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Abstract. There are many case studies for which the formulation of
RDF constraints and the validation of RDF data conforming to these
constraint is very important. As a part of the collaboration with the W3C
and the DCMI working groups on RDF validation, we identified major
RDF validation requirements and initiated an RDF validation require-
ments database which is available to contribute at http://purl.org/net/rdf-validation.
The purpose of this database is to collaboratively collect case studies, use
cases, requirements, and solutions regarding RDF validation. Although,
there are multiple constraint languages which can be used to formulate
RDF constraints (associated with these requirements), there is no stan-
dard way to formulate them. This paper serves to evaluate to which ex-
tend each requirement is satisfied by each of these constraint languages.
We take reasoning into account as an important pre-validation step and
therefore map constraints to DL in order to show that each constraint
can be mapped to an ontology describing RDF constraints generically.

Keywords: RDF Validation, RDF Validation Requirements, RDF Con-
straints, Constraint Languages, Evaluation, Linked Data, Semantic Web

1 Introduction

The W3C organized the RDF Validation Workshop4, where experts from in-
dustry, government, and academia discussed first use cases for RDF constraint
formulation and validation. In 2014, two working groups on RDF validation
have been established: the W3C RDF Data Shapes5 and the DCMI RDF Ap-
plication Profiles working groups6. Bosch and Eckert [1] collected the findings
of these working groups and initiated a database of requirements to formulate
and validate RDF constraints. The database is available for contribution at
http://purl.org/net/rdf-validation. The intention associated with this database

4 http://www.w3.org/2012/12/rdf-val/
5 http://www.w3.org/2014/rds/charter
6 http://wiki.dublincore.org/index.php/RDF-Application-Profiles
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is to collaboratively collect case studies, use cases, requirements, and solutions
regarding RDF validation in a comprehensive and structured way. The require-
ments are classified to better evaluate existing solutions. We mapped each re-
quirement to formulate RDF constraints directly to an RDF constraint type.

A constraint language is a language which is used to formulate constraints.
The W3C Data Shapes working group defines constraint as a component of
a schema what needs to be satisfied7. There is no constraint language which
can be seen as the standalone standard. However, there are multiple constraint
languages (each having its own syntax and semantics) which can be used to
express RDF constraints, such as existential and universal quantification, car-
dinality restrictions, and exclusive-or of properties. The five most popular con-
straint languages are Description Set Profiles (DSP)8, Resource Shapes (ReSh)9,
Shape Expressions (ShEx)10, the SPARQL Inferencing Notation (SPIN)11, and
the Web Ontology Language (OWL 2)12.

In this paper, we describe each requirement within the RDF validation re-
quirements database in detail (sections 2-75). Additional descriptions can be
found directly in the database. Each requirement corresponds to an RDF con-
straint type which may be expressible by multiple constraint languages. For each
requirement, we represent some examples in different constraint languages.

We evaluated to which extend the most promising five constraint languages
fulfill each of the overall 74 requirements to formulate RDF constraints (sec-
tion 82.1). We distinguished if a constraint is fulfilled by OWL 2 QL or if the
more expressive OWL 2 DL is needed. We also take reasoning into account, as
reasoning may be performed prior to validating constraints.

In order to define an ontology to describe RDF constraints generically, it is
needed to define the terminology for the formulation of RDF constraints and to
classify them. We identified four dimensions to classify constraints:

– Universality: specific constraints vs. generic constraints
– Complexity: simple constraints vs. complex constraints
– Context: property constraints vs. class constraints
– DL Expressivity: constraints expressible in DL vs. constraints not express-

ible in DL

As there are already five promising constraint languages, our purpose is not
to invent a new constraint language. We rather developed a very simple on-
tology (only three classes, three object properties, and three data properties)
which is universal enough to describe any RDF constraint expressible by any
RDF constraint language. We call this ontology the RDF constraints ontology

(RDF-CO)13.

7 https://www.w3.org/2014/data-shapes/wiki/Glossary
8 http://dublincore.org/documents/2008/03/31/dc-dsp/
9 http://www.w3.org/Submission/shapes/

10 http://www.w3.org/Submission/shex-primer/
11 http://spinrdf.org/
12 http://www.w3.org/TR/owl2-syntax/
13 Available at: https://github.com/boschthomas/RDF-CO
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Specific constraints are expressed by specific constraint languages like
DSP, OWL 2, ReSh, ShEx, and SPIN. Generic constraints are expressed by
the RDF-CO. As RDF-CO describes constraints generically, it does not distin-
guish constraints according to the dimension universality. The majority of
constraints can be expressed in DL. In contrast, there are constraints which
cannot be expressed in DL, but are also expressible in the RDF-CO. Complex
constraints are built by combining simple constraints or complex con-
straints. DL statements which represents complex constraints are created out
of DL statements representing composed constraints (if expressible in DL). Sim-
ple constraints may be applied to either properties (properties constraints)
or classes (class constraints). There are no terms representing simple and
complex constraints in the RDF-CO, since context classes (associated simple
constraints hold for individuals of these classes) of simple constraints may just
be reused by further constraints. As a consequence, the distinction of property
and class constraints is sufficient to describe all possible RDF constraints.

In this paper, we investigate which constraints can be expressed in DL and
which not. If a constraint can be expressed in DL, we added the mapping to DL
and to the generic constraint in order to logically underpin associated require-
ments. If a constraint cannot be expressed in DL, we only added the mapping to
the generic constraint. Therefore, we show that each constraint can be mapped
to a generic constraint. In section 82.2 we classify the constraints according to
the dimensions to classify constraints.

2 Subsumption

Subsumption (DL terminology: concept inclusion) corresponds to the require-
ment R-100-SUBSUMPTION. A subclass axiom SubClassOf( CE1 CE2 ) states
that the class expression CE1 is a subclass of the class expression CE2. Roughly
speaking, this states that CE1 is more specific than CE2.

2.1 Simple Example

All mothers are parents. The concept Mother is subsumed by the concept Parent:

Mother Ď Parent

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

class Mother - - Parent Ď

2.2 Simple Example

Jedis feel the force:

Jedi Ď FeelingForce



Expressed by multiple constraint languages:

1 # OWL2:
2 Jedi rdfs:subClassOf FeelingForce .

1 # ReSh:

2 the extension ext:extendsShape may be used

1 # ShEx:

2 FeelingForce {
3 feelingForce (true) }

4 Jedi {
5 & FeelingForce ,

6 attitute (’good’) }

Data matching the shapes FeelingForce and Jedi:

1 Yoda

2 feelingForce true ;
3 attitute ’good’ .

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

class Jedi - - FeelingForce Ď

2.3 Complex Example

If an individual is rich, then this individual is not poor:

Rich Ď  Poor

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

class  Poor - - Poor  
class Rich - -  Poor Ď

3 Class Equivalence

Class Equivalence corresponds to the requirement R-3-EQUIVALENT-CLASSES.
Concept equivalence asserts that two concepts have the same instances [4]. While
synonyms are an obvious example of equivalent concepts, in practice one more
often uses concept equivalence to give a name to complex expressions [4]. Concept
equivalence is indeed subsumption from left and right (A Ď B and B Ď A implies
A ” B ).



3.1 Simple Example

Person ” Human

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

class Person - - Human Ď

class Human - - Person Ď

4 Sub Properties

Sub Properties (DL terminology: role inclusion) correspond to the require-
ments R-54-SUB-OBJECT-PROPERTIES and R-54-SUB-DATA-PROPERTIES. Sub-
property axioms are analogous to subclass axioms. These axioms state that the
property expression PE1 is a subproperty of the property expression PE2 —
that is, if an individual x is connected by PE1 to an individual or a literal y,
then x is also connected by PE2 to y.

4.1 Simple Example

parentOf Ď ancestorOf

States that parentOf is a sub-role of ancestorOf , i.e., every pair of indi-
viduals related by parentOf is also related by ancestorOf.

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property J parentOf ancestorOf J Ď

4.2 Simple Example

hasDog Ď hasPet

4.3 Complex Example

Person[ @hasAge. ď10Ď Person[ @hasEvenAge. ď10

5 Object Property Paths

Object Property Paths (or Object Property Chains and in DL terminology
complex role inclusion axiom or role composition) corresponds to the requirement
R-55-OBJECT-PROPERTY-PATHS. The more complex form of sub properties. This
axiom states that, if an individual x is connected by a sequence of object property
expressions OPE1, ..., OPEn with an individual y, then x is also connected with
y by the object property expression OPE. Role composition can only appear on
the left-hand side of complex role inclusions [4].



5.1 Simple Example

brotherOf ˝ parentOf Ď uncleOf

1 # OWL2:

2 uncleOf owl:propertyChainAxiom ( brotherOf parentOf ) .

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property J brotherOf, parentOf uncleOf J Ď -

6 Disjoint Properties

Disjoint Properties corresponds to the requirement R-9-DISJOINT-PROPERTIES.
A disjoint properties axiom states that all of the properties are pairwise disjoint;
that is, no individual x can be connected to an individual y by these properties.

6.1 Simple Example

The object properties parentOf and childOf are disjoint:

Disjoint(parentOf, childOf)

or alternatively:

parentOf Ď  childOf

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property J parentOf  childOf J Ď

syntactic sugar:

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value
property J parentOf childOf J ‰

7 Intersection

Intersection (composition, conjunction) corresponds to the requirements
R-15-CONJUNCTION-OF-CLASS-EXPRESSIONS and R-16-CONJUNCTION-OF-DATA-

RANGES. DLs allow new concepts and roles to be built using a variety of differ-
ent constructors. We distinguish concept and role constructors depending on
whether concept or role expressions are constructed. In the case of concepts,
one can further separate basic Boolean constructors, role restrictions and nom-
inals/enumerations [4]. Boolean concept constructors provide basic boolean op-
erations that are closely related to the familiar operations of intersection, union
and complement of sets, or to conjunction, disjunction and negation of logical
expressions [4].



Mother ” Female [ Parent

Concept inclusions allow us to state that all mothers are female and that all
mothers are parents, but what we really mean is that mothers are exactly the
female parents. DLs support such statements by allowing us to form complex
concepts such as the intersection (also called conjunction) which denotes the set
of individuals that are both female and parents. A complex concept can be used
in axioms in exactly the same way as an atomic concept, e.g., in the equivalence
Mother ” Female [ Parent .

7.1 Simple Example

Female [ Parent

Complex concept of all individuals which are of the concept Female and of
the concept Parent.

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value
class Female [ Parent - - Female, Parent [

7.2 Simple Example

Mother ” Female [ Parent

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value
class Mother - - Female, Parent [

8 Disjunction

Disjunction of classes or data ranges corresponds to the requirements
R-17-DISJUNCTION-OF-CLASS-EXPRESSIONS and R-18-DISJUNCTION-OF-

DATA-RANGES. Synonyms are union and inclusive or.

8.1 Simple Example

Father \ Mother \ Child

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

class Father \ Mother \ Child - - Father, Mother, Child \



8.2 Simple Example

Parent ” Father \ Mother

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

class Parent - - Father, Mother \

9 Negation

Negation (complement) corresponds to the requirements R-19-NEGATION-OF-

CLASS-EXPRESSIONS and R-20-NEGATION-OF-DATA-RANGES.

9.1 Simple Example

 Married

Set of all individuals that are not married.

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

class  Married - - Married  

9.2 Complex Example

Female [  Married

All female individuals that are not married.

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value
class  Married - - Married  
class Female [  Married - - Female,  Married [

10 Disjoint Classes

Disjoint Classes corresponds to the requirement R-7-DISJOINT-CLASSES. A
disjoint classes axiom states that all of the classes are pairwise disjoint; that is,
no individual can be at the same time an instance of these classes.



10.1 Simple Example

Individuals cannot be male and female at the same time:

Male [ Female Ď K

or alternatively:

Male Ď  Female

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

class Male [ Female - - Male, Female [
class J - - Male [ Female, K Ď

syntactic sugar:

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

class Male - - Female ‰
class Female - - Male ‰

10.2 Simple Example

One can either be a hologram or a human, but not both:

Hologram [ Human Ď K

or alternatively:

Hologram Ď  Human

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value
class Hologram [ Human - - Hologram, Human [
class J - - Hologram [ Human, K Ď

syntactic sugar:

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

class Hologram - - Human ‰
class Human - - Hologram ‰



11 Existential Quantifications

Existential Quantification on Properties conforms to the requirement
R-86-EXISTENTIAL-QUANTIFICATION-ON-PROPERTIES. In DL terminology the
existential quantification is also called existential restriction. An
existential class expression consists of a property expression and a class expres-
sion or a data range, and it contains all those individuals that are connected by
the property expression to an individual that is an instance of the class expres-
sion or to literals that are in the data range.

11.1 Simple Example

D parentOf . J

Complex concept that describes the set of individuals that are parents of at
least one individual (instance of J).

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property D parentOf . J parentOf - J D

11.2 Simple Example

D parentOf . Female

The complex concept describes those individuals that are parents of at least
one female individual, i.e., those that have a daughter.

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property D parentOf . Female parentOf - Female D

11.3 Simple Example

Parent ” D parentOf . J

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value
property Parent parentOf - J D

11.4 Simple Example

ParentOfSon ” D parentOf . Male

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property ParentOfSon parentOf - Male D



12 Universal Quantifications

Universal Quantification on Properties corresponds to the requirement
R-91-UNIVERSAL-QUANTIFICATION-ON-PROPERTIES, which is also called value

restriction in DL terminology.

p@R.CqI “ ta P ∆I | pa, bq P RI Ñ b P CIu where ¨I is an interpretation function,
∆I is the domain, a, b P ∆I are individuals C is a concept, R is a role.

12.1 Simple Example

@ parentOf.Female

The set of individuals all of whose children are female also includes those
that have no children at all.

