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Summary

Whenever demand exceeds capacity, the available resources must be allocated to the
incoming demand. A simple first-come-first-served allocation can lead to rather poor
results if the demand is heterogeneous, i.e., if orders differ in their strategic importance
for a company, their willingness to pay, their lead time requirements, etc. In addition,
the decisions must be made under uncertainty because demand is often stochastic. If too
many low value orders are rejected, capacity might remain unused. On the other hand, if
too many low value orders are accepted, there might be not enough capacity to accept all
high value orders. Apart from the order acceptance decision, it might also be preferable to
delay the order release of already accepted orders, even if capacity is available, to reserve
capacity for future high value orders.

This thesis considers the demand management decisions in different order-driven produc-
tion environments. Orders are accepted or rejected immediately upon arrival, and at the
beginning of each planning period, the set of orders to be released is selected. As exact
solution methods are computationally intractable, bid price-based revenue management
approaches are applied to maximize the contribution margin gained by accepted orders
minus holding and backlog costs.

The first essay considers a deterministic single-stage assembly process, where both capacity
and intermediate materials are scarce resources. In this essay, for each accepted order a due
date is quoted and the accepted orders are scheduled such that the quoted due dates are kept.
The second essay considers a deterministic multi-stage make-to-order production system.
In this study, intermediate materials are assumed to be unlimited available. The third essay
considers a multi-stage make-to-order production system with stochastic influences. To
take into account that in these production systems, lead times depend non-linearly on the
load of the system, clearing functions are used to model the production system.
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1 Introduction

Whenever demand exceeds capacity, the available resources must be allocated to the
customers. This allocation is especially important if these customers are heterogeneous, i.e.,
they differ in their importance for the company, willingness to pay, lead time requirements,
etc. What makes this problem difficult to solve is that demand is typically uncertain. The
most famous example is the sale of flight tickets:

The number of seats on a flight is fixed and demand can be roughly divided into business
and leisure travelers. Business travelers typically book their flight on short notice and are
less price-sensitive than leisure travelers. As demand cannot be forecasted exactly, the
question arises, how many low price tickets to sell to early arriving customers. If too many
low price tickets are sold, later arriving high value customers must be rejected. If too many
requests for low price tickets are rejected, available seats remain unsold although sufficient
demand was available.

Revenue management approaches have been developed to address this problem (see Talluri
and Van Ryzin, 2004, for an overview) and, in recent years, this concept has also been
adapted to production industries (see e.g. Spengler et al., 2007; Quante et al., 2009). The
focus in this thesis is on applications in different order-driven production environments.

One possible field of application can be found in the semiconductor industry. Here, the
production process is divided into two stages: front-end and back-end production. In the
front-end production, wafers are fabricated, tested, and stored in the so called die bank. In
back-end facilities, the wafers are taken from the die bank, placed into packages, and finally
tested (Brown et al., 2000; Mönch et al., 2013). For this thesis, the back-end facilities
are of interest because here, the demand management decisions are made. Demand is
heterogeneous and characterized by demand peaks. Capital equipment costs are high and
thus, it is impossible to adjust capacity levels in the short-term. Therefore, demand exceeds
capacity in the short-term. The production characteristics vary for different products. For
well established products, which have been produced for a long time, processing times can
be assumed to be almost deterministic, while for new developed products, they may be
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highly stochastic. In addition, for some products, all required intermediate materials are
available or their lead time is negligible, while for other products, they are scarce resources.

Another possible field of application is in the steel industry, where different products are
produced to order in a multi-stage no-wait flow shop (Spengler et al., 2007, 2008). Capacity
cannot be extended in the short-term because this is very costly and time-consuming.
Orders can be rejected because there are many customers without a long-term contract
whose overall economic impact is relatively low (Hintsches et al., 2010).

This thesis considers the order acceptance and order release decisions of a manufacturer
facing stochastic, heterogeneous demand. In each of the three articles, a different production
environment is analyzed. As exact solution methods are computationally intractable, bid
price-based revenue management approaches are developed to maximize the contribution
margin gained from accepted orders minus backlog and holding costs.

The first article (joined work with Moritz Fleischmann and Raik Stolletz)1 considers an
assemble-to-order production system, where both intermediate materials and production
capacity are scarce resources. Stochastic, heterogeneous demand arrives over time. Upon
arrival, each order must be either accepted or rejected. For each accepted order, a due date
is quoted, which then must be kept. The actual assembly date is still subject to change. At
the beginning of each planning period, the set of orders for which assembly is started in
the current planning period is selected. Orders must be fully accepted but partial assembly
starts are possible. The objective is to maximize the contribution margin gained from
accepted orders minus backlog costs, which depend on the quoted due date, and holding
costs, which depend on the actual assembly date.

This problem is formulated as a stochastic dynamic program to show differences to other
approaches from the literature, where scarce intermediate materials are not considered and
different cost structures are assumed. Due to the high dimensionality of the resulting state
space for problems of realistic size, the stochastic dynamic program is computationally
intractable to solve. Therefore, a bid price-based revenue management approach is de-
veloped. Bid prices are derived from a linear program describing the production process.
They are used both in the due date quoting decision and in the scheduling decision. For the
former decision, the bid prices are aggregated to opportunity costs of accepting an order
with a given due date and for the latter decision, they are aggregated to opportunity costs of
starting assembly of an order in a given planning period.

1Guhlich, H., Fleischmann, M., and Stolletz, R. (2015). Revenue management approach to due date quoting
and scheduling in an assemble-to-order production system. OR Spectrum, 37(4):951-982.
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A numerical study shows that the proposed approach performs well by comparing it with
benchmark algorithms and an ex-post optimal solution, which has knowledge about all
incoming demand. In addition, it is shown that considering production capacity is more
important than considering intermediate materials to get good results in the tested cases.

The second article (joined work with Moritz Fleischmann, Lars Mönch, and Raik Stolletz)2

considers a multi-stage no-wait production system. The make-to-order production principle
is used and intermediate materials are unlimited available in this case. Demand is stochastic
and each incoming order must be fully accepted or rejected immediately on arrival. In
addition, order release decisions are performed periodically. These decisions are made
online. That is, decisions from former periods can be revoked. The objective is to maximize
the contribution margin gained from accepted orders minus holding and backlog costs,
which depend on the actual finish dates of the orders.

The problem is formulated as a stochastic dynamic program to show differences to other
problems considered already in literature. In particular, this article is the first to consider
online order acceptance and order release decisions in a multi-stage production system. For
instances of realistic size, the stochastic dynamic program cannot be solved due to the high
dimensionality of the resulting state space. Hence, a bid price-based revenue management
approach is developed. Here, the multi-stage production system is modeled as a linear
program. Bid prices are derived from this linear program and aggregated to opportunity
costs for starting an order in a given planning period. An order is accepted if there exists
a feasible release date for the order and the expected profit from this order exceeds the
opportunity costs of releasing the order in this period. The order release decisions are made
via a linear program that ensures feasibility of the schedule and uses the opportunity costs
in the objective function.

A numerical study shows the good performance of the developed approach compared to
an ex-post optimal solution, which has knowledge about all incoming demand upfront.
It is shown that aggregating the production system to a single-stage system leads to
unsatisfactory results in complex production systems. Making online order release decisions
significantly increases the profit gained compared to fixing the release date immediately
upon arrival of an order.

2Guhlich, H., Fleischmann, M., Mönch, L., and Stolletz, R. (2015a). Revenue management in a multi-stage
make-to-order production system. Working paper, University of Mannheim.
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The third article (joined work with Moritz Fleischmann, Lars Mönch, and Raik Stolletz)3

considers a multi-stage production system, which is subject to stochastic influences. That
is, both the arrival process of the demand and the production process are stochastic. Order
acceptance decisions are made immediately upon arrival of each order, while order release
decisions are made only at the beginning of each planning period. Partial order acceptance
and partial order releases are possible. The objective is to maximize the contribution margin
gained from accepted orders minus finished good inventory costs, work-in-process holding
costs, and backlog costs.

This article is the first to consider order acceptance and order release decisions for stochastic
demand in a production system with stochastic influences. It combines ideas of bid
price-based revenue management with production planning approaches based on clearing
functions. More precisely, clearing functions are used to model the non-linear dependency
of workload and lead times in stochastic production systems. The clearing functions are
approximated by piece-wise linear functions to describe the production process with a
linear program. This linear program is used to compute bid prices, which are aggregated
to opportunity costs for using a machine group in a given planning period. The order
acceptance and order release decisions are made via the same linear program using the
opportunity costs in the objective function.

A numerical study shows the benefit of this novel approach compared to approaches that
cope with variability in the production system by modeling fixed, workload-independent
waiting times, which is common practice in order release planning. The results are
derived in basic production systems and confirmed by the study of a model of a real-world
semiconductor back-end facility.

3Guhlich, H., Fleischmann, M., Mönch, L., and Stolletz, R. (2016). Revenue management in stochastic
production systems: A clearing function-based bid price approach. Working paper, University of
Mannheim.
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2 Revenue management approach to
due date quoting and scheduling in an
assemble-to-order production system

Co-authors:

Moritz Fleischmann
Chair of Logistics and Supply Chain Management, Business School, University of
Mannheim, Germany

Raik Stolletz
Chair of Production Management, Business School, University of Mannheim, Germany

Published in:

OR Spectrum, Volume 37(4) (2015), pages 951-982, DOI: 10.1007/s00291-015-0401-3,
reprinted with permission of Springer

Abstract:

In this paper, we consider demand management decisions for an assemble-to-order produc-
tion system in which both the availability of intermediate material and assembly capacity
are limited. For each incoming order, the manufacturer must decide whether to accept it
and what due date to quote for an accepted order. The actual assembly dates are still subject
to change after these decisions, and a production schedule must be maintained to guarantee
that the quoted due dates are met. Therefore, the decisions on accepting orders and quoting
due dates must be made with incomplete knowledge of the actual resources used to fulfill
the orders. To address these factors, we model this situation and develop a novel revenue
management approach using bid prices. An extensive numerical study demonstrates the
good performance of the proposed approach in comparison with benchmark algorithms
and an ex-post optimal solution applied over a wide range of different supply and demand
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Figure 2.1: Supply chain structure of a semiconductor manufacturer

scenarios. Our results suggest that the consideration of assembly capacity constraints is
more vital than the consideration of intermediate material constraints in our test cases.

2.1 Introduction

In an assemble-to-order (ATO) production system, intermediate materials are assembled
into end products. Intermediate materials are held in stock because they often have long
replenishment lead times. End products are assembled only for customer orders on hand.

For example, ATO production systems are found in high-tech industries, where capital
equipment costs are high and lead times for intermediate materials are long. Therefore,
in the short-term, it is impossible to adjust capacity levels. The demand is typically
fluctuating and uncertain. The production is order-driven due to a high risk of obsolescence
or customer-specific configurations of the end products.

In companies with high capital equipment costs, the capacities are tightly planned because
unused capacity is highly expensive. Therefore, if these companies face uncertain and
fluctuating demand, resources may be insufficient to fulfill all incoming demand during
peak phases. As customers are heterogeneous (i.e., they differ in their strategic importance,
time-sensitivity, willingness to pay, etc.), the question arises as to which customers to serve
using the scarce resources.

As an example, Fig. 2.1 depicts the supply chain of a semiconductor manufacturer (cf.
Brown et al. (2000)). In the front-end production, wafers are fabricated, tested, and
sorted. The finished wafers are stored in a die bank, which also marks the customer order
decoupling point. In the back-end process, at an assembly-and-test facility, the wafers
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are taken from the die bank, processed, and assembled to finished products, according to
customer specific requirements. The paper at hand considers the back-end manufacturing
because only here demand fulfillment decisions are made. Assembly capacity and wafer
inventory are limiting resources. Demand in this environment is often uncertain and
fluctuating, with peak phases in which demand exceeds supply. The lead times of wafers
are long, compared to the assembly time for finished products. In peak phases, available
resources must be allocated by quoting different lead times. If due dates are set for
customers, there is still freedom in how to schedule order assembly. This must be done in
an online fashion because full information on future orders is not available. For some of
the customers it is very important to get their chips in time (within the peak phase) because
their own production requires them. Other customers are less time-critical. Therefore, some
customers are willing to pay a premium for short lead times. Also, quoting long lead times
bears the risk of losing the order to competitors. This leads to different profit margins from
different customers, generated by the same products. This scenario represents a typical
revenue management problem, which we analyze in this paper.

Traditional revenue management approaches focus on the decision of which orders to accept
(see, e.g., Talluri and van Ryzin (1999), Spengler et al. (2007)). However, in practice, the
company typically must decide on the delivery time for each customer as well. Apart from
giving discounts, failure to meet the customer’s preferred due date can also lead to a loss of
goodwill of the affected customer. Ultimately, the company might even lose this customer
to competitors, which is why it is important to meet the due date preferences of customers
with high value to the company.

The actual assembly dates of accepted orders are still flexible up to a certain point. If
preemption is not allowed, it might be beneficial to delay assembly of an order, even though
assembly capacity is available, in anticipation of a rush order with higher value.

In this paper, we consider demand management decisions for a manufacturer using an ATO
production system and facing stochastic demand. To maximize profit, the manufacturer
decides which orders to accept and what due dates to quote for the accepted orders. A
production schedule is maintained to guarantee that the quoted due dates are met. The
availabilities of both assembly capacity and intermediate material are limited.

The main contributions of this paper are as follows:

• We introduce a novel decision problem and model it as a stochastic dynamic program
(SDP).
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• We develop a heuristic revenue management approach (ATO-RM) using bid prices to
address the described problem. In particular, we introduce a scheduling approach that
captures possible future orders via bid prices. Using an extensive numerical study,
we show that the approach works well by comparing it to benchmark algorithms and
an ex-post optimal solution.

• A sensitivity analysis also shows that the consideration of constraints relative to
assembly capacity appears more important to obtaining good results than the consid-
eration of constraints on intermediate material in our test cases.

This paper is organized as follows. After reviewing the literature in Section 2.2, we
describe the assumptions of our model in Section 2.3. Next, we present an SDP modeling
the problem exactly in Section 2.4. Next, we present our approach for quoting due dates
and performing the scheduling in Section 2.5. The corresponding calculations require bid
prices, which we derive in Section 2.6. A numerical study demonstrates the performance
of our approach in Section 2.7. In Section 2.8, we conclude and discuss extensions to cope
with modified assumptions.

2.2 Literature review

In this section, we review the literature closely related to our research. First, we survey the
stream of literature that considers decisions of production planning in ATO manufacturing
in Section 2.2.1. A growing body of literature exists in the area of revenue management
in manufacturing, which is presented in Section 2.2.2. Finally, we examine the emerging
literature on revenue management of flexible products in Section 2.2.3. For each of the
presented literature streams, we first introduce the relevant papers and then explain the
differences to our work.

2.2.1 Production planning in ATO manufacturing

Song and Zipkin (2003) give an overview of supply chain operations in ATO manufacturing.
Kolisch (2001) describes a hierarchical planning approach used to model the decisions
of an ATO manufacturer. An order selection process is placed on the first hierarchy
level to decide on accepting orders and quoting due dates. The next hierarchy levels are
manufacturing planning and operations scheduling. The actual production planning steps
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are modeled in much greater detail than in our research, but the previously described
models are deterministic, and thus, order acceptance and due date quoting decisions are not
made online as is the case in the present paper.

Benjaafar and ElHafsi (2006), ElHafsi (2009), and Cheng et al. (2011) contribute to another
stream of literature that addresses production and inventory control in ATO manufacturing.
Their models include various customer classes with different costs for lost sales, leading
to an order selection problem. However, in contrast to the model presented in this work,
due date quoting decisions are not taken into account. Only one end product that requires
several intermediate materials for production is considered. The time required for assembly
is assumed to be negligible, and thus these authors do not model assembly capacity;
however, they decide when to produce the intermediate products. The production time for
intermediate materials is stochastic, and orders cannot be backlogged in their setting.

Standard available-to-promise (ATP) approaches allocate available resources to existing
customer orders. Their main purpose is to determine whether there are enough resources
available to accept an order. Advanced available-to-promise approaches (cf. Chen et al.
(2001), Chen et al. (2002), Pibernik (2005)) decide about a due date and the quantity of
products promised. They maximize total profit, typically including revenues for accepted
orders, holding/backlog costs, and lost-sales costs. Several authors adapt existing MIP
approaches to specific production environments (e.g. Zhao et al. (2005), Tsai and Wang
(2009), and Lin et al. (2010)).

In this literature stream, ATO production with material and capacity constraints are consid-
ered as in this paper. They also decide about acceptance of orders and due date quoting as
well as on a production schedule. However, the difference is that in their setting, orders
are deterministic, while we consider a stochastic online problem. Therefore, the proposed
approaches are not applicable in our setting. Furthermore, in ATP, orders are rejected only if
not enough resources are available, while in revenue management, due to the heterogeneity
of customers, orders are also rejected in anticipation of more valuable orders.

2.2.2 Revenue management in manufacturing

Revenue management approaches originally focused on applications in service industries
such as the airline or hotel business, see Talluri and Van Ryzin (2004). The literature
concerned with revenue management in manufacturing can be categorized by the underlying
production principle.
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Revenue management in make-to-stock production systems

In the context of make-to-stock (MTS) revenue management, only storable resources are
considered, whereas one of the main characteristics of the model presented in the present
paper is the combination of storable and non-storable resources, see e.g. Meyr (2009) and
Quante et al. (2009). Liu (2005) discusses two different MTS revenue management models,
and one model where one order stream is MTS and one order stream is make-to-order
(MTO).

Revenue management in make-to-order production systems

In MTO revenue management, one important literature stream applies revenue management
ideas in the iron and steel industry in which unique orders arrive over time. Spengler et al.
(2007) model the decision of which orders to accept in a setting with multiple resources.
However, the production time does not exceed one planning period as opposed to the setting
in the present paper in which resources are required over multiple planning periods. Their
decisions are based on bid prices, which are computed via a multi-dimensional knapsack
problem formulation. Spengler et al. (2008) extend a one-period bid price approach to
multiple periods and allow for shifting demand between periods. An order is accepted if
its revenue exceeds the sum of the bid price for production capacity in this period and the
holding costs. Hintsches et al. (2010) base their work on the general framework of Spengler
et al. (2007) for order acceptance. They use a bid price approach based on a linear program
that models the scheduling decisions. Volling et al. (2012) decide about the use of one
bottleneck resource. They update bid prices using neural networks.

Barut and Sridharan (2005) develop a heuristic approach to compute the capacity con-
tingents for several customer classes to decide which orders to accept in an order-driven
production system. Gallien et al. (2004) describe a model for admission control in a single
server queue with preemption allowed at no cost. This group makes their decisions by
computing a three-dimensional acceptance region consisting of price, quantity, and lead
time. Kuhn and Defregger (2005) present a revenue management approach for a MTO
manufacturer with limited end-product inventory. In each period, the company decides
whether the incoming order is accepted. In this case, it must be determined to what extent
the order is satisfied from stock. Additionally, in each period, the company must decide if
new end products should be produced and put into stock. Kniker and Burman (2001) use a
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Markov chain approach for a setting, where orders arrive with a fixed due date and orders
are scheduled using the FCFS principle.

The papers in this literature stream consider only production capacity, the availability of
raw material is disregarded. This is a main difference to the setting in the paper at hand,
where both resources are scarce. Storable resources must be treated differently because
of their special structure. In contrast to capacity, they are still available if not used in the
current period. Additionally, they are replenished in pre-specified periods, while capacity
is available only at a given point in time. Also, these papers assume that production of
an order is done within one period, while the lead times considered in this paper span
multiple planning periods. In addition, the combination of due date quoting and the actual
scheduling of orders is a contribution of the present paper.

Revenue management in assemble-to-order production systems

Harris and Pinder (1995) are the first to mention revenue management in an ATO context.
They validate that the requirements for successfully applied revenue management are
fulfilled in ATO manufacturing. This paper also describes a pricing and capacity allocation
approach for a simplified model. Gao et al. (2012) model an available-to-promise assembly
system. They use pseudo-orders to model uncertainty in the orders and develop a Markov
chain model to obtain insights into optimal order acceptance decisions. This model also
includes inventory and capacity constraints, but the raw material is not required to be
available at the time of the production start. Accepted orders are processed in a first-come-
first-served manner. The existing approaches in ATO revenue management rely on dynamic
programming. Order processing, including due date quoting and scheduling, is not modeled
because it would render these approaches intractable due to the resulting large state space.

