
Efficient Protocols

Inauguraldissertation

zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Alexander Giese
(Diplom-Informatiker der Technischen Informatik)

aus Heidelberg

Mannheim, 2015

Dekan: Professor Dr. Heinz Jürgen Müller, Universität Mannheim
Referent: Professor Dr. Wolfgang Effelsberg, Universität Mannheim
Korreferent: Professor Dr. Ulrich Brüning, Universität Heidelberg

Tag der mündlichen Prüfung: 03. März 2016

Für meine Eltern

 I

Abstract

The increasing demand for more and more computing power causes steady advancements

of High Performance Computing (HPC) systems. The more powerful these systems will

be in the future the further the number of processing units increases. A particularly impor-

tant point in this context is the latency of the communication among those units, which

significantly increases by the distance between two communication partners. One ap-

proach to positively influence the latency behavior is optimizing the underlying protocol

structures in the overall system. Nowadays, different protocols are used for different com-

munication distances. The latency can be improved by changing the protocol structure

with two approaches. On the one hand, the used protocols can be changed to optimize the

latency. On the other hand, the protocol structure can be unified. Thus, time-consuming

protocol translations can be eliminated. In order to achieve this, a completely new proto-

col is required which unifies all features of the different protocol levels without compro-

mising an efficient implementation.

This work is dedicated to the design of the new Unified Layer Protocol (ULP) providing

a unified communication scheme which allows communication among all processing

units at different levels of an HPC system. Initially, the main features of general protocols

are analyzed in detail. Further, properties used by modern protocols use are introduced

and their function is explained. The two protocols that are deemed most relevant, Hyper-

Transport (HT) and Peripheral Component Interconnect Express (PCIe), are analyzed in

detail regarding to the previously specified aspects. The insight gained through this anal-

ysis is incorporated into the development of the ULP. During the development process,

first the structure of the ULP is defined and various parameters are determined. Special

attention is turned on the feasibility in hardware and the scalability for large systems. The

following comparison with HT and PCIe shows that the newly developed ULP usually

provides superior performance, even when the effective communication distance moves

close to the processor.

II

Further work is dedicated to the hardware development which first gave the inspiration

for the development of the ULP. The insights gained during the development of the ULP

were integrated into the hardware.

The results show that the ULP fulfills the demands for a protocol used in the field of HPC.

This is achieved for both, the processor-near communication, as well as for the commu-

nication among different nodes. With the ULP the need for time and energy-consuming

protocol conversions is eliminated, while the feasibility in hardware is obtained.

 III

Zusammenfassung

Die steigende Nachfrage nach immer mehr Rechenleistung verursacht eine stetige Wei-

terentwicklung von High Performance Computing (HPC) Systemen. Je leistungsfähiger

diese Systeme werden desto weiter steigt die Anzahl der Recheneinheiten. Ein besonders

wichtiger Punkt in diesem Zusammenhang ist die Latenz der Kommunikation dieser Ein-

heiten, welche maßgeblich durch die steigende Distanz zwischen zwei Kommunikation-

spartnern negativ beeinflusst wird. Ein Ansatzpunkt um das Latenzverhalten positiv zu

beeinflussen ist die Optimierung der zugrunde liegenden Protokollstrukturen im Gesamt-

system. Heutzutage werden für verschiedene Kommunikationsdistanzen unterschiedliche

Protokolle genutzt. Für die Optimierung bieten sich zwei Ansätze an. Einerseits können

die Protokolle selbst optimiert werden um die Latenz zu reduzieren. Andererseits kann die

Protokollstruktur vereinheitlicht werden und somit die zeitaufwändige Protokollüberset-

zung eingespart werden. Um dies zu erreichen wird ein komplett neuartiges Protokoll

benötigt welches sowohl die nötigen Eigenschaften der verschiedenen Ebenen vereint und

trotz allem umsetzbar bleibt.

Diese Arbeit befasst sich mit dem Entwurf des neuen Unified Layer Protocols (ULP)

welches in der Lage ist die Kommunikation zwischen Recheneinheiten in einem HPC

System zu vereinheitlichen. Um dies realisieren zu können wurden zunächst die Haupt-

merkmale die Protokolle allgemein aufweisen genauer untersucht. Weiter wurden die Ei-

genschaften die moderne Protokolle besitzen eingeführt und deren Funktionsweisen

erläutert. Die zwei für am relevantesten erachteten Protokolle, nämlich HyperTransport

(HT) und Peripheral Component Interconnect Express (PCIe), wurden detailliert auf diese

Aspekte hin analysiert. Die daraus gewonnenen Erkenntnisse sind in die folgende Ent-

wicklung des ULP eingeflossen. Bei der Entwicklung wurde zuerst die Struktur des ULP

festgelegt und verschiedene Parameter bestimmt. Besonderes Augenmerk wurde hierbei

auf die Umsetzbarkeit in Hardware und die Skalierbarkeit für große Systeme gelegt. Der

nachfolgende Vergleich mit HT und PCIe zeigt, dass das eigens entwickelte ULP schon

im Prozessor nahmen Einsatzgebiet meist bessere Performanz bietet als die Vergleich-

sprotokolle.

IV

Weiter wird auf die Hardwareentwicklung während der Dissertation eingegangen, welche

den Anstoß für die Entwicklung von ULP lieferten. Die erarbeiteten Konzepte von ULP

flossen mit in die weitere Entwicklung der Hardware ein.

Die Ergebnisse zeigen das ULP die Ansprüche an ein Protokoll, welches im HPC-Bereich

eingesetzt wird, erfüllt. Sowohl für die Prozessor nahe Kommunikation als auch für die

Kommunikation zwischen verschiedenen Knoten über weite Distanzen. Dabei wird der

Einsatz von zeit- und energieintensiven Protokollumsetzungen eliminiert, während die

Umsetzbarkeit in Hardware effizient möglich ist.

 V

Acknowledgments

I simply would like to thank all the people who supported me and did not stop believing.

;-)

 VII

1 Chapter Introduction...1

1.1 Motivation...2
1.2 Chapter Outline...7

2 Chapter Design Space...9

2.1 Bandwidth...15
2.1.1 Data Width .. 16
2.1.2 Frequency.. 18
2.1.3 Overhead ... 19

2.2 Latency..31
2.2.1 Data Dependencies.. 31
2.2.2 Frequency.. 36
2.2.3 Data Width .. 37

2.3 Message Rate ..37
2.3.1 Availability of Resources.. 38

2.4 Fault Tolerance ...42
2.4.1 Retransmission Overhead ... 47

3 Chapter Off Chip Protocols ..49

3.1 Wire Delay..50
3.2 Number of Wires ..51
3.3 Synchronization ..53
3.4 Framing...54
3.5 Flow Control ...54
3.6 Error Handling ..55
3.7 State of the Art Protocol Features...56

3.7.1 Virtual Channels ... 56
3.7.2 Ordering .. 57
3.7.3 Buffer Space.. 59
3.7.4 Link Initialization.. 60

3.8 HyperTransport...61
3.8.1 HT Topologies .. 61
3.8.2 Physical Layer... 62
3.8.3 I/O Stream... 67
3.8.4 Virtual Channels ... 67
3.8.5 Packet Format ... 68
3.8.6 Dependencies .. 72
3.8.7 HT Bandwidth... 77
3.8.8 Fault Tolerance ... 79

3.9 Peripheral Component Interface Express ...80

Table of Content

VIII

3.9.1 PCIe Topologies.. 80
3.9.2 Physical Layer Structure ... 81
3.9.3 PCIe Logical Network Layers... 83
3.9.4 Dependencies .. 104
3.9.5 Initialization .. 107
3.9.6 Bandwidth ... 108
3.9.7 Fault Tolerance ... 109

4 Chapter Unified Layer Protocol ...113

4.1 Device Types ..114
4.2 Physical Layer...116

4.2.1 Lanes ... 117
4.2.2 Sideband Signaling ... 117
4.2.3 Frequency.. 118

4.3 Layers..118
4.4 Flow Control ...119
4.5 Buffer Size ..120

4.5.1 VC Buffer.. 120
4.5.2 Retransmission Buffer... 123
4.5.3 Tag Matching Buffers ... 124

4.6 Virtual Channels ...126
4.7 Packet Format ...127

4.7.1 Request and Response Headers... 127
4.7.2 Info Packets... 134

4.8 Decoding Dependencies ...136
4.9 Initialization Sequence..137

4.9.1 Training Sequences ... 139
4.10 Routing Scheme..146
4.11 Bandwidth Calculation ...146
4.12 Error Handling ..146

4.12.1 Retransmission Handling .. 148
4.12.2 Link Retraining ... 151

4.13 Protocol Comparison ..151
4.13.1 Bandwidth ... 151
4.13.2 Frequency.. 153
4.13.3 Number of Devices ... 155
4.13.4 Network Configuration ... 155
4.13.5 Decoding Effort... 158

5 Chapter Hardware Development ..163

5.1 EXTOLL...164
5.1.1 Introduction... 164

 IX

5.2 Host Interface..165
5.2.1 HT Interface .. 166
5.2.2 Gen3 Interface... 177
5.2.3 PCIe Interface ... 178

5.3 Network Interface ...179
5.3.1 HTAX.. 179
5.3.2 ATU .. 180
5.3.3 VELO .. 180
5.3.4 RMA.. 181

6 Chapter Conclusion and Outlook ...201

6.1 Conclusion ..202
6.2 Outlook ...203

 Chapter 1: Introduction

Introduction

2

1.1 Motivation

In nearly every field that involves data processing there is an increasing need for more and

efficient compute power. Due to excessive computational expense for objectives as

weather forecast or crash test simulation developing High Performance Computing (HPC)

systems become more and more relevant. HPC systems are specialized computer systems

with a large amount of processing power, memory, and often an interconnection network

that is custom built for HPC. The main goal of HPC is to increase compute power and to

provide scalable solutions. Thus, it focuses on delivering the required performance to

solve these challenging tasks.

Figure 1-1: Composition of the TOP 500 List [1]

Figure 1-1 depicts the composition of the top 500 HPC systems from 1993 up to now. This

shows, that in the TOP500 [1] list, more and more HPC-systems become clusters. Clusters

are built in a way that the computing units can be distinguished in different granularities.

 Introduction

3

One is the processing core. Multiple processing cores can be integrated in the same die or

package. Nowadays processors plugged into a system normally consist of multiple cores

but are still called central processing unit (CPU). The amount of cores of a CPU can vary

from four [2] Xeon E3 from Intel, to sixteen, like in modern Opteron CPUs [3] from

AMD, up to over 50 cores in the Xeon Phi [4] from Intel. They are either connected by a

socket or can be plugged directly into the system as an accelerator card.

Another granularity would be the node. An HPC-cluster consists of several unified nodes.

Each single node contains a motherboard with a certain number of sockets. Every socket

is populated with one CPU. In addition a motherboard includes main memory blocks

which are dedicated to certain CPU sockets and a Network Interface Controller (NIC) for

communication purpose.

With those definitions the granularity of a cluster can be separated into different stages.

The smallest granularity is the core, followed by the CPU, the next granularity is the node,

and the last one is the cluster. An example is depicted in figure 1-2. The only other current

architectures besides cluster systems are Massively Parallel Processing (MPP) systems

like the IBM Blue Gene system [5]. All the other architectures like Single Processor, Con-

stellation, Single Instruction Multiple Data (SIMD), and Symmetric Multiprocessing

(SMP) are currently outdated.

Figure 1-2: Example Cluster System

Introduction

4

Two different developing directions can currently be found in HPC. One is to develop

more powerful CPUs, like the Intel Xeon [6] with fewer cores but fast and more precise

arithmetic units. They can be used to solve universal computable problems with no special

restrictions regarding to calculation. In addition, they are best suited if the problem is not

divisible into smaller problems that can be parallelized. On the other hand there are many

core CPUs like the Intel Xeon Phi or Graphics Processing Units (GPU) like NVIDIA Tes-

la [7]. Those are used in modern cluster systems like the Dynamical Exascale Entry Plat-

form (DEEP) [8] as an accelerator.

Once the system reaches its performance boundary the need arises to extend its computing

power. There are several ways to raise the computing power of a system. One way is to

use a new processor generation with more cores, higher frequency, and better arithmetic

units. Increasing the core count is limited because of the size of the die and the achievable

chip yield. At the moment, the frequency does no longer increase as fast as it did in the

past [9]. The technology is still shrinking and higher frequencies should be possible, but

the effort to handle the power consumption and heat dissipation is prohibitive [10].

Thus, it is hard to increase the frequency of CPUs in a significant way to meet the needs.

The arithmetic units of up to date CPUs are already highly optimized and a tremendous

performance boost from this side is not to be expected. Even if there is some potential for

improvements to increase the computing power, it is not enough to meet the required per-

formance for the imminent challenging tasks. Another way to increase computing power

is to raise the socket count inside one node. However, motherboards are already dense and

integrating more sockets than four inside a standard node is hardly feasible and very cost

intensive. Alternatively, system speed can be improved by increasing the available mem-

ory, but this will not help if the problems that should be solved are not memory bound.

An easy way to extend the system is to add more nodes. Therefore, it is important to have

an efficient protocol between the different sockets and the different nodes that allows scal-

ing the system without negatively impacting the overall performance.

"Anyone can build a fast CPU. The trick is to build a fast system." Seymour Cray.

 Introduction

5

This goal can only be achieved if the key features of a protocol are kept in mind which are:

• Bandwidth

• Latency

• Message rate

• Fault tolerance

Bandwidth needs to be as high as possible to transfer as much data as possible. Latency

has to be low to minimize the impact of a hop between nodes. A high message rate is im-

portant to maintain high link utilization. Fault tolerance is needed to keep the system run-

ning even if it is influenced by the environment.

For the protocols used in HPC systems the topology of the network is of less importance

and therefore it is not part of this thesis. The major influence to the protocol is the distance

of the communication partners. In case the processing unit is placed on the same chip, the

data is transferred directly among different cores via cache coherent protocols or indirect-

ly through main memory. Processing units inside one node but not on the same chip com-

municate via a CPU specific off chip protocol like the Quick Path Interconnect (QPI) [11]

or HyperTransport (HT) [12][13][14]. With those protocols the previously used bus inter-

connection was replaced and cache coherency is now handled with a special packet based

protocol. In case, that processing units are not located in the same node, communication

takes place via a NIC. Typically the processing unit then communicates via Peripheral

Component Interconnect Express (PCIe) [16] with the NIC, which translates the data

stream into its own protocol like 10Gig-Ethernet [17], Infiniband [18], or EXTOLL [19].

Previous systems did already included the NIC inside the processor, like the Transputer

[20] with four serial links up to 20 Mbit/s or the nCUBE-2 [21] that included 13 I/O chan-

nels that had an operating frequency of 20 Mbit/s. One link was reserved for the typical I/

O and 12 created an interconnection network in a form of an order-twelve hypercube.

Nevertheless, those systems did not prevail.

Protocols, which are currently used on motherboards, are optimized to exchange data and

information among the different components. The most important protocols that fulfill

this task are HT, QPI, and PCIe. These protocols are not capable to solve the needs for an

Introduction

6

efficient communication among nodes. For those purposes, a specialized protocol is re-

quired.

It has to be kept in mind that it is important for a protocol to be efficient. It is necessary

to reduce the protocol translation to a minimum because every translation costs time and

hardware. To illustrate this, it is depicted in figure 1-3 how data is transferred, from soft-

ware- and from hardware-perspective. From the software-perspective the programmer

creates a 9x3 matrix for every sub problem he wants to be calculated at one node. In order

to get a poor data alignment it is assumed that every matrix element is 7 bytes large.

During synchronization the border of the matrix n has to be sent to the matrix n+1. This

can be done by a simple Message Passing Interface (MPI) [22] put operation. From the

hardware-perspective the sending CPU has to gather the data from the memory. After-

wards, it has to be packed into an HT packet and transferred to the bridge. Then, the bridge

translates the packet into a PCIe packet and sends it to the NIC. The NIC from the sender

translates the packet to a network packet and transmits it to the receiving NIC. At the re-

ceiver all translation has to be repeated backwards until the data can be written to the

memory.

Figure 1-3: Data Transmission from Software- and from Hardware-Perspective

 Introduction

7

This shows how timing and resource consuming the translations are. Furthermore, the

protocol must be easy to decode, as the design effort and the needed hardware resources

increase with the complexity of the protocol.

In this thesis current state of the art protocols are analyzed and a new protocol is presented

that fulfills the needs for typical communication schemes in HPC systems. It will be usa-

ble in different layers of a compute cluster as inter-processor, processor-device-, and inter-

node-communication. The translation effort will be reduced to a minimum while all im-

portant features, like an ordering scheme and virtual channels, will be supported. Latency

will be low and the achievable in-system bandwidth will be competitive.

1.2 Chapter Outline

In chapter 2, Design Space, the general design space of protocols is analyzed with refer-

ence to main features. The different main features protocols provide are further classified

by their properties. As main features share some properties the influences among the fea-

tures are explored.

Chapter 3, Off Chip Protocols, focuses on how state of the art off chip protocols are de-

signed. First the difference between on chip and off chip protocols is explained. Then the

typical structure and features of state of the art protocols is introduced. The main part of

the chapter refers to the detailed analysis of HyperTransport and Peripheral Component

Interconnect Express which are the most relevant protocols with regard to the Unified

Layer Protocol developed during this thesis.

In chapter 4, Unified Layer Protocol, presents the protocol developed for this thesis. The

findings gained in the previous chapters are used to design a protocol which can be used

in HPC systems at every point to avoid power consuming and timing critical protocol

translations. Special attention has been paid to the feasibility in hardware and the scala-

bility. After the definition of the protocol a detailed comparison against the protocols an-

alyzed in chapter 3 is made.

Introduction

8

The contributions to the hardware development of EXTOLL is shown in chapter 5. This

work gave the inspiration for the work described in chapter 4. Various methodologies de-

veloped for the Unified Layer Protocol have been implemented in this context.

The work concludes in chapter 6, Conclusion and Outlook. In this chapter the outcome of

the thesis is summarized and a brief outlook of the future work is given.

 Chapter 2: Design Space

Design Space

10

Before a protocol can be designed it is crucial to analyze which aspects influence the pro-

tocol. In this chapter the main aspects of protocols will be analyzed and how they affect

each other.

Modern HPC-systems keep growing in respect to processing units which are distributed

over the system. In such systems data has to be exchanged among them. The distance be-

tween two communication partners can be in a range from the same die up to different

nodes with multiple hops. In the following different connection schemes are presented.

On Chip Connection:

The shortest possible communication distance is between two direct connected functional

units (FUs) on the same chip. At this point the number of lanes is not critical as the con-

nection of the FUs is at the same structure size as the logic. The exchange of data can be

managed by a simple valid-stop-scheme. Synchronization is no issue as both FUs are in

the same clock domain. An example is shown in figure 2-1.

Figure 2-1: On Chip Connection

Off Chip Connection:

Communication between devices which are directly connected, but are not on the same

die, needs additional hardware effort. Pin limitation restricts the number of available con-

nections. Thus, serialization has to be used because no large amount of lanes can be used

to connect different chips as it is possible on one die. Also logic to synchronize data from

the sending clock domain to the receiving clock domain is needed if it is not guaranteed

that both domains are synchronous. An example, with a serialization factor of 4, is shown

in figure 2-2.

 Design Space

11

Figure 2-2: Direct Off Chip Connection

Bridged Connection:

A bridged connection is needed if a device has to communicate with one that uses another

type of protocol to exchange data. Processors use their own protocols like HT [14] for

AMD CPUs and QPI [11] for Intel CPUs. In order to connect other devices protocols like

PCIe [16], USB [23], and SATA [24] is common. For accelerators or network devices

mainly PCIe is used. An example for a bridged connection can be seen in figure 2-3.

Figure 2-3: Bridged Off Chip Connection

Design Space

12

Node to Node Connection:

Nowadays many different protocols are used to transfer data through a computing system.

For communication among nodes specialized network protocols like 10 Gigabit Ethernet

[17], Infiniband [18], or Extoll [19] are used. So, if communication has to take place

among nodes, additional protocol translations have to be made, which can be seen in

figure 2-4.

Figure 2-4: Node to Node Connection

Keeping computing time low is very important for an HPC system. With respect to overall

computing time it is necessary to minimize the communication effort. This can be

achieved with efficient protocols and the reduction of translation effort. Therefore, it is of

advantage to unify the communication process and to optimize the protocol structure.

In order to ease understanding how communication is handled inside a computing system

it is of advantage to separate different tasks into layers. A well know example how this

can be done is the Open Systems Interconnection model (OSI) [25]. The OSI model has

7 layers. An overview of those layers is given in table 2-1.

 Design Space

13

Table 2-1: OSI Layers Overview

Layers 1 to 3 are the layers which are close to the transport layer where 5-7 are close to

the application layer. Layer 4 is a link between those. For this dissertation only layers 1 to

3 are of importance as they are closely coupled to the hardware side of a protocol.

Efficient protocols have primary features. Those features are latency, bandwidth, message

rate, and fault tolerance. They have to be well balanced to achieve the required perform-

ance. The primary features have attributes such as frequency, data width, data dependen-

cies, overhead, retransmission rate, resource availability, and fault tolerance. An overview

is shown in figure 2-5.

Figure 2-5: Primary Feature Overview

Some of the primary features share the same attributes. Changing an attribute in the favor

of one primary feature will influence the others sharing it. Sometimes a change of an at-

tribute will influence other attributes in a positive way, but often a conflict with other at-

Layer # Name Description
7 Application Layer Abstract layer to application
6 Presentation Layer User data is translated into the protocol
5 Session Layer Organization of the connection as opening and closing
4 Transport Layer Orders traffic to the right sequence

Maps traffic to the corresponding application
3 Network Layer Logical addressing

Packet forwarding
Handling routing

2 Data Link Layer Flow control
Error handling
Frame synchronization
Physical addressing

1 Physical Layer Physical media (electrical, optical, wireless)
Modulation of the signal
Line coding
Bit synchronization

Design Space

14

tributes occurs. Therefore, it is important to find a suitable balance among all attributes.

An overview of the dependencies among the different attributes is shown in figure 2-6.

The arrows, which connect the attributes, symbolize the different dependencies between

them and that a change will influence the other.

Figure 2-6: Attribute Dependencies

Protocols which are used to achieve high utilization are packet based. One packet consists

of different frames. In most cases three different frames are given. First the header frame

which contains the information necessary to transfer the data from the source to the des-

tination. Second the data frame which contains the payload. The third frame is the frame

which is used for error handling. The error frame contains redundant bits for error detec-

tion or error correction. An example of a packet is given in figure 2-7.

Figure 2-7: Packet Framing

As already mentioned the header frame contains the information of how to handle a pack-

et. Therefore some information is essential. That information is packet type, source of

packet, destination of packet, packet size, and address. An example of a header frame is

given in figure 2-8.

 Design Space

15

Figure 2-8: Header Frame Example

The header can also contain additional information in the packet specific fields to support

some more advanced features like virtual channel type, credit information or additional

identification information. Virtual channels are used to share one physical lane among

multiple virtual lanes. Therefore, the resources to manage the physical lane are replicated

for every virtual channel. Those resources are buffer spaces and the buffer management.

Credits are used to ensure that there is no overflow at the receiver side. Therefore, the re-

ceiver sends information to the transmitter about how many packets it is able to receive.

That credit information needs to be constantly updated during run-time.

In the following subsections the different primary features are described in detail.

2.1 Bandwidth

Bandwidth is defined as data volume per time unit. In most cases, this means Megabyte

per second (MB/s) or Gigabit per second (Gbit/s). There are different types of bandwidth.

On the physical layer of a channel the raw bandwidth is defined as how much data can be

transferred over a link or inside a chip at a given time period. At every clock cycle the data

path is assumed as fully utilized, regardless what kind of data is transmitted, user data or

protocol overhead. If the overhead for line coding is subtracted from the raw bandwidth

the coding layer bandwidth is given. The remaining overhead from the protocol is the

overhead for framing. After removing the framing the amount of user data which can be

transferred if the data path is fully utilized and the overhead is minimal. This is the pay-

load bandwidth. An example of how the different bandwidth types utilize a channel is

shown in figure 2-9.

Design Space

16

Figure 2-9: Bandwidth Utilization

The last type of bandwidth is the in system bandwidth. In this case, the achieved band-

width during runtime is measured. For attributes, only the raw bandwidth is of impor-

tance. Other types of bandwidth need a complete specified protocol or a defined used case

to know what parts of the raw bandwidth are lost to line coding, protocol coding, and sys-

tem behavior.

Increasing raw bandwidth on a link is easy. There is no influence to the decoding of the

protocol but only to the transportation speed. This can be achieved by adding additional

lanes or a change to a faster serializer technology. Nevertheless, there are physical restric-

tions that have to be taken into account such as pin count of a package, connector size, and

the frequency of the serializer and their power consumption. If the link bandwidth is in-

creased, the chip internal bandwidth needs to be increased as well.

2.1.1 Data Width

One common way to increase bandwidth is to expand the data width. The theoretical

bandwidth changes proportionally to the data width if the frequency is kept constant. Dou-

bling the data width automatically doubles the theoretical bandwidth. If this can be real-

ized without negatively influencing other primary features, it is a convenient way to

increase bandwidth. However, some constraints cannot be disregarded.

There are physical restrictions like pin limitation, bracket size of connectors, and multi-

plexing complexity. Pin limitation and bracket size are dictated by the environment off

 Design Space

17

chip. Therefore, they can be decoupled from the inner design of the chip. In case the data

width is increased, the additional data lanes will require more wiring resources. This re-

sults in an increased area requirement inside the chip. Also multiplexing complexity can

increase if the data width is changed. Therefore additional logic is needed which has a

negative influence on frequency and area.

Inside an ASIC the wiring is flexible but there is a high risk of increasing costs due to larg-

er chip size or additional metal layers. If more space is needed for wiring also the achiev-

able clock frequency is influenced negatively as the distance between two register stages

increases.

In case of an FPGA the wiring resources are fixed and limited by the internal FPGA struc-

ture. Changing data width will decrease the achievable clock frequency and the mapping

into the device will be more difficult. At some point increasing the data width will result

in an un-mappable design.

There are also logical constraints which limit the data width. More data is received in one

clock cycle. This increases the chance that more data dependencies inside one header

frame have to be solved at once. In case, the data width is wide enough not only more de-

pendencies inside one header frame can occur, but also among multiple packets. Solving

additional dependencies in one clock cycle will result in more hardware complexity. In

addition, the multiplexing complexity has to be increased. This happens because of two

reasons. First, if the starting-point of the header is not fixed there are more locations to

gather the data from as the different fields of the frame shift through data width. Second

multiple packets can be received at the same time and therefore additional wires have to

be used. This means increasing the data width can have a significant influence on the at-

tribute frequency, as the frequency cannot be higher as the time that is required for data

processing plus wire delay.

Design Space

18

2.1.2 Frequency

Increasing the frequency is also a very effective way to increase the bandwidth. Doubling

the frequency automatically doubles the theoretical bandwidth. Nevertheless, the frequen-

cy of a given technology for a design will be usually fully utilized. Therefore, increasing

frequency leads to a redesign. There are two possibilities how this can happen.

One is to change to a faster technology. In case of an ASIC this means scaling to a faster

process with smaller feature size. In case of an FPGA, one with better capabilities has to

be used.

The second possibility is to modify the HDL code. If the current version of the code is

written efficiently, just redesigning the functional units will not result in a huge frequency

step. If all or at least the critical path can be pipelined further, a higher frequency can be

achieved. However, it is well known that pipelining has a negative effect on latency. At

least the additional time for the register stages have to be added to the processing time. In

most cases, the current problem which has to be processed cannot be divided into multiple

calculations with a similar run-time.

In case the pipeline-stage with the largest timing budget cannot be subdivided into smaller

problems, there is the possibility of increasing the frequency by parallelization. Therefore,

this pipeline-stage has to be duplicated and special multiplexing logic has to be added.

The multiplexing logic switches between the two parallel blocks so the throughput can be

doubled. Then the rest of the logic can run at higher frequencies while the duplicated

blocks can be clocked by half the new frequency. The disadvantage of this solution is that

the additional logic consumes part of the already critical timing budget, more logic re-

sources, and the clocking scheme becomes more complex.

This means that increasing the frequency comes with tremendous costs for a new design

and latency might increase. In figure 2-10 part a) shows the normal processing time of a

logic block, b) shows an optimal pipelined logic block with the extra timing needed for

the additional registers, c) shows a more realistic pipeline approach with not equally di-

vided sub-blocks, and d) shows a pipelining approach with parallelization.

 Design Space

19

Figure 2-10: Pipelining

There is one additional point that limits the achievable frequency. If there are physical

limitations that restrict the link bandwidth, the chip internal bandwidth is also limited to

this value. Therefore, there are some fixed ratios between internal data width and frequen-

cy that will utilize the full link bandwidth. From a bandwidth perspective it is only useful

to increase the frequency to the point until the corresponding ratio between frequency and

data width is met. Increasing the frequency further will not increase bandwidth, but only

reduce the latency inside the device.

2.1.3 Overhead

The overhead can be subdivided into three major types of overhead:

• Header Overhead: Introduced by the information needed to process a packet.

• Protocol Overhead: Introduced through protocol specification.

• Error Handling Overhead: Introduced through error handling.

Those overhead types will be described in the following sub-chapters.

Design Space

20

2.1.3.1 Header Overhead

The challenging part of the header overhead is to find a balanced amount of overhead be-

tween features and needed bandwidth. This means header frame size should be as small

as possible, but large enough to be able to support all intended features. In addition, it is

also important not to shrink header fields in a way that the alignment of the packet or the

header will cause problems. It is smart to keep in mind that not only a protocol with low

overhead is of importance, but also how efficient it can be realized in hardware. Some-

times it seems to be of advantage to save a single bit by enhanced coding from the protocol

perspective, but this can make the decoding hardware more complex. Thus, the small ad-

vantage, which was gained by coding, will lead to significant effort inside the hardware.

2.1.3.2 Protocol Overhead

One possibility how a loss of bandwidth through protocol overhead can happen is if there

are restrictions inside the protocol regarding frame alignment. If the packet always has to

start at a defined position of the data width, but the packet length is not to a multiple of

the data width, then there is space at the end of the packet that has to be kept empty. Such

an empty space is called a bubble as it occurs due to the defined protocol but cannot be

avoided. An example is given in figure 2-11 where a bubble occurs because of doubling

the data width on one transmission channel.

Figure 2-11: Bubble Insertion Through Protocol Constraints

 Design Space

21

Another very important point, which influences the packet frame overhead, is the data

granularity. From a simple perspective, the easiest way of transporting data from sender

to receiver is a plain data stream without any additional information. After an initializa-

tion phase, there is no wasting of bandwidth because of unnecessary overhead. However,

this is only useful if the same amount of data is repeatedly written to a strict defined des-

tination and data failures do not result in a system crash. Furthermore, such a kind of sys-

tem needs to run completely synchronous, because a loss of sync can never be recovered

without re-synchronization. Therefore, there is a very limited field of applications where

this kind of granularity can be used, like media streaming and other uncritical and reset-

table tasks. The problem of a constant data stream can be avoided by splitting the data

stream into several packets.

In order to assure the acceptance and usability of a protocol there should be no tremendous

restrictions about the length of data or the address range. For example, analyzing HT

shows, that packets with every combination of one byte up to 64 doublewords can be sent.

Data range can also start and end at every byte-address as long as they do not cross a 4 kB

address boundary. Nevertheless, this does not mean that there is always an optimally sized

data frame defined to transmit the data without losing any bandwidth.

Bandwidth is always lost when the amount of data transferred does not fit into a given data

frame. Thus, different cases are possible. Data that has to be transmitted could fit inside

the next larger packet frame. In this case, the unused portion of the data frame leads to a

loss of bandwidth. In case the data is too large to fit inside the largest available frame, it

has to be split into multiple frames. Thus, additional control information is required. Fur-

thermore, the data alignment could not be suitable. This means the data volume is too

large for one frame. Using the next larger frame would result in higher bandwidth loss be-

cause most of the frame would be empty. In this case, it is more efficient to use multiple

smaller frames. In figure 2-12, the possibilities of how the data can be split are shown.

These possibilities are described in the following sub-chapters.

Design Space

22

Figure 2-12: Data Granularity

Fixed Data Granularity

With a fixed data length approach, the data has to be split into frames with the same

length. A header in front of the data describes the kind of transmitted data. At least, the

location where the data has to be written to and the amount of valid data are information

the header needs to contain. If an error occurs during transmission this must be detected.

Therefore, a protection frame per packet is common in current protocols.

The advantage of a fixed data granularity is that the hardware to decode and process data

is simple. The deterministic repetition of frames makes sure that no complex logic is need-

ed to determine which kind of data has been received in one clock cycle and where the

data has to be forwarded. In figure 2-13 a) a fixed protocol type with a header, followed

by data, and protected with a Cyclic Redundancy Check (CRC) [26] is assumed. As long

as the data path width inside a design fits into the protocol granularity the data just has to

be gathered and if one packet is complete it can simply be forwarded. If the data path

width is larger than the protocol granularity, it is not necessary that the handling of one

packet has to become more complicated. As long as the packet length is a multiple of the

data path width the wiring gets even more relaxed, as depicted in figure 2-13 b). In the

case that the packet length is not a multiple of the data path width the start of packet loca-

tion will shift through the data path. Thus, additional multiplexing resources have to be

added, more wiring resources have to be used, and additional buffer space must be added

to gather complete packets. The logic controlling the multiplexer is simple, because the

shifting of a packet start through the data path is deterministic. A problem arises if a pack-

 Design Space

23

et could be finished in the same clock cycle as a new packet starts and the processing unit

would still be utilized with the first packet.

Figure 2-13: Muxing Complexity Fixed Granularity

Finding a suitable packet length for a fixed granularity is not simple. If the data which has

to be sent does not have a given granularity, it is hard to determine which granularity fits

to avoid a loss of too much bandwidth.

There exist several ways in which choosing a fixed format results in loss of bandwidth.

When using a fine grain granularity, there will be a loss of bandwidth if large data packets

have to be sent. In this case, the data has to be split into short packets and additional header

information has to be sent. However, this is unnecessary and therefore only wasting band-

width because a large and consecutive amount of data could be transferred with just one

header.

If a more coarse grain granularity is chosen there will be less waste of bandwidth in terms

of header information. Thus, a large amount of data can be transferred with fewer packets.

For short packets on the other hand, the data frame of one packet would be almost empty.

This means, that also in the case of a coarse grain granularity, bandwidth can be wasted.

An example is given in figure 2-14.

a) b)

Design Space

24

Figure 2-14: Bandwidth Loss with Fixed Granularity

In both cases, small and large granularity, bandwidth will always be wasted if the data that

has to be transferred does not match a multiple of the given data frame. Hence, in a design

with a fixed granularity where traffic with random data length has to be transferred, it is

hard to choose a suitable data frame size. Except of a fixed size data frame generating sys-

tem, it is impossible to avoid any bandwidth loss so a compromise has to be made among

packet sizes to achieve a result with moderate bandwidth loss.

However, in some application areas a fixed data granularity has been chosen. In telecom-

munication SONET and SDH are widely used [27]. Those protocols have also been em-

bedded into modern FPGAs with the latest version of the Altera Aria series [28]. They use

Synchronous Transport Signal (STS) frames to transmit the data. In [29] the structure of

the different frames is described. Two frame types are used. One is the 810 bytes large

STS-1 frame and the other is 2430 bytes in case of STS-3. STS-1 and STS-3 are structured

as a matrix with 9 bytes rows and 90 respective 270 columns. The structure and the dif-

ferences between the two frame types can be seen in figure 2-15.