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property @ parentOf . Female parentOf - Female @

13 Property Domains

Property Domain corresponds to the requirements R-25-OBJECT-PROPERTY-DOMAIN
and R-26-DATA-PROPERTY-DOMAIN. The constraint restricts the domain of ob-
ject and data properties. In DL terminology this constraint is also called domain
restrictions on roles. The purpose is to declare that a given property is asso-
ciated with a class, e.g. to populate input forms with appropriate widgets but
also constraint checking. In OO terms this is the declaration of a member, field,
attribute or association. DR.J Ď C is the object property restriction where R is
the object property (role) whose domain is restricted to concept C.

13.1 Simple Example

D sonOf . J Ď Male

Restricts the domain of sonOf to male individual.

syntactic sugar:

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property J sonOf - Male domain



14 Property Ranges

Property Range corresponds to the requirements R-28-OBJECT-PROPERTY-RANGE
and R-35-DATA-PROPERTY-RANGE. This constraint restricts the range of object
and data properties In DL terminology it is also called range restrictions on
roles. J Ď @R.C is the range restriction to the object property R (restricted by
the concept C).

14.1 Simple Example

J Ď @ sonOf . Parent

equivalent to:

DsonOf .J Ď Person

Restricts the range of sonOf to parents.

1 # OWL 2:
2 sonOf rdfs:range Parent .

1 # DSP:
2 :hasDogRange

3 a dsp:DescriptionTemplate ;
4 dsp:resourceClass owl:Thing ;

5 dsp:statementTemplate [
6 a dsp:NonLiteralStatementTemplate ;
7 dsp:property sonOf ;

8 dsp:nonLiteralConstraint [
9 a dsp:NonLiteralConstraint ;

10 dsp:valueClass Parent ] ] .

syntactic sugar:

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property J sonOf - Parent range

15 Class-Specific Property Range

Class-Specific Property Range corresponds to the requirements R-29-CLASS-
SPECIFIC-RANGE-OF-RDF-OBJECTS and R-36-CLASS-SPECIFIC-RANGE-OF-RDF-

LITERALS. The constraint restricts the range of object and data properties for
individuals within a specific context (e.g. class, application profile). The values
of each member property of a class may be limited by their value type, such as
xsd:string or Person.

15.1 Simple Example

Only men can have sonOf relationships to parents:

 Man Ď  D sonOf.Parent



15.2 Simple Example

Only vulcans can have friendship relationships to cardassians

 Vulcan Ď  D friendOf.Carsassian

16 Minimum Unqualified Cardinality Restrictions

Minimum Unqualified Cardinality Restrictions on Properties corresponds
to the requirements R-81-MINIMUM-UNQUALIFIED-CARDINALITY-ON-PROPERTIES
and R-211-CARDINALITY-CONSTRAINTS. ď nR.J is the minimum unqualified
cardinality restriction where n P N (written ď nR in short). A minimum cardi-
nality restrictions contains all those individuals that are connected by a property
to at least n different individuals/literals that are instances of a particular class
or data range. If the class is missing, it is taken to be owl:Thing. If the data range
is missing, it is taken to be rdfs:Literal. For unqualified cardinality restrictions,
classes respective data ranges are not stated.

16.1 Simple Example

1 # ShEx:

2 :Jedi {
3 :attitude (’good’) }
4 :JediStudent {

5 & :Jedi ,
6 :studentOf {}{1} }

7 :JediMaster {
8 & :Jedi ,

9 :mentorOf {}{1,2} }
10 :SuperJediMaster {
11 & :Jedi ,

12 :mentorOf {}{3,} }

– Jedis have the attitude ’good’
– Jedi students are students of exactly 1 resource
– Jedi masters are mentoring at least 1 and at most 2 resources
– Super Jedi masters are mentoring at least 3 resources

1 # data:
2 :Yoda
3 :attitude ’good’ ;

4 :mentorOf :MaceWindu , :Obi-Wan , :Luke .
5 :MaceWindu

6 :attitude ’good’ ;
7 :studentOf :Yoda .
8 :Obi-Wan

9 :attitude ’good’ ;
10 :studentOf :Yoda ;

11 :mentorOf :Anakin .
12 :Anakin

13 :attitude ’good’ ;
14 :studentOf :Obi-Wan .
15 :Luke

16 :attitude ’good’ ;
17 :studentOf :Yoda .



1 # Individuals matching the ’:SuperJediMaster’ data shape:
2 :Yoda

Jedi Ď Dattitude.tgoodu
JediStudent Ď Jedi[ ě 1studentOf.J[ ď 1studentOf.J
JediMasters Ď Jedi[ ě 1mentorOf.J[ ď 2mentorOf.J

SuperJediMaster Ď Jedi[ ě 3mentorOf.J

16.2 Simple Example

Captain Ďě 1commandsV essel.J

Captains command at least one vessel.

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property Captain commandsVessel - J ě 1

17 Minimum Qualified Cardinality Restrictions

Minimum Qualified Cardinality Restrictions on Properties corresponds
to the requirements R-75-MINIMUM-QUALIFIED-CARDINALITY-ON-PROPERTIES

and R-211-CARDINALITY-CONSTRAINTSA minimum cardinality restrictions con-
tains all those individuals that are connected by a property to at least n different
individuals/literals that are instances of a particular class or data range. If the
class is missing, it is taken to be owl:Thing. If the data range is missing, it is
taken to be rdfs:Literal. For qualified cardinality restrictions, classes respective
data ranges are stated. ě nR.C is a minimum qualified cardinality restriction
where n P N.

17.1 Simple Example

ě 2 childOf . Parent

Set of individuals that are children of at least two parents.

1 # OWL 2:

2 owl:Thing
3 a owl:Restriction ;
4 owl:minQualifiedCardinality "2"^^xsd:nonNegativeInteger ;

5 owl:onProperty childOf ;
6 owl:onClass Parent .

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property ě 2 childOf . Parent childOf - Parent ě 2



17.2 Simple Example

foaf:Person ” ě 2 hasName.xsd:string

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property foaf:Person hasName - xsd:string ě 2

17.3 Simple Example

1 # ShEx:
2 :Jedi {

3 :attitude (’good’) }
4 :JediStudent {

5 & :Jedi ,
6 :studentOf @:Jedi{1} }
7 :JediMaster {

8 & :Jedi ,
9 :mentorOf @:Jedi{1,2} }

10 :SuperJediMaster {
11 & :Jedi ,
12 :mentorOf @:Jedi{3,} }

– Jedis have the attitude ’good’
– Jedi students are students of exactly 1 Jedi
– Jedi masters are mentoring at least 1 and at most 2 Jedis
– Super Jedi masters are mentoring at least 3 Jedis

1 # data:

2 :Yoda
3 :attitude ’good’ ;

4 :mentorOf :MaceWindu , :Obi-Wan , :Luke .
5 :MaceWindu
6 :attitude ’good’ ;

7 :studentOf :Yoda .
8 :Obi-Wan

9 :attitude ’good’ ;
10 :studentOf :Yoda ;

11 :mentorOf :Anakin .
12 :Anakin
13 :attitude ’good’ ;

14 :studentOf :Obi-Wan .
15 :Luke

16 :attitude ’good’ ;
17 :studentOf :Yoda .

1 # Individuals matching the ’:SuperJediMaster’ data shape:

2 :Yoda
3

4 # Individuals matching the ’:JediMaster’ data shape:
5 :Obi-Wan

mentorOf and studentOf are taken to be inverse properties:

Jedi Ď Dattitude.tgoodu
JediStudent Ď Jedi[ ě 1studentOf.Jedi[ ď 1studentOf.Jedi

JediMasters Ď Jedi[ ě 1mentorOf.Jedi[ ď 2mentorOf.Jedi

SuperJediMaster Ď Jedi[ ě 3mentorOf.Jedi



17.4 Complex Example

Father2Daughters ” Man [ (ě 2 hasChild.Woman)

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property ě 2 hasChild.Woman hasChild - Woman ě 2
class Father2Daughters - - Man, ě 2 hasChild.Woman [ -

17.5 Simple Example

Captain Ďě 1commandsV essel.V essel

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value
property Captain commandsVessel - Vessel ě 1

17.6 Complex Example

FederationCaptain Ď Federation[ ě 1commandsV essel.V essel

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property ě1 commandsVessel . Vessel commandsVessel - Vessel ě 1
class FederationCaptain - - Federation, ě1 commandsVessel . Vessel [ -

18 Maximum Unqualified Cardinality Restrictions

Maximum Unqualified Cardinality Restrictions on Properties corresponds
to the requirements R-82-MAXIMUM-UNQUALIFIED-CARDINALITY-ON-PROPERTIES
and R-211-CARDINALITY-CONSTRAINTS. A maximum cardinality restriction con-
tains all those individuals that are connected by a property to at most n different
individuals/literals that are instances of a particular class or data range. If the
class is missing, it is taken to be owl:Thing. If the data range is not present, it
is taken to be rdfs:Literal. Unqualified means that the class respective the data
range is not stated. ě nR.J is a maximum unqualified cardinality restriction
where n P N (written ě nR in short).



18.1 Simple Example

1 # ShEx:
2 :Jedi {
3 :attitude (’good’) }

4 :JediStudent {
5 & :Jedi ,

6 :studentOf {}{1} }
7 :JediMaster {

8 & :Jedi ,
9 :mentorOf {}{1,2} }

10 :SuperJediMaster {

11 & :Jedi ,
12 :mentorOf {}{3,} }

– Jedis have the attitude ’good’
– Jedi students are students of exactly 1 resource
– Jedi masters are mentoring at least 1 and at most 2 resources
– Super Jedi masters are mentoring at least 3 resources

1 # data:

2 :Yoda
3 :attitude ’good’ ;
4 :mentorOf :MaceWindu , :Obi-Wan , :Luke .

5 :MaceWindu
6 :attitude ’good’ ;

7 :studentOf :Yoda .
8 :Obi-Wan

9 :attitude ’good’ ;
10 :studentOf :Yoda ;
11 :mentorOf :Anakin .

12 :Anakin
13 :attitude ’good’ ;

14 :studentOf :Obi-Wan .
15 :Luke
16 :attitude ’good’ ;

17 :studentOf :Yoda .

1 # Individuals matching the ’:JediMaster’ data shape:
2 :Obi-Wan

Jedi Ď Dattitude.tgoodu
JediStudent Ď Jedi[ ě 1studentOf.J[ ď 1studentOf.J
JediMasters Ď Jedi[ ě 1mentorOf.J[ ď 2mentorOf.J

SuperJediMaster Ď Jedi[ ě 3mentorOf.J

19 Maximum Qualified Cardinality Restrictions

Maximum Qualified Cardinality Restrictions on Properties corresponds
to the requirements R-76-MAXIMUM-QUALIFIED-CARDINALITY-ON-PROPERTIES

and R-211-CARDINALITY-CONSTRAINTS. A maximum cardinality restriction con-
tains all those individuals that are connected by a property to at most n different
individuals/literals that are instances of a particular class or data range. If the
class is missing, it is taken to be owl:Thing. If the data range is not present, it is
taken to be rdfs:Literal. Qualified means that the class respective the data range
is stated. ď nR.C is a maximum qualified cardinality restriction where n P N.



19.1 Simple Example

ď 2 childOf . Parent

Set of individuals that are children of at most two parents.

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property ď 2 childOf . Parent childOf - Parent ď 2

19.2 Simple Example

1 # ShEx:
2 :Jedi {

3 :attitude (’good’) }
4 :JediStudent {

5 & :Jedi ,
6 :studentOf @:Jedi{1} }
7 :JediMaster {

8 & :Jedi ,
9 :mentorOf @:Jedi{1,2} }

10 :SuperJediMaster {
11 & :Jedi ,

12 :mentorOf @:Jedi{3,} }

– Jedis have the attitude ’good’
– Jedi students are students of exactly 1 Jedi
– Jedi masters are mentoring at least 1 and at most 2 Jedis
– Super Jedi masters are mentoring at least 3 Jedis

1 # data:
2 :Yoda
3 :attitude ’good’ ;

4 :mentorOf :MaceWindu , :Obi-Wan , :Luke .
5 :MaceWindu

6 :attitude ’good’ ;
7 :studentOf :Yoda .

8 :Obi-Wan
9 :attitude ’good’ ;

10 :studentOf :Yoda ;

11 :mentorOf :Anakin .
12 :Anakin

13 :attitude ’good’ ;
14 :studentOf :Obi-Wan .

15 :Luke
16 :attitude ’good’ ;
17 :studentOf :Yoda .

1 # Individuals matching the ’:JediMaster’ data shape:

2 :Obi-Wan

Jedi Ď Dattitude.tgoodu
JediStudent Ď Jedi[ ě 1studentOf.Jedi[ ď 1studentOf.Jedi

JediMasters Ď Jedi[ ě 1mentorOf.Jedi[ ď 2mentorOf.Jedi

SuperJediMaster Ď Jedi[ ě 3mentorOf.Jedi



20 Exact Unqualified Cardinality Restrictions

Exact Unqualified Cardinality Restrictions on Properties corresponds
to the requirements R-80-EXACT-UNQUALIFIED-CARDINALITY-ON-PROPERTIES

and R-211-CARDINALITY-CONSTRAINTS. An exact cardinality restriction con-
tains all those individuals that are connected by a property to exactly n different
individuals that are instances of a particular class or data range. If the class is
missing, it is taken to be owl:Thing. If the data range is not present, it is taken
to be rdfs:Literal. Unqualified means that the class respective data range is not
stated. ě nR.J[ ď nR.J is an exact unqualified cardinality restriction where
n P N.

