
Methods for Frequent SequenceMining
with Subsequence Constraints

Inauguraldissertation

zur Erlangung des akademischen Grades
eines Doktors der Naturwissenscha�en

der Universität Mannheim

vorgelegt von
Kaustubh Beedkar

geburtsort in Bhopal, Indien

Mannheim, 2016

Dekan: Prof. Dr. Heinz Jürgen Müller, Universität Mannheim

Referent: Prof. Dr. Rainer Gemulla, Universität Mannheim
Korreferent: Prof. Dr. Simone Paolo Ponze�o, Universität Mannheim
Korreferent: Prof. Dr. Gerhard Weikum, Max-Planck-Institut für Informatik

Tag der mündlichen Prüfung: 10 Februar 2017

Abstract

In this thesis, we study scalable and general purpose methods for mining frequent

sequences that satisfy a given subsequence constraint. Frequent sequence mining is

a fundamental task in data mining and has many real-life applications like inform-

ation extraction, market-basket analysis, web usage mining, or session analysis.

Depending on the underlying application, we are generally interested in discover-

ing certain frequent sequences, which are described using subsequence constraints.

There exists many tools and algorithms for this task, however, they are not su�-

ciently scalable to deal with large amounts of data that may arise in applications

and are generally not extensible across range of applications.

We propose scalable, distributed sequence mining algorithms that target MapRe-

duce. Our work builds on MG-FSM, which is a distributed framework for frequent

sequence mining. We propose novel algorithms that improve and extend the basic

MG-FSM framework to e�ciently support traditional subsequence constraints that

arise in applications. Additionally, we show that many subsequence constraints—

including and beyond the traditional ones considered in literature—can be uni�ed

in a single framework. A uni�ed treatment allows researchers to study jointly many

types of subsequence constraints (instead of each one individually) and helps to im-

prove usability of pattern mining systems for practitioners. To this end, we propose

a general purpose framework that provides a set of simple and intuitive “pattern

expressions”, which allows to describe any subsequence constraint of interest and

explore algorithms for e�ciently mining frequent subsequences under such general

constraints.

Our experimental study on real-world datasets indicates that our proposed al-

gorithms are scalable and e�ective across wide range of applications.

iii

Kurzfassung

In dieser Arbeit untersuchen wir skalierbare und universale Methoden zum Mining

von häu�gen Sequenzen, die eine vorgegebene Teilsequenzbeschränkung erfüllen.

Das Mining von häu�gen Sequenzen ist eine wesentliche Aufgabe in Data Mining

und hat viele Anwendungen in der echten Welt wie Informationsextraktion, War-

enkorbanalyse, Mining von Webnutzung oder Websitzungsanalyse. Abhängig von

der zugrunde liegenden Anwendung sind wir allgemein daran interessiert, bestim-

mte häu�ge Sequenzen zu entdecken, die mithilfe von Teilsequenzbeschränkungen

beschrieben werden. Viele Werkzeuge und Algorithmen existieren bereits für diese

Aufgabe, allerdings sind diese nicht in der Lage, mit großen Mengen von Daten

umzugehen, welche im Anwendungsfall auftreten können und sich im Allgemeinen

nicht über eine Reihe von Anwendungen erweitern lassen.

Wir stellen skalierbare, verteilte Sequenz Mining-Algorithmen vor, die auf MapRe-

duce abzielen. Unsere Arbeit baut auf MG-FSM auf, ein verteiltes Framework für

das Mining von häu�gen Sequenzen. Wir stellen neuartige Algorithmen vor, die

das grundlegende MG-FSM-Framework verbessern und erweitern, um tradition-

elle in Anwendungen auftretende Subsequenzbeschränkungen e�zient zu unter-

stützen, Zusätzlich zeigen wir, dass viele Subsequenzbeschränkungen – einschließ-

lich der traditionell in der Literatur berücksichtigten Beschränkungen und darüber

hinaus – in einem einzigen Framework vereinheitlicht werden können. Eine einheit-

liche Behandlung erlaubt Forschern, gleichzeitig viele Arten von Subsequenzbes-

chränkungen zu untersuchen (anstatt jede einzeln) und hilft dabei, die Nutzbarkeit

von Pattern Mining-Systemen für Anwender zu verbessern. Zu diesem Zweck stel-

len wir ein universales Framework vor, das eine Menge von einfachen und intuitiven

"Pattern Expressions" bereitstellt. Diese erlauben, jede beliebige Beschränkung zu

beschreiben und Algorithmen zum e�zienten Mining von häu�gen Subsequenzen

unter solch allgemeinen Bedingungen zu untersuchen.

Unsere Teststudie zu echten Datensätzen zeigt, dass unsere vorgeschlagenen Al-

gorithmen skalierbar und e�zient über eine große Breite an Anwendungen hinweg

sind.

v

Acknowledgements

First and foremost, I am very grateful to my advisor Rainer Gemulla for giving me

the opportunity to pursue this thesis under his guidance. I thank him for o�ering me

invaluable opportunities and advise to hone my research skills, for allowing me the

space and freedom I needed to work, and for continued encouragement and support

throughout the many years of my Ph.D. I am very lucky to have him both as a friend

and colleague.

I express my sincere thanks to Gerhard Weikum and Simone Ponzetto for serving

on my thesis committee. I greatly appreciate them for their time, interest and helpful

advise on my thesis. I would like to thank my coauthors—Iris Miliaraki and Klaus

Berberich—for their contributions to my research; parts of this thesis would not

have been possible without their hard work.

I would like to thank all my friends and colleagues, especially Arjun Jain, Lu-

ciano Del Corro, Christina Te�ioudi (who translated the abstract), Iulia Bolosteanu,

Arunav Mishra, Avishek Anand, Sharath Kumar, Sairam Gurajada, Sourav Dutta,

Kiril Gashteovski, and Yanjie Wang; all of whom made the last few years so much

fun.

Finally, I thank my Mom, my Dad, and my brother Saurabh for their unfailing

support throughout my career. I am indebted for their unconditional love and sac-

ri�ce in raising me into a person that I am today. A very special thanks to Rasika, I

am very fortunate to have your love and support during all these years. Thank your

for being patient with me and sticking through the tough times.

vii

Contents

Abstract iii

Abstract (German version) v

Acknowledgments vii

Contents ix

1 Introduction 1

2 Preliminaries 5
2.1 Basic Concepts . 5

2.2 FSM Approaches . 6

2.2.1 Breadth First Search . 7

2.2.2 Depth First Search . 9

I Traditional Subsequence Constraints: Scalability 13

3 Length and Gap Constraints 15
3.1 Preliminaries . 16

3.2 A Primer on MG-FSM . 17

3.2.1 MapReduce . 17

3.2.2 Overview of the MG-FSM framework 17

3.2.3 Constructing Partitions . 19

3.3 Mining Partitions . 21

3.3.1 Sequential FSM algorithms 21

3.3.2 Pivot Sequence Miner . 22

3.4 Temporal Gap Constraints . 26

3.5 Handling Long Input Sequences . 28

3.6 Experiments . 30

3.6.1 Setup . 30

3.6.2 Results . 31

3.7 Related Work . 36

ix

3.8 Summary . 37

4 Maximality and Closedness Constraints 39
4.1 De�nitions . 39

4.2 Mining Maximal Sequences . 41

4.3 Mining Closed Sequences . 48

4.4 Experiments . 51

4.5 Related Work . 53

4.6 Summary . 53

5 Hierarchy Constraints 55
5.1 Preliminaries . 56

5.2 Distributed Generalized Sequence Mining 59

5.2.1 Naïve Approach . 59

5.2.2 Semi-Naïve Approach . 60

5.2.3 Overview of LASH . 61

5.3 Partition Construction . 63

5.3.1 Generalized w-Equivalency 64

5.3.2 w-Generalization . 65

5.3.3 Other Rewrites . 66

5.3.4 Putting Everything Together 67

5.4 Sequential GSM Algorithms . 69

5.5 Experiments . 70

5.5.1 Setup . 70

5.5.2 Results . 72

5.6 Related Work . 79

5.7 Summary . 79

II Non-traditional Subsequence Constraints: Expressibility 81

6 Expressing Subsequence Constraints 83
6.1 Subsequence Predicates . 84

6.2 Pattern Expression Language . 86

6.2.1 Pattern Expressions . 86

6.2.2 Examples . 87

6.3 Computational Model . 89

6.3.1 Finite state transducers. 89

6.3.2 Translating pattern expressions 93

6.4 Advanced Pattern Expression Language 94

6.4.1 Advanced Pattern Expressions 95

6.4.2 Examples . 101

6.4.3 Translating Advanced Pattern Expression to FSTs 102

x

6.5 Summary . 102

7 FSM with Subsequence Constraints 103
7.1 FSM and Subsequence Predicates (recap) 104

7.2 FST Optimizations . 104

7.2.1 Compressed FST . 104

7.2.2 Simulating compressed FST 106

7.3 Mining P-Frequent Sequences . 109

7.3.1 Naïve Approach . 109

7.3.2 DESQ-COUNT . 109

7.3.3 DESQ-DFS . 111

7.4 Reducing Nondeterminism . 116

7.4.1 Minimization . 117

7.4.2 Pruning Irrelevant Input Sequences 118

7.4.3 Two-pass Simulation . 124

7.4.4 Integrating pruning input sequences and two-pass into mining 126

7.5 Experiments . 129

7.5.1 Experimental Setup . 129

7.5.2 Results . 132

7.6 Related Work . 139

7.7 Summary . 141

III Wrapping Up 143

8 Conclusions 145

Bibliography 147

List of Figures 155

List of Tables 157

List of Algorithms 159

xi

C
h

a
p
t

e
r 1

Introduction

Frequent Sequence Mining (FSM) is an important problem in data mining and has

many real-life applications. Examples include, market-basket analysis [Agrawal and

Srikant (1995)], web usage mining and session analysis [Srivastava et al. (2000);

Pei et al. (2000)], natural language processing [Lopez (2008); Manning and Schütze

(1999)], information extraction [Fader et al. (2011); Nakashole et al. (2012)], or com-

putational biology [Benson and Waterman (1994); Brazma et al. (1998); Wang et al.

(2004); Hsu et al. (2007)]. In web usage mining, for example, frequent sequences

describe common behavior across users (e.g., the order in which users visit web

pages). Likewise, in market-basket analysis, frequent sequences are useful for identi-

fying common purchase patterns of customers, predicting behavior of individual

customers, or product recommendations. Frequent textual patterns such as “PER-

SON is married to PERSON” are indicative of typed relations between named entities

and useful for natural-language processing and information extraction tasks. In this

thesis, we study FSM methods that can scale to very large problem instances, and

methods that are extensible across wide range of applications.

In FSM, we model the available data as a collection of sequences composed of

items such as words (text processing), products (market-basket analysis), or actions

and events (session analysis). Often items are arranged in an application-speci�c

hierarchy, which is also referred to as a taxonomy. For example, is→be→VERB

(for words), Canon5D→DSLR camera→camera→electronics (for products), or An-

gela Merkel→politician→PERSON (for named entities). The goal of FSM is to dis-

cover subsequences that “appear” in su�ciently many input sequences.

The notion of “appears” depends on the underlying application. In n-gram min-

ing for example, the goal is to discover frequent consecutive subsequences of n items.

When mining frequent sequences of user actions (e.g., buying a product, visiting

1

1. Introduction

a webpage, or listening to a song) from log �les, non-consecutive subsequences in

which items are “close” in the input (say within hours) are more desirable. Some

applications target speci�c subsequences like frequent adjective-noun pairs or fre-

quent verbal phrases between two named entities. These di�erent notions of what

constitutes a subsequence has been the subject of much research in this �eld and

has led to several algorithms [Srikant and Agrawal (1996); Garofalakis et al. (1999);

Zaki (2001b, 2000); Pei et al. (2000, 2001, 2002); Wang and Han (2004); Wang et al.

(2004); Berberich and Bedathur (2013); Trummer et al. (2015)], each of which is de-

signed for a certain notion of subsequence (e.g., consecutive, non-consecutive, or

application-speci�c).

In this thesis, we study methods for frequent sequence mining with subsequence

constraints, where the subsequence constraint describes which frequent subsequences

should be discovered. A key problem with existing methods is that they typically

operate on a single machine and, therefore, cannot deal with today’s vast amounts

of data. Consider for example a document collection with billions of sequences or

a website with millions of registered users. At such massive scales, distributed and

scalable FSM algorithms are essential for many applications. Another key problem

of existing methods is that they are tailored for a �xed notion of subsequence con-

straint, which limits their usability across applications. For example, an algorithm

to discover frequent n-grams cannot be used to discover frequent adjective-noun

pairs or vice-versa. As a result, practitioners often end up developing customized

algorithms for their speci�c notion of a subsequence constraint, which is cumber-

some and time consuming. To avoid this, we require a uni�ed treatment of sub-

sequence constraints. This thesis contributes FSM methods that are scalable and

that are general-purpose for wide range of applications.

Contributions

We propose scalable distributed (i.e., shared nothing) FSM algorithms that target

MapReduce. MapReduce, developed at Google in 2004, constitutes a natural envir-

onment for large-scale distributed data processing on clusters of many commod-

ity machines and can handle hardware and software failures transparently. Our

methods make use of Apache Hadoop, which is an open-source implementation

of MapReduce widely used in industry and constitutes a core building block within

big-data initiatives. We build on the work of Miliaraki et al. (2013), which contrib-

uted the MG-FSM framework for distributed sequence mining. MG-FSM carefully

partitions the input sequence sequences into many smaller partitions in a way that

they can be processed independently. We extend this framework in multiple ways:

• We propose a novel, special-purpose algorithm caller pivot sequence miner

to e�ciently process the partitions created by MG-FSM. In contrast to exiting

FSM algorithms, our approach is “partition-aware” and completely avoids any

2

post-processing of results, which signi�cantly boosts the performance of MG-

FSM. We also propose techniques to handle time-annotated sequences, which

commonly arise in applications such as session analysis and, techniques to

e�ciently handle datasets with very long input sequences.

• We propose a distributed algorithm called MG-FSM
+

to mine maximal and

closed sequences in a scalable fashion. Such sequences compactly represent

the set of all frequent sequences and can signi�cantly reduce the number fre-

quent sequences being discovered with minimal loss of information.

• Finally, we propose our LASH algorithm, which is based on MG-FSM, but e�-

ciently handles item hierarchies. The con�uence of hierarchies and frequent

sequence mining allows us to discover subsequences that would otherwise

be hidden. Example of such subsequences include shopping patterns such as

“customers frequently buy some DSLR camera, then some tripod, then some

�ash” or textual patterns like “the ADJECTIVE house”.

Additionally, we propose a general-purpose framework for frequent sequence min-

ing that allows applications to express their notion of subsequence constraint. We

introduce subsequence predicates to model subsequence constraints in a general way

and show that many subsequence constraints—including and beyond those con-

sidered in literature—can be uni�ed in a single framework. A uni�ed treatment al-

lows researchers to study subsequence constraints in general instead of focusing on

certain combinations individually. It also helps to improve usability of pattern min-

ing systems for practitioners because it avoids the need to develop customized min-

ing algorithms for particular subsequence constraint of interest. For example, our

system named DESQ, can e�ciently mine frequent n-grams, adjective-noun pairs,

typed relational phrases, sequences of products bought after purchase of a camera,

or sequences that match a regular expression. In more detail,

• We propose a simple and intuitive pattern expression language which can ex-

press many subsequence constraints in a uni�ed way. Our pattern expressions

are based on regular expressions but allows the use of additional features such

as item hierarchies. For example, the pattern expression "(ENTITY
↑

VERB
+

NOUN
∗

PREP? ENTITY
↑
)" expresses typed relational phrases in natural lan-

guage text.

• We propose �nite state transducers (FST) as the underlying computational

model for pattern expressions and propose methods to extend, compress and

optimize FSTs to handle sequence mining tasks. We develop algorithms based

on FST simulations to e�ciently mine frequent sequences.

All of our methods are publicly available as open-source software.

3

1. Introduction

Publications

The work presented in this thesis is based on the following peer-reviewed publica-

tions.

• Beedkar, K., Berberich, K., Gemulla, R., and Miliaraki, I. (2015). Closing the

gap: Sequence mining at scale. ACM Trans. Database Syst., 40(2):8:1–8:44.

• Beedkar, K. and Gemulla, R. (2015). LASH: Large-scale sequence mining with

hierarchies. In Proceedings of the ACM SIGMOD International Conference on

Management of Data, pages 491–503.

• Beedkar, K. and Gemulla, R. (2016). DESQ: Frequent sequence mining with

subsequence constraints. In IEEE International Conference on Data Mining,

pages 793–798.

Outline

In Chapter 2, we introduce some basic concepts and approaches related to FSM.

Thereafter, the thesis is organized organized into three parts. In Part I (Chapters 3–

5), we propose scalable methods for frequent sequence mining focusing on tradi-

tional subsequence constraints including length, gap, maximality and closedness,

and hierarchy constraints. In Part II (Chapters 6 and 7), we discuss our general-

purpose framework for FSM. Finally, Part III; Chapter 8 presents a summary of the

contributions made in this thesis and provides an outlook on future research direc-

tions.

4

C
h

a
p
t

e
r 2

Preliminaries

We start by introducing basic concepts in frequent sequence mining (FSM), some

notations and terminology that we will use through out the course of this thesis,

and a formal de�nition of the FSM problem. Next, we discuss popular approaches

based on breadth-�rst search and depth-�rst search to solve the FSM problem.

2.1 Basic Concepts

Sequence database

A sequence database D =
{

T1,T2, . . . ,T|D |
}

is a multiset of input sequences.
a

Each

input sequence T = t1t2 . . . t |T | is an ordered list of items from a vocabulary Σ ={
w1,w2, . . . ,w |Σ |

}
. We denote by ε the empty sequence, by |T | the length of se-

quence T , and by Σ∗(Σ+) the set of all (all non-empty) sequences that be construc-

ted from items in Σ . We will often use symbol T to refer to an input sequence and

symbol S to refer to an arbitrary sequence. An example sequence database Dex con-

sisting of four input sequences is shown in Figure 2.1.

Subsequences

Let S = s1s2 . . . s |S | and T = t1t2 . . . t |T | be two sequences composed of items from

Σ . We say that S is a subsequence of T , denoted S ⊆ T , if S can be obtained by

deleting items in T . More formally, S ⊆ T i� there exists integers 1 ≤ i1 < i2 <

a
We indicate both sets and multisets using { }; the appropriate type is always clear from the

context. The operators], `, and \+ correspond to multiset union, multiset intersection, and multiset

di�erence.

5

2. Preliminaries

T1 : bbcac
T2 : bdca
T3 : cbba
T4 : daca

Figure 2.1: An example sequence database

. . . < i |S | ≤ |T | such that sk = tik for 1 ≤ k ≤ |S |. For input sequence T2 = bdca of

our example sequence database, we have bca ⊆ T2, ba ⊆ T2, and cba * T2.

Support

Denote by,

Sup(S,D) = {T ∈ D : S ⊆ T }

the support set of sequence S in the database D , i.e., the multiset of input sequences

in which S occurs. In our example database, we have Sup(ba,Dex) = {T1,T2,T3 }.
Denote by,

f (S,D) = |Sup(S,D)|

the frequency (or support) of S in the database D ; e.g., f (ba,Dex) = 3. Our measure

of frequency corresponds to the notion of document frequency used in text mining,

i.e., we count the number of input of sequences (documents) in which S occurs (as

opposed to the total number of occurrences of S). We say that sequence S is frequent

in database D if its frequency passes the support threshold σ > 0, i.e., f (S,D) ≥ σ.

FSM problem (unconstrained)

Given a sequence database D and a minimum support threshold σ > 0,

�nd all frequent sequences S along with their frequencies f (S,D).

In our example database Dex and for σ = 2 we obtain (sequence-frequency)-pairs:

(a, 4), (b, 3), (c, 4), (d, 2), (ac, 2), (ba, 3), (bb, 2), (bc, 2), (ca, 4), (bba, 2), and (bca, 2).
A more general variant of this problem is often considered in the literature, in

which input sequences are formed of itemsets rather than of individual items. We

focus on the important special case of individual items in this thesis (e.g., textual

data, user sessions, event logs).

2.2 FSM Approaches

The complete search space consisting of all possible subsequences is a lattice formed

by the set Σ+ and the partial order ⊆. Although in theory such a lattice is in�nite, in

practice the depth of the lattice is bounded by length of the input sequence that has

maximum length. Moreover, the set of all frequent sequences forms a meet-lattice

6

2.2. FSM Approaches

Algorithm 2.1 Breadth-�rst search

Require: D , σ

Ensure: Frequent sequences in D
1: scan D to compute length-1 frequent sequences F1
2: l ← 1
3: while Fl , ∅ do
4: Cl+1 ← Fl Z Fl // Generate candidate length-(l + 1) sequences
5: Fl+1 ← ∅
6: for S ∈ Cl+1 such that f (S,D) ≥ σ do // Determine frequent length-(l + 1)

sequences

7: Fl+1 ← Fl+1 ∪ S
8: end for
9: l ← l + 1

10: end while

that leads to the downward closure property of frequent sequences also known as

support anti-monotonicity [Zaki (2001b)].

Lemma 2.1 (Support Anti-monotonicity). For any two sequences S1 and S2 such that

S1 ⊆ S2, we have Sup(S1,D) ⊇ Sup(S2,D) and consequently f (S1,D) ≥ f (S2,D).

The lemma states that all frequent sequences must be composed of frequent sub-

sequences. In other words, if a sequence S is infrequent we can safely prune the

search space comprising of sequences in the sub-lattice that meet at S.

The above lemma has lead to di�erent search strategies for enumerating fre-

quent sequences, which can be categorized into breadth-�rst search (BFS) or depth-

�rst search (DFS) approaches.

2.2.1 Breadth First Search

Methods based on BFS use a level-wise approach to generate frequent sequences, i.e.,

they iteratively generate all frequent sequences of length 1, then length 2, and so

on. In each iteration we perform a candidate-generation-and-test step in which we

make use of frequent length-l sequences to generate candidate sequences of length-

(l + 1) that are potentially frequent and then determine which of these candidates

are actually frequent.

BFS approach is given as Algorithm 2.1. We start by scanning the input sequence

database and compute frequent length-1 sequences F1 (line 1). Thereafter, in each

iteration, for l ≥ 1, we compute candidate length-(l + 1) sequences Cl+1 by joining

frequent length-l sequences Fl (line 4). Two sequences S = s1s2 . . . sl ∈ Fl and

S′ = s′1s′2 . . . s
′
l
∈ Fl are joined if length-(l − 1) su�x of S is the same as length-

(l − 1) pre�x of S′, i.e., s2 . . . sl = s′1 . . . s
′
l−1. For example, sequences ac and ca can

be joined to generate sequence aca. As another example, sequences bdc and dca

7

2. Preliminaries

a

Z Z Z Z

aa ab ac ad

b

Z Z Z Z

ba bb bc bd

c

Z Z Z Z

ca cb cc cd

d

Z Z Z Z

da db dc dd

Z Z Z Z Z Z

aca bac bba bbb bbc bca

Figure 2.2: Frequent sequence enumeration using BFS approach.

Iteration (l) Fl Posting list Support

1

a T1〈4〉, T2〈4〉, T3〈4〉, T4〈2〉, T4〈4〉 4

b T1〈1〉, T1〈2〉, T2〈1〉, T3〈2〉, T3〈3〉 3

c T1〈5〉, T2〈3〉, T3〈1〉, T4〈3〉 4

d T2〈2〉, T4〈1〉 2

2

aa T4〈2〉 1

ab ∅ 0

ac T1〈4〉, T4〈2〉 2

ad ∅ 0

ba T1〈1〉, T1〈2〉, T2〈1〉, T3〈2〉, T3〈3〉 3

bb T1〈1〉, T3〈2〉 2

bc T1〈1〉, T1〈2〉, T2〈1〉 2

bd T2〈1〉 1

ca T1〈3〉, T2〈3〉, T3〈1〉, T4〈3〉 4

· · ·

3

aca T4〈2〉 1

bac T1〈1〉,T1〈2〉 1

bba T1〈1〉, T3〈1〉 2

bbb ∅ 0

bbc T1〈1〉 1

bca T1〈1〉, T1〈2〉, T2〈1〉 2

4 ∅ - -

Figure 2.3: Some inverted indexes and supports for each sequence explored by by BFS.

8

2.2. FSM Approaches

can be joined to generate sequence bdca. Candidates with su�cient support are

then added to the set Fl+1 of frequent length-(l + 1) sequences (lines 6–8), which

are then used in the next iteration. Figure 2.2 illustrates the BFS approach on our

example sequence database Dex and σ = 2. Here solid nodes represent frequent

sequences, dotted nodes represent infrequent sequences, and joins are shown using

the Z symbol.

BFS approaches mainly di�er in the candidate-generation-and-test step. For ex-

ample, the GSP algorithm [Srikant and Agrawal (1996)] uses a hash-tree data struc-

ture to store candidates and repeatedly scans the input sequence database to determ-

ine frequent candidates. The PSP algorithm [Masseglia et al. (1998)] emulates the

GSP approach but uses a pre�x-tree data structure to store candidates. The SPADE

algorithm [Zaki (2001b)], which we also use in our work, e�ciently performs the

candidate-generation-and-test step by making use of a vertical representation of

the sequence database. In vertical representation, we make use of an inverted in-

dex which maps each frequent length-l sequence S to its posting list consisting of

the set of input sequences in which S occurs as well as its corresponding positions.

For example, the sequence ac occurs in input sequences T1 and T4 at positions 4

and 2 respectively. We generate candidate length-(l + 1) sequences by intersecting

posting lists of its corresponding length-l pre�x and su�x and add it to the inver-

ted index if its frequent, i.e., when the number of distinct input sequences in the

posting list is greater than the support threshold σ. At the end of each iteration, we

delete length-l sequences Fl from the index. Figure 2.3 shows some posting lists for

our example sequence database in each iteration of BFS. Entries that are struck out

show infrequent candidate sequences generated in each iteration and are not added

to the inverted index.

2.2.2 Depth First Search

An alternate to BFS is to use DFS to explore the search space (lattice). DFS ap-

proaches recursively grow shorter frequent to generate longer candidate sequences

and di�er in the way they generate candidates and compute their supports. For

example, Zaki (2001b) suggested the vertical database format and posting list inter-

sections for DFS; the di�erence to its BFS counterpart is that it grows sequences by

intersecting their posting lists with length-1 posting lists. Ayres et al. (2002) pro-

posed the SPAM algorithm, which uses a vertical representation of the sequence

database like SPADE, but using a bitmap structure count sequences. Han et al. (2000)

proposed the FreeSpan and Pei et al. (2001) later proposed its more e�cient version

called Pre�xSpan, which follows a pattern-growth approach to recursively gener-

ate frequent sequences. Both approaches arrange the output sequences in a tree,

in which each node corresponds to a sequence S and is associated with a projec-

ted database DS , which consists of the input sequences in which S occurs. Starting

with an empty sequence and a full sequence database, the tree is built recursively by

9

2. Preliminaries

Algorithm 2.2 Depth-�rst search

Require: D , σ

Ensure: Frequent sequences in D
1: S ← ε

2: DS ← D
3: Expand(S,DS)

4:

5: Expand(S,DS)

6: Scan DS to compute ΣDS
// Compute items to the right of S in D

7: for all w′ ∈ ΣDS
with f (Sw,DS) ≥ σ do

8: Output (Sw, f (Sw,DS))
9: Expand(Sw,DSw) // Expand with frequent items

10: end for

performing a series of expansions. In each expansion, a frequent length-l sequence

is expanded to generate candidate length-(l + 1) sequences, their projected data-

bases and their supports. The main di�erence between the two lies in constructing

projected databases. FreeSpan uses an item-based partitioning of the output search

space and uses frequent items to recursively projected sequence databases, i.e., it

expands a length-l sequence S to generate candidate length-(l + 1) sequences that

contain S. Pre�xSpan, on the other hand employs a su�x-based partitioning of the

output space and uses frequent pre�xes to recursively project sequence databases,

i.e., in each expansion it expands a frequent length-l sequence to generate candidate

length-(l + 1) sequences with pre�x S.

In our work, we use the DFS approach of Pre�xSpan, which is given as Al-

gorithm 2.2. We start with an empty sequence ε and the full sequence database D

(lines 1 and 2) and perform a series of expansions (lines 3 and 9). In each expan-

sion (lines 6–8), when we expand S, we look for the set of items in input sequences

T ∈ DS , which is given by ΣS(T) = { w | Sw ⊆ T }, i.e., we look for occurrences

of S, and consider the items that occur to the right of S. For example, we have

Σb(T1) = { b, c, a }. Expansion is performed by scanning DS and computing the set

ΣDS
= ∪T ∈D { ΣS(T) } of items and their frequencies (in DS). Continuing our ex-

ample, we have ΣDb
= { b, c, a, d }. For each frequent item w ∈ ΣS , we output Sw

and recursively grow Sw.

Figure 2.4 illustrates the DFS approach on our running example. As before,

solid nodes represent frequent sequences and dotted nodes represent infrequent

sequences. Each edge corresponds to an expansion and is labeled by the order in

which expansions are performed. We start with the empty sequence ε perform the

�rst expansion (E 1) to obtain all length-1 sequences a, b, c, and d. We then expand

a (E 2) to obtain ac and aa from which only ac is turns out to be frequent. There-

after, we expand ac to obtain aca (E 3), which is infrequent. At this point, no more

expansions are performed and we return the sequence b. In a similar fashion, we

10

2.2. FSM Approaches

ε

E 1

b

bb bc ba bd

bbc bba

bbac

bcc bca

bcac

bac

E 4

E 5 E 7 E 9

E 6 E 8

c

cb cc ca

cac

E 10

E 11

a

ac aa

aca

E 2

E 3

d

da dc

E 12

Figure 2.4: Frequent sequence enumeration using a DFS approach.

Expansion Sequence Projected Database Support

E 1

a T1〈4〉, T2〈4〉, T3〈4〉, T4〈2〉, T4〈4〉 4

b T1〈1〉, T1〈2〉, T2〈1〉, T3〈2〉, T3〈3〉 3

c T1〈5〉, T2〈3〉, T3〈1〉, T4〈3〉 4

d T2〈2〉, T4〈1〉 2

E 2

ac T1〈5〉, T4〈3〉 2

aa T4〈4〉 1

E 3 aca T4〈4〉 1

E 4

bb T1〈2〉, T3〈3〉 2

bc T1〈3〉, T1〈5〉, T2〈3〉 2

ba T1〈4〉, T2〈4〉 T3〈4〉 3

bd T2〈2〉 1

E 5

bbc T1〈3〉,T1〈5〉 1

bba T1〈4〉, T3〈4〉 2

E 6 bbac T1〈5〉 1

· · ·

Figure 2.5: Some expansions, projected databases and supports.

11

2. Preliminaries

recursively expand b (E 4–E 9), c (E 10, E 11), and �nally d (E 12) to enumerate all

frequent sequences.

The major cost in DFS arises from computing projected databases and determin-

ing frequent items in each expansion. To e�ciently perform expansions, we model

projected databases using posting lists. Our use of posting lists is reminiscent of the

pseudo-projection technique of Pre�xSpan, which is more e�cient than construct-

ing physical projected databases [Pei et al. (2001)]. In more detail, we initially scan

the input sequence database and construct posting lists for all length-1 sequences.

When expanding a sequence S, we use its posting list as follows. For each posting

T 〈pos〉, we consider items in the input sequence T at positions pos + 1, . . . , |T | and

add T 〈pos′〉 to the posting list of the child node Stpos′ for pos < pos′ ≤ |T |. For

example, consider the sequence bb and its posting list shown in Figure 2.5. When

expanding bb we add postings T1〈3〉 to bba (a occurs at position 3 in T1), T1〈4〉 to

bbc (c occurs at position 4 at T1), T1〈5〉 to bba (a occurs at position 5 at T1), and T2〈4〉
to bba (a occurs at position 4 in T2). Figure 2.5 shows some expansions, projected

databases, and supports for some sequences for our running example.

12

Part I

Traditional Subsequence Constraints:
Scalability

13

C
h

a
p
t

e
r 3

Length and Gap Constraints

In this chapter,
a

we develop scalable methods for frequent sequence mining (FSM)

with length and gap constraints. Recall that the goal of FSM is to �nd all sub-

sequences that appear in su�ciently many input sequences. In practice, it is of-

ten useful to focus on subsequences that are contiguous or “close” and/or have

bounded length. For example, n-gram mining [Berberich and Bedathur (2013)] aims

to �nd consecutive subsequences of length n in text where as word association min-

ing [Church and Hanks (1990)] aims to �nd combinations of words that frequently

appear in close proximity (but not necessarily consecutively). Similarly, when min-

ing web usage data or any form of log �les, sequences of items that are close may

be more insightful than sequences of far-away items. This notion of closeness is ad-

dressed by gap-constrained frequent sequence mining [Srikant and Agrawal (1996)]

in which FSM is parameterized with a gap-constraint γ ≥ 0 and length-constraint

λ ≥ 1. Informally, for a given input sequence, we only consider subsequences that

can be generated without skipping more than γ consecutive items and have at most

λ items. We obtain n-gram mining for γ = 0 and λ = n, word association mining

for (say) γ = 5 and λ = 2, and unconstrained FSM for γ = ∞ and λ = ∞.

There are several well-known approaches [Srikant and Agrawal (1996); Zaki

(2000); Pei et al. (2002)] for length- and gap-constrained FSM. However, these meth-

ods typically operate on a single machine, and therefore, cannot deal with today’s

vast amount of data. Miliaraki et al. (2013) proposed a scalable, distributed algorithm

for gap-constrained FSM called MG-FSM that can handle billions of sequences. MG-

FSM is based on MapReduce [Dean and Ghemawat (2008)], which constitutes a nat-

ural environment of large-scale, distributed data processing. MG-FSM partitions the

a
The material in this chapter is based on Beedkar et al. (2015) and Beedkar and Gemulla (2015).

15

3. Length and Gap Constraints

input data into many smaller partitions in way that reduces the communication cost

and that the partitions can be mined independently and in parallel. However, at

times, it su�ers from high computational cost of mining each partition. Moreover,

the basic framework only supports positional gap-constraints and is ine�cient for

mining datasets with long input sequences.

In this work, we propose several extensions to the basic MG-FSM algorithm.

First, we derive the pivot sequence mining algorithm for mining partitions created

by the MG-FSM framework. Our pivot sequence miner substantially reduces the

computation cost of mining partitions and is up to 5× faster than basic MG-FSM

algorithm. Second, we discuss methods to support temporal sequence mining, in

which items are annotated with timestamps. This allows MG-FSM to handle tem-

poral gaps (such as “at most one minute” for session analysis). Finally, we develop

indexing techniques that enables MG-FSM to e�ciently handle datasets in which

input sequences are very long.

The remainder of this chapter is organized as follows. In Section 3.1, we form-

ally de�ne the problem of gap-constraint frequent sequence mining and establish

the notation used throughout the chapter. In Section 3.2, we give an overview of

the basic MG-FSM algorithm. In Section 3.3, we detail the pivot sequence min-

ing algorithm for mining partitions locally. Discussion on handling temporal gap-

constraints and long input sequences are detailed in Sections 3.4 and 3.5 respect-

ively. We discuss related work in Section 3.7 and present out experimental study in

Section 3.6 before summarizing in Section 3.8.

3.1 Preliminaries

We start by formally de�ning the problem of length- and gap-constrained frequent

sequence mining.

Gap-constrained subsequences

Denote by γ ≥ 0 the maximum-gap parameter. We say that S is a γ-subsequence of

T , denoted S ⊆γ T , when S is a subsequence of T and there is a gap of at most γ

between consecutive items selected from T . Formally, S ⊆γ T i� there exists integers

1 ≤ i1 < i2 < . . . < i |S | ≤ |T | such that sk = tik (as before) and ik+1 − ik − 1 ≥ γ for

1 ≤ k ≤ |S |. For example, if T = abcd then acd ⊆1 T , ad ⊆2 T , and ad *0 T .

Problem Statement

Denote by

Supγ(S,D) = {T ∈ D : S ⊆γ T },

16

3.2. A Primer on MG-FSM

the γ-support of sequence S in the database D , i.e., the multiset of input sequences in

which S occurs and denote by fγ(S,D) = |Supγ(S,D)| the γ-frequency of sequence

S. For σ > 0, we say that sequence S is (σ, γ)-frequent if fγ(S,D) ≥ σ.

The length- and gap-constrained frequent sequence mining problem considered

in chapter is as follows:

Given a support threshold σ ≥ 1, a maximum-gap parameter γ ≥ 0, and

a length threshold λ ≥ 1, �nd the set Fσ,γ,λ(D) of all (σ, γ)-frequent se-

quences in D of length at most λ. For each such sequence, also compute

its frequency fγ(S,D).
For example, for database Dex = { abcaaabc, abcbbabc, abcccabc }, we obtain

F3,0,2(Dex) = { a, b, c, ab, bc } ,
F3,1,2(Dex) = { a, b, c, ab, ac, bc } , and

F3,2,2(Dex) = { a, b, c, ab, ac, bc, ca } .

3.2 A Primer on MG-FSM

MG-FSM provides a general-purpose distributed framework for frequent sequence

mining based on the MapReduce. It partitions the input data into many smaller

partitions that can be mined independently and in parallel. In this section, we give an

overview of the MG-FSM framework and brie�y discuss its partitioning techniques.

3.2.1 MapReduce

MapReduce, developed by Dean and Ghemawat (2008) at Google, is a popular frame-

work for distributed data processing on clusters of commodity hardware. It operates

on key-value pairs and allows programmers to express their problem in terms of a

map and a reduce function. Key-value pairs emitted by the map function are parti-

tioned by key, sorted, and fed into the reduce function. An additional combine func-

tion can be used to pre-aggregate the output of the map function and increase e�-

ciency. The MapReduce runtime takes care of execution and transparently handles

failures in the cluster. While originally proprietary, open-source implementations

of MapReduce, most notably Apache Hadoop, are available and have gained wide-

spread adoption.

3.2.2 Overview of the MG-FSM framework

The key idea of the MG-FSM algorithm is to partition the set of output sequences

using item-based partitioning. Item-based partitioning is a well-known concept in

frequent itemset mining; it is used, for example, in the FP-growth algorithm [Han

et al. (2004)] as well as in the distributed frequent itemset miners of [Buehrer et al.

(2007); Li et al. (2008)]. MG-FSM creates a partition Pw for every frequent item

17

3. Length and Gap Constraints

Algorithm 3.1 The MG-FSM algorithm

Require: Sequence database D , σ, γ, λ, f-list Fσ,0,1(D)
1: Map(T):
2: for all distinct w ∈ T s.t. w ∈ Fσ,0,1(D) do
3: Construct a sequence database Pw(T) that is (w, γ, λ)-equivalent to {T }
4: For each S ∈Pw(T), output (w, S)
5: end for
6:

7: Reduce(w,Pw):
8: Fσ,γ,λ(Pw) ← FSMσ,γ,λ(Pw)
9: for all S ∈ Fσ,γ,λ(Pw) do

10: if p(S) = w and S , w then
11: Output (S, fγ(S,Pw))
12: end if
13: end for

w ∈ Σ and then mines frequent length- and gap-constrained sequences in each

partition independently. The item w is referred to as the pivot item of partition Pw .

The MG-FSM algorithm is divided into a preprocessing phase, a partitioning phase,

and a mining phase; all of which are fully parallelized.

Preprocessing phase

In the preprocessing phase, we compute the frequency of each item w ∈ Σ and

construct the set Fσ,0,1(D) of frequent items, commonly called f-list. This can be

done e�ciently in a single MapReduce job (by running a version of WordCount

that ignores repeated occurrences of items within an input sequence). We use the

f-list to establish a total order < on Σ : Set w < w′ if f0(w,D) > f0(w′,D); ties are

broken arbitrarily. Thus items are ordered by decreasing frequency. Write S ≤ w

if w′ ≤ w for all w′ ∈ S and denote by Σ+≤w = { S ∈ Σ+ : w ∈ S, S ≤ w } the set of

all sequences that contain w but no items larger than w. Finally, denote by p(S) =
minw∈S(S ≤ w) the pivot item of sequence S, i.e., the largest item in S. Note that

p(S) = w ⇐⇒ w ∈ S ∧ S ≤ w ⇐⇒ S ∈ Σ+≤w . For example, when S = abc, then

S ≤ c and p(S) = c; here, as well as in all subsequent examples, we assume order

a < b < c < d.

Partitioning phase

The partitioning and mining phases of MG-FSM are performed in a single MapRe-

duce job. In the partitioning phase, we construct partitions Pw in the map phase:

For each distinct item w in each input sequence T ∈ D , we compute a small se-

quence database Pw(T) and output each of its sequences with reduce key w. We

require Pw(T) to be “(w, γ, λ)-equivalent” to T , see Section. 3.2.3. For now, assume

18

3.2. A Primer on MG-FSM

that Pw(T) = {T }; a key ingredient of MG-FSM is to use rewrites that make Pw(T)
as small as possible.

Mining phase

The mining phase is carried out in the reduce function. The input to the mining

phase is given by

Pw =
⊎

T ∈D,w∈T
Pw(T),

which is automatically constructed by the MapReduce framework. Each reduce

function runs an arbitrary FSM algorithm with parameters σ, γ, and λ on Pw—

denoted FSMσ,γ,λ(Pw) in Alg. 3.1—to obtain the frequent sequences Fσ,γ,λ(Pw)
as well as their frequencies. Since every frequent sequence may be generated at

multiple partitions, MG-FSM performs a �ltering step to produce each frequent se-

quence exactly once. In particular, we output sequence S at partition Pp(S), i.e., at

the partition corresponding to its largest item.

3.2.3 Constructing Partitions

We now summarize the partition construction of MG-FSM and, in particular rewrit-

ing techniques for constructing Pw(T) for an input sequence T . These rewriting

techniques aim to minimize partition size, and therefore reduce communication cost

between Map and Reduce phase, computational cost at each partition, and partition

skew while maintaining correctness.

w-equivalency.

w-equivalency is a necessary and su�cient condition for the correctness of MG-

FSM. A sequence S is a pivot sequence w.r.t. w ∈ Σ if p(S) = w and 2 ≤ |S | ≤ λ.

