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Abstract

In the first part of this thesis we derive new concentration inequalities for maxima of empirical
processes associated with independent but not necessarily identically distributed Poisson point
processes. The proofs are based on a careful application of Ledoux’s entropy method.

In the second part of the thesis, we show potential applications of the concentration results
derived in the first part to non-parametric statistics: we consider intensity estimation for Poisson
point processes from direct (Chapter 3) and indirect (Chapter 4) observations and non-parametric
Poisson regression (Chapter 5). For all the considered models we develop a minimax theory (upper
and lower bounds) under abstract smoothness assumptions on the unknown functional parameter.
We study projection estimators in terms of trigonometric basis functions. The performance of these
estimators crucially depends on the choice of a dimension parameter. For all our applications, we
propose a fully data-driven selection of the dimension parameter based on model selection. The
resulting adaptive estimators either attain optimal rates of convergence or are suboptimal only by
a logarithmic factor.

Zusammenfassung

Im ersten Teil der vorliegenden Arbeit leiten wir neue Konzentrationsungleichungen für Ma-
xima von empirischen Prozessen assoziiert zu unabhängigen, aber nicht notwendigerweise iden-
tisch verteilten Poissonschen Punktprozessen her. Die Beweise basieren auf einer Anwendung von
Ledoux’ Entropie-Methode.

Im zweiten Teil der Arbeit behandeln wir mögliche Anwendungen der Konzentrationsresultate
aus dem ersten Teil in der nichtparametrischen Statistik: Wir betrachten Intensitätsschätzung
für Poissonsche Punktprozesse ausgehend von direkten (Kapitel 3) und indirekten (Kapitel 4)
Beobachtungen sowie nichtparametrische Poisson-Regression (Kapitel 5). Für alle betrachteten
Modelle entwickeln wir eine Minimax-Theorie (obere und untere Schranken) unter abstrakten
Glattheitsannahmen an den unbekannten funktionalen Parameter. Wir betrachten Projektions-
schätzer basierend auf trigonometrischen Basisfunktionen. Die Güte dieser Schätzer hängt entschei-
dend von der Wahl eines Dimensionsparameters ab. Für alle betrachteten Anwendungen schlagen
wir, basierend auf Modellwahl, eine rein datengetriebene Wahl des Dimensionsparameters vor. Die
daraus resultierenden adaptiven Schätzer nehmen entweder die optimale Konvergenzrate an oder
sind suboptimal um lediglich einen logarithmischen Faktor.
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Introduction
Das Neue ergibt sich aus dem Alten,
aber auch das Alte verändert sich
fortwährend im Lichte des Neuen
und nimmt Merkmale an, die auf
keiner früheren Stufe sichtbar waren.

(Arnold Hauser)

Poisson point processes (PPPs) are of fundamental importance in probability theory and statis-
tics, both from a theoretical and an applied point of view. For instance, they serve as elementary
building blocks for complex point process models which are used in stochastic geometry [Sto+13],
and a wide range of applications including, amongst others, extreme value theory [Res87], fi-
nance [BH09], forestry [PS00], and queueing theory [Bré81].

The distribution of a PPP is completely determined by its so-called intensity measure. Thus,
from a statistical point of view, the (non-parametric) estimation of the intensity measure from
observed realizations of the point process is of central importance. The theoretical analysis of
adaptive non-parametric estimators, however, is often essentially based on the availability of ap-
propriate concentration inequalities. Hence, besides being of independent interest, the derivation
of such concentration inequalities is of fundamental importance for non-parametric statistics, and
turns out to be a hard challenge in probability theory.

This thesis establishes novel concentration inequalities for PPPs and discusses potential appli-
cations of such inequalities to non-parametric estimation. Accordingly, the thesis is divided into
two main parts: the first part recaps basic point process terminology and provides concentration
inequalities for maxima of empirical processes associated with independent but not necessarily
identically distributed PPPs. The second part is devoted to applications of these concentration
results to non-parametric estimation in models where the observations are either independent real-
izations of point processes or closely related to such observations: intensity estimation from direct
and indirect observations as well as estimation of the regression function in a Poisson regression
model will be studied. In the sequel, we will give a short summary of the topics and methodology
the reader can expect from the respective parts of this work.

Part I: Concentration inequalities
Concentration inequalities belong to the main tools in probability theory and statistics. In par-
ticular, classical results like the inequalities due to Markov, Hoeffding, Bernstein and Bennett
are exhaustively used. The theoretical analysis of many estimation procedures in non-parametric
statistics, however, is based on more elaborate concentration results that have been derived during
the last decades. The recent monograph [BLM16] provides a comprehensive introduction into this
topic.

The following result by Cirel’son, Ibragimov and Sudakov [CIS76] is regarded as one of the
starting points in the modern development of concentration inequalities. The following formulation
is taken from [BLM16] (cf. Theorem 5.6 therein).

Theorem 1. Let X = (X1, . . . , Xn) be a vector of n independent standard normal random vari-
ables. Let f : Rn → R denote a Lipschitz function with Lipschitz constant L. Then, for all
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Introduction

t > 0,
P(f(X) − Ef(X) ≥ t) ≤ e− t2

2L2 .

The original proof of Theorem 1 is based on stochastic calculus, an alternative one can be found
in [BLM16]. Further concentration results were obtained by using martingale arguments [Yur76],
[SS87], [McD89].

It turns out that in statistical applications one is often interested in concentration inequalities
for maxima of empirical processes associated with a sequence of random variables in non-Gaussian
frameworks. Ground-breaking results in this setup have been developed in a series of papers by
Talagrand in the mid-1990s [Tal95]; [Tal96]. The following formulation of the Talagrand inequality
is taken from [Mas00] (cf. Theorem 1 therein).

Theorem 2 (Talagrand). Consider n independent and identically distributed random variables
X1, . . . , Xn with values in some measurable space (X,X ). Let S be some countable family of
real-valued measurable functions on (X,X ), such that ‖s‖∞ ≤ b < ∞ for every s ∈ S. Let
Z = sups∈S

∑n
i=1 s(Xi) and υ = E[sups∈S

∑n
i=1 s

2(Xi)]. Then for every positive number x,

P(Z ≥ EZ + x) ≤ K exp
[
− 1
K ′

x

b
log
(

1 + xb

υ

)]
and

P(Z ≥ EZ + x) ≤ K exp
[
− x2

2(c1υ + c2bx)

]
(1)

where K, K ′, c1 and c2 are universal positive constants. Moreover, the same inequalities hold when
replacing Z by −Z.

The variance factor υ in the statement of Theorem 2 is called the weak variance (cf. [BLM16],
p. 314). Talagrand’s original proof is essentially based on geometric arguments and rather involved.
Ledoux [Led96] proposed the entropy method as a different and more accessible approach to regain
Talagrand’s results but did not exactly recover the statement of Theorem 2. Instead, he proved a
version of Theorem 2 with υ = E[sups∈S

∑n
i=1 s

2(Xi)] replaced with

υ = E

[
sup
s∈S

n∑
i=1

s2(Xi)
]

+ 4
21bE[Z].

In addition, Ledoux was able to obtain reasonably sized constants in the statement of Talagrand’s
inequality. Based on an adaption of Gross’s logarithmic Sobolev inequality in the Gaussian case to
the non-Gaussian setup, Massart [Mas00] gave a version of (1) in a framework where the random
variables X1, . . . , Xn are independent but eventually not identically distributed. In this case, he
was able to show that (1) holds with K = 1, c1 = 8, and c2 = 2.5. Massart also remarked
that from a statistical point of view one is more interested in a version of the bound (1) with
v = E[sups∈S

∑n
i=1 s

2(Xi)] replaced by

υ = sup
s∈S

E[
n∑

i=1
s2(Xi)]

which is usually called the wimpy variance. In [Mas00] such a version was shown, however, the
correctness of a version with c1 = 1 was only conjectured. This result was finally proven by Klein
and Rio in [KR05].

Theorem 3 ([KR05], Theorem 2.1). Let X1, . . . , Xn be a sequence of independent random variables
with values in some Polish space X and let S be a countable class of measurable functions with
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values in [−1, 1]n. Suppose that E[sk(Xk)] = 0 for any s = (s1, . . . , sn) ∈ S and any k ∈ {1, . . . , n}.
Put Sn(s) = s1(X1) + . . .+ sn(Xn) for s ∈ S, Z = sups∈S Sn(s) and define LZ(t) = logE[etZ ] as
the logarithm of the moment-generating function of Z. Then, for any positive t,

a) LZ(t) ≤ tEZ + t

2 (2EZ + Vn) (exp((e2t − 1)/2) − 1).

Setting υ := 2EZ + Vn with Vn := sups∈S VarSn(s), we obtain that, for any non-negative x,

b) P (Z ≥ EZ + x) ≤ exp
(

−x

4 log(1 + 2 log(1 + x/υ))
)
,

and

c) P (Z ≥ EZ + x) ≤ exp
(

− x2

υ +
√
υ2 + 3υx+ (3x/2)

)
≤ exp

(
− x2

2υ + 3x

)
.

Before introducing our point process setup, let us sketch two of the main tools that are commonly
used for the derivation of concentration results. Although in our setup the occurring terms will be
more complicated, these two techniques determine the structure of our later approach, in particular
of the proof of Theorem 2.1 given in Chapter 2 below.

Ledoux’s entropy method

The following lemma contains the key argument of the entropy method. Its formulation is taken
from [Kle03] (cf. p. 16, Lemme 1 therein).

Lemma 4. Let X1, . . . , Xn be independent random variables with values in a Polish space X. Let Fn

be the σ-field generated by X1, . . . , Xn and F k
n the σ-field generated by X1,. . . ,Xk−1, Xk+1,. . . ,Xn.

Let Ek
n denote the conditional expectation operator associated to F k

n and let f be a strictly positive
Fn-measurable function with E[f log f ] < ∞. Then it holds that

E[f log f ] − E[f ] logE[f ] ≤
n∑

k=1
E[f log(f/Ek

nf)]. (2)

If Z denotes the random variable of interest (for instance, Z might be defined as in Theorem 3),
applying the above lemma to the function f(t) = etZ yields that the left-hand side of (2) is equal
to tF ′(t) − F (t) logF (t) where F (t) = E[exp(tZ)] is the moment-generating function of Z. If one
is able to bound the term on the right-hand side by some term of the form F (t)V (t), division by
F (t) yields that

tL′
Z(t) − LZ(t) ≤ V (t) (3)

where LZ(t) = logF (t). Now, Herbst’s argument can be used to deduce from (3) an upper bound
for the logarithm of the moment-generating function.

Herbst’s argument

The starting point of Herbst’s argument is the observation that with LZ as above we obtain from (3)

L′
Z(t)
t

− LZ(t)
t2

≤ Ṽ (t)

for t > 0 and Ṽ (t) = V (t)
t2 . One observes that the left-hand side of the last inequality is equal to

the derivative of LZ (t)
t . Thus, for every positive ε > 0, we get by integration

LZ(t)
t

− LZ(ε)
ε

≤
∫ t

ε

Ṽ (s)ds.

Taking the limit ε → 0 on the left-hand side yields limε→0 LZ(t)/t−LZ(ε)/ε = LZ(t)/t−EZ and
if one is able to find a reasonable expression for the integral on the right-hand side, one can obtain
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a bound on the logarithm of the moment-generating function of the form

LZ(t) ≤ tEZ + V̌ (t)

for some suitable function V̌ . Such a bound can usually by used to obtain upper bounds for tail
probabilities via Markov’s inequality.

The main contribution of the first part of this thesis is to establish an analogue of Theorem 3
and a variant for left-hand side deviations from the mean (inspired by Theorem 2.3 in [KR05]) in
a framework where the random variables are replaced with PPPs.

