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Abstract

In this thesis, we study methods to leverage information from fully-structured knowledge bases
(KBs), in particular the encyclopedic knowledge graph (KG) DBpedia, for different text-related
tasks from the area of information retrieval (IR) and natural language processing (NLP). The
key idea is to apply entity linking (EL) methods that identify mentions of KB entities in text,
and then exploit the structured information within KGs. Developing entity-centric methods for
text understanding using KG exploration is the focus of this work.

We aim to show that structured background knowledge is a means for improving performance in
different IR and NLP tasks that traditionally only make use of the unstructured text input itself.
Thereby, the KB entities mentioned in text act as connection between the unstructured text and
the structured KG. We focus in particular on how to best leverage the knowledge as contained in
such fully-structured (RDF) KGs like DBpedia with their labeled edges/predicates – which is in
contrast to previous work on Wikipedia-based approaches we build upon, which typically relies
on unlabeled graphs only. The contribution of this thesis can be structured along its three parts:

In Part I, we apply EL and semantify short text snippets with KB entities. While only retrieving
types and categories from DBpedia for each entity, we are able to leverage this information
to create semantically coherent clusters of text snippets. This pipeline of connecting text to
background knowledge via the mentioned entities will be reused in all following chapters.

In Part II, we focus on semantic similarity and extend the idea of semantifying text with entities
by proposing in Chapter 5 a model that represents whole documents by their entities. In this
model, comparing documents semantically with each other is viewed as the task of comparing
the semantic relatedness of the respective entities, which we address in Chapter 4. We propose
an unsupervised graph weighting schema and show that weighting the DBpedia KG leads to
better results on an existing entity ranking dataset. The exploration of weighted KG paths turns
out to be also useful when trying to disambiguate the entities from an open information extrac-
tion (OIE) system in Chapter 6. With this weighting schema, the integration of KG information
for computing semantic document similarity in Chapter 5 becomes the task of comparing the two
KG subgraphs with each other, which we address by an approximate subgraph matching. Based
on a well-established evaluation dataset for semantic document similarity, we show that our un-
supervised method achieves competitive performance similar to other state-of-the-art methods.
Our results from this part indicate that KGs can contain helpful background knowledge, in par-
ticular when exploring KG paths, but that selecting the relevant parts of the graph is an important
yet difficult challenge.

In Part III, we shift to the task of relevance ranking and first study in Chapter 7 how to best
retrieve KB entities for a given keyword query. Combining again text with KB information, we
extract entities from the top-k retrieved, query-specific documents and then link the documents
to two different KBs, namely Wikipedia and DBpedia. In a learning-to-rank setting, we study
extensively which features from the text, the Wikipedia KB, and the DBpedia KG can be helpful
for ranking entities with respect to the query. Experimental results on two datasets, which build
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upon existing TREC document retrieval collections, indicate that the document-based mention
frequency of an entity and the Wikipedia-based query-to-entity similarity are both important
features for ranking. The KG paths in contrast play only a minor role in this setting, even when
integrated with a semantic kernel extension. In Chapter 8, we further extend the integration of
query-specific text documents and KG information, by extracting not only entities, but also rela-
tions from text. In this exploratory study based on a self-created relevance dataset, we find that
not all extracted relations are relevant with respect to the query, but that they often contain infor-
mation not contained within the DBpedia KG. The main insight from the research presented in
this part is that in a query-specific setting, established IR methods for document retrieval provide
an important source of information even for entity-centric tasks, and that a close integration of
relevant text document and background knowledge is promising.

Finally, in the concluding chapter we argue that future research should further address the inte-
gration of KG information with entities and relations extracted from (specific) text documents,
as their potential seems to be not fully explored yet. The same holds also true for a better KG
exploration, which has gained some scientific interest in recent years. It seems to us that both as-
pects will remain interesting problems in the next years, also because of the growing importance
of KGs for web search and knowledge modeling in industry and academia.
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Zusammenfassung

In dieser Arbeit wird die Nutzung von strukturierten Wissensbasen, insbesondere des enzyk-
lopädische DBpedia Knowledge Graphs, für verschiedene Problemstellungen aus dem Bereich
des Information Retrieval (IR) und des Natural Language Processing (NLP) untersucht. Im Zen-
trum steht dabei die Idee, Textdokumente mithilfe existierender Entity Linking Methoden zu den
Entitäten dieser Wissensgraphen zu verlinken, und somit die Erschliessung des externen Hinter-
grundwissens aus diesen Wissensbasen zu ermöglichen. Der wesentliche Beitrag dieser Arbeit
liegt in der Entwicklung von Methoden zur Erschließung von Wissensgraphen für im Kontext
verschiedener Aufgabenstellungen des IR und NLP.

Im ersten Teil der Arbeit (Teil I) wird ein Verfahren zum Search Results Clustering entwick-
elt, in welchem die Dokumentenergebnisse von mehrdeutigen Suchanfragen in semantisch ko-
härente Gruppen von Dokumenten zusammengefasst werde. Hierfür werden Textfragmente
der Suchergebnisse semantifiziert, indem im Text genannte Entitäten zu deren entsprechenden
Repräsentationen in der DBpedia Wissensbasen verknüpft werden. Von dieser Wissensbases
kann im Anschluss Hintergrundwissen bezogen werden, um das Clustering zu verbessern.

Im darauffolgenden Teil II wird dieser Ansatz der Verknüpfung von Text und Wissensbasis
weiter vertieft, indem die Bestimmung der semantische Ähnlichkeit von Textdokumenten (Se-
mantic Document Similarity) mithilfe einer Projektion derselben in den Wissensgraphen er-
möglicht wird. Das Problem der semantisch Ähnlichkeit wird somit auf den paarweisen Ver-
gleich zweier Teilgraphen reduziert, welcher dann durch eine Approximation der Graph Edit
Distance (GED) zwischen diesen gelöst wird. Der hierfür notwendige semantische Vergleich
von einzelnen Entitäten (Semantic Relatedness) wird dabei durch die Berechnung von kürzesten
Pfaden innerhalb des Wissensgraphen ermöglicht. Aufgrund der hohen Anzahl an Kanten und
Pfade innerhalb des Graphen wird ein informationstheoretisches Gewichtungsschema vorgeschla-
gen, welches Pfade nach deren Informationsgehalt gewichtet. Das Gesamtverfahren wird mit
etablierten Referenzdatensätzen evaluiert und gegen alternative Methoden verglichen.

Im Teil III findet eine Erweiterung des Problemhorizontes statt, indem das Problem der An-
fragerelevanz (query relevance) betrachtet wird, d.h. die Frage, wie Suchanfragen mithilfe von
Entitäten anstelle von Textdokumenten beantwortet werden können. Hierzu wird die in Teil I
vorgestellte Methode der Semantifizierung von Suchergebnissen genutzt, um relevante Entitäten
aus den Dokumenten zu extrahieren. Eine sinnvolle Sortierung der Entitäten wird im Anschluss
durch eine Kombination verschiedener Signale, basierend auf den Informationen der relevante
Dokumente, aber auch aufgrund des Hintergrundwissens von semi- und vollstrukturierten Wis-
sensbasen, erreicht. Im finalen Kapitel wird in einem explorativen Ansatz die Relevanz von
Relationen aus Textdokumenten untersucht und die Frage der Kombination von text- und wis-
sensbasenbasierten Informationsdarstellungen aufgeworfen.

Im abschließenden Ausblick auf zukünftige Forschungsfragen wird insbesondere auf das Ver-
hältnis von textbasierten und wissensbasisbasierten Informationen, und deren Rolle für die Weit-
erentwicklung in Richtung einer echten semantischen Informationssuche diskutiert.
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Chapter 1

Introduction

Assisting humans when working with natural language text (documents) is the focus of two well-
established areas of computer science, namely information retrieval (IR) and natural language
processing (NLP). While IR comes traditionally from the task of finding relevant text document
for a user, NLP is focused on the more fine-grained text processing, often at the sentence level.
Tasks are here for example to identify grammatical structures or to compare the meaning, i.e. the
semantic, of words or sentences. Both research areas have in common that they build upon the
data at hand, i.e. e.g. the document to be retrieved, but often also include additional information,
called background knowledge, that is not explicitly contained within the data at hand. This
approach of combining different knowledge sources is used for example to overcome challenges
like the vocabulary (mismatch) problem: A user is looking for a document mentioning “a coastal
fish”, but when applying a purely syntactic word matching, it is hard for a computational method
to retrieve a document which mentions the “lumpfish” – even though this is a well-known coastal
fish and the document should be retrieved. Such encyclopedic knowledge, that a lumbfish is a
coastal fish, is usually formalized within knowledge bases (KBs).

In this thesis, we will explore in which ways IR and NLP tasks can benefit from the usage of
general, encyclopedic KBs like DBpedia. In the following, we will first outlay our motivation
and the overall context of this thesis, before presenting the thesis structure in Section 1.2.

1.1 Motivation

In recent years, significant efforts have been made to build such wide-coverage KBs like DB-
pedia, Yago, or Freebase (Bizer et al., 2009; Suchanek et al., 2008; Bollacker et al., 2008), which
are often (partially) derived from Wikipedia and which have become popularly known as KGs.1

Those KGs contain factual knowledge about real world entities and their relations and attributes
in a fully machine-readable format. They contain, e.g. the fact that the aforementioned lumpfish
is a coastal fish, and that it is a fish. Complementary to the trend of creating machine-readable

1A term that goes actually back to Google’s commercial “Knowledge Graph” and which is used to emphasize the
fact that the contained entities are connected by binary predicates, thus creating a graph structure. We will go into
more details below in Section 2.1.

1
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KBs from (the manually created) Wikipedia, much research efforts have also concentrated on
the automatic acquisition of machine-readable knowledge from textual data such as the Web
(Banko et al., 2007; Carlson et al., 2010): Those KBs can contain information from arbitrary
websites (or other sources) that we would usually not find in Wikipedia – simply because even
the large English Wikipedia cannot cover all of the world’s knowledge.

As a result of the availability of these knowledge resources, recent years have seen a renaissance
of knowledge-rich approaches for many task in IR, in particular in Web Search, and NLP (Hovy
et al., 2013). One prominent IR example are the entity boxes shown by commercial search
engines: Those boxes, usually shown on the right-hand side of the screen, provide a structured
view on (e.g. person) entities. The information shown there, like a person’s birth date or links
to the person’s children, are extracted from Wikipedia, which acts as an entity repository as well
as the source of such information here. Another example from NLP is the task of finding the
different senses of a word, e.g. that bank can refer to a financial institute but also to a river bank.
For this word sense disambiguation (WSD) task Wikipedia provides the sense repository as well
as the textual features to distinguish between the different senses in a given context (cf. Navigli,
2009).

This trend indicates to us that semantic information and knowledge-intensive approaches are key
components for state-of-the-art methods that build heavily on KBs. However, for many high-
end applications, Wikipedia – even though being only a semi-structured resources with many
information contained only in the natural language text – remains the knowledge resources of
choice for many tasks (cf. e.g. Ponzetto and Strube, 2007; Nastase and Strube, 2012), while the
usage of fully structured KGs lacks behind. This seems to be a curiosity, because full-fledged
KGs with their labeled relations do actually contain more precises information compared to
the simple HTML hyperlinks in Wikipedia: For example, from Wikipedia we can know that
a person’s Wikipedia page links to another person’s Wikipedia page, so there is some kind
of relationship connecting both entities – but form DBpedia we would known that those two
persons are actually connected by the parentOf relation. To us, it appears to be valid question
why such structured KGs are not widely used (yet).

We aim to address this particular question, and study how wide-coverage KGs – we use DBpedia
in our experiments – can be utilized for IR and NLP tasks, because those structured KGs offer
interesting properties: They contain (i) disambiguated representations of real word entities, (ii)
predicates describing the relationships between entities, and (iii) concepts acting as topological
information like type (hierarchies) or categories. Given we are interested in IR and NLP tasks
and applications where those KGs can be useful, the usual setting as depicted in Figure 1.1 in this
thesis – which is one of the recurring elements in most chapters – is to (i) take natural language
text, (ii) apply entity linking (and optionally relation extraction as in Chapter 8) to get (iii) KB
entities (and optionally relations), and finally (iv) leverage (certain parts of) the KG for the task
at hand, e.g. text clustering (Chapter 3). In the end, our motivation is always to figure out what
one can do with the KG information obtained from such a pipeline, i.e. how and for what are
the KG information useful. Note that the inclusion of (text-based) relations is an extension only
used in the last part of this thesis (Chapter 8), where not only entity linking, but also relation
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Entity Linker
(+ Relation Extraction)

Entities
(+ Relations)

Natural language 
text document

Knowledge 
Graph

Figure 1.1: Typical workflow: (i) take natural language text, (ii) apply entity linking (and op-
tionally relation extraction) to get (iii) KB entities (and optionally relations), and finally (iv)
leverage (certain parts of) the KG.

extraction of subject-predicate-object facts will be applied.

1.2 Structure

The structure of the thesis follows our successive efforts to exploit more and more information
from the KG, starting from simple entity types, going to entity relations and graph exploration,
and ending with textual relations. While the first half of the thesis focuses thereby on natural
language understanding tasks, the second part is designed around IR problems in the context of
KB entities. The chapters are designed as follows:

• Starting in Chapter 3, we study how clustering of short text can benefit from entity linking
the text and incorporating the DBpedia type and category information (but without any
graph exploration).

• The natural extension follows in Chapter 4, where we explore arbitrary relations (KG
paths) between entities, and not just types and categories, to estimate their semantic relat-
edness – which is computed as the cheapest path in a weighted version of the KG.

• In Chapter 5, we extend this method to compute semantic relatedness of documents by
representing them as subgraphs of the weighted KG and matching them via graph edit
distance.

• The method for entity relatedness is reused in Chapter 6 with a specific linking task for
open information extraction, where NELL triples get partially linked to KB entities.

• After having focused on natural language understanding tasks, in Chapter 7 we turn to
a more IR-oriented setting and work on query-driven KB entity ranking. Again, KG
entities and their relations are utilized, amongst many other features, to compare entities
and queries and in the end to find query-relevant entities.

• The previous approach is extended in the last chapter (Chap. 8) where we aim at finding
query-relevant fact, i.e. entities and relations. This opens a new research direction as, in
contrast the previous chapters, not only entities but also relations are extracted from the
input text documents.
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A graphical representation of the dependencies between the different chapters is given by the
topic map in Figure 1.2. It shows in particular how the idea of the KG path exploration from
Chapter 4 and the approach to semantify text with KB entities from Chapter 3 is reused in other
chapters throughout this thesis. Chapter 8 is only indirectly (dotted line) influence by Chapter 4,
as the KG relations are only compared against (but not integrated with) the relations extracted
from text.

Part III

Part I

Part II

Chap 3: Snippet Clustering
Semantifiy text with KB 
entities and their types

Chap 4: Entity Relatedness
Find paths in weighted KG

Chap 6: Entity Linking
Link NELL entities

using KG paths

Chap 7: Entity Ranking
Semantifiy documents and

queries with KB and KG features

Chap 8: Finding Relation
Semantifiy text document

with KB entities and
extract KG relations

Chap 5: Semantic Doc Similarity
Semantify text with entitites and

compare docs via KG paths

Figure 1.2: Topic map showing dependencies between chapters: Arrows indicate that method-
s/ideas from this chapter are being reused by the other chapter. The dotted line indicates that
Chapter 8 only compares its relations from text against the KG relations from Chapter 4.

Before staring with the actual content chapters, we first briefly introduce in the following Chap-
ter 2 some essential fundamentals, which the average computer scientist might not know, but
which are needed for understanding the remainder of this thesis.

1.3 Contributions

The contribution of this thesis is a broad and diverse, experimental study on the potential of
structured KGs, like DBpedia, for different NLP and IR tasks. The study provides the reader
with an understanding of for what applications KGs might be useful, and what their strength and
weaknesses are compared to statistical, non-symbolic approaches.

Most work in the area of KB exploration makes only use of semi-structured knowledge re-
sources, very often Wikipedia (Hovy et al., 2013). In contrast, our contribution is to shed light on
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the interplay between text (documents), semi-structured KBs (Wikipedia), and fully-structured
KGs (DBpedia). In the end and on a higher level, we thus also give justification for building
such wide-coverage KGs and advocate to thinking about other applications that might benefit
from using these knowledge resources.

More specifically, this thesis promotes the idea to combine text and structured KGs via the usage
of entity linking (cf. Figure 1.1), thus making use of the symbolic, knowledge-rich approaches
in combination with statistical approaches.

Our experiments indicate that KBs can indeed help to bridge the vocabulary gap (Furnas et al.,
1987) and introduce access to helpful background knowledge, but it depends on the specific task
to decided what is needed: When computing semantic document similarity in Chapter 5, we find
that entities are not enough to represent a document, but KG paths improve performance (cf.
Section 5.3). In contrast, when ranking entities by relevance w.r.t. a given query in Chapter 7,
the KG paths by themselves are not that helpful, but the occurrence frequency of Wikipedia KB
entities in the retrieved documents is (cf. Section 7.3). In summary, we provide the reader of
this thesis with a differentiated view on the usage of (semi-)structured KBs in IR and NLP.

In terms of methods developed, the key contributions of this thesis are as follows:

• A KG weighting and exploration method for computing semantic relatedness of entities
(Chap. 4: Schuhmacher and Ponzetto, 2014a,b)

• A KG-based document model that computes semantic document similarity by subgraph
matching (Chap. 5: Schuhmacher and Ponzetto, 2014a)

• A query-specific entity ranking combining information from retrieved documents with
background KB and KG (Chap. 7: Schuhmacher et al., 2015)
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Chapter 2

Fundamentals

This chapter will introduce terms, methods, and datasets recurrently used throughout the remain-
der of this thesis and with which the average reader (computer scientist) will not be familiar with.
Topics relevant only for one chapter are discussed within the chapter, e.g. Learning-to-rank in
Section 7.2.3.

2.1 Entities and Knowledge Bases

Throughout the previous introduction chapter, we have used the terms knowledge base (KB),
knowledge graph (KG), and entity without paying much attention to their definitions. When now
trying to provide proper definitions, we are faced with a variety of competing and/or overlapping
definitions and understandings. We are going to present here only a narrow selection of ideas
and opt to focus in the end on the practical, i.e. technical reality as established by the given data
available, i.e. the RDF KBs.

2.1.1 Entities

From the point of view of the DBpedia KB, entities are the atomic units, like e.g. the city
db:Mannheim, that the KB makes statements about: db:MVV_Energie dbo:locationCity
db:Mannheim. We will come back to this technical interpretation, but look first at the gen-
eral case, as the question what an “entity” is has been discussed for a long time in the area of
knowledge representation and artificial intelligence (AI).

In AI, the need for a proper knowledge representation, and thus an understanding of what an “en-
tity” is, was mainly driven by the insight that for matching human performance in tasks such as
natural language understanding, but also for building expert systems (also known as knowledge-
based systems), the accumulation and use of large amounts of problem-specific knowledge is
essential (cf. Russell and Norvig, 1995, p. 258).

A definition of an entity is based on a decision on what kind of things should be valid entities
in such KBs. And, not surprisingly, different researchers have found very different answers to

7
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this question. Being philosophers, linguists, or computer scientists, they limited themselves to
different entity types, e.g. “physical object, numbers, sets, times, possible worlds, propositions,
events” (Hobbs, 1985, p. 61). The arguments, why one thing should be an entity and the other
not, are obviously complicated and full of contradicting points of view.

We opt to not involve ourselves deeper into the discussion what an entity can or should be, but
instead use a pragmatical approach and thus follow Hobbs (1985) “ontological promiscuity”:
For us, just like for most creators of real-world KBs, an entity is everything there is that we
can make a statement about – a definition which obviously holds true for anything we find in a
given KB: Giving an example, when the RDF KB DBpedia contains the subject-predicate-object
triple db:Bob_Dylan rdf:type dbo:MusicalArtist (cf. Figure 2.2), then, by definition,
the subject Bob_Dylan becomes an entity here, simply because we make a statement about a
subject being of type MusicalArtist. Note that this rather pragmatical entity definition, that is
supported by RDF and Hobbs (1985), is actually not new, but was advocated already before in
Philosophy, amongst others, famously by Quine (1948) who stated: “To be assumed as an entity
is [...] to be reckoned as the value of a variable".

2.1.2 Knowledge Bases

The structured knowledge bases (KBs) we consider here, foremost DBpedia, but also Freebase,
Yago, or Wikidata, can all be described as resource description framework (RDF) graphs. RDF
(Wood et al., 2014) is a well-established framework for representing information in the Web, and
is used by the above mentioned KBs – they are all (partially) derived from the Web encyclopedia
Wikipedia and are made available via web applications and services.

Figure 2.1: An RDF graph consisting of two nodes (subject and object) and a predicate connect-
ing them (taken from Wood et al., 2014).

As defined by the W3C Recommendation: RDF 1.1 Concepts and Abstract Syntax (Wood et al.,
2014), an RDF document or KB is a graph, consisting of a set of RDF triples. Each triple consists
of a subject, a predicate, and an object, as visualized in the directed-arc diagram in Figure 2.1.
An example of an RDF KB, represented as graph, is depicted in Figure 2.2 and shows a graph
containing statements about person entities (Bob Dylan and Johnny Cash). We will use this
example again later in Section 2.1.3 and also in Chapter 5, Figure 4.1.

In contrast to these fully structured KBs, we denote Wikipedia as being an only semi-structured
KB: While it also knows disambiguated entities, the vast majority of the KB information is
contained in the unstructured data, i.e. the natural language text of the articles describing each
entity. In the following, whenever we want to emphasize that a KB is fully structured and
representable as an RDF graph, we often call this KB a knowledge graph (KG) – a term that
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db:Bob_Dylan

dbo:MusicalArtistrdf:type

db:Folk_rockdbo:genre

dbc:American_folk_rock_musicians

dcterms:

subject dbo:

associated

Band
db:Johnny_Cash

rdf:

type 

Figure 2.2: Example of an RDF graph (data taken from DBpedia). Nodes are subject or object
entities. A directed edge represents a predicate that points from subject to object.

become popularly known due to Google’s “Knowledge Graph”, which is (one of) the KGs that
serves (to a not publicly known extent) the entity search results of the Google web search.1

In an RDF graph, the subject and the predicate have to be identified by a unique internationalized
resource identifier (IRI), while the object may contain an IRI or a literal. Because literals are by
definition not unique but just string values, and can thus not be compared, we often exclude all
literals in the following.

2.1.3 Wikipedia and DBpedia

Because we make use of Wikipedia and DBpedia as resources throughout all our experiments in
one way or another, we describe both resources in more detail.

Wikipedia

Wikipedia is a collaboratively-written, community-built online encyclopedia and considered to
be the largest and most popular general reference work on the Internet.2 Each article contains a
name, a natural language text (the actual article), a URL – commonly used as unique identifier
when treating article pages as KB entities – and often, but not always, a property summarizing
table on the right hand side, referred to as infobox, see Figure 2.3. Wikipedia also has a rich set
of hyperlinks connecting articles with each other (cf. Kamps and Koolen, 2009) – however, in

1“Introducing the Knowledge Graph: things, not strings” from http://googleblog.blogspot.de/
2012/05/introducing-knowledge-graph-things-not.html

2Cf. https://en.wikipedia.org/wiki/Wikipedia.

http://googleblog.blogspot.de/2012/05/introducing-knowledge-graph-things-not.html
http://googleblog.blogspot.de/2012/05/introducing-knowledge-graph-things-not.html
https://en.wikipedia.org/wiki/Wikipedia
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Figure 2.3: Screenshot of the Wikipedia article page for Bob Dylan, showing the entity (page)
name, the article text, and the infobox on the right hand side summarizing some properties of
Dylan (Wikipedia, 2016).

contrast to KGs like DBpedia, these are plain Web hyperlinks and do not contain any semantic
meaning.

One of the most important functions of Wikipedia in the context of this thesis is to act as entity
repository: When we want to annotate text with unique and unambiguous names for real word
entities, such as persons or locations, we face the task of defining (and maintaining) such a
repository of names (technically URIs in RDF). While this being a challenge in itself, when
defining our own naming schema, i.e our own ontology, interoperability with other applications
and datasets becomes highly challenging as each entity has to be correctly mapped to the third-
party resource. The common solution to this problem is to not define your own entity repository,
but instead, if possible, to reuse the Wikipedia article titles as entity identifiers, just like DBpedia
does when deriving db:Bob_Dylan from the Wikipedia article “Bob Dylan”. Wikipedia’s high
coverage, the additional entity information available from the article text, and the (untyped)
hyperlinks connecting article pages have made it the first choice for many applications (Hovy
et al., 2013).

While available in many languages, we use only the English Wikipedia, which contains around
5 million articles like “Bob Dylan”, “Mannheim”, “True North (novel)”, “German Type U 151
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Figure 2.4: The Linking Open Data cloud diagram 20143showing DBpedia in the center of the
cloud.

submarine”, or “Bipartite graph” – but also articles containing primarily lists like “Diving at
the 2015 World Aquatics Championships – Women’s 3 metre springboard” or articles with just
one sentence like “KKBJ (AM)”. As argued above in Section 2.1.1, we will consider in the
following anything that has a Wikipedia article page to be an entity, even abstract entities such
as Bipartite_graph.

DBpedia

In the following chapters, we frequently make use of DBpedia (Bizer et al., 2009) as a knowledge
graph (KG), since it is a wide-coverage, encyclopedic KB with many (sometimes more than
1,000) fine-grained explicit semantic relations between millions of entities, organized as an RDF
graph. See Figure 2.2 above for a subset of the DBpedia graph.

DBpedia is a community effort that extracts information from Wikipedia and makes this infor-
mation available on the Web in various machine-readable formats.4 It is also well-known for
being the central entity repository authority within the linked open data (LOD) world, see Fig-

3By Max Schmachtenberg, Christian Bizer, Anja Jentzsch and Richard Cyganiak. Available from http://
lod-cloud.net

4http://www.dbpedia.org

http://lod-cloud.net
http://lod-cloud.net
http://www.dbpedia.org
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ure 2.4, because it reuses the Wikipedia article titles as entity identifiers (as explained above in
the Section on Wikipedia).

The key idea behind DBpedia is to parse the Wikipedia infoboxes, which are the property-
summarizing tables found on many Wikipedia pages, in order to automatically acquire proper-
ties and relations about a large number of entities. As the type of the infobox triggers which
extraction template will be used, it also determines the type of the entity:

db:Bob_Dylan rdf:type dbo:MusicalArtist .

A type statement like R rdf:type C thereby denotes that the entity (the subject) is an instance
of the class C. dbo:MusicalArtist is consequently a class (more precisely an instance of
rdfs:Class). Besides the DBpedia Ontology types (which have the XML namespace dbo:)
taken from the Wikipedia templates, DBpedia also contains type statements from other sources,
most importantly the Yago types which are provided from the YAGO ontology (Hoffart et al.,
2013) – a resource similar to DBpedia that was extracted from Wikipedia and WordNet.

The DBpedia extraction templates contain also extraction rules for predicates connecting entities
with each other, like e.g.

db:Bob_Dylan dbo:genre db:Folk_rock .

Infobox entries which have no matching extraction rule are extracted nevertheless, but inserted
into the dbprop: namespace. While increasing coverage, they can also often be hard to in-
terpret, e.g. because the row in the infobox did not contain meaningful text (e.g. dbprop:p).
For that reason, in the follow chapters we usually do not include the dbprop: properties. If
not denoted otherwise, we will shorten the common namespace prefixes5 of DBpedia using
db: for dbpedia: resources, dbc: for the subset of resources denoting Wikipedia categories
(dbpedia:Category:), and dbo: for dbpedia-owl: properties from the DBpedia ontology.

Two predicates in DBpedia are of particular interest: The first one is dcterms:subject, which
reflects the extracted Wikipedia categories and makes them available as a taxonomy (Ponzetto
and Strube, 2007) by connecting the categories via skos:broader predicates, e.g.:

db:Bob_Dylan dcterms:subject dbc:American_folk_rock_musicians .
dbc:American_folk_rock_musicians skos:broader

dbc:American_rock_musicians .

The second noteworthy predicate is the rdf:type, which assigns one ore more entity types
from the DBpedia OWL Ontology (dbo:) and/or the YAGO types (yago:):6

db:Bob_Dylan rdf:type dbo:Person .
db:Bob_Dylan rdf:type yago:MusiciansFromNewYorkCity .

5Full namespace URIs and their common prefixes can be looked up at http://prefix.cc.
6Note that DBpedia is increasing the type coverage. While the DBpedia and YAGO types are still predomi-

nant, the latest version DBpedia 1015-10 also contains e.g. types from Wikidata (wikidata:Q215627), Umbel
(umbel-rc:MusicalPerformer), DUL (dul:NaturalPerson), and Schema.org (schema:Person) for
the entity db:Bob_Dylan.

http://prefix.cc
wikidata:Q215627
umbel-rc:MusicalPerformer
dul:NaturalPerson
schema:Person
db:Bob_Dylan
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The type statements are not only interesting because of their high informativeness, but also
because they link entities to a subsumption hierarchy, in which RDFS entailment can be applied
on subclass relations like e.g. dbo:Person rdfs:subClassOf dbo:Agent. Consequently,
following the RDFS semantics, every entity of type person is also of type agent (Hayes and Patel-
Schneider, 2014). In the DBpedia datasets available for download or via the public SPARQL
endpoint,7 the type statements are materialized, i.e. it contains explicitly triple statements for all
inferable super types.

A final remark on DBpedia: When in the following chapters DBpedia gets used, conceptually it
will act as a placeholder for any kind of RDF KG, like e.g. YAGO (Hoffart et al., 2013), Freebase
(Bollacker et al., 2008), Wikidata (Erxleben et al., 2014; Vrandečić and Krötzsch, 2014), or any
other (even non-RDF) KB, as long as this KB has disambiguated entities and explicit semantic
relations. To ensure this flexibility, the graph-based methods proposed below are agnostic w.r.t.
the actual KG modeling, also because of many different options when modeling a KB – as we
can see from the DBpedia-specific information described above.

2.2 Entity Linking

The task of entity linking (EL) is to annotate a given natural language text (document, sentence,
fragment) with the KB entities mentioned in this text. EL systems thus provide us with the
means to connect text to KB entities, as illustrated in Figure 2.5. In contrast to other systems,
e.g. for named entity recognition (NER), the type of EL system we consider here has the sole
purpose of annotating a given text (document/sentence/fragment) with Wikipedia entities.

We understand EL as the task of finding mentions in text, and link them to their (ideally correct)
KB entity (we consider only Wikipedia entities throughout this thesis). This understanding of
EL is also called end-to-end EL (Guo et al., 2013), wikification (Mihalcea and Csomai, 2007),
or Annotate-to-Wikipedia (A2W) (Cornolti et al., 2013) – all thus highlighting that EL systems
take text as input and return entities as output. This is in contrast to the definition of EL of e.g.
the early TAC KBP Entity Linking task (Ji et al., 2010), which lacks the entity mention detection
problem, as the entity mention (for entities of type person, geo-political entity, or organization)
is already given to the EL system as prior knowledge.

The actual EL task in that context is then to find the correct KB entity to link to; or to link it to
NIL if the corresponding KB entity does not exist).8

7SPARQL is an RDF query language which provides, amongst other things, a convenient way to query for subject-
predicate-object triples; for details see https://www.w3.org/TR/sparql11-query/. The DBpedia end-
point is available at http://dbpedia.org/sparql.

8In the recent 2016 TAC KBP, there exists the Entity Discovery and Linking (EDL) task, which contains both
steps, to find the named entity mention in text and to link them to the KB (cf. Committee, 2016).

https://www.w3.org/TR/sparql11-query/
http://dbpedia.org/sparql
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Cash performed his 

song in Memphis. […]

Entity mention spotting Candidate generation Candidate selection

Cash

Johnny_Cash

Cash_Asmussen

Song

Song_dynasty

Memphis,_Tennessee

Memphis,_Missouri

Memphis_(film)

Johnny_Cash

Memphis,_Tennessee

Figure 2.5: Generalized workflow of an entity linking (EL) system: The example shows how
an EL system would annotate a given sentence with the (correct) entities Johnny_Cash and
Memphis,_Tennessee, and how it would (deliberately) not link the entity mention “song” to
any entity.

2.2.1 Common Methods

Typical EL systems for Wikipedia entities have three components/steps as shown in Figure 2.5:
(i) entity mention spotting, (ii) candidate generation, and (iii) candidate ranking/selection (cf.
Hachey et al., 2013; Olieman et al., 2014).9

In the mention spotting phase, the surface form mentions of an entity within the text document
are identified, e.g. “Cash”. This can be done e.g. by running a named entity recognizer, or
simply by a string search for any known entity surface form as obtained from a lexicon created
before. While both approaches are well-established, the first one has the advantage of being able
to identify also entities that are not contained in the KB, thus allowing a NIL link. In contrast,
the latter one is usually faster and more precises, which comes however at the cost of a decrease
in coverage, as only known surfaces forms can be identified. Some EL systems perform also
deeper linguistic analysis at this steps, e.g. coreference resolution.

Next, in the candidate generation phase, for each possible mention, entity candidates are gener-
ated. This step very often involves mining the Wikipedia hyperlink anchors and their frequencies
in order to compute the likelihood of an entity being referred to from a certain surface form (Mi-
halcea and Csomai, 2007).

Last, in the candidate selection phase, the most likely (ideally correct) entity has to be selected

9See Ji and Grishman (2011) for a survey focusing on the disambiguation and ranking step in the context of the
TAC KBP EL task.
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from the candidates. To this end, supervised classification and the exploitation of the rela-
tionships between the entity candidates are common approaches (cf. Ji and Grishman, 2011).
Many EL systems try to find the correct disambiguation of the surface form by making use of
Wikipedia information. The basic assumption is that entities that occur together in one docu-
ment (or within a certain text window size), are semantically related, and that this relatedness
should be higher between the correct entities in contrast to the incorrect entity candidates. This
idea is actually also pursued by us, when exploiting entity relatedness in DBpedia as a means
for entity linking in Chapter 6. The most well-known approach for this problem is probably the
measure by Milne and Witten (2008a) which considers the degree of overlap of the incoming
Wikipedia hyperlinks as a proxy for their relatedness. Many EL can also make the decision to
not link a found mention to any entity, either because all candidates seem to be too unlikely as
to be linked, as illustrated in Figure 2.5 by the “song” mention, or because no candidates were
found at all.

