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Abstract. Process model matching refers to the automatic identifica-
tion of corresponding activities between two process models. It represents
the basis for many advanced process model analysis techniques such as
the identification of similar process parts or process model search. A
central problem is how to evaluate the performance of process model
matching techniques. Often, not even humans can agree on a set of cor-
rect correspondences. Current evaluation methods, however, require a
binary gold standard, which clearly defines which correspondences are
correct. The disadvantage of this evaluation method is that it does not
take the true complexity of the matching problem into account and does
not fairly assess the capabilities of a matching technique. In this paper,
we propose a novel evaluation method for process model matching tech-
niques. In particular, we build on the assessment of multiple annotators
to define probabilistic notions of precision and recall. We use the dataset
and the results of the Process Model Matching Contest 2015 to assess and
compare our evaluation method. We find that our probabilistic evalua-
tion method assigns different ranks to the matching techniques from the
contest and allows to gain more detailed insights into their performance.

Keywords: Process Model Matching, Non-binary Evaluation, Matching
Performance Assessment

1 Introduction

Process models are conceptual models used for purposes ranging from the doc-
umentation of organizational operations [6] to the definition of requirements for
information systems [19]. Process model matching refers to the automatic iden-
tification of corresponding activities between such models. The application sce-
narios of matching techniques are manifold. They include the analysis of model
differences [12], harmonization of process model variants [13], process model
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search [9], and the detection of process model clones [22]. The challenges asso-
ciated with the matching task are considerable. Among others, process model
matching techniques must be able to deal with heterogeneous vocabulary, differ-
ent levels of granularity, and the fact that typically only a few activities from one
model have a corresponding counterpart in the other. In recent years, a signifi-
cant number of process model matching techniques have been defined to address
these problems (cf. [4, 10, 11, 14, 23, 24]). One central question that concerns all
these techniques is how to demonstrate that they actually perform well.

To demonstrate the performance of a matching technique, authors typically
conduct evaluation experiments that consist of solving a concrete matching prob-
lem. So far, the basis of such evaluation experiments is a binary gold standard
created by humans, which clearly defines which correspondences are correct. By
comparing the correspondences generated by the matching technique against
those from the gold standard, it is possible to compute the well-established met-
rics precision, recall, and F-measure [15]. In this way, the performance of an
approach can be quantified and compared against others.

The disadvantage of this evaluation method is that it does not take the true
complexity of the matching problem into account. This is, for instance, illustrated
by the gold standards of the Process Model Matching Contests (PMMCs) 2013
and 2015. The organizers of the contests found that there was not a single model
for which two independent annotators fully agreed on all correspondences [1, 3].
A binary gold standard, however, implies that any correspondence that is not
part of the gold standard is incorrect and, thus, negatively affects the above
mentioned metrics. This raises the question of why the performance of process
model matching techniques is determined by referring to a single correct solution
when human annotators may not even agree on what this correct solution is.

Recognizing the need for a more suitable evaluation strategy for process
model matching techniques, we use this paper to propose a novel process model
matching evaluation method. Instead of building on a binary gold standard, we
define a non-binary gold standard that combines a number of binary assess-
ments created by individual annotators. This allows us to express the support
that exists for correspondences in the non-binary gold standard as the fraction
of annotators that agree that a given correspondence is correct. The probabilistic
precision and recall metrics we define take these support values into consider-
ation when assessing the performance of matching techniques. As such, corre-
spondences with high support values have a greater impact on precision and
recall scores than correspondences with low support.

The rest of the paper is organized as follows. Section 2 illustrates the problems
associated with the usage of binary gold standards for process model matching
evaluation. In Section 3, we define the non-binary gold standard and probabilistic
precision and recall metrics. In Section 4, we assess and compare the proposed
probabilistic evaluation metrics by applying our method on the dataset of the
PMMC 2015. Section 5 discusses related work on the evaluation of matching
techniques in different application domains. Finally, we conclude the paper and
discuss future research directions in Section 6.
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2 Problem Illustration

