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1. Introduction

Today’s world consists of an increasing number of information systems that help

us handling the growing amount of information. The increasing number of in-

terconnected systems results in higher management efforts and complexity. Ac-

cording to Laddaga et al., this complexity arises from the ”growth in problem

size”, the ”increased hardware capacity”, real-time, and enterprise requirements

[Lad01, p. 1]. All these aspects can be found in many scenarios such as data

centers. They constantly grow in size and must meet gradually more and stricter

conditions in terms of manageability and scalability. As one example, they have

to be easily controllable and they must meet dynamic demands at runtime. Thus,

the management effort is very high for data centers today. The high effort requires

innovative software solutions for better management.

Self-adaptive software is able to cope with this growing complexity in an au-

tonomous way. According to Oreizy et al. self-adaptive software ”modifies its

own behavior in response to changes in its operating environment” [OGT+99, p.

55]. A self-adaptive system (SAS) consists of an adaptation part, the so-called

adaptation logic, and the resources managed by the adaptation logic. It monitors

the changing environment and may modify the parameters, the structure of the

managed resource, or both as reaction. This changes the behavior of the man-

aged resources and therefore the output of the software. Multiple so-called self-*

properties are the foundation of the adaptation capabilities.

In order to model software capabilities such as these in a concrete way the Soft-

ware Product Line (SPL) technique can be used. SPLs are used to ”design and

implement a products family from which individual products can be systemati-

cally derived” [ACF+09, p. 1]. The SPL approach usually uses feature models

to specify possible valid product variants. A valid product variant is represented

by a configuration consisting of a set of features. This creates a state space of

possible states with each one representing a valid configuration. This state space

usually is much larger than the number of features [CHSL11]. Different feature

1



1.1. Objective and Approach 2

allocations for the variants of the product line distinguish the products from each

other. Dynamic SPLs are an extension to this approach introducing the alloca-

tion of features at runtime rather than at design time. This enables the dynamic

SPLs to express adaptation rules for software products at design time, e.g., by

adding a model of the context the software is running in [ACF+09, SLR13]. By

defining constraints between context states and system features, mappings be-

tween context situations and reconfigurations of the system are specified. Thus,

software created on the basis of a DSPL is capable of changing itself according

to the context at runtime.

1.1. Objective and Approach

The objective is to identify a standardized and reusable process of creating adap-

tation logics on the foundation of dynamic SPL feature models. Thus, this thesis

combines a dynamic SPL feature model for defining the possible reconfigurations

with a self-adaptive system. This feature model should be integrated into the

adaptation logic, and it facilitates the adaptation logic to plan reconfigurations

based on context information of the managed resource. Finally, this should result

in a method specifying the system features and reconfiguration behavior by an

SPL engineer. This specification should be all the information needed for the

adaptation logic to work.

The approach of this thesis is to develop an adaptation logic prototype incor-

porating the possibility to use dynamic SPL feature models. This prototype is

assessed in a qualitative evaluation setup. This work uses a distributed com-

puting use case for evaluation purposes as part of a simulation. The simulator

mimics the complete distributed computing system. Additionally, the adapta-

tion logic is tested using arbitrary feature models unconnected with the use case

which tests it independently of the managed resource. For faster and more stan-

dardized development, the adaptation logic is implemented using FESAS which

is a framework for developing self-adaptive systems [KVB13].
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1.2. Structure

The remainder of this thesis is structured as follows: Chapter 2 introduces the

fundamentals of self-adaptive systems and (dynamic) software product lines. The

subsequent chapter shows related work in the domain of dynamic software prod-

uct lines. The fourth chapter describes the actual adaptation logic approach

for self-adaptive systems using (context) feature models. The following chapter

presents a use case implementation of the adaptation logic employing FESAS,

a framework for building self-adaptive systems. Chapter 6 outlines the use case

evaluation. As already mentioned a distributed computation system namely the

Tasklet system presented in [ESK+17] is the use case. The finishing chapter sum-

marizes the findings of this thesis followed by possibilities for further research.



2. Self-Adaptive Systems and (Dynamic)

Software Product Lines

This chapter introduces the fundamental concepts used in this thesis. The first

section shows the basics of self-adaptive systems and adaptation logics. Then

software product line techniques including the specification of variability are pre-

sented. The last section extends the static software product line methods with

dynamism, leading into dynamic software product lines (DSPLs).

2.1. Self-Adaptive Systems

This section gives an overview about self-adaptive systems (or SAS) in general

with a focus on the adaptation logic (AL). The following introduction of this

section presents possible definitions and descriptions of the term self-adaptive

system followed by an example.

Oreizy et al. give a definition for self-adaptive systems [OGT+99, p. 55]:

Self-adaptive software modifies its own behavior in response to changes

in its operating environment. By operating environment, we mean

anything observable by the software system, such as end-user input,

external hardware devices and sensors, or program.

Another definition is given by Laddaga et al. [LRS03, p. 1]:

Self-adaptive software evaluates its own behavior and changes be-

havior when the evaluation indicates that it is not accomplishing what

the software is intended to do, or when better functionality or perfor-

mance is possible.

In comparison the definition of Laddaga emphasizes the ”self-” and evaluation

aspect of a self-adaptive system. The ”self-” in self-adaptive means that the soft-

ware system decides on its own (or autonomously, see [BDMSG+09]) to adapt its

4
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behavior corresponding to a perceived change of the environment. This definition

also mentions the idea to have an internal evaluation that tries to improve the

system’s performance constantly. The improvement of the performance is, e.g.,

possible using a learning-based component [KC03]. This may be achieved by the

component finding correlations between system states and adaptations

Considering the terminology according to Salehie and Tahvildari many researchers

use the terms self-adaptive system, autonomic system, and self-managing system

synonymously [ST09]. Another perspective which this thesis uses is that self-

adaptive systems are a subset of autonomic systems [ST09].

An example for a self-adaptive system could be an autonomous car that has to

react to a traffic jam in front of it. This situation could result in replanning the

route to the destination. A prerequisite is the system’s ability to sense and un-

derstand its environment. Based on the information obtained, it has to plan and

execute an appropriate action to react to changes. As seen in the example, the

architecture of self-adaptive systems must be specialized for the purpose of mov-

ing decisions the system possibly needs to make towards runtime [BDMSG+09].

In order to achieve this shift several properties and components of a self-adaptive

system have to be designed in a certain way which is described in the next section.

2.1.1. Structure of Self-Adaptive Systems

This section presents the typical properties and components of a self-adaptive

system. The foundation property for self-adaptive systems is self-management

[KC03]. Self-managing software results in a system that should work all the time

without interruptions. This aspect frees system administrators from low-level

tasks. As part of self-management there are four so called self-* properties: self-

configuration, self-optimization, self-healing, and self-protection [KC03]. A self-

configuration system intends to configure itself according to high-level policies of

the overall IT environment. Thus, it embeds seamlessly into the IT environment.

Self-optimization describes a learning component of the system. This component

adjusts the adaptations for better results. There are two possible ways of adapta-

tion: parameter adaptation and compositional adaptation. Parameter adaptation

changes the system parameters while compositional adaptation changes structure,

architecture, or both. Therefore, the self-optimization property of the system
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constantly tries to change its parameters or composition over time to achieve the

best possible results. This means the system is able to improve its performance

on its own. Of course, problems can occur in this process. If problems arise,

the self-healing mechanism comes into place. This mechanism tries to locate,

analyze, and correct problems. The last component is self-protection. It should

automatically detect and defend against attacks or cascading problems that could

not be solved by the self-healing process. Additionally, it reacts to early reports

based on sensor data to reduce the impact of arising problems. All self-adaptive

systems are supposed to have these properties in common [KC03]. Still, their gen-

eral structure can vary. There are two strictly different compositional approaches

to build a self-adaptive system.

Figure 2.1.: Internal (a) and External (b) Adaptation Logic [ST09]

As seen in Figure 2.1 the structure of a self-adaptive system can be classified

into internal and external adaptation logic [ST09]. This classification specifies

how the actual system and the adaptation logic are combined. Either the adap-

tation logic is part of the main system (see Figure 2.1(a)), or it is designed as

an external component (see Figure 2.1(b)) communicating with it. The internal

approach is faster to implement and may be an option in very small systems.

The maintainability is higher in the second approach. However, this approach

needs communication between the AL and the managed resource. As the second

approach is more scalable, exchangeable, and reusable, this is the broadly used

method to implement self-adaptive systems [ST09]. Scalability is achieved, e.g.,

by having dedicated machines only for the adaptation logic. The independence

of the external approach also makes it easy to use the same adaptation logic for

multiple managed resources or to compare different adaptation logic approaches

by exchanging them. This is not easily possible with an internal adaptation logic

as the main system is composed together with the adaptation logic. Salehie and
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Tahvildari have published a survey on self-adaptive systems in which no system

uses the internal approach [ST09]. Thus, most self-adaptive systems consist of

a separated adaptation logic and managed resource [BDG+13]. The adaptation

logic constantly tries to adapt the system according to the information received

from the managed resource while the managed resource provides the actual main

functionality of the system. The managed resource can be a hardware or software

component. The adaptation logic and the managed resource are connected in two

ways. The adaptation logic sends adaptations to change the managed resource

while the resource sends data about itself to the manager. This data can be senso-

rial or statistical. The adaptation is accomplished by either changing parameter

values or by exchanging components [BDG+13, MSKC04]. As already mentioned

the first possibility is called parameter adaptation, the latter one compositional

adaptation. A system can be used as managed resource if it is able to provide

sensor information and receive adaptation actions.

Finally, the important component of a self-adaptive system is the adaptation

logic. The adaptation logic must sense changes, understand them, plan adap-

tation actions, and execute them. Thus, much research has been done to find

effective ways to design this component. In the last years a common way in de-

veloping the adaptation logic has emerged which is presented in the next section.

2.1.2. Adaptation Logic

According to Brun et al. the generic way to achieve self-adaptation is to use feed-

back loops [BDMSG+09]. A feedback loop consists of four components: collect,

analyze, decide, and act. This model is an advancement of the sense-plan-act ap-

proach taken from the early development of artificial intelligence. The collection

component collects relevant data from the environment. The data could consist,

e.g., of sensorial data or user input. With the data the adaptation logic should

be able to determine the state of the system. The next step is to analyze the

selected raw data. The analyze component structures the data and reasons about

it using, e.g., models or policies. Based on this structured data the decision com-

ponent determines how the system state may be improved. In this step it may be

possible to use probability theory to conclude the best adaptation according to

the current state. The act component then executes the adaptation by sending it
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to the managed resource. Then the managed resource changes according to the

received actions.

Kephart and Chess have used the generic control loop to develop an adaptation

logic with four functional parts: Monitor, Analyze, Plan, and Execute [KC03].

The initial letters are the reason to call this approach the MAPE cycle. The

MAPE cycle is embedded in a component called autonomic manager that repre-

sents the adaptation logic. The basic MAPE cycle starts with monitoring the raw

data coming from the managed elements. Not only this mechanism fetches and

monitors the data, but according to the MAPE approach of Brun et al. it also

filters the data [BDMSG+09]. The analyze phase processes this prepared raw

data. Metrics that violate constraints and the reasons for these violations are

identified. The following planning phase determines necessary changes in order

to get the best possible result for the system or to resolve any problem identified

in the phase before. The execute part then simply executes the developed plan.

These components communicate only via direct communication channels. Thus,

in the plain MAPE approach there is no shared knowledge. Hence, no global

history of states, events, and adaptations can be preserved. For this purpose the

advancement MAPE-K has been developed. MAPE-K uses the same four com-

ponents in the adaptation logic as MAPE [KC03]. The only addition is a shared

knowledge base connected to the four components. This knowledge component

can be used in the analyze and planning phase to compare current events with a

history of events to find big changes in the state of the system. The differences

found can be saved in the knowledge base for future reference [BDMSG+09].

Although the MAPE-K approach is a good guideline for developing self-adaptive

systems, there is still no general approach for every environment and need. Ac-

cording to Brun et al. there is also a lack of a general possibility to model a

system [BDMSG+09]. Additionally, it may be beneficial to use a middleware to

generalize all parts of the system and make them more reusable. The concept

of reusability is the most emphasized intention of SPLs. The next chapter in-

troduces SPLs as well as their dynamic extensions: dynamic SPLs. The idea

of software reusability in software product lines can therefore be related to the

concept of self-adaptive systems with external adaptation logics.
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2.2. Software Product Lines

This section presents the foundation of the modeling approach used for specify-

ing the reconfiguration space of the software product. Also, it can be used to

model the context internally and externally of the managed resource. In this

section software product lines (SPLs) and their static configuration approach are

presented. Section 2.2.3 specifically presents the feature diagram methods for

modeling the feature models in a graphical way. Section 2.3 shows an extension

for supporting dynamic feature selection at runtime: Dynamic software prod-

uct lines (DSPLs). Based on the idea of dynamic reconfiguration in DSPLs the

model type used in this work’s approach is presented as well: Context-aware

feature models. This advanced feature model type builds on top of the static

feature modeling approaches presented in the following section.

2.2.1. Introduction to Software Product Lines

According to [HHSS08] the idea of software product lines emerged from gen-

eral economics. Starting with the development of the conveyor belt by Ford the

concept of economies of scale arose. Economies of scale ”arise in the produc-

tion of multiple implementations of a single design” leading to cost reductions

[GS03, p. 17]. This mass production was cheaper, but did not have many diver-

sification possibilities between the products compared to handcrafted individual

items [PBV05, p. 4]. Based on this mass production the idea of reusing major

parts of similar products that are only distinct in smaller individual parts devel-

oped. This approach is called Product Line Engineering (PLE) and the goal is

economies of scope. Economies of scope means ”efficiencies wrought by variety,

not volume” [GJ83, p. 142]. The result of applying PLE are mass-produced but

individualized products emerging in mass-customization. Davis defines this idea

of mass-customization as follows: ”Mass customisation is the large-scale produc-

tion of goods tailored to individual customers’ needs.” [Dav87]. PLE facilitates

companies in building up a generic platform that can be used as basis for all

product variants. Reusability is the key here for the resulting cost reductions.

The software development community became aware this idea emerging in the

SPL method [HHSS08]. The tradeoff between handcrafted individual items and
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mass produced products can be seen in software engineering as the difference

between individual development and standard software [PBV05, p. 4].

The Software Engineering Institute of the Carnegie Mellon University defines

SPLs on their website as following [SEI]:

A software product line (SPL) is a set of software-intensive systems

that share a common, managed set of features satisfying the specific

needs of a particular market segment or mission and that are developed

from a common set of core assets in a prescribed way.

The definition shows the original PLE idea of having a common platform and

developing multiple individual features on top for meeting the needs of one specific

area. This common platform is created using the so-called core assets. This

shows an important step in SPL development: defining commonalities of the

whole product line. This is one of the two SPL lifecycles which the next section

introduces.

2.2.2. SPL Lifecycles

The two SPL lifecycles are domain engineering and application engineering. Both

lifecycles require to already have business planning, product, and requirement

information present. Then it is analyzed which common features apply to the

whole product line and which features should be product specific. In the following

the two lifecycles are introduced briefly. Figure 2.2 shows the whole SPL process.

The main goals of the domain engineering process are to define the commonal-

ity and the variability of the product line [PBV05, p. 21]. Commonality and

variability are defined using a variability model. This defines common and ex-

changeable system parts. Additionally, the set of applications of the software

product line should be defined. Each step should create reusable artifacts that

employ the defined variability. These domain-specific artifacts compose the plat-

form the software products rely on. The artifacts are connected by traceability

links to retain consistency. This avoids inconsistent artifacts which may result in

unusable or broken application products.

The domain engineering cycle begins with the Domain analysis. This includes

requirements engineering to define and document the ”common and variable re-
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Figure 2.2.: SPL Lifecycles [HHSS08]

quirements of the product line” [PBV05, p. 25]. The most interesting product

of the domain analysis process for this thesis is also created here: the variability

model. It will be introduced in detail in the following section. Domain design

should result in a high-level reference architecture usable for the whole product

line. The requirements from the first step are the input for this step. Then the

Domain implementation step should create concrete designs and implementations

that are common to the whole SPL based on the reference architecture. Domain

testing is a verification and validation step, checking all the steps that happened

before. Furthermore, this measure should test the common artifacts to reduce

errors in the common platform right from the start [PBV05, p. 27].