 Design Space

25

Figure 2-15: SONET/SDH Framing [29]

The Header of the frames consists of two different main sections. First the Transport

Overhead (TOH) as a 9 by 3 bytes field. It contains the Section Overhead (SOH) with 9

bytes and the Line Overhead (LOH) with 18 bytes. Second the Synchronous Payload En-

velope (SPE), which is a 9 bytes row that contains the Path Overhead (POH) and the STS

Payload Envelope. Column 30 and 59 are used as fixed stuff columns and do not contain

data. Thus, the protocol overhead is 6.77%. Because of its format SONET/SDH provides

a lean protocol which is easy to use and provides a guaranteed bandwidth. Therefore, it is

a good solution for data aggregation. Nevertheless, for HPC more flexibility and addition-

al features are of importance, so SONET/SDH does not fulfill the needs for HPC.

Design Space

26

Variable Data Granularity

Compared to fixed packet granularity the variable granularity changes from coarse grain

to fine grain just by the number of data frames with different lengths. The most coarse-

grained granularity would be just one allowed packet size, which is in this special case the

same as a fixed format. Every additional valid packet length increases the flexibility of

sending data without losing bandwidth, but the hardware complexity increases. Granular-

ities which should be chosen depend on what kind of traffic will be mainly transmitted by

the protocol. The variety of all possible granularities reaches from a single data-frame

length up to all possible data frame sizes. The upper bound for the number of packet sizes

is determined by the size of the length field inside the header and the restricted size of the

receive buffer. The length field can just contain the plain number of bytes or the number

of protocol words that have to be transmitted.

With a variable packet granularity, the complexity of decoding gets more complicated

compared to a fixed format. There is no pre-defined position of header-, data-, and CRC-

frames inside the stream. These could be signaled by sideband signals, which determine

what kind of frames are currently transmitted. Otherwise, the hardware needs to keep

track of the data stream so it can be clearly determined at every point in time what kind of

frame has to be processed. In this case, additional hardware complexity is introduced for

the case that the data payload does not fit into one of the given frame granularities. Thus,

the payload has to be split into multiple frames or one larger frame has to be used. Finding

the optimal number of frames increases the bandwidth but adds additional hardware for

the correct frame selection. However, if the variety of possible frames is large, determin-

ing the best fragmentation is complex.

If a coarse grain granularity is chosen, the loss of bandwidth will be relatively high but

the hardware can be kept simple. Figure 2-16 shows how the bandwidth loss is reduced

compared to the fixed granularity.

 Design Space

27

Figure 2-16: Bandwidth Loss with Coarse Grain Granularity

When the granularity levels are increased, the bandwidth loss will further decrease and

the hardware effort will increase. An example for a maximum fine grain granularity is giv-

en in figure 2-17. This solution is theoretical if the range of possible data frames is too

high, because at some point, the gain of bandwidth will not justify the increasing hardware

complexity.

Figure 2-17: Bandwidth with Optimal Granularity

Design Space

28

Hierarchical Variable Data Granularity

In order to understand how the hardware complexity is influenced by the types of data

transfer it is important to understand how data is transferred in a system. From an abstract

view data is just moved from one address space into another address space. In the example

of figure 2-18, 128 bytes of data is transferred from address space A to address space B.

Figure 2-18: Address Space Data Transfer

Reaching a decent amount of flexibility can be achieved by using hierarchical granulari-

ties, without increasing the hardware effort to a too complex level. Therefor the transfer

granularities are separated into different boundaries. For very small data frames a very

fine grain granularity is used. Midsized packets use a more coarse grain granularity,

whereas large packets use a coarse grain granularity. Figure 2-19 shows an example where

the transmission of data is divided into three packet types with different granularities.

Packets of a size smaller than 64 bits are transmitted with the exact amount of bytes they

can contain with a range from 1 to 7. If more data than 64 bits has to be transmitted, the

 Design Space

29

next larger granularity has to be chosen. In this case, this means multiples of 8 bytes are

transmitted up to a range of 56 bytes. In addition, a third packet type is available that al-

lows to transmit packets with a data granularity of 64 bytes, up to maximum range of 512

bytes, which is also the maximum packet size in this example. Larger packets have to be

split into multiple packets. In this solution no restrictions were made regarding to starting

address and address boundaries.

Figure 2-19: Variable Hierarchy Example

If only those types of packets are used, a problem occurs when data has to be transferred

that is too large for a smaller frame, but is misaligned to the granularity of the larger pack-

ets. This case needs some special handling, as it cannot be managed without additional

effort. One is that a larger frame would be used and marked as partly occupied and the

additional available space has to be left empty. A better solution to support these una-

ligned packets is to split one packet into multiple frames. It must be checked what kind of

alignment the packet has regarding to start address and length. Then the misalignment has

to be solved by sending smaller packet types until the alignment for the next larger packet

type is reached. With this mechanism, every length of data can be transferred without

wasting data frame bandwidth but at the cost of additional header frames. This solution is

shown in figure 2-20. An 86 bytes large data frame has to be sent. Without splitting the

packet, a 64 bytes granularity frame with two entries had to be used and 42 bytes would

be wasted. As shown, with frame splitting, no data frame space is wasted, but additional

headers have to be transmitted.

Design Space

30

Figure 2-20: Variable Granularity Compact

This solution is efficient from a bandwidth perspective but is still rather complex from a

hardware perspective. The calculation what kind of packets have to be used depends on a

mixture of the start address and the length field and, after the correct packet type is found,

also the length of the packet needs to be determined. Furthermore, the alignment of data

is not subject to any restriction. It is possible to structure the data transmission further to

relax the hardware effort. The data of a given packet can be transmitted regarding to the

addressing and not to the length of the packet. An example is shown in figure 2-21. With

this mechanism, additional headers are possible and would result in loss of bandwidth.

The advantage is that the frame calculation is less complex and the data is automatically

aligned to the address space. For the first misaligned packet the packet type and the packet

length only depend on the lower address bits. The last packet is determined by the lower

bits of the packet length.

Figure 2-21: Variable Granularity Aligned

 Design Space

31

2.1.3.3 Error Handling Overhead

Error handling introduces additional overhead. Bandwidth is needed to add redundancy

for protection, which reduces the effective bandwidth. Bandwidth will also be reduced if

data has to be retransmitted to correct an error. The impact of retransmission will be larger

in correlation to how often an error occurs. This aspect will be analyzed in detail in chap-

ter “Fault Tolerance” on page 42.

2.2 Latency

Latency is the time that a packet needs to travel from source to destination. There are two

typical examples what kind of latency is of interest in networks. One is the round-trip la-

tency and the other one is the half-round-trip latency. The round-trip latency is measured

by sending one packet from the first node to the second node, and then sending the packet

back from the second node to the first one. The time from the start of sending to the end

of receiving is called the round-trip latency. The half-round-trip latency is just the time a

packet needs from start of sending at node number one until full reception at node number

two.

2.2.1 Data Dependencies

The most important attribute that influences the latency is data dependencies. In this con-

text data dependencies stand for dependencies among different fields in one header frame.

Those dependencies have to be handled by hardware. Besides calculations that have to be

made for processing the data there are calculations that occur because of data dependen-

cies. In case of low data dependencies, the required logic to process the data can be kept

simple and therefore fast. If the dependencies are high, the logic will become more com-

plex. Most likely, all calculations have to be made before the dependencies can be re-

solved. Not only will the overall processing time be higher if there are more dependencies,

but also pipelining will become more complicated regarding to how efficient and even if

resolving those dependencies can be pipelined.

Design Space

32

In current packet based protocols, the control frames can be distinguished by their com-

mand field. Depending on what kind of control frame it is different fields of the frame can

have different meanings. In this case, some fields of one frame have to be decoded before

a decision can be made regarding other fields. The longer this chain of decoding gets the

higher the negative impact on latency becomes. The impact increases if the dependent

field is not received in the same clock cycle. Thus, data has to be buffered and the number

of bits that have to be decoded can even be higher than the data width. The example given

in figure 2-22 shows a very simple control frame with a command, length, source, and

destination field. Every field is 8 bits wide. It is assumed, that there are doubleword (32

bits) and quadword (64 bits) accesses. So first, the command field has to be decoded be-

fore the length field can be correctly interpreted.

Figure 2-22: Control Frame Dependencies

Not only will the decoding time increase because of such dependencies, but also the wir-

ing complexity. For every bit position inside the control frame that has an additional

meaning, a new connection from the same source register to a different decoding unit has

to be established. For the simple protocol example, first, the command field has to be de-

coded before the two length options of doubleword and quadword can be differentiated

and forwarded to the corresponding unit. This behavior is shown in figure 2-23.

Figure 2-23: Wiring Complexity

In addition, multiplexing complexity increases tremendously if the start of a packet is not

well defined inside the data width. The start of a packet can be at many positions and

therefore there must be a connection from every possible position of the data width to the

decoding logic. In case data width is increased, the packet has more possible starting po-

sitions. Every additional possibility results in an additional multiplexing point. The exam-

 Design Space

33

ple in figure 2-24 depicts how the length field location shifts trough the data width if the

protocol granularity would be 8 bits. Multiplexing complexity multiplies for every differ-

ent meaning the field might have.

Figure 2-24: Muxing Complexity

As soon as the packet size becomes smaller than the data width, it will be necessary to

process multiple packets within one clock cycle. This causes a massive problem as two

headers can be received at the same time but cannot be handled simultaneously by the

same functional unit. Figure 2-25 shows an example, where the data width can contain up

to four control frames and the data dependencies among them.

Figure 2-25: Inter Frame Dependencies

In order to avoid back pressure a solution is needed. One would be if one packet is buff-

ered for later processing. This would result in bandwidth loss if it is not guaranteed by the

protocol that there will be a time slot to process the stored packet without influencing the

rest of the data stream. This will work as long as one packet can be stored for later process-

ing. However, if the packet has to be processed in the same clock cycle to sustain the band-

width, the functional unit has to be replicated as shown in figure 2-26. Even if the

functional unit is replicated, at some point the two simultaneous received packets have to

be serialized if they have the same final destination and could cause back pressure at this

point.

Design Space

34

Figure 2-26: Multiple Functional Units

Thus, increasing the data width can have a negative impact on the primary feature latency

as well as for the frequency attribute, and also the bandwidth can be influenced in a neg-

ative way.

2.2.1.1 Alignment

A point with a tremendous influence on data dependencies is the alignment of data. A pro-

tocol defines different types of widths. Those widths are word width, data width, header

size, and packet length. In order to reduce the hardware effort it is advantageous that the

different widths of a protocol have an adjusted alignment. The solution which provides

the least hardware effort is if all larger width are always a binary multiple of all the smaller

widths. An example is given in figure 2-27.

Figure 2-27: Width Alignment

 Design Space

35

If such an alignment is not met the hardware effort will increase. For example, the start of

a packet can move inside of the data width to different locations.

In addition, the packet format should be chosen in a fashion that the different fields are

aligned and leveled to ease the decoding. This means for field alignment, that a field with

the same meaning for different packet types should have the same position inside of the

different header types. In case for leveling this means if packet types have fields with dif-

ferent meanings but reserved space inside the header they do not have to use the same

header position. In the following sub-chapters more details will be described.

Packet Alignment and Structure

The different control packets of a protocol should be aligned to each other to reduce the

multiplexing effort. This means, that if control packets have fields with the same process-

ing destination, they should have the same position inside the different control frames. A

good example for this is the command field which identifies the packet type. If this align-

ment is disregarded, the multiplexing effort will unnecessarily increase as more possible

sources for the same field have to be handled. Furthermore, it is not only the alignment

that is of importance, but also how the header is structured. It is advantageous that if fields

differ between control frames, that these fields are not arranged in a simply consecutive

order. If they were consecutive the beginning of the control frame would be dense with

different field types, which results in a high wiring effort, whereas the end of the control

frame is barely used. Not all packet types may need all the space inside of the control

frame and therefore reserved fields of the different packet types can be used to balance the

multiplexing effort across the positions of the data width. This kind of balancing is com-

plicated because it should not influence the processing time. If the whole control frame is

received inside one clock cycle, then there is no problem. However, if multiple clock cy-

cles are needed to receive one frame, then the fields have to be arranged in a way that the

processing is not delayed regardless of the multiplexing effort. Such a delay can happen

if a field, which is needed to start processing the control frame, is shifted to the end of the

control frame which will only be received in a following cycle.

Design Space

36

Width Alignment

From a hardware perspective there are three important sizes influencing a protocol that

have an impact on data dependencies. Those sizes are the data path width, the protocol

granularity, and the packet size. If those sizes are not aligned to each other, data depend-

encies will increase significantly. This happens because of the additional hardware effort

already mentioned in “Data Dependencies” on page 31. Furthermore, if the relation

among them is wrongly chosen, the application area of the protocol is very limited as it is

inflexible in regards to changes of bandwidth or frequency. For example if a given fre-

quency cannot be reached on a device increasing the data width will reduce the required

frequency, but the additional complexity will limit the achievable frequency. In order to

keep the hardware effort minimal, two rules can be followed. First, all sizes should be a

power of two, and second, the data path width should be smaller or equal to the protocol

granularity. As long as there are no physical restrictions using a power of two should be

no problem. The only problem with those two rules is that bandwidth can be wasted if a

too large size for the data path width is used and therefore the resulting protocol granular-

ity causes a framing, which cannot be completely utilized. This can also happen, if a

smaller size does not have enough space, and the next step of power of two offers two

much space.

2.2.2 Frequency

The frequency of a design influences the latency that a protocol introduces. The achieva-

ble frequency is closely coupled with the data dependencies. If there are more data de-

pendencies to solve inside one clock cycle, the clock cycle has to be longer and therefore

the frequency has to decrease because of the necessary amount of hardware. To keep the

latency low a small data width is of advantage, but this will have a negative influence on

bandwidth or an extreme requirement to the pipeline frequency. Most protocols can oper-

ate over a range of frequencies. Beside power saving reasons and other limitations from

the design environment, the frequency will be chosen as high as possible to reach better

throughput and lower latency. As already mentioned in the chapter “Bandwidth” increas-

ing the frequency is only achievable with substantial changes in design and costs. Other

 Design Space

37

ways to increase the frequency, like pipelining, have negative effects on latency.

2.2.3 Data Width

Reducing the latency can also be achieved by increasing the data width. In this case the

latency is only reduced by the number of pipeline-stages a packet occupies traveling

through the network. If a packet would need 32 pipeline-stages and then the data width is

doubled, it would need 16 pipeline-stages and therefore 16 clock cycles less. This only

works as long as increasing the data width does not influence the frequency in a negative

way when pipeline-stages are merged together. As soon as the frequency is influenced

negatively, increasing the data width can have a negative influence on latency as the gain

of occupied pipeline-stages is insignificant compared to the frequency reduction.

2.3 Message Rate

One indicator of protocol efficiency is, is the number of packets that can be transferred in

a given period. This indicator is called message rate. While a high message rate is impor-

tant it is not possible to judge the efficiency of a protocol solely by its message rate. The

message rate can be artificially increased by simply defining a smaller packet size, this

results in more packets per period, but then the effective bandwidth decreases, which is

negative for the overall performance. On the other hand, in some use cases a low message

rate may be sufficient or more important. In this case, the effective bandwidth is higher,

but the fault tolerance and the availability of resources are negatively influenced. There-

fore, the goal of optimizing the message rate is to fully utilize the theoretical maximum

bandwidth of the given protocol and not to artificially increase the number of messages.

The message rate between sender and receiver is closely coupled to the bandwidth. Band-

width is considered the physical possibility to transmit a defined amount of data from a

sender to a receiver in a certain period of time. If the packet size and structure are defined,

the message rate is the reference point to ensure that the given bandwidth is used efficient-

ly. If the message rate is maxed out, the bandwidth is totally utilized with data and no idle

traffic is transferred. In case that the message rate does not utilize a given bandwidth, the

Design Space

38

theoretical bandwidth is still identical but the effective bandwidth drops. There is only one

attribute which influence the message rate if everything else was done to maximize the

bandwidth, and this is the availability of resources.

2.3.1 Availability of Resources

Keeping the utilization of a link high is important for the system performance. One instru-

ment to do so are buffers at the receiver which store the data until it can be processed.

Therefore, the sender must be informed about the currently available buffer space which

is typically done with credits. In order to ensure that traffic can always be processed it is

necessary that there are sufficient resources. For example if the receiver has not enough

buffer space to receive further packets, the sender is not able to transmit data and therefore

stalls. This can easily happen if a packet is transmitted and the seven steps shown in

figure 2-28 take longer from the first transmission to the release of a credit than to fill the

buffer space. If the last buffer space is used, the link state becomes idle and the bandwidth

during this time is wasted. In step 1-2 the packet is sent and received and in step 3-7 the

credit is released.

Figure 2-28: Credit Release

In addition, the identifier a packet is tagged with has to be large enough to hide the round

trip latency of the furthest destination. This means, that a response of a packet can be re-

ceived without starvation of tags. Of course, there is a trade-off between header size and

scalability of the network. A small identifier may not be sufficient and therefore waste

 Design Space

39

bandwidth by stalling further transmissions. A large identifier increases the header size,

which is negative for the bandwidth. However, the diameter of a network can be larger

and still be used efficiently. Nevertheless, if such a large diameter in not needed or the

negative influence of the bigger header size would be too large, a smaller identifier should

be used.

If a request is transmitted, there is a chance that the response will be delayed. In this case,

the identifiers can run out. Enlarging the identifier for this reason makes no sense as the

delay cannot be estimated, but at least it should be guaranteed that the round trip latency

with no additional delay can be hidden. If the worst case for the round trip is assumed

there is additional margin if typical traffic is delayed.

From a bandwidth perspective it is important that a packet which is stalled must not be

able to block other unrelated traffic from transmission. In order to ensure this, only data

should be transmitted which the receiver can process without blocking. Therefore, it is

necessary that data transmission can be interrupted at predefined boundaries. If at any

point the transmission is stopped, independent data, which needs the same resource, can

be transmitted. This can be handled for example by virtual channels.

The message rate can not only be optimized by ensuring that resources are not blocked,

but also by adding additional features like e.g. adaptive routing [30]. If there is a hot spot

inside a network, which is used by most of the traffic because of the routing algorithm,

but there are additional ways to route a packet safely, it would be of advantage to include

a rerouting mechanism inside the protocol. The unused bandwidth of other links can then

be used and therefore the overall message rate increases. A simple example is given in

figure 2-29.

Design Space

40

Figure 2-29: Rerouting

1. Data is transmitted from node E to node A

2. Data is transmitted from node F to node A that also uses the link between node A

and node B

3. Data is transmitted from node I to node A

4. A highly used link is detected and it is checked if a rerouting is possible

5. The data stream from node I to node A is rerouted over the unused links of the nodes

E and D

The implementation of such a mechanism is difficult because of many reasons. One, and

maybe the most important, is that the additional hardware effort for adaptive routing is

immense. Most of the former and modern protocols for HPC, like Infiniband [18], Myri-

net [31], and QsNet [32] use deterministic routing as stated in [33]. With deterministic

routing there is no chance for one packet to overtake another while it travels through the

network. Thus, no reordering of packets is necessary. In [33] a solution with low hardware

complexity for reordering in a network with adaptive routing is proposed. A reordering

 Design Space

41

buffer is introduced which reorders the packets and if it is full drops the packet with the

highest received tag of a data stream. Nevertheless, this solution needs a large amount of

buffer space inside a chip, which can have a negative influence on speed and increases the

chip size and therefore reduces the yield. It seems to not be suitable for large networks as

the reordering is handled with one buffer and if many packets from different nodes are re-

ceived at one time the reordering and the corresponding pointer logic gets complex. Also,

the number of packets in one data stream that can be reordered decreases. In addition, the

traffic in the network increases because of the acknowledgement scheme and necessary

retransmission of dropped packets.

Additional hardware complexity will be introduced to realize the routing algorithm itself.

As deterministic routing can be realized by a simple Finite State Machine (FSM) or simple

routing table while adaptive routing needs more hardware resources. If an adaptive ap-

proach is used, the needed buffer space increases. One class of those algorithms are the

hop algorithms [34]. The simplest version of the hop algorithms just adds a virtual channel

for every hop taken. Thus, the buffer space grows tremendously with the size of the net-

work. If D is the dimension of the network, the needed number of buffers to avoid dead-

lock is D+1. Even if a more efficient version of the hop algorithm is used, like the

negative-hop algorithm, the needed buffer space is still immense. In order to reduce the

hardware effort further a buffer optimized algorithm can be used. Cypher and Gravano

[35] proposed two algorithms with fully adaptive deadlock free routing which have been

proven to be optimal in respect to buffer space [36]. The hardware effort is reduced but

every time the packet changes the virtual channel the adaptivity is reduced and no adap-

tivity is given in the last virtual channel.

Furthermore, an adaptive routing algorithm has to be chosen, which is deadlock free. One

way to avoid a deadlock was pointed out in [37] by using a routing with no circular de-

pendencies. A solution is to use an algorithm that does not allow any circular dependen-

cies, another one is to introduce a virtual channel every time a circular dependency occurs.

Two options are possible. One is a routing algorithm that allows only minimal paths like

Planar Adaptive Routing [38] and the other is an algorithm that also allows also non-min-

imal paths like the Turn Model [39]. If not only the traffic should be balanced by default,

Design Space

42

a feedback of the links is needed to decide which path should be chosen. If the path is min-

imal the information of a congested path becomes more important the closer the packet

comes to the receiving node, because the number of possible routes to the destination

shrinks if the packet gets closer. The same applies to non-minimal algorithms, but there

might be more options depending on the used algorithm.

An optimal hardware mechanism that fulfils all the needs for all means has to be deadlock

free, adaptive, non-minimal, ordered, and with feedback. All of those needed features re-

sult in additional hardware effort that has to be considered.

2.4 Fault Tolerance

A primary feature that is in contrast to all other primary features in nearly all cases is fault

tolerance. It reduces the bandwidth and message rate because of the overhead that is need-

ed to secure data. Furthermore, latency may increase due to the additional processing time

that is required for checking. Obviously, there are no systems that always guarantee cor-

rectness. Errors, such as bit flips, will occur during run-time. Those errors have to be han-

dled so that the system will still function and not crash. Thus, fault tolerance is essential

for a system to guarantee its functionality, correctness, and availability. For large systems

the probability of errors increases with the number of nodes.

Errors may occur because of various problems. Single Event Effects (SEE) can be induced

by radiation like heavy ions, protons, and neutrons, by crosstalk, and manufacturing de-

fects. Those errors have different results like hard errors and soft errors. Hard errors are

not recoverable because some hardware is permanently destroyed. Those errors are called

Single Event Burnout (SEB). Soft errors are non-permanent and can be fixed by reset,

power cycle, or special recovery mechanisms. They can be distinguished into many dif-

ferent classes like Single Event Transient (SET), Single Event Upset (SEU), Multi Cell

Upset (MCU), Multi Bit Upset (MBU), Single Event Functional Interrupt (SEFI) and Sin-

gle Event Latch-up (SEL). A briefly overview is given in table 2-2, for detailed informa-

tion please refer to [40].

 Design Space

43

Table 2-2: Single Event Effects

How errors like SEUs and crosstalk influence network on chip switches was analyzed in

[41]. Two error models have been used. One influences the value that is stored into a reg-

ister and the other one delays the signal that has to be stored. In a simulation of 15.2s,

18,909 SEU and 17,108 crosstalk fault were injected. The results are shown in table 2-3.

This makes an error handling essential as no faultless data transmission can be assured un-

der all circumstances.

Table 2-3: Fault Injection Results [41]

As already mentioned in the chapter “Bandwidth” there are two requirements that are

needed for fault tolerance. In the first place, an error needs to be detected. After the error

has been detected, there must be a mechanism that is responsible for its correction. There

are two ways to successfully eliminate an error that has occurred during run-time. One is

forward error correction (FEC) and the other one automatic repeat request (ARQ).

Figure 2-30 depicts the different possibilities for error handling.

Error Type Description
SET The logical path of the data is influenced by an effect.
SEU The storage of the data is influenced by an effect.
MCU Many cells are influenced by an effect.
MBU Many bits are influenced by an effect.
SEFI Effect results in a longer period of miss function.
SEL Effect results in a huge power consumption and possibly in a SEB.

Design Space

44

Figure 2-30: Error Handling

FEC is a method in which some redundancy is added to the data so that it can be checked

at the receiver and errors can be corrected. Block codes are one solution. Hamming code

[42], BCH code [43], and Reed-Solomon [44] code are the most common types of block

codes. If it is sufficient to be able to correct only one bit error and to detect 2 bits errors,

a Hamming code can be used as it is efficient from a hardware perspective. BCH and

Reed-Solomon have to be used if more than one bit error has to be corrected.

If an ARQ mechanism is used it is not necessary to fix an error at the receiver because the

packet is retransmitted. Therefore all the additional redundancy added to the packet can

be used to detect an error. In this case typically a Cyclic Redundancy Code (CRC) is used.

The CRC algorithm can be described as a polynomial division. Therefor a generator pol-

ynomial has to be chosen. There are huge differences between the different possible pol-

ynomials in respect to the hamming distance they provide. Some evaluations can be found

in [45][46][47]. The polynomial can be written in a binary notation were the single bits

are the coefficients. For example, the polynomial X5+X2+X1 would be written 100110.

The data is divided by the generator polynomial and the remainder is transmitted with the

data. At the receiver the data and the remainder are also divided by the generator polyno-

mial. The data is correct if the remainder calculated at the receiver is 0. In hardware the

CRC calculation can be implemented by a Linear Feedback Shift Register (LFSR. An ex-

ample is shown in figure 2-31. The switches are closed if the binary notation of the poly-

nomial has a 1 at the same place, otherwise it would be open.

 Design Space

45

Figure 2-31: CRC as LFSR [48]

The most crucial data that needs protection is the control information. If this data is erro-

neous, the results can be e.g. misrouted packets, the loss of knowledge where a packet

starts, or accessing the wrong address region. Therefore, it must be ensured that the con-

trol information is only used if it is already checked or processing it will not lead to an

error that cannot be recovered. Checking control information at an early stage is possible

if the corresponding security bits are sent right after the control information. As the con-

trol information should be a relatively small portion of the complete packet, the difference

between using a ARQ or FEC is not extremely large from a bandwidth point of view. For

faster processing, it would be of advantage to protect the control information with FEC,

so if an error occurs time intensive retransmission can be avoided. Thus, the error can be

corrected at the receiver and the data can be processed further.

In common protocols like HT and PCIe, the data of a packet is checked via a CRC, which

is transmitted at the end of the packet. This seems to be useful as protecting most of the

packet with a mechanism like FEC is too inefficient because of the additional overhead

for redundancy. Due to increasing operation frequencies, the error rate does increase as

well. At the beginning HT used a CRC every 512 bit times for error detection. As AMD

changed the requirements of the HT to adapt higher link speeds for newer generations of

CPUs, a retransmission mechanism became mandatory. Keeping retransmission efficient,

a per packet CRC had to be used because the buffer space and the retransmission time for

the complete 512 bit times would be inefficient. Nevertheless, the restrictions of the pro-

tocol cause a loss of bandwidth. The header is so packed that there is no space for addi-

Design Space

46

tional protection and the word width is 32 bits, so even if a smaller CRC would be

sufficient to protect a maximum sized packet it cannot be used, as the alignment of the

data stream would be lost.

Table 2-4: Fault Tolerance Overhead

Table 2-4 shows the efficiency of FEC versus ARQ. It is divided in three blocks. Block

number one contains the parameters, block number two shows the overhead of the differ-

ent error correction types, and block three is the ARQ overhead subtracted by the FEC

overhead. It is shown, that even at a minimal overhead difference by 1 bit per packet, and

a high retransmission rate of multiple 1024 bytes long packets, the overhead of retrans-

mission needs less bandwidth at an error rate of 10-11. The green highlighted parts show

when FEC is more efficient than ARQ. Orange shows the error rates when ARQ starts to

be more efficient than FEC from this point the values are always highlighted red. Howev-

er, using FEC for parts of the packets can be still of advantage. If there is enough space

inside a header to protect it with FEC the processing can be safely started after checking

without waiting for the rest of the packet. In this case, the payload could be erroneous but

the control information can be used without any harm to the system. Of course, it is re-

quired that the data still has to be checked and if it is erroneous writing it to main memory

must be prevented.

Bit Error Rate 1.00E-007 1.00E-008 1.00E-009 1.00E-010 1.00E-011 1.00E-012 1.00E-013 1.00E-014
Bandwidth in GB/s 2
Packet Size in Bytes 1024
FEC Packet Overhead in Bit 33
Retrans. Packet Overhead in Bit 32
Retrans. Overhead in Packets 8 16 32 64 128 256 512 1024
data width 32
Error Rate for 32 Lines 3.20E-006 3.20E-007 3.20E-008 3.20E-009 3.20E-010 3.20E-011 3.20E-012 3.20E-013
Clock Cycles per Error 3.13E+005 3.13E+006 3.13E+007 3.13E+008 3.13E+009 3.13E+010 3.13E+011 3.13E+012
Frequency in HZ 536870912
Seconds per Error 0.00058 0.00582 0.05821 0.58208 5.82077 58.20766 582.07661 5820.76609
Packets per Error 1221 12207 122070 1220703 12207031 122070313 1220703125 12207031250

FEC 33 in KB 4.91 49.17 491.73 4,917.38 49,173.83 491,738.32 4,917,383.19 49,173,831.94
Retrans 8 in KB 12.76 55.68 484.83 4,776.37 47,691.71 476,845.15 4,768,379.58 47,683,723.82
Retrans 16 in KB 20.76 63.68 492.83 4,784.37 47,699.71 476,853.15 4,768,387.58 47,683,731.82
Retrans 32 in KB 36.76 79.68 508.83 4,800.37 47,715.71 476,869.15 4,768,403.58 47,683,747.82
Retrans 64 in KB 68.76 111.68 540.83 4,832.37 47,747.71 476,901.15 4,768,435.58 47,683,779.82
Retrans 128 in KB 132.76 175.68 604.83 4,896.37 47,811.71 476,965.15 4,768,499.58 47,683,843.82
Retrans 256 in KB 260.76 303.68 732.83 5,024.37 47,939.71 477,093.15 4,768,627.58 47,683,971.82
Retrans 512 in KB 516.76 559.68 988.83 5,280.37 48,195.71 477,349.15 4,768,883.58 47,684,227.82
Retrans 1024 in KB 1,028.76 1,071.68 1,500.83 5,792.37 48,707.71 477,861.15 4,769,395.58 47,684,739.82

Diff Retrans 8 FEC 33 7.85 6.51 -6.90 -141.01 -1,482.12 -14,893.16 -149,003.61 -1,490,108.12
Diff Retrans 16 FEC 33 15.85 14.51 1.10 -133.01 -1,474.12 -14,885.16 -148,995.61 -1,490,100.12
Diff Retrans 32 FEC 33 31.85 30.51 17.10 -117.01 -1,458.12 -14,869.16 -148,979.61 -1,490,084.12
Diff Retrans 64 FEC 33 63.85 62.51 49.10 -85.01 -1,426.12 -14,837.16 -148,947.61 -1,490,052.12
Diff Retrans 128 FEC 33 127.85 126.51 113.10 -21.01 -1,362.12 -14,773.16 -148,883.61 -1,489,988.12
Diff Retrans 265 FEC 33 255.85 254.51 241.10 106.99 -1,234.12 -14,645.16 -148,755.61 -1,489,860.12
Diff Retrans 512 FEC 33 511.85 510.51 497.10 362.99 -978.12 -14,389.16 -148,499.61 -1,489,604.12
Diff Retrans 1024 FEC 33 1,023.85 1,022.51 1,009.10 874.99 -466.12 -13,877.16 -147,987.61 -1,489,092.12

 Design Space

47

2.4.1 Retransmission Overhead

Some constraints have to be known to choose the correct way to handle an error. It must

be estimated how often an error will occur, and if an error occurs if only one bit is influ-

enced or if multiple bit-errors cloud happen, to choose a useful amount of protection.

If nearly no errors happen during the run-time of the system the influence of error han-

dling is insignificant. This means that the needed per packet bandwidth of the mechanism

to detect an error should be as minimal as possible. Whereas the mechanism to solve the

error carries nearly no weight and can therefore consume a relatively high amount of

bandwidth. On the other hand, if an error occurs relatively often it may be of advantage

to invest more bandwidth per packet, if no retransmission is needed instead. In this case,

retransmission would consume a lot more bandwidth. The point when to switch from one

mechanism to another depends on three things. The most important one is the error rate,

because for very high and very low error rates it is clear what kind of mechanism has to

be chosen. The second important point that influences what mechanism should be chosen

is how much redundancy overhead is needed for FEC compared to retransmission. The

last point is the amount of data that has to be retransmitted to correct the error. If only the

faulty packet has to be retransmitted at one link, the loss of bandwidth is relatively low.

In this case, retransmission has nearly no additional overhead. If the whole data stream

transmitted after the faulty packet has to be retransmitted, the impact on bandwidth is rel-

atively high. But retransmission after the faulty packet could be needed to maintain packet

ordering. The worst case from a bandwidth perspective would be if a retransmission has

to take place between the original starting-point and the final destination, instead of only

repeating the erroneous hop. In this case, not only the bandwidth of the hop where the er-

ror occurred would be lost, but also the bandwidth of the hops where the packet was trans-

mitted correctly. Figure 2-32 shows that for a high error rates and an additional overhead

of 0.34% per packet for FEC a very high amount of data could be retransmitted until the

FEC is more preferable.

Design Space

48

Figure 2-32: Overhead Error Correction Methods

The bandwidth that is needed for protection is not only constrained by the bits that are

needed to realize it in a minimal way, but also by the granularity that is used to structure

the protocol. If the protocol word width is restricted to 32 bits, but a CRC of 16 bits would

be sufficient to protect the packet, the other 16 bits would be useless for protection but

needed to keep the alignment.

The conclusions are that there are many parameters which interfere among the different

features. A balance must be found to reach the needed performance of a protocol and the

hardware implementation must still be feasible.

 Chapter 3: Off Chip Protocols

Off Chip Protocols

50

In HPC-systems, data has to be continuously exchanged among the components. The ex-

change of data requires an explicitly defined format between communication partners.

Communication between modules on a chip normally takes place in a different form than

communication between different chips because of the physical wire properties. There-

fore, different types of protocols are needed. The types can be distinguished into on-chip

and off-chip protocols. Those protocols are mostly differentiated by the following prop-

erties:

• Wire delay

• Wire numbers

• Synchronization

• Framing

• Flow control

• Error handling

The differences are described in the following sub-chapters.

3.1 Wire Delay

The exchange and computation of data between two directly connected components on a

chip normally has to take place in one clock cycle. In [49] it is stated that in most cases

the wire delay is larger than the gate delay. However, the wire delay of an on-chip protocol

is small as the distance between components on a chip can be measured in microns. Fre-

quencies, which typically can be reached in modern technologies, range from 1 to 4 GHz.

This means, that the time for the sufficiently pipelined logic and the wire delay fits in a

time frame of 1 ns or less. To simulate the wire delay a RC-circuit model is sufficient.

Compared to an on-chip protocol, an off-chip protocol has to be able to connect compo-

nents over much longer distances up to multiple of tens of meters. A RC-circuit model is

no longer sufficient at this point. Therefore, the model of a transmission line is used

whereas the signal travels as a wave through the channel. These transmission lines are

 Off Chip Protocols

 51

usually driven by serializer-/deserializer-blocks which transform a parallel data stream

high speed serial data stream and vice versa. Using such high speed transceivers results

in additional delay and hardware effort as the transmitter the data path has to be trans-

formed from a wider and slower path down to a narrower and faster path, and reverse at

the receiver. Those transformations are time consuming.

3.2 Number of Wires

For on-chip connections, small copper connections in the chip can be used. The structure

size of a wire is in the same order of magnitude as the structure size of the logic. Adding

or deleting a connection from one processing block to another is insignificant in regards

to chip area. Thus, data and control signal forwarding is not restricted to a certain granu-

larity like a data link between chips. Only if fully meshed connections among multiple

modules are needed, as for switching structures, wiring problems can occur. In figure 3-

1, it can be seen how the metal layers get larger for higher metal layers. The big upper

layers are mainly used for interlayer connections and power supply.