Given two process models with their respective sets of activities A1 and A2, the
goal of process model matching is to automatically identify the activities (or sets
of activities) from A1 and A2 that represent similar behavior. The result of con-
ducting process model matching, therefore, is a set of activity correspondences.
One of the central questions in the context of process model matching is how to
assess whether the correspondences identified by a matching technique are cor-
rect. To illustrate the problems associated with the evaluation of process model
matching, consider the example depicted in Figure 1. It shows two simplified
process models from the PMMC 2015 [1], as well as possible correspondences
between them.
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Fig. 1: Two process models and possible correspondences

Upon closer inspection of the correspondences shown in Figure 1 it becomes
clear that many of the correspondences are actually disputable. Consider, for
instance, the correspondence between “Receive online application” from Univer-
sity 1 and “Receive application form” in the process of University 2. On the one
hand, we can argue in favor of this correspondence because they both describe
the receipt of an application document. On the other hand, we can argue that
these activities do not correspond to each other because the former relates to an
online procedure, whereas the second refers to a paper-based step. We can bring
forward similar arguments for the correspondence between “Invite for interview”
and “Invite for aptitude test”. Both activities aim to assess whether an applicant
is suitable for a university. However, an interview is clearly a different assessment
instrument than an aptitude test, which makes the correspondence disputable.
Lastly, also the correspondence between “Check documents” from University 1
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and the two activities “Check if application is complete” and “Check if bache-
lor is sufficient” from University 2 is controversial. If we consider the activity
“Check documents” to solely relate to the completeness of the documents, then
the activity “Check if bachelor is sufficient” should not be part of the correspon-
dence. These examples illustrate that it may be hard and, in some cases, even
impossible to agree on a single correct set of correspondences. Despite this, the
evaluation of process model matching techniques currently depends on the defi-
nition of such a single set of correct correspondences, i.e. a binary gold standard.
This binary gold standard is needed to compute precision, recall, and F-measure,
which are traditionally used to evaluate process model matching techniques (cf.
[1, 3, 14, 23, 24]).

In this paper, we argue that a binary evaluation of process model match-
ing techniques does not account for the full complexity of the process model
matching task. Binary evaluation does not consider disagreements that may ex-
ist regarding the correctness of correspondences. Therefore, binary evaluation
does not provide a fair assessment of the output generated by a matching tech-
nique. We address this problem by defining the first non-binary process model
matching evaluation method. We build on a gold standard that has been defined
by several annotators and, in this way, allows to account for the subjectivity
associated with identifying correspondences.

3 Probabilistic Evaluation of Process Model Matching

In this section, we define our method for non-binary matching evaluation. The
starting point of our method is formed by binary assessments created by in-
dividual human annotators. Each of these binary human assessments captures
the correspondences that a single annotator identifies between two given process
models.

Definition 1 (Binary Human Assessment). Let A1 and A2 be the sets of
activities of two process models. Then, a binary human assessment can be cap-
tured by the relation H : A1 × A2. Each element (a1, a2) ∈ H specifies that the
human assessor considers the activity a1 to correspond to the activity a2.

Note that Definition 1 also allows for one-to-many and many-to-many rela-
tionships. If, for instance, the elements (a1, a2) and (a1, a3) are both part of H,
then there exists a one-to-many relationship between the activity a1 and the two
activities a2 and a3. Further note that a binary human assessment according to
Definition 1 should be created independently and solely reflect the opinion of a
single assessor. Based on a number of such independently created binary human
assessments, we can then define a non-binary gold standard.

Definition 2 (Non-binary Gold Standard). A non-binary gold standard is
a tuple GS = (A1, A2, H, σ) where

– A1 and A2 are the sets of activities of two process models,
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– H = {H1, . . . ,Hn} is a set of independently created binary human assess-
ments, and

– σ : A1 × A2 → R is a function assigning to each (a1, a2) ∈ A1 × A2 a
support value, which is the number of binary human assessments in H that
contain the correspondence (a1, a2) divided by the total number of binary
human assessments |H|.

The overall rationale of the non-binary gold standard from Definition 2 is to
count the individual opinions from the binary human assessments as votes. In
this way, we obtain a support value σ for each correspondence according to the
number of votes in favor of this correspondence. In this way, any correspondence
with a support value 0.0 < σ < 1.0 can be regarded as an uncertain correspon-
dence. For these correspondences, there is no unanimous vote about whether or
not it is a correct correspondence. Based on these support values, we define non-
binary notions of the well-established metrics precision, recall, and F-measure
that take the uncertainty of correspondences into account. For convenience, we
introduce C as the set of all unique correspondences based on the union of all
binary human assessments from H.