Application engineering aims to exploit the common platform of the SPL as good

as possible and to relate the software product to the reusable domain-specific

artifacts [PBV05, p. 21]. Additionally, it binds the variability model to the

actual product instance that is to be built. Product analysis is also concerned with

requirements engineering. Here the focus should be on identifying the differences

between platform and product requirements. Product design uses the reference

architecture to instantiate an actual product architecture and configuring it to

the needs of the product. Product implementation should create the application

as a combination of the common platform implementation artifacts and product

specific modules. This results in the finished application exploiting as many
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domain-specific artifacts as possible. The last step product testing runs tests on

the finished software product. The outcome is a report with the test results. This

ends the application engineering and results in the completely finished product.

As seen in Figure 2.2 the products are used as feedback for possible new business

planning requirements.

After this brief introduction of the whole SPL process the next section focuses

on the models to define variability in the product line. These models are used

later in combination with the planning in self-adaptive systems to define the

reconfiguration behavior of a managed resource.

2.2.3. Variability Models

According to Pohl et al. variability models can be created using standard UML

modeling techniques [PBV05, p. 75 f.]. However, since UML is not specifically

designed for facilitating SPL development processes, so-called feature models are

the common way in specifying features of a SPL. A feature is a ”system property

that is relevant to some stakeholder and is used to capture commonalities or

discriminate between systems” [CHE04, p. 267].

Features are organized in feature diagrams. They are a tree structure representing

the software system as a whole. The tree consists of a root feature with several

layers of child features. A feature model generally consists of a feature diagram

and additional information such as information on the binding time or priorities.

Benavides et al. identified three major categories in the domain of feature mod-

els: basic feature models, cardinality-based feature models, and extended feature

models [BSRC10]. In the following they are briefly introduced.

Basic feature models : Based on the literature review of Chen et al. most basic

feature modeling approaches are based on the Feature-Oriented Domain Analysis

(FODA) approach by Kang et al. [CAA09, KCH+90]. Kang et al. were the first

who introduced the term feature model and proposed a hierarchical feature tree

structure for specifying all features of a SPL [BSRC10]. The original FODA no-

tation includes the elements shown in Figure 2.3 (a). Also, features could require

each other or could be declared as mutually exclusive. These properties are called

cross-tree constraints. However, these properties were not depicted graphically

yet. In the graphical representation simple text at the ends of the edges was
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used for the features themselves. Later Kang et al. extended their original ap-

proach, e.g., by representing features as text boxes [KKL+98, SHTB06]. Parent

features that have multiple child features are provided by either one or multiple

of these child features. In this case child features specialize a parent feature.

Furthermore, new elements were introduced to the original FODA notation later

[GFD98]. They added an or operator as well as graphical representations for the

cross-tree constraints. These new elements are depicted in Figure 2.3 (b).

Figure 2.3.: Basic Feature Diagram Elements: Original FODA Notation (a)
[KCH+90] and extended FODA Notation (b) [GFD98]

Cardinality-based feature models : Riebisch et al. propose that implicitly there

are UML-like multiplicities covered by feature models [RBSP02]. In order to

improve the understanding and to formally define them they introduce an anno-

tation for representing the multiplicities of feature sets. Later these cardinalities

were defined more concretely as group type cardinalities [CHE04, BSRC10]. A

group type cardinality further defines the case when a parent feature is part of the

system, how many child features are allowed in a configuration. As an example

a group type cardinality of 0..* means that the child features are all optional.

Also, there are feature instance cardinalities which denote how many instances

of a feature can exist at runtime [CHE04]. For distinguishing both cardinality

types, group type cardinalities are denoted with angle brackets and feature in-

stance cardinalities use square brackets (see Figure 2.4 (a)). Analogously to the

UML notation a cardinality is annotated with a lower and an upper limit. In

summary, cardinalities state in a very clear way how to interpret a feature dia-

gram. They enhance the overall expressivity and possibilities to exactly state the

needed constraints.

Extended feature models which, according to Benavides are also called advanced

or attributed feature models, are able to express additional attributes on features

[BSRC10]. There is no consensus on the information an attribute should con-

tain. However, most approaches state that an attribute should contain a name,
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Figure 2.4.: Extended Feature Diagram Elements: Cardinality-based Notation
[RBSP02, CHE04] (a) and Feature Attributes (b) [BTRC05]

a domain, and a value. Using these attributes it is possible to, e.g., describe

requirements for a certain feature more concretely. Since there are multiple ap-

proaches for describing attributes it is also not clear how to depict them. This

thesis uses the notation introduced by Benavides [BTRC05]. The notation can

be seen in Figure 2.4 (b). Attributes can also be related to other attributes

and can express conditions for certain features to be only available as part of a

configuration, if an attribute has a certain value.

This section presented the generic and static SPL approach as well as extensions

of the FODA notation for feature diagrams. Based on this introduction Dynamic

SPLs as well as context-feature models are introduced in the following section.

2.3. Dynamic Software Product Lines

Due to the demand of today’s environments, adaptability gets gradually more

important for software systems [HHSS08]. Static SPLs do not fulfill this require-

ment as the variation points defined in feature models get bound at design time.

The difference between SPL and DSPL binding can be seen in Figure 2.5 (a) and

(b). A software product built using the SPL approach is configured once. The

first step is to apply the feature model for selecting overall valid configurations

from all possible configurations. Then a configuration for the product to be built

is selected. Thus, the developer builds such a variant for a static execution en-

vironment. In this case the software runs fine in a rather static environment. In

the case of a dynamic context, SPL based software possibly does not perform well

anymore due to the requirement for adaptation and reconfiguration at runtime

[CBT+14]. Software build within a DSPL is able to adapt itself, e.g., to changing

user preferences or contexts. This is realized by binding variation points at the

start of the software and at runtime repeatedly. You can see this in Figure 2.5
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(b). Like in the SPL approach the feature model is applied for selecting valid

configurations. Then a valid start configuration is selected at design time. In

the DSPL approach the valid configurations are connected by arrows building a

directed graph. The product changes its configuration based on a graph defining

possible transitions between all valid configurations. This enables adaptive be-

havior for the software. As configuration changes are triggered by the context,

it is crucial to monitor the context while always storing a model of the current

system and the state of its environment. In fact, in order to plan a good reconfig-

uration it is the most important task for the application to monitor itself and the

context and change the configuration based on the monitoring results [HHSS08].

Figure 2.5.: SPL (a), DSPL (b) and Context-aware (c) Configuration [SLR13]

The context monitoring and modeling can be divided into the closed and open

(world) approach [AAL10, BHA12]. At the same time, Abbas et al. coined

the term Autonomic SPL. The name emerged from the fact that it features a

MAPE-K loop (see 2.1.2). The closed approach means that the possible states of

the DSPL get fully defined at design time. This can be done either by hand or

by offline training. The context states are stored together with the best config-

urations in a (dispatch) table. In the open approach the system is supposed to

find new context situations and configurations at runtime. According to [AAL10]

and [BHA12] this is usually tackled with an online learning approach with an own

MAPE-K loop on top of the first MAPE-K loop. This can be seen as adaptation

of the adaptation logic or as self-improvement [KRP16].

The next chapter presents related work in the domain of DSPL approaches. For

better classification a taxonomy is introduced first. Then an overview on DSPL

approaches is given.



3. Related Work in Dynamic Software Product

Line Approaches

[BBD16] provide a rather comprehensive overview over DSPL approaches. They

categorize them into multiple dimensions of two taxonomies: an adaptation and

a DSPL taxonomy. In the following the dimensions of both taxonomies are pre-

sented briefly. Then a brief introduction on all DSPL approaches of the overview

is given. The taxonomies are used later to categorize the approach of this work

while the other DSPL approaches are used to show the state of the art in this

field.

3.1. Adaptation and DSPL Taxonomy

The first section presents the adaptation taxonomy [BBD16]. For better under-

standing you can find the optional Figure A.1 in the appendix. It shows the whole

adaptation taxonomy in a tree structure. The adaptation dimension is divided

into the sub dimensions goal, cause, and mechanism.

3.1.1. Adaptation Taxonomy

Goal: The goal is divided into the goal type and the goal evolution. Goal type

refers to the four adaptation goals by [KC03]. It states the aim of the adaptation

runtime. [BBD16] omitted self-protecting here because of the ”unavailability of

a DSPL engineering approach with this goal type” [BBD16, p. 7]. Thus, the

goal type can be either self-configuration, self-optimization, or self-healing (see

Chapter 2). The goal evolution can either be static or non-static. Static means

the system has a fixed adaptation policy and fixed number of variant while non-

static systems can learn completely new policies and goals at runtime.

Cause: The cause sub dimension is only characterized by a cause type. The

cause type can be the context, the system, or the user. This determines what

16
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can be the cause for an adaptation. While in the context and the system some

observed variables may change, the user is, e.g., capable of providing new goals

at runtime. One example for a system cause can be a breakdown of a component.

Mechanism: The mechanism is divided into mechanism autonomy and mecha-

nism type. The mechanisms determine what kind of changes an adaptation logic

is able to make. The mechanism autonomy can either be manual or autonomous.

This specifies if an adaptation has to be triggered by an external party or if the

system decides itself that an adaptation is executed. The mechanism type can

be code, component, or architectural. Code means to, e.g., set new parameters on

the code level. The architecture stays exactly the same. This is a very limited

approach as adaptation logic and managed resource are strongly coupled. The

component approach substitutes complete components with the same interfaces.

This makes it easy to build a plugin-based system. The architectural method

changes connections between components, or it introduces new ones. Also, new

components could be included as well.

3.1.2. DSPL Taxonomy

The following DSPL taxonomy is structured using the standard MAPE-cycle

[BBD16]. Thus, the first dimension distinguishes between monitoring & analysis,

planning, and execution. Again, for a better overview a tree showing all aspects

presented here is depicted in Figure A.2 as part of the appendix. Since the focus

of this work is the planning aspect of SAS the corresponding description is more

detailed compared to the other dimensions.

Monitoring & Analysis: This category is divided into context model, context

reasoning model, and context sensing. The context model can either be a simple

property-set which represents the context using preselected properties that are

used for planning or an ontology using, e.g., the Web Ontology Language (OWL)

[W3C04]. OWL can be used to model the context using high-level structures

that also state relationships between context elements. The context reasoning

model is divided into rule-based logic and query languages. Rule-based logic uses,

e.g., propositional logic for context reasoning. It is a simple method but with

too many rules this approach is not efficient anymore [BBD16]. Query languages

can be used to reason on context data more efficiently as the scope for reasoning
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(e.g., by adding a time frame which is relevant to the user) can be specified

very precisely [PAG06]. Especially when ontology techniques such as OWL are

used query languages like SPARQL can be helpful for complex context reasoning

[W3C08, BBD16]. Context sensing is split into observation and notification. The

first method requires the planner to fetch data, e.g., from a context manager while

the latter makes sure the context manager informs the planner when a change in

the context happens.

Planning: Planning has the dimensions variability space model, planning model,

planning level, planning type, and transformation. The variability space model

can be an enumeration, variation points, or feature models. When the enumer-

ation approach is used all possible variants are enumerated in the first place.

This method is generally used for simple systems with a limited amount of vari-

ants. Variation points are specified by selecting single points in the base system

where components can easily be swapped. This approach is also very simple.

However, it does not allow constraints between variation points. The feature

modeling approach is the most powerful approach which is used to specify all

features of the system including variation points and constraints. Feature mod-

els can also be augmented to context variability models. In addition, they link

context states to the system features using constraints to limit the feature model

configuration space. The planning model can be described using state transition

diagrams, event-condition-action (ECA) rules, and utility-functions. According

to the authors [BBD16] state transition diagrams can only be used together with

the enumeration variation space model. The states are variants and the transi-

tions possible adaptations. ECA rules trigger an action if certain conditions hold

true. Events are changes in the context, conditions are certain thresholds, and

actions are activations and deactivations of features. The problem concerning

this approach is that with a high number of rules there can easily be conflicts

which are hard to notice. The most complex but also most advanced approach is

the use of a utility function. This function calculates the desirability of a system

state using context information. The variant with the highest expected utility is

always chosen. The biggest challenge here is to define such a utility function that

covers all needed aspects. The planning level can either be on the basis of fea-

tures or on the whole architecture. Planning on the basis of features separates the

context requirements from the actual realization while the architectural approach
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mixes both concerns by specifying concrete architectural changes. The planning

type can be either rule-based, goal-based, or utility-based. Rule-based is usually

modeled using ECA rules or a state transition diagram. Thus, the actions are

clearly specified. Goal-based planning is implemented using high level goals that

the planner has to decompose to sub goals and finally distinct actions. As it is

not easy to satisfy multiple goals at the same time the desirability of a state can

be described more easily using a utility. Hence, in the utility-based approach the

action with the highest expected utility is chosen as adaptation action. Transfor-

mation, the last dimension, is categorized into direct link, aspect model weaving,

and transformation rules. Direct link means there is an exact mapping of the

feature model to the architectural model. Thus, changes in the feature model

directly influence the architecture of the system. If this mapping does not exist,

direct link is not possible. Aspect model weaving is a model-driven development

method that allows creating detailed architectures from high level models. Using

this method selected features are woven into the base system. The Transforma-

tion rules method needs an additional architecture feature model that models

all variants of the architecture model. The mapping between the two feature

models is represented by transformation rules. The rules can, e.g., be modeled

in propositional logic [BBD16].

Execution: Execution is categorized using the dimensions architecture model,

architectural style, variation entity, and runtime reconfiguration. The architec-

ture model is the abstract view of the system representing all variants. This

model is used to identify parts in the system that should be changed by an adap-

tation. The first representation approach could be custom languages. As the

model should always be up-to-date at runtime it is efficient to use a domain-

specific language. Another possibility is to use business process modeling lan-

guages like the business process modeling language together with the business

process execution language. The last possibility is to use architecture description

languages which model the architecture of a system on a very high level. Usu-

ally this exists at design time so it can be reused by the planner. Architectural

style is divided into component-based, service-oriented, and service component ar-

chitecture (SCA). Component-based means there are fixed connections between

components, and the components can be exchanged. Additionally, using spe-

cific patterns runtime variability of components themselves can be implemented.
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Service-oriented architectures are based on the same idea as SPLs that mostly ev-

erything should be reusable. The coupling is very loose in this approach. Changes

can be implemented by turning services on or off or by changing communication

channels between existing services. The last approach is the SCA which is a

hybrid approach. Here functionality is provided by components with interfaces

as if they were services. The components interact by calling services methods

on other components. This combines the strengths of the first two approaches.

Variation entities define the actual parts of the system that get changed when an

adaptation is executed. Changes can be carried out on the basis of components,

services, aspects, or connectors. Components can get deployed independently.

One problem here is that a single component often does not simply represent one

feature. Thus, granularity is a concern. Another challenge is to maintain the

system states when components get replaced. Services have the same problems

as components but are more loosely coupled. It is easily possible to start new ser-

vices and use them, since they are defined by interfaces. The aspects dimension

relates to aspect-oriented programming. Here a mapping between features and

aspects of the system is needed. These mappings can get easily unmanageable.

The last possibility for variation entities are the connectors that can be changed

between other entities. These connectors can be ”glue codes, communication

channels, or workflows” [BBD16, 24]. The dimension runtime reconfiguration

or middleware defines how the system is reconfigured and how the configuration

state is represented. The authors propose that mostly an application-independent

middleware should take care of the adaptation itself and it should represent the

configuration state. This can either be implemented using a component model or

using dynamic aspect weaving. A component model defines the semantic and the

syntax of components as well as their composition. Examples for such a system

are OpenCOM or OSGi [CBG+08, BCL+06]. Dynamic aspect weaving means to

change the current aspect of the system. This can be used when the variation

entities are aspects.

