
Satisfiability with Exponential Families

Dominik Scheder and Philipp Zumstein

Institute of Theoretical Computer Science, ETH Zürich
8092 Zürich, Switzerland

dscheder@inf.ethz.ch, zuphilip@inf.ethz.ch

Abstract. Fix a set S ⊆ {0, 1}∗ of exponential size, e.g. |S ∩ {0, 1}n| ∈
Ω(αn), α > 1. The S-SAT problem asks whether a propositional formula
F over variables v1, . . . , vn has a satisfying assignment (v1, . . . , vn) ∈
{0, 1}n ∩S. Our interest is in determining the complexity of S-SAT. We
prove that S-SAT is NP-complete for all context-free sets S. Further-
more, we show that if S-SAT is in P for some exponential S, then SAT

and all problems in NP have polynomial circuits. This strongly indicates
that satisfiability with exponential families is a hard problem. However,
we also give an example of an exponential set S for which the S-SAT

problem is not NP-hard, provided P 6= NP.

Keywords: satisfiability, context-free grammars, VC-dimension, NP-
hardness, polynomial circuits

1 Introduction

Given a set S ⊆ {0, 1}∗ of all assignments, the S-SAT problem asks whether for
a formula F over n variables there is an assignment x ∈ Sn := S ∩ {0, 1}n that
satisfies F (F is then called S-satisfiable). The other assignments {0, 1}n \S can
be seen as assignments which are a priori forbidden. If |Sn| is polynomial in n
and Sn can be enumerated in polynomial time then S-SAT is in P. To exclude
this case we concentrate on exponential families, which are defined next.

Definition 1.1. A monotonically increasing sequence Q = (nj)j∈N ⊆ N has
polynomial gaps if there is a polynomial p(n) such that

nj+1 ≤ p(nj)

for all j ∈ N.

For example, define nj = 2j . Then nj+1 = 2nj , so p(n) := 2n shows that
this sequence has polynomial gaps. This means, a sequence (nj) can increase
exponentially in j and still have polynomial gaps. Note that we can always
assume w.l.o.g. that p(n) is strictly increasing.

Definition 1.2. The family (Sn)n≥0 is called exponential if there exists α > 1
and a sequence Q with polynomial gaps such that

∀n ∈ Q : |Sn| ≥ αn .

We also say S =
⋃

n≥1 Sn has exponential size.

II

For example families with |Sn| ∈ Ω(αn) are exponential (but we additionally al-
low to have some “gaps”). There are some subtleties involved with the definition
of S-SAT. First, observe that we can interpret x ∈ {0, 1}∗ as a truth assignment
only if V , the set of variables, is ordered. Second, we require that V is given
explicitly as a part of the input together with the formula F . To see why this
is necessary, define Sn = {x ∈ {0, 1}n | xn = 0}. Then the formula v1 ∧ v2 ∧ v3

with V = (v1, v2, v3) is not S-satisfiable, but with V = (v1, v2, v3, v4) it is. Note
that we do not require every variable in V to occur in F (this does not affect our
results but turns out to be a useful convention). For simplicity of notation, we
agree that the variables of V are named v1, . . . , vn, in this order. Finally we want
to point out that S is some fixed language and therefore it is not part of the input.

The question whether S-SAT is NP-hard for all exponential S was first stated
by Cooper [1] on his web page, though we are working with a more general notion
of exponential. As far as we know, there have not been any further considerations
about S-SAT neither by Cooper nor by anybody else.

Our Results

We prove that S-SAT is NP-complete for all exponential S that are context-free
(Section 4). Further, we show that if S-SAT is in P for some exponential S, then
SAT, and thus every problem in NP, has polynomial circuits (Section 5). This
would imply that the polynomial hierarchy collapses to its second level [2]. Since
this is widely believed to be false, it is a strong indication that S-SAT is a hard
problem in general. However, we construct an exponential S such that S-SAT

is not NP-hard, provided P 6= NP (Section 6).

2 Some Observations

It is easy to show NP-hardness of S-SAT for Sn = {x ∈ {0, 1}n | x1 = 0} (and
similar simple families): Let the formula F be an instance of SAT. We construct
the formula F ′ which is identical to F but with every occurrence of x1 replaced
by x̄1 and vice versa. The formula F is satisfiable iff the formula F ∨ F ′ is S-
satisfiable. This is a polynomial reduction from SAT to S-SAT.