Definition 3 (Probabilistic Precision, Recall, and F-Measure). Let A1

and A2 be the sets of activities of two process models, M : A1 × A2 the cor-
respondences identified by a matching technique, and GS = (A1, A2, H, σ) a
non-binary gold standard. Then, we define probabilistic precision, recall, and F-
measure as follows:

Probabilistic Precision (ProP) =

∑
m∈M

σ(m)∑
m∈M

σ(m) + |M \ C|
(1)

Probabilistic Recall (ProR) =

∑
m∈M

σ(m)∑
c∈C

σ(c)
(2)

Probabilistic F-Measure (ProFM) = 2× ProP× ProR

ProP + ProR
(3)

Probabilistic precision and recall are adaptations of the traditional notions of
precision and recall that incorporate the support values from a non-binary gold
standard GS. We define probabilistic precision ProP as the sum of the support
values of the correspondences identified by the matching technique (M) divided
by the same value plus the number of correspondences that are not part of the
gold standard (|M \ C|). This definition gives those correspondences that have
been identified by many annotators a higher weight than those that have only
been identified by a few. Therefore, it accounts for the uncertainty associated
with correspondences in the non-binary gold standard. As a result, the impact
of false positives, i.e. correspondences that have been identified by the matching
technique but are not part of the gold standard, result in a strong penalty of 1.0.
We justify this high penalty by the high coverage of uncertain correspondences
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included in non-binary gold standards. These gold standards can be expected
to contain a broad range of potential correspondences, including those identified
by only a single annotator. Any correspondence not included in this broad range
can be considered as incorrect with certainty, which is reflected in the penalty
of 1.0 for false positives.

Probabilistic recall ProR follows the same principle as the probabilistic preci-
sion. It resembles the traditional definition of recall, but incorporates the support
values from the non-binary gold standard respectively. As a result, identifying
correspondences with a higher support has a higher influence on the recall than
identifying correspondences with a low support. The probabilistic F-measure
ProFM presents the harmonic mean of probabilistic precision and recall. It is
computed in the same way as the traditional F-measure, though it is here based
on ProP and ProR.

To illustrate these metrics, consider the correspondences, their support val-
ues, and the output of three matchers depicted in Table 1. The support values
reveal that five out of six correspondences are considered to be correct correspon-
dences in one or more binary human assessments. MatcherM1 identifies exactly
these five correspondences. Therefore, M1 achieves ProP and ProR scores of
1.0. By contrast, matcherM2 identifies only three of the five correct correspon-
dences. The matcher also includes the incorrect correspondence c6 in its output.
This results in a ProP value of 0.71 and a ProR value of 0.77. Although matcher
M3 correctly identifies four correspondences, instead of the three identified by
M2, it achieves the exact same ProP and ProR values. This occurs becauseM3

identifies c4 and c5, which have a combined support value of 0.75, i.e. the same
support value as correspondence c3 that is identified byM2. This demonstrates
that correspondences with a high support value have a greater contribution to
the metrics than those with low support.

Table 1: Exemplary matcher output and metrics

Corr.(C) Supp.(σ) M1 M2 M3

c1 1.00 1 1 1
c2 0.75 1 1 1
c3 0.75 1 1 0
c4 0.50 1 0 1
c5 0.25 1 0 1
c6 0.00 0 1 1

Furthermore, non-binary gold standards allow us to obtain more fine-granular
insights into the performance of matchers. We can achieve this by computing
probabilistic precision and recall scores for correspondences with a minimal sup-
port level. By adapting the equations from Definition 3 in this way, we can
differentiate between matchers that identify correspondences with a broad range
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of support values and those that focus on the identification of correspondences
with high support values. We capture this notion of bounded probabilistic pre-
cision, recall, and F-measure in Definition 4.

