ = 4).

such that p(Si) < w+; here (w+)∗ ((w+)+) denotes 0 or more (1 or more) occurrences of
pivot w+. Denote by

Wγ (S+) = {S+} ∪ {w+} ∪
{{ S1S2S3 . . . Sn } if γ = ∞
{ S1, S2, S3, . . . , Sn } if γ < ∞,

the set of sequences for which S+ can be a primary witness, as well as w+ and S+ itself.
Note that we include pivot w+ because, if |S+| ≥ 2, S+ proves 1-sequence w+ from the
f-list to be spurious. For example, for sequence S+ = abcdbb with p(S+) = d, we have
W∞(S+) = { abcdbb, d, abcbb } and W1(S+) = { abcdbb, d, abc, bb }.

We emit a key-value pair for every sequence S ∈ Wγ (S+): the key is S, and the value is
fixed to the pair of length and frequency of S+, that is, we output (S, 〈|S+|, fγ (S+,D)〉).
Figure 1 shows the output of MAP2 for our example database (by partition and by key).
Note that only key-value pair (S+, 〈|S+|, fγ (S+,D)〉) has the length of the key equal
to the length recorded in the value; for all other key-value pairs (S, 〈l, f 〉), we have
S �= S+ and l = |S+| > |S|. The total length of all emitted key-value pairs is linear in
total length of the set of locally maximal sequences.

Filtering phase (REDUCE2). The reduce phase processes independently each sequence
output as a key in MAP2. These sequences consist of all frequent 1-sequences (from
the f-list), all locally maximal sequences, and some additional sequences contained in
the set Wγ (S+) of some frequent sequence S+. For each sequence S, we are given the
corresponding evidence set E(S) = {〈l, f 〉} of (length, frequency)-pairs as input. We first
determine whether or not S is a frequent 1-sequence or a locally maximal sequence. In
particular, if there is no pair 〈lS, fS〉 ∈ E(S) such that lS = |S|, then S is a member of
some set Wγ (S+) but is itself neither a frequent 1-sequence nor locally maximal. Thus
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we do not output S. Otherwise, there is a pair 〈lS, fS〉 ∈ E(S) such that lS = |S|; this
pair was produced when processing S+ = S in MAP1 so that fs = fγ (S+,D) = fγ (S,D).
We now need to determine whether S is globally maximal. If there is any additional
pair 〈l+, f +〉 in E(S), then this pair must have been generated from a primary witness
S+ for S (with S+ �= S and S ∈ Wγ (S+)) and we have l+ > |S|. We conclude that S
is spurious. Finally, if there is no such pair, then S does not have a primary witness.
Lemma 5.6 then implies that S is globally maximal so that we output (S, fS). All of the
preceding steps can be performed jointly as follows: Select any pair 〈l∗, f ∗〉 of maximum
length from E(S) and output (S, f ∗) if and only if |S| = l∗. Figure 1 shows the output
of REDUCE2 for our example database. Sequences acd and abcd are the only globally
maximal sequences in this example; these sequences are correctly identified by our
approach.

In our implementation of the second step of MG-FSM+, we further improve efficiency
by making use of the combine functionality of MapReduce. In particular, our combine
function mirrors REDUCE2; the key difference is that we only and always output the
key-value pair (S, 〈l∗, f ∗〉). Combiners thus prune length-frequency pairs that are not
needed in REDUCE2 so that correctness is maintained. Our use of combiners reduces the
communication cost between the map and reduce phases as well as the computational
cost in the reduce phase itself.

5.3. Mining Closed Sequences

MG-FSM+ can also be used to mine closed sequences using a similar approach as
described before; see Algorithm 3. We outline the key differences in this section.

In the first step, we mine and output the set Fclosed
w (Pw) of locally closed sequences

in each partition Pw, where

Fclosed
w (Pw) = {

S ∈ Fw(Pw) | ¬∃S′ ∈ Fw(Pw) : S ⊂γ − S′ ∧ fγ (S,Pw) = fγ (S′,Pw)
}
.

As before, we can use any closed sequence miner to obtain this set (line 5 of Algorithm 3).
For our example database, we obtain

Fclosed
a (Pa) = ∅,

Fclosed
b (Pb) = {ab(4)},

Fclosed
c (Pc) = {ac(3), abc(4)} and

Fclosed
d (Pd) = {acd(2), abcd(2)}.

These sets (coincidentally) agree with the corresponding sets of maximally closed se-
quences shown in Figure 1. (The set of globally closed sequences for our example
database is given in Eq. (7).)

In the second step, we determine globally closed sequences by identifying and elim-
inating all spurious sequences, that is, sequences that are locally but not globally
closed (ab is spurious in our example). We use a slightly different notion of witness:
a locally closed sequence S+ is a potential witness of the spuriousness of S if as be-
fore S ⊂γ − S+; it is a witness if additionally fγ (S,D) = fγ (S+,D). As in the case
of maximality, we can show there must exist a primary witness for each spurious
sequence; the proof is similar to Lemma 5.6 and omitted here. For example, the se-
quence ab ∈ Fclosed

b (Pb) is spurious; its witness (and primary witness) is sequence
abc ∈ Fclosed

c (Pc) with f1(ab,Dex) = f1(abc,Dex) = 4. As another example, the sequence
ac ∈ Fclosed

c (Pc) is not spurious; the only potential witness is acd ∈ Fclosed
d (Pd), but acd

has incorrect frequency ( f1(ac,Dex) = 3 �= 2 = f1(acd,Dex)) so that it is not a witness.
To eliminate spurious sequences, we map over the locally closed sequences as well as

over the f-list exactly as in the case of maximality (MAP1); that is, we output for each
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sequence S+ the set Wγ (S+) of sequences for which S+ can be a primary witness. We
then check in the filtering phase for each sequence S whether: (1) there is a potential
witness (as before) that (2) agrees in frequency with S and thus is also a witness
(new). Consider a sequence S and its corresponding evidence set E(S) = { 〈l, f 〉 }. We
select from E(S) the pair 〈l∗, f ∗〉 having highest frequency; we break ties by selecting
the pair of maximum length. We then output (S, f ∗) if and only if |S| = l∗. To see
that this approach correctly determines globally closed sequences, assume that S is
locally closed and spurious. Observe that each potential witness S+ of S satisfies
fγ (S+,D) ≤ fγ (S,D) by Lemma 5.1; equality holds if and only if S+ is also a witness.
Thus, if there is no witness for S, then S is the unique sequence of highest frequency
in E(S); we have 〈l∗, f ∗〉 = 〈|S|, fγ (S,D)〉 and thus output (S, fγ (S,D)). Otherwise, if
there is a witness S+, then fγ (S+,D) = fγ (S,D) and our tie-breaking strategy applies.
Since |S+| > |S|, we select 〈l∗, f ∗〉 = 〈|S+|, fγ (S+,D)〉 and thus do not output S.

As mentioned previously, the input to the filtering step in our running example
is coincidentally the same as in the case of maximal sequence mining; see Figure 1
under “Reduce2 input”. First consider spurious sequence S = ab. We have E(S) =
{ 〈2, 4〉, 〈3, 4〉 } and thus select 〈l∗, f ∗〉 = 〈3, 4〉 (produced from W1(abc)). Since l∗ = 3 �=
2 = |S|, we conclude S is spurious. As another example, consider the globally closed
sequence S = ac with E(S) = { 〈2, 3〉, 〈3, 2〉 }. Here we select pair 〈l∗, f ∗〉 = 〈2, 3〉 (from
W1(S)), which is the unique pair of highest frequency. Since l+ = 2 = |S|, we conclude
S is not spurious and output S. In fact, pair 〈3, 2〉 ∈ E(S) has been generated from
W1(acd); we correctly identify that acd is not a witness (even though it is a potential
witness). The set of globally closed sequences obtained by our approach is given in
Eq. (7).

6. MG-FSM IN PRACTICE

In this section, we give some guidance on how MG-FSM can be implemented efficiently
in practice. The source code of our implementation is publicly available at MG-FSM
[2014].