2.2.3 Revenue management of flexible products

Gallego and Phillips (2004) introduce the concept of revenue management of flexible
products (FP-RM). Their model includes both specific and flexible products. Although the
capacity requirements are fixed for specific products, every flexible product has a set of
possible execution modes. Each execution mode can lead to a different level of resource
consumption and profit margin. To save capacity for the higher-margin specific products
that are yet to come, orders can be rejected and the right execution modes for the flexible
products must be chosen. At a fixed point in time, the so-called notification date, the
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execution modes of all flexible products must be fixed. After that, only demand for specific
products occurs. Gallego and Phillips (2004) look at a two-period/two-product case, and
due to the small size of the problem, they are able to compute optimal booking limits using
dynamic programming.

Gallego et al. (2004) consider two different settings, namely independent, exogenously gen-
erated demand, and demand driven by a customer choice model. In our setting, independent,
exogenous demand is assumed. For this setting, they extend the approach of Gallego and
Phillips (2004) to a network setting with an arbitrary number of periods. They show that
their proposed deterministic linear program (DLP) approach is an asymptotically optimal
approximation of the stochastic optimization problem. In the network setting, the size of
the dynamic program vastly increases such that they introduce a bid price approach to solve
the problem heuristically. For the customer choice model, they also find an asymptotically
optimal DLP approach.

Petrick et al. (2010) use a similar bid price approach as is presented in Gallego et al. (2004).
They derive several dynamic control mechanisms that differ in their degree of flexibility.

Petrick et al. (2012) further extend the FP-RM concept by introducing a model formulation
that allows for reallocation of the execution mode for flexible products and a more general
choice of the notification date. They formulate an SDP and motivate their bid price approach
by showing that it is consistent with an optimal solution of the primal linear program.

Gönsch et al. (2014) define the value of flexibility as the value for the manufacturer
of being able to choose the optimal execution mode at the end of the booking horizon
instead of allocating it immediately at arrival. Existing DLP models do not consider that
flexible products can be re-arranged later and thus underestimate the value of flexibility.
The authors propose an approach to incorporate the right value of flexibility by adapting
revenues dynamically over time.

FP-RM has some analogies compared to a manufacturing setting. The different assembly-
times can be interpreted as possible execution modes. Accordingly, different resource
consumption and profit margins can be modeled. However, the time structure of our model
is different, which makes the described approaches not applicable in the setting of the
present paper. In the papers in this stream, service is provided after all flexible orders have
arrived, but these events overlap in our model. Hence, we must make scheduling decisions,
which cannot be revoked later, i.e., they must be made with less information available
compared to the FP-RM setting.
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Additionally, the execution modes are time-dependent in our setting. Unused assembly
capacity is lost. Therefore, some execution modes are no longer available as time elapses.
This must be considered to make appropriate decisions. The introduction of intermediate
materials means that some execution modes only become available over time. This cannot
be modeled using existing FP-RM approaches because here the service provision is after
the decision period, and the final decision of the allocation to the execution modes is done
at the end of the planning horizon. Furthermore, the available execution modes are limited
by due date quoting decisions that we make.

2.3 Problem formulation

In our problem setting, orders arrive over time according to a known probability distribution.
The task is to decide on the acceptance and quoted due dates for each incoming order.
A feasible schedule must be maintained to guarantee that the quoted due dates are met.
Assembly capacity and intermediate materials are the limiting resources.

In this section, we describe the relevant decisions and basic assumptions of our model,
the assembly process, the properties of the orders, and the order processing. Table 2.1
summarizes the notation.

The considered planning horizon is discretized into T planning periods (t = 1, . . . ,T ).
We further divide each planning period t in S micro-periods (s = 1, . . . , S ) such that in
each of these micro-periods (t , s) at most one order arrives. Incoming orders are denoted
by d = 1, . . . ,D .

Assumption 2.3.1 (Decisions) The company makes the following decisions:

1. Due date quoting: For each incoming order, decide the quoted due date δd (or reject

it).

2. Scheduling: For each accepted order d ∈ Y , decide what fraction xdt ≥ 0 of the

order d starts assembly in the current planning period t .

Y denotes the set of orders that are accepted but for which assembly has not yet started for

the whole order at the beginning of the current planning period t . That is, each member

of Y is a tuple (d , δ�xd , x
cum
dt ) that describes the order d , the quoted due date δ�xd , and

x cumdt :=
∑t−1

t ′=1 xdt ′ , the cumulative fraction of the order for which assembly has already

started up to t .
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Indices:
t = 1, . . . ,T Planning periods of the planning horizon
s = 1, . . . , S Micro-period s in a planning period
d = 1, . . . ,D Orders
m = 1, . . . ,M Intermediate material types
Parameters:
contrd Contribution margin of d
prefd Preferred due date for d
usedm Amount of intermediate material m required for d
arrd Arrival planning period of d
leadd Required number of consecutive planning periods of assembly

capacity for d
cHd /c

B
d Holding/Backlog cost rate (per planning period) for d

hcdt Holding costs for d if assembly starts in t
bcdt Backlog costs for d if t is quoted due date
δ�xd Quoted due date for d if d is accepted order
at Available assembly capacity in t
rt = (r1t , . . . , rMt) Replenishment of intermediate materials in t
cap(xt) Assembly capacity used for assembly xt
mat(xt) Intermediate materials used for assembly xt
pdts/p0ts Probability that order d / no order arrives in (t , s)
State variables:
a ′ Vector of remaining assembly capacity
ATPmt ≥ 0 Available-to-promise quantity of m at the end of t
Y Set of accepted orders for which assembly is not yet started for

the whole order
x cumdt Cumulative fraction of d for which assembly is started up to t
Decision variables:
xt = (x1t , . . . , xDt) Vector indicating for what fraction of each order the assembly

starts in t
δd Quoted due date for d

Table 2.1: Notation
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Due date quoting must be made instantly after order arrival, i.e. in each micro-period.

Scheduling decisions are made at the beginning of every planning period.

These decisions are based on knowledge of the available resources, the previously accepted
orders, their assembly status, and the probability distribution for future incoming orders.

Assumption 2.3.2 (Assembly process) Assembly is modeled as a deterministic one-stage

process. Setup-times are not considered. The constrained resources are assembly capacity

at and the availability of intermediate materials m = 1, . . . ,M in each planning period

t . Each order d requires one unit of assembly capacity in leadd consecutive planning

periods. Additionally, at the start of the assembly, usedm units of intermediate material m

are required.

Each order consists of multiple identical products so that it is possible to start assembly for

fractions of an order (i.e., only for a fraction of the required products) in different planning

periods and to deliver them as soon as their assembly is finished. If the assembly process

for (a fraction of) an order has been started, it has to be processed for leadd planning

periods without interruption due to technical reasons. In those periods, only the respective

fraction of one capacity unit is required. That is, splitting up an order is allowed but

preemption is not.

Note that the lead time is independent of the lot size because the processing time of each
single product is assumed to be constant. That is, assembling additional products requires
more capacity but does not take more time (if sufficient capacity is available). Actual
detailed shop floor scheduling is not the goal of the proposed model. Therefore, we model
a simplified assembly process. In revenue management approaches, this is a common
assumption (cf. e.g. Hintsches et al. (2010), Gao et al. (2012)). The main decisions
are whether to accept an incoming order and the choice of a quoted due date. For these
decisions, the remaining assembly capacity must be estimated.

Assumption 2.3.3 (Resources) A short-term planning horizon is considered. Within this

time horizon, the company cannot extend the maximum capacity levels. A replenishment

amount rmt is exogenously given for each intermediate material m in each planning

period t .

The used capacities resulting from the scheduling decision xt = (x1t , . . . , xDt) are de-

fined as follows. The vector of assembly capacity consumption of orders starting in
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planning period t according to xt is cap(xt). In particular, the i–th element of cap(xt)

describes the capacity consumption in planning period t + i for i = 0, . . . ,T − t and

is defined as (
∑

d with leadd≥i xdt). The intermediate materials required for the assembly

starts are described by mat(xt), which is a vector consisting of elements
∑

d usedm · xdt for

m = 1, . . . ,M .

Let a ′ denote the vector of remaining assembly capacities in the planning periods to come.

Capacities in the past can be disregarded. Let ATP denote the available amount of each

intermediate material at the end of the current planning period.

This assumption reflects the fact that capacity adjustments are mid- to long-term decisions
and intermediate materials often have long replenishment lead times, whereas our model
is used for short-term decisions. It follows that at and rmt are not decisions in the model
presented in this work.

Assumption 2.3.4 (Orders) In each micro-period, orders arrive according to a known

probability distribution. We denote by pdts the probability that order d arrives in micro-

period (t , s). p0ts is the probability that no order arrives in this micro-period. Each order

d has the following characteristics:

• Arrival planning period (arrd )

• Preferred due date (prefd )

• Amount of required intermediate material (usedm) for m = 1, . . . ,M

• Required number of consecutive planning periods of one unit of the assembly capacity

(leadd )

• Contribution margin (contrd ) consisting of revenue less variable production costs

• Holding cost rate (cHd )

• Backlog cost rate (cBd )

Future demand is stochastic but forecasts are available and are represented by probability
distributions for the incoming orders. The contribution margin does not include backlog
and holding costs.

Assumption 2.3.5 (Time structure within a planning period) At the beginning of a plan-

ning period, the assembly processes of the end products are finished. Therefore, products

16



1 2 3 4 

Arrival  
in (2,1) 

Earliest possible 
start of assembly 

  Quoted 
due date 

Actual start 
of assembly 

leadd = 3 

Ready for 
shipment 

Latest possible 
start of assembly 

leadd = 3 

1 2 3 4 5 14 6 7 8 9 10 11 12 13 

Preferred 
due date 

Backlog costs 
Holding  

costs 

planning
periods micro-periods in 

planning period 2 

Figure 2.2: Example of order processing

can be delivered in the same planning period in which they were finished. Intermediate ma-

terial replenishment occurs before the assembly process such that the replenished material

can be used within the same planning period. Orders can start assembly at the earliest in

the next planning period after their arrival.

The next assumption describes the order processing steps in our model. For better under-
standing, Fig. 2.2 depicts an example of the processing of an order. In the following, the
values for the example are given in parentheses.

Assumption 2.3.6 (Order processing) The customer requests delivery on a preferred due

date prefd (= 9). Upon order arrival (in micro-period (2,1)), the company immediately

either quotes a due date δd (= 13) to the customer, which must be met, or rejects the order.

The decision about the actual delivery date is not made instantly. The company can begin

the assembly in any planning period after the arrival such that the quoted due date is met

(in planning periods 3 to 10). The quoted due date is always accepted by the customer. If

the quoted due date is beyond the preferred due date, backlog costs occur (for 4 planning

periods). Finishing assembly before the preferred due date (in planning period 8) results in

holding costs up to the preferred due date (for 1 planning period). Note that under these

assumptions, both holding and backlog costs can occur for a given order if the quoted due

date is after the preferred due date and the order is ready before the preferred due date.

Orders can only be fully accepted. However, recall that it is possible to fulfill the order via

partial deliveries over different planning periods (cf. Assumption 2.3.2).

Due dates must be quoted online because customers request an immediate answer. Once
the company has committed to a due date, this due date must be met. If t is the quoted due

date for order d , the resulting backlog costs are

bcdt := (t − prefd)
+ · cBd , (2.1)
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where cBd is the backlog cost rate. 1

If the assembly process is finished before the preferred due date, holding costs are incurred
because early delivery is not desired by the customer, and customers are willing to get their
products on their preferred due date independent of the quoted due date. If t is the actual
start of assembly for order d , the resulting holding costs are

hcdt := (prefd − (t + leadd))
+ · cHd , (2.2)

where cHd is the holding cost rate. It follows that it is never beneficial to quote a due date
that is earlier than the preferred due date.

Assumption 2.3.7 (Pricing) Prices are fixed in the short-term.

We assume that prices are given exogenously. Pricing decisions in a similar setting as
presented in the current paper are considered in Charnsirisakskul et al. (2006).

2.4 Stochastic dynamic program

In this section, we model the above described problem as a stochastic dynamic program
(SDP). We define the state space, decisions, and transitions, and present the Bellman
equation for the considered problem. The feasibility of a state is checked in a linear
program, which we also describe in this section. Additional notation is summarized in
Table 2.2.

State space

The state of the system is described by ξ = (a ′,ATP ,Y ), the available resources and the
orders that are already accepted but which are not yet completely assembled.

We define Z to be the set of feasible states. A state is feasible if each accepted order can be
produced within its quoted due date. This can be checked using a linear program, which is
defined at the end of this section.

1In the present paper, the notation x+ is used as short for max{0, x}.
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Sets:
Xtξ Set of feasible assembly start decisions in planning

period t in state ξ
Sdξ Set of feasible due dates for an order d in state ξ
Z Set of all feasible states
Profit function:
Vts(ξ) Maximum expected marginal profit-to-go in state ξ in

planning period t and micro-period (t , s), respectively
State variable:
ξ = (a ′,ATP ,Y ) State of the system given by remaining available as-

sembly capacity a ′, ATP quantity ATP , and the set of
fractions of orders to be scheduled Y

Table 2.2: Additional notation for SDP

Decisions and transitions

Due date quoting decisions must be made immediately after order arrival and scheduling
decisions are made only at the beginning of a planning period. Therefore, different decisions
and transitions must be defined for both micro and planning periods.

In each micro-period, we must decide about acceptance of the arriving order and quote a
due date for accepted orders (cf. Assumption 2.3.1). If the order is rejected (or no order
arrives), only s is increased by 1. Otherwise, the accepted order d with its quoted due date
δd is added to the set of accepted orders, denoted by Y ∪ (d , δd , 0). Note that at this point
no resources are used. The optimal due date must be chosen from the set describing the
due dates with which the resulting state remains feasible:

Sdξ := {δd ∈ {prefd , . . . ,T} | (a ′,ATP ,Y ∪ (d , δd , 0)) ∈ Z}. (2.3)

At the beginning of each planning period, we must decide what fraction of each accepted
order to start assembling. This corresponds with the scheduling decision from Assumption
2.3.1. Based on this decision, the resource availability for the upcoming planning periods
needs to be reduced.

Assembly can only be started for orders that are accepted but for which assembly has
not yet completely started. New assembly starts must not exceed the order volume, and
capacities must suffice for the planned assembly. Therefore, the set of possible assembly
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start decisions in planning period t is described by

Xtξ :=

xt ∈ [0, 1]D

∣∣∣∣∣∣∣
xdt = 0 for d /∈ Y ,
xdt + x cumdt ≤ 1 for d ∈ Y ,
(a ′ − cap(xt),ATP + rt −mat(xt),Y − xt) ∈ Z

 (2.4)

Here, the state transition Y − xt describes the update of the set of fractions of orders that
are still to be scheduled. In particular, the cumulative assembly starts xt ∈ Xξt are adjusted
by x cumdt+1 := x cumdt + xdt and each order d with x cumdt+1 = 1 is removed from the set Y . The
remaining available capacity in planning period t − 1 can be dropped from the state space.

Profits

Let Vts(ξ) be the maximum expected marginal profit-to-go of state ξ at the beginning
of planning period t if s = 0 and in micro-period (t , s) for s = 1, . . . , S , respectively.
Additionally, we define Vt ,S+1(ξ) := Vt+1,0(ξ). Then, Vts can be computed recursively
via the Bellman equation for ξ ∈ Z as follows:

Vts(ξ) = Vts(a
′,ATP ,Y ) =

∑
d pdts ·max

{
max
δd∈Sdξ

{
Vt ,s+1(a

′,ATP ,Y ∪ (d , δd , 0)) + contrd − bcdδd
}
,

Vt ,s+1(ξ)
}
+ p0ts · Vt ,s+1(ξ) if 1 ≤ s ≤ S

max
xt∈Xtξ

{
Vt ,s+1(a

′ − capt(xt),ATP + rt −mat(xt),Y − xt)

−
∑

dxdt · hcdt)
}

if s = 0

(2.5)

with boundary conditions

VT ,S+1(ξ) = 0 if ξ ∈ Z. (2.6)

It is insightful to compare SDP (2.5) to the SDP for FP-RM presented in Petrick et al.
(2012). Their model formulation additionally considers specific orders, and the scheduling
decision is performed only once, at the notification date.
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In (2.5), we make irrevocable scheduling decisions in every planning period. Therefore,
the cumulative amount of assembled products for an order (x cumdt ) must be included in
the state space. Additionally, we make due date quoting decisions that limit the available
assembly start periods for an order. Thus, the quoted due date (δ�xd ) is part of the state
space for each accepted order d . In our model, resources are modeled differently due to
the underlying time structure. Assembly capacity of past planning periods is not available
anymore, and new intermediate material replenishments become available in each planning
period (ATPt + rt ). In FP-RM terms that means that the availability of execution modes
is time-dependent and can be influenced by due date quoting. In Petrick et al. (2012),
execution modes are always available up to the notification date.

Feasibility check

To check feasibility, that is if a state is in Z , we test whether a feasible schedule exists by
solving a linear program (LP). We use this LP throughout the paper as feasibility must also
be guaranteed in the due date quoting and scheduling decisions in Section 2.5. Additionally,
this LP is the basis of the bid price computation presented in Section 2.6.

To test if order d arriving in micro-period (t�x , s) can be feasibly accepted with the
quoted due date δ�xd , we set Y := Y ∪ (d , δ�xd , 0) and test the feasibility of the state
(a ′,ATP ,Y ) at the beginning of the next planning period (t�x + 1). We model the
decisions by xdt , which indicates for what fraction of d the assembly begins in planning
period t . Variables xdt are defined only for orders d ∈ Y and in planning periods t with
max (t�x + 1, arrd + 1) ≤ t ≤ T − leadd to prevent that assembly for an order begins
before its arrival or that decisions are taken for previous planning periods. Additionally,
this ensures that assembly is finished at the end of the planning horizon. State (a ′,ATP ,Y )

is feasible at the beginning of planning period t�x + 1 if the following inequalities are
satisfied: 2

2We follow the convention that undefined variables are equal to 0.
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∑
d∈Y

leadd−1∑
i=0

xd(t−i) ≤ a ′t for t = t�x + 1, . . . ,T (2.7)

ATPmt − ATPm(t−1) +
∑
d∈Y

usedm · xdt = rmt
for t = t�x + 1, . . . ,T ;

m = 1, . . . ,M
(2.8)

δ�x
d
−leadd∑

t=arrd+1

xdt + x cumdt�x = 1 for d ∈ Y (2.9)

xdt ≥ 0 for d ∈ Y t = t�x + 1, . . . ,T (2.10)

The remaining available assembly capacity cannot be exceeded in any planning period.
Therefore, the capacity consumption in planning period t takes into account all orders
d , which started (partial) assembly in the leadd planning periods before (cf. (2.7)). Note
that orders that started assembly before the current planning period are not defined in the
model and the assembly capacity used by them is already considered in the remaining
available assembly capacity a ′. Balance equation (2.8) models the inventory of intermediate
materials and must apply for each planning period and each intermediate material type. In
this work, ATPmt is the available-to-promise quantity of type m at the end of planning
period t . By constraint (2.9), each accepted order must be scheduled such that the quoted
due date is met. Fractions of the orders that started assembly before the current planning
period are cumulated in x cum

dt�x
. Note that due to this equation, the entire order must be

processed. Additionally, non-negativity constraints (2.10) are required.

We note that the rather general formulation of the LP model in Petrick et al. (2012) can
also be adapted to check feasibility in our setting. This is because in the LP formulation
(2.7)-(2.10) no future demand is considered and therefore, the different time structure in
comparison to Petrick et al. (2012) is no longer relevant. However, to adapt their model,
a very large number of execution modes is required. Specifically, for each combination
of possible assembly start and used intermediate material replenishment, an additional
execution mode must be created. Hence, model formulation (2.7)–(2.10) is more efficient
in the considered setting.
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Compute bid prices;
for t = 1 to T do

Schedule accepted orders (using approximated opportunity costs);
Update bid prices;
foreach order d arriving in t do

Quote due date for d or reject d (using approximated opportunity costs);
end

end
Algorithm 1: General approach

2.5 Revenue management approach

Due to the curse of dimensionality, it is computationally intractable to solve the described
SDP (2.5) exactly even for rather small problem instances (cf. e.g. Petrick et al. (2012)).
Therefore, we need a heuristic approach to make the decisions stated in Assumption 2.3.1.
We describe this approach in this section. We base the decisions on opportunity cost
estimates for the used resources. As is common in the literature, bid prices are used as an
estimate for the real opportunity costs; see, e.g., Simpson (1989), Williamson (1992) or
Talluri and Van Ryzin (2004). We use the estimated opportunity costs in this section but
postpone their computation until Section 2.6. We start by describing how to decide on due
date quoting. Next, we explain how to schedule the accepted orders. The general approach
is summarized in Algorithm 1.

