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Non–technical summary

The rapidly increasing investment in information and communication technologies (ICT) and
the fast diffusion of the internet during the past decade have entailed widespread hopes about a
‘New Economy’ ensuring large productivity gains and persistent output growth. Only the more
recent economic downturn and the breakdown of once highly praised businesses have put these
hopes into perspective.

In order to get a more robust picture of the productivity effects of ICT, the potential insights
from using aggregate statistics have turned out to be limited. The growth of real output of the most
intensive ICT–using industries, like the service sector, is frequently understated by official statistics
due to problems in accounting for quality changes appropriately. Moreover, aggregate statistics
contain little information about complementary efforts by firms, like organizational changes and
process re-engineering, which have been found to be important accompanying efforts for a productive
use of the new technologies.

Consequently, the empirical literature on the productivity impacts of ICT has been increasingly
focussing on evidence at the firm–level. Since the mid 1990s, most of these studies have found
evidence of significant productivity contributions of ICT. The quantitative results of these studies,
however, differ to a large extent. These differences are not only due to varying samples of firms and
to diverse definitions of ICT capital but also due to differences in the quantitative techniques that
have been employed.

In this paper, the importance of choosing the right methodological approach is explored in
more detail. A variety of interfering factors like differing management abilities, measurement errors,
simultaneity of input and output decisions by firms as well as business cycles may lead to distortions
in the quantitative results. These effects are illustrated by applying different econometric techniques
to a representative sample of observations from German service firms over the period from 1994
to 1999. The empirical analysis yields evidence that, once all the mentioned interfering influences
are controlled for, ICT is found to have enhanced productivity in German services. However, these
effects are substantially smaller than those obtained in various existing studies on the topic.
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1 Introduction
Like many other important inventions in history, the rapid technological progress of the semi-

conductor industry and the fast expansion of the internet evoked high expectations about their

impact on productivity and growth. The adoption and diffusion of information and communication

technologies (ICT) were expected to boost productivity substantially. However, for a long time,

anecdotal evidence of computerized workplaces did not show up in aggregate productivity statistics,

which had led to the proclamation of the ‘productivity paradox’ of ICT.1 While investment in

ICT started to grow rapidly in the U.S. since the 1970s, labour productivity growth slowed down

substantially and remained at a low level until the beginning of the 90s (Jorgenson and Stiroh, 1995).

The service sector was at the heart of this paradox. Around 1990, the U.S. service sector accounted

for nearly 80 percent of total IT investment in the U.S. but experienced productivity growth only

slightly above zero (Brynjolfsson and Yang, 1996).

One important reason for the ‘productivity paradox’ may well have been that aggregate

statistics do not adequately reflect quality changes. This seems particularly true for the service

sector in which ICT investment has evolved most dynamically.2 Only more recent studies based on

aggregate statistics have found evidence for a productive role of ICT use within the overall economy.3

By contrast, the advantage of firm–level studies is that the results are much less dependent on

appropriate deflators. ICT investment will affect a firm’s performance relative to its competitors

either by decreasing costs via more efficient processes or through increasing revenues by higher

product quality and prices. These effects can be captured by settling the analysis at the firm–level.

Yet another, and potentially more important, disadvantage of aggregate–type is that it is very

difficult to identify the underlying determinants of a successful implementation of ICT. Not only

since the emerging disillusions about a ‘New Economy’ since 2000, it has been recognized that ICT

are far from being a panacea that yields permanent growth and the end of business cycles. In order

to get a clearer picture of how ICT may actually improve business performance and which policies

are best suited to foster a successful adaption of ICT, it is important to understand through which

channels the use of ICT affects the success within firms.

At the end of the 1990s, a broad variety of empirical studies have emerged exploring the

productivity impacts of ICT at the firm–level.4 Most of these studies employ a production function

framework to estimate the elasticity of output with respect to ICT capital. The elasticities found

1The productivity paradox is often linked to the famous statement by Robert Solow who summarized the scepticism
about the benefits of ICT as early as in 1986 by saying that “[w]e can see the computer age everywhere but in the
productivity statistics” (Uchitelle, 2000).

2See Griliches (1994) and Brynjolfsson and Yang (1996).
3Examples are studies by Schreyer (2000) and Colecchia and Schreyer (2001) for various OECD countries and an

industry–level study by Stiroh (2001) for the U.S.
4See for example studies by Bertschek and Kaiser (2001), Biscourp et al. (2002), Black and Lynch (2001), Bresnahan

et al. (2002), Brynjolfsson and Hitt (1995, 1996, 1998, 2000a, 2000b), Brynjolfsson and Yang (1999), Greenan and
Mairesse (1996), Greenan et al. (2001), Lehr and Lichtenberg (1999), Licht and Moch (1999), Lichtenberg (1995).
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in these studies vary to a large extent due to differences in the definition or construction of ICT

stocks, in the industries and firm–size under investigation, and due to country–specific differences.

Moreover, the results are very much dependent on the quantitative methods employed.5 Various

interfering influences like firm–specific effects, simultaneity of input and output decisions, measure-

ment errors, omitted variables and the influence of business cycles may induce serious biases in the

empirical analysis. The main aim of this paper is to explore these influences subsequently and to

present econometric strategies that are suited to reveal the ‘real’ rather than spurious productivity

effects resulting from the use of ICT. In addition, calibration suggestions are made about how

existing firm–level data bases containing information on sales, employment and investment can be

transformed adequately for the purpose of the corresponding production function estimates.

The empirical application illustrating the effects of different estimation techniques is based on

a sample of more than 1100 firms from a representative survey in the German business–related and

distribution service sector covering the period 1994 to 1999. Beyond analyzing the methodological

issues, the study aims to present evidence on the so far hardly explored productivity impacts of ICT

use on German businesses.6

The paper is organized as follows. In section 2, the theoretical and methodological issues are

discussed. Section 3 gives an overview of the employed data from the Mannheim Innovation Panel in

the Service Sector (MIP-S) and describes the calibrations applied to construct different stock values

for ICT and conventional capital separately. Section 4 discusses the econometric issues and presents

the empirical results for the ICT–extended production function framework. Section 5 concludes

with a summary of the main findings.

2 Theoretical and Methodological Issues
In the empirical literature, the most frequently used framework for analyzing the productivity

impacts of ICT has been to use a production function setup with ICT capital entering as an

additional production input.7 In most studies based on aggregate data, the corresponding elasticities

are determined rather indirectly applying growth accounting approaches,8 whereas firm–level (and

sometimes industry–level) studies usually take advantage of the more numerous units of observations

5See for example Brynjolfsson and Hitt (1995).
6To the knowledge of the author, the only related study are cross–section analyses by Licht and Moch (1999) and

Bertschek and Kaiser (2001).
7The most frequently applied proxies for ICT capital applied are the value of computers installed, book values of

office, computing and accounting machinery (OCAM) from balance sheets and investment in ICT.
8The growth accounting approach aims to assign the contribution of growth of different inputs to the overall growth

of output. The residual in output growth that is not explained by the growth of the observed inputs is interpreted as
a rise in multifactor productivity (MFP). The approach is based on the assumption of constant returns to scale and
perfect competition, such that the elasticities of output with respect to the different inputs equal the income shares
of the corresponding inputs. The direct growth contribution of ICT to output growth are calculated as the product
of the share of ICT capital services in total income and the growth of ICT capital stock. Potential spill–overs (not
necessarily from ICT–use only, however) are captured by an increase in the residual MFP. For further details on the
growth accounting within the particular context of ICT, see for example Schreyer (2000).
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by directly estimating the elasticities in econometric approaches. In this section, the analysis of ICT

productivity within the Cobb–Douglas and the translog production function framework is briefly

described and the particular advantages of firm–level analyses are summarized.