Figure 3-1: Chip Cross Section [50]

For off-chip connections, there exist additional physical restrictions. Compared to the in-

ternal connections bigger metal structures for bumps have to be used to leave a chip.

Those pads have a size of approximately 60-80um. Compared to the size of the on-chip

metal connections this is about a factor of ~1000. In figure 3-2, the size of a bump is

shown.

Off Chip Protocols

52

Figure 3-2: Solder Bump Size [51]

With those bumps a chip can be flip-chipped to the package. In most cases, the package

provides fewer balls than there are bumps on a chip, which also is a restricting factor. The

package, including the chip, can be soldered to the PCB. The PCB is connected to the sys-

tem via an HT or PCIe connector and to other systems via connectors like Small Form-

factor Pluggable (SFP). The connection into the system is additionally limited through the

specification of the used protocol. Connections to other systems are limited by the number

of connections which can physically leave a node. For example, the limitation of a stan-

dard case for external connections is the available size of all brackets. Because all of those

above mentioned reasons, the off-chip connections cannot be as wide as the on-chip con-

nections. Therefore, the internal connections of many bits have to be serialized. As the in-

ternal frequency of a chip is already relatively high, transceivers with 10 GB/s or more

have to be used. Those transceivers need large area of silicon which further restricts the

number of possible off-chip connections.

 Off Chip Protocols

 53

3.3 Synchronization

Between different domains synchronization is needed if the two domains do not use the

same clock source. Therefore special logic is needed to ensure that no data is lost or dou-

bled between the two domains.

For on-chip connections, in most cases, no synchronization is needed, as most of the logic

will run in the same clock domain. Otherwise, a simple synchronization technique such

as two-flip-flop-synchronizers can be used. This is possible because the clock for both

logic domains will be derived from the same clock source.

For off-chip connections, the clocks are most likely not derived from the same clock

source. Therefore, more advanced techniques such as synchronization FIFOs with one-bit

changing codes have to be used. One-bit changing codes ensure that a register value can

only be changed by bit position between two clock cycles. An example for an one-bit

changing code is the Gray Code [52]. Even if the logic of both communication partners

runs theoretically at the same frequency, the clocks of the sender and the receiver can dif-

fer by several ppm. Therefore, the clock difference must be accounted for. If the sender

runs at a faster clock frequency than the receiver, additional data that has not to be pro-

cessed by the receiver has to be inserted into the stream so it can be dropped by the receiv-

er to catch up. In the other case, when the receiver is faster than the sender, it must be

ensured either that the data stream can be interrupted at any time or all data needed for

one processing step will be ready at the processing start. In most cases, the data will be

synchronized at the receiver. The clock from the sending domain will be provided by an

extra clock lane or derived from the received data signal. Using an extra lane will con-

sume a valuable resource which otherwise could be used for additional bandwidth. If the

clock is derived from the data, line coding mechanisms like 8B10B [53] have to be used

to guarantee enough signal changes to be able to recover the clock frequency from the sig-

nal.

Off Chip Protocols

54

3.4 Framing

If different types of data, like header-, payload-, and data-frames, have to be distinguished

for on-chip connections, additional wires can be used for differentiation. For easy decod-

ing purpose, it is of advantage to use a lane for every single type of coding. If many side-

band signals have to be used it is possible to switch to a coding scheme to save wires but

increase the decoding effort. For example if four wires for a one hot coding is used it can

be changed to two wires with a binary coding.

In terms of off-chip connections, additional wires can also be used for differentiation, but

at this point they are more expensive, please refer to chapter 3.2. The bandwidth is limited

by number of available wires. Therefore, special framing tokens can be used as a start of

packet (SOP) and an end of packet (EOP) token. It is of huge advantage if those tokens

have a special protection so that they can always be identified inside the data stream even

if the framing alignment was lost [54].

3.5 Flow Control

For on-chip connections, flow control can be easily handled by a valid-stop mechanism.

The transmitter sends a valid signal as soon as data is available whereas the receiver sends

a stop signal if the current data cannot be processed at this time. An example connection

is shown in figure 3-3. The different connections can be grouped in three different types,

data path, control path, and flow control.

Figure 3-3: Valid Stop Scheme

 Off Chip Protocols

 55

Table 3-1 shows how the valid stop mechanism works in detail.

Table 3-1: Valid Stop Description

Long distances have to be overcome in case of off-chip protocols. Therefore, some mech-

anism is needed to decouple the transmission of data from its reception. In this case, a

packet based transmission with a credit based flow control can be used. The receiver sig-

nals the sender how much data can be received without losing packets. If packets have

been sent from the transmitter, the credit counter has to be reduced. As soon as the receiv-

er has processed one packet, it has to notify the transmitter that an additional packet can

be transmitted without the danger of data loss.

3.6 Error Handling

Typically no error handling is needed for on-chip connections, as it is very unusual that

an error occurs inside the logic. Therefore, an extra error handling is not justified. How-

ever, the hardware has to be built in a way that an error does not lead to a system failure

and can be always recovered. For example, state-machines have to be built in a way that

no invalid states can be reached. Inside a chip, only memories have to be protected.

For off-chip connections, an error handling scheme is mandatory. If data is transmitted

over a long cable, the signal integrity degrades over the distance. Therefore, an induced

failure is much more likely than inside the chip. There are two ways to protect a connec-

tion between two nodes. One is an end-to-end protection and the other one is a link-level

protection. This results in additional hardware effort, delay, overhead, and potential band-

width loss, but it is essential.

valid stop description reaction
0 0 data can be processed

but no data available
nothing to do

0 1 data can not be processed
and no data available

nothing to do

1 0 data can be processed
and data available

data will be processed by receiver,
sender needs to change data or valid signal

1 1 data cannot be processed
and data available

data connot be processed by receiver,
sender needs to keep data and valid signal

Off Chip Protocols

56

3.7 State of the Art Protocol Features

State of the art protocol features are not mandatory but are supported by the most modern

protocols. They increase the usability of the protocol and the performance.

3.7.1 Virtual Channels

Virtual channels are widely used in modern protocols. As already mentioned in chapter 2

on page 41 they are used to avoid deadlocks and head of line blocking [55]. Virtual chan-

nels only replicate resources which are needed to manage the link, but not the physical

connection itself.

This physical connection is shared by all virtual channels. Thus, if one channel is stalled

another one can utilize the link without changing the context.

In order to be able to share a physical link it is necessary that a data stream can be inter-

rupted by another one if it does not make any progress. Thus, the protocol must provide

defined points in the data stream where the transmission can be stopped without losing

data or causing an error. It must be guaranteed that the receiver is able to accept data until

a point is reached where the transmitter can interrupt the data stream.

If a credit based flow control is used, the receiver must be able to process received data

immediately or to store it until it can be processed. In order to provide a good performance

at least the round-trip latency should be hidden. Regarding to the bandwidth of the link

and the distance between the sender and the receiver the required buffer size can be very

high. Adding a virtual channel to a link makes it necessary to replicate all those structures,

which will need relevant chip size. In addition, the hardware effort will increase with ad-

ditional virtual channels, as the arbitration between the different channels has to be man-

aged.

 Off Chip Protocols

 57

3.7.2 Ordering

In most cases, it is important in which order data is received to guarantee correct system

behavior. Therefore, it is of importance how data is transmitted through the system. There

is no problem if data is always transmitted strictly in order. But in this case no rerouting

can be used and streams traveling through different virtual channels must be independent.

Packet Information

Various information is needed to transmit and process data in a system:

• What is the destination of the data?

• What type of data is transmitted?

• What is the size of the packet?

• Who was the sender?

• Is ordering required?

• Is there enough buffer space?

• How is an error handled?

The most important information is the destination of the data. The destination can be de-

fined by an address, a hop count, or a unique identifier like a node- or unit-identifier.

Next the type of data must be defined. Two types of data can be distinguished, control data

and user data. Control data contains information to manage the link connection such as

flow control, error handling, or initialization. From the protocol perspective user data con-

tains only raw data which is not interpreted.

It must also be known how much data has to be gathered to process the packet. This can

be handled by fixed data size or length information. The fixed length can be given for all

data transmitted in the system or defined by the type of packet. For example, all control

information could have a fixed length and therefore no additional length information must

be given. Otherwise, if the length is not fixed the length of the data must be defined some-

Off Chip Protocols

58

how. This can be done by framing tokens or a length field. With framing tokens, the start

end the end of the data is signaled by a unique identifier. The length field can be used to

define a number of bytes transmitted in a data stream, but also different granularities can

be supported by changing the meaning of the length field to doublewords (DW = 32 bits)

or quadwords (QW = 64 bits).

In case a data stream is received by a device the sender must be identified. Otherwise, the

receiver cannot differentiate among data streams of different senders. In those cases the

data must contain information about the sender. This can be handled by an address or an

unique identifier. For non-posted requests like a read request the sender of the request

needs a response to complete the transaction. In this case the sender must also be identi-

fiable.

In cases were the ordering of a data stream is not guaranteed ordering information has to

be added. That information is needed to clarify which data belongs to which data stream

and if it is the next data in the corresponding stream which has to be processed. Thus, a

stream number has to be given. It is also of advantage to add information if an ordering to

other streams is needed to simplify processing. Additionally a reorder buffer is needed

which stores out of order received data until it can be processed. For large systems the size

of the buffer is hard to determine as it is unclear how many different streams have to be

reordered and how many data can be out of order in one stream.

The data stream must contain flow control information if it is not guaranteed that data

transmission is allowed all the time. The receiver must signal the transmitter if a packet

was released from the receiving buffer. If different virtual channels are used the credit re-

lease must be assigned to the corresponding channel. Thus, additional information is nec-

essary to identify the virtual channel.

Error handling is also an important task, which must be provided. Therefore, additional

information must be given to detect and correct an error. A data stream can contain infor-

mation if an error has occurred while processing a packet but the transmission could not

be stopped. This is typically the case if the error occurred while processing the data part

 Off Chip Protocols

 59

of a packet and the packet header had already been sent. Also a sender can be informed if

an erroneous packet was received and has to be re-transmitted.

3.7.3 Buffer Space

For large systems, it is very important that the features provided by a protocol specifica-

tion can be realized in hardware. From a protocol perspective, it is of advantage to give

the user the possibility to distinguish the traffic into many different streams with as many

outstanding packets as possible. Three main points have to be taken into account:

• How much buffer space is needed from link output to link input?

• How much buffer space is needed from end to end?

• How many virtual channels are needed?

3.7.3.1 Link Level Buffer Space

At link level it is important to fully utilize the link so that no bandwidth will be wasted.

In order to guarantee this, at least the round-trip latency of two directly connected com-

munication partners must be hidden. Therefore, the buffer of the receiver must be deep

enough to store all the traffic until the first credit release can be received by the transmit-

ter. In order to calculate the depth some information is needed. The width and the frequen-

cy of the link, as well as the largest distance between two communication partners and the

physical medium must be known. Also, the time to completely receive one packet and to

process the released credit has to be taken into account.

In case that re-transmission is supported by a protocol, data has to be stored at the sender

until it is acknowledged by the receiver. This results in an amount of buffer space equal

to the VC buffers to hide the round trip latency.

3.7.3.2 End-to-End Buffer Space

End-to-end buffer space is the buffer space needed to match responses to requests. If a

sender sends a request to the receiver, the response must be assignable to the request.

Therefore, all the matching information corresponding to one packet must be stored at the

Off Chip Protocols

60

receiver. In addition, all information to process the response has to be stored as well. The

buffer space for this purpose must be large enough to hide the round-trip latency between

the source and the destination of a communication. As the communication can take place

not only between two directly connected partners, the number of outstanding requests can

be very high. Thus, a trade-off has to be made between the possible distance in a network

and the available buffer space in hardware. In this case not only the bandwidth and dis-

tance is of importance, but also the size of a packet, as not the whole packet has to be

stored but only the needed matching information. If packets are larger, less information

has to be stored as fewer packets are needed to utilize the whole connection. The end to

end buffer space can be avoided if all needed information to process a response is always

transmitted with the request. This would increase the header size and therefore consume

additional bandwidth. Thus, it is of advantage to store the data at the requester to gain a

better network performance. Many protocols do not realize this in hardware but in soft-

ware as it is simpler to realize.

3.7.4 Link Initialization

Before an exchange of data can take place between two communication partners, a con-

nection has to be established. First, it must be detected if there is a physical connection.

One way to do this is by using a connector detect signal. If a physical connection is avail-

able, the detection of the communication partner has to start. This can be done by using a

special electrical circuit, using sideband signals, or always checking received data for the

start of an initialization sequence. Using a special electrical circuit, like the AC coupled

link in HT, enables the communication partners to deactivate the link for power-saving

reasons until an initialization is possible. Afterwards, the connection must set up until data

can be safely transmitted and received.

 Off Chip Protocols

 61

3.8 HyperTransport

HyperTransport (HT) [14] is a state of the art protocol which is used for communication

closely coupled to the processor. For its communication scheme no protocol translations

have to be made. Therefore it provides an efficient way for data exchange and is interest-

ing for a detailed analysis.

HT, introduced on April 2. 2001 by the HyperTransport Consortium, is a protocol which

is used to interconnect different components inside one node. In most cases processors are

interconnected. In [56] it was shown that connections also between nodes can be accom-

plished. HT is bidirectional and packet based. The packet based scheme is used to decou-

ple the request from the response. HT is mainly used for communication among AMD

processor like Opteron and with bridges.

There are three stages of expansion from HT. They are HT1, HT2, and HT3. HT1 and HT2

only differ by the amount of possible link frequencies, whereas HT3 includes some pro-

tocol changes. Therefore, HT1 and HT2 are grouped into a Gen1 specification and Gen3

is the Gen3 specification.

3.8.1 HT Topologies

Three different types of devices are defined in HT. There are bridge, tunnel, and cave de-

vices. Bridge devices are used to spawn a secondary chain which can be connected to oth-

er HT devices or different protocols. Tunnels have two active HT connections. Requests

are received from the upstream devices. Requests for the tunnel device are extracted

whereas other requests are forwarded to lower devices. Caves have only one active HT

connection. Packets which are received and do not belong to the cave device are dropped.

The different devices are shown in figure 3-4, where "P" stands for primary interface

block and "S" for secondary interface block.

Off Chip Protocols

62

Figure 3-4: HT Topology Elements

HT topologies are organized in chains. The top device hereby initializes the chain.

Figure 3-5 shows some examples of different HT topologies.

Figure 3-5: HT Example Topologies

3.8.2 Physical Layer

The physical layer of HT consists of two different groups of signals. One is the group with

slow clocked sideband signals: PWROK, RESET#, LDTSTOP, and LDTREQ and the

other group contains the high speed lanes clock (CLK), CTL, and a combined Control,

Address, and Data (CAD) bus. The sideband signals are used for reset, initialization, and

power management whereas the high-speed lanes are used to transmit clocks, control in-

formation, and data. Those high-speed signals work in a frequency range from 200 MHz

double data rate (DDR) up to 3.2 GHz DDR. All possible HT frequencies are shown in

table 3-2.

 Off Chip Protocols

 63

Table 3-2: HT Frequencies

In order to establish a link between two HT capable devices a certain number of connec-

tions are needed. The minimal required connection is PWROK, RESET#, two CAD lanes,

one CTL lane, and one CLK lane. A valid set of CAD, CTL, and CLK in both directions

are needed to establish a link. The sideband signals are only transmitted from the upper

device in the chain. Several configurations of connections are allowed. CAD can be 2, 4,

8, 16, and 32 lanes wide. A bundle of eight CAD lanes is called a byte-lane. Every byte-

lane needs its own CLK lane. At Gen1 speeds, only the first byte-lane needs a CTL. To

fulfill the Gen3 specification every byte-lane also needs an associated CTL lane. Figure 3-

6 shows a detailed view of the theoretical combinations of lanes for 2, 4, 8, 16 and 32 bits

wide links. PWROK and RESET# is always required, LDTSTOP is mandatory for x86

systems, LDTREQ is optional.

Off Chip Protocols

64

Figure 3-6: HT Link Configurations

Compared to Gen1, CTL has a different meaning in Gen3. In Gen1 CTL determines the

framing of HT and distinguishes if control information or data is transmitted at the CAD

lanes. Thereby, 32 bits of CAD information is always defined together by CTL. This

means that only if the full HT link width of 32 lanes is used, every bit of CTL has a unique

meaning. If the link width is smaller than 32 lanes, multiple bits of CTL must have the

same meaning as they belong to the same 32 bits of CAD information. If CTL is asserted,

the CAD lanes contain control information such as special packets or packet headers. Oth-

erwise, if CTL is deasserted CAD contains data.

In Gen3 CTL has more encodings. First, more CTL information is given. Every double-

word of CAD is defined by 4 bits of CTL. This can be realized by giving every byte-lane

of CAD a corresponding CTL lane. Thus, at a full link width of 32 lanes, 4 bits of CTL

are received. If the link width is less than 8 lanes, multiple bits of CTL have the same

meaning. The used encodings of the CTL signal are shown in table 3-3.

 Off Chip Protocols

 65

Table 3-3: CTL Coding

At Gen1 CTL is useful for error detection, as the data length of a packet has to match with

the behavior of the CTL signal. Data frames, which are too long, can be easily found,

whereas finding data frames that are too short is complex because of packet insertion.

Packet insertion allows embedding a control packet inside the data payload of another

packet. The CTL signal can be also used for framing reasons, but a start of a new control

frame can only be found if a data frame was transmitted before. Therefore, for the rela-

tively low benefit, a relatively high amount of bandwidth of at least 2.7% is used, which

is the bandwidth of one lane at Gen1 used for CTL.

The information delivered by CTL at Gen3 is more useful. Besides the abilities already

given in Gen1, it can be used to gather full packets without too much decoding effort.

However, the used bandwidth for CTL at Gen3 is higher by using at least 10%, which are

the 4 of the 40 lanes that are used for the CTL lanes.

In order to establish a working link between two HT devices, connections into both direc-

tions are needed. It is not necessary that the links are symmetrical, which means the num-

ber of the corresponding lanes in the opposite direction can differ, as well as the link

speeds. At the beginning, a low-level initialization has to take place. During this sequence

it is determined if the link is connected and the size it uses. Gen1 initialization always

starts with a link frequency of 200 MHz and the link width can be two up to eight CAD

lanes. A switch to a higher lane count of multiple byte-lanes will be performed after the

low-level initialization and the exchange of the capabilities of the devices. The low-level

initialization is shown in figure 3-7. A simple sequence of asserted and deasserted lanes

is used to detect a link and the start point of the valid packets.

CTL[3:0] Description
XXX0b part of data frame
XXX1b part of command frame
1111b part of command frame
0111b part of inserted command frame
1100b CRC for command with data
0011b CRC for command without data
0000b part of data frame

Gen1

Gen3

Off Chip Protocols

66

Figure 3-7: Gen1 Low Level Initialization

At Gen3 it must first be determined if the link is DC- or AC-coupled. If the link is DC-

coupled, the first initialization phase takes place like in Gen1. Afterwards the link can be

reinitialized for Gen3 configuration. Scrambling is used to counteract direct current volt-

age.

For an AC-coupled link, a special mechanism is used. Gen1 initialization is bypassed. If

an AC-coupled link is detected at startup the initialization begins with a frequency of 1200

MHz and the training sequences that are described at [14] chapter 12 page 222 and fol-

lowing pages. To achieve DC-balance 8b10b coding is used. A diagram of the Gen3 star-

tup sequence is shown in figure 3-8. After the possible low-level initialization and a link

restart different training patterns are sent to align the data of the different lanes to each

other and to determine the start of valid packets.

 Off Chip Protocols

 67

Figure 3-8: HT3 Startup Sequence [14]

3.8.3 I/O Stream

In HT packets travel in I/O streams. An I/O streams contains data which can be treated

independently from other streams. The streams are separated into two flow directions,

downstream from and upstream to the host bridge. Upstream streams can be distinguished

by the UnitID as requests and responses always contain the UnitID of the node which gen-

erated the packet. Downstream traffic always travels in the same stream as requests con-

tain the UnitID of the host bridge and responses contain the UnitID of the receiving node.

Thus, no distinction of streams can be made.

3.8.4 Virtual Channels

HT supports different virtual channel (VC) sets for non-info traffic. Every VC has its own

buffer set to prevent the different VCs from starvation. Each VC has its dedicated flow

control.

There are five different VC sets defined by HT, they can be distinguished by the Isoc bit

and the SeqID field (for requests) and the RspVCSet fields (for responses). The different

types are Base, Isoc, AltSet, Non-FC, and Stream VC. As the defined VCs do not utilize

the all encoding of the SeqID and the RspVCSet fields some of them are user specific

while others are reserved for future standardization.

The Base VC set consists of three sub-virtual channels: posted-, non-posted-, and the re-

sponse-VC. In the posted virtual channel requests travel which do not get a response, the

Off Chip Protocols

68

non-posted channel is for requests which need a response, and the response channel is for

responses. Between the different sub-VCs an ordering scheme exist which guarantees the

access to the actual data of an address region and prevents from deadlocks. The ordering

scheme is depicted in table 3-4. A no indicates that subsequent packets are not allowed to

overtake the current one, if the entry is a yes the subsequent packet must be able to over-

take and if the entry is a yes/no overtaking is allowed but not necessary.

Table 3-4: HyperTransport Ordering

Besides the Base VC set all other VCs are optional. If optional VCs are used both sides

of the link must support the corresponding VC. The only commonly used optional VC is

the isochronous VC. It provides an additional set of VCs similar to the Base VC, but the

isochronous channels are always prioritized. This is used to support timing critical traffic.

3.8.5 Packet Format

For data exchange between sender and receiver HT uses packets to decouple the outgoing

request from the incoming response. HT has a word width of 32 bits and therefore the

packet format is structured in this granularity. One packet can be distinguished into three

frames: control frame, data frame, and protection frame. There are four different control

frames types: request frame, response frame, info frame, and extension frame. A control

frame can consist of different fields; those fields are shown and briefly explained in

table 3-5.

 Off Chip Protocols

 69

Table 3-5: HT Control Fields [14]

The command field will always start at bit 0 of a doubleword and defines how the rest of

the packet is structured. Different commands are more or less composed of fields that

have different meanings and different locations inside the control frame.

Code VChan Command Comments/Options Packet Type
000000 - NOP Null packet. Contains flow control information Info
000001 Reserved-HOST
000010 NPC Flush Flush posted writes Request
000011
0001xx

Reserved-HOST

001xxx
101xxx

NPC
PC

Wr (sized) Write Request
[5] Defines whether request is posted:
 0: Nonposted
 1: Posted
[2] Defines the data length:
 0: Byte
 1: Doubleword
[1] Defines bandwidth/latency requirements
 0: Normal
 1: Isochronous
[0] Indicates whether access requires host cache
coherence (reserved and set if access is not to host
memory):
 0: Noncoherent
 1: Coherent

Req/Addr/Data

01xxxx NPC Rd (sized) Read Request
[3] RespPassPW
Defines ordering requirements for response:
 0: Response may not pass posted requests
 1: Response may pass posted requests
[2] Defines the data length:
 0: Byte
 1: Doubleword
[1]: Defines bandwidth/latency requirements:
 0: Normal
 1: Isochronous
[0] Indicates whether access requires host cache
coherence (reserved and set if access is not to host
memory):
 0: Noncoherent
 1: Coherent

Req/Address

100xxx Reserved-I/O
110000 R RdResponse Read Response Resp/Data
110001
110010

Reserved-HOST

110011 R TgtDone Tell source of request that target is done. Response
11010x Reserved-HOST
110110 Reserved-I/O
110111 - Extended FC Contains Flow Control information for VCSets 0-7 Info
11100x Reserved-HOST Req/Address
111010 PC Broadcast Broadcast Message
111011 Reserved-HOST Request
111100 PC Fence Fence for posted requests
111101 NPC Atomic-RMW Atomic Read-Modify-Write Req/Addr/Data
111110 - AddrExt/SourceID Address Extension or Source Identifier Extension Address
111111 - Sync/Error Link Synchronization and Error Packet Info

Off Chip Protocols

70

3.8.5.1 Request Packets

Request packets are used to read or write data and to set the system into special conditions,

and they consist of either 4 or 8 bytes. The supported request types are Write, Read,

Broadcast, Flush, Fence, and Atomic Read-Modify-Write (RMW). Reads and Writes are

used to exchange data. Writes can be posted or non-posted. For posted requests no re-

sponses are generated from the receiver, whereas for non-posted requests a response from

the receiver is mandatory. Broadcasts are only issued by the host and travel downstream.

All devices in a chain must accept and forward Broadcast packets. Flushes ensure that all

previous transmitted posted packets in one I/O stream have been received. Fence packets

are used to push all packets out of the posted channel independent of the I/O stream. The

Atomic RMW is an optional request packet. Two versions of the Atomic RMW operation

exist. One is Fetch and Add and the other one is Compare and Swap. All operations de-

fined for Atomic RMW must be executed atomically. During Fetch and Add, data is read

from the memory and written back after the transmitted value is added to it. A Compare

and Swap request contains two values. The first value is compared to the data read from

the memory and if they are equal, the second value is written back. The fields of the first

two bytes of all request packets have always the same meaning. They contain the Cmd

(command type), SeqID (ID of a data stream), UnitID (identification number of the de-

vice), and PassPW (used for relaxed ordering) fields shown in figure 3-9. The rest of the

packet contains different fields depending on the type of the packet defined by the com-

mand field.

Figure 3-9: HT Request Packet Format

 Off Chip Protocols

 71

3.8.5.2 Response Packets

There are two types of response packets, read responses and target dones. All response

packets consist of 4 bytes. They are used to transfer data from the receiver to the sender

of a read request or to acknowledge that a write operation has been completed. The fields

of all response packets have the same meaning. How response packets are structured is

shown in figure 3-10.

Figure 3-10: HT Response Packet Format

3.8.5.3 Info Packets

Three different types of info packets exist: Sync/Error, NOP, and Extended Flow Control

packets for virtual channel sets (VCSets). Info packets can consist of 4 or 8 bytes. The

Sync/Error packet is used during low-level link initialization or after an error occurred in

Gen1 and consists of CAD and CTL all asserted for 32 bits. NOPs and the Extended Flow

Control packets for other VCSets contain the released credit information of the different

virtual channels. If retransmission is enabled, the acknowledgment counter of the correct-

ly received packets is also included inside these packets. The NOP also contains the Dis-

con bit, which signals that a reinitialization of the link is needed. There are two different

versions of the Extended Flow Control packet, a short one with 4 bytes and a long one

with 8 bytes. The 8 bytes version contains flow control information for different streams.

3.8.5.4 Extension Packet

There are two types of packet extensions. One is the Extended Address and the other one

is the Source Identifier Packet Extension. They always consist of 4 bytes. Extended Ad-

dress is used to extend the address range of an unextended packet from 40 bits addresses

to 64 bits. If an Address Extension is used, the extension is transmitted first followed by

a normal packet. Source Identifier Packet Extensions are used for high node counts. High

node count enables HT to connect more than 32 devices, which would not be possible

with the normally available Unit IDs. As long as the whole system can be mapped into an

Off Chip Protocols

72

address range of 40 bits and no large topology is used, extensions are unnecessary. Com-

pared to other packets, extension packets do not consume an additional credit but are part

of the packet they extend.

3.8.6 Dependencies

Besides the command field, the different packet types do not share many fields that have

to be treated similarly. Also in packets of the same type, fields can have different mean-

ings. Commands like reads and writes can be distinguished into several sub-commands.

It is then possible that, the fields of the different sub-commands can have different mean-

ings. This results in dependencies that increase the complexity of the hardware.

Even if fields are reserved, which means that they do not hold any information, this does

not necessarily mean that it will not negatively influence the logic complexity. If there are

for example two processing units A and B, one bit inside the control frame is needed to

distinguish if A or B is needed to process the packet. However, for packets that will not

need these two processing units, this bit is reserved. Then, there are not two but three pos-

sibilities how this field has to be handled: forward to A, forward to B, or ignore. This will

not add wiring complexity, but logic has to be added for the ignore path.

In order to show how the dependencies sum, up they are separated into three categories,

control frame dependencies, doubleword dependencies, and word width dependencies.

3.8.6.1 Control Frame Dependencies

Request packets cannot only be separated into read-, write-, broadcast-, fence-, flush-, and

atomic-accesses. Reads and writes can also differ because of further control bits inside the

header. All of those different types of control frames have dependencies between their

fields that have to be solved before the packet can be processed. For example, it is not suf-

ficient to determine that a packet is a read to know how the packet is structured. It is fur-

ther necessary to known in which virtual channel it travels to know how the Sequence ID

has to be interpreted. If it is a byte or doubleword read determines if it has a count field

or a mask field. What kind of dependencies have to be handled is shown in figure 3-11.

 Off Chip Protocols

 73

Figure 3-11: Request Header Dependencies

For response packets there exist fewer dependencies, because there are only two possibil-

ities: read response and target done. The field structure of those two types is completely

identical but nevertheless there are dependencies between the fields. Those dependencies

occur because some fields can be either reserved or used and are shown in figure 3-12.

Figure 3-12: Response Header Dependencies

Info packets have completely different fields. For Sync/Error packets, the whole packet

consists of all bits set to 1. NOPs and Extended Flow Control packets only have two fields

in common, which are the command field and the RxNextPktToAck field. Only for small

Extended Flow control fields, the RxNextPktToAck has the same location as in NOPs. In

order to distinguish between the two types of Extended Flow Control packets bit 6 of bit

time 0 is used. This saves command encoding but 7 bits instead of the 6 bit have to be

decoded. In figure 3-13, the dependencies among info packets are shown.

Figure 3-13: Info Header Dependencies

Off Chip Protocols

74

Packet extensions share no fields besides the command field. To be able to distinguish be-

tween the two different types Address Extension and Source Identifier Extension bits

[7:6] of bit time 0 are used and therefore extend the command field. In figure 3-14 the de-

pendencies of the extension packets are shown.

Figure 3-14: Extension Header Dependencies

The above mentioned dependencies result in an additional hardware effort for differenti-

ating the meaning of the fields inside a control frame. However, not only the decision has

to be made what kind of field has to be processed, but the information must also be for-

warded to the corresponding unit. In order to get a comprehensive impression about is the

complexity it is possible to layer the different packets above each other. If the fields are

layered onto one another it results in a stack of seven mostly filled layers shown in

figure 3-15. This means nearly every bit inside the first doubleword of the control frame

needs a 1to7-mux and every bit of the second doubleword of the control frame will need

a 1to2-mux.

 Off Chip Protocols

 75

Figure 3-15: Dependency Layers

3.8.6.2 Doubleword Dependencies

Depending on how wide the data path is and how many restrictions are made where a con-

trol frame can start not only the dependencies inside of a control frame are important, but

also the dependencies between the words of the protocol. In HT, every word of the control

frame can occur at every word position of the data width. Therefore, the control frames

have to be sliced into the doublewords they consist of and those slices have to be stacked

above each other. In addition to the words of the control frames, all other frames have to

be taken into account at this point regardless of the type (control, data, and protection).

Figure 3-16 shows that the doubleword dependencies consist of 13 layers. The six addi-

tional layers compared to the packet dependencies result from the two packets that are

longer than one doubleword, the byte-write-mask, data, CRC, and the reserved fields.

Those layers cause an additional amount of hardware effort. More fields have to be iden-

tified at the same position of the data width and the majority of the bits need a 1to13 mux

to be connected to the corresponding processing unit.

Off Chip Protocols

76

Figure 3-16: Doubleword Layers

3.8.6.3 Word Width Dependencies

If the data width chosen to realize a protocol is larger than the word width and no restric-

tions are made where a control frame is allowed to start than there are additional depen-

dencies between the different word positions. This means for HT if the data width is for

example 64 bits two doublewords will be received in one clock cycles. As there is no re-

striction where a packet starts or ends, the effort to solve the doubleword dependencies

doubles. In addition, new dependencies between the doublewords will occur. In Gen1, for

example it must be checked if a doubleword is part of control or a data frame. This can be

determined by the CTL signal. However, it cannot be checked if the control frame and the

data frame belong together or if the control frame is an inserted packet. When both dou-

blewords are marked as control frames, it is not clear if those doublewords belong to the

same control frame or not. First, it must be determined if the first doubleword is the end

of a control frame or not. Therefore, it must be checked if the start of a control frame was

received in the previous cycle that needs more doublewords to complete in this clock cy-

cle, or if it is the start and end of a control frame at the same time. If this is not the case,

the two doublewords belong to the same control frame. Due to the additional encoding of

CTL and the restrictions of inserted packets, it is easier to determine what doubleword be-

 Off Chip Protocols

 77

longs to which control frame. If the packets are in the first step only processed by the CTL

coding, control frames without data can be only handled if the corresponding CRC has

been received or three doublewords of the same control frame have been received. In

Gen1 as well as in Gen3 it must first be determined what kind of doublewords have been

received before they can be stored, analyzed, and/or forwarded. If there are multiple con-

trol frame doublewords received in one clock cycle all the dependencies add up in pro-

cessing time. First, the dependencies between the doublewords received in one clock

cycle, then the dependencies between the different layers inside one doubleword, and then

the dependencies between the fields of a packet have to be resolved. Only after this is

completely done the processing of a packet can start. This shows that it is very important

to keep these dependencies low so that the hardware effort is manageable.

As the only restriction in HT is the doubleword granularity, every doubleword slot inside

the data width must be able to process every possible doubleword. If the data width is

large enough to receive more than one control frame of the same type at the same clock

cycle, not only the effort to analyze one doubleword after the other, and the effort to ana-

lyze the doubleword to create the correct control frames has to be added, but also the abil-

ity to process the information in the next stage must be doubled. Otherwise, not all data

can be processed in the next clock cycle and bandwidth would be lost. In this case, Gen1

is more complicated than Gen3, as a packet is always followed by a CRC in Gen3 so it

can be guaranteed that a packet is at least 64 bits long and no multiple packets can be re-

ceived for a 64 bits data width. Of course, if it is necessary to increase the data width fur-

ther this will result in even more hardware effort.

3.8.7 HT Bandwidth

It is necessary to accumulate all bandwidth which can be physically used to compare

bandwidth between protocols. Therefore all lanes which could transmit data have to be

summed up, regardless of their purpose in the protocol. For maximum bandwidth the larg-

est link with the fastest transmission rate has to be chosen. In case of HT a Gen3 link has

to be chosen. A link consists of 32 CAD lanes, 4 CTL lanes, and 4 clock lanes. The max-

imum transmission rate is at a speed of 3.2 GHz with DDR. As at DDR the data is sampled

Off Chip Protocols

78

at the positive and negative clock edge 6.4 giga-transfers per second are provided. This

results in a physical bandwidth of 32 GB/s.

In order to get the user data bandwidth, the four clock lanes have to be removed from the

calculation as they transmit only clocks and no information. Afterwards, only 28.8 GB/s

could be used for user data transmission, which is a reduction of 10% (3.2 GB/s). As the

four CTL lanes are only used to transmit control information, the achievable user data

bandwidth is reduced by additional 10%, which results in a bandwidth of 25.6 GB/s. This

means that the bandwidth which could be used on the CAD lanes for data transmission is

80% of the physically available bandwidth.

The user data bandwidth is further reduced as not all transmitted data on the CAD lanes

is user data. For the calculation it is assumed, that the link can be fully utilized and no

management traffic has to be transmitted. Further, the minimum overhead for a packet is

chosen with the maximum user data payload. The overhead for the user data is the header,

the protection CRC, and the periodic CRC slot, which is not used for protection in Gen3

but still has to be transmitted to handle clocking differences.