20.1 Simple Example

1 # ShEx:

2 :JediStudent {
3 :studentOf {}{1} }

1 # ReSh:
2 :JediStudent a rs:ResourceShape ;
3 rs:property [

4 rs:name "studentOf" ;
5 rs:propertyDefinition :studentOf ;

6 rs:valueShape [ a rs:ResourceShape] ;
7 rs:occurs rs:Exactly-one ; ] .

– Jedis have the attitude ’good’
– Jedi students are students of exactly 1 resource

1 # data:
2 :Yoda

3 :attitude ’good’ ;
4 :mentorOf :MaceWindu , :Obi-Wan , :Luke .
5 :MaceWindu

6 :attitude ’good’ ;
7 :studentOf :Yoda .

8 :Obi-Wan
9 :attitude ’good’ ;

10 :studentOf :Yoda ;

11 :mentorOf :Anakin .
12 :Anakin

13 :attitude ’good’ ;
14 :studentOf :Obi-Wan .

15 :Luke
16 :attitude ’good’ ;
17 :studentOf :Yoda .

1 # Individuals matching the ’:JediStudent’ data shape:
2 :MaceWindu :Obi-Wan :Anakin :Luke

JediStudent Ď Jedi[ ě 1studentOf.J[ ď 1studentOf.J



21 Exact Qualified Cardinality Restrictions

Exact Qualified Cardinality Restrictions on Properties corresponds to
the requirements R-74-EXACT-QUALIFIED-CARDINALITY-ON-PROPERTIES and
R-211-CARDINALITY-CONSTRAINTS. An exact cardinality restriction contains all
those individuals that are connected by a property to exactly n different in-
dividuals that are instances of a particular class or data range. If the class is
missing, it is taken to be owl:Thing. If the data range is not present, it is taken
to be rdfs:Literal. Qualified means that the class respective data range is stated.
ě nR.C[ ď nR.C is an exact qualified cardinality restriction where n P N.

21.1 Simple Example

1 # ShEx:

2 :Jedi {
3 :attitude (’good’) }

4 :JediStudent {
5 :studentOf @:Jedi{1} }

1 # ReSh:
2 :Jedi a rs:ResourceShape ;

3 rs:property [
4 rs:name "attitude" ;

5 rs:propertyDefinition :attitude ;
6 rs:allowedValue "good" ;
7 rs:occurs rs:Exactly-one ;

8 ] .
9 :JediStudent a rs:ResourceShape ;

10 rs:property [
11 rs:name "studentOf" ;

12 rs:propertyDefinition :studentOf ;
13 rs:valueShape :Jedi ;
14 rs:occurs rs:Exactly-one ;

15 ] .

– Jedis have the attitude ’good’
– Jedi students are students of exactly 1 Jedi

1 # data:

2 :Yoda
3 :attitude ’good’ ;
4 :mentorOf :MaceWindu , :Obi-Wan , :Luke .

5 :MaceWindu
6 :attitude ’good’ ;

7 :studentOf :Yoda .
8 :Obi-Wan

9 :attitude ’good’ ;
10 :studentOf :Yoda ;
11 :mentorOf :Anakin .

12 :Anakin
13 :attitude ’good’ ;

14 :studentOf :Obi-Wan .
15 :Luke

16 :attitude ’good’ ;
17 :studentOf :Yoda .

1 # Individuals matching the ’:JediStudent’ data shape:
2 :MaceWindu :Obi-Wan :Anakin :Luke



Jedi Ď Dattitude.tgoodu
JediStudent Ď Jedi[ ě 1studentOf.Jedi[ ď 1studentOf.Jedi

21.2 Complex Example

Person Ď ě 2 childOf . Parent [ ď 2 childOf . Parent

Every person is a child of exactly two parents.

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property ě 2 childOf . Parent childOf - Parent ě 2
property ď 2 childOf . Parent childOf - Parent ď 2
class Person - - ě 2 childOf . Parent, ď 2 childOf . Parent [ -

syntactic sugar:

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property Person childOf - Parent = 2

22 Inverse Object Properties

Inverse Object Properties corresponds to the requirement R-56-INVERSE-

OBJECT-PROPERTIES. In many cases properties are used bi-directionally and then
accessed in the inverse direction, e.g. parent ” child´. There should be a way to
declare value type, cardinality etc of those inverse relations without having to
declare a new property URI. The object property OP1 is an inverse of the object
property OP2. Thus, if an individual x is connected by OP1 to an individual y,
then y is also connected by OP2 to x, and vice versa.

22.1 Simple Example

parentOf ” childOf´

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property J parentOf childOf - inverse

22.2 Simple Example

captainOf ” hasCaptain´

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property J captainOf hasCaptain - inverse



23 Transitive Object Properties

Transitive Object Properties corresponds to the requirement
R-63-TRANSITIVE-OBJECT-PROPERTIES. Transitivity is a special form of com-
plex role inclusion. An object property transitivity axiom states that the object
property is transitive — that is, if an individual x is connected by the object
property to an individual y that is connected by the object property to an indi-
vidual z, then x is also connected by the object property to z.

23.1 Simple Example

ancestorOf ˝ ancestorOf Ď ancestorOf

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property J ancestorOf, ancestorOf ancestorOf - Ď

syntactic sugar:

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value
property J ancestorOf - - transitive

24 Symmetric Object Properties

Symmetric Object Properties corresponds to the requirement
R-61-SYMMETRIC-OBJECT-PROPERTIES. A role is symmetric if it is equivalent to
its own inverse [4]. An object property symmetry axiom states that the object
property expression OPE is symmetric - that is, if an individual x is connected
by OPE to an individual y, then y is also connected by OPE to x.

24.1 Simple Example

The property marriedTo is symmetric:

marriedTo ” marriedTo´

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property J marriedTo marriedTo - inverse

syntactic sugar:

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property J marriedTo - - symmetric



25 Asymmetric Object Properties

Asymmetric Object Properties corresponds to the requirement
R-62-ASYMMETRIC-OBJECT-PROPERTIES. A role is asymmetric if it is disjoint
from its own inverse [4]. An object property asymmetry axiom AsymmetricOb-
jectProperty( OPE ) states that the object property expression OPE is asym-
metric - that is, if an individual x is connected by OPE to an individual y, then
y cannot be connected by OPE to x.

25.1 Simple Example

The property parentOf is asymmetric:

parentOf Ď  parentOf´

alternatively:

parentOf [ parentOf´ Ď K

alternatively:

disjoint(parentOf, parentOf´)

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property J parentOf´ parentOf - inverse

property J parentOf parentOf´ - ‰

syntactic sugar:

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property J parentOf - - asymmetric

25.2 Simple Example

Child parent relations (dbo:child) cannot be symmetric.

25.3 Simple Example

Person birth place relations (dbo:birthPlace) cannot be symmetric.

26 Class-Specific Reflexive Object Properties

Using DL terminology Class-Specific Reflexive Object Properties is called
local reflexivity - a set of individuals (of a specific class) that are related to them-
selves via a given role [4].



26.1 Simple Example

TalkingToThemselves Ď D talksTo .Self.

Set of individuals that are talking to themselves.

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property TalkingToThemselves talksTo - Self D

syntactic sugar:

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property D talksTo .Self talksTo - - reflexive

27 Reflexive Object Properties

Reflexive Object Properties (reflexive roles, global reflexivity in DL) cor-
responds to the requirement R-59-REFLEXIVE-OBJECT-PROPERTIES. Global re-
flexivity can be expressed by imposing local reflexivity on the top concept [4].

27.1 Simple Example

Each individual knows itself:

J Ď D knows . Self

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property D knows . Self knows - Self D
class J - - J, D knows . Self Ď

syntactic sugar:

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value
property J knows - - reflexive

28 Irreflexive Object Properties

Irreflexive Object Properties (irreflexive roles in DL) corresponds to the
requirement R-60-IRREFLEXIVE-OBJECT-PROPERTIES. A role is irreflexive if it is
never locally reflexive [4]. An object property irreflexivity axiom IrreflexiveOb-
jectProperty( OPE ) states that the object property expression OPE is irreflexive
- that is, no individual is connected by OPE to itself.



28.1 Simple Example

J Ď  DmarriedTo.Self

alternatively:

DmarriedTo.Self Ď K

alternatively:

marriedTo[marriedTo´ Ď K (without special self-concept Self)

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property D marriedTo . Self knows - Self D
class  D marriedTo . Self - - D marriedTo . Self  
class J - - J,  D marriedTo . Self Ď

syntactic sugar:

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property J marriedTo - - irreflexive

28.2 Simple Example

A resource cannot be its own parent (dbo:parent).

28.3 Simple Example

A resource cannot be its own child (dbo:child).

28.4 Class-Specific Irreflexive Object Properties

A property is irreflexive if it is never locally reflexive [4]. An object property
irreflexivity axiom states that the object property OP is irreflexive - that is, no
individual is connected by OP to itself. Class-Specific Irreflexive Object Prop-

erties are object properties which are irreflexive within a given context, e.g. a
class.



28.5 Simple Example

Persons cannot be married to themselves.

Person Ď  DmarriedTo.Self

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property D marriedTo . Self knows - Self D
class  D marriedTo . Self - - D knows . Self  
class Person - - Person,  D marriedTo . Self Ď

syntactic sugar:

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property Person marriedTo - - irreflexive

29 Context-Specific Property Groups

Context-Specific Property Groups corresponds to the requirement
R-66-PROPERTY-GROUPS to group data and object properties.

29.1 Simple Example

1 # ShEx:
2 <Human> {

3 (
4 foaf:name xsd:string ,
5 foaf:givenName xsd:string

6 ) ,
7 (

8 foaf:mbox IRI ,
9 foaf:homepage foaf:Document

10 ) }

– 1. group: 1 foaf:name (range: xsd:string) and 1 foaf:givenName (range: xsd:string)
and (,)

– 2. group: 1 foaf:mbox (range: IRI) and 1 foaf:homepage (range: foaf:Document)

Human ” M [ N
M ” C [ F

C Ď ě 1 name . string [ ď 1 name . string
F Ď ě 1 givenName . string [ ď 1 givenName . string

N ” I [ L
I Ď ě 1 mbox . string [ ď 1 mbox . string

L Ď ě 1 homepage . Document [ ď 1 homepage . Document



Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

class Human - - M, N [ -
class M - - C, F [ -
class C - - A, B [ -
property A foaf:name - string ě 1
property B foaf:name - string ď 1
class F - - D, E [ -
property D foaf:givenName - string ě 1
property E foaf:givenName - string ď 1
class N - - I, L [ -
class I - - G, H [ -
property G foaf:mbox - string ě 1
property H foaf:mbox - string ď 1
class L - - J, K [ -
property J foaf:homepage - foaf:Document ě 1
property K foaf:homepage - foaf:Document ď 1

30 Context-Specific Exclusive OR of Properties

Context-Specific Exclusive OR of Properties correponds to the require-
ment R-11-CONTEXT-SPECIFIC-EXCLUSIVE-OR-OF-PROPERTIES. Exclusive or is
a logical operation that outputs true whenever both inputs differ (one is true,
the other is false). This constraint is generally expressed in DL as follows:

C Ď p A[Bq \ pA[ Bq

and alternatively:

C Ď pA\Bq [  pA[Bq

30.1 Simple Example

1 # ShEx:
2 <Human> { (

3 foaf:name xsd:string |
4 foaf:givenName xsd:string ) }

1 # OWL 2:
2 Human owl:disjointUnionOf ( :CC1 :CC2 ) .

3

4 CC1 rdfs:subClassOf [

5 a owl:Restriction ;
6 owl:onProperty foaf:name ;
7 owl:someValuesFrom xsd:string ] .

8 CC2 rdfs:subClassOf [
9 a owl:Restriction ;

10 owl:onProperty foaf:givenName ;
11 owl:someValuesFrom xsd:string ] .

– 1 foaf:name (range xsd:string) XOR 1 foaf:givenName (range xsd:string)

Human Ď ( A [ B) \ (A [  B)
A Ď ě 1 name . string [ ď 1 name . string

B Ď ě 1 givenName . string [ ď 1 givenName . string



Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

class Human - -  A [ B, A [  B \
class A [  B - - A,  B [
class  A [ B - -  A, B [
class  A - - A  
class A - - ě 1 name.string, ď 1 name.string [ -
property ě 1 name.string name - string ě 1
property ď 1 name.string name - string ď 1
class  B - - B  
class B - - ě 1 givenName.string, ď 1 givenName.string [ -
property ě 1 givenName.string givenName - string ě 1
property ď 1 givenName.string givenName - string ď 1

syntactic sugar:

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value
property = 1 name.string name - string = 1
property = 1 givenName.string givenName - string = 1
class Human - - = 1 name.string, = 1 givenName.string XOR

30.2 Simple Example

1 # ShEx:

2 <FeelingForce> { (
3 attackingBySword xsd:boolean |
4 attackingByForce xsd:boolean ) }

1 # OWL 2 DL:
2 FeelingForce owl:disjointUnionOf ( CC1 CC2 ) .

3 CC1 rdfs:subClassOf [
4 a owl:Restriction ;

5 owl:onProperty attackingBySword ;
6 owl:someValuesFrom xsd:boolean ] .

7 CC2 rdfs:subClassOf [
8 a owl:Restriction ;
9 owl:onProperty attackingByForce ;

10 owl:someValuesFrom xsd:boolean ] .

This means that FeelingForce individuals are individuals having one
attackingBySword relationship (range xsd:boolean) or one attackingByForce

relationship (range xsd:boolean) but not both.