The Cobb–Douglas production function setup is expressed as:

Yit = F (Ait, Lit, ICTit, Kit) = AitL
γ1
it ICT γ2

it Kγ3
it (1)

where Yit is value added of firm i in period t, Lit represents labour input, ICTit and Kit are

the corresponding amounts of ICT and conventional (non-ICT) capital respectively, and Ait is the

multifactor productivity of firm i.9

In an extended version of the equation, effective work force L is assumed to be determined not

only by the number of employees N but also by its skill structure. For this purpose, the workforce

is classified according to employees that are high skilled Nh (with university degree or equivalent),

medium skilled Nm (with vocational training), and low skilled Nl (without formal education). With

θh and θm denoting the productivity differential of high and medium skilled workers compared to

the average productivity of low–skilled workers, effective labour input is defined as:

Lit = Nl,it + θm ·Nm,it + θh ·Nh,it (2)

= Nit · (1 + θm · sm,it + θh · sh,it)

with sm,it = Nm,it/Nit and sh,it = Nh,it/Nit denoting the shares of medium– and high–skilled

employees in total workforce of the firms respectively. Inserting equation (2) into (1) and taking

logs yields:

ln Yit = ln Ait + γ1 ln Nit + γ1 ln(1 + θmsm,it + θhsh,it) + γ2 ln ICTit + γ3 ln Kit + εit (3)

With small values for θm, θh, sm,it and sh,it, the term controlling for the skill structure may be

simplified to:10

ln(1 + θmsm,it + θhsh,it) ≈ θmsm,it + θhsh,it (4)

Inserting eq. (4) into (3) yields the following empirical model:

ln Yit = ln Ait + γ1 ln Nit + γ2 ln ICTit + γ3 ln Kit[+β1sm,it + β2sh,it] + εit (5)

with β1 = γ1θm and β2 = γ1θh. The term in square brackets denotes the additional terms

from including the skill structure into the simple Cobb–Douglas production function according to

9F (•) may be such that Y exhibits constant returns to scale in K and L (γ1 + γ2 + γ3 = 1), but not necessarily.
10Anticipating some of the results and applying mean shares from the sample, the implicit products β1sm,it

∼= 0.243
and β2sh,it

∼= 0.402 yield rather high values that make the approximation very inaccurate. Since the specific values of
θ are not the main interest of this study, however, this approximation may still appear appropriate.
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equation (1). As it is well–known, the coefficients γj correspond to the elasticity of output with

respect to the input j. One disadvantage of the Cobb–Douglas production function is, however,

that the elasticities of the individual inputs are restricted to be constant and the elasticity of

substitution between the individual inputs is restricted to one. A more flexible specification is the

translog–function (Christensen and Jorgenson, 1969) in which both the output elasticities and the

elasticities of substitution may vary. The translog–extension of equation (5) is:

ln Yit = ln Ait + γ1 ln Lit + γ11(ln Lit)
2 + γ2 ln ICTit + γ22(ln ICTit)

2

+γ3 ln Kit + γ33(ln Kit)
2 + γ12(ln Lit)(ln ICTit) (6)

+γ13(ln Lit)(ln Kit) + γ23(ln ICTit)(ln Kit)

To keep the model tractable, it is abstracted from the skill level in this specification. The

elasticity of output with respect to input j (αj) depends on the levels of all the inputs em-

ployed. For comparability to the Cobb–Douglas framework, they may be evaluated at the means

of the corresponding logarithmic values (denoted by a bar). The implicit elasticities are then given by:

ᾱL = ∂ ln Yit/∂ ln Lit = γ1 + 2γ11ln Lit + γ12ln ICTit + γ13ln Kit (7)

ᾱICT = ∂ ln Yit/∂ ln ICTit = γ2 + 2γ22ln ICTit + γ12ln Lit + γ23ln Kit (8)

ᾱK = ∂ ln Yit/∂ ln Kit = γ2 + 2γ33ln ICTit + γ13ln Lit + γ23ln ICTit (9)

As pointed out by Brynjolfsson (1994) and Licht and Moch (1999), quality improvements —

in particular improved customer service — are an especially important goal for ICT investment

decisions. Moreover, Griliches (1994) shows that the problem of unmeasured quality improvements

is especially important in the case of ‘unmeasurable’ services like trade and F.I.R.E. (finance,

insurance, real estate) where ICT investment has grown most rapidly. As a consequence, the

contribution of ICT to real output growth inferred from aggregate data are likely to be biased

towards zero. For applications to firm–level data, this problem will be less severe. If a firm invests

in ICT in order to improve the quality of a product while its competitors continue to offer their old

products, the innovating firm will try to charge a higher price for its new product. If the quality

improvement is approved by customers, they will in fact be willing to pay a higher price for the good

and the value added of the innovating firm will increase accordingly. Consequently, Brynjolfsson

and Hitt (2000a) argue that microeconomic studies will capture this effect and variations in output

quality will contribute to measuring a higher output elasticity of ICT investment. This relationship

is independent of the price deflator employed for the corresponding industry.11

11A firm level study by Brynjolfsson and Hitt (1995) did not find any significant differences in IT productivity
between “measurable” and “unmeasurable” sectors, indicating that appropriate quality measurement is mainly a
problem at the aggregate level.
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Apart from these rather empirical arguments, there are also theoretical reasons why the

firm–level might be the preferred reference for analysis. The productivity impact of ICT is likely

to vary substantially between firms. Like in the case of many other innovation waves in economic

history, some firms are better enabled than others to take productive advantage of new technologies.

For the particular case of ICT, it has been argued that complementary factors like organizational

restructuring, skill structure and intangible assets play a key role for ICT to unfold its largest

benefits (Brynjolfsson and Hitt, 2000a; Yang and Brynjolfsson, 2001). The understanding of the

underlying firm–level determinants of a productive use of ICT is crucial for the design of suited

policies which aim at fostering productivity and growth. In industry– of country–level data, these

firm–specific differences disappear in the process of aggregation. Therefore, in order to assess the

determinants of successful ICT use, it seems appropriate to explicitly model the influence of various

firm characteristics on the efficient use of new technologies in future research.

3 The Data
In order to implement the production framework empirically, data from the Mannheimer Innovation

Panel in Services (MIP-S) are employed. This survey is conducted by the Centre for European

Economic Research (ZEW) on behalf of the German Federal Ministry for Education and Research

(bmb+f). The data has been collected annually since 1994 in a representative survey of innovation

activities in the German business–related service and distribution sector and includes information

from more than 2000 firms (Janz et al. 2001). It has an (unbalanced) panel structure in important

key variables for the years since 1994. The survey methodology is closely related to the guidelines

proposed in the Oslo-Manual on innovation statistics (OECD/Eurostat, 1997). Furthermore, the

1997 wave of the survey in the service sector is part of the Community Innovation Survey (CIS).

The MIP–S data set seems particularly appropriate to illustrate some of the effects of using

different estimation strategies on the results concerning ICT productivity. Among many other

features, the data set contains annual data on sales, number of employees (full-time equivalents),

skill structures, expenditures for gross investment and for ICT-capital (including hardware, software

and telecommunication technology).12 Similar information has been collected in many other existing

data sets, too. In this section, some proceedings are suggested of how information from other

external sources may be used to suitably transform the raw data from the survey to variables that

are applicable to panel–data methods for the underlying production function framework.

As far as output Yit is concerned the firms’ value added would certainly be the most preferred

measure.13 However, the data set does not contain information on intermediate goods and the given

12In fact, the analysis based on the MIP–S data set can be extended easily in future research making use of a variety
of additional information such as innovation, R&D, training, cooperation.

13Alternatively, intermediate goods should enter as an explanatory variable in the production function with sales as
a measure of output.
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information on sales are an unsatisfactory proxy. However, the share of value added in sales will

vary substantially across industries since industries that are typically at the end of the value chain

(like wholesale and trade) are particularly dependent on intermediate goods in quantitative terms.

In order to control for these differences and to deflate the corresponding output values, aggregate

data from the German statistical office are employed to calculate the share of real value added in

nominal gross output by industry at the two–digit NACE level.14 The firm–level data on sales are

then multiplied by the corresponding industry–specific share of value added in sales. For labour

input, the annual average of the number of employees in full-time equivalences as reported by the

responding firms is used.

An important issue for assessing the productivity effects of ICT concerns the separate construc-

tion of capital stocks for ICT capital and conventional (non-ICT) capital from investment data. For

this purpose, investment on conventional capital is defined as total investment expenditures minus

ICT expenditures as reported by the firms.15 In order to derive the corresponding real investment,

conventional investment is deflated by the deflator of the German Statistical office.16 As far as

deflators for ICT goods are concerned, however, German official price statistics on ICT goods tend

to understate the real price decline of this product class (Hoffmann, 1998). Therefore, the ICT price

index for Germany calculated by Schreyer (2000) is applied, who takes the obvious bias of official

price indexes into account by calculating a harmonized price index for various OECD countries.

He employs official statistics on ICT prices in the U.S., which are based on hedonic techniques, as

a reference and assumes that the differences between price changes for ICT and non–ICT capital

goods are the same across countries.

Given the deflated investments for both types of capital, the perpetual inventory method with

constant, geometric depreciation,17 is applied to construct the capital stocks for ICT and non-ICT.