2.2.2 Common Systems

There exists a variety of commercial and academic EL systems. Because the linking step has an
important influence on the final outcome of the subsequent pipeline following the EL, we often
perform our experiments with two different systems, DBpedia Spotlight and TagMe, as a means
to understand the influence of the EL step within the context of our task-specific findings. We
opt for those two systems, because (a) DBpedia Spotlight is closely tied to the DBpedia project
and offers the option to select/prune the candidate entity set based on entity type information,
and (b) because TagMe was evaluated to be the most accurate and fastest EL system on different
benchmarking datasets as reported in the evaluation by Cornolti et al. (2013). Note that our
intention is not to provide an evaluation of the entity linking performance itself; for a dedicated
EL evaluation of different systems see e.g. Cornolti et al. (2013), who also provide a good
overview about some established evaluation datasets, and Usbeck et al. (2015) for a more general
evaluation setting.

DBpedia Spotlight

DBpedia Spotlight was developed by Mendes et al. (2011) as a system to find and disambiguate
natural language mentions of DBpedia resources, thus making it a standard EL system for
Wikipedia entities. While we do not make use of it, DBpedia Spotlight provides the rather
distinct feature of limiting the set of entities the input text can be annotated with by allowing
the user to specify SPARQL queries over the DBpedia dataset. This allows to select e.g. only
entities of a certain type (like politician) or with certain other properties (like nationality). The
actual entity linking system consists of three stages, that correspond only partially to the pro-
totypical steps described above, as the mention spotting is not generic but already limited to
existing entity surface forms:

1. Mention spotting is based on a simple lexicon of surface forms referring to a DBpedia
entity. The lexicion is harvested from Intra-Wikipedia link anchors (see above), entity
labels, and redirects and disambiguation pages using the LingPipe Exact Dictionary-Based
Chunker (cf. also DBpedia Lexicalization dataset Mendes et al., 2012).
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2. Candidate generation in a strict sense does not exist in Spotlight, as the mention spotting
is already based only on existing entity surface forms.

3. Candidate selection, i.e. the disambiguation is based on selecting the most likely candi-
dates, computed within a vector space model (VSM) that represents each entity by the
words found within all Wikipedia paragraphs mentioning that entity. Instead of standard
term frequency–inverse document frequency (tf -idf ), words are weighted by a schema
called inverse candidate frequency (ICF), which captures according to Mendes et al. the
discriminates power of a term with respect to the possible entity candidates. The candidate
entities are then ranked by cosine similarity with the mention surrounding context.

While the authors report improvements in precision over the most frequent sense baseline by a
large margin, the comparative evaluation by Cornolti et al. (2013) finds DBpedia Spotlight to be
clearly outperformed by other systems, e.g. TagMe which we present next. Spotlight is available
as stand-alone system and, as of 2013, as a public webservice.

TagMe

The TagMe system by Ferragina and Scaiella (2012) was created for the annotation of short text,
and is thus appropriate for our usecases. It was evaluated by Cornolti et al. (2013) to be the best
EL system on most of the general text datasets tested.10 It is, in contrast to DBpedia Spotlight,
a “classical” text-to-Wikipedia entity linking system and not tailed to DBpedia – which makes
however no difference given the way we use both systems. TagMe operates similarly to DBpedia
Spotlight and in the following steps:

1. Mention spotting and candidate generation is like in Spotlight based on a surface form
lexicon harvested from Wikipedia.

2. Candidate selection in TagMe is different to Spotlight, as it builds upon the Wikipedia hy-
perlink structure via an adaption of the entity relatedness measure from Milne and Witten
(2008a). Finally, a voting schema combines the relatedness among all candidate enti-
ties with the input text document, employing different heuristics for reducing computa-
tional complexity (instead of comparing all mention-candidate-pairs which would lead to
a quadratic complexity in the mention input size) and ensuring annotation performance.

TagMe is available as stand-alone system and, as of 2013, as a public webservice.

10Cornolti et al. (2013) evaluated five well-known and freely available academic EL system, namely AIDA (Hoffart
et al., 2011), Illinois Wikifier (Ratinov and Roth, 2009), TagMe (Ferragina and Scaiella, 2012), DBpedia Spotlight
(Mendes et al., 2011), and Wikipedia Miner (Milne and Witten, 2008b).
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Chapter 3

Text Clustering using KB Types

In this chapter, we make a first step towards knowledge base exploration and study the usefulness
of enriching text with Wikipedia entities and thus introduce additional entity type and category
information for the task of clustering short text. The idea is to cluster those web search results
snippets together which are semantically highly similar and thus would provide rather similar
information to the user. Being a first step into the exploitation of KBs, in this chapter we make
use only of the entities themselves and their type and category information, but not of any other
KB relations that would e.g. connect entities directly. Considering those more complex KG
relations will be studied in the subsequent chapters.

The work presented in this chapter has been published before as: Michael Schuhmacher and
Simone Paolo Ponzetto: Exploiting DBpedia for web search results clustering. In Proceedings
of AKBC’13, pages 91–96 (Schuhmacher and Ponzetto, 2013).

The research questions (RQ) we aim to study here are centered around the overall question how
KBs can be beneficial for textual tasks:

• RQ1: To what extent can an entity linking system be used to semantify short text and
thus provide access to additional background knowledge (i.e. entity type and category
information)?

• RQ2: Can clustering of short text benefit from the additional background knowledge?

We address this question in the context of the SemEval-2013 evaluation challenge on search
results snippet clustering (Navigli and Vannella, 2013), as it provides us with an, even though
indirect, but standardized evaluation setting (data and metrics). Our results show that clustering
compact, topically semantified representations of snippets is indeed able to yield competitive
performance on this task, thus indicating the viability of a knowledge-rich approach based on
entity disambiguation techniques for complex, high-end Web applications.

19
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3.1 Introduction

As introduced above, we look at the problem of clustering short texts from the Web, here search
result snippets, to see whether this IR task can benefit from text semantification.

The specific task we follow here was defined by Navigli and Vannella (2013) in the context of
the SemEval-2013 evaluation campaign. They assume a keyword web search setting with an
ambiguous query, like for example “Apache”. For such a query, a retrieval system would return
documents about the HTTP Server Apache as well as about the helicopter Apache – at least,
maybe even more. To mitigate the information a such a mixed results list of different document
with different word interpretations/senses would pose to the user, Navigli and Vannella propose
– like others before, see (Carpineto et al., 2009) for a survey – to cluster the search results, i.e. the
returned documents which are here represented by their snippets. Each cluster should thereby
cover one distinct interpretation of the ambiguous query, for example one cluster contains all
Apache the server snippets/documents, and the other cluster all Apache the helicopter snippet-
s/documents. The evaluation task differentiates between two types of systems for performing
this snippet clustering: Word sense induction (WSI) systems, which have to cluster the snip-
pets into semantically-related groups according automatically, and word sense disambiguation
(WSD) systems, which had to label each given snippets with the appropriate senses, as taken
from an external sense inventory, e.g. Wikipedia, thus implicitly determining a clustering of the
snippets.

In our system, we first semantified the text snippets and then retrieve additional background
knowledge from DBpedia as features for a standard clustering algorithm. The semantification
is achieved by obtained the Wikipedia entities mentioned in the text from a state-of-the-art en-
tity linking system, namely here DBpedia Spotlight and TagMe. Our approach uses DBpedia
entities, which are actually the same as Wikipedia entities, identified in text as seeds to collect
topical concept labels for the snippets. These are then used as features to cluster the snippets
on the basis of their topical similarity, using the Wikipedia categories and the DBpedia types.
Note, while we use DBpedia here as reference KG, our method could actually be used with any
other wide-coverage knowledge resource and entity linker, e.g., YAGO (Suchanek et al., 2008;
Hoffart et al., 2013) and AIDA (Hoffart et al., 2011).

We evaluate our approach within the experimental framework provided by the SemEval-2013
task (Navigli and Vannella, 2013) and use their evalution data and metrics (including the pro-
vided implementations).

3.2 Method

We present an approach to search results clustering based on the entities and their attributes as
provided by Wikipedia (categories) and DBpedia (types).1 Our method takes as input a collec-

1Technically, we retrieve both features from DBpedia, which contains the Wikipedia categories and provides them
via the dcterm:subject predicate.
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Figure 3.1: The workflow that annotates search results snippets with entities (and KB informa-
tion) and yields cluster snippets.

tion of Web search snippets, and groups them together into topically coherent sets in order to
provide the best clustering as output. The rationale is here that semantically similar snippets de-
scribe website which have the same interpretation of an ambiguous query. For instance, given a
query such as “Apache”, our dataset contains, among others, the following snippets, as returned
by the Google search engine (Navigli and Vannella, 2013):

(1) “The Apache HTTP Server Project is an effort to develop and maintain an open-source
HTTP server for modern operating systems including UNIX and Windows . . . ”

(2) “The Boeing AH-64 Apache is a four-blade, twin-engine attack helicopter with a tailwheel-
type landing gear arrangement, and a tandem cockpit for a two-man . . . ”

Each snippet identifies a separate meaning of “Apache” - namely, the software foundation and
the helicopter, in our case. Accordingly, the task is to assign these snippets to different clusters,
where each cluster contains snippets conveying the same meaning. We summarize the workflow
of our approach in Figure 3.1. Key to our proposal is

(a) a semantified representation of the search result snippets as a bag of the most relevant
topical concepts (i.e., types) associated with them,

(b) obtained on the basis of the structure of an underlying ontological resource, i.e., DBpedia.

We now turn to describe each component of our system in turn.

Data pre-processing

We first pre-process the snippets’ text using a standard pipeline of NLP components, including
stopword removal and WordNet-based lemmatization, as provided by the NLTK toolkit (Bird
et al., 2009). Next, we filter out words having a comparably low discriminative power. To
this end, we first compute for each word in the snippet a tf -idf score using the content of the
webpages associated with each snippet. Words in the snippet with a tf -idf score below an ex-
perimentally determined threshold (as obtained by testing on a development dataset, see Section
3.3) are excluded from further processing. We perform tf -idf -based filtering mainly for two
reasons, namely to
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(a) provide the entity linker with a cleaner, highly discriminant context for disambiguation,
and to

(b) remove common words which could otherwise be annotated with broad, domain-unspecific
concepts.

Frequency statistics are computed directly from the snippets’ documents in order to capture
domain-specific usages of words (e.g., “Windows” being used as a proper name in snippet (1)).
As output of this pre-processing step, we end up with snippets containing between 10 and 25
words on average per topic.2 Given this small size, the corresponding snippets’ word vectors are
very sparse, and can hardly be used for any similarity computation (which is the basis for snippet
clustering). In the next step, we thus acquire background knowledge from DBpedia capturing
the snippets’ topics, in order to overcome this sparsity problem.

Snippet semantification

We semantify the snippets by identifying the DBpedia entities contained. To this end, words and
phrases are annotated with DBpedia/Wikipedia entities by an EL system, in our experiments we
use DBpedia Spotlight and TagMe (cf. Section 2.2). The output of the entity linker consists
of a set of disambiguated entities associated with corresponding words and phrases found in
the snippet. For instance, for the two example snippets show above on page 21, the EL system
obtains entities like

(1) Apache_HTTP_Server, HTTP_Server, Unix and Microsoft_Windows for the Apache
web server

(2) Boeing_AH-64_Apache, Attack_helicopter, and Undercarriage for the Apache
helicopter

We can see here two different effects of the EL. First the EL system was able, at least in this ex-
ample, to correctly disambiguates between the two senses of Apache, helicopter and web server,
even though the context around the entity mentions was altered in our data pre-processing, as
described before. If this step would always return such flawless results, our task would already
be solved as we found two different senses for the ambiguous query. However, this works of
course not for all snippets and often the EL cannot distingush between the different senses – if
the query word is contained in the snippet at all.

The second effect of the EL, and this is the more important because more robust one, is that
the EL finds entities in the snippets that describe the conceptual context of the sense. In our
example, we find Microsoft_Windows, a software, in the snippet referring to the Apache web
server, which is also a software. And, in contrast, for the helicopter referring snippet, the EL
returns the entity Attack_helicopter. Those two entities are obviously good features with a
high discriminative power for the subsequent clustering algorithm.

2Note that we discuss how the EL works on this snippets in the next paragraph.



3.3. EVALUATION 23

Acquiring KB information

The EL step extracts and disambiguates words and phrases by annotating them with unam-
biguous senses, i.e. KB entities. As stated above, these entities could, in principle, already
be used directly as a representation for the snippets. However, questions remain on whether
the resulting vectors would be too sparse (as indicated by results on the held-out data observed
during prototyping). An alternative would also be to build a bag of words from the text con-
tained within the Wikipedia articles associated with each identified DBpedia concept. However,
this surface-level representation would still suffer from the same problems of the simple bag-
of-words model, such as not being able, for instance, to capture synonymity – e.g., Wikipedia
pages mentioning helicopter and chopper both providing evidence that the snippet belongs to
the cluster corresponding to the Boeing_AH-64_Apache meaning of “Apache”. Therefore, we
incorporate structured knowledge encoded in DBpedia by retrieving additional entity attributes
(via the public SPARQL endpoint, with DBpedia Version 3.8).

We query for all DBpedia and YAGO types denoted by the rdf:type predicate and all Wikipedia
categories denoted by the dcterms:subject predicate, which have been previously found to
provide useful information for topic labeling (Hulpus et al., 2013). As a result, we are able to
assign type (from the YAGO and DBpedia namespace) and topical (from the Wikipedia cate-
gories) labels to all snippets. In our case, for instance, snippet (1) is assigned features such as
dbo:Software and dbc:Web_server_software, whereas snippet (2) is labeled with con-
cepts db:Attack_helicopter and dbc:Military_helicopters, among others. The final
snippets’ vectors contain only these types and categories, i.e., we leave out the words initially
extracted from the snippets. The set of types and categories is thus a document representation
by conceptual features, comparable to the Explicit Semantic Analysis approach Gabrilovich and
Markovitch (2007), but created by making use of the explicit semantic relations provided by
DBpedia.

Clustering

We finally cluster the snippets using their entity vectors, as obtained in the previous step. To this
end, there exists a wide variety of clustering algorithms. In this work, we opt for affinity propa-
gation clustering (Frey and Dueck, 2007), since it neither requires an a a-priori fixed number of
clusters (like, for instance, k-means), nor it needs a similarity cutoff threshold (in contrast to hi-
erarchical clustering). As standard practice, we manually tune all algorithm-specific parameters
such as, for instance, the clustering damping factor, on our held-out data (see Section 3.3).

3.3 Evaluation

We evaluate our approach to Web search result clustering on a benchmarking dataset for this
task, namely the data from the SemEval-2013 task on “Evaluating Word Sense Induction &
Disambiguation within an End-User Application” (Navigli and Vannella, 2013).
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System RI ARI JI F1 # cl. ACS
DWS-MANNHEIM-ESA 60.08 7.51 12.49 70.38 12.60 5.97
DWS-MANNHEIM-TAGME 60.49 8.72 13.09 71.31 11.98 6.04
DWS-MANNHEIM-SPOTLIGHT 61.53 9.15 15.68 70.94 11.32 7.12
DULUTH.SYS1.PK2 52.18 5.74 31.79 56.83 2.53 26.45
DULUTH.SYS7.PK2 52.04 6.78 31.03 58.78 3.01 25.15
DULUTH.SYS9.PK2 54.63 2.59 22.24 57.02 3.32 19.84
HDP-CLUSTERS-LEMMA 65.22 21.31 33.02 68.30 6.63 11.07
HDP-CLUSTERS-NOLEMMA 64.86 21.49 33.75 68.03 6.54 11.68
SATTY-APPROACH1 59.55 7.19 15.05 67.09 9.90 6.46
UKP-WSI-WACKY-LLR 50.02 2.53 33.94 58.26 3.64 32.34
UKP-WSI-WP-LLR2 51.09 3.77 31.77 58.64 4.17 21.87
UKP-WSI-WP-PMI 50.50 3.64 29.32 60.48 5.86 30.30
RAKESH 58.76 8.11 30.52 39.49 9.07 2.94
SINGLETONS 60.09 0.00 0.00 100.00 − −
ALL-IN-ONE 39.90 0.00 39.90 54.42 − −

Table 3.1: Evaluation results on text snippet cluster quality.

Experimental setting

The benchmark consists of 100 ambiguous queries (randomly sampled from the AOL search
logs) for which there exists a finite set of possible meanings given by a corresponding Wikipedia
disambiguation page. Each query comes with 64 search results, as returned by Google’s Web
search, which are then annotated with any of the meanings provided in the disambiguation page
(plus an additional OTHER class used for snippets for which no sense is appropriate). For system
development and parameter tuning, we use the Ambient (AMBIguous ENTries) dataset as held-
out data. 3 Ambient was designed for evaluating subtopic IR and contains 44 ambiguous queries,
the different senses were generated from Wikipedia disambiguation pages.

We report three different system configurations. First, our base system using DBpedia Spot-
light (DWS-MANNHEIM-SPOTLIGHT), and second a version using TagMe as an alternative
state-of-the-art entity linking system (DWS-MANNHEIM-TAGME) The third system (DWS-
MANNHEIM-ESA) combines the affinity propagation clustering, which is also used by the two
previous configurations, with the semantified snippets obtained from Wikipedia-Based Explicit
Semantic Analysis (Gabrilovich and Markovitch, 2007) instead of entities. We use the Java-
based ESA implementation ResearchESA by Philipp Sorg4 with its standard configuration on
the English Wikipedia and a fixed 1,000 vector dimensions cut-off.

3Available from http://credo.fub.it/ambient
4AIFB, KIT Karlsruhe, Germany. Code available from https://code.google.com/archive/p/

research-esa/

http://credo.fub.it/ambient
https://code.google.com/archive/p/research-esa/
https://code.google.com/archive/p/research-esa/
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System
K

5 10 20 40
DWS-MANNHEIM-ESA 37.65 54.74 69.77 86.05
DWS-MANNHEIM-TAGME 38.15 56.38 72.53 85.66
DWS-MANNHEIM-SPOTLIGHT 40.30 54.89 71.22 85.28
HDP-CLUSTERS-NOLEMMA 50.80 63.21 79.26 92.48
HDP-CLUSTERS-LEMMA 48.13 65.51 78.86 91.68
UKP-WSI-WACKY-LLR 41.19 55.41 68.61 83.90
UKP-WSI-WP-LLR2 41.07 53.76 68.87 85.87
UKP-WSI-WP-PMI 40.45 56.25 68.70 84.92
SATTY-APPROACH1 38.97 48.90 62.72 82.14
DULUTH.SYS7.PK2 38.88 53.79 70.38 86.23
DULUTH.SYS9.PK2 37.15 49.90 68.91 83.65
DULUTH.SYS1.PK2 37.11 53.29 71.24 88.48
RAKESH 46.48 62.36 78.66 90.72

Table 3.2: S-Recall@K for text snippet clustering.

Results

We report our results in Table 3.1, where we evaluate the quality of the clusters output by our
method, as defined in the SemEval task using standard clustering measures from the literature –
namely, Rand Index (RI), Adjusted Rand Index (ARI), Jaccard Index (JI) and F1 measure (F1).
In addition, we report the average number of clusters (# cl.) and average cluster size (ACS) for
our system, as well as those which participated to the SemEval task. Finally, we present in Table
3.3 and 3.2 our results in the clustering diversity sub-task evaluation – quantified as S-recall@K
and S-precision@r. All performance figures were computed using the SemEval task’s official
scorer (cf. Navigli and Vannella (2013) for details).

Overall, we generally observe a favorable performance trend, as our system ranks among the best
performing ones for this task. In the clustering quality evaluation, in fact, we are able to rank
third out of 10 systems in the results for RI and ARI – i.e., right after HDP, the best approach for
this task, consisting of a Word Sense Induction system based on Hierarchical Dirichlet Process
Lau et al. (2013) – and achieve the best F1 measure overall. Moreover, together with HDP,
we are the only system performing above the baseline for RI5. Finally, we consistently beat
by a large-margin on 3 out of 4 measures RAKESH, the only other knowledge-rich system that
participated in the SemEval competition.

When looking at the properties of the clusters themselves (# cl. and ACS) we observe that our
approach produces many medium-small sized clusters. We expect this to indicate that, in a Web
search result diversification evaluation setting, our system shows a precision-oriented behavior.

5As typically the case, baseline methods are notably a difficult competitor for unsupervised and knowledge-rich
sense disambiguation and induction systems.
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System
r

50 60 70 80
DWS-MANNHEIM-ESA 42.07 31.90 27.23 21.80
DWS-MANNHEIM-TAGME 47.31 34.51 27.55 22.02
DWS-MANNHEIM-SPOTLIGHT 44.20 31.46 27.30 23.40
HDP-CLUSTERS-LEMMA 48.85 42.93 35.19 27.62
HDP-CLUSTERS-NOLEMMA 48.18 43.88 34.85 29.30
UKP-WSI-WP-PMI 42.83 33.40 26.63 22.92
UKP-WSI-WACKY-LLR 42.47 31.73 25.39 22.71
UKP-WSI-WP-LLR2 42.06 32.04 26.57 22.41
DULUTH.SYS1.PK2 40.08 31.31 26.73 24.51
DULUTH.SYS7.PK2 39.11 30.42 26.54 23.43
DULUTH.SYS9.PK2 35.90 29.72 25.26 21.26
SATTY-APPROACH1 34.94 26.88 23.55 20.40
RAKESH 48.00 39.04 32.72 27.92

Table 3.3: S-Precision@r for text snippet clustering.

This analysis is supported by the figures in Table 3.3 and 3.2, where we observe that our system
generally ranks in the middle in terms of S-Recall@K, whereas it achieves a middle-high perfor-
mance on S-Precision@r. The results, thus, seem to indicate that using type-level information
from semantified snippets helps us focus on more precise meanings of the query terms.

The comparison of different variants of our system shows that using entity taggers consistently
improves over ESA-based snippet semantification, thus indicating that a topically semantified
representation of snippets can compete with a conceptual vector space model within a high-end
task. Spotlight generally outperforms TagMe, and achieves the best performance in the cluster
quality evaluation on all measures except F1. The clustering diversity evaluation shows that
Spotlight achieves a higher recall (for a lower precision) when compared with TagMe, which is
in-line with previous findings from Cornolti et al. (2013) obtained from an intrinsic evaluation
of entity disambiguation on Web text.

3.4 Related Work

Over the last years many researchers focused on the problem of Web search result clustering
– see Carpineto et al. (2009) for a survey. A significant amount of work has been devoted to
identify features which are useful for discriminating the search results’ topics, including latent
concept models (Osiński and Weiss, 2005), mining query-logs (Wang and Zhai, 2007), as well
as using spectral geometry Liu et al. (2008) and graph-clustering algorithms applied to word
co-occurrence graphs (Navigli and Di Marco, 2013).

The work probably closest to ours is that of Scaiella et al. (2012), who use graph-based rep-
resentations of snippets for Web search results clustering. Their method also links the snippet
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to Wikipedia entities (using TagMe). For comparing the entities with each other, however, they
make use of the relatedness measure by Milne and Witten (2008a), similarly to Shen et al. (2012).
In contrast, we use the explicit semantic information from Wikipedia (categories) and DBpedia
(entity types) – but then “only” consider them as binary features in the subsequent clustering
step, while Milne and Witten (2008a) represent the entity relatedness by weighted edges in a
graph.

Navigli and Di Marco (2013) cast the problem of snippet clustering as a word sense disam-
biguation (WSD) problem, i.e. the task of identifying the different meanings of an ambitious
term given a word sense inventory. However, because it seems unrealistic to have a sense inven-
tory available that covers any possible sense returned by a real-world web search engine, Navigli
and Di Marco propose actually to use Word Sense Induction (WSI), which is the automatic dis-
covery of word senses, here query interpretations, from raw text, here search results snippets.
This approach has thus the advantage of not be limited to the known query senses. Our method
is in contrast somehow a hybrid approach between WSD and WSI: On the one hand side, we
rely on DBpedia, thus a KB of fixed and limited coverage, when identifying the entities in the
snippets. On the other hand side, as we only annotated entities found within the snippets, our
KB does not actually need to contain all meanings, i.e. all senses of a query. For example, even
if the Apache Helicopter would not be an entity in DBpedia, the snippets text would nevertheless
mention Helicopter, Boing, or United States Army – all entities contained by DBpedia. Thus,
we make use of background knowledge where available, but are not limited in case a specific
query sense is not explicitly available from the KB.

While also aiming at snippet clustering, Jong and Lee (2008) focused in addition on finding
meaningful labels for the clusters, interestingly using the DMOZ websites directory. Such meth-
ods are also referred to as description-centric approaches (cf. Carpineto et al., 2009) as they are,
instead of data-centric approach like ours and those mentioned above, more focused on produc-
ing meaningful descriptions for each cluster of search results, motivated the understanding that
clusters without labels provide only limited benefit to the users. The system computes a lan-
guage model for each DMOZ category, and later applies the model to cluster the snippets and to
obtain cluster labels. DMOZ, the Open Directory Project, contains manually created category
tags for websites, and thus fulfills in a way a similar purpose here as the manually created DB-
pedia categories and types do for our method: They act as an external source of knowledge to
overcome the vocabulary ambiguity issues of purely lexical clustering methods.

3.5 Conclusion

In this chapter, we presented our first step towards leveraging KBs information for text under-
standing, here for clustering short text fragments (Web search result snippets) according to their
different word senses. Our experiments indicate that the pipeline of (i) use entity linking (EL) to
extract entities from the text snippets, and then (ii) utilize DBpedia as wide-coverage knowledge
resources for obtaining additional clustering features is a viable approach, as we obtain addi-
tional and sense-discriminating entities (RQ1). We furthermore conclude, that this approach
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goes beyond a simply bag-of-words (BoW) clustering model and that, thanks to the additional
KB information, can improve the performance of the clustering of the snippets according to their
different senses (RQ2).

The obvious limitation of our approach is that it does not exploit any relational KG information
that would connect entities with each other, e.g. the fact that Johnny Cash and Bob Dylan are
related (db:Johnny_Cash dbo:associatedBand db:Bob_Dylan, cf. Figure 4.1). While
this is, for the specific setting in this chapter’s clustering task for word senses, not really a
limitation, in general it seems very desirable to take into account any kind of information avail-
able from the KG. This also holds true in particular for the information not available via our
simple approach, e.g. the Wikipedia category hierarchy (), which we did not explore in this
setting. This hierarchy, modeled in DBpedia via the skos:broader predicate and extracted
from Wikipedia, cf. Section 2.1.3, contains e.g. that for the category dbc:United_States-

_military_helicopters a broader category is dbc:United_States_military_aircraft.

For that reason, the next chapter will go into exploiting the full KG, and not just type and
category information. Thereby, we will traverse the KG as a graph and make us of arbitrary KG
relations – an approach that has the advantage of being agnostic towards the semantics of the
specific KG vocabulary.
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Chapter 4

Entity Relatedness using the
Knowledge Graph

In the previous Chapter 3, we focused on the usage of entity links and made only rather limited
use of the KB information, i.e. DBpedia types and categories, for clustering. A natural extension
of this approach is to exploit the KG in order to obtain information about the relationships
between entities in general.

We pursue this idea in the following Chapter 5 and develop a method that models documents
as subgraphs of KG entities and predicates in order compute the semantic similarity between
document pairs. A prerequisite for being able to compare entity graphs with each other, is to
be able to compare single entities first. For this reason, in this chapter, we will first develop a
method to compute entity relatedness and study different predicate weighting schemata as an
unsupervised method to compute a semantic relatedness measure for KB entities. The idea, to
compute entity relatedness by exploiting DBpedia as a weighted KG, will then be used for the
document modeling in Chapter 5 and also as a means to improve entity disambiguation for open
information extraction in Chapter 6.

The work presented in this chapter has been published before as:

• Michael Schuhmacher and Simone Paolo Ponzetto. Knowledge-based Graph Document
Modeling. In Proceedings of WSDM’14, pages 543–552 (Schuhmacher and Ponzetto,
2014a).

• Michael Schuhmacher and Simone Paolo Ponzetto: Ranking Entities in a Large Semantic
Network. In Proceedings of ESWC’14 Satellite Events, pages 254–258 (Schuhmacher and
Ponzetto, 2014b)

The research question we want to answer in this chapter originates from the nature of the knowl-
edge graph used. Such knowledge graphs, like DBpedia or Freebase, but in principle any kind
of state-of-the-art knowledge graph, have unique entities and – in contrast to resources like
Wikipedia or simple hierarchies – labeled edges (RDF predicates). As the example in Figure

31
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2.2 (page 9 in Section 2.1.3) shows, DBpedia contains the information that Bob Dylan and
Johnny Cash performed music together (dbo:associatedBand). In contrast, from Wikipedia
we could only extract that there is an HTML hyperlink connecting both pages, but we would not
know what type of relation connects them – all relations look the same.

When comparing entities in unlabeled graphs like Wikipedia with standard graph theoretic mea-
sures, e.g. shortest path, all relations are of equal type and thus of equal importance. But for
resources with multiple and labeled edges, the question arises how to make best use of the
rich semantic contained in edge predicates like dbo:associatedBand, dbo:author, dbo:-
birthPlace, dbo:influencedBy, rdf:type, etc. Therefore, our research question for this
chapter is as follows:

• RQ: How to compute semantic entity relatedness in a KG with unsupervised methods?

In the remainder of this chapter, we will try to answer this question by developing an unsu-
pervised KB exploration method, before presenting the actual document modeling method that
builds upon the findings from this chapter in Chapter 5.

4.1 Introduction

Key to our unsupervised approach for computing entity relatedness is the combination of a fine-
grained relation vocabulary, the KB predicates, with information-theoretic measures of concept
associativity to produce a weighted knowledge graph that relies on the information and structure
encoded within its underlying knowledge graph. We use the DBpedia graph as described in Sec-
tion 2.1.3, but our method can also be used with any other knowledge graph, e.g. YAGO (Hoffart
et al., 2013), provided it has disambiguated entities and explicit semantic relations (predicates).

The remainder of this chapter is structured as follows: In the next section (4.2, Method) we
describe only how to construct a subset of the DBpedia graph for a given set of input entities and
weight the connecting graph edges in order to be able to compare pairs of entities. This method
can be used to compute the relatedness of single entities and gets evaluated in Section 4.3. The
next step, the representation of documents as knowledge graphs containing multiple entities and
the comparison of those graphs is described in the next Chapter 5 (Document Modeling using
the Knowledge Graph), where also the final evaluation of the semantic document similarity
computation is then presented (Section 5.3).

4.2 Method

We present in the following a purely graph-based approach. The motivation for exploring graph-
based methods originate from the fact that (a) they are general in nature, and can be used with
any knowledge graph, i.e., a knowledge resource that can be viewed as a graph, regardless of
its specific vocabulary; (b) they have been shown to be effective for language understanding
tasks when combined with labeled and unlabeled resources (cf. e.g. Navigli and Ponzetto, 2012;
Hoffart et al., 2011).
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4.2.1 Semantic Graph Construction

Let Cdb be the full set of DBpedia’s entities and C an arbitrary subset of it, given as input –
e.g., the set of entities mentioned within a document. In the first phase of our method, we create
from the set of input entities a labeled, directed graph G = (V,E) containing i) the entities
themselves, ii) their semantic relations, as well as iii) any additional entity that is related to
any of the input ones by means of some relation in the graph. That is, C ⊆ V ⊆ Cdb and
E ⊆ V × R × V , where r ∈ R is a relation (or predicate) found in DBpedia, e.g., rdf:type,
dbo:birthDate or dbp:genre. Additionally, we want to associate a weight w with each
edge (vi, r, vj) ∈ E, in order to capture the degree of associativity between the source and target
nodes – i.e., how strongly related the two corresponding entities are. Note that we do not make
any distinction between A-box and T-box statements, since we remain agnostic as to the specific
vocabulary used by our underlying resource: Some knowledge graphs might model information
as classes (e.g. rdf:type BayernMunichSoccerPlayer), while others define a predicate
(playsForTeam BayernMunich).

To produce our semantic graphs, we start with a set of input entities C and create a labeled
directed graph G = (V,E) as follows: a) first, we define the set of nodes V of G to be made up
of all input concepts, that is, we set V := C; b) next, we connect the nodes in V based on the
paths found between them in DBpedia. Nodes in V are expanded into a graph by performing
a depth-first search along the DBpedia graph and successively adding all outgoing relations r,
thus adding all simple directed paths v, v1, . . . , vk, v′ of maximal length L that connect them
to G, i.e., V := V ∪ {v1, . . . , vk}, E := E ∪ {(v, r1, v1), . . . , (vk, rk, v′)}. We filter out any
administrative information and data using a list of stop-URIs provided by Hulpus et al. (2013)
and extended by us.

As a result, we obtain a sub-graph of DBpedia containing the initial entities, together with all
edges and intermediate entities found along all paths of maximal length L that connect them. In
this work, we set L = 2 following evidence from previous related work (Navigli and Ponzetto,
2012; Hulpus et al., 2013).

Figure 4.1 illustrates an example of a semantic graph generated from the set of entities {db:Bob-
_Dylan, db:Monterey_Country_Fairgrounds, db:Mozambique_(Song), db:Johnny-
_Cash}, e.g. as found within the sentence “Dylan played Mozambique at Monterey right before
Cash”. Starting from these seed entities, we perform a depth-first search to add relevant inter-
mediates nodes and relations to G (here e.g. foaf:Person or db:Folk_music).