2.5.1 Due date quoting

For each incoming order, we search for a feasible due date that maximizes the profitability

of the order. The decision on accepting orders is integrated into the due date quoting
decision. Profitable orders are accepted with the respective due date, and non-profitable
orders are rejected. In the following, the profitability metric of an order is defined. The
feasibility of a schedule is checked using LP (2.7)–(2.10).

We measure the profitability of an order d with quoted due date δd by

(contrd − bcdδd )− oppdued ,δd
, (2.11)
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which is the difference between the immediate marginal profit earned and oppdued ,δd
, the

opportunity costs for accepting d with due date δd . Note that holding costs, which depend
on the actual assembly date, are included in oppdued ,δd

as will be explained in Section 2.6.2.

2.5.2 Scheduling

In this section, we explain how to schedule the accepted orders. At the beginning of each
planning period, the orders that begin their assembly in this period must be determined.
Therefore, we set up a linear program that includes all accepted orders. As the schedule
must be feasible, inequalities (2.7)–(2.10) are included. Next, we need to define a suitable
objective function. The decisions that this linear program suggests for the current planning
period are taken, and decisions for later periods are discarded.

As the orders are already accepted with given due dates, cost wise, scheduling can only
influence the resulting holding costs. However, if the schedule is optimized only with
respect to the holding costs, orders tend to begin their assembly late, which leads to unused
capacities in the upcoming planning periods.

A better measure for the quality of a solution can be found by also taking into account the
incoming future demand with the use of opportunity costs, which are used to minimize the
usage of the most profitable resources. Let oppresdt denote the opportunity costs for order
d with given actual start of assembly in planning period t . Next, we define the objective
function as follows:

D∑
d=1

δ�x
d
−leadd∑

t=arrd+1

(oppresdt + hcdt) · xdt . (2.12)

Minimizing (2.12) with respect to constraints (2.7)–(2.10) gives the preliminary schedule.
The decisions made in the current planning period t are fixed from this point on and the
remaining capacities must be adapted: a ′ := a ′ − capt(xt).

2.6 Opportunity costs

In this section, we explain how to derive the opportunity cost estimates used in the previous
section. First, we show how to compute bid prices for assembly capacity (bpcapt ) and
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intermediate material (bpmatmt ). Then, we approximate opportunity costs of accepting an
order with given start of assembly (oppresdt ) and with given due date (oppduedδd

), respectively.
Finally, we update bid prices if new information is available.

2.6.1 Bid price computation

In this section, we describe how to compute bid prices for assembly capacity and interme-
diate material. To this end, all stochastic influences are removed from the problem and
it is formulated as a deterministic linear program. Then, the values of the dual variables
corresponding with the resource constraints in an optimal solution are used as bid prices.
Additional notation is summarized in Table 2.3.

In the considered problem, the future demand is uncertain. Therefore, the set of future
incoming orders must be determined. In literature, next to the DLP, where random demand
is simply replaced by expected values, another approach is to generate I (i = 1, . . . , I )
demand scenarios with orders Di according to the probability distributions. Next, the
bid prices are computed for each Di . The used bid prices are determined by taking the
mean of the bid prices computed with the demand scenarios Di . This approach is known
as randomized linear programming (RLP); see, e.g., Talluri and van Ryzin (1999). We
modify this approach and do not use a fixed number of demand scenarios. Instead, we
iteratively update the bid prices using new generated demand scenarios until the mean over
all computed bid prices converges. To avoid premature convergence if the first demand
scenarios generate identical bid prices, we use a minimum number of demand scenarios.
To the best of our knowledge, this approach has not yet been described in literature.

Assuming deterministic future demand, the problem at hand reduces to the problem of
which orders to accept and how to schedule them. Quoting the due dates is trivial in this
case because the optimal due dates correspond with the completion times of the orders;
they are known after scheduling all orders. Therefore, we only need to schedule the start of
assembly for each order. Let

profdt := contrd − hcdt − bcd(t+leadd ) (2.13)

define the marginal profit that an order d generates if its assembly begins in planning period
t . In this definition, holding and backlog costs are subtracted from the contribution margin
of the order. Next, we define the objective function for computing bid prices using the i -th
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Di Orders of demand scenario i
nt Number of accepted orders up to planning period t in the actual,

real scenario
n
bp
t Mean number of accepted orders up to planning period t in the

bid price computation
bp

cap
t Bid price for assembly capacity in t

bpmatmt Bid price for intermediate material m in t
oppdued ,δd

Opportunity costs for accepting d with due date δd
oppresd ,t Opportunity costs for starting assembly of d in t

Table 2.3: Notation for bid prices and opportunity costs

demand scenario as follows:

∑
d∈Y∪Di

T−leadd∑
t=arrd+1

profdt · xdt . (2.14)

The restrictions (2.7)–(2.10) must apply to guarantee feasibility, where the constraints (2.7),
(2.8), and (2.10) must consider all orders d ∈ Y ∪ Di . The following additional set of
inequalities ensures that more will not be produced than is demanded:

T−leadd∑
t=arrd+1

xdt ≤ 1 for d ∈ Di (2.15)

In an optimal solution of the linear program (2.7)–(2.10) and (2.15) that maximizes (2.14),
the values of the dual variables corresponding to the constraints (2.7) (i.e., bpcapt ) give the
bid prices for the assembly capacity in the respective planning period. Similarly, the values
of the dual variables corresponding to the constraints (2.8) in an optimal solution (i.e.,
bpmatmt ) give the bid prices for each type of intermediate material in each planning period.

2.6.2 Opportunity cost approximations

In this section, we show how to use the bid prices to approximate the opportunity costs
of accepting an order with a given actual start of assembly and with a given due date,
respectively.
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First, we define the opportunity costs for accepting order d with given actual start of

assembly in planning period t . To this end, we add up the bid prices of the single resources
required by the order:

oppresdt :=
M∑

m=1

usedm · bpmatmt +

leadd−1∑
i=0

bp
cap
t+i . (2.16)

Note that these values are known if the assembly date is fixed. This approach is an analogue
to the process in network revenue management in which more than one resource is also
required to fulfill an order; see, e.g., Talluri and van Ryzin (1999).

Even with a given due date, it is not yet clear which resources will actually be used to
produce an order because the actual assembly date is not fixed yet. To cope with this
problem, we assume that the order can be started in the planning period with lowest
opportunity costs. This approach is in line with literature and has been used in the context
of FP-RM (Gallego et al. (2004), Petrick et al. (2012)) and revenue management in MTO
manufacturing (Spengler et al. (2008)). To be specific, let

Tdδd := {t ∈ {arrd + 1, . . . , δd − leadd} | t is feasible start of assembly}.

As the best feasible planning period for the start of the assembly can be chosen, we take
the feasible planning period that minimizes the sum of the opportunity costs for the used
resources and the resulting holding costs:

oppduedδd
:= min

t ′∈Tdδd

{oppresdt ′ + hcdt ′}. (2.17)

2.6.3 Update bid prices

As demand is stochastic, updating the bid prices if new information becomes available can
improve the results. We use the following methods to do so.

A simple approach to updating bid prices, which is also commonly used in literature (see
e.g. Talluri and van Ryzin (1999)), is to re-compute them after a certain number of periods.
In this work, we use the knowledge of the already accepted orders and their quoted due
dates. Additionally, information on orders that are currently in the process of assembly and
the resources required by them in future planning periods is available.
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Furthermore, we adapt the bid prices in between successive updates. In the literature,
there are some approaches that adapt bid prices without resolving (Adelman (2007), Klein
(2007)). However, they require a rather high additional computational effort, while our
approach is easy to implement and the required computation time is negligible. We collect
information about how many orders are accepted in the virtual scenarios during the bid
price computation. Let nbpt represent the mean number of accepted orders up to planning
period t in the bid price computation, and let nt denote the number of accepted orders up
to planning period t in the actual, real scenario. At the end of planning period t , bpcap and
bpmat are adjusted by multiplying them with nt/n

bp
t , the ratio between the actual number

of accepted orders and the expected number of accepted orders. Therefore, if fewer orders
than expected were accepted, the bid prices decrease, and vice versa.

Additionally, at the beginning of each planning period, we set the bid price for the assembly
capacity in the same period to 0 because no new arriving orders can begin assembly in this
period.

2.7 Numerical study

In the following numerical study, we evaluate the performance of the previously described
revenue management approach, which we refer to as ATO-RM. After presenting the test
bed and the used benchmark algorithms, we compare the results of ATO-RM and the
benchmark algorithms with an ex-post optimal solution. Next, a sensitivity analysis shows
the influence of the varied parameters on the performance of the tested algorithms and on
the structure of the results.

The simulation environment corresponds with the description of the approach in Algo-
rithm 1. The algorithms were implemented in C++ using a Gurobi 5.5 solver on a 3.20
GHz Intel Core i7 machine with 32GB of RAM.

2.7.1 Test bed

First, we present the scenarios and algorithms used in the numerical study. The parameters
for the scenarios are summarized in Table 2.4. For the sake of clarity of analysis, we model
a basic situation.
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Fixed parameters

Number of planning periods in planning horizon T 60
Number of intermediate materials M 1
For all orders d :
Coefficient for required int. material usedm 1
Required number of consecutive periods of assembly
capacity leadd

7

Pref. due date prefd dependent on order type arrd + (8/11/14)
Holding cost rate cHd 1% of contrd
Backlog cost rate cBd 10% of contrd

Varied parameters

Profit heterogeneity {(600/550/500),
(contrd dependent on order type) (800/550/300),

(1000/550/100)}
Coefficient of variation cv

{
1
3
, 2
3
, 1
}

Available assembly capacity at {205, 175, 155, 135}
Int. mat. replenishment rmt (in planning periods
t = 1, 16, 31, 46)

{1600, 1360, 1180, 1040}

Demand arrival pattern (peaks) {early,middle,no peak}

Table 2.4: Parameters used in the numerical study with three order types
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Order arrivals

To be able to easily compare the considered problem in the current paper to models from
the literature, in the SDP (2.5), the order arrival process is modeled by individual order
arrival probabilities within each micro-period, which is the standard way to model the
order arrival process in a SDP in existing revenue management literature (see e.g. Spengler
et al. (2007), Petrick et al. (2012)). However, in practice, it is typically harder to determine
suitable parameters for the order arrival probabilities in each micro-period than a probability
distribution describing the number of orders arriving in a planning period. Therefore, in
the numerical study we use this order arrival structure.

At the beginning of the simulation, for each planning period, the number of arriving orders
of each of the three different existing order types is drawn according to a negative binomial
distributed random variable NB(µt , cv) with mean µt and coefficient of variation cv . We
choose this distribution because it is commonly used in literature (see, e.g., Ehrenberg
(1959) or Agrawal and Smith (1996)) and allows for a high coefficient of variation. To
reflect an adequate range of variability in the test cases, the coefficient of variation cv is
varied. In accordance with the assumptions from Section 2.3, in the simulation process, the
program learns the arriving orders only one after the other.

To observe how the algorithms perform in different demand arrival scenarios, scenarios
with three different demand arrival patterns are generated:

• No peak: µt = 10 for t = 1, . . . , 46

• Early peak: µt =

13.5 for t = 1, . . . , 10

9 for t = 11, . . . , 46

• Middle peak: µt =

9 for t = 1, . . . , 18 and t = 30, . . . , 46

13.5 for t = 19, . . . , 29

In the last 14 planning periods, no orders arrive (µt = 0 for t = 47, . . . , 60) such that all
orders can be fulfilled within their preferred due dates.

Profits

To observe whether applying a revenue management approach is worthwhile even if the
profits gained from different customer classes are nearly the same, the profit heterogeneity
that reflects the different importance of customers is varied. High-value customers request
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shorter preferred lead times than low-value customers. This situation reflects the fact that
customers generally must pay a premium to obtain shorter lead times, and short lead times
are provided for important customers. That is, we consider three order types with preferred
lead times of 8, 11, and 14 planning periods, respectively, and profits depending on the
profit heterogeneity. The exact values are given in Table 2.4. The holding (backlog) cost
rate for an order is 1% (10%) of its contribution margin.

Resources

Each order requires one unit of the only required intermediate material and seven consec-
utive planning periods of assembly capacity. The ratio of the congestion of resources is
especially interesting because we model scarcity in both resources. To be able to adjust
capacity and intermediate material congestion independently, we keep the expected number
of order arrivals fixed over the entire time horizon and vary the number of available parallel
machines at and the replenishment amount for the intermediate material rmt , respectively.
In this way, we generate scenarios with approximately 85%, 100%, 115%, and 130%
congestion for each resource, respectively.

Overall, this leads to 33 · 42 = 432 scenario settings. For each scenario setting, 20 instances
are randomly generated, resulting in 8640 instances.

Algorithms

For ATO-RM, the following settings are used to compute single resource bid prices. We
begin by computing bid prices using ten demand scenarios generated according to the
known probability distributions. In Section 2.6.1, we did not specify how we define
convergence of the bid prices. In this numerical study, we check convergence by looking at
the sets of bid prices generated by the five most recent integrated demand scenarios. We
add the bid prices one by one and test if one of the mean bid prices changes by more than 1
absolute unit and 5% relative to the previous mean bid price. If this is not the case for all
of the bid prices, we state that the bid prices have converged. Single resource bid prices
are recomputed every 12 planning periods and adapted at the beginning of each planning
period in which the bid prices have not been recomputed; cf. Section 2.6.3.

We compare ATO-RM with the following benchmark algorithms:
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• First-come-first-served (FCFS): An order is accepted and is quoted its preferred due
date if there are sufficient resources available to fulfill the order within the preferred
due date, otherwise it is rejected. Accepted orders are scheduled as early as possible.
Although the FCFS approach does not differentiate between different customers, it is
still used in practice because it is a clear and easy to use strategy.

• Revenue management approaches that ignore one of the two resources in the bid
price computation:

– ONLYCAP ignores the intermediate material availability, i.e., inequality (2.8) is
not included in the linear program when computing single resource bid prices
and bpmatt = 0 for all t .

– ONLYMAT ignores the assembly capacity restrictions, i.e., inequality (2.7) is
not included in the linear program when computing single resource bid prices
and bpcapt = 0 for all t .

These algorithms are proxies for processes using existing MTO or MTS revenue
management approaches.

We would prefer to compare the heuristic ATO-RM approach with an optimal policy.
However, this comparison is impossible because computing an optimal policy is intractable
for problems of the given size. Instead, we compare the results to an ex-post optimal
solution: If all arriving orders are known, one can compute the maximum attainable profit
by solving the deterministic linear program described in Section 2.6.1. Note that in practice
this ex-post algorithm (say POSTOPT) cannot be implemented because the demand is
unknown. POSTOPT gives an upper bound on the maximum attainable profit.

2.7.2 Simulation results

Next, we compare the results of ATO-RM and the benchmark algorithms with POSTOPT

and explain the reasons for these results.

The main result is shown in Fig. 2.3, which illustrates the mean relative difference to
the optimal ex-post profit over all 8640 tested instances for ATO-RM and the benchmark
algorithms. We emphasize three observations:

• ATO-RM is close (3.96%) to the ex-post optimal solution indicating that the proposed
approach works quite well. This result is even more impressive because the ex-post
solution was created with full knowledge of all incoming demand, whereas ATO-RM
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Figure 2.3: Mean relative differences to the optimal ex-post profit

used only information from the probability distributions, which means ATO-RM will
produce a result even closer to a solution computed with an optimal policy, which
also has only information from the probability distribution.

• ATO-RM clearly dominates the benchmark algorithms. It follows that order discrimi-
nation and taking into account both scarce resources are important to obtaining good
results.

• ONLYCAP (11.17%) performs much better than ONLYMAT (21.99%), which indi-
cates that in our test cases, considering the assembly capacity constraints appears
to be more critical than considering the intermediate material constraints. Also if
only scenarios are considered, in which the level of congestion is the same for both
resources, ONLYCAP (5.65%) clearly outperforms ONLYMAT (16.77%). A more
detailed analysis of the influence of congestion on the algorithms is given in Section
2.7.3.

Fig. 2.4 shows the distribution of the relative differences of the resulting profits to the
ex-post optimal solution over all 8640 tested instances for ATO-RM and the benchmark
algorithms. The above-described results do not only apply in the mean; ATO-RM also
performs well in most of the tested scenarios, leading to an upper quartile of 5.28%.
The benchmark algorithms are not only worse in terms of the mean, but there are also a
significant amount of instances in which the resulting profits are located rather far away
from the ex-post solution. The sharp bend in the curve for FCFS stems from the fact that,
for low profit heterogeneity, FCFS performs quite decent because order selection is less
important. 93.8% of the instances with low profit heterogeneity show a relative difference
to POSTOPT of 9− 15%. In Section 2.7.3, we illustrate the behavior of the algorithms in
different scenarios in greater detail.
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Figure 2.5: Structure of the solutions computed by the different algorithms

In the following, we provide additional insights to explain these results. The main decisions
of the algorithms are which orders are accepted and when they are scheduled. Thus, we
further examine the fill rate for the different order types and the resulting backlog and
holding costs for each algorithm.

POSTOPT accepts almost all high-value orders and only approximately half of the low-
value orders as shown in Fig. 2.5a. The revenue management approaches exhibit similar
behavior. Still, ATO-RM accepts a larger amount of orders from high-value customers
than ONLYCAP and ONLYMAT. One reason for this observation may be that the bid
prices computed by ATO-RM are generally higher than those of ONLYCAP and ONLYMAT

because they ignore the opportunity costs for one of the two scarce resources. FCFS
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accepts a larger amount of low- than high-value orders because low value orders have
longer preferred lead times. Therefore, in case of scarce resources, it is still feasible to
accept a low-value order but not to accept a high-value order.

Fig. 2.5b shows the resulting backlog and holding costs. The POSTOPT solution results in
relatively low backlog and holding costs, perhaps because this algorithm uses information
on all future incoming demand and thus quotes no due dates later than the actual delivery
date. ATO-RM generates lower costs than ONLYCAP and ONLYMAT. Again, one reason
for this observation might be that these approaches underestimate the opportunity costs
because they only take into account the opportunity costs of one of the two resources. This
situation can lead to accepting orders with high backlog costs, whereas ATO-RM rejects
these orders after comparing the resulting profits to the corresponding bid price. As was
clear by definition, FCFS creates no backlog costs.

The bid prices for a given order computed by ONLYMAT at a certain point in time are
essentially a decreasing step function of the quoted due date. The steps originate from the
points in time at which new intermediate material becomes available. Therefore, late points
in time are viewed as more appealing (cf. Section 2.6.2), which might be a reason why
ONLYMAT generates much more backlogging than all other algorithms. Additionally, this
situation might lead ONLYMAT to accept a larger amount of low-value orders due to low
bid prices that do not take into account that not all orders can be assembled at that point in
time because of the assembly capacity constraints. Thus, assembly capacity is not saved
for high-value orders, which in turn must be rejected.

Computation time is not a critical factor in our tests. For each instance, ATO-RM takes 30
seconds on average for bid price computation and 1 second for feasibility checks, order
selection, etc.

Additionally, we conducted numerical tests to show the robustness of our results. We
increased the mean number of arriving orders, conducted tests with different resource
consumptions of the orders, and we applied a slightly different cost structure. The numerical
results from these tests support the findings presented in this paper. We also showed the
statistical significance of the results by computing confidence intervals.

2.7.3 Sensitivity analysis

In the following, we examine the influence of the varied parameters on the performance
of the algorithms as well as on the solution characteristics. All simulation results are
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Figure 2.6: Mean relative difference to the optimal ex-post profit under different resource
congestions

summarized in Table 2.5, which shows the relative difference to POSTOPT and gives
the fill rates for high-, medium-, and low-value orders in parentheses. Additionally,
the hcbc_share := holding costs + backlog costs

holding costs + backlog costs + profit is presented, which gives the relationship
between the costs and the contribution margin. A relative measure of the holding and
backlog costs is necessary because a solution with more accepted orders (and thus more
revenue) is expected to have also more holding/backlog costs. The results are generated by
fixing one (or in case of different congestion, two) of the varied parameters and taking the
mean over all scenarios with these fixed parameter values.