More precisely, we will consider independent (but eventually not identically distributed) PPPs
N1, . . . , Nn with finite intensity measures on a Polish space X. As in the statement of Theorem 3,
we start with a countable set of measurable functions S from X to [−1, 1]. For s = (s1, . . . , sn) ∈ S,
we define

Ik(s) :=
∫
X
sk(x)(dNk(x) − dΛk(x)) and Sn(s) := I1(s) + . . .+ In(s).

All the Ik(s) are, exactly as the sk(Xk) in the statement of Theorem 3, centred random variables
and we aim for concentration inequalities for the quantity Z := sups∈S Sn(s) in the flavour of
Theorem 3. Let us already mention that our results derived in Chapter 2 cannot be immediately
deduced from Theorem 3 by interpreting PPPs as random variables in the space of locally finite
N0-valued random measures equipped with an appropriate topology.

The following diagram illustrates how the first part of this thesis relates to and builds upon prior
work.

[Mas00] PPP−−−−→ [RB03]y y
[KR05] PPP−−−−→ Chapter 2

The arrows labelled ’PPP’ indicate that the work on the right-hand side transfers the results on
the left-hand side of the arrow to the setup with PPPs. Vertical arrows indicate an improvement
of results concerning the numerical constants involved. Not surprisingly, we will borrow ideas from
both [RB03] and [KR05] to obtain our results.

Results from [KR05] have been exploited at various places in the literature as a starting point
for further concentration results that can then be used in statistical applications. Following this
guideline, we will also obtain a further concentration result (Proposition 2.13 together with the
following Remark 2.15 in Chapter 2) that turns out to be useful for our statistical applications in
Chapters 3–5 in the second part of this thesis.

Part II: Applications to non-parametric estimation

The second part of this thesis provides examples of how the concentration results derived in
first part can be used to obtain theoretical results concerning the performance of adaptive non-
parametric estimators. We will consider three different non-parametric statistical models which are
treated in Chapters 3–5, respectively. The structure of the individual chapters will be essentially
the same: first, inference of the unknown functional parameter of interest from the respective ob-
servations will be studied from a minimax point of view under mean integrated squared error loss.
Under mild technical assumptions on the unknown infinite-dimensional parameter minimax upper
and lower bounds will be determined. As the method of choice we focus on orthonormal series
estimators in terms of the ordinary trigonometric basis (Chapters 3 and 5) or its complex-valued
variant (Chapter 4). Such orthonormal series estimators of some functional parameter λ ∈ L2(X)

x



(here, L2(X) denotes the set of square-integrable functions on X with respect to some pre-specified
measure; in our applications we will exclusively consider the Lebesgue measure and X will be a
bounded subset of R) take on the form

λ̂k(·) :=
∑

0≤|j|≤k

[̂λ]jϕj(·), (3)

and are motivated by the L2-convergent representation λ(·) =
∑

j∈Z[λj ]ϕj in terms of some or-
thonormal basis {ϕj}j∈Z in L2(X, dx) where the (generalized) Fourier coefficients [λ]j are given
by

[λ]j := 〈λ, ϕj〉L2 .

Certainly, the [̂λ]j in (3) should be (reasonable) estimators of the true [λ]j . The quantity k ∈ N0
in (3) is a dimension parameter that has to be chosen by the statistician.

As the performance criterion for potential estimators λ̃ of the unknown λ based on the respective
observations we consider the mean integrated squared error E[‖λ̃ − λ‖2] where E denotes the
expectation operator associated with the distribution of the observations and expectation is taken
under the true parameter λ. The minimax point of view consists in considering the worst case
scenario over some class Λ of potential candidates of λ, that is in studying the maximum risk

sup
λ∈Λ

E[‖λ̃− λ‖2].

Usually, the definition of the class Λ imposes structural pre-assumptions upon the function λ, for
instance that λ belongs to some Sobolev ellipsoid, an ellipsoid of (generalized) analytic functions,
or some Besov space. An estimator λ̂ is called minimax optimal if

sup
λ∈Λ

E[‖λ̂− λ‖2] = inf
λ̃

sup
λ∈Λ

E[‖λ̃− λ‖2],

and the quantity on the right-hand side is called the minimax risk. An estimator λ̂ is called rate
optimal if

sup
λ∈Λ

E[‖λ̂− λ‖2] . inf
λ̃

sup
λ∈Λ

E[‖λ̃− λ‖2]

which by definition means that supλ∈Λ E[‖λ̂− λ‖2] ≤ C inf
λ̃

supλ∈Λ E[‖λ̃− λ‖2] for some constant
C that does not depend on the sample size of the observations. In this thesis, we content ourselves
throughout with the derivation of rate optimal estimators. It will turn out that the maximum risk
of the estimator in (3) crucially depends on the correct specification of the dimension parameter
k: the optimal choice k∗

n of this parameter in the minimax sense usually depends on the a priori
knowledge of the class Λ. More precisely, its optimal value is such that the optimal compromise
in the trade-off between bias and variance terms is achieved.

Since assuming the membership of λ to some a priori specified class Λ is not feasible in practice,
there is need for a fully data-driven choice of the dimension parameter k which does not depend on
any structural pre-assumptions on the parameter λ. Such an estimator is called adaptive. There
are several approaches for data-driven selection procedures of so-called smoothing parameters,
for instance cross-validation [AC10] or Lepski’s method [Lep91]. Another approach to fully data-
driven estimation is aggregation (cf., for instance, [BTW07], [LM09], [RT12]). In this thesis, we
will exclusively use the model selection approach to adaptive estimation which has been introduced
in the 1990s in a series of papers (see [BM97], [BM98], [BBM99], and [Mas07] for comprehensive
treatments of this approach). In the following, let us give a sketch of this model selection approach.
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Introduction

Adaptive estimation via model selection in a nutshell

In this paragraph, we stick by the terminology and standard notation commonly used in papers
dealing with model selection in non-parametric statistics. For n ∈ N (denoting the number of
observations in our estimation frameworks later on), let us denote with Mn a finite set of admissible
’models’. Take note that the cardinality of the set of models is allowed to vary with the sample
size n. Every model m ∈ Mn is assumed to be associated with a linear subspace Sm of L2(X) and
an estimator λ̂m ∈ Sm. Furthermore, assume that there is a linear subspace Sn ⊆ L2(X) such that
Sm ⊆ Sn for all m ∈ Mn. The task of model selection is to choose from the collection (λ̂m)m∈Mn

an
estimator in a completely data-driven way. For this purpose, two further ingredients are necessary,
namely

(i) an empirical contrast function Υn : Sn → R, and

(ii) a penalty function Pen : Mn → R,m 7→ Penm.

Note that the dependence of the contrast function on the given observations is suppressed in our
notation. The penalty term is often of the form

Penm = κDmLm

n

with a numerical constant κ, Dm the ’dimension’ of the model m and a weight factor Lm ≥ 1. The
penalty terms considered in this thesis will contain a random variable as proportionality factor
instead of a deterministic κ. Moreover, different kind of weight factors Lm will be considered. In
Chapter 3, we consider the choice Lm ≡ 1 and in Chapters 4 and 5 the choice Lm ≡ logn. These
two choices are the standard ones used in the research literature (cf. [BBM99], p. 58). In Chapter 4,
we will also consider a more elaborate choice of the penalty that is inspired by the definition of
the penalty in [JS13a].

Based on the definition of contrast and penalty, a fully data-driven estimator from the collection
{λ̂m}m∈Mn

is chosen as λ̂
m̂

where

m̂ := argmin
m∈Mn

{Υ(λ̂m) + Penm},

and one chooses an arbitrary minimizing model if there is no unique minimizer. Typically, under
some conditions, one can derive for the data-driven estimator λ̂m so-called ’oracle inequalities’ of
the form

E[‖λ̂
m̂

− λm‖2] . inf
m∈Mn

[‖λ− λm‖2 + Penm] + ’terms of lower order’ (4)

where λm denotes the projection of the function λ onto the linear space Sm. Obviously, in order
to make the first term on the right-hand side small, one should choose the class of models Mn as
extensive as possible. However, in order to show that some of the terms arising in the proof of (4)
are indeed ’of lower order’, one usually has to impose some restrictions on the size of Mn. The
standard condition usually postulated in the literature is the existence of a universal constant C
such that

∑
m∈Mn

exp(−LmDm) ≤ C < ∞. Our definitions of the considered adaptive estimators
are such that a similar condition is in fact satisfied. Often one can establish for the remainder terms
the parametric rate n−1 as an upper bound. For this purpose, concentration inequalities are used:
in Gaussian regression frameworks one can use for instance the classical inequalities due to [CIS76].
In density estimation setups, arguments are based on Talagrand’s inequality and consequences of
it. In our applications we mainly build our arguments on the concentration inequalities derived in
the first part of the thesis.

The abstract model selection paradigm sketched above has been applied in great variety of non-
parametric estimation problems. The following list provides some exemplary applications and is
far away from being exhaustive:
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• density estimation in mixed Poisson models [CGC15],
• adaptive estimation of the spectrum of a stationary Gaussian sequence [Com01],
• adaptive estimation of the transition density of hidden Markov chains [Lac08],
• circular deconvolution [JS13a],
• adaptive functional linear regression [CJ12],
• estimation of the jump size density for mixed compound Poisson processes [Com+15],
• non-parametric estimation of covariance functions [Big+10],
• optimal adaptive estimation of the relative density [CL15],
• non-parametric adaptive estimation of the drift for a jump diffusion process [Sch14].

Let us briefly sketch how the representation in the second part of this thesis fits into the general
framework of adaptive estimation via model selection. For n ∈ N being the number of observations,
the collection Mn of models will be given by the set Mn = {0, . . . , Nn} for some Nn ≤ n. For
all k ∈ Mn, the estimator λ̂k from Equation (3) is the associated orthonormal series estimator on
the linear subspace Sk = span({ϕj : 0 ≤ |j| ≤ k}) ⊆ SNn

(recall that we denote with {ϕj}j∈Z an
orthonormal basis of the space L2(X) 3 λ). In this specific situation, the data-driven choice k̂ of k
can be written as

k̂ := argmin
0≤k≤Nn

{Υ(λ̂k) + Penk}.

For instance, the choice of the penalty that we will use in Chapter 3 is proportional to 2k+1
n (the

proportionality factor being a random variable ≥ 1) which fits into the general setup by setting
Dm = 2k + 1 and Lm = 1. In this case, we will obtain a result of the form

E[‖λ̂
k̂

− λ‖2] . min
0≤k≤Nn

max
{

‖λk − λ‖2,
2k + 1
n

}
+ ’terms of lower order’, (5)

and this bound even holds uniformly over the considered classes of potential parameters λ.
Here, by definition λk =

∑
0≤|j|≤k[λ]jϕj and the term ‖λk − λ‖2 corresponds to the squared

bias. Finding the minimum on the right-hand side of (5) can be viewed as looking for the best
compromise between squared bias and penalty. If the penalty term can be chosen proportional
to the variance of λ̂k (which holds true in the setup of Chapter 3), finding the best compromise
between squared bias and penalty is equivalent to finding the best compromise between squared
bias and variance. Thus, the estimator λ̂

k̂
will be minimax optimal over a class Λ of functions if

k∗
n ≤ Nn (as above, k∗

n denotes the optimal choice of the dimension parameter from a minimax
point of view). For that reason, one would like to choose the quantity Nn as large as possible.
However, for too large values of Nn, it might be infeasible to control the remainder terms that lead
to the ’terms of lower order’ in (5). For all our statistical models we will exploit the concentration
results tailored to the PPP framework considered in the first part of the thesis in order to control
the remainder terms of lower order. For the adaptive inverse intensity estimation in case of Cox
observations in Chapter 4 and the Poisson regression model investigated in Chapter 5, we will have
to exploit well-known concentration results for random variables in addition.

For the rest of this introduction, let us give a brief overview of the statistical models that we
will consider in more detail later. Moreover, we provide some motivational background and give
references to related work.