A ” D attackingBySword.xsd:boolean
B ” D attackingByForce.xsd:boolean

FeelingForce Ď ( A [ B) \ (A [  B)

30.3 Simple Example

Person Ď ppMale[ Femaleq \ p Male[ Femaleqq



30.4 Complex Example

1 # ShEx:

2 <Human> { (
3 foaf:name xsd:string | foaf:givenName xsd:string+ ,

4 foaf:familyName xsd:string ) }

– 1 foaf:name (range xsd:string) XOR 1-n foaf:givenName (range xsd:string)
– and
– 1 foaf:familyName (range xsd:string)

Individuals matching the ’Human’ data shape:

1 :Han

2 foaf:name "Han Solo" ;
3 foaf:familyName "Solo" .
4 :Anakin

5 foaf:givenName "Anakin" ;
6 foaf:givenName "Darth" ;

7 foaf:familyName "Skywalker" .

Individual not matching the ’Human’ data shape:

1 :Anakin

2 foaf:name "Anakin Skywalker" ;
3 foaf:givenName "Anakin" ;
4 foaf:familyName "Skywalker" .

31 Context-Specific Inclusive OR of Properties

Context-Specific Inclusive OR of Properties corresponds to the require-
ment R-202-CONTEXT-SPECIFIC-INCLUSIVE-OR-OF-PROPERTIES. Inclusive or is
a logical connective joining two or more predicates that yields the logical value
”true” when at least one of the predicates is true. The context can be a class,
i.e., the constraint applies for individuals of this specific class.

31.1 Simple Example

– 1 foaf:name (range: xsd:string) OR 1 foaf:givenName (range: xsd:string)
– it is also possible that both 1 foaf:name and 1 foaf:givenName are stated
– context: class Human

Human Ď A \ B
A Ď ě 1 name . string [ ď 1 name . string

B Ď ě 1 givenName . string [ ď 1 givenName . string

syntactic sugar:

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value
property = 1 name.string name - string = 1
property = 1 givenName.string givenName - string = 1
class Human - - = 1 name.string, = 1 givenName.string \



32 Context-Specific Exclusive OR of Property Groups

Context-Specific Exclusive OR of Property Groups corresponds to the re-
quirement: R-13-DISJOINT-GROUP-OF-PROPERTIES-CLASS-SPECIFIC. Exclusive
or is a logical operation that outputs true whenever both inputs differ (one is
true, the other is false). Only one of multiple property groups leads to valid data.

32.1 Simple Example

1 # ShEx:

2 <Human> {
3 (

4 foaf:name xsd:string ,
5 foaf:givenName xsd:string )

6 |
7 (
8 foaf:mbox IRI ,

9 foaf:homepage foaf:Document ) }

– 1. group XOR 2. group
– 1. group: 1 foaf:name (range: xsd:string) and 1 foaf:givenName (range: xsd:string)
– 2. group: 1 foaf:mbox (range: IRI) and 1 foaf:homepage (range: foaf:Document)
– context: class Human

1 # valid data:
2 Thomas

3 a Human ;
4 foaf:mbox <thomas.bosch@gesis.org> ;

5 foaf:homepage <\protect\vrule width0pt\protect\href{http://purl.org/net/thomasbosch}{http://purl.org/net/thomasbosch}> .

1 # invalid data:

2 Thomas
3 a Human ;

4 foaf:name ’Thomas Bosch’ ;
5 foaf:givenName ’Thomas’ ;
6 foaf:mbox <thomas.bosch@gesis.org> ;

7 foaf:homepage <\protect\vrule width0pt\protect\href{http://purl.org/net/thomasbosch}{http://purl.org/net/thomasbosch}> .

Human Ď ( E [ F) \ (E [  F)
E ” A [ B
F ” C [ D

A Ď ě 1 name . string [ ď 1 name . string
B Ď ě 1 givenName . string [ ď 1 givenName . string

C Ď ě 1 mbox . IRI [ ď 1 mbox . IRI
D Ď ě 1 homepage . Document [ ď 1 homepage . Document

syntactic sugar:
Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

class Human - - E, F XOR
class E - - = 1 name.string, = 1 givenName.string [
class F - - = 1 mbox.IRI, = 1 homepage.Document [
property = 1 name.string name - string = 1
property = 1 givenName.string givenName - string = 1
property = 1 mbox.IRI mbox - IRI = 1
property = 1 homepage.Document homepage - Document = 1



33 Context-Specific Inclusive OR of Property Groups

At least one property group must match for individuals of a specific context.
Context may be a class, a shape, or an application profile.

33.1 Simple Example

– 1. group OR 2. group
– 1. group: 1 foaf:firstName (range: xsd:string) and 1 foaf:lastName (range:

xsd:string)
– 2. group: 1 foaf:givenName (range: xsd:string) and 1 foaf:familyName (range:

xsd:string)
– context: class Person

1 # valid data:

2 :Anakin
3 a :Person ;
4 foaf:firstName ’Anakin’ ;

5 foaf:lastName ’Skywalker’ ;
6 foaf:givenName ’Anakin’ ;

7 foaf:familyName ’Skywalker’ .

1 # invalid data:
2 :Anakin

3 a :Person .

Human Ď E \ F
E ” A [ B
F ” C [ D

A Ď ě 1 name . string [ ď 1 name . string
B Ď ě 1 givenName . string [ ď 1 givenName . string

C Ď ě 1 mbox . IRI [ ď 1 mbox . IRI
D Ď ě 1 homepage . Document [ ď 1 homepage . Document

syntactic sugar:

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

class Human - - E, F \
class E - - = 1 name.string, = 1 givenName.string [
class F - - = 1 mbox.IRI, = 1 homepage.Document [
property = 1 name.string name - string = 1
property = 1 givenName.string givenName - string = 1
property = 1 mbox.IRI mbox - IRI = 1
property = 1 homepage.Document homepage - Document = 1

34 Allowed Values

Allowed Values corresponds to the requirements: R-30-ALLOWED-VALUES-FOR-
RDF-OBJECTS and R-37-ALLOWED-VALUES-FOR-RDF-LITERALS. It is a common



requirement to narrow down the value space of a property by an exhaustive
enumeration of the valid values (both literals or resource). This is often ren-
dered in drop down boxes or radio buttons in user interfaces. Allowed values for
properties

– must be these IRIs,
– must be IRIs matching specific patterns,
– must be IRIs matching one of multiple patterns,
– must be (any) literals,
– must be literals of a list of allowed literals (e.g. ”red” ”blue” ”green”),
– must be typed literals of this type (e.g. XML dataType).

34.1 Example

1 # DSP:
2 descriptionTemplate
3 a dsp:DescriptionTemplate ;

4 dsp:minOccur "0"^^xsd:nonNegativeInteger ;
5 dsp:maxOccur "infinity"^^xsd:string ;

6 dsp:resourceClass swrc:Book ;
7 dsp:statementTemplate [
8 a dsp:NonLiteralStatementTemplate ;

9 dsp:minOccur "0"^^xsd:nonNegativeInteger ;
10 dsp:maxOccur "infinity"^^xsd:string ;

11 dsp:property dcterms:subject ;
12 dsp:nonLiteralConstraint [

13 a dsp:NonLiteralConstraint ;
14 dsp:valueClass skos:Concept ;
15 dsp:valueURI ComputerScience, SocialScience, Librarianship ] ] .

1 # OWL2:

2 dcterms:subject rdfs:range ObjectOneOf .
3 # EquivalentClasses( ObjectOneOf ObjectOneOf( ComputerScience SocialScience Librarianship ) )

4 ObjectOneOf owl:equivalentClass [
5 a owl:Class ;
6 owl:oneOf ( ComputerScience SocialScience Librarianship ) ] .

The range of the object property dcterms:subjectmust consist of the indi-
viduals ComputerScience SocialScience Librarianshipwhich are of the class
skos:Concept:

J Ď @ dcterms:subject . skos:Concept [
( tComputerScienceu \ {SocialScience} \ {Librarianship} )

34.2 Simple Example

Beatle ” {john} \ {paul} \ {george} \ {ringo}

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

class Beatle - - tjohnu, tpaulu, tgeorgeu, tringou \



34.3 Simple Example

{ComputerScience} \ {SocialScience} \ {Librarianship}

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

class complex concept - - {ComputerScience}, {SocialScience}, {Librarianship} \ -

34.4 Simple Example

Jedis have blue, green, or white laser swords.

1 # DSP:
2 personDescriptionTemplate
3 a dsp:DescriptionTemplate ;

4 dsp:resourceClass Jedi ;
5 dsp:statementTemplate [

6 a dsp:LiteralStatementTemplate ;
7 dsp:property laserSwordColor ;

8 dsp:literalConstraint [
9 a dsp:LiteralConstraint ;

10 dsp:literal "blue" ;

11 dsp:literal "green" ;
12 dsp:literal "white"] ] .

1 # OWL2:
2 laserSwordColor rdfs:range laserSwordColors .

3 laserSwordColors
4 a rdfs:Datatype .

5 owl:oneOf ( "blue" "green" "white" ) .

1 # ReSh:

2 Jedi a rs:ResourceShape ;
3 rs:property [
4 rs:name "laserSwordColor" ;

5 rs:propertyDefinition laserSwordColor ;
6 rs:allowedValue "blue" , "green" , "white" ;

7 rs:occurs rs:Exactly-one ; ] .

1 # ShEx:

2 Jedi {
3 laserSwordColor (’blue’ ’green’ ’white’) }

1 # Jedi individuals:
2 Yoda

3 laserSwordColor ’blue’ .

Jedi ” D laserSwordColor.{blue, green, white}

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property Jedi laserSwordColor - LaserSwordColor D -
class LaserSwordColor - - tblueu, tgreenu, twhiteu \ -



35 Not Allowed Values

Not Allowed Values corresponds to the requirements R-33-NEGATIVE-OBJECT-
CONSTRAINTS and R-200-NEGATIVE-LITERAL-CONSTRAINTS. A matching triple
has any literal / object except those explicitly excluded.

35.1 Simple Example

Siths do not have blue, green, or white laser swords.

1 # OWL2:

2 laserSwordColor rdfs:range negativeLaserSwordColors .
3 NegativeLaserSwordColors

4 a rdfs:Datatype .
5 owl:complementOf laserSwordColors .
6 laserSwordColors

7 a rdfs:Datatype .
8 owl:oneOf ( "blue" "green" "white" ) .

1 # ShEx:
2 Sith {

3 ! laserSwordColor (’blue’ ’green’ ’white’) }

1 # Sith individuals:
2 DarthSidious
3 laserSwordColor ’red’ .

Sith ”  D laserSwordColor . {blue, green, white}

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property D laserSwordColor . LaserSwordColor laserSwordColor - LaserSwordColor D -
class Sith - - D laserSwordColor . LaserSwordColor  -
class LaserSwordColor - - tblueu, tgreenu, twhiteu \ -

36 Membership in Controlled Vocabularies

Membership in Controlled Vocabularies corresponds to the requirements
R-32-MEMBERSHIP-OF-RDF-OBJECTS-IN-CONTROLLED-VOCABULARIES and
R-39-MEMBERSHIP-OF-RDF-LITERALS-IN-CONTROLLED-VOCABULARIESResources
can only be members of listed controlled vocabularies.

36.1 Simple Example

1 # DSP:

2 bookDescriptionTemplate
3 a dsp:DescriptionTemplate ;

4 dsp:resourceClass swrc:Book ;
5 dsp:statementTemplate [
6 a dsp:NonLiteralStatementTemplate ;



7 dsp:property dcterms:subject ;

8 dsp:nonLiteralConstraint [
9 a dsp:NonLiteralConstraint ;

10 dsp:valueClass skos:Concept ;
11 dsp:vocabularyEncodingScheme BookSubjects, BookTopics, BookCategories ] ] .

skos:Concept resources can only be members of the listed controlled vocab-
ularies.

A ” Concept[B

B ” @inScheme.C

C ” ConceptScheme[ ptBookSubjectsu \ tBookTopicsu \ tBookCategoriesuq

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property J subject - A range -
class A - - Concept, B [ -
property B inScheme - C @ -
class C - - ConceptScheme, D [ -
class D - - tBookSubjectsu, tBookTopicsu, tBookCategoriesu \ -

1 # valid data:
2 ArtficialIntelligence

3 a swrc:Book ;
4 dcterms:subject ComputerScience .

5 ComputerScience
6 a skos:Concept ;
7 dcam:memberOf BookSubjects ;

8 skos:inScheme BookSubjects .
9 BookSubjects

10 a skos:ConceptScheme .

1 # invalid data:
2 ArtficialIntelligence

3 a swrc:Book ;
4 dcterms:subject ComputerScience .

5 ComputerScience
6 a skos:Concept ;
7 dcam:memberOf BooksAboutBirds ;

8 skos:inScheme BooksAboutBirds ;
9 dcam:memberOf BookSubjects ;

10 skos:inScheme BookSubjects .
11 BookSubjects
12 a skos:ConceptScheme .

The related subject (ComputerScience) is a member of a controlled vocab-
ulary (BooksAboutBirds) which is not part of the list of allowed controlled
vocabularies.

37 IRI Pattern Matching

IRI Pattern Matching corresponds to the requirements



– R-21-IRI-PATTERN-MATCHING-ON-RDF-SUBJECTS,
– R-22-IRI-PATTERN-MATCHING-ON-RDF-OBJECTS and
– R-23-IRI-PATTERN-MATCHING-ON-RDF-PROPERTIES

indicating IRI pattern matching on subjects, properties, and objects.

Not expressible in DL!

38 Literal Pattern Matching

Literal Pattern Matching corresponds to the requirement
R-44-PATTERN-MATCHING-ON-RDF-LITERALS. indicating pattern matching on lit-
erals.