If we view S itself as a language over the alphabet {0, 1}, and therefore as a
decision problem, we get the following connection:

Proposition 2.1. S can be reduced to S-SAT in polynomial time.

Proof. Given some x = (x1, . . . , xn) ∈ {0, 1}n. Write v1 := v and v0 := v̄,
respectively. Then x is the unique assignment in {0, 1}n that satisfies the formula
Fx := vx1

1 ∧ vx2

2 ∧ · · · ∧ vxn
n over V with |V | = n. Hence, Fx is S-satisfiable if and

only if x ∈ Sn. Clearly, this is a polynomial reduction from S to S-SAT. ⊓⊔

III

Hence, S-SAT can have arbitrarily high complexity; it may even be unde-
cidable. The next proposition demonstrates how we can employ a fast S-SAT

algorithm, if existent, to solve SAT in significantly less than 2n steps. We write
O∗(f(n)) if we neglect polynomial factors.

Proposition 2.2. Suppose there is some S with |Sn| ≥ αn for α > 1 and all
sufficiently large n. If S-SAT can be decided in time O∗(βn), then there is a
randomized Monte Carlo algorithm for SAT with running time O∗((2β/α)n).

Proof. Let F be a satisfiable formula over a set V of variables, and let x be a
satisfying assignment. For each variable v ∈ V , switch v with probability 1/2,
i.e. invert all its occurrences in F and its value according to the assignment x,
resulting in a new formula F ′ and a new assignment x′. The assignment x′ satis-
fies F ′ if and only if x satisfies the original formula F . Moreover, x′ is uniformly
distributed over {0, 1}n. Therefore, with probability p := Pr [x′ ∈ Sn] ≥ (α/2)n

the formula F ′ is S-satisfiable. This can be tested in time O∗(βn). After repeat-
ing this process (2/α)n times, the probability that at least one of the randomly
generated formulas is S-satisfiable, is at least 1 − 1/e, hence constant. On the
other hand, if F is unsatisfiable, it will not become satisfiable by switching. We
therefore have a Monte Carlo algorithm with running time (2/α)nO∗(βn). ⊓⊔

There are no known algorithms for SAT running in time O∗(γn) for γ < 2,
not even randomized ones. Proposition 2.2 with β < α, therefore, is a first indi-
cation that S-SAT is a difficult problem.

In fact, the currently best known deterministic algorithm for 3-SAT (satisfi-
ability of formulas in conjunctive normal form where every disjunction consists
of at most 3 literals) can be viewed as a derandomized version of the randomized
algorithm in the proof of Proposition 2.2: Let the Hamming distance d(x, y) of
two vectors x, y ∈ {0, 1}n be the number of bits in which they differ. The Ham-
ming Ball of radius r around x is, in analogy to the usual definition of a ball,
the set Br(x) := {y ∈ {0, 1}n | d(x, y) ≤ r}. We look at the family Sn = Bρn(0)
where ρ is some constant. Then

|Sn| =

ρn
∑

i=0

(

n

i

)

≈ 2H(ρ)n , H(t) = −t log t − (1 − t) log(1 − t) .

Therefore S = (Sn)n≥0 is an exponential family. For 3-CNFs, S-SAT can be
decided in 3ρn steps (by splitting on 3-clauses), which for appropriately chosen
ρ is much smaller than 2H(ρ)n. By choosing many Hamming balls centered at
different points (randomly) and by choosing the optimal value of ρ this yields an
algorithm deciding 3-SAT in O∗(1.5n) steps. Note that choosing a random point
as center of the Hamming ball is equivalent to switching the formula randomly
and keeping the Hamming ball centered at (0, . . . , 0) all time. It takes some
additional effort to derandomize the algorithm. For details, see Dantsin et al. [3].

IV

3 S-SAT and the VC-dimension

To obtain a systematical way of proving NP-hardness of S-SAT (if possible),
we exploit the notion of shattering and the Vapnik-Chervonenkis-dimension
dVC(Sn), short VC-dimension, of a set Sn ⊆ {0, 1}n. These concepts were first
introduced by Vapnik and Chervonenkis [4]. Let V with |V | = n be an or-
dered set of variables. We say I ⊆ [n] is shattered by Sn if any assignment to
VI := {vi | i ∈ I} can be realized by Sn. Formally, for every x ∈ {0, 1}|I| there
is a y ∈ Sn with y|I = x, where y|I denotes the |I|-bit vector (yi)i∈I . The VC-
dimension dVC is the size of a largest shattered set. Obviously, 0 ≤ dVC(Sn) ≤ n.
The intuition is that large sets have large VC-dimensions. This is quantified by
the following lemma, which was proven several times independently, e. g. by
Sauer [5].