Accordingly, the capital stock Kkt of type k in period t results from investment It−1 in the following

way:

Kkt = (1− δk)Kk,t−1 + Ik,t−1 (10)

14For this purpose, the time series 7711 and 7716 from the German Statistical Office are used.
15Some firms reported investment expenditures in ICT that exceeded total investment (leading to a negative gross

investment in conventional capital). These inconsistencies were most frequent for the years 1994, 1997 and 1998 (6.3%)
but almost absent in 1995 and 1996 (0.2%). The most likely explanation seems to be the questionnaire design: for the
years 1995 and 1996, the question on total investment was immediately followed by the question on ICT investment,
thereby drawing the respondent’s attention to the consistency. To guarantee the quality of the data, firms with
inconsistent information are dropped from the data set.

16The index of the producer prices for investment goods from the German Statistical Office was employed for this
purpose.

17It may be argued that especially for the case of ICT capital it might be more adequate to apply a vintage model
in which computers maintain their productive efficiency over the lifetime of computers (see for example Jorgenson and
Stiroh, 1995). However, the definition of ICT includes a very broad range of technologies. Furthermore, the length of
the time series available is very short. The average life cycle of ICT capital would exceed the time series available for
the majority of the firms. Therefore, there is little gain in trying to exploit the potential advantages of the vintage
approach in this context.
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with k = 1 for conventional and k = 2 for ICT capital and investment.

There are two issues in this approach to be addressed. First, reasonable values for the depreci-

ation rates of both types of capital have to be defined. Secondly, since no information is available

on the level of capital stocks, initial capital stocks have to be constructed for all individual firms.

Therefore, the method proposed by Hall and Mairesse (1995) is applied.18 Under the assumption

that investment expenditures in capital good k have grown at a similar, constant average rate gk

in the past for all firms, by backward substitution equation (10) can be rewritten for period t = 1

(1994) in the following way:19

Kk1 = Ik0 + (1− δk)Ik,−1 + (1− δk)
2Ik,−2 + . . . (11)

=
∞∑

s=0

Ik,−s(1− δk)
s = Ik0

∞∑

s=0

[
1− δk

1 + gk

]s

=
Ik1

gk + δk

Constant linear depreciation rates are assumed for conventional capital (δ1) and ICT capital

(δ2) correspondingly. For δ1, the average depreciation rates by industries at the NACE two–digit

level over the years 1991-1999 are employed.20 For ICT capital, a depreciation rate of 30% is

assumed.21 In particular, with δ1 < δ2 it is taken into account that the fast technological progress

in ICT implies more frequent replacement of ICT inventory than of conventional capital (including

buildings and office furniture among others). In order to derive the initial capital stocks, assumptions

about pre-period growth rates of both type of investments must be made. For non-ICT investment

expenditures, an annual growth rate of approximately 5% (g1 = 0.05) is assumed.22 For ICT

investment, no time series are available for Germany. In order to get a rough idea of the evolution of

18Hall and Mairesse (1995) refer to the construction of an R&D stock for which the problems are very similar.
19In fact, the initial value of investment in conventional capital I1,1 is replaced by the average of the observed

values of conventional investment for each firm. With this “smoothing” it is aimed to correct for cyclical effects which
might have affected the estimated capital stock due to different initial years in the unbalanced panel. The underlying
assumption is that long term growth of investment in conventional capital (g1 = 0.05) is relatively low compared
to cyclical variations in this variable. On the contrary, the first observation on ICT capital is not replaced by the
corresponding averages since long-term growth (g2 = 0.4) rates of ICT investment are more likely to dominate changes
that are due to cyclical fluctuations.

20The depreciation rates by industries are calculated as the shares of capital consumption in net fixed assets evaluated
at replacement prices as given by the time series 7719 and 7735 of the German Statistical Office. The resulting
depreciation rates hardly vary over time such that averaging over time is of minor importance. The unweighed mean
over all service industries amounts to 9% with a maximum in the NACE 72 (data processing) of 21% and a minimum
in NACE 70 (real estate) with 2.2%.

21Relying on available data from the U.S. indicated by Fraumeni (1997) and Moulton, Parker and Seskin (1999),
depreciation rates for IT–hardware, software and telecommunication capital are assumed to be 31.2% for IT–hardware,
55.0% for prepackaged software, 33.0% for custom and own–account software and 15.0% for telecommunication capital.
Using data by EITO (2001) for the year 1999, total ICT investment expenditures in Germany consist of 47.0% for
IT–hardware, 26.9% for software and 26.1% for end–user and network telecommunication equipment. The weighted
mean of depreciation rates — with the market shares as weights — yields an average depreciation rate of ICT capital
of δ1 = 0.312 · 0.47 + (0.55 + 0.33)/2 · 0.269 + 0.15 · 0.261 = 0.304.

22Calculations on capital data provided by Müller (1998) show that gross capital stock in German services has grown
on average by 4.8% annually between 1980 and 1991.
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ICT investments during the last decades, U.S. data are referred to as a rough guideline. Jorgenson

and Stiroh (1995) calculate an average annual growth rate of 44.3% in real computer investment

and of 20.2% for OCAM (office, computing, and accounting machinery) between 1958 and 1992

for the U.S. Since the share of computers in OCAM has been rising continuously — reaching 94%

in 1992 —, an annual pre-period growth rate close to the growth rate of computer investment of

g2 = 0.4 is assumed for ICT investment.23 Since there are time lags between the installation and the

productive contribution of capital goods, the capital stock at each period’s beginning (or at the end

of the corresponding previous period) are taken as measures for ICT and conventional capital input.

In order to apply appropriate econometric techniques, only firms with consistent information

on at least three consequent periods available are included in the sample. The resulting unbalanced

reference sample (denoted “full sample”) consists of 1177 firms with a total of 4939 observations.

This corresponds to an average of 4.2 observed periods per firm. The statistics of the sample are

summarized in Table 5 in the Appendix. The majority of firms in the reference sample are small and

medium size firms with a median of 42 employees. About 10% of the sample consists of large firms

with more than 500 employees, including some firms with several tens of thousands employees. This

leads to a mean number of employees of 615. Tables 8 and 9 show that the sample reflects industry

and size structure of the German business–related and distribution services fairly well.24 Finally, the

last two columns of Table 5, the (cross–sectional) means and medians of the firms’ (longitudinal)

averages of capital and output intensity (measured in capital per employee) are displayed for the

firms in the sample. The figures indicate that in the median firm of the sample, a workplace is

equipped with ICT capital worth Euro 1,397, and with non–ICT capital worth about Euro 24,979.

The median value added per employee is Euro 60,307.25

Even though transformed into full–time equivalences, the number of employees may be an

imperfect measure of effective labour input. In particular, differences in the skill structure may vary

substantially. For some firms, data on human capital — based on formal education — are available.

Two particular variables are used to proxy human capital: the fraction of employees with vocational

training (Berufs- or Fachschulabschluss) on the one hand, and the fraction of employees with a

university degree including universities of applied sciences (Hochschul- or Fachhochschulabschluss)

on the other. However, there is a vast amount of item non-responses in these variables, leading to

a substantial decrease (nearly 50%) in the number of firms with sufficient observations for panel

analysis. In the remainder, this sub–sample will be referred to as the “small sample”. As indicated

in Table 6, the structure of this sample substantially differs from the full sample. In particular, the

average firm size (194 employees) is only about a third of the firm size in the full sample. Therefore,

23In fact, later results in the production function estimates turn out to be robust to variations in both g and d.
24Retail trade is slightly undersampled whereas traffic and postal services as well as software and telecommunication

are slightly oversampled. As far as firm size is concerned, large firms are oversampled in their mere number and
undersampled in their respective share in sales (see Table 8).

25The corresponding mean values are substantially higher than the median since some firms — in particular of real
estate — display very high values for both inputs and output per employee.
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estimates based on the small sample will be used just to explore the effects of including human

capital variables into the regression specification.

Some firms reported a share of ICT investment in total investment expenditures equal to zero

for all the periods surveyed. Since the econometric specification is in logs, these firms should be

excluded from the full sample. However, it may seem more reasonable to assume that ICT investment

in these firms is not zero, in fact, but rather very low and rounded to zero by the respondents.26

Excluding these firms might lead to an overestimation of the real output contributions of ICT in

the economy. In order to explore this potential bias, a third sample (denoted “extended sample”

in the remainder) is constructed. The only difference compared to the reference sample is that the

ICT stock per worker in firms that reported zero ICT investment was assumed to be equal to the

corresponding industry minimum and the corresponding values were imputed. The corresponding

statistics (see Table 7) indicate that the endowment of workplaces with ICT is slightly smaller and

the endowment with conventional capital is slightly higher than in the full sample whereas the other

statistics are hardly affected by the imputations.