6.1. Compression

Careful compression of all intermediate sequences significantly boosted performance
in our experiments. In particular, we assign an integer item identifier to each item and
represent sequences compactly as arrays of item identifiers. We compress each such
array using variable-byte encoding [Witten et al. 1999]. To make most effective use
of this technique, we assign item identifiers in descending order of item frequency (as
obtained from the f-list). More frequent items thus receive smaller item identifiers that
can be represented using fewer bytes. Moreover, we replace irrelevant items by blanks
(identifier −1) and use a form of run-length encoding [Witten et al. 1999] to represent
consecutive sequences of blanks (e.g., by −2).

6.2. Grouping Partitions

Instead of creating a single partition for each distinct pivot, we greedily combine multi-
ple pivots into a single partition such that each partition contains at least m sequences
(e.g., m = 10,000). The goal of grouping is to increase efficiency by combining multi-
ple small partitions into a larger one. Grouping is performed by scanning the f-list in
descending order of frequency and combining items until their aggregate frequency
exceeds m.

6.3. Aggregation

To implement aggregation (Section 4), we make use of both the combine function and
the secondary sort facility of Hadoop. Recall Algorithm 1, in which we output pairs of
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form (w, S), where w is a pivot and S a sequence. In our actual implementation, we out-
put (pivot/sequence, frequency)-pairs, that is, pairs of the form ([w, S], 1) instead. We
customize the partitioning function of MapReduce to ensure that w is used as partition-
ing key as before. This representation allows to use the combine function to aggregate
multiple occurrences of the same sequence locally. We perform the final aggregation
in the reduce function before invoking our FSM method (exploiting secondary sort to
avoid buffering).

6.4. Frequent Sequence Mining

MG-FSM can use any existing FSM method to mine one of its partitions. In our im-
plementation, we use a method inspired by GSP [Srikant and Agrawal 1996] and
SPADE [Zaki 2001b]. Like the former, our method is based on a level-wise approach
and generates frequent (k+1)-sequences from the frequent k-sequences; like the latter,
our method operates on what is essentially an inverted index for sequences. Initially,
while reading the sequences of a partition to be processed, our method builds an in-
verted index that maps 2-sequences to their offsets in the input sequences. We can
then emit all frequent 2-sequences and remove infrequent ones from the index. Af-
terwards, our method iteratively combines frequent k-sequences by intersecting the
corresponding inverted index lists to construct an inverted index for (k+ 1)-sequences.
Frequent (k + 1)-sequences can be emitted immediately once they have been deter-
mined. The inverted index for k-sequences can be deleted at the end of each iteration.
Further efficiency can be gained by replacing the general-purpose sequence miner de-
scribed earlier by a local sequence miner that targets MG-FSM’s partitioning and mines
pivot sequences (and only pivot sequences) directly; see the pivot sequence miner of
Beedkar and Gemulla [2015] for an example of such a method. We do not consider such
specialized methods in this article.

Our implementation is aware of the aggregation optimization described in Section 4,
that is, it operates directly on input sequences along with their aggregate frequency.
Although Java based, our implementation avoids object creation to the extent possible.
Inverted index lists, for instance, are encoded compactly as byte arrays using the
compression techniques described before.

To mine maximal sequences in each partition, we proceed as previously but do not
immediately output frequent k-sequences when we find them. Instead, we delay output
until after we have computed all frequent (k+1)-sequences; a frequent k-sequence S is
output if there is no frequent (k+ 1)-sequence built from S (or if k = λ). In more detail,
we mark, during the construction of the index of (k + 1)-sequences, each k-sequence
that contributed to a frequent (k + 1)-sequence. Once the new index is constructed,
we output all unmarked frequent k-sequences before deleting the k-sequence index.
This procedure can also be adapted to mine all closed sequences. The key difference
is that we mark a frequent k-sequence S as nonclosed if it contributes to a frequent
(k + 1)-sequence with the same support as S.

The simple implementation of maximal and closed sequence mining described earlier
worked reasonably well in our experiments. Since, as before, we can use any suitable
algorithm as a local sequence miner, further efficiency can be gained by using a more
efficient maximal or closed sequence miner; see Pei et al. [2004], Fournier-Viger et al.
[2013], Wang and Han [2004], and Li and Wang [2008] for examples.

6.5. Long Sequences

We have assumed so far that the sequences in the sequence database are relatively
short (e.g., sequences that correspond to sentences in text mining). This allows to scan
with low cost the entire input sequence repeatedly during partition construction. The
assumption of short sequences does not generally hold, that is, in some applications
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sequences can be very long (e.g., sequences that correspond to entire documents in text
mining). To handle long sequences, we need to ensure that the rewriting techniques of
MG-FSM remain efficient as the length of the input sequences increases.

Recall that, for an input sequence T, our rewriting methods perform a backward
and a forward scan for each pivot item w ∈ T (see Section 4.5). The total number of
backward-forward scans depends on the number of distinct (frequent) items in T, but
generally can be as high as |T |. Since the scans take linear time, the computational
cost is O(|T |2). This quadratic overall cost is acceptable when T is short (|T | small),
but imposes severe overheads when T is long (|T | large). To avoid this performance
bottleneck, we propose to build for each input sequence T an inverted index structure
that maps pivot items to their respective positions in T . By utilizing such an index,
we avoid performing a full backward-forward scan and instead perform a focused scan
“around” the occurrences of the pivot under consideration.

In more detail, we perform an initial pass over input sequence T to build an inverted
index. The index stores, for each distinct frequent item w ∈ T, the positions of w’s
occurrences in T .8 Given such an index, we construct Pw(T ) for each indexed pivot w
as follows. Instead of scanning T , we only consider those parts of T that are sufficiently
close to w; we ensure that all omitted parts cannot contribute to a pivot sequence. In
more detail, denote by I = (i1, . . . , ir) the positions at which w occurs in T . We then
restrict the forward-backward scan to the union of the ranges [i j − (γ + 1)(λ − 1), i j +
(γ + 1)(λ − 1)] for 1 ≤ j ≤ r. All items outside of these ranges are unreachable and
therefore do not need to be considered (cf. Lemma 4.4).

There is a trade-off between the construction cost and the benefit of the inverted
index. We have described previously an inverted index that maintains all positions of
each pivot item; we subsequently refer to this index as full index. A simple alternative
is to use a min-max index, which is more efficient to construct. In particular, the min-
max index maintains only the positions of the first and the last occurrence of each
pivot. Given such an index, we perform for pivot w a forward-backward scan of range
[lw − (γ + 1)(λ − 1), rw + (γ + 1)(λ − 1)], where lw and rw are the positions of the first
and last occurrences of w. Observe that, if there is only one occurrence of w, we scan
identical ranges when using either the min-max index or the full index. If there are
multiple occurrences of a pivot, the full index can be more effective than the min-max
index (especially when the left- and rightmost occurrences are far apart).

We now illustrate the effect of the inverted index on the processing cost of a backward-
forward scan using an example. Consider sequence T = cadbaef ebdaecdgadf ae, pivot
c, γ = 1, and λ = 3. To construct partition Pc(T ) without an index, we need to scan
T twice and thus process 2|T | = 40 items. If we use the min-max index, we restrict
our scans to the neighborhood of c’s first occurrence (lc = 1) and c’s last occurrence
(rc = 13). We scan twice the range [1−2 ·2, 13+2 ·2] (i.e., range [1, 17]) for a total of 34
processed items. Finally, if we use a full index, we scan twice the ranges [1, 5] (for the
occurrence of c at position 1) and [9, 17] (position 13). The total number of processed
items is 28.

In our experiments (Section 7), we study how the use of inverted indexes affects the
performance of our rewriting methods (i.e., cost of the map phase). Our results indicate
large performance gains when inverted indexes are used for long sequences.

6.6. Temporal Sequences

We have restricted attention so far to frequent sequence mining with a positional gap
constraint. In applications such as session analysis, however, input sequences are often
built from time-annotated events instead of items; in such applications, temporal gap

8We use the term “position” instead of “index” to avoid confusion with the index structure.
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constraints are more suitable [Srikant and Agrawal 1996]. This means that we want
to treat a pair of events as sufficiently close if the in-between time span is small (e.g.,
events that occur within 1 hour), that is, independently of the number of events that
occur in between. In this section, we describe how MG-FSM can be adapted to support
such temporal gap constraints.