Finally, we obtain a semantically-rich graph: additional nodes and edges provide us with a rich
structured context, in which the initial concepts are now connected by a variety of entities and
explicit semantic relations.

4.2.2 Weighting KG Relations

The approach described so far simply connects a set of input entities by traversing the given
knowledge, which is similar in spirit to graph-based approaches to Word Sense Disambiguation
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db:Bob Dylan 

db:Mozambique (Song) 

db:Johnny Cash 

db:Monterey 
Country Fairgrounds 

dbo:associatedBand 

db:Monterey Pop Festival 

dbp:location 

dbo:artist 
db:American folk music 

dbp:genre 

foaf:Person 

dbo:genre 

db:Folk music 

dbo:stylisticOrigin 
db:Desire (Bob Dylan album) 

dbo:album 

dbo:MusicalArtist rdf:type rdf:type 

Figure 4.1: Illustrating example showing a part of DBpedia, represented as RDF graph where
edges represent predicates that point from subject to object (cf. Section 2.1 with Fig. 2.1 and
2.2).

(WSD) using lexical resources (Navigli and Ponzetto, 2012) like WordNet. However, in contrast
to lexical resources and to Wikipedia, our knowledge graph contains many different, fine-grained
semantic relations.

But not all relations are equally informative, as we can see from Figure 4.1: There exist multiple
paths between the source nodes db:Bob_Dylan and db:Johnny_Cash, which is often the case
due to the typical high density of the DBpedia KG. And connecting paths include both, highly
informative relations (e.g., the two entities being linked directly via dbo:associatedBand),
as well as rather generic links (both entities being of rdf:type foaf:Person). The latter edge
types tend to apply to a very many entities, here for example all persons, and thus carry only low
discriminative power – e.g., in order to identify relations useful for entity relatedness. Thus, the
question arises what kind of information to take into account when trying to make use of the KB
relation information, e.g. when looking at graph paths within the KB graph.

One solution to this problem is to restrict the KB relations used to build semantic graphs to a
manually-selected set of relations that capture the application domain well, as proposed e.g. by
Hulpus et al. (2013). However, we want to overcome this manual and domain-specific step and
opt here instead for an automatic approach based on relation-specific edge weighting. This is
because, while a manual approach ensures overall good quality, it does not scale and needs to be
tuned for every knowledge base in turn.

For this reason, we opt to enrich the KG by weighting its edges. Weights are meant to capture
the degree of associativity between concepts in the graph – i.e., the degree of relevance of an
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db:Duluth, 
Minnesota

db:United States

db:Mozambique
(Song)

db:Bob Dylan

dbo:album
dbp:artist

dbo:birthPlace

db:Desire
(Bob Dylan album)

5.1

1.9

4.4

3.0

dbo:country

Figure 4.2: Example of two paths between entities with different semantic specificity in the
DBpedia knowledge graph. Numbers illustrated the wcombIC weights: The more specific the
edge, the higher the weight.

edge (i.e., semantic relation) for the entities it connects. The key idea underlying our weighting
is to reward, for a given source node, those edges and target nodes that are most specific to
it. An example is shown in Figure 4.2, where, starting from the entity Bob Dylan, high scores
stand for a high specificity (upper path), while low scores are attached to comparably generic
information. We formalize this intuition and propose different edge weight computation formula
in the following.

At the core of our edge weighting lies the notion of information content (IC ),

ICXPred
(ωPred ) = − log (P (ωPred )) , (4.1)

where P (ωPred) is the probability that the random variable XPred describing the type of edge,
i.e. a specific semantic relation, shows the outcome ωPred . Giving an example, when assuming
1 out of 100 predicates in DBpedia are rdf:type statements, then

ICXPred

(
ωrdf:type

)
= − log (P (1/100)) = 2 .

This measure makes the assumption that specificity is a good proxy for relevance – cf., for in-
stance the rdf:type vs. dbo:associatedBand predicates. We can compute these IC values
for all types of predicates, as we have the full DBpedia graph available and can query for all
potential realizations of the random variable XPred. In the example in Figure 4.1, the edge la-
beled with rdf:type will accordingly get an IC which is comparably lower than, the one for
dbo:associatedBand. The same effect is illustrated in Figure 4.2, where dbo:country has
a lower score than dbo:album (note that these weights actually already also incorporate infor-
mation about the triple object, as we will explain next when introducing the different weighting
schema.

Based on this IC measure, we propose the following three edge weighting schema.
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Joint Information Content (jointIC) While the information content of semantic relations
provides us with a way to distinguish general vs. specific connections, it only covers the a-
priori specificity of an edge, i.e., regardless of the entities it actually connects. However, as
shown in Figure 4.1, the same type of edge, e.g. rdf:type, can lead to very general concepts
with low discriminative power (foaf:Person), but also to very informative (because rare)
ones, like dbo:MusicalArtist, which do, in fact, provide valuable information. We capture
this by adding the conditional information content IC (ωObj |ωPred ) to our weighting scheme,
which accounts for the concept the predicate is pointing to, given that the edge has already been
observed. Formally, given an edge e = (Subj ,Pred ,Obj ) we compute the information content
of the joint probability distribution, IC (ωPred , ωObj ), which we take as our weighting function:

wjointIC (e) = IC (ωPred ) + IC (ωObj |ωPred ) (4.2)

In our example, the rdf:type edge leading to dbo:MusicalArtist accordingly receives a
much higher weight than that pointing to the far more generic foaf:Person. Next, we present
two alternative weighting functions that actually build upon the idea of jointIC.

Combined Information Content (combIC) Joint Information Content, although taking into
account predicate and object specificity at the same time, can nevertheless penalize infrequent
objects that occur with infrequent predicates – e.g., db:American_folk_music being overall
very infrequent, but getting a high probability (and, hence, a low IC ) when occurring conditional
on dbo:genre. We propose to mitigate this problem by computing the joint information content
while making an independence assumption between the predicated and the object. The resulting
weights are then computed as the sum of the Information Content of the predicate and the object:

wcombIC (e) = IC (ωPred ) + IC (ωObj ) (4.3)

Information Content and Pointwise Mutual Information (IC+PMI) An alternative way
to compute the strength of association between the predicate and the object is by means of
pointwise mutual information (PMI ):

PMI (ωPred , ωObj ) = log
P (ωPred , ωObj )

P (ωPred )P (ωObj )
. (4.4)

PMI measures the mutual dependence between the two variable outcomes ωPred and ωObj , and
can thus be seen as a measure of how much deviation from independence there is between the
two outcomes, i.e., the specific predicate and object found along a DBpedia graph edge. Our
hunch here is to use PMI to find a middle ground between the assumption of full dependence
(jointIC) or independence (combIC) between predicates and objects. We additionally combine
PMI with the IC of the predicate, in order to bias our weights towards less frequent, and thus
more informative, predicates:
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wIC+PMI (e) = IC (ωPred ) + PMI (ωPred , ωObj ) . (4.5)

4.2.3 Path Finding for Entity Relatedness

At this point, we start to make use of the weighted KG subgraph by computing a shortest
weighted path between two entities as a proxy for entity relatedness. Entity relatedness can
then be used e.g. to rank related entities, as shown in Figure 4.3, a task we will use later in
Section 4.3 to evaluate our different weighting schemata.

Edge Weighting
Path 

Finding

1. Mozambique (Song) 
2. Folk Music
…

10. Johnny Cash
11. Duluth, Minnesota
….

20. Mozambique

DBpedia
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Document Graph 
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Figure 4.3: Workflow: From entities to weighted KG paths for entity ranking.

We now explain our approach to compute entity relatedness between pairs of entities. Given two
entities E1 and E2 (both found in DBpedia), we perform the following three steps:

1) we build a semantic graph following the procedure of Section 4.2.1 using E1 and E2 as
input entities.

2) we weight all graph edges e by edge cost (cost(e)), which is defined as

cost(e) = wmax − w (e) , (4.6)

where w(e) is any of the three weighting functions defined in Section 4.2.2, and wmax

is the globally highest possible weight in the DBpedia graph for the selected weighting
function. We need wmax as an upper bound to ensure that cost(e) ≥ 0, as some graph
algorithms cannot handle negative edge weights and we want to stay flexible for future
applications, including the graph matching in Chapter 5.

3) we compute the minimum path cost between both entities – which acts as a measure of
semantic distance,
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distance(E1 ,E2 ) = min
p∈paths(E1 ,E2 )

costp(E1 ,E2 ) , (4.7)

where the cost of a path is calculated as the sum of the edge costs along the undirected
connecting path p:

costp(E1 ,E2 ) =
∑

e∈{(E1,r1,v1),...,(vk,rk,E2)}

cost(e) . (4.8)

As a result of our method, we obtain a measure of semantic relatedness between two arbitrary
entities within our knowledge graph base as the inverse of their semantic distance as computed.

We briefly illustrate our method in Figure 4.2 with an example using db:Bob_Dylan and db:-
Mozambique_(Song) as input entity pair. When looking at the entity db:Bob_Dylan (the
musician), we note that it is not directly connected to his song, db:Mozambique_(Song).
However, thanks to the fact that DBpedia encodes very specific facts – namely i) that Bob
Dylan is the main artist of the album db:Desire_(Bob_Dylan_album), and ii) that db:-
Mozambique_(Song) is a song contained in that very same album – we are able to estimate
a high degree of semantic relatedness between the two input entities. Note that our weighting
scheme plays a crucial role in estimating the degree of semantic overlap. If we look, for instance,
to another entity pair such as the one consisting of db:Bob_Dylan and db:United_States,
we note that in DBpedia these entities are connected by a short, albeit rather uninformative (be-
cause unspecific), path consisting of a single intermediate entity (db:Duluth,_Minnesota).
Our weighting captures this by assigning a low weight to edges denoting general semantic re-
lations such as dbo:birthPlace and dbo:country. As a result of this, we are able to state
that db:Mozambique_(Song) has a stronger semantic relatedness than db:United_States,
although both are connected to db:Bob_Dylan by a path of equal length.

4.3 Evaluation

In this chapter, we present our own experimental evaluation on an existing benchmarking dataset,
see details below. A second, external evaluation of our measure was done later by Hulpuş et al.
(2015), who find our work helpful for entity disambiguation. We summarize their findings in
Section 4.4 (Related Work).

4.3.1 Experimental setting

In this setting, entity ranking (Hees et al., 2013; Hoffart et al., 2012) is the task of ordering a
given set of entities on the basis of their relatedness with respect to a specific reference entity.1 In

1Please note that “entity ranking” is thus understood here differently compared to Chapter 7 (Relevance Ranking
of Entities), where the entity ranking task means not to compare entities against each other, but to retrieve KB entities
that are relevant for a given non-entity, general keyword query (cf. Section 7.1.4). Both definitions of entity ranking
are rather problem specific, and most readers will probably be more familiar with the INEX entity ranking task, in
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our case, since we work with DBpedia as KB, we take, e.g., db:Bob_Dylan as reference and try
to compute, how strongly db:Johnny_Cash is related to it, in comparison to db:Folk_music
or db:Mozambique_(Song), etc. This ranking task has the advantage that it provides a fo-
cused, extrinsic evaluation of our different weighting methods: besides, there exists established
gold standard datasets against which we can compare our approach.

Ranking entities by relatedness can here be seen as similar in spirit to computing word related-
ness (Zhang et al., 2012), except that in our setting we are given as input unambiguous entity
references, rather than potentially ambiguous words. Besides, entity relatedness also plays a key
role in entity linking (see Section 2.2), since many system rely on estimating the degree of relat-
edness between candidate entity references of different mentions in text. That is, within a global
document-level EL approach, entity mentions can be jointly disambiguated by maximizing their
degree of semantic overlap as obtained, for instance, from information stored within the target
knowledge base – cf. e.g. the AIDA entity linking system (Hoffart et al., 2012).

4.3.2 KORE Dataset

We use the KORE entity ranking dataset from Hoffart et al. (2012). This dataset consists of
21 different reference entities from four different domains, namely IT companies, Hollywood
celebrities, television series, video games, and Chuck Norris (a singleton dataset). For each
ranking problem, Hoffart et al. selected a set of 20 candidate entities by extracting hypertext
links from the corresponding Wikipedia article. As those entities were found to be related with
different degrees to the reference entity, the final relatedness assessments were obtained from
human judges using a crowd-sourcing approach. As an example, the entity “Apple Inc.” (from
the IT Companies category) is paired with, among others, the following other entities:

Reference Entity Related Entity (Rank out of 20)
Apple Inc. Steve Jobs (1), Steve Wozniak (2), . . .

NeXT (10), Safari (web browser) (11) . . .
Ford Motor Company (20)

Obviously, different entities have different degrees of relatedness with the concept of “Apple” as
a company. “Steve Jobs”, for instance, ranks highest, having been a key figure of the company. In
the middle range, instead, we find related companies such as “NeXT”, another company founded
by Steve Jobs (rank 10). Finally, at the end of the ranking we find “Ford Motor Company”, which
is only marginally related to “Apple”, being also an American company but from a completely
different industry.

As KG, we use DBpedia (cf. Section 2.1.3) Version 3.8 with the same dataset configuration as
available from the public SPARQL endpoint. This includes also materialized type (rdf:type)
statements generated from the subclass hierarchy (rdfs:subClassOf) of the DBpedia classes.

which for a given query an entity/ a list of entities is retrieved from a reference knowledge base – for more details
read Section 7.4.1.
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Table 4.1: Rank correlation on the KORE (Hoffart et al., 2012) entity ranking dataset for each
entity group comparing the different weighting schema (best results are bolded).

Unwghtd jointIC combIC IC+PMI
Hollywood Celebr. 0.639 0.541 0.690 0.661
IT Companies 0.559 0.636 0.644 0.583
Television Series 0.529 0.595 0.643 0.602
Video Games 0.451 0.562 0.532 0.484
Chuck Norris 0.458 0.409 0.558 0.506
All 21 Entities 0.541 0.575 0.624 0.579

Table 4.2: Rank correlation on the KORE (Hoffart et al., 2012) entity ranking dataset compared
against other systems (best results are bolded).

Method ρ

Unwghtd 0.541
jointIC 0.575
combIC 0.624
IC+PMI 0.579
Hoffart et al. (2012) 0.673
Milne and Witten (2008a) 0.610

We follow the original evaluation setting of Hoffart et al. (2012) and compute Spearman’s rank
correlation coefficient ρ per reference entity ranking. Overall results are then obtained by aver-
aging over all reference entities in the dataset.

4.3.3 Results

We report the results in Table 4.1, where we compare our different weighting schemes from
Section 4.2.2. As baseline we use an unweighted version of the DBpedia graph: this amounts
to computing entity relatedness simply as a function of distance in the network. Looking at
the overall performance of the three alternative weighting schemes for all 21 ranking tasks, we
observe that combIC consistently outperforms the baseline and both jointIC and IC+PMI on
three domains out of four. Looking at specific domains, we find that jointIC does not always

improve the baseline, as results for Chuck Norris and Hollywood celebrities are actually getting
worse. Nevertheless, on average all 3 weighting methods improve the baseline, with combIC,
which shows an average increase of 15.5% (statistically significant for each task at p ≤ .001
level using a paired t-test), achieving the best results.

When compared with the original results from Hoffart et al. (2012) as shown in Table 4.2, our
method achieves a performance slightly lower than their original proposal (ρ = 0.673), but
outperforms all its approximations (ρ = 0.621 and 0.425). Overall, we take these results as
indicator that our edge weight schemata are helpful when computing weighted path length, and
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that the combIC weighting is the best choice in this setting.

4.3.4 Error Analysis

For getting a better understanding of the actual rankings created by our method, Table 4.3 shows
two selected examples of a low-performing (db:Apple_Inc. with correlation 0.495)) and a
high-performing (db:Brad_Pitt with correlation 0.723) ranking.

We can see that our method identifies the top entities rather well, but then, for the db:IBM

ranking, it fails and ranks high unrelated entities like db:New_York_Stock_Exchange. This
is because both entities are connected via multiple rather uncommon predicate paths, including:
db:IBM dbo:tradedAs db:S&P_500while db:New_York_Stock_Exchange dbo:exchanges

db:S&P_500. And, in addition, both entities are connected via dbo:locationCity to db:-

New_York. Such short paths with very specific predicates and/or objects will consequently get
rather low path cost, and those end up at the top of the entity ranking – even though this is not
desired here.

4.3.5 Effect of Top-k Paths

Until now, we always considered only the single cheapest path that connected two entities. This
approach, however, does not take into account if multiple, distinct paths connect a given entity
pair. It seems intuitive that this information would be relevant for computing entity relatedness,
because when e.g. two person entities are connected not only by their place of birth, but also by
their profession and in addition have both acted in the same movie, these multiple KG relation-
ships should indicate a stronger semantic relatedness between both persons. Note that, given the
high density of the KGs like DBpedia, there is potentially a large amount of connecting paths
for an arbitrary input entity pair – even for entity pairs that are not related at all.

Consequently, we analyze the impact of considering multiple paths between a pair of entities,
and aggregating evidence by averaging their costs to compute the final relatedness score. This
approach should penalize entity pairs that are connected by one specific but also many unspecific
paths in contrast to entity that are connected by many specific paths. We show the results in
Figure 4.4. For all three weighting schemes, the performance of our method monotonically
decreases with the number of top-k paths used for computing entity relatedness (evaluated using
the same settings as above). The best results are obtained for k = 1, i.e. for taking the single
cheapest path only, indicating that robust performance on this task relies on finding specific,
highly informative paths – and thus meaningful semantic relations – between entities. Again,
the best results are obtained using the combIC weighting, which outperforms all other measures
for any k.

4.4 Related Work

The recent years have seen a significant amount of work on computing semantic similarity
(Zhang et al., 2012). This is arguably because semantic similarity provides a valuable model
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Table 4.3: Rank correlation for two single rankings from the KORE entity ranking dataset as
examples for a high-performing, Brad_Pitt (correlation 0.723), and a low-performing IBM (cor-
relation 0.490) output of our method. Scr denotes the relatedness score, Rk the according rank,
and GS the rank according to the KORE gold standard from Hoffart et al. (2012).

IBM (correlation 0.490) Brad_Pitt (correlation 0.723)
Entity Scr Rk GS Entity Scr Rk GS
Samuel_J._Palmisano 11.2 1 2 Angelina_Jolie 11.4 1 1
Armonk,_New_York 13.4 2 6 Rusty_Ryan 13.2 2 4
IBM_DB2 16.2 3 4 Plan_B_Entertainment 13.9 3 7
New_York_Stock_Exchange 16.9 4 19 Jennifer_Aniston 14.8 4 2
Hewlett-Packard 18.3 5 12 University_of_Missouri 16.9 5 10
Thomas_Watson,_Jr. 18.5 6 3 Fight_Club 17.2 6.5 3
Linux 24.0 7 11 Seven_(film) 17.2 6.5 5
Smarter_Planet 37.7 8 9 Shawnee,_Oklahoma 18.3 8 8
Rational_Software 38.6 9 5 David_Fincher 24.6 9 11
Nintendo 51.9 10 10 People_(magazine) 39.5 10 16
Xbox_360 53.0 11 8 Tom_Cruise 40.8 11 12
Dehomag 54.8 12 13 Guy_Ritchie 45.9 12.5 13
Herman_Hollerith 55.1 13 1 Robert_Redford 45.9 12.5 14
Human_Rights_Campaign 58.4 14 18 CNN 61.2 14 19
National_Medal_of_Science 64.2 15 17 Golden_Globe_Award 61.5 15 9
Nobel_Prize 64.6 16 20 ONE_Campaign 61.6 16 15
Cell_(microprocessor) 68.4 17 7 Sudan 63.9 17 18
Edwin_Black 72.8 18 15 Nice 68.3 18 17
Six_Sigma 74.5 19 16 Pakistan 68.5 19 20
Service-oriented_architecture 79.3 20 14 Achilles 999.0 20 6

of semantic compatibility that is widely applicable to a variety of tasks, including both pre-
processing tasks like Word Sense Disambiguation (Patwardhan et al., 2003) and coreference
resolution (Ponzetto and Strube, 2007), but also high-user applications such as information re-
trieval (Egozi et al., 2011) or multi-document summarization (Nastase, 2008).

Most of the previous work on semantic similarity has concentrated on computing pairwise sim-
ilarity of words, although recent efforts concentrated on the broader task of text similarity (Bär
et al., 2011), as also shown by community efforts such as the shared tasks on Semantic Textual
Similarity (Agirre et al., 2013). Overall, the best results in these evaluation campaigns have
been obtained by supervised models combining large feature sets (Bär et al., 2012; Šarić et al.,
2012), although questions remain on whether this approach can be easily ported to domains for
which no labeled data exists. In contrast, in this work we presented an unsupervised model that
requires virtually no parameter tuning and exploits the implicit supervision provided by very
large amounts of structured knowledge encoded in DBpedia.
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Figure 4.4: Results using top-k average path costs.

4.4.1 Semantic Relatedness of Words

Methods on semantic similarity of words can be broadly categorized into corpus-based and
knowledge-based approaches (cf. Hassan and Mihalcea, 2011). The knowledge-based methods
extract information from manually created resources, in particular from lexical taxonomies like
WordNet (Fellbaum, 1999) – which is the actual strength of those methods: they use a resource
specifically created to describe the relationships between words. Wu and Palmer (1994), for
example, exploit the WordNet hierarchy to find the least common superconcept of a pair of
verbs. The shortcoming is obviously the limited coverage and the high cost of manually creating
such task-specific resources. Our approach can also be classified as a knowledge-based method,
however, we build upon a general purpose KB that serves many different application and use-
case.

Corpus-based method try to overcome human effort of creating knowledge resources, and rely
instead on existing text corpora as information resource, thus being easily scalable to large
amounts of text. They often represent text as a BoW and compute e.g. the PMI between word
as a measure for their relatedness (Church and Hanks, 1990). Another, well-known method is
latent semantic analysis (LSA) by Landauer and Dumais (1997), which builds upon a standard
term-document matrix, describing term occurrences per document. The key idea of LSA is to
find a low-rank approximation, i.e. to performing a singular value decomposition, of this ma-
trix, resulting in a matrix with fewer dimensions then the original term-document matrix. By
reducing the number of term dimensions, dimensions representing related words get conflated
into (ideally) one dimension representing the abstract/latent word sense that semantically similar
(or synonym), but syntactical different, words have in common. LSA is thus also a method to
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overcome the vocabulary mismatch problem in IR or text clustering.

The same idea is utilized by explicit semantic analysis (ESA) from Gabrilovich and Markovitch
(2007), who represent words as concept vectors. But instead of generating the vector space
via dimension reduction from an arbitrary corpus, ESA uses the word-document-matrix (BoW
approach) of all Wikipedia articles. A word is then represented by a vector, consisting of the top-
k documents, i.e. Wikipedia articles (in the end, Wikipedia entities), in which the given word
was observed. Semantic relatedness of two words is then computed as the cosine similarity
between the two vectors (which is the standard approach to compare vectors in a vector space
model). ESA was proposed for computing semantic document similarity, we compare our own
method against ESA below in Section 5.3.

4.4.2 Semantic Relatedness of KB Entities

Semantic relatedness of (KB) entities is an important task for many applications that deal with
natural language text, including word sense (or named entity) disambiguation for entity linking
(Milne and Witten, 2008b; Pehcevski et al., 2008), general word sense disambiguation (Navigli,
2009), or knowledge base population (Dutta et al., 2015). Semantic relatedness of entities from
KBs like Wikipedia is also often discussed within the semantic web community. The work
from Passant (2010), for example, aims at computing semantic distances on linked data for the
purpose of entity recommendation. But as entity recommendation is the task, it relies (naturally)
on disambiguated input, which is, however, a requirement hard to satisfy for most applications
working with arbitrary natural language text like we do.

The work from Hoffart et al. (2012) proposes a method to compute semantic relatedness of KB
entities and is thus closely related – we actually use their evaluation gold standard in our own
experiments, cf. Section 4.3. Their motivation for estimating semantic relatedness originates
from the aim to build an entity linking system. As explained in Section 2.2, when having multiple
candidate entities for multiple mentions within one document (or sentence, or text fragment), the
information on how related the KB entity candidates are can be helpful for finding the correct
disambiguation and in entity selection/ranking step.

Instead of relying only on the entity connecting Wikipedia hyperlinks for relatedness com-
putation (cf. Milne and Witten (2008a) and Section 2.2), Hoffart et al. propose a measure based
on the overlap of keyphrases (Keyphrase Overlap Relatedness; KORE). The keyphrases are ob-
tained from the Wikipedia page of each entity, extracting link anchors of internal and external
links, titles of citations, and names of categories, which are then weighted by inverse document
frequency (idf ). The work also makes a contribution regarding the efficient computation using
locality-sensitive-hashing (LSH), which we will not discuss here.

Interestingly, the selection of sources for the keyphrases show a (partial) overlap with the KG
information we use for computing semantic relatedness, i.e. the usage of Wikipedia categories.
But instead of working on the surface forms of the links and categories, we in contrast go into
the other direction and leverage the even more structured DBpedia links, instead of just the
Wikipedia hyperlinks.
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The most relevant related work is from Hulpuş et al. (2015), who built upon our work and ex-
plored the benefits of KG path-based semantic relatedness measures for word and entity disam-
biguation – motivated, like us, by the aim to go beyond Wikipedia-based measures and exploit
the semantic information of KGs. In their system for word and entity disambiguation, they also
implemented our combIC metric (cf. Section 4.2) as one of the KG-based entity relatedness
measures. As part of their extensive experimental evaluation, the authors also evaluate the dis-
ambiguation step, i.e. the test how well the selection of the correct entity for a given list of
candidate entities works for a specific noun-phrase.2

When studying the influence of the entity relatedness measure in this setting, they find that
“while CombIC achieved much worse performance when evaluated against human assessment
of relatedness, it achieved the best disambiguation capability” (Hulpuş et al., 2015, p. 455)
and outperformed the other two KG-based methods on all five evaluation datasets. Our Com-
bIC measure achieves always the best F1, due to its comparably higher precision. Because of
the rather contradicting performance, Hulpuş et al. (2015) conclude that their findings indicate
“that for disambiguation, measures must have additional properties than correlation to human
assessment of relatedness.”

4.5 Conclusion

In this chapter, we proposed a method to estimate semantic relatedness of entities within the
DBpedia knowledge graph. Entity relatedness is thereby computed as the shortest path in a
weighted version of the KG, where the weighting and path finding is a purely unsupervised ap-
proach. We proposed different information-theoretic measures to weight the semantic relations,
and automatically quantify their degree of relevance with respect to the entities they connect.
Edges in the semantic graphs are thus weighted so as to capture the degree of associativity be-
tween entities, as well as their different levels of specificity.

When evaluating our approach via the task of entity ranking on the KORE dataset, we show that
weighting the graph outperforms an unweighted exploration, but also that the specific weighting
schema matters; we find combIC to perform best. In comparison with other well-established
method (Milne and Witten, 2008a), we can show a gain in performance, but are not as good as
the state-of-the-art method by Hoffart et al. (2012) for entity ranking. However, later work by
Hulpuş et al. (2015) adapted and evaluated our graph metrics for disambiguation and found that,
while the combIC measure “achieved much worse performance when evaluated against human
assessment of relatedness, it achieved the best disambiguation capability”.

In summary, we have developed a method to compute entity relatedness within a KG with labeled
edges, and have thus gone beyond the Wikipedia hyperlink based approach (Milne and Witten,
2008a). Having obtained experimental confirmation that our approach works in principle, we
can now make the next step in Chapter 5 and move towards representing whole documents as

2This is similar to the evaluation of disambiguating NELL subjects/objects to DBpedia entities presented in Chap-
ter 6.
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knowledge graphs and compare them with each other for computing semantic document simi-
larity.



Chapter 5

Document Modeling using the
Knowledge Graph

After having developed a method to compute semantic relatedness of single entities, we are now
going to build upon that approach and present our method to model documents as knowledge
base subgraphs – with the intention to compute the semantic similarity between document pairs
in the end. The key idea is to model a document as a set of KB entities and then use the DBpedia
KG to compute how semantically similar those KG subgraphs are, using an adaption of graph
edit distance. This chapter presents thus the “strongest” integration of text document and KG in
the context of this thesis, as the document itself will be represented as a subgraph of the KG.

The work presented in this chapter has been published before as: Michael Schuhmacher and
Simone Paolo Ponzetto. Knowledge-based Graph Document Modeling. In Proceedings of
WSDM’14, pages 543–552 (Schuhmacher and Ponzetto, 2014a).

Our research questions for this chapter arise from the problem at hand, namely computing se-
mantic document similarity. Following the thesis’ main perspective on how to make use of entity
links and the findings from Chapter 4 on how to compute entity relatedness within a KG, the
subsequent questions to be address in this chapter are:

• RQ1: How to project text documents onto a knowledge graph (KG)?

• RQ2: How to compare documents that are represented as KGs while integrating the se-
mantic KG information available?

In the remainder of this chapter, we will try to answer these questions before presenting another
application of our entity relatedness method in the context of NELL fact disambiguation in the
following Chapter 6.
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5.1 Introduction

Being able to compare document is a key capability for different document processing tasks,
including document retrieval and document clustering, and requires a defined understanding on
what a document is, i.e. how to represent a document. Naturally, traditional approaches on
document modeling draw upon document representations that rely solely on morpho-syntactic
information by means of “flat” meaning representations. Probably most well-known and widely-
used and -adapted are vector space models (for an overview see e.g. Turney and Pantel, 2010).
However, more recent research moved towards a “deeper” representation of meaning of doc-
ument content, which includes conceptual (Gabrilovich and Markovitch, 2007) and grounded
(Bruni et al., 2012) vector spaces models, indicating the usefulness of semantic information for
improving document comparison, also for more high-end tasks in IR and NLP (Hovy et al.,
2013).

With this work, we take the next step in knowledge-rich document models and incorporated ex-
plicitly external knowledge by not integrating knowledge into the document, but in contrast take
the document and represent it within the space the external knowledge base. While Gabrilovich
and Markovitch (2007) introduced the well-received idea of representing documents as vectors
of Wikipedia articles, the exploration of wide-coverage knowledge bases, such as YAGO (Hof-
fart et al., 2013) or DBpedia (Bizer et al., 2009) which are fully structured resources in contrast
to Wikipedia, for such tasks has not been studied extensively yet.

Because we aim for an experimental evaluation of our document modeling method, we choose
to test its capability to compute semantic document similarity, which is essentially the intention
when defining a document model for real world applications like document retrieval. We rely
on the notion of semantic document similarity as used by Lee et al. (2005), who also provide a
ground truth dataset for evaluating computational methods to compute semantic document simi-
larity which has been widely adopted (Gabrilovich and Markovitch, 2007; Hassan and Mihalcea,
2011, and others).

5.2 Method

In the previous chapter, we have already proposed a method to compare single KB nodes using
weighted KB relations. In this chapter, we now turn to representing whole documents as KG
subgraphs, and compare those subgraphs in order to determine the semantic similarity of the
original documents.

We provide an overview of our approach in Figure 5.1, starting from the output of an entity dis-
ambiguator, which is used to identify a set of concepts from the input texts (1). Next, connecting
paths between entities are collected, in order to identify the sub-graph of DBpedia covered by
each document (2). Nodes in the semantic graph consist of concepts capturing the main topics
of the documents: in addition, edges in the graph are weighted to identify the semantic relations
that are most relevant for these concepts (3). Finally, we view computing semantic similarity
as a matching problem between the concepts of different documents, and apply a Graph Edit
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Figure 5.1: Workflow: From document pairs via entity linking, KG construction, and edge
weighting to graph matching for computing semantic document similarity.
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Figure 5.2: Example of a weighted KG representing two text documents for semantic document
comparison (numbers on the graph edges indicate edge weights).

Distance based similarity measure, which relies on the Hungarian method, to identify the ‘best’
connecting paths between the documents’ concepts (4). As a result, we are able to output the
degree of similarity of the two input documents.

5.2.1 Document Graph Construction

Given an input text document, we first semantify the documt by identifying the set of concepts it
contains. To this end, words and phrases are annotated with DBpedia entities using an arbitrary
entity linking system (cf. Section 2.2) – in our experiments we opt again for DBpedia Spotlight
and TagMe. Given a mention and its candidate entities, the entity linker finds its most likely
meaning in context – e.g., like DBpedia Spotlight (Mendes et al., 2011) using a Vector Space
Model (based on a bag-of-words approach).
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Accordingly, given an input document, we are able to obtain a set of disambiguated KG entities
and their associated surface form words/phrases as mentioned in the text. In the two example
documents of Figure 5.2, we extract key concepts like db:Bob_Dylan, db:Johnny_Cash and
db:Desire_(Bob_ Dylan_album). We call these extracted concepts the source nodes V d

s of
a document graph Gd = (V d, Ed), V d

s ⊆ V d representing document d.

The document graphGd is then built by applying the procedure described in Section 4.2.1, which
means essential:1 Starting from the set of input entities V d

s , we explore the outgoing links, i.e.
predicates, and add the triple objects, if they are entities, to our subgraph – literals will not be
considered. This graph exploration is limited to a fixed number of two hops, L = 2, which is
the same settings as for the entity relatedness task, cf. Section 4.2.1. We thus get a subgraph
of DBpedia, in which the source entities describe the actual document content found (via the
EL), and where the surrounding entities and relations/predicates contain relevant background
knowledge – which will be used next to compute the semantic relatedness of two documents.

5.2.2 Graph-based Document Similarity

Since we represent documents as weighted DBpedia subgraphs, we can naturally formulate com-
puting document similarity as a graph matching problem. While there exist exact graph matching
algorithms based on graph isomorphism, we require our measure to be able to effectively quan-
tify degrees of similarity. Consequently, we opt for an application of graph edit distance (GED)
for our specific problem. GED (Gao et al., 2010) is a general, inexact graph matching method
that defines the distance between two graphs in terms of the minimum cost of edit operations
needed to transform one graph into the other. It thus follows the same idea as the edit distances
for strings (Levenshtein, 1965).