Intensity estimation from direct observations

In the first application, we aim at estimating non-parametrically the intensity function λ of a PPP
on some pre-specified compact interval I ( R. We will consider the unit interval I = [0, 1] without
loss of generality. Here, the observations are given by an i.i.d. sample N1, . . . , Nn from the Poisson
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process of interest. Using the representation of point processes as N0-valued random measures the
observations take on the form

Ni =
∑

j

δxij

where δ• denotes the Dirac measure with mass concentrated at •. Since one has access to obser-
vations with the target intensity, we will refer to this kind of observations as direct observations.

Intensity estimation in parametric and non-parametric models has been dealt with in a wide
range of monographs and research papers. For general treatments of the subject, we refer to [Kar91]
as an introduction to the statistics of point processes, [Kut98] for examples of intensity estimation
in different parametric and non-parametric models, and [MW04] for estimation in general spatial
models. Early approaches to non-parametric intensity estimation include kernel [Rud82]; [Kut98]
and histogram estimators [Rud82]. In addition, the paper [Rud82] already discusses adaptive
estimation of the intensity. Baraud and Birgé [BB09] consider a Hellinger type loss function
and propose a histogram estimator for intensity estimation. Other contributions focus on non-
linear wavelet thresholding techniques, see, for instance, the articles [Kol99]; [WN07]; [RBR10];
[San14] and [Big+13]. The paper [Big+13] proposes a non-linear hard thresholding estimator
for intensity estimation from noisy observations. The article [Bir07] proposes a model selection
approach based on hypothesis testing for adaptive intensity estimation. Moreover, there exist other
approaches to non-parametric intensity estimation in more specific models. Let us mention the
paper [GN00] that proposes a minimum complexity estimator in the Aalen model and [PW04] that
uses a wavelet approach to estimation in a multiplicative intensity model, without making a claim
to be exhaustive. The paper most closely related to our presentation is [RB03] where intensity
estimation from one single direct observation on the interval [0, T ] is considered and asymptotics as
T → ∞ are studied. The analysis of the adaptive estimator in that paper is also based on the use
of concentration inequalities but our analysis is rather inspired by the one in [JS13a] in a circular
deconvolution model.

Intensity estimation from indirect observations in a circular model

The second statistical model that we consider is closely related to the first one. As in this model, we
are interested in estimating the intensity function λ of some PPP, now with state space I = [0, 1).
In contrast to the previous model, we are now not able to observe direct realizations of the point
process with the target intensity but instead observe the i.i.d. sample N1, . . . , Nn where

Ni =
∑

j

xij + εij − bxij + εijc (6)

where the εij are additive errors. Here, the hidden point processes Ñi =
∑

j δxij
are PPPs with

intensity function λ ∈ L2([0, 1), dx) which is the functional parameter of interest. This leads to
a statistical inverse problem which is closely related to (circular) deconvolution problems [JS13a];
[CL10]; [CL11].

At this point, some comments seem to be necessary. The first one concerns the additive errors εij

in (6). In our investigation we will assume that the εij are stationary in the sense that εij ∼ f for
some unknown error density f . Note that different dependency structures concerning the additive
errors εij lead to different kinds of point process observations. We will focus on the following two
cases:

1. the errors εij are i.i.d. ∼ f . In this case the observed point processes Ni are again Poisson.
We will refer to this case in Chapter 4 as model 1 or the model with Poisson observations.

2. The error does only depend on the index i, that is εij = εi for i = 1, . . . , n and arbitrary j.
This means that all the points of the hidden point process Ñi are shifted by the same amount
εi modulo 1. In this case, the observed point processes stem from a Cox process. We will

xiv



Figure 1.: ChipSeq Data are useful to determine the evolutionary state of a cell. The figure is taken from [Mik+07].

refer to this model as model 2 or the model with Cox process observations. This model has
already been studied in the recent article [Big+13].

The second comment concerns the knowledge of the distribution of the additive errors. The
conservative assumption is to assume that the error distribution is known [Big+13]. However, if
the error distribution is not known in advance, which is obviously more realistic, then the model
has to be further specified to guarantee even identifiability. For instance, one can assume that the
error distribution belongs to some certain parametric class (this approach has been considered in
a blind convolution framework in [SVB10]). Another option, which is the one we will consider in
this work, is to assume the availability of a second i.i.d. sample Y1, . . . , Ym ∼ f . The availability
of a second sample from the error distribution has already been assumed in density deconvolution
setups, for instance in [DH93], [Joh09] or [CL11]. Not surprisingly, the rate of convergence in this
setup will depend on both sample sizes n and m.

The third and last comment deals with the, on a first view, cryptical form of the contaminated
observations in (6). Obviously, via the standard identification of [0, 1) with the circle of perimeter 1,
we can interpret the observations in (6) as contaminated point processes on the circle. The main
technical advantage is that we can make use of the complex trigonometric basis in this setup and
exploit its convenient behaviour with respect to deconvolution. From a practical point of view,
circular models are capable of modelling periodic intensities that appear in various applications.
We refer the interested reader for a detailed list of examples to the paper [HWMZ03].

A recent motivation for dealing with this circular model in the case of Cox process observations
comes from genomics, in particular the analysis of so-called ChIP-seq data (Figure 1). The analysis
of such data is useful to determine the state of a cell in its evolution from totipotent stemcells to
terminal differentiation [Mik+07]. We refer to [Big+13] for further details concerning the motiva-
tion from genomics of the statistical model and to [Mik+07] where the biological background is
explained in detail.

The considered models 1 and 2 can be seen as special instances of Poisson inverse prob-
lems [AB06]. Besides [Big+13], [CJ02] is another paper falling under the umbrella of Poisson
inverse problems where a wavelet shrinkage approach for intensity estimation of tomographic data
is studied.

Nonparametric Poisson regression

Chapter 5 is concerned with a regression model for count data. We assume the availability of an
i.i.d. sample of observations (X1, Y1), . . . , (Xn, Yn) satisfying

Yi|Xi ∼ P(Tλ(Xi)), i = 1, . . . , n. (7)
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(a) Gaussian homoscedastic regression
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(b) Poisson heteroscedastic regression

Figure 2.: Comparison of homoscedastic Gaussian regression and heteroscedastic Poisson regression. The red curve
is the unknown regression function, the blue points are the observations. In the Gaussian case, the
observations follow Equation (8) for normally distributed noise εi; in the Poisson case, the observations
obey model (7).

Here, P(α) denotes the Poisson distribution with parameter α ≥ 0, T > 0, and the functional
parameter of interest is λ : [0, 1] → [0,∞). In this thesis, we will exclusively consider the random
design case: the explanatory variables X1, . . . , Xn form an i.i.d. sample where Xi ∼ f for some
probability density function f on [0, 1].

Regression models for count data are widely used in the natural and social sciences as well as in
economics [CT98]; [Win08]. The standard approach to regression for count data is a generalized
linear model [Str13] of the form

E[Y ] = exp(βx)

with link function g(x) = log(x). We refer the reader to [Win08] for a detailed treatment of
this model. Besides purely parametric approaches there exist also semi-parametric approaches
to Poisson regression problems (see, for instance, Chapter 12 in [CT98]). However, purely non-
parametric approaches seem to be rare. One approach is to use the Anscombe transform [Ans48]
of the data and treat the data as if they were Gaussian. Recent work has considered the regression
model (7) in a high-dimensional framework using the LASSO and the group LASSO [IPR16].
Applications of a related regression model in a geostatistical context are provided in [DTM98].
However, this paper makes use of a fully parametric approach and suggests MCMC techniques for
fitting a model to given data. The paper [CP02] introduces a semi-parametric Bayesian model for
count data regression and applies it as a prognostic model for early breast cancer data.

Note that one characteristic feature of the regression model defined through (7) is that it nat-
urally contains heteroscedastic noise (see Figure 2). Besides work on regression under the as-
sumption of homoscedasticity [Bar00], there exists already research that considers model selection
techniques in regression frameworks containing heteroscedasticity [Sau13]. However, in [Sau13] the
observations are of the form

Yi = r(Xi) + σ(Xi)εi (8)

where r is the unknown regression function to be estimated, the residuals εi have zero mean and
variance one, and the function σ models the unknown heteroscedastic noise level. Note that this
model does not contain our model (7). Besides the paper [IPR16] mentioned above, there does not
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seem to exist another contribution that considers non-parametric Poisson regression via the model
selection approach. In the recent paper [KYS13], the authors consider a model selection approach
in a parametric model via a bias-corrected AIC criterion.

The investigation of an adaptive estimator for Poisson regression under integrated squared error
following the guidelines sketched in the paragraph on model selection above will include concen-
tration results both for general random variables and those tailored to PPPs as derived in the first
part of this thesis. Our construction of the adaptive estimator is split into two steps: the first
approach is based on the assumption that an upper bound for ‖λ‖∞ is known in advance. This
upper bound is used in the definition of the penalty. In order to dispense with the a priori knowl-
edge of an upper bound for ‖λ‖∞, we replace the upper bound in the definition of the penalty with
an estimator of ‖λ‖∞. We follow an approach sketched in [BM97] which was used in [Com01] for
the adaptive estimation of the spectral density of a stationary Gaussian sequence. The estimator
of ‖λ‖∞ is defined as the plug-in estimator ‖λ̃‖∞ where λ̃ is an appropriately defined projection
estimator of λ in terms of an orthonormal basis of piecewise polynomials. The resulting adaptive
estimator of λ attains optimal rates of convergence up to a logarithmic factor.

Some of the results derived in this thesis have already been published in the following preprints:

[Kro16] Kroll, M. Concentration inequalities for Poisson point processes with application to
adaptive intensity estimation. arXiv preprint (2016). arXiv: 1612.07901 (this paper is
based on Chapters 2 and 3)

[Kro17] Kroll, M. Nonparametric intensity estimation from indirect point process observations
under unknown error distribution. arXiv preprint (2017). arXiv: 1703.05619 (this
paper is based on Chapter 4)
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Part I.

Concentration inequalities for Poisson point processes





1. Preliminaries on point processes

In this chapter, we provide the fundamental concepts and results from point process theory needed
in this thesis. We mainly follow the representation in [Kal76] and state the definitions and results
for point processes with a locally compact second countable Hausdorff (LCCB) space as state
space. This assumption concerning the topology will be satisfied by all state spaces considered in
the applications in the second part of this thesis.

1.1. Random measures and point processes
For an arbitrary topological space X, we denote its σ-field of Borel sets with B = B(X). In
addition, we denote with B′ the subset of B containing all topologically bounded (that is, relatively
compact) sets in B.

Definition 1.1. Let X be a LCCB space. A measure µ on (X,B) is called locally finite (or Radon)
if µ(B) < ∞ for all B ∈ B′. Let M = M(X) be the set of all locally finite measures on X and
N = N(X) ⊆ M be the subset of N0-valued locally finite measures. Furthermore, let M = M (X )
and N = N (X ) be the σ-fields in M and N which are generated by the mappings µ 7→ µ(B) for
B ∈ B′, respectively.

Remark 1.2. N ⊆ M (cf. Lemma 1.5 in [Kal76]).

Definition 1.3. Let X be LCCB space. A random measure with state space X is a measurable
mapping from some probability space (Ω,A ,P) to (M,M ). A point process with state space X is
a measurable mapping from some probability space (Ω,A ,P) to (N,N ).

The σ-fields M and N can be equivalently defined as the Borel σ-fields corresponding to the
so-called vague topology on the sets M and N. For this, denote with F = F(X) the class of all B-
measurable functions f : X → [0,∞), and with Fc = Fc(X) the subclass of all continuous functions
in F with compact support. Then, by definition, the vague topology is the topology generated by
the base consisting of all finite intersections of subsets of M (resp. N) of the form {ξ : s < ξf < t}
with f ∈ Fc, s, t ∈ R and ξf =

∫
X fdξ. Thus, a sequence of measures ξi ∈ M tends to ξ if and

only if ξif → ξf for all f ∈ Fc.
The following theorem (together with the subsequent remark) will be exploited tacitly several

times in the proofs of Chapter 2.