Definition 6.1. A temporal sequence is an ordered list T = s1(t1) s2(t2) · · · sl(tl) of
events, that is, item-timestamp pairs. For 1 ≤ i ≤ l, event si(ti) consists of item si taken
from dictionary � and timestamp ti taken from a discrete set of timestamps T ⊆ Z.
The timestamps are distinct and ordered, that is, ti < tj for 1 ≤ i < j ≤ l.

Note that the timestamps can be of any desired granularity (e.g., seconds, minutes,
hours, or days).

Denote by �i j = tj − ti − 1 the temporal gap between events si(ti) and sj(tj), i < j.
Observe that �i j ≥ 0. To handle temporal gap constraints, we “convert” the temporal to
a positional gap constraint by mapping the event sequence into a sequence of items and
gaps. In particular, we convert temporal sequence T = s1(t1) s2(t2) · · · sl(tl) to regular
sequence

T ′ = s1
�12s2

�23s3 · · · �(l−1)l sl.

Here, denotes the blank symbol as before; �i(i+1) represents as many gaps as time units
(without an event occurring) passed between events si(ti) and si+1(ti+1). If two events
occur at adjacent timestamps (i.e., their temporal gap is 0), then no blanks appear
between the corresponding items. As described in Section 6.1, we reduce the overhead
of adding gaps to the input sequences by using a compression technique that encodes
sequences of consecutive blanks with run-length encoding. With such compression, the
conversion takes linear time and space.

To mine frequent sequences with a temporal gap constraint, we simply run MG-
FSM with a positional gap constraint on the converted sequences. In particular, denote
by τ a maximum temporal-gap parameter; at most τ time units are thus allowed to
pass between two events to be considered close. We then set maximum-gap parameter
γ = τ −1 when running MG-FSM. To see why this produces the desired result, observe
that our rewrite ensures that two events si(ti) and sj(tj), i < j with temporal gap
�i j have exactly �i j items or blanks in-between them. The time passed between the
occurrence of si(ti) and sj(tj) is �i j + 1; for this reason, we set γ = τ − 1 (instead of
γ = τ ).

Consider, for example, the temporal sequence database D = {a(2) b(3) c(6) a(8)}, which
consists of a single temporal sequence with four events. After conversion, we obtain
sequence database D ′ = { ab c a } by dropping timestamps and adding the respective
number of blanks. Set σ = 1 and λ = 3. For a temporal gap constraint of one time
unit (τ = 1, and thus γ = 0), we obtain frequent sequences F1,0,3(D ′) = { a, b, c, ab }.
For τ = 2 (γ = 1), we obtain F1,1,3(D ′) = { a, b, c, ab, ca }. Finally, for τ = 3 (γ = 2), we
obtain F1,2,3(D) = { a, b, c, ab, bc, ca, abc, bca }.

As a final note, we remark that MG-FSM can also handle temporal sequences with
repeated timestamps, provided that items with equal timestamps have meaningful
order (but the granularity of the timestamp is too coarse-grained to capture this order).
To do so, we modify both timestamps and the maximum-gap parameter in a way that
makes timestamps unique, retains the original order of the events, and ensures correct
results. In more detail, we conceptually multiply each timestamp by 2r − 1 before
conversion, where r > 1 is an upper bound on the number of events that can occur
simultaneously. We then replace repeated timestamps by consecutive sequences of
timestamps. For example, the sequence of events a(1) b(1) c(2) d(2) e(2) is modified to
a(5) b(6) c(10) d(11) e(12) for r = 3. Now all timestamps are distinct; we convert the
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database as described previously, obtaining ab cde for our example. We run MG-
FSM with maximum-gap parameter

γ = (τ − 1)(2r − 1) + (3r − 3).

Here 3r − 3 denotes the maximum positional gap between two events that originally
occurred at consecutive timestamps. In our example, where r = 3, we set γ = 1 for
τ = 0 and γ = 6 for τ = 1.

When γ = 0, a temporal rewrite can also be used to mine sequences of itemsets (as
opposed to sequences of items, which is the focus of this article) with MG-FSM. To see
this, consider the sequence of itemsets T = 〈ac〉 → 〈b〉, where we enclose itemsets by
〈 and 〉 and separate itemsets by →. Then T has the following nonempty subsequences
of itemsets

〈a〉, 〈b〉, 〈c〉, 〈ac〉, 〈a〉 → 〈b〉, 〈c〉 → 〈b〉, 〈ac〉 → 〈b〉.
We can rewrite T to a temporal sequence T ′ such that every subsequence of itemsets of
T corresponds to a subsequence of items of T ′ and vice versa. To do so, we first flatten
the itemsets to an item sequence and put a special itemset marker item → between
itemsets. We obtain the sequence of items T1 = ac→b, which consists of four items. We
now associate a timestamp with each item, starting from 1 and incrementing by 1 at
each occurrence of the itemset marker item as well as at its consecutive item. We then
reorder same-timestamp events lexicographically. This gives us the event sequence
T ′ = a(1) c(1)→(2) b(3). With a choice of τ = 1, T ′ generates the sequences of items

a, b, c, ac, a→b, c→b, ac→b,

as well as some additional sequences that start or end with →; we ignore these addi-
tional sequences. Then T and T ′ have equivalent subsequences. Given a database of
sequences of itemsets, we rewrite every sequence as just described, apply MG-FSM,
and filter out the additional sequences. Although this technique correctly mines se-
quences of itemsets, it is limited to the case γ = 0 and care must be taken to support
length constraints correctly. We thus do not explore this direction further.

7. EXPERIMENTAL EVALUATION

We conducted an extensive experimental study in the contexts of text mining and ses-
sion analysis on large real-world datasets. In particular, we investigated the effective-
ness of the various partition construction techniques of Section 4, studied the impact
of parameters σ , γ , and λ, compared MG-FSM to the sequential FSM algorithms, the
naı̈ve algorithm, and a state-of-the-art n-gram miner, and evaluated weak and strong
scalability of MG-FSM. We also studied the performance of MG-FSM+ for mining max-
imal or closed sequences, the effectiveness of our indexing techniques for handling long
input sequences, and MG-FSM’s performance for mining temporal sequences.

We found that most of our optimizations for partition construction were effective; a
notable exception was blank separation, which did not provide substantial efficiency
gains on our text datasets (see the discussion at the end of Section 4.4). MG-FSM out-
performed the naı̈ve and sequential FSM algorithms by multiple orders of magnitude
and was up to 2x faster than the state-of-the-art n-gram miner (which does not support
gap constraints). Our scalability experiments suggest that MG-FSM scales well as we
add more worker nodes and/or increase the dataset size. MG-FSM+ mined maximal
and closed sequences with only a small additional cost compared to mining all frequent
sequences. Our use of inverted indexes for mining long input sequences was effec-
tive and significantly decreased rewriting costs. Finally, we observed that MG-FSM
successfully mined temporal sequences on the Netflix dataset [Bennett and Lanning
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Table I. Dataset Characteristics

ClueWeb NYT-sen NYT-doc Netflix
Average length 19 19 603 266

Maximum length 20,993 21,174 38,917 7,966
Total sequences 1,135,036,279 53,137,507 1,830,592 398,820

Total items 21,565,723,440 1,051,435,745 1,051,435,745 106,145,170
Distinct items 7,361,754 1,577,233 1,577,233 17,769

Total bytes 66,181,963,922 3,087,605,146 3,087,605,146 608,347,782

2007]; temporal sequence mining can be expensive, however, when the data contains
large bursts of events in small timespans.

7.1. Experimental Setup

We implemented MG-FSM [MG-FSM 2014] as well as the naı̈ve method of Section 2.3
in Java. For our sequential experiments, we used an implementation of PrefixSpan
tuned for our setting.9 We also obtained a Java implementation of Suffix-σ [Berberich
and Bedathur 2013], a state-of-the-art n-gram miner, from its authors. Unless stated
otherwise, we performed all of our rewriting steps for MG-FSM.

Sequential setup. We ran sequential FSM algorithms on a machine equipped with two
Intel Xeon E5530 quad-core processors and 48GB of RAM running Debian Linux 7.5.