First, the achievable bandwidth including the periodic CRC is calculated. Every 512 bytes

a 4 bytes CRC is transmitted:

Second, the achievable bandwidth per packet is calculated. The minimal header size is 8

bytes, per packet CRC is 4 bytes, and the maximum payload is 64 bytes:

So from the 80% of physical bandwidth only 99.22% can be used for packet transmission:

Those 79.38% bandwidth can be used to transmit packets with 84.21% of user data:

Bandwidth with periodic CRC: 100
512

512 4+ 
--------------------------- 99.22 %=

Header Overhead: 100
64

64 8 4+ + 
------------------------------------- 84.21 %=

Achievable Packet Bandwidth: 80 % 99.22 % 79.38 %=

Achievable Bandwidth: 79.38 % 84.21 % 66.85 %=

 Off Chip Protocols

 79

This means, in the best case 66.85% of the physical available bandwidth can be used to

transmit user data in HT.

3.8.8 Fault Tolerance

Depending on the HT version that is used there are two different protection modes. In

Gen1 CRC windows are used. A 32 bits CRC is transmitted after 572 bytes of CAD and

CTL. If the link width is up to 8 bit lanes, a single CRC is generated and transmitted. For

16 and 32 wide links one CRC is generated for every byte-lane. The first byte-lane also

includes the CTL lane, for the other byte-lanes CTL is assumed as 0. CAD and CTL sig-

nals are stored until 8 bits CAD and 1 bit CTL have been received. For links smaller than

a byte-lane the additional received CTL bits are ignored because CTL must be the same

for one byte of CAD. If an error is detected the standard behavior for Gen1 is to use sync

packet flooding. This causes the link to transmit 1 at all lanes until a warm reset is per-

formed. In Gen1 the retransmission protocol is optional.

In Gen3 higher frequencies are used and therefore it is more likely that errors occur. Thus,

the retransmission protocol became mandatory and every packet has to be protected. The

bandwidth is reduced by the per packet CRC. Also the CRC slot for the CRC window has

to be maintained to allow clock adjustment. For the retransmission protocol the receiver

must acknowledge the last correctly received packet, not till then the sender can delete the

packet from the retransmission buffer the polynomial of the CRC is shown below.

HT CRC Polynomial:

X32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X+1

HT is mainly used for inter-processor communication. Thus, it was optimized for small

message sizes and small communication distances. This resulted in an extremely com-

pacted header format and a relative high communication overhead. Besides the usage in

AMD processors HT is also used in projects like NumaConnect [15] and EXTOLL [19].

Off Chip Protocols

80

3.9 Peripheral Component Interface Express

Peripheral Component Interface (PCIe) is the state of the art protocol used to connect per-

formance critical devices of a node. Nearly every current accelerator or network card used

in HPC systems uses PCIe for inter node communication. This makes PCIe very interest-

ing for a detailed analysis.

PCIe [16] is an enhancement from the former PCI [16] and PCI-X [16] bus, which were

real bus based interconnects where only one participant of the interconnect was allowed

to communicate at a time. The first version of PCI was developed in 1990 by Intel and it

was issued 1992, for the later versions the PCI-SIG (Special Interest Group) was formed

and PCI became an industry standard. Because of the increasing amount of communica-

tion inside a system among different participants it was necessary to use bandwidth more

efficiently. Thus, a change was made with PCIe to a point to point packet based commu-

nication in 2004.

3.9.1 PCIe Topologies

PCIe topologies are built out of four different devices: root complex, switch, bridge, and

endpoint. From a software perspective the only sure thing known is that the processor is

connected to a bridge device which belongs to the PCIe root complex. The root complex

contains the connection to the CPU and the main memory. It is always the head of the to-

pology from where the whole system is initialized. Connections from the root port are

called downstream connections and connections to it are called upstream connections.

Switches are used to connect multiple PCIe devices, bridges are used to connect legacy

PCI or PCI-X devices to PCIe, and endpoints have only one PCIe connection and do not

connect further devices. An overview of the different devices is shown in figure 3-17.

 Off Chip Protocols

 81

Figure 3-17: PCIe Device Overview

A tree like topology can be built with the PCIe devices. In order to enumerate PCIe de-

vices a bus, device, and function scheme is used. Every connection between at least two

PCI devices is called a bus. Up to 256 buses are allowed in one PCIe fabric. Every bus is

capable of connecting 32 devices and each device can have up to 8 functions. An example

topology is shown in figure 3-18.

Figure 3-18: PCIe Topology Example

In this chapter the focus is mainly placed on the Gen3 version of the PCIe protocol as it

is the version with the highest performance with respect to bandwidth and latency. Gen1

and Gen2 are partly described to get a picture of the whole protocol and it is necessary for

the initialization of PCIe and the backwards compatibility.

3.9.2 Physical Layer Structure

Compared to HT PCIe uses no sideband signals. Thus, no sideband signals are available

for control or management reasons. Therefore, all which could be transmitted separately

must be somehow embedded inside the normal transmission lanes. For example, the clock

Off Chip Protocols

82

signal is embedded and must be recovered with a CDR mechanism. Also management

signals as for interrupts, power management, and error handling are mapped to special

message packets. A PCIe link consists of a symmetrical and bidirectional connection of

at least one lane. The width of the link can be anything of 1, 2, 4, 8, 12, 16, or 32 lanes.

The different connections are shown in figure 3-19.

Figure 3-19: PCIe Link Configurations

PCIe has three different speed grades. A new speed grade was introduced with every new

major update of the PCIe generation. The different speed grades are shown in table 3-6.

As the Gen1 speed grade is used for initialization of every PCIe device, the 2.5 GT/s are

mandatory. Thus, also the 8b/10b line coding for Gen1 and the corresponding framing

must be implemented. In case of a Gen3 capable device it is assumed that the device is

capable of the Gen2 link speeds. With every generation of PCIe the bandwidth has been

doubled. From Gen1 to Gen2 simply the frequency was doubled. With Gen3 the decision

was made to not double the bandwidth because the high frequencies were not easy to

meet. Thus, the line coding was changed from 8b/10b to 128b/130b. With this decision

 Off Chip Protocols

 83

nearly 20% of bandwidth was saved and a change from 5GT/s to 8 GT/s was sufficient to

double the bandwidth.

Table 3-6: PCIe Link Frequencies

3.9.3 PCIe Logical Network Layers

PCIe uses different logical layers for initialization, management, and data transmission.

Three different layers are used: physical layer, data link layer, and transmission layer. The

structure of the different layers is shown in figure 3-20.

Figure 3-20: PCIe Network Layers

In the transaction layer the actual user data is transferred among devices. The user data

gets a header which describes the type of transaction. An optional prefix to the header can

be added as well as an optional CRC which gives an end to end protection. An overview

of a transaction with the different frames is given in figure 3-21.

Figure 3-21: Framed Packet Transmission

Generation MHz DDR Mbit/lane
Gen1 1250 2500
Gen2 2500 5000
Gen3 4000 8000

Transmitter Clock Frequency (MHz DDR)

Off Chip Protocols

84

Packets transmitted in the data link layer are called data link layer packets (DLLP). In this

layer the retransmission of data is handled with an ACK/NACK scheme. Correct trans-

mitted transaction layer packets are acknowledged whereas erroneous packets are nega-

tive acknowledged and a retransmission is therefore requested. DLLPs are not included

in the retransmission scheme. Further, the flow control is managed in the data link layer.

The number of available buffer space is exchanged for every virtual channel. Power man-

agement is also part of this layer, but as this aspect of a protocol is not in the scope of this

thesis it is not further described.

The physical layer is used for link initialization and framing. During initialization, defined

patterns, which belong to the so called ordered sets (OS), are transmitted to achieve clock

lock, symbol lock for lanes, and lane deskew among different lanes. Other OS are used

for compensation of slightly different frequencies of two devices, for power saving, or if

the stream starts. Frames are used to add protection to the data stream and to transmit ad-

ditional information.

3.9.3.1 Transaction Layer (TL)

In PCIe packets are transferred doubleword aligned. Every doubleword is separated into

symbols. In one symbol-time one symbol is transmitted per lane. One symbol transports

one byte of data without line coding. On a lane the symbol is serialized for transmission.

If multiple lanes are used line 0 contains the first symbol of one symbol-time. The next

symbol is transmitted in lane 1 and so on. An overview of the structure is given in

figure 3-22.

 Off Chip Protocols

 85

Figure 3-22: PCIe Traffic Transmission Procedure

Virtual Channels

Different virtual channels are available in PCIe. There are 8 different virtual channels

available in PCIe, VC0-VC7. A higher number for the VC indicates a higher priority. Pret-

ty similar to HT every VC has its own buffers and flow control. Used virtual channels

must be supported by both sides of the link. If one side supports more VCs than the other

the link is configured to the maximum number both sides support. Every of the 8 VCs has

3 sub virtual channels which are: non-posted, posted, and completion. Non-posted means

that the actual packet is a request which needs a response, posted request do not get a re-

sponse, and completions are responses to a request.

Several schemes are available to handle the prioritization of the different virtual channels.

One is the strict priority arbitration. In this chase, if a channel with a higher priority wants

to transmit traffic it is allowed to do so until no more traffic is available for this channel.

This implies the danger of starvation of lower prioritized channel. However, a more fair

arbitration scheme can be used which allows higher prioritized channels to transmit data

more often than the lower channels. Two ways are possible to handle this, one is a fixed

Off Chip Protocols

86

arbitration scheme by hardware, and the other one is a weighted round robin arbitration.

In order to handle the weighted round robin arbitration a table has to be written to state

which virtual channel is allowed to transmit at a certain time slot. High priority channels

simply get more time slots compared to other channels. In addition, the fixed and the ar-

bitrary schemes can be mixed. Therefore, high priority VCs have a strict priority scheme

and VCs with lower priority use an arbitrary scheme.

In the packet header the VC is represented by the traffic class (TC) field. As this field is

3 bits wide it supports exactly 8 alternatives from 0-7. However, the TC is not exactly the

same as the virtual channel which the packet is traveling in, because not every link sup-

ports every traffic class. If the corresponding VC is not available the traffic class must be

mapped to another virtual channel. The TC field is unchanged even though the VC is

changed.

Among the 8 VCs no ordering exists. If the VC with the highest priority is blocked a VC

with a lower priority should be arbitrated. In one channel the sub virtual channel follow

the ordering rules in figure 3-23.

 Off Chip Protocols

 87

Figure 3-23: PCIe Ordering Rules

A no means that the packet with the corresponding VC type of the row is not allowed to

overtake a packet with the VC type of the column. A yes means that the packet must be

able to overtake the other one and a yes/no means that the packet is allowed to overtake

but it doesn’t have to be able to overtake for the correct function of the link. With these

ordering rules the producer consumer model of PCIe is guaranteed. Therefore, data is al-

ways received in the right order and no deadlocks might occur.

Several fields of the ordering scheme shown in figure 3-24 contain an entry a) and b). In

some of the cases the ordering is relaxed to increase the performance of the link. Other-

wise the link could be stalled if a preceding packet is blocked but the following packet is

independent. There are five exceptions but the two main ones are relaxed ordering and ID

based ordering (IDO). If the hardware determines during generation of a packet that it is

independent, then the relaxed ordering can be used and the packet might overtake other-

Off Chip Protocols

88

wise forbidden types. IDO is used if two packets are received from different IDs (Bus/De-

vice/Function). As long as it is sure that the traffic from both devices is completely

independent those packet can be reordered.

Header Format

As data is transferred doubleword aligned the start of a new packet can only occur on lane

0 and on lanes which are doubly even. How the packet is transmitted through the different

layers in Gen3 is shown in figure 3-24, the pale parts are optional and must not be con-

tained in an actual packet.

Figure 3-24: Gen 3 TLP Transfer

The header of a TLP is almost equal for all packet types. They consist of three or four dou-

blewords corresponding to the type. Several different header types exist in PCIe. Those

are IO requests, memory requests, configuration requests, completions, and messages.

The first doubleword is the same for all requests and completions, only for messages the

length field is reserved in most cases. It contains all needed information how the header

is structured. What kind of packet is transferred is defined in the first byte which contains

the Format (Fmt) and the Type field, the coding of both is shown in table 3-7. For a de-

tailed description of all fields please refer to [16].

 Off Chip Protocols

 89

Table 3-7: TLP Format and Type Field Coding

In the following the different header types of TLPs are described. In the figures the high-

lighted fields show how the packet is structured. In most cases it is defined only by the

first byte. Only by memory accesses there is also a difference if the steering tag is used.

In some headers different fields have restrictions as they must have a value of 0. In this

case the 0 value is added to the field with the notation “field name”=0.

The specification encourages not using IO requests because, they are only for legacy de-

vices which rely on IO map and not on memory map. However, they are still available for

backward compatibility reasons. Both, a read and a write request are available. The header

size is always three doublewords. Performance of IO requests is weak because the amount

of data of one request is restricted to one doubleword. The structure of the header is shown

in figure 3-25.

FMT Type VChan Command Comments/Options
000/001 00000 NP MRd Memory Read Request
000/001 00001 NP MRdLk Memory Read Request – Locked Access
010/011 00000 P MWr Memory Write Request

000 00010 NP IORd IO Read
010 00010 NP IOWr IO Write
000 00100 NP CfgRd0 Configuration Read (Type 0)
000 00101 NP CfgRd1 Configuration Read (Type 1)
010 00100 NP CfgWr0 Configuration Write (Type 0)
010 00101 NP CfgWr1 Configuration Write (Type 1)
001 10xxx P Msg Message Request without Data
011 10xxx P MsgD Message Request with Data
000 01010 C Cpl Completion without Data
010 01010 C CplD Completion with Data
000 01011 C CplLk Completion without Data – associated with Locked

Memory Read

010 01011 C CplDLk Completion with Data – associated with Locked
Memory Read

010/011 01100 NP - Fetch and Add AtomicOp Request
010/011 01101 NP - Unconditional Swap AtomicOp Request
010/011 01110 NP - Compare and Swap AtomicOp Request

100 0LLL - - Local TLP Prefix
100 1EEE - - End-to-End TLP Prefix

Off Chip Protocols

90

Figure 3-25: IO Request Header Format

Memory requests are used to transport the user data. The header size can be either three

or four doublewords. Three different accesses can be performed with those requests:

memory reads, memory writes, and memory locked reads. The address which is accessed

defines the header size. If an address space has to be accessed beyond 32 bits the larger

header has to be used, otherwise the smaller header must be used. Regarding to the ad-

dress field, one thing to mention is that the byte which contains the MSB of the address is

transferred in byte eight of the header. This leads to the point that sometimes the bits

[31:2] of the address are transferred in doubleword three and sometimes in doubleword

four. Whether it is a read or a write access, the TLP processing hints (TH) field determines

if byte six or seven of the header contain the tag or byte enable, or the steering tag. This

is an optional and very specialized feature of the specification and is out of the scope of

this thesis. As memory locked reads are only available in the spec for legacy reasons and

modern devices are prohibited to use them they are not described in detail. The structure

of the memory request header is shown in figure 3-26.

 Off Chip Protocols

 91

Figure 3-26: Memory Request Header Format

Configuration requests are used to configure a PCIe device and are sent from the root

complex. The header is always three doublewords long and the packet contains one dou-

bleword of data. Inside the type field the least significant bit (LSB) determines if the pack-

et has reached the correct bus. As long as the packet is traveling downstream and the

secondary bus of the device is not the target bus the field is 1, otherwise the field is set to

0. Compared to the former request it is not routed by the address but by the ID of the re-

ceiving device. As the ID is only two bytes, the other two bytes of doubleword three in-

dicate which configuration register is addressed. The structure of the header is shown in

figure 3-27.

Figure 3-27: Configuration Request Header Format

Off Chip Protocols

92

Completions are the responses to requests. They are always three doublewords long and

routed by the ID of the requester. The tag must be the same as in the request so the request-

er can merge the completion to the corresponding request. Completions for a single re-

quest can be partitioned into multiple packets and therefore the requester must be able to

handle multiple completions. Multiple completions can be avoided if the requested data

is within one read completion boundary which are junks of 128 bytes in most cases. Com-

pletion status gives information if everything worked on the completer side or if an error

occurred. In case an error occurred, the type of error is encoded. The byte count modified

(BCM) field is only used by PCI-X completers and therefore out of the scope of this the-

sis. Together with the byte count and the lower address the start- and the end-address can

be determined. The structure of the header is shown in figure 3-28.

Figure 3-28: Completion Header Format

The last type of packets traveling in the transaction layer are messages. Messages are used

to get rid of additional sideband signals. A message is always four doublewords long. In

most cases the message only contains information in the first two doublewords. The lower

3 bits of the type field define the structure of bytes 8-15 and the routing of the packet,

which can be address based, ID based, or implicit. Byte 7 contains the actual information

of the message which is called message code. The different meanings of the code are

shown in table 3-8.

 Off Chip Protocols

 93

Table 3-8: Message Codes

If no Message Signaled Interrupt (MSI) is supported the INTx interrupt message travels

upstream to inform higher level devices. Power management messages are used to support

the PCI power management and add hardware based link management. Error messages

travel upstream and are implicitly routed to the root complex for error detection. In order

to support the locked transaction protocol for PCI the unlock message is provided. It ends

the lock so other devices are able to use VC0. With the set slot power limit message a

downstream port signals an endpoint plugged into a slot the power limit it has. There are

also vendor specific, latency tolerance reporting, and optimized buffer flush/fill messages.

As they are optional they are not described in detail. An overview for the described pack-

ets is shown in figure 3-29.

Message Code Explanation
0000 0000 Unlock Message
0001 0000 Lat. Tolerance Reporting
0001 0010 Optimized Buffer Flush/Fill
0001 XXXX Power Management

0100 - Active State Nak
1000 - PME
1001 - Turn Off
1011 - PME to Ack

0010 0XXX INTx Message
000 - Assert INTA
001 - Assert INTB
010 - Assert INTC
011 - Assert INTD
100 - Deassert INTA
101 - Deassert INTB
110 - Deassert INTC
111 - Deassert INTD
used if Message Signaled Interrupt (MSI) is not
supported

0011 00XX Error Message
00 - Error Correctable
01 - Error Uncorrectable, Non-Fatal
11 - Error Uncorrectable, Fatal

0100 XXXX Ignored Messages
Formerly used for hot Plug. With Spec. 1.1 not
longer supported.

0101 0000 Set Slot Power Message
0111 111X Vendor-Defined Messages

0 - Message 0
1 - Message 1

Off Chip Protocols

94

Figure 3-29: Message Header Format

Transaction Layer Extensions

One extension is the prefix. A single extension consists of one doubleword, but multiple

prefixes are allowed for a single TLP. Two different types of prefixes exist: local and end

to end. The local prefix is only used between the two sides of one link and no restrictions

are made to the number of local prefixes whereas the end to end version travels from the

source to the destination and the number of prefixes is limited to four. Local prefixes al-

ways precede the end to end prefixes. For every type of prefix one is completely defined

but for both two vendor specific prefixes are available. For end to end the steering tag can

be transported inside the prefix if it is not inside the header. Multi-root-I/O virtualization

is the available prefix. As this feature is optional it is not described in more detail. Of

course all participants of the transmission must be capable to handle the corresponding

prefix.

The second extension, which is sent at the end of the TLP, is the end-to-end CRC (ECRC).

It is also one doubleword long and protects the TLP from the source of the packet up to

the destination. For more details of the ECRC please refer to chapter 3.9.7.

 Off Chip Protocols

 95

3.9.3.2 Data Link Layer (DLL)

The DLL manages the link between two devices. Therefore packets are exchanged on the

link which are called data link layer packets (DLLP). This traffic is always sent between

two devices and never forwarded to another device and is therefore called local. The tasks

of the DLL are flow control, power management, link initialization, and error handling.

The core of the DLLP is always 4 bytes. It contains the type field and all the information

of the packet. In Gen3 a DLLP always starts with a two bytes start of DLLP (SDP) token

and ends with a 16 bits CRC. The different types of DLLPs are shown in table 3-9. All

headers shown later will include the SDP token to keep the doubleword alignment, even

though the token belongs to the physical layer.

Table 3-9: DLL Type Encoding

Together with a positive acknowledgment (ACK) or an negative acknowledgment

(NACK) the sequence number of the corresponding packet is transmitted. With the se-

quence number it can be determined which packets have been received correctly. If an

ACK is received all packets, including the packet corresponding to the received sequence

number, are acknowledged to be received correctly. On the other hand, if a NACK is re-

ceived all traffic has to be retransmitted from the corresponding sequence number on. The

structure of the header is shown in figure 3-30.

Encoding Type
0000 0000 Ack
0001 0000 Nak
0010 0000 PM_Enter_L1
0010 0001 PM_Enter_L23
0010 0011 PM_Active_State_Request_L1
0010 0100 PM_Request_Ack
0011 0000 Vendor Specific – Not used in normal operation

0100 0v2v1v0 InitFC1-P (v[2:0] specifies Virtual Channel)
0101 0v2v1v0 InitFC1-NP
0110 0v2v1v0 InitFC1-Cpl
1100 0v2v1v0 InitFC2-P
1101 0v2v1v0 InitFC2-NP
1110 0v2v1v0 InitFC2-Cpl
1000 0v2v1v0 UpdateFC-P
1001 0v2v1v0 UpdateFC-NP
1010 0v2v1v0 UpdateFC-Cpl

Off Chip Protocols

96

Figure 3-30: ACK/NACK Header Format

The DLL is also responsible for the flow control. Every sub VC must support a minimum

number of credits. The size of one credit differs for the VCs. Posted and non-posted have

a size of 5 doublewords per header were a completion has 4 doublewords. At least one

header must be available per VC. Data credits are grouped in blocks of 4 doublewords.

The maximum possible payload of a packet is important to calculate the correct minimum

number for the posted and completion VC. There must be enough credits available for at

least one maximum payload size data block. Thus, for a 512 bytes maximum access at

least 32 credits must be available. The non-posted VC needs only one respectively two

credits. One credit is needed for IO write requests as always only one doubleword is trans-

mitted. Two credits are needed if the completer supports atomic requests. The maximum

number of credits for headers are 128 units and 2048 for data credits. In case of non-post-

ed data credits the number can be safely reduced to 128 or 256 because of the maximum

possible payload for IO requests and atomic operations.

The type field encodes if it is a normal flow control packet or one used during initializa-

tion. In addition, it contains the information which kind of sub VC is updated and of which

priority. Inside the packet one byte is used for the amount of available header credits and

12 bits are used for the data credits. The fields carry the actual value of the available cred-

its and therefore a lost flow control DLLP does not lead to a loss of credits. The structure

of the header is shown in figure 3-31.

 Off Chip Protocols

 97

Figure 3-31: Flow Control Header Format

For power management the DLL provides dedicated power management DLLPs. They

are used to change between different power management states. The lower 3 bits of the

type field encode to which power state a transition should be made. Besides the type the

rest of the packet is empty. The structure of the header is shown in figure 3-32. As the

power management is not of interest for this thesis it won't be described further.

Figure 3-32: Power Management Header Format

Also vendor specific DLLP can be used in PCIe, but as they are completely optional and

device specific they are left open.

From the framing side the DLL always adds the sequence number in front of the corre-

sponding packet, regardless if it is a TLP or a DLLP. With the sequence number the re-

ceiver of a packet can monitor if one packet is missing and therefor start the error

handling. As already mentioned the sequence number is also needed to release packets

from the retransmission buffer of the sender or to start a retransmission.

The DLL also adds the Link CRC (LCRC) to the data stream after every packet. With this

LCRC the data is protected on the link. For more details please refer to chapter 3.9.7.

Off Chip Protocols

98

3.9.3.3 Physical Layer

The physical layer of PCIe has three main tasks. One is to add frame tokens to the data

stream, the second one is to communicate with the other physical layer connected to the

link, and the third one is that it adds line coding to the single lanes.

Line Coding and Frame Tokens

In Gen1 and Gen2 8b/10b-coding is used for line coding. Therefore every 8 bits symbol

is changed into a 10 bits line coded symbol character. An example is shown in figure 3-

33. The advantage of 8b/10b-coding is for 8 bits only 256 characters are needed but 1024

are available, which allows for them to be smartly chosen. In case of 8b/10b the coding is

chosen in a fashion that the data transmission is DC balanced. For every possible symbol

two encodings are possible and chosen based on the current running disparity, one is used

if the disparity is positive and one if it is negative; if it is neutral both can be chosen. Those

characters are called D-characters.

Figure 3-33: 8b/10b Line-Coding Example

With the left open coding space also special characters are available which cannot occur

in the normal encoded data stream, those are called K-characters. In PCIe K-characters

are used to transfer the frame tokens. Thus, as long as the symbol lock is not lost the fram-

ing of packets can always be regained. The frame tokens are shown in table 3-10.

 Off Chip Protocols

 99

Table 3-10: Gen1/Gen2 K-Character Token

An additional advantage of the 8b/10b coding is that signal changes are guaranteed so that

not more than 5 consecutive bits with the same polarity can be transmitted in a row. This

eases to keep the CDR locked.

The huge disadvantage of 8b/10b is that 20% of the bandwidth is lost with the coding.

Therefore, line coding was changed to 128b/130b-coding in Gen3. This is also the needed

change to double the bandwidth from Gen2 to Gen3 without doubling the line rate. The

doubled frequency would be 10GT/s, if it is reduced by 20% it is only 8GT/s as it is in

Gen3. Of course this calculation is not completely correct as the 2 bits overhead for the

new line coding was added, but this is only ~1.5%. Compared to 8b/10b, 128b/130b is

simpler. Every 128 bit times 2 bits are added to guarantee a polarity change. The type is

not determined by the previous traffic but by the next data block. If the next block is a data

block than in the first bit time of the 2 bits sync symbol a 0 is transmitted and in the second

bit time a 1 (01). In case the next block is an ordered set block the first bit time is a 1 fol-

lowed by a 0 (10). All other bit combinations are forbidden.

Without the K-character the frame token had to change as the bit-pattern is no longer

unique in the data stream. Therefore insignificant tokens have been removed and other

ones have been changed. The most drastic change was to remove the end token. Thus, the

start token needed a length field to encode how long the overall packet is to know when

the current packet ends and the next token is received. Additional protection was added

to the token by adding a CRC and a parity bit. This ensures that a 3 bits error can always

Off Chip Protocols

100

be safely detected. The sequence number is now embedded into the start of TLP (STP)

and is no longer transmitted separately. The Gen3 frame tokens are shown in figure 3-34.

Figure 3-34: Gen3 Frame Token Overview

The end of data stream token (EDS) token is used to end the transmission of data and to

start an ordered set block. Therefore, it is only sent at the end of a data block on the last

doubleword before an sync character.

When the sender of a TLP detects an error during transmission an end bad (EDB) token

can be sent after the packet. If this is done, the LCRC must be inverted. With those two

indicators the receivers can ignore this packet completely. If the physical layer receives

an EDB it must inform the DLLP so it can check the inverted CRC and drop the packet.

The last token is the logical idle (IDL) token. It is sent if no valid TLP or DLLP is avail-

able for transmission. If this happens on a link with more than 8 lanes and the current

packet ends on lane 3, the rest of the lanes must transmit IDL. In case IDL is sent on lane

0, all other lanes must also contain IDL.

 Off Chip Protocols

 101

Together with the frame tokens the traffic on the link, without the ordered sets is now com-

plete, example traffic is shown in figure 3-35.

Figure 3-35: PCIe Link Traffic Example

Ordered Sets

In order to communicate with the other physical layer OSs are used. There are seven dif-

ferent order sets: electrical idle exit (EIEOS), electrical idle (EIOS), fast training sequence

(FTS), start data stream (SDS), training sequence 1 (TS1), training sequence 2 (TS2), and

skip (SKP). OSs are not sent as packets but as patterns which must be transmitted on all

lanes simultaneously. The first symbol always identifies the corresponding OS. In Gen3

every OS is 16 symbols long and therefore exactly one block size. There is one exception

which is SKP, which can be 8, 12, 16, 20, or 24 symbols long.

The EIEOS is used to exit from the electrical idle state in Gen3. As in high frequencies

the change of the electrical signal is so quick it might not reach a high voltage. Therefore,

it is harder to distinguish between the electrical idle state and operation mode. Thus,

EIEOS provides a sequence which is a lower frequency signal by sending one byte of 0

followed by one byte of 1. This makes the operational mode easier to detect.

Off Chip Protocols

102

EIOS is used for power management to inform the link partner that the link will be set into

tristate. Pattern is 0110_0110 for all symbol times. If the receiver gets this OS it knows

that the transmitters of the sender will go into tristate and the missing signals will not lead

to an error.

The FTS is used to set the link from a low power state to the fully operational state. The

minimum number of needed sets is given by the link neighbor during training. For Gen3

FTS consists of 16 different symbols, they are shown in table 3-11.

Table 3-11: Fast Training Sequence Ordered Set

Before starting a data stream an SDS must be transmitted. It consists of one symbol E1h

followed by 15 symbols of 55h.

Two devices with separate clock sources never run with the exact same frequency. There-

fore a mechanism is needed to compensate this frequency difference. In PCIe SKP is used

for compensation. It must be inserted at least every 370 – 375 blocks and is simply

dropped by the receiver to avoid an overflow. The SKP consists of blocks of 4 AAh sym-

bols followed by one symbol-time E1h which signals the end of the OS. The last three

bytes consist of AAh, data parity, the entry of the LSFR, or error status, for detailed infor-

mation please refer to [16].

 Off Chip Protocols

 103

TS1 and TS2 are used for link initialization and training. With those symbols the link is

able to achieve bit lock and symbol lock and is able to configure the link. The structure of

TS1 and TS2 for Gen3 is shown in table 3-12.

Table 3-12: Training Sequence Ordered Sets

Scrambling

Signal transitions are needed to be able to recover the clock from the signal. Therefor

PCIe provides scrambling. For Gen1 and Gen2 the traffic is scrambled before it is 8b/10b

coded. The traffic which is scrambled are data blocks and the main parts of TS1 and TS2.

Symbol 0 of the training sets always bypasses the LFSR, Symbol 14 and Symbol 15 only

bypass to enhance DC balance, otherwise they are also scrambled. The rest of the traffic,

the main part of the ordered sets bypass the scrambling logic as they are DC balanced and

provide enough signal changes. All traffic sent over the link also advances the LFSR even

if it bypasses, the only exception is the SKP pattern. The polynomial used for the LFSR

is shown below.

PCIe Scrambling Polynomial: X16+X5+X4+X3+1

Off Chip Protocols

104

3.9.4 Dependencies

Dependencies in and among packets types must be analyzed slightly differently in PCIe

compared to HT, as the traffic is already logically separated into different layers. This is

already a tradeoff between latency and hardware complexity. Also the bandwidth can be

influenced as it is doubtful that the same frequencies could be achieved if layers would be

merged together and therefore the internal bandwidth would decrease. The amount of de-

coding is reasonable for the single layer as only a well-defined portion of the stream has

to be decoded, tokens in the physical layer, in the next layer DLLP and the LCRC, than

TLP. The header types of the different layers also show that they have not many depen-

dencies inside the corresponding header and most of them can be clearly determined with

the first byte of the header, but not more than the first two bytes of the header are needed.

The difference of the packet structure among packets of the same layer is also relatively

low. The most interesting layer for this consideration is the transaction layer as there are

the most differences and the most complex packet structure. The first two doublewords

are always identical in case of field position and meaning, only some packets have more

reserved fields. In doubleword three and four the routing information is stored and how

the transmitted data has to be stored. Only the messages have one byte in there which trig-

gers the corresponding action.

Figure 3-36 is separated into two parts by the alignment grid. The part above the grid

shows the header type for each layer of PCIe. Within one header type the different mean-

ings of the corresponding header fields is illustrated with additional layers. The part under

the alignment grid shows the merged doublewords of all header types of all layers. This

has been done to depict the overall complexity of PCIe to make it comparable to other pro-

tocols. It can be seen that PCIe contains a large complexity if all layers are included as the

layer height is 20. This would represent a high muxing effort for the different double-

words if everything had to be handled in one layer.

 Off Chip Protocols

 105

Figure 3-36: PCIe Doubleword Dependencies of Traffic

The influence of the data width is relatively low compared to HT. That is because the

overhead for one packet is relative large. At least 5 doublewords overhead are needed for

any packet which transfers data. An example is shown in figure 3-37. This results in a data

width of at least 160 bits without data and 192 bits with data before a second packet could

start in the same clock cycle.

Off Chip Protocols

106

Figure 3-37: Minimum PCIe Packet with Data

In order to reduce decoding effort some restrictions exist in the PCIe specification. Only

one STP token at one symbol-time. Same as the STP is for the SDP token as also only one

SDP token is allowed in one symbol-time. If the link was idle the next STP or SDP is only

allowed to start in lane 0. But both start tokens are allowed to be in the same symbol-time.

This is only relevant for 32 bits wide links as one packet utilizes at least 20 lanes. Thus,

12 lanes could be idle if only TLPs should be sent and no DLLPs. But even if a DLLP is

sent in the same symbol time it always fits into 8 lanes because its size is fixed. Therefore

on 4 lanes IDL has to be sent and one doubleword of bandwidth would be lost. DLLPs

without TLPs would be more critical as they utilize only 8 lanes, but if only DLLPs have

to be sent the link is practically idle.

No relevant restrictions are made regarding to where a packets starts on the link. As PCIe

is doubleword aligned and symbols are transmitted on each lane it only can start every

doubly even lane. But on every quad bundle of lanes every type of packet can be trans-

mitted. Only after IDL or OS have been transmitted the next STP or SDP must start at lane

0.

 Off Chip Protocols

 107

3.9.5 Initialization

During initialization several conditions have to be met. The link must be detected, the cor-

rect parameters of the link have to be found, and the link must be configured correctly.

Therefor PCIe provides the link training and status state machine (LTSSM). An overview

of the state machine is given in figure 3-38. This is a brief overview of the initialization

sequence of PCIe and not complete in all details. Every state in the LTSSM figure repre-

sents a small sub-state-machine. For more detailed information please refer to [16].

Figure 3-38: LTSSM State Machine

The detect state is the initial state after reset. In this state it is detected if a receiver is con-

nected to the link. In the polling state training sequence order sets are exchanged. They

enable the link to find bit lock, symbol lock, exchange the data rates, and invert the lanes

if needed. During the configuration state still training sets are exchanged to merge the

working lanes into one link. The link width is set up, the lanes are enumerated, lane rever-

sal may be performed, and the skew among the lanes is removed. At this point data can

be exchanged between the two participants of the link and the LTSSM can move to L0

which is the working state for PCIe.

Off Chip Protocols

108

The recovery state is used to retrain the link. This is necessary if the link frequency has to

be changed, an error occurred, or if a power saving state has to be left without using FTS.

L0s, L1, and L2 are power saving. L0s does save only little power but therefore it can

quickly recover from power saving by sending FTS, if this does not work it can be also

tried to recover by using the recovery state. L1 saves more power but always has to go

through recovery and configuration to get back to L0 and a working link. In L2 the power

of the device is shut down and therefore the complete initialization process has to be per-

formed for a working link afterwards. If the recovery does not work correctly also a com-

plete initialization has to be made.

The loopback state is used to test the device. During this state the master device sends TS1

with the loopback bit set and if two of those ordered sets are received at the slave, the slave

simply mirrors the traffic back to the master. The disable state is reached if the link is not

working anymore, for example if a device is removed during operation. In this state the

senders are disabled and the receiver is set to low impedance. The hot reset state is entered

if software sets the corresponding register. Then TS1 are sent with the hot reset bit set. If

a receiver gets two consecutive order set of this type the device has to be reset also.

3.9.6 Bandwidth

The theoretical maximum bandwidth of a 32 lane link operating at 8 GT/s is 32 GB/s. As

PCIe does not use any sideband signals as HT they do not have to be taken into account.

In order to determine the real bandwidth the protocol overhead must be removed from the

theoretical bandwidth.