Impact of congestion

Fig. 2.6 depicts the influence of the different supply scenarios on the performance. Note the
different scale in the diagram for ATO-RM. ATO-RM performs well under all circumstances,
but its performance worsens with increasing scarcity of assembly capacity. This situation
corresponds with the observation that consideration of assembly capacity appears to be
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Figure 2.7: Mean relative difference to the optimal ex-post profit under different levels of
profit heterogeneity

more important than consideration of intermediate material (cf. Section 2.7.2). Note
that ATO-RM performs better than ONLYMAT even if intermediate material is the clear
bottleneck resource and as good as ONLYCAP if assembly capacity is the clear bottleneck
resource, which is in line with the results reported in Section 2.7.2 . As expected, if the
bottleneck is not taken into account in the benchmark algorithm, the respective algorithm
performs poorly. FCFS performs worse the more congested the system becomes.

The reason why ATO-RM performs worse if assembly capacity is the bottleneck resource
might be because intermediate material is required only at the beginning of assembly,
whereas assembly capacity is needed over several planning periods, and it is thus harder to
manage. Additionally, assembly capacity is not storable, and therefore unused capacity is
ultimately lost. For ONLYCAP and ONLYMAT, it can be observed that in the cases that
ignore the bottleneck resource, the algorithms do not differentiate between order types
anymore, perhaps because they do not see a bottleneck and thus do not reject orders due to
the bid prices. This also may be an explanation why the backlog costs drastically increase
in these cases. If the congestion is still low, additional orders can be accepted, and thus
FCFS also accepts a large amount of high-value orders, which can be a reason for its
performance curve.

Due to the completely different results of ONLYCAP and ONLYMAT under different
resource congestions, in the remaining section, we divide the analysis by the dominating
bottleneck of the scenarios.
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Impact of profit heterogeneity

Fig. 2.7 shows the influence of profit heterogeneity on the performance of the tested
algorithms. It can be observed that using ATO-RM is worthwhile even if the profit
heterogeneity is low. Increasing profit heterogeneity in our tests leads to worse results for
FCFS, whereas ATO-RM is influenced to a lesser degree. The influence of increasing
profit heterogeneity on ONLYCAP and ONLYMAT is higher in those scenarios, in which
the considered resource is not the bottleneck resource than in the scenarios, in which the
modeled resource is dominant.

With the increasing difference of the profits from orders of different customer classes it
becomes increasingly more important to select which orders are accepted. For ATO-RM,
it is easier to differentiate between the order types with increasing profit heterogeneity,
which means that even though the bid prices might be not completely correct, they can
lead to the correct decisions. Therefore, the fill rates of high- and medium-value orders
are notably high. However, the overall number of accepted orders is relatively low due
to the rather low acceptance rate for low-value orders. The same holds for ONLYCAP

and ONLYMAT in those scenarios, in which the considered resource is the bottleneck
resource. FCFS suffers most from increasing profit heterogeneity because the fill rates for
all customer types remain the same regardless of the profit heterogeneity. This holds also
true for ONLYCAP and ONLYMAT in the scenarios, in which the considered resource is
of subordinate importance because in these scenarios, bid prices are rather low and thus
order selection is less strict. Due to the high backlog costs, FCFS performs better for low
profit heterogeneity than ONLYMAT in those scenarios, in which assembly capacity is the
bottleneck resource.

Impact of coefficient of variation

Fig. 2.8 shows the influence of the coefficient of variation of the arriving demand on the
performance of the algorithms. In all of the scenarios, ATO-RM appears to suffer from
an increasing coefficient of variation, whereas FCFS is relatively indifferent in this case.
However, even in the worst tested case, ATO-RM still clearly dominates the benchmark
algorithms. ONLYCAP and ONLYMAT seem to suffer from an increasing coefficient of
variation in those scenario, in which they model the bottleneck resource, and they are
indifferent in the other scenarios.

39



0
5

10
15
20
25
30
35

R
e

l.
 d

if
f.

 P
o

st
O

p
t 

(i
n

 %
) 

cv = 1/3

cv = 2/3

cv = 1

(a) Scenarios, in which assembly capacity is at least
as scarce as intermediate material

0
5

10
15
20
25
30
35

R
e

l.
 d

if
f.

 P
o

st
O

p
t 

(i
n

 %
) 

cv = 1/3

cv = 2/3

cv = 1

(b) Scenarios, in which intermediate material is at
least as scarce as assembly capacity

Figure 2.8: Mean relative difference to the optimal ex-post profit under different coefficients
of variation

The reason for the decreasing performance of ATO-RM may be that the bid prices computed
by ATO-RM are generated using many different demand situations. In the case of a high
variance, these situations differ to a greater extent. Therefore, a scenario in which the
computed bid prices do not fit the actual demand situation might occur more often, which
might be the reason for increasing hcbc_share and a decreasing fill rate for high-value
orders, leading to worse results of ATO-RM. The same holds true for ONLYCAP and
ONLYMAT in those scenarios, in which they consider the bottleneck resource and thus
compute reasonable bid prices. In the other scenarios, ONLYCAP and ONLYMAT do
not use the correct bid prices in the first place because they ignore one of the limiting
resources. It is possible that this is why a higher variance does not significantly influence
their performance in these cases. FCFS makes no use of forecasts at all. As the mean
demand remains the same, the solution quality is also nearly the same. For all tested
algorithms except FCFS, the fill rates for high- and medium-value orders decrease with
higher variance, which may be related to the arriving demand being less uniform over time.

Impact of demand arrival patterns

From the results, no significant influence of different demand arrival patterns on the tested
algorithms can be observed.
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2.8 Conclusions and further research

In the present paper, we model the decisions of an ATO manufacturer. In addition to the
decisions on accepting orders, we also include scheduling and due date quoting decisions.
The intermediate material and assembly capacity are explicitly modeled in this work. We
present a novel revenue management approach that uses bid prices to make the decisions.

As shown from the numerical study, ATO-RM works quite well. On average, the profit
obtained is close to that of the ex-post solution, which contains full knowledge of all
incoming demand. The proposed approach clearly outperforms the other tested benchmark
algorithms. In our tests, the capacity constraints appear more important than the inter-
mediate material constraints. This observation is illustrated by the better performance of
ONLYCAP in comparison with ONLYMAT and by the decreasing performance of ATO-RM
with a higher scarcity of assembly capacity. Computation time is no issue in the tested
instances.

The sensitivity analysis shows that increasing the variance and scarcity of the assembly
capacity lead to decreasing quality of ATO-RM. However, even in these situations, ATO-RM
still performs quite well. The proposed approach outperforms the benchmark algorithms in
all of the tested settings.

The developed approach can be generalized to fit other settings.

For example, if customers are only informed about acceptance or rejection of their order,
backlog costs depend only on the difference of the preferred and the actual due date.
Therefore, only the order acceptance decision must be made. The due date quoting is trivial
for every accepted order. In the scheduling decision, we need to consider that backlog costs
occur if an order is finished after the preferred due date. Therefore, backlog costs must be
included in the scheduling decision in a similar way as holding costs are considered.

Another example is that orders must be produced as a whole. In this case, the variables
for the assembly decisions in the LP used for feasibility checks and scheduling must be
restricted to integer values. Note that we cannot assume this in the bid price computation
as otherwise no shadow prices can be derived.

Also, if the number of products within an order varies, this can be easily incorporated by
introducing a new parameter.

In the last example, we assume that customers adapt to the quoted due date and thus holding
costs depend on the quoted due date instead of the preferred due date. In this case, we can
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just change the definition of holding costs. However, the modeled production environment
is still rather basic. Order-dependent set-up costs are not considered. We assume one-stage
deterministic production and deterministic replenishments of the intermediate materials.
Relaxing these assumptions offers a good opportunity for further research. It also would be
of interest to analyze how the algorithms perform under more complex material structures
or in a system with additional stochastic influences.
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Abstract:

In the present paper, we consider the demand management decisions of a manufacturer
facing stochastic demand. While in the previous literature, either the order release decisions
are fixed upon arrival or a single-stage production environment is assumed, we make online
order acceptance and order release decisions in a multi-stage production system. After
describing the problem formally as a stochastic dynamic program, we develop a bid-price-
based revenue management approach in which the order acceptance and order release
decisions are made based on previously computed bid prices and feasibility according to a
linear program describing the multi-stage production system. A numerical study shows
the good performance of the approach compared to an ex-post optimal solution in various
supply and demand settings as well as the benefits relative to existing models, which
either consider aggregated single-stage production or fix order release decisions upon order
arrival.
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3.1 Introduction

Revenue management has emerged mainly in the service industry, and most of the literature
on the subject also involves this industry; see Talluri and Van Ryzin (2004) for an overview.
Nevertheless, revenue management ideas have also been applied in make-to-stock (MTS)
production systems (Quante et al., 2009; Meyr, 2009), make-to-order (MTO) production
systems (e.g., Easton and Moodie, 1999; Barut and Sridharan, 2005; Kuhn and Defregger,
2005; Spengler et al., 2007; Watanapa and Techanitisawad, 2005; Spengler et al., 2008;
Modarres and Sharifyazdi, 2009; Hintsches et al., 2010; Li et al., 2012; Volling et al.,
2012; Chevalier et al., 2015), and assemble-to-order (ATO) production systems (Harris and
Pinder, 1995; Gao et al., 2012; Guhlich et al., 2015b).

In the present paper, we consider an MTO manufacturer using a multi-stage production
system. Short-term capacity adjustments are impossible during the considered planning
horizon, and the available capacities are tightly planned. Demand is uncertain, fluctuating,
and exceeds available capacities during peak phases. Therefore, the scarce resources that
are available must be allocated to incoming demand; that is, order acceptance and order
release decisions must be made. These decisions are of crucial importance if orders are
heterogeneous, i.e., when they differ in capacity requirements and contribution margins.

This is the case, e.g., in the steel industry (Hintsches et al., 2010), where different products
are produced to order in a multi-stage no-wait flow shop, and capacity expansion is very
costly. Orders differ in their capacity consumption and contribution margins. It is possible
to reject orders from customers without long-term contracts because each of these customers
has a relatively low overall economic impact.

Another possible field of application is in semiconductor backend facilities in which chips
are customized in a multi-stage production system, based on customer-specific requirements
(Brown et al., 2000). In this production environment, capacities are also fixed and tightly
planned due to high capital investment costs. Again, demand is fluctuating and uncertain.

While many revenue management approaches only consider order acceptance decisions
(e.g., Talluri and van Ryzin, 1999; Spengler et al., 2007; Hintsches et al., 2010), there
is typically more than one possible release date for an incoming order in the described
production environments. Keeping more flexibility in the production schedule allows the
company to accept and produce more orders.

44



Guhlich et al. (2015b) address this issue and consider online order acceptance and order
release decisions in a single-stage production system. However, the production system
is very simplistic and it is unclear how to handle a richer multi-stage system. This is the
issue that we address in this paper. We show that applying the single-stage approach to
an aggregation of a multi-stage system leads to poor results in general. Thus multi-stage
systems require a dedicated approach.

In the present paper, we consider the demand management decisions of an MTO manufac-
turer using a multi-stage production system under stochastic demand. Incoming orders are
accepted (or rejected) immediately upon arrival, while order release decisions are made
periodically for the pool of accepted orders. The goal is to maximize the marginal profit
generated by the accepted orders, while taking into account holding and backlog costs.
In the existing literature, either a single-stage production system is considered, or order
release decisions are fixed upon order arrival.

The main contributions of the present paper are as follows:

• We introduce a novel revenue management problem, considering online order accep-
tance and online order release planning in a multi-stage production system, and we
model it as a stochastic dynamic program (SDP).

• We develop a heuristic revenue management approach based on bid prices to solve
instances of realistic size.

• A numerical study shows the good performance of our approach in different produc-
tion environments in comparison to an ex-post optimal solution. The study suggests
that aggregating the considered multi-stage production systems into single-stage
systems and then applying the approach described in Guhlich et al. (2015b) leads to
unsatisfactory results. In addition, making online order release decisions can lead to
significantly greater profits.

The paper is organized as follows. In the next section, an overview of the related literature
is given. The problem is formulated in Section 3.3. In Section 3.4, we model the problem
as an SDP. We develop a bid-price-based revenue management approach in Section 3.5.
A numerical study evaluates the performance of the presented heuristic in Section 3.6.
Section 3.7 concludes the paper.
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3.2 Literature review

In this section, we give a brief overview of bid-price approaches in the revenue management
literature. We consider applications in the service and manufacturing industries. In particu-
lar, we concentrate on the supported decisions and the production systems considered.

Network revenue management is concerned with managing multiple resources, such as
different flight legs (see e.g., Talluri and Van Ryzin, 1998). There is no flexibility to assign
customers to different resources (flight legs) after the purchase. Therefore, it is impossible
to perform online scheduling in the previous literature, as is done in the present paper.

Revenue management of flexible products (Gallego and Phillips, 2004; Gallego et al., 2004;
Petrick et al., 2010, 2012; Gönsch et al., 2014) allows the company to delay the assignment
of customers to specific products (e.g., a specific flight). These decisions are made only
after all requests for the flexible products have arrived, which enables the company to use
capacities more efficiently. In contrast, in the problem considered in the present paper,
service provision and the arrival of orders cannot be separated because these events overlap.
Due to this different time structure, these approaches are not applicable in an online order
acceptance and order release planning model. An extensive discussion of this topic can be
found in Guhlich et al. (2015b).

In revenue management in MTO manufacturing, bid-price approaches have been proposed
in the context of steel production. Spengler et al. (2007) consider a multi-stage production
model to compute bid prices via a multi-dimensional knapsack formulation. However, only
one production start date is available for each arriving order. Therefore, no scheduling
decisions are made. In addition, orders released in different planning periods do not share
any common resources, which is a major difference to the model used in the present paper.
Spengler et al. (2008) propose an extension to this approach that allows for shifting demand
between different planning periods. However, the scheduling decisions must be made
immediately upon arrival of the order, whereas the online scheduling approach in the
present paper can change the release date of an order until its production is actually started.
Hintsches et al. (2010) consider long planning periods so that a planning period is long
enough that an order finishes production within the same planning period in which it was
started. Again, there is only one possible production start date per order.

Guhlich et al. (2015b) develop a bid-price-based revenue management approach for ATO
manufacturing. In their setting, production capacity and intermediate materials are scarce
resources. However, in contrast to the present paper, they consider a single-stage production
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model, which makes their linear program describing the production system not applicable
in the current paper. Consequently, also the aggregation of bid prices to opportunity costs
for accepting or producing an order must be altered in the current paper. In addition, the
order processing is different. Guhlich et al. (2015b) quote a firm due date for each accepted
order, which determines the backlog costs, and the holding costs depend on the actual finish
date of the order. In the current paper, holding and backlog costs depend only on the finish
date of the order, which implies that the order acceptance and order release decisions must
be adapted.

To sum up, no approach from the existing literature is capable of making online order
acceptance and online order release decisions in a multi-stage production environment.
Either the order release decisions are fixed upon order arrival, or a single-stage production
environment is assumed.

3.3 Problem formulation

In this section, we state the basic assumptions of the considered planning problem. We
describe the production system, the production capacity, the orders, the decisions, and the
cost structure. Table 3.1 summarizes the notation.

The planning horizon is divided into planning periods, t = 1, . . . ,T . Each planning period
t is further divided into micro-periods (t , s) (s = 1, . . . , S ) such that in each of these
micro-periods, one order arrives at most. Let d = 1, . . . ,D denote the incoming orders.
We make the following assumptions:

Assumption 3.3.1 (Production system) We consider a no-wait, flexible flow shop pro-

duction system consisting of machine groups m = 1, . . . ,M , with amt identical parallel

machines available for machine group m in planning period t .

In a no-wait production system, orders are processed without waiting after their release.
This requirement stems either from technical factors, as in the steel industry (Wismer,
1972; Tang et al., 2001), or from the fact that no intermediate storage is available. Hall and
Sriskandarajah (1996) give an overview of industries using this type of production system.

Assumption 3.3.2 (Production capacity) Each order can only be processed by one ma-

chine at a time. The production of an order d requires capdim time units of capacity
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Indices:
t = 1, . . . ,T Planning periods
s = 1, . . . , S Micro-period s in a planning period
d = 1, . . . ,D Orders
m = 1, . . . ,M Machine groups
Parameters:
arrd Arrival period of order d
prefd Due date for order d
leadd Lead time of order d (measured in planning periods)
capdim Capacity (relative to length of planning period) that order d

requires in the i–th period after release at machine group m
amt Number of parallel machines of machine group m available in

planning period t
capt(X ) Required capacity for orders X starting production in planning

period t
contrd Contribution margin of order d
cHd , cBd Holding/Backlog costs (per planning period) for order d
hcdt , bcdt Holding/Backlog costs for order d if released in t
profdt Marginal profit that order d generates if released in planning

period t
pdts Probability that order d arrives in micro-period (t , s)
p0ts Probability that no order arrives in micro-period (t , s)
State variables:
A′ Remaining available production capacity of all machine groups

in all future planning periods
Y Set of orders that are accepted but not released yet
Z Set of all feasible states
(A′,Y ) State of the system given by remaining available capacity A′

and orders Y that have been accepted but not yet released
Vts(A

′,Y ) Maximum expected marginal profit-to-go in state (A′,Y ) in
planning period t if s = 0 and micro-period (t , s) otherwise

Decision variables:
xdt 1 if order d is released in planning period t ; 0 otherwise
X Set of released orders in the current planning period

Table 3.1: Notation
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Figure 3.1: Example of a Gantt chart for an order d with lead time leadd = 3

(relative to the length of a planning period, i.e., 0 ≤ capdim ≤ 1) in the i-th planning

period after starting production at machine group m . The lead time, leadd , is measured by

the number of required planning periods. See Figure 3.1 for an example. Setup times are

not considered, and processing times are deterministic.

Let A′ denote the matrix of the remaining free production capacities in the remaining

planning periods at all machine groups. For a set of orders X released in planning period t ,

capt(X ) is defined as the matrix of required production capacities (in all future planning

periods at all machine groups). Its (i ,m)-th entry describes the total capacity consumption

at machine group m in period t + i and is defined as
∑

d∈X capdim .

Assumption 3.3.3 (Orders) Orders arrive according to a known probability distribution.

The probability that order d arrives in micro-period (t , s) is given by pdts . The probability

that no order arrives in micro-period (t , s) is given by p0ts . Each order d has the following

characteristics:

• Planning period that contains the micro-period in which the order arrived (arrd )

• Due date (prefd )

• Capacity requirement at machine group m in the i–th period after release (capdim)

• Lead time (leadd )

• Holding and backlog cost rates (cHd , c
B
d )

• Contribution margin (contrd ).

Assumption 3.3.4 (Decisions) The company makes the following decisions:

1. Order acceptance: In each micro-period, the incoming order is immediately accepted

or rejected.

2. Order release: At the beginning of each planning period, the set of orders to be

released, X ⊆ Y , is selected.
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Here, Y denotes the set of orders that are currently accepted but not yet released. Orders

can only be fully accepted and fully released to the shop floor. Orders can be released at

the earliest in the first planning period after their arrival.

Assumption 3.3.5 (Cost structure) If an accepted order is not fulfilled by the due date,

backlog costs are incurred for each planning period beyond this date. Holding costs are

incurred for orders finishing before the due date.

If production for order d starts in planning period t , holding costs hcdt and backlog costs
bcdt for this order are given by:

hcdt := max{0, prefd − (t + leadd)} · cHd (3.1)

bcdt := max{0, (t + leadd)− prefd} · cBd . (3.2)

If the production of an order d starts in planning period t , the following marginal profit is
earned:

profdt := contrd − hcdt − bcdt . (3.3)

3.4 Stochastic dynamic program

In this section, we formalize the aforementioned problem by formulating it as an SDP.
Specifically, we describe the state space, the decisions and transitions, the Bellman equation,
and the feasibility check.

State space

The state of the system is given by (A′,Y ), the remaining available production capacity A′

at each machine group in the upcoming planning periods and the set of orders Y that are
accepted but not yet released.

Let Z define the set of all feasible states. A state is feasible if all accepted orders can be
produced within the planning horizon. This can be checked using linear constraints, as
defined at the end of this section.
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Decisions and transitions

In each micro-period (t , s), the decision of whether to accept the arriving order is made.
If the order is rejected (or no order arrives), the state remains unchanged. Otherwise, the
accepted order d is added to the set of orders that are accepted but not yet released, denoted
by Y ∪ d , and the contribution margin of the order is earned.