Hadoop cluster. We ran our experiments on a local cluster consisting of 11 Dell Pow-
erEdge R720 computers connected using a 10GBit Ethernet connection. Each machine
has 64GB of main memory, eight 2TB SAS 7200 RPM hard disks, and two Intel Xeon
E5-2640 6-core CPUs. All machines ran Debian Linux (kernel version 3.2.48.1.amd64-
smp), Oracle Java 1.7.0 25, and used the Cloudera cdh3u6 distribution of Hadoop
0.20.2. One machine acted as the Hadoop master node, the other 10 machines acted as
worker nodes. The maximum number of concurrent map or reduce tasks was set to 8
per worker node. All tasks launched with 4GB heap space.

Datasets. We used three real-world datasets for our experiments; see Table I. The
first dataset is a subset of ClueWeb [2009] (CW), which consists of 50 million English
pages. This well-defined subset is commonly referred to as ClueWeb09-T09B and is also
used as a TREC Web track dataset. We performed sentence detection using Apache
OpenNLP and applied boilerplate detection and removal as described in Kohlschütter
et al. [2010]. Each resulting sentence was then treated as an input sequence. Our
second dataset is the New York Times corpus (NYT) [The New York Times 2008] which
consists of over 1.8 million newspaper articles published between 1987 and 2007. We
created two sequence databases from this corpus, denoted NYT-sen and NYT-doc, in
which we respectively treat each sentence or each document as an input sequence. The
sequences in NYT-doc are substantially longer than the ones in NYT-sen; we thus use
NYT-doc to evaluate the effectiveness of our indexing techniques for long sequences
(see Section 6.5). Our final dataset is the Netflix dataset [Bennett and Lanning 2007]
which we use to evaluate our approach for mining temporal sequences. The Netflix data
contains more than 100M ratings from 480k users for around 18k movies; each rating
is annotated with a timestamp. We constructed a temporal database from this data
by creating a temporal sequence for each user; this sequence consists of (timestamp,
movie)-pairs ordered by timestamp. Since the Netflix dataset contains a few heavy-
raters, with up to 5,500 ratings on a single day, we exclude these users from our
dataset to ensure a meaningful output and keep runtimes manageable. All datasets
were represented compactly as sequences of item identifiers as described in Section 6.

9We tried using the same SPADE-based FSM algorithm and implementation as in the local miner of MG-
FSM, but it consistently ran out of memory on large data.
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Fig. 2. Distribution of lengths of input sequences.

Figure 2 shows the length distribution of sequences in each of these datasets; note
that the x-axis has a logarithmic scale. The length distribution is right-skewed in
all datasets. The CW and the NYT-sen datasets contain shorter sequences: the mean
length is 19 and more than 99% of the sequences have length less than 100. The NYT-
doc and the Netflix datasets contain longer sequences: the mean lengths are 603 and
266, respectively, and the percentages of sequences with length less than 100 are 14%
and 38%, respectively.

Methodology. We used the following measures in our evaluation. First, we measured
the total time elapsed between launching a method and obtaining the result. We assume
throughout that the f-list is made available for each method. For our methods for
mining maximal and closed sequences, which make use of two MapReduce jobs, we
additionally specify the overall elapsed time per MapReduce job. To provide more
insight into potential bottlenecks, we also broke down total time into time spent for
the map phase, shuffle phase, and reduce phase. Since these phases are overlapping
in MapReduce, we report the elapsed time until finishing each phase, for example,
the time until the last map task finishes. Second, we measured the total number of
bytes received by reducers. Note that when a combiner is used, this number is usually
smaller than the total number of bytes emitted by the mappers. All measurements
were averaged over three independent runs.

7.2. Partition Construction

We first evaluated the effectiveness of the compression and rewriting techniques of
MG-FSM for partition construction. We used the following settings: basic (irrelevant
items were replaced by blanks), compressed (consecutive blanks were compressed and
leading/trailing blanks were removed), reduced (unreachable items were removed),
aggregated (identical sequences were aggregated), and separated (blank separation
was performed). We applied these optimizations in a stacked manner; for instance,
when using the aggregation optimization, we also removed unreachable items and
compressed consecutive blanks.

We used both NYT-sen and CW to explore the different rewriting techniques. The
results are shown in Figures 3(a), 3(b), and 3(c), which also give the parameter settings.
As can be seen, the removal of unreachable items resulted in a significant runtime
improvement on both datasets, reducing the total time by a factor of up to 6 (for CW).
For the smaller NYT-sen dataset, map tasks are relatively inexpensive throughout and
our techniques mainly reduce the runtime of the much more costly reduce operations.
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Fig. 3. Comparison of partition construction techniques.

For CW, both map and reduce runtimes are significantly reduced, the former mainly
due to the large reduction in transferred bytes (Figure 3(c)). Aggregation is effective for
CW, reducing the total number of bytes received by the reducers by more than 70GB
(28%).

To gain further insight into the different alternatives for partition construction,
we studied the distribution of partition sizes for the larger CW dataset. We measure
the partition size by the sum of the lengths of the distinct sequences in the parti-
tion.10 When the compressed representation is used, we count sequences of consecutive

10We consider distinct sequences because our implementation always aggregates repeated sequences before
running the local miner, that is, whether or not aggregation with a combiner is used.
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blanks as one item (recall that is then represented as −3). The results are shown in
Figure 3(d) in terms of a violin plot. For each “violin”, the white dot corresponds to
the median partition size and the (small) black box to the range spanned by the 25%–
75% quantiles. The gray area is a kernel density plot shown sideways; the wider it
is, the more partitions fall into the corresponding range of partition sizes. The plot
shows that partition sizes decrease by more than an order of magnitude when our
reduction techniques are applied. There also a reduction in the variance of partition
sizes: the coefficient of variation (standard deviation divided by mean) reduces from
9.6 for Basic to 2.6 for Reduced. We also analyzed the sizes of the partitions corre-
sponding to the 2,000 most frequent items more closely; see Figure 3(e). As can be
seen, the size of the respective largest partition is reduced by roughly three orders of
magnitude when using Reduced instead of Basic. Also, the size of partitions is highly
skewed for Basic (note the logarithmic scale): the largest partition is 117× larger than
the 2,000-th largest partition. For Reduced, the partition sizes are significantly more
stable: the largest partition is 4× larger than 2,000-th largest, which facilitates load
balancing.

We also ran Naı̈ve for the NYT-sen dataset (not shown); the algorithm finished after
225 minutes. In contrast, MG-FSM completes after 4 minutes and is thus more than
50 times faster.

7.3. Mining n-Grams

In our next experiments, we investigated the performance of MG-FSM for n-gram
mining (i.e., γ = 0) and compared it against sequential FSM, the naı̈ve method from
Section 2, and a state-of-the-art approach called Suffix-σ [Berberich and Bedathur
2013]. We used both the NYT-sen and CW datasets and ran sequence mining in
three different configurations of increasing output size; the results are shown in
Figure 4.

We first evaluated all the methods on the (smaller) NYT-sen dataset (see Fig-
ure 4(a)). For the “easier” settings (σ = 100, λ = 5 and σ = 10, λ = 5), MG-FSM
achieved an order of magnitude faster performance than Naı̈ve. For the “harder” set-
ting (σ = 10, λ = 50), MG-FSM was two orders of magnitudes faster than Naı̈ve.
MG-FSM also outperformed Suffix-σ in all settings (up to a factor of 1.6× faster). The
total number of bytes transferred between the map and reduce phases is depicted in
Figure 4(c); it is smallest for MG-FSM. We also observed that the sequential approach
was faster than Naı̈ve. Both MG-FSM and Suffix-σ were roughly an order of magnitude
faster.

We also studied n-gram mining on the CW dataset (20× larger than NYT-sen). The
sequential method ran out of memory for this dataset, and the naive method was too
slow to produce acceptable runtimes. We thus focus on Suffix-σ and MG-FSM; the
performance of these algorithms is shown in Figure 4(b) and Figure 4(d). Here MG-
FSM was up to 2× faster and transferred up to 2× less data between map and reduce
phases than Suffix-σ .

7.4. Impact of Parameter Settings

We studied the performance of MG-FSM as we varied the minimum support σ , the
maximum gap γ , and the maximum length λ. We used the NYT-sen dataset throughout
and set the default values to σ = 100, γ = 1, and λ = 5.

