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ABSTRACT
Large Semantic Web knowledge bases are often noisy, in-
correct, and incomplete with respect to type information.
Automatic type prediction can help reduce such incomplete-
ness, and, as previous works show, statistical methods are
well-suited for this kind of data. Since most Semantic Web
knowledge bases come with an ontology defining a type hier-
archy, in this paper, we rephrase the type prediction problem
as a hierarchical multilabel classification problem. We pro-
pose SLCN, a modification of the local classifier per node
approach, which performs feature selection, instance sam-
pling, and class balancing for each local classifier. Our ap-
proach improves scalability, facilitating its application on
large Semantic Web datasets with high-dimensional feature
and label spaces. We compare the performance of our pro-
posed method with a state-of-the-art type prediction ap-
proach and popular hierarchical multilabel classifiers, and
report on experiments with large-scale RDF datasets.

CCS Concepts
•Computing methodologies → Semantic networks;
•Theory of computation→ Incomplete, inconsistent, and
uncertain databases; •Information systems → Resource
Description Framework (RDF);

Keywords
Knowledge Base, Type Prediction, Hierarchical Multilabel
Classification

1. INTRODUCTION
Type information plays an important role in Semantic

Web (SW) knowledge bases, with type assertion axioms be-
ing one of the atomic building blocks of knowledge bases.
Many datasets suffer from type assertion incompleteness.
For example, for DBpedia [2], the upper bounds for com-
pleteness of DBpedia 3.8 types are estimated to be at most
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63.7%, with at least 2.7 million missing type statements,
while YAGO types in DBpedia 3.8 are estimated to be at
most 53.3% complete [29].

A possible way to automatically infer type information
on the Semantic Web is the use of reasoning, e.g., standard
RDFS reasoning via entailment rules. However, reasoning
methods are sensitive to noisy data, and since open knowl-
edge bases created by crowdsourcing and/or heuristics are
often noisy, logic-based reasoning approaches are likely to
multiply errors. Statistical approaches, on the other hand,
are more robust to noise, and are therefore more suitable for
the type prediction task [28].

Since most Semantic Web knowledge bases organize the
possible types as hierarchies (defined in ontologies), we pro-
pose to model the type inference problem in noisy and in-
complete knowledge bases as a hierarchical multilabel clas-
sification problem. It is hierarchical because we assume the
types to be structured in a hierarchy, and it is a multil-
abel problem because instances are allowed to have more
than one type. For example, in a knowledge base with the
type hierarchy depicted in Figure 1, the instance Arnold_-

Schwarzenegger should be typed as OfficeHolder, Actor,
and BodyBuilder, as well as their generalizations Artist,
Athlete, and Person, which can be inferred from type hier-
archy.

As SW knowledge bases, especially cross-domain ones, can
have a large number of types, the high dimensionality of the
label space may challenge a multilabel classification algo-
rithm in many ways. First, the number of training examples
annotated with each type, in particular those in the lower
levels of the hierarchy and in the long tail of an uneven dis-
tribution, will be significantly smaller than the total number
of examples. This is similar to the class imbalance problem
in single-label classification [33]. Second, the computational
cost of training a multilabel classifier may be strongly af-
fected by the number of labels [39].

Due to the presence of ontologies and their type hierar-
chies on the Semantic Web, viewing type prediction as a
hierarchical machine learning problem is the most natural
translation of the type prediction problem to a machine
learning problem. However, it has never been viewed like
that – to the best of our knowledge, all machine learning
based methods for type prediction in SW knowledge bases
proposed so far flatten the problem to non-hierarchical clas-
sification [27]. One possible reason that hierarchical multil-
abel classification has not been applied in the field may be
scalability issues when applying those methods to large-scale
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Figure 1: A subset of the DBpedia type hierarchy

SW knowledge bases.
In this paper, we propose SLCN which stands for Scalable

Local Classifier Per Node, a modification of the local clas-
sifier per node approach, which improves the scalability by
performing local sampling, feature selection, and class bal-
ancing. We show that the approach outperforms the current
state of the art approaches for type prediction in SW knowl-
edge bases, and does so in a more scalable way than existing
algorithms for hierarchical multi-label classification.

The rest of this paper is structured as follows. First, we
briefly introduce the foundations of hierarchical multilabel
classification in section 2, followed by a problem statement
in section 3. We outline the proposed approach in sec-
tion 4, and report the outcome of experiments on various
SW knowledge bases in section 5. We conclude with a re-
view of related work in section 6, and conclusions and an
outlook future work in section 7.

2. PRELIMINARIES
In this section, we lay out the foundations of hierarchical

multilabel classification used in this paper.

2.1 Multilabel Classification Approaches
In the multilabel classification problem, there are multiple

classes and, contrary to the single-label multiclass classifi-
cation problem, instances are allowed to have more than one
class. We define the set of classes as C = {c1, ..., c|C|}, and
we represent the multilabel of an instance x with a binary
vector y = (y1, ..., y|C|) ∈ {0, 1}|C|.

Some of the existing multilabel classification approaches
are standard binary classification algorithms which have been
adapted to the multilabel task, without requiring problem
transformations. This includes, e.g., AdaboostMH [36], ML-
kNN [45] and BPMLL [44]. Other approaches, such as
Binary Relevance (BR),Classifier Chains [33] (CC), Label
Powerset (LP), and Random k-Labelsets (RAKeL) [40], trans-
form the multilabel problem into a set of binary classification
problems.

