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Abstract. A pair of clauses in a CNF formula constitutes a conflict if
there is a variable that occurs positively in one clause and negatively in
the other. Clearly, a CNF formula has to have conflicts in order to be
unsatisfiable—in fact, there have to be many conflicts, and it is the goal
of this paper to quantify how many.
An unsatisfiable k-CNF has at least 2k clauses; a lower bound of 2k for
the number of conflicts follows easily. We improve on this trivial bound
by showing that an unsatisfiable k-CNF formula requires Ω(2.32k) con-
flicts. On the other hand there exist unsatisfiable k-CNF formulas with
O( 4k log3

k

k
) conflicts. This improves the simple bound O(4k) arising from

the unsatisfiable k-CNF formula with the minimum number of clauses.

Keywords: satisfiability, unsatisfiable formulas, conflict graph, Lovász
Local Lemma

1 Introduction

If you want to explain to your non-computer science friend what satisfiability of
CNF formulas is all about, you will probably say it is about a list of constraints,
all of which you want to satisfy simultaneously. Perhaps you will add that while
each constraint is very easy to satisfy individually, the difficulty arises because
many constraints conflict with each other. A natural guess is that if you cannot
satisfy all your constraints, then there must be a lot of conflicts between them.

In our case, constraints are boolean clauses with no repetition of literals and
no complementary literals, e.g., x ∨ ȳ ∨ z. A k-CNF formula is the conjunction
of such clauses each containing exactly k literals. We use this notation for CNF
formulas to be closer to the semantical viewpoint of formulas instead of using
the notation of clause-sets which is closer to the syntactical viewpoint.

Two clauses have a conflict if one contains a positive literal, while the other
contains its negation. Kullmann [1] introduced the notion of the symmetric con-
flict matrix, which has an entry for each pair of clauses counting the number of
conflicts between them. We take the 0-1-version of this matrix interpreted as a
graph. More formally, the conflict graph CG(F ) of a k-CNF formula F contains
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the clauses as vertices, and two clauses are connected if there is a conflict be-
tween them. Any lower bound on the number of edges in the conflict graph, i.e.,
the number of conflicts, is also a lower bound on the number of multi-edges in
the symmetric conflict matrix interpreted as a multi-graph.

We study the extremal values of several natural parameters of CG(F ) for
unsatisfiable k-CNF formulas F , such as its minimum degree, maximum de-
gree, and of course, above all, its number of edges. We will use the notations
dmin, dmax, e, respectively, for these parameters and use concepts of graph theory
also in the context of CNF formulas, e.g., the neighborhood of a clause C in a
CNF formula F , denoted by ΓF (C), is the set of all clauses in F conflicting with
C. To avoid notational confusion we use the e for the number of edges and e for
the Eulerian constant.

Further, we introduce a notation that will come handy when defining CNF
formulas: Let F = C1 ∧ . . . ∧ Cm and G = D1 ∧ . . . ∧ Dn be two CNF formulas
over disjoint sets of variables. Define

F Y G :=
∧

i=1,...,m
j=1,...,n

Ci ∨ Dj .

The formula F Y G is a CNF formula with mn clauses. If F is a k-CNF formula
and G an `-CNF formula, F Y G is a (k + `)-CNF formula. Moreover, by using
distributivity it is easy to see that the two formulas F ∨G and F Y G are equiv-
alent (describing the same boolean function) but F ∨ G is syntactically not a
CNF formula. Note that a CNF formula is just one representation of a boolean
function and there might exists other representations (logically equivalent for-
mulas). The problem of deciding whether a given CNF formula is unsatisfiable
is the same as to answer the question whether it is logically equivalent to the
constant 0 function. Thus it is essential how a formula is represented.

Example 1. The complete formula Kk on the variables x1, . . . , xk is the k-CNF
formula with all 2k possible k-clauses on these variables. More formally

K1 := x1 ∧ x̄1, Kk+1 := (xk+1 Y Kk) ∧ (x̄k+1 Y Kk) .

Kk is a k-CNF formula, and using induction and the fact that Y is logically equiv-
alent to ∨, one can easily see that it is unsatisfiable. Furthermore the conflict

graph CG(Kk) is a clique, has 2k vertices and
(

2k

2

)

edges.