One overhead which has to be removed is the per packet overhead. In order to calculate

the highest possible bandwidth the lowest packet overhead with the largest amount of data

is assumed. As already mentioned the lowest overhead of one TLP are 5 doublewords

consisting of 1 doubleword STP, 3 doublewords TLP, and 1 doubleword LCRC. The larg-

est amount of data is 1024 doublewords. In this calculation it is assumed that flow control

and needed buffer size do not influence the data transmission.

 Off Chip Protocols

 109

The other relevant overhead is the periodical overhead during link transmission as for line

coding. In Gen3 the line coding consumes 2 bits every 128 bit times.

The frequency compensation is handled with SKP which is removed from the data stream

at the receiver. A SKP must be transmitted every 370 to 375 blocks and has a minimum

length of at least 8 symbols. As a block consists of 16 symbols it must be sent every 6000

symbols.

This results in a reachable maximum bandwidth of 97.74% of the theoretical maximum

bandwidth.

3.9.7 Fault Tolerance

In PCIe three types of errors are defined: correctable, non-fatal uncorrectable, and fatal

uncorrectable errors. Correctable errors are handled autonomously by hardware. They

only influence the performance of the system but no information is lost. A non-fatal un-

correctable error comes along with loss of data but the link is still working. This can hap-

pen when a packet is somehow lost in the system but the link is working without any

problems. An example would be a completion timeout. That kind of error is not handled

by hardware but software could be able to handle the situation. A fatal uncorrectable error

occurs if nothing but a reset of at least the link can fix the error.

PCIe supports various mechanisms for error detection. The most common one is that most

of the traffic is protected by CRC. For three traffic types a CRC is required: TLPs, DLLPs,

and STP. TLPs are protected with the 32 bits wide LCRC. It protects the whole TLP in-

Bandwidth without Header Overhead: 100
1024

1024 6+ 
------------------------------ 99.41 %=

Bandwidth without Line Coding Overhead: 100
128

128 2+ 
--------------------------- 98.46 %=

Bandwidth without SKP Overhead: 100
6000

6000 8+ 
------------------------------ 99.86 %=

Accumulated Bandwidth: 99.41 % 98.46 % 99.86 % 97.74 %= 

Off Chip Protocols

110

cluding the sequence number. DLLPs are protected with a 16 bits CRC. The length field

of STPs is protected with a 4 bits frame CRC (FCRC). In addition the length field and the

CRC are protected. The corresponding polynomials are shown below.

LCRC/ECRC: X26+X23+X22+X13+X12+X11+X10+X8+X7+X5+X4+X2+X+1

DLLP CRC: X12+X3+X+1

FCRC: X4+X+1

The LCRC protects TLPs only on the link between two DLLs. Thus, a TLP is not protect-

ed after it has been checked in the DLL. If an error occurs afterwards the packet could be

corrupted without noticing it. Therefor PCIe provides the optional 32 bits ECRC which is

also called digest. As 2 bits in the header are allowed to change during transmission they

are assumed to be 1 for the CRC calculation. Those bits are bit 0 of the type field an EP.

A flip cannot be covered by the ECRC. The last bit of the type field can change if a con-

figuration access has reached its corresponding bus. EP changes if poisoned data is sig-

naled. As can be seen, the ECRC uses the same polynomial as the LCRC. If prefixes are

used the ECRC does not protect local prefixes as they are not part of the end to end traffic.

In case that a TLP or a STP is malformed the error results in a request for retransmission.

A NACK with the corresponding sequence number has to trigger the retransmission of the

data stream from this point. A corrupted DLLP is simply dropped. This can be done as the

next DLLP will compensate the missed one or further error handling will start. ACKs or

NACKs have to be inserted into the data stream in a certain time period after a TLP has

been received. If the sender of the TLP does not an ACK or NACK in time it retransmits

its retransmission buffer so a lost ACK or NACK can be compensated.

Additional to the CRC checks the different layers also check for other errors. In Gen1 and

Gen2 the physical layer checks if the coding of the characters fits the 8b/10b coding. In

Gen3 the framing is checked as the physical layer always knows at which point the next

frame token should be.

 Off Chip Protocols

 111

The DLL also checks the sequence number to detect errors. The sequence number must

always be ascending. Thus, if a wrong sequence number is detected it signals a missing

TLP or an error which was undetected from the CRC. In this case a retransmission has to

take place. In addition, the counters which check if an ACK or NACK for a packet was

received are monitored here and initiate a retransmission from the retransmission buffers.

On the TL the header is checked if it is malformed. For example if fields that are required

to carry 0 do not contain any other values. It is also checked if an unsupported packet has

been received.

Errors are always reported even if they are correctable. With the information software can

decide if it has to take action or not. Some checks of PCIe are optional, but if those errors

are checked they also have to be reported. The number of allowed retries in a row is lim-

ited to four. If then still no new ACK is received it is assumed that the link has a permanent

failure and a recovery of the link is performed.

In summary, it can be said that the headers of the PCIe protocol are arranged efficiently

as there is little overlapping. The layered structure simplifies the implementation in hard-

ware but increases the latency due to additional pipeline stages. Additionally PCIe pro-

vides a very low overhead as 97.85 can be used for payload transmission. A detailed

comparison of PCIe and HT is provided in chapter 4.13.

 Chapter 4: Unified Layer Protocol

Unified Layer Protocol

114

In this chapter the Unified Layer Protocol (ULP) will be introduced, which was designed

to fulfill three required main goals:

• Replace all the performance critical protocols of a system with a single unique pro-

tocol type to reduce the translation overhead

• Improved usability of the protocol in large scalable networks

• Advanced protocol structure for efficient implementation in hardware

First the different design decisions will be presented which result in a specific protocol

structure. At the end the performance of ULP will be compared to HT and PCIe.

4.1 Device Types

Target device types are grouped into two subtypes, network devices and node devices.

Node devices also have two subtypes which are switches and caves. An overview of the

devices is given in figure 4-1. At the beginning the network device which is the root must

initialize all devices by distributing the IDs. This root device has the node ID 0.

Figure 4-1: ULP Device Types

Network devices have an address map so they are capable of sending packets directly to

a corresponding node based on a target address. The address is translated into a node ID

and a network ID, afterwards it is determined which link has to be used to transmit the

packet. Node devices have no address map and route their packets implicitly upstream to

the root device which has initialized the node IDs. The link with the fewest hops to the

root is marked as the upstream link. At the first network device found upstream the target

address is mapped to the corresponding target ID and the packet is forwarded. A response

could be directly returned to the requester as the request contains its ID. However, to en-

 Unified Layer Protocol

 115

sure the ordering of the packets the responses have to take the same route as the requests.

In order to be able of ID based routing node devices can contain a node address map if it

is sure that it only communicates with other devices inside one node. Therefor every de-

vice stores which link has to be used for a corresponding ID window. The packets are for-

warded upstream as soon as one link provides the ID window. Then the ID window path

is used until the corresponding device is reached. An example topology is shown in

figure 4-2.

Figure 4-2: ULP Example Topology

In figure 4-3 the initialization of the example topology is shown. During initialization

process there is only a single active configuration request allowed. The response must be

returned before the next one can be sent by the root. Every device has to enumerate its

links. The first initialization phase is sent to link 0 of the root and sets the node ID of the

device and reads the number of active links from the device, which must be at least one.

If more than one link is available the next link is used to forward the configuration pack-

ets. This is repeated until a cave device is found or a node which is already initialized. If

a cave is found the link is marked as finished and upper devices are checked for uninitial-

ized links. In case all links are initialized they are also marked as finished. Otherwise the

uninitialized branch will be configured. It can happen that during initialization an already

Unified Layer Protocol

116

configured node is found. In this case the distance to the root must be checked. If it is

shorter the link to root must be changed to this link and previously found links which are

not marked as finished must also be checked if they use the correct link for implicit rout-

ing. If all links are marked as finished the node is ready.

Figure 4-3: ULP Node ID Initialization

4.2 Physical Layer

On the physical layer the actual data bits of the stream are transmitted. Its composition is

defined by the bandwidth it has to deliver. A defined minimum bandwidth is useful to en-

sure that different devices can communicate with each other regardless of their typical

performance. It is determined by the minimum number of lanes with the lowest allowed

link frequency. A maximum link bandwidth is important to get a upper bound for the in-

ternal bandwidth. Theoretically the link bandwidth can always be increased by adding

lanes or increasing the frequency. However, the internal bandwidth is not so easy grada-

ble. Nevertheless, those numbers are only needed for compatibility reasons and are not

tightly coupled with the protocol itself.

A link must always provide lane 0 as this is the minimum width configuration for a link

and it must be contained by all link widths. Transmit lane 0 must always be connected to

 Unified Layer Protocol

 117

receive lane 0 of the link partner, a misalignment is not allowed. The link has to be sym-

metrical. In case unsymmetrical link widths are detected the link is initialized to the high-

est configuration both link partners support.

4.2.1 Lanes

For communication ULP provides a specific number of lanes which can be 1, 2, 4, 8, 16,

or 32. From the connector side it would also be interesting to support 12 bits wide lanes

as if the connection has to leave the node via a PCIe-like extender card common high fre-

quency connectors like [57], [58], or [59] often use quad based connections. The problem

with this is that if the protocol is based on the power of two a 12x connection automati-

cally leads to a misalignment of the data stream. Thus, a rate converter is needed which

handles the misalignment.

4.2.2 Sideband Signaling

In order to reduce the pin count of a chip and the lane count for connectors no sideband

signals are used for things like link management or clock transmission. Thus, the clock

has to be embedded into the signal. Therefor a line coding has to be used. Many different

line codings are available. One common line coding is 8b/10b coding like in PCIe Gen1

and Gen2 or EXTOLL. The advantages would be the additional security, build in DC bal-

ance, and easy clock recovery as only 5 bit times without a signal change are allowed [53].

However, it has two disadvantages. One is it comes with a 20% overhead as to transmit 8

bits 10 bits are used. The other one is that packets have to be transmitted in symbols. Thus,

data is not received in bit times but in symbol times which increases the received data at

a time period.

An alternative would be 64b/66b line coding. Every 64 bit times a 2 bits sync pattern is

inserted into the data stream. In order to guarantee a signal transition the only allowed pat-

terns are 102 and 012. It does not have the advantages of 8b/10b like additional security

and DC balance but is capable of clock recovery. A scrambler should be used to enhance

the probability of signal transitions. The functionality of this coding is proven in different

Unified Layer Protocol

118

protocols like 10G Ethernet [17] and Infiniband [18].

An additional choice is 128b/130b coding like it is used in PCIe. It is similar to 64b/66b

but only the number of bit times without a guaranteed signal transition is increased to 129.

As for 64b/66b a scrambler should be used to enhance the chance of signal transitions.

All three versions have advantages and disadvantages, but as the developed protocol has

to provide the maximum performance 128b/130b is chosen as it is the coding with the

least overhead. Only ~1.5% of the bandwidth is used for the sync pattern and the rest can

be used for packet transmission.

4.2.3 Frequency

Common frequencies like 2.5 GT/s up to 10GT/s are supported by ULP. More important

as the plain frequency of the link is the achievable bandwidth and the resulting internal

frequency of the device. For example if a maximum link width of 32 bits and a frequency

of 10 GT/s are assumed the resulting bandwidth is 40 GB/s. Thus, for an internal data

width of 128 bits an internal device frequency of 2.5 GHz is needed to handle the link

bandwidth. This seems feasible for CPUs and GPUs. If for some reason it is not feasible

for a device smaller link widths or lower link frequencies have to be used.

4.3 Layers

ULP provides four different layers. The first layer is the physical layer. It is responsible

for scrambling, line coding, and the hardware initialization sequence.

The second layer is the info layer. This layer is used only for communication between link

partners. Information for flow control and error handling is exchanged in this layer. Info

packets must always be accepted and are not allowed to be buffered as they are essential

for the correct functionality of the link.

For coherent devices a third layer is assumed which handles the traffic needed for coher-

ency. The corresponding traffic is extracted from the data stream and the rest is forwarded

 Unified Layer Protocol

 119

to the non-coherency layer. This is done to avoid timing critical large headers and data

transfers to achieve the needed performance for efficient coherency timing. This layer is

not part of this thesis.

The fourth layer is the data layer. In this layer the actual request and response packets are

transmitted and data is transferred. A layer overview is shown in figure 4-4.

Figure 4-4: ULP Layer Overview

4.4 Flow Control

In case a small packet is transmitted it is unlikely that it is able to utilize the whole link.

Therefore, more packets have to be transmitted to utilize the bandwidth. At the receiver

side a packet first must be checked and then forwarded to its destination to ensure it is cor-

retly received. Thus, a mechanism is needed to ensure that a packet is not overwritten by

further traffic. A credit based flow control is used in ULP to handle the correct function-

ality.

For small packet sizes one credit per packet is suitable. It is easier to handle as no calcu-

lation has to take place to determine if the receiver is capable of storing an additional

packet. The additional needed buffer size is insignificant especially if no long distances

have to be covered which would result in more outstanding packets. However, ULP pro-

Unified Layer Protocol

120

vides a rather large packet size with 4 KB of data payload and long distances for a link.

Thus, a packet based credit handling is not appropriate. ULP provides two types of credits,

header credits and data credits. One header credit always represents one complete header

regardless of its size, while a data credit has the granularity of one octaword (OW).

For easy handling it is suggested that one header as well as 16 bytes of data represent one

entry in the VC buffer. This eases the coordination with the retransmission buffer and al-

ways one credit is released if an entry is consumed. Otherwise it has to be monitored how

many credits are released corresponding to one entry.

For the correct behavior of the link a credit packet must be inserted to the data stream at

least every time 4 KB are consumed from one VC buffer. It does not have to be inserted

immediately but right after the current packet in transmission. In case multiple buffers

have finished such a sequence the credits must be released back to back.

4.5 Buffer Size

The buffer size is mainly dependent on the number of available credits and the number of

outstanding requests. In order to be more flexible it is current to split larger packets into

multiple flow control digits (FLITs). Thus, the buffers can be more efficiently used as a

small packet does not require the same buffer space as a large one. However, there are also

restrictions from the hardware size. It is important that the buffer sizes are not allowed to

be unrealistic large if the specification is fully utilized. For example, if a credit count of

20 bits would be allowed with a FLIT size of 32 bits the corresponding buffer would have

a size of at least 4MB. The size of the count field would be possible; the size for one VC

buffer is unrealistic. Therefore, a reasonable value for buffer size and credits has to be

found.

4.5.1 VC Buffer

The size of a VC buffer depends on two factors. One is the amount of traffic which is

needed to fully utilize the link until a credit is returned and the second one is the packet

 Unified Layer Protocol

 121

size. For the estimation the maximum link width is used in combination with long cables

and large packets as this is the worst case for the buffer size.

Four requirements have to be fulfilled to hide the round trip latency. First the pipeline

stages on the cable and in the devices to the receive VC buffer have to be utilized and stay

utilized until the credit information has returned. The packet has to be completely checked

before it can be processed. It also has to be extracted from the receive buffer before a cred-

it can be released. In the worst case the link back to the sender can be occupied with a

maximum sized packet which delays the credit. Figure 4-5 shows all the stages for the

overall credit timing.

Figure 4-5: Stages Influencing the Credit Timing

The packet size is important especially if large packets are allowed to be transmitted.

Thus, the misalignment from packet size to the data in transmission causes overhead as

well as the checking of the packet, the packet extraction from the buffer, and the time

needed to insert credit information into the data stream. If the data in transmission is not

Unified Layer Protocol

122

a multiple of the packet size one additional packet must be partly transmitted to utilize the

link. The impact increases with the size of the packet. At least four packets are needed to

occupy the transmission path the whole time. One is needed to hide the transmission time

on the link. Another one is needed for the extraction time at the receive buffer. A third one

is needed to cover the transmission time of a current packet. The fourth packet is needed

to hide the time the credit is sent back. It is possible that a fifth packet is needed to cover

the path from the sender to the CRC checking unit. Therefore, buffer space for them has

to be available. In table 4-1 an example calculation for the data path utilization is given.

Table 4-1: Virtual Channel Buffer Example Calculation

In this example the accumulated needed buffer space is 24 KB. 2.8 maximum sized pack-

ets are needed for the data path utilization. Three maximum sized packets are needed to

hide the round trip latency. This offers a buffer to avoid a hiccup in the worst case and to

hide the headers. Additionally, three maximum sized packets have to be added for check-

ing, packet extraction, and the possibly occupied outgoing link.

Parameters
Packet Size in Byte 4096
Propagation Delay Optical Fiber in km/s 185000
Link Frequency in GT/s 10
Cable Length in Meter 25
Link Width 32
Internal Data Width in Bit 128
Pipeline Stages until Transmission 5
Pipeline Stages until Reception 5
Pipeline Stages until Credit Transmission 5
Pipeline Stages until Credit Release 5

Transmission Time
Seconds per Meter 5.4054E-09
Bits per Meter 54.05
Packets per Meter 0.002
Packets per Cable 0.04
Packets per Link 1.32

Round Trip Latency
Packets per Pipeline Stage 0.004
All Pipelinestages needed 20
Packets in Pipeline Stages 0.078
All Packets (Pipeline Stages + Link) 1.40
Pipeline Stages plus Transmission Time 2.80

Buffer Size Needed in Packets 6
Buffer Size Needed in KB 24

 Unified Layer Protocol

 123

In case two separate buffers are used to handle headers and data the needed buffer size

increases as it cannot be qualified if only read requests or large write requests are trans-

mitted. Additionally, the buffer size would increase for headers as they can be 192 bits

wide but still 1536 entries are needed. This results in a buffer size of 36 KB. The buffer

size can be minimized in two ways. One way is to reduce the VC buffer for headers as

they are small and the time for checking and extraction is nearly irrelevant. This would

reduce the buffer space to 1024 entries with a header of 192 bits the VC buffer size would

be 24 KB. The other way to reduce buffer space is to merge the header and data buffer

into one. However, this also increases the buffer size as headers can be 192 bits wide and

to be able to access the whole header in one clock cycle the buffer must be wider than 128

bits. It must be increased by 64 bits which is 50% of the normal VC buffer size. This in-

creases the overall needed buffer space for one virtual channel to 36 KB, but it still saves

12 KB compared to the separate model.

In order to show the impact of the cable length and the packet size figure 4-6 has been

inserted. The left diagram shows the impact if the cable length is changed from 1 to 20

meters in meter steps. The right diagram shows how the packet size influences the buffer

size. It can be seen that the misalignment causes an overhead until the packet size is a mul-

tiple of the data in transmission and how it gets worse for larger packet sizes.

Figure 4-6: Influence of Cable Length and Packet Size to Buffer Space

4.5.2 Retransmission Buffer

The retransmission buffer must be able to store traffic that was sent to be able to retransmit

it if an error was detected at the receiver. A simple and correct estimation would be that

Unified Layer Protocol

124

all traffic which can be stored at the link input can be stored in the retransmission buffer.

For this case the retransmission buffer would be rather large as it would include the size

of all VC buffers.

A more elegant and resource saving solution is to set the size of the retransmission buffer

to the same size as for one VC. This can be done as the error response for one packet can

be inserted earlier as the fastest credit release. The buffer size can further be reduced as

the packet does not need the time to be extracted, but it is good to keep this buffer for se-

curity reasons and it has advantages if the retransmission buffer size matches the VC buff-

er size. For more information please refer to chapter 4.5.1.

4.5.3 Tag Matching Buffers

A tag matching buffer is needed at the sender to merge responses to the corresponding re-

quest by a unique tag of every transmitted request. The size of the tag matching buffer is

dependent on the time a packet needs to travel through the network and the response to

get back. For the calculation a mixture of best case and worst case assumptions are made.

For the best case it is expected that the request and the response are not delayed by any

other traffic and therefore the round-trip latency can be used for the calculation. Otherwise

the credits of every link have to be taken into account. For the worst case assumption it is

expected that only the shortest tag consuming requests are generated and every link pro-

vides the maximum bandwidth. Thus, the maximum number of outstanding tags is used.

If not enough tags are available the link is idle and bandwidth is wasted. In order to get a

realistic number of outstanding packets it is not valid to assume that per hop only one

packet is traveling and forwarding a packet is done in zero time. One realistic example is

shown in table 4-2.

 Unified Layer Protocol

 125

Table 4-2: Tag Matching Buffer Example Calculation

In the first section of table 4-2 the assumed system is described with the physical condi-

tions. With that information the number of packets which fit on one cable can be calculat-

ed. This can be seen in section two. Afterwards, the number of hops which are relevant

System Specification
Request Packet Size in Byte 24
Propagation Delay Optical Fiber in km/s 185000
Link Frequency in GT/s 10
Average Cable Length in Meter 2
Link Width in Bit 32
Internal Data Width in Bit 192
Network Diameter in Hops 61

Packets per Cable
Seconds per Meter 0.000000005
Bits per Meter 54.05
Packet per Meter 0.28
Packet per Cable 0.56
Packet per Link 18.02

Pipeline Stages per Node
Pipeline Stages per Request Transmission 5
Pipeline Stages per Hop 10
Half Read Time in Stages 50
Pipeline Stages per Response Reception 5

Packets in all Nodes
Packets per Pipeline Stage 1
Needed Pipeline Stages 670
Packets in all Nodes 670

Overall Packets one Direction
Packets in all Cables 1099.10
Packets in Cables plus Nodes 1769.10

Complete Round-Trip 3538.20
Overall Packets 3539

Number of Entries in Buffer 3539
Lower Power of Two Bound 2048
Upper Power of Two Bound 4096
Lower Tag Size 11
Upper Tag Size 12
Address Size 64

Lower Buffer Size in KB with 16 Bit for Tag 20
Upper Buffer Size in KB with 16 Bit for Tag 40

Unified Layer Protocol

126

for one node are given in section three. Those are accumulated to the number of packets

in all nodes in section four. Then all packets of node and cable are accumulated in section

five. They are afterwards doubled for the round trip in section six.

In table 4-2 the required tag buffer space for the packets for one round-trip is calculated.

The estimation of outstanding packets results in a number of 3092 tags. If a lower bound-

ary would be chosen buffer space for 2048 entries would be sufficient. For an upper bound

4096 are necessary. This results in a tag length of 11 or 12 bits for the tag field. As addi-

tional information is needed to write the data back the tag matching buffer needs to carry

more data to process a response. At least the size for an address must be stored. For further

calculations an entry size of 64 bits address plus 16 bits of configuration information is

assumed. In combination this results in a required buffer space of 20 KB for 2048 entries

or 40 KB for 4096 entries. Those sizes seem to be feasible from a hardware perspective.

The numbers calculated in this example are relatively pessimistic regardless the assump-

tion that requests and responses are not blocked. It is unlikely that one device continuous-

ly sends reads to the farthest distant device without any other tag consuming traffic from

the requesting node. Also the responses will need more time as they occupy more space

in the channel back than the requests in channel to the consumer. In case that the diameter

is not the maximum of the allowed node count or the link bandwidth is reduced the tag

size can also be reduced.

4.6 Virtual Channels

ULP provides four different types of virtual channels. The basic VC is mandatory to en-

able packet transmission. The quality of service (QOS) VC is optional and is used to give

packets a priority. The register file contains a 16 bits priority map which has a hardware

specific reset value but can be overwritten by software. A zero in the register stands for

the basic VC whereas a one stands for the QOS VC. Thus, in worst case each VC is only

enabled every 15th cycle if both channels are utilized. The ISOC VC is also optional and

has the highest priority of all VCs. If it contains a packet it has to be processed regardless

 Unified Layer Protocol

 127

of the other VCs. This can cause starvation at the other VCs which must be taken into ac-

count if this VC is used. The last VC is the adaptive VC. If this VC is used a device should

provide multiple paths from one destination to a source. Packets traveling in this VC do

not provide any guarantees for order relations among each other, which must be taken into

account for this VC. Which route is chosen and how ordering is handled at the receiver is

outside of the scope of the specification.

Every VC, besides the adaptive VC, has three sub VCs which are used for ordering among

different packet types within the VC. Those VCs are called posted, non-posted, and re-

sponse. Inside the posted channel packets travel which do not require a response. The non-

posted channel is used for packets which need a response to complete a request. Inside the

response channel, responses for previously sent non-posted requests return. To ensure the

correctness the same ordering scheme as in HT is used.

4.7 Packet Format

4.7.1 Request and Response Headers

For packet based data exchange a header is needed which contains information about the

packet. In ULP all data of the packet which does not belong to the payload is called head-

er. Some fields are essential for the header format. Those are type, destination, source, tag,

and address. The type field is needed to identify what kind of packet has been received.

The destination field defines where the destination of the packet is. In order to be able to

reply to a packet it is necessary that a header contains the source of a packet. For error

handling reasons the source can also be interesting for packets which normally do not get

a response but it can be reported which device caused the erroneous packet. The tag is es-

sential as otherwise a response to one packet can't be merged to the request as the respons-

es are not guaranteed to return in a specific order. The address field is needed to map a

request to the corresponding node and to access the correct address region at the receiver.

Unified Layer Protocol

128

In order to make the protocol more flexible and more efficient a length field should be

used to describe the packet. The size of the header is fixed but the length of the data is

otherwise unknown and therefore a fixed data volume for a header type had to be as-

sumed.

From the software side it is desired that every type of packet size is allowed to be trans-

mitted but from the protocol side it is more efficient to have a fixed granularity to keep

the hardware effort low as described in chapter 2.1.3.2. If a fixed word width is chosen a

mechanism is needed to perform smaller or misaligned accesses. For ULP a data granu-

larity of 128 bits respectively 16 bytes is chosen. A byte mask is a common approach to

handle those types of accesses but the information needed to handle them also has to be

transmitted in the header.

Packets might be corrupted during transmission. In order to be able to identify those pack-

ets protection bits have to be added. A common way to handle this is by adding a CRC

which is also done in ULP. For more information about the CRC please refer to

chapter 2.4. All this information can be combined to an abstract header design which is

shown in figure 4-7.

Figure 4-7: General Header Format

In order to get a more specific header format the width of the different header entries has

to be defined. The type field must at least contain the information what kind of packet is

transmitted. Thus, it must be as large as the number of available packet types. In ULP the

commands listed in table 4-3 are provided.

 Unified Layer Protocol

 129

Table 4-3: ULP Type Field Encoding

For those 16 packet types a coding of 4 bits would be sufficient. In order to be able to add

types the field is extended by 2 bits, as long as they are 0 the standard encoding is used.

Bit 4 it is reserved for further encoding and bit 5 is used for vendor specific packets which

can be used only among devices which provide the corresponding capability. If the proto-

col provides special functionality, like for example different virtual channels, they also be-

long logically to the type field of the header. ULP provides four different virtual channels

and therefore 2 bits are used in the header. Additionally 3 bits are used to mark if the pack-

et is allowed to pass posted packets (PP), the address has to be translated from virtual to

physical (AT), and if an error occurred during transmission of the packet. The correspond-

ing fields are shown in figure 4-8.

Figure 4-8: ULP Header Type Definition

Code[3:0] VChan Command Comments/Options Packet Type
0000 - IDLE Link IDLE, must be dropped

at receiver
Info

0001 - Credit Carries credit information for
the different virtual channels

Info

0010 NP Write Write request with response Req/Addr/Data
0011 NP Config Write Configuration write request

with response
Req/Addr/Data

0100 NP Read Read request with response Req/Addr
0101 NP Config Read Configuration read request

with response
Req/Addr

0110 R Write Response Response for write request Resp
0111 R Config Write Response Response for configuration

write request
Resp

1000 R Read Response Response for read request Resp/Data
1001 R Config Read Response Response for configuration

read request
Resp/Data

1010 P Write Write request without
response

Req/Addr/Data

1011 P Broadcast Broadcast Message Req/Data
1100 P Fence Fence, ensures posted

request sent before are
received

Req

1101 - Error Error Handling Packet Info
1110 NP Atomic Atomic Request Compare

and Swap
Req/Addr/Data

1111 NP Flush Flush, flushes posted request
and returns response

Req

Unified Layer Protocol

130

For ULP a fixed maximum tag size is used as it has to be transferred inside the header. A

tag has to be used for non-posted requests to be able to match the responses. The tag size

is dependent on the diameter of the network. The example of chapter 4.5.3 shows that a

tag number of 12 bits seems to be a suitable choice for a network size of 64 k nodes. How-

ever, for further extension a 13 bits tag field has been chosen. The tag field location is

shown in figure 4-9.

Figure 4-9: ULP Header Tag Field

For packet routing source and destination IDs are needed. One feature ULP has to provide

is to be able to establish large networks. Thus, large ID numbers are needed. Inside one

node 4 bits wide node IDs are used. This enables up to 16 devices inside a node. If more

devices are needed a connection which is marked as cable connected is needed to establish

a second node. Among nodes network IDs are used. As 64 k are supported a 16 bits wide

network ID is used. The combined network and node ID fields are shown in figure 4-10.

Figure 4-10: ULP Header ID Fields

In order to handle data transfers which are misaligned to the data granularity mask fields

have to be used. In ULP it is not allowed to transmit data which is not continuous. Non-

continuous data has to be transferred with multiple packets. The mask field for one OW

consists of 4 bits. Every bit represents one sub granularity of 16 bytes. Bit 3 stands for 8

bytes, bit 2 for 4 bytes, bit 1 for 2 bytes, and bit 0 for 1 byte. The coding is shown in

figure 4-11. With this coding every combination of valid bytes can be indicated. All bits

set to 0 stands for a complete valid packet which means the data is aligned. Two double-

words are needed as the data may start misaligned and end misaligned. Thus, ULP pro-

vides a start byte mask and an end byte mask. If the data is separated in only one

misaligned data word only the start mask is used and bits [3:0] of the address show where

the data starts.

 Unified Layer Protocol

 131

Figure 4-11: ULP Mask Field Coding

A more flexible masking scheme would provide more bandwidth for non-continuous data.

However, for efficient data exchange transmitting such small packets is always subopti-

mal. The header overhead for one packet is by at least 50%. From a bandwidth perspective

a suitable data transfer granularity would be cache entries, as at this granularity processing

units are able to exchange data very efficiently without masking or multiple reads or

writes. The mask fields are shown in figure 4-12.

Figure 4-12: ULP Header Mask Fields

The payload size field is needed to be able to transmit different payload sizes with one

type of packet. In ULP the granularity of the payload is always one OW. A maximum

transfer unit of 4 KB can be realized in ULP. 4 KB in 16 bytes granularity result in a pay-

load size field of 8 bits. The number of doublewords is the length field + 1, so all 0 repre-

sents one OW of data. Empty writes or read responses are not allowed. If a packet is

transferred which type indicates that it contains no data the payload the size field must be

ignored. The payload size field is shown in figure 4-13.

Unified Layer Protocol

132

Figure 4-13: ULP Header Payload Size Field

State of the art systems use address spaces of up to 64 bits. In order to be able to use this

address space request packets use a 64 bits address field. The address is given in byte

granularity even if the data granularity is OW aligned. Response packets do not needed

addresses as the corresponding address is stored in the receiver’s tag map. Thus, responses

simply do not provide an address field. The address field is shown in figure 4-14.

Figure 4-14: ULP Header Address Field

At the end every header contains a CRC which protects the packet and the data of the pre-

vious packet, if it contained data. It must be able to protect the size of an MTU and a head-

er. For this reason a 32 bits CRC was chosen. The CRC field is shown in figure 4-15. For

more information about the CRC please refer to chapter 4.12.

Figure 4-15: ULP Header CRC Field

In combination the above introduced fields can be merged to form the corresponding

headers. One type is used for request packets and one is used for response packets. The

structure of those packets is shown in figure 4-16 and figure 4-17. Request packets are al-

ways 24 and response packets 16 bytes long. The size of 24 bytes for requests was chosen

as a tradeoff between loss of bandwidth and granularity. As the main granularity for ULP

is 16 bytes the misalignment causes a shift of the header through the data width. Thus,

there are two positions where the header can start. If this would have not been done an-

 Unified Layer Protocol

 133

other header size would have to be chosen. With 16 bytes the header would be undersized

to realize all needed features for ULP. In combination with a header size of 32 bytes the

overhead of the header would be 25% larger for every packet and must be filled with use-

ful information. As the 24 bytes header already contains 2 vendor specific bytes this had

to be avoided.

Figure 4-16: ULP Request Header Format

Figure 4-17: ULP Response Header Format

Unified Layer Protocol

134

The vendor specific bytes can be used to add features to the devices which are not required

by ULP. It must be assured that those features are only used by devices which know that

the link partner is also capable of those features. In case modified packets are sent to a

receiver which does not provide the feature the best case would be that it is ignored, in the

worst case this causes an uncorrectable error and the link needs a reinitialization.

4.7.2 Info Packets

Info packets are only used between direct link partners to exchange information and are

never forwarded indirectly connected nodes. They are always 16 bytes long. Three differ-

ent types of info packets exit in ULP: idle, credit, and error handling packets. Idle packets

are transmitted on a link if no other packets are available. Besides the type field and the

CRC they contain a bit pattern which ensures transitions on each lane if transmitted, but

they are also scrambled. The idle packet is shown in figure 4-18.

Figure 4-18: ULP Idle Header Format

Credit packets are used to handle the flow control of a link. They contain the number of

released credits for a virtual channel. The VC field determines the corresponding virtual

channel which the credit belongs to. The three value groups (VG) describe the sub-type

of VC buffer the credits belong to. VG0 stands for posted, VG1 for non-posted, and VG2

for response credits. Credits are accumulated until the credits are released and one credit

stands for one entry in the buffer. A credit field is 11 bits wide and can therefore release

 Unified Layer Protocol

 135

the complete buffer at once. For additional protection the credit header provides a 16 bits

sequence number. The last correct received sequence number is stored at the receiver and

transmitted with an error packet if a retransmission is requested. With the sequence

number an additional error can be checked. In case a credit packet is lost undetected from

the CRC check one or more sequence numbers are missing. As they are stored in the re-

transmission buffer it would be retransmitted in the retry sequence. The structure of the

packet is shown in figure 4-19.

Figure 4-19: ULP Credit Header Format

Error handling packets are used to handle the retry sequence. Two different types of error

handling packets are available. One is the error start packet and the other one is the error

end packet. The two different packets are distinguished by the error type field. A 012

stands for an error start packet and a 102 for an error end packet. An error start packet con-

tains the amount of checked data which has not been released by a credit jet. The number

cannot be larger than the amount of all virtual channels combined and therefore 16 bits

are sufficient. The error header also provides a sequence number which enables the re-

ceiver to detect missing error packets but for error handling packets the sequence number

is optional. The error handling header is shown in figure 4-20.

Unified Layer Protocol

136

Figure 4-20: ULP Error Handling Header Format

4.8 Decoding Dependencies

ULP has a structure which can be efficiently mapped to hardware. One big part to achieve

this was to reduce the different types of dependencies. Control frame dependencies have

been minimized as almost the complete packet is always completely defined by the type

field. Only error headers have a 2 bits sub-type field which distinguishes the packet fur-

ther. However, the structure of the error header is so simple that this difference has almost

no impact to the complexity of the hardware.

An additional step to minimize complexity was to have a more coarse grain granularity of

the protocol. Two granularity levels have been chosen. The granularity of the protocol was

set to 128 bits. This means that there are no parts of the protocol, like header and data,

which are allowed to be smaller than 128 bits. Therefore, only one packet can be finished

at a time if the internal data width is 128 bits or below. Additional to the protocol granu-

larity a separate header granularity of 64 bits is used in ULP. Header always consists of

chunks of 64 bits but are at least 128 bits long. Thus, there are no doubleword dependen-

cies like in PCIe and HT but only quadword dependencies. Those two granularities have

been chosen to have the needed flexibility for the header size and the coarse grain granu-

larity for the relaxed hardware effort.

 Unified Layer Protocol

 137

In figure 4-21 the quadword dependencies of ULP and the different header types are de-

picted. It can be seen that the clean structure of ULP provides almost no hardware over-

head. The layer height for quadwords is 9 which is significantly lower than for HT and

PCIe.