Binary Relevance (BR) is the simplest transformation ap-
proach, where a binary classifier is trained for each class
assuming the classes are mutually independent. More com-
plex transformation methods, such as Classifier Chains [33]
(CC) and Label Powerset (LP), can model dependencies be-
tween the classes. There are also ensemble methods, such as
Ensembles of Classifier Chains (ECC) [33] and Random k-
Labelsets (RAKeL) [40], where several classifiers are trained
on different subsamples and combined into a single model.

These approaches are agnostic with respect to a hierarchy
relations among the labels, and hence, they do not necessar-
ily guarantee the predicted classes to be consistent with the
hierarchy.

2.2 Hierarchical Multilabel Classification Ap-
proaches

The hierarchical multilabel classification problem is simi-
lar to the multilabel classification problem, but the classes
C are structured in a hierarchy G. The labels of an instance
should be consistent with G, i.e., if an instance belongs to a
non-root class then it must also belong to its ancestors (i.e.,
ci v cj ∧ yi = 1 → yj = 1). The class hierarchy can be of
two types: a tree, which allows nodes to have a single par-
ent only, and a directed acyclic graph (DAG) which allows
nodes to have multiple parents.

As pointed out by [37], most of the current literature fo-
cuses on working with trees as it is a simpler problem. There
are mainly two types of hierarchical multilabel classification
approaches: local and global classifiers. The main difference
is that the former breaks down the classification problem
into smaller and simpler problems exploiting the class hi-
erarchy, while the latter consider the problem as a whole,
learning a single more complex model. In the next subsec-
tions we present these approaches in more details.

2.2.1 Local Classifier Approach
The hierarchy is taken into account by using a local infor-

mation perspective to transform a multilabel classification
problem into a set of simpler problems. According to [37],
there are mainly three approaches of using local information:
local classifier per node, local classifier per parent node, and
local classifier per level. The local hierarchical classification
algorithms share a similar top-down approach in their pre-
diction phase, where the classifier first predicts its first-level
(most generic) class of an instance, then it uses that pre-
dicted class to reduce the choices of classes to be predicted
at the second level (the children of the classes predicted at
the first level), and so on, recursively, until the most specific
prediction is made.

Local Classifier Per Node (LCN): The local classifier per
node approach consists of training one binary classifier for
each node of the class hierarchy. Each local binary classi-
fier predicts whether an instance belongs to the class asso-
ciated with the node or not. There are two main ways to
define the training set of the local binary classifiers, which
are called negative examples selection policies. One is the
all approach, which uses all instances to train all local clas-
sifiers, and siblings, which uses the instances belonging to a
node’s class and its siblings’ classes to train the local classi-
fiers. A comparison of different negative example selection
approaches is made in [9] and [11]. The results indicate that
both approaches have roughly similar performances, how-
ever, siblings is more scalable than all.

Local Classifier Per Parent Node (LCPN): In this ap-
proach, a local multilabel classifier is learned for every non-
leaf node in the hierarchy. The labels are the direct child
nodes and the training instances are those which belong to
the parent node class. If each multilabel problem is trans-
formed into a set of binary problems with the binary rele-
vance method, this is equivalent to local classifier per node.
Depending on the choice of the local multilabel classifier, it
is possible to model dependencies between sibling nodes.

Local Classifier Per Level (LCL): This is the type of clas-
sifier approach least used so far on the literature. The local
classifier per level approach consists of training one multi-
label classifier for each level of the class hierarchy. That
means it is prone to class-membership inconsistency and
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Figure 2: Hierarchical multilabel classification local classifier
approaches

therefore requires a post-processing step to prevent it. In
the literature this approach was only mentioned as a pos-
sible approach by [12], and used as a baseline comparison
method in [6] and [7]. Moreover, there is no publicly avail-
able implementation of this kind of approach.

Figure 2 illustrates the difference between the three local
classifier approaches. The dashed closed curves indicate the
set labels of each local classifier. In the case of LCN (2a),
each of the eleven local binary classifiers predicts whether
an instance belongs to its correspondent class or not. For
LCPN (2b), there are five local multilabel classifiers, whose
labels are sibling nodes. For LCL (2c), there are three local
multilabel classifiers, whose labels are the nodes of each level
of the hierarchy.

2.2.2 Global Classifier Approach
In contrast to local classifier approaches, the global classi-

fier approach (also known as big bang approach), learns one
single classification model built from the training set, taking
into account the class hierarchy as a whole during a single
run of the classification algorithm. When used during the
prediction phase, each instance is classified by the induced
model, a process that can assign classes at potentially ev-
ery level of the hierarchy to the instance. Global classifier
approaches lack the kind of modularity for local training of
the classifier that is a core characteristic of the local classifier
approaches.

An example of global classifier approach is MLC4.5 [5],
which is a decision tree algorithm adapted to handle multil-
abel data. A single decision tree is created for the classifier,
where each leaf node contains a vector with the class dis-
tributions. This method guarantees consistency with the
hierarchy, as the probability of a class in the class distribu-
tion cannot be smaller than that of its children. Therefore,
for any probability threshold, the generated prediction will
be consistent with the hierarchy.