38.1 Simple Example

1 # OWL 2 DL (functional-style syntax):

2 Declaration( Datatype( SSN ) )
3 DatatypeDefinition(

4 SSN
5 DatatypeRestriction( xsd:string xsd:pattern "[0-9]{3}-[0-9]{2}-[0-9]{4}" ) )

6 DataPropertyRange( hasSSN SSN )

1 # OWL 2 DL (turtle syntax):
2 SSN

3 a rdfs:Datatype ;
4 owl:equivalentClass [

5 a rdfs:Datatype ;
6 owl:onDatatype xsd:string ;

7 owl:withRestrictions (
8 [ xsd:pattern "[0-9]{3}-[0-9]{2}-[0-9]{4}" ] ) ] .
9 hasSSN rdfs:range SSN .

A social security number is a string that matches the given regular expression.
The second axiom defines SSN as an abbreviation for a datatype restriction
on xsd:string. The first axiom explicitly declares SSN to be a datatype. The
datatype SSN can be used just like any other datatype; for example, it is used
in the third axiom to define the range of the hasSSN property.

1 # valid data:
2 TimBernersLee
3 hasSSN "123-45-6789"^^SSN .

1 # invalid data:
2 TimBernersLee

3 hasSSN "123456789"^^SSN .

Not expressible in DL!

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

class SSN - - xsd:string xsd:pattern ’[0-9]3-[0-9]2-[0-9]4’



38.2 Simple Example

There are multiple use cases associated with the requirement to match literals
according to given patterns.

Luke’s droids can only have the numbers ”R2-D2” or ”C-3PO”. The universal
restriction part of this constraint can be expressed by OWL 2 DL: LukesDroids
Ď @ droidNumber.DroidNumber. The restriction of the datatype DroidNumber,
however, cannot be expressed in DL, but OWL 2 DL can be used anyway:

1 DroidNumber

2 a rdfs:Datatype ;
3 owl:equivalentClass [

4 a rdfs:Datatype ;
5 owl:onDatatype xsd:string ;

6 owl:withRestrictions (
7 [ xsd:pattern "R2-D2|C-3PO" ] ) ] .

The second axiom defines DroidNumber as an abbreviation for a datatype re-
striction on xsd:string. The first axiom explicitly declares DroidNumber to
be a datatype. The datatype DroidNumber can be used just like any other
datatype like in the universal restriction above. The literal pattern matching
constraint validates DroidNumber literals according to the stated regular ex-
pression causing a constraint violation for the triples Luke hasDroid Droideka

and Droideka droidNumber "Droideka"^^DroidNumber, but not for the triples
Luke hasDroid R2-D2 and R2-D2 droidNumber "R2-D2"^^DroidNumber.

Not expressible in DL!

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property LukesDroids droidNumber - DroidNumber @ -
class DroidNumber - - xsd:string xsd:pattern ’R2-D2|C-3PO’

39 Negative Literal Pattern Matching

Negative Literal Pattern Matching corresponds to the requirement
R-44-PATTERN-MATCHING-ON-RDF-LITERALS indicating negative pattern match-
ing on literals.

1 # examples:
2 1. dbo:isbn format is different ’!’ from ’^([iIsSbBnN 0-9-])*$’

3 2. dbo:postCode format is different ‘!’ from ’^[0-9]{5}$’
4 3. foaf:phone contains any letters (’[A-Za-z]’)

39.1 Example

1 # test binding (DQTP):

2 dbo:isbn format is different ’!’ from ’^([iIsSbBnN 0-9-])*$’
3

4 P1 => dbo:isbn

5 NOP => !
6 REGEX => ’^([iIsSbBnN 0-9-])*$’



1 # DQTP:
2 SELECT DISTINCT ?s WHERE { ?s %%P1%% ?value .

3 FILTER ( %%NOP%% regex(str(?value), %%REGEX%) ) }

– MATCH Pattern [3]
– P1 is the property we need to check against REGEX and NOP can be a not

operator (!) or empty.

1 # valid data:
2 FoundationsOfSWTechnologies

3 dbo:isbn ’ISBN-13 978-1420090505’ .

1 # invalid data:

2 HandbookOfSWTechnologies
3 dbo:isbn ’DOI 10.1007/978-3-540-92913-0’ .

Not expressible in DL!

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value
property J dbo:isbn -  A domain -
class  A - - A  -
class A - - xsd:string regex ’ˆ([iIsSbBnN 0-9-])*1

40 Literal Value Comparison

Literal Value Comparison corresponds to the requirement
R-43-LITERAL-VALUE-COMPARISON. Examples are:

– dbo:deathDate before ‘<’ dbo:birthDate
– dbo:releaseDate after ‘>’ dbo:latestReleaseDate
– dbo:demolitionDate before ‘<’ dbo:buildingStartDate

40.1 Simple Example

1 # DQTP:
2 SELECT ?s WHERE {

3 ?s %%P1%% ?v1 .
4 ?s %%P2%% ?v2 .

5 FILTER ( ?v1 %%OP%% ?v2 ) }

This constraint corresponds to the COMP Pattern [3]. Depending on the
property semantics, there are cases where two different literal values must have
a specific ordering with respect to an operator. P1 and P2 are the datatype
properties we need to compare and OP is the comparison operator (<, <=, >,
>=, =, !=).



1 # test binding (DQTP):
2 dbo:deathDate before ‘<’ dbo:birthDate

3

4 P1 => dbo:deathDate
5 P2 => dbo:birthDate

6 OP => <

1 # valid data:

2 :AlbertEinstein
3 dbo:birthDate ’1879-03-14’^^xsd:date ;

4 dbo:deathDate ’1955-04-18’^^xsd:date .

1 # invalid data:

2 :NeilArmstrong
3 dbo:birthDate ’2012-08-25’^^xsd:date ;

4 dbo:deathDate ’1930-08-05’^^xsd:date .

Not expressible in DL!

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property J dbo:birthDate dbo:deathDate xsd:date > -

40.2 Simple Example

Duplicate strings are not allowed:

1 dc:subject "foo"@en

2 dc:subject "foo"@fr
3 dc:subject "bar"@fr

4 dc:subject "foo"

There are no identical strings.

Not expressible in DL!

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property J dc:subject dc:subject xsd:string ‰ -

41 Negative Literal Ranges

Negative Literal Ranges corresponds to the requirement R-142-NEGATIVE-

RANGES-OF-RDF-LITERAL-VALUES. The literal value of a resource (having a cer-
tain type) must (not) be within a specific range. P1 is a data property of an in-
stance of class T1 and its literal value must be between the range of [Vmin,Vmax]
or outside ( ‘!’ ).



41.1 Simple Example

– dbo:height of a dbo:Person is not within [0.4,2.5]

41.2 Simple Example

– geo:lat of a spatial:Feature is not within [-90,90]

41.3 Simple Example

– geo:long of a gml:Feature must be in range [-180,180]

42 Literal Ranges

Literal Ranges corresponds to the requirement R-45-RANGES-OF-RDF-LITERAL-
VALUES. P1 is a data property (of an instance of class C1) and its literal value
must be between the range of [Vmin,Vmax].

42.1 Example

1 # OWL 2 DL (functional-style syntax):

2 Declaration( Datatype( NumberPlayersPerWorldCupTeam ) )
3 DatatypeDefinition(
4 NumberPlayersPerWorldCupTeam

5 DatatypeRestriction(
6 xsd:nonNegativeInteger

7 xsd:minInclusive "1"^^xsd:nonNegativeInteger
8 xsd:maxInclusive "23"^^xsd:nonNegativeInteger ) )
9 DataPropertyRange( position NumberPlayersPerWorldCupTeam )

1 # OWL 2 DL (turtle syntax):
2 NumberPlayersPerWorldCupTeam
3 a rdfs:Datatype ;

4 owl:equivalentClass [
5 a rdfs:Datatype ;

6 owl:onDatatype xsd:nonNegativeInteger ;
7 owl:withRestrictions (
8 [ xsd:minInclusive "1"^^xsd:nonNegativeInteger ]

9 [ xsd:maxInclusive "23"^^xsd:nonNegativeInteger ] ) ] .
10 position rdfs:range NumberPlayersPerWorldCupTeam .

The data range ’NumberPlayersPerWorldCupTeam’ contains the non nega-
tive integers 1 to 23, as each world cup team can only have 23 football players
at most.

1 # valid data:

2 MarioGoetze
3 position "19"^^:NumberPlayersPerWorldCupTeam .

1 # invalid data:

2 MarioGoetze
3 position "99"^^:NumberPlayersPerWorldCupTeam .



Not expressible in DL!

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

class NumberPlayersPerWorldCupTeam - - ě1, ď23 [ -
class ě1 - - xsd:nonNegativeInteger ě 1
class ď23 - - xsd:nonNegativeInteger ď 23

43 Ordering

Ordering corresponds to the requirements R-121-SPECIFY-ORDER-OF-RDF-RESOURCES
and R-217-DEFINE-ORDER-FOR-FORMS/DISPLAY. With this constraint objects of
object properties can be ordered as well as literals of data properties and objects
of object properties.

43.1 Simple Example

Define the order of the property listElement for the class rdf:List. List ele-
ments are of datatype xsd:string.

Not expressible in DL!

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property rdf:List listElement - xsd:string order 1

43.2 Simple Example

Property p should be ordered, i.e., point to a list (rdf:List) of values.

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property J p - - ordered property -

44 Validation Levels

Validation Levels corresponds to the requirements

– R-205-VARYING-LEVELS-OF-ERROR,
– R-135-CONSTRAINT-LEVELS,
– R-158-SEVERITY-LEVELS-OF-CONSTRAINT-VIOLATIONS, and
– R-193-MULTIPLE-CONSTRAINT-VALIDATION-EXECUTION-LEVELS.

Different levels of severity, priority should be assigned to constraints. Pos-
sible validation levels could be: informational, warning, error, fail, should, rec-
ommended, must, may, optional, closed (only this) constraints, open (at least
this).

Not expressible in DL!



45 String Operations

String Operations corresponds to the requirement R-194-PROVIDE-STRING-

FUNCTIONS-FOR-RDF-LITERALS. Some constraints require building new strings
out of other strings. Calculating the string length would also be another con-
straint of this type.

45.1 Simple Example

The length of strings of the property hasISBN for the context class Book must
be exactly 3.

Not expressible in DL!

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property Book hasISBN - xsd:string length 3

46 Context-Specific Valid Classes

Context-Specific Valid Classes corresponds to the requirements
R-209-VALID-CLASSES. What types of resources (rdf:type) are valid in a specific
context? Context can be an input stream, a data creation function, or an API.

46.1 Simple Example

Within the context AP (application profile) the classes Book and Paper are valid.

Not expressible in DL!

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

class AP - - Book, Paper context-specific valid classes true

47 Context-Specific Valid Properties

Context-Specific Valid Properties corresponds to the requirement R-210-
VALID-PROPERTIES. What properties can be used within this context? Context
can be an data receipt function, data creation function, or API.



47.1 Simple Example

Within the context AP (application profile) the properties dcterms:subject and
dcterms:title are invalid.

Not expressible in DL!

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property AP dcterms:subject, dcterms:title - - context-specific valid properties false

48 Default Values

Default Values corresponds to the requirements R-31-DEFAULT-VALUES-OF-RDF-
OBJECTS and R-38-DEFAULT-VALUES-OF-RDF-LITERALS. Default values for ob-
jects and literals are inferred automatically. It should be possible to declare the
default value for a given property, e.g. so that input forms can be pre-populated
and to insert a required property that is missing in a web service call.

48.1 Simple Example

Jedis have only 1 blue laser sword per default. Siths, in contrast, normally have
2 red laser swords.

1 # rule (SPIN)

2 # -----------
3 owl:Thing
4 spin:rule [

5 a sp:Construct ;
6 sp:text """

7 CONSTRUCT {
8 ?this laserSwordColor "blue"^^xsd:string ;

9 ?this numberLaserSwords "1"^^xsd:nonNegativeInteger .
10 }
11 WHERE {

12 ?this a Jedi .
13 } """ ; ] .

14 owl:Thing
15 spin:rule [
16 a sp:Construct ;

17 sp:text """
18 CONSTRUCT {

19 ?this laserSwordColor "red"^^xsd:string ;
20 ?this numberLaserSwords "2"^^xsd:nonNegativeInteger .

21 }
22 WHERE {
23 ?this a Sith .

24 } """ ; ] .

1 # data:

2 Joda a Jedi .
3 DarthSidious a Sith .



1 # inferred triples:
2 Joda

3 laserSwordColor "blue"^^xsd:string ;
4 numberLaserSwords "1"^^xsd:nonNegativeInteger .
5 DarthSidious

6 laserSwordColor "red"^^xsd:string ;
7 numberLaserSwords "2"^^xsd:nonNegativeInteger .

Not expresible in DL!

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value
property Jedi laserSwordColor - - default values ’blue’
property Jedi numberLaserSwords - - default values ’1’
property Sith laserSwordColor - - default values ’red’
property Sith numberLaserSwords - - default values ’2’

49 Mathematical Operations

Mathematical Operations corresponds to the requirements

– R-42-MATHEMATICAL-OPERATIONS and
– R-41-STATISTICAL-COMPUTATIONS.

Examples are:

– adding 2 dates
– add number of days to start date
– area = width * height
– Statistical Computations: average, mean, sum

49.1 Simple Example

Calculate rectangle areas.

Not expressible in DL!

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property Rectangle area width, height xsd:integer multiplication -

50 Language Tag Matching

Language Tag Matching corresponds to the requirement
R-47-LANGUAGE-TAG-MATCHING.



50.1 Simple Example

Only English names are allowed.

Not expressible in DL!

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property J name - - language tag ’en’

51 Language Tag Cardinality

Language Tag Cardinality corresponds to the requirements

– R-49-RDF-LITERALS-HAVING-AT-MOST-ONE-LANGUAGE-TAG and
– R-48-MISSING-LANGUAGE-TAGS.