At the beginning of each planning period t , the set of orders released X ⊆ Y is determined.
These orders are removed from Y (denoted by Y \ X ), and the available capacities are
updated (denoted by A′−capt(X )). Additionally, holding and backlog costs are determined
for newly released orders.

Profits

Let Vts(A
′,Y ) be the maximum expected marginal profit-to-go in state (A′,Y ) at the

beginning of planning period t if s = 0 and in micro-period (t , s) for s = 1, . . . , S ,
otherwise. Additionally, we define Vt ,S+1(A

′,Y ) := Vt+1,0(A
′,Y ). Then, Vts can be

computed recursively via the Bellman equation for (A′,Y ) ∈ Z as follows:

Vts(A
′,Y ) =

∑
d

pdts ·max{

accept d︷ ︸︸ ︷
Vt,s+1(A

′,Y ∪ d) + contrd ,

reject d︷ ︸︸ ︷
Vt,s+1(A

′,Y )}+

no order︷ ︸︸ ︷
p0ts ·Vt,s+1(A

′,Y ) if 1 ≤ s ≤ S

max
X⊆Y

{Vt,s+1(A
′ − capt(X ),Y \X )−

∑
d∈X (hcdt + bcdt)}︸ ︷︷ ︸

order release decision

if s = 0

(3.4)

with boundary conditions VT ,S+1(A
′,Y ) = 0 for (A′,Y ) ∈ Z and Vts(A

′,Y ) = −∞ for
(A′,Y ) /∈ Z .

We can use this SDP (3.4) to compare the considered problem with other models from the
literature. The main difference from models in the literature on MTO-RM (Spengler et al.,
2007; Hintsches et al., 2010) and FP-RM (Gallego et al., 2004; Petrick et al., 2010, 2012)
is that in the SDP (3.4), there are two different time levels at which decisions are made.
Order acceptance decisions are made immediately after order arrival, while order release
decisions are only made at the beginning of each planning period. Compared to Guhlich
et al. (2015b), in the present paper, multiple machine groups are considered, while Guhlich
et al. (2015b) assume a single-stage production system. However, in the present paper,
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no intermediate materials are considered, and no due dates are quoted upon order arrival.
Additionally, orders can only be fully released.

Feasibility check

To check the feasibility of a state, that is to check whether (A′,Y ) ∈ Z in planning period
t�x , we use a set of linear constraints. To this end, we define decision variables xdt for each
order d and planning period t with max(arrd , t

�x ) + 1 ≤ t ≤ T − leadd , which model
the decision if order d is released in planning period t . The following constraints must be
satisfied: 1

∑
d∈Y

leadd−1∑
i=0

capdim · xd ,t−i ≤ a ′mt for m = 1, . . . ,M ; t = t�x + 1, . . . ,T (3.5)

T−leadd∑
t=arrd+1

xdt = 1 for d ∈ Y (3.6)

xdt ∈ {0, 1} for d ∈ Y ; t = t�x + 1, . . . ,T . (3.7)

Constraint (3.5) describes the capacity consumption. The used capacity, which is composed
of the different orders that may require machine group m in different planning periods after
their start, must not exceed the available capacity. Constraint (3.6) guarantees that orders
that have been accepted in previous planning periods will be finished within the planning
horizon. Constraint (3.7) ensures that orders can only be fully released.

Constraints (3.5)-(3.7) are also the basis for the revenue management approach presented
in the next section.

3.5 Revenue management approach

Because of the high dimensionality of the state space, it is computationally intractable to
solve the SDP described in the previous section for instances of realistic size (cf. Petrick
et al., 2012). Therefore, in this section, we develop a bid-price-based revenue management
approach to solve the problem heuristically.

1We follow the convention that undefined variables are equal to 0.
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The general approach is as follows:

1. At the beginning of the planning horizon, bid prices are computed using randomized
linear programming (RLP) (Talluri and van Ryzin, 1999). Bid prices are used as a
measure for the opportunity costs of consuming resources.

2. Upon arrival, we decide whether to accept an incoming order based on the previously
computed bid prices and the feasibility according to the modeled production system.
An order is accepted if there is a feasible release date for which the incremental profit
exceeds the estimated opportunity costs of the required resources. The feasibility
check is performed using constraints (3.5) - (3.7).

3. At the beginning of each planning period, order release decisions are made for the
current planning period, considering all orders that are accepted but not yet released.
To this end, a suitable objective function (using bid prices) is defined for constraints
(3.5) - (3.7).

In the following, we describe in detail how to derive bid prices and how to use them to
make order acceptance and order release decisions.

3.5.1 Bid price computation

To derive bid prices, the problem is modeled as a profit-maximizing non-integer linear
program where future demand is assumed to be known. As known from the literature
(Simpson, 1989; Williamson, 1992; Talluri and Van Ryzin, 2004), the derived primal
optimal decisions can be discarded, and the shadow prices of the variables corresponding
to the resource constraints are used as bid prices. They are a measure for the opportunity
costs of using the corresponding resources. In the RLP, several demand scenarios Dj are
generated, and the mean over the resulting bid prices is taken (Talluri and van Ryzin, 1999).
We update the bid prices iteratively using new demand scenarios until the average over all
computed bid prices converges, as described in Guhlich et al. (2015b). Hence, the number
of scenarios is not fixed beforehand.

For scenario j , the objective function to be maximized is defined as follows:

∑
d∈Y∪Dj

T−leadd∑
t=arrd+1

profdt · xdt . (3.8)
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In addition to Constraints (3.5) and (3.6), for each scenario j , the following inequalities
must hold to guarantee that not more is produced than is demanded:

T−leadd∑
t=arrd+1

xdt ≤ 1 for d ∈ Dj . (3.9)

We no longer force the decision variables xdt to be integer because doing so would hinder
shadow prices from being easily derived from the linear program. Relaxing the integrality
constraints is also common practice in the classical revenue management approaches in the
airline industry (cf. Talluri and Van Ryzin (2004)). Constraints (3.7) are therefore relaxed
to xdt ≥ 0 for all orders d ∈ Y ∪ Dj , which allows for releasing fractions of an order in
different planning periods.

The dual variables corresponding to the capacity constraints (3.5) in an optimal solution are
then used as scenario bid prices bpj (m, t) for using machine group m in planning period
t in scenario j . Production capacity that is unused in the current planning period is lost
so that bid prices concerning these resources can be set to zero. The overall bid prices
bp(m, t) are then determined as the average over all scenario bid prices bpj (m, t).

3.5.2 Order acceptance decision

Similar as in Petrick et al. (2012), we define the opportunity costs of accepting order d and
releasing it in planning period t as the sum of the bid prices of all required resources:

oppres(d , t) :=
M∑

m=1

leadd−1∑
i=0

capdim · bp(m, t + i). (3.10)

An order d is accepted if there exists a planning period t in which it is feasible to release d
and

profdt ≥ oppres(d , t). (3.11)

At this point in time, the order release date is still subject to change. Note that this approach
underestimates the resulting backlog costs if accepting order d increases the backlog costs
of one of the already accepted orders Y .
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3.5.3 Order release decision

At the beginning of each planning period t , we must decide which of the accepted orders
to release onto the shop floor. Similar as in Guhlich et al. (2015b), we use the opportunity
costs to take into account future arriving demand. In particular, we maximize

∑
d∈Y

T−leadd∑
t=t�x

(profdt − oppres(d , t)) · xdt (3.12)

with respect to constraints (3.5) - (3.7) to obtain a preliminary schedule. Only the order
release decisions in the current planning period t�x are implemented, while order release
decisions for future periods are discarded. At the end of each planning period, the remaining
available production capacity A′ is updated.

3.6 Numerical study

In this section, we numerically investigate the performance of the revenue management
approach presented in the previous section. First, we describe the experimental design.
Next, we show that the proposed revenue management approach works well. Finally, the
impact of aggregating the production systems to single-stage systems and the impact of
making order release decisions online is examined.

3.6.1 Experimental design

In the following, we describe the parameter settings, production systems, and algorithms
used in the experiments.

Parameter settings

In all simulations, we consider a planning horizon of T = 40 planning periods. Three
different order types are available that all require the same resources but differ in their
contribution margins. The due date depends on the order type. Order types that are
more valuable arrive with an earlier due date because the willingness to pay is higher for
customers with urgent orders. Therefore, high value orders can be delayed by only one
planning period before incurring backlog costs. The due date for medium value orders is
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Factor Level Count

Contribution margin contrd {(200/150/100), 3
dependent on order type (300/200/100)

(500/300/100)}
Scarcity of capacity {100%, 110%, 120%} 3
Coefficient of variation CV {0.5, 0.75} 2

Table 3.2: Parameters used in the numerical study

two planning periods after the earliest possible finish date, and low value orders can be
delayed by four planning periods without incurring backlog costs. We obtain:

prefd :=


arrd + leadd + 1 for high value orders

arrd + leadd + 2 for medium value orders

arrd + leadd + 4 for low value orders.

(3.13)

Holding and backlog cost rates are 3% and 5% of the contribution margin, respectively.

The performance of the algorithm depends on the considered demand scenarios. In par-
ticular, we expect that the profit heterogeneity of the orders, the scarcity level of capacity,
defined as the ratio between demand and available capacity, and the coefficient of variation
of the probability distribution for the incoming demand have a strong influence. Therefore,
we vary these parameters as summarized in Table 3.2.

The profit heterogeneity in a demand scenario depends on the contribution margins for
the high/medium/low-value orders. In the scenarios with low profit heterogeneity, the
contribution margin of a high-value order is twice the contribution margin of a low-value
order, while in a scenario with high profit heterogeneity, they differ by a factor of 5.

The number of arriving orders in each planning period is drawn from a negative binomial
distribution NB(µ,CV ) with mean µ and coefficient of variation CV . This distribution
is commonly used in the literature (Ehrenberg, 1959; Agrawal and Smith, 1996; Quante
et al., 2009; Guhlich et al., 2015b). The mean number of arriving orders is varied, resulting
in different levels of scarcity of the capacity. We use a CV of 0.5 and 0.75 to represent
different levels of demand uncertainty.

For each factor combination from Table 3.2, 30 independent demand scenarios are generated.
This leads to 540 instances for a given production system.
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M Capacity Order in which
machines are visited

5Stage 5 amt = 50 ∀m 1, 2, 3, 4, 5

10Stage 10 amt = 25 ∀m 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Bottle 5 amt = 50 ∀m 6= 3 1, 2, 3, 4, 5
a3t = 40

Reent 4 amt = 50 ∀m 6= 2 1, 2, 3, 2, 4
a2t = 100

2Prod Product 1 5 amt = 75 for m = 1, 2 1, 2, 2, 3, 5
Product 2 amt = 50 for m = 3, 4, 5 1, 1, 2, 4, 5

Table 3.3: Production systems

Note that we use a different order arrival structure than in the SDP (3.4) because in practice,
the number of arriving orders within a given planning period is easier to forecast, while the
arrival structure in the SDP is a standard formulation from the literature.

To avoid the effects of an empty system, the production system is initially filled with a set
of orders at different stages of production. This set of orders is generated using the set of
orders present in a production system (work in process) after some planning periods, where
the presented revenue management approach was applied with a scarcity of capacity of
100% and a coefficient of variation of 0.5.

Production environments

To investigate the impact of different characteristics of a production system on the per-
formance of the tested algorithms, we consider multiple types of production systems.
Specifically, we consider five basic systems to examine the single characteristics of produc-
tion systems and one practice-inspired production system that has a more complex structure.
For the basic production systems, Table 3.3 shows the number of machine groups, the
available production capacities, and the sequence in which the machine groups are visited,
i.e., the routes of the orders. Each machine group is always required for an entire planning
period. At the same time, a machine group might be used in multiple consecutive planning
periods.

We consider a
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• balanced 5-stage production system (5Stage),

• a balanced 10-stage production system (10Stage),

• a 5-stage production system with a bottleneck (Bottle),

• a 4-stage production system with re-entrant flows (Reent),

• a 5-stage production system with two different product types (2Prod),

• and a more complex production system (Complex).

The complex production system is motivated by a real-world semiconductor backend
facility (Ehm et al., 2011). It consists of M = 23 machine groups. Two different product
types with different routes through the production system are considered. The required
capacities and the number of parallel machines for each machine group are given in the
appendix in Table A.1. We use the same machines and processing times as described in
Ehm et al. (2011). For simplicity, however, we exclude some additional characteristics of
the production system, namely splitting orders, batching, sequence-dependent setup times
and random machine down times.

In the production systems with two different product types, three different order types exist
for each product type. The order arrival rates are the same for each order type in each
considered production system.

Algorithms

All algorithms are implemented in C++ using the Gurobi 6.02 solver on a 3.20 GHz Intel
Core i7 machine with 32GB of RAM.

The presented revenue management approach (MS-RM) is implemented as described in
Section 3.5. Bid prices are recomputed at the beginning of planning periods 10, 20, and
30. The convergence of the bid prices is defined as follows: We look at the set of bid
prices generated by including the 10 most recent demand scenarios. We add the new bid
prices one by one and check whether one of the mean bid prices changes by more than 5
units. If this is not the case, we say that the bid prices have converged. To avoid premature
convergence, the minimum number of used demand scenarios is set to 10. The maximum
number of considered demand scenarios is 50.

In the numerical experiments, we compare MS-RM with the following benchmark algo-
rithms:
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• First-come-first-serve (FCFS): The FCFS heuristic is wide spread and used in produc-
tion planning and control (PPC) because of its simplicity. Here, to avoid excessive
backlogging, orders are accepted as long as capacity is available to produce the
arriving order without backlogging independent of the profit margin. Orders are
released to the shop floor as soon as capacity is available.

• Revenue management approaches from the literature considering either a simplified
production system or not using online order release decisions

– SingleStage: The SingleStage approach is based on the ATO-RM approach
presented in Guhlich et al. (2015b). This algorithm models only one machine
group. To apply this algorithm, the production systems considered must thus be
aggregated to a single-stage production system. To this end, the capacity, which
is determined by the number of parallel machines, of this new machine group
is chosen such that the resulting maximum throughput is equal to the maximum
throughput of the real system. As in the ATO-RM approach, an order requires
the capacity of the only available machine group in each planning period
during processing, the number of parallel machines is equal to the throughput
multiplied by the (number of planning periods of) lead time. If multiple product
types are available, the throughput is multiplied with the mean processing time
of the product types weighted by their arrival rate. The available capacity in
each planning period is thus 200 for Bottle, 248.81 for Complex, and 250 for
5Stage, 10Stage, Reent, and 2Prod.

– SchedArr: SchedArr uses the same setup as MS-RM, except that the order
release date for this order is decided upon order arrival as described by Spengler
et al. (2008). An order d is released in the planning period t so that the differ-
ence between the marginal profit profdt and the opportunity costs oppres(d , t)
is maximized when this maximum is non-negative. The order release date is
fixed from this point on.

Because it is computationally intractable to compute an optimal policy for problems of
realistic size, we use an ex-post optimal solution (PostOpt) that can be derived from solving
the Integer Program consisting of constraints (3.5), (3.7), and (3.9) with objective function
(3.8) under the assumption of known future demand. Notably, the results generated with this
approach are only an upper bound of the maximum attainable profit because this algorithm
has complete demand information, while the other approaches learn the incoming demand
only when the orders arrive.
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Except for the Complex production system, all algorithms operate with a planning pe-
riod length such that no time discretization defects occur. As known from the literature
(Hackman and Leachman, 1989; Stadtler, 2008), an exact model of a production system
must consider all points in time at which a processing step may finish. However, using
short planning period lengths drastically increases the size of the considered model. In
the Complex production system, the applied algorithms use a planning period length of
24 hours, although a planning period length of 1 hour would be required to avoid time
discretization defects.

Note also that no optimal ex-post solution can be obtained for the Complex production
system because of the size of the resulting IP. Nevertheless, we derive results for the
continuous relaxation of the IP given by 0 ≤ xdt ≤ 1, which provides an upper bound for
the maximum attainable profit.

In the numerical tests, the production process is deterministic. However, because some
of the applied heuristics in this study suffer from modeling defects because they do not
model the available capacity exactly, they might compute infeasible schedules. That is,
if capacities are overestimated, according to the schedule, orders must wait within the
production system, which is forbidden under Assumption 3.3.1. Therefore, the order
releases generated by these algorithms are converted to a feasible schedule as follows:
Orders are released in the planned planning period if sufficient capacity is available to
produce them without waiting; otherwise, released orders are processed in an FCFS manner.
This can lead to orders finishing after the planning horizon. For a fair comparison, these
orders should not generate positive profit because they use capacity from periods after the
planning horizon. Therefore, in this numerical study, orders that finish after the planning
horizon earn no profit. However, any costs incurred by these orders are still taken into
account.

3.6.2 Numerical results

In this section, we present the results of the numerical study. In particular, we show that
the proposed revenue management approach (MS-RM) works well compared to an ex-post
optimal solution. Next, we show that aggregating the production system to a single-stage
problem does not lead to satisfactory results in production systems with a complex structure.
Additionally, the benefit of using online scheduling is described.
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The main results can be seen in Figure 3.2, which shows the mean relative difference (in
%) of the attained marginal profit over all tested instances compared to PostOpt in all tested
production systems for all tested algorithms. Additionally, the 95% confidence intervals
are indicated. The following conclusions can be drawn:

• In the tested cases, MS-RM is very close (≤ 4.4% on average) to an ex-post optimal
solution in all considered basic production systems. In the Complex production
system, the average performance is still good (8.75%), despite time discretization
defects. This is a quite impressive result, considering that PostOpt has full demand
information, while MS-RM makes online decisions.

• A simple FCFS approach does not lead to satisfactory results, which suggests that
exploiting customer differentiation is essential in the tested cases.

• Applying a one-stage-based heuristic leads to satisfactory results in most of the
considered basic production systems. However, the results are notably worse in
production systems with a more complex structure, e.g., in those production systems
with multiple product types.

• Deciding about order releases online significantly increases the marginal profit
compared to fixing order release decisions for an order on its arrival, as seen by
MS-RM outperforming SchedArr.

Note that the maximum computation time for solving the IP for the order release decisions
is set to 5 minutes, which was sufficient to find a feasible, but not necessarily optimal,
solution. Thus, the results for MS-RM could lead to slightly better results if this time limit
is relaxed.

In the following, we discuss the absolute performance of MS-RM, the impact of aggregating
the production system, and the impact of making online order release decisions in more
detail. To this end, we also examine order fill rates (i.e., the ratio of accepted and available
orders) for all order types and the resulting holding/backlog costs per order, which are
described in Tables 3.4 and 3.5, respectively. Structural results for PostOpt in the Complex

production system are unavailable because no integer optimal solution can be computed, as
discussed above. In Table 3.5, the costs that were planned by the algorithm are shown in
addition to the actual holding/backlog costs because time discretization defects occur in
the Complex production system. This is abbreviated as Complex (planned).
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Figure 3.2: Relative differences in attained marginal profit of heuristics compared to an
ex-post optimal solution in various production environments

PostOpt MS-RM SingleStage SchedArr FCFS

5stage 99.9/99.0/66.0 98.0/95.6/68.7 98.1/95.9/71.3 97.8/95.0/55.3 71.6/71.5/73.2
10stage 99.5/97.5/65.4 97.4/94.1/66.4 97.6/96.0/71.1 97.8/93.1/55.6 71.6/71.5/73.2

Bottle 99.8/93.9/24.0 97.2/93.1/20.1 97.8/94.0/19.9 97.3/89.3/12.6 61.0/60.7/62.4
Reent 99.9/99.0/66.0 97.9/95.6/68.8 98.1/95.9/71.3 97.7/95.0/55.3 71.6/71.5/73.2

2Prod-P1 100.0/99.3/65.5 97.5/94.6/61.1 99.1/97.7/70.8 97.7/94.6/54.4 70.9/71.3/72.8
2Prod-P2 100.0/99.7/64.4 98.1/96.4/63.0 99.0/97.8/71.0 98.0/94.7/54.4 74.4/74.7/74.6

Compl-P1 n.a. 91.1/91.4/74.4 93.5/92.9/77.4 83.2/83.4/55.7 34.7/34.8/35.6
Compl-P2 n.a. 96.6/86.9/39.2 96.4/95.3/62.8 87.1/65.6/29.8 76.4/76.9/76.5

Table 3.4: Overall averages of order fill rates for high/medium/low-value order types

PostOpt MS-RM SingleStage SingleStagePlanned SchedArr FCFS

5stage 2.8/0.1 3.8/1.1 3.9/2.7 4.9/1.1 1.6/5.3 9.8/0.0
10stage 2.0/0.2 2.7/1.4 2.7/3.4 4.2/1.3 1.1/5.7 7.3/0.0

Bottle 3.0/0.4 4.1/2.2 4.3/2.8 5.2/2.0 1.5/5.6 10.1/0.0
Reent 2.8/0.1 3.9/1.2 3.9/2.8 5.0/1.1 1.6/5.4 10.0/0.0
2Prod 2.2/0.2 2.5/2.4 2.0/7.5 4.4/0.6 1.1/6.9 9.8/0.0

Complex n.a. 1.3/19.0 0.3/31.0 2.2/5.9 0.4/27.9 6.4/0.1
Complex (planned) n.a. 4.1/8.4 2.2/5.9 2.2/5.9 1.0/21.5 9.0/0.0

Table 3.5: Overall averages of holding/backlog costs per order
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5Stage 10stage Bottle Reent 2Prod Complex

Mean 100% 2.2 2.4 3.5 2.2 3.2 7.1
110% 2.9 3.2 4.1 3.0 5.0 9.1
120% 3.3 3.8 4.0 3.5 4.9 10.1

CV 0.5 2.3 2.6 3.0 2.4 3.8 8.8
0.75 3.3 3.6 4.7 3.3 4.9 8.7

ProfitHet low 2.8 3.2 4.1 2.9 4.9 8.9
med 2.9 3.1 3.9 3.0 4.5 8.6
high 2.8 3.1 3.6 2.8 3.7 8.7

Table 3.6: Overall averages of performance of MS-RM in different production systems

Performance of revenue management approach

In this section, we further investigate the performance of MS-RM compared to an ex-post
optimal solution and the FCFS heuristic.