2.3 Evaluation Measures
Silla Jr. et al. [37] recommend the use of hierarchi-

cal loss (h-loss), and the hierarchical precision (hP), recall
(hR), and F-measure (hP) to evaluate hierarchical multi-
label classifiers. In this paper, we also use the hamming
loss (hamm), which is commonly used in (non-hierarchical)
multilabel classification and serves as basis for the h-loss.

The hP, hR, and hF [18] are the micro-averaged measures
of precision, recall and F-measure per class. By using the

micro average, each class is weighted according to the la-
bel frequencies. Equation 3 shows the definition of these
measures, where tpi, fpi and fni denote respectively the
number of true positives, false positives and false negatives
of the class ci. Similarly to their binary class versions, hP,
hR and hF values range is in the interval [0, 1].

hP =

|C|∑
i=1

tpi

|C|∑
i=1

tpi + fpi

(1)

hR =

|C|∑
i=1

tpi

|C|∑
i=1

tpi + fni

(2)

hFβ =
(β2 + 1) · hP · hR
β2 · hP + hR

(3)

Equation 4 shows the Hamming loss (hamm) for one in-
stance. We denote the true label vector of an instance as y,
and the predicted vector as ŷ, with yi = 1 if the instance is of
class ci, yi = 0 otherwise. Hamming loss reports how many
times on average, a class label is incorrectly predicted, i.e.,
the number of false positives and false negatives, normalized
over total number of classes and total number of examples.

lh(ŷ, y) =

|C|∑
i=1

1ŷi 6=yi (4)

hlH(ŷ, y) =

|C|∑
i=1

1ŷi 6=yi max
{j|civcj}

1ŷj=yj (5)

Equation 5 shows the hierarchical loss (h-loss) [4] for one
instance, which extends hamming loss to account for any
existing underlying hierarchical structure of the labels. The
idea of hierarchical loss is based on the notion that, whenever
a classifier makes a mistake at any node in a given hierarchy,
no further loss should be counted for any mistake in the
subtree rooted at that particular node ignoring any subtree
which is rooted at a wrong prediction node.

3. PROBLEM DEFINITION
The problem studied in this paper is the prediction of in-

stance types on RDF data, where the types are organized in
a hierarchy. Untyped instances and instances with incom-
plete set of types are a common problem in Semantic Web
knowledge bases [27], therefore, we need methods which can
automatically predict types of instances and, at the same
time, are able to handle noisy data, which is a common
problem in such datasets. In this paper, we assume that the
type hierarchy is correct, and we restrict the hierarchical
structure to trees for simplicity and because DAGS are not
supported by multilabel classification libraries.

We model the type prediction task as a hierarchical multil-
abel classification problem, which we define according to the
categorization proposed in [37]. The classification problem
is defined as < T,MPL,PD >, which means that the type



of graph representing the class hierarchy is a tree (T ), in-
stances are allowed to have multiple paths of labels (MPL),
and that instances are allowed to have partial depth (PD)
labeling (i.e., non-mandatory leaf node prediction).

The partial depth labeling is important in our problem
because in many cases the class hierarchy is incomplete, re-
quiring an instance which cannot be typed with any leaf
node to be assigned a more general type. In Fig. 1, Arnold_-
Schwarzenegger is neither an AdultActor nor a VoiceActor,
i.e., none of the specializing classes of Actor is appropriate.
Thus, the instance should be typed as an Actor, which is a
non-leaf node. Supporting multipath labels is also relevant
because many instances might have multiple labels which are
not in the same path in the hierarchy. In the same exam-
ple, Arnold_Schwarzenegger is labeled with OfficeHolder,
BodyBuilder, Actor, and their generalizations, and thus has
three paths in the hierarchy.

Although our problem definition does not support DAGs,
they can be transformed into trees by selecting (e.g., at ran-
dom, or by leveraging a priori distributions) a single parent
for nodes with multiple parents. This simplifies the hierar-
chy, but leads to an information loss, which could result in
a drop in the quality of the predictions.

The extraction of features for the classifier is also an im-
portant part of the problem addressed in this paper. Dif-
ferent datasets might have domain specific features highly
valuable for the type prediction. The extraction of features
from knowledge bases is a problem which deserves an ex-
clusive study. Therefore in this paper we focus on general
features which can be extracted from any RDF knowledge
base.

4. APPROACH
The problem of type prediction in RDF data requires

highly scalable approaches which can handle a high number
of labels, features, and instances inherent to many Semantic
Web datasets. In this paper, we propose a more scalable
version of a local classifier per node approach which we call
SLCN.

In our approach, we assume that the knowledge base has
a type hierarchy which is materialized in the dataset, i.e., if
an instance is assigned a given type, it must also be assigned
all its superclasses. If the hierarchy is is not materialized, we
perform simple reasoning to infer the assertions of all super-
classes absent in the dataset by exploiting the subClassOf

relations.

4.1 Algorithm
SLCN is based on the local classifier per node (LCN) with

top-down prediction approach and siblings negative exam-
ples selection policy. This means that we train one binary
classifier for every class ci ∈ C, and each of those classifiers
is trained on a local transformed dataset with a binary class
label (belongs to the type: yc = 1, or not: yc = 0). The
top-down prediction approach means that when predicting
the types of a given instance, we first classify the instance
for the types in the highest level. For all the types which
the instance is predicted to belong to, the local classifiers
of its subtypes predict if the instance belongs to any of its
children, and so forth. Whenever the instance is predicted
not to belong to a given type, then it is assumed that it does
not belong to any of its subtypes either, therefore there is
no need to run the local classifiers of the children nodes.