Figure 4-21: ULP Quadword Protocol Dependencies

4.9 Initialization Sequence

Before a link can be used it has to be initialized. Therefor a sequence has to be performed

which allows the usage of the link afterwards. This sequence is depicted in figure 4-22.

Different stages have to be completed until the link can be used to transfer packets. First

the corresponding device needs to be powered and has to wait until its clocks are ramped

up and everything is ready. This state is represented by the reset state which is left to lane

detect afterwards. During lane detect special bit pattern are transmitted and tried to be re-

ceived. More details to the corresponding sequences are given in chapter 4.9.1. If the link

is not marked as connected and no cable is connected to the link the FSM goes to uncon-

Unified Layer Protocol

138

nected. In this state the receivers and transmitters are turned off. The state can be left to

lane detect if a cable is connected and detected. If the link is marked as connected or a

cable is connected in the lane detect state, but no initialization sequence was received, the

link goes to no link found. In this state the transmitters are turned off but the receivers are

still active to be able to receive a training sequence. If a correct pattern is received the state

returns to lane detect. Receiving correct patterns in lane detect the state is changed to lane

training. In this state training sequences are exchanged to find the correct byte, block, and

partly lane alignment. In case alignment cannot be found the state is switched to parameter

change. Otherwise, it is changed to exchange. In exchange a sequence is used to exchange

link information and block numbers. If all patterns were received correctly and the link

runs at maximum bandwidth the state is changed to operational and the link is fully ini-

tialized and ready to exchange packets.

 Unified Layer Protocol

 139

Figure 4-22: ULP Initialization Sequence State Machine

4.9.1 Training Sequences

For link initialization different training sequences (TS) are used. They are not scrambled

and not 128b/130b coded as the rest of the traffic. TSs are not spread over the links but

transmitted on every lane separately. All TS are built in the same way. The first byte con-

tains an identifier which is unique for every TS. The odd bytes are used to DC balance the

Unified Layer Protocol

140

traffic so every 16 bits chunk has a neutral DC balance. The structure of the five TSs is

shown in figure 4-23. If at least 16 consecutive blocks of a sequence are received the TS

is marked as successful for the corresponding lane and it is attempted to find the next TS.

Figure 4-23: ULP Training Sequence Structure

At the first try TS have a maximum length of 10 ms. In case the correct pattern of the cor-

responding TS is received from the link neighbor the TS has to persist at least 1 ms after-

wards. Then it can be changed to the next TS. In case the link setup was not successful

and has to be restarted, the timing for minimum and maximum will be doubled until the

maximum number of initialization retries have been reached. A timing example of a TS

change is given in figure 4-24.

 Unified Layer Protocol

 141

Figure 4-24: ULP Training Sequence Timing Example

Every TS is used to manage a specific task. The different TSs are shown in figure 4-25.

TS0 is transmitted in the lane detect state and is used for CDR. Thus, simply a clock pat-

tern is transmitted. If at least one lane receives the correct pattern for one block a timer

starts which is responsible for the 1 ms window. During this window other lanes can re-

ceive the correct pattern and reset the timer. If no more lanes are found for 1ms or the time

limit is met the state is changed to lane training.

Unified Layer Protocol

142

Figure 4-25: ULP Training Sequences

In the lane training state the different lanes first transmit TS1. This is done to ease the

alignment process. Blocks of bytes with all bits set to 0 or 1 are alternating sent. With this

sequence the receiver can search for the change from 0 to 1, or vice versa, and find the

byte alignment. The change to TS2 takes place in the same way as from TS0 to TS1 with

the 1ms timer and the maximum timing window. Detecting additional lanes at this point

is allowed. The initialization process is always continued for all lanes. In TS2 more com-

plex patterns are exchanged. With those patterns the block can be detected and the relia-

bility of the lanes can be checked as the pattern is prescribed. After block alignment the

lanes can be block aligned to each other, but it is not sure if at every lane the same block

time is received.

 Unified Layer Protocol

 143

After TS2 the state is changed to exchange and the sequence is changed to TS3. It contains

fields which are not fixed by the protocol. Thus, the corresponding odd bytes must be de-

termined after the even bytes are known. The inverted value of the even bytes has to be

used for the odd bytes to enable a check for the correct transmission. In TS3 information

is exchanged between the link partners. The first non-identifier byte contains the type of

device and the block number (BN). With the type field the link partner is informed of spe-

cial capabilities like for example support of coherent operation. The BN is used to deskew

whole blocks as it might be that for lane N block time X contains block number M and for

lane N+1 block time X contains block number M-1. The lane deskew is not allowed to be

more than one block size. The calculation is shown below.

If a link speed of 10 GB/s is assumed and a propagation speed of 200000 km/s one bit

occupies 0.05 cm of the transmission lane. For 128 bits this results in a distance of 6.4 cm.

If one block is shifted in positive direction and one is shifted in negative direction a dis-

tance of two blocks could result. Thus, the allowed distance is simply cut in half which is

3.2 cm.

Further information is the supported link width and link frequencies. For the link width

every combination of valid link widths is allowed. For the frequencies at least the mini-

mum frequency has to be supported as this is the initialization frequency. All other fre-

quencies are allowed to be enabled in any combination. Additional parameters can be

exchanged to give the transmitter hints which electrical settings are expected. The evalu-

ation of those parameters is optional and it could reduce the hardware effort. Using the

additional parameters could improve the initialization speed. The ULP field descriptions

of TS3 are shown in figure 4-26.

Bit per cm Transmission Lane:
10Gb/s

200000km/s
----------------------------- 0.05b/cm=

Deskew Distance: 0.05bit/cm 128 bit 6.4cm=

Unified Layer Protocol

144

Figure 4-26: ULP TS3 Field Description

At the end TS4 is transmitted. It is used to signal that the training sequence has finished.

There are two different TS4s, TS4a and TS4b. They are used to distinguish between the

next states. In case of TS4a it signals that the maximum possible link bandwidth has been

reached. The following state is the operational state and the normal packet transfer starts,

as depicted in figure 4-27. Otherwise, if the information exchanged in the TS3 states that

a higher link bandwidth can be achieved. In this case, TS4b is used and the state is

changed to parameter change. In this state the link frequency and electrical parameters of

the transceivers are changed and the link starts a new initialization sequence with the new

parameters.

 Unified Layer Protocol

 145

Figure 4-27: Switch from TS4a to Packet Transfer Example

If a working link is available and the maximum allowed reinitializations are exploited the

link is set to operational regardless if the exchanged parameters promise a higher link

bandwidth. A bit in the register file is set to signal that not the theoretical maximum band-

width is achieved. This bit can be read by software and the further proceeding is outside

of the scope of this thesis.

Unified Layer Protocol

146

4.10 Routing Scheme

Network devices must provide an addressing scheme to be able to route packets. There

exist many different approaches which solve this problem like in [30] and [65]. The 4 bits

node IDs are used if the current ID of the node is the same as the destination node ID. Oth-

erwise, the 16 bits network IDs are used to route the packets among nodes.

4.11 Bandwidth Calculation

The achievable bandwidth of ULP can be calculated by subtracting the bandwidth re-

quired for line coding, clock compensation, and header overhead. For the header overhead

a maximum size payload is assumed. ULP provides 4096 bytes of data and a header has

the size of 24 bytes.

For line coding every 130 bits 2 bits are used.

For clock compensation the same scheme as for PCIe is chosen which specifies an inser-

tion every 370 to 375 blocks of 8 bytes per lane.

Resulting in an achievable maximum bandwidth of 97.74 % of the theoretical maximum.

4.12 Error Handling

For the error handling different checks can be performed in ULP. One mandatory check

is the check of the CRC transmitted with every header. This CRC enables the receiver of

Bandwidth without Header Overhead: 100
4096

4096 24+ 
----------------------------- 99.41 %=

Bandwidth without Line Coding Overhead: 100
128

128 2+ 
----------------------- 98.46 %=

Bandwidth without Clock Compensation Overhead: 100
6000

6000 8+ 
-------------------------- 99.86 %=

Accumulated Bandwith: 99.51 % 98.46 % 99.86 % 97.74 %= 

 Unified Layer Protocol

 147

the data to evaluate if the eventually previously received data and the actual header is cor-

rect. An example of the CRC window is shown in figure 4-28.

Figure 4-28: ULP CRC Window Example

In order to get a relative high protection the Koopman polynomial is used. As stated in

[46] this polynomial provides a hamming distance of 5 for message sizes from 8 - 65505

bits which is suitable for ULP. With a hamming distance of five all arbitrary errors of up

to 4 bits can be found. The polynomial representation is shown below:

Koopman Polynomial: X 31 + X 20 + X 15 + X 10 + 1

It is assumed that the CRC check is sufficient to cover the possible errors during runtime.

If more protection is favored additional checks can be made which should also result in a

retransmission. Some of those checks are listed below.

• Type field invalid

• Header format not allowed

Unified Layer Protocol

148

• Packet too short

• Unknown response

• Credit sequence missing

Additional checks which result in an uncorrectable error can be performed like a wrong

sync pattern.

4.12.1 Retransmission Handling

As soon as one of the above mentioned correctable errors is detected it is assumed that

one or multiple bit errors occurred during transmission. In order to be able to recover au-

tomatically from such an error a retransmission protocol is included in ULP. Therefor a

retransmission buffer is needed. The buffer is built as a ring buffer. It must be ensured that

only invalid values will be overwritten. If the size of a VC buffer is chosen as suggested

in chapter 4.5.1, the handling is more demanding compared to a full blown buffer. In case

of the VC buffer size it is taken advantage of the fact that traffic in the VC buffers is al-

ready checked and must not be retransmitted. The problem is that there is traffic which is

checked but not released by credits from the buffer. In order to find the correct starting

point the amount of correct data stored between the point where the packets are checked

and the VC buffer must be monitored. In case an error occurs the number of buffer entries

and the sequence number of the last correctly received credit packet must be transferred

with the error message that triggers the retransmission. In combination with the pointers

of the retransmission buffer and the number of the buffer entries, the corresponding read

pointer can be set to the correct value. The VC buffers cannot be managed as plain FIFOs.

An entry of the buffer is only valid if header and data are checked. Furthermore, there

must be separate pointers for written and checked data. In case the last written data is not

valid the write pointer must be set to the next entry after the checked data pointer. This

has also to be taken into account for the calculation of the valid data value for the pointer

setting of the retransmission buffer.

For the correct behavior of the retransmission buffer it is important to find the correct

starting point. Therefore, the retransmission buffer must be able to set the read pointer in-

 Unified Layer Protocol

 149

dependently and it can be overtaken by the write pointer. At the point when the error pack-

et is received the read pointer is adjusted to the correct value in combination with the

checked data value. This can always be done if additional virtual pointers are used to man-

age the overall possible VC buffer space. Thus, the distance between the actual read point-

er and the write pointer can be calculated and transferred to the physical retransmission

buffer. The buffer handling is shown in figure 4-29. In case all VC buffers are of the same

size the calculation can be reduced to the bits corresponding to one VC buffer and not over

all VC buffers and the virtual pointers can be avoided.

Figure 4-29: Retransmission Buffer Read Pointer Setting

Unified Layer Protocol

150

It must be assured that the checked data value is correct even if the error occurs right at

the end of a packet streamed out of the VC buffer. Thus, the checked data value is not

changed if the buffer space is released but when the credit packet is transmitted before the

error packet. Error packets have to be inserted into the data stream as soon as possible to

reduce bandwidth loss.

For the reliability it is of importance that neither credits nor error packets are lost during

transmission as a loss does not only lead to a reduced performance of the link but it would

be impossible to recover an error as the retransmission starts from the wrong pointer val-

ue. Thus, credit packets have to be inserted into a separate retransmission buffer and must

be retransmitted if an error occurred. The correct starting point is set with the last credit

sequence number. In order to reduce the buffer size for credits credit insertion is restricted.

A normal maximum sized buffer would have 24 KB for credits which are 1536 entries.

For every time the allowed credit insertion is halved the buffer size is also halved. As it

makes no sense to release every small portion of credit with the calculated buffer sizes it

is no problem. Thus, only one credit every 16th slot is allowed. This results in a buffer

with 96 entries to hide the round trip latency. As the sequence number is 16 bits it can be

safely determined which credit packets have to be released. For the retransmission the

outstanding credits are released first and then the retransmission buffer is replayed.

Error packets need a watchdog timer which ensures that they are repeated if they are lost.

A suitable timer would be larger as the time needed to fill one VC buffer. If an error packet

is received the current transmission is stopped immediately and the read pointers of the

buffers are set to the correct value. The first packet transmitted is a retry packet which is

an error packet with the sub type field set to 102. Afterwards the credit buffer is replayed

the retransmission buffer follows.

In case the watchdog timer runs out eight times the link is marked as defunct as it is un-

likely that the same error packet is erroneous for that many times without a permanent de-

fect, like a lost bit time of the link or a broken/unplugged cable. The start of the read

pointer at retransmission is stored for the case that the retransmission failed and has to be

repeated. In case the retransmission fails four times successively a permanent defect of

 Unified Layer Protocol

 151

the link is assumed and the link is set to defunct.

The receiver detecting an error drops all traffic received afterwards and also stops trans-

mitting normal traffic. This has to be done as the retransmission buffer is significant

smaller as the available VC-buffer space and could be overwritten otherwise. Only error

packets or retransmission traffic are allowed to be sent until the end of the error sequence

is received. This is done to avoid a retransmission buffer overflow in case both sides of a

link have an error at the same time and the error packet was not received.

4.12.2 Link Retraining

With the retransmission capability correctable errors of the link can be fixed. If for some

reason the retransmission fails a permanent defect of the link is assumed. In this case the

buffers and registers are reset and the link initialization sequence is repeated to train the

link. It is attempted to set up a new link to keep the system functional. If this does not work

the link is set to the defunct state and it is waited until the software resets the error counters

and starts a new initialization sequence. In case the device cannot be reached by software

anymore a hardware reset has to be performed.

4.13 Protocol Comparison

ULP provides all needed functionality a protocol needs. In order to prove the performance

it has to be compared to the corresponding protocols. In the following sub-chapters ULP

will be compared to HT and PCIe in terms of bandwidth, frequency, number of devices,

network diameter, link distance, and decoding effort.

4.13.1 Bandwidth

To be able to compare the bandwidth of the different protocols it is necessary to consider

different types of bandwidth. The pure accumulated link bandwidth can lead to a wrong

impression. One bandwidth type is the physical lane bandwidth which is the bandwidth

when all data lanes are accumulated. The next bandwidth is the physically available band-

Unified Layer Protocol

152

width which includes all high speed lanes regardless if they are used for data or other pur-

pose. In order to make the different protocols more comparable the bandwidth differences

due to physical characteristics like link frequency and link width must be eliminated as it

must be assumed those are more or less only definitions and the different link frequencies

and link widths could also be used by other protocols. If this is done it is the neutral band-

width. Nevertheless, the most interesting bandwidth is the achievable bandwidth. This is

the bandwidth if all overhead is subtracted. In this comparison it is calculated as the neu-

tral bandwidth without the overhead for better comparability. In table 4-4 those band-

widths of the different protocols are opposed.

Table 4-4: Bandwidth Comparison HT/PCIe/ULP

An additional bandwidth is of interest for comparison which is the bandwidth for different

data payloads. In figure 4-30 it is shown how the bandwidth is utilized while the payload

size is doubled. In this case only the per packet overhead is calculated for packets which

use 64 bits addressing.

Figure 4-30: Packet Bandwidth Comparison for increasing Packet Sizes

It can be seen that for small payloads HT has minimal advantages because of the lower

Physical Lane Bandwidth 25.6 GB/s 32 GB/s 40 GB/s
Physical Available Bandwidth 38.4 GB/s 32 GB/s 40 GB/s

Neutral Bandwidth with 10GT/s 60 GB/s 40 GB/s 40 GB/s
Achievable Neutral Bandwidth 33.42 GB/s 39.11 GB/s 39.11 GB/s

HT PCIe ULP

 Unified Layer Protocol

 153

header overhead and the utilization of the payload. In this case also PCIe is slightly better

than ULP as the data granularity of 16 bytes results in more loss of bandwidth for the pay-

load. If payload sizes are 16 bytes or larger ULP has the same performance as PCIe for

payloads which fit in the 16 bytes data granularity. If the maximum payload size of HT is

reached its packet bandwidth saturates at 80% and is then overtaken by PCIe and ULP

which both saturate at 99.42% at a payload size of 4 KB.

In the bandwidth comparison ULP follows best industry praxis. However, it is not the goal

of ULP to be better performing in every point but to be at least competitive. It is assumed

that for efficient data transfer the payload should be at least one cache line as those are

data chunks which are moved by processing units. Typical cache line sizes are 32, 64 or

128 bytes.

Also the theoretical maximum values provided by the protocols have been used to calcu-

late those numbers. For example, to the best of my knowledge HT devices only use 16 bits

wide links and therefore devices do not provide the full theoretically defined bandwidth

of the protocol.

4.13.2 Frequency

One important factor for the comparison of in terms of frequency is the maximum link

bandwidth which can be achieved. For the comparison the link bandwidth is calculated

and the resulting internal frequency is determined in table 4-5 with regards to the internal

data width. The important values are bold and the assumed internal link width is highlight-

ed orange.

Table 4-5: Internal Link Frequencies for Different Data Widths

HT PCIe ULP
Link Width in Lanes 32 32 32

Link Frequency in Gbit 6.4 8 10
Link Bandwidth in Gbyte 25.6 32 40

Internal Width in Bit
32 6.4 8 10
64 3.2 4 5

128 1.6 2 2.5
256 0.8 1 1.25

Internal Frequency in GHz

Unified Layer Protocol

154

The granularity of the protocol is important at this point. As HT has 32 bits granularity

the only internal link width with no additional effort with regard to fan-out, dependencies,

and multiple packet reception in one clock cycle is 32 bits. However, the internal frequen-

cy at this width is unrealistic high so that larger link width should be taken into account

to reduce the internal frequency. At Gen3 frequencies HT needs a header and a CRC

which results in at least two doublewords, so a 64 bits link width can be used without the

disadvantage of receiving multiple packets in one clock cycle, but the doublewords will

start to shift through the internal link width and therefore increase the fan-out for every

doubleword. Also the dependencies in and among packets will rise. The frequency at 64

bits is still ambitious, but increasing the data width further will lead to a large hardware

complexity.

In PCIe symbols are used at every lane so those 8 bits have to be gathered from each lane

before a packet can be assembled. Thus it is assumed that a suitable data width is 256 bits

for 32 bits wide links. However, at this granularity it is possible that read and write request

are not able to utilize the link bandwidth as it is only allowed to start a header in one sym-

bol time. For example a read request needs 5-6 doublewords but the internal width is 8

doublewords. Same applies for writes with headers of 5-6 doublewords and small payload

sizes of 1-2 doublewords. Additionally a link width of 256 bits has a high dependency

among the doublewords and high multiplexing effort.

ULP does not use a 32 bits granularity but a 128 bits granularity. With this feature it is not

reasonable to use an internal link width smaller than 128 bits. As ULP allows header for-

mats of 192 bits the start of a header can shift but only with two fixed positions. An inter-

nal frequency of 2.5 GHz is feasible, but doubling the link width to 256 is still possible.

An additional header start point would have to be managed and two packets can be re-

ceived in one clock cycle. But the impact is significantly less than for a 32 bits granularity

with four more starting points and multiple more packets which can be received in one

clock cycle.

 Unified Layer Protocol

 155

4.13.3 Number of Devices

The number of devices can be determined by checking how many devices can be ad-

dressed in the system. All protocols provide some identification fields for this task.

HT provides the unit ID to address a device in the fabric. The field is 5 bits wide and there-

fore only 32 devices addressable. It is obvious that this is insufficient for large systems.

In [14] high node count is mentioned which seems to be an attempt to enlarge the node

count. On the HT-Consortium homepage two papers can be found [60][61] which provide

little details about it. However, there is no detailed specification available and therefore it

can't be compared.

PCIe uses a bus-device-function (BDF) model to address unique entities. Eight bits are

used to address a bus so 256 buses are available. A device on a bus is determined by a 5

bits field. Thus, every bus can be connected by up to 32 devices. Each device can contain

functions which are distinguished by a 3 bits field which results in 8 functions. Therefore,

the BDF field does not exactly address devices but functions. However, the bit-vector is

large enough to theoretically address 64 K devices.

ULP provides two different IDs, one is the 4 bits wide node ID and the other one is 16 bits

wide the network ID. Thus, 64 K nodes can be connected and every node can contain 16

devices. In combination 20 bits can be used to address a device which results in 1 M de-

vices. The distance for node devices is assumed to be very small so the influence to tags

should be insignificant.

4.13.4 Network Configuration

4.13.4.1 Network Diameter

For the network diameter three parameters of a protocol are of importance. The most im-

portant is the number of devices which can be addressed in the system. However, it is neg-

ligent to use only this number for the calculation and to ignore the others. Of course it is

possible to build a large network with only the addressable devices, but it is also important

if it can be utilized. The other two parameters, which are available tags and credits, deter-

Unified Layer Protocol

156

mine if the network can be efficiently used by utilizing the links. For an end-to-end view

the tags are important as they hide the end to end latency. In order to hide the round trip

latency on a link the number of available credits are important.

The number of tags is relevant as if none is available no new non-posted requests can be

transmitted and therefore the link will be idle. Thus, the calculation has to be made for

minimum sized packets with responses, which is the case for read requests. It is assumed

that an address range of 64 bits is used.

For HT the source tag is used to uniquely identify a request. It is 5 bits wide and therefore

32 outstanding minimum sized packets can exist. For 64 bits addresses an 8 bytes header

is used in combination with a 4 bytes CRC. Thus an amount of 32 times 12 bytes can be

transmitted with the available tags which are 384 bytes. With this amount of data 96 pipe-

line stages of 32 bits width can be filled.

In PCIe 8 bits tags are available resulting in 256 outstanding minimum sized packets. The

header for a read is at least 20 bytes long and is followed by a 4 bytes CRC. Thus 256

packets with a size of 24 bytes can be transmitted with the available tags which is exactly

6 KB resulting in 192 pipeline stage entries of a 256 bits width.

For ULP a 12 bits of the tag field are used. This results in 4096 outstanding minimum

sized packets. A header of 24 bytes is used which already includes the CRC. Thus, dis-

tance of 96 KB respectively 4 K pipeline stages with a width of 192 bits can be bridged

with this.

For the same parameters as assumed in table 4-6 on page 156, table 4-6 shows the achiev-

able network diameters of the different protocols without nonrecurring overhead, like

memory access at the receiver.

Table 4-6: Network Diameter Comparison

HT PCIe ULP
Network Diameter ~1 ~3 ~72

 Unified Layer Protocol

 157

4.13.4.2 Link Distance

The number of credits per link is needed to calculate the maximum distance between two

directly connected devices. For the calculation simply the maximum number of outstand-

ing packets is taken. This number is multiplied with the minimal size of a request packet

to get the number of outstanding bits. Afterwards the bits per lane for a link width of 32

lanes are calculated. Together with the corresponding link speed and the propagation de-

lay of 185000 km/s the bridgeable link distance is calculated and cut in half for the round

trip. For the calculation the time needed for processing is not taken into account as it is

irrelevant for calculation.

The HT specification makes no restrictions with respect to the number of available cred-

its. However, in the BKDGs [62][63] there exist numbers for header credits for all virtual

channels of about 32 - 48. At this point the most interesting request type are reads, as they

are the smallest type an upper bound for one virtual channel can be assumed which is the

number of available tags with 32. With 32 packets a distance of 1.39 meters can be

bridged with a link width of 32 bits and a link frequency of 6.4 GT/s without losing per-

formance.

For PCIe there are defined numbers for the maximum available credits. Credits are meas-

ured in doublewords and a maximum buffer space of 2560 bytes for headers which are

128 entries and 32768 bytes for data which are 2048 entries. Of course only the outstand-

ing read requests are important as well, so PCIe is limited to 128 packets. A distance of

8.88 meters can be bridged with a link width of 32 bits and a frequency of 8 GT/s.

ULP credit information is exchanged with 11 bits. The resulting number of credits is 2048.

As every header consumes one credit a maximum distance of 2 K read request packets of

24 bytes can be bridged. For the calculation it is assumed that the link width is 32 bits and

Available Bits per Lane
Number of Packets Packet Size in Byte 8 

Number of Lanes
---=

Bits per Meter
Lane Speed

Propagation Speed
---=

Link Distance
Available Bits per Lane

Bits per Meter
---=

Unified Layer Protocol

158

the frequency is 10 GT/s resulting in an achievable maximum distance of 133.66 meters

which is very comfortable. The number of all protocols is brought together in table 4-7.

Table 4-7: Link Distance Comparison

4.13.5 Decoding Effort

The comparison of the decoding effort is not simple as every protocol has its special fea-

tures. However, there are some higher level aspects which are comparable. Those aspects

are dependencies inside one header, the number of headers which can be received in one

clock cycle with the dependencies among them, the granularities with the corresponding

header shift and multiplexing effort, and the fan-out for a corresponding granularity.

4.13.5.1 Header Dependencies

Header dependencies originate from header fields which have to be analyzed before the

structure of the header can be determined. HT has many dependencies as it has the a

smallest header size and the dependencies are used to realize the functionality in such

small space. However, this has to be compensated with additional hardware effort. PCIe

has a more straight forward header format with more space for the functionality of the dif-

ferent headers. Thus, the dependencies inside one header type are low, but additionally to

the large header size PCIe has reached this with different header types (TLP, DLLP, and

token) and multiple layers. This also results in some additional hardware effort and in-

creased latency. ULP has a very straight header format. The header is defined by the 6 bits

of type. Only the error packets have two additional bits to distinguish among them. It can

be seen that from the header complexity point of view ULP has a similar hardware effort

as PCIe but without the disadvantages of multiple layers and different header types.

4.13.5.2 Multiple Header Reception

For multiple header reception the internal link width is the crucial factor. As soon as the

link width is larger than the protocol granularity it can happen that more than one header

is received at the same clock cycle. The problem with this is that the bandwidth has to be

HT PCIe ULP
Link Distance 1.39 8.88 133.66

 Unified Layer Protocol

 159

sustained and therefore the decoding engines have to be replicated for the additional head-

ers or it must be guaranteed that the decoding engine has time to catch up without losing

bandwidth. In table 4-8 is shown how the link width influences the number of headers for

the different protocols. Relevant are not only complete headers but also headers started in

a previous clock cycle that finish later with other ones.

Table 4-8: Comparison Multiple Header Reception

It can be seen that for the protocols with a 32 bits granularity the number of multiple head-

ers start at as soon as the data width contains multiple chunks of the granularity. From this

point it is relevant what the minimum header size is. For HT it is 64 bits and therefore

additional packets can be in one clock cycle for every additional 64 bits. As ULP has a

header granularity of 64 bits two headers can be received at the earliest with a data width

of 128 bits. PCIe and ULP have the same header size of 192 bits for one packet, thus ad-

ditional full packets can only occur from a data width of 256. PCIe avoids this by restrict-

ing the number of header starts for one clock cycle which results in a loss of bandwidth if

otherwise multiple packets would have been received. However two packets can be re-

ceived in PCIe if TLPs and DLLPs are considered as in the same layer.

4.13.5.3 Granularity Effects

The internal data width with regard to the granularity effects the complexity of the hard-

ware. The smallest type of granularity is of importance for the header shift. Especially two

factors are influenced by the granularity, the header shift and the multiplexing complexity.

In figure 4-31 examples for HT, PCIe, and ULP are given which show the dependency of

the data width, header shift, and the header granularity. A potential header start is marked

red but not the complete header is displayed. Small granularity results in many possible

combinations for a header start whereas larger granularities relax it.

Unified Layer Protocol

160

Figure 4-31: Header Shift for 32 and 64 Bits Granularity

Additionally to the header shift the multiplexing effort is influenced by the granularity of

the protocol with regard to data width. In order to achieve a certain bandwidth the data

stream has to be parallelized to the corresponding internal data width. The more the pro-

tocol granularity is smaller than the data width the larger gets the multiplexing complex-

ity. In figure 4-32 ULP is compared to HT with a header data width of 192 bits and a data

width of 128 bits for ULP, and a 128 bits header width and a 128 bits data width for HT.

The effect of the smaller data granularity of HT can be clearly seen.

Figure 4-32: Comparison Multiplexing Complexity Doubleword - Quadword

 Unified Layer Protocol

 161

4.13.5.4 Fan-Out

The fan-out of one doubleword influences also the hardware complexity. Before, the mul-

tiplexing complexity with regard to the granularity was shown. This is one part of the fan-

out, but additionally the content of the doubleword has to be taken into account. In

figure 4-32 above the multiplexing only distinguishes between header and data, but it is

also important what the destination of the doubleword, or parts of the doubleword, is as it

can belong to different decoding engines. Thus, the complete fan-out has to be taken into

account as calculated in chapter 3.8.6, chapter 3.9.4, and chapter 4.8. Table 4-9 shows the

different fan-outs from HT, PCIe, and ULP.

Table 4-9: Comparison Fan-Out

In table 4-10 an overview about the comparison is given. It shows that ULP is at least

competitive or superior than the other protocols with regard to the performance.

Table 4-10: Comparison Overview

In conclusion, it can be said that with its features ULP fulfills all needs for a protocol

which can be used among all different hierarchies of a system and avoids time consuming

protocol translations and complex hardware effort.

HT PCIe ULP
Fan-Out 13 21 10

HT PCIe ULP
Achievable Neutral Bandwidth in GB/s 33.42 39.11 39.11

Achievable Bandwidth in % 55.7 97.8 97.8
Device Count 32 64 K 1M

Efficient Network Diameter ~3 ~4 ~72
Link Distance in Meter 0.62 7.77 83.97

Decoding Effort high medium low

 Chapter 5: Hardware Development

Hardware Development

164

5.1 EXTOLL

5.1.1 Introduction

The roots of the EXTOLL project started in 2005 at the Computer Architecture Group

(CAG) which is located at the University of Heidelberg. EXTOLL is a NIC that was es-

pecially build for HPC to realize an interconnection network with a large node count. It is

optimized for latency, scalability, bandwidth, and message rates. This has been achieved

by optimizing every single layer, from software to hardware.

One approach to optimize latency is to reduce time consuming protocol translations.

Therefore one supported host interface of EXTOLL is HT, which enables the device to

connect directly to a processor without any intermediate bridging devices. This also guar-

antees also high bandwidth as the link to the processor does not have to be shared with

other devices. In order to avoid complex protocol translations the internally used Hyper-

Transport On-Chip (HTOC) [64] protocol is closely coupled to the HT protocol.

EXTOLL is a switchless design, which means the switch is integrated inside the EXTOLL

hardware and no additional hardware like external switches are needed. Every EXTOLL

device has six links that can be connected in every suitable configuration, for example a

3D torus [65].

In figure 5-1 an overview over the EXTOLL architecture is given. The Extoll architecture

can be distinguished into three main blocks: the host interface, the network interface, and

the network. Two different host interfaces are available, HT or PCIe. The network inter-

face contains six different modules: the HTAX (HypterTransport™ Advanced X-bar), the

Address Translation Unit (ATU) [66][67], the Virtualized Engine for Low Overhead (VE-

LO) [68][69], the Remote Memory Access Unit (RMA) [70][71], the Shared Memory

Functional Unit (SMFU) [72][73], and the register file. In order to provide different com-

munication schemes EXTOLL includes three functional units, RMA, VELO and SMFU.

The Network consists of the Network Ports (NP), Link Ports (LP), and the actual switch.

During the development of EXTOLL the principles were always tested in hardware [74].

 Hardware Development

 165

The modules which were worked on during this thesis are the host interface and the RMA,

which are highlighted red. For a better understanding of the complete functionality of the

host interface and the network interface of EXTOLL will be described, the network itself

will be left open. The highlighted blocks will be described in more detail.

Figure 5-1: Changed Modules

5.2 Host Interface

The host interface is responsible for the connection between EXTOLL and the host node.

Current interfaces which can be used to connect EXTOLL to the host system are PCIe and

HT. As PCIe is the most common standard to connect extender cards to the system it

seems to be a logical choice to be included into EXTOLL. Nevertheless, it needs a bridge

chip, which translates the protocol used from the CPU into valid PCI packets, and in typ-

ical systems, this link between CPU and bridge needs also to be shared with all other de-

vices connected to PCI that communicates with the CPU.

In contrast, HT has an immediate connection to the CPU as it is the protocol used by AMD

Hardware Development

166

CPUs. HT also provides a connector specification [75], which enables developers of

motherboards to integrate an HT connector to a system.

For rapid prototyping several extender cards with different FPGAs for HT and PCIe have

been developed [76][77][78]. In those designs, only the corresponding host interface that

matches the card type has been included to save space and to ease the testing. For the

ASIC version of EXTOLL both interfaces are included in the chip and it can be chosen

before runtime which kind of interface is used to connect EXTOLL to the system. A block

diagram of the ASIC host interface is shown in figure 5-2.

Figure 5-2: Host Interface EXTOLL ASIC

5.2.1 HT Interface

For the first designs of EXTOLL a host interface with low latency was desired because

low latency is one of the main features of EXTOLL. An interface directly connected to

the CPU was a very promising starting point to achieve this task. At the beginning only

the HT Gen1 interface was available and provided by Opteron processors. Thus, the de-

cision was made to build a Gen1 core with the minimal feature set which was tested with

a corresponding FPGA board [76]. This core was later extended [79] to achieve better per-

formance and additional features which is part of this thesis. After the development of the

Gen1 core was finished and showed its potential [80] it was released as open source.

 Hardware Development

 167

As the Gen1 core fulfilled the needed requirements in the first test phase the development

was extended to a HT Gen3 core by the CAG. This was done because of bandwidth rea-

sons and to be able to integrate EXTOLL into Opteron systems by not influencing the

overall system with the low link speed.

5.2.1.1 Gen1 Interface

The Gen1 interface was built for rapid prototyping. Gen1 capabilities of HT provide low

frequencies and several link widths which made it possible to integrate a functional inter-

face into an FPGA. The first version of the Gen1-Core only fulfilled the absolute minimal

criteria for a connection with an Opteron processor. In [81] the first version of an HT-core

was developed. It was used to evaluate if it was possible to connect an external accelerator

card to an Opteron processor via an HTX-Connector. The parameters which were chosen

were an 8 bits link width and a link frequency of 200 MHz DDR. An internal link width

of 32 bits was defined as it is the HT protocol granularity, this resulted in a core frequency

of 100 MHz. As target device a Virtex 4 FX 60 was chosen. A block diagram of the first

version of the Gen1-Core is shown in figure 5-3. Only data paths are illustrated and the

control signals between the different modules have been left out for clarity reasons.

Figure 5-3: 8 Bits / HT200 Gen1-Core

Hardware Development

168

The first version was a relatively quick to develop because of the limitations that had been

made regarding to performance. As HT is doubleword aligned the decoding can be han-

dled with a decent hardware effort as the internal data width was also 32 bits. Thus, the

first version of the Gen1 core only needed ~10% [82] of logic of the FX60 FPGA. This

left enough space to include the first prototype version of EXTOLL to test the function-

ality of the processing units.

During the thesis, the Gen1 core was extended to increase performance. The link width

was doubled to the maximum capable link with of an Opteron to 16 bits and the link speed

was raised from HT200 to HT400. In order to provide the needed bandwidth a compro-

mise between internal frequency and data path width was chosen. The internal frequency

was raised to 200 MHz and the internal link width was doubled to 64 bits. In addition, the

handling of the LDTSTOP signal was included in the core. LDTSTOP is optional in HT

but for x86 platforms it is required. The modules which were changed for the new version

of the Gen1 core are marked in figure 5-4.