It is clear that an unsatisfiable 1-CNF formula contains two complimentary
clauses and thereby at least one edge. After deleting all clauses of degree 0
in an unsatisfiable k-CNF formula, the so-obtained formula stays unsatisfiable.
Therefore, we have at least 2k clauses because this is the minimum number
of clauses needed for a k-CNF formula to be unsatisfiable, and every clause
has degree at least 1. Thus all unsatisfiable k-CNF formulas have Ω(2k) many
conflicts. Example 1 shows that there is an unsatisfiable k-CNF with Θ(4k) many
conflicts. What is the right order of magnitude for the number of conflicts needed
for an unsatisfiable k-CNF formula?
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There is a similar question in Ramsey theory: A graph G is H-Ramsey if every
2-coloring of its edges contains a monochromatic copy of H . The size Ramsey
number r̂(H) asks for the minimum number of edges over all H-Ramsey graphs
where the Ramsey number r(H) is the minimum number of vertices over all H-

Ramsey graphs. For which graphs does it hold that r̂(H) =
(

r(H)
2

)

? It is known
that equality holds for complete graphs [2] but clearly not for stars, cf. [3] for a
survey about the size Ramsey number.

1.1 Results

The technical groundwork, namely the Lopsided Lovász Local Lemma is dis-
cussed in Section 2. We examine thereby also the maximum and minimum degree
of an unsatisfiable k-CNF formula. The main theorem follows in Subsection 3.1
and states that every unsatisfiable k-CNF formula has at least Ω(2.32k) conflicts.
A construction by Hoory and Szeider [4] shows that there exists unsatisfiable k-

CNF formulas with O( 4k log3 k
k

) conflicts, discussed in Subsection 3.2. In the end
we discuss the maximization versions of these parameters and formulate some
open problems.

2 Maximum Degree and Minimum Degree

The Lovász Local Lemma can be used to show that k-CNF formulas where every
clause depends only on a small subset of the other clauses are always satisfiable,
compare for example [5] Section 2.2. As an implication k-CNF formulas where
every variable occurs only a few times are always satisfiable, cf. Corrollary 5 and
[6, 7]. The Lovász Local Lemma can also be used to define a branching rule for
a DPLL-algorithm on SAT as shown in [8]. Another applications is shown in [9]
for the MAX-SAT problem.

Definition 2. Let A1, . . . , Am be events in some probability space. A graph G =
(V, E) with V = {1, . . . , m} is called a lopsided dependency graph if for any Ai

and any U ⊆ V \ ({Ai} ∪ ΓG(Ai)) with Pr[
⋂

j∈U Āj ] > 0, it holds that

Pr



Ai

∣

∣

∣

∣

∣

⋂

j∈U

Āj



 ≤ Pr [Ai] .

Lemma 3 ([10],[11],[12]). Let A1, . . . , Am be events in some probability space,
and let G be a lopsided dependency graph for them. If there are numbers 0 ≤
γi < 1, 1 ≤ i ≤ m, such that for any i,

Pr [Ai] ≤ γi

∏

j∈ΓG(Ai)

(1 − γj) ,

then
Pr

[

Ā1 ∩ · · · ∩ Ām

]

> 0 .
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Now think of a CNF formula F = C1∧· · ·∧Cm. Set each variable independently
uniformly at random. Define Ai to be the event that Ci is not satisfied. It is not
difficult to see that the conflict graph of F is a lopsided dependency graph for
the events A1, . . . , Am. Applying Lemma 3, we obtain the following result:

Theorem 4. The maximum degree of any unsatisfiable k-CNF formula is at

least 2k

e
.

Proof. The proof is basically given in [6] by Kratochv́ıl et al. Assume that the

maximum degree of a k-CNF formula F is at most d := 2k

e
−1. Set each variable

independently uniformly at random. Then for each clause Ci, the probability
that it is not satisfied is 2−k. Now apply Lemma 3 with γi := 1

d+1 for all i, and

use the fact that (1 − 1
d+1 )d ≥ e

−1. ut

The complete formula Kk (Example 1) has maximum degree 2k−1 and shows
that this bound is tight up to a constant factor.