Assuming that a hierarchical multilabel classifier is perfect
and correctly predicts all classes and we want to, for exam-
ple, predict the types of the instance Arnold_Schwarzen-

egger. The classifier would first predict it is a Person.
Then it would predict that it also belongs to its three sub-
types Artist, OfficeHolder and Athlete. Following the
Artist branch, it would then predict that it belongs to Ac-

tor and does not belong to Painter, and finally that it
does not belong to either AdultActor or VoiceActor. Fol-
lowing the Athlete branch, the classifier would predict it
belongs to BodyBuilder, and does not belong to Motor-

sportRacer. The local classifiers for the subtypes Mortor-

cycleRider and RacingDriver would not need to make any
prediction since the instance does not belong to their super-
type MotorsportRacer, and therefore, in order to be consis-
tent with the hierarchy, cannot belong to any of its children.

The top-down approach ensures that the outcome of the
multilabel classifier is consistent with the type hierarchy.
However, it can cause the blocking problem [38], which may
occur during the top-down process of classifying a test ex-
ample. The classifier at a certain level in the class hierarchy
predicts that the example in question does not have the class
associated with that classifier. In this case the classification
of the example will be blocked, i.e., the example will not be
passed to the descendants of that classifier.

As scalability is an important factor in the problem stud-
ied in this paper, we choose to use the siblings negative
examples policy, which reduces the sizes of local training
datasets for classes in the lower levels of the hierarchy. The
local training sets are created including the instances be-
longing to the target class as positive examples and the in-
stances belonging to its sibling classes as negative examples.
For instance, the transformed dataset with siblings for the
type BodyBuilder would contain as negative examples the
instances belonging to MotorsportRacer and, because we al-
low partial-depth prediction, the instances which belong to
Athlete but not of its children.

Typically, the number of labels in the lower levels of the
hierarchy is higher, and the lower the level of the label
node, the smaller the subset is. Assuming that the label
hierarchy has a fanout b, and the instances have a single
path only, the average transformed dataset size would be
|D| ∗ (b ∗ logb(|C|))/|C| instead of |D|. The average size of
the transformed datasets also increases with the number of
different paths instances have. However, for simplicity and
because the average number of different paths per instance
is low in most real datasets, we ignore this factor when cal-
culating the average size.

In the proposed approach, local feature selection, sam-
pling, and class balancing are performed for every local clas-
sifier. The intuition is that in each binary subproblem,
where for the instances of a given class we predict whether
they belong to a subclass, not all the features might be rele-
vant. Especially in cross-domain datasets, such as DBpedia,
YAGO, and Wikidata, the set of features required to pre-
dict, for instance, if an Athlete is a MotorsportRacer is
completely different from those required to predict if an In-

frastructure is an Airport. This allows the local classifier
to handle a smaller set of locally relevant features instead of
a larger set with all the features.

Moreover, we choose to use the filter instead of the wrap-
per feature selection method, where we calculate the infor-
mation gain of each feature and select the top-k most rele-



vant features ranked by information gain. Since the idea of
local feature selection is to reduce the training time of the
local classifiers, it only makes sense to perform the feature
selection if its complexity is lower than that of the classifier
training. Hence, we decide to use a simple feature selection
method, whose complexity grows linearly with the number
of features.

For the local sampling, we set a maximum local training
sample size n. The idea is that if a local classifier has a num-
ber of instances smaller than the maximum training sample
size, no sampling is performed, so that the training set does
not lose any valuable instances. On the other hand, local
classifiers with a high number of instances, such as those for
the classes in higher level of the hierarchy, will be trained
on a smaller sample of size n, reducing the time required
for training the local classifier. When sampling the data,
potential class imbalance can be addressed individually for
each class in its transformed dataset. For that, we define
a bias to uniform class distribution u ∈ [0, 1], where u = 0
means that the class distribution is left as it is, and u = 1
means that class weights are assigned values that result in an
uniform class distribution. With that, the classifier settings
can be defined by the triple < k, n, u >. In the experiments
discussed in section 5.2, we evaluate the influence of each of
these parameters on the performance of SLCN.

One limitation of SLCN is that it does not support dis-
jointness between classes, since it assumes independence be-
tween sibling nodes. However, at the moment, most knowl-
edge bases do not contain class disjointness axioms. Ap-
proaches which can model dependencies between classes,
such as MLC4.5 and LCPN with ECC or LPW, should be
able to handle such disjointness even if not explicitly defined
in the ontology. When training the classifier, since we use
the siblings negative examples selection policy, we implicitly
use the closed world assumption in order to generate nega-
tive labels for the local classifiers. This can be a problem
on datasets where the type assertions are highly incomplete
[26].

4.2 Features
Every instance x ∈ X in the classification dataset is a

typed entity in the knowledge base. The set C contains
the instance types, which are the labels in our classification
problem. In this paper, we propose the extraction of binary
features, following [30], which are not specific to a dataset
at hand, but applicable on any general SW knowledge base.
R is the set of outgoing relations, R′ is the set of ingoing
relations, Q is the set of qualified relations, i.e., pairs of
outgoing relations and object types, and Q′ is the set of
ingoing qualified relations.