After this presentation of the DSPL taxonomy by Bashari et al. [BBD16], the

following chapter shows the DSPL approaches that get categorized in their work

using the adaptation and the DSPL taxonomies.
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3.2. Overview on DSPL Approaches

In this section each approach included in [BBD16] is briefly introduced. Then

their findings in terms of the characterization of the approaches based on their

adaptation taxonomy are presented. You can find the results presented here addi-

tionally in Table A.1. As the DSPL taxonomy is very detailed, the categorization

of the approaches concerning this taxonomy is omitted here. You can find the

results concerning this taxonomy in Table A.2 and in [BBD16].

Service-Oriented Dynamic Software Product Lines [BGL+12]: They use

the Common Variability Language (CVL) in combination with the Business

Process Execution Language (BPEL) and aspect-oriented programming [Inc06,

KLM+97]. The so-called variability designer uses CVL, e.g., using an existing

Eclipse plugin to model the changed configuration. This new configuration leads

to a change request. For the execution DyBPEL is used. DyBPEL augments the

ActiveBPEL execution engine with additional aspect-oriented variability possi-

bilities. As part of this DyBPEL engine there is a coordination component. The

coordinator gets the change request from the variability designer. It triggers a

BPEL modifier for changing the execution inside the embedded ActiveBPEL en-

gine as well as a runtime modifier migrating running processes. The authors use

a smart home use case. However, since they propose a BPEL based approach any

business process using the Business Process Modeling Notation (BPMN) could

be used. Obviously and according to the literature review of [DDD+13] this ap-

proach mainly addresses the execution of the MAPE-cycle. According to the

taxonomy presented in the previous section Bashari et al. state that there is no

goal type. The evolution is static, and the cause is clearly the user as everything

is user-triggered [BBD16]. As the user starts adaptations the mechanism auton-

omy dimension is manual, and since aspect-oriented programming is used, which

does not change components or the structure, the mechanism type is code-level.

Genie: Supporting the Model Driven Development of Reflective, Com-

ponent-based Adaptive Systems [BGF+08]: The authors of this approach

developed a tool called Genie which supports the development and modeling of

reconfigurable systems that are component-based. Genie uses two model struc-

tures for representing the system: A context variability model and a structural

variability model. These dimensions are connected for representing the recon-
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figuration behavior. The environment states are regarded as state diagram with

transitions between the states. In [BGF+08] and [BSBG08] they, e.g., propose a

use case in the domain of embedded sensor networks as part of a flood warning

system. There they use a model with two boolean context variables and one

system variable for determining in which of three states a flood detection system

should work in. According to [BBD16] the goal type is self-configuration. The

presented use case shows this in a clear way as the sensor network changes, e.g.,

its power management based on information on possible flooding. For example,

when heavy rainfalls occur the system communicates more often and using more

power to detect a possible flooding situation faster. Still, the evolution is static

as no new configurations are learnt at runtime. The context is the reason for an

adaptation. Also, the adaptation mechanism acts autonomously. As a feature

model is used it works component-based. This results in exchanging different

components at runtime.

Applying Software Product Lines to Build Autonomic Pervasive Sys-

tems [CFP08]: Cetina et al. developed an approach in the domain of pervasive

computing or more specifically in the domain of smart homes [CFP08]. They

use a model driven development methodology for modeling the features and the

behavior. For the features they are using the feature model in the notation of

[BTRC05]. The structure of the system as well as the configuration behavior

is described using the PervML modeling language which is specifically designed

for the application in the domain of pervasive computing. They developed an

additional mapping between the features of the feature model and the PervML

elements which describes the adaptation behavior and provides self-healing capa-

bilities by specifying fallback mechanisms. On the basis of the smart home use

case they specifically addressed three scenarios: A resource becomes available, a

resource becomes unavailable, and a user has a new goal. [BBD16] state that the

goal type is self-healing due to the fallback mechanisms as well as self-configuring.

It employs static goal evolution. The cause for an adaptation is always the con-

text. The adaptations are autonomous and component-based since the system

decides on its own to adapt and it uses a feature model-based approach.

MADAM (mobility and adaptation-enabling middleware) [FHS+06]: The

system is represented as component model where components conforming to

a matching interface can easily be replaced. Additionally, MADAM supports
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parametrization of the components. It works utility-based which means that the

main goal of the developed middleware is the maximization of the utility. The

utility depends on the current context situation that gets evaluated continuously.

According to the context change the components with the highest expected util-

ity are implemented. As the approach uses a utility function for evaluating its

behavior the goal type is characterized as self-optimizing. The evolution is static.

The adaptation cause can be either the system or the context since both are rep-

resented in the middleware. It works autonomously and in a component-based

way as well.

REPFLC (Reconfigurable Evolutionary Product Family Lifecycle) [GH04]:

The presented lifecycle is divided into three parts: Product family engineering,

target system configuration, and target system reconfiguration. Product family

engineering is similar to the static SPL approach. This step includes product

family architecture creation consisting of components and connections as well as

the specification of variations of the product family. So-called reconfiguration

patterns for the runtime adaptation are created as well. These specify possible

transitions between configurations. It is divided into state and scenario model.

The state model describes the changes when an adaptation happens and the sce-

nario model defines certain conditions when an adaptation should be triggered.

Target system configuration is also comparable to the SPL approach as the sys-

tem gets deployed on a target system based on certain requirements. The target

reconfiguration step finally uses the models specified at design time to support

runtime adaptation of the product. Concerning the taxonomy only three dimen-

sions could be specified. The goal evolution is static, and it is autonomous and

component-based.

DiVA (Dynamic Variability in complex, Adaptive system) [MBJ+09]:

DiVA is based on four metamodels that get exchanged inside the system. The

four models are a DSPL model, a context model, a reasoning model, and an ar-

chitecture model. The DSPL model represents a standard feature model. The

context model consists of single variables needed for monitoring at runtime. Rea-

soning means to connect the two former models, e.g., with ECA rules. These

rules trigger adaptations. The architecture model can be any architecture model

such as a standard UML model or an SCA model. These models are used in a

three layer architecture. The bottom layer contains the application logic while
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the top layer contains the adaptation logic. The middle layer connects the layers

providing context data to the top layer and for configuring the bottom layer. A

reasoner picks the best configuration based on the context information. A con-

sistency checker for the models used at runtime concludes the approach. In fact,

this allows a non-static goal evolution. It also works autonomously and in the

component-based way.

Context awareness for dynamic service-oriented product lines [PBD09]:

Parra et al. use the context-sensing middleware COSMOS which provides so-

called context nodes. A context node has always the same interface and provides

the context information of one sensor each. A context model is the basis for

storing the current contexts. Each so-called context-aware asset is, e.g., defined

by some value that is to be observed as well as by the thresholds of the value

and the changes that should be implemented in each case. For representing the

system variability a standard feature model is used. Changes in the context-aware

assets applied by a context manager trigger changes in the architecture. It is self-

configuring and static. The cause is always the system and it is autonomous as

well as component-based.

With the exception of one approach, all methods work component-based and

autonomously. The same applies to the goal evolution that is mainly static. The

majority acts on changes in the context while having the self-configuration goal

type. Most approaches require that the DSPL developer has to learn a new

modeling technique which is not used in other contexts. Also, some approaches

are focussed on special use cases at the moment which may make them not

easily applicable in other domains. Thus, this thesis uses the method of Saller

et al. [SLR13] as foundation for a use case independent approach for modeling

the possible configurations of a managed resource. They propose the idea of

incorporating an additional context model into feature models. Thus, they use a

notation that is familiar to every SPL aware software engineer. Also, it is possible

to use a simple mapping between context and features using standard cross-tree

constraints. Hence, there is no need to learn any new modeling language or

mapping between context and features. The following section introduces the idea

of context-aware feature models in more detail.
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3.3. Context-Aware Feature Modeling Approach

As already mentioned Saller et al. take the generic feature models as a starting

point [SLR13]. Additionally, to the actual feature tree in this approach the

context is modeled in a similar way as second child node from the system root

node. The context features are created the same way as the features at design

time. Thus, the model is called context feature model (CFM). Saller et al. use

feature and group cardinalities as well as feature attributes in this approach (see

2.2.3). The reconfiguration behavior is constructed using cross-tree constraints.

These constraints are created between a feature attribute of a context variable

representing one state of the variable and a feature from the feature sub-tree. At

runtime the context feature attributes get assigned by real context information.

This should happen using some context-aware engine [SLR13]. The process of

DSPL reconfiguration is changed accordingly as described in Section 2.3 using

Figure 2.5. Additionally to the application of the feature model, the context

determines possible configuration spaces to which possible reconfigurations are

assigned. As one context can allow multiple configurations the dotted lines in the

figure show possible configurations of one context situation. The arrows between

the contexts indicate transitions between the different context situations. These

transitions happen with a certain transition probability which could be taken into

account for the reconfiguration decision. This could enable proactive behavior. It

is assumed that each context represents a distinct state of the environment. It is

possible that multiple configurations are possible at the same time in each context

situation. This adds the possibility of conflicts between multiple reconfiguration

decisions.

This chapter presented related work in the field of dynamic software product

lines. The two taxonomies according to [BBD16] have been explained. The seven

approaches the authors compared according to these taxonomies were shortly

introduced and categorized using the adaptation taxonomy. Finally, the context

feature modeling approach by [SLR13] is introduced which is the foundation of

the adaptation logic developed in this thesis. The approach that was developed

as part of this thesis is presented in the following chapter.



4. Approach of Planning Reconfigurations using

Feature Models

This chapter is an introduction to the approach of this thesis for planning recon-

figurations of an SAS using DSPL context feature model methods presented in

Chapter 2. First satisfiability problems which are the foundation for generating

plans with certain constraints are briefly introduced. Then an overview about

the approach is presented.

4.1. Satisfiability Problems

Petke defines (boolean) satisfiability problems as following [Pet15, p. 15]:

The problem of deciding whether there is a variable assignment

that satisfies a propositional formula is called the Boolean satisfia-

bility problem (SAT).

The logical knowledge of a SAT problem consists of multiple clauses constructing

the so-called conjunctive normal form of a formula [Ben04] [RN09, p. 253 ff.].

Each clause consists of one or multiple literals while a literal is a ”propositional

variable or its negation” [Ben04, p. 124]. Thus, each clause represents some

constraints. All clauses which are disjunctions for themselves are conjunctively

connected with each other. If there is a possible assignment of boolean values to

all literals satisfying all sentences there exists a so-called model for this setting.

According to Russell and Norvig satisfiability of a sentence is defined as follows

[RN09, p. 250]:

A sentence is satisfiable if true in, or satisfied by, some model.

This boolean satisfiability problem can be solved by SAT solvers. A SAT solver

gets clauses as input and creates a model for this input if there is any [RN09, p.

26
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271 f.]. The mostly used input and output format for SAT solvers is the DIMACS

CNF format [Sat09].

Another problem type are constraint satisfaction problems (CSPs). In fact, SAT

problems are a subset of CSPs [Pet15, p. 1]. Thus, CSPs are not limited to

boolean satisfiability, but they can solve problems with arbitrary values assigned

to the variables [RN09, p. 202 ff.]. CSP solvers can find solutions to a given

set of variables, constraints on them, and partial values on the variables. It is

possible to map a SAT problem to a CSP problem and the other way around

[Wal00, Ben04, LBL08]. As an example the naive approach for converting a CSP

to a SAT problem is to create a boolean variable for each concrete value and add

mutual exclusivity to one group of variables representing a range of values.

The third existing problem type are satisfiability modulo theories problems (SMT

problems). SMT solvers which can handle this kind of problems are solvers in-

cluding background theories for interpreting more complex problems [BSST09].

This makes it possible to solve so-called first-order logic problems including quan-

tifiers and arithmetic operations [BSST09]. Since this high level of expressivity

is not needed for finding solutions to the feature model problems stated in this

thesis, SMT solvers are not explored any further at this point.

Since CSP problems can get converted naively to SAT problems reducing the

complexity of the solver, a SAT solver is used in the approach of this thesis.

However, in future work it may be possible to also include a CSP solver and

some heuristics for selecting one of the solvers. Right now only a SAT solver is

used. In the following section the big picture of the approach is presented.

4.2. CFM-based MAPE-K Cycle

As a starting point the idea is to augment a MAPE-K cycle based adaptation

logic with a CFM inside the knowledge component. Furthermore, rules for re-

lating raw sensor data to context feature attributes as well as mappings relating

features and feature attributes to their literal representations for the SAT solver

are part of the knowledge. The SAT mapping is built directly at the start of the

system. This facilitates the knowledge component to return the corresponding

literal given a feature or feature attribute. Additionally, so-called priorities and
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costs reside inside the knowledge component. They are used for conflict reso-

lution, and the selection of one configuration given multiple configurations are

possible. Priorities and costs are present for all system features which are part of

a feature group. A priority is a number stating the priority of a system feature

inside its corresponding feature group. A cost value referring to a system feature

states the estimated cost to implement exactly this system feature in comparison

to other system features of the same feature group. In the following the complete

data flow through the adaptation logic is briefly illustrated.

Figure 4.1.: MAPE-K Cycle using a DSPL Context Feature Model and additional
Information

Figure 4.1 shows an overview of the architecture of this thesis’ approach. As

usual for a MAPE-K-based approach, the monitoring element gets raw data from

the managed resource. In this case the data coming from the managed resource

is context state information. This data can consist of internal or external context

information related to the managed resource. The adaptation logic may receive

raw sensor data which means it may need to be formatted, filtered, or aggregated

inside the adaptation logic. The monitoring component receives the data, pre-

pares it and passes it to the analyzer component. The preparation here means to

interpret some serialized input like an XML or JSON string (for XML and JSON

see [BPSM+98, Cro06]) in order to create plain data objects for working with
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the sensor data. Also, it is possible to receive raw text input from the managed

resource which has to be parsed in the first place. The resulting data objects can

be used more easily by the analyzer component than a raw string.

The monitoring information gets analyzed by the analyzer component. This

adaptation logic is able to receive and process partial sensor data until the man-

aged resource sends a message indicating the data of one tick or run is sent. Thus,

the monitor gets sensor information not as one package but as single sensor in-

formation. The analyzer must create the average of all single entries in order to

create one single sensor value representing the average system state. This aver-

age system value is used to map the values to actual context feature attributes

representing the context state of the system. At first the rules representing the

relationships of context information, their names, and context feature attributes

are used. Matching the actual values to context feature attributes requires rules

stating the value range of each context feature attribute. Thus, it is possible to

match the averaged values to actual context feature attributes. The resulting

attributes which are selected according to the context information are forwarded

to the planner component. The approach supports partial knowledge meaning

not all context feature attributes must be present. Hence, even without full

knowledge the system is capable of finding a configuration.

Figure 4.2.: Internal workflow of the planner component

Figure 4.2 shows the complete workflow of the planner component. The planner

is the most important component for this approach as it contains the whole
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planning logic with a CFM as foundation. As the planner mainly works with a

SAT solver the result of the first step should be a logical representation of the

context information in conjunctive normal form (CNF). In fact, DIMACS CNF

is used here (see Section 4.1, [Sat09]). This first step works using the SAT or

CNF mappings as part of the knowledge component. These mappings state which

feature or feature attribute is mapped to which literal for representation inside

the solver. Each context feature attribute generated by the analyzer is mapped to

its literal representation resulting in logical clauses in conjunctive normal form.

The result is the DIMACS CNF representation of the entire context information.

The planner then uses the knowledge component to access additional system

information. The CFM - which is available in CNF representation as well - is

used in conjunction with the CNF representation of the context information as

input for a SAT solver. The solver’s task is to determine if valid configurations

exist and to output all possible configurations. Figure 4.2 shows this internal

process of the planner component. If there is only one valid configuration, the

planner is finished as there are no configuration options it can choose from. In

case of multiple possible configurations the additional costs information residing

in the knowledge component is used. The costs contain a numeric cost value

for each system feature as part of a feature group inside the CFM. Using this

the planner then selects the configuration with the lowest cost. In case no valid

configuration is found the planner has to solve the conflict somehow. If a conflict

happens there may be two or more system features in conflict. In this case the

priorities information is used. It determines the priority of system features in

relation to other system features in the same feature group. The planner selects

the feature with the highest priority for each conflicting feature group. One

example is a home automation system. One context feature requires to open

the windows when it is hot in the room. Another context feature requires the

system to activate the sprinklers when there is fire in the room. In this case

the sprinklers should obviously have a higher priority. The result of the planner

is a complete list of system features the managed resource should activate. The

selected configuration is sent to the execute component which makes sure that the

change in the configuration gets deployed properly. This ends one complete cycle

through the adaptation logic. The next chapter shows implementation details of

this approach.