Denote by

Gw,γ,λ(T) = [F1,γ,λ({T }) ∩ Σ+≤w] \ { w }
the set of pivot sequences that occur in T , i.e., are γ-subsequences of T with largest

item w. If S ∈ Gw,γ,λ(T), then T is said to (w, γ, λ)-generate (or simply w-generate)

S. For example,

Gc,1,2(acb f deac f c) = { ac, cb, cc } .
Two sequences T and T ′ are said to be (w, γ, λ)-equivalent (or simply w-equivalent),

if

Gw,γ,λ(T) = Gw,γ,λ(T ′),
i.e., they both generate the same set of pivot sequences. Similarly, two sequence

databases D and Pw are (w, γ, λ)-equivalent (or simply w-equivalent) i�

Gw,γ,λ(D) = Gw,γ,λ(Pw).

MG-FSM produces correct results if Pw(T) is w-equivalent to T for all T ∈ D .

19

3. Length and Gap Constraints

Constructing Pw(T).

We now summarize rewriting techniques that aim to reduce to overall size of Pw(T).
Let T = t1 . . . t |T | be an input sequence and consider pivot w. An index 1 ≤ i ≤ |T |
is w-relevant if ti is w-relevant, i.e., if ti ≤ w; otherwise it is w-irrelevant. When

ti = w, we say that the index i is pivot index. Since irrelevant items do not contrib-

ute to a pivot sequence, MG-FSM replaces these items with “blanks”. For example,

sequence abddc is written as ab␣␣c (for pivot c). Replacing irrelevant items with

blanks enables e�ective compression (e.g., abddc can be written as ab␣
2c).

Perhaps the most important rewrite is unreachability reduction that removes

unreachable items, i.e., items that are “far away” from any pivot item. For example,

consider a input sequence T = cadbabeadcddae and corresponding sequence T ′ =
ca␣bab␣a␣c␣␣a␣ obtained after replacing c-irrelevant items with blanks. Here indexes

1 and 10 are pivot indexes. For removing unreachable items, we compute the left

and the right distance to a pivot item. The left distance of an index i is the smallest

number of items (number of “hops”+1) from a pivot index to index i; only relevant

indexes are considered and subsequence indexes must satisfy the gap constraint (at

most γ items in between). Similarly, right distance of an index i is the distance to

the closest pivot to the right of i. For example, we obtain the following for γ = 1:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
ti c a ␣ b a b ␣ a ␣ c ␣ ␣ a ␣

left 1 2 2 3 4 4 − − − 1 2 2 − −
right 1 − − 4 4 3 3 2 2 1 − − − −

Here − correspond to in�nite distance. The left distance for index 5 for example

is 4, which is determined by indexes 1, 2, 4, 5 (indexes 1, 3, 5 is not allowed since

index 3 is irrelevant). Indexes where the minimum distance min(left, right) ≤ λ are

unreachable and can be safely removed. For example, for λ = 3 we obtain T ′ =
ca␣bb␣a␣c␣␣.

Other important rewrites include pre�x/su�x reduction where leading and trail-

ing blanks are removed (e.g., ca␣bb␣a␣c␣␣ is reduced to ca␣bb␣a␣c) and blank reduction

where any sequence of more than γ + 1 blanks are replaced with exactly γ + 1 (e.g.,

ca␣␣␣␣cba can be reduced to ca␣␣cba for γ = 1). MG-FSM also performs blank separ-

ation, where a sequence can be written in terms of multiple shorter sequences (e.g.,

acb␣␣bca can be split into acb and bca for pivot c). Blank separation, however, is

ine�ective when items are not often repeated.

Rewrites in practice

In practice, the above rewrites are performed as follows. For each sequence T and

each frequent item w ∈ T , MG-FSM performs a backward scan to obtain the right

distances of all indexes. It then performs a forward scan of T in which it simul-

taneously (1) computes the left distances, (2) performs unreachability reduction, (3)

20

3.3. Mining Partitions

replaces irrelevant items by blanks, (4) performs pre�x/su�x and blank reduction

to obtain Pw(T).

3.3 Mining Partitions

In this section, we �rst brie�y discuss how existing FSM approaches of Section 2.2

can be adapted to mine length- and gap-constrained sequences. These approaches

mine all frequent sequences and must be combined with a �ltering step to restrict

output to pivot sequences (cf. line 7, Algorithm 3.1). We then propose a more e�-

cient, special-purpose sequence miner that directly mines pivot sequences.

3.3.1 Sequential FSM algorithms

We �rst brie�y describe how we extend BFS and DFS approaches to handle length

and gap constraints and then discuss the overhead associated with them in context

of MG-FSM.

BFS with length and gap constraints

Recall that BFS uses a level-wise approach to iteratively generate sequences of length-

1, then length-2, and so on. To adapt BFS to handle the length constraint λ, we stop

iterative process after λth
iteration, i.e., we add the condition k ≤ λ in line 3 of Al-

gorithm 2.1. To handle gap constraint γ, we modify the the posting list intersection

in which we merge two postings T 〈pos〉 and T ′〈pos′〉 only when the conditions

T = T ′ and pos < pos′ − γ + 1 satisfy. For example, consider two sequences a and

d and their posting lists La = T1〈1〉,T2〈2〉,T3〈1〉 and Ld = T1〈3〉,T3〈2〉. We obtain

Lad = T3〈2〉 for γ = 0 and Lad = T1〈1〉,T3〈1〉 for γ = 1.

DFS with length and gap constraints

We adapt the DFS approach (Algorithm 2.2) to handle length and gap constraints

as follows. To handle length constraint, we only expand a sequence S if |S | < λ. To

handle gap constraint, when we expand S, we only look for the set of right items in

input sequences T ∈ DS , which is given by ΣS(T) = { w | Sw ⊆γ T }, i.e., we look

for occurrences of S, and then consider the items that occur to the right of S that are

at most γ + 1 items apart. For example, if T = cabda, then we have Σca(T) = { b }
for γ = 0 and Σca(T) = { b, d } for γ = 1.

Overhead

In the context of MG-FSM, the BFS and DFS approaches have substantial computa-

tional overhead: They compute and output all frequent sequences, whether or not

21

3. Length and Gap Constraints

these sequences are pivot sequences (i.e., p(S) = w) and thus non-pivot sequences

need to be pruned. To see this, consider pivot d and example partition

Pd = { adda, cabd, ca␣db, b␣aadbc } , (3.1)

for σ = 2, γ = 1 and λ = 4. Both BFS and DFS methods will produce sequences

such as ca and ab, neither of which contain pivot d and thus need to be �ltered

out by MG-FSM. Unfortunately, neither BFS nor DFS can be readily extended to

avoid enumerating non-pivot sequences. This is because short non-pivot sequence

might contribute to longer pivot sequences. In BFS, we obtain frequent pivot se-

quence cad from ca (a non-pivot sequence) and ad (a pivot sequence). Similarly,

DFS obtains cad by expanding the non-pivot sequence ca. This costly computation

of non-pivot sequences cannot be avoided without sacri�cing correctness. Note that

both approaches also compute frequent sequences that do not contribute to a pivot

sequence later on (e.g., sequence ab).

3.3.2 Pivot Sequence Miner

In what follows, we propose PSM, an e�ective and e�cient algorithm that signi-

�cantly reduces the computational cost of mining each partition. In contrast to the

methods discussed above, PSM restricts its search space to only pivot sequences and

is thus customized to MG-FSM. We also describe optimizations that further improve

the performance of PSM.

Algorithm

The key goal of PSM is to only enumerate pivot sequences. PSM is based on DFS,

but, in contrast, starts with the pivot w (instead of the empty sequence) and expands

a sequence to the left and to the right (instead of just to the right). Since PSM starts

with the pivot, every intermediate sequence will be a pivot sequence. The PSM al-

gorithm is shown as Algorithm 3.2. We assume that for all T ∈ Pw , p(T) = w; this

property is ensured by MG-FSM’s partitioning framework.

PSM starts with S = w (pivot item) and determines the support set Dw (line

1); under our assumptions, Dw = Pw so that nothing needs to be done. We then

perform a series of right-expansions almost as expansions in DFS (lines 2 and 13); the

only di�erence is that we do not right-expand with the pivot item (cf. line 11). After

the right-expansions are completed, we have produced all frequent pivot sequences

that start with the pivot item (and do not contain another occurrence of the pivot

item).

Figure 3.1 illustrates PSM on the partition of Equation (3.1) with pivot d. Solid

nodes represent frequent sequences; dotted nodes represent infrequent sequences

that are explored by PSM. Each edge corresponds to an expansion and is labeled with

its type (RE=right expansion, LE=left expansion) and order of expansion. We start

22

3.3. Mining Partitions

Algorithm 3.2 Mining pivot sequences

Require: Pw , Σ , σ, γ, λ

1: S ← w, DS ← Supγ(S,Pw)
2: Expand(S,DS , right)

3: Expand(S,DS , left)

4:

5: Expand(S,DS , dir)

6: if |S | = λ then
7: return
8: else
9: Scan DS to compute Σdir

S

10: if dir = right then
11: for all w′ ∈ Σdir

S
\ { w } with fγ(Sw′,Pw) ≥ σ do

12: Output (Sw′, fγ(Sw′,Pw))
13: Expand(Sw′,DSw′, right)
14: end for
15: end if
16: if dir = left then
17: for all w′ ∈ Σdir

S
with fγ(w′S,Pw) ≥ σ do

18: Output (w′S, fγ(w′S,Pw))
19: Expand(w′S,Dw′S, right)
20: Expand(w′S,Dw′S, left)
21: end for
22: end if
23: end if

23

3. Length and Gap Constraints

d

ddadbd da db dc

ada adb adc

adbc

cadbad

cadbε

dbc

RE 1(Rd = {b})

RE 2(Rdb = ∅)

LE 3

RE 4

(Rad = {b})

RE 5

LE 6

RE 7LE 8

Figure 3.1: Pivot sequence enumeration for partitionPd forσ = 2, γ = 1 and λ = 4.

with sequence d and perform the �rst right-expansion (RE 1) to obtain sequences

da, db, and dc from which only db turns out to be frequent. We then right-expand

db to obtain dbc (RE 2), which is infrequent. At this point, no more right-expansions

are performed and we return to the pivot.

After the pivot has been right-expanded, PSM performs a left-expansion of the

pivot w (line 3), producing sequences of form w′w. Left-expansions are symmetrical

to right-expansions, but we expand S to the left by computing the set of items Σ left

S
=⋃

T ∈DS
{Σ left

S
(T)}, where Σ left

S
(T) = { w′ | w′S ⊆γ T }. In our example, we obtain

frequent sequence ad and some infrequent sequences (LE 3). We now perform a

sequence of right-expansions on ad (RE 4 and RE 5, line 19 of Algorithm3.2). Note

that PSM never left-expands a sequence that is a result of a right-expansion. Once

all right-expansions of ad have been computed, we left-expand it (LE 6, line 20) and

proceed recursively as above.

Correctness

PSM enumerates each frequent pivot sequence exactly once; there are no duplicates

and no missed sequences. To see this, consider an arbitrary pivot sequence S of

length at least 2 (with pivot w). Then there is a unique decomposition

S = SlwSr

such that w < Sr . We refer to Sl as the pre�x of S (i.e., the part of S occurring to the

left of the (last) pivot) and Sr as the su�x (to the right). For example, sequence cad
with pivot d has pre�x Sl = ca and su�x Sr = ε . Note that the decomposition is

unique because w < Sr ; e.g., S = adda uniquely decomposes into Sl = ad, w = d

24

3.3. Mining Partitions

and Sr = a. This is the reason why we do not right-expand with the pivot (line 11).

PSM generates S from d by �rst performing left-expansions until Slw is obtained,

and then a series of right-expansions to obtain SlwSr . Figure 3.1 shows a number

of examples; e.g., sequence cadb is obtained by expansions LE 3, LE 6, and RE 7. If

PSM were to perform left-expansions after a right expansion, then cadb would also

be obtained from a left-expansion of adb (obtained from RE 4). PSM avoids such

duplicates.

Indexing right-expansions

We now describe an optimization technique which further reduces the search space.

The key idea is to store information of right-expansions to make future right-expan-

sions more e�cient. To see why this may help, consider RE 1 and RE 4 in Figure 3.1.

From RE 1, we know that da is infrequent. Thus, when performing RE 4, we do

not need to consider sequence ada since it must also be infrequent by the anti-

monotonicity property of support [Lemma 2.1; (page 7)]. In general, if Sw′ is an

infrequent right-expansion of S, then w′′Sw′ will be an infrequent right-expansion

of w′′S.

We make use of this observation as follows. Whenever we perform a right-

expansion of some sequence S, we store in an index the set RS of the resulting

frequent expansion items. In our example, we have Rd = { b } from RE 1 since

db is the only frequent right-expansion of d. We subsequently use the information

about RS as follows. Whenever we perform a right-expansion of some sequence

SlS, we restrict the set of expansion items to RS . In our example, when expanding

ad in RE 4, we only consider expansion item b (since Rd = { b }). For all other

items, neither counting nor support set computation is performed; these items are

shown in nodes connected with dashed lines in Figure 3.1. If RS is empty, no right-

expansions need to be performed and we do not scan the database. This happens

for the sequence adb in our example; since we obtain Rdb = ∅ from RE 2, we do

not perform RE 5.

Our choice of indexing only right-expansions is tailored to the order in which

PSM explores pivot sequences. For example, consider LE 3 in Figure 3.1. Information

about frequent left-expansions for S = d (i.e., ad) will not be of any use, since during

the traversal, we will never left-expand any sequence of the form SSr (such as db;

recall that PSM never left-expands a sequence that is a result of a right-expansion).

Therefore, we only index right-expansions to prune search space. To save memory,

our actual implementation unions the indexes of each level of each series of right

expansions (i.e., we maintain one index for the frequent items that occur directly

after S, one index for the items that occur two items after S, and so on).

25

3. Length and Gap Constraints

Analysis

In what follows, we study the worst-case size of the search space of the PSM al-

gorithm and compare it to the one of the BFS and DFS approaches. Let us assume a

hypothetical database (or partition) that has k distinct items and that each sequence

in the database has length λ. Further assume that all possible sequences of length

up to λ are frequent in the database; there are

∑λ
l=1 kl such sequences. Both BFS and

DFS will �rst produce all of these sequences, but in the context of MG-FSM, sub-

sequently only output the ones that contain the pivot item. There are

∑λ
l=1(k − 1)l

sequences that do not contain the pivot; these are produced unnecessarily. In con-

trast, PSM only explores pivot sequences, of which there are

∑λ
l=1 kl −∑λ

l=1(k − 1)l .
Thus PSM explores a fraction of

1 −
∑λ

l=1(k − 1)l∑λ
l=1 kl

� 1

of the sequences explored by BFS or DFS methods. For example, if k = 100,000 and

λ = 5, PSM explores 0.005% of the search space of BFS or DFS.

In practice, the worst-case rarely occurs, of course. To shed more light on the

relationship between PSM and DFS, consider our running example and suppose

that we used DFS. In a �rst step, DFS computes all (item, frequency)-pairs, of which

there are four: (a, 4), (b, 3), (c, 3) and (d, 4). For each so-found frequent sequence,

DFS recursively makes a right-expansions to compute longer frequent sequences. In

our running example, DFS ultimately computes 12 length-2 sequences (but outputs

only the frequent ones): (ad, 4), (ab, 2), (aa, 1), (bd, 1), (ba, 1), (bc, 1), (ca, 2), (cb, 1),
(dd, 1), (da, 1), (db, 2), (dc, 1). Similarly, DFS computes 9 length-3 sequences and

two length-4 sequences. The total size of the search space of DFS is thus 27. On the

other hand, PSM only explores 11 sequential patterns; these are shown by the nodes

connected with solid lines in Figure 3.1. Thus PSM explores only roughly half of the

search space of DFS in our example.

3.4 Temporal Gap Constraints

We have restricted attention so far to frequent sequence mining with a positional

gap constraint. In applications such as session analysis, however, input sequences

are often built from time-annotated events instead of items; in such applications,

temporal gap constraints are more suitable [Srikant and Agrawal (1996)]. This means

that we want to treat a pair of events as su�ciently close if the in-between time span

is small (e.g., events that occur within 1 hour), i.e., independently of the number of

events that occurs in between. In this section, we describe how MG-FSM can be

adapted to support such temporal gap constraints.

De�nition 3.1. A temporal sequence is an ordered list T = t1(ζ1) t2(ζ2) · · · tl(ζl) of
events, i.e., item-timestamp pairs. For 1 ≤ i ≤ l, event ti(ζi) consists of item ti taken

26

3.4. Temporal Gap Constraints

from dictionary Σ and timestamp ζi taken from a discrete set of timestamps T ⊆ Z.
The timestamps are distinct and ordered, i.e., ζi < ζj for 1 ≤ i < j ≤ l.

Note that the timestamps can be of any desired granularity (e.g., seconds, minutes,

hours or days).

Denote by ∆i j = ζj − ζi − 1 the temporal gap between events ti(ζi) and tj(ζj),
i < j . Observe that ∆i j ≥ 0. To handle temporal gap constraints, we “convert”

the temporal gap constraint to a positional gap constraint by mapping the event

sequence into a sequence of items and gaps. In particular, we convert temporal se-

quence T = t1(ζ1) t2(ζ2) · · · tl(ζl) to regular sequence

T ′ = t1␣
∆12 t2␣

∆23 t3 · · · ␣∆(l−1)l tl .

Here, ␣ denotes the blank symbol as before; ␣
∆i(i+1) represents as many gaps as time

units (without an event occurring) passed between events ti(ζi) and ti+1(ζi+1). If two

events occur at adjacent timestamps (i.e., their temporal gap is 0), then no blanks ap-

pear between the corresponding items. As described in Section 3.2.3, we reduce the

overhead of adding gaps to the input sequences by using a compression technique

that encodes sequences of consecutive blanks with run-length encoding. With such

compression, the conversion takes linear time and space.

To mine frequent sequences with a temporal gap constraint, we simply run MG-

FSM with a positional gap constraint on the converted sequences. In particular, de-

note by τ a maximum temporal-gap parameter; at most τ time units are thus allowed

to pass between two events to be considered close. We then set maximum-gap para-

meter γ = τ−1 when running MG-FSM. To see why this produces the desired result,

observe that our rewrite ensures that two events ti(ζi) and tj(ζj), i < j , with tem-

poral gap ∆i j have exactly ∆i j items or blanks in between them. The time passed

between the occurrence of ti(ζi) and tj(ζj) is ∆i j +1; for this reason, we set γ = τ−1
(instead of γ = τ).

Consider, for example, the sequence database D = { a(2) b(3) c(6) a(8) }, which

consists of a single temporal sequence with four events. After conversion, we obtain

sequence database D ′ = { ab␣␣c␣a } by dropping timestamps and adding the respect-

ive number of blanks. Setσ = 1 and λ = 3. For a temporal-gap constraint of one time

unit (τ = 1, and thus γ = 0), we obtain frequent sequences F1,0,3(D ′) = { a, b, c, ab }.
For τ = 2 (γ = 1), we obtain F1,1,3(D ′) = { a, b, c, ab, ca }. Finally, for τ = 3 (γ = 2),

we obtain F1,2,3(D) = { a, b, c, ab, bc, ca, abc, bca }.
As a �nal note, we remark that MG-FSM can also handle temporal sequences

with repeated timestamps, provided that items with equal timestamps have mean-

ingful order (but the granularity of the timestamp is too coarse-grained to capture

this order). To do so, we modify both timestamps and the maximum-gap parameter

in a way that makes timestamps unique, retains the original order of the events, and

ensures correct results. In more detail, we conceptually multiply each timestamp by

2r−1 before conversion, where r > 1 is an upper bound on the number of events that

27

3. Length and Gap Constraints

can occur simultaneously. We then replace repeated timestamps by consecutive se-

quences of timestamps. For example, the sequence of events a(1) b(1) c(2) d(2) e(2)
is modi�ed to a(5) b(6) c(10) d(11) e(12) for r = 3. Now all timestamps are distinct;

we convert the database as described above, obtaining ab␣␣␣cde for our example. We

run MG-FSM with maximum-gap parameter

γ = (τ − 1)(2r − 1) + (3r − 3).

Here 3r − 3 denotes the maximum positional gap between two events that ori-

ginally occurred at consecutive timestamps. In our example, where r = 3, we set

γ = 1 for τ = 0 and γ = 6 for τ = 1.

When γ = 0, a temporal rewrite can also be used to mine sequences of itemsets

(as opposed to sequences of items) with MG-FSM. To see this, consider the sequence

of itemsets T = 〈ac〉 → 〈b〉, where we enclose itemsets by 〈 and 〉 and separate

itemsets by→. T has the following non-empty subsequences of itemsets

〈a〉, 〈b〉, 〈c〉, 〈ac〉, 〈a〉 → 〈b〉, 〈c〉 → 〈b〉, 〈ac〉 → 〈b〉.

We can rewrite T to a temporal sequence T ′ such that every subsequence of itemsets

of T corresponds to a subsequence of items of T ′ and vice versa. To do so, we �rst

�atten the itemsets to an item sequence and put a special itemset marker item →
between itemsets. We obtain the sequence of items T1 = ac→ b, which consists

of four items. We now associate a timestamp with each item, starting from 1 and

incrementing by 1 at each occurrence of the itemset marker item as well as at its

consecutive item. We then reorder same-timestamp events lexicographically. This

gives us the event sequence T ′ = a(1) c(1) →(2) b(3). With a choice of τ = 1, T ′

generates the sequences of items

a, b, c, ac, a→b, c→b, ac→b,

as well as some additional sequences that start or end with→; we ignore these addi-

tional sequences. Then T and T ′ have equivalent subsequences. Given a database of

sequences of itemsets, we rewrite every sequence as just described, apply MG-FSM,

and �lter out the additional sequences. Although this technique correctly mines se-

quences of itemsets, it is limited to the case γ = 0 and care must be taken to support

length constraints correctly.

3.5 Handling Long Input Sequences

MG-FSM’s partitioning works well as long as the sequences in the sequence data-

base are relatively short (e.g., sequences that correspond to sentences in text min-

ing). This allows us to scan with low cost the entire input sequence repeatedly dur-

ing partition construction. The assumption of short sequences does not generally

28

3.5. Handling Long Input Sequences

hold, i.e., in some applications sequences can be very long (e.g., sequences that cor-

respond to entire documents in text mining). To handle long sequences, we need to

ensure that the rewriting techniques of MG-FSM remain e�cient as the length of

the input sequences increases.

Recall that for an input sequence T , rewriting methods for constructing parti-

tions perform a backward and a forward scan for each pivot item w ∈ T (see Sec-

tion 3.2.3). The total number of backward-forward scans depends on the number of

distinct (frequent) items in T , but generally can be as high as |T |. Since the scans

take linear time, the computational cost is O(|T |2). This quadratic overall cost is ac-

ceptable when T is short (|T | small), but imposes severe overheads when T is long

(|T | large). To avoid this performance bottleneck, we propose to build for each in-

put sequence T an inverted index structure that maps pivot items to their respective

positions in T . By utilizing such an index, we avoid performing a full backward-

forward scan and instead perform a focused scan “around” the occurrences of the

pivot under consideration.

In more detail, we perform an initial pass over input sequence T to build an in-

verted index. The index stores for each distinct frequent item w ∈ T the positions

of w’s occurrences in T .
b

Given such an index, we construct Pw(T) for each in-

dexed pivot w as follows. Instead of scanning T , we only consider parts of T that

are su�ciently close to w; we ensure that all omitted parts cannot contribute to a

pivot sequence. In more detail, denote by I = (i1, . . . , ir) the positions at which w

occurs in T . We then restrict the forward-backward scan to the union of the ranges

[i j −(γ+1)(λ−1), i j + (γ+1)(λ−1)] for 1 ≤ j ≤ r . All items outside of these ranges

are unreachable and therefore do not need to be considered.

There is a trade-o� between the construction cost and the bene�t of the inver-

ted index. We have described above an inverted index that maintains all positions of

each pivot item; we subsequently refer to this index as full index. A simple alternat-

ive is to use a min-max index, which is more e�cient to construct. In particular, the

min-max index maintains only the positions of the �rst and the last occurrence of

each pivot. Given such an index, we perform for pivot w a forward-backward scan

of range [lw − (γ + 1)(λ − 1), rw + (γ + 1)(λ − 1)], where lw and rw are the positions

of the �rst and last occurrences of w. Observe that if there is only one occurrence of

w, we scan identical ranges when using either the min-max index or the full index.

If there are multiple occurrences of a pivot, the full index can be more e�ective than

the min-max-index (esp. when the left- and right-most occurrences are far apart).

We now illustrate the e�ect of the inverted index on the processing cost of a

backward-forward scan using an example. Consider sequence

T = cadbae f ebdaecdgadf ae,

pivot c, γ = 1, and λ = 3. To construct partition Pc(T) without an index, we need

b
We use the term “position” instead of “index” to avoid confusion with the index structure.

29

3. Length and Gap Constraints

to scan T twice and thus process 2|T | = 40 items. If we use the min-max index,

we restrict our scans to the neighborhood of c’s �rst occurrence (lc = 1) and c’s

last occurrence (rc = 13). We scan twice the range [1 − 2 · 2, 13 + 2 · 2] (i.e., range

[1, 17]) for a total of 34 processed items. Finally, if we use a full index, we scan twice

ranges [1, 5] (for the occurrence of c at position 1) and [9, 17] (position 13). The total

number of processed items is 28.

3.6 Experiments

We conducted an experimental study in the contexts of text mining and session ana-

lysis on large real-world datasets. In particular, we investigated the e�ciency of our

PSM algorithm for mining each partition, studied MG-FSM’s performance for min-

ing temporal sequences, and evaluated the e�ectiveness of our indexing techniques

for handling long input sequences.

We found that our PSM algorithm increased MG-FSM’s e�ciency by up to 5×.

We observed that MG-FSM successfully mined temporal sequences on the Net�ix

dataset [Bennett and Lanning (2007)]; temporal sequence mining can be expensive,

however, when the data contains large bursts of events in small timespans. Finally,

our use of inverted indexes for mining long input sequences was e�ective and sig-

ni�cantly decreased partitioning costs.

3.6.1 Setup

Hadoop cluster

We ran our experiments on a local cluster consisting of eleven Dell PowerEdge R720

computers connected using a 10 GBit Ethernet connection. Each machine has 64GB

of main memory, eight 2TB SAS 7200 RPM hard disks, and two Intel Xeon E5-2640

6-core CPUs. All machines ran Debian Linux (kernel version 3.2.48.1.amd64-smp),

Oracle Java 1.7.0_25, and use the Cloudera cdh3u6 distribution of Hadoop 0.20.2.

One machine acted as the Hadoop master node, the other ten machines acted as

worker nodes. The maximum number of concurrent map or reduce tasks was set to

8 per worker node. All tasks launched with 4 GB heap space.

Datasets

We used two real-world datasets for our experiments, see Table 3.1. The �rst dataset

is the The New York Times corpus (NYT), which consists of over 1.8 million newspa-

per articles published between 1987 and 2007. We created two sequence databases

from this corpus, denoted NYT-sen and NYT-doc, in which we respectively treat

each sentence or each document as an input sequence. The sequences in NYT-doc

are substantially longer than the ones in NYT-sen; we thus use NYT-doc to evaluate

the e�ectiveness of our indexing techniques for long sequences (see Section 3.5).

30

3.6. Experiments

NYT-sen NYT-doc Net�ix

Average length 19 603 266
Maximum length 21,174 38,917 7,966

Total sequences 53,137,507 1,830,592 398,820
Total items 1,051,435,745 1,051,435,745 106,145,170

Distinct items 1,577,233 1,577,233 17,769
Total bytes 3,087,605,146 3,087,605,146 608,347,782

Table 3.1: Dataset characteristics

Our second dataset is the Net�ix dataset [Bennett and Lanning (2007)], which we

use to evaluate our approach for mining temporal sequences. The Net�ix data con-

tains more than 100M ratings from 480k users for around 18k movies; each rating is

annotated with a timestamp. We constructed a temporal database from this data by

creating a temporal sequence for each user; this sequence consists of (timestamp,

movie)-pairs ordered by timestamp. Since the Net�ix dataset contains a few heavy-

raters, with up to 5,500 ratings on a single day, we exclude these users from our

dataset to ensure a meaningful output and keep runtimes manageable.

Measures

In the following experiments, we report the performance measure as total time

elapsed between launching a task and receiving the �nal result. For our experi-

ments on temporal sequence mining and mining long input sequences, we break

down this time into time taken by the map phase, shu�e phase, and reduce phase.

Since these phases overlap in a MapReduce job, we report the time elapsed until

�nishing of each phase.

3.6.2 Results

A. E�ectiveness of PSM algorithm

We evaluated the e�ciency of our PSM algorithm by running MG-FSM on the NYT

dataset with 3 di�erent parameter settings of increasing di�culty w.r.t the output

size. We report the total runtime in Figure 3.2. We observed an overall speedup of

2× to 5×which stems from using the PSM algorithm for mining partitions where as

MG-FSM uses standard BFS approach for mining each partition. For more analysis

on the PSM algorithm, we refer to Section 5.5.2 in which we also compare with DFS

approach and additionally consider hierarchy constraints.

31

3. Length and Gap Constraints

(100,1,5) (10,1,5) (10,1,10)

NYT − sen(σ,γ,λ)

T
ot

al
 t

im
e

(i
n

se
co

nd
s)

0
20

0
40

0
60

0
80

0 MG − FSM
MG − FSM + PSM

Figure 3.2: E�ectiveness of PSM

1 7 14 21 30

Gap in days (τ)

T
im

e
[s

]

0
50

0
10

00
15

00 map
shuffle
reduce

(a) Net�ix (runtimes)

1 7 14 21 30

Gap in days (τ)

#
Fr

eq
ue

nt
 s

eq
ue

nc
es

 [T
ho

us
an

ds
]

0
20

0
40

0
60

0
80

0

(b) Net�ix (sequences)

Figure 3.3: Temporal sequences

32

3.6. Experiments

Sequence of movie titles (frequency)

“Men in Black II”, “Independence Day”, “I, Robot” (2,268)

“Pulp Fiction”,“Fight Club” (7,406)

“LOTR: The Fellowship of the Ring”, “LOTR: The Two Towers” (19,303)

“The Patriot”, “Men of Honor” (28,710)

“Con Air”, “The Rock” (29,749)

“‘Pretty Woman”, “Miss Congeniality” (30,036)

Table 3.2: Example frequent sequences from Net�ix (σ = 1000, λ = 5, τ = 1 day)

B. Mining temporal sequences

We evaluated our approach for mining temporal sequences using the Net�ix data-

set Bennett and Lanning (2007). We extracted temporal sequences of movies cap-

turing the order in which these movies were rated by users. Mining frequent se-

quences in this context yields sequences of movies re�ecting the chronological or-

der in which a user viewed or rated them.

We mined frequent sequences from this dataset for σ = 1000, λ = 5 and tem-

poral gaps of 1, 7, 14, 21 and 30 days. The results are shown in Figure 3.3a and 3.3b.

Figure 3.3a depicts the runtimes as we increase the temporal gap (τ) from 1 day

(which corresponds to γ = 297) to 30 days (corresponds to γ = 6068). Figure 3.3b

shows the total size of the result, i.e., how many frequent sequences were mined.

Frequent sequences of user rating events within a 1-day time span were mined in

98s and were 175,003 in total. When the temporal gap was increased to 30 days (1-

month time span), we mined 756,528 frequent sequences (a 4.32x increase) while

total runtime had a signi�cant 17x increase again due to the large number of can-

didate 2-sequences constructed by the mining algorithm.

Table 3.2 includes some example sequences of movies mined from the Net�ix

dataset. We can see that this includes movies from a trilogy in chronological order

(see sequence (3), which consists of movies from the “Lord of the Rings” trilogy)

and movies with the same actor (see sequence (1), which consists of movies starring

actor Will Smith).

C. Mining long input sequences

In this group of experiments, we studied the performance of the indexing techniques

of Section 3.5 for long sequences. We used the NYT-doc dataset, in which each input

sequence corresponds to an entire document. The average sequence length was 603
items; see Table 3.1. We evaluated MG-FSM without indexing (termed none), with

33

3. Length and Gap Constraints

an index of the �rst and last position of each distinct item (min-max), as well as a

full index of all positions (full). Recall that the goal of using indexes is to reduce cost

of rewriting (map phase of MG-FSM).

We �rst compared how the map time (i.e., the time until the last map tasks

�nished) was a�ected when the di�erent kinds of indexes are used. We considered

four con�gurations and the results are shown in Figure 3.4a. The bene�t of the

di�erent indexes across di�erent setups is similar: map time is mainly a�ected by

the input, which remains the same, and is less sensitive to the parameters γ and λ.

In all cases, the use of the min-max index reduced the total map time by more than

half. When the full index was used, runtime was improved even more to 93s for

setting (σ = 10, γ = 0, λ = 10) compared to 124s when the min-max index is used

and 283s when no index is used. We also show the total runtimes, including reduce

time, for two di�erent settings, (σ = 10, γ = 0, λ = 5) and (σ = 10, γ = 1, λ = 5) in

Figures 3.4b and 3.4c. In the easier setting, where γ = 0, the e�ect of using an index

is large since map time corresponds to a large portion of the total time, which is

reduced from 366s to 157s when the full index is used. Setting γ to 1 increases the

reduce time, i.e., mining takes longer. The total runtime is reduced from 907s (with

no index) to 638s (with full index).

Our experiments also show that di�erent length distributions of input sequences

a�ect both map and reduce times. Recall that NYT-sen and NYT-doc contain the

same data, but di�er in sequence length (and number of sequences). The runtimes

for σ = 10, γ = 1 and λ = 5 for NYT-sen and NYT-doc are shown in Figures 3.2

and 3.4c, respectively. When no indexing was used, the overall runtime of the map

phase was more than 2x larger on NYT-doc than on NYT-sen; i.e., longer sequences

translate to larger map times. With the full index, however, the map time of NYT-sen

and NYT-doc were almost identical (108s vs. 102s, respectively). Note that the total

mining time (i.e., including the reduce phase) is not comparable because outputs are

di�erent.

We also studied whether the use of indexing improves performance when the

input sequences are short. Using the NYT-sen dataset with short sequences (each

sentence corresponds to a di�erent input sequence and the average length is 19),

we observed that the construction and maintenance of the index was slower than

just scanning repeatedly the input sequences. When sequences are short, we need

to perform only a few, cheap scans so that index construction is not bene�cial.

34

3.6. Experiments

(10,0,5) (10,0,10) (10,1,5) (10,1,10)

M
ap

 t
im

e
[s

]

10
0

20
0

30
0

40
0

50
0

none
min−max
full

(a) NYT-doc (map time only)

T
im

e
[s

]

0
10

0
20

0
30

0
40

0

none min−max full

map
shuffle
reduce

(b) NYT-doc (σ = 10, γ = 0, λ = 5)

T
im

e
[s

]

0
20

0
40

0
60

0
80

0
10

00

none min−max full

map
shuffle
reduce

(c) NYT-doc (σ = 10, γ = 1, λ = 5)

Figure 3.4: E�ectiveness of indexing long sequences

35

3. Length and Gap Constraints

3.7 Related Work

We now relate the ideas put forward in this chapter to existing prior work. Prior

approaches can be coarsely categorized with respect to the type of pattern being

mined (frequent sequences or application-speci�c special cases such as n-grams)

and according to their parallelization (sequential, shared-memory parallel, shared-

nothing parallel, or MapReduce).

There are several extensions to basic sequential algorithms discussed in Chapter 2

to handle constraints. GSP [Srikant and Agrawal (1996)] introduced length, gap,

temporal gaps as well as hierarchy constraints (we will discuss hierarchy constraints

in Chapter 5). Zaki (2000) proposed the cSPADE algorithm, which extends SPADE to

handle length, gap, and temporal constraints. Pei et al. (2002) investigated how con-

straints can be adapted in pattern-growth approach. Our adaption of BFS and DFS

approaches to handle length- and gap constraints emulates these algorithms. Zaki

(2000) and Giannotti et al. (2006) considered variations of the temporal sequence

mining problem discussed in this chapter in which, the former aims to mine frequent

sequences constrained to user speci�ed time window and the later aims to discover

frequent sequences of su�ciently close time-annotated events. For the speci�c case

of Web access mining, Pei et al. (2000) proposed WAP-miner for mining Web logs,

which uses a WAP-tree data structure to compactly represent the sequence database

and employs su�x based tree-projection mechanism to grow sequences. Frequent

episode mining [Mannila et al. (1997)], a related but di�erent problem, determines

sequences that occur frequently within a single long sequence.

Parallel approaches to frequent sequence mining have been proposed for dif-

ferent machine models. Zaki (2001a) proposed pSPADE, which extends the SPADE

algorithm to shared memory parallel architecture. In his approach, Zaki investig-

ated how posting list intersections can be computed in parallel either via perform-

ing a single intersection in parallel or performing local intersection in parallel. This

approach however led to poor performance due high amount of synchronization

required between processes. Zaki also proposed search space partitioning based on

su�x-based equivalence classes in which each process work on separate classes.

Guralnik et al. (2001) and Guralnik and Karypis (2004) examined how the projection-

based pattern-growth approach from Agarwal et al. (2001), which is similar to Pre-

�xSpan, can be parallelized by distributing data and/or work among machines.

Given the important role of n-grams in natural language processing and inform-

ation retrieval, several solutions exist for this speci�c special case of frequent se-

quence mining. SRILM [Stolcke (2002)] is one of the best-known toolkits to compute

and work with n-gram statistics for document collections of modest size. Brants et al.

(2007) describe how large-scale statistical language models are trained at Google. To

compute counts of n-grams having length �ve or less, they use a simple extension

of WordCount in MapReduce. Huston et al. (2011) develop distributed methods

to build an inverted index for n-grams that occur more than once in the document

36

3.8. Summary

collection. Berberich and Bedathur (2013) described Su�x-σ, which partitions the

input data based on su�xes and runs in a single MapReduce job.

To the best of our knowledge, none of the existing work provides a satisfact-

ory solution to general frequent sequence mining in MapReduce. Perhaps closest to

this work is the work on parallel itemset mining of Buehrer et al. (2007); Guralnik

and Karypis (2004), which also makes use of item-based partitioning of the output

space. In contrast to MG-FSM, these methods use database projections tailored to

itemset mining; these projections cannot be used for frequent sequence mining and

are generally less �exible than MG-FSM’s partition construction techniques.

3.8 Summary

MG-FSM is a scalable algorithm for length- and gap-constrained sequence mining

and uses the BFS approach in the local mining phase. We showed that using a cus-

tomized miner like PSM, which is aware of the MG-FSM framework, leads to higher

overall e�ciency. We also proposed various extensions to MG-FSM for special ap-

plication scenarios. First we discussed methods to support temporal sequence min-

ing, in which items are annotated with timestamps. This allows MG-FSM to handle

temporal gaps (for session analysis). Second, we showed how MG-FSM can e�-

ciently handle datasets in which input sequences are very long.

37

C
h

a
p
t

e
r 4

Maximality and Closedness
Constraints

Frequent sequence mining from large datasets can potentially generate a large num-

ber of sequences, especially when the support threshold is low and the length para-

meter is large. A standard approach [Yan et al. (2003); Fournier-Viger et al. (2013)] to

reduce the number of mined sequences without losing information is to output only

sequences that are maximal or closed. Such sequences compactly represent the set

of all frequent sequences along with their exact frequency (closed sequences) or a

lower bound thereof (maximal sequences). In this chapter,
a

we show how MG-FSM

can be adapted to mine maximal or closed sequences in a scalable fashion.

4.1 De�nitions

The key motivation behind maximal and closed sequence mining is that knowing

that a sequence S′ is frequent also provides us with information about whether or

not certain subsequences of S′ are frequent. In more detail, set

γ− =

{
0 if γ < ∞
∞ if γ = ∞.

The following lemma describes the relationship between the frequency of a se-

quence S′ and the frequency of (some of) its subsequences.

a
The material in this chapter is based on Beedkar et al. (2015).

39

4. Maximality and Closedness Constraints

Lemma 4.1 (Support monotonicity). Let S and S′ be two sequences such that S ⊆γ−
S′. For all sequence databases D , we have

Supγ(S,D) ⊇ Supγ(S′,D).

Proof. Consider any input sequence T = t1 . . . tn ∈ D such that S′ ⊆γ T . We need to

show that this implies S ⊆γ T . Since S′ ⊆γ T , there is a set of indexes i′1 < . . . < i′|S′ |
such that (i) sk = ti′

k
for 1 ≤ k ≤ |S′ |, and (ii) i′

k+1 − i′
k
− 1 ≤ γ for 1 ≤ k < |S′ |.

Furthermore, since S ⊆γ− S′, there is a set of indexes j1 < . . . < j |S | such that

(i) sk = s′jk for 1 ≤ k ≤ |S |, and (ii) jk+1 − jk − 1 ≤ γ− for 1 ≤ k < |S |. Now

consider the set of indexes ik = i′jk . We have S = ti1 · · · ti|S | by construction so that

S is a ∞-subsequence of T ; this proves the lemma for γ = ∞. To �nish the proof,

observe that when γ < ∞, we have γ− = 0 so that jk+1 = jk + 1 and therefore

ik+1 − ik − 1 = i′jk+1
− i′jk − 1 = i′

jk+1 − i′jk − 1 ≤ γ so that S ⊆γ T . �

It directly follows that fγ(S,D) ≥ fγ(S′,D). Thus, if S′ is frequent and S is a

γ−-subsequence of S′, then S must also be frequent. In particular, if γ = ∞, every

subsequence of S′ is frequent. If γ < ∞, the consecutive subsequences of S′ are

frequent.

Note that we carefully distinguished the cases γ = ∞ and γ < ∞. The reason is,

perhaps contrary to intuition, that not every subsequence of a frequent sequence is

necessarily frequent as well. To see this, consider the database

Dex = { abc, abec, abcd, abc f d } , (4.1)

and its set of (2, 1, 4)-frequent sequences:

F2,1,4(Dex) = {a(4), b(4), c(4),d(2), ab(4), ac(4), bc(4), cd(2),
abc(4), acd(2), bcd(2), abcd(2)}.