Figure 5-4: HT-Core Changes

In order to realize the doubled link width for the receive path additional deserializer mod-

 Hardware Development

 169

ules had to be used for the extra lanes. The first version of the core only needed to syn-

chronize the data from the link clock domain into the core clock domain. However, byte-

lanes are allowed to be delayed to each other. Therefore, a mechanism is needed to ensure

that all data belonging to one clock cycle is valid at the same time. In addition, the clock

difference between the two sending clocks and the receive clock are handled here. Those

clocks are allowed to differ in a range of +/-1000ppm for the sending clocks and +/-

2000ppm for the receiving clocks. The delay was handled by using two synchronizing

FIFOs which both have to be valid to consume their data. This also handles the case when

the receive clock is faster than the send clock. In the other case, if the receive clock is

slower that the send clock, the CRC is extracted and evaluated before it would be inserted

into the FIFO, which allows the receiver to catch up with the data. This is possible as the

CRC is calculated for each byte-lane separately.

Changes for the transmit path were very moderate. Additional serializers were needed for

the extra lanes. As the data that has to be serialized can be transmitted with the same clock,

only the additional serializer module was needed. In addition, changes had to be made to

the muxing structure to lead the correct bytes to the corresponding lanes.

During the initialization sequence of HT several capability- and configuration registers

are read and written by the host. In order to enable the changes made by the CPU there

exist two possibilities in HT. One is the Warm Reset and the other one is the LDTSTOP

sequence. Warm Reset can be simply seen as a reset signal which resets the whole logic

but the value of some configuration registers is maintained which is for example used to

change to larger link widths and higher frequencies. The first version of the core only sup-

ported this mechanism as the target system was capable of handling this behavior. How-

ever, HT demands the LDTSTOP sequence for x86 systems. Therefore, the LDTSTOP

sequence had to be added to the HT core. Changes had to be made to the synchronization

module, the initialization module, and the outputgen module. After receiving the start of

the LDTSTOP sequence the sequence must be performed as shown in figure 5-5.

Hardware Development

170

Figure 5-5: LDTSTOP Sequence

First the LDTSTOP must be asserted. The sender now finishes the current control packet

and starts to send disconnect NOP packets afterwards. Disconnect NOP packets are sent

at least 64 bit times after the CRC of the current CRC window was transmitted. If the re-

ceiver is finished with the LDTSTOP sequence the sender can be deactivated at this point,

otherwise it keeps transmitting disconnect NOP packets until the sender is finished.

For the sender the disconnect NOP sequence starts with the first reception of a disconnect

NOP packet. The sender keeps receiving packets until the CRC of the last CRC window

with non-disconnect NOP packets is received.

At this point changes to the register file will be performed like taking over link width and

frequency changes. Afterwards the device is sensitive for the deassertion of the LDTSOP

signal. If it is deasserted the sender ramps up the clocks to the programmed frequency and

then asserts CTL to start the low level link initialization sequence. The receiver inputs re-

main deactivated for at least 1us after the deassertion of LDTSTOP, then they are activat-

ed and waiting for the assertion of CTL.

 Hardware Development

 171

In the first version of the HT core the decode module was a complex case construct which

decoded the data and forwarded it in one clock cycle. This was possible because only one

doubleword was received in a clock cycle. Therefore, a large case was sufficient but hard

to comprehend when looking at the code. To be able to process the new link bandwidth

the internal bandwidth needed to change from 400MB/s to 1600MB/s. As already men-

tioned this was achieved by doubling both, the internal data path width from 32 to 64 bits

as well as increasing the core frequency from 100 to 200 MHz. Both changes made the

reuse of the old decode module impossible because more than one doubleword was now

received in one clock cycle and the timing budget was too small to process the whole data

at once. The decoding mechanism was totally changed and the logic was pipelined into

three stages. Figure 5-6 shows that doubling the data width creates multiple possibilities

what combinations of doublewords may be received. This is in close relation to how the

complexity of the hardware increases. On the left side it is shown what type of data can

be received in one clock cycle while on the right side the decoding effort is visualized as

well. The decoding effort not only includes the position of the doublewords but also takes

into account what data can be received before and after a doubleword.

Figure 5-6: Complexity Increase through Data Width Increase

Hardware Development

172

The first stage consists of four parallel modules. Those modules analyze the data stream

for the type of commands which may be received, the positions of the commands in a

quadword, the number of data which may be attached to the command, and if the packet

is a configuration packet. All doublewords are analyzed but some information is not valid.

The later stages are built in a way that they only use the information if it is valid.

The second and the third stage belong logically together and consist of three modules

each. In the first approach it was analyzed if only two stages were sufficient to reach the

target frequency for the complete decoding logic. It showed that two additional pipeline

stages were necessary. So the logic was separated into two portions. In the first portion

the information from the first stage was evaluated which was compacted to small bit vec-

tors for the corresponding task and in the second portion the bit vector was used to head

the data stream to the corresponding buffers and to create the shift-in signals. One module

collects the data which is forwarded to the command buffers, one module is responsible

for the corresponding payload data, and the last module generates the shift in signals for

the buffers.

A simple analysis was performed to determine the increased complexity of the decode

module. As an example of how this was done a fragment of the Verilog code is shown in

figure 5-7. The signal bit16_en (highlighted red) was used to distinguish if the core was

used with an 8 bits link width or a 16 bits link width. It can be seen that there are only

seven cases for the 8 bits link, whereas the 16 bits link covers 43 cases. This means that

the complexity is over 6 times higher as for the 16 bits version. The analysis of the other

modules showed a similar difference of 5.9 to 7.5 times.

 Hardware Development

 173

Figure 5-7: Gen1-Core Complexity Code Example

An additional problem of increasing the data width from 32 to 64 bits was that two com-

plete HT packets could now be received in one clock cycle. This is only possible for two

types of packets, NOPs and target dones as other packets are always larger due to an ad-

dress or attached data. A second NOP packet in one clock cycle is no problem as only the

credit information has to be summed up and forwarded to the decoding logic. An addi-

tional target done on the other hand causes problems as two complete packets have to be

forwarded to the receive queues. One possibility to solve this problem was to delay the

second target done until the first one was forwarded. This would work if it could be guar-

anteed that before receiving two further target dones in the same clock cycle, there would

Hardware Development

174

be one clock cycle with no target done to be able to forward the buffered target done. As

this is not guaranteed by the protocol another solution has been chosen. The queue for the

responses was split into two queues of half depth. The received response packets were

now alternately stored in the queues and if two target dones are received at the same clock

cycle they were both shifted into the corresponding queue. Logic was added to the output

of the queues so that the change was transparent to the applications and it still looked like

one queue.

5.2.1.2 Ordering

In the first version of core all applications connected to the outgoing queues had to handle

the ordering rules by themselves. This was no problem as all of these modules fulfilled

the strict ordering rules naturally. Later during the extension of EXTOLL an additional

unit was development which is called the SMFU. System tests for this unit [83] showed

that without the ordering scheme inside the core, deadlocks can easily occur. So it became

mandatory to include the functionality inside the core.

The ordering rules of HT are defined by the specification and are shown in table 5-1.

Table 5-1: Ordering Rules HT-Spec

It can be seen that there are many fields that show "yes/no". At these fields a decision can

be made if it is allowed for one packet to overtake another one. In this implementation of

the core packets which travel inside one virtual channel are not able to overtake each oth-

 Hardware Development

 175

er, so these fields are filled with "no". In all other cases of "yes/no" the field is filled with

"yes". This was done to ease the hardware but still fulfill all of the conditions where it is

allowed to overtake, but it does not have to. The resulting table can be seen at table 5-2.

The ordering of the core can be simply described as posted packets are not allowed to be

overtaken by non-posted and response packets without the PPW-bit set.

Table 5-2: Ordering Rules Core

Different ordering schemes were possible. One idea was to simply tag the packets with a

sequence number depending on the time slot it was received. Theoretically an elegant so-

lution as it could be easily checked which packet was received first and if it could be proc-

essed without violating the ordering rules. The problem hereby was how to handle the

overflow of the tags if a packet is delayed for a long time. In addition the logic needed to

check if a tag is larger than another is complex and therefore timing and resource consum-

ing.

The mechanism used was much simpler and is more efficient. Until they reach the queues

all packets which travel through the core have a strict order. At this point packets which

travel in different virtual channels could overtake each other. To handle this, an additional

ordering FIFO is used. This FIFO is just 3 bits wide and deep enough to maintain one en-

try for each entry in every control FIFO. One bit position inside an entry represents one

virtual channel. Every time a control packet is shifted into the corresponding FIFO it is

checked if the PPW bit of the command header is set. If it is set then no value is inserted

Hardware Development

176

into the ordering FIFO. Otherwise, one entry is inserted into the ordering FIFO with the

corresponding virtual channels set. As multiple packets can be received in one clock cycle

multiple bits can be set in one entry. With valid entries in the ordering FIFO the output is

checked for the posted virtual channel bit. If it is set the entry is held until the correspond-

ing packet from the posted virtual channel FIFO is consumed. Otherwise, if the posted bit

is not set the value is extracted from the FIFO. When a packet of the same virtual channel

is consumed at the same time no action has to take place. If no packet is consumed a coun-

ter for the corresponding virtual channel type is increased. With this information a deci-

sion can be made if a packet can be consumed. Valid combinations are shown in table 5-3.

Table 5-3: Criteria for Ordering Conform Packet Consummation

The generation of the new valid signal for the application made a new pipeline stage man-

datory, otherwise every application module would need to get all information and the log-

ic to evaluate if a packet can be consumed. With the extra pipeline stage the valid signal

would need two clock cycles to show the correct next value. Every application which re-

ceives data from the buffers would need to take care of this delay. In order to avoid this,

a special build FIFO has been added. Instead of a normal FIFO, a FIFO with two regis-

tered output stages has been used. If no packet was consumed the valid was generated

from the first entries of the FIFOs, else from the second entry. With this feature the order-

ing logic has been kept transparent.

Two implementations of FIFOs with two outputs have been made. In the first version two

FIFOs of half the size were used in parallel. Shifting in or out was alternated every time.

In simulation this solution worked, but on the FPGA the usage of RAM-blocks increased

which became a problem of the resource usage. There also started to be a timing problem

to reach the target frequency because of the additional muxing in front and after the buff-

ers. Therefore, a second type of FIFO was created which is built of a RAM based FIFO

followed by a smaller register based FIFO. The RAM based FIFO and can be bypassed if

virtual channel posted
fifo valid

non-posted
fifo valid

response
fifo valid

posted
ordering

entry valid

non-posted
 ordering

entry valid

response
ordering

entry valid

non-posted
counter != 0

response
counter != 0

posted 1 x x x x x x x
non-posted x 1 x 0 1 x x x

x 1 x x x x 1 x
response x x 1 0 x 1 x x

x x 1 x x x x 1

 Hardware Development

 177

it is empty to optimize latency. The first two entries of the register based FIFO are visible

for the next pipeline stage. An overview of the ordering logic can be seen in figure 5-8.

Figure 5-8: Ordering Logic

The outputgen module also needed to be rewritten and pipelined. This was performed by

the CAG and is therefore not described in detail.

5.2.2 Gen3 Interface

The ASIC version of EXTOLL needed an interface which provides a higher bandwidth

than the Gen1 core. A Gen3 compliant version was built by the CAG [84] to provide the

higher link frequency and therefore more bandwidth [85]. As the minimal link frequency

for a Gen3 device is 1.2 GHz the resulting minimal link bandwidth is 4.8 GB/s for a 16

bits wide link. Therefore the internal bandwidth has to be adapted by raising the data

width to 128 bits and the core frequency to 300 MHz.

The internal bandwidth change of the Gen1 core already showed the massive impact to

the hardware complexity. This increased complexity and additional mandatory features,

as for example re-transmission, made a complete rewrite of the core structure mandatory.

Hardware Development

178

Although next generation FPGA technology promises higher achievable frequencies

more pipeline stages are needed to achieve the needed frequency for Gen3. The additional

pipeline stages increased the latency of the core but also resulted in the problem of the

available credits of the Opteron. Referring to [62][63] the Opteron does not provide a

large number of credits and therefore the bandwidth drops for smaller packets as the round

trip latency cannot be hidden. As long as the maximum bandwidth can be achieved with

larger packets this is no major problem, but if more pipeline stages are needed for increas-

ing complexity the problem will aggravate. The functionality of the Gen3 core was tested

in [77][78].

In order to compare the complexity of the two cores the number of look up tables (LUTs)

needed for an FPGA implementation can be used from [86] and [87]. The Gen1 core need-

ed 6,371 LUTs with a Virtex 4 FPGA whereas the Gen3 core needed 37,094 LUTs with a

Virtex 5 FPGA. For a realistic comparison it must be taken into account that the Virtex 4

FPGA uses 4 input LUTs and the Virtex 5 FPGA uses 6 input LUTs which means that it

can handle 1.5 times the complexity. To be fair it must be mentioned that a used LUT may

not be fully utilized but this still means that the complexity of the Gen3 core is ~8 times

as high as the Gen1 core.

5.2.3 PCIe Interface

The third interface available for EXTOLL is PCIe. As it is the most common interface for

extension cards EXTOLL also provides a PCIe interface. There are two boards which pro-

vide a PCIe solution. One is a FPGA based board called [88] and the other one is for the

ASIC based version called [89]. For the FPGA version the integrated PCIe core is used

whereas for the ASIC version a third party IP is integrated into the ASIC. In order to con-

nect the PCIe core to EXTOLL a bridge module was built by the CAG which provides the

conversion between the PCIe protocol and the internally used HTOC protocol. All infor-

mation needed to generate valid PCIe responses is also stored there. As the MTU of PCIe

can be larger than the MTU of HT the application modules have to be able to handle larger

sizes.

 Hardware Development

 179

5.3 Network Interface

5.3.1 HTAX

The HTAX is a crossbar which switches the traffic among the different functional units

and the host interface. Therefore the transmitting unit requests the port of one or multiple

target units. If a target unit is capable of receiving traffic it generates a grant to the HTAX.

The arbitration logic of the HTAX matches the requests to the grants and forwards the

grants to the sending unit. The grant is given until the Release Grant is set by the trans-

mitting unit. This triggers a new arbitration round for the utilized port. For the receiving

unit, the data transmission is framed by a Start of Transaction (SOT) signal and will pro-

ceed until an End of Transaction (EOT) signal is received. A timing diagram of an exam-

ple sequence is shown in figure 5-9.

Figure 5-9: HTAX Timing Diagram

The HTAX is protocol agnostic. It provides easy manageable and latency optimized com-

munication between different partners. The participating units are responsible for flow

control and must be aware of the restrictions of the receiving unit. In order to achieve high

bandwidth, two transmissions can be transferred back to back if the preceding transmis-

sion is at least 2 clock cycles long without adding any additional overhead. For detailed

information please refer to [56] and [90].

Hardware Development

180

5.3.2 ATU

For security reasons, the user should not be allowed to directly use physical addresses.

Otherwise other processes or the operating system could be influenced accidentally or on

purpose. Therefore the user has virtual addresses in EXTOLL. Typically the Operating

System (OS) is needed to translate a virtual address into a physical address. This handling

causes timing overhead because of scheduling of threads which increases the latency of

the hardware. The ATU provides an efficient hardware driven address translations for vir-

tual addresses from the user space to the physical address space. Not only the addresses

are translated by hardware, which reduces the overall latency of a transaction, but the

ATU also provides a Translation Lookaside Buffer (TLB). Thus, the latency is further re-

duced if the address translation is already stored. For more information please refer to

[67].

5.3.3 VELO

This unit provides a communication scheme with minimized latency in terms of hardware

and software. The access to the hardware is by user level and therefore avoids a context

switch which would be necessary if the access would be made by the operating system

kernel. At the sender side data is written to the VELO with a PIO access by a single write

operation. If the data is received it is written back with a DMA operation into a ring buffer

in the main memory where the CPU can poll for new packets. This might be inefficient in

terms of CPU utilization but is the most efficient way from a latency perspective. The

principals of VELO are described here [68].

Compared to the RMA, VELO provides a better performance for smaller packages be-

cause of the saved DMA access from the device to the main memory. This advantage

shrinks if the size of the data increases. The point when RMA becomes more efficient de-

pends on the technology were EXTOLL is used. For more information of the current im-

plementation please refer to [91].

 Hardware Development

 181

5.3.4 RMA

The first revision of EXTOLL already provided a fully functional RMA unit [72]. In order

to enhance the performance and usability some substantial changes were made.

List of changes:

• Added byte access for RMA transactions

• Support for access over 4k boundaries

• Pipelining to hide ATU latency

• Support for lock operations

• Additional data path width of 128 bits

• Support for larger network MTU

• Support for lager host MTU

The RMA communication engine is meant to transfer medium to large amounts of data

among nodes. To reduce the load of the CPU descriptors are used to manage a transaction.

Those descriptors are sent to the RMA and the rest of the data transfer is completely han-

dled by hardware.

The RMA mainly consists of three modules which are Requester, Responder, and Com-

pleter. The Requester and the Responder read data and forward them to the corresponding

Completer which writes the data to its destination. Other small modules are used to share

resources between the different main modules. Those are the VPID Reader, ATU Handler,

and Buffer Queue Handler. A block diagram of the RMA is shown in figure 5-10.

Hardware Development

182

Figure 5-10: RMA Block Diagram

Four communication types are provided: put, get, lock, and special put. The two mainly

used communication types are the put and the get operation. If a put operation is per-

formed a descriptor is written to the Requester (1) and the data is read from main memory

(2). After the data is received from main memory (3) it is transmitted to the Completer (4)

of the receive node and writes the data to memory (5). This sequence is shown in figure 5-

11.

Figure 5-11: RMA Put Operation

 Hardware Development

 183

For a get request the CPU writes also a descriptor to the Requester module (1). The de-

scriptor is sent to the Responder of the communication partner (2). The Responder reads

the data from main memory (3). As soon as the data is received from main memory (4) it

is transmitted to the Completer of the RMA which initiated the request (5) and the Com-

pleter writes the data to main memory (6). The get sequence is shown in figure 5-12.

Figure 5-12: RMA Get Operation

In the following sub-chapters the functionality of the RMA modules is described.

5.3.4.1 VPID Reader

The VPID Reader receives the request signals from the different main modules. If more

than one request is set simultaneous arbitration has to take place. After reading the values

of the corresponding register file entry the values are given back to the requesting module.

5.3.4.2 ATU Handler

Due to the fact that the RMA not only uses physical addresses but also virtual addresses

a mechanism is needed to translate a virtual address into a physical address. In order to

realize this efficiently the ATU was developed by the CAG. As it is unlikely that every

main RMA module requests an address translation all the time but only every couple of

clock cycles it is of advantage to share one requesting port between the modules. There-

fore the ATU Handler was developed to arbitrate between the different modules. The ATU

handler is able to store multiple address translation requests and forwards them to the

ATU. If a response to an address translation is given to the ATU Handler it is merged

which address translation it belongs to and then it is given back to the requesting unit.

Hardware Development

184

5.3.4.3 Buffer Queue Handler

This unit handles the address requests for notifications of the RMA. Similar to the ATU

Handler it is not possible that the different main modules request the buffer queue all the

time and therefore the buffer Queue is shared by the Buffer Queue handler. The notifica-

tions of different modules are written into the same ring buffer inside the main memory.

Only the next possible entry of the ring buffer is visible to the application. Thus, the ad-

dress may only be requested if the notification is ready to be sent. Otherwise an entry of

the ring buffer can be empty while the next one is written and therefore the reception of

the invisible notification is delayed. As soon as an address is given by the Buffer Queue

Handler to the module the notification is ready to be sent.

5.3.4.4 Requester

The transaction starts at the time when a Software Descriptor is written to the Requester.

A software descriptor consists of three doublewords. The configuration of a descriptor is

shown in figure 5-13.

Figure 5-13: RMA Software Descriptor

As it is possible that the CPU splits data belonging to one transaction into multiple host

interface packets at a doubleword boundary, it can be necessary to combine the different

chunks back to a complete descriptor before forwarding it to the Requester. This is done

by the Write Combining Buffer (WCB) which is included in the Requester.

 Hardware Development

 185

For a received put request the data is read from main memory. As the whole transaction

can be much larger than the host MTU multiple accesses to main memory are likely to

read the data. Also the network MTU can be smaller than a transaction and the transaction

must be split into multiple network packets. Thus, the received data from main memory

is gathered until the data for one network packet is received. Then the network packets are

sent to the Completer. Data of byte accesses are pre-formatted for the Completer which

means that up to the first 3 bytes of the data might be empty regarding to the lower two

bits of the destination address. Get requests are framed into a network packet and forward-

ed to the Completer.

5.3.4.5 Responder

The Responder gets the descriptors forwarded from the Requester. As soon as the descrip-

tor is received from the network the sequence is similar to a put descriptor of the Request-

er. The data is read from main memory and forwarded to the Completer. The preparation

of the data for the Completer is the same as from the Requester.

5.3.4.6 Completer

The Completer consists of six modules: stream gen, VPID check, stream buffer, control

buffer, lock order, and write engine. Those modules are separated into three pipeline stag-

es. The two main modules are stream gen and write engine. The stream gen consumes the

packets from the EXTOLL network, extracts the control information from it, generates

the corresponding requests for other modules, and partitions the incoming data to valid

host interface portions. The write engine checks if all information is available to forward

a valid host interface packet and to handle the requests to the HTAX. In the second pipe-

line stage different checks are handled. The VPID check module gets the needed informa-

tion to match the VPID requests to the corresponding response and stores it until the

corresponding network packet is forwarded. The lock order module signals the Responder

that a lock packet has been received and that all network packets received before the lock

has been forwarded to the host interface. Stream buffer and control buffer just store con-

trol information and data until the needed responses from the register file or the ATU have

been received to forward the data to the host interface. The buffers are deep enough to

Hardware Development

186

hide the typical latency of the register file and ATU request to prevent the pipeline from

stalling. A detailed block diagram of the Completer is shown in figure 5-14.

Figure 5-14: Completer Block Diagram

Stream Gen

Network packets received from the network port are handled by the stream gen. At this

point the module receives network packets from the network port. A Network packet con-

sists of a SOP cell, a network descriptor, and the data. The structure of a packet received

from the network port is shown below.

Figure 5-15: Completer Network Packet

Information transported inside the SOP cell is mainly important for the module before the

Completer. The only needed information is the destination VPID which is needed to

 Hardware Development

 187

match the network packet to the corresponding process. The simplified structure of the

SOP cell is shown in figure 5-16.

Figure 5-16: Network Packet SOP Header

The network descriptor contains all the information needed to process the network packet

besides the destination VPID. Two different sizes are possible for a network descriptor,

128 or 192 bits. At the Completer side only one packet type is 192 bits large which is the

lock request. All other types are 128 bits. In z the generic design of a network descriptor

is shown. In most cases the type specific 9 bits in the second doubleword describe the pay-

load size, only in lock requests the target is described.

Figure 5-17: Network Descriptor

Field Description (first 64 bits):

• Protection Domain ID (PDID, 16 bits [15:0]):
Used to ensure that the network packet is allowed to access the memory space of
the process.

• Source Node ID (16 bits [31:16]):
Origin node id where the network packet was generated.

• Payload Size (9 bits [40:32]):
Number of bytes transferred, where all 0 = 1 byte.

Hardware Development

188

• Target (TGT, 1 bit [32:32]):
Defines target of a lock packet, 0 = Completer and 1 = Responder, only used for
lock packets

• Source VPID (9 bits [49:41]):
VPID of the origin node process.

• Notification (NOTI, 2 bits [51:50]):
Corresponding unit must write notification after network packet is done, bit posi-
tion 0 is for Responder whereas position 1 is for Completer

• Command (CMD, 4 bits [55:52]):
Describes which type of command is transmitted

• Modifiers (MODE, 6 bits [61:56]):
Enables different features of the RMA unit

• Error (2 bits [63:62]):
Signals that errors have occurred in previous modules, bit position 0 is for
Requester whereas position 1 is for Responder. Completer needs this information if
notifications have to be generated.

Command Encoding

Ten different commands are given in the RMA unit. To binary encode those commands at

least 4 bits are needed. A special command encoding was chosen to ease the hardware im-

plementation of the Completer. Bit position one signals if the packet is of a type which

might need an address translation. If bit position two is not set the packet belongs to a

group which can be handled all the same way corresponding to their structure. Bit position

three and two signal if the packet is a short or a lock packet. Therefore not the whole com-

mand has to be decoded to determine how the packets have to be handled. A table of the

command encoding is shown below.

 Hardware Development

 189

Table 5-4: RMA Command Encoding

Modifiers

The modifiers field contains 6 different bits. Every bit handles one feature of the RMA.

An Overview of the features is given at figure 5-18.

Figure 5-18: RMA Mode Encoding

Field Description:

• Remote Registerfile Access:
If set, the packet accesses the register file. This allows an access to the register file
of the node via the RMA. Therefore, the register file of an EXTOLL card can be
accessed via the network interface even if the host interface is not connected.

Hardware Development

190

• Interrupt:
If set, an interrupt is needed at the end of the packet

• Translation Enable:
If set, the packet uses virtual addresses so an address translation is needed to han-
dle it.

• Excellerate Write Access:
If set, data is written to the excellerate interface and not to the host interface.

• Notification Replicate:
If set, a notification/interrupt is generated for every network packet belonging to
one software descriptor and not only to the last one.

• Excellerate Read Access:
If set, data is read from the excellerate interface and not from the host interface.

Stream Gen Functionality

The functionality of the stream gen can be described with a finite state machine (FSM)

with 14 states. During every stage parts of a network descriptor are consumed and infor-

mation and data are forwarded to other modules. The states of the FSM can be separated

into three different groups, data forwarding, special operation, and pause. A picture of the

FSM is shown in figure 5-19.

Figure 5-19: Completer Stream Gen FSM

During the data forwarding states network packets, which are normally larger than pack-

ets for the host interface, are partitioned into parts that can be transmitted with one host

 Hardware Development

 191

packet. Therefore, first the needed control information from the network packet, needed

to create the host packet header, is stored into the stream buffer. At the same time the need-

ed control information to process the host packet at the write engine is stored in the control

buffer. In the following clock cycles the corresponding data of the host packet is also

stored in the stream buffer.

There are two special states, one is the lock request state and the other one is the noti state.

During the lock state a lock request is consumed from the network port and is forwarded

to the lock order module. At the noti state all needed information to generate a notification

is stored into the stream buffer and the control buffer. This happens at the end of a network

packet which has the notification bit for the Completer set or if a notification put request

is received which only triggers a single notification.

During the pause states the stream gen makes no progress even if valid data is available

from the network port. There are two possibilities how this can happen. One is that the

write engine does not make any progress and back pressure makes it necessary for the

stream gen to halt. Therefore the stop state is introduced, it ensures that it is possible to

stop in every state without loss of data and to continue processing the network packet

without any re-initialization of the FSM. The other one is that an error occurs during the

operation of the stream gen. For example, this could occur if the packet length of the net-

work packet does not match the payload size field, which can be determined with the start

of packet and end of packet bit which is provided by the network port. If this happens, the

stop state ensures that the missing data is forwarded with dummy data and if no new start

of a network packet is signaled by the network port the data is drained until a start is sig-

naled. This ensures that even if an error occurs the hardware is still functional and not

stuck.

Data Forwarding

Other than the previous version of the RMA it is allowed to transmit every kind of packet

size from 1 up to 512 bytes. Therefore the different granularities and transaction types of

the protocols have to be taken into account.

Hardware Development

192

For memory accesses which are not aligned to byte boundaries it must be determined how

the packet is misaligned. Three types of misalignment are possible, only the start of the

data is misaligned, the end of the data is misaligned, and both, start and end, are mis-

aligned.

Data received from the Requester and the Responder is already doubleword aligned to the

starting address of the destination, which means that a byte which is written to a byte ad-

dress with the lower 2 bits zero is also the start of a doubleword. For example, if the des-

tination address has the lower bits set to 102 the first two bytes of the data packet are

empty and the valid data starts at byte three. This also means that the maximum payload

size of the packet is reduced by up to three bytes if the packet starts misaligned.

It is also of importance to not only determine the start- and endpoint of the packet if it is

misaligned, but also the length of the packet. This ensures that very small sized packets,

which only need a single byte access at the host side, are also handled correctly. The types

of possible byte fragmentation of a network packet can be seen in figure 5-20.

Figure 5-20: Completer Byte Access Data Fragmentation

For the host interface a byte mask is needed to perform a byte access. Depending on the

host interface the allowed byte masks can look different. Depending on how large the byte

mask, which has to be calculated, is the more complex the hardware will be. Therefore the

minimum size of a byte access has been chosen to realize.

As the network Maximum Transfer Unit (MTU) is larger than the host MTU large net-

work packets have to be split into multiple host packets. The Completer is able to support

 Hardware Development

 193

host MTUs from 64 up to 512 bytes. If the first data has to be written to a doubleword

misaligned address a byte access has to be performed. The Completer only performs byte

accesses at the beginning of a network packet to reach doubleword alignment. Therefore

a byte access never exceeds a size of 3 bytes, even if it would be possible to use larger

byte accesses of the host interface. This design decision was chosen to reduce the hard-

ware effort compared to the relative low gain of performance. If the performance is im-

portant at this point the user should chose host MTU aligned accesses to avoid

fragmentation overhead.

After doubleword alignment is achieved the next packet is used to reach the host MTU

alignment. Therefore, it is determined how many doublewords are needed to reach the

next host MTU address alignment. This is done to fulfill some host protocol requirements.

For example, in the HT protocol a packet is not allowed to cross a 64 bytes boundary. With

this mechanism it is also ensured that a packet does not cross 4k page boundary. At this

point full MTU sized host packets are prepared until insufficient data from the network

packet is provided. If still enough data is available for at least one doubleword a further

doubleword access is performed. Following this the remainder of the data is forwarded

with a byte access. An example how the data of a network packet is fragmented into mul-

tiple host packet conform data blocks is shown in figure 5-21.

Figure 5-21: Completer Network Packet fragmentation Example

VPID Check

The VPID check module checks all the security bits regarding the VPID of every network

packet except for remote register file accesses. Therefore, the information given from the

Hardware Development

194

stream gen is stored in an input FIFO until the data read from the register file by the stream

gen is returned. After the check of the PDID and the excellerate bit the gathered data is

shifted into an output FIFO where it is stored until it is consumed by the write engine.

Stream Buffer

In order to hide the latency of the responses from the ATU and the register file the stream

buffer is introduced. It is a FIFO which stores the data that travels from the stream gen to

the write engine. There are two different types of data that are stored. One is the informa-

tion which is needed to create a header for the host interface and the other one is the raw

data which has to be transferred. A header information entry is always followed by at least

one doubleword of data even if an error has occurred and the rest had to be filled with

dummy data. The encoding of the header information is shown in figure 5-22.

Figure 5-22: Stream Buffer Header Format

Field explanation:

• addr 64 bits [63:0]:
address of a packet (if it is a physical address all bits are valid, if it is a virtual
address only the lower 12 bits are valid)

• dw_cnt 8 bits [71:64]:
number of raw data in doublewords which have to be sent

• src_nd_vpid 8 bits [79:72]:
source node VPID needed for error processing Source Node ID

• src_nd_id 16 bits [95:80]:
source node ID needed for error processing

 Hardware Development

 195

• np_cnt 9 bits [104:96]:
network packet count needed for error processing, containing overall size of net-
work packet

• np_cmd 4 bits [108:105]:
network packet command needed for error processing, containing command type
of network packet

• np_error 3 bits [111:109]:
network packet error needed for error processing, which kind of error occurred
001: Requester error
010: Responder error
100: Completer error

• np_mode 6 bits [117:112]:
network packet operation modifier for error processing, to determine in which kind
of operation the Completer was when an error occurred

• ba 1 bit [118]:
determines if the packet is a doubleword (0) or byte access (1)

• ie 1 bit [119]:
interrupt will be generated after the notification has been sent

• fh 1 bit [120]:
this command is the first header for an entire network packet

• no 1 bit [121]:
this command is only a notification with no data from a network packet

• lh 1 bit [122]:
this command contains the last header of a network packet

• na 1bit [123]:
notification attached, the end of this network packet sequence will be followed by
a notification

Control Buffer

The control buffer stores the information which is needed to request the HTAX or to re-

quest a notification address from the buffer queue. Every host packet in the stream buffer

has its corresponding entry. The format of a control buffer entry is shown in figure 5-23.

Hardware Development

196

Figure 5-23: Control Buffer Entry Format

Field explanation:

• local_vpid 8 bits [7:0]:
local vpid is needed to generate a request to the buffer queue or for error handling

• ta 1 bit [8]:
translation enable determines if a physical or a logical address is used for the
HTAX packet

• rra 1 bit [9]:
remote registerfile access is set if the packet is routed to the register file

• ex 1 bit [10]:
excellerate access is set if the packet is routed to the excellerate port

• lh 1 bit [11]:
last header is set if the current HTAX packet is the last header corresponding to one
network packet

• ad 1 bit [12]:
address done is set if the current HTAX packet is the last header corresponding to
an address translation and is no longer needed

• no 1 bit [13]:
notification is set to show that this header is part of an notification packet

• at 1 bit [14]:
address taken is set if the current HTAX packet is the last header corresponding to
an address translation and is in use

Lock Order Module

EXTOLL provides a lock operation which is an atomic fetch-compare-and-add operation.

As this feature is mainly handled by the Responder it is not described in detail but only

the part of the Completer is described.

 Hardware Development

 197

In order to guarantee a correct behavior of the lock operation all data previously received

has to be written back to the memory before the lock operation takes place. Therefore, the

lock order module signals to the Responder that all data received before the lock has been

completely processed. Afterwards the lock operation has no chance to overtake any pre-

viously received data and can be executed by the Responder without any problems.

The functionality of the lock order module is based on two resettable counters. One of the

counters is the in flight count. It shows how many potential host packets have been for-

warded from the stream gen to the write engine but not been completed. If a lock request

has been received by the stream gen it is forwarded to the lock order module. At this point

the current in flight count value is written into a FIFO and the in flight count is reset. Si-

multaneously the second counter, which is the processed count, starts to count the finished

packets of the write engine. Finished packets can be both, packets successfully forwarded

to the HTAX or packets which have to be dropped because of an error. If the processed

count value is equal to the output value of the FIFO the lock order module signals the Re-

sponder that the forwarded lock request from the stream gen is now safe to use. A block

diagram of the lock order module is shown in figure 5-24.

Figure 5-24: Completer Lock Order Module

Hardware Development

198

Write Engine

The write engine consists of two small FSMs which work almost independently as long

as no error occurs. They are synchronized with the grant signal of the HTAX. One FSM

is responsible for requesting the HTAX and the other one is responsible for forwarding

the data to the HTAX. This design decision was made as the HTAX is a critical resource

in performance perspective. Neither an unnecessary request has to be set nor should a val-

id request wait. Both FSMs are shown in figure 5-25.

Figure 5-25: Completer Write Engine FSMs

Before requesting an HTAX port the request FSM must ensure that all needed require-

ments of the entry of the stream buffer are met. A valid physical address must be available

and it must be allowed to access the addressed region. If the requirements are given a re-

quest to the HTAX is set, the entry of the control buffer is shifted out, and the request FSM

goes to the hold state. The request is held until a grant is given from the HTAX. Right after

the grant, the state is switched to request again. If the next packet is ready for transmission

the request to the HTAX is set again and the state is switched to hold regardless if the pre-

vious packet has already finished. This can be done because the next grant cannot be set

before a release grant was set from the write engine.

As already mentioned the data streaming FSM is responsible for the data forwarding from

the stream buffer to the HTAX. It waits in the first header state with SOP set until a grant

 Hardware Development

 199

of the HTAX is received and the first part of the header is transmitted. Than it goes to the

second header state and transmits the second part of the header. As a host packet from the

Completer may contain only one doubleword of data it must be checked if the release

grant is already set in this state. In the next clock cycle the data streaming FSM goes in

the data state and only streams the data from the stream buffer to the HTAX. If the second

to last data portion is reached the release grant is set which enables the HTAX to give a

new grant. With the last portion of data the EOP is set to signal the end of the host packet.