5. Implementation

The previous chapter briefly introduced the method for planning reconfigurations

based on DSPL feature models used in this thesis. As with any MAPE-K cy-

cle based approach, the monitor gets raw context sensor data and the analyzer

analyzes the data. This analyzing step requires mappings in order to success-

fully map the input data to context feature attributes in the CFM. The planner

mainly features a SAT solver and works based on the information that is available

inside the knowledge component. All information that is needed for planning

is encapsulated inside the knowledge component. If the CFM is conflict free,

only costs have to be added to the CFM in order to evaluate different possible

configurations when multiple configurations are valid. If there is the possibility

for conflicts, priorities for features are also needed. This approach uses a CFM

model with additional information to plan on the basis of a satisfiability solver.

This means that no special modeling technique or implementation is needed to

use this approach. In the end, the planner produces one single configuration that

is deployed to the managed resource by the execution element.

This chapter introduces implementation details of the MAPE-K cycle approach

presented in the previous chapter. The first section demonstrates the FESAS

framework (framework for engineering SAS) that is used in this work for the

implementation. The second section describes the MAPE-K components of this

thesis’ approach implemented as FESAS components.

5.1. Introduction of FESAS

The aim of the FESAS project is to establish a generic and reusable framework

for developing self-adaptive systems. Today’s self-adaptive systems are mostly

tailored to their environments and needs [KVB13]. Thus, the framework should

consist of reusable components and processes that can be utilized for all different

kinds of problems and system domains. The framework is model-driven. This

31
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means a system designer is able to set up a design model and the framework

translates this design model into an adaptation logic that can be executed by the

FESAS runtime. Therefore, a system designer can use high-level tools instead

of starting low-level from scratch. This innovative approach could speed up the

needed time to develop a complete self-adaptive system. The system itself is con-

structed using predefined generic components in a reference architecture. This

architecture uses the MAPE-K cycle (see Section 2.1.2). The designer can replace

the adaptation logic elements with elements from the same type. For this pur-

pose FESAS has a adaptation logic element repository the designer can choose

components from. This enables a system designer to build custom adaptation

logic cycles using the elements in the repository.

Each part of the MAPE-K cycle is implemented as a separate component. This

supports the idea of Kephart and Chess stating that autonomic systems are a

collection of autonomic elements to deliver services to users and other autonomic

elements [KC03]. As these components should be able to be distributed over

several different devices FESAS also supports an object-oriented middleware in

its reference architecture to achieve stable interoperability in distributed systems.

Still, it is possible to use FESAS only on one machine without any middleware in

between. This means standard method calls would suffice in this special case. At

the beginning FESAS used the BASE middleware which was developed by Becker

et al. [BSGR03]. BASE is implemented in Java. This ensures the possibility to

use it on every Java capable device. BASE allows devices to propagate their

available local services to other devices via peer-to-peer techniques. If a device

needs to consume a certain kind of a service it searches in the propagated service

registry to find a running instance on a remote device. BASE is very customiz-

able and expandable with plugins. The customizability makes it possible to strip

down BASE to the very needed components to fit it even on devices that only

run the Java Micro Edition. Hence, FESAS can run on smallest devices when

BASE is used. However, FESAS is not limited to this particular object-oriented

middleware [KRVB15]. It is part of one reference architecture.

FESAS makes it possible to use either parameter adaptation or component adap-

tation [KVB13]. This provides flexibility in the concrete adaptation possibilities.

Additionally, it provides marshalling and unmarshalling capabilities for the data

that is exchanged between the adaptation logic elements. This also improves the
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component exchangeability possibilities. FESAS uses JSON as serialization nota-

tion in the reference system (for JSON see [Cro06]). This JSON data gets passed

from one component to the next. Each MAPE cycle component consists of meta

information about the component and the actual implementation in Java. The

meta information consists of simple elements like a name and a description as

well as supported and produced information types. In essence, components that

support the same information type should be able to be exchanged without any

problems. The actual implementation of most of the components mainly consists

of a callLogic method. The JSON data is passed to this method encapsulated

inside a high-level KnowledgeRecord object. The logic of the component does

whatever it is intended to do and passes its result to the next component in the

cycle by calling a generic sendData method. This method also takes care of the

marshalling of the data. Then the next component in the cycle is called.

The simulation of this work is embedded in the context of the FESAS project

and the proposed reference system using the BASE middle. FESAS increases

development speed and it is completely use case independent. Hence, FESAS

is a helpful development tool for SAS development. The MAPE cycle elements

of the simulation are implemented as FESAS components. The following section

presents details of the generic CFM-based adaptation logic implementation inside

FESAS.

5.2. Implementation using FESAS

As the FESAS framework is implemented in Java the implementation of the

approach also uses Java. The implementation of the prototype system has been

conducted using the FESAS IDE [KRB+16]. The FESAS IDE is an add-on for

the popular Eclipse IDE. In this thesis only the FESAS Development Tool which

is part of the FESAS IDE is used. The FESAS Design Tool for the orchestration

of different MAPE components and for specifying the decentralization of them is

not used in this work. The reason for this is that the MAPE-K components in

this thesis are fully centralized. There is no decentralization present. The FESAS

Development Tool enables the developer to easily create skeletons of adaptation

logic components as well as the meta information that is needed for publishing

components to the FESAS repository.
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For creating the MAPE component, the FESAS IDE is used to create the initial

skeletons. These skeletons consist of a Java implementation file and a meta in-

formation JSON file that is used for the repository. The Java skeleton consists

of some auto-generated meta information as well as an initializeLogic and a

callLogic method. The most important method of an adaptation logic compo-

nent is the callLogic method that is called by the FESAS runtime environment

at execution time. FESAS triggers the callLogic method of each component

providing the input data which is the previous component’s result. This can

be triggered using the sendData or sendArrayList methods which let FESAS

provide the data to the next component in the chain.

In the development phase, a test mode can be used. Using another wizard of the

FESAS IDE it is possible to create these logic tests. For each test input data

in the JSON format can be specified. This makes it easy to debug the system.

For running the system using FESAS, the MAPE-K components can be exported

into compressed zip files for deployment inside a FESAS repository.

For illustration purposes an entire run through the adaptation logic is described

using the data center use case presented in [KRVB15]. It describes self-managing

data centers that start servers given a high work load. Accordingly it should

stop server given a low workload. The monitoring only observes the workload

of the servers. The configuration determines if a start policy, a stop policy, or a

keep policy should be activated. In this example one adaptation logic manages

three data centers. Figure 5.1 shows the big picture of the data flow through the

MAPE components. The monitor component receives sensor information about

the workload from each of the three data centers followed by a keyword for stating

that the monitor should stop monitoring and forward the average of the received

values to the analyzer. The analyzer selects the corresponding feature attribute

item (FAI, introduced in Section 5.2.1) which is a Java object. Based on this input

the planner selects the start policy. The result is sent as a string to the executor

which forwards it without modification. In the following, implementation details

with reference to the example on all MAPE-K components are explained.
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Figure 5.1.: Complete Data Flow between the MAPE Components. FAI means
FeatureAttributeItem

5.2.1. Knowledge

The first component that is presented in the following is the knowledge com-

ponent. Figure 5.2 shows the UML diagram of the knowledge metamodel. It

contains all aspects of knowledge that are needed for the adaptation logic. The

SAT mapping mentioned in the previous chapter is not shown in this diagram as

it is generated at the start of the system dynamically.

The diagram shows that the actual context feature model is only one part of

the knowledge. The knowledge class also has so-called feature attribute rules,

the priorities, and the costs. Starting with the feature model class it has the

reference to all abstract features of the model. An abstract feature may have a

parent feature and (multiple) children. As the feature type is abstract a feature

has to be either of the type ContextFeature or SystemFeature. These feature

type classes exist to better understand and structure the model. Thus, they

provide no distinct functionality. Additionally, features can have two types of

cardinalities: a feature instance cardinality and a group type cardinality (for car-

dinalities in general see Chapter 2). The feature instance cardinality specifies

how many instances of a feature are allowed to be present in the system at run-

time. The group type cardinality states the type for the feature group of the

feature’s children. Features implement the IConstraintElement interface that

marks classes which can be used to express constraints. Thus, constraints consist

of two IConstraintElement objects. The Constraint class is also abstract. At

the moment only require constraints are implemented. Thus, this is the only
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subclass of the Constraint class. However, it is easily possible to add the ex-

clude constraint if there is the requirement in the future. In this case, another

subclass of the class Constraint is needed. This subclass simply has to be han-

dled when the CNF of the CFM is created. According to the extended feature

model approach, features can also have attributes. Thus, the abstract feature

has the possibility to add such an element to it. Again FeatureAttribute is

an abstract class. At the moment the system only supports enumerations as

attribute type meaning, e.g., integer or double values are mapped to multiple

attribute items representing value ranges. These attribute items also implement

the IConstraintElement as they are supposed to require certain system features.

There is the possibility to, e.g., add floating point or integer feature attributes

later if needed. Feature attribute rules represent the rules for matching context

sensor values to actual feature attributes and feature attribute items. For each

feature attribute type a corresponding rule type has to exist. A rule specifies the

name for the sensor input matching it to an attribute. Additionally, it provides a

matching method for determining the attribute item that is represented by some

context value.

For importing the knowledge of the specified system to the adaptation logic it is

possible to use a serialized input file. At the moment the system is able to import

files conforming to the JSON representation of the knowledge class. However, the

file format is a secondary matter. The IKnowledgeParser interface specifies how

a file parser has to work. Thus, implementing this interface adds the possibility

to parse other arbitrary file formats such as XML easily. Facilitating the idea of

having no fixed data exchange format the data transfer object (DTO) pattern is

realized in this implementation [Fow02, p. 401 f.]. The DTO pattern provides an

abstraction between the actual Java objects representing the knowledge and the

file format of the input file. The DTO representation of the actual Java object

is simplified and handles issues such as circular references. This happens if the

original Java representation is passed to a serializer without any modifications.

Thus, for every Java object from Figure 5.2, a DTO object exists as well.

In FESAS itself a so-called KnowledgeManager class is used for storing knowledge

data. It implements the singleton pattern and stores the Knowledge class as well

as the SAT mapping created when the system starts. It is initialized with the

path to a knowledge file.
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5.2.2. Monitoring

The monitoring component gets multiple raw strings. The component is build to

convert the raw JSON data into a hash map with strings and objects representing

the raw data. This simplifies the following processing steps. These entries are

added to an array list until a stop command is received. Referring to Figure 5.1

the stop command is ”FINISHED”. This approach makes sure that all informa-

tion of one tick or run of the managed resource is sent. The three JSON strings

are collected in a List<Map<String,Object>> object. After the stop command

this array list is passed to the analyzing component waiting for new sensor data.

This triggers the analyzer and the monitor waits for new sensor data.

5.2.3. Analyzing

The analyzing component gets the array list serialized as JSON from FESAS.

It gets transformed back into an array list. Then the average of all values and

entries is calculated. Referring to the example in Figure 5.1 the analyzer creates

the average of the three Map objects. This is done for every variable over all entries

of the list. The resulting value is mapped to the actual feature attributes items

representing the context situation of these averaged values. In the example only

the FAI High WL is selected. Then the FAIs are sent to the planning component

as array list.

5.2.4. Planning

This component is the core contribution of this work. Thus, the section of

the planning component is most exhaustive. Section 4.2 described the general

planning approach (see Figure 4.2) without specific information on the imple-

mentation. The actual Java implementation uses Sat4J as SAT solver [LP10].

Code Listing 5.1 shows the callLogic method of the planning component. Lines

5 and 7 parse the JSON text to the original array list containing context fea-

tures attributes and maps them using the SAT mapping to their literal repre-

sentation. Otherwise the SAT solver is not able to work with them. Line 9

checks if there is a model using the given context information. At this point the

solver already has loaded the CNF of the context feature model. If there is no
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model, the conflicting features are determined in line 10. The conflicting fea-

tures are passed to the so-called PriorityConflictSolver which implements

the generic IConflictSolver interface. This facilitates the idea of different

conflict solving components that can be exchanged. In this thesis, only the

PriorityConflictSolver is present. The PriorityConflictSolver iterates

through all constraints of the conflicting context features to find the actual con-

flicting system features. For each feature group with conflicts the priorities from

the knowledge component are used. Thus, the feature with the highest priority of

every conflicting group is selected. Adding the resolved feature selection as well

as the remaining conflict free context information to the solver ends the conflict

resolution (line 16). The lines 18 through 20 are called in case of no conflict. In

this situation the context information is simply added to the solver. Lines 22

through 28 are concerned with getting all possible models based on the context

feature attribute selection. Every model is added to one array list. In order to

get all possible models after each model that is found by the solver, the negation

of this model is added to the clauses list of the solver. For the case with multiple

possible models, a class implementing the IConfigurationSelector interface is

needed to decide which configuration should be activated. In this approaches’

implementation, a CostConfigurationSelector uses the costs assigned to the

system features as part of the knowledge. For every feature group with a deci-

sion, the feature with the lowest cost is selected. The following lines remove the

unnecessary context features and inner features from the list. If there is only one

configuration possible the resulting configuration is selected. A string array list

containing all system features that should be activated is sent to the executing

component in the end (line 51).

1 @Override

2 public String callLogic(IKnowledgeRecord data) {
3 ...

4 this.resetSolver();

5 String arrayListData = data.getData().toString();

6 ...

7 int[] contextSatLine = this.getContextSatLine(arrayListData);

8 // If there is no model, resolve the conflicts first

9 if(!this.solver.isSatisfiable(contextSatLine)){
10 int[] conflict = this.solver.unsatExplanation(contextSatLine);
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11 // Use PriorityConflictSolver

12 IConflictSolver conflictSolver = new PriorityConflictSolver();

13 ArrayList<ArrayList<Integer>> list =

14 conflictSolver.getResolvedContextSatLine(

15 contextSatLine, conflict, KnowledgeManager.getInstance());

16 this.solver.addClauses(list);

17 }else{
18 for(int i = 0; i<contextSatLine.length; i++){
19 this.solver.addClause(contextSatLine[i]);

20 }
21 }
22 ArrayList<int[]> allPossibleModels = this.solver.getAllPossibleModels();

23 ArrayList<ArrayList<ISatElement>> featureLists = new ArrayList<>();

24 for(int[] model: allPossibleModels){
25 ArrayList<ISatElement> featureList =

26 this.mapper.getSatElementListFromSatSolution(model);

27 featureLists.add(featureList);

28 }
29 ArrayList<String> featureNames = null;

30 if(allPossibleModels.size() > 1){ // Check if multiple models are possible

31 // Use CostConfigurationSelector

32 IConfigurationSelector configurationSelector =

33 new CostConfigurationSelector();

34 ArrayList<SystemFeature> featureList =

35 configurationSelector.selectConfigurationFromFeatureList(

36 featureLists, KnowledgeManager.getInstance());

37 // Clean list

38 featureList = this.removeInnerFeatures(featureList);

39 featureNames = this.getNamesOfFeatureList(featureList);

40 }...
41 else{
42 // Select first configuration

43 ArrayList<ISatElement> satElementList = featureLists.get(0);

44 // Clean list

45 ArrayList<SystemFeature> featureList =

46 this.filterSystemFeatures(satElementList);

47 featureList = this.removeInnerFeatures(featureList);
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48 featureNames = this.getNamesOfFeatureList(featureList);

49 }
50 // Send list with active system feature names

51 this.sendArrayList(featureNames);

52 return ”Planner sent feature selection to executor”;

53 ...

54 }

Listing 5.1: callLogic Method of the Planner Component

5.2.5. Execution

The execution in this case only forwards the feature selection to the managed

resource. Referring to Figure 5.1 the feature selection is a string with the system

feature names separated by a comma. The managed resource must map the

system feature names to actual policies and actions. The executor performs no

additional actions.