Here we also provide frequencies (which are not formally part of F2,1,4(Dex)). Ob-

serve that sequence S = abcd is frequent whereas some of its subsequences are not.

In particular, sequence bd ⊆1 S is not frequent, even though bd is a γ-subsequence

(but not a γ−-subsequence) of S. As asserted by Lemma 4.1, all consecutive sub-

sequences of S are indeed frequent (a, ab, abc, . . .).

Consider a frequent sequence S′ ∈ Fσ,γ,λ(D) of length l. The above lemma

implies that when γ = ∞, each of the 2l − 1 non-empty subsequences of S′ are

also frequent. Similarly, when γ < ∞, each of the l(l + 1)/2 non-empty consecutive

subsequences of S are frequent. The goal of mining maximal sequences is to avoid

outputting these “redundant” sequences. In particular, a sequence is maximal if and

only if it is not redundant:

De�nition 4.1 (Maximality). A sequence S is (σ, γ, λ)-maximal if S is (σ, γ, λ)-
frequent and there is no sequence S′ ⊃γ− S which is also (σ, γ, λ)-frequent. The set

40

4.2. Mining Maximal Sequences

of (σ, γ, λ)-maximal sequences is given by

Fmax

σ,γ,λ(D) = { S ∈ Fσ,γ,λ(D) | ¬∃S′ ∈ Fσ,γ,λ(D) : S ⊂γ− S′ }.

For our running example, we obtain

Fmax

2,∞,4(Dex) = { abcd(2) } ,
Fmax

2,1,4(Dex) = { acd(2), abcd(2) } . (4.2)

As alluded to above, we can reconstruct the set of all frequent sequences from

the set of maximal sequences:

Fσ,γ,λ(D) = {S | S ⊆γ− S′, S′ ∈ Fmax

σ,γ,λ(D)}.

This is true because (1) every γ−-subsequence of a maximal sequence must be (σ, γ, λ)-
frequent and (2) every (σ, γ, λ)-frequent sequence must be a γ−-subsequence of

some maximal sequence. (1) holds by Lemma 4.1, (2) holds by de�nition of Fmax

σ,γ,λ(D).
A similar reasoning can be applied to closed sequences. Here we want to be

able to reconstruct from the set of closed sequences the set of frequent sequences

along with their frequencies. The following notion of closedness allows for such re-

construction.

De�nition 4.2 (Closedness). A sequence S is (σ, γ, λ)-closed if S is (σ, γ, λ)-frequent
and there is no (σ, γ, λ)-frequent sequence S′ ⊃γ− S of the same frequency, i.e., with

fγ(S′,D) = fγ(S,D). The set of (σ, γ, λ)-closed sequences is given by

Fclosed

σ,γ,λ(D) = { S ∈ Fσ,γ,λ(D) | ¬∃S′ ∈ Fσ,γ,λ(D) : S ⊂γ− S′∧ fγ(S,D) = fγ(S′,D) }.

For our running example, we obtain

Fclosed

2,∞,4 (Dex) = { abcd(2), abc(4) } ,
Fclosed

2,1,4 (Dex) = { ac(3), abc(4), acd(2), abcd(2) } . (4.3)

Ignoring frequencies, observe that Fmax

σ,γ,λ(D) ⊆ Fclosed

σ,γ,λ (D) ⊆ Fσ,γ,λ(D) so that re-

construction of frequent sequences is still possible. The frequency of a reconstruc-

ted sequence is the maximum of the frequencies of its closed γ-supersequences. For

example,

f1(bc) = max { f1(abc), f1(abcd) } = max { 4, 2 } = 4.

4.2 Mining Maximal Sequences

One way to adapt MG-FSM to mine maximal sequences is to �rst compute the set of

all frequent sequences Fσ,γ,λ(D) and subsequently �lter out sequences that are not

maximal. This approach is not e�cient, however: First, we mine too many sequences

41

4. Maximality and Closedness Constraints

from each partition (i.e., sequences that cannot possibly be maximal). Second, a

naïve approach for the subsequent �ltering step takes O(|Fσ,γ,λ(D)|2) time. In what

follows, we propose a more suitable approach which integrates the maximality con-

straint directly into MG-FSM. We refer to this adaptation as MG-FSM
+

.

Recall that MG-FSM creates one partition Pw for each item w. Let S be a pivot

sequence for Pw ; i.e., p(S) = w and 2 ≤ |S | ≤ λ. Then MG-FSM guarantees that

fγ(S,Pw) = fγ(S,D). Now suppose that S is frequent so that MG-FSM outputs it

when mining Pw . Ideally, we would like MG-FSM
+

to output S if and only if it is

also maximal. Unfortunately, we cannot test for maximality locally in each parti-

tion because the frequencies fγ(S′,Pw) of supersequences S′ ⊃γ− S may not (and

usually will not) coincide with the corpus frequency fγ(S′,D) when p(S′) , w. To

see this, �x σ, γ, and λ and denote the output of MG-FSM at partition Pw by

Fw(Pw) = { S ∈ Fσ,γ,λ(D) | p(S) = w ∧ S , w }.

For our example database Dex of Equation (4.1) and σ = 2, γ = 1 and λ = 4, we

have

Fc(Pc) = { ac(4), bc(4), abc(4) } .
Now consider frequent sequence S = abc ∈ Fc(Pc). Sequence S is not maximal

since sequence S′ = abcd ⊃0 S is frequent in Dex. However, S′ < Fc(Pc) so that

we cannot decide locally at Pc whether or not S is maximal.

A key ingredient to MG-FSM
+

is to test for local maximality and output in

each partition only those frequent sequences that are locally maximal. Our local-

maximality test exploits that whenever a sequence is not locally maximal, then it is

also not (globally) maximal; we thus do not incorrectly �lter out maximal sequences.

The set of locally maximal sequences at partition Pw is given by:

De�nition 4.3 (Local and global maximality). A sequence S with p(S) = w is locally

maximal if S ∈ Fmax

w (Pw), where

Fmax

w (Pw) = { S ∈ Fw(Pw) | ¬∃S′ ∈ Fw(Pw) : S ⊂γ− S′ }.

Sequence S is globally maximal if S ∈ Fmax

σ,γ,λ(D).

Thus a sequence S with pivot w = p(S) is locally maximal if it is maximal with

respect to the output Fw(Pw) at the partition Pw that mines S. Stated di�erently,

a sequence S is locally maximal if and only if S is frequent, |S | ≥ 2, and there is no

frequent sequence S′ ⊃γ− S with the same pivot item (i.e., p(S′) = p(S)). For our

running example, we obtain

Fmax

c (Pc) = { ac(4), abc(4) } .

Observe that bc ∈ Fc(Pc) but, since abc ∈ Fc(Pc), bc < Fmax

c (Pc). Also observe

that bc is indeed not maximal. Figure 4.1 shows the set of locally maximal sequences

for each of the partitions obtained for our example database. The following lemma

asserts that we can safely �lter out sequences that are not locally maximal.

42

4.2. Mining Maximal Sequences

Lemma 4.2. Every globally maximal sequence S with |S | ≥ 2 is also locally maximal.

Proof. Let S with |S | ≥ 2 be globally maximal and set w = p(S). We have f (S,D) ≥
σ and, since D and Pw are w-equivalent, S ∈ Fw(Pw). We have to show that S ∈
Fmax

w (Pw) as well. Suppose to the contrary that S < Fmax

w (Pw). By the de�nition of

local maximality, there must be a sequence S′ ⊃γ− S with S′ ∈ Fw(Pw). Since S′ ∈
Fw(Pw), we have p(S′) = w, |S′ | ≥ 2 and f (S′; Pw) ≥ σ. Since furthermore D and

Pw are w-equivalent, it follows that f (S′; Pw) = f (S′; D) and thus f (S′; D) ≥ σ.

But then S′ ∈ Fσ,γ,λ(D) so that S cannot be globally maximal, a contradiction. �

Note that the opposite does not necessarily hold, i.e., there can exist a sequence

S that is locally maximal but not globally maximal. This happens when (1) there is

no frequent sequence S′ ⊃γ− S with p(S′) = w but (2) there is a frequent sequence

S′′ ⊃γ− S with p(S′′) > w. Note that p(S′′) ≥ w for all S′′ ⊇ S. Here (1) implies

that S is locally maximal and (2) implies that S is not globally maximal. We refer to

such sequences as spurious sequences. In Fmax

c (Pc) shown above, all sequences are

spurious (since both acd and abcd are frequent).

MG-FSM
+

, which is given as Algorithm 4.1, is divided into two steps, each cor-

responding to a MapReduce job.

1) Mine and output the set Fmax

w (Pw) of locally maximal sequences for each

partition Pw ; this step is similar to MG-FSM. A straightforward approach to

obtain Fmax

w (Pw) for each partition Pw is to �rst compute Fw(Pw) and then

test whether each so-obtained sequence is locally maximal. A more e�cient

alternative, which we use in MG-FSM
+

, is to directly mine locally maximal

sequences instead. To do so, we can use any suitable maximal sequence miner;

e.g, the algorithm of Fournier-Viger et al. (2013).
b

2) Determine the set of globally maximal sequences by identifying and elimin-

ating all spurious sequences.

The algorithm is illustrated in Figure 4.1.

In the remainder of this section, we discuss an e�cient technique for pruning

spurious sequences. Let S+ be a locally maximal sequence with p(S+) = w+; i.e.,

S+ ∈ Fmax

w+
(Pw+). Furthermore, let S be a γ−-subsequence of S+ and set w = p(S).

The key idea of our approach is as follows: If S is locally maximal, then S+ “proves”

that S is spurious; we refer to such an S+ as a witness for the spuriousness of S.

In our running example, S = ac is a spurious sequence at partition Pc ; sequence

S+ = acd from partition Pd is its witness (see also Figure 4.1). Note that a spurious

sequence can have more than one witness.

b
This approach is valid if we ensure that p(T) ≤ w for all T ∈Pw . Since during rewriting (Map1,

Section 3.2.3), we replace all irrelevant items (i.e., items > w) by blanks, this property holds.

43

4. Maximality and Closedness Constraints

Algorithm 4.1 The MG-FSM
+

algorithm

Require: Sequence database D , σ, γ, λ, f-list Fσ,0,1(D), type ∈ {max, closed }
1: Map1(T):
2: Same as Map(T) in Algorithm 3.1; removal of irrelevant items required

3:

4: Reduce1(w,Pw):
5: Ftype

σ,γ,λ(Pw) ← FSM
type

σ,γ,λ(Pw)
6: for all S ∈ Ftype

σ,γ,λ(Pw) do
7: if p(S) = w and S , w then
8: Output (S, fγ(S,Pw))
9: end if

10: end for
11:

12: Map2(S+, fγ(S+,D)): // where S+ ∈ Fσ,0,1(D) ∪
⋃

w Ftype
w (Pw)

13: f + ← fγ(S+,D)
14: l+ ← |S+ |
15: for all S ∈ Wγ(S+) do
16: Output (S, 〈l+, f +〉)
17: end for
18:

19: Reduce2(S, { 〈l, f 〉 }):
20: switch (type)

21: case max:
22: 〈l∗, f ∗〉 ← pair in { 〈l, f 〉 } having maximum length l
23: case closed:
24: 〈l∗, f ∗〉 ← pair in { 〈l, f 〉 } having highest frequency f ;

resolve ties by picking the pair with maximum length l
25: end switch
26: if |S | = l∗ then
27: Output (S, f ∗)
28: end if

44

4.2. Mining Maximal Sequences

To ensure the e�ciency of the pruning step, we need to ensure that we �nd a

witness for each spurious sequence e�ciently and in parallel. MG-FSM
+

uses the

following observation to restrict search to the set of primary witnesses.

Lemma 4.3. Let S be a spurious sequence. Then there is a primary-witness sequence

S+, which satis�es

1) S ⊂γ− S+, p(S+) > p(S), and S+ is frequent,
2) S+ is locally maximal,

3) there is no intermediate sequence S∗ with p(S∗) < p(S+) and S ⊂γ− S∗ ⊂γ− S+.

Proof. Since S is spurious, there must be some globally maximal sequence S′ ⊃γ− S
satisfying (1); Lemma 4.2 implies that S′ also satis�es (2). If S′ satis�es (3), we take

S+ = S′ and are done.

Otherwise, let w = p(S). Pick any sequence S′ that satis�es (1) and (2); the

discussion above shows that there is such a sequence. Suppose that S′ contains

only one distinct item w′ that is larger than w. We show that S′ then satis�es (3).

Suppose to the contrary that S′ contains a subsequence S∗ satisfying S ⊂γ− S∗ ⊂γ−
S′ and w∗ = p(S∗) < p(S′) = w′. Since S′ contains only one distinct item that

is “larger” than w, we must have w∗ = w. Since S′ is frequent and by Lemma 4.1

any γ−-subsequence of a frequent sequence is itself frequent, we conclude that S∗

is frequent. Putting both together, we have S∗ ∈ Fw(Pw). But then S is not locally

maximal and thus not a spurious sequence, a contradiction.

Now assume that S′ satis�es (1) and (2) but not (3). We show that there must be

a “smaller” sequence S− such that p(S) < p(S−) < p(S′) and S− satis�es (1) and (2).

If S− also satis�es (3), we are done. If not, we iterate this process by taking the just-

obtained sequence S− for S′. Since after every iteration p(S) < p(S−) < p(S′), S−

will eventually satisfy (3); by the discussion above, this happens at the latest when

S− contains only one item larger than w. The lemma thus follows.

It remains to show that S− exists. Let w′ = p(S′) and let S∗ be any subsequence

of S′ violating (3), i.e., w∗ = p(S∗) < w′ and S ⊂γ− S∗ ⊂γ− S′. Using arguments as

above, we �nd that S∗ satis�es (1). If S∗ also satis�es (2), set S− = S∗. Otherwise, S∗

is not locally maximal. But then there is a locally maximal sequence S∗2 ∈ Fw∗(Pw∗)
with S∗ ⊂γ− S∗2 . Clearly, S ⊂γ− S∗2 as well. Since additionally p(S∗2) = w∗ > w, we

conclude that S∗2 satis�es (1) and (2), and set S− = S∗2 . �

Again, there can be more than one primary witness for S. The key property

exploited by MG-FSM
+

is (3). We provide some intuition on the assertion of the

lemma here. First, in our example of Figure 4.1, abc (from Pc) is a primary witness

for spurious sequence ab (from Pb). In contrast, even though sequence abcd (from

Pd) is a witness for ab, it is not a primary witness since it violates (3) with inter-

mediate sequence abc. In general, the lemma tells us that if S is spurious, then there

is primary witness sequence S+ which contains S as a γ−-subsequence arranged in

45

4. Maximality and Closedness Constraints

ab
c

ab
ec

ab
cd

ab
c

fd

D
e
x

a(
4)

b(
4)

c(
4)

d(
2)f
-
l
i
s
t

Map1+Reduce1

ac
(3
)

ab
c(

4)

F
m

a
x

c

ac
d(

2)
ab

cd
(2
)

F
m

a
x

d

ab
(4
)

F
m

a
x

bF
m

a
x

a

ab
〈2
,4
〉

b
〈2
,4
〉

a
〈2
,4
〉

ac
〈2
,3
〉

c
〈2
,3
〉

a
〈2
,3
〉

ab
c
〈3
,4
〉

c
〈3
,4
〉

ab
〈3
,4
〉

ac
d
〈3
,2
〉

d
〈3
,2
〉

ac
〈3
,2
〉

ab
cd
〈4
,2
〉

d
〈4
,2
〉

ab
c
〈4
,2
〉

a
〈1
,4
〉

b
〈1
,4
〉

c
〈1
,4
〉

d
〈1
,2
〉

S
〈l,

f〉

a
〈1
,4
〉,
〈2
,4
〉,〈

2,
3〉

b
〈1
,4
〉,
〈2
,4
〉

c
〈1
,4
〉,
〈2
,3
〉,
〈3
,4
〉

d
〈1
,2
〉,
〈3
,2
〉,
〈4
,2
〉

ab
〈2
,4
〉,〈

3,
4〉

ac
〈2
,3
〉,〈

3,
2〉

ab
c
〈3
,4
〉,〈

4,
2〉

ac
d
〈3
,2
〉

ab
cd
〈4
,2
〉

R
e
d

u
c
e
2

i
n

p
u

t

ac
d

2

ab
cd

2

F
m

a
x

2,
1,

4(
D

e
x
)

Partitioning(Map2)

Filtering(Reduce2)

Fi
gu

re
4.
1:

M
i
n
i
n
g
m
a
x
i
m
a
l
s
e
q
u
e
n
c
e
s
w
i
t
h
M
G
-
F
S
M
+
(
σ
=

2,
γ
=

1,
λ
=

4)
.

46

4.2. Mining Maximal Sequences

a “certain way”. To see how S+ is arranged, let w+ = p(S+). If γ < ∞, property

(1) implies that S appears consecutively in S+. The spuriousness of S along with

property (3) imply that there is either pivot w+ or the start/end of the sequence to

the left and right of the occurrence of S. Continuing the above example, ab occurs

consecutively in its primary witness abc and is enclosed by the start of the sequence

to the left and pivot c to the right. Similarly, if γ = ∞, the spuriousness of S along

with property (3) imply that S is obtained from S+ by dropping all pivots w+ from

S+.

We are now ready to describe the second step of MG-FSM
+

(Lines 12–28 of

Algorithm 4.1), which removes spurious sequences. The step is divided into a par-

titioning phase, which matches primary witnesses with their spurious sequences,

and a �ltering phase, which produces the �nal output.

Partitioning phase (Map2).

We map over the locally maximal sequences obtained in the �rst step of MG-FSM
+

(sequences of length at least 2) as well as over the f-list (length 1). For each sequence

S+, we generate the set of sequences for which S+ can potentially be a primary

witness. By the arguments right below Lemma 4.3, there is only a small set of such

sequences. In more detail, set w+ = p(S+) and divide S+ into non-empty chunks

S1, . . . , Sn by splitting at pivots, i.e.,

S+ = (w+)∗ S1 (w+)+ S2 (w+)+ ... (w+)+ Sn (w+)∗,

such that p(Si) < w+; here (w+)∗ ((w+)+) denotes 0 or more (1 or more) occurrences

of pivot w+. Denote by

Wγ(S+) =
{

S+
}
∪

{
w+

}
∪

{
{ S1S2S3...Sn } if γ = ∞
{ S1, S2, S3, ..., Sn } if γ < ∞,

the set of sequences for which S+ can be a primary witness, as well as w+ and S+

itself. Note that we include pivot w+ because, if |S+ | ≥ 2, S+ proves 1-sequence w+

from the f-list to be spurious. For example, for sequence S+ = abcdbb with p(S+) =
d, we have W∞(S+) = { abcdbb, d, abcbb } and W1(S+) = { abcdbb, d, abc, bb }.

We emit a key-value pair for every sequence S ∈ Wγ(S+): the key is S, the value

is �xed to the pair of length and frequency of S+, i.e., we output (S, 〈|S+ |, fγ(S+,D)〉).
Figure 4.1 shows the output of Map2 for our example database (by partition and by

key). Note that only key-value pair (S+, 〈|S+ |, fγ(S+,D)〉) has the length of the key

equal to the length recorded in the value; for all other key-value pairs (S, 〈l, f 〉), we

have S , S+ and l = |S+ | > |S |. The total length of all emitted key-value pairs is

linear in the total length of the set of locally maximal sequences.

47

4. Maximality and Closedness Constraints

Filtering phase (Reduce2).

The reduce phase processes independently each sequence output as a key in Map2.

These sequences consist of all frequent 1-sequences (from the f-list), all locally max-

imal sequences, and some additional sequences contained in the set Wγ(S+) of some

frequent sequence S+. For each sequence S, we are given the corresponding evid-

ence set E(S) = { 〈l, f 〉 } of (length, frequency)-pairs as input. We �rst determine

whether or not S is a frequent 1-sequence or a locally maximal sequence. In partic-

ular, if there is no pair 〈lS, fS〉 ∈ E(S) such that lS = |S |, then S is a member of some

set Wγ(S+) but it is itself neither a frequent 1-sequence nor locally maximal. Thus we

do not output S. Otherwise, there is a pair 〈lS, fS〉 ∈ E(S) such that lS = |S |; this pair

was produced when processing S+ = S in Map1 so that fs = fγ(S+,D) = fγ(S,D).
We now need to determine whether S is globally maximal. If there is any additional

pair 〈l+, f +〉 in E(S), then this pair must have been generated from a primary wit-

ness S+ for S (with S+ , S and S ∈ Wγ(S+)) and we have l+ > |S |. We conclude that

S is spurious. Finally, if there is no such pair, then S does not have a primary wit-

ness. Lemma 4.3 then implies that S is globally maximal so that we output (S, fS).
All of the above steps can be performed jointly as follows: Select any pair 〈l∗, f ∗〉
of maximum length from E(S) and output (S, f ∗) if and only if |S | = l∗. Figure 4.1

shows 〈l∗, f ∗〉 (underlined) and the output of Reduce2 for our example database.

Sequences acd and abcd are the only globally maximal sequences in this example;

these sequences are correctly identi�ed by our approach.

In our implementation of the second step of MG-FSM
+

, we further improve e�-

ciency by making use of the combine functionality of MapReduce. In particular, our

combine function mirrors Reduce2; the key di�erence is that we only and always

output the key-value pair (S, 〈l∗, f ∗〉). Combiners thus prune length-frequency pairs

that are not needed in Reduce2 so that correctness is maintained. Our use of com-

biners reduces the communication costs between the map and reduce phases as well

as the computational cost in the reduce phase itself.

4.3 Mining Closed Sequences

MG-FSM
+

can also be used to mine closed sequences using a similar approach as

described above; see Algorithm 4.1. Figure 4.2 shown the corresponding illustration.

We outline the key di�erences in this section.

In the �rst step, we mine and output the set Fclosed

w (Pw) of locally closed se-

quences in each partition Pw where,

Fclosed

w (Pw) = {S ∈ Fw(Pw) | ¬∃S′ ∈ Fw(Pw) : S ⊂γ− S′

∧ fγ(S,Pw) = fγ(S′,Pw)}.

As before, we can use any closed sequence miner to obtain this set (Line 5 of Al-

48

4.3. Mining Closed Sequences

gorithm 4.1). For our example database, we obtain

Fclosed

a (Pa) = ∅,
Fclosed

b (Pb) = { ab(4) } ,
Fclosed

c (Pc) = { ac(3), abc(4) } and

Fclosed

d (Pd) = { acd(2), abcd(2) } .

These sets (coincidentally) agree with the corresponding sets of maximally closed

sequences shown in Figure 4.1. (The set of globally closed sequences for our example

database is given in Equation (4.3).)

In the second step, we determine globally closed sequences by identifying and

eliminating all spurious sequences, i.e., sequences that are locally but not globally

closed (ab is spurious in our example). We use a slightly di�erent notion of witness:

a locally closed sequence S+ is a potential witness of the spuriousness of S if as be-

fore S ⊂γ− S+; it is a witness if additionally fγ(S,D) = fγ(S+,D). As in the case of

maximality, we can show that there must exist a primary witness for each spurious

sequence; the proof is similar to Lemma 4.3 and omitted here. For example, the se-

quence ab ∈ Fclosed
b

(Pb) is spurious; its witness (and primary witness) is sequence

abc ∈ Fclosed
c (Pc) with f1(ab,Dex) = f1(abc,Dex) = 4. As another example, the

sequence ac ∈ Fclosed
c (Pc) is not spurious; the only potential witness is acd ∈

Fclosed
d

(Pd), but acd has incorrect frequency (f1(ac,Dex) = 3 , 2 = f1(acd,Dex))
so that it is not a witness.

To eliminate spurious sequences, we map over the locally closed sequences as

well as over the f-list exactly as in the case of maximality (Map1); i.e., we output

for each sequence S+ the set Wγ(S+) of sequences for which S+ can be a primary

witness. We then check in the �ltering phase for each sequence S whether (1) there

is a potential witness (as before) that (2) agrees in frequency with S and thus is also

a witness (new). Consider a sequence S and its corresponding evidence set E(S) =
{ 〈l, f 〉 }. We select from E(S) the pair 〈l∗, f ∗〉 having highest frequency; we break

ties by selecting the pair of maximum length. We then output (S, f ∗) if and only if

|S | = l∗. To see that this approach correctly determines globally closed sequences,

assume that S is locally closed and spurious. Observe that each potential witness

S+ of S satis�es fγ(S+,D) ≤ fγ(S,D) by Lemma 4.1; equality holds if and only if S+

is also a witness. Thus, if there is no witness for S, then S is the unique sequence

of highest frequency in E(S); we have 〈l∗, f ∗〉 = 〈|S |, fγ(S,D)〉 and thus output

(S, fγ(S,D)). Otherwise, if there is a witness S+, then fγ(S+,D) = fγ(S,D) and our

tie-breaking strategy applies. Since |S+ | > |S |, we select 〈l∗, f ∗〉 = 〈|S+ |, fγ(S+,D)〉
and thus do not output S.

The input to the �ltering step in our running example is shown in Figure 4.2

under “Reduce2 input” in which we also underline 〈l∗, f ∗〉. First consider spuri-

ous sequence S = ab. We have E(S) = { 〈2, 4〉, 〈3, 4〉 } and thus select 〈l∗, f ∗〉 =
〈3, 4〉 (produced from W1(abc)). Since l∗ = 3 , 2 = |S |, we conclude that S is

49

4. Maximality and Closedness Constraints

ab
c

ab
ec

ab
cd

ab
c

fd

D
e
x

a(
4)

b(
4)

c(
4)

d(
2)f
-
l
i
s
t

Map1+Reduce1

ac
(3
)

ab
c(

4)

F
c
l
o

s
e
d

c

ac
d(

2)
ab

cd
(2
)

F
c
l
o

s
e
d

dab
(4
)

F
c
l
o

s
e
d

bF
c
l
o

s
e
d

a

ab
〈2
,4
〉

b
〈2
,4
〉

a
〈2
,4
〉

ac
〈2
,3
〉

c
〈2
,3
〉

a
〈2
,3
〉

ab
c
〈3
,4
〉

c
〈3
,4
〉

ab
〈3
,4
〉

ac
d
〈3
,2
〉

d
〈3
,2
〉

ac
〈3
,2
〉

ab
cd
〈4
,2
〉

d
〈4
,2
〉

ab
c
〈4
,2
〉

a
〈1
,4
〉

b
〈1
,4
〉

c
〈1
,4
〉

d
〈1
,2
〉

S
〈l,

f〉

a
〈1
,4
〉,
〈2
,4
〉,〈

2,
3〉

b
〈1
,4
〉,
〈2
,4
〉

c
〈1
,4
〉,
〈2
,3
〉,
〈3
,4
〉

d
〈1
,2
〉,
〈3
,2
〉,
〈4
,2
〉

ab
〈2
,4
〉,〈

3,
4〉

ac
〈2
,3
〉,〈

3,
2〉

ab
c
〈3
,4
〉,〈

4,
2〉

ac
d
〈3
,2
〉

ab
cd
〈4
,2
〉

R
e
d

u
c
e
2

i
n

p
u

t

ac
3

ab
c

4

ac
d

2

ab
cd

2

F
c
l
o

s
e
d

2,
1,

4
(D

e
x
)

Partitioning(Map2)

Filtering(Reduce2)

Fi
gu

re
4.
2:

M
i
n
i
n
g
c
l
o
s
e
d
s
e
q
u
e
n
c
e
s
w
i
t
h
M
G
-
F
S
M
+
(
σ
=

2,
γ
=

1,
λ
=

4)
.

50

4.4. Experiments

spurious. As another example, consider the globally closed sequence S = ac with

E(S) = { 〈2, 3〉, 〈3, 2〉 }. Here we select pair 〈l∗, f ∗〉 = 〈2, 3〉 (from W1(S)), which is

the unique pair of highest frequency. Since l+ = 2 = |S |, we conclude that S is not

spurious and output S. In fact, pair 〈3, 2〉 ∈ E(S) has been generated from W1(acd);
we correctly identify that acd is not a witness (even though it is a potential witness).

The output of Reduce2 shows the set of globally closed sequences obtained by our

approach.

4.4 Experiments

We evaluated the performance of MG-FSM
+

for mining maximal and closed se-

quences. Recall that MG-FSM
+

, in contrast to MG-FSM, makes use of a post-processing

step to �lter out spurious sequences. We report separately the time required to mine

locally maximal or closed sequences (�rst MapReduce job) and the time required for

post-processing (second job). In all experiments, we used the NYT-sen dataset (see

Table 3.1) and set the default values to σ = 100, γ = 1 and λ = 5.

We �rst studied the performance of MG-FSM
+

for various choices of the maximum-

length parameter λ, which we vary from 5 to 20. We set σ = 100 and γ = 1. Fig-

ure 4.3a shows the total runtime for mining all sequences, maximal sequences, as

well as closed sequences. Figure 4.3c shows the corresponding number of output

sequences. First, observe that for large values of λ, the decrease in output size is

signi�cant (up to 3x for maximality and 2.5x for closedness); this shows that min-

ing only maximal or closed sequences can be bene�cial. Second, observe that the

time required to mine maximal or closed sequences is close to the time required to

mine all frequent sequences, i.e., the overhead of mining locally maximal or closed

sequences as well as �ltering spurious sequences in the post-processing step is low.

Finally, observe that the time required for post-processing increases as we increase

λ. As can be seen in Figure 4.3c, large values of λ lead to a larger output sizes in all

cases. This increase in output size translates to more work in the post-processing

step, which thus takes more time.

We also studied the impact of the maximum-gap parameter γ by varying its

value from 0 to 4. We set σ = 100 and λ = 5. The results are shown in Figures 4.3b

and 4.3d. As before, the overhead of maximal or closed sequence mining (second

job) was small. For large values of γ, we observed that the time required to mine

locally maximal or closed sequences (�rst job) was slightly larger than the time

required to mine all sequences. This increase in runtime stems from our additional

test for local maximality or closedness; we mine all sequences but only output the

maximal and closed ones. This test took more time (up to 200s) as γ, and thus the

number of sequences being processed and tested, increased. This problem is not

inherent to MG-FSM
+

: using a state-of-the-art maximal or closed sequence miner

in the local mining step may reduce running time. Note that maximal and closed

51

4. Maximality and Closedness Constraints

Maximum length (λ)

T
im

e
[s

]

0
10

0
20

0
30

0
40

0
50

0
60

0

all
locally maximal
locally closed
post processing

5 10 15 20

(a) NYT-sen (σ = 100, γ = 1)

Maximum gap (γ)

T
im

e
[s

]

0
50

0
10

00
15

00
20

00 all
locally maximal
locally closed
post processing

0 1 2 3 4

(b) NYT-sen (σ = 100, λ = 5)

Maximum length (λ)

#
O

ut
pu

t
se

qu
en

ce
s

[M
ill

io
ns

]

0
20

40
60

80
10

0
14

0

all
maximal
closed

5 10 15 20

(c) NYT-sen (σ = 100, γ = 1)

Maximum gap (γ)

#
O

ut
pu

t
se

qu
en

ce
s

[M
ill

io
ns

]

0
10

20
30

40
50 all

maximal
closed

0 1 2 3 4

(d) NYT-sen (σ = 100, λ = 5)

Figure 4.3: Performance of mining maximal and closed sequences

52

4.5. Related Work

sequence mining was not particularly e�ective in reducing the output size for our

choice of λ = 5. This happens because λ was comparably small and all sequences

of length λ are maximal and closed.

4.5 Related Work

To reduce the size of the frequent sequences, many studies have focused on mining

closed sequences since they concisely represent the set of all frequent sequences.

Adapting pattern growth approaches like Pre�xSpan, Yan et al. (2003) describe the

CloSpan algorithm to mine closed sequences. It maintains the set of already mined

closed sequence candidates which are used to prune the search space and checks if

a newly found sequence is a candidate closed sequence. This method requires post

processing to prune non-closed sequences. A potential limitation of CloSpan is that

it requires to maintain the set of all closed sequence candidates in memory. To this

end, Wang and Han (2004) proposed the BIDE algorithm, which does not require

to keep a candidate set of closed sequences. Instead, it uses a bi-directional closure

checking scheme to determine if a newly generated candidate sequence is closed

or not. Cong et al. (2005) describe a parallel distributed-memory variant of BIDE.

Their algorithm assigns each process frequent length-1 sequence and its pseudo-

projected database; each process then mines closed sequences using BIDE. Li and

Wang (2008) extend the framework of BIDE to mine closed sequences with gap-

constraints. Di�ering from the pattern growth approaches, the ClaSP algorithm Go-

mariz et al. (2013) exploits the vertical database format of SPADE to discover closed

sequences. It traverses the lattice of all sequences in a depth-�rst order and uses

ideas from CloSpan to generate candidate closed sequences and to prune non-closed

sequences. Ideas for mining closed sequences can well be carried over to mine

maximal sequences. In this direction, Fournier-Viger et al. describe the MaxSP al-

gorithm Fournier-Viger et al. (2013) which is based on BIDE to mine maximal se-

quences. A later algorithm called VMSP Fournier-Viger et al. (2014), which is along

the lines of ClaSP, mines maximal sequential patterns using the vertical database

format. Luo and Chung (2005) describe the MSPX method which uses database

samples for mining maximal sequential patterns. However, MSPX is an approximate

algorithm and thus may not mine the complete set of maximal patterns.

4.6 Summary

In this chapter, we proposed the MG-FSM
+

algorithm, which extends MG-FSM to

support mining maximal and closed gap-constrained sequences. In particular, we

showed that using arbitrary maximal or closed sequence miner to mine partition

results in sequences that may not be globally maximal or closed across partitions.

We developed e�cient pruning techniques to identify and prune such sequences.

53

4. Maximality and Closedness Constraints

Our experimental study indicates that the overhead of our pruning techniques is

low.

54

C
h

a
p
t

e
r 5

Hierarchy Constraints

In many applications of frequent sequence mining, the individual items of the input

sequences are naturally arranged in a hierarchy. For example, the individual words

in a text document can be arranged in a syntactic hierarchy: words (e.g., “lives”)

generalize to their lemmas (“live”), which in turn generalize to their respective part-

of-speech tags (“verb”). Products in sequences of customer transactions also form a

natural product hierarchy, e.g. “Canon EOS 70D” may generalize to “digital camera”,

which generalizes to “photography”, which in turn generalizes to “electronics”. As

a �nal example, entities such as persons can be arranged in semantic hierarchies;

e.g., “Angela Merkel” may generalize to “politician,” “person,” “entity.” Depending

on the application, the hierarchy may exhibit di�erent properties; it may be �at or

deep, or it may have low or high fan-out. Hierarchies are sometimes inherent to the

application (e.g., hierarchies of directories or web pages) or they are constructed in

a manual or automatic way (e.g., product hierarchies).

In this chapter,
a

we consider a generalized form of frequent sequence mining—

which we refer to as generalized sequence mining (GSM)—in which the item hier-

archies are speci�cally taken into account. In particular, the items in both input se-

quences and sequential patterns may belong to di�erent levels of the item hierarchy.

This generalization allows us to �nd sequences that would otherwise be hidden. For

example, in the context of text mining, such patterns include generalized n-grams

(the ADJ house) or typed relational patterns (PERSON lives in CITY). In both cases,

the patterns do not actually occur in various non-generalized form, but are useful

for language modeling [Jang and Mostow (2012); Lin et al. (2012); Wang and Vergyri

(2006)] or information extraction tasks [Anh and Gertz (2012); Nakashole et al. (2011,

a
The material in this chapter is based on Beedkar and Gemulla (2015).

55

5. Hierarchy Constraints

2012)]. Hierarchies can also be exploited when mining market-basket data [Srikant

and Agrawal (1996)]—e.g., users may �rst buy some camera, then some photography

book, and �nally some �ash—or in the context of web-usage mining [Hollink et al.

(2013); Liao et al. (2011)].

The problem of mining frequent sequences with hierarchies was introduced by

Srikant and Agrawal (1996)], in which they extended the GSP algorithm to deal

with hierarchies. The extended algorithm takes as input sequences of itemsets (as

opposed to sequences of items). The hierarchy is then encoded into itemsets by

replacing each item (“lives”) by an itemset consisting of the item and its parents

({“lives”, “live”, “VERB”}); pruning or post-processing techniques are used to output

consistent generalized patterns. This approach is not e�cient for large databases

because it blows up the input data by a factor maximum depth of the hierarchy,

and su�ers from the repeated scans of the input data that GSP needs to make to

count sequences. In fact, the problem of how to scale frequent sequence mining

with hierarchies to large databases has not been studied in the literature.

We propose LASH,
b

the �rst scalable, general-purpose algorithm for mining fre-

quent sequences with hierarchies. LASH is inspired by MG-FSM in that it �rst parti-

tions the data and subsequently mines each partition independently and in parallel.

Key ingredients to the scalability of LASH are (i) a novel, hierarchy-aware variant

of item-based partitioning, (ii) optimized partition construction techniques, and (iii)

e�cient sequential GSM algorithms to mine each partition. We implemented LASH

using MapReduce and performed an experimental study on large real-world data-

sets including natural-language text and product sequences. Our results suggest that

LASH has good scalability and run-time e�ciency.

The remainder of this chapter is organized as follows. In Section 5.1, we form-

ally de�ne the problem of generalized sequence mining. In Section 5.2, we give an

overview of LASH and alternative baseline algorithms. In Section 5.3, we describe

the partition construction step of LASH in more detail. Algorithms for mining each

partition are discussed in Section 5.4. Section 5.5 describes our experimental study

and results. We discuss related work in Section 5.6 and summarize the chapter in

Section 5.7.

5.1 Preliminaries

We start with a formal de�nition of the GSM problem and related concepts; our

notation and terminology from Chapter 3 is extended accordingly.

b
LArge-scale Sequence mining with Hierarchies

56

5.1. Preliminaries

T1 : a b1 a b1
T2 : a b3 c c b2
T3 : a c
T4 : b11 a e a
T5 : a b12 d1 c
T6 : b13 f d2

(a) Example database

a B c D

b2b1 b3 d1 d2

b12b11 b13 e f

(b) Vocabulary and hierarchy

Figure 5.1: A sequence database and its vocabulary

Hierarchies

In GSM, the vocabulary is arranged in a hierarchy, i.e., each item has zero or more

children and at most one parent.
c

Figure 5.1a shows a example sequence database

Dex and a corresponding hierarchy in Figure 5.1b that we will use as an example

throughout this chapter. If an item v is an ancestor of some item u, we say that v is

“more general” than u; e.g., in our example hierarchy, B is more general than b1. We

distinguish leaf items (most speci�c, no descendants), root items (most general, no

ancestors), and intermediate items. In a hierarchy about music, for example, the song

“Blue Monday” may be a leaf item, its parent “pop song” an intermediate item, which

in turn may have as parent the root item “music”. For two items u, v ∈ Σ , we say that

u directly generalizes to v if u is more specialized than v; i.e., if u is a child of v in the

hierarchy, which we denote by u⇒ v. Denote by⇒∗ the re�exive transitive closure

of⇒. In our example, we have b11 ⇒ b1, b1 ⇒ B and consequently b11 ⇒∗ B. For

each item w ∈ Σ , we denote by anc(w) = { w′ | w ⇒∗ w′ } the set of ancestors

of w (including w) and by desc(w) = { w′ | w′⇒∗ w } the set of descendants of

w (again, including w). In our running example, we have anc(b1) = { b1, B } and

desc(b1) = { b1, b11, b12, b13 }.

Generalized sequences

We extend relation ⇒ to sequences in a natural way. In particular, we say that

sequence T = t1 . . . tn directly generalizes to sequence S = s1 · · · sn′ , denoted T ⇒
S, if n = n′ and there exists an index j ∈ [n] such that tj ⇒ sj and ti = si for

i , j . In our example, sequence T1 = ab1ab1 satis�es T1 ⇒ aBab1, T1 ⇒ ab1aB,

and T1 ⇒∗ aBaB (the most general form of T1). Note that we do not place any

limitation on the set of items that occur in database D ; each input sequence may be

composed of items from arbitrary levels of the hierarchy.

c
In this work, we assume that the item hierarchy forms a forest. In some applications, this as-

sumption may be violated and the hierarchy may instead form a directed acyclic graph; our methods

can be extended to deal with such hierarchies as well.

57

5. Hierarchy Constraints

Generalized subsequences

Combining generalizations and gap-constrained subsequences, we say that S = s1s2

. . . s |S | is a generalized subsequence of T = t1t2 . . . t |T | , denoted S vγ T , if there exists

integers 1 ≤ i1 < . . . < i |S | ≤ |T | such that tik ⇒∗ sk (recall that tik ⇒∗ sk includes

the case tik = sk) and 0 ≤ ik+1 − ik − 1 ≤ γ for 1 ≤ k ≤ |S |. For example, we have

ad1 v1 T5 and aD v1 T5 (even though D does not occur in T5). Note that if S is a

subsequence of T , then S is also a generalized subsequence of T ; the opposite may

or may not hold.

Support

Denote by

Supγ(S,D) =
{

T ∈ D : S vγ T
}
,

the support set of sequence S in the database D , i.e., the multiset of input sequences

in which S occurs directly or in specialized form. In our example database, we have

Sup0(aBc,Dex) = {T2 } and Sup1(aBc,Dex) = {T2,T5 }. Denote by fγ(S,D) =
|Supγ(S,D)| the frequency (or support) of S; e.g., f0(aBc,Dex) = 1 and f1(aBc,Dex) =
2. We say that sequence S is frequent in D if its frequency passes a support threshold

σ > 0, i.e., fγ(S,D) ≥ σ.

Problem statement

Denote by σ > 0 a minimum support threshold, by γ ≥ 0 a maximum-

gap constraint, and by λ ≥ 2 a maximum-length constraint. The GSM

problem is to �nd all frequent generalized sequences S, 2 ≤ |S | ≤ λ,

along with their frequencies fγ(S,D) (≥ σ).

Note that we exclude frequent items in our problem statement; these items can

easily be determined (and are, in fact, also determined by our LASH algorithm).

In our ongoing example and for σ = 2, γ = 1 and λ = 3, we obtain (sequence,

frequency)-pairs: (aa, 2), (ab1, 2), (b1a, 2), (aB, 3), (Ba, 2), (aBc, 2), (Bc, 2), (ac, 2),
(b1D, 2), and (BD, 2). Observe that b1D is frequent even though it does not occur

in the database and none of its specializations are frequent. Thus GSM can detect

non-obvious patterns in the data.