In general, a GED measure needs to define edit cost functions for insertion, deletion, and mod-
ification for both nodes and edges. However, given our specific problem setting, we drop some
of these requirements and define only cost functions for nodes. This is because, given a pair of
semantic graphs, generated using the method from Section 5.2.1, these actually consist of two
subgraphs of the same supergraph, namely the DBpedia KG. As a result, no cost function over
edges needs to be defined, since an edge existing or not in one graph will also be present or not in
the other, given the fact that both document graphs belong in fact to the same supergraph. Thus,
edit operation on edges solely cannot occur and, accordingly, we define edge cost functions to
yield zero.

We define cost operations for nodes as follows. Note that, since we work with a well-defined
ontology that represents concepts by unique URIs, we can rely on the fact that nodes in the
DBpedia graph are unique. As a result, we do not need to account for label mismatch between
concepts – e.g., the entity “Bob Dylan” being identified by db:Robert_Allen_Zimmerman

in a graph, and referred to as db:Bob_Dylan in another one (or vice versa). Thus, in contrast
to standard GED approaches, we define node modifications on the basis of the underlying edge

1This is only a brief summary, please go back to Section 4.2.1 for the detailed method.
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structure, i.e., weighted distances in the graph, as opposed, for instance, to the application of
string similarity measures like Levenshtein distance on node labels.

The modification cost between two nodes is defined, analog to Section 4.3, as the sum of the
edge costs along their connecting path (cf. Equation 4.8). By employing our edge cost function
(Equation 4.6) we capture the fact that the closer (i.e., more semantically related) two nodes are,
the lower the cost to modify one into the other is.

An exact solution to the GED problem can be found with a tree search over all possible edit
operations, which, however, is computationally intractable for any reasonably-sized graph. In
this work, we accordingly adapt an approximation method based on bipartite graph matching for
finding the minimal edit cost (Riesen and Bunke, 2009). This precomputes the cheapest node
modification costs for each node pair first, and stores them into a cost matrix. Since in our case
there can exist multiple paths between two nodes (and, thus, multiple such modification costs),
we always select the single cheapest node modification operation as the cheapest connecting
path.2 Next, the matrix is extended with the cost for node insertion and deletion – which we
define as equal to the most expensive node modification operation in the matrix (see below for
details). Computing the GED is now a bipartite graph matching problem between the source
nodes of the two graphs, with the objective of minimizing the edit cost and subject to the restric-
tion of a strict one-to-one matching (as every node can only be modified exactly once). We solve
this minimization problem using the Hungarian method (Kuhn, 1955) – also known as Kuhn-
Munkres or Munkres’ algorithm. After computing the GED, we apply a simple normalization
step to eliminate the effect of different graph, i.e., document sizes.

We summarize our approach in Algorithm 1. Given two semantic graphs Gi and Gj , represent-
ing documents di and dj (Section 5.2.1), we perform the following steps:

i) lines 1–9: for each pair of source nodes V i
s × V

j
s we find the cheapest undirected path pi,j

with cost ci,j using Dijkstra’s algorithm (edges along the path are weighted by one of our
three measures from Section 4.2.2).3 In the example in Figure 5.2, for instance, we compute
the cheapest path between db:Bob_Dylan and db:Johnny_Cash from Doc A, and each of
db:Desire_(Bob_Dylan_album) and db:Folk_music from Doc B in turn. The highest
weighted edge, here dbo:artist, is assigned a cost of 0.7 (assuming that in this example
we would have computed a global upper edge cost limit of wmax = 6.0 before, cf. Equa-
tion 4.6), whereas the lowest weighted edge, namely the two rdf:type relations, are both

2We observed that using only the single cheapest path instead of top-k paths results in superior performance, cf.
Section 4.3.5 Effect of Top-k Paths.

3We run Dijkstra’s algorithm (cf. e.g. Cormen, 2009, p. 658) to solve the single-source shortest-paths problem
on our weighted, directed graph. Even though we have to run Dijkstra’s algorithm multiple times, i.e. for each input
node (of one document), we choose this option over computing all pairwise shortest path (using the Floyd–Warshall
algorithm) because we need only the distances between the source/input nodes, and not the distances between any of
the many intermediate nodes/entities. And given that the run-time complexity of Dijkstra’s algorithm is much better
(O(|E| + |V | log |V |) compared to O(|V |3)) it is likely that even with the multiplication factor for the number of
input nodes, Dijkstra’s algorithm will still be the better choice, in particular for the larger graphs of 2 and 3 hops,
where the input-nodes-to-vertices ration decreases drastically.
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Algorithm 1 Graph-based semantic similarity

Input: Document DBpedia subgraphs Gi = (V i, Ei), Gj = (V j , Ej)
Parameter: Maximal path length nmax

1: function SUBGRAPHDISTANCE(Gi, Gj)
2: P ← ∅ . set of cheapest paths
3: for all (vi, vj) ∈ V i

s × V
j
s from Gi, Gj do

4: if vi = vj then
5: ci,j ← 0
6: else
7: ci,j ← DijkstraCheapestPath(vi, vj)

8: P ← P ∪ {
(
pi,j , ci,j

)
}

9: cmax ←maxp∈Plength≤nmax
(cp)

10: for all (pi,j , ci,j) ∈ P do
11: if pi,jlength ≤ nmax then
12: ci,j ← ci,j/cmax

13: else
14: ci,j ← 1
15: Dm← {di,j}i=1,...,m, j=1,...,m,m = max(|V i

s |, |V
j
s |) . edit cost matrix

16: for all di,j do
17: if i ≤ j then . be i ≥ j
18: di,j ← ci,j

19: else
20: di,j ← cmax

21: M ← HungarianCheapestMatching(Dm)
22: dist(Gi, Gj)← (

∑
m∈M mcost)/|V i

s ∪ V
j
s |

return dist(Gi, Gj)

assigned a cost of 6.0−1.5 = 4.5. Given these costs, the cheapest path between, for instance,
db:Johnny_Cash and db:Folk_music is the one through db:American_folk_music.
Note that, in order to avoid long paths between very distant (and thus semantically unrelated)
concepts, we limit the search based on a maximum search depth parameter nmax .

ii) lines 10–14: we next compute the node modification costs for each pair of source nodes. For
paths found exceeding the path limit nmax , we set their cost to that of the most expensive path
cmax found within the input graph pair. Since it might not be the case that both graphs are
fully connected, we also set cmax as the cost for unconnected source node pairs. Finally, we
normalize all cost values.

iii) lines 15–20: we build the final edit distance matrix Dm from the previously computed modi-
fication costs, as well as the costs of the node insertion and deletion operations, which we set
to cmax . This is to account for the fact that, given an arbitrary document pair, the cardinality
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of their sets of entities does not need to be the same: in this case, additional nodes are treated
the same as very distant ones.

iv) lines 21-22: the edit distance matrix Dm represents a bipartite matching problem, which we
solve with the Hungarian method. It finds the optimal, cost-minimal assignment in our node
operations matrix, while ensuring that each node will only be edited once. We finally normal-
ize the graph edit distance costs to account for the number of source entities in the two input
documents.

As a result of the execution of the algorithm, the normalized graph edit distance between Gi and
Gj is returned. In our example, we will get a mapping from db:Bob_Dylan to db:Desire-

_(Bob_Dylan_album) (cost 1.3) and from db:Johnny_Cash to db:Folk_music (cost 0.9
+ 0.8). The final similarity score is then given by the sum of these edit costs (3.0), normalized
by the number of distinct source entities in both documents (6).

5.3 Evaluation

In this section, we evaluate our idea to model documents as weighted KB graphs with a bench-
marking dataset for semantic document similarity. To this end, we use the 50 documents dataset
from Lee et al. (2005) (LP50) which is widely-used for evaluating semantic document similarity
and thus enables us to compare our method against other state-of-the-art systems.

Note that we do not use the recent SemEval Semantic Text Similarity (STS) task Agirre et al.
(2013) data for evaluation, since it focuses on very short texts, i.e., mostly sentences, which
provide a too small context for our approach. Similarly, we do not evaluate on the text similarity
datasets from Tsatsaronis et al. (2010) since they mostly consist of short texts with few entities.
This setting is far different from our main goal, namely modeling entity-rich texts as graphs of
KB entities and computing their semantic relatedness..

5.3.1 Experimental Setting

The LP50 dataset is a collection of 50 news articles from the Australian Broadcasting Corpo-
ration (ABC), which were pairwise annotated with similarity rating on a 5-points scale ranging
from 1 (very different) to 5 (very similar) by 8 to 12 different human annotators. To obtain the
final similarity judgments, Lee et al. averaged for each pair the scores of all annotators: how-
ever, the final collection of 1,225 relatedness scores has only 67 distinct values. Consequently,
Spearman’s rank correlation is not appropriate to evaluate performance on this data and we opt
instead, following previous work like Gabrilovich and Markovitch (2007), for Pearson’s linear
correlation coefficient (r).

We report our performance figures on the LP50 dataset in Table 5.1, where we show the Pearson
correlation coefficient r between the human-created gold standard and our graph-based approach
(GED). In order to evaluate our method across different entity linking systems we test with both
DBpedia Spotlight (Mendes et al., 2011) and TagMe (Ferragina and Scaiella, 2012), two state-
of-the-art systems according to the comparative evaluation by (Cornolti et al., 2013). For each
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Table 5.1: Results on the LP50 dataset (Pearson r correlation coefficient, best results are bolded).
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DKPro (Bär et al., 2012) 0.21
TakeLab (Šarić et al., 2012) 0.08
Cosine BoW baseline 0.56

entity tagger, we compute the performance for predicting semantic document similarity with
respect to different values for the maximum depth of the path search in the cost computation
(nmax). We compare our GED-based method with a variety of baselines:

i) a semantically-informed baseline which computes the Jaccard similarity coefficient over
the set of entities identified within the input documents, namely sim(d1, d2) = E1∩C2

E1∪E2
,

where E1 and E2 represent the set of concepts identified by the entity tagger (i.e., TagMe
or Spotlight) within documents d1 and d2, respectively;

ii) an unsupervised baseline computed as the cosine distance of a standard bag-of-words
Vector Space Model;

iii) two strong supervised baselines based on two publicly available supervised systems, namely
DKPro (Bär et al., 2012) and TakeLab (Šarić et al., 2012), both trained on standard Se-
mEval semantic textual similarity (STS) datasets.

5.3.2 Results

Table 5.1 shows that using our graph-based approach to semantic document similarity we are
able to beat all baselines by a large margin, achieving a correlation coefficient of up to 0.63
(nmax = 2, using Spotlight and either combIC or IC+PMI weighting). This is equal to a rel-
ative improvement of 16.0% over the semantically-informed Jaccard baseline and 11.6% over
the cosine bag-of-words baseline. All differences in performance are, unless noted otherwise,
statistically significant at p < 0.05 using Fisher’s Z-value transformation. The results indicate
that our method is able to always perform above the Jaccard baseline for nmax ≤ 3, and achieves
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Table 5.2: System comparison on the LP50 data (as reported by authors).

r

GED-based (weighted) 0.63
GED-based (unweighted) 0.61
Bag-of-Words (Lee et al., 2005) 0.1-0.5
LSA (Lee et al., 2005) 0.60
ESA – original (Gabrilovich and Markovitch, 2007) 0.72
ESA – reimplemented (Bär et al., 2011) 0.46-0.59
ConceptGraphSim (Ni et al., 2016) 0.745
Learned Concepts (Huang et al., 2012) 0.808

the best performance for nmax = 2. These parameter values are indeed in-line with the optimal
ones found by previous research contributions making use of graphs derived from Wikipedia
or DBpedia Navigli and Ponzetto (2012); Hulpus et al. (2013), which also showed the benefits
of mining information from short, highly specific paths. Interestingly, this makes our model
virtually parameter-free, because it implies that we can simply set the only tunable parameter
of our method, the depth of the search used for entity matching, to a standard values (i.e., 2
or 3) which are known to yield good performance across many different tasks. When looking
at the performance of the different weighting measures, we see that we consistently obtain the
best results using either combIC or IC+PMI, which corroborates our findings on entity ranking
(Section 4.3).

Finally, we notice that the different baselines show large performance variations. The simple
cosine baseline turns out to be a difficult competitor – e.g., outperforming the simple Jaccard
baselines computed from both TagMe and Spotlight annotations – which indicates that semanti-
fying the input texts and applying a simple entity overlap measure is not enough to yield a robust
performance. The supervised baselines, DKPro and TakeLab, both show instead an extremely
low performance rate, although they were reported as being among the top systems of the Se-
mEval STS 2012 shared task. This is because both systems are supervised in nature, and thus
able to yield accurate performance only when in-domain labeled data are available.

Next, in order to better understand the performance of our method, we compare it in Table
5.2 with an unweighted version that does not use edge weighting (i.e., all edge modifications
have the same cost), as well as previous results from the literature. When computing semantic
distances without weighting i.e., using the Hungarian method for mapping, but applied to un-
weighted paths only, we achieve up to r = 0.61 when using Spotlight and a maximum depth
of 3 – 12.5% above the semantically-informed Jaccard baseline and 8.3% over the cosine bag-
of-words baseline. This indicates the overall robustness of our GED method, which exploits
high-quality semantic paths from DBpedia. Similar to our results on entity ranking, additional
performance gains can be achieved thanks to weighting semantic relations.
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5.3.3 State-of-the-Art Comparison

When comparing our approach to the state-of-the-art systems on this dataset we see that we
outperform well-established methods such as latent semantic analysis (LSA) (Deerwester et al.,
1990) and strong baselines, but are nevertheless not able to achieve a performance as high as that
of explicit semantic analysis (ESA) by Gabrilovich and Markovitch (2007) or Learned Concepts
by Hulpus et al. (2013). However, note that our method has clear advantages over ESA as it
provides a fully unsupervised approach that practically requires no tuning, and that thus can be
applied to arbitrary data and domains with virtually no changes.4

The ConceptGraphSim system by Ni et al. (2016) builds upon our method as described here, as
they also represents documents as weighted DBpedia subgraphs, however, they also include a
node weighting for capturing the importance of an entity w.r.t. the original text it represents, cf.
the related work in Section 5.4.3 for details. Thanks more advanced weighing and features, Ni
et al. are able to achieve a performance of r = 0.745 on the LP50 dataset.

The best performing system for the LP50 document similarity task is the Learned Concepts
approach from Huang et al. (2012), who report an – as of May 2016 unbeaten – performance of
r = 0.808; cf. the related work in Section 5.4.3 for details.

In summary, we take these figures to be promising in that our approach to document semantic
similarity, while being based on a general document model with many potential applications –
e.g. ranking related entities (Chapter 4) and entity disambiguation for linking (Chapter 6) – is
nevertheless able to come close to a highly specialized method like ESA, which has been tuned
for this specific task and dataset.

5.3.4 Error Analysis

In order to gain additional insights into the performance of our method, we performed an error
analysis of its output. To this end, we focused on the manual analysis of documents deemed
closest or most distant from the human judgments. When looking at specific document pairs,
we found that our knowledge-rich approach is able to estimate well the similarity between
documents with little or partial word overlap: connecting paths between DBpedia entities, in
fact, were found to implicitly cover a wide range of topical associations, ranging from near-
synonymity (“U.S. intelligence” and “CIA”) all the way to metonymic5 relations (“White House”
and “Bush administration”):

• “U.S. intelligence cannot say conclusively that Hussein has weapons of mass destruction,
an information gap that is complicating White House efforts to build support for an attack

4On a side note, we want to highlight that the original performance figures for ESA (Gabrilovich and Markovitch,
2007) have been criticized (cf. Bär et al., 2011) for being based on a cut-off value used to prune the vectors, thus
being over-fitted to the LP50 data – cf. also the much lower performance obtained by re-implementations of ESA
including those from Bär et al. (2011); Hassan and Mihalcea (2011); Yeh et al. (2009).

5A figure of speech consisting of the use of the name of one thing for that of another of which it is [..] associated
(definition from the Merriam-Webster Dictionary)
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on Saddam’s Iraqi regime. The CIA has advised top administration officials to assume
that Iraq has some weapons of mass destruction. But the agency has not given President
Bush a "smoking gun," according to U.S. intelligence and administration officials.”

• “The Bush administration has drawn up plans to escalate the war of words against Iraq,
with new campaigns to step up pressure on Baghdad and rally world opinion behind the
US drive to oust President Saddam Hussein. This week, the State Department will begin
mobilising Iraqis from across North America, Europe and the Arab world, training them to
appear on talk shows, write opinion articles and give speeches on reasons to end President
Saddam’s rule.”

However, since it relies only on DBpedia entities and their document mentions, our approach
will perform badly in cases where i) the input documents contain few or no entities, or ii) they
share the same entities, but describe different events. For instance, our method will give a very
high similarity score to the following two sentences, although they describe completely different
events:

• “Obama started his second term in the White House; [...]”

• “Obama will soon leave the White House.”

But while our approach could be extended to include relations between entities which are auto-
matically extracted from text, cf. recent work on building event graphs from documents (Glavaš
and Šnajder, 2013), our results seem also to suggest that in the case of text similarity we can
often get away without a deep analysis of the documents’ sentences, since entity overlap is a
good proxy for topical affinity. This is highlighted by the following two sentences from the
LP50 data, which, albeit very different, belong to documents which were deemed highly similar
by the annotators:

• “Nigerian President Olusegun Obasanjo said he will weep if a single mother sentenced to
death by stoning for having a child out of wedlock is killed, but added he has faith the
court system will overturn her sentence.”

• “An Islamic high court in northern Nigeria rejected an appeal today by a single mother
sentenced to be stoned to death for having sex out of wedlock.”

5.4 Related Work

This work was, at the time of publication and to the best of our knowledge, the first to exploit a
wide-coverage KG for modeling documents as graphs and computing semantic similarity based
on this representation. The same idea was later adapted and refined by others, e.g. Ni et al.
(2016); Paul et al. (2016).
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Because an overview about semantic relatedness of words and entities was already given above
in Section 4.4, this part will focus on (i) knowledge-based text representation, (ii) semantic docu-
ment similarity in general, and (iii) knowledge-based semantic document similarity in particular.

5.4.1 Knowledge-based Text Representation

Booth et al. (2009) try to translate a natural language query/sentence into a database query, thus
providing an natural language interface. For that purpose, they represent the natural language
text as a semantic network, similar in spirit to our work, but they use WordNet concepts to
represent words for understanding the query, in contrast to the entity-centric approach we take
for modeling documents.

From a general perspective, our work can be viewed as building upon seminal research work in
IR that explored the use of controlled vocabularies Lancaster (1972), originally introduced for
library systems. The proposed method can thus be seen as instance of an advanced Knowledge
Organization System (KOS) (cf. e.g. Eckert, 2012), since it relies at its core on a wide-coverage
ontology to represent documents. However, as opposed to these approaches, we do not create
a controlled vocabulary for a specific document collection, but instead reuse an existing, back-
ground ontology which contains general world knowledge. We use this knowledge source to
represent the entities found documents, as opposed to using the documents’ headings or meta-
data. The Jaccard similarity we report in Section 5.3 consists, in fact, of a baseline method that
uses DBpedia as controlled vocabulary: we build upon this intuition and extend it by using the
information encoded within the structure of the DBpedia network.

The idea of graph-based representations using DBpedia have been explored before by Hulpus
et al. (2013), who aim at finding meaning full labels for a topic model; Given the words of each
topic (a topic is a distribution of words from the input document corpora), they apply entity
linking and then exploit the DBpedia graph to infer a meaningful entity as label for each topic.
The basic assumption is that the entities of topic are somehow connected with each other – which
is essentially the same idea we follow when representing a document as a DBpedia subgraph.
Our approach is thus very similar in a way, but we go one step back and take the entities from
the documents directly, thus creating a representation for each document within the DBpedia
KG. Hulpus et al. also use unsupervised methods for graph exploration, e.g. inverse path length
or random graph walks, but obviously with a different aim as the coherence of one subgraph is
in focus for them, while we try to understand the matching between two subgraphs. In addition,
they limit the graph construction to a set of manually selected DBpedia predicates, while we try
to be agnostic including any relation and make the filtering via our edge weighting schema.6

Another closely related work is that of Scaiella et al. (2012), who use graph-based representa-
tions of snippets for Web search results clustering (cf. Chapter 3). Their method also builds
a document-based semantic graph from Wikipedia entities, as obtained from an entity linker.

6As mentioned before, we reused (and extended) a list of DBpedia predicates provided by Hulpus et al. (2013) to
filter out administrative predicates.
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However, similarly to Shen et al. (2012), they do not exploit explicit semantic relations between
entities (which we show to be beneficial for both entity ranking and semantic similarity).

5.4.2 Semantic Document Similarity

Before presenting other work on semantic document similarity that also builds upon KGs in
the next section, we describe here other well-known methods for computing semantic document
similarity – in particular those we compared our method against in the evaluation.

The two most-well known competitors, LSA and ESA, were already introduced in the previous
chapter on entity relatedness (see Section 4.4.1) as they can be also used for computing semantic
relatedness of words.

The DKPro system by Bär et al. (2012) was designed for participating in the SemEval 2012 task
on STS and was the best performing system for two out of three metrics. The STS task (Agirre
et al., 2012) is to compute the degree of semantic equivalence between a pair of sentences, it
is thus very similar to our task of computing semantic similarity between documents. Thus, it
is no surprise that the system makes use of different pairwise word similarity measures, ESA,
and the similarities from a distributional thesaurus. These features are combined with a variety
of string-based measures, including longest common substring, greedy string tiling, and the
Jaccard coefficient on different character and word n-grams. More advanced features make use
different existing systems for lexical substitution and statistical machine translation. Last, the
system computes measures (often via the Jaccard coefficient) for the structural similarity of the
sentence pair structural information by determining stopword n-grams, part-of-speech (POS) n-
grams, or function word. In total, Bär et al. studied more than 300 different features and then
trained a log-linear classifier for combining the 20 best performing feature, using a 10-fold cross
validation on the training dataset provided by the STS task organizers. In our experiments, we
used the pre-trained models from provided by Bär et al.. The rather low performance on the
LP50 dataset seems to originate from the fact that the DKPro system was to heavily trained on
the STS dataset. Our system takes in contrast a very different approach, as we neither build upon
third party system, nor use a supervised method.

TakeLab by Šarić et al. (2012) was participating in the 2012 STS task, too, and is also a super-
vised system (using support vector regression) combining many different measures for capturing
the similarity between the sentences. Features used include different n-gram and skip-ngram
overlap features, word overlap, WordNet augmented word overlap, weighted n-gram overlap,
but also vector space similarity, syntactic dependencies overlap, and finally named entity over-
lap and approximate numbers overlap. The system design follows thus the same spirit as Bär
et al. (2012): Generated as many different features as possible and learn a feature combination
from training data.7
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Figure 5.3: System architecture of Ni et al. (2016).

5.4.3 Knowledge-based Semantic Document Similarity

The work that is probably the closest to ours is from Ni et al. (2016), who explicitly build upon
our work and can achieve a significantly higher performance on the LP50 dataset. They follow
our processing pipeline by (i) taking a text document, (ii) extract entities via the TagMe entity
linker, (iii) represent the document as a DBpedia subgraph of weighted entities, and then (vi)
compute semantic document similarity based on this representation (cf. Figure 5.3) In contrast
to our work, Ni et al. assign weights to nodes also based on their importance in the text – an
aspect we did not consider as our edge weights are computed independently of the text – in
addition to the entity relatedness weights both of us use (but with different implementations).

Comparing both approaches in more detail, we see that Ni et al. (2016) compute, like we do,
a KG-based measure to estimate the relatedness of entities, as they build upon the same as-
sumption that the set of entities representing a document should be closely related in the KG.
However, the actual measure is more complex then our approach, as it incorporates three dif-
ferent graph-metrics: Degree, inverse of shortest path (like us), and the betweenness, i.e. the
number of shortest paths between two nodes (which we did not find to be helpful). In contrast
to our approach that is completely agnostic when weighting the predicate edges, Ni et al. (2016)
introduce a special category association feature, that prunes the DBpedia-provides Wikipedia
categories to construct a true taxonomy (a directed acyclic graph) first, and then computes an
information content (IC )-based similarity measure from it. In addition to the DBpedia graph
features, relatedness of entities is also computed via the well-established Wikipedia hyperlinks
overlap (Milne and Witten, 2008a).

Another interesting feature that clearly extends our approach is the “content based weight-
[ing]” of nodes: Entity-representing nodes get weighted according to the similarity between the
entity and the source document they represent. The similarity is thereby computed as the cosine

7An approach similar in spirit to learning-to-rank (LTR) methods in IR.
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Markovitch, 2005; Recupero, 2007; Yeh et al., 2009), and
others only have considered relations that are pertinent to the
documents currently being compared (Hu et al., 2008). The
decisions governing which relations should be considered
and how are usually ad hoc. For example, Bloehdorn and
Hotho (2004) expanded to concepts that are more general
than those mentioned in the document, and restrained the
expansion to be within a certain depth in a hierarchy. Hu
et al.’s (2008) system considers several relations, including
hierarchical and associative relations, each restricted to a
certain range, and the formula for combining them is deter-
mined empirically through experimental trials.

In contrast, our work takes explicit account of semantic
relations between concepts, in a principled way. Related
methods in the literature include explicit semantic analysis
(ESA; Gabrilovich & Markovitch, 2005) and its successor
graph-based ESA (ESA-G; Yeh et al., 2009), both of which
index documents with Wikipedia concepts based on full-text
analysis. ESA indexes a document with Wikipedia articles
that have certain surface overlap with it. ESA-G enriches
ESA with hyperlink structure information by using an itera-
tive random walk (Page, Brin, Motwani, & Winograd, 2009)
over Wikipedia’s hyperlink graph that is initialized with the
Wikipedia concepts assigned to a document by ESA.
Because they require processing the full text of Wikipedia
articles, they are computationally more expensive than is our
method, which does not involve full-text analysis. Later in
the article, we compare our measure with these techniques.

We use both WordNet and Wikipedia to identify concepts
in documents and to relate different concepts. Both are
domain-independent, yet different techniques are required
because they have distinct structures and characteristics. We
will explain how each is used to identify concepts in free-
text documents after we introduce our framework in the
following section.

Framework

Figure 1 illustrates the general process of creating and
applying our document similarity measure. Given a docu-
ment collection, we first list all the possible document pairs.
Given each pair, the first step creates two independent rep-
resentations by extracting words and concepts from the
documents. The feature-generation step takes the represen-

tations as input, extracts features that describe the resem-
blance between the two documents at different levels, and
outputs a feature vector. The feature vectors for different
document pairs are used to build the similarity measure in
the training phase, and the resulting model is then applied to
previously unseen document pairs to predict their thematic
similarity.

The next section explains the document representations.
Several features involve measuring the semantic relatedness
between concepts; thus, we will first describe the measures
that we use for WordNet and Wikipedia, and then introduce
the features.

Document Representation

Documents are represented at the lexical and semantic
levels by the words and concepts they contain. This creates
two independent representations, called bag-of-words and
bag-of-concepts, respectively. To create the former, docu-
ments are segmented into tokens based on white space,
paragraph separators, and punctuation marks. Then all
words are extracted and stemmed (Porter, 1980), stop words
are removed, and the number of occurrences of each word is
counted.

To create the bag-of-concepts representation, the con-
cepts in the document are identified. First, an index vocabu-
lary is extracted from each concept system (Wikipedia and
WordNet) whose entries associate concepts with lists of
expressions that could be used to refer to it in running text
(Huang et al., 2008). For Wikipedia, the expressions come
from the redirects and anchor phrases that point to a Wiki-
pedia article. For WordNet, they are the synonyms in a
synset. For example, WordNet associates the concept “a
machine for performing calculations automatically” with 6
expressions (computer, computing machine, computing
device, data processor, electronic computer, and informa-
tion processing system) whereas Wikipedia associates it
with more than 100, from synonyms such as computer
systems to common spelling errors such as computar.

Concepts mentioned in a document are identified in two
steps: candidate identification and sense disambiguation. In
the first step, all word sequences up to the maximum length
of the index vocabulary are extracted, provided that they do
not cross boundaries such as paragraph separators. Each

FIG. 1. The process of creating and applying our document similarity measure.
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Figure 5.4: System architecture of Huang et al. (2012).

similarity of a bag-of-words vector space model of the Wikipedia article of the entity and the text
document.8 Taking all these features together, Ni et al. (2016) report a correlation of 0.745 for
this ConceptGraphSim configuration, while the overall document similarity is the average of the
best pair-wise entity similarity over all entities – which is somehow similar to our GED-based
matching idea. When combination ConceptGraphSim linearly with ESA scores, performance
increases to 0.786.

In summary, the work of Ni et al. (2016) follows the very same idea as our work, but they
introduce several more DBpedia and non-DBpedia features. As a results, they have a much more
divers and complex model, but also yield a much better performance.

Huang et al. (2012) achieved an average Pearson correlation of r = 0.808 on the LP50 dataset,
which is the highest score were are aware of as of Mai 2016, thus outperforming our system
as well as Ni et al. (2016). In their supervised approach as depicted in Figure 5.4, documents
are represented in two different ways, as bag-of-words (BoW) and as bag-of-concepts – where
concepts are either Wikipedia entities or WordNet synonym sets (synsets). However, the best
performing model (where r = 0.808 for the LP50) does not make use of WordNet, but uses
only Wikipedia entities instead. In total, this model consists of 17 different features acting as
semantic similarity proxy, which the authors categorize into three groups:

1. Document level: this is essentially the cosine similarity of a tf -idf BoW model over the
document text, plus the similarity between the Wikipedia entities added to each document.
Thereby, for each document pair, the entities found within the other document are added
and attached with a weight that is computed based on the relatedness of the entities form
the other document with the entities from the document itself. The entity relatedness
computation is based on existing work for exploiting the direct Wikipedia link structure
(overlap in incoming/outgoing links). Those two features alone, called CosineWords and
EnrichedConcept, are already able to achieve an performance of r = 0.717 – but notice
how rich the information are that went into the EnrichedConcept feature.

2. Concept level: This group consists of 10 different features addressing the relatedness
of the entities found within a document compared to the other entities. The motivation is

8We used the same technique in our work on relevance ranking of entities in Chapter 7 when computing the
similarity between an entity and a query via the Wikipedia text (cf. feature WikiBoolean and WikiSDM in Section
7.2.6).
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essentially to identify how central an entity is to the document that mentions it. In addition,
each entity is compared against all other entities to identify which has the strongest overall
relatedness to all concepts in a group.

3. Topic level: This contains 5 features that measure the size and relatedness of groups of
entities. The groups are created by clustering together closely related entities, which those
represented aspects or topics within a document.

For combining these features, the authors report on extensive experiments with different machine
learning methods. The best results were finally achieved by learning regression (with 10 fold
cross validation) to combine the different features using an support vector machine (SVM) with
the radial basis function kernel (Smola and Schölkopf, 2004). In summary, the concept leaning
approach from Huang et al. (2012) shows that the usage of KB entities and entity relatedness
information can be a meaningful addition to simple BoW representations when computing se-
mantic document similarity – which is in line with our own findings. The very high performance
on the LP50 dataset indicates that the combination of many different features, and the usage of
structural KB information together with standard BoW methods is more promising than our own
one model approach.9

Another notable work sharing this chapter’s ideas is by Paul et al. (2016), who also take a
document, link it to DBpedia entities, and then explore the DBpedia KG to compute semantic
document similarity. Interestingly, they address specifically the computational problems arising
from such KG-based methods like their, ours and that from Ni et al. (2016) – and propose offline
computation and indexing of shortest paths between entities as a solution. For estimating seman-
tic document similarity, they propose a traversal similarity which utilized “spreading activation
method: starting from a knowledge graph entity, it traverses semantic, non-hierarchical edges
for a fixed number of steps”. This is essentially very close to our graph exploration and path
finding approach, however, unlike us and in line with e.g Ni et al. (2016), they tread the category
and type predicates (call hierarchical edges) differently than the other predicates/edges. In the
end, entity relatedness is computed as a combination of the graph-based relatedness within the
hierarchical and within the non-hierarchical edge/predicates network. Document similarity is,
similar to our GED-based method, computed as a graph matching problem, but Paul et al. allow
also for 1:n mappings between document entities (instead of the 1:1 matching we enforce). The
experimental evaluation on the LP50 dataset yields a Pearson correlation of r = 0.712 for the
best system configuration, thus outperforming our numbers. Interestingly, Paul et al. also find,
like us, that they achieve the highest performance when limiting the entity neighborhood ex-
ploiting to a size of two, i.e. two expansion hops in the DBpedia graph. In summary, Paul et al.
(2016) proposes an approach rather similar to ours, in terms of document representation, entity
relatedness, and document graph matching. However, they propose the interesting extension to
separated the different types of relations (hierarchical vs. semantic predicates) when computed
entity relatedness. It seems that this approach leads to the superior results, which would also be
in line with the work and findings from Ni et al. (2016).

9However, one has to note here, that comparing our unsupervised graph matching against a supervised system
combination 17 features using a 10-fold cross validation might also be questionable.
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5.5 Conclusion

In this chapter, we proposed a novel method for document modeling that represents a document
as a set of KB entities within the DBpedia knowledge graph (KG), thus as a KB subgraph (RQ1).
Based on this model, we can view semantic document similarity as an approximate graph match-
ing problem, using graph edit distance (GED) on the subgraph of entities and KG relations, and
thus utilized the information about the relatedness of entities as encoded within the KG (RQ2).
We evaluated our document model using an established dataset for semantic document similarity
(50 documents dataset from Lee et al. (2005) (LP50)) and show that our approach outperforms
baselines relying on traditional, i.e., ‘flat’, document representations, and also produces results
close to those of well-known methods like explicit semantic analysis (ESA).