Independently of the specific sample used, the summary statistics both in absolute value

and in per capita terms indicate that the share of ICT capital in the total capital stock is

very low. Comparing the medians of ICT per worker and conventional capital per worker for

the full sample (Table 5), ICT endowment amounts to 5.1% in total endowment.27 Similarly,

aggregating firms’ time–averages of both types of capital over all firms in the sample yields a

share of aggregate ICT capital in total aggregate capital of 5% (not reported in the tables). These

values are slightly higher than the share of 3% calculated by Schreyer (2000) using aggregate

data for Germany in 1996 (including the manufacturing sector), which seems quite consistent if

one considers that the service sector is a particularly intensive user of ICT capital. As argued in

Griliches (1994), the overall small shares of ICT input together with measurement errors may make

it difficult to distinguish the output contributions of ICT from stochastic events and may make the

identification of productivity effects of ICT resemble the search for the “needle in the haystack”.

Therefore, in the empirical application, controlling for measurement errors will be an important issue.

4 Econometrics and Empirical Results
In this section, several econometric issues are discussed that need to be adressed for estimating

the production function equations (1) and (6) consistently. To keep things simple, the more

parsimonous Cobb–Douglas framework of equation 1 is used as a basis to investigate various

potential biases subsequently. The most suitable SYS–GMM estimator will then be applied to

investigate the effects of including information about the skill structure as suggested by equation

26Note that the definition of ICT investment as asked in the questionnaire is very broad, including expenditures for
IT hardware, software and telecommunication equipment.

27Taking the corresponding means, the share is even lower (1.8%).
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(2) and the extension to the translog specification of equation (6). In order to control for regional

differences, all regressions include a dummy variable for firms located in East Germany. This variable

is expected to be significantly negative since the transformation process in the Eastern part of

Germany has been lagging behind in both productivity and wages when compared to West Germany.

To illustrate the effects of various biases, the Cobb–Douglas equation (1) with two types of

capital is estimated firstly in a simple pooled OLS regression28 (see first column of Table 1). All

regressions were computed using the DPD98 programme developed by Arellano and Bond (1998)

running in GAUSS. For all results, heteroscedasticity–consistent standard errors are reported. The

specification includes a constant and 6 time dummies (for the years t = 1994 . . . 99) interacted

with 7 industries (j = 1 . . . 7).29 This interaction will control for productivity variations induced

by industry–specific business cycles,30 differences in price movements and in business cycles

between industries cannot be captured by this specification. In the discussion of the SYS–GMM

specification, the empirical relevance of including interacted dummies will be considered separately.31

The coefficients of all three inputs from the pooled OLS regression in column 1 of Table 1 are

significantly different from zero at the one percent level. The output elasticity of labour amounts to

60.7%.32 What is most striking, however, is that the point estimate of the coefficient of ICT capital

(24.4%) exceeds the coefficient of conventional capital (14.9%).

Similarly high ICT elasticities have been found in cross section regressions by Bertschek and

Kaiser (2001) for a sample of firms in the business-related service sector. Applying a switching

28Note that from the econometric point of view, a pooled regression corresponds to a simple cross–section regression
except that a larger number of observations can be obtained from the inclusion of several years.

29These are (with the corresponding NACE codes in brackets): wholesale trade (51), retail trade (50, 52), transport
and postal services (60-63, 64.1), electronic data processing and telecommunications (72, 64.2), consultancies (74.1,
74.4), technical services (73, 74.2, 74.3), and other business-related services (70, 71, 745-748, 90). Since there is no
output data available for banking and insurance (only the balance sheet total and insurance premiums respectively),
these industries are excluded from the analysis.

30Industry–specific demand shifts will lead to variations in the degree of factor utilization, which will translate into
variations in factor productivity. If these demand shifts are particularly high (low) in industries with a more intensive
use of ICT, this may lead to an overestimation (underestimation) of the productivity impacts of ICT. Moreover,
even if there is no systematic link between ICT intensity and business cycles, variations in factor utilization may add
substantial ‘noise’ to the residual variation in output. As already pointed out in section 3, the small share of ICT may
make it difficult to distinguish the output contributions of ICT from stochastic events. Thus, including industry–specific
cyclical effects reduces the stochastic noise and helps identify the contributions of ICT econometrically. However, the
costs of including interacted time and industry dummies are substantial as well. There are J · T − 1 = 7 · 6− 1 = 41
additional variables that must be included, with J representing the number of industries and T the number of years.

31In a related study using firm–level panel data, Lichtenberg (1995) included not–interacted time and industry
dummies in his regressions. Since he used undeflated sales as a measure of output, the industry dummies were
supposed to control for differences in the share of value added in sales between industries and the time dummies were
to capture overall price movements. In the analysis here, both these issues have been addressed by using industry data
on shares of value added in gross output and price deflators. However, if undeflated sales were used, interaction of the
dummies would be more flexible than in Lichtenberg (1995) by additionally allowing price changes to vary between
industries.

32Under the assumption of constant returns to scale and perfect competition, the income share of labour in an
economy must equal its labour coefficient in the production function. For the German economy as a whole, the average
share of labour payments in national income between 1994 and 1999 amounted to 72.4% (Statistisches Bundesamt,
2001).
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regression model to a cross–section of German services firms, they find elasticities of ICT varying

between 0.156 and 0.197 and of non–ICT capital between 0.129 and 0.191. Their underlying concept

of ICT investments is similarly broad as in this study. Licht and Moch (1999) even report elasticities

of PCs which are nearly twice as large as the elasticity of non–ICT capital for a cross–section

of German manufacturing and service firms. By contrast, Brynjolfsson and Hitt (1995) report

point estimates of the coefficients of ICT capital (10.9%) that were only about half of the value

for non–ICT capital (20.9%) in a pooled regression for a sample drawn from the Fortune 500

Manufacturing and Service listings.

The high elasticities of ICT capital generally found in simple pooled (or cross section) regressions

raise serious doubts about the correctness of the applied estimation specification. In the sample

employed in this study, the average share of ICT capital in value added for the sample amounts to

6.2%. If the elasticities had been estimated appropriately, this would imply rates of return to ICT

investment of nearly 400%.33 For conventional capital with an average share in value added of 258%,

the results imply rates of return of only 5.8%. This difference can hardly be explained by higher

user costs of ICT capital or returns to complementary investments that may be ‘hidden’ behind ICT

investment (such as training of the workforce and innovation efforts). Rather, a more reasonable

explanation is that the results from both pooled and simple cross–section regressions are biased.

There are five potential sources that will be considered step by step in the following empirical

exploration: unobserved heterogeneity between firms, simultaneity of the decisions about inputs and

output, measurement errors in the input variables, omitted variables, and business cycles.

An important cause of the high elasticities of ICT found in the pooled regression may be

unobserved firm characteristics. These firm effects may bias the results if the investment strategies

of highly productive firms are systematically different from their less productive competitors

within the same industry.34 It is very likely that highly productive firms with a skilled and

flexible management will tend to invest more in new technologies than firms with low productivity

do. In this case, the ICT coefficient will be biased upwards in a pooled or cross–section OLS

regression. This hypothesis is supported by evidence in Brynjolfsson and Hitt (1995) who find that

unobserved heterogeneity may explain as much as half of the productivity effects attributed to

ICT. In the regression results reported in Table 1 in this study, the highly significant autocorrela-

tion in the errors of both first– and second–order35 in the pooled regression further supports this view.

In order to control for the firm–specific effects, column 2 of Table 1 reports the results of

the estimation in first differences.36 The figures indicate that once unobserved heterogeneity is

33Note that the marginal returns to ICT (MPI) are the product of the output elasticity of ICT and the inverse
ratio of ICT capital in output: MPIit = ∂Yit/∂ICTit = γ2 · Yit/ICTit. Therefore, MPIit increases with the output
elasticity γ2, but decreases with the share of ICT capital in output ICTit/Yit.

34Productivity differences between different industries are captured by the industry dummies.
35See the last two rows AR(1) and AR(2) of Table 1.
36This means that the firms’ corresponding fixed effects are eliminated by explaining output growth by the growth

rates of the inputs.