Theorem 1.4 ([Kal76], A 7.7.). The spaces M and N equipped with the vague topology are Polish.

Remark 1.5. The statement of Theorem 1.4 still holds true for state spaces that are not LCCB
but only Polish. In this more general case, the vague topology has to be replaced with the so-called
w#-topology (’weak-hash’-topology). In the case of locally compact X, the notions of vague and
w#-convergence coincide (see Appendix A2.6 in [DVJ03]).

1.2. The L-transform
By definition, the distribution of a random measure (or point process) ξ is the probability distri-
bution Pξ on (M,M ) (or (N,N )) given by

Pξ(M) = P(ξ−1(M)) = P(ξ ∈ M), M ∈ M (or M ∈ N ).

3



1. Preliminaries on point processes

Theorem 1.7 below states equivalent conditions for equality in distribution of random measures.
One of these equivalent conditions is stated in terms of the L-transform, which we define now.

Definition 1.6. Let ξ be a random measure with state space X. The mapping

Lξ : F → R ∪ {∞}, f 7→ Lξ(f) := E[e−ξf ]

is called the L-transform of ξ.

The L-transform uniquely determines the distribution of a random measure:

Theorem 1.7 (cf. [Kal76], Theorem 3.1). Let ξ and η be random measures with state space X.
Then, the following assertions are equivalent:

(i) ξ
d= η,

(ii) ξf
d= ηf for all f ∈ Fc,

(iii) Lξ(f) = Lη(f) for all f ∈ Fc,

(iv) (ξ(B1), . . . , ξ(Bk)) d= (η(B1), . . . , η(Bk)) for all k ∈ N and B1, . . . , Bk ∈ B′.

Definition 1.8. A point process N with state space X satisfying

LN (f) = e−µ(1−e−f ), f ∈ F ,

for some µ ∈ M is called Poisson point process (PPP) with intensity measure Λ.

By Theorem 1.7, the distribution of a PPP is uniquely determined by its L-transform. For
a proof of existence, we refer the reader to Chapter 1 of [Kal76]. Let us mention the following
alternative characterization of PPPs (cf. [Ser09], Chapter 3, Definition 16) which is more intuitive
than the one given by the L-transform:

Proposition 1.9. A point process N on X is a Poisson point process with locally finite intensity
measure µ if and only if the following two conditions are satisfied:

(i) for n ∈ N and disjoint B1, . . . , Bn ∈ B′, the random variables N(B1), . . . , N(Bn) are inde-
pendent,

(ii) for each B ∈ B′, the random variable N(B) follows a Poisson distribution with parameter
µ(B).

In Chapter 4, we will encounter Cox processes which are a natural generalization of PPPs.

Definition 1.10. Let η be a random measure with state space X. A point process N with state
space X is called Cox process with directing measure η if

LN (f) = E[e−η(1−e−f )] = Lη(1 − e−f ).

A Cox process is uniquely determined by its directing measure η (cf. Corollary 3.2 in [Kal76]).
Since Cox processes arise from PPPs by mixing, the existence of such processes can be shown by
means of a general existence theorem for mixtures of random measures (cf. Lemma 1.7 in [Kal76]).

1.3. Infinite divisibility
In the proofs of Chapter 2, we will exploit the fact that PPPs are infinitely divisible. Recall that a
random variable X is called infinitely divisible if for each n ∈ N, there exist i.i.d. random variables
X1, . . . , Xn such that X d= X1 + . . . + Xn. The definition for the case of random measures and
point processes is totally analogous.
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1.4. Campbell’s theorem

Definition 1.11. A random measure ξ with state space X is called infinitely divisible if for each
n ∈ N there exist i.i.d. random measures ξ1, . . . , ξn such that

ξ
d= ξ1 + . . .+ ξn.

Analogously, a point process N is said to be infinitely divisible if for each n ∈ N there exist i.i.d.
point processes N1, . . . , Nn such that

N
d= N1 + . . .+Nn. (1.1)

Remark 1.12. There exist point processes N which are infinitely divisible as random measures but
not as point processes. The simplest examples of this type are provided by deterministic elements
of N.

For a full characterization of infinitely divisible random measures and point processes we refer
to Chapters 6 and 7 of [Kal76]. For our purposes, it is sufficient to note that PPPs are infinitely
divisible. More precisely, if N is a PPP with intensity measure µ, then equation (1.1) is satisfied
for N1, . . . , Nn being i.i.d. PPPs with intensity µ

n , respectively.

1.4. Campbell’s theorem
Definition 1.13. LetN be a point process with state space X. The mapping µ : B → R ∪ {∞}, B 7→
E[N(B)] is called the mean measure of N .

Note that for Poisson processes the intensity measure and the mean measure coincide. The
following theorem will be frequently used in this thesis.

Theorem 1.14 (cf. [Ser09], Chapter 3, Theorem 24). Let N be a point process on the state space
X with mean measure µ. Then, for any measurable f : X → C, it holds

E
[∫

X
f(x)dN(x)

]
=
∫
X
f(x)µ(dx) (1.2)

provided that the integral on the right-hand side exists. If, in addition, N is a Poisson process,
then

Var
(∫

X
f(x)dN(x)

)
=
∫
X

|f(x)|2µ(dx)

provided that the integral on the right-hand side exists.

Equation (1.2) is usually referred to as Campbell’s theorem or compensation formula.

Remark 1.15. In [Ser09], Theorem 1.14 is stated for real-valued functions only. The statement for
complex-valued functions follows by decomposition into real and imaginary part.
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2. Concentration inequalities for Poisson processes

In this chapter, we derive concentration inequalities for suprema of empirical processes associated
with Poisson point processes. These results will be used in the second part of this thesis for the
derivation of upper risk bounds of adaptive non-parametric estimators in different models but
might also be of independent interest. Although it would be sufficient to derive concentration
inequalities for right-hand side deviations from the mean in view of our intended applications, we
also state and prove concentration inequalities for left-hand side deviations.

The main technical prerequisites needed in this chapter are the finiteness of the intensity mea-
sures and the assumption that the common state space of the point processes is Polish. More
precisely, we use the following notations: N1, . . . , Nn is a sequence of independent PPPs with fi-
nite intensity measures (denoted with Λ1, . . . ,Λn) on some Polish space X equipped with the σ-field
B generated by the open sets in X. Note that, thanks to the assumption that X is Polish, the space
N of N0-valued locally finite measures equipped with an appropriate topology (see Chapter 1) is
itself Polish (see Theorem 1.4 and Remark 1.5).

In this framework, let S be a countable class of measurable functions from the space X into
[−1, 1]n. For s = (s1, . . . , sn) ∈ S and k ∈ {1, . . . , n}, we define

Ik(s) :=
∫
X
sk(x)(dNk(x) − dΛk(x)) and Sn(s) := I1(s) + . . .+ In(s). (2.1)

The principal aim of this chapter is to establish concentration inequalities for the random variable
Z := sups∈S Sn(s).

2.1. Concentration inequalities for right-hand side deviations
The following theorem is the first main result of this chapter.

Theorem 2.1. Let N1, . . . , Nn be independent PPPs on a Polish space X with finite intensity
measures Λ1, . . . ,Λn, and S be a countable class of measurable functions from X to [−1, 1]n. For
s ∈ S, define Sn(s) as in (2.1) and consider Z := sups∈S Sn(s). Let L(t) = LZ(t) := logE[exp(tZ)]
denote the logarithm of the moment-generating function of Z and Vn := sups∈S Var (Sn(s)). Then,
for any non-negative t,

a) LZ(t) ≤ tEZ + t

2 (2EZ + Vn) (exp((e2t − 1)/2) − 1).

Setting υ := 2EZ + Vn, we obtain that, for any non-negative x,

b) P (Z ≥ EZ + x) ≤ exp
(

−x

4 log(1 + 2 log(1 + x/υ))
)
,

and

c) P (Z ≥ EZ + x) ≤ exp
(

− x2

υ +
√
υ2 + 3υx+ (3x/2)

)
≤ exp

(
− x2

2υ + 3x

)
.

Remark 2.2. We emphasize that Theorem 2.1 cannot be immediately deduced from Theorem 1.1
in [KR05]. For instance, if sk ≡ 1 the stochastic integral

∫
X s

k(x)dNk(x) is an unbounded function
of Nk (interpreted as a random variable in an appropriately defined state space) but obviously
sk ≡ 1 fits into the framework of Theorem 2.1.

Remark 2.3. The bounds obtained in Theorem 2.1 translate literally (that is, even with exact
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2. Concentration inequalities for Poisson processes

coincidence of the numerical constants involved) the ones obtained in Theorem 1.1 in [KR05] to
the setup with PPPs. This observation is in accordance with the one made in the article [RB03]
where the derived concentration inequalities translate literally previous results for the random
variable setup due to [Mas00].

2.1.1. Notation and preparatory results
In this section, we introduce some notation and state preliminary results. The proof of Theorem 2.1,
based on these results, is given in Section 2.1.2. The key property used to prove Theorem 2.1 is
the infinite divisibility of the PPPs N1, . . . , Nn: for every k ∈ {1, . . . , n} and ` ∈ N, there exist
i.i.d. PPPs Nkj such that

Nk
d=
∑̀
j=1

Nkj . (2.2)

The common intensity measure of the Nkj in this representation is Λk/`. Throughout this chap-
ter, the dependence of Nkj , Λkj , and derived quantities on ` is often suppressed for the sake of
convenience.

Define Λ := supk=1,...,n Λk(X) and ∆ = ∆(`) := Λ/`. For s ∈ S, let Ikj(s) :=
∫
X s

k(x)(dNkj(x)−
dΛkj(x)). We define the random variable Xkj := Nkj(X), that is, Xkj is the total number of points
of the point process Nkj , and the event Ωkj via Ωkj := {Xkj ≤ 1}.

Remark 2.4. A natural interpretation of the proof of Theorem 2.1 given below is to consider the
result being obtained in a setup with a triangular array of point processes

N1, . . . , Nn

N11, N12, N21, N22, . . . , Nn1, Nn2

N11, N12, N13, N21, N22, N23, . . . , Nn1, Nn2, Nn3

...

where the point processes in each row are independent and the intensity measures of the single point
processes in a row tend to zero when the row index tends to infinity. All asymptotic considerations
will be obtained under the equivalent regimes ` → ∞ and ∆ → 0, respectively.

Lemma 2.5. P(Ωc
kj) ≤ ∆2/2.

Proof. The function h : N0 → R, n 7→ n2 − n is non-negative and non-decreasing. Since Ωc
kj =

{Xkj ≥ 2} the claim estimate follows from Markov’s inequality.

Let us define the σ-fields

Fn := σ({N11, . . . , Nn`}) and F kj
n := σ ({N11, . . . , Nn`}\{Nkj}) .

Further, let Ekj
n [ · ] := E[ · |F kj

n ], Pkj
n (A) := Ekj

n [1A], f = f(t) := exp(tZ), and fkj = fkj(t) :=
Ekj

n [f ]. It will turn out to be sufficient to prove the results of this chapter under the following
finiteness assumption.

Assumption 2.6. S = {s1, . . . , sm} is a finite set of measurable functions.

Under the validity of Assumption 2.6, let τ denote the minimal value of i such that Z = Sn(si).

Lemma 2.7. Let Assumption 2.6 hold. Then, for any non-negative t,
a) f/fkj ≤ exp(tIkj(sτ )), and in addition
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2.1. Concentration inequalities for right-hand side deviations

b) exp(−2(1 + ∆)t)(1 − e(2+3∆)t exp(∆(e2t − 1)/2) · ∆/
√

2) ≤ f/fkj on Ωkj.

Proof. In order to prove statement a), set Skj
n (s) := Sn(s) − Ikj(s) and Zkj := sups∈S S

kj
n (s).