Our approach has the advantage of being a coherent model proposing a structured, computer- and
human-readable representation for a document, and making it possible to compare documents
with each other while integrating background knowledge into the process, but without the need
for any supervision or extensive parameter-tuning. It is also (to the best of our knowledge),
the first contribution towards making use of KGs like DBpedia for representing documents and
computing semantic document similarity – an idea that was later extended and improved by
other, in particular Ni et al. (2016) (cf. Section 5.4.3).

However, in terms of performance, our method seems to suffer from not integrating the KG
information with the simple (“flat”) bag-of-words (BoW) representation of the raw document,
an approach other works found to be useful (e.g. Huang et al., 2012). Regarding the performance
of the three different edge weighting schema, the experiments for document similarity are in line
with the findings for the entity ranking task reported in Chapter 4.

In summary, we conclude that representing documents as subgraphs of general-purpose KGs is
an interesting and promising idea to overcome the known limitations of purely surface form
document representations. Subsequent research has shown that significant performance im-
provements are possible, however, a stronger integration with text-based representations seems
to have the potential for even further improvements in the future.



64 CHAPTER 5. DOCUMENT MODELING



Chapter 6

Entity Linking using the Knowledge
Graph

In this chapter, we present another application for the entity relatedness method used above in
Chapter 4 to rank entities, namely we approach the task of (a domain specific) entity linking.
Thereby, the surface form mentions to be linked do not originate from an arbitrary natural lan-
guage sentence or document (cf. Section 2.2), but we aim at linking the subject and object from
surface form triples from OIE, here Nell, to disambiguated KB entities, here DBpedia. While
the overall aim is to link a full OIE triple to a KB, here we only try to link the subject and
object surface forms to their correct DBpedia entity, which is the reason why our KB-based en-
tity relatedness computation from Section 4.2 is helpful: It discovers if (and how strongly) the
subject-object-candidate-pairs are related according to the background KB.

The work presented in this chapter has been published before as: Arnab Dutta and Michael
Schuhmacher: Entity Linking for Open Information Extraction. In Proc. of NLDB’14, pages 75-
80 (Dutta and Schuhmacher, 2014). The graph exploration method used for the entity linking
described in that publication is the method devolved above in Chapter 4. This chapter will thus
present an application of our method to a different problem.

Until now, we always worked with DBpedia as KB, which is extracted via manually created
extraction rules from Wikipedia (as described in Section 2.1.3). One disadvantage of such KBs
is their limited coverage – even though Wikipedia is a rather extensive encyclopedia, still many
facts are not covered, and even less facts get extracted into the DBpedia KB. An alternative are
KBs that got automatically generated from web text documents, using OIE systems like Nell or
Reverb (Carlson et al., 2010; Etzioni et al., 2004). However, such systems, working on open
domain, web-scale text data, and thus generating data of a rather wide coverage, suffer from
their poor schema/ontology when comparing the generated facts against Wikipedia-based KBs
(DBpedia, Yago). Thus, while being promising in terms of discovering novel facts on the web,
the missing schema – which means neither entities nor relations/predicates are disambiguated,
but just simple surface forms – imposes a serious limitation on such OIE approaches.

65
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One idea to overcome this limitation is to combine both types of knowledge, those extracted
from the web via OIE and those from structured KBs (cf. e.g. Dutta et al., 2013). In this chapter
we present on the first step towards triple disambiguation, namely the task to link the subject
and object of a Nell to their corresponding uniquely identifiable DBpedia entity instance.

We study how our KG pahts can help in this setting, and ask the following research question:

• RQ: Can knowledge graph paths be used to improve the disambiguation of surface form
subject-object pairs?

6.1 Introduction

The task for this chapter was defined by Dutta et al. (2013): Given a subject-predicate-object
triple as created from the open information extraction (OIE) system Nell, try to link the surface
form of subject and object to disambiguated KB, i.e. DBpedia, entities. Note that linking subject
and object from Nell to DBpedia is only a first step: We do not address the problem of mapping
the predicates from Nell to their corresponding DBpedia properties, but focus on the entities
here. The property matching was later addressed by Dutta et al. (2015).

Giving an example for our task, Nell might extract a predicate like this:

“bookwriter”(“imperialism”, “lenin”).

where “imperialism” is the subject and “lenin” the object of the relation/predicate “bookwriter”.
Without any (human) background knowledge, it is difficult in this context to determine the cor-
rect entity for the subject and object terms: The surface form object “lenin” can refer to

(a) Vladimir Lenin (the Russian political theorist),

(b) Lenin (a nuclear icebreaker), or

(c) Lenin Prize

and maybe even more. But our example is talking about db:Vladimir_Lenin, because he is
the writer of the book db:Imperialism,_the_Highest_Stage_of_Capitalism – a fact
a human can recognize if s/he knows the book and its author. In this chapter, this very same
process will be performed by our approach when finding entity relatedness via KB paths. For
this example, DBpedia conveniently provides us with a direct relationship between subject and
object:

db:Imperialism,_the_Highest_Stage_of_Capitalism

dbo:author

db:Vladimir_Lenin

From a very general perspective, the task given to us by Dutta et al. (2013) is an instance of
EL (as introduced in Section 2.2), as the task is to match (link) the surface form mention of an
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entity from a natural language text to its corresponding, disambiguated KB entity. However, in
this chapter we will specifically link ambiguous Nell subjects and objects as found within a Nell
triple – the fact that subject and object have been found to be in a specific relation as expressed
in the source text of the Nell triple, makes this a very unique EL setting. Subject and object are
plain surface form mentions, thus neither unique nor disambiguated; the disambiguation is thus
the dominant problem there as illustrated in the Lenin example above.1

General purpose entity linking systems, like e.g. DBpedia Spotlight or Aida (Mendes et al.,
2011; Hoffart et al., 2011), exploit, besides other features, also the textual context of the entity
mention within the text. But in our case, this context information is not available or does not
exist – we have only the triple itself available (Dutta et al., 2013). While having only triples
is a limitation on the one hand side, the fact that subject and object are related (by some Nell
predicate) also gives us an advantage on the other hand side, because we can try to exploit KB
relations for finding the correct entities.

6.2 Method

In the following, we first present a strong baseline method, namely the frequency-based entity
linking as used in Dutta et al. (2013). Second, we introduce our knowledge-based approach
which exploits the DBpedia KB itself, following the KG exploration method introduced above
in Chapter 4. Last, we study a combined approach, which incorporates the frequency-based and
the graph-based approach.

6.2.1 Frequency-based Entity Linking

A simple, yet high performing approach for mapping a given surface form (Nell subject/objects
in our case), to its corresponding DBpedia (or Wikipedia) entity is to link to its most frequent
candidate entity Mihalcea and Csomai (2007). Even though this approach does not take any
context information into account, it has proven to be effective not only for text entity linking,
but also for Nell triple linking (Dutta et al., 2013). We thus use it as a baseline method.

For obtaining the frequencies, the Wikipedia hyperlinks and anchors were exploited (using
WikiPrep (Gabrilovich and Markovitch, 2006)), as the link itself uniquely identifies the enti-
ties, while the anchor is a free text surface form. This approach is very effective and well used
in most entity linking systems (cf. Section 2.2). Formally, if an anchor e refers to N Wikipedia
articles A1, . . . , AN with n1, . . . , nN respective link counts, then the conditional probability
P of e referring to Aj is given by, P (Aj |e) = nj/

∑N
i=1 ni. Thus, the pair (e,Aj), henceforth

called subject/object-instance-mapping, is awarded the probability P . We rank the candidates on
descending P and define a top ranked list as ESubj |top−k (for subject mappings) and EObj |top−k
(for object mappings). We select the DBpedia subject-object pair with the highest prior proba-

1Note that we have in principle also a NIL-linking problem, in case we have Nell entities that do not have a
corresponding DBpedia entity. However, in our initial experiments we could not find this to be a significant problem,
and thus do not address it in this work.



68 CHAPTER 6. LINKING ENTITIES

bility. Since every mapping of a subject is independent of the object mapping, we compute the
prior probability as Pprior = PSubjPObj .

6.2.2 Graph-based Entity Linking

As stated above, we assume that the subject and object connected by a Nell predicate are related
to each other – like in the “bookwriter”(“imperialism”, “lenin”) example from above – and that
some/this relationship can be found within the DBpedia knowledge base. We thus compute
the semantic relatedness between all subject-object-candidate pairs using the predicate-agnostic
approach presented in Section 4.2:

1. We consider all combinationsESubj |top−5×EObj |top−5 and compute each pairwise cheap-
est path.

2. We weight the DBpedia graph edges by the best performing graph-weighting schema
(CombIC, cf. Table 4.1 in Section 4.3).

3. We select the subject-object pair from ESubj × EObj which has the minimal path cost on
the weighted graph. The path cost between two entities is calculated as the sum of the
edge costs along their undirected connecting path and is normalized as probabilities to
Pgraph

As result, we jointly disambiguate subject and object to their semantically most similar DBpedia
candidate entities.

Last, we combine KB-based approach the frequency-based approach, as the latter can exploit the
empirically obtained frequency data about common surface-form-to-entity mappings, while the
former one is able to find relationships between subject and object in the background knowledge
base DBpedia. We opt for a simple linear combination of the two approaches and select the
subject-object combination with the highest combined probability

Pcomb = λPgraph + (1− λ)Pprior

The influence of the λ parameter is evaluated in Section 6.3.2 (cf. Fig 6.1).

6.3 Evaluation

For evaluation we use a gold standard based on Nell triples provided by Dutta et al. (2013). It
consists of if 12 different Nell predicates, like “bookwriter”, “actorstarredinmovie”, or “lake-
instate” – for the full list of predicates see Table 6.1 below. For each predicate, 100 triples
like “bookwriter”(“imperialism”, “lenin”) are provided. Subject and object have been manually
linked to their correct DBpedia entities and our task is to perform this linking with the help of
our method now. For more details on the dataset see Dutta et al. (2013).
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Table 6.1: Performance scores of the three different methods on the NELL triple linking dataset
(from Dutta et al., 2013). The best F1 value per predicate is marked in bold. Bottom row shows
the average F1 gain over the Frequency baseline.

Frequency-based Graph-based Combined
P R F1 P R F1 P R F1

actorstarredinmovie 80.7 82.0 81.3 89.8 91.2 90.5 91.4 92.8 92.1
agentcollaborateswithagent 81.6 85.9 83.7 69.3 72.9 71.1 81.6 85.9 83.7

animalistypeofanimal 85.7 88.0 86.8 62.4 64.1 63.3 85.2 87.5 86.3
athleteledsportsteam 88.6 85.5 87.0 87.0 84.0 85.5 91.7 88.5 90.1

bankbankincountry 81.7 77.6 79.6 68.3 64.8 66.5 81.7 77.6 79.6
citylocatedinstate 79.0 79.4 79.2 81.5 81.9 81.7 86.0 86.4 86.2

bookwriter 82.2 83.1 82.6 83.8 84.7 84.2 87.6 88.5 88.0
personleadsorganization 83.6 79.0 81.2 78.4 74.0 76.1 84.8 80.1 82.4

teamplaysagainstteam 81.8 81.8 81.8 61.0 61.0 61.0 85.6 85.6 85.6
weaponmadeincountry 88.9 87.0 87.9 44.4 43.5 44.0 84.7 82.9 83.8

lakeinstate 90.3 93.0 91.6 84.7 86.6 85.6 91.5 93.6 92.5
Macro Average 84.0 83.8 83.9 73.7 73.5 73.6 86.5 86.3 86.4

Gain over baseline in % -10.3 -10.3 -10.4 +2.7 +2.8 +2.9

6.3.1 Experimental Setting

We use Precision (P ), Recall (R), and F1-measure (F1) as metric and evaluate each mapping
individually, i.e. for each subject and for each object, in order to also take into account partially
correct disambiguations/linkings where e.g. the subject was correctly linked, but the object not.
From the given dataset we exclude all datum involving the Nell predicate “companyalsoknow-
nas”. This predicate, like for example in “companyalsoknownas” (“General Motors”, “GM”)
describes different names/surface forms for the same real-world entity. Thus subject and object
are then obviously not distinct entities, but different surfaces forms for the same entity. Such
data cannot be handled by our approach and would need a different processing.

6.3.2 Results

We report the performance figures for each of the three approaches in Table 6.1: frequency-
based, graph-based, and combined (equally-weighted linear combination of both approach). We
find that – as to be expected – the baseline (most frequent entity) shows strong results with
an F1-measure of 83.9, while the graph-based method achieves only 73.6. Combining both
methods yields an improvement over the baseline – which is notably a difficult competitor for
unsupervised and knowledge-rich methods – of 2.9% w.r.t. the average F1.

When analyzing our results in detail, we find that the combined approach improves the F1-
measure for all but two Nell predicates. The graph-based approach shows a larger performance
variance in contrast, most likely because it cannot take into account any term frequencies infor-
mation but relies solely on the, sometimes limited or incomplete, KB information. For example,
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Figure 6.1: Effect of λ on the average F1 score.

for the actorstarredinmovie predicate, F1 increases from 81.3 to 90.5, but for weaponmadein-
country, it decreases by appr. 50%. This means that in the latter case the KB method very often
selects highly related (from the perspective of the KG), but incorrect subject-object pairs.

Last, we report on the robustness of our combined approach with respect to the parameter λ,
even though giving equal weight to both methods, thus setting λ to 0.5, seems to be a natural
choice. Figure 6.1 shows the F1-measure for λ ∈ [0; 1]. Note that Pjoint = Pgraph, when λ =
1 and Pjoint = Pprior, when λ = 0. Confirming our initial choice, we observe a clear peak at
λ = 0.5, with a clear performance decrease in either direction. Note that, while any supervised
learning of the feature combinations would have not yielded a different solution here, this might
be only a dataset specific characteristic. Nevertheless, it seems very plausible that (some kind of)
combination of frequency-based and KG-based method will always yield superior performance.

6.3.3 Error Analysis

Taking a close look at the great variance in performances, we attribute the improvements to the
fact that the underlying knowledge base had sufficient relatedness evidence favoring the likeli-
hood of the correct candidate pairs. For example, for “actorstarredinmovie”(“morgan freeman”,
“seven”), two possible candidate pairs (out of many others) with their probabilities are as fol-
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lows:

(db:Morgan_Freeman, db:Seven_Network) Pprior = 0.227; Pgraph = 0.074

(db:Morgan_Freeman, db:Seven_(film)) Pprior = 0.172; Pgraph = 0.726

With the most frequent entity method, we would have selected the former pair, given its higher
prior probability of Pprior = 0.227. However, the graph-based method captures the relatedness,
as DBpedia contains the directly connecting edge dbo:starring and thus selects correctly
the later pair. In other cases, as observed often with “personleadsorganization” and “weapon-
madeincountry”, a low prior probability was complemented with a semantic relatedness, thus a
high Pgraph, thereby making a highly related, but incorrect subject-object-combination candi-
date more likely than the correct one. Consequently, the graph-based approach by itself lowers
the performances, relative to the baseline.

The fact that the combined approach outperforms both the other approaches indicates that the
linear combination of the two probabilities effectively yields in selecting the better of the two
methods for each Nell triple. And this without processing the Nell predicate nor using any
additional external supervision.

However, in addition to this effect, we observe that our combined approach also finds the correct
mapping in cases where both, the frequency-based and the graph-based approach fail individu-
ally. Giving one example from the data, for the triple “teamplaysagainstteam”(“hornets”, “min-
nesota timberwolves”),2 the frequency-based approach disambiguates it to the pair (db:Hornet,
db:Minnesota_Timberwolves), which is incorrect, as db:Hornet is the entity of the insect
hornet. But the graph-based approach also disambiguates wrongly to the pair (db:Kalamazoo-
_College, Minnesota_Timberwolves), even though it discovers a very specific path in DB-
pedia between subject and object in this pair, via the intermediate entity db:David_Kahn-

_(sports_executive).3

The gold standard pair, (db:New_Orleans_Pelicans, db:Minnesota_Timberwolves),
however, gets selected by the combined approach, which combines the medium high prior proba-
bility and a medium high relatedness originating from the fact that both instances are connected
by yago:YagoLegalActor. Not that this last information originates from DBpedia and its
unsupervised graph weighing method, not from the Nell predicate teamplaysagainstteam.

6.4 Related Work

We presented in this chapter an application of our entity relatedness measure to the task of
linking NELL subject and object to DBpedia entities. While this was, on the one hand side,
only the first step towards mapping complete NELL triples to DBpedia (as done later by Dutta

2“hornets” refers to db:New_Orleans_Pelicans, formerly known as the New Orleans Hornets.
3Even though the mapping is incorrect, one could argue that selecting a college in the US is a better choice than

linking to an insect.
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et al. (2015)), on the other hand side, it can be viewed as an domain/application-specific entity
linking (EL) task, which we thus focus on our discuss of related work.

Note that the work most closely related to this chapter is from Hulpuş et al. (2015), who adapted
our graph-based entity relatedness measure for a word sense disambiguation (WSD) task in the
context of entity linking, and found it to have the best disambiguation capabilities. The details
were already described in the previous chapter’s discussion on related work, cf. Section 4.4.2.

Besides general purpose entity linking (EL), where an arbitrary text document can be the input
and which is a well covered research area, see Chapter 2.2 (Entities), there exist also some
work on domain-specific EL systems that gained attention. Domain-specific EL exists, because
de facto all EL system contain some data-based supervision step, thus the training data has an
influence on the performance of the system – which becomes a problem if a system was e.g.
build for and from well-written news articles, but will then annotate informal and short twitter
posts.

The first application is EL for web search queries, which is an important building block for
modern web search engines, enabling them e.g. to retrieve entities like persons during the regular
web search. According to Pound et al. (2010), entity queries constitute a significant proportion
of web search queries,4 see also our work in Chapter 7 (Relevance Ranking of Entities) and 8
(Finding Relevant Relations). Blanco et al. (2015) presented such an EL system with the focus
on processing time and describe a system that can work in a real-world web search scenario
where only some milliseconds of time are available for the EL step. Their model builds upon
user-generated information from the web to link queries to KB entities. For the sake of time
efficiency, in the entity disambiguation step relationships between entity candidates are ignored,
and in addition advanced hashing and compression methods are used to reduce the memory
footprint of contextual vectors obtained via distributional semantics.

A second well-known domain also dealing with short and underspecified, and often rather nosy,
text is microblogging; which means very often EL for Twitter.5 According to Guo et al. (2013),
the main challenges originate from the fact that microblogs usually use short, noisy and informal
texts with little context, and in addition often contain surface from phrases with ambiguous
meanings. They also report that they find, in contrast to general EL, the mention detection to
be the actual performance bottleneck, also because of the informal writing style and the many
abbreviations used. Guo et al. (2013) report on experimental evaluation that shows that their
domain-specific linker can outperform TagMe (considered to be a state-of-the-art general text
EL system; cf. Section 2.2), by a large margin in terms of F1 score.

Another system for the same task was proposed by Meij et al. (2012), who also created a publicly

4This usage scenario, to find entities instead of documents, was actually the initial motivation for web search
engines to build their own large KBs, cf. Google’s “Introducing the Knowledge Graph: things, not strings”, https:
//search.googleblog.com/2012/05/introducing-knowledge-graph-things-not.html.

5Twitter (http://twitter.com) is probably the most well known micro-blogging services, traditionally
allowing users to send messages (also microposts or microblog posts) of up to 140 characters. There are many more
services like that, to mention just a few: Tumblr, Jaiku, Sina Weibo.

https://search.googleblog.com/2012/05/introducing-knowledge-graph-things-not.html
https://search.googleblog.com/2012/05/introducing-knowledge-graph-things-not.html
http://twitter.com
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available benchmark dataset. Their method combines a variety of features, including different
n-gram and different entity and knowledge base (KB) features, into a machine learning approach
(random forest). In line with Guo et al. (2013), they report on challenges due to the informal
writing style, and also that they are able to outperform TagMe as well as DBpedia Spotlight.

Many other domain-specific systems exist, all having in common that off-the-shelve EL system
do not perform well enough for their specific application. Some thus proposed a combined ap-
proach like Olieman et al. (2015), who study the domain of conversations and find that superior
results can be achieved by combing their own high-precision, relatively simple custom-made
linker for conversations with a standard off-the-shelve EL system, thereby obtaining results with
high precision and high recall. In the end, our work presented above is also just one of those
domain-specific EL systems: We lack the context around the NELL triple, which makes the dis-
ambiguation harder, but have the advantage that we can exploit the subject–object relationship
in this specific setting.

6.5 Conclusion

In this chapter, we studied another application for the entity relatedness metric introduced in
Chapter 4, namely a domain-specific entity linking (EL) task, in which the ambiguous subject
and object surface forms of an OIE system (Nell) had to be disambiguated to their corresponding
DBpedia entities. Our initial assumption was, that in this specific setting, where the relation
between subject and object has already been extracted from the NELL OIE system, information
about the relatedness of subject and object should help in the disambiguation. We thus applied
our method for computing semantic relatedness of entities as developed in Chapter 5 and by that
provided another extrinsic evaluation of our KG-based entity relatedness method.

Using an existing benchmarking dataset from Dutta et al. (2013), we empirically showed that
(i) the most frequent sense is a very strong baseline, but (ii) it can be improved by taking into
account the semantic relatedness between subject and object as computed by our KG-based
method. Even though we do not take into account the NELL predicate itself, in a way our ap-
proach mimics the human disambiguation process: What are the most likely entities for that
surface form (most frequent sense baseline), and how strongly is the semantic relatedness be-
tween any subject–object combination (knowledge-based semantic relatedness). In contrast to
other approaches, we presented a simple, unsupervised method that does not require any learning
or parameter tuning and that achieved high overall performance – even without using the Nell
predicate information. We conclude that this approach is able to overcome the lack of contextual
information in context-free OIE triples by complementing it with existing background knowl-
edge from the DBpedia KG, utilizing its power to measure entity relatedness. And we also
understand these results as another hint that KG exploration is a helpful ingredient for problems
where knowledge-free approaches reach, besides all their benefits, their natural limitations.
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Chapter 7

Relevance Ranking of Entities

So far in this thesis, we have focused on tasks that make use of the KG only as a means to an
end, namely to text understanding, for tasks like text clustering (Chapter 3), semantic document
comparison (Chapter 5), or entity disambiguation in NELL triple linking (Chapter 6). But the
KG itself, in particular its entities, has not been the focus of our work. This will change with this
chapter, which takes more of an IR perspective, and aims at ranking KB entities by relevance
w.r.t. a user query.

The work presented in this chapter has been published before in Michael Schuhmacher, Laura
Dietz, and Simone Paolo Ponzetto: Ranking entities for web queries through text and knowledge.
In Proceedings of CIKM’15, pages 1461–1470 (Schuhmacher et al., 2015).

Given a user’s information need, expressed by a keyword query, one mean to fulfill the informa-
tion need is to return entities as an answer, and not only documents, which leads to the task of
entity retrieval. While there are different approaches towards entity retrieval (see Section 7.1),
we focus in this chapter on a particular setting: Starting with Wikipedia entities extracted from
query-relevant text documents, rank those entities by their relevance w.r.t. the initial keyword
query (actually the information need).1

The research questions for this chapter are derived from the intention to explore, if, and how,
entities extracted from document can be ranked to produce a satisfiable result list for the given
retrieval query:

• RQ1: Do query-specific documents contain relevant entities?

• RQ2: What types of features (query-based, document-based, KB-based) improve rele-
vance ranking of those entities?

1Which is why we address in this chapter not entity retrieval, but, more precisely, entity ranking (of the entities
extracted from the retrieved text documents) as further described in Section 7.1.4.
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Table 7.1: Different aspects of the entity retrieval task

Aspect Alternative A Alternative B Section
Entity Source Entity-linked documents KB only (Wiki) 7.1.1
Entity Type KB entities (Wiki) Non-KB entities 7.1.2
Query Type Entity/Type queries Complex queries 7.1.3

7.1 Introduction

Information retrieval research and also commercial search engines show an increasing interested
in going beyond words, in particular by integrating entities into the retrieval process. Thereby,
retrieval systems, one the one hand, leverage (background) information about entities to improve
the search result itself (Egozi et al., 2011; Dalton et al., 2014), on the other hand, entities are
also used as an additional source of information to be presented to the user, as e.g. done by
Google2 and Yahoo3. We address here the latter type of entity integration, and aim at a scenario
where documents and entities are return as a result set to the user. However, focusing on the new
aspect of entity retrieval, we do not address the classical document retrieval part here, but take
it as given assuming we already have this set of query-relevant documents and entities extracted
from these documents.

The details of our specific entity retrieval setting will be described in the remaining part of this
section. We discuss three different aspects relevant when studying entity retrieval, aspects are
listed in Table 7.1, before giving the final task definition for our work in Section 7.1.4.

7.1.1 Types of Entity Sources

When displaying not only documents, but also entities as the result to a user query, the question
which entities to be shown and in what order becomes relevant, as the number of entities an
entity linking system (for an overview see Cornolti et al. (2013)) can extract from the documents
retrieved is typically much higher than what a human user is able (or willing) to consume and
understand. Thus, we want to understand how to determine the relevance of an entity w.r.t.
the query, and thus w.r.t. the document result collection generated from the document retrieval
system.

Note that our understanding of entity ranking, i.e. ranking entities that are extracted from a
collection of documents, is rather different from the “classical” entity ranking task, especially in
the context of the Initiative for the Evaluation of XML Retrieval (INEX) campaign (cf. Demartini
et al., 2010; Gurajada et al., 2013). Methods developed for those initiatives aim primarily at
retrieving entities directly from the knowledge base. We, in contrast, are interested in a setting
where the entities are extracted from the relevant documents, and can thus act as an additional

2“Introducing the Knowledge Graph: things, not strings” from http://googleblog.blogspot.de/
2012/05/introducing-knowledge-graph-things-not.html

3“The Y! Knowledge Base: Making Knowledge Reusable at Yahoo!” from http://semtechbizsf2013.
semanticweb.com/sessionPop.cfm?confid=70&proposalid=5187

http://googleblog.blogspot.de/2012/05/introducing-knowledge-graph-things-not.html
http://googleblog.blogspot.de/2012/05/introducing-knowledge-graph-things-not.html
http://semtechbizsf2013.semanticweb.com/sessionPop.cfm?confid=70&proposalid=5187
http://semtechbizsf2013.semanticweb.com/sessionPop.cfm?confid=70&proposalid=5187
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Query Relevant Entities

1

2

3

Figure 7.1: Illustrative example of a search interface showing documents and knowledge base
entities.

mean to answer the given information need, while remaining the possibility to be integrated with
the documents into some kind of advanced user interface (see e.g. Dietz et al., 2014; Hoffart
et al., 2014) showing documents and entities combined. For illustration purposes, Figure 7.1
shows an example of such an interface with a ranked list of documents and entities.

7.1.2 Types of Entities

When aiming at extracting entities from query-relevant documents, the question what an entity
is becomes relevant. Most of the recent work on entity retrieval, in particular also the INEX and
TREC initiatives, have focused on entities from the controlled vocabulary of a KB, in nearly all
cases Wikipedia or Freebase. This is also the entity definition we work with here.

However, one could also think of going beyond entities from a fixed vocabulary and consider
also entities found only in the text. Early work on entity retrieval was actually working with a
broader entity definition (see e.g. Balog et al., 2006), based on named entity recognition where
any entity found in the text was a valid entity. But because of the increasing popularity and
availability of approaches integrating with existing KB entities, most recent approaches focus
only on KB entities. We stick here to this more strict definition and annotated the text documents
(and queries) only with KB, i.e. Wikipedia (thus also a DBpedia) entities, illustrated by the
intersection shown in Figure 7.2.
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Types of Entities

Entity 

only

in KB

Entity 

only

in Text

KB 

Entities

found

in text

Figure 7.2: Types of entities: Non-KB vs. KB (very often Wikipedia) entities. The intersection
contains KB entities found within text documents (via EL).

7.1.3 Types of Entity-related Queries

Our scenario addresses open-domain web queries, and in particular we want to be able to find
relevant entities for more complex, general web queries, that do not ask specifically for a certain
entity or a certain type of entries. Such a general query would be e.g. “marine wildlife”, for
which a user probably would like to see entities like the National Marine Life Center,

Marine biology, Whaling, Marine mammal, or Overfishing.

For understanding what queries types exist in general, we look at a classification of types of
web-search queries in the context of entity retrieval proposed by Pound et al. (2010), who also
performed a query log analysis on real-world data. They define different query types, most
importantly,

• entity queries that ask for a single entity (“CJ5 Jeep”),

• type queries that ask for a list of entities of a certain type (“cold medications”), and

• attribute queries that ask for the attribute of an entity (“zip code waterville maine”).

From their analysis we know that 40.6% are entity queries, 12.1% are type queries, and 4.6%
are attribute queries, thus leaving around 40% of all queries to address directly, but are what
we consider a complex or general web query. We target in particular at such complex queries,
because (a) they do not have a single entity as answer, but (b) require the retrieval system to
present a selection of entities of different types, in contrast to a type query, found within the
documents retrieved as relevant.

Note that our question of determining the relevance of an entity w.r.t. the query is not equiv-
alent to determining the relevance of an entity w.r.t. its original source document. Examining
the example query “marine wildlife” again and a relevant and retrieved document about “marine
life studies”, we would most likely find frequently the entity bachelor of science, which
is however not very relevant for the query marine wildlife. Nevertheless, it can very likely
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be relevant when looking at the document itself in isolation, because the specific document de-
scribes how to obtain a bachelor’s degree in marine life studies.

7.1.4 Task Definition

Consequently, for the context of this chapter we define the task of entity ranking as follows. As
a running example we use the query “Argentine British relation”, as it is a general query that
demands for different entities of different types.

• Given: a keyword query (“Argentine British relations”).

• Provided: a collection of query-relevant documents that includes entity link annotations
from mentions (e.g. “the conflict of the Falklands” to entities (e.g., Falklands_War) in
a background knowledge base.

• Goal: Rank the entities by relevance w.r.t. the query.

We illustrate our problem by means of an example shown in Figure 7.3 (page 82). Initially,
we are given the query “Argentine British relations” and the retrieved query-relevant documents
Dq from the document collection. In our experimental evaluation of our method in Section 7.3,
we used the TREC Robust04 and the TREC ClueWeb12 corpus as document pool, together
with their corresponding set of queries. Next, an arbitrary document retrieval system is used to
produce a ranked list of, ideally query-relevant, documents. From those documents, an arbitrary
entity linking system (cf. Section 2.2) extracts entities and links the corresponding surfaces
forms to their canonical Wikipedia name. This has here again the advantage of normalizing
different surface forms to its common and disambiguated entity.

Obviously, the number of entities extracted from all documents, and already from a single doc-
ument, is too high to be a reasonable result list for the user. Thus, at this point, after using
document retrieval and entity linking, the question is what to do next – more specifically, how to
rank the entities, such that the user gets shown only the most relevant entities. In this example,
this would be the Falklands_War and the Falkland_Islands_sovereignty_dispute,
as those entities describe one major aspect of the relations between the two countries. For that
reason, both entities are annotated as highly-relevant (score 5) in this example. The annotation
scores shown are actually take from the real gold standard REWQ Robust04 dataset we created
(see Section 7.3.1).

7.2 Method

In this part, we develop our solution for the entity retrieval task, which is at its heart a feature-
rich, supervised entity ranking based on several entity-related features. Our approach

• leverages heterogeneous features from unstructured (i.e., the documents’ text) and struc-
tured (i.e., knowledge bases) knowledge source, and
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• combines them within a common supervised learning-to-rank approach.

In the following Section 7.2.1 we will give an intuitive explanation of the relationship between
query, mentions, and entities we will exploit later, before describing the individual features in
detail.

7.2.1 Method Overview

We show the potential benefits of our method using the example from Figure 7.3, where we are
given the query “Argentine British relations”: We assume that a list of query-relevant documents
and entities extracted from those documents is already given; the details on this initial entity
retrieval step will be described next in Section 7.2.2. Having a set of entities extracted from the
text documents presents us thus an entity ranking problem, which can be formulated as the task
of comparing the query with the document mentions and associated entities. We develop several
different types of features for this comparison, as summarized by Table 7.2.

Initially, the first feature looks at the mentions in isolation, taking into account only mention
frequency statistics independently of the query, as described in Section 7.2.4.

Second, our approach compares the mere surfaces forms of the entities within the documents
with the query. This covers very similar terms like e.g. “Argentine” (query) and “Argentina”
(mention) – whose associated entities are typically relevant for the query, cf. Argentina (rel-
evance score 3) in our example. An extension of surface-level string comparison relies on dis-
tributional semantic methods, which allow us to compute term similarity on the basis of word
co-occurrence information from very large corpora (Turney and Pantel, 2010). For instance,
although a simple string similarity comparison between “UK” and “British” is not able to ac-
count for the ‘nation-nationality’ implicit relation between these two terms, this can be captured
by their distributional vectors, which indicate that, in fact, they can occur in similar contexts.
Query–Mention features are presented in Section 7.2.5.

Third, we compare the query directly with the entities. Working at the entity level makes it
possible to leverage the information from knowledge bases of various kinds, including structured
(here DBpedia), as well as semi-structured knowledge bases (here Wikipedia). In our example,
Carlos_Menem is a relatively relevant entity (score 2), being a prominent former Argentinian
president. We accordingly capture such relevance by (a) looking at the Wikipedia article of
Mr. Menem – and find that he used to be the “President of Argentina” – on which we can
apply surface-form-based approaches again; or (b) entity linking the query keywords themselves,
resulting here in getting Argentina as one entity. We can then leverage the DBpedia knowledge
graph to figure out that Carlos Menem is a citizen of Argentina, following the same idea of
knowledge graph exploration as presented in Chapter 5. We describe query–entity features in
Section 7.2.6.