We first studied how the minimum support σ affects performance by increasing
its value from 10 to 10,000. The results are shown in Figure 5(a). The map phase,
which performs the rewriting of the input sequences, took roughly the same time for
all different values of σ . This time mainly consists of the cost of scanning the input
sequences, which is independent of σ . The reduce time, however, dropped significantly
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Fig. 4. Performance for n-gram mining.

as we increased the minimum support, mainly because the mining cost and output size
reduced (the slowest reduce task took 44s for σ = 10,000). Due to the relatively large
fraction of time spent in the map phase for large values of σ , we do not expect any
significant runtime improvements if we increased σ further.

Second, we increased the maximum gap γ from 0 to 4. As we can see in Figure 5(b),
γ strongly affected reduce time, while the impact on map time was again not signifi-
cant. This was partly due to the larger number of bytes received by the reducers (see
Figure 5(c)) and also because mining becomes harder when the output size increases:
The total number of frequent sequences increased from 1,985,702 for γ = 0 to
51,166,966 for γ = 4.

Finally, we studied how the maximum length λ affects MG-FSM, varying its value
from 5 to 20. As Figure 5(d) shows, λ had little effect on the map operations. Reduce time
increased with increasing values of λ. This effect was less pronounced for larger values
of λ (say, λ ≥ 10). This is because we iteratively compute l-sequences by intersecting
posting lists of corresponding (l − 1)-sequences (see Section 6.4); as l increases, the
posting lists become shorter and the cost of intersections reduces.

Table II lists some examples of frequent sequences that we mined from the NYT-
sen dataset. The sequences include prominent named entities (sequence 5), frequent
verbal phrases (sequences 1 and 2), popular quotes (sequence 6), and nouns and their
common prepositions (sequences 3 and 4). The latter two sequences illustrate the
effect of allowing positional gaps: the phrase “a flight” is frequently followed by the
prepositions “from” and “to”, but there is no particular flight from some place to some
other place that is frequent (e.g., “flight from New York to Tokyo”).
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Fig. 5. Impact of parameter settings (a)–(d) and scalability results (e) and (f).

7.5. Scalability

In our next set of experiments, we explored the scalability of MG-FSM. To evaluate
strong scalability, we ran MG-FSM on a fixed dataset using 2, 4, and 8 worker nodes
(σ = 1,000, γ = 1, λ = 5). In order to finish the experiment in reasonable time on
2 nodes, we used a 50% sample of CW (consisting of more than half a billion input
sequences). Our results are shown in Figure 5(e). MG-FSM exhibited linear scalability
as we increased the number of available machines, managing to proportionally de-
crease the times for the map and reduce tasks. The ability of MG-FSM to scale up
can be credited to the large number of partitions that can be processed and mined
independently.
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Table II. Example Frequent Sequences from
the NYT-sen Dataset

Sequences (frequency)
(1) studied at the university of (914)
(2) celebrate the anniversary of (1021)
(3) daughter of and of (33094)
(4) a flight from to (1313)
(5) senator barack obama of illinois (185)
(6) a thousand points of light (117)

Fig. 6. Performance of mining maximal and closed sequences.

We also performed a weak scalability experiment for MG-FSM in which we simulta-
neously increased the number of available machines (2, 4, 8) and the size of the sequence
database (25%, 50%, 100% of CW). In the ideal case, the total time remains constant
as we scale out. As Figure 5(f) shows, this is almost true, but we observe a small in-
crease in runtime on 8 worker nodes (around 20%). This is because doubling the size of
the input sequence database can increase the number of output sequences by a factor
larger than 2. In this specific case, 50% of ClueWeb generated 6M frequent sequences,
whereas the full corpus generated 13.5M frequent sequences (a 2.25× increase).

7.6. Maximal and Closed Sequences

We evaluated the performance of MG-FSM+ for mining maximal and closed sequences.
Recall that MG-FSM+, in contrast to MG-FSM, makes use of a postprocessing step to
filter out spurious sequences. We report separately the time required to mine locally
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maximal or closed sequences (first MapReduce job) and the time required for post-
processing (second job). In all experiments, we used the NYT-sen dataset and set the
default values to σ = 100, γ = 1, and λ = 5.

We first studied the performance of MG-FSM+ for various choices of the maximum-
length parameter λ, which we vary from 5 to 20. We set σ = 100 and γ = 1. Figure 6(a)
shows the total runtime for mining all sequences, maximal sequences, as well as closed
sequences. Figure 6(c) shows the corresponding number of output sequences. First,
observe that, for large values of λ, the decrease in output size is significant (up to 3×
for maximality and 2.5× for closedness); this shows that mining only maximal or closed
sequences can be beneficial. Second, observe that the time required to mine maximal
or closed sequences is close to that required to mine all frequent sequences, that is, the
overhead of mining locally maximal or closed sequences as well as filtering spurious
sequences in the postprocessing step is low. Finally, observe that the time required for
postprocessing increases as we increase λ. As can be seen in Figure 6(c), large values
of λ lead to a larger output sizes in all cases. This increase in output size translates to
more work in the postprocessing step, which thus takes more time.

We also studied the impact of the maximum-gap parameter γ by varying its value
from 0 to 4. We set σ = 100 and λ = 5. The results are shown in Figures 6(b) and 6(d). As
before, the overhead of maximal or closed sequence mining (second job) was small. For
large values of γ , we observed that the time required to mine locally maximal or closed
sequences (first job) was slightly larger than that required to mine all sequences. This
increase in runtime stems from our additional test for local maximality or closedness;
we mine all sequences but only output the maximal and closed ones. This test took
more time (up to 200s) as γ , and thus the number of sequences being processed and
tested, increased. This problem is not inherent to MG-FSM+: using a state-of-the-art
maximal or closed sequence miner in the local mining step may reduce running time
(see Section 6.4). Note that maximal and closed sequence mining was not particularly
effective in reducing the output size for our choice of λ = 5. This happens because λ
was comparably small and all sequences of length λ are maximal and closed.

7.7. Long Sequences

In this group of experiments, we studied the performance of the indexing techniques
of Section 6.5 for long sequences. We used the NYT-doc dataset in which each input
sequence corresponds to an entire document. The average sequence length was 603
items; see Table I. We evaluated MG-FSM without indexing (termed none), with an
index of the first and last position of each distinct item (min-max), as well as a full
index of all positions (full). Recall that the goal of using indexes is to reduce the cost of
rewriting (map phase of MG-FSM).

We first compared how the map time (i.e., the time until the last map tasks finished)
was affected when the different kinds of indexes are used. We considered four configu-
rations, and the results are shown in Figure 7(a). The benefit of the different indexes
across different setups is similar: map time is mainly affected by the input, which re-
mains the same, and is less sensitive to the parameters γ and λ. In all cases, the use of
the min-max index reduced the total map time by more than half. When the full index
was used, runtime was improved even more to 93s for setting (σ = 10, γ = 0, λ = 10)
compared to 124s when the min-max index is used and 283s when no index is used.
We also show the total runtimes, including reduce time, for two different settings of
(σ = 10, γ = 0, λ = 5) and (σ = 10, γ = 1, λ = 5) in Figures 7(b) and 7(c). In the easier
setting where γ = 0, the effect of using an index is large since map time corresponds
to a large portion of the total time, which is reduced from 366s to 157s when the full
index is used. Setting γ to 1 increases the reduce time, that is, mining takes longer.
The total runtime is reduced from 907s (with no index) to 638s (with full index).
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Fig. 7. Effectiveness of indexing for long sequences.

Our experiments also show that different length distributions of input sequences
affect both map and reduce times. Recall that NYT-sen and NYT-doc contain the same
data, but differ in sequence length (and number of sequences). The runtimes for σ = 10,
γ = 1, and λ = 5 for NYT-set and NYT-doc are shown in Figures 5(a) and 7(c), respec-
tively. When no indexing was used, the overall runtime of the map phase was more than
2× larger on NYT-doc than on NYT-sen; that is, longer sequences translate to larger
map times. With the full index, however, the map times of NYT-sen and NYT-doc were
almost identical (108s versus 102s, respectively). Note that the total mining time (i.e.,
including the reduce phase) is not comparable because outputs are different.

We also studied whether the use of indexing improves performance when the input
sequences are short. Using the NYT-sen dataset with short sequences (where each
sentence corresponds to a different input sequence and the average length is 19), we
observed that the construction and maintenance of the index were slower than just
scanning repeatedly the input sequences. When sequences are short, we need only
perform a few, cheap scans so that index construction is not beneficial.