As Figure 3.2 shows, MS-RM clearly outperforms the FCFS heuristic in all production
systems, showing that the considered problem cannot be solved using this simple heuristic.
The poor performance might be explained by the fact that FCFS does not differentiate
between order types as shown in Table 3.4, while PostOpt and MS-RM both accept
significantly more high-value orders. Additionally, although FCFS does not create backlog
costs by definition, the resulting holding costs are rather high, see Table 3.5.

MS-RM is very close to PostOpt (≤ 4.4% on average) in all considered production sys-
tems except for Complex. The good performance is supported by the other performance
indicators. The order fill rates for MS-RM and PostOpt are very close although PostOpt
still accepts more orders because it has full knowledge of all incoming demand upfront
(cf. Table 3.4). In addition, it seems that the order differentiation of MS-RM is not strict
enough compared to PostOpt. Also, the holding and backlog costs are on a similar level, as
shown in Table 3.5. Again, PostOpt generates lower costs because order release decisions
can be performed with the knowledge of all accepted orders.

The performance of MS-RM in the Complex production system is slightly worse than
for the other production systems because discretization defects occur in modeling this
production system, as described in Section 3.6.1. Therefore, capacity is overestimated,
leading to 4.5% of the accepted orders finishing after the planning horizon and thus not
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adding to the earned profit. Additionally, the backlog costs increase from the planned 8.4

per order to an actual 19 per order, as shown in Table 3.5.

Table 3.6 shows the impact of the varied parameters on the performance of MS-RM. Here,
the relative difference from an ex-post optimal solution is depicted for varying loads of the
system, the coefficient of variation of the incoming demand, and the profit heterogeneity
(abbreviated as ProfHet) of the orders.

The performance of MS-RM relative to PostOpt decreases with an increasing load. One
reason for this is that there are more orders to decide about and, as a result, more mistakes
to make.

MS-RM also performs worse for a higher CV in all production system except for Complex.
This can be explained by higher fluctuations of demand. Therefore, scenarios in which the
computed bid prices are unsuitable for the actual demand arriving occur more frequently.
In the Complex production system, this factor seems to play a lesser role. One reason for
this might be that because the production system is not modeled exactly, in this case, the
impact of the time discretization defects is dominant.

It seems that a low profit heterogeneity leads to a slightly better performance. However, the
difference is rather small. On the one hand, the impact of having to reject a high-value order
is smaller if the profit heterogeneity is low, but on the other hand, it is easier to differentiate
between orders in the case of high profit heterogeneity.

Impact of aggregating the production system

In this section, we examine the impact of aggregating the production system to a single-
stage system. To this end, we compare the SingleStage approach with MS-RM and the
ex-post optimal solution.

Figure 3.2 shows that this approach leads to satisfactory results if the production system
is simple. However, if, e.g., multiple product types are available, the modeling defects
that stem from the aggregation lead to poor results. Accepted orders that finish after the
planning horizon do not contribute to overall profit. For the simple production systems,
the percentage of these orders is rather low (1.0%, 1.6,%, 0.5%, and 1.0% for 5stage,
10stage, Bottle, and Reent, respectively), while for the production systems with two product
types, a significant number of accepted orders cannot be produced within the planning
horizon (3.5% for 2Prod and 13.1% for Complex). The same result can be observed when
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comparing the planned and the actual backlog costs in Table 3.5. While for the simple
production systems, the planned and actual realized costs are very similar, they drastically
increase in the 2Prod and Complex production systems.

Impact of using online scheduling

In this section, the impact of making order release decisions online relative to fixing order
release decisions on order arrival is discussed. To this end, we compare SchedArr with
MS-RM and PostOpt.

Figure 3.2 shows that there is a significant benefit to being able to reschedule orders instead
of fixing the release dates on arrival. This can be explained by the level of knowledge
on the whole set of orders to be scheduled. While PostOpt has full knowledge of all
incoming demand and MS-RM at least has the flexibility to change planned order releases
if further orders have arrived, SchedArr must determine the order release date for an
order immediately on its arrival. In this way, especially in complex production systems,
inappropriate order release decisions can lead to resources that can no longer be used.
Therefore, SchedArr cannot accept as many orders as MS-RM or PostOpt (cf. Table 3.4).

5Stage 10Stage Bottle Reent 2Prod Complex

Percentage Preponed 59.5 69.9 58.9 60.2 68.3 48.8
Percentage Delayed 13.6 15.2 11.9 12.5 14.1 18.1

Table 3.7: Percentage of orders rescheduled in MS-RM

Table 3.7 shows that most of the orders are actually rescheduled in MS-RM. Most of the
orders are preponed, which might explain why the backlog costs decrease. However, some
orders are also delayed, perhaps allowing more orders to be accepted.

As seen in Table 3.5, SchedArr generates high backlog costs, which may be related to
the chosen order release policy. Order release dates are chosen such that they minimize
the sum of the bid prices for the used resources and the backlog costs. Bid prices tend
to be lower for capacity in late planning periods because, for these periods, less capacity
is already planned for fixed order releases. This might be a reason why many orders are
backlogged using SchedArr.
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3.7 Conclusion and further research

In the present paper, we consider the order acceptance and order release decisions in
an order-driven multi-stage production environment. To the best of our knowledge, this
problem has not yet been studied in the literature. Either a single-stage production system
has been considered, or order release decisions have been fixed on order arrival. We
describe this problem as an SDP.

To solve instances of realistic size, we develop a bid-price-based revenue management
approach where bid prices are computed using an RLP approach. The bid prices are
aggregated to estimate the opportunity costs of using resources for specific orders. The
order acceptance and order release decisions are made using an LP, which captures the
stochastic nature of the demand via the previously computed opportunity costs.

In a numerical study, we show that the presented approach works well for various production
systems compared to an ex-post optimal solution. Even for the Complex production system,
which cannot be modeled exactly due to the high computational burden, the performance
is only slightly worse. The application of a simple FCFS heuristic leads to unsatisfactory
results in all tested production systems, showing that order differentiation is important
in the considered settings. Moreover, the benefit of the presented approach compared
to existing approaches from the literature, which either consider aggregated single-stage
production or fix order release decisions upon order arrival, is shown.

In the present paper, set-up times are neglected, and processing times are assumed to be
deterministic. This is not always the case in real-world production facilities, and it provides
a good avenue for further research. Nevertheless, the present paper is a next step in the
direction toward enabling the application of revenue management in complex real-world
production environments as well.
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Abstract:

In this paper, we consider the order acceptance and order release decisions of a manufacturer
facing order-specific demand. In contrast to previous literature, both demand and production
are stochastic. We develop a novel bid-price based revenue management approach to solve
this decision problem. Here, the production system is modeled using clearing functions to
capture the non-linear inter-dependency of workload and lead times in stochastic production
systems. In the existing literature, a common approach to cope with variability in a
production system is to introduce fixed, workload-independent waiting times. We show in
a numerical study that this fixed lead time approach is clearly outperformed by the new
developed approach based on clearing functions presented in this paper.
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4.1 Introduction

In this paper, we develop a bid price-based revenue management (RM) approach for the
order acceptance and order release decisions of a manufacturer facing stochastic demand in
an order-driven, stochastic production environment.

Apart from the classical RM applications in service industries (see Talluri and Van Ryzin,
2004, for an overview), nowadays, RM approaches are also used in manufacturing contexts
like make-to-stock (MTS) production systems (e.g. Quante et al., 2009; Meyr, 2009),
assemble-to-order (ATO) production systems (e.g. Gao et al., 2012; Guhlich et al., 2015b),
and make-to-order (MTO) production systems (see e.g. Hintsches et al., 2010; Chevalier
et al., 2015; Guhlich et al., 2015a, and references therein). These papers consider production
systems without variability in the production process due to stochastic influences, sequence-
dependent set-up times, or batch formation. Therefore, waiting times within the production
system are not modeled. In this paper, we consider demand management decisions in
production systems that are subject to variability induced by stochastic influences.

As an example for a production environment with variability in the production process, we
consider the semiconductor back-end production. Figure 4.1 depicts the supply chain of
a typical semiconductor manufacturer consisting of two stages: front-end and back-end
production. In the front-end, the integrated circuits are fabricated onto a raw wafer, a thin
disc made from silicon, and the finished wafers are stored in a die bank, which serves as the
customer order decoupling point. In the back-end production, the functional circuits are cut
from the wafers and assembled to finished chips based on customer specific requirements.
Then, the finished chips are again tested. This assembly and test process is subject to
variability, e.g. due to stochastic influences, sequence-dependent set-up times, and batch
building. (see e.g. Mönch et al., 2013).

In this paper, we address the order acceptance and order release decisions of such a
manufacturer using a flexible job shop with stochastic effective processing times (e.g. due
to stochastic machine breakdowns). Production is order-specific. Demand is stochastic and
characterized by industry-wide demand peaks, which cannot be mitigated by expanding
available capacities because this is time-consuming and requires high capital investments.
In addition, outsourcing is impossible because during a demand peak, all factories work to
capacity. Orders differ in their contribution margin, lead time requirements, and capacity
requirements. The objective is to maximize the difference of the contribution margin gained
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Figure 4.1: Supply chain structure in semiconductor manufacturing (cf. Guhlich et al.,
2015b)

by accepted orders and work-in-process (WIP) holding costs, finished good inventory (FGI)

holding costs, and backlog costs.

To tackle this decision problem, we combine bid price-based RM with order release
planning based on clearing functions (CF). Bid price approaches are commonly used in
RM for order-driven manufacturing. In the existing literature (e.g. Hintsches et al., 2010;
Guhlich et al., 2015a), linear programming (LP) models with fixed lead times are used
to model the production system. This approach is justified in deterministic production
systems. However, in systems with stochastic influences, lead times depend non-linearly
on the available workload. Therefore, in our approach, we use CFs to model the expected
output of a machine given the available workload over a fixed time interval. CF-based
LPs have been successfully applied to decide about order releases in production systems
with stochastic influences, e.g. in the semiconductor industry (cf. Asmundsson et al., 2006;
Kacar et al., 2013).

The main contributions of this paper are as follows:

1. We consider the simultaneous order acceptance and order release decisions in a
stochastic production environment with stochastic, order-specific demand. This
problem has not yet been studied in literature.

2. We propose a novel bid price approach using CFs to measure the opportunity costs
of production capacity.

3. In a numerical study, we show that the presented approach significantly outperforms
approaches that cope with variability in the production system by modeling fixed,
workload-independent waiting times, which is common practice in order release
planning (Missbauer and Uzsoy, 2011).
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This paper is organized as follows. In Section 4.2, we review the related literature. Then,
we formally define the considered problem in Section 4.3. In Section 4.4, the derivation of
CFs is discussed. The bid price-based RM approach is developed in Section 4.5. In Section
4.6, a numerical study evaluates the performance of the presented approach. In Section 4.7,
we give a conclusion and show possible avenues for further research.

4.2 Literature review

In this paper, we develop a novel RM approach based on the ideas of bid price-based RM
in an order-driven manufacturing context and production planning approaches based on
CFs. Therefore, we review literature from these streams. In addition, related literature on
admission control and stochastic scheduling approaches is discussed.

Bid price-based RM approaches for order-driven production

Spengler et al. (2007) use a multi-dimensional knapsack formulation to compute bid prices
in a deterministic MTO production environment, where all orders are routed via the same
path. No scheduling decisions are made because only one start date is available for each
order. Hintsches et al. (2010) consider also a deterministic MTO production system. They
use a production planning LP assuming fixed lead times to compute bid prices. Volling
et al. (2012) use neural networks to update bid prices. Here, capacity is given by a single
bottleneck resource with deterministic capacity requirements. Guhlich et al. (2015a) make
online order acceptance and order release planning in a deterministic multi-stage no-wait
production system using a production planning LP to compute bid prices. Guhlich et al.
(2015b) develop a bid price-based RM approach in the context of ATO manufacturing. In
addition to production capacity, intermediate materials are considered as scarce resources.
They use a production planning LP assuming fixed lead times to model a deterministic
single-stage production system.

To sum up, in the existing bid price-based RM approaches for order-driven production,
order acceptance and order release decisions are made under stochastic demand. However,
all approaches consider deterministic production systems and thus, LPs assuming fixed
lead times are used.
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Order release planning based on clearing functions

It is known from queuing theory that in stochastic production systems, the relationship
between load and output is non-linear (Karmarkar, 1993; Medhi, 2002). This non-linearity
is often disregarded and traditional approaches assuming fixed lead times are extended by
workload-independent, fixed waiting times (Missbauer and Uzsoy, 2011). In particular, the
flow factor approach (see e.g. Kacar et al., 2013) determines effective lead time estimates
by scaling up the processing time of each processing step by the flow factor, which is
defined as the ratio of the cycle time of a product (determined by simulation) and the sum
of the raw processing times. However, in recent time, production planning approaches have
been developed to cope with load-dependent lead times, see Mula et al. (2006), Pahl et al.
(2007), or Missbauer and Uzsoy (2011) for overviews. In this paper, we use CFs and thus,
focus on this literature stream in what follows.

Asmundsson et al. (2009) develop a CF model to capture the non-linear relationship
between workload and output. To allow for multiple product types, they allocate capacity
according to the available WIP of the different product types. Asmundsson et al. (2006)
show in a simulation study that this model works well in a semiconductor wafer fabrication
facility. The CFs are estimated via visual fit. Kacar et al. (2013) apply this CF approach to
a simulation model of a large-scale semiconductor wafer fabrication facility and compare it
with benchmark approaches using fixed lead times. Brahimi et al. (2015) integrate order
acceptance decisions for known demand in a mixed integer program based on linearized CFs.
Missbauer (2009) demonstrates limitations of CF based production planning approaches.
Missbauer (2011) criticizes that one-dimensional CFs overestimate the available capacity.
Consequently, he proposes a three-dimensional CF based on WIP, the ratio between WIP
from the last period and new arriving WIP, and the variability of the arrival process. Aouam
and Uzsoy (2015) compare different approaches that consider the production planning of a
manufacturer producing to stock under uncertain demand and workload-dependent lead
times. Here, no order acceptance decisions are made.

In all of these approaches, the production system may be subject to stochastic influences.
However, none of the approaches considers order acceptance decisions under stochastic
demand.
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Admission control and stochastic scheduling

Apart from RM approaches, admission control approaches (see e.g. Silva et al., 2013;
Millhiser and Burnetas, 2013; Kim and Kim, 2014; Mlinar and Chevalier, 2015) consider
order acceptance decisions for stochastic demand. However in contrast to the present paper,
their release decisions are based on simple dispatching rules. Moreover, the considered
production environments are limited to exponentially distributed or deterministic processing
times and one or two different product types.

In stochastic scheduling (see e.g. Cai and Zhou, 1997; Wu and Zhou, 2008; Winands et al.,
2011; Baker and Altheimer, 2012; Baker, 2014; Framinan and Perez-Gonzalez, 2015),
sequencing decisions are made in a stochastic production environment but in their setting,
all arriving demand must be satisfied.

Overall, in the existing literature, the order acceptance and order release decisions for
stochastic demand in production systems with stochastic influences have not been studied.

4.3 Assumptions

In this section, we define the considered planning problem. In particular, we describe the
production system, the production process, the demand, the decisions to be made, and the
objective.

The planning horizon is divided in planning periods t = 1, . . . ,T , each of length pl . I
different order types denoted by i = 1, . . . , I can be produced.

Assumption 4.3.1 (Production system) We consider a flexible job shop with M machine

groups (m = 1, . . . ,M ), which consist of identical parallel machines. Infinite buffer

capacity is available in front of each machine group. Required raw and intermediate

materials are unlimited available.

Assumption 4.3.2 (Production process) Orders are processed in a first-come-first-served

(FCFS) manner on the machines of each machine group. Each order can only be processed

by one machine at a time.

An order of type i passes L processing steps (l = 1, . . . ,L) and for each processing step l ,

a certain machine group zil is required. The effective processing times may be subject to
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stochastic influences. procil denotes the expected effective processing time of processing

step l of order type i . Capacity is measured in the number of parallel machines available

in a planning period, and ξil := procil
pl

is defined as the expected capacity consumption of

processing step l of order type i .

Assumption 4.3.3 (Demand) Orders arrive according to a known probability distribution.

Each order consists of multiple units so that partial acceptance is possible and orders can

be fulfilled via partial deliveries over different planning periods. Each order type i has the

following characteristics:

• (Expected) capacity requirements ξil at machine group zil for each processing step l

• Time span between arrival and due date (δi)

• FGI holding, WIP holding, backlog cost rate (hci ,wci , bci)

• Contribution margin (contri).

Assumption 4.3.4 (Decisions) The company makes the following decisions:

• Order acceptance: Upon arrival, the incoming order is immediately either (partially)

accepted or rejected.

• Order release: At the beginning of each planning period, the fraction to be released

of each accepted order is determined. In addition, the sequence in which the orders

are released must be determined.

Orders can be released at the earliest in the first planning period after their arrival.

Assumption 4.3.5 (Objective) The objective is to maximize the contribution margin gained

by accepted orders minus WIP/FGI holding and backlog costs. Orders that finish produc-

tion after the due date incur backlog costs. Orders finishing before the due date incur FGI

holding costs, and WIP holding costs occur for each planning period during which orders

are in production.

4.4 Clearing function-based capacity constraints

In this paper, we combine bid price-based RM with order release planning based on CFs.
Therefore, in this section, we describe how CFs are used in production planning LPs in the
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literature. To this end, we summarize the derivation of the CF-based capacity constraints
as described in Asmundsson et al. (2009). The production planning LP that we use in
our approach is presented in Section 4.5.1. In addition, we describe how we estimate the
parameters for the (linearized) CFs. Table 4.1 summarizes the notation.

4.4.1 Derivation of CF-based capacity constraints

The main idea of using CFs is to model the maximum output of each machine group m as
a (non-linear) function fm of the available workload over a given period of time. To this
end, Lilt , the available number of orders of order type i at processing step l in period t is
modeled. In addition, Xilt describes the finished production of order type i in processing
step l in planning period t , and Zilt is the fraction of capacity at machine group zil allocated
to order type i at processing step l in planning period t .

In the following, we summarize the derivation of the capacity constraints using CFs, which
is based on Asmundsson et al. (2009).

The processed workload of order type i at processing step l in period t is limited by the
respective CF fzil based on the total available workload at machine group zil , and the total
capacity available at this machine group is allocated according to Zilt . Hence, the capacity
constraints are as follows:

ξil · Xilt ≤ Zilt · fzil

 I∑
i ′=1

∑
l ′∈{k |zil=zi′k}

ξi ′l ′Li ′l ′t

 ∀i , l , t (4.1)

I∑
i=1

∑
l∈{l ′|zil′=m}

Zilt = 1. ∀m, t (4.2)

Constraints (4.2) are required to ensure that the allocation of capacity to the single process-
ing steps is feasible.