11



Table 1: Results for the ICT–augmented production function

Dep. Variable: sales (logs)
(1) (2) (3) (4) (5) (6) (7)

inputs (logs) OLS OLS GMM[–1] GMM[–2] SYS–GMM SYS–GMM SYS–GMM
pooled 1st dif 1st diff. 1st diff. reference not interact. extended

labour 0.607*** 0.598*** 0.555*** 0.282* 0.699*** 0.717*** 0.686***
(0.020) (0.075) (0.087) (0.154) (0.056) (0.056) (0.058)

ICT capital 0.244*** -0.025 0.024 0.032 0.060* 0.022 0.049*
(0.020) (0.017) (0.026) (0.041) (0.034) (0.034) (0.026)

non–ICT capital 0.149*** -0.035 0.140 0.310** 0.201*** 0.213*** 0.189***
(0.015) (0.052) (0.119) (0.157) (0.036) (0.037) (0.036)

East–Germany -0.127*** — — — -0.386*** -0.402*** -0.384***
(0.043) (0.045) (0.047) (0.045)

observations 4939 3762 3762 3762 4939 4939 5107
firms 1177 1177 1177 1177 1177 1177 1222
R–square 0.844 0.236 0.218 0.137 0.843 0.839 0.836
Wald stat. [df]:
inputs 24160[4] 65.1[3] 52.2[3] 17.3[3] 560[4] 561[4] 609[4]
time and ind.
dummies 702[41] 133[35] 149[35] 113[35] 651[41] 550[41] 685[41]
Sargan (p–values) — — 0.187 0.248 0.258 0.119 0.193
errors (p–values):
AR(1) 0.000 0.005 0.007 0.006 0.004 0.004 0.003
AR(2) 0.000 0.131 0.135 0.085 0.049 0.042 0.039

***,**,*=significant on the 1,5 and 10 per cent level
All regressions contain a constant and industry interacted dummy variables for 6 years (1994–99) and 7 industries (no
interaction only in regression 6). GMM[-1] and GMM[-2] refer to estimations using all lagged levels of explanatory
variables with lag ≤ −1 and −2 correspondingly (see text for details). For all regressions, heteroscedasticity consistent
standard errors reported.

controlled for, the output contributions of both types of capital are no longer significantly different

from zero whereas the labour coefficient remains virtually unchanged.37 The figures suggest that

all the output contributions assigned to both types of capital in the pooled regression were in fact

due to unobserved heterogeneity. These results coincide with very similar findings by Black and

Lynch (2001) and Wolf and Zwick (2002) for production function estimates with one type of capital

only. A further interesting feature of the results from the estimation in first differences is that

the autocorrelation in the disturbance terms found in the pooled specification has vanished. Note

that due to the first–differences specification, the observed highly significant first–order correlation

of the errors is induced by the data transformation.38 Therefore, the relevant test for equations

in first differences is whether the corresponding errors are AR(2) or not. As shown in Table 1,

autocorrelation of the errors can be rejected as soon as unobserved heterogeneity is taken into account.

37Since there is no variation in the East dummy over time, this variable is excluded from the first–differences
estimation.

38It is easy to see that if the errors εit are i.i.d. with variance σ2 their corresponding first differences will be AR(1):
E(∆εit ·∆εi,t−1) = E((εit − εi,t−1)(εi,t−1 − εi,t−2)) = −σ2.
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The implausibly low estimates of the capital coefficients for the estimates in first differences

may be due to a second type of bias due to measurement errors, as argued by Griliches and Hausman

(1986). Measurement errors are likely to be substantial in both types of capital stocks. First,

since there is no information available about the share of expansion investment in total investment

expenditures, common depreciation rates for firms within the same industry are assumed. This

may induce a substantial (though presumably not systematic) measurement error into the employed

capital stocks. Second, in order to calculate approximate values for the initial levels of capital stocks,

both the depreciation and the pre–sample growth rates are assumed equal across firms. Again,

deviations from this assumption will add noise to the constructed capital stocks. By contrast, the

measurement errors for labour input will be less severe, even though differences in skills and the

transformation of part–time workers into full–time equivalents may — apart from the well–known

problem of overtime accounting — add some measurement error here as well.

However, the downward bias due to measurement error may be offset by a second type of bias.

If firms determine input and output simultaneously, exogenous shocks — like demand shifts, for

example — result in an increase of both input and output.39 In econometric terms, the disturbance

term εit will be positively correlated with the input variables in equation (5). Thus, the output

elasticities of the corresponding factors will be biased upwards. The simultaneity bias may apply in

particular to those factors that can be adjusted rapidly. This is not so much the case for capital

stocks, however. Moreover, in the construction of the data, capital stocks at the beginning of the

corresponding years have been used. Therefore, the (upwards) simultaneity bias is expected to be

negligible for the two capital coefficients.

In order to correct for these two potential distortions, the GMM estimation approach is applied

for the production function in first differences. This approach takes advantage of the panel structure

of the data by instrumenting contemporaneous inputs in differences by the corresponding values in

the past.40 More specifically, in the specification of column 3 of Table 1, the corresponding (log)

levels of the lagged inputs xt−1, xt−2, xt−3, ..., x0 are used to instrument the input in differences

∆xt = xt − xt−1 (GMM[-1]), with x denoting the inputs L, ICT and K.41 In column 4, the instru-

ments xt−1 are dropped to allow for simultaneity of capital stocks at the beginnng of each period

t and shocks arising in t (GMM[-2]). The corresponding results from the two–step estimation42

39For a simple formal derivation of the sources of the simultaneity bias in the production function framework, see
Griliches and Mairesse (1995).

40See Mairesse and Hall (1996).
41Including xt−1 as an instrument is based on the assumption that by taking capital stocks at the beginning of each

period it is ensured that the inputs are predetermined, i.e. uncorrelated with the idiosyncratic shock εit of the same
period since E(xt−1∆εt) = 0 ⇔ E(xt−1εt) − E(xt−1εt−1) = 0. The validity of this assumption can be tested (see
footnote 43). In the remainder, however, this moment condition will be dropped to explicitly control for potential
simultaneity of inputs and output.

42The one–step results are reported in Table 10 in the appendix. In the one–step estimation, some ex ante known
matrix is used as a weighting matrix for the moment conditions. This yields consistent though not efficient results. In
the DPD98 programme, H=DD’ — with D being the ’first difference transforming’ matrix — is used in the one step
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show that in both specifications, the point estimates for the capital coefficients increase whereas the

labour elasticity decreases. This tendency is much more pronounced in the GMM[-2] specification

where the coefficient of conventional capital rises to 0.310 and the labour coefficient drops to a (quite

unrealistic) value of 0.285.43 However, the capital coefficients remain insignificant from zero in both

these specifications when the one–step results are considered (see Table 10 in the appendix). Summa-

rizing the results, these findings indicate that the measurement error bias in the capital coefficients

clearly exceeds the counteracting simultaneity bias.44 By contrast, for the case of labour input, the

simultaneity bias exceeds the measurement–error bias as it was expected. For both specifications,

the Sargan test does not reject the validity of the instruments employed in this specification. Fi-

nally, like in the specification in OLS first differences, no autocorrelation of the error term is detected.

A possible reason for the insignificant capital coefficients found in the GMM regressions is

the small power of the instruments used. Since capital stocks within firms are highly persistent

over time, the correlation of the first differences with the second lag in levels is close to zero.45

Blundell and Bond (1998b) show that this may induce substantial finite–sample biases of the GMM

estimator in first differences. Based on a specific application to production function estimation,

Blundell and Bond (1998a) argue that the weak instruments will bias the GMM estimates in first

differences in the direction of the within group estimation — that is towards zero — in the case

of the capital coefficients which are particularly persistent by construction. They suggest using

the SYS–GMM estimator originally proposed by Arellano and Bover (1995). In this estimation

strategy, both the equation in differences is instrumented by suitably lagged differences (like in the

simple GMM–estimation) and the equation in levels is instrumented by suitably lagged differences

additionally. These two specifications are then estimated simultaneously. The additional moment

conditions required for the equation in levels are not very restrictive. As shown by Blundell and

Bond (1998b), only weak assumptions about the initial distribution of the variables used are

necessary. In particular, the joint stationarity of the dependent and the independent variables is a

sufficient, yet not necessary condition for the validity of the moment conditions for the equation

in levels. Moreover, since the moments used in the GMM approach are a strict subset of the

instruments used in the SYS–GMM estimation, the incremental Sargan statistic can be employed to

estimation (see Arellano and Bond (1998) for details). The resulting variance–covariance matrix of the errors is then
used as a weighting matrix in the two–step estimation. The reported results in the text refer to this more efficient
estimation specification. However, as argued in Blundell and Bond (1998b) on the basis of Monte Carlo simulations,
”[i]nference based on one–step GMM estimators appears to be much more reliable when either non–normality or
heteroskedasticity is suspected” (142).

43 The results of the Sargan difference test suggest that the additional moments employed in the GMM[–1] compared
to the GMM[-2] specification (E(xt−1∆εt)=0) cannot be rejected (p=0.186).

44These findings coincide with similar results in Black and Lynch (2001) for estimates of the production function
with one type of capital only.