Discussion

The GSM problem as stated above asks for all sequences that frequently occur (dir-

ectly or in specialized form) in the database. Depending on the dataset, the set of

frequent sequences can be very large and partly redundant. In the example above,

for instance, the fact that b1D is frequent implies that BD must also be frequent.

In this case, the frequencies match; in general, they can be di�erent (e.g., aB has

58

5.2. Distributed Generalized Sequence Mining

Algorithm 5.1 Naïve GSM approach

Require: D , Σ ,⇒, σ, γ, λ

1: Map(T)

2: for all S ∈ Gγ,λ(T) do
3: emit (S, 1)
4: end for
5:

6: Reduce(S, F = (f1, . . . , fn))
7: fγ(S,D) ←

∑
i fi

8: if fγ(S,D) ≥ σ then
9: emit(S, fγ(S,D))

10: end if

higher frequency ab1). The potentially large number of output sequences is accept-

able for applications that focus on exploration (like the Google n-Grams viewer or

Netspeak) or use frequent sequences as input to further automated tasks (e.g., as

features in a learning system). In some applications, the set of output sequences

needs to be further restricted (e.g., using maximality or closedness constraints of

the previous chapter); we do not consider such restrictions in this work.

5.2 Distributed Generalized Sequence Mining

In what follows, we �rst discuss a set of baseline algorithms for solving the GSM

problem in a distributed fashion and describe their advantages and drawbacks. We

then propose LASH, a scalable distributed algorithm that alleviates the drawbacks

of the baseline approaches. All algorithms are described in terms of the MapReduce

framework.

5.2.1 Naïve Approach

A naïve approach to GSM is to �rst generate each generalized subsequence of each

input sequence and to subsequently count the global frequency of each such sub-

sequence. This approach can be implemented in MapReduce in a way similar to

“word counting” and is shown as Algorithm 5.1. In more detail, denote by

Gγ,λ(T) =
{

S | S vγ T, 1 < |S | ≤ λ
}

the set of generalized subsequences of T that match the length and gap constraints.

For example, for transaction T4 = b11aea and γ = 1 and λ = 3, we obtain

G1,3(T4) = { b11a, b11e, ae, aa, ea, b11ae, b11aa, b11ea, aea,

b1a, b1e, b1ae, b1aa, b1ea, Ba, Be, Bae, Baa, Bea },

59

5. Hierarchy Constraints

Algorithm 5.2 Computing generalized f-list

Require: D , Σ ,⇒
1: Map(T)

2: for all w ∈ G1(T) do
3: emit (w, 1)
4: end for
5:

6: Reduce(w, F = (f1, . . . , fn))
7: f0(w,D) ←

∑
i fi

8: emit(w, f0(w,D))

where the �rst line lists subsequences and the second line their generalizations. To

implement the naïve approach in MapReduce, we map over input sequences and, for

each input sequence T , we output each element S ∈ Gγ,λ(T) (as key). In the reduce

function, we count for each generalized subsequence S how often it occurred in the

data and output S if fγ(S,D) ≥ σ.

The key advantage of the naïve algorithm is its simplicity. The key disadvantage,

however, is that it creates excessive amounts of intermediate data and is thus gen-

erally ine�cient (cf. G1,3(T4) above). Denote by δ the maximum depth of the item

hierarchy and set l = |T |. For γ = 0, naïve outputs O(lδλ) generalized subsequences

per input sequence, i.e., it is exponential in λ and polynomial in δ; this number is in-

feasibly large in all but the most simple cases. When γ, λ ≥ l, the situation becomes

even more severe and naïve outputs O((δ+1)l) generalized subsequences per input

sequence.

5.2.2 Semi-Naïve Approach

To reduce the number of subsequences generated by the naïve approach, we can

make use of item frequencies to prune the set Gγ,λ(T) of generated subsequences.

We refer to this improvement as the semi-naïve approach.

The semi-naïve approach makes use of a generalized f -list, which contains each

frequent item w along with its frequency f0(w,D). Note that the generalized f-list

is hierarchy-aware, i.e., the frequency of each item w ∈ Σ is given by the number

of input sequences that contain w or any of its descendants. In other words, item

w is frequent if f0(w,D) ≥ σ; otherwise w is infrequent. For our example database

and σ = 2, the generalized f -list is shown in the top-left corner of Figure 5.2 on

page 68; it is also used by our LASH algorithm.

The generalized f-list can be computed e�ciently in a single MapReduce job as

shown in Algorithm 5.2. Denote by

G1(T) = { w′ | w ∈ T,w ⇒∗ w′ }

60

5.2. Distributed Generalized Sequence Mining

the set of items that appear in T along with their generalizations. For example,

G1(T4) = { b11, a, e, a, b1, B } .

Note that G1(T) has size O(lδ), where as before l = |T |, and is thus linear in l and

δ. To obtain the generalized f-list, we map over each T ∈ D and output each item in

G1(T) along with an associated frequency of 1. The reducer sums up the frequencies

for each item w to obtain f0(w,D).
The semi-naïve algorithm computes the set of frequent generalized sequences

in a second MapReduce job. It uses the generalized f-list to reduce the number of

generalized subsequences emitted by the map function of the naïve algorithm; the

reduce function remains unmodi�ed and counts frequencies. The semi-naïve al-

gorithm outputs only the subsequences S ∈ Gγ,λ(T) of input sequence T that do

not contain any infrequent item (see below). For example, the semi-naïve algorithms

emits for transaction T4 = b11aea, γ = 1, and λ = 3 the generalized subsequences

aa, b1a, b1aa, Ba, Baa.

Compared to the set G1,3(T4) output by the naïve algorithm, the output size is re-

duced by a factor of more than 3.

The correctness of the semi-naïve algorithm stems from the following lemma,

which implies that frequent sequences cannot contain infrequent items:

Lemma 5.1 (Support monotonicity). For any pair of generalized sequences S1 and S2

such that S1 vγ S2, we have Supγ(S1,D) ⊇ Supγ(S2) and consequently fγ(S1,D) ≥
fγ(S2,D).

The map phase (of the second job) can be implemented e�ciently by �rst gen-

eralizing each item of T to its closest frequent ancestor (if existent). If an item has

no frequent ancestor, we replace it by a special blank symbol, denoted by “␣”. For

example, for T4 = b11aea and σ = 2, we obtain T ′4 = b1a␣a; here a is frequent, b11

is infrequent but has frequent parent b1, and e is infrequent and has no frequent

ancestor. We then enumerate and emit all sequences in Gγ,λ(T ′4) that do not contain

a blank symbol. As will become evident later, the generalization of infrequent items

is a concept that we also make use of in LASH (although in a slightly di�erent way).

The semi-naïve algorithm is more e�cient than the naïve algorithm if many

items are infrequent; i.e., when σ is set to a high value. In the worst case, however,

all items are frequent and the semi-naïve algorithm reduces to the naïve algorithm

(with the additional overhead of computing of the generalized f-list).

5.2.3 Overview of LASH

The key idea of our LASH algorithm is to partition the set of sequential patterns

using a hierarchy-aware variant of item-based partitioning. LASH is inspired by the

61

5. Hierarchy Constraints

Algorithm 5.3 Partitioning and mining phase of LASH

Require: D , Σ ,⇒, σ, γ, λ

1: Map(T)

2: for all w ∈ G1(T) with Sup(w,D) ≥ σ do
3: Construct Pw(T)
4: Emit (w,Pw(T))
5: end for
6:

7: Reduce(w,Pw)

8: Compute the set Gσ,γ,λ(w,Pw) of the locally-frequent pivot sequences

9: for all S ∈ Gw,σ,γ,λ(Pw) do
10: Emit (S, fγ(S,Pw))
11: end for

MG-FSM algorithm (Chapter 3), which uses item-based partitioning to obtain a scal-

able sequence mining algorithm. In contrast to MG-FSM, LASH supports hierarchies

and exploits them whenever possible.

LASH creates a partition Pw for every frequent item w ∈ Σ and then mines

frequent sequences in each partition independently. We subsequently refer to item

w as the pivot item of partition Pw . LASH is divided into a preprocessing phase, a

partitioning phase, and a mining phase.

Preprocessing

In the preprocessing phase, LASH computes the item frequencies to obtain a gener-

alized f-list (as in Section 5.2.2) and a total order < on Σ . Like MG-FSM, we use the

total order determines the partitioning used in the later phases; frequent items will

be “small”. The key di�erence to MG-FSM is that we de�ne a total order on items

that is consistent with the partial order of the hierarchy. In particular, for any pair

of items w1,w2 ∈ Σ , we set w1 < w2 if f0(w1,D) > f0(w2,D). Ties are handled

in a hierarchy-aware form: if f0(w1,D) = f0(w2,D) and w1 occurs at a higher level

of the item hierarchy, we set w1 < w2; the remaining ties are broken arbitrarily.

This particular order ensures that w2 ⇒ w1 implies w1 < w2. Figure 5.2 shows the

generalized f -list of our example database for σ = 2. Here items are ordered from

small to large; i.e., we have a < B < b1 < c < D. Note that item frequencies and

total order can be reused when LASH is run with di�erent parameters.

Partitioning and mining phase

The partitioning and mining phases of LASH are similar to MG-FSM and are out-

lined in Algorithm 5.3. LASH generates a partition Pw for each frequent item w

(note that in LASH we create partitions for items in the input and their generaliza-

62

5.3. Partition Construction

tions, i.e., also for non-leaf items); in our running example, the �ve partitions Pa,

PB , Pb1 , Pc , and PD are created.

The partitioning phase is carried out in the map function, which as before maps

over each input sequence T . For each frequent item w ∈ G1(T), we construct a

“rewritten” sequence Pw(T) and output it with reduce key w. Note that if w is

frequent and one of its descendants occurs in T , we create Pw(T) even if w < T .

A simple and correct approach to compute Pw(T) is to set Pw(T) = T . A key

ingredient of LASH is to use rewrites that compress T as much as possible while

maintaining correctness; we discuss such rewrites in Section 5.3.

The mining phase is carried out in the reduce function. The MapReduce frame-

work automatically constructs partitions

Pw =
⊎
T ∈D
{Pw(T) } .

Each reduce function then runs a customized GSM algorithm on its partition Pw ;

partitions are processed independently and in parallel. The GSM algorithm is provi-

ded with the parameters w, σ, γ, and λ and produces the set Gσ,γ,λ(w,Pw) of

locally-frequent pivot sequences such that, for each S ∈ Gσ,γ,λ(w,Pw), S is frequent,

p(S) = w and 2 ≤ |S | ≤ λ. This local mining step can be performed using an ar-

bitrary GSM algorithm (which produces a superset of Gσ,γ,λ(w,Pw)) followed by a

�ltering step. In LASH, we proceed with the more e�cient hierarchy aware version

of the pivot sequence miner of Section 3.3.2 that directly produces Gσ,γ,λ(w,Pw).

Discussion

The key di�erence between LASH and the naïve and semi-naïve algorithm is the use

of item-based partitioning (LASH) versus the use of sequence partitioning (naïve

and semi-naïve). The advantage of item-based partitioning is that the amount of

data communicated from map to the reduce phase can be signi�cantly lowered by

the use of good rewrite techniques. Moreover, the reduce functions can directly

leverage state-of-the-art sequential GSM algorithms; we discuss such algorithms in

Section 5.4.

5.3 Partition Construction

We now discuss partition construction and, in particular, our rewrite techniques in

more detail. As stated above, a simple way to construct Pw(T) is to set Pw(T) = T .

For our example database (σ = 2), we obtain for pivot B the partition

PB = { a b1 a b1, a b3 c c b2, b11 a e a, a b12 d1 c, b13 f d2 } (5.1)

Using such a partitioning strategy is ine�cient due to the following reasons: (1)

skew: partitions of highly frequent items will contain many more sequences than

63

5. Hierarchy Constraints

partitions of less frequent items, (2) redundant computation: a large number of du-

plicate sequences are mined at multiple partitions (e.g., sequence aBc will be mined

in partitions Pa, PB , Pb1 and Pc but output only in partition Pc), and (3) high

communication cost: each input sequence T is replicated |G1(T)| times, which results

in substantial communication cost.

In what follows, we propose rewrite techniques for constructing Pw(T) with

the aim to overcome the above mentioned shortcomings. We refer to these rewrites

as reductions (since they ultimately reduce the length of T).

5.3.1 Generalized w-Equivalency

We �rst establish the notion of generalized w-equivalency, which is an important

criterion for the correctness of LASH. In particular, LASH is guaranteed to pro-

duce correct results if for all frequent items w, partition Pw and database D are

w-equivalent.

Extending our running notation, denote by

Gw,λ(T) =
{

S | S vγ T, 2 ≤ |S | ≤ λ, p(S) = w
}

(5.2)

the set of generalized subsequences S of T that (1) satisfy the length and gap con-

straints and (2) have pivot item w. Note that we often suppress the dependence of

Gw,λ(T) on γ for brevity. We refer to each sequence in Gw,λ(T) as pivot sequence.

For our example and for σ = 2 and γ = 1 (which we use from now on), we obtain

Gb1,2(T1) = { ab1, b1a, b1b1, b1B, Bb1 } . (5.3)

Note that BB < Gb1,2(T1) since each pivot sequence must contain at least one pivot

(and p(BB) = B , b1).

We say that two sequences T and T ′ are w-equivalent, if

Gw,λ(T) = Gw,λ(T ′),

i.e., they both generate the same set of pivot sequences. For example,

GB,2(T2) = GB,2(a b3 c c b1) = { aB } = GB,2(aB).

LASH produces correct results if Pw(T) is w-equivalent to T . To see this, denote by

Gw,λ(D) =
⊎
T ∈D

Gw,λ(T)

the multiset of pivot sequences generated from D . Now observe that if Pw(T) is

w-equivalent to T , then Gw,λ(D) = Gw,λ(Pw); we then say that databases D and

Pw are w-equivalent. Both databases then agree on the multiset of pivot sequences

and, consequently, on their frequencies. Thus for every S with p(S) = w and 2 ≤
|S | ≤ λ, we have fγ(S,D) = fγ(S,Pw). Since these are precisely the sequences that

64

5.3. Partition Construction

LASH mines and retains from Pw in the mining phase, correctness follows. Note

that two databases can be w-equivalent but disagree on a frequency of any non-

pivot sequence; e.g., D and PB may be B-equivalent but disagree on the frequency

of B itself (5 versus 4 in our example). In particular, the frequency of any non-

pivot sequence can be equal, lower, or higher in D than in PB without a�ecting

correctness. The above discussion leads to the following lemma:

Lemma 5.2. IfD andPw arew-equivalent w.r.t. λ and γ, then fγ(S,D) = fγ(S,Pw)
for all S satisfying p(S) = w and 2 ≤ |S | ≤ λ.

Our notion of w-equivalency is a generalization of the corresponding notion of

MG-FSM; we refer to Miliaraki et al. (2013) for a more formal treatment and proof

of correctness. The key di�erence in LASH is the correct treatment of hierarchies.

5.3.2 w-Generalization

From the discussion above, we conclude that we can rewrite each input sequence T
into any w-equivalent sequence T ′ = Pw(T) in Line 3 of Algorithm 5.3. Our main

goal is to make T ′ as small as possible; this decreases both communication cost,

computational cost, and (as will become evident later) skew.

Fix some pivot w and let T = t1t2 . . . tl . The �rst and perhaps most important

of our rewrites is called w-generalization, which tries to rewrite T such that only

“relevant” items remain. Recall from Section 3.2.3 that an item is w-relevant if w′ ≤
w; otherwise it is w-irrelevant. Similarly, index i is w-relevant if and only if ti is

w-relevant. For example, in sequence T2 = ab3ccb2 only index 1 is B-relevant.

The key insight of w-generalization is that any generalized subsequence of T
that contains an irrelevant item cannot be a pivot sequence (since the pivot is smal-

ler than any irrelevant item by de�nition). Ideally, we would like to simply drop

all irrelevant items from T ; unfortunately, such an approach may lead to incorrect

results since (1) if we drop irrelevant items, we cannot guarantee that the gap con-

straint remains satis�ed and (2) generalizations of irrelevant items may be relevant

and thus be part of a pivot sequence. To illustrate the violation of the gap con-

straint, suppose that we dropped cc from T2 = ab3ccb2 to obtain T ′2 = ab3b2. Then

BB ∈ GB,2(T ′2) but BB < GB,2(T ′2) for γ = 1. To illustrate the second point, suppose

that we drop all irrelevant items from T2 to obtain a. We then miss pivot sequence

aB v1 T2 since aB @1 a.

Instead of dropping irrelevant items, w-generalization replaces irrelevant items

by a carefully chosen set of items in the partition Pw to ensure correctness (MG-

FSM would have replaced these items by blanks; see Section 3.2.3). There are two

cases: (1) If index i is irrelevant and item ti does not have an ancestor w′ < w, we

replace ti by the special blank symbol ␣, where w < ␣ for all w ∈ Σ . The blank symbol

acts as a placeholder and is needed to handle gap constraints. (2) Index i is irrelevant

but has an ancestor that is smaller than the pivot. Let w′ be the largest such ancestor.

65

5. Hierarchy Constraints

We then replace ti by w′. This step is similar to the generalization performed by the

semi-naïve algorithm. It is more e�ective, however, since it generalizes all items that

are less frequent than the pivot, whereas the semi-naïve algorithm only generalizes

infrequent items before applying the naïve algorithm. Continuing our example with

T2 = ab3ccb2 with pivot B, indexes 3 and 4 are irrelevant and replaced by blanks

(since c does not have an ancestor that is more frequent than B), whereas indexes

2 and 5 are irrelevant and replaced by B (the largest su�ciently frequent ancestor

of both b3 and b2). We thus obtain T ′2 = aB␣␣B.

At �rst glance, it seems as if w-generalization does not help: T2 and T ′2 have

exactly the same length. However, we argue that the use of T ′2 leads to substantially

lower cost. First, we can represent blanks more compactly than irrelevant items; e.g.,

by using run-length encoding (T ′2 = aB␣
2B) and/or variable-length encoding (few

bits for blanks). Second, for similar reasons, we can represent smaller, generalized

items more compactly than large items. Third, w-generalization enables the use of

other e�ective rewrite techniques; see Section 5.3.3. Finally, w-generalization (as

well as some of the other rewrites) makes sequences more uniform. If two sequences

agree on their w-generalization, they can be “aggregated”; see the discussion in

Section 5.3.4.

The correctness of w-generalization is captured in the following lemma.

Lemma 5.3. Let T = t1t2 · · · tn and denote by T ′ = t ′1t ′2 · · · t
′
n the w-generalization of

T . Then T and T ′ are w-equivalent.

Proof. We have to show that Gw,λ(T) = Gw,λ(T ′). Let S = s1 . . . sk ∈ Gw,λ(T). By

de�nition, sequence S is a generalized subsequence of T , p(S) = w, and sj ≤ w

for 1 ≤ j ≤ k . Thus there exists a set of indexes 1 ≤ i1 < . . . < ik ≤ n such that

ti j ⇒∗ sj and i j+1−i j−1 ≤ γ. We claim that t ′i j ⇒
∗ sj so that S ∈ Gw,λ(T ′). There are

two cases. If ti j ≤ w, w-generalization does not modify index tj so that t ′i j = tj ⇒∗ tj .
Otherwise, if ti j > w, w-generalization replaces ti j by the largest ancestor t ′i j that is

smaller then the pivot. Since ti j ⇒∗ sj and sj ≤ w, we conclude that ti j ⇒∗ t ′i j ⇒
∗ sj

holds as well. Putting everything together, we obtain Gw,λ(T ′) ⊆ Gw,λ(T ′).
It remains to show that Gw,λ(T ′) ⊇ Gw,λ(T). This can be shown using the prop-

erty that whenever S ∈ Gw,λ(T ′), then ␣ < S. The proof is similar to the one above

and omitted here. �

5.3.3 Other Rewrites

LASH performs a number of additional rewrites, all of which aim to reduce the

length of the sequence. In contrast to w-generalization, these rewrites closely re-

semble the rewrites of MG-FSM; we summarize them here and point out minor

di�erences.

The �rst rewrite removes items that are unreachable in that they are “far away”

from a pivot index. Let T = t1t2 . . . tl . In what follows, we assume that T has already

66

5.3. Partition Construction

been w-generalized; then ti is a pivot index if and only if ti = w. In our implement-

ation, w-generalization and unreachability reduction are performed jointly and are

thus slightly more complex. Consider for example the sequence T = ab1acd1ad2c f b2c,

pivot D, the hierarchy of Figure 7.1b, and the item order of Figure 5.2. We obtain

T ′ = ab1acDaDc␣Bc by D-generalization; thus indexes 5 and 7 are pivot indexes.

We then compute the left and right distances to a pivot, as well as the minimum

distance. The left/right distance of an index is the size of the minimum set of in-

creasing/decreasing indexes from a pivot index to the target index; only indexes

that do not correspond to a blank as well as the target index are allowed and sub-

sequent indexes must satisfy the gap constraint (at most γ items in between). For

γ = 1, we obtain:

i 1 2 3 4 5 6 7 8 9 10 11

t ′i a b1 a c D a D c ␣ B c
left - - - - 1 2 1 2 2 3 4

right 3 3 2 2 1 2 1 - - - -

minimum 3 3 2 2 1 2 1 2 2 3 4

Here “-” corresponds to in�nite distance. The left pivot distance of index 11, for

example, is determined by the index sequence 7, 8, 10, 11 (length 4); the sequence

7, 9, 11 is not allowed since index 9 corresponds to a blank. As argued in MG-FSM,

indexes that have distance larger than λ are unreachable and the corresponding

items can be removed safely. For λ = 2, we obtain the reduced sequence acDaDc␣;

for λ = 3, we obtain ab1acDaDc␣B.

We also make use of a few other reductions of MG-FSM, which also apply to

our generalized setting. First, we remove isolated pivot items, i.e., pivot items that

do not have a non-blank item close by (within distance γ). We also remove leading

and trailing blanks and replace any sequence of more than γ + 1 blanks by exactly

γ + 1 blanks.

5.3.4 Putting Everything Together

We perform the above mentioned rewrites e�ciently as follows. We �rst scan the

sequence from right to left and, for each index, perform w-generalization and com-

pute its left distance. We then scan the sequence from left to right, compute the right

and pivot distance of each index, remove unreachable indexes, and remove blanks

as described above. For a �xed hierarchy, the computational complexity for rewrit-

ing an input sequence of length l given a pivot is O(l). Since an input sequence has

at most δl pivot items, the overall computational complexity is O(δl2). Moreover,

we output O(δl) rewritten sequences of length at most l for all choices of γ and

λ. Thus the communication complexity of LASH is polynomial, whereas the com-

munication complexity of the naïve and semi-naïve approaches can be exponential

67

5. Hierarchy Constraints

a :5

B :5

b1:4

c :3

D :2

g
e
n

e
r
a
l
i
z
e
d

f-
l
i
s
t T1 : a b1 a b1

T2 : a b3 c c b2
T3 : a c
T4 : b11 a e a
T5 : a b12 d1 c
T6 : b13 f d2

Pb1

a b1 a B
b1 a ␣ a
a b1

ab1 : 2

b1a : 2

PB

a B a B
a B : 2
B a ␣ a

aB : 3

Ba : 2

Pa

a ␣ a : 2

aa : 2

Pc

a B c c b1
a c
a b1 ␣ c

Bc : 2

ac : 2

aBc : 2

PD

a b1 D c
b1 ␣ D

b1D : 2

BD : 2

Preprocessing

Partitioning (Map phase)

Mining (Reduce phase)

Figure 5.2: Preprocessing, partitioning and mining phases of LASH for σ = 2, γ = 1
and λ = 3.

68

5.4. Sequential GSM Algorithms

(O((δ + 1)l)). Moreover, our experiments suggest that LASH often performs much

better than what could be expected from the above worst-case analysis.

The partitions generated by LASH for our example database are given in Fig-

ure 5.2. Recall the partition PB from Equation (5.1). Using our rewrites, we obtain

PB = { a B a B, a B, B a ␣ a, a B }

which is signi�cantly smaller. Observe that sequence aB occurs twice. We use com-

bine functionality of Hadoop to aggregate such duplicated sequences. We also per-

form aggregation in the reduce function before starting the actual mining phase.

Continuing the example, the �nal partition PB is given by

PB = { a B a B : 1, a B : 2, B a ␣ a : 1 } .

Aggregation of duplicated sequences saves communication cost and reduces the

computational cost of the GSM algorithm run in the mining phase.

5.4 Sequential GSM Algorithms

We now discuss methods to mine generalized sequences in each partition. In par-

ticular, we describe how sequential FSM algorithms of Section 3.3 can be adapted to

handle hierarchies e�ciently.

BFS with hierarchies

To adapt BFS approach to handle hierarchies, we �rst scan each sequence T ∈ Pw

to create a posting list for each frequent length-2 generalized sequence. In partic-

ular, we add sequence T to the posting list of each element of S ∈ G2(T). Note

that G2(T) consists of the 2-sequences that occur in S as well as all of their gen-

eralizations; this makes BFS approach hierarchy-aware. Consider for example in-

put sequence T = cab1D, the hierarchy of Figure 7.1b, and γ = 1. Then G2(T) =
{ ca, cb1, cB, ab1, aB, aD, b1D, BD } so that we add T to 8 posting lists. This initial

construction of the 2-sequence index is the only di�erence; i.e., we now proceed

with level-wise approach unmodi�ed. For example, when sequence ca and aD are

frequent, we generate candidate sequence caD and obtain its frequency by inter-

secting the posting lists of ca and aD.

DFS with hierarchies

To adapt DFS to mine generalized sequences, we replace the projected database by

the support set DS , which consists all input sequences in which S or a specialization

of S occurs. When we right-expand S, the set of right items for transaction T ∈
Ds is given by Σ

right

S
(T) = { w′ | Sw′ vγ T }, i.e., we look for occurrences of S

or a specialization of S, and then consider the γ + 1 items to the right along with

69

5. Hierarchy Constraints

their generalizations. For our example sequence T = cab1D with γ = 1, we have

Σ
right

ca (T) = { b1, B,D } and Σ
right

cB = { D }. Like in DFS, right-expansion is performed

by scanning DS and computing the set Σ
right

S
=

⋃
T ∈DS

{Σ right

S
(T)} of right items

along with their frequencies. For each frequent item w′ ∈ Σ right

S
, we output Sw′ and

recursively grow Sw′.

PSM with hierarchies

Adaption of PSM to mine generalized sequences is similar to that of the DFS ap-

proach described above. Recall from Section 3.3.2, that PSM starts with the pivot

item w and recursively computes pivot sequences of form wS by making a series of

right-expansions. Adaptation of right-expansions with hierarchies is similar to the

one above (like the DFS) but we never right-expand with the pivot item w. After all

the right-expansions are made, PSM then makes a series of left-expansions. To adapt

left-expansions to hierarchies, we compute the set of items Σ left

S
=

⋃
T ∈DS

{Σ left

S
(T)},

where Σ left

S
(T) = { w′ | w′S vγ T }, i.e., we compute the set of γ + 1 items to the

left of pivot w along with their generalizations. For each left-expanded sequence,

we compute a series of right-expansions and proceed as PSM.

5.5 Experiments

We now present results of our experimental study using two large real-world data-

sets in the contexts of generalized n-gram mining from textual data and customer

behavior mining from product sequences. In particular, we compared LASH to the

naïve and the semi-naïve algorithms, evaluated the e�ciency of sequential GSM

algorithms for mining each partition, and studied the scalability of LASH. We also

studied the e�ect of di�erent parameters—i.e., support (σ), gap (γ) and length (λ)—

and how di�erent types of hierarchies a�ect the performance of LASH.

We found that LASH outperformed the naïve and semi-naïve algorithms by mul-

tiple orders of magnitude. For mining partitions locally, the PSM algorithm was

more e�cient and faster than the BFS and DFS algorithms. Our scalability exper-

iments suggest that LASH scales linearly as we add more compute nodes and/or

increase input dataset size.

5.5.1 Setup

Implementation and cluster

We implemented LASH, the semi-naïve and naïve methods in Java (JDK 1.7). We

represent items by assigning integers item ids according to the order < obtained

from the generalized f -list. Thus, highly frequent items are assigned smaller in-

teger ids. We represent sequences as arrays of item ids and compress the data trans-

mitted between the map and reduce phase using variable-length integer encod-

70

5.5. Experiments

Dataset Sequences Avg length Max length Total items Unique items

NYT 49,605,960 21.1 15,199 1,047,419,137 2,763,301
AMZN 6,643,666 4.5 25,630 29,667,966 2,374,096

Table 5.1: Dataset characteristics

D
a
ta

se
t

H
ie

ra
rc

h
y

T
o
ta

l
it
e
m

s

L
e
a
f
it
e
m

s

R
o
o
t
it
e
m

s

In
te

rm
e
d
ia

te

it
e
m

s
L
e
v
e
ls

A
v
g
.f
a
n
-o

u
t

M
a
x
.f
a
n
-o

u
t

NYT

L 2,910,327 407,806 2,502,521 0 2 2.7 36
P 2,617,581 2,617,559 22 0 2 124,645.6 1,828,130
LP 2,910,347 2,763,300 22 147,025 3 19.8 1,822,454
CLP 2,970,092 2,763,300 22 206,770 4 14.4 1,822,454

AMZN

h2 2,374,147 2,371,524 2,623 0 2 48,398.4 904,162
h3 2,374,509 2,371,536 2,630 343 3 6,050.7 332,723
h4 2,376,539 2,371,670 2,633 2,236 4 1,038.9 332,723
h8 2,387,422 2,373,158 2,634 11,630 8 204.2 332,723

Table 5.2: Hierarchy characteristics

ing. All experiments were run on a local Hadoop cluster consisting of eleven Dell

PowerEdge R720 computers, each with 64GB of main memory, eight 2TB SAS 7200

RPM hard disks and two Intel Xeon E5-2640 6-core CPUs. Debian Linux (kernel

version 3.2.48.1.amd64-smp) was used as an operating system. The machines in the

cluster are connected via 10 GBit Ethernet. We use the Cloudera cdh3u6 distribution

of Hadoop 0.20.2 running on Oracle Java 1.7.0_25. One machine acted as a Hadoop

master node; the other ten machines acted as worker nodes. The maximum num-

ber of concurrent map or reduce tasks was set to 8 per worker node. All tasks are

launched with 4 GB heap space.

Datasets

Statistics of the datasets and hierarchies used in our experiments are summarized

in Table 5.1 and Table 5.2 respectively. We used two real-world datasets: The New

York Times corpus (NYT) for mining generalized n-grams and Web data: Amazon

reviews (AMZN) for mining generalized product sequences.

The NYT dataset consists of roughly 50M sentences from 1.8 million articles

published during 1987 and 2007. We treat each sentence as an input sequence with

each word (token) as an item. We generated a syntactic hierarchy by annotating the

each word with its lemma and part-of-speech tag using the Stanford CoreNLP parser

71

5. Hierarchy Constraints

and also annotated each word with its lowercase form (if di�erent that its surface

form). In our syntactic hierarchy, a word appearing in a sentence can generalize to

its lowercase form, which generalizes to its lemma, which in turn generalizes to its

part-of-speech tag. For example, the word “Changing”⇒ “changing”⇒ “change”

⇒ “VERB”. We generated four variants of this hierarchy: NYT-L (word⇒ lemma),

NYT-P (word⇒ pos), NYT-LP (word⇒ lemma⇒ pos) and NYT-CLP (word⇒ case

⇒ lemma⇒ pos). Note that the surface form of many words appearing the input

sequences is same as their lowercase or lemma; this naturally creates a hierarchy in

which items appearing in the input sequences come from di�erent levels.

The AMZN dataset consists over 35 million reviews from over 6 million users

spanning from 1995 to 2013. To generate product sequences, we identi�ed a user

sessions by grouping the reviews by user and sorting each so-obtained sequence

by timestamp. We used the Amazon product hierarchy, in which, for example, the

book “For Whom the Bell Tolls”⇒ “Classics”⇒ “Literature & Fiction”⇒ “Books”.

We also considered di�erent hierarchy types of varying depths (2–8) by varying the

number of intermediate categories a product is assigned to.

Measures

In the following experiments, we report the performance measure as total time

elapsed between launching a task and receiving the �nal result. We break down this

time into time taken by the map phase, shu�e phase and the reduce phase. Since

these phases overlap in a MapReduce job, we report the time elapsed until �nish-

ing of each phase. We also report the bytes transferred as the total data transferred

between map and reduce task as obtained from Hadoop’s MAP_OUTPUT_BYTES
counter. All measurements reported are based on average of three independent runs

and were performed with exclusive access to the machines.

5.5.2 Results

A. Overall Runtime

We initially evaluated the performance of LASH generalized n-gram mining (i.e.,

γ = 0) and compared it with the naïve and semi-naïve methods (discussed in Sec-

tion 5.2) using the NYT-P dataset having two levels of hierarchy. For this dataset,

we mined generalized n-grams with three di�erent parameter settings of increasing

di�culty w.r.t. to output size. The results are plotted using a log-scale in Figure 5.3a.

With σ = 1000, λ = 3 and σ = 100, λ = 3, LASH obtained a speedup of around 10×.

Further, LASH achieves a speed up of more than 50× for the setting with σ = 100,

λ = 5.

For the entire NYT-CLP dataset having four levels of hierarchy, the naïve and

semi-naïve algorithms were unable to handle the combinatorial blowup of the search

space and were aborted after 12 hours. On the other hand, LASH required a little

72

5.5. Experiments

over 600 seconds only. Also, as shown in Figure 5.3b, the total bytes transferred

between the map and reduce phase is signi�cantly less for LASH.

B. Local Mining

In our next set of experiments, we studied the e�ciency of the sequential GSM al-

gorithms of Sec. 5.4. We used the NYT dataset and performed runs with di�erent set-

tings of increasing di�culty w.r.t. output size. The results are shown in Figure 5.4a

using log-scale. Since our choice of sequential mining approaches only a�ect the

reduce phase, we report the mining time as time elapsed between the end of last

reduce task and end of �rst sort task.

Compared to BFS, with the LP hierarchy (three levels) and the parameters σ =

1000, λ = 5, PSM was 9× faster. As we decreased the value of σ to 100, PSM was

15× faster and up to 22× faster with the full CLP hierarchy. For the setting CLP

(σ = 100, λ = 7), BFS reported insu�cient memory and terminated. On comparison

to DFS, PSM was 2.5× to 3.5× faster for these settings. The e�ciency of PSM stems

from an optimized search space exploration of pivot sequences w.r.t. the partitions

being mined. Since PSM uses a customized depth-�rst search, we also compared the

number of candidate sequences generated per output sequence by DFS and PSM.

As observed from Figure 5.4b, PSM explores a much smaller fraction of the search

space.

We also studied PSM’s performance with indexing right-expansions (PSM+Index).

We observed a trade-o� between the construction cost and the bene�t of indexing.

The runtimes improved by 100s with increase in the values of λ and levels of hier-

archy. We also observed that in all the cases, our indexing signi�cantly pruned a lot

of search space up to 2× (see Figure 5.4b).

C. E�ect of Parameters

In this group of experiments, we studied how the performance is a�ected by di�er-

ent parameters σ, γ and λ. We used the AMZN-h8 dataset with full 8 levels of the

hierarchy and �xed the parameters to σ = 100, γ = 1 and λ = 5.

We �rst studied how the minimum support σ a�ects the performance by vary-

ing its value from 10 to 10,000. The results are shown in Figure 5.5a. The time taken

by the map phase which consist of rewriting input sequences for each partition de-

creases as we increase the support. Recall that, our rewrites are independent of σ

(see discussion in Section 5.3.4); however, σ has an indirect e�ect. At higher sup-

ports, fewer items from the lower levels of the hierarchy are frequent so that the

e�ective depth of the hierarchy is reduced. Since our rewrites depends on this depth,

the time per rewrite decreases as the support threshold is increased. The reduce time

decreases as well since mining becomes cheaper at higher supports.

Second, we varied the value of maximum gap γ from 0 to 3. As we can see in

Figure 5.5b, the impact on map times was not signi�cant as the cost of rewriting is

73

5. Hierarchy Constraints

P(1000,0,3) P(100,0,3) P(100,0,5) CLP(100,0,5)

NYT − Hierarchy (σ,γ,λ)

T
ot

al
 t

im
e

(i
n

se
co

nd
s)

10
0

10
00

10
00

0

Naive
Semi naive
LASH

> 12 hrs

(a) Total time

P(1000,0,3) P(100,0,3) P(100,0,5) CLP(100,0,5)

NYT − Hierarchy (σ,γ,λ)

M
ap

 o
ut

pu
t

by
te

s
(i

n
G

B
)

10
0

20
0

30
0

40
0

50
0 Naive

Semi naive
LASH

N
A

N
A

(b) Total bytes

Figure 5.3: Performance of distributed algorithms.

LP(1000,0,5) LP(100,0,5) CLP(100,0,5) CLP(100,0,7)

NYT − Hierarchy (σ,γ,λ)

M
in

in
g

ti
m

e
(i

n
se

co
nd

s)

10
0

10
00

10
00

0

BFS
DFS
PSM
PSM + Index

In
su

ff
ic

ie
nt

 m
em

or
y

(a) Mining time

LP(1000,0,5) LP(100,0,5) CLP(100,0,5) CLP(100,0,7)

NYT − Hierarchy (σ,γ,λ)

#
 C

an
di

da
te

/O
ut

pu
t

Se
qu

en
ce

s

0
50

10
0

15
0

20
0

DFS
PSM
PSM + Index

(b) Search space

Figure 5.4: Performance of sequential algorithms.

74

5.5. Experiments

10 100 1000 10000

Support (σ)

T
ot

al
 t

im
e

(i
n

se
co

nd
s)

0
50

10
0

15
0

20
0

25
0 Map

Shuffle
Reduce

(a) AMZN-h8 (γ = 1, λ = 5)

0 1 2 3

Gap (γ)

T
ot

al
 t

im
e

(i
n

se
co

nd
s)

0
20

0
40

0
60

0
80

0 Map
Shuffle
Reduce

(b) AMZN-h8 (σ = 100, λ = 5)

3 4 5 6 7

Length (λ)

T
ot

al
 t

im
e

(i
n

se
co

nd
s)

0
20

0
40

0
60

0
80

0
12

00 Map
Shuffle
Reduce

(c) AMZN-h8 (σ = 100, γ = 1)

3 4 5 6 7

Length (λ)

#
ou

tp
ut

 s
eq

ue
nc

es
(i

n
m

ill
io

ns
)

0
50

10
0

15
0

20
0

(d) AMZN-h8 (σ = 100, γ = 1)

Figure 5.5: E�ect of di�erent parameters

h2 h3 h4 h8

Hierarchy

T
ot

al
 t

im
e

(s
ec

on
ds

)

0
10

0
20

0
30

0
40

0

Map
Shuffle
Reduce

(a) AMZN (σ = 100, γ = 2, λ = 5)

L P LP CLP

Hierarchy

T
ot

al
 t

im
e

(s
ec

on
ds

)

0
10

0
20

0
30

0
40

0
50

0
60

0 Map
Shuffle
Reduce

(b) NYT (σ = 100, λ = 5)

Figure 5.6: E�ect of di�erent hierarchies.

75

5. Hierarchy Constraints

largely independent of γ. However, it had a signi�cant impact on the reduce times

as as the search space during mining signi�cantly increases with γ.

Lastly, we evaluated how maximum length λ e�ects the performance of LASH

by varying its value from 3 to 7. The results are shown in Figure 5.5c. We observed

that λ had very little impact on the map time. The reduce time increases signi�cantly

as we increase λ since mining becomes more expensive. In fact, the output size

increases as we increase λ. Figure 5.5d shows that output size and reduce times are

correlated.

D. E�ect of Hierarchies

In this group of experiments, we studied how di�erent types of hierarchies a�ect

the performance of LASH. We used the AMZN and NYT datasets.

For the AMZN dataset (Figure 5.6a), we �xed the parameters σ = 100, γ = 2,

λ = 5 and varied the hierarchy levels from 2 to 8. The map times slightly increases

with an increase in levels, even though the support is �xed. This is because re-

writing each sequence depends on the hierarchy depth. The reduce times increase

signi�cantly since an increase in hierarchy levels in turn increases the number of

intermediate items (see Table 5.2). This makes mining more expensive: a partition

needs to be created and mined for each intermediate item and the mining time of a

partition also depends on the depth of the hierarchy. The e�ect in reduce times is

less pronounced when the using the full hierarchy (8 levels) compared to 4 levels be-

cause most products in the Amazon product hierarchy have no more than 4 parent

categories.

For the NYT dataset (Figure 5.6b), we set σ = 100, λ = 5, and considered four

variants of the syntactic hierarchy (see Section 5.5.1). NYT-L and NYT-P both have

two levels but show a signi�cant di�erence in reduce times. This is because the

NYT-L hierarchy has many roots with low fan-out, whereas the NYT-P hierarchy

has few roots with high fan-out. Mining the latter hierarchy is more expensive,

partly due to the high frequency of the root items, partly due to larger output size.

We also observed that adding more levels to the hierarchy (NYT-LP and NYT-CLP)

signi�cantly increases both the map and the reduce times.

E. Scalability

In our �nal group of experiments, we studied the scalability of LASH as we add

more compute nodes and/or increase the input data size. We used the NYT dataset

with full CLP hierarchy and set the parameters σ = 100 and λ = 5.

We �rst investigated the performance of LASH as we vary the input data size. To

this end, from the NYT dataset, we extracted datasets that contain a random 25%-,

50%- and 75%-sample of the input sequences. The results are shown in Figure 5.7a.

We observed that LASH is robust in handling increasing amounts of data with both

map and reduce times increasing linearly as we add more data.