The allocation of the capacity of a machine is assumed to be proportional to the mix of
WIP at the machine in the planning period:

ξil · Lilt = Zilt ·
I∑

i ′=1

∑
l ′∈{k |zil=zi′k}

ξi ′l ′ · Li ′l ′t . ∀i , l , t (4.3)
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Indices:
t , t ′ = 1, . . . ,T planning periods
m = 1, . . . ,M machine groups
i = 1, . . . , I order types
l = 1, . . . ,L processing steps (dependent on order type)
c ∈ C (m) line segments of the CF for machine group m
Parameters:
pl length of a planning period
procil expected processing time of processing step l of order type i
ξil expected capacity consumption of i in processing step l
zil machine group required for processing step l of order type i
δi time span between arrival and due date for order type i
contri contribution margin of order type i
hci ,wci , bci FGI holding/ WIP holding/ backlog costs rate for order type i
dit demand for i with due date at the beginning of planning period t
d
�x
it accepted demand for i with due date at the beginning of pl. period

t

fm (non-linear) CF for machine group m
C (m) set of line segments of the (linearized) CF at machine group m
αcm slope of c-th segment of CF for machine group m
βcm intercept of the c-th segment of CF for machine m
eil expected number of new planning periods that are entered during

processing step l of order type i
Wil0, Ii0,Bi0 initial values for WIP/ FGI/ backlog of order type i
Decision variables:
Rit = Xi0t amount of orders of type i released at the beginning of period t
Oit accepted demand of type i with due date at the beginning of period

t

State variables:
Xilt finished production of order type i in processing step l in planning

period t
Zilt fraction of capacity at machine zil allocated to order type i at

processing step l in period t
Lilt available number of orders of type i at processing step l in period

t

Wilt WIP of order type i at processing step l at the end of planning
period t

Iit FGI of order type i at the beginning of planning period t
Bit backlog from order type i at the beginning of planning period t

Table 4.1: Notation
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To be able to use the CF in an LP, we approximate fm by a piece-wise linear function. That
is, the output of each machine group m is limited by the minimum over the set of affine
functions C (m). The c-th line segment of the CF for machine group m is defined by the
slope αcm and the intercept βcm . Therefore, we define for a measure of WIP W :

fm(W ) ≈ min
c∈C (m)

{αcm ·W + βcm} . ∀m (4.4)

The parameters α and β must be estimated, which is discussed in the next subsection.

Finally combining (4.1), (4.3), and (4.4), we get the capacity constraints

ξilXilt ≤ αczil ξilLilt + βczilZilt . ∀i , l , t , c ∈ C (zil) (4.5)

4.4.2 Estimation of clearing function parameters

Next, we describe how to derive the parameters for the linearized CFs presented above.
Apart from a simulation-optimization approach (Kacar and Uzsoy, 2014b), which is very
time-consuming, linear regression approaches are mostly used to estimate CFs (Kacar and
Uzsoy, 2014a; Kacar et al., 2013).

In this paper, each CF is modeled by five line segments, where the first line segment is
fixed as α1 = 1 and β1 = 0, and the last line segment has a slope of zero (α5 = 0). The
procedure that we use to estimate CFs is as follows:

1. Generate available workload/output data using 100 independent simulation runs with
an expected load of about 70% and 85% of the bottleneck machine group.

2. Sort the data points by the available workload. Divide the data points in five sets Aj

(j = 1, . . . , 5) of the same size. Apply linear regression to fit each set Aj to an affine
function with parameters αj and βj for j = 2, 3, 4. β5 is initialized with the expected
maximum throughput in a planning period at the corresponding machine group.

3. Use these parameters as input for the iterative Levenberg-Marquardt algorithm
(Marquardt, 1963). Apply this algorithm to find vectors α and β with a small squared
difference of the data points to the function f (x ) = min{x , α2 · x + β2, α3 · x +

β3, α4 · x + β4, β5}.
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Figure 4.2: Example for different values of eil

4.5 Clearing function-based bid price approach

In this section, we present a heuristic solution approach to the problem described in Section
4.3. We develop a bid price-based RM approach that uses a production planning LP with
CF-based capacity constraints to capture the non-linear relationship of workload and lead
times in stochastic production systems.

We use this LP to compute bid prices via the randomized linear programming (RLP)
approach (Talluri and van Ryzin, 1999). The bid prices are aggregated to estimate the
opportunity costs of using capacity. Then, upon arrival of each order, acceptance is decided
based on the opportunity costs using the LP. At the beginning of each planning period, the
set of released orders is selected, again using the opportunity costs via the LP.

First, we develop the production planning LP using CFs in the capacity constraints as
shown in Section 4.4.1. This LP is the basis for the RM approach described afterwards.
Next, the computation of opportunity costs is presented. Then, the order acceptance and
the order release mechanisms are explained.

4.5.1 CF-based LP

In this subsection, we present the linear constraints that model the production system
under the assumption of deterministic demand using linearized CFs as described in Section
4.4.1. Different objective functions are used for bid price computation, order acceptance
decisions, and order release decisions, which are defined in Sections 4.5.2, 4.5.3, and 4.5.4,
respectively.

In the considered problem, the lead time of an order may exceed the length of a planning
period. As we consider individual orders, which are built to order, it is important to know
when an order must be released to complete production on time. Therefore, we introduce
an offset parameter eil , which approximates the expected number of new planning periods
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that are entered during processing step l of order type i by assuming that orders do not
wait within in the production system. Therefore, eil is defined as the difference between
the number of entered planning periods until processing step l is finished and the number
of entered planning periods until processing step l − 1 is finished (under the assumption
that orders do not wait within in the production system):

eil :=

⌊
1

pl

l∑
l ′=1

procil ′

⌋
−

⌊
1

pl

l−1∑
l ′=1

procil ′

⌋
. ∀i , l (4.6)

See Figure 4.2 for an example.

Following this definition, we define the available workload of order type i in processing
step l in period t as the sum of Wilt−1, the WIP of order type i at processing step l at the
end of planning period t − 1 and the finished production of order type i at the previous
processing step eil planning periods earlier:

Lilt := Wi ,l ,t−1 + Xi ,l−1,t−eil . ∀i , l , t (4.7)

Next, we introduce additional notation to describe the production process. Rit is defined as
the decision about the number of orders released of order type i at the beginning of planning
period t . The FGI and the backlog of order type i at the beginning of planning period t are
given by Iit and Bit , respectively. Let Oit denote the decision about the accepted demand
of order type i with due date at the beginning of planning period t and let dit and d

�x
it

denote the demand and the already accepted demand for order type i with due date at the
beginning of planning period t , respectively.

The following constraints describe the production process:

Wilt = Wi ,l ,t−1 − Xilt + Xi ,l−1,t−eil ∀i , l , t (4.8)

Iit − Bit = Ii ,t−1 − Bi ,t−1 + Xi ,L,t−1−eil −Oit − d
�x
it ∀i , t (4.9)

Oit ≤ dit ∀i , t (4.10)

ξilXilt ≤ αczil ξilLilt + βczilZilt ∀i , l , t , c ∈ C (zil)

(4.11)
I∑

i=1

∑
l∈{l |zil=m}

Zilt = 1 ∀m, t (4.12)
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t∑
t ′=0

Rit ′ ≤
t+δi−1∑
t ′=0

(d�xit ′ +Oit ′) ∀i , t (4.13)

BiT = 0 ∀i (4.14)

Iit ,Oit ,Bit ,Zilt ,Xilt ,Wilt ≥ 0 ∀i , l , t (4.15)

with Rit = Xi ,0,t .

Constraints (4.8) model the WIP of each order type in each processing step in each planning
period. The WIP of each order type in each processing step consists of the WIP of the
former period subtracted by the finished products in this period and including the new
products at this processing step, which correspond either with the finished products of
the previous processing step or with new released orders if l is the first processing step.
If during this processing step new planning periods have begun according to eil , the
intermediate products finished eil planning periods earlier are received. The FGI is modeled
by equalities (4.9). Note that Iit ,Bit ,Oit , and d�xit are related to the beginning of a planning
period. Therefore, the inventory of a certain order type is increased by products that have
finished their last processing step in the former planning period. The accepted demand
for this period and the backlogged orders of the former period are subtracted. If the
demand cannot be fully satisfied, the remaining products are added up to the backlog of the
next period. Inequalities (4.10) make sure that the accepted demand does not exceed the
available demand. Constraints (4.11) and (4.12) describe the available production capacity
and are discussed in Section 4.4.1. Constraints (4.13) ensure that orders are only released if
a corresponding order is accepted, which is necessary because we assume that production
is order-driven. Hence, the cumulative amount of releases in each planning period must not
exceed the accepted demand that arrived until the previous planning period (cf. Assumption
4.3.4). t is set off by δi periods because the due date of an order is δi periods after its
arrival. Constraints (4.14) are required to ensure that all accepted demand is satisfied within
the planning horizon. Constraints (4.15) describe the non-negativity of the used decision
variables.

Compared to the model formulation of Asmundsson et al. (2009), constraints (4.10) and
(4.13) are added because we consider order acceptance decisions and the production is
order-driven, while in Asmundsson et al. (2009), all demand must be satisfied, and make-
to-stock production is assumed. In addition, we introduce the parameter eil to estimate the
time between release and finish period of an order. Apart from these differences, compared
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to the model presented in Brahimi et al. (2015), we allow partial order acceptance, while
they model order acceptance using binary variables.

4.5.2 Opportunity costs

To compute bid prices, the problem is modeled by a profit-maximizing LP with constraints
(4.8) - (4.15). As is common in literature (Simpson, 1989; Williamson, 1992; Talluri and
Van Ryzin, 2004), the primal decisions are discarded and the values of the dual variables
corresponding with the capacity restrictions in an optimal solution are used as a measure
for the opportunity costs of using these resources. In RLP, demand scenarios s = 1, . . . , S

are generated and the resulting average bid prices are used. Instead of using a fixed number
of demand scenarios, we iteratively update the bid prices until the change of the bid prices
drops below a certain threshold (c.f. Guhlich et al., 2015b).

The objective function to be maximized is defined as

I∑
i=1

T∑
t=1

(
contriOit −

L∑
l=1

wciWilt − hciIit − bciBit

)
. (4.16)

This function describes the contribution margin of the accepted orders minus WIP/FGI
holding and backlog costs.

The question arises from which constraints the shadow prices should be taken. Similar
to Asmundsson et al. (2004), we use the shadow prices of constraints (4.11) (defined as
bpiltcs in demand scenario s) as a measure for the marginal costs of one unit of capacity.
As at most two line segments of a CF are binding (Asmundsson et al., 2004), we take
the maximum over all line segments to derive the opportunity costs for using one unit of
capacity for processing step l of order type i in planning period t in demand scenario s:

oppilts := max
c∈C (zil )

bpiltcs . ∀i , l , t , s (4.17)

With this definition, opportunity costs for different order types using the same machine
group may be different. That means, it is possible that a low value order must exceed a
lower bid price than a high value order to get accepted. Thus, a low value order might be
accepted, while a high value order is rejected although both require the same resources.
Therefore, we prefer common opportunity costs for all order types at a given machine
group. Numerical tests have shown that taking the minimum over all order types using a
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machine group leads to appropriate results. Hence, we define by

oppmts := min
{i ,l |zil=m}

oppilts ∀m, t , s (4.18)

the opportunity costs for using machine group m in planning period t in demand scenario
s .

Finally, we use the common approach in RLP and take the mean opportunity costs over all
demand scenarios:

oppmt :=
1

S

S∑
s=1

oppmts . ∀m, t (4.19)

4.5.3 Order acceptance decision

In this section, we describe how to make order acceptance decisions based on the oppor-
tunity costs computed before. In contrast to former RM approaches (e.g. Guhlich et al.,
2015b), we cannot just check feasibility and accept an order if its contribution margin
exceeds the opportunity costs of the used resources because it is unclear which capacities
are actually used as waiting is allowed within the production system.

Instead, we use an LP that penalizes all production according to the corresponding opportu-
nity costs and allows to accept the order in question. In this way, if the order is accepted,
additional production is required, which is penalized according to the opportunity costs.
On the other hand, the contribution margin is earned. Therefore, only orders for which the
contribution margin exceeds the opportunity costs for the required resources are accepted in
an optimal solution of the LP. Another advantage of this method is that it takes into account
that the acceptance of an order might generate additional backlog costs for previously
accepted orders.

To be precise, if an order of order type i ′ arrives with due date at the beginning of period
t ′, we set dit = 1 if i = i ′ and t = t ′, and dit = 0, otherwise. Then, we maximize the
following objective function

contri ′Oi ′t ′ −
I∑

i=1

T∑
t=1

(
hciIit + bciBit +

L∑
l=1

(wciWilt + oppzil tXilt)

)
(4.20)
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w.r.t. constraints (4.8) - (4.15). That is, the contribution margin is earned if the new order
is accepted but holding and backlog costs are incurred for all orders. Using production
capacity is penalized according to the opportunity costs to model the opportunity costs
of accepting the order. The order acceptance decision corresponds with the value of Oit

in an optimal solution of constraints (4.8) - (4.15) maximizing (4.20). Afterwards, d�xi ′t ′ is
updated accordingly.

4.5.4 Order release decision

At the beginning of each planning period, the set of released orders is selected. To this end,
we define a suitable objective function for the constraints (4.8) - (4.15). At this point in
time, no order acceptance decisions are to be made, i.e. Oit = dit = 0 for all i , t .

To take into account future arriving demand, we minimize the holding/backlog costs and the
production weighted by opportunity costs (cf. Guhlich et al., 2015b). Note that opportunity
costs for capacity in the current planning period can be set to 0 because in the next planning
period, this capacity can no longer be used. The objective function to be minimized is

I∑
i=1

T∑
t=1

(
hciIit + bciBit +

L∑
l=1

(wciWilt + oppzil tXilt)

)
. (4.21)

The decisions for the current planning period are taken, while order release decisions for
future periods are discarded.

Finally, the sequence in which orders are released must be determined. Here, the orders to
be released are sorted according to nondecreasing due dates. Ties are broken by selecting
the order with the higher backlog costs.

4.6 Numerical study

In literature on order release planning as well as in literature on RM, fixed lead time
approaches are commonly used to model production systems (Missbauer and Uzsoy, 2011;
Guhlich et al., 2015a). In order release planning, it has been shown that CF-based models
outperform approaches assuming fixed integer lead times in production systems with
variability (see e.g. Kacar et al., 2013). To show that this result can also be reached in an
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RM context, in this section, we compare the developed CF-based RM approach (CF-RM)1

presented in Section 4.5 with two RM approaches based on fixed lead times. In particular,
the RM approach developed in Guhlich et al. (2015a), which assumes no variability in
the production system and thus fixed lead times, serves as basis for these benchmark
algorithms. The first benchmark algorithm (Exp-RM) completely ignores the variability
in the production systems and simply uses the expected processing times as fixed lead
times, which is the easiest way to apply existing RM approaches in a production system
with stochastic influences. The second benchmark algorithm (FF-RM)2 uses lead times
estimated by the flow factor approach. Note that Exp-RM is a special case of FF-RM,
where the flow factor is equal to 1, i.e. no waiting time is modeled.

The algorithms are implemented in C++ using a Gurobi 6.0 solver. The simulation environ-
ment is provided by AutoSched AP. The numerical tests have been performed on a 3.20
GHz Intel Core i7 machine with 32 GB of RAM.

After presenting the experimental design, we assess the performance in multiple basic
production systems to show structural results. Then, we apply the algorithms to a model of
a real world like semiconductor back-end facility.

4.6.1 Experimental design

In this section, we describe the simulation environment, the demand settings, and the
applied algorithms.

Simulation environment

Order arrivals are simulated and order release plans are computed for all T planning
periods. Afterwards, the computed order release plans are executed in a simulation model
of the underlying production system. As the considered production systems have stochastic

1Bid prices are derived by generating new demand scenarios until the resulting bid prices converge (see
Section 4.5.2). That is, until the maximum relative difference of the bid prices changes by less than 5%
when including bid prices from new generated demand scenarios. To avoid premature convergence, at
least 10 demand scenarios are used. As convergence cannot be guaranteed and bid price computation is
computationally demanding, at most 30 demand scenarios are used.

2Like in the estimation of CFs (cf. Section 4.4.2), we use simulation data from 100 simulation runs with an
expected load of about 70% and 85% of the bottleneck machine to estimate cycle times. To be precise,
before each processing step, the orders perform an artificial processing step that requires no capacity and
takes the estimated waiting time. Thereby, it is modeled that capacity is required in later planning periods
and that the order finishes later.
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Figure 4.3: Simulation process diagram exemplifying when bid prices are (re-)computed
(BP), order acceptance decisions (OA), and order release decisions (OR) are
made.

influences, 20 simulation runs with different random seeds are performed for each order
release plan.

The general simulation process is depicted in Figure 4.3. At the beginning of each planning
period, order release decisions are made for the accepted orders that are not fully released
yet. Within each planning period, order acceptance decisions are made for the arriving
orders. Due to computational complexity, at the beginning of the planning horizon, we
consider only a fixed time window of N planning periods. Every N /2 periods, this time
window is is extended by N /2 planning periods so that again a total of N planning periods
is considered. This is done until the maximum amount of overall considered planning
periods T is reached. Numerical pre-test have shown that the influence on the results is
low if N is chosen sufficiently high. To incorporate information on which orders have been
accepted so far, bid prices are recomputed every N /2 planning periods taking into account
the future N periods.

To mitigate end-of-horizon effects, in the performance evaluation, only orders that finish
until N /2 planning periods before the end of the planning horizon earn profits. Holding
and backlog costs of accepted orders that arrive within this time frame are still taken into
account.

Similar to Kacar et al. (2013), the production system is filled with initial WIP computed
beforehand to avoid warm-up effects. Five different sets of orders are generated using
independent simulation runs of the production system. One of these sets is randomly
selected. To allow comparability, the same instances are selected for all algorithms.
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Figure 4.4: Mean demand over time for the three capacity factors with µdem = 2 and
T = 60

Demand settings

To model heterogeneous demand, we assume that multiple order types are available. The
number of orders of each order type arriving in each planning period t is drawn from a
negative binomial distribution with mean µdemt and coefficient of variation CV dem . This
distribution is commonly used in the literature (Ehrenberg, 1959; Agrawal and Smith,
1996; Quante et al., 2009; Guhlich et al., 2015b). We assume that there is a demand
peak in the planning horizon to model that demand exceeds capacity in the short term,
which is a typical situation in which RM approaches are applied. Therefore, the demand is
time-dependent, and we define

µdemt := cap · µdem · exp

(
−
(
t − T

2

)2
2 ·
(
T
6

)2
)

∀t , (4.22)

where µdem depends on the production system and cap determines the height of the demand
peak and thus the scarcity of capacity. We use three different capacity factors (1.1, 1.3, and
1.5) and two different values for CV dem (0.75 and 1.0). Figure 4.4 shows an exemplary
graph depicting the mean demand over a planning horizon.

To account for the higher willingness to pay of customers with urgent orders, high, medium,
and low value order types request a lead time of 2, 3, and 4 periods, respectively. We use
two different sets of contribution margins to model different profit heterogeneity settings.
Table 4.2 shows the contribution margins for the different order types in these settings.
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Factor Level Count

Capacity factor cap {1.1; 1.3; 1.5} 3
Coefficient of variation CV dem of arriving demand {0.75; 1.0} 2
Contribution margin contrd dependent on order type {(300/200/100); 2

(500/300/100)}
FGI/WIP holding/Backlog cost rate hc/wc/bc rel. to contrd {(0.5%/0.25%/5%); 3

(1%/0.5%/10%);
(2%/1%/20%)}

Table 4.2: Demand parameters used in the numerical study

Backlog and holding costs are proportional to the contribution margin of an order. We
examine three different cost settings, which are also shown in Table 4.2.

For each demand setting, we generate 20 different demand instances according to the given
probability distribution. As discussed before, we simulate each computed order release plan
with 20 different realizations of processing times. Overall, 3·2·2·3·20·20 = 14400 different
demand and processing time instances are simulated for each production environment.

4.6.2 Basic production systems

In this subsection, we consider basic production systems with stochastic influences. That is,
the effective processing times are stochastic, for example due to manual work or random
machine down times. Here, we evaluate, when it is necessary to model a production system
using CFs and when applying an approach that assumes fixed lead times is sufficient. To
be able to isolate the effects of stochastic variability, we test the algorithms in fairly basic
production environments. We first present the tested production environments and show
numerical results afterwards.