Last, we leverage information about the relations between entities without using the query di-
rectly. Since all documents are retrieved w.r.t. the query, in fact, the frequently occurring entities
within these documents should have something in common, i.e. they should be related to each
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Table 7.2: Summary of the feature groups and their individual features, as computed for each
(query, entity) pair; i.e. e.g. the Query–Entity feature QEntEntSim computes the relatedness
between the given entity and any entity found within the query using the DBpedia graph for
relatedness computation.

Feature groups Feature description
Mention (Sec 7.2.4)

MenFrqIdf Idf-weighted frequency of the mentions per document
Query–Mention (Sec 7.2.5)

SED Levenshtein String Edit Distance
Glo Similarity of the Global Vector from (Pennington et al., 2014)
Jo Similarity of the distribution thesaurus from (Biemann and Riedl,

2013)
Query–Mention Ctx (Sec 7.2.5)

C_SED, ... (same as for Query–Mention, but for context window)
Query–Entity (Sec 7.2.6)

QEnt If query contains entity
QEntEntSim Query to entity relatedness via DBpedia graph (cf. Chapter 4)
WikiBoolean Query to entity relatedness via Wikipedia text (boolean retrieval)
WikiSDM Query to entity relatedness via Wikipedia text (SDM retrieval

from Dalton and Dietz (2013a))
Entity–Entity (Sec 7.2.7)

SK (SVM only) Semantic kernel capturing entity–entity relatedness (cf. Chapter
4)

other as they all satisfy (some aspects of) the query. Again, to account for such relatedness
is possible by means of connecting relations found within the DBpedia knowledge graph (cf.
Chapter 5). In our example, this holds for the entity pairs Argentina and Carlos_Menem, and
Falkland_Islands and Falklands_War, which are both directly connected in DBpedia by
a predicate. Entities that are not relevant for the query, e.g., United_Nations, instead, do not
have knowledge graph predicates with other relevant entities. We captures this information by
exploring the DBpedia graph and using a semantic kernel as explained in Section 7.2.7.

Before going into the details of each feature type (Section 7.2.4-7.2.7), we first briefly describe
how we obtain the documents and entities (Section 7.2.2), and also introduce the two learning-
to-rank methods used later to combine the entity features (Section 7.2.3).

7.2.2 Entity Candidate Retrieval

As state above, the initial document retrieval and the entity linking is not the focus of this work,
but assumed to be done already. To analyze the impact of this step on the remainder of our
approach, we study two retrieval models for two data sets: TREC Robust04 and ClueWeb12.

We start by issuing the query to a document retrieval system and collect the top results. For the
Robust04 dataset, we use the document retrieval method EQFE from Dalton et al. (2014), which
is an entity-aware document retrieval method. This system uses entity links within documents to
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produce its document ranking. These entity links are created with KBBridge (Dalton and Dietz,
2013a), which we also use in our method. In the second experiment on ClueWeb12, we verify
our findings by using a different, keyword-based retrieval method, the Sequential Dependency
Model (SDM) (Metzler and Croft, 2005), and a different, existing set of entity links, the FACC1
dataset published by Gabrilovich et al. (2013).

In both cases, entity links in high ranked documents are used to build a pool of candidate entities.
Consequently, our ranking problem is formulated as the task of comparing the query with the
document mentions and associated entities. Note that we opt here for a realistic setting where
a state-of-the-art entity linking system is used to disambiguate entity mentions in context: as
a result of this, the approach suffers from entity linking errors, e.g. “UK” can be United-

_Kingdom but also @UK, namely a company.

7.2.3 Learning-to-rank

For our task, we train a supervised LTR model on labeled data, a method which has been shown
to yield competitive performance for many retrieval tasks (Liu, 2011; Li, 2011). Each entity e to
be ranked is represented by its feature vector x, consisting of the features described in the next
sections. The aim of any learning-to-rank method is than to find/learn a (often linear) retrieval
function h(x) such that the computed ranking scores produce the best possible ranking according
to some evaluation or loss function. There exist three general types of learning-to-rank methods
(Liu, 2011), namely

1. pointwise (optimizing on single entities),

2. pairwise (optimizing on pairs of entities), and

3. listwise (optimizing on the full list of entities)

approaches, whereof pairwise and listwise methods are most-commonly used.

To reduce the impact of the learning-to-rank method on your experiment results, we use two
different methods: a ranking support vector machine (a pairwise method) and an greedy opti-
mization using coordinate ascent (a listwise method). We briefly present both methods next.

Ranking SVM

The ranking SVM (SVM-rank) views the ranking problem as a pairwise classification task
(Joachims, 2002b, 2006). For each pair of entity feature vectors (xu,xv), it learns a retrieval
function h(x) from the labels yu and yv such that

h(xu) > h(xv)⇔ yu > yv (7.1)

holds for all pairs within the same query. Instead of maximizing (7.1) directly, SVM-rank mini-
mizes the number of discordant pairs in Kendall’s τ – namely, the number of pairs whose order
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is different from the order in the ground truth. The ranking SVM learns a linear ranking function
h(x) = wTx that optimizes the following minimization problem:

min:
1

2
w ·w + C

∑
ξ(q)u,v

s.t.: wT (x(q)
u − x(q)

v ) ≥ 1− ξ(q)u,v (7.2)

ξ(q)u,v ≥ 0, ∀q ∈ Q

where w is a weight vector, ξ(q)u,v the training error, and C is a parameter that allows trading-
off margin size against error. Because the learned function h(x) can always be represented as
a linear combination of the feature vector, the ranking SVM can use also non-linear kernels
(Joachims, 2002a). We use this to leverage a semantic kernel function that captures the relations
between entities (Section 7.2.7).

Linear Model with Coordinate Ascent Optimization

As an alternative to the pairwise approach of the Ranking SVM, we also work with a linear
feature-based model that optimized for the evaluation metric directly. The model builds upon
a linear feature combination function h(x), just like the pairwise approach, but for parameter
estimation the real evaluation metric, e.g. MAP, is maximized directly – and not some other
measure, like e.g. the number of disorders pairs as the Ranking SVM does. This direct maxi-
mization of an evaluation metric that can only be computed on the full ranking is the reason for
naming such methods as listwise learning-to-rank approach – they optimize on the full list or
ranked results.

Because the evaluation metric can only be computed on the full ranking, the optimization task
is to find the parameter combination resulting in highest evaluation score. An intuitive solution
to this task is a fine-grained discretization of the feature weights, which leads to a rather large
grid of possible combinations – the number of possible combinations depends on the number of
parameters and on how fine-grained we choose our grid. But because an exhaustive grid search
becomes easily infeasible in a reasonable time, we use the coordinate ascent method instead. It is
a local search technique that iteratively optimizes a multivariate objective function by solving a
series of one-dimensional searches (Metzler and Croft, 2007). It repeatedly cycles through each
parameter, holding all other parameters fixed, and optimizes over the free parameter. Because
the convexity of the search space cannot be guaranteed, we perform multiple restarts to avoid
ending up in a local minimum. In our experiments, we use the RankLib4 implementation of the
Coordinate Ascent method and MAP as training metric.

7.2.4 Mention Features

The first feature is based on the number of entity mentions in retrieved query-relevant docu-
ments. To this end, count statistics over all the targets of all entity links are collected (notice,

4Version 2.1-patched, http://sourceforge.net/p/lemur/wiki/RankLib

http://sourceforge.net/p/lemur/wiki/RankLib
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that some entity linkers retain multiple targets per link). While we study raw counts (MenFrq)
for comparison, we use TF-IDF to weight mention counts across the document collection.

Mention Frequency (MenFrqIdf): The number of occurrences of each entity over all retrieved
documents per query, weighted using TF-IDF as follows:

MenFrqIdf(e) = tfq(e) log
N

df(e)
(7.3)

This feature is already a strong ranking method by itself (cf. Section 7.3), since query-relevant
documents are likely to contain relevant entities. Note how this feature is similar to the document-
based method for expert finding from Balog et al. (2006, Model 2), who also first retrieve query-
relevant documents and then extract and rank the entities from those documents by frequency.
Nevertheless, one shortcoming of this features is that the connection between the query and the
entity is established only indirectly – i.e. only through the documents.

7.2.5 Query–Mention Features

We next design features focusing on the surface-level representation of the query and the docu-
ments, and compare the query keywords with the entity mentions from the documents. We define
an entity mention as the sequence of words (or a single word) that the entity linking system linked
to (one ore more) candidate entities in the knowledge base. Thus, mentions are surface form rep-
resentations found in documents pointing to the knowledge base entities. In our example, this
means we look at the mentions “UK” and “British” instead of the entity United_Kingdom. We
apply different word similarity methods to compare the surface forms of each pair consisting of
mention and query. Features capturing similarity scores from multiple pairs, because there are
multiple entity mentions for the same entity, are then aggregated by averaging over all similarity
scores for each entity.

Levenshtein (SED): In order to cover basic morpho-syntactic similarity, we compute the nor-
malized Levenshtein String Edit Distance (Levenshtein, 1965) between the query and the men-
tion (as one string).

Leaving beyond this simple syntax-level comparisons and going into semantic representations
of words, we leverage existing distributional semantics models, namely GloVe and JoBimText.
The general idea of these distributional thesauri is that they model words based on their global
frequency co-occurrences in large text corpora. They can thus identify general semantic simi-
larity between words, without the explicit need for a context – which we cannot provide in our
case of the query words, which are by nature sometimes short and underspecified.

Glo: The global vectors (GloVe) method by Pennington et al. (2014) is a global regression model
for unsupervised learning of word representations that builds vector space representations from
word co-occurrences within a local context window, as previously proposed in work on the
skip-gram model (Mikolov et al., 2013). The pre-trained model we employ is built from the
Gigaword-5 corpus and the English Wikipedia, and contains the 400,000 most frequent words.
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While it was primarily designed for word analogy tasks, it was also tested for word similarity,
which is our use-case here. We compute the similarity score between query and mention as the
cosine between their two word vectors. Because GloVe covers only single words, we tokenize
query and mention, compute similarity for all pairwise token combinations, and aggregate these
scores by taking the average, or the sum, as the overall similarity value.

Jo: JoBimText (Biemann and Riedl, 2013) is another distributional semantics approach. In this
work we use its distributional thesaurus (called Jo(s)) that, similarly to GloVe, models words
based on their frequency of co-occurrence in large text corpora. In contrast to Glove, JoBim-
Text relies on text statistics obtained from grammatical dependencies, thus potentially provid-
ing a deeper representation to compute similarity. Grammatical dependencies provide context
features for words, and word pair similarity can be accordingly computed as the number of
shared features. In our setting, we again tokenize query and mention, compute all pairwise word
similarities and aggregate the overall similarity scores into different features, as obtained by
computing either the average or the sum over all word pairs built from the query and the entity
mentions. Note that for this similarity metric simJoBim ∈ [10, 1000]N, due to cut-off thresholds
in the model. However, for all experiments, we normalize all feature variables, as described in
Section 7.3.

Mention Context: In many IR and NLP tasks, context helps to disambiguate and to obtain
more precise rankings. We thus compute the above described similarity measures also for the 10
content words surrounding the entity mention. Context window of larger sizes had no noticeable
impact on the system performance.

7.2.6 Query–Entity Features

This set of features compares the entities directly with the query. We achieve this in two different
ways, by

1. applying entity linking to query keywords and compare the obtained query entities with
the document entities (Section 7.2.6);

2. by collecting textual features from Wikipedia for the entity and compare it with the query
words (Section 7.2.6).

For the first option, we leverage DBpedia as structured knowledge base, and for the second
option Wikipedia as semi-structured textual knowledge base.

Comparing Query Entities

We first run the queries through an off-the-shelf entity linker, here TagMe (Ferragina and Scaiella,
2012), to collect entities found within the query. In case the entity linker returns more than one
entity, we keep only those entities that show a linking confidence comparable to the linking with
the highest confidence, thus ensuring a high precision for the entity linking. Even though being
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an import step in the pipeline, we do not further improve this linking step as it was not the focus
of this work.5

The availability of entities for both the query and the documents allows us to perform matching
at the level of these disambiguated and unique entities. In the example from Figure 7.3, this is
the case when comparing the entity United_Kingdom obtained from the query term “British”
with that obtained from the document mention “UK”. However, the real advantage of exploiting
a background knowledge base comes from identifying relations between different, albeit related
entities. For example Carlos_Menem is not mentioned in the query. However, as he used to be
the president of Argentina, he is also to some extent relevant for the query. Accordingly, given
the set of entities found in the query and its respective top-ranked documents from the retrieval
systems, we build two features for each query-entity pair, namely:

• Direct Entity Match QEnt: binary feature whether the two entities match – i.e., both query
and document mention refer to the same entity;

• Connected Entities QEntEntSim: query and document entities are not the same, but are
connected in the DBpedia graph.

For finding interesting paths in the DBpedia graph, we make use of the entity relatedness ap-
proach from Chapter 4, where we performed a shortest path search over a weighted version of
DBpedia. However, as we are here only interested in high-precision results, in contrast to the
fuzzy graph matching problem for the semantic document similarity from Chapter 5, we con-
sider only outgoing paths of length 1. For the same reason, we restrict the exploration of the
DBpedia graph to

(a) direct relation predicates from the DBpedia OWL ontology, like e.g. dbo:notable-

Student, dbo:commander, dbo:knownFor, or dbo:routeEnd, which capture the
high-quality information in DBpedia, and

(b) the links to common Wikipedia categories (using the dcterms:subject predicate).

Effectively, this lets us retrieve direct KB predicates between two entities as well as common
Wikipedia categories (as both entities point to the common category via dcterms:subject).
In our example, we find a direct connection between Carlos_Menem andArgentina via the
dbo:nationality predicate.6 Note that with this approach, we remain agnostic towards the
type of entity under consideration, and do not pick specific relations for specific entities, e.g.
only looking at the dbo:location predicate when dealing with a geographic location.

Comparing Query Mentions

Although during prototyping manual inspection revealed that the query entity linking works
usually sufficiently well, some queries can be (a) rather ambiguous and thus hard to interpret,

5Meij et al. (2009) presented a work specifically addressing entity linking for search queries.
6Note that there is no predicate expressing the being-president-of relationship directly here in DBpedia. This a

good example of the principle shortcoming of KB-based approaches, namely limited coverage.
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or (b) not be linkable at all for used entity linking system. Thus, we also compare the query
keywords directly with textual features of the entities, as an alternative to entity linking. The
textual features are retrieved from the comprehensive Wikipedia articles of each entity, which
has a wide-coverage and high-quality information about entities – in particular when compared
against the documents obtained from general web corpora. Given the query keywords, we apply
two types of information retrieval models on the English Wikipedia, and accordingly build two
kinds of different features.

WikiBoolean: all entities returned by a basic standard Boolean retrieval model, based on a full
text index over all Wikipedia articles. We bind query keywords with disjunctive operators. This
approach essentially tests if at least one query keyword is found within the Wikipedia article of
the entity to be ranked.

WikiSDM: we further use a Galago7 search index of an English Wikipedia dump. Using the
sequential dependency model (Metzler and Croft, 2005) with collection-level Dirichlet Smooth-
ing, we use the query to retrieve 1,000 Wikipedia articles. We use the retrieval score of the
Wikipedia articles as a measure of relatedness for the entity.

7.2.7 Entity–Entity Features

In contrast to all previous features, which quantify the similarity between the entities and the
query, this feature captures instead the degree of similarity between entities themselves. Con-
sider, for instance, the two document entities Falkland_Islands (from mention “Falklanders”’)
and Falklands_War (from mention “the Falklands conflict”) in the example in Figure 7.3.
Even when not looking at the query, those two entities are obviously related to each other, in DB-
pedia we find that the Falklands_War took place (dbo:place) on the Falkland_Islands.

This relation between document entities is by itself interesting, because of the initial document
retrieval: In an ideal world with perfect and full-coverage KBs, all query-relevant entities would
be connected by some DBpedia/KB path, describing the explicit relationship between the enti-
ties, because the graph of entities would provide exactly the query-relevant information. This
is essentially the same argumentation why we opt to represent a document as a graph of DB-
pedia entities in Chapter 5, but here be apply it to set of query-relevant documents instead of
just a single document. In both situations, the underlying assumption is that topic coherent doc-
uments/sets of documents produce a set of entities that are closer connected to each other than
unrelated entities.

In reality, however, we have of course only limited and incomplete KB relations. Thus, even
the relevant entities are not fully connected by KB relations. Therefore, for this entity ranking
problem we only look for direct, i.e. strong, relations between document entities and employ
the same procedure as with the QEntEntSim feature from Section 7.2.6. The resulting feature
is thus an indicator of a strong entity relations between document entities. The real strength of
this feature becomes obvious for entities that have very different features (as computed w.r.t. the

7http://lemurproject.org/galago.php

http://lemurproject.org/galago.php
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query), but are nevertheless related to each other. This relatedness can only be capture by this
feature, and not by the query–mention (Section 7.2.5) or query–entity (Section 7.2.6) features.

To include this feature into the ranking problem, we have to use a different approach than the
direct query–entity features, or any linear feature combination of those, because this features is
only defined for comparing entities with each other. For that reason, we opt to extend the ranking
SVM, because it allows us to replace to use also other than the linear kernel (Joachims, 2002a).
In particular, we do not have to limit the kernel to operate on the vectorial data, but can define
a kernel function that includes this DBpedia graph information. While there has been work on
kernels that operate on graphs or trees directly (see e.g. Gärtner, 2003; Moschitti, 2006), we
choose to stay consistent with the procedure used for the QEntEntSim feature and pre-compute
an entity-entity relatedness score. We then define our kernel as a mixture of a linear kernel for the
standard features, combined with a semantic smoothing kernel for the entity–entity relatedness
score.

The semantic smoothing kernel was originally proposed by Bloehdorn et al. (2006) to cover
semantic relatedness (or proximity) between words: In a standard one-hot feature representation,
each word is usually represented by a binary (or real-valued, e.g. tf-idf weighted) feature, thus
there is one dimension per word.8 For such a representation, a linear kernelK(x1, x2) computes
the inner product between two data items, here e.g. documents, x1 ·x2, which can however only
be 6= 0 if both items have at least one dimension, i.e. word, in common. In case two words are
semantically related but not identically, e.g. Pizza and Pasta, those words will not contribute to
the inner product because they are encoded via different dimensions. The Semantic Smoothing
Kernel tries to overcome this limitation by introducing an item similarity matrix Q that contains
the semantic proximity between the dimensions, i.e. words of the input space. The semantic
kernel is formally given by

K(x1, x2) = xᵀ1Qx2 (7.4)

(Bloehdorn et al., 2006, Def. 2) where the matrixQ can be used to encode proximity information
about different dimensions/words into the kernel, thus the SVM.

In our work, we embed the DBpedia-graph-based relatedness between entities, computed by
same method as the QEntEntSim feature, but using the real-valued score s ∈ [0, 1] and not the
binarized version from above, into the proximity matrix Q,9 The entity data is encoded with
a one-hot feature representation – in addition to the query–entity/mention features described
above. This approach leads obviously to a much larger feature space (number of features +
number of unique entities) as well as the need to look up the values from matrix Q (squared
matrix of size (#ent)2) for each inner product computation. In summary, with our custom

8See e.g. http://scikit-learn.org/0.16/modules/generated/sklearn.
preprocessing.OneHotEncoder.html

9Using the pairwise entity relatedness directly as Q is actually a technical violation of the definition of a kernel,
as Mercer’s theorem requires Q to be positive semi-definite (PSD) in order ensure that the function K can actually
be used as kernel, which we cannot guarantee here. However, even though we cannot guarantee Q to be PSD in
general, we find that the SVM learning converges on our datasets, supporting the observation from Burges (1998)
that in practice even kernels without PSD guaranties can yield good results.

http://scikit-learn.org/0.16/modules/generated/sklearn.preprocessing.OneHotEncoder.html
http://scikit-learn.org/0.16/modules/generated/sklearn.preprocessing.OneHotEncoder.html
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Table 7.3: Comparison of the key characteristics of both REWQ settings

REWQ Robust04 REWQ ClueWeb12
Doc Collection TREC Disk 4/5 TREC ClueWeb12
Queries/Topics TREC Robust Track ’04 TREC Web Track ’13/14
Entity Linker KB-Bridge FACC1
Top-k Docs per Query 19 20
Top-k Entities per Query Top 50 All, [50 - 488], avg 215
Relevance Judgments Graded 1-5 Binary
Evaluation Metric NDCG NDCG, MAP

kernel we can incorporate the information that Falklands_War has a strong relation to the
Falkland_Islands where it took place, without changing any of the query-related features
directly.

7.3 Evaluation

For evaluation we designed two different, independent experimental setups, named after their
base datasets Robust04 and ClueWeb12, both having different candidate retrieval settings, as
described in Section 7.2.2, and different evaluation datasets, as described in the following Sec-
tion 7.3.1 on the REWQ dataset.

7.3.1 REWQ Datasets

We opt to create our own dataset, the Ranking Entities for Web Queries (REWQ) dataset, as there
exists no ground-truth-annotated dataset specifically addressing our needs, i.e. given a general
web query and query-relevant documents, what are relevant entities from those documents. Both
REWQ datasets build upon established document collections and queries for web information
retrieval from the TREC evaluation campaigns, namely Robust04 and ClueWeb12. The entity
relevance annotations created by us are available at http://rewq.dwslab.de. Details of
both settings are described next, Table 7.3 gives already a brief overview.

REWQ Robust04 Dataset

For Robust04 setting, we builds upon the state-of-the-art ad-hoc document retrieval system from
Dalton et al. (2014), which is already using entities itself for the document retrieval within its
entity query feature expansion (EQFE) technique. The entities were extracted from the corpus
documents with the KB-Bridge entity linker (Dalton and Dietz, 2013a), we re-use these entities
for our purpose.

As document corpus we use the TREC Robust 2004 data set (Voorhees and Harman, 2005),
because we aim at covering complex web queries, which are provided with this established
dataset. In order to study the interplay between document and entity retrieval, we start with

http://rewq.dwslab.de
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those queries where the ad-hoc retrieval has proven to be successful, as those document results
collections should have a high chance of including query relevant entities. Accordingly, we
select the 25 top-performing queries of the EQFE system on the dataset (as measured by mean
average precision) and collect for each query the top 19 documents.10

As the EQFE system used in this setting works not on a single entity e, but on the distribution
of the EL system’s confidence scores over the potential entity candidates per mention m, we
aggregated all potential entities from all 19 documents d by computing the total reciprocal rank
(TRR):

TRRq(e) =
∑
d

∑
m

1

ranke,m,d
(7.5)

Computing the TRR instead of working directly with the confidence score distribution has the
advantage of reducing the dependency between the EL system and the gold standard dataset we
create from it. Note that using the mean reciprocal rank (MRR) would have created the same
entity ordering. To filter out noise, the final dataset consist only of the 50 entities with the highest
mention frequency per query.

Entity relevance was annotated separately by a pool of four different annotators, with each query
being annotated by at least two annotators on a 5-level scale:

1 Non-relevant
2 Remotely relevant
3 Relevant
4 Very relevant
5 Highly relevant

Annotation disagreement were resolved by a standard adjudication process. The final relevance
score is obtained by taking the arithmetic mean across all annotations, leading to the final rele-
vance metric rel ∈ [1− 5]R.

Figure 7.4 depicts the distribution of the annotation scores with a box-plot. The relevance scores
indicate that the absolute majority of entities is not relevant. However, this category also includes
incorrect entity links, as the entity linker used is of course not perfect. On the other end of the
scale are the highly relevant (5) entities which are rarely found (mean 1.80) and some queries
do not have any very (4) or highly (5) relevant entities at all. This is a result of our annotation
guidelines, which require entities to be marked as highly relevant only if they clearly satisfy the
information need expressed in the query. As a result of this, the relevance judgments provided
by humans annotators are rather strict. In the case of the query “Argentine British relations”, for
instance, the entity Falklands_War receives a high relevance score (5). Argentina, instead
is annotated only with a mildly relevant score (3.3) because, while being relevant w.r.t. query, it
does not actually answer the question about the relationship between both countries.

10Which seems to be a reasonable approximation of the number of documents to be presented to the user by a
retrieval system per results page.
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Figure 7.4: REWQ Robust04 Dataset: Boxplot for the annotations with the 5-level scale per
query (25 queries, 50 entities each).

REWQ ClueWeb12 Dataset

In order to have a second benchmark with different properties, the ClueWeb12 dataset builds
upon the TREC Web 2013/2014 queries together with the established ClueWeb12 corpus. In-
stead of focusing, as above for the REWQ Robust04 setting, on some specific subset of queries
we choose here a random subset of 22 queries from the 100 TREC Web2013/2014 queries. For
each query, the Sequential Dependency Model (SDM) (Metzler and Croft, 2005) as implemented
in the Galago search toolkit,11 is used to retrieve the top 20 documents. As this the SDM is a
classical IR system not using entities, we ensure to eliminate any effects and potential gains
given by EQFE’s entity-linked documents. The ClueWeb12 datasat comes with a set of publicly
available entity annotations, the FACC1 dataset (Gabrilovich et al., 2013), which allows us to
also eliminate the effect of the specific entity linker (KB-Bridge Dalton and Dietz, 2013a) used
in the Robust04 setting.

The final dataset consists of all entities per query – however, we heuristically filter out those
entities occurring less than three times to remove many spurious entities from the data. This
way we relax the assumption from REWQ Robust04 of using only the top-50 entities per query.
Entity relevance is finally annotated in a standard (e.g, TREC-style) way using binary relevance
judgments and not a 5-level scale.

Figure 7.5 depicts the distribution of the binary annotation scores for the 22 queries. Because the
number of entities and thus annotations varies per query (between 50 and 488, average 215), the

11http://www.lemurproject.org/galago.php.

http://www.lemurproject.org/galago.php
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Figure 7.5: REWQ ClueWeb12 Dataset: Boxplot for the annotations with binary relevance (22
queries, different number of entities per query). Y-axis shows relative number in %.

box-plot shows the relative number of relevant (1) vs. not-relevant (0) annotations per query in
percentage points (%). On average, only 9.6% of the annotated entities are labeled as relevant,
emphasizing, as for the Robust04 task, who many of the entities extracted from the documents
are actually not relevant w.r.t. the given query.

7.3.2 Experimental Setting

We evaluate our approach using all features from Section 7.2 within two learning-to-rank meth-
ods: (a) the SVM rank implementation from Joachims (Joachims, 2006) and (b) the coordinate
ascent methods as implemented in RankLib (cf. Section 7.2.3). Evaluation for both methods
and datasets is performed with a linear 5-fold cross-validation. Parameter tuning for the SVM
is done with an additional, random train-validation split, i.e. 3/5 training data, 1/5 parame-
ter validation data, and 1/5 test data. For each fold, features are individually normalized with
xnorm = (x− µ)/σ, where mean µ and standard deviation σ are computed using only the train-
ing data folds. We compare the learned feature combinations against the following reference
methods.



96 CHAPTER 7. RANKING ENTITIES BY RELEVANCE

7.3.3 Metrics

We opt for two established evaluation metrics, depending on the nature of the ground truth
annotations. For the REWQ Robust04 dataset with its graded relevance judgments (between
1-5), we choose nDCG@k in order to capture our intuition that a higher relevance should be
honored by higher rank. For each query q we compute DCG by Järvelin and Kekäläinen (2000)
as

DCG[i] =

{
CG[i], if i < b

DCG[i− 1] +G[i]/logb(i), if i ≥ b

(cf. Järvelin and Kekäläinen, 2002) with log base b = 2 and normalized it to nDCG@k by
dividing by the value of the ideal, i.e. gold standard sorted, ranking DCG@kI . Note there exist
different definitions of nDCG, for example Manning et al. (2008) define

DCGq@k =
k∑

m=1

2rel(m) − 1

log(1 +m)

thus discounting in contrast to above also items at the first position (m=1).12

For binary judgments, we additionally report Mean Average Precision (Voorhees and Harman,
2005) for the REWQ ClueWeb12 dataset. All values are computed with the TREC Evaluation
Script Version 9.013 and are reported in the following as the arithmetic mean over all queries.

7.3.4 Reference Methods

We compare the full-feature models against the following three reference methods.

Mention Frequency (MenFrqIdf ): A ranking consisting only of the idf-weighted mention fre-
quency feature. This feature’s individual performance comes primarily from the quality of the
initial document retrieval: Relevant documents should contain relevant entities. In case the en-
tity linker provides more than one entity per mention (as for the REWQ Robust04 dataset with
KB-Bridge), we take this ranked list of candidate entities into account by replacing the men-
tion frequency (tfq(e)) with the total reciprocal rank (TRR, see Equation 7.5). Ranking by TRR
combines the frequency of occurrence of the mentions with the entity linker’s confidence scores
on the linking of the mentions to their entities.

Wikipedia Fulltext Index (WikiSDM): A ranking based on the scores from a Sequential Depen-
dency Model (Metzler and Croft, 2005) retrieved from a retrieval index of Wikipedia text (using
weight parameters from Dalton et al. (2014)). This baseline is closest in spirit to INEX-like
entity retrieval from Wikipedia (Kaptein and Kamps, 2013) and is the alternative to our ap-
proach of issuing the query against a document retrieval system and then link the document to
the knowledge base instead of querying the knowledge base directly.

12Resulting in lower absolute nDCG values, but – in our experience – stable relative differences between different
queries or settings.

13http://trec.nist.gov/trec_eval/

http://trec.nist.gov/trec_eval/
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Wikipedia PageRank (WikiPR): A ranking obtained by applying the (unpersonalized) PageRank
algorithm to the link structure of Wikipedia, thus ranking entities by their global authoritative-
ness. PageRank scores are taken from the public dataset created by Thalhammer (2014).

7.3.5 Results on the REWQ Robust04 Dataset

We present results in Table 7.4, where we compare three learning-to-rank models, (1) SVM-rank
with (w/ SK) and (2) without the Semantic Kernel (w/o SK), as well as (3) the coordinate ascent
model from RankLib.

All reference methods (MenFrqIdf, WikiSDM, WikiPR) achieve high NDCG scores, with Wiki-
SDM performing best with slightly above 0.9, indicating that the combination of entity candidate
generation and external knowledge from Wikipedia is already a strong combination for entity
ranking. It is in a way a combination of our idea to extract entities from query-relevant document
and the approach to query the Wikipedia full-text that has been shown to perform well in the
context of the INEX competitions. The low performance of WikiPR, in contrast, suggests that
authoritativeness correlates, in our setting, only marginally with entity relevance. Error analysis
reveals that entities ranked high by PageRank are often very general entities linked to by many
other entities, e.g. Earth, United_States, etc., which obviously makes sense when applying
PageRank to the undirected Wikipedia link structure.

Finally, we observe that our learning-to-rank methods performs better than the reference meth-
ods, reaching an overall NDCG score of 0.936 – the difference is statistically significant (ac-
cording to a paired t-test, p-value ≤ α = 0.05). By re-ranking the entities with our method, we
gain up to 3.7% in NDCG over the input ordering (MenFrqIdf), even though we have ‘only’ 50
entities per query. Among the different rankers, RankLib performs better than SVM-rank, with
the semantic kernel (w/ SK) improving the SVM-rank results slightly (+.003 in NDCG).

When looking at the NDCG@10 scores, we observe the same trends:

1. The full-feature rankers beat all reference methods, which nevertheless achieve a very
competitive performance, with WikiSDM ranking highest among them;

2. RankLib outperforms SVM-rank as learning methods, which achieves better scores when
using a semantic kernel.

The larger relative improvements between baselines and supervised rankers suggests that our
feature-based approach makes a difference in particular to move the relevant entities from the
long tail into the top ten.

Narrative evaluation

For providing a more detailed insight into the entity ranking, Table 7.6 shows the results ob-
tained from RankLib for the REWQ Robust04 data. Queries are sorted by the average ground
truth values (gt) for the top 3 entities, thus showing queries with meaningful entities at the
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Table 7.4: Evaluation results for REWQ Robust04 dataset. We report differences w.r.t. the
best performing reference method (here WikiSDM), statistically significant improvements are
denoted with † (paired t-test p-value ≤ 0.05).

.

Method ndcg ∆% ndcg10 ∆%
RankLib 0.936 †3.7 0.817 †11.6
SVM (w/ SK) 0.926 †2.6 0.804 †9.7
SVM (w/o SK) 0.923 2.2 0.796 †8.7

WikiSDM 0.903 0.0 0.733 0.0
MenFrqIdf 0.885 -2.0 0.694 -5.3
WikiPR 0.778 -13.8 0.440 -40.0

Table 7.5: Evaluation results for REWQ ClueWeb12 dataset. We report differences w.r.t. the
best performing reference method (here MenFrqIdf), statistically significant improvements are
denoted with † (paired t-test p-value ≤ 0.05).

.

map ∆% ndcg ∆% ndcg10 ∆%
RankLib 0.328 †9.0 0.572 †3.4 0.710 †10.0
SVM (w/ SK) 0.278 -7.8 0.545 -1.6 0.646 0.1
SVM (w/o SK) 0.308 2.2 0.563 1.6 0.675 4.4
MenFrqIdf 0.301 0.0 0.554 0.0 0.646 0.0
WikiSDM 0.234 -22.3 0.515 -7.0 0.613 -5.1
WikiPR 0.075 -75.1 0.328 -40.8 0.126 -80.5

top. Among the top queries we find e.g “poliomyelitis and post polio”, for which we are able
to retrieve expected and relevant, but not surprising entities like Poliomyelitis, Polio-
_vaccine or Jonas Salk, resulting in an NDCG@10 score of 0.879. Another interest-
ing query with a very high NDCG@10 of 0.931 is “territorial waters dispute”, for which not
so well-known, yet relevant entities like United_Nations_Convention_on_the_Law_of-
_the_Sea are ranked high, as well as examples of specific water disputes taking place in the
Mediterranean Sea (Aegean_dispute) and the Pacific Ocean (Kuril_Islands_dispute).
The query on the bottom, “agoraphobia”, has a low “gt” value because the initial document re-
trieval in combination with the entity linking could not obtain any really useful entities besides
Charles_M._Schulz.