7.8. Temporal sequences

We now evaluate our approach for mining temporal sequences. Using the Netflix
dataset [Bennett and Lanning 2007], we extracted temporal sequences of movies cap-
turing the order in which these movies were rated by users. Mining frequent sequences
in this context yields sequences of movies reflecting the chronological order in which a
user viewed or rated them.
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Fig. 8. Temporal sequences.

Table III. Example Frequent Sequences from Netflix (σ = 1000, λ = 5, τ = 1 day)

Sequence of movie titles (frequency)
(1) “Men in Black II”, “Independence Day”, “I, Robot” (2,268)
(2) “Pulp Fiction”,“Fight Club” (7,406)
(3) “Lord of the Rings: The Fellowship of the Ring”, “Lord of the Rings: The Two Towers” (19,303)
(4) “The Patriot”, “Men of Honor” (28,710)
(5) “Con Air”, “The Rock” (29,749)
(6) “‘Pretty Woman”, “Miss Congeniality” (30,036)

We mined frequent sequences from this dataset for σ = 1000, λ = 5, and temporal
gaps of 1, 7, 14, 21, and 30 days. The results are shown in Figures 8(a) and 8(b).
Figure 8(a) depicts the runtimes as we increase the temporal gap (τ ) from 1 day (which
corresponds to γ = 297) to 30 days (corresponding to γ = 6068). Figure 8(b) shows the
total size of the result, that is, how many frequent sequences were mined. Frequent
sequences of user rating events within a 1-day timespan were mined in 98s and were
175,003 in total. When the temporal gap was increased to 30 days (1-month timespan),
we mined 756,528 frequent sequences (a 4.32× increase) while total runtime had
a significant 17× increase, again due to the large number of candidate 2-sequences
constructed by the mining algorithm.

Table III includes some example sequences of movies mined from the Netflix dataset.
We can see that this includes movies from a trilogy in chronological order (see sequence
(3), which consists of movies from the Lord of the Rings trilogy) and movies with the
same actor (see sequence (1), which consists of movies starring actor Will Smith).

8. RELATED WORK

We now relate the ideas put forward in this article to existing prior work. Prior ap-
proaches can be coarsely categorized with respect to the type of pattern being mined
(frequent itemsets, frequent sequences, or application-specific special cases such as
n-grams) and according to their parallelization (sequential, shared-memory parallel,
shared-nothing parallel, or MapReduce).

Sequential approaches to frequent itemset mining fall into two families. Candidate
generation and pruning methods such as Apriori [Agrawal et al. 1993] repeatedly scan
the input data to count and prune candidate itemsets of increasing cardinality. Pattern
growth approaches, in contrast, scan the input data only once and construct a compact
representation of it. FP-growth [Han et al. 2004], as one such method, canonicalizes
transactions by ordering items therein according to their support and represents the
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input data as a compact augmented prefix tree. Frequent itemsets can then be de-
termined efficiently by traversing this so-called FP-tree. Our approach uses a similar
item-based partitioning of the output space as FP-growth. Moreover, to cope with input
data that exceeds the available main memory, FP-growth works with small projected
databases which contain all items required for one of the output partitions. Adapta-
tions of these ideas have also been used for frequent sequence mining. GSP [Srikant and
Agrawal 1996] generates candidate k-sequences by joining frequent (k − 1)-sequences
and prunes them by means of scanning the input data. FreeSpan [Han et al. 2000]
can be seen as an early adaptation of FP-growth to mine frequent sequences. Prefix-
Span [Pei et al. 2004], its successor, uses a pattern growth approach based on database
projections, but employs a suffix-based partitioning of the output space. SPADE [Zaki
2001b] assumes an alternative vertical representation of the input data which can be
understood as an inverted index that maintains, for each item, the list of transactions
containing the item, and traverses the (conceptual) lattice of all sequences in breadth-
first or depth-first order. Frequent episode mining [Mannila et al. 1997], a related but
different problem, determines sequences that occur frequently within a single trans-
action. Zaki [2000] and Giannotti et al. [2006] considered variations of the temporal
sequence mining problem discussed in this article.

To reduce the size of the frequent sequences, many studies have focused on mining
closed sequences since they concisely represent the set of all frequent sequences. Adapt-
ing pattern growth approaches like PrefixSpan, Yan et al. [2003] describe the CloSpan
algorithm to mine closed sequences. It maintains the set of already mined closed se-
quence candidates which are used to prune the search space and checks whether a
newly found sequence is a candidate closed sequence. This method requires postprocess-
ing to prune non-closed sequences. A potential limitation of CloSpan is that it requires
to maintain the set of all closed sequence candidates in memory. To this end, Wang
and Han [2004] proposed the BIDE algorithm which does not require to keep a candi-
date set of closed sequences. Instead, it uses a bi-directional closure checking scheme
to determine whether a newly generated candidate sequence is closed. Li and Wang
[2008] extend the framework of BIDE to mine closed sequences with gap constraints.
Differing from pattern growth approaches, the ClaSP algorithm [Gomariz et al. 2013]
exploits the vertical database format of SPADE to discover closed sequences. It tra-
verses the lattice of all sequences in a depth-first order and uses ideas from CloSpan
to generate candidate closed sequences and to prune non-closed sequences. Ideas for
mining closed sequences can well be carried over to mine maximal sequences. In this
direction, Fournier-Viger et al. [2013] describe the MaxSP algorithm which is based
on BIDE to mine maximal sequences. A later algorithm called VMSP [Fournier-Viger
et al. 2014], which is along the lines of ClaSP, mines maximal sequential patterns using
the vertical database format. Luo and Chung [2005] describe the MSPX method which
uses database samples for mining maximal sequential patterns. However, MSPX is an
approximate algorithm and thus may not mine the complete set of maximal patterns.
We refer to Han et al. [2007] for a more detailed discussion of sequential approaches to
frequent pattern mining.

Parallel approaches to frequent itemset and sequence mining have been proposed
for different machine models. For frequent itemset mining in parallel shared-memory
architectures, Parthasarathy et al. [2001] describe an approach that aims for ac-
cess locality when generating candidates in parallel. Zaki [2001a] investigates how
SPADE can be parallelized by distributing data and/or work among machines. Buehrer
et al. [2007] target parallel distributed-memory architectures and exploit the item-
based partitioning of FP-growth to have different machines operate on partial aggres-
sively pruned copies of the global FP-tree. Guralnik and Karypis [2004] examine how
the projection-based pattern growth approach from Agarwal et al. [2001], which is
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similar to PrefixSpan, can be parallelized by distributing data and/or work among ma-
chines. For the special case of closed sequences, Cong et al. [2005] describe a parallel
distributed-memory variant of BIDE. They partition the sequence database based on
frequent 1-sequences; a partition contains all suffix projections of sequences that con-
tain the corresponding frequent 1-sequence. Only little work has targeted MapReduce
as a model of computation. Li et al. [2008] describe PFP, another adaptation of FP-
growth using item-based partitioning that is focused on finding the k most frequent
itemsets. Recently, Lin et al. [2014] also exploited MapReduce for frequent subgraph
mining using a partitioning approach.

Given the important role of n-grams in natural language processing and informa-
tion retrieval, it is not surprising that several solutions exist for this specific special
case of frequent sequence mining. SRILM [Stolcke 2002] is one of the best-known
toolkits to compute and work with n-gram statistics for document collections of mod-
est size. Brants et al. [2007] describe how large-scale statistical language models are
trained at Google. To compute counts of n-grams having length five or less, they use a
simple extension of WORDCOUNT in MapReduce (along the lines of the naı̈ve approach
of Section 2.3). Huston et al. [2011] develop distributed methods to build an inverted
index for n-grams that occur more than once in the document collection. Most re-
cently, Berberich and Bedathur [2013] described Suffix-σ , to which we compared in our
experiments. The algorithm operates on suffixes, akin to Cong et al. [2005], and runs
in a single MapReduce job.