Lemma 3.1. Suppose dVC(Sn) ≤ d ≤ n/2. Then

|Sn| ≤
d

∑

i=0

(

n

i

)

≤ 2H(d
n

)n

where H(x) = −x log(x) − (1 − x) log(1 − x) is the binary entropy function.

Corollary 3.2. Suppose S ⊆ {0, 1}∗ has exponential size. Then there is a poly-
nomial q(n) such that for each n ∈ N there exists N ≤ q(n) and an index set
I ⊆ [N] with |I| ≥ n such that I is shattered by SN .

Proof. Let (nj)j∈N be the sequence with polynomial gaps corresponding to the
exponential family S, i.e. there is an α > 1 and a polynomial p(n) such that
nj+1 ≤ p(nj) and |Snj

| ≥ αnj for all j. Choose δ ∈ (0, 1/2] such that H(δ) =
log α and k such that nk ≤ n

δ
≤ nk+1 =: N . By Lemma 3.1, dVC(SN) ≥ δN ≥ n,

so there exists a shattered set I ⊆ [N] with |I| ≥ n. Note that N = nk+1 ≤
p(nk) ≤ p(n/δ) =: q(n), as required. ⊓⊔

Although we know that a large shattered set exists, it is not clear how we can
compute it efficiently. Let us for the moment assume that we can. Then there is
a polynomial reduction from SAT to S-SAT:

Theorem 3.3. Let S ⊆ {0, 1}∗ be of exponential size and let p(n) be a poly-
nomial. Suppose that for all n, we can compute, in time polynomial in n, some
number N ≤ p(n) and some index set I ⊆ [N] with |I| ≥ n that is shattered by
SN . Then S-SAT is NP-hard.

Proof. The existence of such a I is guaranteed by Corollary 3.2. Suppose it can
be computed efficiently. Let F be a formula over the variables Vn = {v1, . . . , vn}.
We construct a new formula F ′ over VN by renaming each vj occurring in F into
vij

where I ⊇ {i1, . . . , in}. We claim that F is satisfiable iff F ′ is S-satisfiable.
Suppose x ∈ {0, 1}n satisfies F . Clearly, there is some x′ ∈ {0, 1}N satisfying
F ′, since F and F ′ differ only in the names of their variables. Every assignment

V

y ∈ {0, 1}N that agrees with x′ in the variables (vi1 , . . . , vin
) also satisfies F ′. It

follows from the definition of shattering that SN contains such a y. Hence, F ′

is S-satisfiable. The reverse direction is clear. This polynomial reduction shows
that S-SAT is NP-hard, under these conditions. ⊓⊔

Why does this method not work general? The difficulty is that we do not
know which subset of variables is shattered, we only know that there is one. It
is also futile to try to compute a large shattered set directly from Sn, since a
polynomial reduction cannot deal with Sn explicitly, as |Sn| is exponential in
n (at least the Sn we are interested in is). Note that the brute force approach
to computing the VC-dimension of a set will take time polynomial in |Sn|, if
|Sn| is exponentially in n. This is in contrast to the result of Papadimitriou and
Yannakakis [6] that computing the VC-dimension of an explicitly given Sn (of
size not necessarily exponential in n) is LOGNP-complete, hence unlikely to be
in P. But this is no help to us: though computing the VC dimension takes time
polynomial in |Sn|, observe that |Sn| is itself exponential in n.

We see that a polynomial reduction from SAT to S-SAT must somehow
have certain implicit knowledge of S = ∪Sn. One way would be a (regular,
context-free, . . .) grammar of S (if there is one).

Theorem 3.4. If S ⊆ {0, 1}∗ is a regular language and Sn := S ∩ {0, 1}n,
then dVC(Sn) and a shattered set I ⊆ [n] of this size can be computed in O(n2)
(where the hidden constant factor is doubly exponential in the size of the regular
grammar).

The proof of this theorem is quite technical and is therefore omitted here.
Instead, we will prove a similar theorem for context-free languages where we do
not insist on computing a largest shattered index set, but only a sufficiently large
one.