Error analysis

Error analysis on the low-performing queries reveals that our method suffers from errors in the
entity links. For the query “Argentine British relations”, for instance, the top retrieved entity is
Argentina_rugby_union_team, which is actually an artifact of systematic errors from the
entity linking system, which incorrectly links mentions like Argentine or “Argentina” to the
national rugby team, and not to the country (Argentina). This suggests that a better entity
linking could further boost our performance. Another source of errors comes from the retrieval
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system itself – e.g., low performance on the query agoraphobia comes from the rather noisy
pool of documents we start with to collect potentially relevant entities.

In addition, we are also of course milted by the fact that some – to be expected – knowledge is
not available from the KG. For example, DBpedia does not contain the direct information that
db:Carlos_Menemwas the president of Argentina. The KB relation depicted in Figure 7.3 con-
necting db:Carlos_Menem with db:Argentina is actually of type dbo:nationality. The
fact that he was also Argentina’s president is only encoded indirectly via the DBpedia property
namespace – which we do not consider as argued above (cf. Section 2.1.3): db:Carlos_Menem
dbp:title db:President_of_Argentina. Finally, low performance on some queries are
due to their degree of difficulty, as highlighted by fine-grained queries for very specific domains
(e.g., hydroponics), where additional knowledge could potentially help.

7.3.6 Results on REWQ ClueWeb12 Dataset

In Table 7.5 we report our results on the ClueWeb12 portion of the REWQ dataset. Similar to the
Robust04 results, the single features perform quite well on their own. In contrast to the Robust
dataset, the best single feature is the MenFrqIdf features. Again, our learning-to-rank approach
outperforms all reference methods consistently across all measures, both when using RankLib
and SVM-rank (up to +9.0% MAP, +3.4% NDCG, +10.0% NDCG@10).

Also in line with the Robust04 findings, the greater relative improvements of our method for the
NDCG@10 value suggest that our features make a difference in particular for the top ranked
entities. The performance of the SVM with Semantic Kernel (w/ SK) is worse in contrast, the
MAP and NDCG scores are even below the MenFrqIdf feature. Because the NDCG@10 value
is at par with the MenFrqIdf, we suspect that the knowledge base links between entities used
by the Semantic Kernel are only helpful for the top entities - but fail when ranking within the
long tail. Another factor is most likely the fact that this dataset has only binary annotations,
and is thus not as fine grained as the 1-5 points scale of the REWQ Robust04 ground truth. In
summary, we take these results to be additional evidence for our previous findings.

7.3.7 Feature analysis

To better understand the importance of the different features within our model, we study the
individual ranking performance of each feature, and perform a feature ablation study.

Single features as rankers

Analyzing the individual features in isolation, Figure 7.6 (Robust04) and Figure 7.7 (ClueWeb12)
show the NDCG@10 performance achieved by each feature individually. We find that the men-
tion frequency (MenFrqIdf) and the Wikipedia fulltext search (WikiSDM) both perform individ-
ually well as ranking metric for both datasets. For the REWQ Robust04 dataset, WikiSDM is
the highest performing feature. Since we are only re-ranking the most frequent entity mentions
in high-ranked documents, the WikiSDM method is filtered by a very effective whitelist. This
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Figure 7.6: Feature-by-feature analysis for the REWQ-Robust04 Dataset (1-5 annotations, KB-
Bridge EL)

confirms our intuition that entities which occur often in relevant documents are themselves rel-
evant, but also that ranking entities based on their Wikipedia article according to WikiSDM is
a non-negligible indicator. All context-based query-mention-features (indicated by prefix C_)
perform worse than their no-context counterparts (indicated by prefix M_), e.g. C_GloSum vs.
M_GloSum, thus letting us question their value for entity ranking. However, their benefit is only
demonstrated in combination with other features.

The contribution of the other query-entity features, which are based on DBpedia, namely Qent
and QEntEntSim, are in between – they perform worse than the strong WikiSDM, but than
some of the mention-based approaches. On both dataset, QEntEntSim as single feature per-
forms better than the QEnt feature. Since QEntEntSim is leveraging knowledge base paths and
ontological types between entities in the query and the documents, these provide a meaningful
way to connect otherwise missing entities.

In summary, the high performance of the MenFrIdf features highlights that the candidate gener-
ation strategy already provides a useful approach on its own: this finding holds for both datasets
despite using different document retrieval and entity linking methods.
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Figure 7.7: Feature-by-feature analysis for the REWQ-ClueWeb12 Dataset (binary annotation,
FACC1 EL)

Ablation study on Robust04

To further analyze the individual features, we perform a features ablation study: For each single
feature, or set of features, we remove it from the set of features available to RankLib, re-train it
with the same parameters and compare its performance against the full-feature setting. Results
for the Robust04 are reported in Table 7.7 which is sorted by relative loss caused by removing a
feature (group).

Surprisingly, we find that removing all mention-based features (i.e. SED, Jo, Glo for mention
and mention context) actually improves the overall performance by 0.1% in NDCG (0.7% in
NDCG@10) – however, the differences are small and not statistically significant. This find-
ing might also results from the fact that the MenContext group combines features of different
quality: While the string edit distance (SED) is helpful (-1.3% NDCG, -2.8% NDCG@10), we
cannot confirm this for the JoBim text features (-0.2% and +0.3%).

The DBpedia-based features (DBpedia) seem to have a positive influence on the overall perfor-
mance (-1.0% and -1.9%), even though not being statistically significant. Interestingly, remov-
ing any of the two DBpedia features QEntEntSim or Qent individually would let to a different
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conclusion.

The Wikipedia-based features show a strong and significant influence on the overall perfor-
mance, removing them leads to a drop of -2.3% for NDCG and -5.1% for NDCG@10. The
single most important feature is the mention frequency features (MenFrqIdf), thus supporting
our assumption that a good initial document retrieval helps to obtain a good pool of relevant
candidate entities.

Ablation study on ClueWeb12

The findings for the ClueWeb12 dataset in Table 7.8 confirm the findings from the Robust04
dataset above. Again, leaving out all mention-based features actually improves the performances
– but as above, the difference is not statistically significant. On the other end of the table, and
also in line with above findings, the mention frequency is the single most important features with
rather large differences between 19.7% (MAP) and 6.5% (NDCG).

We can also confirm our finding that the simple SED is more effective than the Glove and
Jo features. The role of the DBpedia features is slightly different, they seem to be even less
helpful for the ClueWeb dataset than for the Robust04 dataset. A possible explanation is the
the difference in the annotation method: The binary ClueWeb12 annotations are likely to not
capture fine-grained differences between entity relevance levels, which might be expressed by
knowledge-base links.

In summary, all findings for this dataset are in line with the findings for the Robust04 data,
which is interesting because both datasets are rather different in nature, i.e., different ground
truth labels (binary vs. 1-5 scale), different document retrieval (SDM vs. EQFE), and different
entity linkers (FACC1 vs. KBBridge).

7.4 Related Work

To the best of our knowledge, there is no work that is addressing exactly the very same setting
we are looking at, i.e. given a general web query and a list of retrieved documents, rank the
Wikipedia entities extracted from those documents w.r.t. the query. However, there exists a large
body of closely related work on (query-driven) entity retrieval and ranking for Web search.

In the remainder of this section, we study the commonalities and differences between different
task definitions and our understanding. Wherever meaningful, we also present and compare
selected methods. Table 7.9 gives an overview about the characteristics of the major view on
entity retrieval/ranking discussed next.
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Table 7.7: Feature ablation study on REWQ Robust04 Dataset. Sorted by difference (∆%) in
NDCG value. P-values (p) from two-sided paired t-test ≤ 0.05 are denoted with †.

w/o ndcg ∆% p ndcg10 ∆% p

RankLib All 0.936 - - 0.817 - -
MenContext 0.937 0.1 0.68 0.823 0.7 0.56

QEntEnt 0.935 -0.1 0.73 0.824 0.8 0.58
Qent 0.934 -0.2 0.58 0.825 0.9 0.44

Jo 0.934 -0.2 0.53 0.819 0.3 0.85
Context 0.933 -0.3 0.28 0.816 -0.1 0.89

Glo 0.928 -0.8 0.10 0.803 -1.7 0.26
DBpedia 0.927 -1.0 0.06 0.802 -1.9 0.21

WikiBool 0.926 -1.1 0.11 0.809 -1.0 0.56
SED 0.924 †-1.3 0.05 0.794 -2.8 0.09

WikiSdm 0.921 †-1.7 0.03 0.781 †-4.4 0.04
MenFrqIdf 0.917 †-2.1 0.04 0.774 †-5.4 0.05
Wikipedia 0.914 †-2.3 0.01 0.776 †-5.1 0.03

Table 7.8: Feature ablation study on REWQ ClueWeb12 Dataset. Sorted by relative difference
(∆%) in MAP value. P-values (p) from two-sided paired t-test ≤ 0.05 are denoted with †.

w/o map ∆% p ndcg ∆% p ndcg10 ∆% p

RankLib All .328 - - .572 - - .711 - -
MenContext .333 1.4 .41 .574 0.3 .55 .714 0.5 .70

Jo .332 1.0 .55 .573 0.2 .69 .716 0.8 .50
DBpedia .329 0.1 .92 .572 0.0 .90 .701 -1.4 .26
QEntEnt .327 -0.4 .48 .572 -0.1 .68 .708 -0.4 .64
Context .326 -0.6 .49 .570 -0.3 .34 .698 -1.7 .06

Glo .326 -0.7 .51 .571 -0.3 .46 .698 †-1.7 .05
Qent .326 -0.8 .63 .571 -0.2 .75 .701 -1.4 .32
SED .326 -0.8 .35 .571 -0.3 .46 .698 -1.8 .15

WikiSdm .320 -2.6 .25 .566 -1.1 .26 .693 -2.5 .28
WikiBool .313 †-4.6 .05 .565 -1.3 .08 .670 †-5.7 .01
Wikipedia .303 †-7.7 .02 .556 †-2.9 .02 .650 †-8.5 .02

MenFrqIdf .264 †-19.7 .00 .535 †-6.5 .01 .630 †-11.4 .03
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Table 7.9: Overview of the different types of entity retrieval/ranking

Section Short Name Retrieval from Entity Type Query Type
7.4.1 INEX Knowledge Base KB (Wiki) Entity, Type
7.4.2 TREC Web Open, KB Type, Complex
7.4.3 AOR Web, KB Open, KB (LD) Entity
7.4.4 Entity Ranking Docs Open, KB no query
7.2 Our work Doc Collection KB (Wiki) Complex

7.4.1 Knowledge Base Retrieving of Entities for Type Queries

The task of retrieving entities (or a single entity) from a given knowledge base, very often
Wikipedia, is well-known and prominently promoted by the Initiative for the Evaluation of XML
Retrieval (INEX), that we introduce next.

INEX ER and LC Task 2009

The 2009 edition had two tasks (Demartini et al., 2010):

(a) The entity ranking (ER) task, where the aim was to return Wikipedia entities that sat-
isfy a topic described in natural language, for example “art museums in Amsterdam”. In
addition, a preferred category was given, e.g. “art museums and galleries”.

(b) The List completion (LC) task provided also a natural language query, but instead of
specifying a category, entities from the correct category are given.

Comparing both INEX tasks with your problem definition, we see that entities are expected to
be of a particular type (here specified by a Wikipedia category), either explicitly (ER task) or
implicitly (LC task). Describing the INEX task in terms of the type of query they use, as defined
by Pound et al. (2010) and described in Section 7.1.3, both tasks are entity queries: They ask
for entities of a particular, given type. Our work, in contrast, aims explicitly for a collection of
entities of different types, e.g. persons and location involved with in a topic.

INEX Linked Data Track 2013

In 2013, INEX ran 4 tracks, of which the Linked Data Track is most relevant to us. It consisted
of two tasks (Bellot et al., 2013), of which we discuss only task (a):

(a) The Ad-hoc Search Task asked for Wikipedia entity retrieval given an information need.

(b) The Jeopardy Task asked for formulating SPARQL queries for information needs in natu-
ral language.

The Ad-hoc task provided 72 “classical” keyword queries like “best movie” and asked for a
ranked list of (up to 1000) Wikipedia entities.14 The task focuses thus on answering queries

14The 72 queries were also used in the INEX 2009 and 2010 edition.
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“mainly by the textual contents of the Wikipedia articles” (Gurajada et al., 2013, p. 2), that is, it
looks primarily at ways to retrieve ranked list of articles from Wikipedia given a keyword query
using the Wikipedia text itself. In contrast, in our work we are interested in ranking entities ‘in
the wild’, namely as found in the entity-linked content of retrieved documents. The Ad-hoc task
had only 3 participants.

Kaptein and Kamps: Leveraging Wikipedia Categories

Kaptein and Kamps (2013) propose a system for the INEX ER task of retrieving entities from
Wikipedia of a given type (Wikipedia category), which works for that reason with the Wikipedia
categories. The system works as follows.

(a) For retrieving an initial list of entities, the query is issued against a document retrieval sys-
tem, more specifically against a standard language model, with Jelinek–Mercer smoothing
without length prior, built from the Wikipedia full-text articles.

(b) The retrieved entities get filtered on the target category, whereas Kaptein and Kamps pro-
pose different similarity metrics to measure if an entity belongs to the desired target cate-
gory.

(c) Information on the (Wikipedia hyper-) links between entities is taken into consideration by
computing the ratio between local indegree (only between retrieved entities) and global
indegree (all entities). An additional use of the link information is through relevance
propagation from the initially retrieved entities (as first proposed in the context by Tsikrika
et al., 2008).

Finally, all feature scores are aggregated by different linear combinations.

Comparing this system with our work, we see that the language model from step (a) is very
similar to our Wikipedia-based features, WikiBool and WikiSDM, which were actually inspired
by this work. We find WikiSDM to be among the top-performing features as reported in Sec-
tion 7.3.7. In their experimental evaluation, Kaptein and Kamps find the category information
to be very helpful – which seems reasonable given the task defines target categories. Having a
different task, we do not leverage categorical features in our work.

Raviv et al.: MRF for Joined Feature Model

Raviv et al. (2012) present an approach for the INEX entity ranking (ER) task (2007-2009)
that is discussed here because it follows the same idea we did by combining different types of
features for entity ranking. More specifically, they model (i) entities mentions occurrences in
the documents, (ii) the entity type, and (iii) the entity name. While we combined our indepen-
dent features linearly with learning-to-rank (and the semantic kernel for entity-entity features),
Raviv et al. explicitly model the dependencies between query and entity as a Markov random
field (MRF) (Metzler and Croft, 2005). However, the experimental evaluation reveals that “vari-
ous dependence assumptions did not result in significant improvement in the model performance
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over using the full independence assumption”, thus letting their supervised ranking method be in
the end very similar to the linear feature combination we learned with the RankLib implemen-
tation of the listwise LTR method. Note that the direct parameter optimization for MAP with
Coordinate Ascent (Metzler and Croft, 2007) used by us via RankLib is actually also used by
Raviv et al. for optimizing their model.

7.4.2 Web Retrieval of Entities for Typed Queries

An alternative to knowledge base retrieval is to retrieve entities from the web, i.e. from some
arbitrary resource, instead. When retrieving not form a given KB like Wikipedia or some LOD
resource, the definition of what an entities is, can also be relaxed – however, having a more open
definition of what an entity is makes evaluation also more complicated, and methods harder to
compare. The most notable evaluation campaign in this context is the TREC Entity Track, which
runs as part of the long standing IR evaluation imitative TREC (Text Retrieval Conference).15

TREC Entity Track 2009

The 2009 TREC Entity Retrieval Track defined “entities as ‘typed search results’, ‘things’, rep-
resented by their homepages on the web” (Balog et al., 2010, p. 1). The main task, Related Entity
Finding (REF), asked to retrieve entities related to the input entity, an example query (topic) is
shown below ((Balog et al., 2010, p. 2)):16.

<query>
<num>7</num>
<entity_name>Boeing 747</entity_name>
<entity_URL>clueweb09-en0005-75-02292</entity_URL>
<target_entity>organization</target_entity>
<narrative>

Airlines that currently use Boeing 747 planes.
</narrative>

</query>

The pre-defined types for the target entities were person, organization, and product. Thus, this
task is similar to the type queries from INEX, however, this TREC task does not provide a
“classical” keyword query. The expected output, i.e. the search result, for the task was a list
of up to 100 entities. Each entity could be described by a collection of websites (divided into
homepages, Wikipedia page, and supporting documents) and a string answer that represents the
entity concisely.

Comparing the expected output against our Wikipedia definition, we notice that there is only
a partial overlap: If the Wikipedia page is included in a TREC entity returned, it can actually
be interpreted as a Wikipedia entity with the same semantics we, and e.g. INEX, uses. How-
ever, as the Wikipedia URI is an optional information, it might be missing: either because the

15http://trec.nist.gov.
16Note instead of the true URL, the document id of the ClueWeb09 corpus is given.

http://trec.nist.gov
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entities has no Wikipedia page due to its limited coverage, or because finding/mapping to the
correct Wikipedia page failed. In summary, this entity definition is rather different from our
understanding.

TREC Entity Track 2011

In 2011, the REF task was extended by a linked open data (LOD) variant (Balog and Serdyukov,
2011). In this REF-LOD task, instead of homepages, URIs from the LOD cloud were given,
using the Sindice-2011 LOD-crawl dataset (Campinas et al., 2011). However, the REF-LOD
task had only one participant and was discontinued later.

In addition, TREC offered the Entity List Completion (ELC) task, whose definition was essen-
tially the same as for the REF task, i.e. finding entities related to the input entity. However, type
of the target entity was this time specified via its rdf:type from the DBpedia Ontology (cf.
Section 2.1.3). The output of relevant entities where expected to be denoted by a URI from the
provided Sindice LOD dataset.

In summary, the TREC Entity Track developed into the direction of our more strict entity defi-
nition by using a given LOD dataset to obtain entity-identify URIs. Nevertheless, the main idea
of the track’s tasks is still to find entities related to a given input entities, where the relationship
between both is described by a textual narrative.

7.4.3 Semantic Search as Ad-hoc object retrieval (AOR)

Semantic search is a term with various interpretations, depending strongly on the community
(e.g. Semantic Web, Information Retrieval) it is used by. Without going into further details, we
look here at the Ad-hoc object retrieval (AOR) task as defined by Pound et al. (2010): Given
a keyword query, return a ranked list of object. The definition of what an object is remains
open, thus being similar to the open TREC definition. The experimental study by Pound et al.
uses metadata (RDFa and different Microformats) embedded within website found in the query
logs of search engine as object identifiers.17 The Semantic Search 2011 dataset18, created from
Yahoo’s search engine log, follows directly this understanding of AOR. In the end, AOR is in the
middle between the website retrieval of TREC, and the knowledge base retrieval from INEX:
It uses classical keyword queries for ad-hoc retrieval, but allows also non-Wikipedia entities as
results.

Ciglan et al.: Semantic Sets for AOR Type Queries

The work by Ciglan et al. (2012) is interesting bycause they try – like us – to leverage the DB-
pedia graph for finding semantically related entities. Their SemSets system aims at answering
type queries for the AOR task. For evaluation, the SemSearch dataset is used, but only Wikipedia

17For more details on RDFa and Microformats usage in websites see Bizer et al. (2013).
18http://km.aifb.kit.edu/ws/semsearch11 and Tran et al. (2011)

http://km.aifb.kit.edu/ws/semsearch11
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entities are taken into account – the presented approach would thus actually also work on the
INEX Ad-hoc task.

Ciglan et al. start by linking the keyword query to entities from their knowledge base (the
Wikipedia entities restricted SemSearch RDF graph). This is a step we also do for feature gen-
eration, however we use a full-pipeline entity linking system. In contrast, the SemSets systems
uses only the surface form to entity probabilities (which is the most important component of
Wikipedia entity linking systems, (Milne and Witten, 2008b)), because they target type queries,
which means e.g. List_of_Apollo_astronauts would be a very good entities for the query
“Apollo astronauts who walked on the Moon”.

For ranking this initial list of entities, “artificial” documents containing all entity properties
are created and standard document retrieval methods are applied. Those textual features are
combined with structural features by applying an activity spreading based method to the property
graph, i.e. essentially the knowledge graph around the initial entities. The last ranking step
uses the, name giving, SemSets, i.e. sets of semantically related entities – as computed via the
DBpedia graph. This step is similar to our DBpedia path finding (QEntEntSim), but relies on
different structural metrics like internal density. In line with our observations, Ciglan et al. find
all graph-based metrics to have rather low MAP scores when used as single ranking method.
For that reason, they set thresholds and filter the semantic sets of entities in addition by textural
features, incl. the DBpedia abstract and properties. In the overall experimental evaluation, the
DBpedia (property) graph structure based methods were not able to outperform the textual cosine
similarity of the entity properties.

Interestingly, Ciglan et al. mention in their work that for a type query, a “human user would
probably enter such a query to a web search engine and inspect several top-k results and [...]
search the text of the inspected documents to find the desired set of entities” (Ciglan et al., 2012,
p. 131). This is exactly the pipeline we created in our work to solve the entity ranking problem,
while Ciglan et al. opt to propose a technique that does not include documents from web search.

Zhiltsov and Agichtein: LeToR Entities with RDF tensors

Zhiltsov and Agichtein (2013) present an approach to keyword search over RDF data, following
the AOR definition from Pound et al. (2010). Consequently, they work also on the SemSearch
query dataset, together with the Billion Triple Challenge (BTC) 2009 RDF as data collection,
which contains, amongst others, the data of DBpedia, LiveJournal, GeoNames, and DBLP. Inter-
estingly from the technical perspective, Zhiltsov and Agichtein (2013) combine, like us, textual
features (e.g. name and label of RDF resource) with structural features (RDF predicates) by
feeding both features types in a learning-to-rank method. However, in contrast to our entity path
search between entities (QEntEntSim), Zhiltsov and Agichtein model the full structural depen-
dencies, i.e. predicate between entities as a tensor – most likely because they retrieve entities
directly from the fully structured source dataset, i.e. the RDF BTC data, which makes such
an approach a more natural choice. Even though the evaluation results are not comparable, it’s
noteworthy that the best NDCG score reported is at 0.40, which is below the numbers for both
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our REWQ datasets – thus being a good reminder how well the entity pre-filtering by the initial
document retrieval works.

7.4.4 Entity Retrieval from Documents without Queries

Oppose to retrieving entities from the Web or a KB, we now turn to retrieving entities from
documents. While the question of entity extraction and ranking also arises in this context, note
that no query is involved here.

Dunietz and Gillick: Ranking Salience Entities in Documents

Dunietz and Gillick (2014) address the question of ranking entities from documents, which we
also implicitly touch by ranking entities retrieved from the search result documents. The authors
define the task of “entity salience [as] assigning a relevance score to each entity in a docu-
ment” (Dunietz and Gillick, 2014). Not that while we rank entities from the whole collection
of retrieved documents, because we aim at ranking entities w.r.t. the query, Dunietz and Gillick
(2014) rank entities only w.r.t. to the individual document. Even though this query-independent
perspective lets the work be rather different from the tasks presented above and our own work,
from a technical perspective, the methods used are similar to those we use. In their presented
work, Dunietz and Gillick use only entities that could be linked Freebase by an entity linker, and
only those entities that contain at least one proper-name in the mention.

Besides other features, Dunietz and Gillick compute entity centrality by applying PageRank to
the Freebase graph of entities found within the document. In our experiments, a PageRank on the
full DBpedia graph was not a helpful feature – limiting the PageRank to entities of one document
seems to be the crucial choice here. In their analysis, Dunietz and Gillick find however that the
centrality features do not significantly improve accuracy over their mention features ((F1 61.6
vs. 62.0) They conclude, that the mention features, in particular the frequency statistics on the
entity mentions, are already sufficiently powerful (F1 60.3). This finding can be confirmed by
our own analysis, where the mention frequency (MenFrqId) is also a very strong.

7.5 Conclusion

In this chapter, we addressed the problem of ranking entities for complex, open-domain web
queries. In contrast to direct knowledge base retrieval (like INEX), our starting point were the
query-relevant documents retrieved by a document retrieval system. We investigated the perfor-
mance of a variety of heterogeneous features, which were combined by established learning-to-
rank methods.

Key Findings

With respect to RQ1, we find that, based on our two self-created entity relevance datasets, docu-
ments retrieved with standard IR methods indeed contain entities that are relevant for the initial
user query. While not surprising, it is an interesting confirmation of our intuition and justifies
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our research into the combination of document retrieval and entity retrieval in this query-specific
setting.

Regarding the actual entity ranking method (RQ2), our results indicate that query-relevant doc-
uments with entity links provide a complementary source of information to direct KB, i.e.
Wikipedia, retrieval, yielding an NDCG@10 score of over 0.82 on Robust04, compared to 0.73
for Wikipedia retrieval. Together with the frequency of entity mentions within the retrieved doc-
uments (0.68 NDCG@10), Wikipedia retrieval (WikiSDM) is one of the strongest individual
features. It is in a way a combination of the idea to extract entities from query-relevant docu-
ment and the approach to query a Wikipedia full-text that has been shown to perform well in the
context of the INEX competitions.

For most other results of the ablation study we cannot find significant differences. For example,
we cannot find a unique significant contribution of features based on distributional similarity for
this task (JoBimText and GloVE). Likewise, incorporating relations between entities does not
yield a measurable benefit (QEntEnt and Semantic Kernel). Nevertheless, combining all these
signals together within a supervised learning framework is able to yield statistically significant
improvements over ranking by single features, so as to yield competitive NDCG scores.

Limitations

The most sever limitation of our approach is obviously that its final performance relies on the
performance of the underlying document retrieval and entity linking systems, and error analysis
revealed that our ranking does actually suffer from systematic errors from these two components.
However, our rather high NDCG scores on both datasets – which use different document retrieval
and entity linking systems – indicate that our supervised approach is able to cope with the noise
in the input data. Nevertheless, to overcome the limitation of the document retrieval and entity
linking, one could think of integrating direct KB retrieval into our pipeline as a second source
of query-relevant entities (similar to the work of Dalton et al. (2014) who used entity retrieval
for document retrieval). This would combine document retrieval and knowledge base retrieval
into one results set – however at the cost of presenting the user entities that are not aligned to the
documents.
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Chapter 8

Finding Relevant Relations

This last chapter presents a natural extension of the work described above, as we will extract for
the first time in this thesis not only entities, but also relations from a given text. The extraction
of entities and relations from text opens up a new line of research, and we are going to present
initial experiments, i.e. descriptive studies using a self-created annotation dataset.

The work presented in this chapter has been published before in Michael Schuhmacher, Ben-
jamin Roth, Simone Paolo Ponzetto, and Laura Dietz. Finding Relevant Relations in Relevant
Documents. In Proceedings of ECIR’16, pages 654–660 (Schuhmacher et al., 2016).

As in the previous chapter, we study a query-driven IR setting, while the task is here to identify
query-relevant relational facts, i.e. subject–predicate–object triples where subject and object
are (Wikipedia) KB entities. Besides being the next step to make an integrated usage of text
and KGs, our motivation for this task was also to bridge the gap between research in document
retrieval and knowledge base population, as we set out a pipeline of document retrieval and
relation extraction – in contrast to Chapter 7 where we combined document retrieval with entity
extraction.

This chapter will not present a system or method for the task of finding relevant relations, but
instead present an extensive study of the problem using a self-created dataset. We leave the
further exploitation of our findings in a working software implementation to future research. We
study the following research questions:

• RQ1: Can the approach extract relevant facts for the queries?

• RQ2: What are useful document- or KG-based features for fact relevance?

• RQ3: Is relevance of entities and relevance of facts related?

113



114 CHAPTER 8. FINDING RELEVANT RELATIONS

8.1 Introduction

Our goal for this chapter is to obtain query-relevant facts from query-specific documents, ana-
logue to our previous attempts to find query-relevant entities in Chapter 7.1 In this context,
for us, a fact is a subject-predicate-object triple where subject and object are KB entities, here
DBpedia entities. We opt for this definition in order to enable a tight integration with existing
knowledge (from the DBpedia KG).

Our vision is to create a query-specific knowledge graph (KG) as illustrated in Figure 8.1 that in-
tegrates the information we find within the documents together with the encyclopedic knowledge
from the DBpedia KG. In the end, we thus want to be able to answer a query, like “raspberry pi”
in Figure 8.1, with relevant information directly in a structured and machine readable format,
e.g. for a deeper analysis of the topic, and not contained within documents. However, even when
restricting ourselves to identify only existing KB entities in the text, a full integration would also
require the relations extracted from the text documents to be combined with the DBpedia KG
predicates. In this first step towards our vision, we refrain from this full integration and only
analyze the relationship between textual relations and KG predicates instead.

rf:headquarters

rf:member_of
Eben_Upton

Premier_Farnell

United_Kingdom

Broadcom

University_of_Cambridge

England
dbp:membership

Raspberry_Pi_Foundationrf:founded_by

rf:member_of
rf:member_of

dbo:almaMater

rf:headquarters

Figure 8.1: Example of a knowledge base for the query “raspberry pi”. rf: denotes relations
extracted from documents, whereas dbp: and dbo: are predicates from DBpedia. Note that the
entity Raspberry_Pi itself is not included here, as the TAC schema of the relation extraction
knows only three types of entities, namely Persons, Locations, and Organizations. The raspberry
pi was invented by Eben Upton and its major distributor is Premier Farnell.

Our contribution here is thus the extraction of query-specific facts from query-relevant docu-
ments, as retrieved from an document retrieval system. We describe the entity-containing facts
extracted, and evaluate if they are relevant w.r.t. the initial query. But we do not aggregate
and/or integrate the extracted facts into a coherent and unified KG. The task we thus define for
this chapter is as follows:

Task: Given a query Q, use the documents from a large collection of Web documents to extract
1We use the term query-specific and not query-relevant here, as, naturally, any document retrieval system cannot

guarantee that the returned documents are actually query-relevant.
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Figure 8.2: Schematic workflow combining document retrieval with information extraction

facts, i.e. subject–predicate–object triples (S, P,O) that are both correctly extracted from the
documents’ text and relevant for the query Q.

We illustrate the desired output KG with the example shown in Figure 8.1: Assuming a user
wants to know about the Raspberry Pi computer, s/he should be provided with a KB that includes
the fact that its inventor, Eben Upton, founded the Raspberry Pi Foundation, that he went to
Cambridge University, which is located in the United Kingdom, and so on. This answer-like
KG would be by far more expressive than to return e.g. just a list of entities, as we did before.
But at the same time, this highly aggregated (and machine-readable) facts would be clearly
more valuable information to the user than a list of documents. In addition, having extracted
fact containing KB entities, we can complement the document-extracted information with KG
facts, e.g. from DBpedia as depicted in Figure 8.1. Note that the graph shows only relations
we annotated as being query-relevant in our dataset, as the perfect KB should include only
facts that are of interest for understanding the query topic, e.g., Raspberry_Pi_Foundation
founded_by Eben_Upton.

Based on our self-created benchmark dataset,2 we present first experiments on building query-
specific KBs from documents retrieved from a large-scale Web corpus in this chapter. Our
pipeline combines two state-of-the-art system, one for document retrieval (Dalton et al., 2014)
and one for relation extraction (Roth et al., 2014). This way, we go beyond the work on identi-
fying relevant entities for Web queries in Chapter 7, where relations between entities were not
considered, and also beyond query-agnostic knowledge base population (KBP) such as the TAC
Cold Start KBP task, where determining fact relevance is not taken into account. Understanding
this work as a first step that just combines established methods, we aim at quantifying how well
this direct application of a relation extraction system to a set of retrieved documents solves the
task of extracting query-specific facts. In order to differentiate between different error types,
we evaluate the correctness of each fact extraction, i.e. if the extraction from text is correct,
separately from the relevance of the fact, i.e. if the correctly extracted fact is relevant for the
query.

8.2 Method

Our approach can be described by the pipeline shown in Figure 8.2 which consists of two major
steps, namely a document retrieval and a relation extraction system.

2Dataset and additional information is available at http://relrels.dwslab.de.

http://relrels.dwslab.de
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For the first step, i.e. the initial document retrieval, we use the Galago3 search engine to retrieve
documents D from the given corpus that are relevant for the query Q. We build upon the work
of Dalton et al. (2014) and rely on the same document pool and state-of-the-art content-based re-
trieval and expansion models, namely the sequential dependence model (SDM), the SDM model
with query expansion through RM3 (SDM-RM3), and the SDM model with query expansion
through the top-ranked Wikipedia article (WikiRM1). Without going into much details here, we
only want to highlight that this retrieval system makes use of KB entities (from Freebase, pro-
vided by the FACC1 collection, cf. next paragraph) in addition to the standard document-based
retrieval features. The choice for this system was thus not only motivated by its retrieval per-
formance, but also because of this KB-entity aware retrieval, because we need documents with
(many) entity mentions.

In the second step, for each retrieved document the facts are extracted using a relation extraction
system. A prerequisite for running the relation extraction system is to first identify candidate
sentences that mention two entities, acting as subject S and object O. Instead of identifying the
entities ourselves by running an entity linking system, we opt to use an existing standard dataset,
namely the FACC1 collection of entity links (Gabrilovich et al., 2013) for the ClueWeb12 doc-
ument corpus (cf. Section 7.3.1) we used in our experiments.

Having the entities given, we select all such sentences as candidates for the relation extraction
that contain at least two canonical entities of which the subject is of (Freebase) type people

or organization. We limit ourselves to those types of entities, as the relations extraction
system we employ, RelationFactory4 (Roth et al., 2014), is trained only for those entities. Re-
lationFactory was built for the TAC KBP Slot filling task and was the top-performing system
in 2013. It is a modular system based on distantly supervised classifiers and patterns. Like all
systems for TAC KBP, it was trained on Freebase data to extract facts for a schema of 42 rela-
tions/predicates, where the subject has to be of type person or organization, e.g. born-in
or city-of-headquarters. Because we have the entity mentions already given from the
FACC1 data, we skip the candidate generation phase in RelationFactory and use only its “vali-
dation modules”: Each validation module, most of them per-relation SVM classifiers, but also
automatically induced schemas and manually created patterns, makes a prediction if one of the
predefined relations was found between the two entity mentions in the text.