Afterwards the FSM goes to the first header state. The sequence is shown in figure 5-26.

Notifications need a special handling from the write engine. The sequence is almost sim-

ilar to the normal data forwarding of the data streaming FSM but only a single header is

stored without data. In order to be able to build a correct host packet for the notification

the needed information of the first host packet of a network packet is stored. Therefore, a

special state was introduced to ease the different handling.

The error handling of the write engine is complex because of the almost independent work

of the two FSMs. For starting and ending an error sequence the request FSM is responsi-

ble. Therefore, it has to check if all requirements to start a transaction are met. If an error

occurs because of an invalid address or trying to access a forbidden destination the states

of both FSMs have to be taken into account. An error can only be determined during the

req state of the request FSM and it will jump into the control error state as soon as an error

is detected. At this point it is of importance in which state the data streaming FSM is. Dur-

ing the first header state the current packet has to be dismissed and the state will be

changed to error buf in the same clock cycle. Otherwise, the previous packet has to be

completed before a change to the error buf state can be made. The packet will be finished

regardless of the error. After the previous packet has been finished the state will be

changed to error buf. In the error buf state the current packet will be dismissed by stream-

ing it out of the stream buffer, the error bits will be set, and an interrupt or a notification

will be sent if it is indicated.

Hardware Development

200

Figure 5-26: Completer Write Engine Sequence

 Chapter 6: Conclusion and Outlook

Conclusion and Outlook

202

6.1. Conclusion

The main goal of this thesis was the optimization of communication schemes in an HPC

system. First a general evaluation has been made about the necessary features of a proto-

col. The analysis showed the existence of complex dependencies among the different fea-

tures. Those dependencies make it difficult to optimize the properties as the change of one

nearly always has an influence on another. Thus, the main task of a protocol is finding a

balance without a negative impact on performance.

In chapter 2 the relevant state of the art protocols HT and PCIe have been analyzed with

reference to the previously defined features and their attributes. For the analysis only pro-

tocols closely coupled to the processor were relevant because the processor is the start of

the communication process.

The individual contribution of this thesis is a network protocol which is innovative and

applicable at every point inside an HPC system regardless of the distance of the commu-

nication partner. Particular attention has been paid to the balance between feasibility in

hardware, protocol granularity, and communication distance. Some characteristics are

shared with the state of the art protocols but substantial enhancements have been made.

With the optimized alignment among the different layers of the protocol a better scalabil-

ity can be reached. Thus, the communication scheme is scalable for large systems with up

to 220 participants. In addition, dependencies have been minimized in every respect and

therefore the hardware implementation effort is low. The results of ULP have been com-

pared with the state of the art protocols showing that ULP is superior in most cases and in

all others at least competitive.

Beyond the development of the ULP protocol, contributions have been made to the EX-

TOLL design. The work on both projects has cross-fertilized each other. During the hard-

ware development two main tasks have been accomplished. One was the data width and

frequency extension of the HT core which has been used in various academic and industry

projects. The other one was the extension of the RMA unit. In both cases a protocol de-

coding and translation was the essential part of the task. The derived findings of ULP were

 Conclusion and Outlook

 203

integrated in the corresponding hardware modules to optimize the performance. Especial-

ly the hardware efficient methodology of payload transfers with any byte granularity and

address alignment has been proven.

In combination the two projects accomplished the objective of a protocol which is feasible

to replace all other protocols of an HPC system. It efficiently provides communication

among processors, inter node communication, and node to node communication. It allows

a minimized communication overhead, optimized latency due to reduced hardware effort,

and a competitive bandwidth. In addition, it is capable of scaling for large systems without

restrictions to the performance. While doing this, all time and power consuming bridging

devices and the corresponding protocol translations are eliminated.

6.2. Outlook

For the future there are three interesting elements which have to be analyzed and included

into the development. The first point is how cache coherent traffic can be included into

the protocol. A simple solution would be to extend the current header format with the nec-

essary cache coherent packets to handle the corresponding traffic. This would only result

in additional decoding effort for the coherent packets, which is easy to handle. The disad-

vantage of this solution is the relatively coarse packet granularity of ULP as coherent traf-

fic consists mainly of small packets which might not need the full granularity and

therefore waste bandwidth. Thus, as already noted in chapter 4.3, an additional layer is

intended for ULP which allows smaller packet sizes and only handles the coherent traffic.

It must be determined how this layer can be integrated into the data stream without wast-

ing bandwidth, but also with minimal influence to the upper layers. The two alternatives

for the coherent communication need to be analyzed to achieve a reasonable decision.

The second point which is interesting for the future is eliminating the view of hierarchical

boundaries from the protocol point of view. If the communication scheme among devices

is unified the location of the device is not of importance, but the distance to the commu-

nication partners. Thus, a mechanism must be included to measure the distance among

them. As an example, for a coherency domain it is not important if the communication

Conclusion and Outlook

204

partner is in the same node, another node, or a different rack, it is only important if it can

be reached in a defined period of time. In order to realize this, the link distance can be

measured by defined timing packets and their responses. With this information, coherent

devices with a specific time-distance can be grouped to one coherency domain. Thus, they

can be used as if they would be in one node. For the future it must be analyzed what the

advantages of this approach can be, how the system can be initialized, and for which use

case it is relevant.

The third point is analyzing the influence of ULP in terms of energy efficiency. It is as-

sumed that with ULP the hardware complexity of a single device is significantly lowered

compared to other devices as special attention was put on it. This should result in an over-

all lowered energy consumption. However, a fair comparison is difficult to perform as de-

vices do not only consist of a network interface and therefore the power consumption of

a single network interface is complex to measure. Information on the hardware complex-

ity and energy consumption of other interfaces is hard to get. Even if they are available

the efficiency is always dependent of how they were implemented. For example, two in-

dependently developed PCIe cores with the same features can have substantial power con-

sumption differences. In addition, the energy consumption of the supported protocol

features would be needed for a fair comparison. Otherwise, optional and complex features

could not be considered. Nevertheless, with ULP fewer devices are needed in the system,

because the unnecessary protocol translation engines are eliminated.

 205

Abbreviations:

AC Alternating Current

ACK Positive Acknowledgment

AMD Advanced Micro Devices

ARQ Automatic Repeat Request

ATU Address Translation Unit

ATOLL Atomic Low Latency

ASIC Application-Specific Integrated Circuit

BCM Byte Count Modified

BDF Bus Device Function

BER Bit Error Rate

BKDG BIOS and Kernel Developer’s Guide

CAG Computer Architecture Group

CAS Chinese Academy of Sciences

CDR Clock Data Recovery

CLK Clock

CMD Command

COM Comma

CPU Central Processing Unit

CRC Cyclic Redundancy Code

CTL (not defined at HT specification)

DC Direct Current

DDR Double Data Rate

DEEP Dynamical Exascale Entry Platform

DLL Data Link Layer (PCI)

DLLP Data Link Layer Packet

DW Double Word

ECC Error Correcting Code

ECRC End-to-End CRC

206

EDB End Bad (TLP/DLLP)

EDS End of Data Stream

EIE Electrical Idle Exit

EIOS Electrical Idle Order Set

END End (TLP/DLLP)

EOT End of Transfer

EXTOLL Extended ATOLL

FCRC Frame CRC

FEC Forward Error Correction

FIFO First In First Out

Fmt Format

FPGA Field Programmable Gate Array

FSM Finite State Machine

FTS Fast Training Sequence

FU Functional Unit

Gb Giga Bit

GB Giga Byte

GHz Gigahertz

GPU Graphics Processing Unit

GT Giga Transfers

HARQ Hybrid Automatic Repeat Request

HDL Hardware Description Language

HPC High Performance Computing

HT HyperTransport

HT1 HT Generation 1

HT2 HT Generation 2

HT3 HT Generation 3

HTAX HyperTransport Advanced X-Bar

HTOC HyperTransport On-Chip

 207

ICT Institute of Computing Technology

ID Identification

IDEL Logical Idle

IDO ID based Ordering

ISOC Isochronous

LCRC Link CRC

LFSR Linear Feedback Shift Register

LSB Least Significant Bit

LTSSM Link Training and Status State Machine

LUT Lock Up Table

MBU Multi Bit Upset

MCU Multi Cell Upset

MHz Megahertz

MIC Many Integrated Cores

MSB Most Significant Bit

MSI Message Signaled Interrupt

MTU Maximum Transfer Unit

NAC Negative Acknowledgment

NIC Network Interface Controller

NOP Null Packet

NOTI Notification

NP Network Port

OS Operating System

OS Ordered Set (PCIe)

OSI Open System Interconnect

OW Octaword

PAD Pad

PCB Polychlorinated Biphenyl

PCIe Peripheral Component Interconnect Express

208

PDID Protection Domain ID

PPW Pass Posted Write

QOS Quality Of Service

QPI Quick Path Interface

QW Quad Word

RMA Remote Memory Access

RMW Read Modify Write

RRA Remote Registerfile Access

SATA Serial Advanced Technology Attachment

SDP Start DLLP

SEB Single Event Burnout

SEE Single Event Effect

SEFI Single Event Functional Interrupt

SEL Single Event Latchup

SET Single Event Transient

SEU Single Event Upset

SFP Small Form-factor Pluggable

SKP Skip

SMFU Shared Memory Functional Unit

SOP Start of Packet

SOT Start of Transfer

STP Start TLP

TGT Target

TH TLP Processing Hints

TC Traffic Class

TL Transaction Layer

TLB Translation Lookaside Buffer

TLP Transaction Layer Packet

TS Training Set (PCIe)

 209

TS Training Sequence (ULP)

ULP Unified Layer Protocol

USB Universal Serial Bus

VG Value Group

VPID Virtual Process ID

WCB Write Combining Buffer

List of Figures

 211

Figure 1-1: Composition of the TOP 500 List [1] .. 2
Figure 1-2: Example Cluster System .. 3
Figure 1-3: Data Transmission from Software- and from Hardware-Perspective 6
Figure 2-1: On Chip Connection... 10
Figure 2-2: Direct Off Chip Connection ... 11
Figure 2-3: Bridged Off Chip Connection .. 11
Figure 2-4: Node to Node Connection.. 12
Figure 2-5: Primary Feature Overview ... 13
Figure 2-6: Attribute Dependencies.. 14
Figure 2-7: Packet Framing... 14
Figure 2-8: Header Frame Example.. 15
Figure 2-9: Bandwidth Utilization .. 16
Figure 2-10: Pipelining ... 19
Figure 2-11: Bubble Insertion Through Protocol Constraints 20
Figure 2-12: Data Granularity... 22
Figure 2-13: Muxing Complexity Fixed Granularity.. 23
Figure 2-14: Bandwidth Loss with Fixed Granularity .. 24
Figure 2-15: SONET/SDH Framing [29].. 25
Figure 2-16: Bandwidth Loss with Coarse Grain Granularity.............................. 27
Figure 2-17: Bandwidth with Optimal Granularity... 27
Figure 2-18: Address Space Data Transfer ... 28
Figure 2-19: Variable Hierarchy Example.. 29
Figure 2-20: Variable Granularity Compact ... 30
Figure 2-21: Variable Granularity Aligned... 30
Figure 2-22: Control Frame Dependencies... 32
Figure 2-23: Wiring Complexity... 32
Figure 2-24: Muxing Complexity ... 33
Figure 2-25: Inter Frame Dependencies.. 33
Figure 2-26: Multiple Functional Units .. 34
Figure 2-27: Width Alignment.. 34
Figure 2-28: Credit Release .. 38
Figure 2-29: Rerouting.. 40
Figure 2-30: Error Handling ... 44
Figure 2-31: CRC as LFSR [48] ... 45
Figure 2-32: Overhead Error Correction Methods.. 48
Figure 3-1: Chip Cross Section [50] ... 51
Figure 3-2: Solder Bump Size [51] ... 52
Figure 3-3: Valid Stop Scheme... 54
Figure 3-4: HT Topology Elements .. 62
Figure 3-5: HT Example Topologies .. 62
Figure 3-6: HT Link Configurations... 64
Figure 3-7: Gen1 Low Level Initialization ... 66
Figure 3-8: HT3 Startup Sequence [14].. 67

212

Figure 3-9: HT Request Packet Format .. 70
Figure 3-10: HT Response Packet Format.. 71
Figure 3-11: Request Header Dependencies... 73
Figure 3-12: Response Header Dependencies .. 73
Figure 3-13: Info Header Dependencies... 73
Figure 3-14: Extension Header Dependencies.. 74
Figure 3-15: Dependency Layers.. 75
Figure 3-16: Doubleword Layers.. 76
Figure 3-17: PCIe Device Overview .. 81
Figure 3-18: PCIe Topology Example.. 81
Figure 3-19: PCIe Link Configurations .. 82
Figure 3-20: PCIe Network Layers... 83
Figure 3-21: Framed Packet Transmission ... 83
Figure 3-22: PCIe Traffic Transmission Procedure.. 85
Figure 3-23: PCIe Ordering Rules .. 87
Figure 3-24: Gen 3 TLP Transfer ... 88
Figure 3-25: IO Request Header Format .. 90
Figure 3-26: Memory Request Header Format... 91
Figure 3-27: Configuration Request Header Format .. 91
Figure 3-28: Completion Header Format.. 92
Figure 3-29: Message Header Format .. 94
Figure 3-30: ACK/NACK Header Format.. 96
Figure 3-31: Flow Control Header Format ... 97
Figure 3-32: Power Management Header Format .. 97
Figure 3-33: 8b/10b Line-Coding Example.. 98
Figure 3-34: Gen3 Frame Token Overview.. 100
Figure 3-35: PCIe Link Traffic Example.. 101
Figure 3-36: PCIe Doubleword Dependencies of Traffic................................... 105
Figure 3-37: Minimum PCIe Packet with Data .. 106
Figure 3-38: LTSSM State Machine... 107
Figure 4-1: ULP Device Types... 114
Figure 4-2: ULP Example Topology .. 115
Figure 4-3: ULP Node ID Initialization.. 116
Figure 4-4: ULP Layer Overview... 119
Figure 4-5: Stages Influencing the Credit Timing .. 121
Figure 4-6: Influence of Cable Length and Packet Size to Buffer Space 123
Figure 4-7: General Header Format.. 128
Figure 4-8: ULP Header Type Definition... 129
Figure 4-9: ULP Header Tag Field ... 130
Figure 4-10: ULP Header ID Fields ... 130
Figure 4-11: ULP Mask Field Coding .. 131
Figure 4-12: ULP Header Mask Fields... 131
Figure 4-13: ULP Header Payload Size Field .. 132
Figure 4-14: ULP Header Address Field .. 132
Figure 4-15: ULP Header CRC Field ... 132
Figure 4-16: ULP Request Header Format ... 133

 213

Figure 4-17: ULP Response Header Format... 133
Figure 4-18: ULP Idle Header Format.. 134
Figure 4-19: ULP Credit Header Format .. 135
Figure 4-20: ULP Error Handling Header Format.. 136
Figure 4-21: ULP Quadword Protocol Dependencies .. 137
Figure 4-22: ULP Initialization Sequence State Machine 139
Figure 4-23: ULP Training Sequence Structure ... 140
Figure 4-24: ULP Training Sequence Timing Example 141
Figure 4-25: ULP Training Sequences.. 142
Figure 4-26: ULP TS3 Field Description.. 144
Figure 4-27: Switch from TS4a to Packet Transfer Example............................. 145
Figure 4-28: ULP CRC Window Example ... 147
Figure 4-29: Retransmission Buffer Read Pointer Setting.................................. 149
Figure 4-30: Packet Bandwidth Comparison for increasing Packet Sizes.......... 152
Figure 4-31: Header Shift for 32 and 64 Bits Granularity 160
Figure 4-32: Comparison Multiplexing Complexity Doubleword - Quadword . 160
Figure 5-1: Changed Modules... 165
Figure 5-2: Host Interface EXTOLL ASIC .. 166
Figure 5-3: 8 Bits / HT200 Gen1-Core ... 167
Figure 5-4: HT-Core Changes... 168
Figure 5-5: LDTSTOP Sequence.. 170
Figure 5-6: Complexity Increase through Data Width Increase 171
Figure 5-7: Gen1-Core Complexity Code Example ... 173
Figure 5-8: Ordering Logic ... 177
Figure 5-9: HTAX Timing Diagram... 179
Figure 5-10: RMA Block Diagram ... 182
Figure 5-11: RMA Put Operation ... 182
Figure 5-12: RMA Get Operation... 183
Figure 5-13: RMA Software Descriptor ... 184
Figure 5-14: Completer Block Diagram ... 186
Figure 5-15: Completer Network Packet .. 186
Figure 5-16: Network Packet SOP Header ... 187
Figure 5-17: Network Descriptor .. 187
Figure 5-18: RMA Mode Encoding .. 189
Figure 5-19: Completer Stream Gen FSM.. 190
Figure 5-20: Completer Byte Access Data Fragmentation 192
Figure 5-21: Completer Network Packet fragmentation Example...................... 193
Figure 5-22: Stream Buffer Header Format.. 194
Figure 5-23: Control Buffer Entry Format.. 196
Figure 5-24: Completer Lock Order Module.. 197
Figure 5-25: Completer Write Engine FSMs.. 198
Figure 5-26: Completer Write Engine Sequence .. 200

List of Tables

 215

Table 2-1: OSI Layers Overview..13
Table 2-2: Single Event Effects..43
Table 2-3: Fault Injection Results [41]...43
Table 2-4: Fault Tolerance Overhead ...46
Table 3-1: Valid Stop Description..55
Table 3-2: HT Frequencies ...63
Table 3-3: CTL Coding ..65
Table 3-4: HyperTransport Ordering..68
Table 3-5: HT Control Fields [14]..69
Table 3-6: PCIe Link Frequencies..83
Table 3-7: TLP Format and Type Field Coding ...89
Table 3-8: Message Codes..93
Table 3-9: DLL Type Encoding ...95
Table 3-10: Gen1/Gen2 K-Character Token ..99
Table 3-11: Fast Training Sequence Ordered Set...102
Table 3-12: Training Sequence Ordered Sets...103
Table 4-1: Virtual Channel Buffer Example Calculation122
Table 4-2: Tag Matching Buffer Example Calculation125
Table 4-3: ULP Type Field Encoding ..129
Table 4-4: Bandwidth Comparison HT/PCIe/ULP ..152
Table 4-5: Internal Link Frequencies for Different Data Widths153
Table 4-6: Network Diameter Comparison ..156
Table 4-7: Link Distance Comparison..158
Table 4-8: Comparison Multiple Header Reception...159
Table 4-9: Comparison Fan-Out...161
Table 4-10: Comparison Overview ..161
Table 5-1: Ordering Rules HT-Spec...174
Table 5-2: Ordering Rules Core ...175
Table 5-3: Criteria for Ordering Conform Packet Consummation...................176
Table 5-4: RMA Command Encoding..189

 217

Bibliography
[1] TOP500 Supercomputer website, http://www.top500.org [Online July 2015].

[2] Intel website, Intel Xeon Processor E3-1200 v3 Product Family,
http://www.intel.com [Online July 2015].

[3] AMD website, AMD Opteron 6300 Series Processor Quick Reference Guide,
https://www.amd.com [Online July 2015].

[4] Intel website, Intel Xeon Phi Coprocessor x100 Product Family,
http://www.intel.com [Online July 2015].

[5] IBM Blue Gene team, Overview of the IBM Blue Gene/P project, IBM Journal
of Research and Development, vol. 52, no. 1.2, pp. 199-220, Jan. 2008.

[6] Intel website, Intel® Xeon® Processor E7-8800/4800 v3 Product Families:
Brief, https://www.intel.com [Online July 2015].

[7] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, NVIDIA Tesla: A Uni-
fied Graphics and Computing Architecture, Micro IEEE, vol. 28, no 2, pp. 39-
55, March 2008.

[8] N. Eicker and T. Lippert, DEEP – An Accelerated Cluster Architecture for
Exascale Computing, Intel European Exascale Labs Report 2011, pp. 12-17,
http://www.exascalecomputing.eu [Online July 2015].

[9] Herb Sutter, The Free Lunch Is Over - A Fundamental Turn Toward Concur-
rency in Software, Dr. Dobb's Journal, vol. 30(3), March 2005.

[10] S. Borkar and A. Chien, The Future of Microprocessors, Communications of
the ACM, vol. 54, no. 5, pp. 67-77, May 2011.

[11] R. Maddox, G Singh, and R. Safranek, Weaving High Performance Multipro-
cessor Fabric, ISBN-10: 193405318X, ISBN-13: 978-1934053188, Intel
Press, Oct. 2009.

[12] D. Anderson, and J. Trodden, HyperTransport System Architecture, ISBN-10:
0321168453, ISBN-13: 978-0321168450, Addison-Wesley, Feb. 2003.

[13] B. Holden, J. Trodden, and D. Anderson, HyperTransport 3.1 Interconnect
Technology, ISBN-13:978-0-9770878-2-2, Mindshare, Inc., Sep. 2008.

[14] HyperTransport Consortium, HyperTransport I/O Link Specification Rev. 3.1,
http://www.hypertransport.org [Online July 2015]

218

[15] Numascale website, NumaConnectTM A high level technical overview of the
NumaConnect technology and products, https://www.numascale.com [Online
July 2015]

[16] M. Jackson and R. Budruk, PCI Express Technology, ISBN-13: 978-0-
9770878-6-0, Mindshare, Inc., Sep. 2012.

[17] IEEE Computer Society, IEEE Std 802.3ae™-2002, IEEE Inc., IEEE Stan-
dards, Aug. 2002.

[18] InfiniBandSM website, InfiniBandSMArchitecture Specification Volume 1 Rel.
1.3, http://www.infinibandta.org [Online July 2015].

[19] EXTOLL website, http://extoll.de/index.php/technology/resourcesapapers.

[20] C. Whitby-Strevens, The Transputer, 12th Annual International Symposium on
Computer Architecture, Proceedings, pp. 292-300, June 1985.

[21] B. Duzzet and R. Buck, An Overview of the nCUBE 3 Supercomputer, Fourth
Symposium on the Frontiers of Massively Parallel Computation, pp. 458-464,
Oct. 1992.

[22] MPI website, MPI: A Message-Passing Interface Standard - Version 3.1,
http://www.mpi-forum.org [Online July 2015].

[23] USB website, Universal Serial Bus 3.1 Specification, http://www.usb.org
[Online July 2015].

[24] SATA website, Serial ATA Revision 3.2 Specification, https://www.sata-io.org
[Online July 2015].

[25] H. Zimmermann, OSI Reference Model – The ISO Model of Architecture for
Open Systems Interconnection, IEEE Transactions on Communications, vol.
28, no. 4, pp. 425-432, April 1980.

[26] W. Peterson and D. Brown, Cyclic Codes for Error Detection, Proceedings of
the IRE, vol. 49, no. 1, pp. 228-235, Jan. 1961.

[27] F. Lemke, Unified Synchronized Data Acquisition Networks, Doctoral Thesis
presented to the Department of Computer Engineering, University of Man-
nheim, Germany, 2012.

[28] Altera website, Arria 10 Transceiver PHY User Guide, https://www.altera.com
[Online July 2015].

[29] M. Yan, SONET/SDH Essentials, White Paper, SONET Aggregation and T/E
Carrier Applications Group, Exar Corporation, 2008.

 219

[30] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks, ISBN-10: 1-
55860-852-4, ISBN-13: 978-1-55860-852-8, Morgan Kaufmann, July 2002.

[31] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz, J. Seizovic, and W.
Su, Myrinet: A Gigabit-per-Second Local Area Network, IEEEMicro,vol. 15,
no. 1, pp. 29-36, Feb 1995.

[32] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg,The Quadrics Net-
work (QsNet): High-Performance Clustering Technology, Hot Interconnects 9,
pp. 125-130, Aug. 2001.

[33] J. Martinez, M. Koibuchi, J. Flich, A. Robles, P. Lopez, and J. Duato, In-Order
Packet Delivery in Interconnection Networks using Adaptive Routing, Pro-
ceedings 19thIEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS'05), Denver, April 2005.

[34] I. Gopal, Prevention of Store-and-Forward Deadlock in Computer Networks,
IEEE Transactions on Communications, vol. 33, no. 12, Dec. 1985.

[35] R. Cypher and L. Gravano,Storage-Efficient, Deadlock-Free Packet Routing
Algorithms for Torus Networks, IEEE Transactions onComputers, vol. 43, no.
12, Dec 1994.

[36] R. Cypher and L. Gravano, Requirements for Deadlock-Free, Adaptive Packet
Routing,11thAnnual ACM Symposium on Principles of Distributed Comput-
ing, Proceedings, pp.25-32, 1992.

[37] W. Dally and C. Seitz, Deadlock-Free Message Routing in Multiprocessor
Interconnection Networks, IEEE Transactions on Computers, vol. C-36, no. 5,
pp. 547–553, May 1987.

[38] A. Chien and J. Kim, Planar Adaptive Routing: Low-cost Adaptive Networks
for Multiprocessors, The 19th Annual International Symposium on Computer
Architecture, Proceedings, pp. 268-277, 1992.

[39] C. Glass and L. Ni, The Turn Model for Adaptive Routing, The 19th Annual
International Symposium on Computer Architecture, Proceedings, pp. 278-
287, 1992.

[40] M. Nicolaidis et al., Soft Errors in Modern Electronic Systems, ISBN 978-1-
4419-6992-7, Frontiers in Electronic Testing, Vol. 41, Springer, 2011.

[41] A. Frantz, F. Kastensmidt, L. Carro, and E. Cota, Evaluation of SEU and
Crosstalk Effects in Network-on-Chip Switches, Proceedings of the 19th
Annual Symposium on Integrated Circuits and Systems Design, pp. 202-207,
2006.

220

[42] R. Hamming, Error Detecting and Error Correcting Codes, Bell System Tech-
nical Journal, vol. 29, no. 2, pp. 147–160, 1950.

[43] R. Bose and D. Ray-Chaudhuri, On A Class of Error Correcting Binary Group
Codes, Information and Control, vol. 3, no. 1, pp. 68–79, Mar. 1960.

[44] I. Reed and G. Solomon, Polynomial Codes Over Certain Finite Fields, Jour-
nal of the Society for Industrial and Applied Mathematics, vol. 8, no. 2, pp.
300–304, Jun. 1960.

[45] J. Ray and P. Koopman, Efficient High Hamming Distance CRCs for Embed-
ded Networks, International Conference on Dependable Systems and Net-
works, pp. 3-12, June 2006.

[46] P. Koopman, 32-bit Cyclic Redundancy Codes for Internet Applications, Inter-
national Conference on Dependable Systems and Networks, Proceedings, pp.
459–468, 2002.

[47] P. Koopman and T. Chakravarty, Cyclic Redundancy Code (CRC) Polynomial
Selection for Embedded Networks, International Conference on Dependable
Systems and Networks, pp. 145–154, June 2004.

[48] Mathworks website, http://www.mathworks.de/de/help/comm/ug/error-detec-
tion-andcorrection.html [Online July 2015].

[49] L. Lev and P. Chao, Down to the Wire - Requirements for Nanometer Design
Implementation, Eetimes, http://www.eetimes.com/docu-
ment.asp?doc_id=1205898 [Online July 2015], Aug. 2002.

[50] Chip-Architect website, http://www.chip-architect.com/news/
2010_09_04_AMDs_Bobcat_versus_Intels_Atom.html [Online July 2015].

[51] Fraunhofer IZM website, http://www.izm.fraunhofer.de/de/abteilungen/
high_density_interconnectwaferlevelpackaging/arbeitsgebiete/mikrogalvanis-
chesbumpingaufchipwafern.html [Online July 2015].

[52] F. Gray, Pulse Code Communications, U.S. Patent 2632058 A, Mar. 1953.

[53] A. Widmer and P. Franaszek, A DC-Balanced, Partitioned-Block, 8B/10B
Transmission Code, IBM Journal of Research and Development, vol. 27, no. 5,
pp. 440-451, Sept. 1983.

[54] N. Burkhardt, A Hardware Veri_cation Methodology for an Interconnection
Network with fast Process Synchronization, Doctoral Thesis presented to the
Department of Computer Engineering, University of Mannheim, Germany,
2012.

 221

[55] W. Dally, Virtual-Channel Flow Control, 17th Annual International Sympo-
sium on Computer Architecture, pp. 60-68, May 1990.

[56] H.Litz, Improving the Scalability of High Performance Computer Systems,
Doctoral Thesis presented to the Department of Computer Engineering, Uni-
versity of Mannheim, Germany, 2010.

[57] Molex website, Technology in Development - I/O Infiniband,
http://www.molex.com [Online July 2015].

[58] Samtec website, QSFP+ Active Optical Cable Assembly User Manual,
http://www.samtec.com [Online July 2015].

[59] Samtec website, High Density/High Speed Cable System, http://
www.samtec.com [Online July 2015].

[60] J. Duato, F. Silla, B. Holden, P. Miranda, J. Underhill, M. Cavalli, S. Yalaman-
chili, U. Brüning, and H. Fröning, Scalable Computing: Why and How, Hyper-
Transport Consortium, White Paper, March 2010.

[61] HyperTransport Consortium, HyperTransport High Node Count - System-Wide
Resource-Sharing, http://http://www.hypertransport.org [Online July 2015].

[62] AMD website, BIOS and Kernel Developer’s Guide (BKDG) for AMD Family
16h Models 00h-0Fh Processors, https://www.amd.com [Online July 2015].

[63] AMD website, BIOS and Kernel Developer’s Guide (BKDG) for AMD Family
16h Models 30h-3Fh Processors, https://www.amd.com [Online July 2015].

[64] H.Litz and A.Giese, HyperTransport On-Chip (HTOC) Protocol Specification,
Internal Documentation, Computer Architecture Group at the Department of
Computer Engineering, University of Mannheim.

[65] W. Dally and B. Towles, Principles and Practices of Interconnection Net-
works, ISBN-10: 0122007514, ISBN-13: 978-0122007514, Elsevier Science
& Technology, Jan. 2004.

[66] M. Nüssle, Acceleration of the Hardware-Software Interface of a Communica-
tion Device for Parallel Systems, Doctoral Thesis presented to the Department
of Computer Engineering, University of Mannheim, Germany, 2008.

[67] C. Leber, Efficient Hardware for Low Latency Applications, Doctoral Thesis
presented to the Department of Computer Engineering, University of Man-
nheim, Germany, 2012.

[68] H. Litz, H. Froening, M. Nüssle, and U. Brüning, VELO: A Novel Communica-
tion Engine for Ultra-low Latency Message Transfers, 37th International Con-
ference on Parallel Processing ICPP’08, pp 238–245, Sept. 2008.

222

[69] H. Litz, H. Froening, M. Nüssle, and U. Brüning, A HyperTransport Interface
Controller for Ultra-low Latency Message Transfers, HyperTransport Consor-
tium, White Paper, Feb. 2008.

[70] M. Nüssle, M. Scherer, and U. Brüning, A resource optimized remote-mem-
ory-access architecture for low-latency communication, International Confer-
ence on Parallel Processing ICPP '09, pp. 220-227, Sept. 2009.

[71] M. Scherer, Implementation, Synthesis and Verification of a Remote Shared
Memory Access Functional Unit, Diploma Thesis presented to the Department
of Computer Engineering, University of Mannheim, Germany, 2008.

[72] H. Froning and H. Litz, Efficient Hardware Support for the Partitioned Global
Address Space, 2010 IEEE International Symposium on Parallel & Distributed
Processing, Workshops and Phd. Forum (IPDPSW), pp. 1-6, April 2010.

[73] F. Silla, H. Froning, J. Duato, and H. Montaner, MEMSCALETM: a Scalable
Environment for Databases, 2011 IEEE 13th International Conference on High
Performance Computing and Communications (HPCC), pp. 339-346, Sept.
2011.

[74] M. Nüssle, B. Geib, H. Fröning, and U. Brüning, An FPGA-Based Custom
High Performance Interconnection Network, International Conference on
Reconfigurable Computing and FPGAs (ReConFig '09), pp. 113-118, Dec.
2009.

[75] HyperTransport Consortium, HTX3™ Specification for HyperTransport™ 3.0
Daughtercards and ATX/EATX Motherboards, http://http://www.hypertrans-
port.org [Online July 2015].

[76] H. Fröning, M. Nüssle, D. Slogsnat, H. Litz, and U. Brüning, The HTX-Board:
A Rapid Prototyping Station, 3rd annual FPGAWorld Conference, Nov. 2006.

[77] H. Litz, H. Froning, M. Thürmer, U. Brüning, An FPGA based Verification
Platform for HyperTransport 3.x, International Conference on Field Program-
mable Logic and Applications, pp. 631-634, Aug. 2009.

[78] F. Lemke, S. Kapferer, A. Giese, H. Fröning, and U. Brüning, A HT3 Platform
for Rapid Prototyping and High Performance Reconfigurable Computing, Pro-
ceedings of the Second International Workshop on HyperTransport Research
and Applications (WHTRA2011), Feb 2011.

[79] M. Nüssle, H. Fröning, A. Giese, H. Litz, D. Slogsnat, and U. Brüning, A
HyperTransport Based Low-Latency Reconfigurable Testbed for Message-
Passing Developments, Proceeddings of the Workshop Kommunikation in
Clusterrechnern und Clusterverbundsystemen (KiCC), 2007.

 223

[80] D. Slogsnat, A. Giese, M. Nüssle, and U. Brüning, An Open-Source Hyper-
Transport™ Core, ACM Transactions on Reconfigurable Technology and Sys-
tems (TRETS), vol. 1, no. 3, pp. 1-21, Sep. 2008.

[81] A. Giese, Development and Verification of a HyperTransport-Interface with
Optimizations for FPGA Environments, Diploma Thesis presented to the
Department of Computer Engineering, University of Mannheim, March 2007.

[82] D. Slogsnat, A. Giese, and U. Brüning, A Versatile, Low Latency HyperTrans-
port Core, Proceedings of the 15th International Symposium on Field Pro-
grammable Gate Arrays, pp. 45-52, 2007.

[83] H. Fröning, A. Giese, H. Montaner, F. Silla, and J. Duato, Highly Scalable Bar-
riers for Future High-Performance Computing Clusters, 18th International
Conference on High Performance Computing (HiPC), pp. 1-10, Dec. 2011.

[84] B. Kalisch, Design and Implementation of a HyperTransport I/O-Link Control-
ler complying with Specification 3.0, Diploma Thesis presented to the Depart-
ment of Computer Engineering, University of Mannheim, March 2008.

[85] B. Kalisch, A. Giese, H. Litz, and U. Brüning, HyperTransport 3 Core: A Next
Generation Host Interface with Extremely High Bandwidth, Proceeding of the
First International Workshop on Hyper-Transport Research and Applications
(WHTRA’09), Feb. 2009.

[86] D. Slogsnat, A. Giese, and U. Brüning, Leveraging HyperTransport on Xilinx
FPGAs, Xcell journal, issue 61, third quarter 2007.

[87] B. Kalisch, A. Giese, H. Litz, and U. Brüning, HyperTransport 3 Core: A Next
Generation Host Interface with Extremely High Bandwidth, Proceedings of the
First International Workshop on HyperTransport Research and Applications
(WHTRA2009), Feb. 2009.

[88] EXTOLL website, Galibier Overview, http://extoll.de/index.php/productsover-
view/ galibier, [Online July 2015].

[89] EXTOLL website, Tourmalet Overview, http://extoll.de/index.php/products-
overview/ tourmalet, [Online July 2015].

[90] H. Litz, H. Fröning, U. Brüning, HTAX : A Novel Framework for Flexible and
High Performance Networks-on-Chip, Fourth Workshop on Interconnection
Network Architectures: On-Chip, Multi-Chip (INA-OCMC) in conjunction
with Hipeac, Jan. 2010.

[91] B. Geib, Hardware Support for Efficient Packet Processing, Doctoral Thesis
presented to the Department of Computer Engineering, University of
Mannheim, Germany, 2012.