To the best of our knowledge, none of the existing work provides a satisfactory solu-
tion to general frequent sequence mining in MapReduce. Perhaps closest to our work
is that on parallel itemset mining by Buehrer et al. [2007] and Guralnik and Karypis
[2004], which also makes use of item-based partitioning of the output space. In contrast
to MG-FSM, these methods use database projections tailored to itemset mining; these
projections cannot be used for frequent sequence mining and are generally less flexible
than our partition construction techniques. Moreover, previous approaches have been
evaluated on small-scale and/or synthetic datasets, whereas we use databases with
more than 1B real-world input sequences in our experimental study.

Finally, this article is an extended version by Miliaraki et al. [2013], which proposes
the basic MG-FSM algorithm. We extend this basic algorithm in multiple ways: (1) We
propose novel methods for mining maximal and closed sequences, (2) we propose in-
dexing techniques to efficiently mine sequence databases with long input sequences,
and (3) we show how MG-FSM can be used to mine temporal sequences. All of our
extensions have been studied in our experimental evaluation.

9. CONCLUSIONS

We proposed MG-FSM, a scalable algorithm for gap-constrained frequent sequence
mining in MapReduce. MG-FSM partitions the input database into a set of parti-
tions that can be mined efficiently, independently, and in parallel. Our partitioning
is based on a novel notion of w-equivalency, which generalizes the concept of a “pro-
jected database” used in many frequent pattern mining algorithms. Scalability is ob-
tained due to a number of novel optimization techniques, including unreachability
reduction, prefix/suffix reduction, blank reduction, blank separation, aggregation, and
lightweight compression. We also discussed how MG-FSM can handle long sequences,
temporal gap constraints, and mining of only maximal or closed sequences. Our exper-
iments suggest that MG-FSM is orders of magnitude more efficient and scalable than
baseline algorithms for gap-constrained frequent sequence mining, and competitive to
state-of-the-art algorithms for distributed n-gram mining (an important instance of
gap-constrained FSM). For example, in our experiments, MG-FSM mined more than
1 billion input sequences for n-grams in less than half an hour on 10 worker machines.

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 8, Publication date: June 2015.



Closing the Gap: Sequence Mining at Scale 8:39

There are a number of directions for extending the MG-FSM framework described
in this article.11 MG-FSM is a generic algorithm and uses a general-purpose sequence
miner in the local mining phase. Using a customized miner which is aware of the
MG-FSM framework may lead to higher overall efficiency. Perhaps more importantly,
MG-FSM focuses on sequences of items, but some applications involve sequences of
itemsets. It is not clear how these can be mined in a scalable fashion. Similarly, MG-
FSM does not support mining of hierarchical patterns, sequences with attributes, or
other pattern types such as frequent episodes or frequent partial orders, all of which
are of interest to applications. Finally, integrating different notions of frequency (e.g.,
collection frequency), supporting further constraints (e.g., generalize at most 3 items),
scoring the produced patterns by interestingness, and computing summary statistics
about occurrences of frequent sequences and their gaps are promising directions for
extending MG-FSM.

APPENDIXES

A. PROOF OF LEMMA 4.4 (UNREACHABILITY REDUCTION)

LEMMA 4.4 (UNREACHABILITY REDUCTION). Let T = s1 · · · sl and denote by I the set of all
(w, γ, λ)-unreachable indexes in T . Then

Gw,γ,λ(T ) = Gw,γ,λ(T−I),

where T−I is obtained by removing the items at indexes I from T .

We start by relating sequences of indexes of an input sequence T to the pivot se-
quences generated by T .

Definition A.1 (Reachable Index Sequence). Let T = s1 · · · sl. We say that a sequence
I = i1i2 · · · in of increasing indexes is a (w, γ, λ)-reachable index sequence for T if ik+1 −
ik ≤ γ + 1 for 1 ≤ k < n, sik ≤ w for 1 < k < n, sik = w for at least one 1 ≤ k ≤ n, and
2 ≤ n ≤ λ. Denote by T (I) = si1 · · · sin the sequence generated by I, by Iw,γ,λ(T ) the set
of all (w, γ, λ)-reachable index sequences for T , and by Iw,γ,λ(S | T ) ⊆ Iw,γ,λ(T ) the set
of (w, γ, λ)-reachable index sequences for T that generate S.

This definition matches the definition of γ -subsequences of length at most λ but
allows the first and last item to be irrelevant. In fact, S ∈ Gw,γ,λ(T ) if and only if
both S ≤ w and Iw,γ,λ(S | T ) is nonempty. Consider, for example, the input sequence
T = aadc. We have Gc,2,3(T ) = { ac, aac }, Ic,2,3(T ) = { 1 · 4, 2 · 4, 3 · 4, 1 · 2 · 4 }, Ic,2,3(ac |
T ) = { 1 · 4, 2 · 4 } and Ic,2,3(aac | T ) = { 1 · 2 · 4 }.

We make use of a generalized distance definition in our proof of the correctness of
the unreachability reduction.

Definition A.2 (Distance). Let T = s1 · · · s|S|. Let 1 ≤ i, j ≤ |S| and set l = min { i, j }
and r = max { i, j }. The (w, γ, λ)-distance dw,γ,λ(i, j | T ) between i and j is given by

min
{ |I| : I = i1 · · · in ∈ Iw,γ,λ(T ), i1 = l, in = r

} ∪ { ∞} .

Note that dw,γ,λ(i, j | T ) ∈ { 1, 2, . . . , λ,∞}. Intuitively, the distance is equivalent to
the smallest number of items that we need to “step onto” when moving from i to j via
relevant items, by skipping at most γ items in each step, and by stepping onto at least
one pivot item; it is infinite if there is no such path of length at most λ. We can now
define left and right distances formally.

11In recent work, Beedkar and Gemulla [2015] address some of the extensions mentioned here. In particular,
their LASH system extends MG-FSM with support for hierarchical patterns and makes use of an efficient
customized local sequence miner.
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Definition A.3 (Left Distance). Let T = s1 · · · sl. Fix some 1 ≤ i ≤ l and denote by
iprev < i the largest index such that siprev = w, if such an index exists. The (w, γ, λ)-left
distance of index i is defined as lw,γ,λ(i | T ) = dw,γ,λ(iprev, i | T ) if iprev exists; otherwise
lw,γ,λ(i | T ) = ∞.

We define the (w, γ, λ)-right distance rw,γ,λ(i | T ) similarly with respect to the closest
pivot to the right of index i. The following lemma captures most of the proof of the
correctness of unreachability reduction.

LEMMA A.4. Let T = s1 · · · sl and let 1 ≤ k ≤ l be a (w, γ, λ)-unreachable index. Then

Gw,γ,λ(T ) = Gw,γ,λ(T ′),

where T ′ is obtained by removing index k from T . Moreover, for 1 ≤ i ≤ j ≤ l, i �= k,
j �= k, we have

dw,γ,λ(i, j | T ) = dw,γ,λ(i′, j ′ | T ′), (8)

where i′ = i if i < k and i′ = i − 1 if i > k (similarly j ′).

The first part of the lemma states that we can safely remove a single unreachable
item from T . The second part states that all distances between remaining indexes are
unaffected. Thus, if an index i in T is unreachable in T , the corresponding index i′ in
T ′ will also be unreachable. We can thus remove all unreachable items in one go, which
proves Lemma 4.4.

PROOF. For brevity, we drop subscript (w, γ, λ) from our notation.
First, observe that if k is unreachable, we have for all indexes i− < k and i+ > k,

d(i−, k | T ) = ∞ and d(k, i+ | T ) = ∞, which implies d(i−, i+ | T ) = ∞. Our definition of
distance thus implies that there is no reachable index sequence of T that “crosses” k,
that is, simultaneously contains indexes less than k and indexes larger than k. Now pick
any sequence S ∈ G(T ) and any of its index sequences I ∈ I(S | T ). If I consists only
of indexes smaller than k, then T ′(I) = T (I) = S. Otherwise, I consists only of indexes
larger than k. Then T ′(I′) = T (I) = S, where I′ is obtained from I by decrementing
every index by one. Thus S ∈ G(T ) implies S ∈ G(T ′).

We now show that no additional sequences are generated from T ′. Suppose to the
contrary that there exists a sequence S of length at most λ that is generated from T ′
but not from T . Then I(S | T ) = ∅ but I(S | T ′) �= ∅. Pick any I′ ∈ I(S | T ′), and denote
by i′

− and i′
+ the smallest and largest index in I′, respectively. We must have i′

− < k and
i′
+ ≥ k; otherwise the preceding arguments imply that T would have also generated S.