76

5.5. Experiments

25% 50% 75% 100%

% of Data

T
ot

al
 t

im
e

(s
ec

on
ds

)

0
10

0
20

0
30

0
40

0
50

0
60

0 Map
Shuffle
Reduce

(a) NYT-CLP (σ = 100, λ = 5)

2 4 8

Number of machines

T
ot

al
 t

im
e

(s
ec

on
ds

)

0
50

0
10

00
15

00
20

00
25

00

Map
Shuffle
Reduce

(b) NYT-CLP (σ = 100, λ = 5)

2(25%) 4(50%) 8(100%)

Number of machines (% of data)

T
ot

al
 t

im
e

(s
ec

on
ds

)

0
10

0
30

0
50

0
70

0

Map
Shuffle
Reduce

(c) NYT-CLP (σ = 100, λ = 5)

Figure 5.7: Scalability results

77

5. Hierarchy Constraints

We evaluated strong scalability by running LASH on a �xed dataset (100% NYT-

CLP) and varying the amount of parallel work by using 2, 4 and 8 compute nodes.

Figure 5.7b shows that LASH exhibits good linear scalability with both map and

reduce times decreasing equally as we increase the number of compute nodes.

We also evaluated weak scalability for LASH, in which we increase the input

data size as we add more compute nodes. In particular, we simultaneously increased

the size of the input data (25%, 50% and 100% of NYT-CLP) and number of compute

nodes (2, 4 and 8). As observed from Figure 5.7c, LASH exhibits good weak scalab-

ility. Note that the total time ideally remains constant as we double both compu-

tational resources and input dataset. In practice, however, the number of output

sequences increases by a factor of more than 2 when doubling the input data. We

thus observe a slight increase in the runtimes. In this particular case, the number of

output sequences increased from 43M (25% of input) to 99M (50% of input) to 220M

(100% of input), which is a factor of 2.2×.

F. Output Statistics

We computed a number of statistics of the set of generalized subsequences that we

mined from our datasets; the results are shown in Table 5.3.

First, we computed the percentage of non-trivial output sequences to judge

whether generalized sequence mining is bene�cial. We say that an output sequence

is trivial, if it can be generated from the output of a standard sequence miner (which

ignores hierarchies) by generalizing items. For example, non-trivial sequences on

the NYT-CLP dataset (σ = 100) include: “NOUN lives in NOUN”, “NOUN works at

NOUN” and “the ADJ Book”; no specializations of these patterns were frequent in

the input data. For the NYT and AMZN datasets, we observed that more than 70%
and 95%, resp., of the sequences were non-trivial.

Recall the discussion at the end of Section 5.1, in which we argue that GSM

may produce “redundant” (but nevertheless potentially useful) sequences. To see

how many redundant sequence are mined, we computed the number of closed and

maximal subsequences. In the context of GSM, a frequent sequence S is maximal

if every supersequence S′ w0 S is infrequent, and closed if every supersequence

has a di�erent frequency. In Table 5.3, we observe that adding more levels to the

hierarchy or lowering the support increases the fraction of redundant patterns, but

that nevertheless a large number of patterns is non-redundant.

78

5.6. Related Work

Dataset Non-trivial (%) Closed (%) Maximal (%)

Hierarchy

NYT

(σ = 100, λ = 5)

P 75.47 89.08 31.92

LP 73.47 50.38 10.11

CLP 70.26 35.42 6.06

Min sup (σ)

AMZN-h8

(γ = 1, λ = 5)

10,000 100 100 21.56

1,000 99.78 85.79 14.50

100 97.38 64.86 10.06

Table 5.3: Output Statistics

5.6 Related Work

Srikant and Agrawal (1996) proposed the use of extended sequences to incorporate

hierarchies into the mining process. In this approach, each item in a sequence is re-

placed by an itemset containing the item and all its ancestors. As mentioned before,

generalized sequence mining using extended sequences is ine�cient as it increases

the blows up sequence database by a factor of roughly the depth of the hierarchy,

which makes repeated database scans by GSP much more expensive. Hierarchies

have also been explored in context of multi-dimensional sequential pattern min-

ing. To this end, Plantevit et al. (2006, 2010) proposed the HYPE algorithm and the

M3SP algorithm as its successor. In their approach, they prune hierarchies by only

considering maf-sequences, which are pairs of items (each belonging to a dimen-

sion) that are maximal (i.e., each specialization is infrequent). Subsequently, they

use SPADE to generate frequent sequences. A known limitation of their approach is

that they do not mine all frequent sequences. Chen and Huang (2008) sketched the

idea of fuzzy multi-level sequential patterns. They consider hierarchies in which an

item can have more than one parent with di�erent degrees of con�dence and use

a GSP-like approach to mine such patterns. Huang (2009) later presented a divide-

and-conquer strategy based on the pattern-growth approach to mine such fuzzy

multi-level patterns. Both approaches encode hierarchy information in each item,

which is reminiscent of extended sequences and are outperformed by GSP [Huang

(2009)].

5.7 Summary

We proposed LASH, an algorithm for mining frequent sequences in presence of

hierarchies. To the best of our knowledge, LASH is the �rst distributed, scalable

algorithm for mining such generalized sequences. LASH uses a novel, hierarchy-

aware form of item-based partitioning and optimized partition construction tech-

79

5. Hierarchy Constraints

niques that are speci�cally designed to handle hierarchies. Our experimental study

indicates that LASH is e�cient, scales to large real-world datasets, and is multiple

orders of magnitude faster than existing baseline methods.

80

Part II

Non-traditional Subsequence Constraints:
Expressibility

81

C
h

a
p
t

e
r 6

Expressing Subseqence
Constraints

In this part of the thesis, we turn our attention to a general purpose framework for

frequent sequence mining with subsequence constraints. We show that many sub-

sequence constraints—including and beyond those discussed earlier—can be uni�ed

in a single framework. A uni�ed treatment allows researchers to study subsequence

constraints in general instead of focusing on certain combinations individually. It

also helps to improve usability of pattern mining systems because it avoids the need

to develop customized mining algorithms for the particular subsequence constraint

of interest that arise in applications (e.g., verbal phrases between entities in inform-

ation extraction applications or product sequences of a certain type in customer

behavior mining applications).

Our focus in this chapter
a

lies on modeling and expressing subsequence con-

straints in a suitable way. We introduce subsequence predicates to model subsequence

constraints in a general way, and propose a pattern expression language to concisely

express subsequence predicates. We subsequently suggest a computational model

based on �nite state transducers, and describe the formal semantics of our language.

In Section 6.1, we formally de�ne subsequence predicates. In Section 6.2, we pro-

pose our pattern expression language, which is based on regular expressions, but

support capture groups and item hierarchies. Capture groups are the key ingredient

for expressing most prior subsequence constraints in a uni�ed way; see Table 6.2 on

page 90 for examples. Direct support for item hierarchies allows us both to express

subsequence constraints concisely and to mine generalized subsequences. Some ex-

ample pattern expressions for expressing subsequence constraints in information

a
The material in this chapter is based on Beedkar and Gemulla (2016).

83

6. Expressing Subseqence Constraints

T1 : c a1 b12 e
T2 : a1 b2 e
T3 : d a2 a1 a2 b11 e
T4 : d a1 B e
T5 : e a1 b2 d
T6 : c a1 a1 a1 b2 e

(a) Example database

A

a1 a2

B

b1 b2 b3

b11 b12 b21 b22 b23 b31 b32

B′ c

d

e

(b) Example hierarchy

Figure 6.1: A sequence database and its vocabulary

extraction, natural language processing, and customer behavior mining applications

are given in Tables 6.3 and 6.4 on page 90. In Section 6.3 we propose �nite state

transducers (FST) as a computational model for our pattern expressions. We show

that FSTs are su�ciently powerful to express many subsequence constraints and

provide translation rules for our pattern expressions to FSTs. Finally, in Section 6.4,

we propose an advanced pattern expression language, which include features useful

for expressing highly-customized subsequence constraints that may arise in applic-

ations and for mining generalized sequences in a more controlled fashion.

6.1 Subsequence Predicates

A subsequence constraint describes which subsequences of a given input sequence

should be considered for frequent sequence mining. Our goal is to provide a gen-

eral purpose framework to express subsequence constraints, including and beyond

previously proposed constraints. Consider the following (admittedly contrived) sub-

sequence constraint as an example.

Example 6.1. Consider the example database Dex shown in Figure 6.1. Suppose that

we are interested in mining sequences of B’s and/or descendants of A’s. We restrict

attention to sequences that occur consecutively in input sequences starting with c or d
and ending with e. We also allow to generalize occurrences of descendants of A and B.
Then a1B v T1 and AB v T1 satis�es this subsequence constraint, whereas a1b12 v T1,

a1b1 v T1, a1B v T2 and AB v T2 do not.

The above subsequence constraint cannot be expressed using prior methods. Note

that the constraint combines (i) a gap constraint (consecutive), (ii) a hierarchy con-

straint (descendants of B must be generalized), and (iii) a context constraint (between

c or d, and e).

We propose subsequence predicates as a general, natural model for subsequence

constraints. A subsequence predicate P is a predicate on pairs (S,T), where T ∈ Σ+
is any input sequence and S v T is a subsequence. Subsequence S v T satis�es the

constraint when P(S,T) holds. Note that P is not a predicate on (only) subsequence

84

6.1. Subsequence Predicates

S; it also involves input sequence T . We denote by GP(T) = { S v T | P(S,T) } the

set of P-subsequences in T . For each S ∈ GP(T), we say that S is P-generated by

T . For example, let Pex be the subsequence predicate that expresses subsequence

constraint of Example 6.1, then GPex (T1) = { a1B, AB } and GPex (T2) = ∅.
Subsequence predicates can encode di�erent application needs, including but

not limited to the various subsequence constraints discussed before. A subsequence

predicate can act as a �lter on the set of all subsequences of T (only A’s and B’s),

but may also consider the context in which these subsequences occur (consecutively

between c or d and e). In practice, we may construct subsequence predicates that

generate all n-grams, all adjective-noun pairs, all relational phrases between named

entities, all electronic products, or, in log mining, sequences of items that occur

before and/or after an error item.

FSM and subsequence predicates

Let P be a subsequence predicate. The P-support SupP(S,D) of sequence S ∈ Σ+ in

sequence database D is the multiset of all sequences in D that P-generate S, i.e.,

SupP(S,D) = {T ∈ D | S ∈ GP(T) } . (6.1)

The P-frequency of S in D is given by fP(S,D) = |SupP(S,D)|. In our example

database, we have SupPex
(Aa1 AB,Dex) = {T3,T6 } and thus fPex (Aa1 AB,Dex) = 2.

Given a support threshold σ > 0, we say that a sequence S is P-frequent if fP(S,D) ≥
σ. We are interested in mining all P-frequent sequences; these sequences capture

common, relevant patterns in the data.

Given a sequence database D , a subsequence predicate P, and a support

threshold σ > 0, �nd all P-frequent sequences S ∈ Σ+ along with their

frequencies.

For example, reconsider the example sequence database and its vocabulary of

Figure 6.1 and Example 6.1. Let Pex be the subsequence predicate that expresses the

subsequence constraint of Example 6.1. The set of all Pex-frequent sequences for

σ = 2 in is given by

{ AAAB : 2, AB : 2, Aa1 AB : 2, a1B : 2 } ,

where we also give P-frequencies.

The above de�nitions are generalizations of the notions of frequency and sup-

port used in traditional frequent sequence mining. E�cient mining of P-frequent

sequences is challenging because the antimonotonicity property does not hold dir-

ectly: We cannot generally deduce from the knowledge that sequence S is P-frequent

whether or not any of the subsequences of S are P-frequent as well. Nevertheless,

our mining algorithms, which we will describe in the next chapter, make use of suit-

able adapted notions of antimonotonicity for subsequence predicates (Lemma 7.1;

page 110) and pattern expressions (Lemma 7.2; page 112).

85

6. Expressing Subseqence Constraints

6.2 Pattern Expression Language

In this section, we propose a pattern expression language for expressing subsequence

predicates. Our language is based on regular expressions and designed to be simple

and intuitive. Although there are subsequence predicates that cannot be expressed,

our language is su�ciently expressive for many practical purposes: it covers and

goes beyond all notions of subsequence constraints discussed earlier.

6.2.1 Pattern Expressions

Our language consists of the following set of pattern expressions, de�ned inductively:

1) For each item w ∈ Σ , the expressions w, w=, w↑, and w
↑
= are pattern expres-

sions.

2) . and .↑ are pattern expressions.

3) If E is a pattern expression, so are (E), [E], [E]∗, [E]+, [E]?, and for all n,m ∈
N with n ≤ m, [E]{n}, [E]{n, }, and [E]{n,m}.

4) If E1 and E2 are pattern expressions, so are [E1E2] and [E1 |E2].
Pattern expressions are based on regular expressions, but additionally include cap-

ture groups (in parentheses), hierarchies (by omitting =), and generalizations (using

↑
and

↑
=). We make use of the usual precedence of rules for regular expressions to

suppress square brackets (but not parentheses); operators that appear earlier in the

above de�nition have higher precedence. We refer to expressions of form (1) or (2)

as item expressions. We write GE (T) to refer to the set of subsequences “generated”

by expression E on input T (see Section 6.3 for a formal de�nition).

Captured and uncaptured expressions

Pattern expressions specify which subsequences to output (captured) as well as the

context in which these subsequences should occur (uncaptured). We make make

use of parentheses to distinguish these two cases; the semantics is similar to the

use of capture groups in regular expressions [PCRE]. Given an expression E , only

subexpressions that are enclosed in or contain a capture group will contribute to

output; all other subexpressions serve to describe context information. For example,

the pattern expression

Eex = [c|d]([A↑ | B↑=]+)e. (6.2)

describes precisely the subsequence constraint of Example 6.1. The captured subex-

pression [A↑ | B↑=]+ speci�es the output, i.e., consecutive sequences of A’s or its

descendants and B’s, and the uncaptured subexpressions [c |d] and e speci�es the

context, i.e., the input sequences in which consecutive sequences of A’s or its des-

cendants and B’s occur should start with a c or d and end with e.

86

6.2. Pattern Expression Language

Item expressions

Item expressions are the elementary form of pattern expressions and apply to one in-

put item. If the item expression “matches” the input item, it can “produce” an output

item; Table 6.1 provides an overview of basic item expressions. Fix some w ∈ Σ . The

most basic item expression is w=: it matches only item w and produces either ε (if

uncaptured) or w (if captured). Using our example hierarchy of Figure 7.1b, we have

GA=(A) = ∅ (note that we ignore output ε), G(A=)(A) = { A }, and G(A=)(a1) = ∅.
Sometimes we do not want to only match the speci�ed item but also all of its des-

cendants in the item hierarchy (e.g., we want to match all nouns in text mining).

Item expression w serves this purpose: it matches any item w′ ∈ desc(w) (which

includes w) and, when captured, produces the item that has been matched. For ex-

ample, we have G(A)(A) = { A }, G(A)(a1) = { a1 }, and G(A)(b1) = ∅. Our language

also provides wild card symbol “.” to match any item; again, the matched item is pro-

duced when the wild card is captured. For example, G(.)(A) = { A }, G(.)(a1) = { a1 }
and, G(.)(b1) = { b1 }.

To support mining with controlled generalizations (e.g., to mine patterns such

as “PERSON lives in CITY”), we use the generalization operator
↑
, which generalizes

items along the hierarchy. Item expressions that use the generalization operator

must be captured. More speci�cally, item expression w↑ matches any item w′ ∈
desc(w)—as expression w does—, and it produces either the matched input item

or any of its ancestors that is also a descendant of w. For example, G(B↑)(b12) =
{ b12, b1, B } and G(b↑1)

(b12) = { b12, b1 }. We also allow the use of a wild card with

generalization operator: expression “.↑” matches any item and produces each of

its generalizations. For example, G(.↑)(b1) = { b1, B }. Our �nal item expression is

used to enforce a generalization: w
↑
= matches any descendant of w and produces w,

independently of which descendant has been matched. For example G(B↑=)(b12) =
{ B }.

Composite expressions.

Item expressions can be arbitrarily combined using operators ? (optionality), ∗ (Kleene

star), + (Kleene plus), {n,m} (bounded repetition), | (union), and concatenation to

match (sequences of) more than one input item. The semantics of these composi-

tions is as in regular expressions.

6.2.2 Examples

As mentioned earlier, our pattern expressions allow us to express many existing

subsequence constraints in a uni�ed way. We show in Table 6.2 how most prior

subsequence constraints can be expressed using our pattern expressions. Note that

the use of capture groups enables many of these pattern expressions.

87

6. Expressing Subseqence Constraints

E
x
p

r
.

M
a
t
c
h

e
s

T
r
a
n

s
l
.
t
y

p
e

P
r
o

d
u

c
e
s

F
S
T

w
=

w
U

n
c
a
p

t
u

r
e
d

ε
{q

S
w

:ε
−−−
→

q F
}

C
a
p

t
u

r
e
d

w
{q

S
w

:w
−−−
→

q F
}

w
w
′
∈

de
sc
(w
)

U
n

c
a
p

t
u

r
e
d

ε
{q

S
w
′ :ε
−−−
→

q F
|w
′
∈

de
sc
(w
)}

C
a
p

t
u

r
e
d

w
′

{q
S

w
′ :w
′

−−−
−→

q F
|w
′
∈

de
sc
(w
)}

.
w
∈
Σ

U
n

c
a
p

t
u

r
e
d

ε
{q

S
w

:ε
−−−
→

q F
|w
∈
Σ
}

C
a
p

t
u

r
e
d

w
{q

S
w

:w
−−−
→

q F
|w
∈
Σ
}

w
↑

w
′
∈

de
sc
(w
)

C
a
p

t
u

r
e
d

an
c(
w
′)
∩

de
sc
(w
)
{q

S
w
′ :w
′′

−−−
−−→

q F
|w
′
∈

de
sc
(w
),
w
′′
∈

an
c(
w
′)
∩

de
sc
(w
)}

.↑
w
∈
Σ

C
a
p

t
u

r
e
d

an
c(
w
)

{q
S

w
:w
′

−−−
−→

q F
|w
∈
Σ
,w
′
∈

an
c(
w
)}

w
↑ =

w
′
∈

de
sc
(w
)

C
a
p

t
u

r
e
d

w
{q

S
w
′ :w
−−−
−→

q F
|w
′
∈

de
sc
(w
)}

T
ab

le
6.
1:

T
r
a
n
s
l
a
t
i
o
n
r
u
l
e
s
f
o
r
b
a
s
i
c
i
t
e
m

e
x
p
r
e
s
s
i
o
n
s
(
w
h
e
r
e
w
,w
′ ,
w
′′
∈
Σ
)

88

6.3. Computational Model

Pattern expressions can additionally express many customized subsequence con-

straints that arise in applications and cannot be handled by existing FSM frame-

works. For example, expressions N1–N11 shown in Table 6.3 express subsequence

constraints useful for information extraction (IE) and natural language processing

applications (NLP). These constraints were inspired from the work of Del Corro and

Gemulla (2013); Del Corro et al. (2015); Fader et al. (2011); Lin et al. (2012); Manning

and Schütze (1999); Nakashole et al. (2012); Trummer et al. (2015). Here we con-

sidered an item hierarchy in which words generalize to their lemmas, which in turn

generalize to their part of speech tags and named entities generalize to their types

(PERSON, ORGANIZATION, LOCATION, MISC) and then to ENTITY. For example,

“lives”⇒“live”⇒“VERB” and “Barack Obama”⇒PERSON⇒ENTITY.

In Table 6.4, expressions A1–A4 express subsequence constraints use for market-

basket analysis or for customer behavior mining applications. These expressions

apply to product sequences obtained from Web data: Amazon reviews. Here we con-

sidered the Amazon product hierarchy in which for example, “Cannon5D”⇒“Digital

Camera”⇒“Camera&Photo”⇒“Electronics”.

6.3 Computational Model

We translate patterns expressions into �nite state transducers (FSTs), which are a

natural computational model for pattern expressions. An FST is a type of �nite state

machine for string-to-string translation [Mohri (1997)]. FSTs are similar to �nite

state automaton but additionally label transitions with output strings. Conceptu-

ally, an FST reads an input string and translates it to an output string in a non-

deterministic fashion. We will use FSTs to specify subsequence predicate P(S,T):
the predicate holds if the FST can output subsequence S when reading input T .

6.3.1 Finite state transducers.

More formally, we consider a restricted form of FSTs de�ned as follows. An FST A
is a 5-tuple (Q, qS , QF , Σ , ∆), where:

• Q is a set of states,

• qS ∈ Q is the initial state,

• QF ⊆ Q is the set of �nal states,

• Σ is an input and output alphabet, and

• ∆ ⊆ Q × (Σ ∪ { ε }) × (Σ ∪ { ε }) ×Q is a transition relation. For every trans-

ition (qf rom, in, out, qto) ∈ ∆, we require that out ∈ anc(in) ∪ { ε } and that

whenever in = ε then out = ε .

Our notion of FSTs di�ers from traditional FSTs in that we use a common input and

output alphabet and in that we restrict output labels. The latter restriction ensures

that our FSTs output generalized subsequences of their input (see Lemma 6.1 below).

89

6. Expressing Subseqence Constraints

Subsequence constraint Example Pattern expression

All subsequences [.∗(.)]+
Bounded length length 3–5 [.∗(.)]{3, 5}
n-grams 3-, 4- and 5-grams (.){3, 5}
Bounded gap each gap at most 3 (.)[.{0, 3}(.)]+
Serial episodes length 3, total gap ≤ 2 (.)[.?.?(.) | .?(.).? | (.).?.?](.)
Hierarchy generalized 5-grams (.↑){5}
Regular expression

subsequences matching [a|b] c∗d (a|b)[.∗(c)]∗.∗(d)
contiguous subsequences matching [a|b] c∗d ([a|b] c∗d)

Table 6.2: Pattern expressions for traditional subsequence constraints.

Pattern expression Description

N1: ENTITY (VERB
+

NOUN
+

? PREP?) ENTITY Relational phrase between entities

N2: (ENTITY
↑

VERB
+

NOUN
+

? PREP? ENTITY
↑
) Typed relational phrases

N3: (ENTITY
↑

be
↑
=) DET? (ADV? ADJ? NOUN) Copular relation for an entity

N4: (.↑){3}NOUN Generalized 3-grams before a noun

N5: ([.↑ . .]|[. .↑ .]|[. . .↑])Generalized 3-grams, where at most one item is generalized

N6: ([ADJ|NOUN] NOUN) Noun modi�ed by adjective or noun

N7: (VERB PREP? NOUN
+

) Verb, preposition and object

N8: (ADV? ADJ) Adjective with optional adverbial modi�ers

N9: (NOUN PREP DET? NOUN) Noun phrases with preposition

N10: ENTITY (.
∗
) ENTITY Phrases between entities

N11: (ENTITY) .
∗

(ENTITY) Co-occurring entities

Table 6.3: Pattern expressions for subsequence constraints in information extraction

and natural language processing applications.

Pattern expression Description

A1: (Electr
↑
)[.{0,2}(Electr

↑
)]{1,4} Generalized sequences of (up to 5) electronic items,

which are at most 2 items apart in the input sequences

A2: (Book)[.{0,2}(Book)]{1,4} Sequences of books

A3: DigitalCamera[.{0,3}(.↑)]{1,4} Type of products bought after a digital camera

A4: (MInstr
↑
)[.{0,2}(MInstr

↑
)]{1,4} Generalized sequences of musical instruments

Table 6.4: Pattern expressions for subsequence constraints in customer behavior min-

ing applications.

90

6.3. Computational Model

FSTs can be viewed as a directed graph in which each state corresponds to a

vertex and each transition (qf rom, in, out, qto) ∈ ∆ to an edge from vertex qf rom to

vertex qto with label in:out. We use shortcut notation qf rom
in:out−−−−−→ qto to denote

transitions and refer to in as the input label and to out as the output label. We refer

to transitions with input label ε (and thus output label ε) as ε-transitions. Figure 6.2

shows an example FST, where we mark the initial state qS = q0, �nal states QF =

{ q11 } with double circle, transitions with in:out labels and ε-transitions with ε .

Runs and outputs.

Let T = t1t2 . . . tn be an input sequence. A run for T is a sequence p = p1p2 . . . pm
of transitions, where for 1 ≤ i ≤ m: pi = (qi,wi,w

′
i, q
′
i) ∈ ∆, q1 = qS , qi+1 = q′i , and

w1w2 . . .wm = T (recall that wi ∈ Σ ∪{ ε } so that m ≥ n). Intuitively, the FST starts

in state qS and repeatedly selects transitions that are consistent with the next input

item. If qm ∈ QF , we refer to p as an accepting run. The output O(p) of run p is the

sequence S = w′1 . . .w
′
m of output labels, where we omit all w′i with w′i = ε and set

S = ε if all w′i = ε . The set of sequences generated by FST A is given by

GA(T) = {O(p) , ε | p is an accepting run of A for T } .

Example 6.2. Consider the FSTAFex of Figure 6.2 and the example sequence database

of Figure 6.1.AFex has two accepting runs for sequence T1 = ca1b12e, which are given

by p1 = q0
ε−→ q1

c:ε−−→ q3
ε−→ q5

ε−→ q6
a1:a1−−−−→ q8

ε−→ q10
ε−→ q5

ε−→ q7
b12:B−−−−→ q9

ε−→ q10
e:ε−−→ q11

with output O(p1) = a1B, and p2 = q0
ε−→ q1

c:ε−−→ q3
ε−→ q5

ε−→ q6
a1:A−−−→ q8

ε−→ q10
ε−→ q5

ε−→
q7

b12:B−−−−→ q9
ε−→ q10

e:ε−−→ q11 with output O(p2) = AB. Thus, GAFex
(T1) = { a1B, AB },

as desired in Example 6.1. There is no accepting run for T2 so that GAFex
(T2) = ∅.

Observe that AFex precisely outputs the P-sequences as desired in Example 6.1.

The following lemma states that our FSTs generate generalized subsequences

of their inputs and thus specify subsequence predicates. Note that the lemma holds

for any run, whether or not accepting.

Lemma 6.1. Let T ∈ Σ∗ be an input sequence and A be an FST. For any run p of A
for T , it holds O(p) v T .

Proof. The proof is by induction. For T = ε , the assertion holds because every path

for T must consist of only ε-transitions so that G(p) = ε v T . Now suppose that

the assertion holds for some sequence T ′ ∈ Σ∗. We show that it then also holds for

T = T ′w, w ∈ Σ . Let p be any path for T and set S = O(p). We decompose p into

two sequences of transitions: a path p′ for T ′ with output S′ and a remainder pw
with output sw . This decomposition is always possible. We have S = S′sw . Since p′

is a path for T ′, S′ v T ′ by the induction hypothesis. Now observe that pw must

contain exactly one transition with input label w and that all other transitions must

91

6. Expressing Subseqence Constraints

q 0

q 1 q 2

q 3 q 4

q 5

q 6 q 7

q 8 q 9

q 1
0

q 1
1

ε ε

c:
ε

d:
ε

ε ε

ε

ε

a 1
:
a 1

a 1
:
A

a 2
:
a 2

a 2
:
A

A:
A

b 1
1:

B

b 1
2:

B
b 1

:
B

b 2
1:

B
b 2

2:
B

b 2
3:

B

b 2
:
B

b 3
1:

B

b 3
2:

B
b 3

:
B

B
:
B

ε ε

e:
ε

ε

Fi
gu

re
6.
2:

F
S
T
f
o
r
t
h
e
p
a
t
t
e
r
n
e
x
p
r
e
s
s
i
o
n
[c
|d
]([

A
↑
|B
↑ =]
+
)e
.

92

6.3. Computational Model

qS qF

a1:a1

a1:A

a2:a2

a2:A
A:A

Figure 6.3: FST for basic item expression (A↑)

be ε-transitions; otherwise p would not be a path for T . Let w′ be the output label of

the transition with input label w. Then sw = w′. By the de�nition of FSTs, we must

have w′ ∈ anc(w) ∪ { ε }, which implies that w′ v w. Since S′ v T ′ and sw v w, we

obtain S = S′sw v T ′w = T . �

Note that not all subsequence predicates can be expressed with FSTs; e.g., there

is no FST for predicate “all subsequences of form a∗b∗ with an equal number of

a’s and b’s”. FST are a good trade-o� between expressiveness and computational

complexity, however: they can express all pattern expressions that occur in prac-

tice and they lend themselves to e�cient mining algorithms that we will discuss in

Chapter 7.

6.3.2 Translating pattern expressions

We now describe how to translate a pattern expression E into an FST A(E). The FST

formally de�nes the semantics of pattern expressions. We say that an expression E
matches an input sequence T if there is an accepting path for T in A(E). Similarly,

E produces (or, more speci�cally, can produce) sequence S for input T when there

is an accepting path p for T with O(p) = S. Finally, E generates for T the set of

subsequences GE (T)
def
= GA(E)(T).

Each item expression is translated into a two-state FST with Q = { qS, qF },
where qS is the initial and qF the �nal state. Figure 6.3 shows an example translation

for item expression (A↑). The transitions of the FST depend on the item expression

and are summarized in Table 6.1 (page 88), column “FST”.

The translation rules for composite expressions mirror the rules for translating

regular expressions to nondeterministic �nite state automaton [Thompson (1968)]

for operators ? (optionality), ∗ (Kleene star), + (Kleene plus), | (union) and concat-

enation. We brie�y discuss these translation rules; we maintain the invariant that

each translated FST has exactly one �nal state.

• A([E]) = A(E).
• A([E]?): Take the FST A(E) and add an ε-transition from the initial state to

the �nal state.

93

6. Expressing Subseqence Constraints

• A([E]∗): Take the FST A(E) and add an ε-transition from the initial state to

the �nal state and vice versa.

• A([E]+): Take the FST A(E) and add an ε-transition from the �nal state to

the initial state.

• A([E1E2]): Take the FSTs A(E1) and A(E2) and connect the �nal state of

A(E1) to the initial state of A(E2) via an ε-transition. Take as initial state the

initial state of A(E1) and take as �nal state the �nal state of A(E2).
• A([E1 |E2]): Take the FSTs A(E1) and A(E2). Create a new initial state qS and

a new �nal state qF . Add ε-transitions from qS to the initial states of A(E1)
and A(E2). Add ε-transitions to qF from �nal states of A(E1) and A(E2). Take

qF as the only �nal state.

• A([E]{n,m}) def
= A([E][E] . . . [E]︸ ︷︷ ︸

n times

[[E][[E][. . .]?]?︸ ︷︷ ︸
m−n times

). Thus E is “repeated” between

n and m times.

• A([E]{n}) def
= A([E]{n, n}).

• A([E]{n, }) def
= A([[E]{n}[E]∗]).

For example, if we translate expression Eex of Equation (6.2) using above rules

we obtain the FST show in Figure 6.2. All translation rules can be implemented

without introducing any ε-transitions; we follow this approach in our actual imple-

mentation but use ε-transitions in our example FSTs for improved readability.

6.4 Advanced Pattern Expression Language

Our pattern expressions are expressive enough to express several subsequence con-

straints. Their are limitations, however. For example, the expression N1 in Table 6.3

(page 90) matches and produces verbal phrases between entities. In some applica-

tions, it might be more desirable to produce verbal phrases where verbs are general-

ized to their lemmas. As another example, consider the expression N2 that produces

typed relational phrases. Here the subexpression ENTITY
↑

matches all entities and

produces all ancestors of the matched entity up to ENTITY. N2 along with typed

relational phrases (e.g., PERSON lives in LOCATION) will also produce “over gen-

eralized” patterns (e.g., ENTITY lives in ENTITY) or “under generalized” patterns

(e.g., Barack Obama lives in Washington) which might not be of interest to applic-

ations. As a �nal example, consider expression A1 in Table 6.4, which produces se-

quences of electronic products. For a speci�c application, we might be interested in

only producing sequences of electronic products that have price more than say 500.

Such highly customized application speci�c requirements cannot be addressed by

pattern expressions because:

• There is a limited way to express which items an item expression can match.

For example, item expressions can either match only one item (w=), or all

descendants of an item (w), or any item using wild card (.). And,

94

6.4. Advanced Pattern Expression Language

• There is a limited way to express which items an item expression should pro-

duce. For a matched input item, basic item expressions produce either all an-

cestors (.↑), or ancestors up to the item described in the input label (w↑), or

exactly the item described by the input label (w
↑
=).

One approach to address above requirements using pattern expressions is to create

a custom hierarchy for each application/pattern expression. Such an approach is

generally cumbersome and inconvenient in practice.

6.4.1 Advanced Pattern Expressions

We now propose advanced pattern expressions which allows us to exercise more

control and convenience in expressing which items should be matched by an item

expression and which items should be produced.

Annotated hierarchy

To increase expressibility of item expressions, we leverage an annotated hierarchy

in which each item w ∈ Σ is annotated with zero or more attributes. For example,

in a syntactic hierarchy—where a word can generalize to its lemma, which in turn

can generalize to its POS-tag (e.g., lives⇒live⇒VERB)—attributes could be item

name and level. In a product hierarchy, attributes could be product name, price,

manufacturing company, etc. Figure 6.4 shows a variant of the example hierarchy of

Figure 7.1b annotated with some attributes. We will use this as an example through

out this section.

More formally, denote by A =
{
α1, α2, . . . , α |A |

}
set of attributes and by

Dα the domain of attribute α ∈ A . For our example hierarchy, we have Aex =

{ name, level, type } and Dlevel = { R,M, L }. For an item w ∈ Σ , we denote by

α(w) ∈ Dα the value of attribute α for item w. For example, we have level(A) = R.

Item Descriptor

We introduce the notion of an item descriptor, which allows for �exibility in describ-

ing items. Item descriptors are de�ned inductively as follows:

• For all items w ∈ Σ , w is an item descriptor.

• For all attributes α ∈ A , α = ν is an item descriptor where ν ∈ Dα.

• P is an item descriptor where P : Σ → { true, false } is a user-de�ned predic-

ate on items in Σ .

• If I is an item descriptor, then (I) and ¬(I) are also item descriptors.

• If I1 and I2 are item descriptors, then (I1∧I2) and (I1∨I2) are also item

descriptors.

95

6. Expressing Subseqence Constraints

A
n

a
m

e
=

‘A
’

l
e
v
e
l

=
R

a 1
n

a
m

e
=

‘
a
1
’

l
e
v
e
l

=
L

t
y

p
e

=
y

a 2
n

a
m

e
=

‘
a
2
’

l
e
v
e
l

=
L

t
y

p
e

=
y

B
n

a
m

e
=

‘
B

’

l
e
v
e
l

=
R

b 1
n

a
m

e
=

‘
b
1
’

l
e
v
e
l

=
M

t
y

p
e

=
x

b 2
n

a
m

e
=

‘
b
2
’

l
e
v
e
l

=
M

t
y

p
e

=
y

b 3
n

a
m

e
=

‘
b
3
’

l
e
v
e
l

=
M

t
y

p
e

=
y

B
′

n
a
m

e
=

‘
B

B
’

l
e
v
e
l

=
R

b 1
1

n
a
m

e
=

‘
b
1
1
’

l
e
v
e
l

=
L

b 1
2

n
a
m

e
=

‘
b
1
2
’

l
e
v
e
l

=
L

b 2
1

n
a
m

e
=

‘
b
2
1
’

l
e
v
e
l

=
L

b 2
2

n
a
m

e
=

‘
b
2
2
’

l
e
v
e
l

=
L

b 2
3

n
a
m

e
=

‘
b
2
3
’

l
e
v
e
l

=
L

b 3
1

n
a
m

e
=

‘
b
3
1
’

l
e
v
e
l

=
L

t
y

p
e

=
y

b 3
2

n
a
m

e
=

‘
b
3
2
’

l
e
v
e
l

=
L

t
y

p
e

=
y

c
n

a
m

e
=

‘
c
’

d
n

a
m

e
=

‘
d

’

e
n

a
m

e
=

‘
e
’

Fi
gu

re
6.
4:

E
x
a
m
p
l
e
a
n
n
o
t
a
t
e
d
h
i
e
r
a
r
c
h
y
.

96

6.4. Advanced Pattern Expression Language

I ΣI Iex ΣIex

w { w } B { B }
α = ν { w | w(α) = ν } level = R { A, B, B′ }

P { w | P(w) } regex.match(name,‘a*’) { a1, a2 }

¬(I1)
{
w | w ∈ Σ \ ΣI1

}
¬(level = L)

{A, B, B′, b1, b2,

b3, c, d, e}
(I1 ∧I2)

{
w | w ∈ ΣI1 ∩ ΣI2

}
level = M ∧ type = y { b2, b3 }

(I1 ∨I2)
{
w | w ∈ ΣI1 ∪ ΣI2

}
level = M ∨ type = y { a1, a2, b1, b2, b3 }

Table 6.5: Item descriptors and their corresponding examples.

Denote by ΣI ⊆ Σ the set of items described by item descriptor I . Table 6.5

gives an overview of item descriptors and their examples using our example an-

notated hierarchy of Figure 6.4. The most basic item descriptor is w, which de-

scribes the item w. Sometimes we may want to describe all items that have a speci�c

attribute-value in common (e.g., all items that are at a certain level in the hierarchy).

Descriptor α = ν serves this purpose; it describes all items w for which α(w) = ν.

We also support user-de�ned predicate on Σ . For example, we may want to de-

scribe words in natural language text with certain in�ection (e.g., words that end

with “er” or “ier”, or describe products with price greater than a certain value). Item

descriptor P describes all items w ∈ Σ for which P(w) holds. Item descriptors can

also be combined using logical not (¬), logical and (∧), and logical or (∨) operators

to describe certain items (see examples in Table 6.5).

Advanced item expressions

Like item expressions, advanced item expressions also apply to one item. They

match one item and produce zero or one item. The advanced language consists of

the following set of item expressions, de�ned inductively:

• If I is an item descriptor, [I] and [I]= are item expressions.

• [] is an item expression.

• If I1 and I2 are item expressions, then [I1 ∩ I2] is an item expression.

• If I and O are item expressions, then I↑O is an item expression.

Table 6.6 provides an overview our advanced item expressions. We denote by

I an item expression and by ΣI the set of items that the expression can match. For

now assume that all item expressions are “captured”, i.e., they produce one or more

output items. The item expression [I]= matches items w ∈ ΣI described by the

item descriptor I and produces the matched item w. For example, if I = [B]=, then

GI (B) = { B } and GI (b2) = ∅. If I = [level = M ∧ type = y]=, then GI (B) = ∅ and

GI (b2) = { b2 }. To match all descendants of items described an item descriptor I ,

97

6. Expressing Subseqence Constraints

E
x
p

r
.
(
I)

T
r
a
n

s
l
.
t
y

p
e

m
a
t
c
h

e
s

(
Σ
I
)

p
r
o

d
u

c
e
s

F
S
T

[I
] =

U
n

c
a
p

t
u

r
e
d

w
∈
Σ

I
ε

{ q S
w

:ε
−−−
→

q F
|w
∈
Σ

I

}
C

a
p

t
u

r
e
d

w
∈
Σ

I
w

{ q S
w

:w
−−−
→

q F
|w
∈
Σ

I

}
[I
]

U
n

c
a
p

t
u

r
e
d

w
∈

de
sc
(Σ

I
)

ε
{ q S

w
:ε
−−−
→

q F
|w
∈

de
sc
(Σ

I
)}

C
a
p

t
u

r
e
d

w
∈

de
sc
(Σ

I
)

w
{ q S

w
:w
−−−
→

q F
|w
∈

de
sc
(Σ

I
)}

[]
U

n
c
a
p

t
u

r
e
d

w
∈
Σ

ε
{ q S

w
:ε
−−−
→

q F
|w
∈
Σ

}
C

a
p

t
u

r
e
d

w
∈
Σ

w
{ q S

w
:w
−−−
→

q F
|w
∈
Σ

}
[I 1
∩

I 2
]

U
n

c
a
p

t
u

r
e
d

w
∈
Σ
I 1
∩
Σ
I 2

ε
{ q S

w
:ε
−−−
→

q F
|w
∈
Σ
I 1
∩
Σ
I 2

}
C

a
p

t
u

r
e
d

w
∈
Σ
I 1
∩
Σ
I 2

w
{ q S

w
:w
−−−
→

q F
|w
∈
Σ
I 1
∩
Σ
I 2

}
I:

O
C

a
p

t
u

r
e
d

w
∈
Σ
I

{a
nc
(w
)∩

Σ
O
}

{ q S
w

:w
′

−−−
−→

q F
|w
∈
Σ
I,
w
′
∈

an
c(
w
)∩

Σ
O

}
T
ab

le
6.
6:

I
t
e
m

e
x
p
r
e
s
s
i
o
n
s
f
o
r
a
d
v
a
n
c
e
d
p
a
t
t
e
r
n
e
x
p
r
e
s
s
i
o
n
l
a
n
g
u
a
g
e
.

98

6.4. Advanced Pattern Expression Language

Basic item expressions Advanced item expressions

w= [w]=
w [w]
. []
w↑ [w]:[w]
.↑ []:[]
w
↑
= [w]:[w]=

Table 6.7: Basic item expressions and their corresponding advanced item expressions.

we use the item expression [I] (without =). Denote by

desc(ΣI) = { w | w ∈ desc(w′),w′ ∈ ΣI }

the descendants of items described by item descriptor I . The item expression [I]
matches all items in desc(ΣI). For example, if I = [B], then GI (b2) = { b2 }.
As another example, if I = [level = M ∧ type = y], then GI (b2) = { b2 } and

GI (b21) = { b21 }. The advanced language also provides the item expression []
for supporting wild cards, .i.e., to match any item. For example, if I = [], then

GI (B) = { B }, GI (b1) = { b1 }. Sometimes we want to match some speci�c items

(e.g., all words that are adjectives and end with “er”). For this purpose, item ex-

pressions can be combined using the set intersection operator (∩) to form a “com-

pound” item expression. For example, if I = [[B] ∩ [type = y]=], then GI (a1) = ∅,
GI (b1) = ∅, GI (b2) = { b2 }, GI (b21) = ∅, and GI (b31) = { b31 }.

Until now we only considered advanced item expressions that produce exactly

the matched item. To support mining generalized sequences in controlled way, we

make use of item expressions of the form I↑O, where the expression I de�nes the

items that can be matched and the expression O de�nes the items that can be pro-

duced. Note that semantics of an expression are di�erent when it is used de�ne the

output; see column “produces” in Table 6.8 for item expression of the form I↑O. For

example, for the item expression I = [b2]↑[], we have GI (b21) = { b21, b2, B, B′ }. If

I = [b2]↑[level = M], we have GI (b21) = { b21, b2 } and if I = [b2]↑[level = M]=, we

have GI (b21) = { b2 }.
Finally, Table 6.7 illustrates advanced item expressions that have the same se-

mantics as our basic item expressions.