45Formally, this can be illustrated by assuming Kt being AR(1): Kt = ρKt−1 + εt with ε ∼ i.i.d. If Kt is weakly
autocorrelated (|ρ| ¿ 1 and ρ 6= 0), the past levels are correlated with the contemporaneous levels. For the first
available instrument Kt−2, this is: E(∆Kt ·Kt−2) = E((Kt−Kt−1) ·Kt−2) = E(Kt ·Kt−2)−E(Kt−1 ·Kt−2) = ρ2−ρ.
However, if the evolution of Kt resembles a random walk (ρ ≈ 1), the correlation between the variable in differences
and its past values in levels will disappear (ρ2 − ρ ≈ 0) and the instruments will therefore turn out to be weak.
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test for the validity of the additional instruments.46

The corresponding results (“SYS–GMM reference”) are based on adding the corresponding

additional moment conditions to the GMM[–2] specification. As shown in column 5 of Table 1,

all three factor inputs are significantly positive. The output elasticity of labour amounts to about

70% which is consistent with the share of income from labour in the aggregate statistics (see

footnote 32). The coefficients of ICT and non–ICT capital amount to 6% and 20% respectively,

which coincides with the income share from total capital goods of roughly one third. The ICT

coefficient is highly significant (p = 0.014 in the one–step estimation).47 The null–hypothesis of

constant returns to scale (CRS) cannot be rejected at the 1%–level (not reported).48 A further

very robust result is that East–German firms in services are significantly less productive than

their West–German counterparts. The coefficient of the East–Dummy (-0.386) implies that the

multifactor productivity in East–German firms is only about two–thirds of the West–German level.

This finding coincides with aggregate statistics on productivity differentials in Germany. The

corresponding Sargan–statistic (p = 0.258) does not reject the validity of the instruments at the

usual levels. These robust results indicate that there are indeed output contributions of ICT in the

German service sector. Moreover, the incremental Sargan test (44.3[12]) does not reject the validity

of the additional instruments obtained from the equation in levels (p=0.299).

Since these results stem from the preferred specification in this study, a glance at the implied

rates of return may be worthwhile. Given the calculated average share of ICT capital in output

of 6.2% for the firms in the sample, the results imply that one Euro invested in ICT capital

yields Euros 1.96 as a return.49 This high value is very similar to the findings in various related

studies.50 Assuming user costs of ICT of around 42% similar to Jorgenson and Stiroh (1995), the

remaining excess returns to ICT of 54% may be due to complementary investment like training of

the workforce, innovation efforts or costs due to the re-structuring of organizational forms which are

not accounted for as inputs in the given framework.

In order to further investigate the sources of potential biases in assessing the productivity

effects of ICT, the effect of ignoring different business cycles and inflation rates between industries

is analyzed. To illustrate the importance of including interacted time and industry dummies,

the SYS–GMM approach is estimated with simple (not–interacted) time and industry dummies.

The corresponding results reported in column 5 (“SYS–GMM [2]”) of Table 1 show that the

coefficient of ICT capital is substantially affected by this change in the estimation specification.

The corresponding point estimate reduces to roughly 2.2%. As the statistics from the one–step

estimates reveal, the coefficient is only marginally significant (p=0.099). In contrast, the coefficients

46See Arellano and Bond (1991) on details of this test.
47The less reliable p–value in the two–step estimation amounts to 0.078.
48This result holds for both the one–step and the two–step estimation results.
49For non–ICT capital, the results imply that one Euro invested yields a much smaller return of Euro 1.078.
50See Brynjolfsson and Hitt (2000a).
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of the other explanatory variables do not exhibit any remarkable changes as compared to the

specification with interacted dummies.51 These results suggest that it is important to control for

industry–specific business cycles by including interacted industry and time dummies in order to

assess the contributions of ICT correctly.

In the last column of Table 1 (SYS–GMM [3]), results for the SYS–GMM estimation with

interacted dummies are replicated for the extended sample, in which also those firms are included

that reported zero ICT investment for all the periods surveyed. The corresponding results are

based on the same estimation method as column 5 (SYS–GMM). As explained in more detail in

section 3, this sample is extended by 46 firms that have reported zero ICT investment for all years

observed. For these firms, the industry minimum in terms of ICT per worker is assumed to be

a more reasonable approximation. The inclusion of these firms slightly lowers the point estimate

for ICT (4.9%) as compared to the values reported for the reference sample. Moreover, the ICT

coefficient is significantly positive only in the two–step estimation.52 These results appear very

reasonable if one considers that firms may differ in their output elasticities. Those firms with a lower

output elasticity of ICT will be maximizing profits with a lower share of ICT capital in output;

excluding these firms might therefore overstate the ICT coefficient.53

Finally, an important issue of estimating the productivity effects of ICT in the production func-

tion framework is the potential bias owing to omitted variables that are potentially complementary

to the firm’s use of ICT. In particular, recent studies find that human capital plays an important

role in this regard (Bresnahan, Brynjolfsson and Hitt, 2002). Furthermore, Brynjolfsson and Yang

(1999) argue that the use of ICT is strongly complementary to intangible assets. On the one hand,

ignoring these complementary factors might lead to an overestimation of the true impacts of ICT on

production if the output contributions of these factors are wrongly assigned to the mere use of ICT.

On the other hand, a firm’s human capital and intangible assets are likely to be quite persistent. If

these complementary assets hardly vary over time, their effect will not be distinguishable from other

factors like management skills etc. which are controlled for as unobserved heterogeneity between

firms. In this case, no distortions are to be expected from the omission of these variables in the

estimation equation.

In order to assess the potential biases from omitting the probably most important source,

human capital, the list of independent variables is extended by the shares of employees with

vocational training and with university degree or equivalent correspondingly. As discussed in section

3, the resulting ‘small sample’ consists of only 591 firms, which is half of the full sample. The results

of the corresponding regression are surveyed in Table 11. The first column applies the SYS–GMM

reference estimation strategy (column 5 in Table 1) to the small sample. The most striking result is

51Again, the Sargan statistic does not reject the validity of the instruments (p = 0.119).
52The one–step estimates imply a p–value for the ICT coefficient of 0.107.
53The Sargan statistic of the extended sample does not reject the validity of the instruments (p = 0.193).
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Table 2: The effects of including human capital

Dep. Variable: sales (logs)
inputs (logs) small small w. skill
labour 0.737*** 0.656***

(0.122) (0.063)
ICT capital 0.015 0.017

(0.050) (0.040)
non–ICT capital 0.168** 0.208***

(0.077) (0.051)
East–Germany -0.327*** -0.416***

(0.074) (0.066)
% university — 0.827***

(0.194)
%vocational — 0.475***

(0.120)
observations 1887 1887
number of firms 591 591
R–square 0.825 0.836
Wald statistics[df]
inputs 224[4] 497[6]
time and ind. dummies 393[34] 449[34]
Sargan (p–values) 0.591 0.198
errors (p–values):
AR(1) 0.024 0.029
AR(2) 0.146 0.163

***,**,* = significant at the 1, 5 and 10 per cent level
All regressions are based on SYS-GMM and contain a constant and industry dummy variables interacted with year
dummy variables. Heteroscedasticity consistent standard errors reported.

that the coefficient of labour (0.737) is slightly higher for the small sample, both capital coefficients

are substantially smaller.54 The main reason for the differing results seems to be that average

firm size is much smaller in the small sample.55 Moreover, the average and median endowment of

workplaces with ICT capital is substantially lower in the small sample.56 By contrast, the industry

composition in both samples is very similar and reflects the population fairly well (see Table 8).

The reduction in the significance levels of both the capital coefficients may be a direct consequence

of the loss of information due to the much smaller sample size.

The effect of including the proxies for human capital in the regression becomes obvious from

the results displayed in the second column of Table 11. Both the share of employees with university

degree and the share of workers with vocational training are highly significant and positive,57 with

the university share having a much higher impact by size of the coefficient as is to be expected.58 As

54Moreover, neither coefficient is significantly different from zero in the one–step estimation.
55See Tables 5 and 6 as well as section 3.
56See last columns of Tables 5 and 6.
57This holds for both the one–step and two–step results.
58The implicit values for the productivity differentials for medium– and high–skilled workers are θm = βm/γ1 =
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the comparison to the first column reveals, including the human capital variables slightly reduces the

coefficients of labour and increases the coefficient of non–ICT capital. Most importantly, however,

the elasticity of ICT remains virtually unaffected at 0.017. This suggests that omitting the skill

levels does not affect the corresponding results concerning ICT productivity but will rather be

captured as a firm–specific effect by the SYS–GMM estimator.59

A final issue to be discussed is the functional form of the production technology. As briefly

discussed, the Cobb–Douglas technology of equation (1) may be too restrictive. In order to assess

this question, both the simplest (pooled OLS) and the most complex (SYS–GMM) estimations are

replicated based on the translog production function of equation (6). The corresponding results and

the average elasticities calculated from equation (7) are reported in the first two columns of Tables

(3) and (4). Like in the estimations for the Cobb–Douglas framework, substantial differences are

found between OLS and SYS–GMM estimates in both the individual coefficients and the implicit

average elasticities. In particular, the output contributions are substantially overestimated by

using pooled OLS. A striking feature for the translog function is that even for the SYS–GMM

estimation, the implicit average elasticity of ICT (0.148) is much higher than in the Cobb–Douglas

specification.60 This suggests that either the Cobb–Douglas is too restrictive or that the translog

specification yields misleading results.