Corollary 5 (Kratochv́ıl et al. [6]). Suppose F is a k-CNF formula. If every

variable occurs in at most 2k

ek
clauses, then F is satisfiable.

Proof. Consider any clause C of F . Clearly, every literal in C causes at most
2k

ek
− 1 conflicts and hence the maximum degree of F is at most 2k

e
− k. Thus F

is satisfiable by Theorem 4. ut

Does this result implies anything about the number of conflicts in an unsatis-
fiable k-CNF formula? The number of conflicts is trivially at least the maximum
degree, hence Ω

(

2k
)

. Further, some variable x occurs in many clauses of F .
Assume that this variable is more or less balanced, i.e., it occurs equally often as

a positive and negative literal. In this case this variable by itself induces Ω
(

4k

k2

)

conflicts. Does every unsatisfiable k-CNF formula have such a balanced high-
frequency variable? The next example gives the most negative answer to this
question: We will define an unsatisfiable formula in which every variable occurs
exactly once negative.

Example 6. We set F1 := x1 ∧ x̄1, and for k ≥ 1 define recursively

Fk := (x̄1 ∨ x̄2 ∨ . . . ∨ x̄k) ∧

k
∧

i=1

(

F
(i)
k−1 Y xi

)

,

where F
(i)
k−1 are copies of Fk−1 on different set of variables. By definition of the

operator Y one sees inductively that Fk is indeed a k-CNF formula. It is easy to
see by using induction again that Fk is unsatisfiable for all k ≥ 1 and that every
negative literal occurs only once.

Let a(k) be the number of clauses in Fk. We have a(1) = 2 and a(k) =

ka(k − 1) + 1. Solving this recurrence, we obtain a(k) =
∑k

j=0
k!
j! = bek!c. Each

“top level” variable xi occurs once negatively and be(k − 1)!c times positively.
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Therefore, the number of conflicts in this formula is huge and does not give us any
good upper bound. It seems that we have to pay for extreme non-balancedness by
huge variable frequency. Still, the concept of balanced and non-balanced variables
will be of great importance in the next section, when we prove a lower bound
on the number of conflicts.

Let us make a second stab on proving a lower bound on e(F ) for F being an

unsatisfiable k-CNF formula. Observe that e(F ) ≥ dmin(F )
2 m(F ), where m(F ) is

the number of clauses. We know that m(F ) ≥ 2k. The minimum degree dmin(F )
gets 0 when we add clauses of degree 0. Thus to get any meaningful bound, we
have to consider minimal unsatisfiable formulas. A CNF formula is called mini-
mal unsatisfiable if it is unsatisfiable and deleting any clause makes it satisfiable.
Minimal unsatisfiable formulas are interesting objects themselves, for they have
many algorithmic aspects, which were studied for example in [13–17]. In this pa-
per however, we use only some straightforward combinatorial properties. First,
we can assume w.l.o.g. that F is a minimal unsatisfiable k-CNF formula, as ev-
ery unsatisfiable CNF formula has a minimal unsatisfiable subformula (which
does not have more conflicts). Second, we actually can state a lower bound on
dmin(F ) if F is minimal unsatisfiable:

Lemma 7. If F is a minimal unsatisfiable k-CNF formula, then dmin(F ) ≥ k.

Proof. Let F be a minimal unsatisfiable k-CNF formula and assume for contra-
diction that there is a clause C such that its degree in the conflict graph is less
than k. By minimality of F , F −C is satisfiable. Take a satisfying assignment α
of F −C. The neighbors ΓF (C) of C are satisfied by α, so we can assign to each
D ∈ ΓF (C) a variable xD such that the corresponding literal in D is satisfied.
At least one of the k variables in C is not assigned, say ` is the corresponding
literal in C. By changing α such that ` is true, we get a satisfying assignment
for F , which is a contradiction. ut

This result is also tight: The k-CNF formula Fk defined above is minimal
unsatisfiable, and has a minimum degree of k.

Corollary 8. Every unsatisfiable k-CNF formula has at least k · 2k−1 conflicts.