4 NP-Completeness of Context-Free S-SAT

In this section, we prove that S-SAT is NP-complete if S is a context-free lan-
guage and has exponential size. It suffices to show how to find a large shattered
index set. To be more precise, for any given n, we will find some N ∈ O(n)
and I ⊆ [N] with |I| ≥ n such that I is shattered by SN . In combination with
the results from Section 3, this proves NP-hardness. It is clear that S-SAT is
in NP if S is context-free, since deciding whether x ∈ S and verifying that x is
satisfying can be done in polynomial time.

In the following, we denote the nonterminal symbols appearing in the context-
free grammar for S by upper case letters S0, A,B,C, . . . , where S0 is the starting
symbol. The only terminal symbols are 0, 1. All rules in a context-free grammar
are of the form A ⊢ w for a word w possibly containing nonterminals. A ⊢∗ w
means that w can be derived from A in finitely many steps. Finally, the length

VI

of a word x is denoted by |x|.

Let S be a context-free, exponential language which is generated by the gram-
mar G. All calculations on the grammar can be done in advance and therefore
do not contribute to the running time. In particular, we may assume that G does
not contain useless nor unreachable nonterminal symbols, i.e. for every nonter-
minal A, we have A ⊢∗ x for some x ∈ {0, 1}∗, and S ⊢∗ w for some w with
A ∈ w. We call such a grammar reduced. For a nonterminal A, define

ℓ(A) := {x ∈ {0, 1}∗ | ∃y ∈ {0, 1}∗ : A ⊢∗ xAy} ,

r(A) := {y ∈ {0, 1}∗ | ∃x ∈ {0, 1}∗ : A ⊢∗ xAy} .

Call some X ⊆ {0, 1}∗ commutative if xy = yx for all x, y ∈ X.

Lemma 4.1 (Ginsburg [7], Theorem 5.5.1). Let G be a reduced context-free
grammar and let L(G) be the language generated by G. Then |L(G) ∩ {0, 1}n|
is polynomial in n if and only if for every nonterminal A, ℓ(A) and r(A) are
commutative.

Theorem 4.2. Suppose S ⊆ {0, 1}∗ has exponential size and is a context-free
language. Then S-SAT is NP-complete.

Proof. We will show how to compute large shattered sets, for every n. Let G be a
reduced context-free grammar for S. Since S has exponential size, |Sn| is surely
not polynomial in n. Therefore, Lemma 4.1 implies that there is a nonterminal
A such that ℓ(A) or r(A) is not commutative. Suppose w.l.o.g. that ℓ(A) is not
commutative, and let x1, x2 ∈ ℓ(A) such that x1x2 6= x2x1. Hence, there is a
position i such that w.l.o.g. (x1x2)i = 0 and (x2x1)i = 1. By definition, there
are y1, y2 ∈ {0, 1}∗ such that A ⊢∗ x1Ay1 and A ⊢∗ x2Ay2. By applying k times
either A ⊢∗ x1x2Ay2y1 or A ⊢∗ x2x1Ay1y2, we can create arbitrary 0s and 1s
at the positions i + k · |x1x2| for any k. In order to reach A from S0, we use
S0 ⊢∗ aAb, and in the end we use A ⊢∗ w to obtain a word in {0, 1}∗ for some
a, b, w ⊆ {0, 1}∗. Hence if we set N := |a| + |b| + |w| + n(|x1x2| + |y1y2|), then
I := {|a| + k|x1x2| + i : 0 ≤ k ≤ n − 1} is of size n, and it is shattered by SN .
All these calculations can be done in time O(n) and N is linear in n. Thus, by
Theorem 3.3, S-SAT is NP-hard. Since S-SAT ∈ NP, it is NP-complete. ⊓⊔

5 S-SAT and Polynomial Circuits

In the previous section, we have seen that if we can efficiently compute large
shattered sets, then S-SAT is NP-hard. If we cannot compute those sets, then
we do not have a systematic way of proving NP-hardness (although there are
simple examples where large shattered sets of Sn cannot be computed at all,
and still S-SAT is NP-hard). However, we will prove a result that is “almost
as good” as proving NP-completeness: if S-SAT is in P for some exponential S,
then SAT has polynomial circuits.

VII

Since boolean circuits are standard terminology in complexity theory, we do
not give a formal definition. Furthermore, because we are interested in the size
of a circuit, i.e. the number of its gates, and not in the depth, it does make a
difference whether we allow bounded fan-in or not. For an overview of boolean
circuits in complexity theory, see [8].