There are two features of the results that raise doubts about the reliability of the translog

results. First, the Wald statistic for the joint significance of the additional translog inputs61 from

the one–step estimation rejects the relevance of these variables (4.96[6], p=0.549). Second, the

translog estimates prove to be highly sensitive to small changes in the sample. To illustrate this,

the SYS–GMM estimator is applied to the extended sample instead of the full sample as in column

2. This extension of the sample by 45 firms (3.8% of the sample) causes substantial changes in the

ICT–related coefficients (see column 3 of Table 3). Moreover, the average elasticities for all three

inputs change substantially (see Table 4). By contrast, the sensitivity to sample changes was much

smaller for the Cobb–Douglas specification (see columns 5 and 7 of Table 1). The underlying rea-

son may be that in particular the quadratic terms are very sensitive to potential outliers in the sample.

To sum up, the findings of these econometric explorations indicate that unobserved hetero-

geneity, measurement errors and industry–specific time effects may lead to substantial distortions

0.475/0.656 = 0.724 and θh = βh/γ1 = 1.26. With competitive salaries in the labour market, these values should
roughly correspond to the wage spread over the corresponding skill levels. For the service sector, Kaiser (2000)
calculates that average wages for high–skilled workers exceed the average wages of unskilled workers by a factor of
2.025 (which is equivalent to θh = 1.025) and a factor of 1.325 for medium skilled workers (θm = 0.325). This
comparison shows that the rather inaccurate approximation in eq. 4 may lead to a slight overestimation of the
corresponding coefficients.

59In a related exercise, Lehr and Lichtenberg (1999) report a similar qualitative result.
60In a similar comparison between the Cobb–Douglas and the translog specification, Brynjolfsson and Hitt (1995)

find an only slightly higher average elasticity of ICT for the translog version.
61These are the regressors L2, ICT 2, K2, L · ICT , L · K, ICT · K which are not included in the Cobb–Douglas

specification.
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Table 3: Results for the translog production function

inputs (log) OLS SYS–GMM SYS–GMM
full full extended

labour 1.100*** 1.178*** 1.077***
(0.104) (0.137) (0.144)

ICT capital 0.050 -0.045 0.006
(0.068) (0.085) (0.070)

non–ICT capital 0.065 0.156*** 0.169***
(0.048) (0.055) (0.059)

labour2 -0.040*** -0.049*** -0.045***
(0.011) (0.013) (0.015)

ICT capital2 0.006 0.001 0.008***
(0.005) (0.006) (0.003)

non–ICT capital2 0.031*** 0.013* 0.008
(0.005) (0.007) (0.007)

labour*ICT 0.059*** 0.049*** 0.043***
(0.012) (0.016) (0.013)

labour*non–ICT -0.020* -0.008 -0.004
(0.010) (0.012) 0.0144

ICT*non–ICT -0.042*** -0.009 -0.009
(0.008) (0.008) (0.007)

East–Germany -0.336*** -0.607*** -0.544***
(0.042) (0.146) (0.145)

observations 4939 4939 5107
firms 1177 1177 1222
R–square 0.859 0.850 0.846
Wald–statistics[df]:
all inputs 6,801[10] 7,479[10] 6,556[10]
additional inputs† 77.15[6] 22.88[6] 89.82[6]
time and ind. dummies 721.6[41] 767.1[41] 804[41]
Sargan (p–values) — 0.144 0.080
errors (p–values)
AR(1) 0.000 0.003 0.004
AR(2) 0.000 0.043 0.047

***,**,* = significant at the 1, 5 and 10 per cent level
The results of the second column are based on the two–step SYS-GMM and contain a constant and industry dummy
variables interacted with year dummy variables. Heteroscedasticity consistent standard errors reported.
†refers to additional inputs not included in Cobb–Douglas specification.

in assessing the productivity impacts of ICT. Most prominently, ignoring unobserved heterogeneity

leads to an overestimation of these impacts whereas measurement errors and the omission of

industry–specific cyclical effects work into the opposite direction. The potential upward bias from

simultaneity issues is — at least compared to the measurement error bias — relatively low. When

all these effects are controlled for in an adequate SYS–GMM estimation with interacted time and
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Table 4: Implicit average elasticities for the translog production function

inputs OLS SYS–GMM SYS–GMM
full full extended

labour 0.707 0.677 0.619
ICT capital 0.215 0.148 0.124
non–ICT capital 0.140 0.168 0.193

industry dummies (column 5 of Table 1), an ICT elasticity of about 6% is found implying a net rate

of return to ICT of more than 50%. These excess returns point to the importance of adjustment

costs or (unobserved) complementary investments in intangible assets. Finally, further explorative

analyzes show that the omission of human capital in the production function is not severe for the

estimated ICT productivity when firm effects are taken into account. Finally, the more flexible

translog production function yields higher ICT elasticities, but is not found to be robust with

respect to changes in the sample.

5 Conclusions
The use of firm–level data is gaining increasing importance for the analysis of productivity effects of

ICT and the underlying determinants. In contrast to aggregate data, firm–level information is much

less dependent on the accuracy of the correct deflators provided by statistical offices and entails a

higher variation in the factors that are supposed to determine the performance of businesses. Both

aspects have helped to overcome the so called ‘productivity paradox’.

In this paper, it is shown that the empirical results on the productivity of ICT gained from

a production function framework are highly contingent upon the specific econometric methods

applied. The empirical analysis based on firm–level panel data from a German innovation survey in

services yields evidence of various interfering influences that require the application of appropriate

quantitative techniques. First, well–managed firms are likely to be intensive users of ICT. If these

unobservable firm effects are not taken into account by using a first–differences or a within–estimator,

the productivity impacts of ICT will be drastically overstated. Second, counteracting this effect,

measurement errors in the explanatory variables may lead to a substantial underestimation of the

corresponding elasticities. This problem turns out to be particularly important for the case of ICT

capital. Even though ICT investment has increased substantially over the last years, the share of

ICT equipment and software in total capital is still very small. This makes it difficult to distinguish

the output contributions of ICT from statistical noise. By contrast, third, the simultaneity of input

and output decisions by firms, which may induce an upward bias of the output contributions of ICT,

is found to be less important for the econometric specification. If panel data are available, both the

measurement error bias and the simultaneity bias may be overcome by applying a GMM estimator
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that uses information from suitably distant previous periods to instrument the production inputs

of the firm. However, when unobserved firm–effects are taken into account, too, this estimation

strategy may suffer from small sample biases due to weak instruments. Therefore, the most

convincing approach is found to be the system GMM (SYS–GMM) strategy proposed by Arellano

and Bover (1995). This approach applies the GMM estimator to the firms’ production function

equation in levels and first differences simultaneously and makes use of more powerful instruments.

Fourth, it is found that the omission of industry–specific business cycles may lead to an under-

estimation of the productivity impacts of ICT also at the firm–level. This bias may be addressed by

including interacted time and industry dummies in the regression. Fifth, the shares of high– and

medium skilled workers are found to have large and significant effects on productivity. However, the

omission of these variables does not lead to an overestimation of the productivity contributions of

ICT as long as firm–specific fixed effects are taken into account. Obviously, most of the variation in

the skill structure is between firms rather than within firms and can be captured by the fixed–effect

correction. Finally, estimates based on the more flexible translog production function yield higher

ICT elasticities than the Cobb–Douglas specification. However, the translog–estimates turn out to

be much more sensitive with respect to small changes in the sample and yield little improvements

in the explanatory power compared to the more parsimonious Cobb–Douglas specification.