Production systems

In the considered production systems, three order types with the same capacity requirements
are available. Each order consists of 16, 000 single units so that partial acceptance and
partial deliveries are possible (cf. Assumption 4.3.3). The effective processing times at
each machine are lognormal distributed with mean µproc = 0.9 seconds and coefficient
of variation CV proc for each single unit leading to a mean processing time of 4 hours per
order at each visited machine. To test the effect of stochastic variability on the performance
of the algorithms, we use three different levels of CV proc (0.5, 1.0, and 1.5). In addition,
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Figure 4.5: Mean profit over all demand scenarios in different production ysystems

we test single-stage, 3-stage, and 5-stage flow shops, i.e. only a single machine is available
at each stage. As we consider all combinations of these two factors, overall, nine different
production systems are tested. For each production system, CFs and a flow factor are
estimated.

The considered planning horizon consists of 60 days divided into T = 60 planning periods
with a length of pl = 24 hours each. We choose µdem = 2 for each of the three order
types, which leads to a fraction of total available workload to total available capacity in the
planning horizon of about 104%, 112%, and 120% for the respective factor cap. Bid prices
are recomputed every N

2
= 10 planning periods.

Numerical results

Figure 4.5 shows the mean profits over all tested demand scenarios in the different produc-
tion systems. In addition, the 95% confidence intervals are indicated. The numerical values
are given in Table 4.3. The main results are as follows:

• CF-RM outperforms the benchmark algorithms assuming workload-independent,
fixed lead times in all considered production systems and the advantage of CF-RM
compared to the benchmark algorithms increases with increasing variability.

• Considering variability in the production process by modeling workload-independent,
fixed waiting times only slightly improves the results compared to completely ig-
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Prod. system Mean profit

M CV proc CF-RM Exp-RM FF-RM

1 0.5 72849±278 72052±277 72052±277
1.0 69052±282 66863±291 66863±291
1.5 65694±296 60629±353 60629±353

3 0.5 67060±262 61029±276 61029±276
1.0 59465±253 43654±363 47589±344
1.5 53070±264 26213±533 30934±498

5 0.5 61923±245 50176±304 53754±294
1.0 50322±223 20329±478 23110±470
1.5 37877±250 -12266±717 -10241±722

Table 4.3: Mean profits in all tested production systems including 95% confidence intervals

noring stochasticity. It is also required to adapt capacities to make reasonable order
acceptance decisions as is done by CF-RM via the CFs.

It can also be seen that overall the obtained profits decrease with increasing variability in
the production system. That is, with an increasing number of machines with stochastic
influences and with an increasing coefficient of variation. This is intuitive because stochastic
variability leads to longer cycle times. Thus, less orders can be accepted. As CF-RM
is based on CFs, which consider the non-linear relationship between load and output in
stochastic production systems, CF-RM is able to manage increasing variability better than
the approaches that assume fixed lead times.

For all single-stage production systems and for the 3-stage production system with low
CV proc , the results for Exp-RM and FF-RM coincide because here, the expected lead time
including waiting times does not exceed one planning period.

Table 4.4 shows the fill rates, that is, the percentage of accepted orders, for all algorithms
in all tested production systems. In general, the algorithms show a similar behavior. They
accept most of the high and medium value orders, while low value orders are rejected
dependent on the load of the system. With a higher variability, the fill rates for CF-
RM decrease, while they remain relatively unchanged for the fixed lead time approaches.
Especially Exp-RM accepts almost the same number of orders independent of the variability
in the production system. This can be explained by the fact that the different CFs indicate
that less orders can be produced in production systems with high variability. Exp-RM does
not differentiate at all because the expected values remain the same and for FF-RM, only
longer lead times are indicated. However, the number of accepted orders is not so much
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Prod. system FillRates

M CV proc CF-RM Exp-RM FF-RM

1 0.5 99.9/98.7/50.6 99.8/98.5/52.5 99.8/98.5/52.5
1.0 99.9/98.7/46.8 99.8/98.5/53.3 99.8/98.5/53.3
1.5 99.9/98.2/32.3 99.8/98.5/53.1 99.8/98.5/53.1

3 0.5 99.9/98.3/33.0 99.8/98.5/52.2 99.8/98.5/52.2
1.0 99.7/96.9/19.8 99.8/98.5/52.2 99.6/98.4/47.7
1.5 99.4/93.4/7.3 99.8/98.5/52.2 99.6/98.4/47.7

5 0.5 99.7/96.9/16.3 99.8/98.5/52.1 99.7/98.4/47.3
1.0 98.8/88.4/6.2 99.8/98.5/52.1 99.1/97.7/50.8
1.5 98.1/81.8/1.3 99.8/98.5/52.1 97.9/97.2/53.3

Table 4.4: FillRates (High/Medium/Low value orders) in all tested production systems

Prod. system Costs

M CV proc CF-RM Exp-RM FF-RM

1 0.5 1.5/1.3/12.3 1.3/1.4/14.8 1.3/1.4/14.8
1.0 1.4/1.9/20.3 1.1/2.1/27.4 1.1/2.1/27.4
1.5 1.7/2.3/26.0 1.1/3.0/44.1 1.1/3.0/44.1

3 0.5 0.6/2.7/22.9 0.3/3.3/42.8 0.3/3.3/42.8
1.0 0.5/3.8/41.6 0.2/5.7/89.0 0.2/5.4/78.5
1.5 0.5/4.8/58.0 0.1/8.1/136.5 0.2/7.7/124.5

5 0.5 0.3/3.6/34.1 0.1/4.9/72.6 0.1/4.7/62.6
1.0 0.2/5.3/63.3 0.0/9.0/153.8 0.0/8.9/146.7
1.5 0.1/7.4/103.8 0.0/13.4/242.3 0.0/13.4/236.7

Table 4.5: Costs (FGI/WIP/backlog costs per accepted order) in all tested production sys-
tems

affected because the required capacities remain unchanged based on the mean effective
processing times.

Table 4.5 shows the resulting cost components for the algorithms in all tested production
systems. The WIP holding and backlog costs per order increase for all approaches with
increasing variability, which is in line with expectations. However, the increase is a lot
higher for the approaches assuming fixed lead times than for CF-RM because here, the
non-linear dependency of load and lead times is considered and thus, as seen before, the fill
rates are reduced in case of higher variability. The high fill rates for Exp-RM and FF-RM
lead to rather high backlog costs and imply that these approaches probably accept too
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Figure 4.6: Mean number of released orders of CF-RM of different order types over the
planning horizon in all production systems

much orders. Therefore, the lead times used in Exp-RM and FF-RM are not valid anymore
because they were estimated under the assumption of a lower load.

From these results, we conclude that the applicability of the flow factor approach in this
problem setting is limited. In the order release decision literature, the approximate load of
a production system is given because the set of orders to be released is fixed. Therefore, the
expected lead time of orders can be estimated. However, in the considered problem setting,
orders can be rejected and thus, the load of the system and therefore also the cycle times
depend on the order acceptance decisions. In order to make reasonable order acceptance
decisions, the required capacities must also be adapted, which is modeled by CF-RM via
the CFs but ignored in the flow factor approach.

The influence of different demand scenarios on the performance of RM approaches has
already been studied in literature, see e.g. Guhlich et al. (2015a). Therefore, we do not
discuss this topic in detail.

Finally, we examine the influence of the demand peak on the order release decisions over
time. Figure 4.6 shows the mean number of released orders of CF-RM over the planning
horizon in all production systems. It can be seen that during the demand peak the number
of released low value orders decreases. At the same time, the number of high value orders
released increases because more high value orders are accepted during the peak. The
release of the medium value orders is delayed slightly after the peak. The graph looks
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m Name m Name m Name m Name

1 Dicing 7 WireBonding 13 Singulation 19 SMT
2 Lamination 8 Cleaning 14 Load / Unload 20 SolderReflow
3 BacksideGrinding 9 Molding 15 BurnIn 21 ModuleTest
4 DieBonding 10 PostMoldCure 16 LoSpeedTest 22 ApplicationTest
5 Curing 11 BallAttach 17 HiSpeedTest 23 Q Gate
6 Cleaning_MD 12 Reflow 18 MSP

Table 4.6: Machine groups in the semiconductor back-end facility

similar for Exp-RM and FF-RM with the difference that in general notably more low value
orders are accepted and thus also released with these algorithms.

4.6.3 Semiconductor back-end facility

To confirm that the results derived in the last section hold also in a more real world like
setting, we now consider the model of a back-end semiconductor facility already used in
Ehm et al. (2011). After describing the production environment, we present numerical
results.

Production system

The production system consists of 23 machine groups, see Table 4.6 for a brief explanation
of their purpose. Six order types are available, where order types 1, 2, and 3 and order types
4, 5, and 6 have the same routing as shown in Figure 4.7. Table B.2 in the appendix depicts
the required machine group m and the required processing time for a single chip in each
processing step l . Each order relates to a lot of 16000 chips. At machine group 7, the order
is split in 3 lots of equal size for processing. Machine group 15 is a batching machine, i.e. a
batch is built of up to 3000 chips, which are then produced in parallel. The processing time
at this machine group relates to the processing time for a whole batch. Machine group 16 is
subject to random down times with exponential distributed mean time to failure of 4 hours
and exponential distributed mean time to repair of 0.75 hours. The number of identical,
parallel machines for each machine group and the sequence dependent setup times are also
given in Table B.2 in the appendix. Orders are processed in a FCFS manner on each machine
group. In case of required set-ups, orders that require the set-up that is already installed
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Figure 4.7: Sequence in which machines are visited

CF-RM Exp-RM FF-RM

Mean profit 613511 533974 556506
Fill rates - Order types 1,2,3 100/98.7/28.3 99.9/99.2/59.4 99.8/99.2/55.9
Fill rates - Order types 4,5,6 99.8/95.3/10.2 99.8/98.2/49.1 99.8/99.0/44.0
Costs 0.6/5.1/22.2 0.3/5.6/45.0 0.4/5.4/39.8

Table 4.7: Simulation results for semiconductor back-end facility

on the machine are processed with higher priority. Exact specifications can also be found
online at http://p2schedgen.fernuni-hagen.de/index.php?id=242.

We consider a planning horizon of 90 days divided into 30 planning periods with a length
of 72 hours each. We use longer planning periods in this model because the lead times
of the products are also notably longer. We choose µdem,1 = 23 for the order types 1,
2, and 3 and µdem,2 = 11.5 for the order types 4, 5, and 6, which leads to a fraction of
total available workload to total available capacity in the planning horizon of about 106%,
112%, and 118% for the respective factor cap. Bid prices are recomputed already every
N
2
= 5 planning periods because in this scenario, the arrival rate is much higher than in

the basic production systems so that information on accepted orders must be updated more
frequently.

Numerical results

Table 4.7 shows the simulation results for the semiconductor back-end facility. They are
similar to the results derived in the basic production systems. CF-RM clearly outperforms
the benchmark algorithms that assume fixed lead times. The main difference is in the
fill rates, which lead to high backlog costs for the algorithms that assume fixed lead
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times. Therefore, we conclude that also in a more real-world like production setting, the
application of a RM approach based on CFs is beneficial.

4.7 Conclusion and further research

In this paper, we consider the order acceptance and order release decisions of a manufac-
turer using a production system with stochastic influences and facing stochastic demand.
We develop a novel bid price-based RM approach using CFs to capture the non-linear
relationship of workload and lead times. This algorithm combines the ideas of bid price-
based RM with order release planning based on CFs. Bid prices are computed based
on an LP modeling the production system with CFs. The order acceptance and order
release decisions are based on a similar LP using the previously computed bid prices in the
objective function.

In a numerical study, we test nine production systems with different levels of variability
and one model of a real-world like semiconductor back-end facility. We show that simply
replacing stochastic processing times by their expected values leads to rather poor results
in case of stochastic variability in the production system. In addition, using a common
approach in practice and literature, which integrates simulated waiting time estimates, only
slightly improves the results.

In the present paper, we assume that during the planning horizon neither updated demand
data nor feedback from the execution level is available. If updated demand forecasts are
available, they can easily be used in the bid price computation. However, it would be
interesting to examine the effects of using more advanced forecast evolution models (see
e.g. Albey et al., 2015). In addition, extending the presented approach to use updated
production data provides a promising avenue for further research. In the present paper,
it is possible that the LP (4.8) - (4.15) is rendered infeasible if the actual processing
times exceed the expected values. Also, in the current paper, unlimited availability of
intermediate materials is assumed. Considering this factor might be an interesting future
research direction. Furthermore, the proposed approach could be tested in larger production
systems with more order types that have different routings to see if the observed results
still hold.
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5 Conclusions and Outlook

5.1 Conclusions

This thesis considers bid price-based revenue management approaches to make the demand
management decisions of a manufacturer in different order-driven production environments
under the assumption of stochastic, heterogeneous demand and scarce capacities.

It can be concluded that the concept of bid price-based revenue management approaches is
applicable in many different production environments. The general methodology is similar
in all three articles. The production system is modeled as a linear program and bid prices
are derived from the capacity constraints. Then, these bid prices are used to decide about
order acceptance and order releases. Differences stem from the considered production
systems and assumptions on the demand fulfillment processes.

In the first article, a manufacturer using the assemble-to-order production principle is
considered. Here, a deterministic single-stage assembly process is assumed, where both
intermediate materials and production capacity are scarce resources. The second and third
article consider manufacturers using the make-to-order production principle without scarce
intermediate materials. In particular, the second article analyzes a deterministic no-wait
multi-stage production system, and the third article examines a stochastic multi-stage
production system.

Accordingly, the linear programs describing the production systems are different. In the
first and second article, deterministic capacity consumption under the assumption of no
waiting in the production system is modeled. For the first article, additional inventory
balance equations for the intermediate materials are included in the model. In the third
article, the production system is modeled using clearing functions to consider waiting times
during the production process, which is important in the case of stochastic processing times.
Here, work in process inventory is explicitly modeled for each planning period.
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The aggregation of bid prices to opportunity costs for accepting an order differs in the
three articles due to the different capacity constraints in the respective linear programs. In
addition, in the first article, a due date is quoted, which must be kept. Here, backlog costs
depend only on the quoted due date, while holding costs depend on the actual delivery date.
In the other two articles, backlog and holding costs depend only on the actual delivery date
leading to different decisions to be made.

Although no optimal policies could be derived for instances of realistic size, the presented
heuristic approaches perform well. In the first two articles, the developed heuristics
are compared with ex-post optimal solutions. The results suggest that the computed
solutions are very close to optimal solutions. This is noteworthy because in the ex-post
optimal solution, information on all incoming demand is available, while the revenue
management approaches only have information on the probability distribution of the
incoming demand. In addition, it is shown that the developed approaches significantly
increase profits compared to simple decision rules (FCFS) and existing approaches from
literature.

5.2 Further research directions

This thesis provides insights how to apply revenue management for order-driven manufac-
turing. Nevertheless, there are still some possible future research areas.

In the first article, intermediate materials are considered, while in the other two articles
they are disregarded. It might be interesting to combine the first and the third article to
model a stochastic multi-stage production process with scarce intermediate materials. Here,
intermediate materials could be required at multiple stages of the production. It might even
be possible to model the production of the intermediate materials.

If intermediate materials are required, the company might have the opportunity to use high
value products to satisfy low value demand. In addition, customers might buy substitute
products if their order has been rejected. These factors are disregarded in this thesis.

Furthermore, in this thesis it is assumed that demand follows a known probability distri-
bution. However, in practice, it is difficult to determine these probability distributions.
Therefore, the robustness of the demand management process with regard to uncertainty in
the probability distribution of the demand should be examined. In a next step, one could
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think of approaches that do not use probability distributions but more rough estimates on
incoming demand, which are easier to predict.

All articles assume a finite planing horizon although many products have in principle an infi-
nite selling season. Taking a rolling planning horizon approach, more information becomes
available over time and the question is how to incorporate it in the presented approaches.
Incorporating updated forecast information can be done by using these forecasts in the bid
price update. However, it is interesting to see what effect a more accurate modeling of
demand forecasts has on the results. If the production system cannot be modeled exactly,
like in a stochastic production system, information from the actual production process
might be updated. It is unclear how to incorporate this in the given approaches because the
linear programs modeling the production processes might become infeasible if production
takes longer than planned.

We found that solving the stochastic dynamic programs describing the problems considered
in this thesis is computationally intractable because of the high dimensionality of the
resulting state space. Therefore, we developed heuristic approaches to solve instances of
realistic size. It would be interesting to find out what makes these problems so hard to
solve. Is it for example possible to solve the stochastic dynamic programs if the scheduling
decisions are fixed?
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Appendix A

Product type 1 Product type 2 Number machines
i m capdim i m capdim m aim

0 0 0.04 0 0 0.04 0 7
0 1 0.04 0 1 0.04 1 7
0 2 0.04 0 2 0.04 2 7
0 3 0.13 0 3 0.13 3 21
0 4 0.33 0 4 0.33 4 42
0 6 0.29 0 5 0.13 5 14
0 7 0.13 0 6 0.29 6 45
1 7 0.13 1 3 0.13 7 28
1 8 0.04 1 4 0.33 8 7
1 9 0.29 1 5 0.13 9 35
1 10 0.04 1 6 0.17 10 7
1 11 0.29 1 7 0.25 11 35
1 12 0.08 2 6 0.13 12 10
1 13 0.04 2 7 0.25 13 7
1 14 0.08 2 8 0.04 14 56
2 13 0.04 2 9 0.29 15 35
2 14 0.92 2 10 0.04 16 14
2 15 0.04 2 11 0.25 17 7
3 15 0.62 3 11 0.04 18 3
3 16 0.13 3 12 0.08 19 3
3 17 0.04 3 13 0.04 20 7
3 18 0.04 3 14 0.83 21 87
3 19 0.04 4 14 1 22 3
3 20 0.04 5 13 0.04
3 21 0.08 5 15 0.67
4 21 0.67 5 16 0.13
4 22 0.04 5 17 0.04

5 18 0.04
5 19 0.04
5 20 0.04
6 21 0.75
6 22 0.04

Table A.1: Capacity requirements for both product types (capdim = 0 for all i ,m not shown
in the table) and number of machines per machine group in Complex production
system
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Appendix B
Order types 1,2,3 Order types 4,5,6 Num mach. Setups

setup setup current next
l m time[s] config. l m time[s] config. m num config. config. time[min]

1 1 0.316 - 1 1 0.316 - 1 7 ind S1 90
2 2 0.316 - 2 2 0.316 - 2 7 ind S2 15
3 3 0.316 - 3 3 0.316 - 3 7 ind S3 120
4 4 0.6 S1 4 4 0.6 S9 4 21 ind S4 30
5 5 1.898 - 5 5 1.898 - 5 42 ind S5 30
6 7 4.74 - 6 6 0.632 - 6 14 S7 S6 90
7 8 1.266 - 7 7 4.74 - 7 45 S14 S6 180
8 9 0.316 - 8 8 1.266 - 8 28 S15 S6 270
9 10 1.562 - 9 4 0.6 S9 9 7 S6 S7 60

10 11 0.316 S2 10 5 1.898 - 10 35 S14 S7 240
11 12 1.582 - 11 6 0.632 - 11 7 S15 S7 180
12 13 0.474 S3 12 7 4.74 - 12 35 ind S8 90
13 14 0.316 S4 13 8 1.266 - 13 10 ind S9 90
14 15 86400 - 14 9 0.316 - 14 7 ind S10 15
15 14 0.316 S5 15 10 1.562 - 15 56 ind S11 120
16 16 1.898 S6 16 11 0.316 S10 16 35 ind S12 30
17 16 1.898 S7 17 12 1.582 - 17 14 ind S13 30
18 17 0.632 S8 18 13 0.474 S11 18 7 S6 S14 180
19 18 0.316 - 19 14 0.316 S12 19 3 S7 S14 270
20 19 0.158 - 20 15 158400 - 20 3 S15 S14 90
21 20 0.158 - 21 14 0.316 S13 21 7 S6 S15 240
22 21 0.316 - 22 16 1.898 S14 22 87 S7 S15 180
23 22 3.956 - 23 16 1.898 S15 23 3 S14 S15 60
24 23 0.158 - 24 17 0.632 S16 ind S16 90

25 18 0.316 -
26 19 0.158 -
27 20 0.158 -
28 21 0.316 -
29 22 3.956 -
30 23 0.158 -

Table B.2: Processing steps with required setup configurations for all order types, number
of parallel machines, and setup times in the considered semiconductor back-end
facility. If the setup time is independent of the former installed setup, this is
indicated by “ind”.
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