Moreover, define τkj to be the minimal i such that Skj
n (si) = Zkj . Then, Zkj is F kj

n -measurable,
and we have

exp(t(Zkj +Xkj + ∆)) ≥ f ≥ exp(tZkj) · exp(tIkj(sτkj
)). (2.3)

The random variable τkj is F kj
n -measurable which implies Ekj

n [Ikj(sτkj
)] = 0. Thus, by Jensen’s

inequality, we obtain from the second estimate in (2.3) that

fkj ≥ exp(tZkj) · Ekj
n [exp(tIkj(sτkj

))] ≥ exp(tZkj) ≥ exp(tSkj
n (sτ )),

and consequently fkj ≥ f · exp(−tIkj(sτ )) which implies statement a).
For the proof of b), we retain the notation introduced in the proof of statement a). From the

left-hand side inequality in (2.3), we obtain

fkj ≤ et(Zkj+∆) · E[etXkj1Ωkj
] + et(Zkj+∆) · E[etXkj1Ωc

kj
]

≤ et(Zkj+1+∆) + et(Zkj+∆) · E[e2tXkj ]1/2P(Ωc
kj)1/2.

Multiplication with 1Ωkj
on both sides, using the estimate P(Ωc

kj)1/2 ≤ ∆/
√

2 from Lemma 2.5,
and recalling the formula for the moment-generating function of a Poisson distributed random
variable yields

fkj1Ωkj
≤ et(Zkj+1+∆)1Ωkj

+ et(Zkj+∆) · exp(∆(e2t − 1)/2) · ∆/
√

2 · 1Ωkj
,

from which we conclude by exploiting the right-hand side inequality of (2.3) and the definition of
Ωkj that

fkj1Ωkj
≤ fe2(1+∆)t1Ωkj

+ fe(1+2∆)t · exp(∆(e2t − 1)/2) · ∆/
√

2 · 1Ωkj
,

and hence by elementary transformations

(1 − f/fkj · e(1+2∆)t exp(∆(e2t − 1)/2) · ∆/
√

2) · 1Ωkj
≤ f/fkj · e2(1+∆)t1Ωkj

.

Now, by the statement of assertion a) and the definition of Ωkj

(1 − e(2+3∆)t exp(∆(e2t − 1)/2) · ∆/
√

2) · 1Ωkj
≤ f/fkj · e2(1+∆)t · 1Ωkj

,

which yields the claim assertion after division by e2(1+∆)t.

In the sequel, we use the abbreviation c(t, `) := 1−e(2+3∆)t exp(∆(e2t −1)/2) ·∆/
√

2. Note that
c(t, `) ≤ 1 and, for any fixed non-negative t, c(t, `) → 1 as ` → ∞. In particular, c(t, `) ∈ [1/2, 1],
for sufficiently large `, say ` ≥ `0 = `0(t). Under the validity of Assumption 2.6, we consider for
k ∈ {1, . . . , n} and j ∈ {1, . . . , `} the positive and F kj

n -measurable random variables hkj defined
by

hkj = hkj(t) :=
m∑

i=1
Pkj

n (τ = i) exp(tSkj
n (si)) = Ekj

n [exp(tSkj
n (sτ ))]. (2.4)

From now on, we denote by C a numerical constant independent of ` (but surely depending on
the fixed value of t considered) whose value may change depending on the context. The following
lemma summarizes estimates which are used for the rest of this section. Since all the estimates are
easy to obtain, we omit its proof.

Lemma 2.8. Let Assumption 2.6 hold, η(x) = 1 − exp(−x) − e2(1+∆)t−log c(t,`)x for ` ≥ `0 and Skj
n

be defined as in the proof of Lemma 2.7. Then, the estimate E[X] ≤ C holds true, where X can be
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2. Concentration inequalities for Poisson processes

replaced by any of the following random variables:

a) h4
kj,

b) (fkj − f)4,

c) (f log(f/fkj))4,

d) (fη(tIkj(sτ )))4,

e) (Ikj(s))4,

f) (Ikj(s))2,

g) exp(tSkj
n (sτ )), and

h) exp(4tSkj
n (sτ )).

The constant C can be chosen to be independent of k and j, and in statements d)–h), it can in
addition be chosen independent of s and sτ , respectively.

Lemma 2.9. Let Assumption 2.6 hold, and let hkj be defined as in (2.4). Then, for all ` ≥ `0, we
have

n∑
k=1

∑̀
j=1

E[(f − hkj)1Ωkj
] ≤ e2(1+∆)t−log c(t,`)E [f ] logE[f ] + C · `−1/2.

Proof. We begin the proof with the observation that

E[(f − hkj)1Ωkj
] = E[f − hkj ] + E[(hkj − f)1Ωc

kj
] ≤ E[f − hkj ] + E[hkj1Ωc

kj
] (2.5)

where the last estimate is due to the fact that f is non-negative. We have the decomposition

E[f − hkj ] = E[f(1 − exp(−tIkj(sτ )) − te2(1+∆)t−log c(t,`)Ikj(sτ )] + te2(1+∆)t−log c(t,`)E[fIkj(sτ )]
= E[fη(tIkj(sτ ))1Ωkj

] + E[fη(tIkj(sτ ))1Ωc
kj

] + te2(1+∆)t−log c(t,`)E[fIkj(sτ )],

where the function η is defined via η(x) = 1 − exp(−x) − e2(1+∆)t−log c(t,`)x. Note that η is non-
increasing on the interval [−2(1 + ∆)t+ log c(t, `),∞). This fact in combination with Lemma 2.7
implies that

E[fη(tIkj(sτ ))1Ωkj
] ≤ E[(f − fkj − e2(1+∆)t−log c(t,`)f log(f/fkj))1Ωkj

].

By the identities 1Ωkj
= 1 − 1Ωc

kj
and E[f − fkj ] = 0, we thus obtain

E[fη(tIkj(sτ ))1Ωkj
] ≤ E[(fkj − f)1Ωc

kj
] + e2(1+∆)t−log c(t,`)E[f log(f/fkj)1Ωc

kj
]

− e2(1+∆)t−log c(t,`)E[f log(f/fkj)].

Using Hölder’s inequality and Lemma 2.8, we obtain the estimate

E[(fkj − f)1Ωc
kj

] ≤ E[(fkj − f)4]1/4 · P(Ωc
kj)3/4 ≤ C · `−3/2,

and by the same argument E[f log(f/fkj)1Ωc
kj

] ≤ C · `−3/2, E[fη(tIkj(sτ ))1Ωc
kj

] ≤ C · `−3/2, and
E[hkj1Ωc

kj
] ≤ C · `−3/2. Putting the obtained estimates into (2.5), we obtain

E[(f − hkj)1Ωkj
] ≤ e2(1+∆)t−log c(t,`)(tE[fIkj(sτ )] − E[f log(f/fkj)]) + C · `−3/2.
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2.1. Concentration inequalities for right-hand side deviations

Summation over k and j yields

n∑
k=1

∑̀
j=1

E[(f − hkj)1Ωkj
] ≤ e2(1+∆)t−log c(t,`)

tE[fZ] −
n∑

k=1

∑̀
j=1

E[f log(f/fkj)]

+ C · `−1/2.

By application of Proposition 4.1 from [Led96], we have

−
n∑

k=1

∑̀
j=1

E[f log(f/fkj)] ≤ −E[f log f ] + E [f ] · logE[f ],

and thus
n∑

k=1

∑̀
j=1

E[(f − hkj)1Ωkj
] ≤ e2(1+∆)t−log c(t,`)E [f ] · logE[f ] + C · `−1/2.

Lemma 2.10. Consider the function r defined through r(t, x) := x log x+ (1 + t)(1 − x). Then, for
any s ∈ S and t ≥ 0,

E[r((1 + ∆)t, exp(tIkj(s)))1Ωkj
] ≤ Ct2`−3/2 + t2

2 E[(Ikj(s))2].

Proof. For fixed non-negative t consider the functions η, δ defined through η(x) = r((1+∆)t, etx) =
etxtx+ (1 + (1 + ∆)t)(1 − etx) and δ(x) = η(x) −xη′(0) − (tx)2

2 , respectively. We have δ(0) = 0 and
δ′(x) = t2(x− (1 + ∆))(etx − 1). Thus, the sign of δ′(x) coincides with the one of x(x− (1 + ∆)).
This implies that δ(x) ≤ δ(0) = 0 for all x ≤ 1 + ∆, and hence η(x) ≤ xη′(0) + (tx)2/2. Since the
estimate Ikj(s) ≤ 1 + ∆ holds on Ωkj , by the preceding arguments we obtain

r((1 + ∆)t, etIkj(s))1Ωkj
≤ (−(1 + ∆)t2Ikj(s) + (tIkj(s))2/2)1Ωkj

.

Taking expectations on both sides yields

E[r((1 + ∆)t, exp(tIkj(s)))1Ωkj
] ≤ E[(−(1 + ∆)t2Ikj(s) + (tIkj(s))2/2)1Ωkj

].

Therefrom, by means of the relation 1Ωkj
≤ 1, we obtain

E[r((1 + ∆)t, exp(tIkj(s)))1Ωkj
] ≤ −(1 + ∆)t2E[Ikj(s)1Ωkj

] + t2

2 E[(Ikj(s))2].

The identity 1Ωkj
= 1 − 1Ωc

kj
, Hölder’s inequality and Lemma 2.8 imply that

E[r((1 + ∆)t, exp(tIkj(s)))1Ωkj
] ≤ Ct2`−3/2 + t2

2 E[(Ikj(s))2],

(recall that E[Ikj(s)] = 0 for all s ∈ S) which finishes the proof of the lemma.

Remark 2.11. There is a clear correspondence between some of the auxiliary results proved above
and the auxiliary results in [KR05]. Lemmata 3.1, 3.2, and 3.3 in that paper correspond to our
Lemmata 2.7, 2.9, and 2.10, respectively. Both, results and proofs turn out to be more intricate
in the PPP setup considered here.

2.1.2. Proof of Theorem 2.1
First note that it is sufficient to prove statements a)–c) of Theorem 2.1 for the case of finite S.
Based on this, the case of countable S follows using the monotone convergence theorem. Thus, we
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2. Concentration inequalities for Poisson processes

assume from now on without loss of generality that S = {s1, . . . , sm}, and the preceding auxiliary
results from Section 2.1.1 (which were mostly obtained under the validity of Assumption 2.6) are
available. For fixed t and ` ≥ `0 = `0(t) (here, `0(t) is defined as in the Section 2.1.1), let us
represent the PPP Nk as in (2.2) as the superposition of ` i.i.d. PPPs Nkj with intensity measures
Λk/`, respectively. Then, application of Proposition 4.1 from [Led96] and the decomposition
1 = 1Ωkj

+ 1Ωc
kj

yield

E [f log f ] − E[f ] logE[f ] ≤
n∑

k=1

∑̀
j=1

E[f log(f/fkj)]

=
n∑

k=1

∑̀
j=1

E[f log(f/fkj)1Ωkj
]︸ ︷︷ ︸

=: �

+
n∑

k=1

∑̀
j=1

E[f log(f/fkj)1Ωc
kj

]︸ ︷︷ ︸
=: �

, (2.6)

and we investigate the two terms separately.
Examination of �: For k ∈ {1, . . . , n} and j ∈ {1, . . . , `}, consider the strictly positive random
variables gkj defined through

gkj = gkj(t) :=
m∑

i=1
Pkj

n (τ = i) exp (tSn(si)) .

We have the elementary decomposition

E[f log(f/fkj)1Ωkj
] = E[gkj log(f/fkj)1Ωkj

] + E[(f − gkj) log(f/fkj)1Ωkj
]. (2.7)

Note that Ekj
n [f/fkj ] = 1, and thus

E[gkj log(f/fkj)1Ωkj
] ≤ sup{E[gkjh1Ωkj

] : h is Fn-measurable with Ekj
n [eh] ≤ 1}.