The feature sets for the classification problem are ex-
tracted with the following SPARQL queries, where the key-
word a is used as a shorthand notation for rdf:type:

R: select distinct ?p where {?x ?p ?z, ?x a ?c}
R′: select distinct ?p where {?z ?p ?x, ?x a ?c}
Q: select distinct ?p ?t where {?x ?p ?z, ?z a ?t, ?x a ?c}
Q′: select distinct ?p ?t where {?z ?p ?x, ?z a ?t, ?x a ?c}
In our experiments, we define the set of features used in a

type prediction task as F , which may consist of any combi-
nation of the features sets R, R′, Q or Q′. While in SLCN it
is possible to include dataset specific features, such as DB-
pedia categories or text features extracted from Wikipedia

abstracts, in this paper, we concentrate on general features
which can be extracted from any SW knowledge base. It is
worth mentioning that, in contrast to SDType [28] and other
existing methods, which usually rely on a certain kind of
features, the proposed hierarchical multilabel classification
approaches can handle any kind of features which could be
extracted from knowledge bases, and is thus more versatile.

In the future we plan to perform experiments with differ-
ent kinds of features and propositionalization strategies [34],
and evaluate how they affect the predictive performance.
However, since in this paper we focus on the prediction
methods and not the feature extraction, we restrict ourselves
to the features described previously.

5. EXPERIMENTS
The experiments are divided into three main parts. In

the first one, we evaluate the performance of different lo-
cal classifiers for SLCN, and different parameter values for
< k, n, u >. In the second part, we compare SLCN to SD-
Type and different state-of-the-art multilabel classifiers, an-
alyzing performance and scalability with respect to the num-
ber of instances, features, and labels. We do not compare
the proposed approach to RDFS reasoning, because it has
already been shown to outperform reasoning in the case of
real-world SW knowledge bases [28]. Finally, in the last
part, we make a comparison on different large-scale RDF
datasets.

For our experiments, we use MULAN 1.5, which is an
open-source Java library for learning from multilabel datasets
based on WEKA [41]. It includes a variety of state-of-the-
art multilabel classification algorithms, and offers multilabel
feature selection and evaluation. Apart from SDType, we
compare SLCN to the local approaches HMC, HOMER, and
the global approach MLC4.5 [5]. HMC is an implementation
of the LCPN approach. HOMER [39] is similar to HMC, but
it uses balanced clustering to generate a hierarchy for flat
labels, where the non-leaf nodes are meta-labels identifying
label clusters. MLC4.5 and SDType were re-implemented
in the MULAN framework. The performance of SDType is
very sensitive to the chosen confidence threshold, and the
optimal threshold may vary with the used dataset. There-
fore, for our experiments, we added an extra step to the
training phase of SDType in order to find the confidence
threshold which maximizes the hF measure. Apart from
that, all methods were used with their standard settings in
MULAN.

5.1 Datasets
In our experiments, we use four different datasets: DBpe-

dia, DBpedia with YAGO types, NELL, and Wikidata1. Be-
cause MULAN can only handle trees, not arbitrary DAGs,
we convert all DAG type hierarchies to trees by retaining
only the subsumption relation of the most frequent par-
ent node. Table 1 shows some statistics about the differ-
ent datasets, including number of instances, percentage of
instances with partial-depth (PD) and multipath (MPL) la-
bels, number of labels (|C|), and size of the different feature
sets (|R|, |R′|, |Q|, |Q′|). In the next paragraphs we briefly
discuss relevant characteristic of each dataset used.

1The datasets used are available for download at
http://dws.informatik.uni-mannheim.de/en/research/hmctp



Dataset Instances MPL PD |C| |R| |R′| |Q| |Q′|
DBpedia 4 218 125 0.02% 32.6% 476 1390 659 30 423 10 427
DBp(YAGO) 2 886 305 81.4% 86.2% 454 1308 638 61 595 45 484
NELL 120 720 8.3% 4.6% 264 259 246 2357 2762
Wikidata 19 254 100 63.4% 18.4% 474 1324 474 53 175 119 207

Table 1: Statistics about the datasets used

DBpedia: We use DBpedia 20142 with mapping-based
properties. There are two main issues with existing DBpedia
type assignments. The first is that DBpedia only contains
single path labels, although it is clear that several instances,
such as Arnold_Schwarzenegger, should belong to multiple
paths. This happens because of its extraction framework,
which maps infoboxes to types and assigns an instance the
type of the first infobox of its Wikipedia page. That makes
it an exception amongst other main RDF datasets which,
as Table 2 illustrates, have a significant portion of its in-
stances with multipath labels. The second problem is that
the correct type can be trivially predicted from outgoing
properties, as reported in [29], which happens because the
DBpedia outgoing properties and types are generated in one
step from the same original information. Therefore, in our
experiments, we use only the feature sets R′ and Q′ for DB-
pedia. DBpedia 2014 has a class hierarchy which is not a tree
only because of the class Library, which is a subclass of Ed-
ucationalInstitution and Building. All the other classes
have a single parent class. In order to convert it to a tree,
we choose EducationalInstitution to be the only super-
class, following the tree depicted by the DBpedia Ontology
browser.3 Since DBpedia types were originally materialized
with the DAG hierarchy, after the transformation to a tree
all, the 816 instances of Library (0.02% of the total) appear
to have two paths in the tree.