6. Evaluation and Discussion

This chapter is concerned with the evaluation of the CFM-based adaptation logic

approach in the simulation of a use case. At first the use case is introduced. Then

information on the use case implementation is presented. Afterwards, the setup

for the actual evaluation is given. This includes three evaluation questions that

should be answered. The evaluation results are also presented in this section. The

last section discusses findings of the results as well as properties of the system

according to the DSPL guidelines from [BBD16].

6.1. Use Case Description

The use case for testing the CFM-based adaptation logic approach presented in

the last chapter is concerned with the so-called Tasklet system [ESK+17]. The

idea of the Tasklet system is to provide a middleware-based infrastructure for

distributed computing on heterogeneous devices [ESK+17]. The Tasklet sys-

tem consists of three entities: resource providers, resource consumers, and re-

source brokers. Providing resources to the Tasklet system means to offer so-called

Tasklet virtual machines (TVM) that are able to run byte code which is based

on C–. Resource consumers send their byte code for computation to providers

for remote execution. Additionally, it is possible to be provider and consumer

at the same time, meaning there is not necessarily a remote execution [ESK+17].

Brokers provide the hybrid peer-to-peer infrastructure for this endeavor. Brokers

are specialized infrastructure nodes in the system, and form a peer-to-peer overlay

network themselves. Each resource provider registers at a broker. Bootstrapping

is used here to initially find the entry into the overlay network. Consumers do

not register at brokers. They send requests for providers to any broker they

know. An overview of an example overlay network topology is shown in Figure

6.1. It shows the inner broker overlay network, the connection between providers

(P), consumers (C), and brokers as well as the execution of Tasklets between two

42
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pairs of nodes. Tasklets are sent directly from a consumer to a provider. This

underlines the hybrid peer-to-peer approach. It also shows the possibility that

one entity can be provider and consumer at the same time (P/C). Each entity in

the network runs the Tasklet middleware [ESK+17].

Figure 6.1.: Schema of a Tasklet Network Topology [ESK+17]

The middleware handles the construction of the C– code, the execution, and

the distribution of Tasklets. Tasklets can be created with special flags. As one

example a Tasklet can be flagged with a speed requirement which forces the

middleware to execute it on a fast provider node accordingly. For more details

on the approach refer to [ESK+17].

6.2. Context Feature Model Development

Based on the use case the evaluation of this work is developed. Since the broker

network is not able to manage itself at the moment in terms of the number of

brokers or the global distribution of the resource providers, the idea of this work

is to create a broker management system. In order to find possible ways to

optimize the system, the first step is to identify system features for the manage-

ment system as well as context information that is needed to plan the selection
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of the system features. The model was created in discussions with the Tasklet

system developers Janick Edinger and Dominik Schäfer as well as in coopera-

tion with Markus Weckesser from the Technical University of Darmstadt who is

a researcher in the field of dynamic software product lines and context feature

models. The result of this process is the context feature model shown in Figure

6.2. In the following, the whole model is explained in detail. The subsequent

sections introduce context and system features of the figure.

6.2.1. Context Features

At first the context features are presented to understand the purpose of the system

and the system features more easily. They are shown on the right in the CFM

figure (Figure 6.2). All context features are the average values of all brokers.

Each context feature has a context feature attribute. Here each attribute uses

the enumeration type.

The first attribute is the fluctuation in the whole system. It measures how many

providers in a certain time span enter and leave the system in percent of all

connected entities.

The next attribute is the provider latency. It quantifies the latency of providers

to their corresponding brokers in milliseconds. This is important as it affects the

overall execution time of Tasklets. A high latency could mean that a resource

provider has a very long physical distance to the location of the broker. The

distribution of brokers should be as good as possible in terms of latency (see the

system features in the following).

The third attribute is the percentage of high-performance requests. Based on the

complete number of Tasklet requests coming in at a broker, it represents the

percentage of explicitly marked as high-performance requests.

The last context feature attribute is the broker load. This is an important metric

as it determines if a a new broker is needed in the Tasklet overlay network. High

load on the brokers may result in performance degradation concerning response

time when a consumer requests a provider.

The value ranges for the attributes have been selected by performing multiple test

runs of the evaluation system. The typical attribute values have been gathered
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for them. The ranges are selected for best presentiveness of the system.

Finally the diagram also shows that all context features have to be present at

runtime. However, the context feature attributes may be not specified as the

group type is set to < 0, ∗ >. Thus, the model supports the idea of partial

knowledge as stated in [SLR13].

6.2.2. System Features

Now the system features are presented. In order to minimize the number of

provider requests to the brokers, cache lists are used. These lists are distributed

at regular intervals to the consumers. Consumers poll for the lists all the time.

They can be configured in terms of the distribution interval, the length meaning

the number of providers on the lists, and the order of the lists’ entries. The Cache

List Interval can be slow, standard, or fast. When there is a high fluctuation

in the network, the interval for the distribution of the cache lists are changed

accordingly between these intervals. The Cache List Length can be short or long.

Thus, when the fluctuation is high, the cache list length is increased to the long

length, which means more providers are on the list. Hence, the consumer has more

providers for establishing a possible connection before a request to a broker has

to be sent. If the fluctuation is low, the short list length is activated accordingly.

The Cache List Content is either generic, location-based, or specialized. Generic

means the list is only ordered according to the reputation of the providers in

decending order. It is triggered by the Uniform Policy. The location-based cache

list puts providers that are in the same geographic region as the consumer at the

beginning of the list. It is required by the Location Policy. The specialized cache

list puts high-performance providers to the top of the list. This should result in

a faster execution time when the percentage of high-performance TVM requests

is high. The Specialization Policy triggers this.

The next system feature for the broker management system is the TVM Distri-

bution feature. This feature is concerned with the distribution of TVMs across

all brokers in the system. There are three possible policies forming an XOR

feature group: Uniform Policy, Location Policy, and Specialization Policy. They

are described in connection with the cache list content as they trigger their cor-

responding cache list content type. The Uniform Policy should uniformly dis-
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tribute all TVMs. This policy should also take the speed characteristic of the

TVMs into account. Referring to Figure 6.2 it is triggered when less than 75%

of the provider requests are requesting a high-performance TVM. Additionally,

it causes the Generic Cache List content that is introduced in short. The next

TVM distribution policy is the Location Policy. If the latency is higher, the lo-

cation policy is required. Since latency may imply the physical distance to the

broker, the TVMs are moved to brokers that are in the same geographical region.

Additionally, the cache lists are changed accordingly. Referring to Figure 6.2 the

Specialization policy is required when more than or equal to 75% of the TVM

requests need a high-performance TVM. This policy is supposed to move the

high-performance TVMs to one broker that is specialized on high-performance

requests. This should result in less communication between the brokers when

TVM requests have to be forwarded when already all high-performance TVMs

are busy at one broker.

While the TVMs can be distributed in the system somehow, the brokers can

also be distributed and managed. This leads to the last system feature: Broker

Distribution. For this feature there are two policies: the Minimum Policy and the

Start Up Policy. The Minimum Policy tries to minimize the number of brokers.

Hence, the broker with the lowest number of registered providers is stopped.

The connected providers and consumers are moved to another broker with the

lowest latency. Looking at Figure 6.2, if the overall latency in the system is lower

than 10 ms, in average this policy is required. Also, according to the figure, the

Start Up Policy is triggered if the overall average broker load exceeds 60%. All

system feature groups are XOR groups since they are marked with the cardinality

< 1, 1 >. All inner system features have to be instantiated at runtime according

to the feature instance cardinality [1, 1].

This section described the context feature model of the Tasklet system that is

used to show the functionality of the CFM-based adaptation logic method of this

work. The next section presents the actual implementation of the simulation

system including a detailed introduction of every Tasklet component.
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6.3. Simulator Evaluation

The use case is implemented as a simulated system. The initial implementation is

carried out in [ESK+17]. Thus, this thesis extends the simulator with additional

functionality. The largest additions to it are a new entity called broker manager

as well as the implementation of the system features. Additionally, multiple new

message types for communication between the different entities are added. The

first subsection introduces the simulation in general. The subsequent subsection

presents the structure and execution procedure of the simulation system. Then

the third subsection describes each component of the simulation system in more

detail. The last subsection shows the interface between the AL and the simulation

and what additional elements were needed to make sensing and effecting possible.

6.3.1. Introduction

[ESK+17] present and use a simulation for evaluation purposes. They use it to

evaluate the Tasklet scheduler with multiple different scheduling strategies. The

simulator is capable of simulating high quantities of distributed Tasklet network

participants. This simplifies the evaluation process and is cheaper than running

an actual testbed. Additionally, measuring the performance of the scheduler is

easier. The system includes the possibility to simulate failing nodes or network

connections [ESK+17]. The simulated system of this thesis uses this state as foun-

dation. The next section describes the implementation of the complete simulated

system.

6.3.2. Implementation

At first the focus is on the simulator at its most important components. These

components are a message queue and a list of all Tasklet machines. At the start of

the simulated system the simulator creates a list of Tasklet machines. A configu-

ration file specifies the quantities for each entity type. After this initial generation

the simulator performs the first simulation step. It is a discrete simulated system.

Hence, the performance of the system executing the simulation does not influence

the results. Performing a simulation step includes three tasks for the simulator:
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Sending the corresponding messages to every Tasklet machine, starting the exe-

cution of each machine’s specific task, and collecting possible messages from all

machines.

Each Tasklet machine has predefined steps it has to perform. At first each ma-

chine handles the incoming messages according to their types. Then it has to

execute the specificTasks method that executes entity specific tasks. The ma-

chines can add messages directly to the message queue of the simulator.

So far, this section describes the simulator from [ESK+17] without the modifica-

tions which are part of this thesis. Figure 6.3 shows the described steps as well

as the additional steps this work adds to the simulated system. The capability

of sending status information about the connected resource providers from the

brokers to the adaptation logic is added. The figure also shows the new broker

manager entity that handles the selected configuration of the AL. When all ma-

chines including the brokers are finished with their tasks it sends the FINISHED

keyword to the AL.

Figure 6.3.: Data Flow in Simulated System and AL based on [ESK+17]

This concludes the overview of the simulation system implementation. The fol-

lowing subsection introduces each Tasklet entity type in detail.

6.3.3. Simulated System Components

This subsection describes each Tasklet entity type. At first it presents the entities

that are present in the original simulator of [ESK+17]. This includes resource

consumers, providers, and brokers. Then it outlines the single broker manager

entity.
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Resource consumers have to handle heartbeat messages and results from providers,

as well as potential provider messages and cache lists they get from brokers. The

heartbeat messages are used to determine if a provider executing a Tasklet that

was sent earlier is still active. It is used for monitoring the execution. When a

result arrives, the consumer informs the broker. This way the brokers accumu-

late knowledge on reputation and reliability of the providers. Potential provider

messages contain a provider corresponding to a provider request. Cache lists con-

tain a list of providers. This list prevents the consumer from constantly sending

provider requests to the broker. It can rather directly send Tasklets to providers

of the list. The specific tasks of a resource consumer mainly consist of generating

new Tasklets and sending them directly. If no cache list is present the classic way

of sending a provider request to the broker is used.

Resource providers have to handle Tasklet messages, provider status requests,

and broker change messages. For each Tasklet message it checks wether it requires

a high-performance provider. If the provider does satisfy it, the Tasklet is exe-

cuted and will finally be sent as a result to the consumer. Otherwise, this provider

creates a new provider request for the consumer which created the Tasklet. This

is sent to the broker of the provider. Provider status requests are used by the

actual system feature implementations to fetch information about the providers

in the network. This information includes if the provider is a high-performance

provider as well as its geographical region. Broker change messages contain a

new broker ID the provider should connect to. The provider specific tasks are

to send heartbeats to its broker and consumers of whom it executes Tasklets for.

Also, it returns results of finished Tasklets to the consumers.

Resource brokers handle heartbeat messages from providers, reports from con-

sumers, so-called forwarding messages, provider requests, and providers transfers.

The heartbeat messages from the providers are used for statistical and reputation

knowledge about them. The reports are used for the same purpose. Forward-

ing is a special message type that is used when reports or provider requests are

forwarded by another broker. This happens when a broker change takes place

while a Tasklet is still executed. The resource broker receives provider transfers

when a provider changes its broker and the statistical data should be retained.

Brokers can get requests for sending their knowledge of a provider to another

broker or get exactly this knowledge from another provider. Provider requests
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are answered with potential providers. The specific tasks of a broker contain the

task of managing the status and reputation of all connected providers. Addi-

tionally, cache lists are sent to consumers. The most important specific task is

sending monitoring data to the adaptation logic. The resource broker passes it

to the broker manager. The monitoring data is determined by every resource

broker in every tick. It contains all context feature attributes that are part of

the CFM presented earlier. The fluctuation is calculated by comparing the list

of registered providers from the last step with the current step. The latency is

created artificially. Each machine entity gets a random region at the start of

the simulated system. Based on these regions the distance between the regions

of the providers and the broker is calculated. There are three possible regions:

AMER for America, APAC for Australia, eastern Asia and south-east Asia, and

EMEA for Europe, Africa, and the Middle East. For example, if the region of

the broker and a provider is the same, the latency is set to a value between 5 and

10 ms randomly. Other combinations have a higher latency ranges accordingly.

The number of high-performance requests is counted in percentage of all requests

while the load is directly represented by the number of active providers per max-

imum number of supported providers of the broker. The maximum number of

supported providers is also set at the start of the simulated system.

Broker manager is the only entity type that has one single instance at runtime.

The broker manager is a new entity in the Tasklet network. In this simulation

there is only one single broker manager entity. Since this represents a single point

of failure, a single broker manager would not suffice in a real world implementa-

tion of the Tasklet system. The brokers would run on separate servers providing

the Tasklet infrastructure. This would be the same for the broker manager. This

new entity contains instances of all policy classes and a list of registered brokers.

Each new broker directly registers at the broker manager. The manager en-

ables configurations it receives from the adaptation logic and it sends away the

monitoring data of each broker. It only handles forwarding messages from brokers

and the provider status messages. The former is divided into reports that need

to be forwarded, and provider requests. Reports are forwarded by a broker if the

provider which is part of the report is not connected with it anymore. Then the

broker manager broadcasts such a report to all registered brokers. In contrast to

this, provider requests are sent only to the subsequent broker in the list of regis-
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tered brokers. As written above, provider status messages are used as knowledge

resource for the actual system feature implementations. Thus, these messages

get delivered to all active policies in the broker manager. The specific task of

the broker manager contains the code for the execution of all active policies. In

order to see the result of the policies for better judgement, the policies are only

activated according to a fixed interval.

The next subsection presents the interfaces between the adaptation logic and the

managed resource which is the broker manager in detail.

6.3.4. Connecting Simulator and Adaptation Logic

The simulated system is implemented in Java. Hence, it is easy to connect it to

the adaptation logic which is also written in Java using FESAS. Figure 6.4 shows

an overview of the simulated system including the AL and the interfaces between

the two structures. As this Tasklet machine has a special role in the system, it

is depicted separately from the other machines.

Figure 6.4.: Simulated System based on [ESK+17] with Interfaces to the AL

As already mentioned, the simulator is discrete. Thus, the adaptation logic is

built into the simulation circle. This is done by executing the broker manager

entity always at the end of one step after all other entities have finished their

tasks. The data itself is sent using the Socket and ServerSocket classes which

are part of Java. To achieve a use case independent implementation in the adap-

tation logic there are two additional FESAS components used: the sensor and the

effector component. The sensor component starts a ServerSocket for listening for

monitoring data on a specified port. The broker manager opens the counterpart
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socket for sending the data. The sensor passes it to the monitoring component.

Accordingly, the effector component gets the result of the executor and sends it

by using a socket connection directly to the simulator. The simulator, which has

an open socket as well, passes this configuration directly to the broker manager.

The adaptation logic consisting of the MAPE-K loop can remain the same through-

out the process. There are no use case specific changes needed. The knowledge

component just needs the path to the input file containing the complete knowl-

edge definition of the system (as described in Section 5.2.1). The simulator is

changed to wait for a new configuration before triggering the next simulation

step. This assures the discrete execution. There are conventions on the data

that is sent using the sockets. The first socket connection from the broker man-

ager to the sensor has to send JSON data. The names for each JSON attribute

must match the name of the context feature attribute it refers to. Also, the

”FINISHED” keyword stating the end of one batch is fixed at the moment. The

second socket connection sends a comma-separated list of strings which have to

match the names of the implemented system features.