Composite expressions

Advanced item expressions can be arbitrarily combined with regular expression

operators to form pattern expressions that match sequence of items. More formally,

advanced pattern expressions are de�ned inductively as follows:

• An item expression is a pattern expression.

99

6. Expressing Subseqence Constraints

E
N

T
I
T

Y

n
a
m

e
=

E
N

T
I
T

Y

l
e
v
e
l

=
E

N
T

I
T

Y

P
E

R
S
O

N

n
a
m

e
=

“
P

E
R

S
O

N
”

l
e
v
e
l

=
t
y

p
e

L
O

C
A

T
I
O

N

n
a
m

e
=

“
L

O
C

A
T

I
O

N
”

l
e
v
e
l

=
t
y

p
e

B
a
r
a
c
k

O
b
a
m

a

n
a
m

e
=

“
B

a
r
a
c
k

O
b
a
m

a
”

l
e
v
e
l

=
w

o
r
d

J
o

h
n

S
m

i
t
h

n
a
m

e
=

“
J
o

h
n

S
m

i
t
h

”

l
e
v
e
l

=
w

o
r
d

U
S
A

n
a
m

e
=

“
U

S
A

”

l
e
v
e
l

=
w

o
r
d

U
K

n
a
m

e
=

“
U

K
”

l
e
v
e
l

=
w

o
r
d

V
E

R
B

n
a
m

e
=

V
E

R
B

l
e
v
e
l

=
p

o
s

b
e

n
a
m

e
=

“
b

e
”

l
e
v
e
l

=
l
e
m

m
a

l
i
v
e

n
a
m

e
=

“
l
i
v
e
”

l
e
v
e
l

=
l
e
m

m
a

i
s

n
a
m

e
=

“
i
s
”

l
e
v
e
l

=
w

o
r
d

w
a
s

n
a
m

e
=

“
w

a
s
”

l
e
v
e
l

=
w

o
r
d

l
i
v
i
n

g

n
a
m

e
=

“
l
i
v
i
n

g
”

l
e
v
e
l

=
w

o
r
d

l
i
v
e
d

n
a
m

e
=

“
l
i
v
e
d

”

l
e
v
e
l

=
w

o
r
d

A
D

J

n
a
m

e
=

A
D

J

l
e
v
e
l

=
p

o
s

g
r
e
a
t

n
a
m

e
=

“
g

r
e
a
t
”

l
e
v
e
l

=
l
e
m

m
a

g
r
e
a
t
e
r

n
a
m

e
=

“
g
r
e
a
t
e
r
”

l
e
v
e
l

=
w

o
r
d

g
r
e
a
t
e
s
t

n
a
m

e
=

“
g

r
e
a
t
e
s
t
”

l
e
v
e
l

=
w

o
r
d

Fi
gu

re
6.
5:

E
x
c
e
r
p
t
o
f
a
n
a
n
n
o
t
a
t
e
d
i
t
e
m

h
i
e
r
a
r
c
h
y
f
o
r
t
e
x
t
m
i
n
i
n
g
a
p
p
l
i
c
a
t
i
o
n
s
.

100

6.4. Advanced Pattern Expression Language

Advanced pattern Expression Description

X1: [VERB][PREP] Verb, preposition

X2: [VERB]:[VERB] [PREP] Verb (and its generalizations), preposition

X3: [VERB]:[level=lemma] [PREP] Verb and its generalizations up to lemma, preposition

X4: [VERB]:[level=lemma]= [PREP] Lemmatized verb, preposition

X5: -[ENTITY] [VERB]
↑
[level=lemma]

+
=[NOUN]

∗
[PREP]? -[ENTITY]

Relational phrases (with lemmatized verbs) between entities

X6: [ENTITY]
↑
[level=type]= [VERB]

+
[NOUN]

∗
[PREP]? [ENTITY]

↑
[level=type]=

Typed relational phrases (entities generalized to their types)

X7: [NOUN] -[be] [[ADJ] ∩ [regex.match(name,“.∗er|.∗ier")] -[than]= [NOUN]

Comparative facts

Table 6.8: Some examples of advanced pattern expressions useful for text mining

applications.

• If E is a pattern expression, so are −E , (E), (E)∗, (E)+, (E)?, and for all n,m ∈
N with n ≤ m, (E){n}, (E){n, }, and (E){n,m}.
• If E1 and E2 are pattern expressions, so are (E1E2) and (E1 |E2).
In advanced pattern expressions, we use the usual precedence rules for regu-

lar expression operators to suppress parenthesis but not “-”. Operators that appear

earlier in the above de�nition have higher precedence. We use “-” operator to spe-

cify uncaptured expressions, i.e., subexpressions preceded with a “-” produce an

empty output. For example, the expression

Eadv = −([c] | [d])([A]:[A] | [B]:[B]=)+ − [e]

describes the subsequence constraint of Example 6.1.

6.4.2 Examples

Table 6.8 shows some example advanced pattern expressions useful for text mining

applications. Here we considered an annotated item hierarchy of which an excerpt

is shown in Figure 6.5. Expressions X1–X6 illustrate how we can exercise more con-

trol over producing generalized sequences. For example, X3 produces generalized

sequences in which verbs are generalized only up to their lemmas. Similarly, X5

produces relational phrases in which verbs are lemmatized and X6 produces typed

relational phrases in which entities are generalized to their types. Finally, expres-

sion X7 illustrates how we can conveniently express which items to match. This ex-

pression produces phrases with comparative adjectives (that end with ‘er’ or ‘ier’),

which are useful for some information extraction applications (e.g., [Tandon et al.

(2014)]).

101

6. Expressing Subseqence Constraints

qS qF

b2:B

b2:B′

b2:B

b3:B′

Figure 6.6: FST for advanced item expression [level=M ∧ type=y]
↑
=[level=R]=.

6.4.3 Translating Advanced Pattern Expression to FSTs

Advanced pattern expressions are translated to FSTs in a similar way as described

in Section 6.3.2. The key di�erence lies is in translation rules for advanced item

expressions. Like item expressions, advanced item expressions are translated into a

two state FST. The transitions are summarized in Table. 6.6, column “FST”. Figure 6.6

shows an example translation. Translation rules for composite expressions remain

unmodi�ed.

6.5 Summary

In this chapter, we introduced subsequence predicates as a general mechanism for

unifying and extending subsequence constraints. We described our basic as well

advanced pattern expressions as a simple and intuitive way to express subsequence

constraints and proposed �nite state transducers as an underlying computational

model.

102

C
h

a
p
t

e
r 7

Freqent Seqence Mining with
Subseqence Constraints

In this chapter,
a

we focus on mining P-frequent sequences, where the subsequence

predicate P is expressed using a pattern expression. We restrict our attention to

pattern expressions; our methods can be extended to deal with advanced pattern

expressions as well. We propose the DESQ system, which translates a given pattern

expression to a compressed FST, which is subsequently optimized and simulated in

a way suitable for frequent sequence mining.

In Section 7.1, we review the problem of mining P-frequent sequences. In Sec-

tion 7.2, we provide methods, compress and optimize our specialized FSTs. In partic-

ular, we discuss compressed FST and a simulation algorithm that e�ectively handles

large hierarchies. Although traditional FST libraries such as Open-FST [Allauzen

et al. (2007)] can be used within DESQ, our compressed FSTs support more e�cient

mining. In Section 7.3, we discuss two e�cient mining algorithms named DESQ-

COUNT and DESQ-DFS. DESQ-COUNT is a match-and-count algorithm that aims

at highly selective subsequence constraints, whereas DESQ-DFS can handle more

demanding pattern expressions and is based on depth-�rst search approach de-

scribed in Section 2.2.2. In Section 7.4, we propose techniques to improve simulation

e�ciency of compressed FSTs. In general, our FSTs are often non-deterministic and

existing optimization methods (determization and minimization) do not apply. Our

techniques aim to reduce overall nondeterminism by minimizing cFSTs, by prun-

ing input sequences that do not produce an output, and by pruning non-accepting

paths.

a
The material in this chapter is based on Beedkar and Gemulla (2016).

103

7. FSM with Subseqence Constraints

T1 : c a1 b12 e
T2 : a1 b2 e
T3 : d a2 a1 a2 b11 e
T4 : d a1 B e
T5 : e a1 b2 d
T6 : c a1 a1 a1 b2 e

(a) Example database

A

a1 a2

B

b1 b2 b3

b11 b12 b21 b22 b23 b31 b32

B′ c

d

e

(b) Example hierarchy

Figure 7.1: A sequence database and its vocabulary

7.1 FSM and Subsequence Predicates (recap)

We start by reviewing the problem of mining P-frequent sequences introduced in

Section 6.1 (page 84).

Consider the example database and hierarchy of previous chapter (reproduced

in Figure 7.1) and the pattern expression

Eex = [c|d]([A↑ | B↑=]+)e. (7.1)

The pattern expression describes consecutive subsequences of A’s or its descend-

ants and B’s that occur in the input sequences between c or d and e. Given a sub-

sequence predicate P, which is expressed using pattern expression, our goal is mine

P-frequent sequences, i.e., P-sequences that have P-frequency ≥ σ. In our example

sequence database of Figure 7.1 and for the above expression Eex , the set of all P-

frequent sequences (along with their P-frequencies) for σ = 2 in is given by

{ AAAB : 2, AB : 2, Aa1 AB : 2, a1B : 2 } .

7.2 FST Optimizations

Our translation rules for pattern expressions can produce very large FSTs, especially

when the vocabulary is large. For example, if the hierarchy has n items and average

depth d, the FST for item expression “.↑” has Θ(nd) transitions. To avoid this ex-

plosion of FST size and support e�cient mining, we make use of a compressed FST

(cFST) representation for this purpose.

7.2.1 Compressed FST

Table 7.1 list translations rules to obtain compressed FST for item expressions. Note

that both FST and cFST translations have the same from- and to-state, but cFST of

an item expression has exactly one transition. Each transition in the cFST describes

a set of transitions in the corresponding FST in a concise way. More speci�cally,

cFSTs use as input labels ., w, and w= for all w ∈ Σ . Here “.” matches all input items,

104

7.2. FST Optimizations

E
x
p

r
.

M
a
t
c
h

e
s

T
r
a
n

s
l
.
t
y

p
e

P
r
o

d
u

c
e
s

F
S
T

C
o

m
p

r
e
s
s
e
d

F
S
T

w
=

w
U

n
c
a
p

t
u

r
e
d

ε
{q

S
w

:ε
−−−
→

q F
}

{q
S

w
=
:ε

−−
−→

q F
}

C
a
p

t
u

r
e
d

w
{q

S
w

:w
−−−
→

q F
}

{q
S

w
=
:w

−−−
−→

q F
}

w
w
′
∈

de
sc
(w
)

U
n

c
a
p

t
u

r
e
d

ε
{q

S
w
′ :ε
−−−
→

q F
|w
′
∈

de
sc
(w
)}

{q
S

w
:ε
−−−
→

q F
}

C
a
p

t
u

r
e
d

w
′

{q
S

w
′ :w
′

−−−
−→

q F
|w
′
∈

de
sc
(w
)}

{q
S

w
:$
−−−
→

q F
}

.
w
∈
Σ

U
n

c
a
p

t
u

r
e
d

ε
{q

S
w

:ε
−−−
→

q F
|w
∈
Σ
}

{q
S

.:ε −−→
q F
}

C
a
p

t
u

r
e
d

w
{q

S
w

:w
−−−
→

q F
|w
∈
Σ
}

{q
S

.:$ −−→
q F
}

w
↑

w
′
∈

de
sc
(w
)

C
a
p

t
u

r
e
d

an
c(
w
′)
∩

de
sc
(w
)
{q

S
w
′ :w
′′

−−−
−−→

q F
|w
′
∈

de
sc
(w
),
w
′′
∈

an
c(
w
′)
∩

de
sc
(w
)}

{q
S

w
:$
−w

−−−
−−→

q F
}

.↑
w
∈
Σ

C
a
p

t
u

r
e
d

an
c(
w
)

{q
S

w
:w
′

−−−
−→

q F
|w
∈
Σ
,w
′
∈

an
c(
w
)}

{q
S

w
:$
−>

−−−
−−→

q F
}

w
↑ =

w
′
∈

de
sc
(w
)

C
a
p

t
u

r
e
d

w
{q

S
w
′ :w
−−−
−→

q F
|w
′
∈

de
sc
(w
)}

{q
S

w
:w
−−−
→

q F
}

T
ab

le
7.
1:

T
r
a
n
s
l
a
t
i
o
n
r
u
l
e
s
f
o
r
i
t
e
m

e
x
p
r
e
s
s
i
o
n
s
(
w
h
e
r
e
w
,w
′ ,
w
′′
∈
Σ
)
t
o
c
o
m
p
r
e
s
s
e
d
F
S
T
.

105

7. FSM with Subseqence Constraints

q0

q1

q2

q3

q4

q5

c:ε

d:ε

A:$-A

B:B

B:B

B:B

A:$-A

B:B

B:BA:$-A

e:ε

e:ε

Figure 7.2: Compressed FST for [c |d]([A↑ | B↑=]+)e.

q0 q1 q2 q3

c:ε

d:ε

A:$-A

B:B

A:$-A

B:B

e:ε

Figure 7.3: Minimized cFST for [c |d]([A↑ | B↑=]+)e.

w matches all items in desc(w), and w= matches only item w. cFSTs use as output

labels ε , w, $, $-w, and $-> for w ∈ Σ . Each transition encodes the set of output

labels in the corresponding FST: ε and w are as before, $ encodes the matched input

item, $-w the matched input item and all its ancestors that are descendants of w,

and $-> the matched item and all its ancestors. The cFST translations for composite

expressions remain unmodi�ed.

Figure 7.2 shows the cFST Aex for pattern expression [c|d]([A↑ | B↑=]+)e. Ob-

serve that the cFST has fewer transitions than its uncompressed counterpart of Fig-

ure 6.2 on page 92. Here we used translation rules for composite expressions that

do not introduce ε-transitions, which in this case further reduces the number of

transitions. We subsequently minimize our cFSTs, which further reduce the num-

ber of states and transitions; we will discuss on how to minimize cFSTs later in

Section 7.4.1. For our running example, we �nally obtain the cFST shown in Fig-

ure 7.3.

7.2.2 Simulating compressed FST

We now discuss how to compute via simulation the set GA(T) of all output se-

quences generated by a cFST A for input sequence T . Note that the computation of

GA(T) for all T ∈ D can be infeasible. Nevertheless, simulation forms the basis of

the more e�cient DESQ-DFS algorithm of Section. 7.3.3 so that we describe the ap-

106

7.2. FST Optimizations

proach brie�y. We assume throughout (and without loss of generality) that A does

not have ε-transitions.

Algorithm 7.1 shows how to simulate cFST A = (Q, qs,QF, Σ, ∆), where the

transition function

δ(q,w) = { (out, qto) | (q, in, out, qto) ∈ ∆, in matches w } (7.2)

denotes the set of (output label, state)-pairs that can be reached from state q by con-

suming input item w (see column “Matches” in Table 7.1). Intuitively, we simulate

the cFST by starting with the initial state qS of the cFST (line 2) and repeatedly se-

lecting a transition for which the input label matches the next input item tpos (line

8). If there are multiple such transitions, we select them one by one (via backtrack-

ing). As we move from state to state, we append items that are encoded by the output

labels of the selected transitions to an output bu�er (S, lines 9–20). As before, if a

transition encodes more than one output item, we append them one by one (again

via backtracking, lines 17–19).
b

To keep notation concise, we de�ne desc(>) = Σ . If

we reach a �nal state after consuming all input items, we output the bu�er, which

then contains a generated sequence (lines 5–7).

Consider the sequence T3 = da2a1a2b11e of our example database Dex (Fig-

ure 7.1a and the cFST Aex of Figure 7.3. In the �rst invocation of Step, we have

q = q0, tpos = t1 = d, and S = ε . Since δ(q0, d) = { (ε, q1) }, we proceed to line 11

and invoke Step with q = q1, tpos = t2 = a2, S = ε . We have δ(q1, a2) = { ($-A, q2) },
so that we proceed to line 18 and invoke Step with q = q2, tpos = t3 = a1, and

S = a2. After consuming input items a1, a2, and b11 in a similar fashion, we invoke

step with q = q2, tpos = t6 = e, and S = a2a1a2B. Since δ(q2, e) = { (ε, q3) }, we

proceed to state q = q3 and pos = 6 without further modifying the bu�er. Finally,

since q3 ∈ QF is a �nal state and we consumed the entire input, we add bu�ered

sequence S = a2a1a2B to the set GAex (T3) in line 6. The algorithm then backtracks

and generates sequences a2a1 AB, a2 Aa2B, a2 AAB, Aa1a2B, Aa1 AB, AAa2B, and

AAAB.

Partial matches

The simulation algorithm only generates an output when the entire input sequence

is matched. If we are interested in matching pattern expressions that occur some-

where in the input sequence instead, we construct a cFST for .∗E (instead of for

E) and modify the above simulation such that it adds the bu�ered output to GA(T)
whenever a �nal state is reached, whether or not the entire input has been consumed

(i.e., we omit the condition pos > |T | in line 5.
c

b
A more e�cient procedure, which reduces repeated computations, would be to append a de-

scription of all output items to bu�er S. We do not follow this procedure to allow for e�cient mining;

see Sec. 7.3.

c
This approach is more e�cient than using expression .∗E .∗ for constructing the cFST.

107

7. FSM with Subseqence Constraints

Algorithm 7.1 Simulate a cFST

Require: cFST A = (Q, qs,QF, Σ, ∆), T = t1 . . . t |T |
Ensure: GA(T)

1: GA(T) ← ∅ // set of generated sequences

2: Step(qS, 1, ε)
3:

4: void Step(q, pos, S): // (current state, input pos., bu�er)

5: if q ∈ QF and pos > |T | and S , ε then
6: GA(T) ← GA(T) ∪ { S }
7: end if
8: for all (out, qto) ∈ δ(q, tpos) do // empty if pos > |T |
9: switch (out)

10: case ε :
11: Step(qto, pos + 1, S)
12: case w:
13: Step(qto, pos + 1, Sw)
14: case $:
15: Step(qto, pos + 1, Stpos)
16: case $-x for x ∈ Σ ∪ {>}:
17: for all w′ ∈ anc(tpos) ∩ desc(x) do
18: Step(qto, pos + 1, Sw′)
19: end for
20: end switch
21: end for

108

7.3. Mining P-Frequent Sequences

Nondeterminism

Note that cFST simulation involves backtracking when multiple transitions match

the same input item and/or a transition has an output label of form $-w or $->. The

standard way to avoid non-determinism is to use some form of FST determiniza-

tion [Mohri (1997)]. However, these methods do not directly apply to our FSTs. We

discuss methods that aim to reduce nondeterminism in Sec. 7.4.

7.3 Mining P-Frequent Sequences

We now turn attention to mining P-frequent sequences from a sequence database.

We assume that subsequence predicate P is described by a cFST A (e.g., obtained by

translating a pattern expression). We propose three methods for mining P-frequent

sequences: Naïve, DESQ-COUNT, and DESQ-DFS. The naïve approach is to compute

all P-generated sequences for each input sequence, count how often each sequence

has been obtained, and output the ones that are frequent. DESQ-COUNT improves

on the naïve approach by only generating sequences that do not contain globally

infrequent items. Finally, DESQ-DFS is based on depth-�rst projection-based meth-

ods [Pei et al. (2001, 2002)] and is generally more e�cient than DESQ-COUNT when

the set of P-generated sequences is large.

7.3.1 Naïve Approach

The naïve “generate-and-count” approach is to compute GA(T) for each input se-

quence T ∈ D via cFST simulation and count how often each sequence has been

generated (cf. Equation (6.1)). The naïve approach is outlined as Algorithm 7.2; it is

generally ine�cient because it considers many globally infrequent sequences. For

example, we obtain

GAex (T3) ={AAAB, AAa2B, Aa1 AB, Aa1a2B, (7.3)

a2 AAB, a2 Aa2B, a2a1 AB, a2a1a2B}

for input sequence T3, but only AAAB and Aa1 AB are actually P-frequent.

7.3.2 DESQ-COUNT

DESQ-COUNT reduces the number of sequences that are generated and counted by

making use of item frequencies. In more detail, denote by f (w,D) = |{T ∈ D | w v
T}| the frequency of item w. We say that item w is frequent if f (w,D) ≥ σ. Similar

to many prior FSM algorithms, DESQ-COUNT �rst generates an f-list F, which

contains all frequent items along with their frequency. For our example database,

we obtain f-list

Fex ={A:6, e:6, B:6, a1:6, d:3, b2:3, b1:2, c:2, b12:1, b11:1, a2:1}. (7.4)

109

7. FSM with Subseqence Constraints

Algorithm 7.2 Naïve approach

Require: D , cFST A = (Q, qs,QF, Σ, ∆), σ
Ensure: P-frequent sequences for A in D

1: M ← ∅ // A map from sequence to its frequency

2: for each T ∈ D do
3: Compute GA(T) via cFST simulation // using Algorithm 7.1

4: for each S ∈ GA(T) do
5: M[S] ← M[S] + 1
6: end for
7: end for
8: for each S ∈ Keys(M) do
9: if M[S] ≥ σ then

10: Output(S,M[S])
11: end if
12: end for

Note that the f-list is independent of the notion of subsequence constraint and

can be precomputed. In DESQ-COUNT, we make use of the f-list to reduce the size

of GA(T). Denote by

GF
A(T) = { S ∈ GA(T) | ∀w ∈ S : f (w,D) ≥ σ }

the subset of generated sequences that do not contain infrequent items. For T3,

we have GFex

Aex
(T3) = { AAAB, Aa1 AB}, which is much smaller than the full set

GAex (T3) given above. DESQ-COUNT proceeds as the naïve approach, but replaces

GA(T) by GF
A(T) for each T ∈ D . Note that we do not fully compute GA(T) to

obtain GF
A(T); see below.

The correctness of DESQ-COUNT is established by Lemma 6.1, which states

that FSTs specify subsequence predicates, and the following observation.

Lemma 7.1. (Item antimonotonicity) Let P be a relevance predicate and S ∈ Σ+ be
any sequence. Then for all w ∈ S, f (w,D) ≥ fP(S,D).

Proof. Pick any w ∈ S and input sequence T ∈ D such that S ∈ GP(T). Since P is a

relevance predicate, S v T . Since w ∈ S, we have w v S and thus also w v T . We

obtain

fP(S,D) = |{T ∈ D | S ∈ GP(T) }|
≤ |{T ∈ D | w v T }| = f (w,D). �

The lemma implies that P-frequent sequences must be composed of frequent

items. We thus can safely prune all sequences that contain infrequent items from

GA(T) so that DESQ-COUNT is correct.

110

7.3. Mining P-Frequent Sequences

As mentioned above, we directly compute the reduced set GF
A(T) by adapting

cFST simulation (Algorithm 7.1) to work with the f-list. In more detail, we stop ex-

ploring a path through the cFST (via Step) as soon as an infrequent item is produced.

To do so, we execute lines 13, 15, and 18 of Algorithm 7.1 only if the item appended

to the bu�er S is frequent.

The pruning performed by DESQ-COUNT can substantially reduce the num-

ber of candidate sequences. DESQ-COUNT is ine�cient (and sometimes infeasible),

however, if pruning is not su�ciently e�ective and the sets GF
A(T) are very large.

The DESQ-DFS algorithm, which we present next, addresses such cases.

7.3.3 DESQ-DFS

DESQ-DFS adapts the pattern-growth framework of Pre�xSpan [Pei et al. (2001)]

to FSTs. Recall the DFS approach from Section 2.2.2. Pattern-growth approaches ar-

range the output sequences in a tree, in which each node corresponds to a sequence

S and is associated with a projected database, which consists of the set of input se-

quences in which S occurs. Starting with an empty sequence and the full sequence

database, the tree is built recursively by a performing series of expansions. In each

expansion, a frequent sequence S (of l items) is expanded to generate sequences

with pre�x S (of l + 1 items), their projected databases, and their supports. In what

follows, we describe how we adapt these concepts to mine P-frequent sequences;

the corresponding algorithm for cFSTs is shown as Algorithm 7.3 and illustrated on

our running example in Figure 7.4.

Projected databases

For a sequence S, we store in its projected database the state of the simulations of A
on all input sequences that generate S as a partial output. We refer to such a state as a

snapshot for S. The snapshot concisely describes which items have been consumed,

which state the FST simulation is in, and which output has been produced so far.

In more detail, suppose that we simulate an A on input sequence T = t1 . . . tn.

Consider a partial run p = p1 . . . pm obtained after m ≤ n steps. We generated

output S = O(p) and, under our running assumption that A does not contain ε-

transitions, consumed pre�x T ′ = t1 . . . tm of T at this time. If the output item of

the last transition pm is not empty (and thus agrees with the last item of S), we say

that triple T[pos@q] is a snapshot for S, where pos = m + 1 is the position of next

input item and q is the last state in p (current state of A). The projected database for

S consists of all snapshots for S and is given by

ProjA(S,D) = {T[pos@q] | T ∈ D,T[pos@q] is a snapshot

for S on A }.

Figure 7.4b shows some projected databases associated with some sequences for

our running example. For example, we obtained the partial output a1 only from

111

7. FSM with Subseqence Constraints

input sequences T1, T4, and T6. In each case, we consumed two items (next item is

at position 3) and ended in state q2. We refer to the number of input sequences that

can generate S as a partial output as the pre�x support of S:

PresupA(S,D) = {T | ∃pos, q : T[pos@q] ∈ ProjA(S,D)}.

In our example, PresupAF7.4
(a1,Dex) = {T1,T4,T6 }. Note that even if an input se-

quence has multiple snapshots for S, it contributes only once to the pre�x support.

Expansions

We start with root node ε and all snapshots for ε (lines 1 and 2) and then perform

a series of expansions (lines 3 and 14). In each expansion, we scan the projected

database sequentially. For each snapshot T[pos@q] (lines 6–7), we resume the FST

for T at item tpos in state q (via IncStep, lines 18–35). The transducer is stopped as

soon as an output item is produced or the entire input is consumed. In the former

case, suppose we produce item w after consuming k more input items from T and

thereby reach state q′. We then add the new snapshot T[pos+k@q′] to the projected

database of child node Sw (lines 27, 29, and 32). In the later case, if we end up in a

�nal state (lines 19–20), we conclude that T ∈ SupA(S,D) (see below). For example,

both snapshots of a1B reach �nal state q3 by consuming all input items and without

producing further output, so that a1B.Sup = {T1,T4 }.

Pruning

The above expansion procedure allows us to prune partial sequences as soon as it

becomes clear that they cannot be expanded to a P-frequent sequence. We use two

pruning techniques. First, as in DESQ- COUNT, we consider item w only if it is fre-

quent; otherwise, we ignore the new snapshot. For example, when expanding a1,

we do not create nodes for sequences that contain infrequent items; e.g., a1b12 has

snapshot T1[4@q2] but contains infrequent item b12 (see Equation (7.4)). Second,

we expand only those nodes S that have a su�ciently large pre�x support—i.e.,

PresupA(S,D) ≥ σ—and stop as soon as there is no such node anymore. For ex-

ample, we do not expand node a1a1 because it contains only one snapshot, but we

require snapshots from at least σ = 2 di�erent input sequences.

Correctness

Note that the size of the pre�x support is monotonically decreasing as we go down

the tree but always stays at least as large as the support. This property, which we

establish next, is key to the correctness of DESQ-DFS.

Lemma 7.2. For any sequence S ∈ Σ∗ and item w ∈ Σ , we have PresupA(Sw,D) ⊆
PresupA(S,D).

112

7.3. Mining P-Frequent Sequences

Algorithm 7.3 DESQ-DFS

Require: D , cFST A = (Q, qS,QF, Σ, ∆), σ, f-list F
Ensure: P-frequent sequences for A in D

1: S ← ε // create root node; initially �elds S.Proj = S.Sup = ∅
2: S.Proj←

{
T1[1@qS], . . . ,T|D |[1@qS]

}
3: Expand(S)
4:

5: void Expand(S):
6: for all T[pos@q] ∈ S.Proj do
7: IncStep(T, pos, q, S)

8: end for
9: if |S.Sup| ≥ σ then

10: Output(S,|S.Sup|)
11: end if
12: for all S′ ∈ S.Children do // expand if pre�x support large enough

13: if |{T | ∃pos, q : T[pos@q] ∈ S.Proj }| ≥ σ then
14: Expand(S′)
15: end if
16: end for
17:

18: void IncStep(T, pos, q, S):

19: if q ∈ QF and pos > |T | and S , ε then
20: S.Sup← S.Sup∪ {T } // initially empty

21: end if
22: for all (out, qto) ∈ δ(q, tpos) do
23: switch (out)

24: case ε :
25: IncStep(T, pos+1, qto, S)

26: case w:
27: if f (w,D) ≥ σ then Append(S, w, T , pos+1, qto)

28: case $:
29: if f (tpos,D) ≥ σ then Append(S, tpos , T , pos+1, qto)

30: case $-x, x ∈ Σ ∪ { > }:
31: for all w′ ∈ anc(tpos) ∩ desc(x) do
32: if f (w′,D) ≥ σ then Append(S, w′, T , pos+1, qto)

33: end for
34: end switch
35: end for
36:

37: void Append(S,w,T, pos, q):
38: S.Children← S.Children∪ { Sw } // node Sw is created if new

39: Sw.Proj← Sw.Proj∪ {T[pos@q] } // initially empty

113

7. FSM with Subseqence Constraints

ε

E1

a1 A

a1Ba1 A a1a1

E2

E3

ABAA Aa1

E4

E5

AAA AAa1

E6

AAAB
E7

E8 E9

Aa1 A Aa1a1

E10

Aa1 AB
E11

Expansions

P-frequent, expanded

Not P-frequent, expanded

Not P-frequent, not expanded

(a) Search space

S S.Proj |S.Presup| |S. Sup|
ε 〈T1[1@q0],T2[1@q0],T3[1@q0],T4[1@q0], 6 0

T5[1@q0],T6[1@q0]〉
a1 〈T1[3@q2],T4[3@q2],T6[3@q2]〉 3 0

a1 A 〈T6[4@q2]〉 1 0

a1B 〈T1[3@q2],T4[3@q2]〉 2 2

a1a1 〈T6[4@q2]〉 1 0

(b) Some projected databases, pre�x supports, and supports

Figure 7.4: Illustration of DESQ-DFS for Dex , AFex , and σ = 2

114

7.3. Mining P-Frequent Sequences

Proof. Pick any S ∈ Σ∗, w ∈ Σ , and T = t1 . . . tn ∈ D with T ∈ PresupA(Sw,D).
Then there exists a run p = p1 . . . pm for pre�x T ′ = t1 . . . tm and some m ≤ n such

that O(p) = Sw. Recall that inputs (outputs) are consumed (generated) from left to

right. We conclude that there exists some m′ < m such that run p′ = p1 . . . pm′
satis�es O(p′) = S. Pick the shortest such run; then pm′ outputs the last item of S.

Since p′ is additionally a run for t1 . . . tm′ , which is a pre�x of T , we conclude that

T ∈ PresupA(S,D). �

We now establish the correctness of DESQ-DFS.

Theorem 7.1. DESQ-DFS outputs each P-frequent sequence S ∈ Σ+ with frequency

fP(S,D). No other sequences are output.

Proof. Let A = (Q, qS,QF, Σ, ∆) be an FST and pick any sequence S ∈ Σ+. We

start with showing that Algorithm 7.3 correctly computes the P-support of S when

expanding node S, i.e., S.Sup = SupA(S,D) after the expansion. First pick any T ∈
Sup(S,D) with T = t1 . . . tn. Then there is an accepting run p = p1 . . . pn for T .

By arguments as in the proof of Lemma 7.2, there must be a smallest run p′ =
p1 . . . pm, m ≤ n, such that O(p′) = S as well. Let qm (qn) be the state reached

in transition pm (pn). We conclude that snapshot T[pos@qm] ∈ ProjA(S,D), where

pos = m+1, and thus T ∈ Presup(S,D). Since by de�nition pm+1 . . . pn must output

ε , Algorithm 7.3 follows transitions pm+1 . . . pn without stopping when resuming

snapshot T[pos@qm]. By doing so, it consumes all the remaining items tm+1 . . . tn
of T and reaches �nal state qn. It thus includes T into S.Sup (lines 19–20). Now pick

T < SupA(S,D). Since there is no accepting run for T , Algorithm 7.3 cannot reach

a �nal state after consuming T so that it does not include T into S.Sup. Putting

both together, S.Sup = SupA(S,D) after expanding S, as desired. We conclude that

Algorithm 7.3 computes the correct frequency fP(S,D) = |SupA(S,D)|. S is output

only if it is P-frequent (line 10). Note that for S = ε , we have ε .Sup = ∅ (see line 19)

so that ε is not output.

Let S ∈ Σ+ be a P-frequent sequence. It remains to show that Algorithm 7.3

reaches and expands node S. First observe that for any pre�x S′ of S, we have

Presup(S′,D) ⊇ Presup(S,D) ⊇ Sup(S,D).

Here the �rst inclusion follows from Lemma 7.2, and the second inclusion follows

from the above arguments. Since S is P-frequent, we have |Sup(S,D)| ≥ σ, which

implies |Presup(S′,D)| ≥ σ. Since every node on the path from ε to S corresponds to

a pre�x of S, Algorithm 7.3 does not prune any of these nodes due to too low pre�x

support (line 14). To complete the proof, recall that S cannot contain an infrequent

item by Lemma 7.1. Thus none of the nodes on the path from ε to S are pruned due

to too low item frequency either (lines 27, 29, or 32). We conclude that Algorithm 7.3

reaches and expands node S. �

115

7. FSM with Subseqence Constraints

A

a1 a2

B

b1 b2 b3

b11 b12 b21 b22 b23 b31 b32

B′ c

d

e

Figure 7.5: An Example hierarchy.

q0 q1 q2 q4

q3

q5

q6

c:ε A:$

d:$

B:$-B

B′:$

e:ε

d:$

e:$

Figure 7.6: cFST for pattern expression c (A)
[
(d)e | (B↑d) | (B′e)

]
.

7.4 Reducing Nondeterminism

Recall from the discussion on nondeterminism in Section 7.2.2 that cFST simulation

involves backtracking when multiple transitions leaving a state match the same in-

put item and/or when a transition has an output label of form $-w or $->. Back-

tracking is acceptable and in fact necessary for generating all output sequences

(P-sequences). Recall the example in Section 7.2.2; the cFST simulation involved

backtracking to generate all output sequences. Also observe that there was no “un-

necessary” backtracking in that the backtracking always lead to an accepting path.

However, this is not always the case. For example, consider our example hierarchy

reproduced in Figure 7.5 and the cFST AF7.6 shown in Figure 7.6. Here transitions

q2
B:$−B−−−−−→ q4 and q2

B′:$−−−→ q5 can match the input item b2. Thus, we have δ(q2, b2) =
{ ($-B, q4), ($, q5) } and cFST simulation becomes nondeterministic and backtrack-

ing needs to be performed. For example, when we simulate AF7.6 for the input se-

quence ca1b2e, transition q2
B:$−B−−−−−→q4 leads to non-accepting path. Such backtrack-

ing can be often expensive due to wasted computation for non-accepting paths.

The standard way to avoid nondeterminism is to use some form of FST determ-

inization [Mohri (1997)]. In general, these methods do not directly apply to our

FSTs because there are no sequential or even p-sequential transducers for some pat-

tern expressions. An FST is sequential if for each input there is at most one output.

Mohri (1997) showed that the classical powerset construction algorithm by Rabin

and Scott (1959) for non-deterministic �nite state automaton (NFA) can be exten-

ded to determinize sequential FSTs. Similarly, an FST is p-subsequential if there are

116

7.4. Reducing Nondeterminism

at most p outputs per input; these FSTs can be optimized by delaying output (and

thus nondeterminism) until after the input has been consumed entirely. In our set-

ting, such delayed output bars us from e�cient mining (particularly in DESQ-DFS).

Moreover, our FSTs are often not p-subsequential. For example, the number of out-

puts for expression [.∗(.)]+ (all subsequences) is exponential in the input size and

thus unbounded. For this reason avoiding nondeterminism without limiting out pat-

tern language is challenging.

In what follows, we propose three techniques to reduce “unnecessary” nondeter-

minism—i.e., when backtracking leads to non-accepting paths—and thus improve

e�ciency of our mining algorithms.

7.4.1 Minimization

Classical FST minimization techniques have been studied for sequential transducers

[Mohri (2000)] and do not apply to our FSTs for the reasons mentioned above. How-

ever, we can leverage minimization techniques for �nite state automaton to min-

imize our FSTs to the extent possible. Note that, even though such minimization

may not provide a deterministic transducer, it reduces nondeterminism in cases

when a state has two transitions with the same input and output label. Consider

for example input sequence T = a1c. When we simulate the cFST of Figure 7.7a,

we have δ(q0, a1) = { (a1, q1), (a1, q2) } so that cFST simulation tries both options

via backtracking. Figure 7.7e show the corresponding minimized cFST for which

δ(q0, a1) = { (a1, q1) } and thus simulation avoids any backtracking. Moreover, as

mentioned in Section 7.2.1, minimization helps to reduce the number of transitions

and states, which support more e�cient mining.

FSTs are isomorphic to NFAs if we treat input and output labels on each trans-

ition as one label. We can therefore apply any minimization algorithm for �nite

state automaton to minimize our FSTs. To minimize cFSTs, we use the algorithm

by Brzozowski (1962), which can be applied to any NFA. The algorithm when ap-

plied to cFSTs is illustrated in Figure 7.7. We start with the cFST A (Figure 7.7a;

obtained after translating a pattern expression) and construct a reverse cFST R(A)
(Figure 7.7b) by (i) reversing the direction of the transitions of A, (ii) making the

initial state as the �nal state, and (iii) making the �nal state(s) as the initial state(s).

We then obtain the cFST D(R(A)) (Figure 7.7c) by applying the powerset construc-

tion algorithm for converting NFA to DFA on R(A) (note that here we treat cFST as

an NFA by considering input and output labels as one single label.) We then repeat

the process one more time (Figures 7.7d and 7.7e) to obtain the minimal cFST (Fig-

ure 7.7e). Even though, Brzozowski’s algorithm runs in exponential time, Almeida

et al. (2007) observed that it is the fastest one for most practical NFAs.

117

7. FSM with Subseqence Constraints

q0

q1

q2

q3

q4

A:$

A:$

b1:$

c:$

(a)A

q0

q1

q2

q3

q4

A:$

A:$

b1:$

c:$

(b) R(A)

q0

q1

q2

q3

A:$

A:$

b1:$

c:$

(c) D(R(A))

q0

q1

q2

q3

A:$

A:$

b1:$

c:$

(d) R(D(R(A)))

q0 q1 q3

A:$ b1:$

c:$

(e) D(R(D(R(A))))

Figure 7.7: Minimizing cFST for expression (Ab1 |Ac) via Brzozowski’ algorithm.

7.4.2 Pruning Irrelevant Input Sequences

An input sequence T is A-relevant for a cFST A if there is at least one accepting run

for T . Similarly, we say the T is A-irrelevant if there is no accepting run for T in A.

For example, consider the hierarchy of Figure 7.5 and the cFST AF7.6 . Then the input

sequence T = ca1b2e is A-relevant where as T = ca1b2a2 is A-irrelevant. Note that

GA(T) = ∅ does not necessarily imply that T is A-irrelevant in our de�nition.
d

cFST simulation on A-irrelevant input sequences never reaches a �nal state

and leads to wasted computation of partial output sequences. Thus, pruning such

input sequences can signi�cantly improve overall e�ciency of DESQ mining al-

gorithms. For example, for the input sequence T = ca1b2a2, we can completely

avoid computing outputs on non-accepting paths q0
c:ε−−→ q1

A:$−−→ q2
B:$-B−−−−→ q4 and

q0
c:ε−−→ q1

A:$−−→ q2
B′:$−−−→ q5. However, we require an e�cient way to determine if an

input sequence is A-irrelevant, without cFST simulation of course.

The key idea to e�ciently determine if a input sequence T is A-relevant is to use

a DFA that accepts the same language as an FST. Recall that FSTs are similar to �nite

state automaton but transitions are additionally labeled with outputs. Therefore, if

we ignore the output labels of an FST, we obtain an (non deterministic) �nite state

automaton (NFA), from which we can construct an equivalent DFA. Thus, if the DFA

obtained from an FST accepts an input sequence, so will the FST and vice-versa.

d
This can happen when A has an accepting run with ε output.

118

7.4. Reducing Nondeterminism

q0 q1 q2 q4

q3

q5

q6

c A

d

B

B′

e

d

e

Figure 7.8: Compressed NFA obtained from cFST AF7.6 .

Thus, using a such a DFA, we can determine in linear time if an input sequence is

relevant or not.

Obtaining a DFA from a cFST is however not trivial. Our cFSTs directly exploit

the knowledge about the hierarchy to concisely describe the transitions. Thus, ig-

noring output labels of a cFST results in a “compressed” NFA (cNFA). Figure 7.8

shows cNFA obtained from cFST AF7.6 . cNFAs obtained from cFSTs are di�erent

than classical NFAs obtained from FSTs. In classical NFAs, two transitions leaving

a state either match same items or match disjoint items, where as in cNFAs, two

transitions leaving a state can either match same items, or match disjoint items, or

match overlapping items, or match items subsumed by other. For example, consider

the cNFA shown in Figure 7.8 and the transitions q2
B−→ q4 and q2

B′−−→ q5. The

following Venn diagram illustrates items that these transitions can match.

b2, b3

b21, b22, b23

b31, b32

B′b1, b11

B

b12

B B′

In this example, both transitions match some overlapping items (e.g., b2, b3) as well

as match some disjoint items(e.g., input label B can match b1, which B′ can not).

Therefore, we cannot readily apply the classical NFA-to-DFA conversion [Rabin and

Scott (1959)] process to cNFAs.