DBpedia with YAGO types: Unlike DBpedia, YAGO4

extracts its type hierarchy from Wikipedia categories. Be-
cause of that, it has a staggering 384 174 different types and
a complex DAG type hierarchy. Moreover, YAGO has a
very limited number of properties, which results into a small
number of features. With the number of labels much greater
than the number of features, the YAGO dataset as it is, is
not well suited for the type prediction problem. Most of the
DBpedia instances are linked to the YAGO types. Therefore
it makes sense to combine both datasets by using DBpedia
features and YAGO types as labels. With that, the problem
of DBpedia’s exclusively single-path labels, which are ex-
tracted together with the outgoing properties, can be ruled
out. The problem of the high number of YAGO labels can
be solved by simply choosing the top-k most frequent types.
In our experiments, arbitrarily select the 474 most frequent
YAGO labels.

Wikidata: Similarly to what was done to the YAGO types,
in Wikidata, which also has a large original |C| = 29099,
we arbitrarily select the 454 most frequent types. In con-
trary to the other knowledge bases used in the experiments,
Wikidata does not rely on information extraction methods
to generate its RDF graph. Wikidata is part of the Wikime-
dia community and its pages contain structured data, which

2http://wiki.dbpedia.org/Downloads2014
3http://mappings.dbpedia.org/server/ontology/classes/
4http://www.mpi-inf.mpg.de/departments/databases-and-
information-systems/research/yago-naga/yago/downloads/

classifier rt(ms) h-loss hamm hP hR hF

J48 111 711 2.51±0.20 0.01±0.00 0.51±0.04 0.50±0.02 0.50±0.01
NaiveBayes 56692 2.85±0.11 0.01±0.00 0.45±0.01 0.42±0.02 0.43±0.01
AdaboostM1 104 238 2.62±0.14 0.01±0.00 0.48±0.02 0.43±0.02 0.45±0.00
LibSVM 880 441 2.51±0.24 0.01±0.00 0.52±0.05 0.47±0.03 0.49±0.01

Table 2: Comparison of different local classifiers on SLCN

can be exported to RDF format [10]. Its type hierarchy is a
DAG, and in order to transform it into a tree, for all types
with multiple parents we keep the subClassOf relation with
parent with greatest number of instances and delete the rest.

NELL: We use the NELL dataset (08m.690), which has
originally 1 168 998 instances. The properties are very sparse,
and 89.7% of the instances have just the property haswiki-

pediaurl or none. Therefore, in our dataset we remove these
instances and use only the other 10.3%.

5.2 SLCN Parameter Setting Experiments
We conduct a first experiment to evaluate the performance

of different types of local classifiers on our approach. Four
different popular binary classifiers available in WEKA are
evaluated. Table 2 reports the results of the comparison,
which was performed on a random sample of the DBpedia
data with YAGO types containing 28 863 instances (1% of
the total) and features F = P ∪ P ′. The results indicate
that J48 (an implementation of the C4.5 decision tree algo-
rithm) and LibSVM perform equally well in terms of pre-
diction quality, with J48 being about eight times faster than
SVM. Thus, we use J48 as a base classifier in the subsequent
experiments.

In the experiments, we evaluate how the three parameters
k, n and u (i.e., the number of features, the local training
sample sizes, and the bias to uniform class distribution) af-
fect the performance of SLCN. The evaluation is performed
on the same sample described before, using J48 as local clas-
sifier and the default setting k = 100, n = 500. We then vary
k and n measuring the runtime as well as hP , hR, hF , h-loss
and hamm.

The plots in Figure 3 show hF and runtime for different
parameter values. It is notable that for both the number
of features k and maximum train set size n, the hF curves
flatten after a certain point, while the runtime curves con-
tinue to grow. The optimal values for n and k depend on
characteristics of the data, and may vary from dataset to
dataset.

As the local classification problems can be rather skewed,
we have also performed experiments with different sampling
biases towards a more uniform class distribution in the local
sampling. Since SLCN is based on LCN with siblings neg-
ative example selection, the classes are not as imbalanced
in the local training sets as they are in the whole dataset.
Moreover, we select the most frequent classes from Wikidata
and YAGO, which excludes the the smallest classes, and
hence avoids the most skewed local classification problems.
Therefore, the sampling bias to uniform class distribution
does not significantly affect the performance of SLCN, i.e.,
we stick to stratified sampling in our experiments.

5.3 Scalability Experiments
In this section, we compare the scalability of the methods

in terms of the number of instances, number of features, and



number of labels of a dataset. The experiments were con-
ducted on the same sample of DBpedia with YAGO types
described in the previous section. To vary the number of
instances, we randomly sample instances as training set and
progressively increase the sample size, for the number of fea-
tures we select features with highest information gain first,
and for the number of labels we select the most frequent
labels first.

Figure 4 shows the runtime and hF of each method for
different number of instances, number of features and num-
ber of labels. SDType is the most scalable of the compared
methods, however, its hF was significantly lower than all
the other compared methods. The runtime of SLCN is close
to that of SDType, improving the runtime in comparison to
the other hierarchical multilabel classifiers, and improving
hF in comparison to SDType. MLC4.5 has the best overall
hF , however, in terms of runtime, it does not scale as well as
SDType and SLCN. It is particularly noteworthy that the
runtime of SDType and SLCN is not much dependent on
the number of instances, features, and labels, which is not
the case for the competing approaches.