The discrete property of the simulated system facilitates the integration of the

socket interfaces into the adaptation logic. The socket connections are a simple

solution for connecting the adaptation logic and the simulation. After the presen-

tation of the whole use case and its implementation, the next section introduces

additional implementation results.

6.4. Additional Implementation Results

This section briefly presents other implementation results than the knowledge

metamodel and the adaptation logic components. These are needed for conduct-

ing the evaluation.

KnowledgeFactory: To be able to test arbitrary context feature models, a

so-called KnowledgeFactory has been built. It has three inputs: the number of

knowledge objects to be created, the number of system features, and the number

of context features. It creates as many enumeration feature attributes as context

feature leaves are present. For each enumeration feature attribute two to five

feature attribute items are created. Feature attribute rules are constructed with
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ascending integer values. Constraints between feature attribute items and system

features and between pairs of system feature are created randomly. Additionally,

random costs and priorities are created. The resulting knowledge objects are

converted to their DTO representation. This DTO representation is converted to

JSON and finally saved to the disc.

ModelTester: The model tester can be used to test the knowledge data gener-

ated by the KnowledgeFactory using random context data. In fact, it tests the

complete adaptation logic with generated knowledge data. Since the value range

of the context feature attributes is fixed with the number of feature attribute

items, random values fitting the value range are created for the monitor. It is

used to measure the time from sending the random values to the monitor until a

feature selection is generated.

6.5. Evaluation Setup and Results

This section elaborates the evaluation setup and its results. The first subsec-

tion presents the setup for evaluating the CFM-based planning approach using

the Tasklet use case. This includes three evaluation questions that should be

answered. The evaluation results are presented in a separate section. The suc-

ceeding section discusses the results.

6.5.1. Evaluation Setup

The evaluation is supposed to help answer the following three questions:

1. Is there any improvement using the adaptation logic for managing the

broker management system?

2. Does the approach also work with a high number of participants in the

network? How do the results differ compared to results with fewer network

participants?

3. How much time is needed for a complete run of the adaptation logic with

different randomized models with random context input?

Evaluation Question 1: For measuring possible improvements two run config-

urations in this first scenario are used. One configuration consists of the simu-
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lation system connected to the adaptation logic. The other one is without the

adaptation logic using a fixed configuration. 1000 Providers, 500 consumers,

and two brokers are the start configuration. Each run ends after 10000 finished

Tasklets. The number of needed ticks to finish them is one measurement. Ad-

ditionally, the number of aborted and timed out Tasklets as well as the average

latency and load are gathered. Both setups are executed 30 times. The system

runs on a Xeon E5345 with 8 cores, Windows Server 2008 Standard, and 6 GB

RAM. Each process (the AL and the simulator) has a maximum of 2 GB of RAM.

Table 6.1 displays the two setups in this first scenario.

Setup Use AL Providers Consumers Brokers Tasklets Runs

1 Yes 1000 500 2 10000 30

2 No 1000 500 2 10000 30

Table 6.1.: Setups in first Scenario

Evaluation Question 2: In this scenario, the number of entities in the network

is increased by the factor 5. This results in 5000 providers and 2500 consumers.

The brokers are set to 10 at the start of the system accordingly. This should

show how the brokers in the system behave with a high number of registered

entities. The evaluation stops after 25000 finished Tasklets. It is referred to this

scenario as the second scenario. Both setups are executed 30 times as well. This

scenario runs on a Xeon E5-2620 with 64 GB of RAM and Windows Server 2012

R2 Standard. The AL and the simulator have 16 GB of RAM each. Table 6.2

shows the settings of this second scenario.

Setup Use AL Providers Consumers Brokers Tasklets Executions

1 Yes 5000 2500 10 25000 30

2 No 5000 2500 10 25000 30

Table 6.2.: Setups in second Scenario

Evaluation Question 3: Test runs are conducted in the first place to find out

feasible feature model sizes. The KnowledgeFactory is used to create random

models. Since the CFM of the use case has 20 system features and 5 context

features these numbers are used for the first model creation process. Then the

multiples 40/10, 60/15 and 80/20 (system features/context features) are used. As
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only the context features have attributes and one context feature is the parent of

all context features, the number of attributes is the number of context features

minus one. The tests showed that the latter two configurations are not possible

with the current approach. The 60/15 and the 80/20 configurations showed full

CPU usage on all cores without any result in multiple attempts and with many

hours of runtime. The reason for this is probably a state explosion since permu-

tations are used at one point. More information is given in the discussion section.

In order to show that the complexity is also connected with the number of system

features, the configuration of 80 system features with 10 context feature models

is added to the first two configurations. For each configuration, 10 knowledge

input files are created. This results in 30 models. Each model is executed in the

ModelTester 10 times resulting in 300 results. Every run has a timeout of 60

seconds for the generation of a result. Execution time in milliseconds per run as

well as the number of timeouts per model is gathered. This scenario was executed

on a Xeon E3-1240v2 with 32 gigabytes of RAM on Ubuntu Linux 16.04. Table

6.3 shows the intended unusable setups as well as the actually used ones.

Setup System Features Context Features Input files Runs

1 20 5 10 10

2 40 10 10 10

3 60 15 10 10

4 80 20 10 10

Setup System Features Context Features Input files Runs

1 20 5 10 10

2 40 10 10 10

3 80 10 10 10

Table 6.3.: Intended and used Setups in third Scenario

Unfortunately, the Sat4J solver was not working in a stable way when executing

the adaptation logic inside the productive FESAS runtime. Thus, the evaluation

uses the test mode provided by the FESAS Eclipse plugin for executing the adap-

tation logic. Each part of the evaluation is exported as runnable jar file. The

execution of the resulting jar files is orchestrated using batch and shell scripts ac-
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cording to the execution platform. The raw data is collected in comma separated

value (CSV) files. These are aggregated and processed. The results of these steps

are presented in the next section.

6.5.2. Evaluation Results

This section presents the results of the evaluation. A discussion and an interpre-

tation of the results in detail follows.

Evaluation question 1

The first evaluation question is about the capability of the adaptation logic to

achieve the goals stated in the feature model. To answer this question, the

two setups presented in the previous section are compared. This comparison

includes the following measurements: The average provider latency in ms and

the average broker load. In contrast, provider fluctuation and the percentage of

high-performance requests can be considered as external context values on which

the adaptation logic has no influence on. The monitoring data is aggregated in

the broker manager the same way as it is done inside the monitoring component

for logging purposes. For both monitoring data types the average, the minimum,

the maximum, and the standard deviation is calculated for every run.

Figure 6.5 shows the average latency of all 30 runs with and without the adapta-

tion logic. It also depicts the threshold triggering the location policy for latency

optimization. This threshold can be seen as feature attribute item in the CFM in

Figure 6.2. The graphs of the measurements show that without the adaptation

logic the average latency is always above or equal the threshold for triggering the

location policy. Using the adaptation logic the goal of achieving a low latency

distribution of the TVMs by connecting provider nodes to their nearest broker

is met. There is no run where the threshold is met on average. Additionally, it

shows that the simulated system using the adaptation logic has in average a 42%

lower latency than the simulation system without the adaptation logic.

Table 6.4 shows the complete data set. The average values in connection with

the standard deviations in the table imply that the threshold is met multiple

times during execution even with the AL. This has to be the case since the AL

is reactive. This means the AL tries to resolve an issue once it happens rather

than avoiding it proactively.
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Figure 6.5.: Simulation: Average Latency per Run in first Scenario

Average Min Max St. Dev.

Run AL No AL AL No AL AL No AL AL No AL

1 12.35 15.12 1 14 23 17 8.25 0.35

2 11.12 15.03 1 14 20 16 7.28 0.21

3 8.78 15.18 1 15 19 18 5.89 0.4

4 12.38 21.38 1 18 23 22 8.28 0.52

5 8.8 21.81 1 18 20 23 5.89 0.45

6 10.79 21.63 1 21 22 23 7.12 0.49

7 8.68 22.04 1 20 19 23 5.81 0.42

8 12.67 18.43 1 17 23 19 8.44 0.5

9 8.7 15.21 1 15 19 17 5.83 0.42

10 8.82 21.16 1 19 20 22 5.82 0.43

11 10.88 18.17 1 17 20 21 7.21 0.5

12 9.03 21.88 1 19 19 23 6.04 0.43

13 10.81 21.91 1 21 22 23 7.22 0.46

14 12.51 15.31 1 14 23 16 8.42 0.47

15 12.29 21.79 1 18 22 23 8.18 0.47

16 10.74 18.64 1 18 20 20 7.08 0.49

17 10.55 15.07 1 14 22 18 7.12 0.3

18 10.75 21.29 1 18 20 22 7.14 0.49

19 10.62 18.31 1 17 20 20 7.05 0.49

20 12.67 18.87 1 16 23 20 8.37 0.49

21 12.78 15.13 1 14 23 18 8.52 0.37

22 12.84 19.2 1 17 23 20 8.52 0.49

23 10.23 19.06 1 17 19 20 6.93 0.46

24 12.69 21.83 1 19 23 23 8.46 0.48

25 9.08 18.76 1 17 18 20 5.96 0.47

26 10.97 15.57 1 15 21 17 7.34 0.5

27 10.63 21.69 1 20 21 23 7.13 0.5

28 9.13 21.86 1 18 19 23 6.11 0.48

29 9 14.89 1 14 20 16 5.98 0.37

30 8.79 18.76 1 17 18 20 5.78 0.47

Table 6.4.: Simulation: Latency in ms per Run in first Scenario
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Figure 6.6 shows the average load measurements of the system as a second relevant

variable for analysis. As before, the diagram also contains a threshold value

which is the start up policy threshold of 60%. It shows that the broker load

in the simulation scenario is generally high. As shown in the diagram, this is

the case especially for the setup without the adaptation logic. With the two

brokers handling the nodes they run at 100% load in average all the time. The

adaptation logic achieves to clearly have a lower average load compared to the

threshold triggering the start up policy in all runs.
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Figure 6.6.: Simulation: Average Load per Run in first Scenario

Table 6.5 shows the complete measurement data of the broker load of the first

scenario. Significant results are the stable average values as well as the corre-

sponding standard deviations. However, the standard deviation of the AL setup

is measured as relatively high while the setup without AL shows no standard

deviation at all.

Figure 6.7 shows the average distribution of active system features. One can

see that the adaptation logic triggered reconfigurations due to high latency and

high percentage of specialized requests. This is due to the fact that the location

and specialization policy are mainly used for the TVM distribution. Thus, the

uniform policy, which requires the generic cache list content, is activated only 16

times on average per run. In 41% of the ticks the start up policy is activated.

The triggered reconfigurations of the cache list interval features indicate that the

fluctuation in the network is low most of the time. The fast interval is activated

the fewest of the three cache list intervals. The assumption that the fluctuation

is mainly low is also supported by the fact that the cache list length features are

almost equally active. Since the cache list content features are directly required

by the TVM distribution features, their activation times are the same.
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Average Min Max St. Dev.

Run AL No AL AL No AL AL No AL AL No AL

1 0.54 1 0.02 0.98 1 1 0.40 0

2 0.55 1 0.02 0.93 1 1 0.40 0

3 0.54 1 0.02 0.98 1 1 0.40 0

4 0.54 1 0.02 1.00 1 1 0.40 0

5 0.54 1 0.02 1.00 1 1 0.40 0

6 0.55 1 0.02 0.98 1 1 0.40 0

7 0.54 1 0.02 0.91 1 1 0.39 0

8 0.55 1 0.02 0.96 1 1 0.40 0

9 0.55 1 0.02 1.00 1 1 0.39 0

10 0.55 1 0.02 1.00 1 1 0.40 0

11 0.55 1 0.02 0.96 1 1 0.40 0

12 0.55 1 0.02 0.99 1 1 0.40 0

13 0.55 1 0.02 0.97 1 1 0.40 0

14 0.55 1 0.02 0.99 1 1 0.40 0

15 0.55 1 0.02 1.00 1 1 0.40 0

16 0.54 1 0.02 0.97 1 1 0.40 0

17 0.54 1 0.02 0.92 1 1 0.39 0

18 0.55 1 0.02 0.98 1 1 0.40 0

19 0.55 1 0.02 0.99 1 1 0.39 0

20 0.55 1 0.02 0.94 1 1 0.40 0

21 0.55 1 0.02 0.97 1 1 0.40 0

22 0.55 1 0.02 1.00 1 1 0.40 0

23 0.55 1 0.02 0.98 1 1 0.39 0

24 0.55 1 0.02 1.00 1 1 0.40 0

25 0.55 1 0.02 1.00 1 1 0.40 0

26 0.54 1 0.02 0.96 1 1 0.40 0

27 0.54 1 0.02 0.99 1 1 0.40 0

28 0.55 1 0.02 0.95 1 1 0.40 0

29 0.55 1 0.02 0.99 1 1 0.40 0

30 0.55 1 0.02 1.00 1 1 0.40 0

Table 6.5.: Simulation: Load in % per Run in first Scenario

Besides the monitoring data that is used by the adaptation logic the statistical

data of the Tasklet simulation system is also evaluated. Table 6.6 shows the data

of the first scenario. It contains the number of timed out and aborted Tasklets.

Also, the number of ticks that were needed to finish the predefined number of

Tasklets is given. It shows that the number of timed out Tasklets is 196% higher

in the setup using the adaptation logic. Additionally, the number of aborted
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Tasklets is 13% higher. This results in an average of 33% higher number of ticks

for finishing the predefined number of Tasklets.

Figure 6.7.: Simulation: Average Number of triggered System Features in first
Scenario

Av. Timeouts Min T. O. Max T. O. St. Dev. T. O.

AL 48371.13 42341 52534 2295.35

No AL 16361.77 15326 17422 521.16

Diff. (%) +196% +176% +202% +340%

Av. Aborted Min A. Max A. St. Dev. A.

AL 1618.90 1503 1755 55.24

No AL 1433.97 1296 1573 49.31

Diff. (%) +13% +16% +12% +12%

Av. Ticks Min T. Max T. St. Dev. T.

AL 1288.03 1032 1773 203.13

No AL 967.97 916 1035 34.81

Diff. (%) +33% +13% +71% +484%

Table 6.6.: Simulation: Tasklet Statistics of first Scenario
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Figure 6.8 shows the system feature oscillation by looking at the results of one

random run in detail. The figure shows the TVM and broker distribution features

over time. Concerning the TVM distribution it can be seen that the uniform

policy is only activated between the start of the system and the 150th tick.

Then the system oscillates between specialization and location policy. The broker

distribution continuously oscillates between start up and minimum policy.
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Figure 6.8.: Simulation: Oscillation in one Run in the first Scenario using the AL

Evaluation question 2

For comparison, Figure 6.9 again shows the average latency with and without

the adaptation logic in the second scenario. The graphs show similar results

compared to the first scenario. One difference is that the latency threshold of 15

ms is met more often than in the smaller first scenario when the adaptation logic

is not used.
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Figure 6.9.: Simulation: Average Latency per Run in second Scenario
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Table 6.7 shows the full data set of the latency results. The standard deviation

values are very different again. The average values of the setup with the AL are

not as stable as the values without it.

Average Min Max St. Dev.