Definition 4 (Bounded Probabilistic Precision, Recall, and F-measure).
Let A1 and A2 be the sets of activities of two process models, M : A1 × A2 the
correspondences identified by a matching technique, GS = (A1, A2, H, σ) a
non-binary gold standard, and Cτ refer to the set of correspondences with a sup-
port level σ ≥ τ . Then, we define bounded probabilistic precision, recall, and
F-measure as follows:

ProP(τ) =

∑
m∈M

σ(m)∑
m∈M

σ(m) + |M \ Cτ |
(4)

ProR(τ) =

∑
m∈M

σ(m)∑
c∈Cτ

σ(c)
(5)

ProFM(τ) = 2× ProP(τ)× ProR(τ)

ProP(τ) + ProR(τ)
(6)

By computing bounded precision and recall values, we can directly gain in-
sights into the differences between the results obtained by matchers M2 and
M3. For instance, M2 and M3 respectively achieve ProP(0.75) scores which
only consider correspondences with σ ≥ 0.75, i.e. 0.71 and 0.50. Similarly, they
achieve ProR(0.75) scores of 0.77 and 0.54. These metrics indicate that matcher
M2 is more successful in identifying correspondences with high support values.
By contrast, the bounded scores reveal thatM3 identifies more correspondences,
although it also includes those with lower support values.

4 Evaluation Experiments

In this section, we apply our probabilistic evaluation method to a dataset from
the Process Model Matching Contest 2015. To this end, we create a non-binary
gold standard and compute the probabilistic metrics for the matchers that par-
ticipated in the contest. The overall goal of our experiments is to demonstrate
the usefulness of the non-binary perspective and the value of the insights that
our evaluation method delivers. Section 4.1 first describes the setup of our ex-
periments. Then, Section 4.2 elaborates on the results.

4.1 Setup

To demonstrate the usefulness of our evaluation method, we apply it to the
University Admission dataset from the PMMC 2015 [1]. This dataset consists
of nine BPMN process models describing the admission processes for graduate
study programs of different German universities. The size of the models varies
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between 10 and 44 activities. The task in the context of the Process Model
Matching Contest 2015 was to match these models pairwise, resulting in a total
number of 36 matching pairs. Our experiments with this dataset consist of two
steps:

1. Non-binary gold standard creation: To define a non-binary gold standard,
we asked eight different individuals to identify the correspondences for the
36 model pairs from the dataset. The group of annotators involved was het-
erogeneous and included four researchers being familiar with process model
matching and four student assistants from the University of Mannheim in
Germany. The student assistants were introduced to the problem of process
model matching but not influenced in the way they identified correspon-
dences. The result of this step, was a non-binary gold standard based on
eight binary assessments. Note that we did not apply any changes to the
individual assessments. We included them in their original form into the
non-binary gold standard.

2. Probabilistic evaluation: Based on the non-binary gold standard, we calcu-
lated probabilistic precision, probabilistic recall, and F-measure for each of
the 12 matchers that participated in the PMMC 2015. In line with the re-
port from the PMMC 2015 we distinguish between micro and macro average.
Macro average is defined as the average precision, recall, and F-measure of
all 36 matching pairs. Micro average, by contrast, is computed by considering
all 36 pairs as one matching problem. The micro average scores take different
sizes of matching pairs (in terms of the correspondences they consist of) into
account. As a result, a poor recall on a small matching pair has only limited
impact on the overall micro average recall score.

4.2 Results

This section discusses the results of our experiments. We first elaborate on the
characteristics of the non-binary gold standard we created. Then, we present the
results from the probabilistic evaluation and compare them to the results of the
non-binary evaluation from the PMMC 2015. Finally, we present the insights
from the bounded probabilistic evaluation.

Non-binary Gold Standard Creation

The non-binary gold standard resulting from the eight binary assessments con-
sists of a total of 879 correspondences. The binary gold standard from the PMMC
2015 only consisted of 234 correspondences, which is less than a third. The av-
erage support value per model pair ranges from 0.33 to 0.91. This illustrates
that the models considerably differ with respect to how obvious the contained
correspondences are.