One approach to obtain DFA from cNFA is to �rst “uncompress” the cNFA and

then apply the NFA-to-DFA conversion. For example, we obtain from the cNFA of

Figure 7.8 the NFA shown in Figure 7.9 and then the resulting DFA shown in Fig-

ure 7.10. Observe that the DFA will reject the input sequence T = ca1b2a2 and thus

we can safely prune T .

DFAs obtained from cFSTs following the above approach can be very large be-

cause pattern expressions translate to very large FSTs and can incur substantial

memory overhead. For this reason, we make use of a compressed DFA (cDFA), in

which we group outgoing transitions that go the same state into one transition. For

119

7. FSM with Subseqence Constraints

example, we obtain the cDFA shown in Figure 7.11 after such a grouping. To con-

cisely describe transitions of the cDFA, we make use of labels that encode set of

items. For example, in the cDFA shown in Figure 7.11, label I1
2 encodes items a1, a2,

and A. Similarly, label I2
4 encodes items b11, b12, b1, and B.

In practice, we construct the cDFA directly from a cFST by adapting the power

set construction algorithm Rabin and Scott (1959) for NFA-to-DFA conversion to

cFSTs and perform on-the-�y grouping of DFA transitions. As in the powerset con-

struction algorithm, each cDFA state corresponds to a set of cFST states. To determ-

ine cDFA transitions, we determine for each set of cFST states, which cFST states

are “reachable”. In more detail, let A = (Q, qS,QF, Σ, ∆) be the cFST to be con-

verted and let Ad = (Qd, qd
S
,Qd

F, Σ, ∆
d) the resulting cDFA. We construct Ad

on a

state-by-state basis; the conversion process is given as Algorithm 7.4. The algorithm

starts with the initial state qd
s = { qs } (line 1) and maintains the set of unprocessed

states (variable Z). Suppose that the algorithm processes state qd ∈ Z (line 5); by

construction, qd ⊆ Q. Denote by

Σqd =
{
w | (qf rom, in, out, qto) ∈ ∆, in matches w, qf rom ∈ qd

}
the set of items in Σ that can be matched by outgoing transition from states in qd

.

For example, in the cFST AF7.6, we have Σ{ q1 } = { a1, a2, A }. Let

δq(q,w) = { qto | (q, in, out, qto) ∈ ∆, in matches w } . (7.5)

denote the set of states from A that can be reached from the state q via a transition

with an input label that matches w. In our running example, δq(q2, b2) = { q4, q5 }.
Using δq , we compute the reachable states Qw for each item in w ∈ Σqd and group

items that reach the same set of reachable states (lines 7–10). For each set of reach-

able states, we create a cDFA state for this set (if not already created) and add the

corresponding encoded transition I f romto (lines 11–17). After all new transitions have

been added, we mark qd
as processed and add it to set of �nal states if necessary

(lines 18–21).

A transcript of this conversion for cFST AF7.6 is illustrated in Table 7.12, the

corresponding cDFA is shown in Figure 7.11. Here, names of cDFA states indicate

the corresponding cFST states (e.g., qd
45 = { q4, q5 }). For e�cient cDFA simulation

we encode cDFA transition labels compactly using bit vectors. For example, an input

item w matches a cDFA transition I f romto if the bit id(w) = 1, where id(w) is an

integer identi�er for item w (see Section 7.5).

Pruning A-irrelevant sequences is bene�cial if the input sequence database con-

sist high number of such sequences. In the worst case if all input sequences are

A-relevant, this method leads to an additional overhead of simulating the cDFA.

Moreover, even if an input sequence is A-relevant, cFST simulation may still in-

volve backtracking that leads to computing outputs on non-accepting paths. For

example, simulating the cFST AF7.6 on A-relevant input sequence T = ca1b21e has

120

7.4. Reducing Nondeterminism

q0 q1 q2 q4

q3

q5

q6

c a1
a2
A

d

b11

b12

b1

b21
b22

b23

b2
b31

b32

b3

B
b21

b22

b23

b2
b31
b32

b3

B′

e

d

e

Figure 7.9: NFA.

qd
0 qd

1 qd
2 qd

5

qd
4

qd
3

qd
45

qd
6

c a1
a2
A

d

b11

b12

b1

B

B′

b21
b22

b23
b2

b31

b32

b3

e

d

e

d
e

Figure 7.10: DFA.

121

7. FSM with Subseqence Constraints

qd
0 qd

1 qd
2

qd
3

qd
4

qd
5

qd
45

qd
6

I0
1 I1

2

I2
3

I2
4

I2
5

I2
45

I3
6

I4
6

I5
6

I45
6

Figure 7.11: Compressed DFA for c (A)
[
(d)e | (B↑d) | (B′e)

]
.

qd M I f romto Transitions

qd
0

{
{ q1 } : { c }

}
{ c } qd

0

I0
1−→qd

1

qd
1

{
{ q2 } : { a1, a2, A }

}
{ A, a1, a2 } qd

1
I1
2−→qd

2

qd
2

{
{ q3 } : { d } , { d } qd

2

I2
3−→qd

3

{ q4 } : { B, b1, b11, b12 }, { B, b1, b11, b12 } qd
2

I2
4−→qd

4

{ q5 } : { B′ }, { B′ } qd
2

I2
5−→qd

5
{ q4, q5 } :{b2, b3, b21, b22, {b2, b3, b21, b22,

b23, b31, b32}
}

b23, b31, b32}
}

qd
2

I2
45−−→qd

45

qd
3

{
{ q6 } : { e } , { e } qd

3

I3
6−→qd

6

qd
4

{
{ q6 } : { d } , { d } qd

4

I4
6−→qd

6

qd
5

{
{ q6 } : { e } , { e } qd

5

I5
6−→qd

6

qd
45

{
{ q6 } : { d, e } , { d, e } qd

45

I45
6−−→qd

6
qd

6 ∅ - -

Figure 7.12: Transcript of conversion for cFST of Figure 7.6 to cDFA of Figure 7.11

122

7.4. Reducing Nondeterminism

Algorithm 7.4 Convert a cFST to a cDFA

Require: cFST A = (Q, qS,QF, Σ, ∆)
Ensure: cDFA Ad = (Qd, qd

S
,Qd

F, Σ, ∆
d)

1: qd
s ← { qs } // starting state

2: Z ←
{

qd
s

}
// unprocessed cDFA states

3: Qd ← Qd
F ← ∆d ← ∅

4: while Z , ∅ do // process a cDFA state

5: qd
f rom

← pick any state from Z
6: M ← ∅ // a map from cDFA state to set of items (encoded transition)

7: for all w ∈ Σqd
f rom

do
8: Qw ←

⋃
q∈qd

f rom
δq(q,w) // Reachable states for item w, initially empty

9: M[Qw] ← M[Qw] ∪ { w }
10: end for
11: for all qd

to ∈ KEYS(M) do // add transitions

12: I f romto ← M[qd
to]

13: if qd
to < Qd then

14: Z ← Z ∪
{

qd
to

}
// new state?

15: end if
16: ∆d ← ∆d ∪

{
(qd

f rom
, I f romto , qd

to)
}

17: end for
18: Z ← Z \

{
qd
f rom

}
// Mark qd

f rom
as processed

19: Qd ← Qd ∪
{

qd
f rom

}
20: if qd

f rom
∩QF , ∅ then // �nal state?

21: Qd
F ← Qd

F ∪
{

qd
f rom

}
22: end if
23: end while

123

7. FSM with Subseqence Constraints

an overhead over computing partial outputs a1b21, a1b2, and a1B as a result of se-

lecting transition q2
B:$−B−−−−−→q4, which leads to a non-�nal state. In the next section,

we propose a technique that completely avoids selecting such transitions and thus

removes any unnecessary nondeterminism.

7.4.3 Two-pass Simulation

In the two-pass simulation approach we only generate output(s) only for relevant

transitions, i.e., transitions that eventually lead to a �nal state. For example, for the

cFST AF7.13 shown in Figure 7.13 and the input sequence T = ca1b21e, transition

q2
B′:$−−−→ q5 is relevant where as the transition q2

B:$−B−−−−−→ q3 is irrelevant. As another

example, for input sequence T = ca1b21d, transition q2
B:$−B−−−−−→q5 is relevant where

as transition q2
B′:$−−−→ q5 is irrelevant. More formally, for a given cFST A, we say

that a transition (qf rom, in, out, qto) ∈ ∆ is T-relevant if there exists an accepting

run containing the transition. Otherwise we say that the transition is T-irrelevant.

Avoiding T-irrelevant transitions during cFST simulation can signi�cantly improve

overall e�ciency of DESQ mining algorithms as the simulation will not generate

any unnecessary partial outputs.

The idea behind the two-pass approach is to pre-compute (before cFST simula-

tion), the set of states from which the �nal state can be reached. And thus, during

cFST simulation, we only consider transitions (qf rom, in, out, qto)where a �nal state

can be reached from qto. The two-pass simulation is given as Algorithm 7.5. We �rst

make a “forward pass” (lines 6–10), in which read the input sequence T = t1t2 . . . t |T |
from left to right and incrementally compute the set Qpos of states reached after

consuming partial input t1 . . . tpos for 1 ≤ pos ≤ |T |. Here we use the transition

function of Equation 7.5 that ignores output labels. Figure 7.14a illustrates the for-

ward pass on input sequence T = ca1b12e for cFST AF7.6 . For example, we reach

states q4 and q5 after consuming ca1b12.

Observe that for any state q ∈ Qpos , there exist a path from the starting state

qS to q for the sequence t1 . . . tpos . Intuitively, if we reverse the direction of the

transitions in A then there will be a path from a state q ∈ Qpos to the initial state

qS for the sequence tpostpos−1 . . . t1. Once we compute the sets Qpos for all input

items and if Q |T | ∩QF , ∅, then we know that T is A-relevant and we generate the

output sequences by simulating the cFST in “reverse”. In more detail, denote by A′,
the cFST obtained by reversing the direction of transitions of A and by δ′(q,w), it’s

transition function. We make a “backward pass” where we simulate A′ on t1 . . . t |T |
as follows. For each �nal state q ∈ Q |T | ∩QF , we invoke the Step function with q,

t |T | , and ε (lines 13–15) and repeatedly select transitions that (i) are consistent with

the previous input item trpos and (ii) have qto that are reachable from the initial state

(line 21). As we move from state to state, we prepend items to the output bu�er (lines

22–33). After we consume all items (i.e., rpos < 1), we output the bu�er, which

124

7.4. Reducing Nondeterminism

q0 q1 q2 q4

q3

q5

q6

c:ε A:$

d:$

B:$-B

B′:$

e:ε

d:$

e:$

Figure 7.13: cFST for pattern expression c (A)
[
(d)e | (B↑d) | (B′e)

]
.

pos 0 1 2 3 4

tpos − c a1 b12 e
Qpos { q0 } { q1 } { q2 } { q4, q5 } { q6 }

(a) Forward pass

q0 q1 q2 q4

q3

q5

q6

c:ε A:$

d:$

B:$-B

B′:$

e:ε

d:$

e:$

(b) Backward pass

Figure 7.14: Illustration of two-pass method for T = ca1b12e.

125

7. FSM with Subseqence Constraints

contains the generated sequence.

The backward pass is illustrated in Figure 7.14b on our running example. We

start with q = q6, t4 = e, and S = ε . In the �rst invocation of the Step, we have

δ′(q6, e) = { (ε, q3), ($, q5) }. Since q3 < Q3, we know that we can not reach the �nal

state (initial state of A) via this transition therefore we only consider ($, q5) and

generate S = e. The simulation then consumes items b21, a1, and c and generates the

output S = a1b21e as desired. No other unnecessary partial outputs are generated.

7.4.4 Integrating pruning input sequences and two-pass into
mining

We now discuss how to integrate pruning A-irrelevant input sequences and two-

pass simulation approach into our mining algorithms DESQ-COUNT and DESQ-

DFS. We denote by Ad
the cDFA and by A′ the reverse cFST corresponding to cFST

A.

To integrate pruning irrelevant input sequences in DESQ-COUNT, we simulate

A on input sequences T ∈ D that are accepted by Ad
. We then proceed as in DESQ-

COUNT. To integrate two-pass simulation in DESQ-COUNT, we compute the set

GF
A(T) by adapting Algorithm 7.5’s backward pass to work with the f-list, i.e., we

stop exploring a path as soon as an infrequent item is produced in lines 26, 28, and

31.

We integrate pruning irrelevant input sequences in DESQ-DFS by only consider

snapshots T[1@qS] for ε (Algorithm 7.3;line 2) for which T is accepted by Ad
. The

initial projected database for ε is the only di�erence to DESQ-DFS, i.e., we now

proceed with expansions as in DESQ-DFS unmodi�ed.

Integrating two-pass simulation approach in DESQ-DFS is slightly more in-

volved. Recall that in two-pass approach, we compute the sets Q1,Q2, . . . ,Q |T | of

reachable states for each input item in T in the forward pass. Since DESQ-DFS in-

crementally simulates A on all input sequences, we need to store sets of reachable

states for each input sequence. Denote by T .Qpos the set of reachable states for in-

put sequence T at position pos. Two-pass approach with DESQ-DFS is illustrated in

Algorithm 7.6.

Initially, while scanning the input database, we make the forward pass for each

input sequence T ∈ D and compute the sets T .Q0,T .Q1,T .Q2, . . . ,T .Q |T | (lines 3–

9). If the reachable states T .Q |T | does not contain a �nal state after reading the

input, we discard the input sequence other wise for each �nal state q ∈ Q |T | we add

the snapshot T[|T |@q] to the projected database of ε (lines 6–8). We then perform

expansions almost as described in Algorithm 7.3. The key di�erence is that we use

IncStepBack (lines 12–29), in which incrementally simulate we simulate A′ using

the transition function δ′(q, tpos) and consider output label-reachable state pairs

(out, qto) for which qto ∈ T .Qpos−1 (line 16). If we produced an item w and reached

126

7.4. Reducing Nondeterminism

Algorithm 7.5 Two-pass simulation

Require: cFST A = (Q, qS,QF, Σ, ∆),T = t1 . . . t |T |
Ensure: GA(T)

1: GA(T) ← ∅
2: A′← Reverse(A) // Reverse cFST

3: Q0 ← { qS }
4:

5: //forward pass, compute reachable states for each input item

6: for pos← 1 to |T | do
7: for all q ∈ Qpos−1 do
8: Qpos ← Qpos ∪ δq(q, tpos)
9: end for

10: end for
11:

12: //Backward pass, simulate A′ on T = t1 . . . t |T | read backwards

13: for all q ∈ Q |T | ∩QF do
14: Step(q, t |T |, ε)
15: end for
16:

17: void Step(q, rpos, S):
18: if rpos < 1 and S , ε then
19: GA(T) ← GA(T) ∪ { S }
20: end if
21: for all (out, qto) ∈ δ′(q, trpos) such that qto ∈ Qrpos−1 do // empty if

rpos < 1
22: switch (out)
23: case ε :
24: Step(qto, rpos − 1, S)
25: case w:
26: Step(qto, rpos − 1,wS)
27: case $:
28: Step(qto, rpos − 1, trposS)
29: case $-x for x ∈ Σ ∪ {>}:
30: for all w′ ∈ anc(trpos) ∩ desc(x) do
31: Step(qto, rpos + 1,w′S)
32: end for
33: end switch
34: end for

127

7. FSM with Subseqence Constraints

Algorithm 7.6 Integrating two-pass approach in DESQ-DFS

Require: D , cFST A = (Q, qS,QF, Σ, ∆), σ, f-list F
Ensure: P-frequent sequences for A in D

1: A′← Reverse(A)
2: S ← ε // create root node; initially �elds S.Proj = S.Sup = ∅
3: for T ∈ D do
4: T .Q0 ← { qS }
5: Make forward to compute T .Qpos for 1 ≤ pos ≤ |T | as in Algorithm 7.5

(lines 6–10)

6: for q ∈ QF ∩Q |T | do
7: S.Proj← S.Proj∪{T[|T |@q] }
8: end for
9: end for

10: Expand(S) // Perform expansions as in Algorithm 7.3 (lines 5–16) using

IncStepBack(T, pos, q, S) instead of IncStep(T, pos, q, S) in line 7

11:

12: void IncStepBack(T, pos, q, S):

13: if pos < 1 and S , ε then
14: S.Sup← S.Sup∪ {T } // initially empty

15: end if
16: for all (out, qto) ∈ δ′(q, tpos) such that qto ∈ T .Qpos−1 do
17: switch (out)

18: case ε :
19: IncStepBack(T, pos − 1, qto, S)

20: case w:
21: if f (w,D) ≥ σ then Prepend(S, w, T , pos − 1, qto)

22: case $:
23: if f (tpos,D) ≥ σ then Prepend(S, tpos , T , pos − 1, qto)

24: case $-x, x ∈ Σ ∪ { > }:
25: for all w′ ∈ anc(tpos) ∩ desc(x) do
26: if f (w′,D) ≥ σ then Prepend(S, w′, T , pos − 1, qto)

27: end for
28: end switch
29: end for
30:

31: void Prepend(S,w,T, pos, q):
32: S.Children← S.Children∪ { wS } // node wS is created if new

33: wS.Proj← wS.Proj∪ {T[pos@q] } // initially empty

state qto, we add the snapshot T[pos−1@qto] to the child node wS (lines 21, 23, and

26). If we consumed T reading backwards, we add T to the support set of S (line 14).

128

7.5. Experiments

7.5 Experiments

We conducted an experimental study on three publicly available real-world datasets:

a collection of text documents (for text mining), a collection of product reviews

(for customer behavior mining), and a collection of protein sequences. Our goal

was to investigate whether pattern expressions are su�ciently powerful to express

prior and new subsequence constraints, whether DESQ’s algorithms are e�cient,

and how they perform relative to each other and to prior algorithms.

Summary of our results

1) Many subsequence constraints can be expressed with pattern expressions.

2) cFSTs sped up pattern matching by multiple orders of magnitude when com-

pared to the state-of-the-art FST library OpenFST.

3) DESQ-COUNT was consistently faster than Naïve.

4) DESQ-COUNT and DESQ-DFS had similar performance in cases where the

average number of P-subsequences per input sequence was small.

5) When many subsequences per input are generated, DESQ-DFS was more than

an order of magnitude faster than DESQ-COUNT and Naïve.

6) DESQ has acceptable overhead over state-of-the-art specialized sequence miners

for common subsequence constraints.

Our results indicate that DESQ is a suitable general-purpose system for a wide range

of subsequence constraints.

7.5.1 Experimental Setup

Datasets

Table 7.2 summarizes our datasets. NYT is a subset of The New York Times corpus

and contains news articles. We generated an item hierarchy using annotations from

the Stanford CoreNLP tools. The NYT hierarchy consists of named entities, which

generalize to their type (PERSON, ORGANIZATION, LOCATION, MISC) and then

to ENTITY, and of words, which generalize to their lemma and then to their part-of-

speech tag. For example, “Maradona”⇒PERSON⇒ENTITY and “is”⇒“be”⇒VERB.

AMZN is a dataset of Amazon product reviews [Web data: Amazon reviews]

from which we extracted sequences of products (ordered by review timestamps)

for each user. We used the Amazon product hierarchy as our item hierarchy. For

example, “Canon 5D”⇒“Digital Cameras”⇒“Camera & Photo”⇒ “Electronics”.

PRT is a dataset of protein sequences obtained from SMA composed of 25 amino

acid codes (items). The hierarchy is �at, i.e., there are no generalizations.

129

7. FSM with Subseqence Constraints

Table 7.2: Dataset statistics

NYT AMZN PRT

Sequence # Sequences 21,590,967 6,643,666 103,120
database Avg. length 19.9 4.5 482

Max. length 5,042 25,630 600
Total items 430,279,662 29,667,966 49,729,890

Distinct items 3,975,859 2,374,096 25

Hierarchy Total items 4,136,774 2,385,775 103,120
Leaf items 3,901,118 2,371,522 103,120

Interm. items 235,633 11,630 0

Root items 23 2,623 103,120
Max. depth 3 8 1

Avg. fan-out 17.5 204 0

Max. fan-out 1,505,913 332,723 0

Pattern Expressions

We considered pattern expressions that express constraints in information extrac-

tion (IE), natural language processing (NLP), and customer behavior mining applic-

ations. These expressions are shown in Table 7.3 along with some mining results.

Expressions N1–N5 express constraints useful for IE and NLP applications and are

inspired from Fader et al. (2011); Nakashole et al. (2012); Del Corro et al. (2015); Lin

et al. (2012); these expressions were used on the NYT dataset. Expressions A1–A4

expresses constraints useful for market-basket analysis and apply to AMZN. Ex-

pressions from the third category (P1–P4) are used to mine protein sequence motifs

from the PRT dataset; the subsequence constraints were taken from the PROSITE

database. The fourth category (T1–T3) models traditional constraints. We used NYT

with these expressions.

Implementation and setup

We implemented DESQ in Java (JDK 1.8). We used ANTLR to generate a parser for

pattern expressions. The cFST is constructed from the resulting parse tree, which

is subsequently minimized. To measure the overhead of DESQ for common sub-

sequence constraints, we compared it against state-of-the- art methods. For length

and gap constraints, we used (1) C++ implementation of cSPADE [Zaki (2000)] from

the author, (2) our implementation of SPADE in Java that additionally handles hier-

archy constraints, (3) our implementation of pre�x-growth [Pei et al. (2002)] in Java.

For RE constraints, we used (1) pre�x-growth and a C++ executable of SMA [Trasarti

et al. (2008)] obtained from the authors. To evaluate cFSTs we compared it against

state-of-the-art FST library OpenFST v1.5.0.

130

7.5. Experiments

E
x
a
m

p
l
e

p
a
t
t
e
r
n

s
f
r
o

m
N

Y
T

d
a
t
a
s
e
t

(
f
r
e
q

u
e
n

c
y
)

N
1:

E
N

T
I
T

Y
(
V

E
R

B
+

N
O

U
N
+

?
P

R
E

P
?
)
E

N
T

I
T

Y
R
e
l
a
t
i
o
n
a
l
p
h
r
a
s
e
b
e
t
w
e
e
n
e
n
t
i
t
i
e
s

l
i
v
e
s

i
n

(
8
4
7
)
,
i
s

b
e
i
n

g
a
d

v
i
s
e
d

b
y

(
1
5
)
,
h

a
s

c
o

a
c
h

e
d

(
1
0
)

N
2:

(
E

N
T

I
T

Y
↑

V
E

R
B
+

N
O

U
N
+

?
P

R
E

P
?

E
N

T
I
T

Y
↑)

T
y
p
e
d
r
e
l
a
t
i
o
n
a
l
p
h
r
a
s
e
s

O
R

G
h

e
a
d

e
d

b
y

E
N

T
I
T

Y
(
2
7
5
)
,
P

E
R

b
o

r
n

i
n

L
O

C
(
4
8
1
)

N
3:

(
E

N
T

I
T

Y
↑

b
e
↑ =)

D
E

T
?

(
A

D
V

?
A

D
J
?

N
O

U
N

)
C
o
p
u
l
a
r
r
e
l
a
t
i
o
n
f
o
r
a
n
e
n
t
i
t
y

P
E

R
b

e
n

o
v
e
l
i
s
t

(
1
6
5
)
,
L

O
C

b
e

g
r
e
a
t

p
l
a
c
e

(
3
8
)
,

N
4:
(.↑
){

3}
N

O
U

N
G
e
n
e
r
a
l
i
z
e
d
3
-
g
r
a
m
s
b
e
f
o
r
e
a
n
o
u
n

N
O

U
N

P
R

E
P

D
E

T
(
4
,2

2
3
,2

1
9
)
,
D

E
T

A
D

V
A

D
J

(
3
5
0
,0

0
5
)

N
5:

(
[
.↑
.
.]|
[.
.↑
.]|
[.
.
.↑
])

G
e
n
e
r
a
l
i
z
e
d
3
-
g
r
a
m
s
,
w
h
e
r
e
a
t
m
o
s
t
o
n
e
i
t
e
m

i
s
g
e
n
e
r
a
l
i
z
e
d

t
h

e
A

D
J

h
u

m
a
n

(
1
,2

3
8
)
,
f
o

r
D

E
T

b
o

o
k

(
1
,7

0
4
)

E
x
a
m

p
l
e

p
a
t
t
e
r
n

s
f
r
o

m
A

M
Z

N
d

a
t
a
s
e
t

(
f
r
e
q

u
e
n

c
y
)

A 1
:
(
E

l
e
c
t
r
↑)

[
.{
0
,2

}
(
E

l
e
c
t
r
↑)

]
{
1
,4

}
G
e
n
e
r
a
l
i
z
e
d
s
e
q
u
e
n
c
e
s
o
f
(
u
p
t
o
5
)
e
l
e
c
t
r
o
n
i
c
i
t
e
m
s
,

“
M

i
c
e
”
,
“
K

e
y

b
o

a
r
d

s
”
,
“
C

o
m

p
u

t
e
r
s

&
A

c
c
e
s
s
o

r
i
e
s
”

(
5
5
6
)
,

w
h
i
c
h
a
r
e
a
t
m
o
s
t
2
i
t
e
m
s
a
p
a
r
t
i
n
t
h
e
i
n
p
u
t
s
e
q
u
e
n
c
e
s

“
M

P
3

P
l
a
y

e
r
s
”
,
“
H

e
a
d

p
h

o
n

e
s
”

(
8
1
4
)

A 2
:
(
B

o
o

k
)
[
.{
0
,2

}
(
B

o
o

k
)
]
{
1
,4

}
S
e
q
u
e
n
c
e
s
o
f
b
o
o
k
s

“
T

h
e

B
o

u
r
n

e
S
u

p
r
e
m

a
c
y

”
,
“
T

h
e

B
o

u
r
n

e
U

l
t
i
m

a
t
u

m
”

(
1
6
)

A 3
:
D

i
g

i
t
a
l
C

a
m

e
r
a
[
.{
0
,3

}
(
.↑

)
]
{
1
,4

}
T
y
p
e
o
f
p
r
o
d
u
c
t
s
b
o
u
g
h
t
a
f
t
e
r
a
d
i
g
i
t
a
l
c
a
m
e
r
a

“
L

e
n

s
e
s
”
,
“
T

r
i
p

o
d

s
”

(
1
1
)
,
“
B

a
t
t
e
r
i
e
s
”
,
“
S
D

C
a
r
d

s
”

(
1
2
)

A 4
:
(
M

I
n

s
t
r
↑)

[
.{
0
,2

}
(
M

I
n

s
t
r
↑)

]
{
1
,4

}
G
e
n
e
r
a
l
i
z
e
d
s
e
q
u
e
n
c
e
s
o
f
m
u
s
i
c
a
l
i
n
s
t
r
u
m
e
n
t
s

“
S
a
x
o

p
h

o
n

e
s
”
,
“
B

a
g

s
&

C
a
s
e
s
”
,
“
I
n

s
t
r
.
A

c
c
e
s
s
o

r
i
e
s
”

(
1
2
7
)

E
x
a
m

p
l
e

p
a
t
t
e
r
n

s
f
r
o

m
P

R
T

d
a
t
a
s
e
t

(
f
r
e
q

u
e
n

c
y
)

P 1
:
(
[
S
|T

]
)
.∗

(
.)

.∗
(
[
R
|K

]
)

s
u
b
s
e
q
u
e
n
c
e
s
t
h
a
t
m
a
t
c
h
R
E
≡[
S
|T
]
.
[
R
|K
]

S
L

R
(
1
0
3
,0

9
3
)
,
T

A
K

(
1
0
2
,9

4
1
)
,
S

A
K

(
1
0
2
,9

4
6
)

P 2
:
(
[
I
|V

]
)
.∗

(
D

)
.∗

(
L

)
.∗

(
G

)
.∗

(
T

)
.∗

(
[
S
|T

]
)
.∗

(
.)

.∗
(
[
S
|C

]
)

s
u
b
s
e
q
u
e
n
c
e
s
t
h
a
t
m
a
t
c
h

I
D

L
G

T
T

L
S

(
1
0
2
,9

7
5
)
,
V

D
L

G
T

S
T

C
(
9
2
,6

6
2
)

R
E
≡[
I
|V
]
D
L
G
T
[
S
|T
]
.[
S
|C
]

V
D

L
G

T
S

D
S

(
1
0
2
,9

0
1
)

P 3
:
(
[
S
|T

]
.
[
R
|K

]
)

c
o
n
t
i
g
u
o
u
s
s
u
b
s
e
q
u
e
n
c
e
s
t
h
a
t
m
a
t
c
h
R
E
≡[
S
|T
]
.
[
R
|K
]

S
L

R
(
1
4
,9

9
5
)
,
T

A
K

(
8
,8

4
0
)
,
S

A
K

(
1
0
,3

9
7
)

P 4
:
(
[
S
|T

]
.
.
[
D
|E

]
)

c
o
n
t
i
g
u
o
u
s
s
u
b
s
e
q
u
e
n
c
e
s
t
h
a
t
m
a
t
c
h
R
E
≡[
S
|T
]
.
.
[
D
|E
]

S
D

L
E

(
2
,0

1
5
)
,
T

L
E

E
(
2
,3

2
9
)
,
S

G
L

D
(
1
,0

5
4
)

P
a
t
t
e
r
n

e
x
p

r
e
s
s
i
o

n
D

e
s
c
r
i
p

t
i
o

n
E

x
a
m

p
l
e

p
a
t
t
e
r
n

s
f
r
o

m
N

Y
T

d
a
t
a
s
e
t

(
f
r
e
q

u
e
n

c
y
)

T 1
:
(
.)

{
1
,λ

}
n-
g
r
a
m
s
o
f
u
p
t
o
λ
w
o
r
d
s

g
r
e
e
n

t
e
a

(
3
3
7
)
,
e
d

i
t
o

r
i
n

c
h

i
e
f

(
3
2
7
5
)

T 2
:
(
.)

[
.{
0
,
γ

}
(
.)

]
{
1
,λ
−

1}
S
k
i
p

n-
g
r
a
m
s
w
i
t
h
g
a
p
a
t
m
o
s
t
γ
w
o
r
d
s
a
n
d
o
f
u
p
t
o
l
e
n
g
t
h
λ

�
i
g

h
t

f
r
o

m
t
o

(
7
5
8
)
,
s
o

n
o

f
a
n

d
o

f
(
1
5
8
9
6
)

T 3
:
(
.↑

)
{
1
,λ

}
G
e
n
e
r
a
l
i
z
e
d

n-
g
r
a
m
s
o
f
u
p
t
o
λ
w
o
r
d
s

N
O

U
N

P
R

E
P

D
E

T
N

O
U

N
(
4
.2

M
)
,
P

E
R

S
O

N
b

e
N

O
U

N
(
2
1
9
9
)

T
ab

le
7.
3:
E
x
a
m
p
l
e
p
a
t
t
e
r
n
e
x
p
r
e
s
s
i
o
n
s
f
o
r
I
E
a
n
d
N
L
P
a
p
p
l
i
c
a
t
i
o
n
s
(
N

1–
N

5)
,
c
u
s
t
o
m
e
r
b
e
h
a
v
i
o
r
m
i
n
i
n
g
a
p
p
l
i
c
a
t
i
o
n
s
(
A 1

–
A 4

)
,
p
r
o
t
e
i
n
s
e
q
u
e
n
c
e

m
i
n
i
n
g
(
P 1
–

P 4
)
,
a
n
d
t
r
a
d
i
t
i
o
n
a
l
s
e
q
u
e
n
c
e
m
i
n
i
n
g
(
T 1
–
T 3
)

131

7. FSM with Subseqence Constraints

N1 N2 N3 N4 N5 A1 A2 A3 A4

OpenFST 1 hr 1 hr 1 hr 6 hr >12 hr >12 hr >12 hr >12 hr 50 min

cFST 2 min 2 min 3 min 2 hr >12 hr 1 hr 15 min 30 min 1 min

Table 7.4: Runtimes of Naïve with cFST and openFST

We preprocessed the datasets to compute the f-list and assign integer identi�ers

to each item. Item identi�ers were assigned in descending order of item frequency,

thus a more frequent item received a smaller item identi�er. In our implementations,

we encoded the sequence database compactly as arrays of item identi�ers and use

variable-length byte encoding to compress projected databases. Experiments on the

NYT and AMZN datasets were performed on a machine with two Intel(R) Xeon(R)

CPU E5-2640 v2 processors and 128GB of RAM running CentOS Linux 7.1. Experi-

ments on the PRT dataset were performed on a machine equipped with Intel Core

i7-4712HQ and 16GB RAM running Windows 10. We used a di�erent setup for the

PRT dataset as the SMA implementation is provided as a Windows binary only. All

experiments were run single-threaded.

Methodology

For each experiment, we report the performance in terms of the total wall-clock

time between launching the mining task and receiving the �nal result (including

I/O). All measurements were averaged over three independent runs. Unless stated

otherwise, all methods produced the same result.

7.5.2 Results

A. FST Optimizations

We �rst evaluated the e�ectiveness of our FST optimizations (compression and min-

imization). We used the Naïve approach (Algorithm 7.2) on pattern expressions N1–

N5 and A1–A4. We used (1) cFSTs with our simulation algorithm (Algorithm 7.1)

and (2) uncompressed FSTs with state-of-the-art library OpenFST. The results are

shown in Table 7.4. We observed that Naïve was orders of magnitude faster when

used with cFST simulation than when used with OpenFST. This is because pattern

expressions often translate to excessively large FSTs, which are ine�cient to sim-

ulate (see Table 6.1 on page 88 and discussion on cFSTs in Sec. 7.2 on page 104).

Moreover, OpenFST cannot directly handle hierarchies and, as discussed in Sec. 7.4

(page 116), and many of our pattern expressions cannot be determinized. We con-

clude that cFST compression and minimization is e�ective.

132

7.5. Experiments

T
ot

al
 t

im
e

[s
ec

on
ds

]

1
10

10
0

10
00

10
00

0

Pattern expression (σ)

N1(10) N2(100) N3(10) N4(1K) N5(1K) A1(500) A2(100) A3(100) A4(100)

Naive+cFST
DESQ−COUNT
DESQ−DFS

1.
03

9.
38 2.
02

54
.5

5

89
.8

48
76

44
5

11
89

2

38
941.

03 7.
5 1.
84

48
.7

5 75
.9

8

14
78

41
6

58
40

90
9

Figure 7.15: Performance of DESQ mining algorithms. The numbers on top of the

bars indicate the average number of P-subsequences per input sequence.

B. DESQ Mining Algorithms

We evaluated the performance of Naïve, DESQ-COUNT and DESQ-DFS on pattern

expressions N1–N5 and A1–A4. The results are shown in Figure 7.15, which also

gives the minimum support threshold σ used for each pattern expression (chosen

empirically). The runtimes are given in log-scale.

On the NYT dataset, for expressions N1–N3, DESQ-COUNT and DESQ-DFS had

similar performance and �nished in a few minutes. For N4–N5, however, runtimes

were higher and DESQ-DFS was signi�cantly faster than DESQ-COUNT (up to

14x). To gain insight into these results, we computed the average number µ of

P-sequences (average of |GF
P(T)|).e These numbers are shown above the bars for

each pattern expression. We observed that for small values of µ, DESQ-COUNT and

DESQ-DFS had similar performance, whereas for larger values of µ, DESQ-DFS was

much more e�cient. When µ is small, the simple counting method of DESQ-COUNT

is expected to work well because few sequences are generated. The advanced prun-

ing methods of DESQ-DFS are then not needed. When µ is large, however, DESQ-

COUNT can enumerate many sequences that turn out to be infrequent, which is

expensive. DESQ-DFS prunes many of these sequences early on and is thus more

e�cient.

On the AMZN dataset (expressions A1–A4) DESQ-DFS consistently outperformed

DESQ-COUNT (up to 22x). This behavior is explained by the observation that µwas

large for all pattern expressions.

Based on these results, we conclude that DESQ-DFS consistently worked well

in our experiments. Although DESQ-COUNT was slightly faster in some cases, it

blew up on others. Thus we consider it generally safer to use DESQ-DFS in practice.

e
We averaged over input sequences T for which GF

P(T) , ∅.

133

7. FSM with Subseqence Constraints

C. E�ectiveness of Pruning Irrelevant Sequences and Two-pass

In these set of experiments, we investigated how integrating pruning irrelevant

input sequences and two-pass simulation approach e�ect our DESQ-COUNT and

DESQ-DFS mining algorithms. The results are shown in Figure 7.16 for expression

N1–N5 (a–e) and A1–A4 (f–i). Note that the runtimes for (d)–(i) are shown using log

scale. In each �gure, the �rst group (�rst three bars) show the runtimes for DESQ-

COUNT and the second group (last three bars) for DESQ-DFS.

We �rst focus on NYT. For expression N1–N3, pruning input sequences and two-

pass, both improved runtimes of DESQ-COUNT and DESQ-DFS by more than factor

2. Pruning input sequences with DESQ-COUNT and DESQ-DFS on expressions N4

and N5 was not very e�ective; runtimes improved only by 2% for N4 and, worsened

by 2% for N5. The two-pass approach with DESQ-COUNT was ine�ective for N4

(two-pass was up to 30% slower), where as with DESQ-DFS it sped up mining by

more than factor 2. For expression N5, DESQ-COUNT with two-pass was slower by

7% and DESQ-DFS with two-pass was slower by 20%.

To gain further insight for these runtimes, we computed cFST simulation statist-

ics for pruning input sequences and two-pass with DESQ-COUNT and DESQ-DFS.

In particular, for each pattern expression we computed (1) the percentage of A-

relevant input sequences and, (2) number of Steps (IncSteps) executed by DESQ-

COUNT (DESQ-DFS). The statistics are shown in Table 7.5.

We observed that for expression N1–N3, 97–99% of input sequence were A-

irrelevant and thus pruning using cDFA for these expression was very e�ective. For

expression N4 and N5, very small fraction of the input sequences were A-irrelevant

(less than 10% and 4%, resp.) and thus pruning was not very e�ective. We also ob-

served that number of Steps executed by DESQ-COUNT with two-pass was factor

1.6× higher for expression N4, which explains its ine�ectiveness. This is because,

we create a cFST for .∗E and produce an output whenever a �nal state is reached

whether or not entire input is consumed to be able match pattern expression E
anywhere in the input (see discussion on partial matches in Section 7.2.2; page 107).

This increases the number of Steps in the backward pass of two-pass when a �nal

state is reached for multiple positions in the input sequence and thus the sequence

has to be read multiple times (see lines 13–15; Algorithm 7.5). On expression N5, this

increase in number of steps is even more pronounced (up to 5×) because, the cFST

for N5 has more than one �nal state. Moreover, every path of the cFST for N5 is an

accepting path. Contrary to DESQ-COUNT with two pass on expression N4, DESQ-

DFS with two-pass was very e�ective. Less number IncSteps also support this. Note

that, for N4, number of IncSteps is slightly higher for DESQ-COUNT with two-pass,

still runtimes are faster. This is because, IncSteps (or Steps) for computing .∗ is the

beginning do not incur signi�cant cost. DESQ-DFS with two-pass for N5 was again

infective because of the high number of IncSteps.

On AMZN (A1–A3) DESQ-COUNT with pruning input sequences was consist-

134

7.5. Experiments

DESQ−COUNT DESQ−DFS

T
ot

al
 t

im
e

[s
ec

on
ds

]

0
50

10
0

15
0 No pruning

Pruning
TwoPass

(a) N1(σ = 10)

DESQ−COUNT DESQ−DFS

T
ot

al
 t

im
e

[s
ec

on
ds

]

0
50

10
0

15
0 No pruning

Pruning
TwoPass

(b) N2(σ = 100)

DESQ−COUNT DESQ−DFS

T
ot

al
 t

im
e

[s
ec

on
ds

]

0
50

10
0

15
0

20
0

No pruning
Pruning
TwoPass

(c) N3(σ = 10)

DESQ−COUNT DESQ−DFS

T
ot

al
 t

im
e

[s
ec

on
ds

]

10
0

10
00

10
00

0

No pruning
Pruning
TwoPass

(d) N4(σ = 1000)

DESQ−COUNT DESQ−DFS

T
ot

al
 t

im
e

[s
ec

on
ds

]

10
0

10
00

10
00

0 No pruning
Pruning
TwoPass

(e) N5(σ = 1000)

DESQ−COUNT DESQ−DFS

T
ot

al
 t

im
e

[s
ec

on
ds

]

1
10

10
0

10
00 No pruning

Pruning
TwoPass

(f) A1(σ = 500)

DESQ−COUNT DESQ−DFS

T
ot

al
 t

im
e

[s
ec

on
ds

]

1
10

10
0

10
00 No pruning

Pruning
TwoPass

(g) A2(σ = 100)

DESQ−COUNT DESQ−DFS

T
ot

al
 t

im
e

[s
ec

on
ds

]

1
10

10
0

10
00 No pruning

Pruning
TwoPass

(h) A3(σ = 100)

DESQ−COUNT DESQ−DFS

T
ot

al
 t

im
e

[s
ec

on
ds

]

1
10

10
0 No pruning

Pruning
TwoPass

(i) A4(σ = 100)

Figure 7.16: E�ectiveness of pruning input sequences and two-pass in DESQ-COUNT
and DESQ-DFS for pattern expression N1–N5 and A1–A4.

135

7. FSM with Subseqence Constraints

ently slower than DESQ-COUNT even though a large fraction of input sequences

were A-irrelevant. The longest sequence in AMZN has 2̃5K items but on an av-

erage has only 4.5 items (cf. Table 7.2; page 130). Thus pruning in this case only

prunes very short sequences, which is not e�ective. This is also supported by the

number of Steps executed by DESQ-COUNT with and with-out pruning, which are

very close. For A4, however, DESQ-COUNT with pruning was slightly e�ective. For

all expression, DESQ-DFS with pruning consistently performed well and improved

mining times by up to an order of magnitude. Thus cDFA based pruning combined

with support based pruning of DFS seems bene�cial. For A1–A4, DESQ-COUNT

and DESQ-DFS with two-pass was considerably slower (by up to an order of mag-

nitude). This is because, all these expression have multiple �nal states, which results

in multiple passes over each input sequence. This in turn increases the number of

Steps and IncSteps executed as seen in Table 7.5.