51.1 Simple Example

Check that no language is used more than once per property

1 # DQTP:
2 SELECT DISTINCT ?s WHERE { ?s %%P1%% ?c

3 BIND ( lang(?c) AS ?l )
4 FILTER (isLiteral (?c) && lang(?c) = %%V1%%)}

5 GROUP BY ?s HAVING COUNT (?l) > 1

This corresponds to the test pattern ONELANGPattern [3]. A literal value
should contain at most 1 literal for a language. P1 is the property containing the
literal and V1 is the language we want to check.

1 # test binding (DQTP):
2 P1 => foaf:name

3 V1 => en

A single English (“en”) foaf:name.

1 # valid data:
2 :LeiaSkywalker

3 foaf:name ’Leia Skywalker’@en .

1 # invalid data:
2 :LeiaSkywalker
3 foaf:name ’Leia Skywalker’@en ;

4 foaf:name ’Leia’@en .

Not expressible in DL!

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property J foaf:name - - language tag exact cardinality 1



52 Whitespace Handling

Whitespace Handling corresponds to the requirement R-50-WHITESPACE-
HANDLING-OF-RDF-LITERALS. Avoid whitespaces in literals neither leading nor
trailing white spaces.

52.1 Simple Example

Check if literals of the property p do not include whitespaces.

Not expressible in DL!

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value
property J p - - whitespace -

53 HTML Handling

HTML Handling corresponds to the requirement R-51-HTML-HANDLING-OF-RDF-
LITERALS. Check if there are no HTML tags included in literals (of specific data
properties within the context of specific classes).

53.1 Simple Example

Check if literals of the property p of the class C do not include HTML tags.

Not expressible in DL!

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value
property c p - - HTML -

54 Required Properties

Required Properties corresponds to the requirement R-68-REQUIRED-PROPERTIES.

54.1 Simple Example

For persons the property hasAncestor has to be stated pointing to persons.

Person Ď DhasAncestor.Person

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property Person hasAncestor - Person D -



55 Optional Properties

Optional Properties corresponds to the requirement R-69-OPTIONAL-PROPERTIES.

55.1 Simple Example

For persons the property hasAncestor pointing to persons is optional.

DhasAncestor.Person Ď Person

Same as the definition of domains.

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value
property D hasAncestor.Person hasAncestor - Person D -
class Person - - D hasAncestor.Person Ď -

syntactic sugar:

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property Person hasAncestor - Person optional -

56 Repeatable Properties

Repeatable Properties corresponds to the requirement
R-70-REPEATABLE-PROPERTIES.

56.1 Simple Example

The property commandsVessel is repeatable for individuals of the class Captain.

Captain Ďě 1commandsV essel.J

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property Captain commandsVessel - J ě 1

syntactic sugar:

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property Captain commandsVessel - J repeatable -



57 Conditional Properties

Conditional Properties corresponds to the requirement
R-71-CONDITIONAL-PROPERTIES.

Multiple conditions are possible:

– universal quantification on object and data properties,
– existential quantification on object and data properties,
– if specific properties are present, then specific other properties also have to

be present

57.1 Simple Example

If an individual has a parentOf property relationship, then this individual also
has a ancestorOf property relationship.

parentOf Ď ancestorOf

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property J parentOf ancestorOf J Ď

58 Recommended Properties

Recommended Properties corresponds to the requirement
R-72-RECOMMENDED-PROPERTIES. Which properties are not required but recom-
mended within a particular context.

58.1 Simple Example

Property p is recommended to use within the context of the class C.

Not expressible in DL!

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property C p - - recommended -

59 Negative Property Constraints

Negative Property Constraints corresponds to the requirements

– R-52-NEGATIVE-OBJECT-PROPERTY-CONSTRAINTS and
– R-53-NEGATIVE-DATA-PROPERTY-CONSTRAINTS.

Instances of a specific class must not have some object property. In OWL 2 DL,
this can be expressed as follows: ObjectComplementOf ( ObjectSomeValuesFrom

( ObjectPropertyExpression owl:Thing ) ).



59.1 Example

1 # ShEx:
2 <FeelingForce> {
3 feelingForce (true) ,

4 attitute xsd:string }
5 <JediMentor> {

6 feelingForce (true) ,
7 attitute (’good’) ,

8 laserSwordColor xsd:string ,
9 numberLaserSwords xsd:nonNegativeInteger ,

10 mentorOf @<JediStudent> ,

11 !studentOf @<JediMentor> }
12 <JediStudent> {

13 feelingForce (true) ,
14 attitute (’good’) ,
15 laserSwordColor xsd:string ,

16 numberLaserSwords xsd:nonNegativeInteger ,
17 !mentorOf @<JediStudent> ,

18 studentOf @<JediMentor> }

Amatching triple has any predicate except those excluded by the ’ !’ operator.

1 # individuals matching ’FeelingForce’ and ’JediMentor’ data shapes:

2 Obi-Wan
3 feelingForce true ;
4 attitute ’good’ ;

5 laserSwordColor ’blue’ ;
6 numberLaserSwords ’1’^^xsd:nonNegativeInteger ;

7 mentorOf Anakin .

1 # individuals matching ’FeelingForce’ and ’JediStudent’ data shapes:

2 Anakin
3 feelingForce true ;
4 attitute ’good’ ;

5 laserSwordColor ’blue’ ;
6 numberLaserSwords ’1’^^xsd:nonNegativeInteger ;

7 studentOf Obi-Wan .

JediMentor Ď  pDstudentOf.JediMentorq

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property D studentOf.JediMentor studentOf - JediMentor D -
class JediMentor - - D studentOf.JediMentor  -

60 Handle RDF Collections

Handle RDF Collections corresponds to the requirement R-120-HANDLE-RDF-
COLLECTIONS. Examples are:

– size of collection
– first / last element of list must be a specific literal
– compare elements of collection



– are collections identical?
– actions on RDF lists14

– 2. list element equals ’XXX’
– Does the list have more than 10 elements?

60.1 Example

Get 2. list element:

1 # SPIN:
2 getListItem
3 a spin:Function ; rdfs:subClassOf spin:Functions ;

4 spin:constraint [
5 rdf:type spl:Argument ;

6 spl:predicate sp:arg1 ;
7 spl:valueType rdf:List ;

8 rdfs:comment "list" ; ] ;
9 spin:constraint [

10 rdf:type spl:Argument ;

11 spl:predicate sp:arg2 ;
12 spl:valueType xsd:nonNegativeInteger ;

13 rdfs:comment "item position (starting with 0)" ; ] ;
14 spin:body [

15 a sp:SELECT ;
16 sp:text """
17 SELECT ?item

18 WHERE {
19 ?arg1 contents/rdf:rest{?arg2}/rdf:first ?item } """ ; ] ;

20 spin:returnType rdfs:Resource .

1 # data:
2 Jinn students
3 ( Xanatos Kenobi ) .

1 # SPIN:

2 BIND ( getListItem( ?list, "1"xsd:nonNegativeInteger ) AS ?listItem ) .

– SPIN function call
– retrieves the 2. item from the list (2. student of Jedi mentor Jinn)

1 # result:
2 Kenobi

Not expressible in DL!

60.2 Simple Example

Append a string list element ’list element’ to a list the property p of the class C
is pointing to.

Not expressible in DL!

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property C p - xsd:string append list element ’list element’

14 See http://www.snee.com/bobdc.blog/2014/04/rdf-lists-and-sparql.html

http://www.snee.com/bobdc.blog/2014/04/rdf-lists-and-sparql.html


61 Recursive Queries

Recursive Queries corresponds to the requirement R-222-RECURSIVE-QUERIES.
If we want to define Resource Shapes, remember that it is a recursive language
(the valueShape of a Resource Shape is in turn another Resource Shape). There
is no way to express that in SPARQL without hand-waving ”and then you call
the function again here” or ”and then you embed this operation here” text.
The embedding trick doesn’t work in the general case because SPARQL can’t
express recursive queries, e.g. ”test that this Issue is valid and all of the Issues
that references, recursively”. Most SPARQL engines already have functions that
go beyond the official SPARQL 1.1 spec. The cost of that sounds manageable.

61.1 Simple Example

1 # ShEx:

2 IssueShape {
3 related @IssueShape*

4 }

IssueShape Ďě 1related.IssueShape

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property IssueShape related - IssueShape ě 1

62 Value is Valid for Datatype

Make sure that a value is valid for its datatype.

62.1 Simple Example

A date is really a date, as an example. SPARQL regex can be used for this
purpose.

62.2 Simple Example

1 # SPIN:
2 FILTER ( datatype( ?shoeSize ) = xsd:nonNegativeInteger )
3 isNumeric ( ?shoeSize )

The datatype of ?showSize is xsd:nonNegativeInteger. The datatype is really
numeric.

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property J shoeSize - xsd:nonNegativeInteger value valid for datatype -



63 Individual Equality

Individual equality states that two different names are known to refer to the
same individual [4].

63.1 Simple Example

tjuliau “ tjohnu

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value
class {julia} - - {john} = -
class {john} - - {julia} = -

64 Individual Inequality

This is by default because of the UNA.

64.1 Simple Example

tjuliau ‰ tjohnu

Asserts that Julia and John are actually different individuals.

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

class {julia} - - {john} ‰ -
class {john} - - {julia} ‰ -

65 Equivalent Properties

An equivalent object properties axiom EquivalentObjectProperties( OPE1 ...
OPEn ) states that all of the object property expressions OPEi, 1 ď i ď n,
are semantically equivalent to each other. This axiom allows one to use each
OPEi as a synonym for each OPEj — that is, in any expression in the ontology
containing such an axiom, OPEi can be replaced with OPEj without affecting the
meaning of the ontology. The axiom EquivalentObjectProperties( OPE1 OPE2
) is equivalent to the following two axioms SubObjectPropertyOf( OPE1 OPE2
) and SubObjectPropertyOf( OPE2 OPE1 ).

An equivalent data properties axiom EquivalentDataProperties( DPE1 ...
DPEn ) states that all the data property expressions DPEi, 1 ď i ď n, are
semantically equivalent to each other. This axiom allows one to use each DPEi as
a synonym for each DPEj — that is, in any expression in the ontology containing
such an axiom, DPEi can be replaced with DPEj without affecting the meaning
of the ontology. The axiom EquivalentDataProperties( DPE1 DPE2 ) can be
seen as a syntactic shortcut for the following axiom SubDataPropertyOf( DPE1
DPE2 ) and SubDataPropertyOf( DPE2 DPE1 ).



65.1 Simple Example

1 # OWL 2:
2 hasBrother owl:equivalentProperty hasMaleSibling .

3 Chris hasBrother Stewie .
4 Stewie hasMaleSibling Chris .

entailments:

1 Chris hasMaleSibling Stewie .

2 Stewie hasBrother Chris .

hasBrother Ď hasMaleSibling [ hasMaleSibling Ď hasBrother

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property J hasBrother hasMaleSibling - Ď

property J hasMaleSibling has Brother - Ď

hasBrother ” hasMaleSibling

66 Property Assertions

Property Assertions corresponds to the requirement R-96-PROPERTY-ASSERTIONS
and includes positive property assertions and negative property assertions. A
positive object property assertion ObjectPropertyAssertion( OPE a1 a2 ) states
that the individual a1 is connected by the object property expression OPE to
the individual a2. A negative object property assertion NegativeObjectProp-
ertyAssertion( OPE a1 a2 ) states that the individual a1 is not connected by the
object property expression OPE to the individual a2. A positive data property
assertion DataPropertyAssertion( DPE a lt ) states that the individual a is con-
nected by the data property expression DPE to the literal lt. A negative data
property assertion NegativeDataPropertyAssertion( DPE a lt ) states that the
individual a is not connected by the data property expression DPE to the literal
lt.

66.1 Simple Example

1 # OWL 2:
2 NegativeObjectPropertyAssertion( hasSon Peter Meg )

Meg is not a son of Peter.

hasSonpPeter,Megq

The negation of such an assertion is not necessary, as it’s meaningless!

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property {Peter} hasSon - {Meg} ‰ -



66.2 Simple Example

1 # OWL 2:

2 DataPropertyAssertion( :hasAge :Meg "17"^^xsd:integer )

Meg is seventeen years old.

hasAgepMeg, ”17”̂ x̂sd : integerq

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property {Meg} hasAge - - = ”17”̂ ˆ xsd:integer

67 Functional Properties

An object property functionality axiom FunctionalObjectProperty( OPE ) states
that the object property expression OPE is functional — that is, for each individ-
ual x, there can be at most one distinct individual y such that x is connected by
OPE to y. Each such axiom can be seen as a syntactic shortcut for the following
axiom: SubClassOf( owl:Thing ObjectMaxCardinality( 1 OPE ) ).

67.1 Simple Example

1 # OWL 2:
2 hasFather rdf:type owl:FunctionalProperty .
3 Stewie hasFather Peter .

4 Stewie hasFather Peter_Griffin .

Each object can have at most one father.
entailment:

1 Peter_Griffin owl:sameAs Peter .

pfunct hasFatherq

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property J hasFather - - functional -

68 Inverse-Functional Properties

An object property inverse functionality axiom InverseFunctionalObjectProp-
erty( OPE ) states that the object property expression OPE is inverse-functional
- that is, for each individual x, there can be at most one individual y such that y
is connected by OPE with x. Each such axiom can be seen as a syntactic short-
cut for the following axiom: SubClassOf( owl:Thing ObjectMaxCardinality( 1
ObjectInverseOf( OPE ) ) ).



68.1 Simple Example

1 # OWL 2:
2 fatherOf rdf:type owl:InverseFunctionalProperty .