Run AL No AL AL No AL AL No AL AL No AL

1 12.91 15.02 2 11 23 19 8.07 0.33

2 10.70 18.90 2 14 20 19 6.85 0.48

3 12.68 18.86 1 11 22 19 8.11 0.71

4 12.77 15.01 3 11 22 18 8.15 0.34

5 9.22 21.80 2 12 20 23 5.86 1.36

6 9.44 18.85 2 11 20 20 5.91 0.59

7 11.32 15.33 2 11 20 17 7.05 0.56

8 8.85 18.89 2 11 21 19 5.77 0.72

9 11.14 21.93 2 12 21 23 7.05 0.66

10 8.88 21.86 2 13 19 22 5.76 0.77

11 9.48 21.92 2 12 19 22 5.88 0.75

12 12.85 21.98 1 15 23 23 8.22 0.40

13 12.78 14.99 2 10 23 18 8.12 0.36

14 8.90 21.85 2 12 20 22 5.77 1.03

15 9.19 15.00 2 11 20 18 5.93 0.41

16 12.74 21.90 2 12 23 23 8.15 0.81

17 10.88 15.17 2 11 22 18 6.98 0.51

18 9.16 21.86 2 12 20 22 5.78 0.9

19 10.7 18.91 2 10 20 20 6.86 0.59

20 9.00 15.36 2 12 19 17 5.77 0.55

21 12.76 14.99 2 11 23 17 8.14 0.27

22 9.29 15.14 2 11 19 18 5.98 0.44

23 8.91 15.00 1 10 21 19 5.79 0.43

24 11.19 15.03 2 11 22 18 7.06 0.39

25 10.73 15.21 2 11 20 19 6.87 0.53

26 9.12 21.88 2 10 19 23 5.75 1.09

27 11.04 18.79 2 11 20 19 7.06 0.66

28 9.17 21.98 2 13 20 25 5.86 0.80

29 9.05 15.03 2 10 20 19 5.84 0.40

30 10.87 21.93 2 12 21 25 6.90 0.63

Table 6.7.: Simulation: Latency in ms per Run in second Scenario

Figure 6.10 shows similar load results as in the smaller first scenario. Again, the

adaptation logic is able to reach the load goal. Apart from this, there is no other

interesting feature present in the figure. For completeness Table 6.8 shows the

complete broker load statistics of the second scenario. The results are standard

deviation is similar compared to the first scenario.
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Figure 6.10.: Simulation: Average load per run in second scenario

Average Min Max St. Dev.

Run AL No AL AL No AL AL No AL AL No AL

1 0.56 1 0.10 0.98 1 1 0.39 0.00

2 0.55 1 0.10 0.98 1 1 0.39 0.00

3 0.55 1 0.08 0.97 1 1 0.39 0.00

4 0.55 1 0.10 0.97 1 1 0.39 0.00

5 0.56 1 0.10 0.96 1 1 0.39 0.00

6 0.56 1 0.10 0.97 1 1 0.39 0.00

7 0.55 1 0.09 0.96 1 1 0.39 0.00

8 0.55 1 0.10 0.99 1 1 0.39 0.00

9 0.55 1 0.10 0.98 1 1 0.39 0.00

10 0.55 1 0.08 0.96 1 1 0.39 0.00

11 0.56 1 0.10 0.96 1 1 0.39 0.00

12 0.55 1 0.06 0.96 1 1 0.39 0.00

13 0.56 1 0.10 0.98 1 1 0.39 0.00

14 0.55 1 0.09 0.98 1 1 0.39 0.00

15 0.55 1 0.08 0.98 1 1 0.39 0.00

16 0.55 1 0.09 0.96 1 1 0.39 0.00

17 0.55 1 0.10 0.96 1 1 0.39 0.00

18 0.56 1 0.10 0.98 1 1 0.39 0.00

19 0.55 1 0.08 0.98 1 1 0.39 0.00

20 0.56 1 0.09 0.97 1 1 0.39 0.00

21 0.55 1 0.09 0.97 1 1 0.39 0.00

22 0.55 1 0.10 0.99 1 1 0.39 0.00

23 0.55 1 0.06 0.97 1 1 0.39 0.00

24 0.56 1 0.08 0.99 1 1 0.39 0.00

25 0.56 1 0.07 0.97 1 1 0.39 0.00

26 0.56 1 0.10 0.98 1 1 0.39 0.00

27 0.55 1 0.10 0.97 1 1 0.39 0.00

28 0.55 1 0.10 0.96 1 1 0.39 0.00

29 0.55 1 0.10 0.98 1 1 0.39 0.00

30 0.56 1 0.08 0.98 1 1 0.39 0.00

Table 6.8.: Simulation: Load in % per Run in second Scenario
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Figure 6.11 shows the average processed results of the triggered system features

in the large second scenario. The results are very much comparable to the results

in the smaller first scenario. It shows that the number of participants in the

network did not change the behavior of the adaptation logic. Uniform policy and

accordingly the generic cache list content again are the least activated system

features. The latency situation is the same as in the smaller first scenario. Es-

pecially the TVM distribution feature activations indicate the same results with

high load and high demand for specialized Tasklets.

Figure 6.11.: Simulation: Average Number of triggered System Features in second
Scenario

For a complete comparison of the first and the second scenario the activation

of system features is compared again in one random run of the second scenario.

Figure 6.12 shows the same oscillation behavior as Figure 6.8. Again, only in

the first 150 the uniform policy gets activated. As the adaptation logic seems

to behave in the same way in this scenario as in the first the result was not

unpredictable.

Table 6.9 shows the most significant differences. The difference of timed out

Tasklets is only a fraction of the value in Table 6.6. The number of aborted

Tasklets differs only by 7% in average. Thus, the percentage of overhead of the

adaptation logic is not as high as in the first scenario. The most interesting

number is the average number of ticks that was needed for finishing the 25000

Tasklets. Using the adaptation logic the number of ticks could be reduced by
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Figure 6.12.: Simulation: Oscillation of Features in one Run in the second
Scenario

22% on average.

Av. Timeouts Min T. O. Max T. O. St. Dev. T. O.

AL 111669.7 106226 120643 3896.40

No AL 87764 81185 98569 3342.93

Diff. (%) +27% +31% +22% +17%

Av. Aborted Min A. Max A. St. Dev. A.

AL 3760.53 3536 4023 102.27

No AL 3561.00 3380 3789 89.55

Diff. (%) +6% +5% +6% +14%

Av. Ticks Min T. Max T. St. Dev. T.

AL 1244.70 1019 1800 191.22

No AL 1599.87 876 2712 464.62

Diff. (%) -22% +16% -34% -59%

Table 6.9.: Simulation: Tasklet Statistics of second Scenario
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Evaluation question 3

The last evaluation question is concerned with the applicability of the adaptation

logic when larger knowledge inputs are used with it. For each setup 10 different

knowledge files were created. After the aggregation of the results the following ta-

bles show the processed results. Table 6.10 shows the number of feature attribute

items. They result from the number of feature attributes. The spreading of the

item counts is not very high. The generation of the knowledge files uses random

numbers between two and five for the generation of feature attribute items. Thus,

it basically shows exactly this range. Still, this information is important as a high

number of feature attribute items results in more complex processing in the SAT

solver. This is especially the case if conflicts occur.

System F. Context F. Min FAI Max FAI St. Dev. FAI Average FAI

20 5 9 19 3.09 14.0

40 10 25 40 4.28 29.5

80 10 26 35 3.00 30.4

Table 6.10.: Model Testing: Aggregated number of Feature Attribute Items (FAI)

Table 6.11 shows results for the runtime in milliseconds per knowledge configura-

tion. Again, minimum, maximum, standard deviation and average are displayed.

The numbers grow very fast starting with the small configuration reaching the

larger configuration. Increasing values are also viewable in Table 6.12. The table

contains the number of timeouts of each of the three setups. The number of

timeouts is 0 for the first two setups and increases very fast to over 90 in the

third setup. A timeout happened in case more than 60 seconds were needed to

select a configuration. In this case the complete Java VM is restarted.

System F. Context F. Min ms Max ms St. Dev. ms Average ms

20 5 8 161 18.15 19.72

40 10 15 22510 3012.92 1677.04

80 10 83 55646 12497.90 7323.99

Table 6.11.: Model Testing: Aggregated Runtime in ms

For a more detailed view onto the different knowledge files for the three setups

Tables 6.13, 6.14, and 6.15 are depicted as well. They display the results of
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Sys. F. Ctx F. Timeouts

20 5 0

40 10 0

80 10 94

Table 6.12.: Model Testing: Aggregated Number of Timeouts

the runtime in ms per knowledge file of each setup. Table 6.13 shows that in

this small setup a configuration is mostly selected relatively fast. In this setup

executing knowledge file 5 results in the highest runtimes. The same applies to

knowledge file 9 in Table 6.14. A higher number of feature attribute items does

not necessarily increase the runtime within the same setup. For example, the

knowledge files 1, 5, and 6 in Table 6.15 share 29 as number of attribute items.

Still, the runtime results are very different. Since the 80/10 setup was the only

setup with timeouts, Table 6.16 shows the timeouts aggregated per model. The

range of timeouts reaches from 29 to even 0 in this setup.

Know. File FAI Min ms Max ms St. Dev. ms Average ms

1 9 11 26 6.03 18.8

2 15 11 65 16.69 27.8

3 10 10 51 11.95 19.1

4 13 8 29 7.04 15.6

5 14 11 161 45.55 40.2

6 14 8 19 3.72 12.6

7 19 9 50 14.27 20.1

8 15 10 37 9.00 16.7

9 13 8 16 2.50 11.7

10 18 10 22 3.41 14.6

Table 6.13.: Model Testing: Runtime Results in the 20/5 Setup
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Know. File FAI Min ms Max ms St. Dev. ms Average ms

1 32 270 2212 472.30 1351.7

2 40 16 2611 886.01 1086.2

3 27 15 1881 719.39 1037.2

4 25 21 1512 642.60 948.6

5 27 28 1427 530.92 939.2

6 32 42 1605 563.68 1045

7 31 39 4573 1398.38 1597.6

8 27 23 1872 472.11 1221.2

9 30 96 22510 7832.58 6813.3

10 29 31 1854 802.58 730.4

Table 6.14.: Model Testing: Runtime Results in the 40/10 Setup

Know. File FAI Min ms Max ms St. Dev. ms Average ms

1 29 338 40613 15197.21 20941.7

2 33 1554 8492 2836.34 2960.1

3 26 1401 1734 90.58 1538.5

4 35 305 36459 11204.41 4980.5

5 29 1034 55646 17800.76 11839.8

6 29 83 4631 1204.22 1686.8

7 32 1549 4366 870.61 1894.5

8 34 1490 47325 18348.91 19537.3

9 27 1674 7186 1584.38 2863.7

10 30 265 38671 11843.85 4997

Table 6.15.: Model Testing: Runtime Results in the 80/10 Setup

File 1 2 3 4 5 6 7 8 9 10

Timeouts 29 1 1 15 20 5 7 1 0 15

Table 6.16.: Model Testing: Timeouts in the 80/10 Setup
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6.6. Discussion

This section discusses the results of the previous section and their support for

the evaluation questions. The discussion is done sequentially, i.e. question by

question. Then a qualitative evaluation discussion of the CFM-based AL follows.

Therefore, the CFM-based AL is characterized according to additional DSPL

guidelines [BBD16] state in their work. The last part of this section describes

limitations of the evaluation.

6.6.1. Interpretation of the results

Evaluation question 1

The results presented in the last section support that the latency and broker load

goals of the system are achieved when using the adaptation logic. The latency

results show a relatively high gap between the average values and the thresholds.

Referring to Figure 6.2 showing the CFM of the use case the FAI with the latency

range 10-15 ms might be the reason for this. Neither does it trigger the minimum

policy nor the location policy. This means the system runs the location policy

longer when the latency lowers over time. This explains the gap between the

average latency result when the AL manages the system and the location policy

threshold. Apart from these positive results Table 6.6 shows that the AL increases

the number of timed out Tasklets significantly. This increase may happen due

to the fact that providers receiving a provider request which is too complex for

them forward this request. In the AL setup it is easily possible that a broker that

received the forwarded requests is stopped immediately. Thus, it is possible that

a request is forwarded to a broker that gets removed quickly. This triggers the

timeout in the consumer. The other interesting metric is the number of needed

ticks. Without the adaptation logic significantly fewer ticks are needed to achieve

the number of Tasklets which had to be finished. In the AL setup each time a

TVM or broker distribution feature gets activated it sends out a provider status

request to all known providers of all brokers. Providers answer this with their

provider status. Thus, a lot of additional messages are sent through the system.

Also, the number of brokers and the distribution of providers is changing all the

time. This results in an overall high management overhead. The last figure in the

results of the first scenario is concerned with oscillation. Figure 6.8 shows that
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the system often switches back and forth between two configurations, which can

be a problem in real world scenarios. Here the behavior of the broker distribution

features is reasonable since the minimum policy stops unneeded brokers, while the

start up policy starts new ones. The TVM distribution is not a binary xor group.

However, the oscillation between specialization and location policy supports that

the number of high-performance requests and the overall latency is generally high

in the simulation. This is supported by Figure 6.7.

Evaluation question 2

Looking at the results in Figure 6.9 there is no big difference compared to the

lower participant scenario results used to answer evaluation question 1. Still, it

shows that the configurations generated by the adaptation logic fulfill the goal

of a latency lower than 15 ms (as defined in Figure 6.2). Overall there is no big

difference compared to 6.5. Figure 6.10 shows the average load in the system. It

supports that the adaptation logic fulfills the goal to achieve an average network

load which is lower than 60% (as defined in Figure 6.2). This figure also displays

no big difference compared to 6.10. Figure 6.11 shows the distribution of activated

system features. These highly aggregated numbers show no difference to the

average system feature activations in the smaller scenario (cf. to Figure 6.7). As

the broker manager is the managed resource in the use case it does not change

with the number of nodes in the network. This results in the same behavior as in

the first scenario. It’s the same with the graphs showing the average latency and

load. Just like before, the broker manager is the interface to the actual brokers.

Nothing has changed in these terms. The most interesting differences can be

seen in Table 6.9. The increase of timeouts that is caused by the adaptation logic

is much lower compared to Table 6.6 showing the results of the first scenario.

As the standard deviation is not very high the numbers are also very certain.

The number of aborted Tasklets is not very different between the runs with and

without the adaptation logic again. However, percentage-wise this difference is

also lower than in the first scenario. Apart from the negative effect of having

higher numbers of timed out and aborted Tasklets, the number of average ticks

needed to finish the goal of 25000 finished Tasklets decreased by 22% on average.

Still, it is important to note that the standard deviation from the results running

the second scenario without adaptation logic is relatively high. At the same time,

the minimum value is lower without the AL just as the maximum value is a lot
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higher. In summary, it can be said that the adaptation logic is perfectly capable

of handling a high number of entities running in the Tasklet system. Since the

managed resource does not change at all with different numbers of entities this is

not very surprising. In both scenarios the managed resource is the same broker

manager. Still, the results imply that the overhead of the adaptation logic is not

as high as in scenarios with less entities. This can be seen in the percentage-

wise lower increase of timed out Tasklets compared to the first scenario. The

biggest achievement is the 22% lower number of ticks that was needed by the

Tasklet system finishing 25000 Tasklets. This signifies that the system performs

better in large Tasklet environments using the adaptation logic while in smaller

installations the AL does not improve at all.

Evaluation question 3

Table 6.10 shows the number of feature attribute items. What is interesting

is the comparison of the average of attribute items between the 40/10 and the

80/10 configurations. The average item count in these setups are almost the

same. In fact, this should be the case as both setups use the same number of

context features. This results in the same number of context feature attributes.

Table 6.11 shows that in terms of the minimum runtime in milliseconds the first

and second configurations have a very low minimum while the third one has

a much higher minimum. Doubling the number of context features increases

the minimum runtime by the factor 5.5. The maximums in combination with

the standard deviation and the average value show that they are outliers. The

typical average value is much lower than this. Looking at the average values

of the second and third configuration they show that selecting a system feature

configuration using the AL takes up to multiple seconds most of the time. In

general, this can be an obstacle for systems with the need of very fast reaction

time. This is especially notable as the number of features in these three setups

is not particularly high.

Table 6.12 supports that the larger models have a higher complexity. Thus, there

may be multiple runs in the third setup where the adaptation logic possibly

creates a result in more than 60 seconds of time.

As these tables only show the highly aggregated results the details per run are

also important. Table 6.13 shows the results of the smallest knowledge file that

is comparable to the use case knowledge. At first sight, there is no direct corre-
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lation between high attribute item counts and runtimes. Comparing knowledge

file 5 and 6 shows that even though they have the same number of FAIs, their

runtime results are very different. Knowledge file 5 has the highest runtime re-

sults compared to all other files while file 6 is the second fastest on average. This

shows that other aspects such as the number and complexity of constraints as

well as priority and cost values for resolving conflicts are important to the run-

time. Selecting the cheapest configuration also takes at least some time. Having

a similar case in Table 6.14 with knowledge file 1 and 6 there is not such a big

difference. Finding out correlations in this domain is an item for future work.