Definition 5.1. A circuit family is a sequence C = (C1, C2, . . .) of boolean cir-
cuits, where each Cn has n input gates. If each Cn has exactly one output gate,
then C computes a function f : {0, 1}∗ → {0, 1}, or equivalently, decides a lan-
guage L ⊆ {0, 1}∗.

If the size of Cn grows polynomially in n, then C is a polynomial circuit fam-
ily. If there exists an algorithm that computes and outputs Cn in time polynomial
in n, we call C a uniform polynomial circuit family.

It is not hard to show that a language L ∈ {0, 1}∗ can be decided by uni-
form polynomial circuits if and only if it is in P. There are even undecidable
languages with (nonuniform, of course) polynomial circuits. However, there are
good reasons to believe that NP-complete problems do not have polynomial cir-
cuits, whether uniform or not: Karp and Lipton [2] showed that if NP-complete
problems have polynomial circuits, then the polynomial hierarchy collapses to
its second level. The connection to S-SAT is immediate:

Theorem 5.2. If S-SAT is in P for some exponential S, then SAT has (pos-
sibly nonuniform) polynomial circuits.

Proof. From Corollary 3.2, we know that for each n there exists an N ≤ q(n)
and an index set I ⊆ [N] with |I| ≥ n such that I is shattered by SN . For
each n, there is a boolean circuit of polynomial size that takes a formula F over
n variables as input and outputs a formula F ′ over N variables, where F ′ is
identical to F , but with the all variables from F replaced by variables in I. Note
that the circuit exists, though it might not be constructible in polynomial time.
By assumption, there is a second circuit of polynomial size deciding S-SAT for
formulas with N variables. This circuit can be constructed in polynomial time.
Combining these two circuits yields a polynomial circuit deciding SAT. ⊓⊔

It might be possible that NP has polynomial circuits and still P 6= NP. Hence,
this result is weaker than proving NP-hardness for S-SAT in general.

6 Some S-SAT Which Is Not NP-hard

In this section we will prove—under reasonable assumptions—that there is an
exponential S such that S-SAT is not NP-hard. We will use a classical tool of
complexity theory: diagonalization. Let us first introduce some notation. As we
stated in Section 1, we assume that an instance of S-SAT always comes with
an explicitly given set of variables V = {v1, . . . , vn}. For a formula F , let n(F)
denote the size of this variable set, not the number of variables actually present
in F . These sets can differ, as we have seen.

VIII

Definition 6.1. A function ϕ mapping formulas to formulas is called a SAT-
reduction if, for all satisfiable formulas F and unsatisfiable formulas F ′, we have
ϕ(F) 6= ϕ(F ′). If there exists an algorithm which computes ϕ in polynomial time,
then we say that it is a polynomial SAT-reduction.

Consider for example the mapping ϕ which maps every satisfiable formula to
1 and every unsatisfiable formula to 0. This ϕ is a SAT-reduction but it is not
polynomial (provided NP 6= P). It should be clear that any function ϕ, that does
not fulfill the condition of being a SAT-reduction, is disqualified from being a
reduction from SAT to any S-SAT in the first place.

Theorem 6.2. Provided that P 6= NP, there is an S with |Sn| = 2n for at least
every second n, and SAT 6≤p S-SAT. Thus, S has exponential size and S-SAT

is not NP-hard.

Provided that P 6= NP, we will show that there are arbitrarily large formulas
having preimages that are satisfiable for every polynomial SAT-reduction ϕ.
Nnote that F might have several preimages, but according to the definition of
a SAT-reduction, they are either all satisfiable or all unsatisfiable. If such a
formula F has n variables, and G is one of its satisfiable preimages, then setting
Sn = ∅ prevents ϕ from being a polynomial reduction from SAT to S-SAT,
since G is satisfiable but F = ϕ(G) is not S-satisfiable. We then choose such
ni for each polynomial SAT-reduction ϕi and set Sn = {0, 1}n for all other
remaining values of n. By leaving gaps between the ni, we guarantee that S has
exponential size.

Lemma 6.3. Provided that P 6= NP, then for every polynomial SAT-reduction
ϕ, there are arbitrarily large formulas (in terms of n(F)) with satisfiable preim-
ages.