5.4 Large-Scale Experiments on SW Datasets
In this section, we perform large-scale experiments on

whole RDF datasets. Table 3 shows the results of 5-fold
cross validation on the RDF datasets presented earlier. Be-
cause of time limitation, we do not report the results for clas-
sifiers which require more than a week for training. HMC,
HOMER and MLC4.5 were able to finish only on NELL,
therefore for the other datasets in Table 3 we report the re-
sults only for SDType and SLCN. On the other hand, SLCN
was able to finish for all datasets, showing the effectiveness
of the proposed approach in improving scalability.

On the NELL dataset, the HMC, HOMER and MLC4.5
perform better than SDType and SLCN. However, the run-
time of the first three methods are notably longer than the
others. When comparing SLCN against SDType, the for-
mer performs consistently better with respect to all evalu-
ation measures, but longer runtime. Note that the results
of SDType differ from those reported in [28] because the
latter includes owl:Thing and classes in other ontologies,
such as FOAF and schema.org, in the evaluation, while we
exclude them. On all the other datasets, which are signif-
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Figure 3: Evaluation of the impact of the parameters n and
k on hF and runtime.
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Dataset Method hF h-loss hamm rt(ms)

DBpedia
F = R′

SDType 0.765±0.002 0.773±0.008 0.003±0.000 16 080 553
SLCN 0.847±0.001 0.463±0.005 0.002±0.000 7024255

DBpedia
F = R′ ∪ Q′

SDType 0.770±0.000 0.750±0.001 0.003±0.000 54 511 659
SLCN 0.846±0.001 0.461±0.005 0.002±0.000 10154987

DBp(YAGO)
F = R ∪ R′

SDType 0.666±0.000 2.672±0.002 0.016±0.000 6 744 282
SLCN 0.703±0.007 2.097±0.089 0.013±0.001 7635499

DBp(YAGO)
F = R ∪ R′ ∪ Q ∪ Q′

SDType 0.671±0.000 2.648±0.002 0.016±0.000 213 904 335
SLCN 0.702±0.006 2.106±0.090 0.013±0.001 48374257

Wikidata
F = R ∪ R′

SDType 0.753±0.000 0.575±0.000 0.002±0.000 208 957 224
SLCN 0.812±0.011 0.375±0.009 0.001±0.000 44807901

Wikidata
F = R ∪ R′ ∪ Q ∪ Q′

SDType 0.776±0.000 0.519±0.000 0.002±0.000 272 206 437
SLCN 0.868±0.003 0.271±0.006 0.001±0.000 64413619

NELL
F = R ∪ R′

SDType 0.544±0.001 2.443±0.005 0.022±0.000 61074
SLCN 0.603±0.008 1.297±0.045 0.011±0.000 495 571
HMC 0.646±0.002 1.215±0.005 0.011±0.000 22 194 619
HOMER 0.646±0.013 1.331±0.094 0.010±0.001 205 837 211
MLC4.5 0.643±0.002 1.329±0.004 0.011±0.000 28 298 930

Table 3: Evaluation of different classification methods on
SW datasets

icantly larger than NELL (c.f. Table 1), SLCN is the best
overall performer as HMC, HOMER and MLC4.5 were not
able to finish in less than one week.

The use of qualified relation features (Q and Q′) substan-
tially increase the dimensionality of the feature space, as it
can observed in Table 1, and therefore the runtime is also
increased. SDType is able to improve its results when con-
sidering the greater set of features for DBpedia and DBpedia
with YAGO types, but SLCN actually yield slightly worse
results. This may be because of a possibly higher level of
dependency between the features in Q and Q′. Since the
filter feature selection method does not take dependencies
between features into account, the selected feature set could
contain several redundant features.

6. RELATED WORK
The problems of inference on noisy data in the Seman-

tic Web have been identified, e.g., in [16] and [32]. There
have been solutions proposed for the specific problem of type
inference in (general or particular) RDF datasets in the re-
cent past, using strategies such as machine learning, statis-
tical methods, and exploitation of external knowledge such
as links to other data sources or textual information. One of
the first approaches to type classification in relational data



is discussed in [22]. The authors train a machine learning
model on instances that already have a type, and apply it
to the untyped instances in an iterative manner.

Some works address slightly different inference problems.
Instead of predicting instance types, [25] predict possible
predicates for resources based on co-occurrence of proper-
ties. The approach discussed in [31] addresses the problem of
mapping DBpedia entities to the category system of Open-
Cyc. They use DBpedia specific information – infoboxes,
textual descriptions, Wikipedia categories and instance-level
links to OpenCyc – and apply an a posteriori consistency
check using Cyc’s own consistency checking mechanism.

HYENA [42] is a multi-label classifier for named entity
types based on hierarchical taxonomies derived from YAGO.
Textual features extracted from the mentions of the named
entity Wikipedia articles are used in by the classifier, which
consists of the SCN approach with siblings negative exam-
ples selection. Thus, it can only be applied to Semantic Web
knowledge bases that are linked to Wikipedia.