Since I′ ∈ I(S | T ′), we obtain d(i′
−, i′

+ | T ′) ≤ λ. Assume for now that Eq. (8) asserted
earlier indeed holds. Then d(i′

−, i′
+ | T ′) = d(i−, i+ | T ), where i− = i′

− and i+ = i′
+ + 1

denote the corresponding indexes in T . Since we showed before that d(i−, i+ | T ) = ∞,
we conclude that d(i′

−, i′
+ | T ′) = ∞ > λ, a contradiction. Thus S ∈ G(T ′) implies

S ∈ G(T ).
It remains to show that Eq. (8) holds. Observe that the distance between two indexes

i and j depends only on the set { v : i ≤ v ≤ j } of in-between indexes and, in particular,
depends on sv only through the properties of sv, that is, whether sv is relevant and
whether it is a pivot. Pick any i− �= k and i+ > i−, i+ �= k, and denote by i′

− and i′
+ the

corresponding indexes in T ′. We need to show that

d(i−, i+ | T ) = d(i′
−, i′

+ | T ′). (9)

If i+ < k or i− > k, T (i− · · · i+) = T ′(i′
− · · · i′

+) and Eq. (9) follows immediately. Otherwise,
we have i− < k and i+ > k and d(i−, i+ | T ) = ∞. First, d(i′

−, k | T ′) = ∞ since:
(1) T (i− · · · [k − 1]) = T ′(i′

− · · · [k − 1]); (2) any difference between d(i−, k | T ) and
d(i′

−, k | T ′) thus depends on the k-th item in each input sequence; (3) the k-th item
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is neither a pivot in T nor in T ′ (otherwise index k would be reachable in T ) so that
d(i′

−, k | T ′) = d(i−, k | T ); and (4) d(i−, k | T ) = ∞. Using similar arguments, we can
show that d(k, i′

+ | T ′) = ∞ and therefore d(i′
−, i′

+ | T ′) = ∞ as desired.

B. PROOF OF LEMMA 4.5 (PREFIX/SUFFIX REDUCTION)

LEMMA 4.5 (PREFIX/SUFFIX REDUCTION).

Gw,γ,λ( l1 T l2 ) = Gw,γ,λ(T ).

PROOF. We first show that S ∈ Gw,γ,λ(T ) implies S ∈ Gw,γ,λ(T ′). Let S ∈ Gw,γ,λ(T )
and pick any I ∈ Iw,γ,λ(S | T ), where we continue to use the notation from Appendix A.
Denote by i− and i+ the smallest and largest indexes in I. We have i− > l1 and
i+ < |T |−l2, since all items in prefix l1 or suffix l2 are w-irrelevant and thus not part of
a pivot sequence. Denote by I′ the index set obtained from I by decrementing all indexes
by l1. Then I′ is a (w, γ, λ)-reachable index sequence for T ′ with T ′(I′) = T (I) = S so that
S ∈ Gw,γ,λ(T ′), as claimed. Using similar arguments, one can show that S ∈ Gw,γ,λ(T ′)
implies S ∈ Gw,γ,λ(T ), completing the proof.

C. PROOF OF LEMMA 5.1 (SUPPORT MONOTONICITY)

LEMMA 5.1 (SUPPORT MONOTONICITY). Let S and S′ be two sequences such that S ⊆γ −

S′. For all sequence databases D , we have

Supγ (S,D) ⊇ Supγ (S′,D).

PROOF. Consider any input sequence T = t1 . . . tn ∈ D such that S′ ⊆γ T . We need to
show that this implies S ⊆γ T . Since S′ ⊆γ T , there is a set of indexes i′

1 < . . . < i′
|S′|

such that: (i) Sk = Ti′
k

for 1 ≤ k ≤ |S′|, and (ii) i′
k+1 − i′

k − 1 ≤ γ for 1 ≤ k < |S′|.
Furthermore, since S ⊆γ − S′, there is a set of indexes j1 < . . . < j|S| such that: (i)
Sk = S′

jk for 1 ≤ k ≤ |S|, and (ii) jk+1 − jk − 1 ≤ γ − for 1 ≤ k < |S|. Now consider the set
of indexes ik = i′

jk. We have S = Ti1 · · · Ti|S| by construction so that S is a ∞-subsequence
of T ; this proves the lemma for γ = ∞. To finish the proof, observe that when γ < ∞,
we have γ − = 0 so that jk+1 = jk + 1 and therefore ik+1 − ik − 1 = i′

jk+1
− i′

jk − 1 =
i′

jk+1 − i′
jk − 1 ≤ γ .

D. PROOF OF LEMMA 5.5

LEMMA 5.5. Every globally maximal sequence S with |S| ≥ 2 is also locally maximal.

PROOF. Let S with |S| ≥ 2 be globally maximal and set w = p(S). We have f (S,D) ≥
σ and, since D and Pw are w-equivalent, S ∈ Fw(Pw). We have to show that S ∈
Fmax

w (Pw) as well. Suppose to the contrary that S /∈ Fmax
w (Pw). By the definition of local

maximality, there must be a sequence S′ ⊃γ − S with S′ ∈ Fw(Pw). Since S′ ∈ Fw(Pw),
we have p(S′) = w, |S′| ≥ 2 and f (S′; Pw) ≥ σ . Since furthermore D and Pw are
w-equivalent, it follows that f (S′; Pw) = f (S′; D) and thus f (S′; D) ≥ σ . But then
S′ ∈ Fσ,γ,λ(D) so that S cannot be globally maximal, a contradiction.

E. PROOF OF LEMMA 5.6

LEMMA 5.6. Let S be a spurious sequence. Then there is a primary-witness sequence
S+ which satisfies:

(1) S ⊂γ − S+, p(S+) > p(S), and S+ is frequent,
(2) S+ is locally maximal,
(3) there is no intermediate sequence S∗ with p(S∗) < p(S+) and S ⊂γ − S∗ ⊂γ − S+.
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PROOF. Since S is spurious, there must be some globally maximal sequence S′ ⊃γ − S
satisfying (1); Lemma 5.5 implies that S′ also satisfies (2). If S′ satisfies (3), we take
S+ = S′ and are done.

Otherwise, let w = p(S). Pick any sequence S′ that satisfies (1) and (2); the prior
discussion shows that there is such a sequence. Suppose that S′ contains only one
distinct item w′ that is larger than w. We show that S′ then satisfies (3). Suppose
to the contrary that S′ contains a subsequence S∗ satisfying S ⊂γ − S∗ ⊂γ − S′ and
w∗ = p(S∗) < p(S′) = w′. Since S′ contains only one distinct item that is “larger” than
w, we must have w∗ = w. Since S′ is frequent and by Lemma 5.1 any γ −-subsequence
of a frequent sequence is itself frequent, we conclude that S∗ is frequent. Putting both
together, we have S∗ ∈ Fw(Pw). But then S is not locally maximal and thus not a
spurious sequence, a contradiction.

Now assume that S′ satisfies (1) and (2) but not (3). We show that there must be a
“smaller” sequence S− such that p(S) < p(S−) < p(S′) and S− satisfies (1) and (2). If S−
also satisfies (3), we are done. If not, we iterate this process by taking the just-obtained
sequence S− for S′. Since after every iteration p(S) < p(S−) < p(S′), S− will eventually
satisfy (3); by the preceding discussion, this happens at the latest when S− contains
only one item larger than w. The lemma thus follows.

It remains to show that S− exists. Let w′ = p(S′) and let S∗ be any subsequence of
S′ violating (3), that is, w∗ = p(S∗) < w′ and S ⊂γ − S∗ ⊂γ − S′. Using arguments as
earlier, we find that S∗ satisfies (1). If S∗ also satisfies (2), set S− = S∗. Otherwise, S∗ is
not locally maximal. But then there is a locally maximal sequence S∗

2 ∈ Fw∗ (Pw∗) with
S∗ ⊂γ − S∗

2. Clearly, S ⊂γ − S∗
2 as well. Since additionally p(S∗

2) = w∗ > w, we conclude
that S∗

2 satisfies (1) and (2), and set S− = S∗
2.
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