3 Peter fatherOf Stewie .
4 Peter_Griffin fatherOf Stewie .

Each object can have at most one father.
Entailment:

1 Peter owl:sameAs Peter_Griffin .

pfunct hasFather q

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property J hasFather´ hasFather - inverse -

property J hasFather´ - - functional -

69 Value Restrictions

Individual Value Restrictions: A has-value class expression ObjectHasValue(
OPE a ) consists of an object property expression OPE and an individual a,
and it contains all those individuals that are connected by OPE to a. Each such
class expression can be seen as a syntactic shortcut for the class expression Ob-
jectSomeValuesFrom( OPE ObjectOneOf( a ) ). Literal Value Restrictions: A
has-value class expression DataHasValue( DPE lt ) consists of a data property
expression DPE and a literal lt, and it contains all those individuals that are
connected by DPE to lt. Each such class expression can be seen as a syntactic
shortcut for the class expression DataSomeValuesFrom( DPE DataOneOf( lt )
).

69.1 Simple Example

FatherOfStewie Ď DfatherOf.tStewieu

1 # OWL 2:

2 Peter fatherOf Stewie .
3 ObjectHasValue( fatherOf Stewie )

The has-value class expression contains those individuals that are connected
through the fatherOf property with the individual Stewie. Peter is classified
as its instance.

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property FatherOfStewie fatherOf - tStewieu D



70 Self Restrictions

A self-restriction ObjectHasSelf( OPE ) consists of an object property expres-
sion OPE, and it contains all those individuals that are connected by OPE to
themselves.

70.1 Simple Example

1 # OWL 2:
2 Peter likes Peter .

3 ObjectHasSelf( likes )

LikesThemselves Ď D likes.Self

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property D likes . Self likes - Self D
class LikesThemselves - - J, D likes . Self Ď

The self-restriction contains those individuals that like themselves. Peter is
classified as its instance.

71 Data Property Facets

Data Property Facets corresponds to the requirement R-46-CONSTRAINING-FACETS.
For datatype properties it should be possible to declare frequently needed ”facets”
to drive user interfaces and validate input against simple conditions, including
min/max value, regular expressions, string length etc. similar to XSD datatypes.
Constraining facets to restrict datatypes of RDF literals. Constraining facets may
be: xsd:length, xsd:minLength, xsd:maxLength, xsd:pattern, xsd:enumeration,
xsd:whiteSpace, xsd:maxInclusive, xsd:maxExclusive, xsd:minExclusive, xsd:minInclusive,
xsd:totalDigits, xsd:fractionDigits.

71.1 Simple Example

string matches regular expression

1 # OWL 2 QL (functional-style syntax):

2 Declaration( Datatype( SSN ) )
3 DatatypeDefinition(
4 SSN

5 DatatypeRestriction( xsd:string xsd:pattern "[0-9]{3}-[0-9]{2}-[0-9]{4}" ) )
6 DataPropertyRange( hasSSN SSN )



1 # OWL 2 QL (turtle syntax):
2 SSN

3 a rdfs:Datatype ;
4 owl:equivalentClass [
5 a rdfs:Datatype ;

6 owl:onDatatype xsd:string ;
7 owl:withRestrictions (

8 [ xsd:pattern "[0-9]{3}-[0-9]{2}-[0-9]{4}" ] ) ] .
9 hasSSN rdfs:range SSN .

A social security number is a string that matches the given regular expression.
The second axiom defines SSN as an abbreviation for a datatype restriction
on xsd:string. The first axiom explicitly declares SSN to be a datatype. The
datatype SSN can be used just like any other datatype; for example, it is used
in the third axiom to define the range of the hasSSN property.

1 # valid data:
2 TimBernersLee
3 hasSSN "123-45-6789"^^SSN .

1 # invalid data:

2 TimBernersLee
3 hasSSN "123456789"^^SSN .

Not expressible in DL!

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

class SSN - - xsd:string xsd:pattern ’[0-9]3-[0-9]2-[0-9]4’

72 Primary Key Properties

It is often useful to declare a given (datatype) property as the ”primary key”
of a class, so that the system can enforce uniqueness and also automatically
build URIs from user input and data imported from relational databases or
spreadsheets.

72.1 Simple Example

The Primary Key Properties constraint is often useful to declare a given (datatype)
property as the ”primary key” of a class, so that a system can enforce uniqueness.
Starfleet officers, e.g., are uniquely identified by their command authorization
code (e.g. to activate and cancel auto-destruct sequences). It means that the
property commandAuthorizationCode is inverse functional - mapped to DL and
the RDF-CO as follows:

pfunct commandAuthorizationCode q



Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property J commandAuthorizationCode´ commandAuthorizationCode´ - inverse -

property J commandAuthorizationCode´ - - functional -

Keys, however, are even more general, i.e., a generalization of inverse func-
tional properties [6]. A key can be a datatype property, an object property, or a
chain of properties. For this generalization purposes, as there are different sorts
of key, and as keys can lead to undecidability, DL is extended with key boxes

and a special keyfor construct[5]. This leads to the following DL and RDF-CO
mappings (only one simple property constraint):

commandAuthorizationCode keyfor StarfleetOfficer

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property StarFleetOfficer commandAuthorizationCode - - keyfor -

73 Use Sub-Super Relations in Validation

Exploiting Class/Property Specialization Ontology Axioms corresponds
to the requirement R-224-instance-level-data-validation-exploitingclass/
property-specialization-axioms-in-ontologies.Validation of instances data
(direct or indirect) exploiting the subclass or sub-property link in a given on-
tology. This validation can indicate when the data is verbose (redundant) or
expressed at a too general level, and could be improved. Examples are:

– If dc:date and one of its sub-properties dcterms:created or dcterms:issued are
present, check that the value in dc:date is not redundant with dcterms:created
or dcterms:issued for ingestion

– Check if dc:rights has the same value than edm:rights either as rdf:resource
or literal, if yes dc:rights is redundant

– If one or more dc:coverage are present, suggest the use of one of its sub-
properties, dcterms spatial or dcterms:temporal.

73.1 Simple Example

If dc:date and one of its sub-properties dcterms:created or dcterms:issued are
present, check that the value in dc:date is not redundant with dcterms:created
or dcterms:issued for ingestion

Not expressible in DL!

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property J dc:date dcterms:created, dcterms:issued - not redundant -



74 Cardinality Shortcuts

In most Library applications, cardinality shortcuts tend to appear in pairs, with
repeatable / non-repeatable establishing maximum cardinality and optional /
mandatory establishing minimum cardinality.

– Optional & Non-Repeatable = [0,1]
– Optional & Repeatable = [0,*]
– Mandatory & Non-Repeatable = [1,1]
– Mandatory & Repatable = [1,*]

Can be expressed in DL using minimum and maximum cardinality restrictions.
We propose to use syntactic sugar instead:

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property C p - - optional and non-repeatable -

75 Aggregations

Some constraints require aggregating multiple values, especially via COUNT,
MIN and MAX.

75.1 Simple Example

p = COUNT (q)

Context class is C.

Not expressible in DL

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

property C p q - count -

76 Provenance

Any provenance information must be available for instances of given classes.

76.1 Simple Example

For publications, any provenance information must be available.

Not expressible in DL!

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

class Publication - - - provenance -



77 Data Model Consistency

Is the data consistent with the intended semantics of the data model? Such
validation rules ensure the integrity of the data according to the data model.

Not expressible in DL!

78 Structure

SKOS is based on RDF, which is a graph-based data model. Therefore we can
concentrate on the vocabulary’s graph-based structure for assessing the quality
of SKOS vocabularies and apply graph- and network-analysis techniques.

Not expressible in DL!

79 Labeling and Documentation

Not expressible in DL!

80 Vocabulary

Vocabularies should not invent any new terms or use deprecated elements.

80.1 Simple Example

Not expressible in DL!

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value
class J - - - vocabulary -

81 HTTP URI Scheme Violation

81.1 Simple Example

Not expressible in DL!

Mapping to RDF-CO:

c. set context class left p. list right p. list classes c. element c. value

class J - - - HTTP URI Scheme Violation -



82 Evaluation

82.1 Evaluation of Constraint Languages

We evaluated to which extend the most promising five constraint languages ful-
fill each requirement. Tilde means that this constraint may be fulfilled by that
particular constraint language - either by limitations, workarounds, or exten-
sions. We also evaluated if a specific constraint is fulfilled by OWL 2 QL or if
the more expressive OWL 2 DL is needed. Inferencing may be performed prior
to validating constraints. This is marked with an asterisk.



constraint DSP OWL2-DL OWL2-QL ReSh ShEx SPIN

*Subsumption ✗ „

*Class Equivalence ✗ ✗ ✗

*Sub Properties ✗ ✗ ✗

*Property Domains ✗ ✗ ✗

*Property Ranges ✗ ✗ ✗

*Inverse Object Properties ✗ „ ✗

*Symmetric Object Properties ✗ ✗ ✗

*Asymmetric Object Properties ✗ ✗ ✗

*Reflexive Object Properties ✗ ✗ ✗

*Irreflexive Object Properties ✗ ✗ ✗

Disjoint Properties ✗ ✗ ✗

Disjoint Classes ✗ ✗ ✗

Context-Sp. Property Groups ✗ „ „

Context-Sp. Inclusive OR of P. ✗ „ „ ✗ ✗

Context-Sp. Inclusive OR of P. Groups ✗ „ „ ✗ ✗

Recursive Queries „

Individual Inequality ✗ ✗ ✗

*Equivalent Properties ✗ ✗ ✗

Property Assertions ✗ „ ✗ ✗

Data Property Facets ✗ ✗ ✗

Literal Pattern Matching ✗ ✗ ✗ ✗

Negative Literal Pattern Matching ✗ ✗ ✗ ✗

*Object Property Paths ✗ ✗ ✗ ✗

*Intersection ✗ ✗

*Disjunction ✗ ✗ ✗ ✗

*Negation ✗ ✗ ✗ ✗

*Existential Quantifications ✗ ✗ „ „

*Universal Quantifications ✗ ✗ ✗ ✗

*Minimum Unqualified Cardinality ✗ „

*Minimum Qualified Cardinality ✗ „

*Maximum Unqualified Cardinality ✗ „

*Maximum Qualified Cardinality ✗ „

*Exact Unqualified Cardinality ✗ „

*Exact Qualified Cardinality ✗ „

*Transitive Object Properties ✗ ✗ ✗ ✗

Context-Sp. Exclusive OR of P. ✗ ✗ ✗

Context-Sp. Exclusive OR of P. Groups ✗ „ ✗

Allowed Values ✗

Not Allowed Values ✗ ✗ ✗

Literal Ranges ✗ ✗ ✗ ✗

Negative Literal Ranges ✗ ✗ ✗ ✗

Required Properties ✗

Optional Properties ✗

Repeatable Properties ✗

Negative Property Constraints ✗ ✗ ✗

*Individual Equality ✗ ✗ ✗ ✗

*Functional Properties ✗ ✗ ✗ ✗

*Inverse-Functional Properties ✗ ✗ ✗ ✗

*Value Restrictions ✗

*Self Restrictions ✗ ✗ ✗ ✗

*Primary Key Properties ✗ ✗ ✗ ✗

*Class-Specific Property Range ✗

*Class-Sp. Reflexive Object P. ✗ ✗ ✗ ✗

Membership in Controlled Vocabularies ✗ ✗ ✗ ✗

IRI Pattern Matching ✗ ✗ ✗ ✗

Literal Value Comparison ✗ ✗ ✗ ✗

Ordering ✗ ✗ ✗ ✗ ✗

Validation Levels ✗ ✗ ✗ ✗ ✗

String Operations ✗ ✗ ✗ ✗ ✗



constraint DSP OWL2-DL OWL2-QL ReSh ShEx SPIN

Context-Specific Valid Classes ✗ ✗ ✗ ✗ ✗

Context-Specific Valid Properties ✗ ✗ ✗ ✗ ✗

*Default Values ✗ ✗ ✗ ✗

Mathematical Operations ✗ ✗ ✗ ✗ ✗

Language Tag Matching ✗ ✗ ✗ ✗ ✗

Language Tag Cardinality ✗ ✗ ✗ ✗ ✗

Whitespace Handling ✗ ✗ ✗ ✗ ✗

HTML Handling ✗ ✗ ✗ ✗ ✗

Conditional Properties ✗ ✗ ✗ ✗ ✗

Recommended Properties ✗ ✗ ✗ ✗ ✗

Handle RDF Collections ✗ ✗ ✗ ✗ ✗

Value is Valid for Datatype ✗ ✗ ✗ ✗ ✗

Use Sub-Super Relations in Validation ✗ ✗ ✗ ✗ ✗

*Cardinality Shortcuts ✗ ✗

Aggregations ✗ ✗ ✗ ✗ ✗

*Class-Specific Irreflexive Object Properties ✗ ✗ ✗ ✗

Provenance ✗ ✗ ✗ ✗ ✗

Data Model Consistency ✗ ✗ ✗ ✗ ✗

Structure ✗ ✗ ✗ ✗ ✗

Labeling and Documentation ✗ ✗ ✗ ✗ ✗

Vocabulary ✗ ✗ ✗ ✗ ✗

HTTP URI Scheme Violation ✗ ✗ ✗ ✗ ✗

82.2 Evaluation of Constraints Classes

We evaluated to which extend the most promising five constraint languages
fulfill each of the overall 74 requirements to formulate RDF constraints [2]. If
a constraint can be expressed in DL, we added the mapping to DL and to the
generic constraint. If a constraint cannot be expressed in DL, we only added
the mapping to the generic constraint. Therefore, we show that each constraint
can be mapped to a generic constraint. The following table shows the absolute
numbers and the relative percentages for each of the three dimensions to classify
constraints:

Constraint Classes # %

Property Constraints 49 60 (60.49)
Class Constraints 20 25 (24.96)
Property and Class Constraints 12 15 (14.81)
Simple Constraints 49 60 (60.49)
Simple Constraints (Syntactic Sugar) 11 14 (13.58)
Complex Constraints 21 26 (25.93)
DL Expressible 52 64 (64.2)
DL Not Expressible 29 36 (35.80)
Total 81 100

legend of the detailed evaluation:

– property constraint: property constraint ( ) vs. class constraint (✗) vs.
property and class constraints („)

– simple constraint: simple constraint ( ) vs. simple constraint [syntactic
sugar] („) vs. complex constraint (✗)



– DL: expressible in DL ( ) vs. not expressible in DL (✗)



constraint property c. simple c. DL

*Subsumption ✗

*Class Equivalence ✗ ✗

*Sub Properties

*Property Domains „

*Property Ranges „

*Inverse Object Properties

*Symmetric Object Properties

*Asymmetric Object Properties „

*Reflexive Object Properties „

*Irreflexive Object Properties „

Disjoint Properties

Disjoint Classes ✗ ✗

Context-Sp. Property Groups „ ✗

Context-Sp. Inclusive OR of P. „ ✗

Context-Sp. Inclusive OR of P. Groups „ ✗

Recursive Queries

Individual Inequality ✗ ✗

*Equivalent Properties ✗

Property Assertions

Data Property Facets ✗ ✗

Literal Pattern Matching ✗ ✗
Negative Literal Pattern Matching ✗ ✗ ✗

*Object Property Paths

*Intersection ✗

*Disjunction ✗

*Negation ✗

*Existential Quantifications

*Universal Quantifications

*Minimum Unqualified Cardinality

*Minimum Qualified Cardinality

*Maximum Unqualified Cardinality

*Maximum Qualified Cardinality

*Exact Unqualified Cardinality „

*Exact Qualified Cardinality „

*Transitive Object Properties

Context-Sp. Exclusive OR of P. „ ✗

Context-Sp. Exclusive OR of P. Groups „ ✗

Allowed Values ✗

Not Allowed Values ✗ ✗
Literal Ranges ✗ ✗ ✗
Negative Literal Ranges ✗ ✗ ✗

Required Properties

Optional Properties „

Repeatable Properties

Negative Property Constraints „ ✗

*Individual Equality ✗ ✗

*Functional Properties

*Inverse-Functional Properties ✗

*Value Restrictions

*Self Restrictions „ ✗

*Primary Key Properties „

*Class-Specific Property Range „

*Class-Sp. Reflexive Object P.

Membership in Controlled Vocabularies „ ✗

IRI Pattern Matching ✗ ✗

Literal Value Comparison ✗

Ordering ✗

Validation Levels „ ✗

String Operations ✗



constraint property c. simple c. DL

Context-Specific Valid Classes ✗ ✗

Context-Specific Valid Properties ✗

*Default Values ✗

Mathematical Operations ✗

Language Tag Matching ✗

Language Tag Cardinality ✗

Whitespace Handling ✗

HTML Handling ✗

Conditional Properties

Recommended Properties ✗

Handle RDF Collections ✗

Value is Valid for Datatype ✗

Use Sub-Super Relations in Validation ✗

*Cardinality Shortcuts

Aggregations ✗

*Class-Specific Irreflexive Object Properties „

Provenance ✗ ✗
Data Model Consistency „ ✗ ✗
Structure „ ✗ ✗
Labeling and Documentation „ ✗ ✗

Vocabulary ✗ ✗

HTTP URI Scheme Violation ✗ ✗

Constraints can be classified as property constraints and class constraints.
Two thirds of the total amount of constraints are property constraints, one fifth
are class constraints, and approx. 10% are composed of both property and class
constraints. Constraints may be either atomic (simple constraints) or created
out of simple and/or complex constraints (complex constraints). Almost two
thirds are simple constraints, a quarter are complex constraints. Almost 15 per-
cent are complex constraints which can be formulated as simple constraints when
using them in terms of syntactic sugar. Constraints can either be expressible in
DL or not. The majority - nearly 70% - of the overall constraints are expressible
in DL.

82.3 CWA and UNA Dependency

– Dependent on the CWA: do further triples change the validation result?

– Dependent on the UNA: Do validation results changes in case two resources
are the same?



Dependency

Constraint Types C
W
A

U
N
A

*Subsumption
*Class Equivalence

*Sub Properties
*Property Domains

*Property Ranges

*Inverse Object Properties
*Symmetric Object Properties
*Asymmetric Object Properties ✗ ✗

*Reflexive Object Properties
*Irreflexive Object Properties ✗ ✗

Disjoint Properties ✗ ✗

Disjoint Classes ✗

Context-Sp. Property Groups
Context-Sp. Inclusive OR of P.

Context-Sp. Inclusive OR of P. Groups
Recursive Queries ✗ ✗

Individual Inequality ✗ ✗

*Equivalent Properties
Property Assertions
Data Property Facets ✗ ✗

Literal Pattern Matching ✗ ✗

Negative Literal Pattern Matching ✗ ✗

*Object Property Paths
*Intersection

*Disjunction
*Negation ✗ ✗

*Existential Quantifications
*Universal Quantifications ✗

*Minimum Unqualified Cardinality
*Minimum Qualified Cardinality

*Maximum Unqualified Cardinality ✗

*Maximum Qualified Cardinality ✗

*Exact Unqualified Cardinality

*Exact Qualified Cardinality
*Transitive Object Properties

Context-Sp. Exclusive OR of P. ✗

Context-Sp. Exclusive OR of P. Groups ✗

Allowed Values ✗

Not Allowed Values ✗

Literal Ranges ✗ ✗

Negative Literal Ranges ✗ ✗

Required Properties
Optional Properties ✗ ✗

Repeatable Properties ✗

Negative Property Constraints ✗

*Individual Equality ✗

*Functional Properties

*Inverse-Functional Properties
*Value Restrictions

*Self Restrictions



Dependency

Constraint Types C
W
A

U
N
A

*Primary Key Properties
*Class-Specific Property Range

*Class-Sp. Reflexive Object P.
Membership in Controlled Vocabularies

IRI Pattern Matching ✗

Literal Value Comparison ✗ ✗

Ordering ✗

Validation Levels ✗

String Operations ✗ ✗

Context-Specific Valid Classes ✗ ✗

Context-Specific Valid Properties ✗ ✗

*Default Values
Mathematical Operations ✗ ✗

Language Tag Matching ✗

Language Tag Cardinality
Whitespace Handling ✗ ✗

HTML Handling ✗ ✗

Conditional Properties

Recommended Properties
Handle RDF Collections ✗ ✗

Value is Valid for Datatype ✗ ✗

Use Sub-Super Relations in Validation ✗

*Cardinality Shortcuts
Aggregations ✗ ✗

*Class-Specific Irreflexive Object Properties ✗

Provenance

Data Model Consistency
Structure

Labeling and Documentation
Vocabulary

HTTP URI Scheme Violation ✗

82.4 Constraining Elements of Constraint Types

– Constraints of 64% of all constraint type can be expressed using logical
constructs from description logics.

– For a constraint types, there can be multiple constraining elements

– The validation of each constraining element has to be implemented

– We use SPARQL as extension mechanism to express constraints of 3 con-
straint types which cannot be expressed otherwise as they are too complex
to represent them using a high-level constraint language



Constraint Type DL Constraining Elements

*Subsumption Ď sub-class
*Class Equivalence ” equivalent class
*Sub Properties Ď sub-property
*Property Domains D, Ď property domain
*Property Ranges Ď, @ property range
*Inverse Object Properties inverse inverse property
*Symmetric Object Properties symmetric symmetric property
*Asymmetric Object Properties asymmetric asymmetric property
*Reflexive Object Properties reflexive reflexive property
*Irreflexive Object Properties reflexive,  irreflexive property
Disjoint Properties Ď,  disjoint property
Disjoint Classes [, Ď disjoint class
Context-Sp. Property Groups [ property group
Context-Sp. Inclusive OR of P. \ inclusive or
Context-Sp. Inclusive OR of P. Groups \, [ inclusive or
Recursive Queries - recursive
Individual Inequality ‰ different individuals
*Equivalent Properties ” equivalent properties
Property Assertions = or ‰ =, ‰
Data Property Facets - SPARQL functions:

REGEX, STRLEN
XML Schema constraining facets:
xsd:length, xsd:minLength, xsd:maxLength, xsd:pattern,
xsd:enumeration, xsd:whiteSpace, xsd:maxInclusive,
xsd:maxExclusive,xsd:minExclusive, xsd:minInclusive,
xsd:totalDigits, xsd:fractionDigits

Literal Pattern Matching - REGEX, xsd:pattern
Negative Literal Pattern Matching - REGEX, xsd:pattern and  
*Object Property Paths Ď property path
*Intersection [ intersection
*Disjunction \ disjunction
*Negation  negation
*Existential Quantification D existential quantification
*Universal Quantification @ universal quantification
*Minimum Unqualified Cardinality ě minimum unqualified cardinality restriction
*Minimum Qualified Cardinality ě minimum qualified cardinality restriction
*Maximum Unqualified Cardinality ď maximum unqualified cardinality restriction
*Maximum Qualified Cardinality ď maximum qualified cardinality restriction
*Exact Unqualified Cardinality ( ě, ď, [ ) or = exact unqualified cardinality restriction
*Exact Qualified Cardinality ( ě, ď, [ ) or = exact qualified cardinality restriction
*Transitive Object Properties Ď transitive property
Context-Sp. Exclusive OR of P.  , [, \ exclusive or
Context-Sp. Exclusive OR of P. Groups  , [, \ exclusive or
Allowed Values \ allowed values
Not Allowed Values \,  not allowed values
Literal Ranges - xsd:minInclusive, xsd:maxExclusive

xsd:maxInclusive, xsd:minExclusive
Negative Literal Ranges -  and

xsd:minInclusive, xsd:maxExclusive
xsd:maxInclusive, xsd:minExclusive

Required Properties D required property



Constraint Type DL Constraining Elements

Optional Properties D, Ď optional property
Repeatable Properties ě repeatable property
Negative Property Constraints  , D negative properties
*Individual Equality = equal individuals
*Functional Properties functional functional property
*Inverse-Functional Properties inverse, functional inverse functional property
*Value Restrictions D value restriction
*Self Restrictions D self restriction
Primary Key Properties inverse, functional primary key
*Class-Specific Property Range Ď, D,  property range
*Class-Sp. Reflexive Object P. reflexive reflexive property
Membership in Controlled Vocabularies @, [, \ membership in controlled vocabularies
IRI Pattern Matching - IRI pattern matching
Literal Value Comparison ą or ě or ă or ą, ě, ă, ď, =, ‰

ď or = or ‰
Ordering - ordered properties, ordered values
Validation Levels - validation level
String Operations - SPARQL string functions:

STRLEN, SUBSTR, UCASE, LCASE,
STRSTARTS, STRENDS, CONTAINS,
STRBEFORE, STRAFTER, ENCODE FOR URI,
CONCAT, langMatches, REGEX, REPLACE

Context-Specific Valid Classes - context-specific valid classes
Context-Specific Valid Properties - context-specific valid properties
Default Values - default values
Mathematical Operations - addition, subtraction, multiplication, division
Language Tag Matching - language tag matching
Language Tag Cardinality - language tag minimum cardinality,

language tag maximum cardinality,
language tag exact cardinality

Whitespace Handling - no whitespaces
HTML Handling - no html
Conditional Properties Ď conditional property
Recommended Properties - recommended property
Handle RDF Collections - actions on RDF collections:

append list element
Value is Valid for Datatype - value is valid for datatype
Use Sub-Super Relations in Validation - non redundant properties
*Cardinality Shortcuts optional & non-repeatable property,

optional & repeatable property,
mandatory & non-repeatable property,
mandatory & repeatable property

Aggregations - aggregations:
count

*Class-Specific Irreflexive Object Properties reflexive,  irreflexive property
Provenance - provenance information required
Data Model Consistency - ăSPARQL queryą
Structure - ăSPARQL queryą
Labeling and Documentation - ăSPARQL queryą
Vocabulary - vocabulary
HTTP URI Scheme Violation - HTTP URI scheme violation



83 Conclusion and Future Work

There is no standard way to validate RDF data conforming to RDF constraints
like XML Schemas serve to validate XML documents. Two working groups cur-
rently try to achieve a solution for RDF validation - the W3C RDF Data Shapes
working group and the DCMI RDF Application Profiles working group. We initi-
ated a comprehensive database on RDF validation requirements: http://purl.org/net/rdf-validation.
The intention of this database is to collaboratively work on case studies, use
cases, requirements, and solutions on RDF validation. In this paper, we evalu-
ated to which extend the five most promising constraint languages on being the
standard (DSP, OWL2, ReSh, ShEx, and SPIN) fulfill each of the requirements
to formulate RDF constraints. Each of these requirements corresponds to a type
of constraint. The majority of the constraints can be expressed in DL, which
serves as a logical underpinning of related requirements. We developed an on-
tology to express any constraint generically, so that constrains expressed by a
constraint language α can be transformed into constraints expressed by a con-
straint language β without any information loss. By expressing any constraint
generically, we can provide a validation of the generically expressed constraint.
When specific constraints are then transformed into generic constraints, we can
provide the validation of the semantically equivalent specific constraints (ex-
pressed by multiple constraint languages) out-of-the-box without any additional
effort and without any difference in validation results. As not every constrains
can be represented in DL, we need to represent constraints expressible by DL as
well as constraints not expressible by DL by means of this ontology. We shown in
terms of an evaluation that any constraint can be expressed using the developed
ontology. As part of future work, we will continuously add, modify, and maintain
case studies, use cases, requirements, and solutions within the RDF validation
requirements database.
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