3 Number of Conflicts

3.1 A Lower Bound

In this section, we prove a lower bound on the number of conflicts in an unsatisfi-
able k-CNF formula. Our main technical tool will be a corollary of the Lopsided
Lovász Local Lemma:

Corollary 9. Let F be a CNF formula not containing the empty clause. If for
all clauses C in F it holds that

∑

D∈ΓF (C)

Pr [D not satisfied ] ≤
1

4
, (1)
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then F is satisfiable.

Proof. Write F = C1 ∧ . . .∧Cm. First, we can assume that there are no isolated
clauses, i.e., every clause has some conflict. We apply Lemma 3 with γi :=
2 Pr [Ci not satisfied]. Note that (1) implies Pr [Ci not satisfied] ≤ 1

4 for each Ci,
thus γi ≤

1
2 for all i. A short calculation using the fact that

∏

(1−γj) ≥ 1−
∑

γj

completes the proof. ut

Consider the function f(p) = 1 − log(1 − p) − log(1−p)
log(p) which has a unique

p∗ ∈ (0, 1
2 ) maximizing f(p). In fact, p∗ ≈ 0.30 and f(p∗) > 1.218.

Theorem 10. Let F be an unsatisfiable k-CNF formula. For any p < 1
2 , F has

at least

2f(p)k

8 + 128k2

conflicts. Furthermore, plugging in the optimal value p∗, we obtain that F has
Ω

(

2.32k
)

conflicts.

Before we proceed to the proof, we explain the basic idea behind it. The
Lovász Local Lemma implies that any unsatisfiable k-CNF formula contains a

variable of high degree, namely around 2k

ek
. Assume that this variable is more

or less balanced, i.e., it occurs positively and negatively equally often. In this

case there are already Ω
(

4k

k2

)

conflicts due to this variable, and we are done.

Otherwise, we can assume that if a literal u occurs frequently, then ū does not.
A natural idea now comes to mind: In the probability space used in the Lovász
Local Lemma, we set each variable independently, choosing 1 with probability
1
2 . Should we not bias u towards 1, if many clauses benefit from this, and only
few suffer?

Proof (of Theorem 10). For a literal u, let occF(u) denote the number of clauses
in F containing the literal u. Please note that occF(u) and occF(ū) may differ.

Choose parameters `, θ as follows: ` := k log(1−p)
log(p) and θ = 2k−`

8k
.

We will color the literals of the formula and choose a probability with which
they are set to 1. (i) If both occF(u) ≥ θ and occF(ū) ≥ θ, color u and ū red,
and set each to 1 with probability 1

2 . (ii) If occF(u) ≥ θ and occF(ū) < θ, color
u green and ū red, and set u to 1 with probability 1 − p (and thus ū to 1 with
probability p). (iii) If both occF(u) < θ and occF(ū) < θ, color both black,1

and set each to 1 with probability 1
2 . What you should keep in mind is that

every black literal is “not frequent”, and the complement of each red literal is
“frequent”, and that green literals are likely to be satisfied, since 1 − p > 1

2 .
Let e(F ) be number of conflicts/edges in F . As a first observation, note that

any literal u causes occF(u)occF(ū) conflicts. Summing this up over all red literals
u we obtain the number of conflicts caused by red literals. However, we might

1 or white, if you are working on a blackboard. . .
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(i) count the pair {u, ū} twice, if both are red, and (ii) count the same conflict
k times, as two clauses can have up to k conflicting literals, e.g. (u1 ∨ · · · ∨ uk)
and (ū1 ∨ · · · ∨ ūk). Still, we obtain

e(F ) ≥
1

2k

∑

u:red

occF(u)occF(ū) ≥
θ

2k

∑

u:red

occF(u)

≥
θ

2k
|{C ∈ F | C contains at least one red literal}| . (2)

Our interpretation of this inequality is that if F has few conflicts, then only
few clauses can contain red literals. Next, we define a new formula F ′ as follows:
Start with F , and for each clause C in F that has fewer than ` green literals,
and no red ones, remove all green literals. This formula F ′ is still unsatisfiable,
and e(F ) ≥ e(F ′). It is no k-CNF formula anymore, but each clause has at least
(k − `) literals. Further, occF′(u) ≤ occF(u) for any literal u.