What about the implications for the empirical work on the economics of ICT? On the one

hand, the data needs that are necessary to address the methodological issues raised in this paper are

indeed very demanding. In particular, a longitudinal structure of at least three observations per firm

is required to apply the suited SYS–GMM estimator. On the other hand, the calibration strategies

proposed in this paper for the construction of appropriate input and output data may be applicable

to various other existing longitudinal microdata sets, which frequently contain information on

sales, employment and investment. In any case, great caution seems to be appropriate for the

interpretation of cross–section results on the topic. The findings of this study indicate that a big

part of such results may be due to spurious correlations that tend to dominate the real causal

impacts of ICT on the productivity of businesses.

As far as economics is concerned, the findings of this paper point to the need of investigating

particular firm characteristics and strategies in more detail. The results from the preferred

system GMM estimation imply that a one–percent increase in ICT raises output by about 0.06

percent. This corresponds to a net–rate of return to ICT investment of more than 50%. These

apparent excess returns are very likely to be due to unobserved complementary expenses such

as adjustment cost, innovation efforts, training or intangible assets, but they may also reflect

differences between firms in their ability to exploit the potential benefits of ICT. Therefore, the

exploration of relevant firm characteristics and complementary efforts related to ICT use will be

an important issue for future research on the productivity and welfare impacts of the ‘New Economy’.
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Appendix

Table 5: Detailed statistics for the full sample (4939 obs. for 1177 firms)

percentiles per employee
mean std. min. max. 10% 50% 90% mean median

value added* 54.541 717.21 0.118 27,380 0.362 2.647 40.705 121,917 60,307
employees 614.563 9379 1 310,792 7 42 506 — —
ICT capital* 5.058 131.25 < 0.001 6,537 0.006 0.488 0.923 3,946 1,392
non–ICT capital* 102.387 1833.645 0.001 60,340 0.061 1.107 56.360 218,492 24,979
East (dummy) 0.421 0.494 0 1 0 0 1 — —
*measured in million Euro, except for values per employee

Table 6: Detailed statistics for the small sample (1887 obs. for 591 firms)

percentiles per employee
mean std. min. max. 10% 50% 90% mean median

value added* 18.965 88.136 0.032 1,124 0.362 2.308 26.414 119,624 58,778
employees 194.995 624.633 1 7,200 7 36 340 — —
ICT capital* 0.384 1.522 < 0.001 30.855 0.006 0.041 0.574 3,107 1,257
non–ICT capital* 28.895 125.778 0.003 1,840 0.061 0.932 43.506 233,234 24,650
East (dummy) 0.441 0.497 0 1 0 1 1 — —
*measured in million Euro, except for values per employee
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Table 7: Detailed statistics for the extended sample (5107 obs. for 1222 firms)

percentiles per employee
mean std. min. max. 10% 50% 90% mean median

value added* 53.145 705.526 0.012 27,380 0.351 2.495 39.805 122,198 60,575
employees 596.7 9224 1 310,792 7 40 499 — —
ICT capital* 4.892 129.075 < 0.001 6,537 0.004 0.045 0.892 3,801 1,302
non–ICT capital* 100.300 1,803 0.001 60,340 0.060 1.060 55.375 226,947 25,574
East (dummy) 0.422 0.494 0 1 0 0 1 — —
*measured in million Euro, except for values per employee

Table 8: Comparison of the different samples and the population by industries

samples population*
full small extended

industry nace–digit # % # % # % %
wholesale trade 51 163 13.9 86 14.6 172 14.1 10.6
retail trade 50, 52 183 15.6 87 14.7 190 15.6 31.3
transport and postal services 60–63, 64.1 210 17.8 106 17.9 222 18.2 11.7
electr. processing and telecom. 72, 62.2 100 8.5 44 7.5 100 8.2 3.4
consultancies 74.1, 74.4 100 8.5 51 8.6 103 8.4 12.1
technical services 73, 74.2, 74.3 142 12.1 76 12.9 152 11.7 10.7
other business–rel. services 70, 71, 74.5-.8, 90 279 23.7 141 23.9 292 23.9 20.3
total 1177 100 591 100 1222 100 100
*German service firms with 5 and more employees in 1999.
Source: German Statistical Office, ZEW and own calculations

Table 9: Comparison of the different samples and the population by size classes

full sample small sample ext. sample population*
size class
(# employees) # % # % # % % firms % sales

5–9 189 16.1 92 15.6 205 16.8 57.6 9.4
10–19 189 16.1 107 18.1 206 16.9 24.0 9.9
20–49 246 20.9 134 22.7 254 20.8 11.7 9.7
50–99 156 13.3 88 14.9 156 12.8 3.5 6.9
100–199 167 14.2 77 13.0 168 13.8 1.6 6.0
200–499 102 8.7 50 8.5 102 8.3 1.0 7.0
500 and more 128 10.9 43 7.3 131 10.7 0.6 51.1
total 1177 100 591 100 1222 100 100 100
*German service firms with 5 and more employees in 1999.
Source: German Statistical Office, ZEW and own calculations
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Table 10: One–step results for the ICT–augmented production function

Dep. Variable: sales (logs)
(3) (4) (5) (6) (7)

inputs (logs) GMM[–1] GMM[–2] SYS–GMM SYS–GMM SYS–GMM
1st diff. 1st diff. reference not interact. extended

labour 0.515*** 0.247 0.707*** 0.737*** 0.723***
(0.174) (0.158) (0.073) (0.074) (0.075)

ICT capital 0.053 0.069 0.114** 0.081* 0.052
(0.043) (0.041) (0.046) (0.049) (0.032)

non–ICT capital 0.191 0.366 0.148*** 0.155*** 0.166***
(0.198) (0.208) (0.046) (0.049) (0.046)

East–Germany — — -0.340*** -0.343*** -0.375***
(0.051) (0.053) (0.049)

observations 3762 3762 4939 4939 5107
firms 1177 1177 1177 1177 1222
R–square 0.218 0.137 0.843 0.839 0.836
Wald statistics [df]:
inputs 14.7[3] 13.9[3] 446[4] 441[4] 494[4]
time and ind. dummies 108[35] 130[35] 586[41] 488[11] 583[41]
errors (p–values):
AR(1) 0.010 0.000 0.002 0.003 0.002
AR(2) 0.118 0.042 0.028 0.025 0.030

***,**,*=significant on the 1,5 and 10 per cent level
Results are based on the one–step estimation corresponding to table 1. See footnotes on this table for further details.
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Table 11: One–step results for the regressions including human capital

Dep. Variable: sales (logs)
inputs (logs) small small w. skill
labour 0.709*** 0.707***

(0.162) (0.108)
ICT capital 0.051 0.077

(0.0582 (0.070)
non–ICT capital 0.150 0.127

(0.108) (0.086)
East–Germany -0.335*** -0.409***

(0.085) (0.078)
% university — 1.018***

(0.329)
%vocational — 0.614***

(0.217)
observations 1887 1887
number of firms 591 591
R–square 0.825 0.836
Wald statistics[df]
inputs 180[4] 307[6]
time and ind. dummies 339[34] 350[34]
errors (p–values):
AR(1) 0.024 0.016
AR(2) 0.106 0.063

***,**,* = significant at the 1, 5 and 10 per cent level
Results are based on the one–step SYS-GMM corresponding to table 11 and contain a constant and industry dummy
variables interacted with year dummy variables. Heteroscedasticity consistent standard errors reported.
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Table 12: One–step results for the translog production function

inputs (log) SYS–GMM SYS–GMM
full extended

labour 1.044*** 1.006***
(0.256) (0.277)

ICT capital 0.044 0.070
(0.156) (0.119)

non–ICT capital 0.214** 0.224**
(0.085) (0.090)

labour2 -0.041* -0.040
(0.024) (0.027)

ICT capital2 0.002 0.011**
(0.012) (0.005)

non–ICT capital2 0.006* 0.004
(0.011) (0.011)

labour*ICT 0.047 0.042*
(0.030) (0.023)

labour*non–ICT -0.020 -0.018
(0.018) (0.020)

ICT*non–ICT -0.006 -0.007
(0.015) (0.012)

East–Germany -0.512*** -0.513***
(0.188) (0.189)

observations 4939 5107
firms 1177 1222
R–square 0.850 0.846
Wald–statistics[df]:
all inputs 4,784[10] 4,039[10]
additional inputs† 4.96[6] 34.17[6]
time and ind. dummies 531.5[41] 528.5[41]
errors (p–values)
AR(1) 0.002 0.004
AR(2) 0.008 0.014
***,**,* = significant at the 1, 5 and 10 per cent level
Results are based on the one–step SYS–GMM corresponding to Table 3 and contain a constant
and industry dummy variables interacted with year dummy variables.
Heteroscedasticity consistent standard errors reported.
†refers to additional inputs not included in Cobb–Douglas specification.
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