The last two tables for question 3 show the results of the 80/10 setup. According

to Table 6.15 knowledge files 1, 5, and 8 are the most complex knowledge files.

The timeouts results in Table 6.16 only support this for file 1 and 5. Another

interesting point is that knowledge file 3 has a very low standard deviation. Also,

it has the lowest number of FAIs. This suggests that in this setup there is a

correlation between the number of FAIs and the standard deviation in runtime.

In general, the standard deviation is very high in this setup for many knowledge

files. Thus, this shows that the aggregation of this data hides the big differences

between the different model files.

Concerning the infeasibility of the 60/15 and the 80/20 setups they both showed

a state explosion during the first tests. As already mentioned permutations of the

FAIs are used in one step. This makes it impossible to run large configurations

with many FAIs at the moment. The reason 15 and 20 context features are too

many for this approach comes from the number of FAIs. 15 context features result

in 14 feature attributes in the current evaluation setting. These result in 14 times

5 FAIs in the worst case. 70! FAIs are too many for analysis. 20 context features

are even worse. This is also one limitation of this thesis. They are presented in

the last section of this chapter.

Finally, the execution time increases very fast with the number of features in

the system. Explicit correlation results cannot be stated using these results.

Runtimes with the length of multiple seconds may be a problem in very fast

execution environments where decisions have to be made very quickly.
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6.6.2. Characterization based on DSPL Guidelines

After the discussion of the qualitative evaluation results this section characterizes

the adaptation logic. In fact, it relates the DSPL guidelines from [BBD16] to the

proposed approach.

Monitoring and Analysis Design

As in this approach, the context model is organized like features, it is a property-

set approach. Using ontologies could make it possible to perform more complex

and semantic reasoning on the context. However, this requires to build a whole

ontology on your own or to utilize an existing one. According to [BBD16], us-

ing ontologies is especially beneficial in multi-agent environments as ontologies

can easily be shared and the reasoning approaches are generic enough to enable

reasoning for multiple agents. Since this is a single agent environment and the

planning is entirely based on the CFM, this property-set approach works fine.

A property-set approach can easily be used with a rule base as context reasoning

model. This rule base is represented by the constraints in the context feature

model. Here, it is not possible to use any kind of specific query language.

Context sensing depends on the possible interfaces for context retrieval of the

managed resource. If the managed resource supports the publish-subscribe pat-

tern, notification on context changes is possible. Otherwise, the adaptation logic

has to poll periodically for new context information. As this dimension is use

case dependent, it cannot be specified up front.

Planner Design

Regarding the variability space model this approach obviously uses a feature

model for representing the variability. This is the most powerful method of this

dimension for representing variability in a structured way.

The planning model depends on the planning type [BBD16]. Thus, planning

model and type are described together. The CFM constraints together with

the cross-tree constraints represent a rule base. They specify thresholds as well

as requirements on the basis of context features. Thus, they perfectly define

ECA rules: the event is the allocation of a context attribute based on context

information, the condition is the exceedance of a threshold, and the action is to

switch specified features on or off.
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Goal-based and utility-based approaches are most effective when the configura-

tion space is not set up completely at design time, which is not the case here

as the CFM is set up a priori. A utility-based approach is mainly used for self-

optimization, which is not the focus of this work. However, it may be possible

to work with some global utility value for evaluating the performance of a CFM-

based system by giving features weights and combining them to one utility value.

Considering planning, which takes place on the basis of feature models, the

planning level are the features themselves. Each activated feature may require

other features to be enabled or disabled. The actual architecture and implemen-

tation is separated from the planner and reconfiguration decisions. In the end, the

planner selects a single configuration the actual system has to implement. As the

feature model is part of the adaptation logic here and the feature implementation

is part of the managed resource, the planning level is clearly feature-based.

Concerning the transformation dimension, the feature model is set up to repre-

sent the architecture of the software system directly meaning that one feature

represents a certain component or class. This means the transformation is based

on the direct link approach. Aspect model weaving may also be applicable. How-

ever, the overhead to manage the aspects is very likely to be higher compared to

the direct link approach ([BBD16]). Concerning transformation rules they often

require a running SAT solver at runtime also increasing the overhead. Here, the

SAT solver is used in the planning component only to select a valid and good

configuration.

Execution Design

The architectural model determines the complexity of reconfigurations. Thus,

it is supposed to offer a good level of abstraction that facilitates the ease of

reconfigurations. The method used here represents the architecture by the feature

model. Thus, there is no additional architectural model for representing the

system.

The architecture style determines the dynamism of the reconfigurations. For one

system functionality, a group of sub-features may be able to fulfill this functional-

ity in different ways. As deploying a configuration means to replace certain system

features completely, the approach presented is component-based. Subsequently,

the variation entities are components as well. The runtime reconfiguration is
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described by the component model dimension as well. The reason for this is that

no dynamic aspect weaving is used in this approach.

Additionally, the authors of [BBD16] mention the importance of extensibility of

the middleware and the component model. The component model should be

able to easily add sensors to the system for adding sensor values dynamically.

These requirements are met by the use of FESAS as development framework.

FESAS offers an extensible skeleton with the possibility to easily replace complete

components. Also, it offers the needed sensing capabilities.

6.6.3. Limitations

This section presents limitations of the CFM-based adaptation logic approach as

well as limitations of the simulation-based approach for evaluation.

The underlying metamodel depicted in Figure 5.2 is limited in terms of the num-

ber of feature attributes. In the current approach only one single feature at-

tribute is possible per feature. In general, multiple attributes would be possible

per feature. The number of possible models in the CFM of the use case is also

rather small. Yet, the results of evaluation question 3 indicate problems with

larger models that have to be solved.

The CFM-based adaptation logic is limited to SAT solving at the moment. Es-

pecially when integer or floating point feature attributes are added, a CSP solver

component can help. Also, the conflict solving and feature selection on the foun-

dation of priority and cost values is very simple at the moment. There is no cost

function present in the current approach as each system feature has a fixed cost

predefined at design time. A cost function may be able to dynamically calculate

the system cost per feature or even per complete or partial configuration. An-

other point is the idea of having a stop command for the monitoring component.

On the one hand it is possible to control the adaptation logic from the managed

resource this way, on the other hand this should not be needed. The adaptation

logic should be able to determine on its own how the monitoring data should be

handled.

There are multiple limitations concerning the simulation approach presented here.

A simulator cannot directly represent the behavior of the real system. In fact,
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since the entities in the system are not really independent and their methods

are called entity-by-entity by the simulator, their asynchronous operation is not

represented in this simulation. Also, in a real world scenario, the monitoring

data may not be complete all the time. It could be the case that the adapta-

tion logic has to decide using incomplete information. This cannot happen here.

However, the model supports the possibility of partial knowledge already. An-

other limitation is caused by some direct method calls which were needed because

of the architecture that was implemented in this simulation. In a real system,

everything has to be a message rather than a method call.

For all evaluation components including the model checker multi-threading is a

big issue. Only one core is used. Thus, the performance of the components is

completely dependent on the single core performance of the executing system.

This was especially an issue for answering question 1 and 2. These scenarios

were executed on multi-core CPUs with low clock per core. The server used

in scenario 2 had 24 cores and only one was used at a time. Thus, multi-core

operation would result in a much higher performance.

Another limitation comes from the Sat4J library that was used for SAT solving.

In case of a conflict, the library provides a method for determining the actual

literals that are in conflict. However, this method results in being not reliable.

The resolution here is to try all permutations of the context feature attribute

items in case of a conflict for determining the minimum features in conflict. Since

the number of permutations results in the faculty of the number of FAIs, this is

an enormous bottleneck. This is the reason that scenario 2 required 16 GB of

RAM per Java VM. Otherwise, the Java VM would crash with a low memory

exception.

These limitations imply that there are a lot of possibilities for further improve-

ments and for further research. The following chapter finalizes this work. It sum-

marizes the findings and eventually finishes this thesis by describing opportunities

for further research.



7. Summary and Further Research

In the first section there is an outline of the key findings of every chapter followed

by the conclusions of this thesis. As the results of this work cannot be complete

there is an outline of potential future research.

7.1. Summary

Chapter 2 introduces the fundamentals of self-adaptive systems, software product

line and dynamic software product lines. As one result it was clear that the adap-

tation logic approach of this thesis should be external. Also, the context-aware

DSPL techniques should be used inside the adaptation logic. This is the most

powerful DSPL technique. Then related work in the field of dynamic software

product line approaches is presented. This includes the adaptation and DSPL

taxonomies of [BBD16]. The goal of this thesis is to provide a generic way for

specifying variability for all kinds of systems without the need to learn a special

modeling technique. Thus, the generic context-aware feature modeling approach

by [SLR13] is used as the foundation of the DSPL adaptation logic approach

of this thesis. Subsequently, the approach of this thesis is introduced and char-

acterized. The implementation uses Java and FESAS. The Tasklet distributed

computing system is the use case for the qualitative evaluation of this thesis. A

simulated system is used for this purpose. The evaluation shows multiple prop-

erties of the adaptation logic. One important finding is that the overhead of

the adaptation logic leads to bad results in small Tasklet scenarios. The reason

for this is that the improvements in such a scenario do not compensate for the

performance degradations of the overhead. However, the large Tasklet scenario is

finished significantly faster employing the adaptation logic. One problem is that

no multi-core operation is possible at the moment. This leads to the last section

elaborating on possibilities for further research.
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7.2. Further Research

As already mentioned, multi-core support would help improve the performance.

Using only one core primarily impairs performance on multi-core systems with

low CPU clock. Another possibility is to use a different SAT solver than Sat4J. In

benchmarks of the so-called SAT competition, the Sat4J does not compete very

well compared to other solvers [BBJS15]. It was selected because it was the only

SAT solver available in Java. It may be possible to write the CNF to disc and

use a C-based faster solver instead. Additionally, profiling of each method inside

the adaptation logic could lead to performance bottlenecks as well. As mentioned

earlier, instead of only supporting SAT representations additional CSP and SMT

solvers may also be integrated into the adaptation logic. Apart from the current

support for reactive operation, proactive capabilities should be added as well.

Concerning the implementation of the metamodel, there are possibilities for fur-

ther research as well. The metamodel can be expanded further, e.g., to support

multiple feature attributes per feature. In addition, the supported attribute types

and constraints can be extended.

Regarding the simulation system, the correlations between feature count, at-

tributes, and constraints have to be explicitly explored. Also, it would be in-

teresting to have multiple broker management instances including the capability

to manage each broker’s configuration separately. An additional use case could

also help extend the knowledge on correlations between number of features in

the model and runtimes. This could include qualitative context features such as

stability or reliability. The value ranges of the already context feature attributes

could also be optimized for best suitability. Finally, using a testbed rather than

a simulator should be the goal eventually.

This outlook for further research concludes this thesis. The presented adaptation

logic approach combining DSPL-based context feature models with a MAPE-K

cycle is a good starting point for further investigation. This will result in new

and improved AL approaches based on context feature models in the future.
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Raychoudhury, and Christian Becker. Fault-Avoidance Strategies

for Context-Aware Schedulers in Pervasive Computing Systems.

Proceedings of the 15th IEEE International Conference on Per-

vasive Computing and Communications, 2017. (PerCom 2017).,

page To be published, 2017.

[FHS+06] Jacqueline Floch, Svein Hallsteinsen, Erlend Stav, Frank Eliassen,

Ketil Lund, and Eli Gjørven. Using architecture models for run-

time adaptability. IEEE Software, 23(2):62–70, 2006.

[Fow02] Martin Fowler. Patterns of Enterprise Application Architecture.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

2002.

[GFD98] M.L. Griss, J. Favaro, and M. D’Alessandro. Integrating feature

modeling with the RSEB. Proceedings. Fifth International Con-

ference on Software Reuse (Cat. No.98TB100203), pages 76–85,

1998.

[GH04] Hassan Gomaa and Mohamed Hussein. Dynamic Software Recon-

figuration in Software Product Families. Software Product-Family

Engineering, 3014(iii):435–444, 2004.

[GJ83] Joel D Goldhar and Mariann Jelinek. Plan for economies of scope.

Harvard Business Review, (November):141–149, 1983.

[GS03] Jack Greenfield and Keith Short. Software factories: assembling

applications with patterns, models, frameworks and tools. Sys-

tems, Languages, and Applications, pages 16–27, 2003.

[HHSS08] S. Hallsteinsen, M. Hinchey, Sooyong Park, and K. Schmid. Dy-

namic Software Product Lines. Computer, 41(4):93–95, 2008.



Bibliography XIII

[Inc06] Object Management Group Inc. Common variability language.

http://www.omgwiki.org/variability/doku.php, 2006. Ac-

cessed: 02.08.2016.

[KC03] Jeffrey O. Kephart and David M. Chess. The vision of autonomic

computing. Computer, 36(1):41–50, Jan 2003.

[KCH+90] Kyo Kang, Sholom Cohen, James Hess, William Novak, and A. Pe-

terson. Feature-oriented domain analysis (foda) feasibility study.

Technical Report CMU/SEI-90-TR-021, Software Engineering In-

stitute, Carnegie Mellon University, Pittsburgh, PA, 1990.

[KKL+98] Kyo C Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin,

and Moonhang Huh. FORM: A feature-oriented reuse method

with domain-specific reference architectures. Annals of Software

Engineering, 5:143–168, 1998.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,

Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-

oriented programming. ECOOP’97 — Object-Oriented Program-

ming, 1241/1997:220–242, 1997.

[KRB+16] Christian Krupitzer, Felix Maximilian Roth, Christian Becker,

Markus Weckesser, Malte Lochau, and Andy Sch. Fesas ide: An

integrated development environment for autonomic computing. In

2016 IEEE International Conference on Autonomic Computing

(ICAC), pages 15–24, July 2016.

[KRP16] Christian Krupitzer, Felix Maximilian Roth, and Martin Pfan-

nemüller. Comparison of approaches for self-improvement in self-

adaptive systems. In 2016 IEEE International Conference on Au-

tonomic Computing (ICAC), pages 308–314, July 2016.

[KRVB15] Christian Krupitzer, Felix Maximilian Roth, Sebastian Vansyckel,

and Christian Becker. Towards reusability in autonomic comput-

ing. Proceedings - IEEE International Conference on Autonomic

Computing, ICAC 2015, pages 115–120, 2015.

[KVB13] Christian Krupitzer, Sebastian Vansyckel, and Christian Becker.

Fesas: Towards a framework for engineering self-adaptive systems.

http://www.omgwiki.org/variability/doku.php


Bibliography XIV

In 2013 IEEE 7th International Conference on Self-Adaptive and

Self-Organizing Systems, pages 263–264, Sept 2013.

[Lad01] Robert Laddaga. Active software. In Self-Adaptive Software:

First International Workshop, IWSAS 2000 Oxford, UK, April

17–19, 2000 Revised Papers, pages 11–26, Berlin, Heidelberg, 2001.

Springer Berlin Heidelberg.

[LBL08] Daniel Le Berre and Inês Lynce. Csp2sat4j: a simple csp to sat

translator. Proceedings of the 2nd International CSP Solver Com-

petition, pages 43–54, 2008.

[LP10] Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2

system description. Journal on Satisfiability, Boolean Modeling

and Computation, 7(2010):59–64, 2010.

[LRS03] Robert Laddaga, Paul Robertson, and Howie Shrobe. Introduc-

tion to self-adaptive software: Applications. pages 1–5, Berlin,

Heidelberg, 2003. Springer Berlin Heidelberg.

[MBJ+09] Brice Morin, Olivier Barais, Jean-Marc Jezequel, Franck Fleurey,

and Arnor Solberg. Models@ Run.time to Support Dynamic Adap-

tation. Computer, 42(10):44–51, 2009.

[MSKC04] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and

Betty H. C. Cheng. Composing adaptive software. Computer,

37(7):56–64, July 2004.

[OGT+99] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis

Heimbigner, Gregory Johnson, Nenad Medvidovic, Alex Quilici,

David S. Rosenblum, and Alexander L. Wolf. An architecture-

based approach to self-adaptive software. IEEE Intelligent Sys-

tems, 14(3):54–62, May 1999.
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Figure A.2.: DSPL Taxonomy [BBD16]
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