Since F ′ is unsatisfiable, we can use the contrapositive of Corollary 9, i.e.,
there is a clause C∗ in F ′ such that

∑

D∈ΓF ′ (C∗)

Pr [D not satisfied] >
1

4
. (3)

Let us partition ΓF ′(C∗) into sets B, BG and BGR as follows: Let B contain
all clauses D ∈ ΓF ′(C∗) containing only black literals, BG those containing at
least one green literal, but no red ones, and BGR those containing at least one
red literals. There are several useful observations: First, by construction of F ′,
every clause in BG contains at least ` green literals. Second, clauses in B have at
least k− ` literals, and BGR and BG contain only k-clauses. We can give certain
bounds on |BGR| and |B|. Every D ∈ BGR contains a red literal, hence by (2)

|BGR| ≤
2ke(F )

θ
. (4)

To give a bound on |B|, note that for every D ∈ B there is a black literal u in
C∗ such that ū is in D. Since occF′(ū) ≤ θ for each such literal u in C∗, and C∗

contains at most k of them,

|B| ≤ kθ . (5)

To evaluate the sum in (3), let us estimate the probabilities with which the
clauses in the three sets are unsatisfied. First, a clause D ∈ BGR has at least
k literals, and each is satisfied with probability at least p (we pessimistically
assume the worst case, namely that all literals in D are red). We obtain

∀ D ∈ BGR : Pr[D not satisfied] ≤ (1 − p)k . (6)

For D ∈ B, observe that D has at least k − ` literals, which are all black, thus

∀ D ∈ B : Pr[D not satisfied)] ≤ 2−k+` . (7)
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For D ∈ BG, we know that D contains at least ` green literals, each of which is
satisfied with probability 1 − p. All other literals in D are black. Therefore we
obtain

∀ D ∈ BG : Pr[D not satisfied] ≤ 2−k+`p` . (8)

We plug (4)–(8) into (3) and get

1

4
< |BG|2−k+`p` + 2ke(F )θ−1(1 − p)k + kθ2−k+` .

This yields a lower bound on |BG|. Since every clause in BG has a conflict with
C, it yields a lower bound on e(F ′), and thus on e(F ):

e(F ) ≥ |BG| > p−`
(

2k−`−2 − 2ke(F )θ−1(1 − p)k2k−` − kθ
)

.

Plugging in our values for θ and `, a few calculations show that

e(F ) >
2f(p)k

8 + 128k2
.

This completes the proof of the theorem. ut

We should make some comments on the proof above. It is a natural idea
to choose a probability 6= 1

2 for unbalanced variables. However, it is not clear
why it makes sense to delete green (frequent) literals from clauses. Are these not
exactly those literals making the clause more likely to be satisfied? What would
happen if we re-did the proof without deleting green literals? We would have to
assume the worst case that every D ∈ BG contains k − 1 black literals and only
one green, only marginally pushing up its probability of being satisfied. Overall,

we would obtain a bound like Ω
(

k22k

ln k

)

, if we choose our parameters optimally.

The benefit of crossing out some green literal becomes clear if one thinks the

other way round: We are given a formula with fewer than 2f(p)k

8+128k2 conflicts and
want to prove that it is satisfiable. By deleting green literals from some clauses
D, we sacrifice by decreasing the probability of D being satisfied. On the other
hand, no clause C can have many of these shrunk, now completely black clauses
D in its neighborhood, due to the bound |B|. We are actually making the conflict
graph much sparser, thus more amenable to the Local Lemma.

3.2 Upper Bound

For an upper bound construction we show that the construction given by Hoory

and Szeider [4] gives an unsatisfiable k-CNF formula with O( 4k log3 k
k

) conflicts.
They used this construction to give an instance of a k-CNF formula with few
occurrences of each variable.

For notational matter we write K(v1, . . . , vs) to denote the complete for-
mula on the variables v1, . . . , vs, and K−(v1, . . . , vs) is used for the formula
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obtained by K(v1, . . . , vs) deleting the all-positive-clause (v1 ∨ . . . ∨ vs). The
formula K−(v1, . . . , vs) is equivalent to (v̄1 ∧ . . . ∧ v̄s). Let k ≥ 1 and choose
` = blog(k/ log2 k)c, u = bk/lc, and v = k − lu. Define the formula F =

∧u
i=0 Fi

where

F0 = K(z1, . . . , zv) Y

∨u

i=1
K−(x

(i)
1 , . . . , x

(i)
1 ) ,

Fi = K(y
(i)
1 , . . . y

(i)
k−`) Y (x

(i)
1 ∨ . . . ∨ x

(i)
` ) .