There are several works on type prediction which exploit
specific aspects of DBpedia. In [1], an approach is intro-
duced which first exploits cross-language links between DB-
pedia in different languages to increase coverage. Then,
they use nearest neighbor classification based on different
features, such as templates, categories, and bag of words of
the corresponding Wikipedia article. The Tipalo system [14]
leverages the natural language descriptions of DBpedia en-
tities to infer types, exploiting the fact that most abstracts
in Wikipedia follow similar patterns. Those descriptions are
parsed and mapped to the WordNet and DOLCE ontologies
in order to find appropriate types. The authors of [15] ex-
ploit types of resources derived from linked resources, where
links between Wikipedia pages are used to find linked re-
sources (which are potentially more than the resources ac-
tually linked in DBpedia). For each resource, they use the
classes of related resources as features, and use k-nearest
neighbors for predicting types based on those features. How-
ever, none of those approaches can be trivially applied to
datasets other than DBpedia.

SDType [28] uses links between resources as indicators
for types, namely the ingoing and outgoing properties of in-
stances. The method requires the prior distribution of types,
as well as, for every property, a conditional probability dis-
tribution of object and subject types. Every property is
assigned a weight, where maximum weight is given to prop-
erties that appear with a single type only, while the mini-
mum weight is given to properties which are equally present
in all types. Based on that, when predicting the types of
an instance, SDType computes a confidence value for every
type possible. Those types whose confidence value satisfy
an arbitrarily defined minimum confidence threshold are as-
signed to the instance’s prediction.

SDType is a simple and highly scalable method, whose
complexity grows linearly with the number of statements in
the knowledge base. According to the algorithm categoriza-
tion by Silla Jr. et al [37], SDType can be considered a
global hierarchical multilabel classifier with multipath, non-
mandatory leaf-nodes. SDType also generates predictions
consistent with the type hierarchy. That is because the con-
fidence of any non-root class will be always smaller or equal
to that of its superclass.

The SLCN approach proposed in this paper relies on the
idea of class specific features for local classifiers on multi-

label classification, which has been also been exploited by
LIFT [43]. However, in their setting, instead of perform-
ing local feature selection, the authors propose a method for
generation of class specific features based on the distance of
instances to the centroid of clusters computed for the posi-
tive and negative examples. Since this approach requires a
clustering algorithm to be executed twice for each class, its
application to large-scale knowledge graphs would lead to
massive scalability issues.

Amongst the approaches discussed above and in [28], SD-
Type is reportedly the best performing approach for the
problem addressed in this paper [28, 29], also outperforming
RDFS reasoning. Therefore, in our experiments, we have
restricted ourselves to comparing hierarchical classification
methods against SDType. The evaluations in the previous
section have shown that SLCN, as proposed in this paper,
clearly outperforms SDType (and thereby also many other
approaches, including RDFS reasoning, which are them-
selves outperformed by SDType).

Statistical relation learning is an area which has a lot in
common with type prediction. In fact, type prediction can
be considered a special case of the link prediction problem
where instances are linked with types. According to [23],
statistical relational learning models can be divided into la-
tent feature and graph feature models or a combination of
both.

Graph feature models extract features from the directly
observed edges in the knowledge graph. These include ILP
based methods, such as ALEPH [21] and AMIE [13], similar-
ity based methods, such as Katz Index [17], Local Random
Walks [20], and Path Ranking Algorithm [19]. The main dis-
advantage of these methods is that they can use exclusively
graph features, therefore leaving relevant text features and
numerical properties unexploited. Our proposed approach,
on the other hand, is able to use any kind of features.

Latent feature models derive the relationships between
features from the interactions between their latent features.
RESCAL [24], TransE [3] and multiway neural networks
(mwNN) [8] are some of the state-of-the-art methods in link
prediction. There are no reported results for type prediction
using link prediction approaches in the literature, therefore
we cannot directly compare the results presented in the re-
spective papers with our method. In the future, we plan
to evaluate these methods for the type prediction task and
compare them with our proposed approach.

One interesting aspect of latent feature models is the gen-
eral low-dimensional representations of entities, which could
also be used as features in our proposed approach. Employ-
ing instance embeddings as features would probably reduce
training time because of their low dimensionality, however,
computing these embeddings is expensive. A more detailed
study would be necessary in order to find out whether it the
time spent computing is worth the gain in training time, and
how it affects the predictive performance.

7. CONCLUSION AND FUTURE WORK
In this paper, we have modeled the type prediction prob-

lem in Semantic Web knowledge bases as a hierarchical mul-
tilabel classification problem. We propose SLCN, and com-
pare it both to popular hierarchical multilabel classifiers
and the state-of-the-art type prediction approach SDType
(which is currently one of the strongest and best scalable
algorithms for the task at hand) for SW knowledge bases.



The experiments indicate that the local feature selection and
local sampling can significantly improve scalability without
sacrificing performance, and they also show that SLCN can
perform better than SDType, and scales better than the
other multilabel classifiers evaluated in this paper.

In the future, as our approach assumes independence be-
tween sibling classes, we plan to consider a post processing
to take disjointness axioms into account. Combining our
approach with specific feature selection methods for Seman-
tic Web datasets [35] would be a promising refinement. We
also plan to evaluate the performance of our approach when
exploiting dataset specific features, such as DBpedia cate-
gories and NLP features from abstracts. Furthermore, we
want to adapt our approach to support arbitrary DAGs as
type hierarchies and investigate the impact it has on the
quality of the predictions and runtime. Finally, we plan to
exploit the parallelism potential of the SLCN in order to
further improve the scalability and develop a Spark imple-
mentation of the studied approaches in MULAN. We expect
that a distributed implementation could allow us to perform
type prediction on Linked Data.
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