Figure 2 illustrates the distribution of the support values. It shows that there
are two extremes. On the one hand, there is a high number of correspondences
with six or more votes (support value ≥ 0.75). On the other hand, there is also
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Fig. 2: Distribution of support values in the non-binary gold standard

a high number of correspondences with three votes or less (support value ≤
0.375). Overall, the number of correspondences that would be included based
on a majority vote (support value ≥ 0.5) amounts to 495, which is only a lit-
tle more than half of the correspondences from the non-binary gold standard.
These numbers illustrate the complexity associated with defining a binary gold
standard and highlight the risks of a purely binary method. Instead of excluding
a high number of possible correspondences, we include them with a respective
support value.

Probabilistic Evaluation

Table 2 presents the probabilistic evaluation results based on the non-binary
gold standard. It shows the micro and macro values of probabilistic F-measure
(ProFM), precision (ProP), and recall (ProR) for each matcher that participated
in the PMMC 2015. The column Rank - New indicates the rank the matcher
has achieved according to the probabilistic F-measure micro value. The column
Rank - Old shows the rank the systems has achieved according to the binary
evaluation from the PMMC 2015 [1].

The results from the table illustrate that the probabilistic evaluation has
notable effects on the ranking. Although four matchers remain on the same
rank, the ranking changes dramatically for other matchers. For instance, the
matcher AML-PM moves from rank 10 to 2 and the matcher RMM-NLM moves
from rank 2 to rank 9. A brief analysis of how the matchers work provides an
explanation for this development. The matcher AML-PM does not impose strict
thresholds on the similarity values it uses for identifying correspondences. As a
result, it also identifies correspondences with low support values. In the binary
gold standard, however, these correspondences were simply not included and
resulted in a decrease of precision. Table 3 illustrates this effect by showing an
excerpt from the correspondences generated by the matcher AML-PM and the
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Rank Approach ProFM ProP ProR
New Old ∆ mic mac mic mac mic mac

1 1 ±0 RMM-NHCM .431 .387 .783 .751 .297 .302
2 10 +8 AML-PM .387 .365 .377 .390 .398 .399
3 9 +6 KnoMa-Proc .378 .312 .506 .493 .302 .286
4 4 ±0 OPBOT .369 .322 .648 .666 .258 .256
5 5 ±0 KMSSS .368 .313 .563 .623 .274 .276
6 8 +2 BPLangMatch .360 .325 .532 .475 .272 .272
7 11 +4 RMM-VM2 .329 .293 .516 .643 .242 .240
8 3 -5 MSSS .307 .238 .761 .772 .192 .201
9 2 -7 RMM-NLM .306 .244 .681 .565 .197 .203
10 6 -4 RMM-SMSL .301 .289 .309 .306 .294 .297
11 7 -4 TripleS .293 .200 .486 .473 .210 .214
12 12 ±0 pPalm-DS .258 .235 .210 .249 .335 .332

Table 2: Results of probabilistic evaluation with new gold standard

respective entries from the binary and the non-binary gold standard. We can see
that from the five correspondences from Table 3 only two were included in the
binary gold standard. In the context of an evaluation based on this gold standard
these three correspondence would therefore reduce the precision of this matcher.
An evaluation based on the non-binary gold standard, however, would come to
a different assessment. The non-binary gold standard does not only include the
two correspondence from the binary gold standard, but also includes the three
other correspondences. It is obvious that this positively affects the ProP of the
matcher and improves its overall ProFM respectively.

Table 3: Effect of gold standard on assessment of output of matcher AML-PM

Correspondence (C) Gold Standard
Activity 1 Activity 2 Binary Non-binary

Send documents by post Send appl. form and documents 0 0.750
Evaluate Check and evaluate application 0 0.500
Apply online Complete online interview 0 0.375
Wait for results Waiting for response 1 0.875
Rejected Receive rejection 1 0.625

For the matcher RMM-NLM we observe the opposite effect. In the context
of the evaluation with the non-binary gold standard it misses a huge range of
correspondences. Consequently, the ProR of this matcher decreases considerably.

Bounded Probabilistic Evaluation

The bounded variants of probabilistic precision, recall, and F-measure provide
the possibility to obtain more detailed insights into the performance of the
matchers. Figure 3 illustrates this by showing the values of ProP, ProR, and
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Fig. 3: ProP, ProR, and ProFM for different values of τ

ProFM for τ = 0.0, τ = 0.375, τ = 0.5, and τ = 0.75 for five selected matchers
from the PMMC 2015.