Proof. For the sake of contradiction, suppose that there is some SAT-reduction
ϕ and some n0 such that n(ϕ(F)) ≤ n0 for all satisfiable F . Consider

F0 := {ϕ(F) | F is a satisfiable formula}

the image of all satisfiable formulas. By assumption, all formulas in F0 have no
more than n0 variables, implying that F0 is finite. Clearly, F is satisfiable iff
ϕ(F) ∈ F0. Thus, ϕ reduces SAT to the finite language F0. Since every finite
language is in P, SAT is in P, too. This contradicts our assumption. ⊓⊔

Proof (of Theorem 6.2). The Lemma gives us functions n(ϕ, n0), F (ϕ, n0) such
that n(ϕ, n0) ≥ n0, and F (ϕ, n0) has exactly n(ϕ, n0) variables and has satisfi-
able preimages.

IX

Let ϕ1, ϕ2, . . . be an enumeration of all polynomial SAT-reductions (there
are countably many) and define

n1 := n(ϕ1, 0) ,
ni+1 := n(ϕi+1, ni + 2) .

Sn :=

{

∅ if n = ni for some i;
{0, 1}n otherwise.

First, note that ni+1 − ni ≥ 2. Therefore, if Sn = ∅, then |Sn−1| = 2n−1. Hence
at least half of the levels are “full”. Second, suppose some ϕi reduces SAT to
S-SAT. By construction, there is a satisfiable formula F such that ϕi(F) has
exactly ni variables. Unfortunately, Sni

is empty, so ϕi(F) is not S-satisfiable,
hence ϕi is not a reduction, which is a contradiction. Since every SAT-reduction
appears as some ϕi in our sequence, the proof is complete. ⊓⊔

This is nice, but has the drawback that S might have gaps, i.e. not every
level has exponential size. The next construction gives us an S that overcomes
this deficiency.

Theorem 6.4. Provided that RP 6= NP, there is an S with |Sn| ≥ 2n−1 for all
n such that S-SAT is not NP-hard.

The problem above was that, in order to ensure that for the satisfiable formula
F = F (ϕ, n0), ϕ(F) is not S-satisfiable, we had to set Sn = ∅ for n = n(ϕ, n0),
creating a “gap” in S. Alternatively, we could set Sn := {0, 1}n\sat(ϕ(F)), where
sat(ϕ(F)) is the set of all assignment which satisfy ϕ(F). Clearly this suffices to
ensure that ϕ(F) is not S-satisfiable, preventing ϕ from being a reduction from
SAT to S-SAT. If, in addition, sat(ϕ(F)) is small, |Sn| will be exponential in
n. Let us now first focus on what happens when it is never small.

Definition 6.5. A SAT-reduction ϕ is referred to sharp, if there is some n0

such that for all F with n := n(ϕ(F)) ≥ n0, the following two statements hold:

(i) F and ϕ(F) are SAT-equivalent, that is, either both are satisfiable, or both
are not

(ii) if ϕ(F) is satisfiable, then |sat(ϕ(F))| > 2n−1

The choice of 2n−1 is arbitrary. Any number x with x/2n > ǫ > 0 and 2n −x
being exponential would be good as well. The image of a sharp reduction consists
of formulas with at most n0 variables, unsatisfiable formulas, and formulas with
a huge number of satisfying assignments.

Lemma 6.6. If there is a polynomial sharp SAT-reduction ϕ, then RP = NP.

Proof. We give a randomized algorithm for SAT with a bounded error proba-
bility. Similar to the proof of Lemma 6.3, define

F0 := {ϕ(F) | F is satisfiable and n(ϕ(F)) ≤ n0}

X

Again, this set is finite. We compute satisfiability of some input formula F with
n(F) = n as follows: if n(ϕ(F)) ≤ n0, we simply check whether ϕ(F) ∈ F0,
which can be done in constant time. Otherwise, either both F and ϕ(F) are
unsatisfiable, or both are satisfiable, but then sat(ϕ(F)) is huge. Let x be a uni-
formly at random chosen assignment out of {0, 1}n for n = n(ϕ(F)) and return
satisfiable if x satisfies ϕ(F) and unsatisfiable otherwise. If F is unsatisfiable,
the algorithm always answers correctly, otherwise the answer is wrong with a
probability p ≤ 1/2. Thus SAT is in RP, and hence RP = NP. ⊓⊔

The contrapositive of Lemma 6.6 reads as follows: Provided that RP 6= NP,
no polynomial SAT-reduction ϕ is sharp, which means that for all ϕ, n0, there
exist n = n(ϕ, n0) ≥ n0, F = F (ϕ, n0), such that ϕ(F) has n variables and one
of the following holds:

(i) F and ϕ(F) are not SAT-equivalent

(ii) they are SAT-equivalent, ϕ(F) is satisfiable, and |sat(ϕ(F))| ≤ 2n−1

Proof (of Theorem 6.4). Using the function n(ϕ, n0) and our sequence ϕ1, ϕ2, . . .
of polynomial SAT-reductions, we define

n1 := n(ϕ1, 0) , F1 := F (ϕ1, 0) ,
ni+1 := n(ϕi+1, ni + 1) , Fi+1 := F (ϕi+1, ni + 1) .

So the Fi are the formulas with ni variables provided by the contrapositive of
Lemma 6.6, and the ni are all distinct. If case (i) above applies to Fi, we say ni

is of type (i), if case (ii) applies, ni is of type (ii). We define S by

Sn :=

{

{0, 1}n \ sat(ϕi(Fi)) if n = ni is of type (ii);
{0, 1}n otherwise.

We claim that every ϕ fails to be a reduction from SAT to S-SAT. Take
any ϕi. If ni is of type (i), then Fi and ϕi(Fi) are not SAT-equivalent, and
since Sni

= {0, 1}ni , ϕi(Fi) is S-satisfiable iff Fi is not satisfiable. Thus, ϕ is not
a reduction from SAT to S-SAT. If ni is of type (ii), then Fi and ϕi(Fi) are
both satisfiable, but ϕi(Fi) is not S-satisfiable, since Sni

= {0, 1}ni \sat(ϕi(Fi)).
Hence ϕi fails also in this case. Finally, note that |Sn| ≥ 2n−1 for all n. ⊓⊔

As one referee pointed out, Theorem 6.2 looks like a weaker version of Lad-
ner’s theorem [9], which states that there are intermediate languages L ∈ NP \P

which are not NP-complete, provided that P 6= NP. In fact, we could use Lad-
ner’s theorem to define a set S ⊆ {0, 1}∗ such that S-SAT is an intermediate
language. Unfortunately, it is not clear whether such S is exponential according
to Definition 1.2. Certainly, it is much less “dense” than the languages S defined
in the proofs of Theorem 6.2 and Theorem 6.4, for which it holds that for all n
|
⋃

i≤n Si| ∈ Ω(2n) and |Sn| ≥ 2n−1, respectively.

XI

7 Conclusion

Let us go back to where we started. We were interested in the complexity of
S-SAT, for some given S ⊆ {0, 1}∗. We can restate the question:

Problem: Find a large natural class S ⊆ 2{0,1}∗

of sets of assignments,
such that S-SAT is NP-hard (or even NP-complete) for all S ∈ S.

As we have seen, the set of all exponential context-free languages is such a
class, while the class of all exponential languages is not such a class. Might it be
that S-SAT is NP-complete for all exponential S in P? In the light of Ladner’s
theorem [9], this seems unlikely.

References

1. Cooper, J.: Josh Cooper’s Math Pages: Combinatorial problems I like
http://www.math.sc.edu/~cooper/combprob.html.

2. Karp, R., Lipton, R.J.: Some connections between nonuniform and uniform com-
plexity classes. In: Enseign. Math. 28. (1982) 191–201

3. Dantsin, E., Goerdt, A., E. A.H., Kannan, R., Kleinberg, J., Papadimitriou, C.,
Raghavan, O., Schöning, U.: A deterministic (2 − 2/(k + 1))n algorithm for k-SAT
based on local search. In: Theoretical Computer Science 289. (2002) 69–83

4. Vapnik, V., Chervonenkis, A.: On the uniform convergence of relative frequencies
of events to their probabilities. Theory Prob. Appl. 16 (1971) 264–280

5. Sauer, N.: On the density of families of sets. In: J. Comb. Theory, Ser. (A).
Volume 13. (1973) 145–147

6. Papadimitriou, C.H., Yannakakis, M.: On limited nondeterminism and the com-
plexity of the V-C dimension. J. Comput. Syst. Sci. 53(2) (1996) 161–170

7. Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill,
Inc., New York, NY, USA (1966)

8. Papadimitriou, C.: Computational Complexity. Addison Wesley (1994)
9. Ladner, R.E.: On the structure of polynomial time reducibility. J. ACM 22(1)

(1975) 155–171