Our results indicate that e�ectiveness of pruning input sequences and two-pass

depends on the pattern expression and also on the input data. Pruning consistently

worked well for NYT where as it was not e�ective on AMZN. Two-pass worked well

only for some expressions. An interesting direction for future work will be to invest-

igate how we can determine the best method for a given pattern expression and the

input data. One approach could to be to �rst compute a random sample of the input

data and determine the cost (in terms of runtime or number of Steps/IncSteps) and

then use the best performing method on the entire input data.

D. DESQ for RE constraints

In this set of experiments, we evaluated the e�ciency of DESQ for mining frequent

subsequences (all or contiguous) that match a RE. Our pattern expressions allows

us to express REs with their equivalent pattern expressions (cf. Table 6.2 on page 90

and expressions P1–P4 of Table 7.3 on page 131). We compared DESQ’s perform-

ance against state-of-the-art RE-constraint FSM methods SMA and pre�x-growth.

We used the PRT dataset; the runtimes are shown in log-scale in Figure 7.17a. We

observed that DESQ was up to 2.5x slower than SMA for P1 and up to 1.3x slower

than SMA on P2. We do not give SMA results for P3 and P4 because the implement-

ation produced incorrect results (acknowledged by the original authors). We did not

investigate this further as the SMA source is not available. DESQ was roughly on

par with pre�x-growth for P1–P4 (up to 1.3x) slower. The overhead of DESQ thus

appears acceptable.

E. DESQ for traditional subsequence constraints

Lastly, we investigated the overhead of DESQ compared to specialized miners for

traditional subsequence constraints.

We considered length and gap constraints as well as item hierarchies. We map

these constraints to pattern expressions and obtain T1–T3 of Table 7.3 (page 131). The

136

7.5. Experiments

P
a
t
t
e
r
n

A
-
r
e
l
e
v
a
n

t
D

E
S
Q

-
C

O
U

N
T

(
#
S
t

e
p
s
)

D
E

S
Q

-
D

F
S

(
#
I
n

c
S
t

e
p
s
)

E
x
p

r
.

i
n

p
u

t
s

(
%

)
N

o
p

r
u

n
i
n

g
P

r
u

n
i
n

g
T

w
o

P
a
s
s

N
o

p
r
u

n
i
n

g
P

r
u

n
i
n

g
T

w
o

P
a
s
s

N
1

2
.0

7
4
6
3
,9

1
1
,0

6
4

1
4
,2

2
0
,1

0
2

5
,6

2
6
,3

0
2

4
6
3
,0

2
5
,3

6
2

1
3
,9

4
8
,8

6
8

4
,5

9
2
,2

0
1

N
2

2
.0

7
5
2
2
,9

7
7
,1

5
7

2
1
,3

6
9
,7

1
1

3
1
,4

0
6
,9

7
7

5
1
1
,8

1
1
,2

9
3

1
7
,2

7
0
,7

3
8

1
0
,3

3
6
,2

4
4

N
3

0
.9

3
4
7
9
,2

6
4
,1

5
5

6
,6

1
2
,8

2
0

3
,3

6
8
,6

6
5

4
7
8
,3

1
9
,5

6
9

5
,9

7
9
,1

5
0

1
,2

3
4
,5

9
6

N
4

8
9
.3

1
7
,9

7
8
,3

4
2
,9

7
5

7
,8

4
7
,7

2
0
,8

3
1

1
3
,0

1
9
,8

9
7
,8

7
7

5
,5

2
3
,3

5
8
,6

2
4

5
,4

1
2
,8

5
1
,8

7
5

6
,5

6
0
,9

2
8
,5

7
3

N
5

9
6
.5

2
5
,7

1
5
,9

4
1
,2

5
4

5
,7

1
3
,6

8
1
,1

3
2

3
0
,8

7
7
,3

0
0
,5

1
1

3
,3

1
1
,3

3
2
,8

2
4

3
,3

0
8
,7

7
6
,9

4
2

8
,4

3
9
,4

1
9
,0

8
5

A 1
2
.4

1
1
,2

7
2
,9

8
9
,6

6
1

1
,2

4
3
,8

7
2
,7

7
1

3
4
,2

2
7
,2

1
0
,1

7
7

8
7
,7

2
5
,1

6
9

5
8
,4

7
3
,7

5
9

8
0
7
,2

4
8
,0

5
8

A 2
1
5
.6

7
3
8
6
,9

0
2
,6

3
6

3
7
1
,5

4
7
,4

6
0

3
8
,5

7
6
,6

9
7
,2

1
9

6
0
,3

6
5
,3

4
4

4
4
,7

2
9
,2

8
8

1
,1

4
2
,1

2
2
,5

0
8

A 3
0
.4

2
5
1
8
,8

1
4
,4

5
4

4
8
9
,9

4
1
,0

9
4

2
0
,7

7
7
,1

4
5
,5

5
9

3
8
,3

9
2
,9

3
5

9
,5

1
9
,5

7
5

2
7
6
,8

4
3
,6

6
3

A 4
0
.1

1
1
1
4
,0

6
0
,2

7
3

8
4
,3

8
5
,8

4
0

2
,3

3
3
,7

7
8
,2

7
7

3
1
,4

5
7
,4

7
2

1
,7

6
8
,8

1
5

1
8
,8

1
6
,3

3
6

T
ab

le
7.
5:

c
F
S
T
s
i
m
u
l
a
t
i
o
n
s
t
a
t
i
s
t
i
c
s
f
o
r
D
E
S
Q
-
C
O
U
N
T
a
n
d
D
E
S
Q
-
D
F
S

137

7. FSM with Subseqence Constraints

P1(500) P2(500) P3(500) P4(500)

T
ot

al
 t

im
e

[s
ec

on
ds

]

1
10

10
0

10
00

Pattern expression (σ)

SMA−FC*
prefix−growth
DESQ−DFS

In
co

rr
ec

t

In
co

rr
ec

t

(a) RE-constraints

100,0,3 100,0,5 100,1,5 100,2,5 1K,0,5(+H)

T
ot

al
 t

im
e

[s
ec

on
ds

]

10
10

0
10

00

σ, γ, λ

>12Hr >12Hr >12Hr

(b) NYT (length, gap, hierarchy)-constraints

100,0,3 100,0,5 100,1,5 100,2,5 1K,0,5(+H)

M
ax

. m
em

or
y

[G
B

]

0
1

2
3

4
5

σ, γ, λ

cSPADE
prefix−growth
DESQ−DFS

N
A

N
A

N
A

(c) NYT (length, gap, hierarchy)-constraints

Figure 7.17: Overhead of DESQ for RE constraints and traditional subsequence con-

straints.

138

7.6. Related Work

expressions are parameterized by maximum-length parameter λ and/or maximum-

gap parameter γ. We used the NYT dataset and ran FSM for di�erent con�gura-

tions of increasing di�culty w.r.t. output size. The results are shown in Figure 7.17b

using log-scale. For n-grams (�rst two groups), we observed that DESQ-DFS was

up two orders of magnitude faster than cSPADE. We only show the result for our

own cSPADE implementation; the original C++ implementation was signi�cantly

slower. For example, for mining 10% of NYT, the original cSPADE implementa-

tion took more than 3 hours whereas our implementation took 400 seconds. Both

cSPADE implementations were signi�cantly slower than pre�x-growth and DESQ-

DFS, however, because cSPADE follows a candidate-generation-and-test approach

and su�ers from an excessive number of generated candidates. To keep our study

manageable, we stopped cSAPDE after 12 hours. Compared to pre�x-growth, DESQ-

DFS had negligible overhead (less than 2.5%). For gap constraints (third and fourth

group), DESQ-DFS was competitive and had an overhead of less than 10% over

pre�x- growth. This overhead is expected as pattern expressions for gap constrains

have uncaptured wildcards (cf. T2 in Table 7.3), which increases nondeterminism in

the corresponding cFSTs and thus leads to more snapshots. For generalized n-grams

(last group), where we additionally considered item hierarchies, the overhead was

slightly more pronounced (up to 13%). Here the amount of backtracking performed

by DESQ increased with the depth of hierarchy (cf. line 31 of Algorithm 7.3 and

discussion in Section 7.2.2).

We also investigated the overhead in terms of memory consumption. The res-

ults are shown in Figure 7.17c. For cSPADE, we report the maximum size of the

inverted index and for pre�x-growth and DESQ-DFS, we report the maximum size

of the projected database. For n-grams and gap-constraints, DESQ-DFS had an over-

head of up 18% and for generalized n-grams up to 23%. The overhead is unavoidable

as for DESQ-DFS, we need to store cFST snapshots compared to only positional

information as in pre�x-growth and cSPADE. We may, however, improve memory

consumption by swapping projected databases to disk [Pei et al. (2001)].

7.6 Related Work

Several algorithms and methods for integrating subsequence constraints into min-

ing have been studied in literature. While, most focus on traditional subsequence

constraints (e.g., those discussed Chapters 3–5), very few available methods support

general subsequence constraints, albeit with limitations.

Most of the prior work on supporting general constraint has been con�ned

to regular expressions. Garofalakis et al. (1999) proposed the SPIRIT family of al-

gorithms, in which they introduced regular expressions (RE) constraints that sub-

sequences need to satisfy. It translates the provided RE into a DFA and adapts a GSP-

like algorithm to mine frequent sequential patterns. Antunes and Oliveira (2002)

139

7. FSM with Subseqence Constraints

adapted ideas from SPIRIT to pushdown automaton to deal with context-free gram-

mars. Albert-Lorincz and Boulicaut (2003) proposed RE-Hackle algorithm, which

represents the RE via its abstract syntax tree and uses bottom-up approach com-

bined with frequency based pruning to evaluate sequences. Pei et al. (2002) advoc-

ated the pre�x-growth method as an extension to Pre�xSpan to handle RE con-

straints. RE constraints have also been studied by Trasarti et al. (2008). They pro-

posed the SMA algorithm, which uses Petri nets to match an RE. These methods do

not support capture groups, which are key to express many traditional constraints

in a uni�ed way (see Table 6.2; page 90). Antunes and Oliveira (2004) also proposed

ε-accepts, based on pattern-growth approach to mine sequences that approxim-

ately match a given RE. To �nd approximate sequences, they run input sequences

through a DFA and either replace, or delete, or insert an item when every their is no

matching transition in the corresponding DFA. More recently, Jean-Philippe Met-

ivier and Charnois (2013) and Negrevergne and Guns (2015) described how con-

straint programming can also be used to mine sequences that satisfy a given con-

straint; their approaches however focus on supporting traditional constraints and

RE constraints.

Some of the subsequence (e.g., gap constraints) target the input sequence, whereas

others (e.g., length constraints, RE constraints) target the subsequence. Our pattern

language uni�es both targets and allows us to express all of the subsequence con-

straints discussed before (see Table 6.2 for some examples). In addition, it allows us

to describe the context in which subsequences should be considered relevant (e.g.,

subsequences that appear between certain items in the input sequence), incorpor-

ates item hierarchies, uses a more powerful computational model based on �nite

state transducers.

Our work is also related to pattern matching. There are many languages and

systems for pattern matching over sequences. For example, SystemT’s AQL lan-

guage [Krishnamurthy et al. (2009)] provides a SQL-like syntax to specify and ex-

tract pattern matches from text documents. Languages based on cascaded grammars

such as CPSL [Appelt and Onyshkevych (1998)] are also used in many information

extraction engines. Christ (1994) proposed a Corpus Query Language based on reg-

ular expressions for searching pattern matches in text corpora. Pattern matching is

also crucial for complex event processing tasks [Dindar et al. (2009); Demers et al.

(2007)], which aim to detect pattern matches in (live or archived) event sequences.

Our pattern expressions are simpler than most pattern matching languages, yet ex-

pressive enough to specify many subsequence constraints that arise in applications.

Nevertheless, pattern matching languages can conceivably be used to specify sub-

sequence predicates and mine P-frequent sequences using Naïve, i.e., by �rst enu-

merating all matches and subsequently counting frequencies. Our experiments in-

dicate that this approach is infeasible for many subsequence constraints. Instead, it

is bene�cial to integrate pattern matching and mining, e.g., along the lines of DESQ-

140

7.7. Summary

COUNT and DESQ-DFS. An interesting direction for future work is to investigate

to what extent such integration is possible for more powerful pattern matching lan-

guages.

Finite state transducers [Mohri (1997); Mohri et al. (2002)] have been applied in

areas such as speech recognition, machine translation, information extraction, and

data mining. In DESQ, we make use of FSTs as a computational model for pattern

expressions. In contrast to existing work on FSTs, our FSTs are often neither se-

quential nor p-subsequential (see discussion in Section 7.4;page 116) so that many

existing optimization methods do not apply (e.g., minimization, determinization).

We provide methods to extend, compress, and optimize our special FSTs in order to

e�ectively handle pattern mining tasks and large hierarchies. Although traditional

FST libraries such as OpenFST [Allauzen et al. (2007)] can also be used within DESQ,

our experimental study suggests that compressed FSTs support more e�cient min-

ing.

7.7 Summary

In this chapter, we proposed compressed FST and a simulation algorithm that e�ect-

ively handles large hierarchies for generating sequences produced by our pattern

expressions. We subsequently, proposed two e�cient mining algorithms DESQ-

COUNT and DESQ-DFS based on simulation. While DESQ-COUNT fares well for

pattern expressions that are selective, DESQ-DFS can handle more demanding pat-

tern expressions. We also studied how to minimize our specialized FSTs and pro-

posed novel techniques to reduce nondeterminism based on pruning input sequences

using DFA and a two-pass simulation approach. Our experimental study indicates

that DESQ is an e�cient, general purpose FSM framework for traditional as well as

customized subsequence constraints.

141

Part III

Wrapping Up

143

C
h

a
p
t

e
r 8

Conclusions

Summary

In this thesis, we presented scalable and general-purpose methods for frequent se-

quence mining for traditional as well as customized notions of subsequence con-

straints that arise in applications.

We extended the MG-FSM framework, which provides a distributed framework

for mining very large collection of sequences. We proposed novel algorithms that

improve and extend this basic framework to support many traditional subsequence

constraints. In particular, we proposed a special-purpose pivot sequence miner, which

led to an higher overall e�ciency and proposed methods that extend MG-FSM to

support long input sequences, temporal gap constraints, and mining of only max-

imal and closed sequences. We also proposed the LASH algorithm that e�ciently

incorporates item hierarchies into MG-FSM’s partitioning framework to mine hier-

archical patterns. In our experimental study, we demonstrated that our algorithms

are e�cient, scale to large real-world datasets, and are multiple orders magnitude

faster and e�cient than existing baseline methods.

We also proposed DESQ, a general-purpose framework for frequent sequence

mining. We introduced subsequence predicates as general model for unifying and

extending subsequence constraints for FSM. We proposed pattern expressions as a

simple, intuitive way to express subsequence constraints, and suggested �nite state

transducers as an underlying computational model. We provided methods to extend,

compress, and optimize our specialized FSTs in order to e�ectively handle pattern

mining task and large hierarchies and proposed the DESQ-COUNT and DESQ-DFS

algorithms for e�cient frequent sequence mining. Our experiments indicate that

DESQ is an e�cient general-purpose FSM framework for traditional as well as cus-

145

8. Conclusions

tomized subsequence constraints.

Future Work

This work leads to a number of interesting directions for future research. We list

some of them that we consider are most important.

Combining scalability and expressibility

Combining expressibility and scalability is perhaps the most important direction

for future work. We showed that a general purpose framework greatly improves

the usability of pattern mining systems. At the same time, distributed and scalable

solutions are essential. The key to achieve scalability lies in partitioning the in-

put sequences by carefully rewriting them into many smaller partitions that can be

mined independently and in parallel. We presented such rewrites for traditional no-

tions of subsequence constraints. An interesting direction for future research will

be to investigate rewriting techniques for general subsequence constraints, which

are modeled using pattern expressions.

Maximality and closedness constraints for generalized subsequences

The set of maximal and closed sequences concisely represent the set of all fre-

quent sequences, thus maximality and closedness constraints restricts output to

non-redundant sequences. Our output statistics in Table 5.3; page 79 reveal that

up to 95% of generalized sequences can be redundant, depending on the dataset and

parameter settings. To the best of our knowledge, maximality and closnedness con-

straints for generalized subsequences has not been studied in context of generalized

sequence mining and is an important research problem.

Mining sequences of itemsets

In this thesis, we focused on sequences of items. Some applications involve se-

quences of itemsets. For the special case of consecutive subsequences, we showed

how our temporal rewrites (Section 3.4) can be used to mine sequences of itemsets

in a scalable fashion. We would like to explore how we can extend MG-FSM and

LASH to support itemsets for gap-constrained sequences. Also, extending DESQ to

support itemsets is also an interesting direction in terms of extending our pattern

expression language and FSTs.

146

Bibliography

Agarwal, R. C., C. C. Aggarwal, and V. V. V. Prasad (2001). A tree projection al-

gorithm for generation of frequent item sets. Journal of Parallel and Distributed

Computing 61(3), 350–371.

Agrawal, R. and R. Srikant (1995). Mining sequential patterns. In Proceedings of the

Eleventh International Conference on Data Engineering, ICDE ’95, pp. 3–14.

Albert-Lorincz, H. and J.-F. Boulicaut (2003). Mining frequent sequential patterns

under regular expressions: a highly adaptative strategy for pushing constraints.

In Proceedings of the 2003 SIAM International Conference on Data Mining, pp. 316–

320.

Allauzen, C., M. Riley, J. Schalkwyk, W. Skut, and M. Mohri (2007). OpenFst: A

general and e�cient weighted �nite-state transducer library. In Implementation

and Application of Automata, Volume 4783, pp. 11–23.

Almeida, M., N. Moreira, and R. Reis (2007, June). On the performance of automata

minimization algorithms. techreport DCC-2007-03, Universidade do Porto.

Anh, L. V. Q. and M. Gertz (2012). Mining spatio-temporal patterns in the presence of

concept hierarchies. In Proceedings of the 2012 IEEE 12th International Conference

on Data Mining Workshops, ICDMW ’12, pp. 765–772.

ANTLR. ANother Tool for Language Recognition). http://www.antlr.
org/.

Antunes, C. M. and A. L. Oliveira (2002). Inference of Sequential Association Rules

Guided by Context-Free Grammars, pp. 1–13. Springer Berlin Heidelberg.

Antunes, C. M. and A. L. Oliveira (2004). Sequential pattern mining with approx-

imated constraints. In In Proceedings of the International Conference on Applied

Computing, pp. 131–138.

Apache Hadoop. http://hadoop.apache.org.

Appelt, D. E. and B. Onyshkevych (1998). The common pattern speci�cation lan-

guage. In TIPSTER, pp. 23–30.

Ayres, J., J. Flannick, J. Gehrke, and T. Yiu (2002). Sequential pattern mining us-

147

http://www.antlr.org/
http://www.antlr.org/
http://hadoop.apache.org

Bibliography

ing a bitmap representation. In Proceedings of the ACM SIGKDD Conference on

Knowledge Discovery and Data Mining, pp. 429–435.

Beedkar, K., K. Berberich, R. Gemulla, and I. Miliaraki (2015). Closing the Gap:

Sequence mining at scale. ACM Trans. Database Syst. 40(2), 8:1–8:44.

Beedkar, K. and R. Gemulla (2015). LASH: Large-scale sequence mining with hier-

archies. In Proceedings of the ACM SIGMOD International Conference on Manage-

ment of Data, SIGMOD ’15, New York, NY, USA, pp. 491–503. ACM.

Beedkar, K. and R. Gemulla (2016). DESQ: Frequent sequence mining with sub-

sequence constraints. In 2016 IEEE International Conference on Data Mining, pp.

793–798.

Bennett, J. and S. Lanning (2007). The Net�ix prize. In Proceedings of KDD Cup and

Workshop.

Benson, G. and M. Waterman (1994). A method for fast database search for all k-

nucleotide repeats. Nucleic Acids Research 22(22), 4828–4836.

Berberich, K. and S. Bedathur (2013). Computing n-gram statistics in mapreduce. In

Proceedings of the 16th International Conference on Extending Database Technology,

EDBT ’13, pp. 101–112.

Brants, T., A. C. Popat, P. Xu, F. J. Och, and J. Dean (2007). Large language models

in machine translation. In Proceedings of the Conference on Empirical Methods on

Natural Language Processing (EMNLP), pp. 858–867.

Brazma, A., I. Jonassen, J. Vilo, and E. Ukkonen (1998). Pattern discovery in bi-

osequences. LNCS 1433, 257–270.

Brzozowski, J. (1962). Canonical regular expressions and minimal state graphs for

de�nite events. Mathematical Theory of Automata 12, 529–561.

Buehrer, G., S. Parthasarathy, S. Tatikonda, T. Kurc, and J. Saltz (2007). Toward

terabyte pattern mining: An architecture-conscious solution. In Proceedings of

the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP), pp. 2–12.

Chen, Y.-L. and T. C.-K. Huang (2008). A novel knowledge discovering model for

mining fuzzy multi-level sequential patterns in sequence databases. Data Knowl.

Eng. 66(3), 349–367.

Christ, O. (1994). A modular and �exible architecture for an integrated corpus query

system. CoRR abs/cmp-lg/9408005.

Church, K. W. and P. Hanks (1990, March). Word association norms, mutual inform-

ation, and lexicography. Comput. Linguist. 16(1), 22–29.

148

Bibliography

Cong, S., J. Han, and D. Padua (2005). Parallel mining of closed sequential patterns.

In Proceedings of the Eleventh ACM SIGKDD International Conference on Know-

ledge Discovery in Data Mining, KDD ’05, pp. 562–567.

Dean, J. and S. Ghemawat (2008, January). Mapreduce: Simpli�ed data processing

on large clusters. Commun. ACM 51(1), 107–113.

Del Corro, L., A. Abujabal, R. Gemulla, and G. Weikum (2015). Finet: Context-aware

�ne-grained named entity typing. In Proceedings of the Conference on Empirical

Methods on Natural Language Processing (EMNLP), pp. 868–878.

Del Corro, L. and R. Gemulla (2013). Clausie: Clause-based open information extrac-

tion. In Proceedings of the International Conference on World Wide Web (WWW),

pp. 355–366.

Demers, A., J. Gehrke, and B. P (2007). Cayuga: A general purpose event monitoring

system. In In CIDR, pp. 412–422.

Dindar, N., B. Güç, P. Lau, A. Ozal, M. Soner, and N. Tatbul (2009). Dejavu: Declar-

ative pattern matching over live and archived streams of events. In Proceedings

of the ACM SIGMOD International Conference on Management of Data, pp. 1023–

1026.

Fader, A., S. Soderland, and O. Etzioni (2011). Identifying relations for open inform-

ation extraction. In Proceedings of the Conference on Empirical Methods on Natural

Language Processing (EMNLP), pp. 1535–1545.

Fournier-Viger, P., C.-W. Wu, A. Gomariz, and V. S. Tseng (2014). Vmsp: E�cient

vertical mining of maximal sequential patterns. In Canadian Conference on AI,

pp. 83–94.

Fournier-Viger, P., C.-W. Wu, and V. S. Tseng (2013). Mining maximal sequential pat-

terns without candidate maintenance. In Advanced Data Mining and Applications,

pp. 169–180.

Garofalakis, M. N., R. Rastogi, and K. Shim (1999). Spirit: Sequential pattern mining

with regular expression constraints. In Proceedings of the International Conference

on Very Large Data Bases (VLDB), pp. 223–234.

Giannotti, F., M. Nanni, and D. Pedreschi (2006). E�cient mining of temporally

annotated sequences. In SIAM International Conference on Data Mining (SDM),

pp. 346–357.

Gomariz, A., M. Campos, R. Marín, and B. Goethals (2013). Clasp: An e�cient al-

gorithm for mining frequent closed sequences. In Proceedings of the Paci�c-Asia

Conference on Knowledge Discovery and Data Mining (PAKDD), pp. 50–61.

Google n-Grams. https://books.google.com/ngrams/.

149

https://books.google.com/ngrams/

Bibliography

Guralnik, V., N. Garg, and G. Karypis (2001). Parallel Tree Projection Algorithm for

Sequence Mining, pp. 310–320. Berlin, Heidelberg: Springer Berlin Heidelberg.

Guralnik, V. and G. Karypis (2004). Parallel tree-projection-based sequence mining

algorithms. Parallel Comput. 30(4), 443–472.

Han, J., J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu (2000). Freespan:

Frequent pattern-projected sequential pattern mining. In Proceedings of the Sixth

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

KDD ’00, New York, NY, USA, pp. 355–359. ACM.

Han, J., J. Pei, Y. Yin, and R. Mao (2004). Mining frequent patterns without candid-

ate generation: A frequent-pattern tree approach. Data Mining and Knowledge

Discovery 8(1), 53–87.

Hollink, L., P. Mika, and R. Blanco (2013). Web usage mining with semantic analysis.

In Proceedings of the International Conference on World Wide Web (WWW), 2013,

Republic and Canton of Geneva, Switzerland, pp. 561–570. International World

Wide Web Conferences Steering Committee.

Hsu, C.-M., C.-Y. Chen, B.-J. Liu, C.-C. Huang, M.-H. Laio, C.-C. Lin, and T.-L. Wu

(2007). Identi�cation of hot regions in protein-protein interactions by sequential

pattern mining. BMC Bioinformatics 8(5), 1–15.

Huang, T. C.-k. (2009). Developing an e�cient knowledge discovering model for

mining fuzzy multi-level sequential patterns in sequence databases. In Proceed-

ings of the 2009 International Conference on New Trends in Information and Service

Science, NISS ’09, pp. 362–371.

Huston, S., A. Mo�at, and W. B. Croft (2011). E�cient indexing of repeated n-grams.

In Proceedings of the ACM International Conference onWeb Search and DataMining

(WSDM), pp. 127–136.

Jang, H. and J. Mostow (2012). Inferring selectional preferences from part-of-speech

n-grams. In European Chapter of the Association for Computational Linguistics

(EACL).

Jean-Philippe Metivier, S. L. and T. Charnois (2013). A constraint programming

approach for mining sequential patterns in a sequence database. In ECML/PKDD

2013 Workshop on Languages for Data Mining and Machine Learning, pp. 50–65.

Krishnamurthy, R., Y. Li, S. Raghavan, F. Reiss, S. Vaithyanathan, and H. Zhu (2009).

Systemt: A system for declarative information extraction. SIGMOD Rec. 37 (4),

7–13.

Li, C. and J. Wang (2008). E�ciently mining closed subsequences with gap con-

straints. In SIAM International Conference on Data Mining (SDM), pp. 313–322.

Li, H., Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang (2008). PFP: Parallel FP-growth

150

Bibliography

for query recommendation. In Proc. of the ACM Conf. on Recommender Systems

(RecSys), RecSys ’08, pp. 107–114. ACM.

Liao, Z., D. Jiang, E. Chen, J. Pei, H. Cao, and H. Li (2011). Mining concept sequences

from large-scale search logs for context-aware query suggestion. ACM Trans.

Intell. Syst. Technol. 3(1), 17:1–17:40.

Lin, Y., J.-B. Michel, E. L. Aiden, J. Orwant, W. Brockman, and S. Petrov (2012). Syn-

tactic annotations for the google books ngram corpus. In Proceedings of the ACL

2012 System Demonstrations, ACL ’12, Stroudsburg, PA, USA, pp. 169–174. Asso-

ciation for Computational Linguistics.

Lopez, A. (2008). Statistical machine translation. ACM Comput. Surv. 40(3), 8:1–8:49.

Luo, C. and S. M. Chung (2005). E�cient mining of maximal sequential patterns

using multiple samples. In SIAM International Conference on Data Mining (SDM),

pp. 415–426.

Mannila, H., H. Toivonen, and A. I. Verkamo (1997). Discovery of frequent episodes

in event sequences. Data Mining and Knowledge Discovery 1(3), 259–289.

Manning, C. D. and H. Schütze (1999). Foundations of Statistical Natural Language

Processing. Cambridge, MA, USA: MIT Press.

Masseglia, F., F. Cathala, and P. Poncelet (1998). The psp approach for mining se-

quential patterns. In Proceedings of the Second European Symposium on Principles

of Data Mining and Knowledge Discovery, PKDD ’98, London, UK, UK, pp. 176–

184. Springer-Verlag.

Miliaraki, I., K. Berberich, R. Gemulla, and S. Zoupanos (2013). Mind the gap: Large-

scale frequent sequence mining. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, SIGMOD ’13, pp. 797–808.

Mohri, M. (1997, June). Finite-state transducers in language and speech processing.

Comput. Linguist. 23(2), 269–311.

Mohri, M. (2000, March). Minimization algorithms for sequential transducers. Theor.

Comput. Sci. 234(1-2), 177–201.

Mohri, M., F. Pereira, and M. Riley (2002). Weighted �nite-state transducers in

speech recognition. Computer Speech & Language 16(1), 69–88.

Nakashole, N., M. Theobald, and G. Weikum (2011). Scalable knowledge harvest-

ing with high precision and high recall. In Proceedings of the ACM International

Conference on Web Search and Data Mining (WSDM), pp. 227–236.

Nakashole, N., G. Weikum, and F. Suchanek (2012). Patty: A taxonomy of relational

patterns with semantic types. In EMNLP-CoNLL, 2012, Stroudsburg, PA, USA, pp.

1135–1145. Association for Computational Linguistics.

151

Bibliography

Negrevergne, B. and T. Guns (2015). Constraint-Based Sequence Mining Using Con-

straint Programming, pp. 288–305.

Netspeak. http://www.netspeak.org.

OpenFST. http://www.openfst.org.

PCRE. Perl Compatible Regular Expressions. http://www.pcre.org.

Pei, J., J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. Hsu (2001).

Pre�xspan: Mining sequential patterns by pre�x-projected growth. In Proceedings

of the 17th International Conference on Data Engineering, pp. 215–224.

Pei, J., J. Han, B. Mortazavi-Asl, and H. Zhu (2000). Mining access patterns e�ciently

from web logs. In Proceedings of the 4th Paci�c-Asia Conference on Knowledge

Discovery and Data Mining, Current Issues and New Applications, PADKK ’00, pp.

396–407.

Pei, J., J. Han, and W. Wang (2002). Mining sequential patterns with constraints in

large databases. In Proceedings of the Conference on Information and Knowledge

Management (CIKM), pp. 18–25.

Plantevit, M., A. Laurent, D. Laurent, M. Teisseire, and Y. W. Choong (2010). Mining

multidimensional and multilevel sequential patterns. ACM Trans. Knowl. Discov.

Data 4(1), 4:1–4:37.

Plantevit, M., A. Laurent, and M. Teisseire (2006). Hype: Mining hierarchical se-

quential patterns. In Proceedings of the 9th ACM International Workshop on Data

Warehousing and OLAP, DOLAP ’06, pp. 19–26.

PROSITE. http://prosite.expasy.org/.

Rabin, M. O. and D. Scott (1959). Finite automata and their decision problems. IBM

J. Res. Dev. 3(2), 114–125.

SMA. http://www-kdd.isti.cnr.it/SMA/.

Srikant, R. and R. Agrawal (1996). Mining sequential patterns: Generalizations and

performance improvements. In Proceedings of the 5th International Conference on

Extending Database Technology: Advances in Database Technology, EDBT ’96, pp.

3–17.

Srivastava, J., R. Cooley, M. Deshpande, and P.-N. Tan (2000). Web usage mining:

Discovery and applications of usage patterns from web data. SIGKDD Explor.

Newsl. 1(2), 12–23.

Stanford CoreNLP parser. http://nlp.stanford.edu/software/
corenlp.shtml.

152

http://www.netspeak.org
http://www.openfst.org
http://www.pcre.org
http://prosite.expasy.org/
http://www-kdd.isti.cnr.it/SMA/
http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/software/corenlp.shtml

Bibliography

Stolcke, A. (2002). SRILM - an extensible language modeling toolkit. In Interspeech.

Tandon, N., G. De Melo, and G. Weikum (2014). Acquiring comparative common-

sense knowledge from the web. In Proceedings of the Twenty-Eighth AAAI Con-

ference on Arti�cial Intelligence, AAAI’14, pp. 166–172. AAAI Press.

The New York Times corpus (2008). https://catalog.ldc.upenn.edu/
LDC2008T19.

Thompson, K. (1968). Programming techniques: Regular expression search al-

gorithm. Commun. ACM 11(6), 419–422.

Trasarti, R., F. Bonchi, and B. Goethals (2008). Sequence mining automata: A new

technique for mining frequent sequences under regular expressions. In Proceed-

ings of the IEEE International Conference on Data Mining (ICDE), pp. 1061–1066.

Trummer, I., A. Halevy, H. Lee, S. Sarawagi, and R. Gupta (2015). Mining subjective

properties on the web. In Proceedings of the ACM SIGMOD International Confer-

ence on Management of Data, pp. 1745–1760.

Wang, J. and J. Han (2004). BIDE: E�cient mining of frequent closed sequences. In

Proceedings of the IEEE International Conference on Data Engineering (ICDE), pp.

79–90.

Wang, K., Y. Xu, and J. X. Yu (2004). Scalable sequential pattern mining for biolo-

gical sequences. In Proceedings of the Thirteenth ACM International Conference on

Information and Knowledge Management, CIKM ’04, pp. 178–187.

Wang, W. and D. Vergyri (2006). The use of word n-grams and parts of speech for

hierarchical cluster language modeling. In ICASSP.

Web data: Amazon reviews. snap.stanford.edu/data/web-Amazon.
html.

Yan, X., J. Han, and R. Afshar (2003). Clospan: Mining closed sequential patterns

in large databases. In SIAM International Conference on Data Mining (SDM), pp.

166–177.

Zaki, M. J. (2000). Sequence mining in categorical domains: Incorporating con-

straints. In Proceedings of the Ninth International Conference on Information and

Knowledge Management, CIKM ’00, pp. 422–429.

Zaki, M. J. (2001a). Parallel sequence mining on shared-memory machines. In

Journal of Parallel and Distributed Computing, pp. 401–426. Springer-Verlag.

Zaki, M. J. (2001b). Spade: An e�cient algorithm for mining frequent sequences.

Mach. Learn. 42(1-2), 31–60.

153

https://catalog.ldc.upenn.edu/LDC2008T19
https://catalog.ldc.upenn.edu/LDC2008T19
snap.stanford.edu/data/web-Amazon.html
snap.stanford.edu/data/web-Amazon.html

List of Figures

2.1 An example sequence database . 6

2.2 Frequent sequence enumeration using BFS approach. 8

2.3 Some inverted indexes and supports for each sequence explored by by

BFS. 8

2.4 Frequent sequence enumeration using a DFS approach. 11

2.5 Some expansions, projected databases and supports. 11

3.1 Pivot sequence enumeration for partition Pd for σ = 2, γ = 1 and λ = 4. 24

3.2 E�ectiveness of PSM . 32

3.3 Temporal sequences . 32

3.4 E�ectiveness of indexing long sequences 35

4.1 Mining maximal sequences with MG-FSM
+

(σ = 2, γ = 1, λ = 4). . . . 46

4.2 Mining closed sequences with MG-FSM
+

(σ = 2, γ = 1, λ = 4). 50

4.3 Performance of mining maximal and closed sequences 52

5.1 A sequence database and its vocabulary 57

5.2 Preprocessing, partitioning and mining phases of LASH forσ = 2, γ = 1
and λ = 3. 68

5.3 Performance of distributed algorithms. 74

5.4 Performance of sequential algorithms. 74

5.5 E�ect of di�erent parameters . 75

5.6 E�ect of di�erent hierarchies. 75

5.7 Scalability results . 77

6.1 A sequence database and its vocabulary 84

6.2 FST for the pattern expression [c|d]([A↑ | B↑=]+)e. 92

6.3 FST for basic item expression (A↑) . 93

6.4 Example annotated hierarchy. 96

6.5 Excerpt of an annotated item hierarchy for text mining applications. . . 100

6.6 FST for advanced item expression [level=M ∧ type=y]
↑
=[level=R]=. . . . 102

7.1 A sequence database and its vocabulary 104

7.2 Compressed FST for [c|d]([A↑ | B↑=]+)e. 106

155

List of Figures

7.3 Minimized cFST for [c|d]([A↑ | B↑=]+)e. 106

7.4 Illustration of DESQ-DFS for Dex , AFex , and σ = 2 114

7.5 An Example hierarchy. 116

7.6 cFST for pattern expression c (A)
[
(d)e | (B↑d) | (B′e)

]
. 116

7.7 Minimizing cFST for expression (Ab1 |Ac) via Brzozowski’ algorithm. . 118

7.8 Compressed NFA obtained from cFST AF7.6 119

7.9 NFA. 121

7.10 DFA. 121

7.11 Compressed DFA for c (A)
[
(d)e | (B↑d) | (B′e)

]
. 122

7.12 Transcript of conversion for cFST of Figure 7.6 to cDFA of Figure 7.11 . 122

7.13 cFST for pattern expression c (A)
[
(d)e | (B↑d) | (B′e)

]
. 125

7.14 Illustration of two-pass method for T = ca1b12e. 125

7.15 Performance of DESQ mining algorithms. The numbers on top of the

bars indicate the average number of P-subsequences per input sequence. 133

7.16 E�ectiveness of pruning input sequences and two-pass in DESQ-COUNT

and DESQ-DFS for pattern expression N1–N5 and A1–A4. 135

7.17 Overhead of DESQ for RE constraints and traditional subsequence con-

straints. 138

156

List of Tables

3.1 Dataset characteristics . 31

3.2 Example frequent sequences from Net�ix (σ = 1000, λ = 5, τ = 1 day) 33

5.1 Dataset characteristics . 71

5.2 Hierarchy characteristics . 71

5.3 Output Statistics . 79

6.1 Translation rules for basic item expressions (where w,w′,w′′ ∈ Σ) . . . 88

6.2 Pattern expressions for traditional subsequence constraints. 90

6.3 Pattern expressions for subsequence constraints in information extrac-

tion and natural language processing applications. 90

6.4 Pattern expressions for subsequence constraints in customer behavior

mining applications. 90

6.5 Item descriptors and their corresponding examples. 97

6.6 Item expressions for advanced pattern expression language. 98

6.7 Basic item expressions and their corresponding advanced item expres-

sions. 99

6.8 Some examples of advanced pattern expressions useful for text mining

applications. 101

7.1 Translation rules for item expressions (where w,w′,w′′ ∈ Σ) to com-

pressed FST. 105

7.2 Dataset statistics . 130

7.3 Example pattern expressions for IE and NLP applications (N1–N5), cus-

tomer behavior mining applications (A1–A4), protein sequence mining

(P1–P4), and traditional sequence mining (T1–T3) 131

7.4 Runtimes of Naïve with cFST and openFST 132

7.5 cFST simulation statistics for DESQ-COUNT and DESQ-DFS 137

157

List of Algorithms

2.1 Breadth-�rst search . 7

2.2 Depth-�rst search . 10

3.1 The MG-FSM algorithm . 18

3.2 Mining pivot sequences . 23

4.1 The MG-FSM
+

algorithm . 44

5.1 Naïve GSM approach . 59

5.2 Computing generalized f-list . 60

5.3 Partitioning and mining phase of LASH 62

7.1 Simulate a cFST . 108

7.2 Naïve approach . 110

7.3 DESQ-DFS . 113

7.4 Convert a cFST to a cDFA . 123

7.5 Two-pass simulation . 127

7.6 Integrating two-pass approach in DESQ-DFS 128

159

	Titlepage
	Abstract
	Abstract (German version)
	Acknowledgments
	Contents
	1 Introduction
	2 Preliminaries
	2.1 Basic Concepts
	2.2 FSM Approaches
	2.2.1 Breadth First Search
	2.2.2 Depth First Search

	I Traditional Subsequence Constraints: Scalability
	3 Length and Gap Constraints
	3.1 Preliminaries
	3.2 A Primer on MG-FSM
	3.2.1 MapReduce
	3.2.2 Overview of the MG-FSM framework
	3.2.3 Constructing Partitions

	3.3 Mining Partitions
	3.3.1 Sequential FSM algorithms
	3.3.2 Pivot Sequence Miner

	3.4 Temporal Gap Constraints
	3.5 Handling Long Input Sequences
	3.6 Experiments
	3.6.1 Setup
	3.6.2 Results

	3.7 Related Work
	3.8 Summary

	4 Maximality and Closedness Constraints
	4.1 Definitions
	4.2 Mining Maximal Sequences
	4.3 Mining Closed Sequences
	4.4 Experiments
	4.5 Related Work
	4.6 Summary

	5 Hierarchy Constraints
	5.1 Preliminaries
	5.2 Distributed Generalized Sequence Mining
	5.2.1 Naïve Approach
	5.2.2 Semi-Naïve Approach
	5.2.3 Overview of LASH

	5.3 Partition Construction
	5.3.1 Generalized w-Equivalency
	5.3.2 w-Generalization
	5.3.3 Other Rewrites
	5.3.4 Putting Everything Together

	5.4 Sequential GSM Algorithms
	5.5 Experiments
	5.5.1 Setup
	5.5.2 Results

	5.6 Related Work
	5.7 Summary

	II Non-traditional Subsequence Constraints: Expressibility
	6 Expressing Subsequence Constraints
	6.1 Subsequence Predicates
	6.2 Pattern Expression Language
	6.2.1 Pattern Expressions
	6.2.2 Examples

	6.3 Computational Model
	6.3.1 Finite state transducers.
	6.3.2 Translating pattern expressions

	6.4 Advanced Pattern Expression Language
	6.4.1 Advanced Pattern Expressions
	6.4.2 Examples
	6.4.3 Translating Advanced Pattern Expression to FSTs

	6.5 Summary

	7 FSM with Subsequence Constraints
	7.1 FSM and Subsequence Predicates (recap)
	7.2 FST Optimizations
	7.2.1 Compressed FST
	7.2.2 Simulating compressed FST

	7.3 Mining P-Frequent Sequences
	7.3.1 Naïve Approach
	7.3.2 DESQ-COUNT
	7.3.3 DESQ-DFS

	7.4 Reducing Nondeterminism
	7.4.1 Minimization
	7.4.2 Pruning Irrelevant Input Sequences
	7.4.3 Two-pass Simulation
	7.4.4 Integrating pruning input sequences and two-pass into mining

	7.5 Experiments
	7.5.1 Experimental Setup
	7.5.2 Results

	7.6 Related Work
	7.7 Summary

	III Wrapping Up
	8 Conclusions

	Bibliography
	List of Figures
	List of Tables
	List of Algorithms