Thus, due to the duality formula for the relative entropy (see p. 83 in [Led96] or Proposition 2.12
in [Mas07]), we obtain

E[gkj log(f/fkj)1Ωkj
] ≤ E[gkj1Ωkj

log(gkj1Ωkj
)] − E[gkj1Ωkj

logEkj
n [gkj1Ωkj

]].

Putting this estimate into equation (2.7) yields

E[f log (f/fkj)1Ωkj
] ≤ E[gkj1Ωkj

log(gkj1Ωkj
)] − E[gkj1Ωkj

logEkj
n [gkj1Ωkj

]]
+ E[(f − gkj) log(f/fkj)1Ωkj

],

and by summation over k and j we obtain

� ≤
n∑

k=1

∑̀
j=1

E[gkj1Ωkj
log(gkj1Ωkj

)] −
n∑

k=1

∑̀
j=1

E[gkj1Ωkj
logEkj

n [gkj1Ωkj
]]

+
n∑

k=1

∑̀
j=1

E[(f − gkj) log(f/fkj)1Ωkj
]. (2.8)

Lemma 2.7, combined with the facts that f − gkj ≥ 0 and tIkj(sτ )1Ωkj
≤ (1 + ∆)t1Ωkj

, implies

E[(f − gkj) log(f/fkj)1Ωkj
] ≤ (1 + ∆)tE[(f − gkj)1Ωkj

]. (2.9)

For k ∈ {1, . . . , n} and j ∈ {1, . . . , `}, consider the positive and F kj
n -measurable random variables

hkj defined as in Equation (2.4). By the variational definition of relative entropy (see Equation (1.5)
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2.1. Concentration inequalities for right-hand side deviations

in [Led96] or Proposition 2.12 in [Mas07]), we obtain

Ekj
n [gkj1Ωkj

log(gkj1Ωkj
)] − Ekj

n [gkj1Ωkj
logEkj

n [gkj1Ωkj
]]

≤ Ekj
n [(gkj log(gkj/hkj) − gkj + hkj)1Ωkj

].

By taking expectations on both sides of the last estimate, and combining the result with (2.9) we
obtain from (2.8) that

� ≤
n∑

k=1

∑̀
j=1

E[(gkj log(gkj/hkj) + (1 + (1 + ∆)t)(hkj − gkj))1Ωkj
]

+ (1 + ∆)t
n∑

k=1

∑̀
j=1

E[(f − hkj)1Ωkj
] =: �1 + �2.

In order to bound �1 from above, introduce the function r defined via

r(t, x) = x log x+ (1 + t)(1 − x).

By the definition of gkj and hkj we have

gkj log(gkj/hkj) + (1 + (1 + ∆)t)(hkj − gkj) = hkjr((1 + ∆)t, gkj/hkj),

and the convexity of r with respect to x yields

hkjr((1 + ∆)t, gkj/hkj) ≤
m∑

i=1
Pkj

n (τ = i) exp(tSkj
n (si))r((1 + ∆)t, exp(tIkj(si))).

Hence, multiplication with 1Ωkj
and application of the Ekj

n operator yield

Ekj
n [hkjr((1 + ∆)t, gkj/hkj)1Ωkj

] ≤
m∑

i=1
Pkj

n (τ = i) exp(tSkj
n (si))E[r((1 + ∆)t, exp(tIkj(si)))1Ωkj

].

The expectation on the right-hand side can be bounded by means of Lemma 2.10, and we obtain

Ekj
n [hkjr((1 + ∆)t, gkj/hkj)1Ωkj ]

≤ Ct2`−3/2Ekj
n [exp(tSkj

n (sτ ))] + t2

2 Ekj
n

[
m∑

i=1
1{τ=i} exp(tSkj

n (si))E[(Ikj(si))2]
]
.

(2.10)

In order to further bound the second term on the right-hand side of the last estimate, we consider
the decomposition

Ekj
n

[
m∑

i=1
1{τ=i} exp(tSkj

n (si))E[(Ikj(si))2]
]

= Ekj
n

[
m∑

i=1
1{τ=i} exp(tSkj

n (si))1Ωkj
E[(Ikj(si))2]

]

+ Ekj
n

[
m∑

i=1
1{τ=i} exp(tSkj

n (si))1Ωc
kj
E[(Ikj(si))2]

]
, (2.11)

and we bound the two terms on the right-hand side of (2.11) separately. In order to treat the first
one, note that on Ωkj we have exp(tSkj

n (si)) ≤ exp (2t(1 + ∆) + tSn(si)), from which we conclude
that

Ekj
n

[
m∑

i=1
1{τ=i} exp(tSkj

n (si))1Ωkj
E[(Ikj(si))2]

]

13
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≤ e2(1+∆)tEkj
n

[
m∑

i=1
1{τ=i} exp(tSn(si))E[(Ikj(si))2]

]
. (2.12)

For the second term on the right-hand side of (2.11), we have by Lemma 2.8 that

Ekj
n

[
m∑

i=1
1{τ=i} exp(tSkj

n (si))1Ωc
kj
E[(Ikj(si))2]

]
≤ C · Ekj

n [exp(tSkj
n (sτ ))1Ωc

kj
],

and thus by putting this last estimate and (2.12) into (2.11) we obtain

Ekj
n

[
m∑

i=1
1{τ=i} exp(tSkj

n (si))E[(Ikj(si))2]
]

≤ e2(1+∆)tEkj
n

[
m∑

i=1
1{τ=i} exp(tSn(si))E[(Ikj(si))2]

]
+ C · Ekj

n [exp(tSkj
n (sτ ))1Ωc

kj
].

By taking expectations on both sides of (2.10) and summation over k and j, we obtain by means
of the derived estimates in combination with Lemma 2.8 that

�1 ≤ Ct2`−1/2 + t2

2 e
2(1+∆)tE

 m∑
i=1

1{τ=i} exp(tSn(si))
n∑

k=1

∑̀
j=1

E[(Ikj(si))2]


+ Ct2

2

n∑
k=1

∑̀
j=1

E[exp(tSkj
n (sτ ))1Ωc

kj
].

Since
∑n

k=1
∑`

j=1 E[(Ikj(si))2] ≤ Vn and E[exp(tSkj
n (sτ ))1Ωc

kj
] ≤ C ·`−3/2 (the last estimate follows

from Hölder’s inequality and Lemma 2.8), we obtain

�1 ≤ Ct2`−1/2 + t2

2 e
2(1+∆)tVnE[f ].

A suitable bound for �2 follows directly from Lemma 2.9. By combining the derived estimates for
�1 and �2, we obtain

� ≤ Ct2`−1/2 + t2

2 e
2(1+∆)tVnE[f ] + (1 + ∆)te2(1+∆)t−log c(t,l)E [f ] logE[f ] + C · `−1/2. (2.13)

Examination of �: By Hölder’s inequality, Lemmata 2.5, 2.7, and 2.8, we have

� ≤
n∑

k=1

∑̀
j=1

E[(tfIkj(sτ ))4]1/4P(Ωc
kj)3/4 ≤ C · `−1/2. (2.14)

We now merge the examinations of the terms � and �. More precisely, by combining (2.6)
with (2.13) and (2.14) and letting ` tend towards infinity we obtain that

tL′(t) − (te2t + 1)L(t) ≤ Vn

2 t2e2t.

As in [KR05], setting γ(t) = t−2 exp((1 − e2t)/2) one can derive by means of Herbst’s argument
that

tγ(t)L(t) ≤ EZ + Vn

2 (1 − exp((1 − e2t)/2)),

which implies assertion a). In order to prove statement b), we apply the generalized Markov
inequality for the function x 7→ exp(tx) and apply assertion a) with t = 1

2 log(1 + 2 log(1 + x/υ)).

14



2.2. Intermezzo: A useful consequence of Theorem 2.1

For the proof of statement c), we need the following lemma, a proof of which can be found in [KR05].

Lemma 2.12 ([KR05], Lemma 3.4). Under the assumptions of Theorem 2.1, we have for any
t ∈ (0, 2

3 ) that

L(t) ≤ tEZ + (2EZ + Vn) · t2

2 − 3t .

By Lemma 2.12 and the generalized Markov inequality, we obtain

P(Z ≥ EZ + x) ≤ exp
(

υt2

2 − 3t − tx

)
.

The first inequality in assertion c) follows therefrom by the fact that the Legendre transform of
t 7→ υt2

2−3t is given by x 7→ 4
9 (υ + 3x

2 −
√
υ2 + 3xυ), and the second inequality is due to elementary

calculus.

2.2. Intermezzo: A useful consequence of Theorem 2.1
In this section, we state and prove a consequence of Theorem 2.1 which turns out to be useful for
the statistical applications in the second part of this thesis. As will become clear from the proof,
it can be regarded as an integrated version of statement c) from Theorem 2.1.

Proposition 2.13. Let N1, . . . , Nn be independent PPPs on a Polish space X with finite intensity
measures Λ1, . . . ,Λn. Set νn(r) = 1

n

∑n
k=1

{∫
X r(x)dNk(x) −

∫
X r(x)dΛk(x)

}
for r contained in a

countable class R of complex-valued measurable functions.
Then, there exist constants c1, c2 = 1

6 , and c3 such that for any ε > 0

E

[(
sup
r∈R

|νn(r)|2 − c(ε)H2
)

+

]
≤ c1

{
υ

n
exp

(
−c2ε

nH2

υ

)
+ M2

1
C2(ε)n2 exp

(
−c3C(ε)

√
ε
nH

M1

)}

where C(ε) = (
√

1 + ε− 1) ∧ 1, c(ε) = 4(1 + 2ε) and M1, H and υ are such that

sup
r∈R

‖r‖∞ ≤ M1, E
[

sup
r∈R

|νn(r)|
]

≤ H, and sup
r∈R

Var
(∫

X
r(x)dNk(x)

)
≤ υ ∀k.

Remark 2.14. Analogues of Proposition 2.13 in a setup with random variables instead of point
processes have been used in the context of adaptive non-parametric estimation at various places,
see, for instance, [CRT06], [Lac08] and [JS13a]. The proof given below follows along the lines of
the proof given in [Cha13] to a great extent (with slight modifications concerning the numerical
constants).

Remark 2.15. As a by-product of the proof of Proposition 2.13, we obtain that in case that the
class R consists of real-valued functions only, one can replace the constant c(ε) = 4(1 + 2ε) with
c(ε) = 2(1 + 2ε).

Proof of Proposition 2.13. For r ∈ R and k ∈ {1, . . . , n} define functions sk
r : X → C via

sk
r (x) := r(x)

M1
.

Hence, for all r ∈ R and and k ∈ {1, . . . , n}, we have |sk
r (x)| ≤ 1 and we can apply statement c)

of Theorem 2.1 for both S = {(<s1
r, . . . ,<sn

r ) : r ∈ R} and S = {(=s1
r, . . . ,=sn

r ) : r ∈ R} (the
quantity Z corresponds to n

M1
supr∈R <νn(r) and n

M1
supr∈R =νn(r), respectively). In the sequel,

we will only give estimates for the real part since the corresponding estimates for the imaginery

15
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part are identical. Application of Theorem 2.1 c) yields for any x > 0 that

P
(
n

M1
sup
r∈R

<νn(r) ≥ n

M1
E
[

sup
r∈R

<νn(r)
]

+ x

)
≤ exp

(
− x2

2υ< + 3x

)
with υ< = 2EZ + Vn where Vn = supr∈R Var (Sn(<sr)), and Sn is defined as in the statement of
Theorem 2.1. Specializing with x = ny/M1 and using the fact that supr∈R <νn(r) ≤ supr∈R |νn(r)|
yield that for any y > 0 we have

P
(

sup
r∈R

<νn(r) ≥ H + y

)
≤ P

(
sup
r∈R

<νn(r) ≥ E
[

sup
r∈R

<νn(r)
]

+ y

)
≤ exp

(
− n2y2

2M2
1υ< + 3M1ny

)
.