8.3 Evaluation

We turn to the actual contribution of this chapter, namely the in-depth evaluation of how well the
pipeline of document retrieval and relation extraction performs for finding query-relevant facts.
First, the dataset construction is described, before we report on results and findings.

3http://lemurproject.org/galago.php
4https://github.com/beroth/relationfactory

http://lemurproject.org/galago.php
https://github.com/beroth/relationfactory
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8.3.1 Dataset

To our knowledge and as of April 2016, there exists no test collection for evaluating relational
facts with respect to query-relevance. We created our own dataset thus, by augment an existing
test collections for document-relevance and entity-relevance with assessments on the correctness
and the query-relevance of facts. As queries, we sample from the test queries from the TREC
Web track and retrieve documents from the corresponding ClueWeb12 corpus. 5 The fact-
relevance assessments are partially build on top of the REWQ gold standard of query-relevant
entities, as introduced in the previous chapter (Section 7.3.1).

As mentioned above, RelationFactory, being a closed relation extraction system, can only ex-
tracts a fixed set of relations it was designed for. This yields the obvious problem that not each
of the TREC test queries can be adequately answered when being restricted to only certain rela-
tions, and thus certain types of entities acting as subject and object (here persons, organizations,
and locations).6 For that reason, we perform a shallow manual check of the TREC queries and
focus in this study on the subset of 40% of TREC Web queries, such as “Raspberry Pi”, for
which we anticipated relevant facts to be covered by the TAC relation schema RelationFactory
used.

For a random selection of 17 TREC queries (out of the 40% of queries we assessed before to
be suitable at all for out setting), we manually assess the 40 most frequently mentioned facts
and, in addition, all facts of which at least one of the entities was marked as relevant in the
REWQ dataset. Due to the high number of annotations needed – 914 facts and 2,658 provenance
sentences were assessed in total – each item was inspected by only one annotator. We ask
annotators to assess for each fact,

• the correctness of the extraction from provenance sentences and

• the relevance of the fact for the query.

To assess relevance, assessors are asked to imagine writing an encyclopedic (i.e., Wikipedia-
like) article about the query and mark the facts as relevant if they would mention them in the
article, and non-relevant otherwise.

The number of provenance sentences per fact ranges from 1 to 82 with an average of 2.9, i.e.
that on average each distinct subject–predicate–object triple for a given query was found approx-
imately three times in the text documents. Note that this can also originate from near-duplicate
documents, which the ClueWeb12 corpus, being a real Web corpus, contains of course. We
define facts as correct when at least one extraction is correct, which leads to 453 out of 914
facts that are correctly extracted. Of these, only 16 facts includes both correct and incorrect
extractions. The fact extraction correctness is thus at 49.6%, which is higher than the precision

5http://lemurproject.org/clueweb12
6An example is TREC query 223 “Cannelini beans”, which most likely should include many information about

plants, their types and relationships. This cannot be provided by the standard setting of RelationFactory, which was
trained for persons and organizations to be the subject of a fact triple.

http://lemurproject.org/clueweb12
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obtained in the TAC KBP shared task, where about 42.5% of extractions are correct. The assess-
ment of relevance is performed on these 453 correctly extracted facts, leading to a dataset with
207 relevant facts and 246 non-relevant facts across all 17 queries, an average of 26.6 relevant
facts per query. In this study we only consider queries with at least five correctly extracted facts
(yielding 17 queries).

8.3.2 Results

The relevance of a fact is separately evaluated from extraction correctness, as just described
above in Section 8.3.1. In the following, we focus only on the 453 correctly extracted facts and
present our analysis along the research questions asked above.

Table 8.1: Experimental results for relation relevance (correctly extracted relations only) com-
paring different fact retrieval features: All facts (All), facts also included in DBpedia (DBp),
fact mentioned three or more times (Frq≥3), facts extracted from a relevant document (Doc).
Significance with p-value ≤ 0.05 versus "All" marked with †.

All Frq≥3 DBp Doc

Per Query (macro-avg)
#Queries 17 10 17 10
Precision 0.470 0.553 0.455 0.704
Std Error 0.070 0.100 0.087 0.112

All Facts (micro-avg)

#Retrieved Facts 453 106 145 46
TP 207 58 64 30
FP 246 48 81 16
TN - 198 165 230
FN - 149 143 177
Precision 0.457 †0.547 0.441 †0.652
Recall 1.000 †0.280 0.309 †0.145
F1 0.627 †0.371 0.364 †0.237
Accuracy 0.457 †0.565 0.506 †0.574

Applicability (RQ1). We report the results on fact relevance as micro-average across all facts
(Table 8.1 bottom) and aggregated macro-averages per query (Table 8.1 top) to account for
differences across queries. Among all correct facts, only every other fact is relevant for the
query (0.45 micro-average precision, 0.47 macro-average precision). Factoring in the extraction
precision of 0.51 we obtain one relevant out of four extracted facts on average. This strongly
suggest that the problem of relevant relation finding (beyond correctness) is indeed an open
research problem.

Indicators for fact relevance (RQ2).We study different indicators that may improve the pre-
diction of fact relevance. First, we confirm that the frequency of fact mentions indicates fact
relevance. If we classify a correctly extracted fact as ’relevant’ only when it is mentioned at
least three times7 then relevance accuracy is improved by 23.6% from 0.457 to 0.565 (signifi-

7We chose ≥ 3 in order to be above the median of the number of sentences per fact, which is 2.
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Table 8.2: Fact relevance when at least one entity (S ∨ O) or both entities (S ∧ O) are relevant
compared to all facts (All). Significance with p-value ≤ 0.05 marked with †.

All S ∨ O S ∧ O
#Retrieved Facts 108 94 49
TP 78 76 45
FP 30 18 4
TN - 12 26
FN - 2 33
Precision 0.722 †0.809 0.918
Recall 1.000 †0.974 0.577
F1 0.839 †0.884 0.709
Accuracy 0.722 †0.815 0.657

cant according to a two-sided exact binomial test with α = 5%). This also reduces the number
of predicted facts to a fourth (see Table 8.1, column Frq≥3).

Next, we check if the extracted facts already exists in the DBpedia KG, following the hypothesis
that everything relevant might already be contained in DBpedia. But when classifying only
extracted facts as relevant when they are confirmed – that is, both entities are related in DBpedia
(independent of the relation type) – we do not obtain any significant improvements in accuracy
or precision. Therefore, we conclude that confirmation of a known fact in an external KB does
not indicate relevance. On the contrary, we notice that only 64 of the relevant, extracted facts are
already included in DBpedia, whereas the remaining 143 are new and relevant facts, extracted
from our document-centric approach (cf. Table 8.1, column DBp). This indicates that extracting
yet unknown relations (i.e., those not found in the KB) from query-relevant text has the potential
to provide the majority of relevant facts to the query-specific KB.

Considering the fact that not all retrieved documents are actually relevant, we study the impact
of this factor on our final fact relevance results. Not surprisingly, we can confirm that when
considering only documents assessed as relevant (document relevance annotations are take from
the TREC assessment data accompanying the queries) this significantly improves accuracy and
precision of the relation relevance. However, it comes at the cost of retaining only a tenth of the
facts (cf. Table 8.1, column Doc) – which is obviously a drawback in terms of coverage.

Fact relevance vs. entity relevance (RQ3). Finally, we explore whether query-relevance of
entities implies query-relevance of facts, i.e. subject–predicate–object triples. For this evaluation
we make use of the REWQ ClueWeb12 test collection on entity relevance (as introduced in the
previous chapter, see Section 7.3.1) and study the subset of the 108 correct facts where relevance
assessments exist for both entities, subject (S) and object (O). Due to pooling strategies, this
subset has a higher precision of 0.722. In Table 8.2 we consider the case where entity relevance
is true for both entities (S ∧ O) as well as for at least one entity (S ∨O).

For only 12 correct facts, both entities are assessed as non-relevant – these facts were also
assessed as non-relevant by our (different) annotators. In contrast, for 45 facts both entities
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and the fact itself are assessed as relevant (we take this agreement also as a confirmation of the
quality of both assessment dataset, as they have been created at different points of time and by
different annotators). Using the entity assessments as a classifier, we obtain improvements in
precision from 0.722 to 0.809 for either entity and 0.918 for both entities. While also accuracy
improves for the case of either entity, it is actually much lower in the case of both entities. We
conclude that the restriction to both entities being relevant misses 33 out of 78 relevant facts.

When further inspecting this set of 33 relevant facts with one relevant and one non-relevant
entity, we find that the non-relevant entity is often rather unspecific or general in nature, being
e.g a country or city. It makes sense that such generic entities are, when assessed in isolation,
are considered being too generic and thus annotated as not relevant w.r.t the query – maybe
also because the annotators are not aware of the relationship between the entity and the query
topic. For example, in Figure 8.1 the University_of_Cambridge is only relevant for the
query “Raspberry Pi” because its inventor Eben_Upton is a member of Cambridge. Thus, we
conclude that fact relevance and entity relevance are not the same, and that facts seem to be the
more expressive and appropriate information unit.

8.4 Related Work

The task of creating query-specific KB is rather specific and no commonly accepted definitions
as provided e.g. by challenges or competitions exist. Having not presented a method for a
common problem, an in-depth method comparison like we presented in some of the previous
chapters is not possible here. Instead we refer to some related recent works that also operate on
the interplay of text and KBs.

Voskarides et al. (2015) try to explaining relationships between entity pairs in a KG and provide
a natural language, i.e. human readable, description of the relationship. They propose a setting
similar to ours, where a corpus of text document is linked to the KG via the entities found within
the text. However, they start from the given KG facts, while our starting point are the query-
specific document – regardless of the relationships available from the KG. Voskarides et al. also
generate candidate sentences by selecting those which contain an entity pair. The selection of
the best explaining sentences is then modeled as a LTR problem, which a large set of features
describing (i) the text itself (sentence length, token idf weights from Wikipedia, etc.), (ii) the
entity and its KG attributes (entity count, direct entity KG links, distance between entity men-
tions, entity relatedness), (iii) the relationship (different features matching surface form to KG
predicate using WordNet and different distributional semantics methods), and (iv) source fea-
tures (position of sentence in document, etc.). The authors report that their method significantly
improves over state-of-the-art baseline models. The main difference to our approach, besides
the different motivation and the aim, is that we include also yet unknown facts from documents.

The work from Blanco and Zaragoza (2010) is closely related to Voskarides et al. (2015), as
they also try to explain entity relationships, but in this case between a named entity and an ad-
hoc query. Their aim is to return the user a natural language sentence, called entity support
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sentences, that explains the relationship. The retrieval is based on different entity score-based,
position-based, and retrieval-based features, however, the most important features turned out
to be the context of a sentences. The authors report also that – not surprisingly – traditional
BoW models perform well if query and entity match on a syntactic surface level, but fail for
a substantial portion of entities. In contrast, Voskarides et al. look the KG relations between
entities, and we look at relations between entities within the same document (even if no KG
relationship exists).

The more general task of construction KBs from text (documents) is rather a rather well-studied
research area. Systems for extracting facts without adhering to a predefined relation schema,
as otherwise would be taken e.g. from the target KB to be populated/completed, are known as
open information extraction (OIE) systems. Well-known pioneer work in this area are the NELL
(Carlson et al., 2010) and the Reverb (Fader et al., 2011) systems, see also Chapter 6.

8.5 Conclusion

In this last chapter, we investigated the idea of extracting query relevant facts from text docu-
ments to create query-specific KBs. It represents the contentious development of our motivation
to explore the KG, as, in contrast to the previous chapters, relations from text and from the
KB are combined. Because this chapter’s intention was more to describe the state-of-the-art
of relations extraction and to point to future research opportunities then to solve an established
problem, in the following we will not only conclude about our findings, but also describe possi-
ble future extension of our work, and also possible future applications for query-specific KBs.

8.5.1 Conclusion

Our study combines publicly available data sets and state-of-the-art systems for document re-
trieval and relation extraction to answer research questions on the interplay between relevant
documents and relational facts for this task. We can summarize our key findings as follows:

(a) Query-specific documents contain relevant facts, but even with perfect extractions, only
around half of the facts are actually relevant with respect to the query.

(b) Many relevant facts are not contained in the DBpedia KG, suggesting the importance of
extraction for query-specific KBs.

(c) Improving retrieval precision of documents increases the ratio of relevant facts signifi-
cantly, but sufficient recall is required for appropriate coverage.

(d) Facts that are relevant can contain entities (typically in object position) that are – by them-
selves – not directly relevant.

From a practical perspective, we conclude that the combination of document retrieval and rela-
tion extraction is a suitable approach to query-driven knowledge base construction, but it remains
an open research problem.
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8.5.2 Future Work

The next obvious step would be to extend our descriptive work into an automatic fact extraction
system that generates a significantly higher rate of relevant facts, e.g., by investigating joint
models of relation extraction and passage retrieval. For further advances in the relation extraction
method, we recommend to explore the potential of integrating document retrieval and relation
extraction – as opposed to simply applying them sequentially in the pipeline architecture.

Another improvement might yield from the usage of an OIE system, in contrast to the closed
system, i.e. RelationFactory, we used. While on the one hand the precision of the extracted
relations from OIE might be lower because the relation/predicate schema is not predefined, on
the other hand we would gain a much higher coverage, in particular for those facts not yet
contained in an existing KG, when using an unrestricted relation schema.

But as mentioned in the introduction of this chapter, with OIE we face the challenge of how to
integrate the OIE facts with the KB facts – because in the end we want to combine all information
into one common knowledge base. Note that this is exactly the problem from Dutta et al. (2013)
we already discussed, and partially addressed, in Chapter 6: How to come from a OIE (Nell)
fact, e.g.

“studiedAt”(“Eben Upton”, “Cambridge”)

to its KB (DBpedia) triple, e.g.

db:Eben_Upton dbo:almaMater db:University_of_Cambridge .

This task is in particular challenging for the predicate matching, as the semantics of the relation
have to be considered, i.e. is “studiedAt” equivalent to dbo:almaMater or do they describe
different types of relation between the entities. A solution to the property matching problem
was proposed by Dutta et al. (2015), who cluster Nell predicates together before attempting to
match them to existing DBpedia predicates. This seems to be an important step towards our
vision, and a further integration of such a predicate matching is recommended.

Besides the enhancements on the knowledge integration, for improvements on the problem un-
derstanding are also necessary. An important next steps would be to perform an additional study
on different types of queries, such as entity vs. complex queries, in order to study their influ-
ence on our experimental results. It seems possible that we would need different approaches for
our query-specific KG generation, depending on the type of query, in particular if it is an entity
query or not.

8.5.3 Future Applications

Turning to future applications, we see the construction of query-specific KBs as an important
input for different high-end applications, in particular in Web IR.
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First, personalized or topic-specific KB construction (or maybe completion, on top of existing
KBs) seems to be an interesting future application. As we discovered in our experiments, many
relations that are relevant to a specific query were not contained in DBpedia, which can have
two reasons: (i) the KB is incomplete, and should be extended with the missing facts, or (ii)
the facts are query-relevant, but too specific – or for other legitimate reasons not suitable – to
be added to a general purpose encyclopedia like Wikipedia and DBpedia are. In the latter case,
topic specific KBs, that are automatically created from a given user query as proposed e.g. from
Dalton and Dietz (2013b), would solve this conflict between an individual user’s information
need and the standards of a general purpose KB. Structured KB-based search results, like e.g.
the entity info boxes about persons provided by search engines like Google, Yahoo, or Bing, on
the right hand side of the screen, could thus be adapted to the search query, but also personalized
to the individual user.

Another interesting end-user application would be the automatic construction of query-specific,
human-readable KBs like Wikipedia. This idea was proposed e.g. by Dietz et al. (2014); Dietz
and Schuhmacher (2015) and by Sauper and Barzilay (2009), who both aim at an automatically
created Wikipedia article. Dietz et al. envision a system that automatically generates a human-
readable text document, structured and organized just like a Wikipedia article, that compiles all
relevant information about the user-defined information need. Our query-specific KB could be
a first step into such an entity-centric information aggregation system.

However, the question remains how one would generate a coherent text from a structured
KG – even when this KG would contain all relevant facts. One method would be to retrieve
natural language sentences, and use the KG information just as a means to the sentences selection
(like Dietz et al. suggest). Another approach would be to further explore natural language
generation, and generate the article text directly from the KG facts. Recent work on natural
language generation has already focused on RDF KGs (Cimiano et al., 2013), and even on
generating text specifically from the DBpedia KG (Unger et al., 2013). Nevertheless, there is
still a way to go from sentences to coherent text articles. It thus remains to be decided by future
research, what the best way will be for making structured knowledge accessible for human users.

Coming back the above stated reasons for incomplete KBs, Fetahu et al. (2015) proposed a
technique for adding missing facts about events to Wikipedia articles, thus in the long term, also
aiming at the generation of Wikipedia articles. Starting from news articles, entities mentioned
within the text are identified, and based on a rich feature set (including entity salience, relative
authority and novelty of the article), those entities which should mention the information from
the news article at hand are identified. In addition, the target structure of the article is also
considered. While aiming, from a conceptual point of view, for a different aim, namely the
competition of the Wikipedia knowledge base, the technical problems of creating a human-
readable Wikipedia article are similar.

While mentioned applications will most likely not be realized in the near future, an application
which is likely to become reality soon are web search interfaces that combine KB and free text
search into a single integrated search experience. A prototype pointing towards such a systems
was developed by Hoffart et al. (2014), who depict the combination of entity and free text search,
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also allowing for refining the search by entity attributes (categories).

Last, we only want to briefly note that facts by themselves, as collected by current KGs, will in
the long term not be enough to satisfy web search users. Users are often interested in opinions
instead of facts, or in facts being put in context of an option, e.g. in political debates. In addition,
the boarder between an “objective fact” and an “opinionated statement” is of course in reality
broad and blurry, as soon as we go beyond simple facts like a person’s date of birth. 8 Thus,
not only facts, but also opinions will, somehow, have to find their way into the applications
described above.

8Which is why e.g. the Wikidata project allows conflicting facts and introduced fact provenance data for the
information source (Vrandečić and Krötzsch, 2014).



Chapter 9

Thesis Conclusion

In this thesis, we studied the potential of knowledge graphs (KGs) like DBpedia for various
text understanding problems in the area of natural language processing (NLP) and information
retrieval (IR). Our encompassing hypothesis throughout all chapters was thereby, that applying
entity linking (EL) to text to obtain knowledge base (KB) entities has the potential to bring
the information from text together with the information available from general-purpose KGs,
in particular DBpedia, and thus improve the understanding task at hand. In each chapter, we
looked at this integration of text and KB information from a different angle and for a different
task, while, form chapter to chapter, increasing the degree of KG exploration and/or the degree
of integration of text and KG information. In the end, the key contribution of this thesis is that it
fosters our understanding of the role and the potential of state-of-the-art KGs in the interaction
of text, entities, knowledge bases, and knowledge graphs – it provides the reader with reasonable
hints for the question: what to do with all this knowledge?

9.1 Part I – Using Knowledge Base Entities

We started with the hypothesis that adding background knowledge to a short sentence frag-
ment (search result snippet) should improve the clustering of those texts into semantically co-
herent clusters. The given problem was that short text documents, the search results snippets
from Chapter 3, do not have sufficient syntactic, i.e. word or token, overlap to be compared
and clustered easily. This problem was the test case for our proposed pipeline of (i) taking
a text document, (ii) extracting KB entities (here Wikipedia) via EL, and (iii) retrieving addi-
tional background knowledge from a KG (here DBpedia). For Chapter 3 this means specifically,
that we obtained DBpedia types, like dbo:MusicalArtist, and categories, like dbc:Ameri-
can_folk_rock_musicians and added them as additional features into the text clustering.
The categories and types provided thus primarily topical information about the found entities,
which was helpful for the given setting of sense disambiguation of search results, e.g. between
Apache the helicopter and Apache the software project for the query “apache”. On the bench-
mark dataset, we found this approach to yield competitive, while not top performance, results.
A limitation of this part was the only partial exploration of the KG relations, which motivated
the extension described in Part II.
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9.2 Part II – Using the Knowledge Graph for Understanding

In Part II, we explored two main ideas: (i) to compute entity relatedness using the DBpedia KG,
and (ii) to represent and compare documents using the DBpedia KG.

The natural extension of the previous part is to leverage the full KG, and not only entity
types and categories. Thus, instead of testing if two entities share the same category, we aimed
at understanding if there is any relatedness between two entities at all. One intuitive solution
is to compute shortest path in the KG between entities, but we found this to be a too naive
approach, as there are too many relations (and thus KB paths). For that reason, in Chapter 4 we
proposed different unsupervised, information-theoretic weighting schemata for the KG. Based
on a benchmark dataset for entity ranking, we found that these schemata can help to select the
meaningful KG paths for computing entity relatedness (with combIC being the best measure).
Even though this approach is not able to capture all semantic information expressed by the KG
predicates, it is a robust, KG vocabulary agnostic, and unsupervised approach applicable to
any RDF KG. In Chapter 6, we demonstrated that our entity relatedness measure also helps
to improve EL. In the chapter’s specific setting where the subject and objects from an open
information extraction (OIE) system (NELL) have to be disambiguated to DBpedia entities, the
semantic relatedness between subject and object complements the statistical information about
the most frequent sense and thus improves the disambiguation accuracy. This finding is in line
with later work from Hulpuş et al. (2015), who evaluated entity relatedness measures and found
our combIC metric to be the best KG-based measure for entity disambiguation.

Building upon the means to compare single entities, we proposed in Chapter 5 a method to com-
pute semantic similarity of documents: (i) represent a document by the entities extracted from it,
(ii) compute document similarity as an entity subgraph matching problem in the DBpedia KG us-
ing graph edit distance (GED). Our method has the advantage of providing a computer-readable
as well as a human-readable document modeling, in contrast to e.g. continues vector represen-
tations of words, that incorporates explicitly external background knowledge by not integrating
KB information into the document, but vice versa, representing the document as a subgraph of a
KG (here DBpedia). For the graph matching, the edge-weighted KG paths between the entities
are utilized as edit distance cost (in the GED), thus capturing the intuition that two documents
are similar if they talk about many related entities. The experimental evaluation on a standard
benchmarking dataset (LP50) show that we achieve competitive performance better than or close
to well-known methods like LSA or ESA. However, we cannot beat methods that build upon
a much more feature-rich KB exploration and apply machine learning for feature combination.
Nevertheless, we understand our model, also because it got adapted and improved by other re-
searchers, as an important and interesting contribution for knowledge-based text comparison
methods.

9.3 Part III – Using the Knowledge Graph for Relevance Ranking

The last part shifts the focus of the applications from text understanding in Part I and II to rele-
vance ranking, thus taking more of an IR approach where the fulfillment of a user’s information
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need, expressed by a keyword query, is in focus. In Chapter 7, we defined a task that combines,
in the same spirit as above, document retrieval with entity retrieval: Given a keyword query,
return not only a document ranking, but also a ranking of the entities found within those doc-
uments. Due to the novelty of the task and the lack of existing benchmarks, we created two
benchmarking dataset, both building upon long standing datasets for document retrieval. We
study extensively different query, document, entity, and KB features for ranking, including an
SVM-based semantic kernel to capture KB relations between entities. Our findings on both
datasets show consistently that (i) the retrieved documents contain query relevant entities, and
(ii) that for ranking those entities, information from the document (the tf -idf mention frequency)
and from the background KB (Wikipedia articles) are important features. However, we cannot
confirm a significant improvement from the structural DBpedia KG features that capture relat-
edness to entities in the query: It appears that the direct query-to-Wikipedia retrieval feature is
already a strong ranking signal here.

In the last Chapter 8, we extend the idea of retrieving entities to relations, i.e. finding relevant
subject–predicate–object triples for a given query in a document. It is a natural extension of the
previous chapter’s work, as, in contrast those chapters, not only entities are the binding element
between text and KB, but fact statements consisting of predicates and entities. As this work is
only a first step towards query-specific KG construction, we created a new evaluation dataset
based on established IR datasets and ran a pipeline of document retrieval, followed by a relation
extraction on the retrieved documents. We find that (i) query-relevant documents contain query-
relevant facts only at a medium precision, (ii) relations extracted from the documents and the
DBpedia KG complement each other, (iii) that entities in relevant fact triples are not necessarily
relevant by themselves. This chapter leaves open questions for further research regarding both
method improvements for the KB construction and for future end-user applications for query-
specific KGs.

9.4 Open Issues and Limitations

Leaving the individual, task-specific limitations we already discussed at the end of each chapter
behind, we discuss here the overall perspective on this thesis.

All our work tried to combine information from text with information from knowledge bases
(KBs). The triangle of information, composed of (a) text, (b) the semi-structured KB Wikipedia,
and (c) the KG DBpedia, was thereby the source of our information, but we never created a tight
integration into one model. It became clear by our experiments, that exploiting the DBpedia KG
is only one ingredient needed: Ignoring the high-coverage information from the text, as we did
in Chapter 5 for example, is a clear limitation.

Thus, the missing integration of the facts from all three types of data sources seems consequently
to be the most sever limitation of our work – and makes it for that reason the most interesting
major extension of our work. As pointed out in Section 8.5, in particular the integration of facts
extracted from text with the facts from an existing KG seems promising. Such an integration
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could also increase the coverage of our KG subgraphs from Chapter 5: Instead of projecting a
document into the KG, a document would be a fusion of the facts extracted from the document
together with the KG’s background knowledge.

Another notable limitation of our work is due to the limited expressivity of the KGs we worked
with. The DBpedia KG, like all publicity available KGs, does not provide any information about
the time, i.e. at what point in time a given fact is true. For example, the fact that Brad Pitt is
married to Jennifer Anderson is wrong as of today, but it was true some years ago. In addition,
when combining information from text and KG, they can contradict each other. We did not
consider these problems as we did not make use of the semantics of the KGs – which is actually
also a fundamental limitation of our work: We treat the KG only as a graph, thus deliberately
ignoring any semantics of the predicates and thus any (potentially possible) reasoning. While
this might be acceptable for today, given the low expressivity of DBpedia KG that contains only
a few terminological axioms, this might change in the future when KGs become more complex
and adapt more expressive languages like e.g. OWL.

9.5 Future Research

In a broader context, we view our work as one of many contributions in IR and NLP that study
the combination of structured and unstructured information (for different tasks). Historically,
when looking back on the field of KB exploitation, the idea to use Wikipedia (for various tasks)
was a significant step for the research community (cf. Hovy et al., 2013). In the light of this
legacy, we see future research going forward into two different directions, leaving Wikipedia as
KB behind: On the one hand side, more structured KGs, with increasing levels of expressivity
beyond RDF, are about to become the dominant knowledge representation form for many Web
IR problems – cf. the knowledge graphs (KGs) created by web search engines or the Wikidata
project. On the other hand side, much effort has been invested into filling these KGs with
information, i.e. facts, currently only available from unstructured resources, most often (Web)
text document. Information extraction, open and closed, will continue to be an important area
of innovation – together with the many (often commercial) efforts that integrate humans in the
extraction process to encode complex knowledge that cannot be extracted automatically yet, at
least not with a high enough precision. An interesting exception is here the Wikidata project,
which does not aim at information extraction, but to create a KG (also) editable by humans and
that serves facts data into the (human-readable) Wikipedia articles.1

Future KGs will combine all these information, and thus increase the need to answer the question
how to handle contradicting KB information. While maintaining provenance information about
the origin of an KB fact is an important foundation,2 introducing uncertainty seems a promising
approach. Uncertainty information at the fact level allows for probabilistic reasoning, which can
be a way to overcome the currently rather limited expressivity of Web KGs, in which often the
rather imperfect data quality prevents the meaningful usage of reasoning: One incorrect fact in

1Cf. Vrandečić and Krötzsch (2014) and https://www.wikidata.org.
2Which is getting addressed for hat reason by the Wikidata project.

https://www.wikidata.org
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a non-probabilistic ontology makes reasoning impossible.

In the medium term, the increasing popularity of knowledge graphs (KGs) for Web search will
foster a renaissance of the Semantic Web vision: A web, in which terms have semantics attached
and reasoning over different data sources is possible. It seems that entities, from KB as well as
from text, will continue to play an important role in this setting, not only because they form
the connections between different data sources, but also because many user information needs
involve entities. This need for entities and relations will also continue to increase the importance
of information extraction, which itself relies heavily on high-performing NLP methods. The
Wikidata project clearly points towards this KG-centric future, as it aims at creating a fully
machine-readable KB at very high quality with the help of humans, just like Wikipedia. Such
developments for enlarging the machine-readable Web will make a true Semantic Search on the
Web possible at some point in the future, and classical document search will be combined and
supported by entity search and knowledge graph (KG) retrieval.

We believe that these developments will continue to shift the attention of industry and research
from the document-centric information processing towards a facts or KG-based perspective in
which information will no longer be a collection of natural language text (documents) – but
instead be handled at the level of (single or connected) facts. In the long-term perspective, how-
ever, when natural language generation from such fact knowledge bases will work sufficiently
well, the users will no longer interact directly with neither documents nor facts, but only ask
questions that an advanced search-engine interface will answer, while the complexity of KG
generation, information processing, reasoning, and question answering will be hidden.



130 CHAPTER 9. THESIS CONCLUSION



Bibliography

Agirre, E., Cer, D., Diab, M., Gonzalez-Agirre, A., and Guo, W. (2013). *SEM 2013 shared
task: Semantic Textual Similarity. In Proc. of *SEM-2013, pages 32–43.

Agirre, E., Diab, M., Cer, D., and Gonzalez-Agirre, A. (2012). Semeval-2012 Task 6: A pilot
on semantic textual similarity. In Proc. of *SEM-2012, pages 385–393.

Balog, K., Azzopardi, L., and de Rijke, M. (2006). Formal Models for Expert Finding in Enter-
prise Corpora. In Proc. of SIGIR-06, pages 43–50.

Balog, K., de Vries, A. P., Serdyukov, P., Thomas, P., and Westerveld, T. (2010). Overview of
the TREC 2009 Entity Track. In Proc. of TREC-09.

Balog, K. and Serdyukov, P. (2011). Overview of the TREC 2011 Entity Track. Available from
http://krisztianbalog.com/files/trec2011-entity-overview.pdf.

Banko, M., Cafarella, M. J., Soderland, S., Broadhead, M., and Etzioni, O. (2007). Open infor-
mation extraction for the web. In Proc. of IJCAI’07, pages 2670–2676.

Bär, D., Biemann, C., Gurevych, I., and Zesch, T. (2012). UKP: computing semantic textual
similarity by combining multiple content similarity measures. In Proc. of SemEval-2012,
pages 435–440. ACL.

Bär, D., Zesch, T., and Gurevych, I. (2011). A Reflective View on Text Similarity. In Proc. of
RANLP-11, pages 515–520.

Bellot, P., Doucet, A., Geva, S., Gurajada, S., Kamps, J., Kazai, G., Koolen, M., Mishra, A.,
Moriceau, V., Mothe, J., Preminger, M., SanJuan, E., Schenkel, R., Tannier, X., Theobald,
M., Trappett, M., and Wang, Q. (2013). Overview of INEX 2013. In Proc. of CLEF’13,
volume 8138 of LNCS, pages 269–281.

Biemann, C. and Riedl, M. (2013). Text: Now in 2D! a framework for lexical expansion with
contextual similarity. Journal of Language Modelling, 1:55–95.

Bird, S., Klein, E., and Loper, E. (2009). Natural Language Processing with Python. O’Reilly
Media.

131

http://krisztianbalog.com/files/trec2011-entity-overview.pdf


132 BIBLIOGRAPHY

Bizer, C., Eckert, K., Meusel, R., Mühleisen, H., Schuhmacher, M., and Völker, J. (2013).
Deployment of RDFa, Microdata, and Microformats on the Web – A Quantitative Analysis.
In Proc. of ISWC’13, pages 17–32.

Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., and Hellmann, S.
(2009). DBpedia – A Crystallization Point for the Web of Data. Journal of Web Semantics,
7(3).

Blanco, R., Ottaviano, G., and Meij, E. (2015). Fast and Space-Efficient Entity Linking in
Queries. In Proc. of WSDM’15, pages 179–188.

Blanco, R. and Zaragoza, H. (2010). Finding support sentences for entities. In Proc. of SIGIR-
10, pages 339–346.

Bloehdorn, S., Basili, R., Cammisa, M., and Moschitti, A. (2006). Semantic Kernels for Text
Classification based on Topological Measures of Feature Similarity. In Proc. of ICDM’06,
pages 808–812.

Bollacker, K., Evans, C., Paritosh, P., Sturge, T., and Taylor, J. (2008). Freebase: a collabo-
ratively created graph database for structuring human knowledge. In Proc. of SIGMOD’08,
pages 1247–1250.

Booth, J., Eugenio, B. D., Cruz, I. F., and Wolfson, O. (2009). Query Sentences as Semantic
(Sub) Networks. In Proc. of ICSC-09, pages 89–94.

Bruni, E., Uijlings, J., Baroni, M., and Sebe, N. (2012). Distributional semantics with eyes:
Using image analysis to improve computational representations of word meaning. In Proc. of
MM’12, pages 1219–1228.

Burges, C. J. (1998). A Tutorial on Support Vector Machines for Pattern Recognition. Data
Mining and Knowledge Discovery, 2(2):121–167.

Campinas, S., Ceccarelli, D., Perry, T. E., Delbru, R., Balog, K., and Tummarello, G. (2011).
The Sindice-2011 dataset for entity-oriented search in the web of data. In Proceedings of the
1st International Workshop on Entity-Oriented Search (EOS), pages 26–32.

Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E. R., and Mitchell, T. M. (2010).
Toward an architecture for never-ending language learning. In Proc. of AAAI’10, pages 1306–
1313.
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