The results from Figure 3 show that the effect of a change in the minimum
support level τ varies for the different matchers. In general, we observe a de-
creasing ProP and an increasing ProR for higher values of τ . This is intuitive
because a higher value of τ results in the consideration of fewer correspondences.
However, for some matchers this effect is stronger than for others. For instance,
we observe hardly any change in ProP and a strong increase in ProR for the
matcher pPalm-DS. This means that this matcher mainly identifies correspon-
dences with high support. It therefore benefits from a stricter gold standard. The
matcher RMM-NLM represents a contrasting case. The ProP of this matcher
decreases dramatically with an increase of τ , while its ProR slightly increases.
This reveals that this matcher also identifies a considerable number of correspon-
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dences with low support. Since these correspondences turn into false positives
when we increase τ , the ProP drops respectively.

The consideration of the bounded variants of ProP, ProR, and ProFM il-
lustrate that an evaluation based on a non-binary gold standard facilitates a
more detailed assessment of specific matchers. It is possible to identify whether
a matcher focuses on rather obvious correspondences (with high support) or
whether a matcher also identifies less apparent correspondences (with low sup-
port).

5 Related Work

Existing work on process model matching evaluate their approaches using pre-
cision, recall, and F -measures, see for example the reports of the Process Model
Matching Contests [1, 3]. Thus, the used evaluation metrics compare an absolute
correspondence list with a binary gold standard. Schema matching and ontology
matching techniques are similar to process model matching techniques in the
sense that these techniques all set out to identify relations between concepts in
different conceptual models [8]. Research in the fields of schema and ontology
matching (cf. [18, 21]) shows a similar tendency to evaluate the performance of
matching techniques based on binary values. However, these fields use a broader
range of evaluation metrics to suit needs related to specific applications. For
example, aside from the F -measure [2], error [17], information loss [16], and
overall [5] are all used to aggregate precision and recall values.

More recently, some metrics have been proposed that relax the binary evalu-
ations of precision and recall metrics. Ehrig and Euzenat [7] propose alternative
precision and recall metrics that take into account the closeness of results in
ontology matching. Closeness can, for example, exploit the tree structure of on-
tologies, where the distance between elements in the tree can be computed to
determine if a result is close or remote from the expected result. Sagi and Gal [20]
adapt precision and recall metrics in order to support non-binary matching re-
sults. These metrics can, for instance, be directly applied on first-line-matching
results that contain non-binary confidence values. Although this work also spec-
ifies that precision and recall could be adapted to support non-binary gold stan-
dards, to the best of our knowledge, no works have done this so far.

6 Conclusion

In this paper, we proposed a probabilistic method for assessing the performance
of process model matching techniques. Our method is motivated by the insight
that it is often hard and in many cases even impossible to define a sensible binary
gold standard that clearly specifies which correspondences are correct. Therefore,
our evaluation method builds on a number of independent assessments of the
correspondences, which are combined into a single probabilistic gold standard.
By interpreting the number of votes for each correspondence as support, we
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defined probabilistic notions of the well-established metrics precision, recall, and
F-measure.

To gain insights into the usefulness of our probabilistic evaluation method,
we applied it to the University admission data set and the participating twelve
matching techniques from the PMMC 2015. To this end, we recruited eight an-
notators for the creation of a non-binary gold standard and then computed the
probabilistic metrics for each of the matching techniques. We found that the non-
binary gold standard contained almost three times as many correspondences as
the existing binary gold standard and that only for a fraction of these corre-
spondences there was a unanimous agreement. This emphasizes the risk of using
a purely binary evaluation method, which is also reflected in the considerable
effect of our probabilistic evaluation method on the ranking of the matching tech-
niques. Furthermore, we found that the probabilistic evaluation allows to obtain
more detailed insights into the specific strengths and weaknesses of individual
matchers.

In future work, we plan to apply our method on additional data sets and
to investigate how human experts perceive the probabilistic results. Our overall
goal is to establish the proposed method as a new standard for the evaluation
of process model matching techniques and to apply it in the context of the next
PMMC.
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