Note that on the one hand we have EZ ≤ nH/M1, and on the other hand

Vn = sup
r∈R

Var
(

1
M1

n∑
k=1

∫
X

<r(x)(dNk(x) − dΛk(x))
)

= 1
M2

1
sup
r∈R

Var
(

n∑
k=1

∫
X

<r(x)(dNk(x) − dΛk(x))
)

≤ nυ

M2
1

which in combination imply υ< ≤ 2nH/M1 + nυ/M2
1 . We have

P
(

sup
r∈R

<νn(r) ≥ H + y

)
≤ exp

(
− ny2

2(2M1H + υ) + 3M1y

)
which is used to obtain

P
(

sup
r∈R

|<νn(r)| ≥ H + y

)
≤ P

(
sup
r∈R

<νn(r) ≥ H + y

)
+ P

(
sup
r∈R

−<νn(r) ≥ H + y

)
= P

(
sup
r∈R

<νn(r) ≥ H + y

)
+ P

(
sup
r∈R

<νn(−r) ≥ H + y

)
≤ 2 · exp

(
− ny2

2(2M1H + υ) + 3M1y

)
.

Below, we will apply this estimate for y = µ+ ηH for µ, η to be specified. This choice of y yields

y2

2(υ + 2M1H) + 3M1y
= µ2 + η2H2 + 2ηµH

2υ + 4HM1 + 3M1µ+ 3M1ηH

≥ µ2 + 2ηµH
2υ + 3µM1 +M1H(4 + 3η)

=: a+ b

c+ d+ e
. (2.15)

For arbitrary a, b, c, d, e > 0 we have the estimate

a+ b

c+ d+ e
≥ a+ b

3(c ∨ d ∨ e) = 1
3

(
a+ b

c
∧ a+ b

d
∧ a+ b

e

)
≥ 1

3

(
a

c
∧ a

d
∧ b

e

)
.

16
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For a, b, c, d, e as defined in (2.15), this estimate implies

y2

2(υ + 2M1H) + 3M1y
≥ 1

3

[
µ2

2υ ∧ 2µ
M1

(
1
6 ∧ η

4 + 3η

)]
.

For any η ≥ 0, we obtain
1
6 ∧ η

4 + 3η ≥ η ∧ 1
7

due the trivial estimate 1/6 ≥ (η ∧ 1)/7 combined with

η

4 + 3η − η ∧ 1
7 =

{
7η−4−3η
7(4+3η) = 4(η−1)

7(4+3η) ≥ 0, if η ≥ 1,
3η−3η2

7(4+3η) ≥ 0, if 1 ≥ η ≥ 0.

Thus, we have
y2

2(υ + 2M1H) + 3M1y
≥ 1

3

[
µ2

2υ ∧ 2(η ∧ 1)
7

µ

M1

]
which in turn implies

P
(

sup
r∈R

|<νn(r)| ≥ µ+ (η + 1)H
)

≤ 2 exp
(

−n

3

[
µ2

2υ ∧ 2(η ∧ 1)
7

µ

M1

])
. (2.16)

After these preliminaries, we start the proof of the claim assertion by means of the estimate

E

[(
sup
r∈R

|νn(r)|2 − 4(1 + 2ε)H2
)

+

]
=
∫ ∞

0
P
(

sup
r∈R

|νn(r)|2 ≥ 4(1 + 2ε)H2 + t

)
dt

=
∫ ∞

0
P
(

sup
r∈R

|νn(r)| ≥
√

4(1 + ε)H2 + 4(εH2 + t/4)
)
dt

≤
∫ ∞

0
P
(

sup
r∈R

|νn(r)| ≥
√

2(1 + ε)H +
√

2(εH2 + t/4)
)
dt

where the last line is due to the estimate
√
a+

√
b ≤

√
2a+ 2b. From this we conclude

E

[(
sup
r∈R

|νn(r)|2 − 4(1 + 2ε)H2
)

+

]
≤
∫ ∞

0
P
(

sup
r∈R

|<νn(r)| ≥
√

1 + εH +
√
εH2 + t/4

)
dt

+
∫ ∞

0
P
(

sup
r∈R

|=νn(r)| ≥
√

1 + εH +
√
εH2 + t/4

)
dt.

We apply (2.16) with η =
√

1 + ε− 1 and µ =
√
εH2 + t/4 to both terms and obtain

E

[(
sup
r∈R

|νn(r)|2 − 4(1 + 2ε)H2
)

+

]

≤ 4
∫ ∞

0
exp

(
−n

3

{
εH2 + t/4

2υ ∧ 2(η ∧ 1)
7

√
εH2 + t/4
M1

})
dt

≤ 4
∫ ∞

0
exp

(
−n

3
εH2 + t/4

2υ

)
dt+ 4

∫ ∞

0
exp

(
−n

3
2(η ∧ 1)

7

√
εH2 + t/4
M1

)
dt.

Using the estimate
√
a+

√
b ≤

√
2a+ 2b once again implies

E

[(
sup
r∈R

|νn(r)|2 − 4(1 + 2ε)H2
)

+

]
≤ 4 exp

(
−nεH2

6υ

)∫ ∞

0
exp

(
− nt

24υ

)
dt

17
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+ 4
∫ ∞

0
exp

(
−2n(η ∧ 1)

21
√

2M1
(
√
εH +

√
t/4)

)
dt

≤ 4 exp
(

−nεH2

6υ

)∫ ∞

0
exp

(
− nt

24υ

)
dt

+ 4 exp
(

−2n(η ∧ 1)
21

√
2M1

√
εH

)∫ ∞

0
exp

(
− n(η ∧ 1)

21
√

2M1

√
t

)
dt

= 4
{

exp
(

−nεH2

6υ

)
24υ
n

+ exp
(

−2n(η ∧ 1)
21

√
2M1

√
εH

)
· 422M2

1
n2(η ∧ 1)2

}
= 48

{
exp

(
−nεH2

6υ

)
2υ
n

+ exp
(

−2n(η ∧ 1)
21

√
2M1

√
εH

)
· 147M2

1
n2(η ∧ 1)2

}
.

2.3. Concentration inequalities for left-hand side deviations
The following theorem is the second main result of this chapter and complements Theorem 2.1 by
providing concentration inequalities for left-hand side deviations of Z from its mean.

Theorem 2.16. Under the assumptions of Theorem 2.1, for any non-negative t,

a) LZ(−t) ≤ −tEZ + υ

9 (e3t − 3t− 1).

Consequently, for any non-negative x, we have

b) P (Z ≤ EZ − x) ≤ exp
(

−υ

9h
(

3x
υ

))
,

where h(x) = (1 + x) log(1 + x) − x, and

c) P (Z ≤ EZ − x) ≤ exp
(

− x2

υ +
√
υ2 + 2υx+ x

)
≤ exp

(
− x2

2υ + 2x

)
.

Remark 2.17. As in the case of right-hand side deviations, the concentration inequalities in The-
orem 2.16 translate literally the results in the random variable framework due to [KR05].

2.3.1. Notation and preliminary results
We maintain a large part of the notation introduced in Section 2.1.1 for the proof of Theorem 2.1. In
particular, we use again the representation Nk

d=
∑`

j=1 Nkj of the PPPs Nk as the superposition of
independent PPPs Nkj with intensity Λk/` and use the shorthand notations Λ := supk=1,...,n Λk(X)
and ∆ = ∆(`) := Λ/`. Besides, we retain the definition Ωkj := {Xkj ≤ 1} where Xkj := Nkj(X)
and the definition of the Ikj . Let us further assume that Assumption 2.6 holds, that is, S =
{s1, . . . , sm} is finite. Define now

Li(t) :=
n∑

k=1

∑̀
j=1

logE[exp(−tIkj(si))], i ∈ {1, . . . ,m}.

The corresponding exponentially compensated empirical process is Ti(t) := Sn(si) + t−1Li(t). In
addition to Z, let us define Zt := supi∈{1,...,m} Ti(t). For notational convenience, we use from now
on the shorthand notation supi/infi when the supremum/infimum over i ∈ {1, . . . ,m} is taken.
Redefine f = f(t) := exp(−tZt) and fkj = fkj(t) := Ekj

n [f ]. Here, the σ-fields F kj
n are defined as

in Section 2.1. Finally, we define F = F (t) := E[f ] and L = L(t) := logF (t). The main strategy
of the proof given in Section 2.3.2 is to derive a differential inequality for L. Let τ = τ(t) denote
the minimal value of i ∈ {1, . . . ,m} such that Zt = Ti(t). As in the proof of concentration results
for right-hand side deviations from Z from its mean, let C always denote a constant (whose value
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2.3. Concentration inequalities for left-hand side deviations

is independent of ` but might depend on t) which is allowed to attain different values in different
contexts.

Lemma 2.18. Let Assumption 2.6 hold and ψ`(t) = 1
2 (1 + e2(1+∆)t). Set

`kji = `kji(t) = logE[exp(−tIkj(si))].

Then, the following estimates hold almost surely:

a) fkj/f ≤ exp(tIkj(sτ ) + `kjτ ), and

b) exp(tIkj(sτ ) + `kjτ ) ≤ ψ`(t) · (1 +α`) + β(t) · `−3/2 on Ωkj where α` is a monotone sequence
decreasing to 0 as ` tends to ∞ and β = β(t) > 0 is monotone increasing in t.

Proof. For s ∈ S, define Skj
n (s) := Sn(s) − Ikj(s) and

Zkj := sup
s∈S

(Skj
n (s) + t−1 logE[exp(−tSkj

n (s))]).

Let τkj = τkj(t) be the smallest i ∈ {1, . . . ,m} such that

Zkj = Skj
n (si) + t−1 logE[exp(−tSkj

n (si))].

Then, f ≤ exp(−tZkj) exp(−tIkj(sτkj
) − `kjτkj

(t)), which implies Ekj
n [f ] ≤ exp(−tZkj). By defini-

tion of Zkj , we have exp(−tZkj) ≤ f · exp(tIkj(sτ ) + `kjτ (t)), which shows statement a). In order
to prove statement b), first note that exp(tIkj(sτ )) ≤ e(1+∆)t on Ωkj , and it remains to find an
estimate for exp(`kjτ (t)) = E[exp(−tIkj(sτ ))]. Consider the decomposition

E[exp(−tIkj(sτ ))] = E[exp(−tIkj(sτ ))1Ωkj
] + E[exp(−tIkj(sτ ))1Ωc

kj
]. (2.17)

In order to bound the first term on the right-hand side of (2.17), note that E[exp(−tIkj(sτ ))1Ωkj
] ≤

E[etY ] with Y = −Ikj(sτ )1Ωkj
. By the convexity of the exponential function, we have

E[etY ] ≤ 1 + ∆ − EY
2(1 + ∆) e−(1+∆)t + EY + 1 + ∆

2(1 + ∆) e(1+∆)t = 1
2(e−(1+∆)t + e(1+∆)t)(1 + o(1)). (2.18)

The second term one the right-hand side of (2.17) is bounded using Hölder’s inequality, Lem-
mata 2.5 and 2.21 as follows:

E[exp(−tIkj(sτ ))1Ωc
kj

] ≤ E[exp(−4tIkj(sτ ))]1/4 · P(Ωc
kj)3/4 ≤ C · `−3/2, (2.19)

and statement b) follows now from the combination of (2.18) and (2.19).

Lemma 2.19. For k ∈ {1, . . . , n} and j ∈ {1, . . . , `}, define positive random variables gkj = gkj(t)
via

gkj =
m∑

i=1
Pkj

n (τ = i) exp(−tSn(si) − Li(t)).

Set ϕ` = ϕ`(t) := ψ̃` · log ψ̃` where ψ̃` = ψ̃`(t) := ψ`(t) · (1 + α`) + β(t) · `−3/2 with ψ`, α`, and
β defined as in Lemma 2.18. For sufficiently large `, let θ` be the unique positive solution of the
equation ϕ`(t) = 1. Then, for any t ∈ (0, θ`),

n∑
k=1

∑̀
j=1

E[(gkj − f) log(fkj/f)]
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≤ ϕ`

1 − ϕ`
·

 n∑
k=1

∑̀
j=1

E(gkj log(gkj/Ekj
n [gkj ])) − E[f log f ]

+ C · `−1/2.