Replace the complete formulas by the constant 0 function and the “almost

complete” formulas K−(x
(i)
1 , . . . , x

(i)
s ) by (x̄

(i)
1 ∧. . .∧x̄

(i)
s ) to see that this formula

is unsatisfiable. It remains to calculate the number of conflicts in this formula:

e(F ) = e(F0) + ue(F1) + ue(F0, F1) ≤ |F0|
2 + u|F1|

2 + u|F0||F1|

≤
e
24k

k2
+

4k log3 k

k log2
e

+
4k
e log3 k

k log2
e

= O

(

4k log3 k

k

)

.

The calculations for |F0|, |F1| are made in [4] and the better upper bound de-
scribed there can also be used to get rid of one logarithm, i.e., this would yield an

unsatisfiable k-CNF formula with O( 4k log2 k
k

) conflicts. The details are omitted
because the lower bound is far away from this upper bound and we cannot be
sure what the right order of magnitude is.

4 Maximizing the Parameters

How big can the parameters dmin, dmax, e of a minimal unsatisfiable k-CNF for-
mula be? We will show that there exists minimal unsatisfiable k-CNF formulas
with arbitrarily large minimum degree, for k ≥ 3. From this it follows that the
maximum degree, number of edges are arbitrarily big as well.

Example 11. The cycle formula C` on the variables x1, . . . , x` contains the clauses
(x̄i ∨ xi+1), i = 1, . . . , ` (the index is taken here and in the following modulo `).
We can interpret each clause as a logical implication xi → xi+1 or as an in-
equality xi ≤ xi+1 over the boolean values 0, 1. It follows that C` is satisfied
if and only if all the variables x1, . . . , x` are set to the same value. By adding
the clauses (x1 ∨ x2), (x̄1 ∨ x̄2) to C` we obtain a minimal unsatisfiable 2-CNF
formula. Consider now

Hk,` := (C` ∧ (x1 ∨ x2) ∧ (x̄1 ∨ x̄2)) Y K(y1, . . . , yk−2)

It is not difficult to see for two minimal unsatisfiable formulas F, G also F YG
is minimal unsatisfiable. Thus Hk,` is a minimal unsatisfiable k-CNF formula.
It contains 2k−2(` + 2) clauses, and each clause has at least (2k−2 − 1)(` + 2) +
2 conflicts. Therefore, the minimum degree of a minimal unsatisfiable k-CNF
formula can be arbitrarily large, for each fixed k ≥ 3.
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5 Conclusion

Let ek denote the minimum number of conflicts/edges over all unsatisfiable k-
CNF formulas. Theorem 10 and the construction in Section 3.2 leads to the
following asymptotic bounds

Ω(2.32k) ≤ ek ≤ O

(

4k log3 k

k

)

.

This improves over the trivial bounds, but the gap between the lower and upper
bound is still huge. We suspect that the true value of ek is much closer to the
upper bound, but it took us a considerable effort to get away from lower bounds
like Ω(kt2k) for some fixed t. The right magnitude of ek is therefore still the
main open question of this paper.

It is easy to change the definition of the complete formula in such a way that
every pair of clauses has exactly one conflicting variable. By substituting this
variant of the complete formula into the example given in Section 3.2 yields an

unsatisfiable k-CNF formula with Θ
(

4k log3 k
k

)

multi-edges.

As we pointed out in Example 6 there exists unsatisfiable k-CNF formu-
las where all variables of high degree are very unbalanced. But even there it
holds that there is one variable u such that it induces almost all conflicts, i.e.,
occ(u) · occ(ū) is already very large. Is it true in general that the maximum of
occ(u) · occ(ū) is very large?

Acknowledgment. We thank all the participants of Gremo Workshop on Open
Problems, GWOP 2007, for the helpful discussions at the workshop.
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