Proof. Since Skj
n is F kj

n -measurable, it is easy to verify that

Ekj
n [gkj ] = Ekj

n [f · exp(tIkj(sτ ) + `kjτ )],

and hence,
n∑

k=1

∑̀
j=1

E[gkj − f ] =
n∑

k=1

∑̀
j=1

E[f · (exp(tIkj(sτ ) + `kjτ ) − 1)].

Set ηkj = tIkj(sτ ) + `kjτ . Then,

n∑
k=1

∑̀
j=1

E[gkj − f ] =
n∑

k=1

∑̀
j=1

E[f · (eηkj − 1 − ψ̃`ηkj)] + ψ̃`E[f
n∑

k=1

∑̀
j=1

ηkj ]

=
n∑

k=1

∑̀
j=1

E[f · (eηkj − 1 − ψ̃`ηkj)] − ψ̃`E[f log f ], (2.20)

since
∑n

k=1
∑`

j=1 ηkj = − log f . Consider the first term on the right-hand side of (2.20). First, by
Hölder’s inequality and Lemma 2.21

n∑
k=1

∑̀
j=1

E[f · (eηkj − 1 − ψ̃`ηkj)1Ωc
kj

] ≤ C · `−1/2.

In order to bound
∑n

k=1
∑`

j=1 E[f · (eηkj − 1 − ψ̃`ηkj)1Ωkj
] from above, note that the function

x 7→ ex − 1 − xψ̃` is non-increasing on the interval (−∞, log ψ̃`]. Hence, we obtain by Lemma 2.21
that

n∑
k=1

∑̀
j=1

E[f · (eηkj − 1 − ψ̃`ηkj)1Ωkj
] ≤ ψ̃`

n∑
k=1

∑̀
j=1

E[f log(f/fkj)]

−
n∑

k=1

∑̀
j=1

E[(fkj − f − ψ̃`f log(fkj/f))1Ωc
kj

]

≤ ψ̃`

n∑
k=1

∑̀
j=1

E[f log(f/fkj)] + C · `−1/2.

Putting the obtained estimates into (2.20) yields

n∑
k=1

∑̀
j=1

E[gkj − f ] ≤ ψ̃` ·

 n∑
k=1

∑̀
j=1

E[f log(f/fkj)] − E[f log f ]

+ C · `−1/2.

Using the same argument as in the proof of Theorem 2.1 yields

n∑
k=1

∑̀
j=1

E[gkj − f ] (2.21)

≤ ψ̃` ·

 n∑
k=1

∑̀
j=1

E[gkj log(gkj/Ekj
n [gkj ]) + (gkj − f) log(fkj/f)] − E[f log f ]

+ C · `−1/2.
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Now, in order to prove the claim assertion of the lemma, take note of the decomposition

n∑
k=1

∑̀
j=1

E[(gkj − f) log(fkj/f)] =
n∑

k=1

∑̀
j=1

E[(gkj − f) log(fkj/f)1Ωkj
]

+
n∑

k=1

∑̀
j=1

E[(gkj − f) log(fkj/f)1Ωc
kj

]. (2.22)

Using statement b) of Lemma 2.18, the estimate (2.21) and the definition of ϕ`, we can bound the
first term on the right-hand side of (2.22) as follows (note that gkj − f ≥ 0):

n∑
k=1

∑̀
j=1

E[(gkj − f) log(fkj/f)1Ωkj
] ≤ log ψ̃`

n∑
k=1

∑̀
j=1

E[gkj − f ]

≤ ϕ` ·

 n∑
k=1

∑̀
j=1

[gkj log(gkj/Ekj
n [gkj ]) + (gkj − f) log(fkj/f)] − E[f log f ]

+ C · `−1/2.

The second summand on the right-hand side of (2.22) can be bounded using Hölder’s inequality,
Lemma 2.5 and Lemma 2.21:

n∑
k=1

∑̀
j=1

E[(gkj − f) log(fkj/f)1Ωc
kj

] ≤
n∑

k=1

∑̀
j=1

E[((gkj − f) log(fkj/f))4]1/4P(Ωc
kj)3/4 ≤ C · `−1/2.

Combining the bounds obtained for the two terms in (2.22) implies the assertion of the lemma.

Remark 2.20. Both ψ̃`(t) and ϕ`(t) are non-increasing in ` and non-decreasing in t. Hence, the
solution θ` of the equation ϕ` = 1 (which exists for sufficiently large `) is non-decreasing in ` and
the limit θ∞ := lim`→∞ θ` satisfies θ∞ ∈ [0.46, 0.47] (see p. 1075 in [KR05]). The approximate
value of θ∞ is of interest for the proof of Theorem 2.16 which is done by considering different cases
for the value of t (see [KR05] for details).

The simple proof of the following lemma is omitted.

Lemma 2.21. Let Assumption 2.6 hold. Then, the estimate E[X] ≤ C holds true, where X can be
replaced by any of the following random variables:

a) exp(−4tIkj(sτ )),

b) (fkj − f − ψ̃`f log(fkj/f))4,

c) (f · (eηkj − 1 − ψ̃`ηkj))4,

d) ((gkj − f) log(fkj/f))4,

e) (Ikj(si))4e−4tIkj(si), and

f) (gkj log(gkj/Ekj
n [gkj ]))4.

Here gkj, ηkj and ψ̃` are defined in Lemma 2.19 and its proof, respectively. The constant C can
be chosen independent of k and j, and in statements a) and e), it can in addition be chosen
independent of sτ and si, respectively.

Lemma 2.22. Let Y be a random variable with values in (−∞, 1 + ∆] and E[Y 2] < +∞. Then,
for any positive t,

E[tY etY ] − E[etY ] logE[etY ] ≤ E[Y 2]
(1 + ∆)2 (1 + ((1 + ∆)t− 1)e(1+∆)t).
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Proof. The proof follows completely along the lines of the one of Lemma 4.4 in [KR05], and we
thus omit it.

Remark 2.23. Again, there is a clear correspondence between some of the auxiliary results derived
here and the ones used in [KR05]. Lemmata 2.18 and 2.19 are versions of Lemmata 4.2 and 4.3
in [KR05] tailored to our framework. As already mentioned above, Lemma 2.22 is nearly the same
as Lemma 4.4 in [KR05].

2.3.2. Proof of Theorem 2.16

The key arguments of the proof follow along the proof of Theorem 1.2 in [KR05]. Since the random
functions Ti(t) are analytic in t, the random function f = f(t) is continuous and piecewise analytic
as a function in t. Its (almost everywhere existing) derivative with respect to t satisfies

f ′(t) = −(Zt + tZ ′
t)f(t)

where tZ ′
t = L′

τ (t) − t−1Lτ (t). Thus, by the Fubini’s theorem, we have

F (t) = 1 −
∫ t

0
E[(Zu + uZ ′

u)f(u)]du.

Hence, F is absolutely continuous with respect to the Lebesgue measure, with a.e. derivative in the
sense of Lebesgue given by F ′(t) = −E[(Zt + tZ ′

t)f(t)]. Moreover, the function Λ = logF has the
a.e. derivative F ′/F . As in the proof of Theorem 2.1, application of Proposition 4.1 from [Led96]
yields

E[f log f ] −E[f ] logE[f ] ≤
n∑

k=1

∑̀
j=1

E[gkj log(gkj/Ekj
n [gkj ])] +

n∑
k=1

∑̀
j=1

E[(gkj − f) log(f/fkj)] (2.23)

for any positive integrable random variables gkj such that E[gkj log gkj ] < ∞. On the other hand,

E[f(t) log f(t)] − E[f(t)] logE[f(t)] = t2E[Z ′
tf(t)] + tF ′(t) − F (t) logF (t) a.e. (2.24)

Combining (2.23) and (2.24) yields

tF ′(t) − F (t) logF (t) ≤ −t2E[Z ′
tf(t)] +

n∑
k=1

∑̀
j=1

E[gkj log(gkj/Ekj
n [gkj ])]

+
n∑

k=1

∑̀
j=1

E[(gkj − f) log(fkj/f)].

We now specialize this estimate with the choice gkj =
∑m

i=1 Pkj
n (τ = i) exp(−tSn(si) − Li(t)),

which coincides with the definition of gkj in Lemma 2.19. Applying Lemma 2.19 and algebraic
transformations yields

(1 − ϕ`(t))(tF ′(t) − F (t) logF (t)) ≤ ϕ`(t) · t2E[Z ′
tf(t) − f(t) log f(t)]

− E[t2Z ′
tf(t)] +

n∑
k=1

∑̀
j=1

E[gkj log(gkj/Ekj
n [gkj ])] + C · `−1/2,
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where ϕ` is defined in Lemma 2.19. Using the identity E[t2Z ′
tf(t) − f(t) log f(t)] = −tF ′(t), we

obtain

tF ′(t)−(1−ϕ`(t))F (t) logF (t) ≤ −t2E[Z ′
tf(t)]+

n∑
k=1

∑̀
j=1

E[gkj log(gkj/Ekj
n [gkj ])]+C ·`−1/2. (2.25)

Now define ωkj := gkj/Ekj
n [gkj ]. Then, Ekj

n [gkj log(gkj/Ekj
n [gkj ])] = Ekj

n [gkj ] · Ekj
n [ωkj logωkj ].

Using the convexity of x 7→ x log x, we conclude that

Ekj
n [gkj ]ωkj logωkj ≤

m∑
i=1

Pkj
n (τ = i)(−tIkj(si) − `kji(t)) exp(−tSn(si) − Li(t)),

and by applying the Ekj
n operator on both sides we obtain

Ekj
n [gkj log(gkj/Ekj

n [gkj ])] ≤
m∑

i=1
Pkj

n (τ = i) exp(−tSkj
n (si) − Li(t) + `kji(t))(t`′

kji(t) − `kji(t))

= Ekj
n

[
m∑

i=1
1{τ=i} exp(−tSkj

n − Li(t) + `kji(t))(t`′
kji(t) − `kji(t))

]
.

Thus, by taking expectations,

E[gkj log(gkj/Ekj
n [gkj ])] ≤ E[f(t) exp(tIkj(sτ ) + `kjτ (t))(t`′

kjτ (t) − `kjτ (t))].

By Hölder’s inequality and Lemma 2.21, we have E[gkj log(gkj/Ekj
n [gkj ])1Ωc

kj
] ≤ C · `−3/2. In order

to bound E[gkj log(gkj/Ekj
n [gkj ])1Ωkj

], first note that the convexity of the functions `kji together
with the fact that `kji(0) = 0 implies t`′

kjτ (t)− `kjτ (t) ≥ 0. Thus, we can use Lemma 2.18 in order
to obtain

E[gkj log(gkj/Ekj
n [gkj ])1Ωkj

] ≤ ψ̃`(t) · E[(t`′
kjτ (t) − `kjτ (t))f(t)].

By the identity t2Z ′
t = tL′

τ (t) − Lτ (t), we get for the first two summands on the right-hand side
of (2.25) the estimate

−E[t2Z ′
tf(t)]+

n∑
k=1

∑̀
j=1

E[gkj log(gkj/Ekj
n [gkj ])] ≤ (ψ̃`(t)−1)E[(tL′

τ (t)−Lτ (t)f(t)]+C ·`−1/2. (2.26)

In order to bound the expectation on the right-hand side of the last estimate, let us first note that
tL′

τ (t) − Lτ (t) ≤ supi(tL′
i(t) − Li(t)). In order to bound supi(tL′

i(t) − Li(t)), introduce (for fixed
i ∈ {1, . . . ,m}) the event Ω̃kj defined via

Ω̃kj := {Ikj(si) ≥ −(1 + ∆)}.

Thanks to the boundedness of the functions s ∈ S, we have Ωkj ⊆ Ω̃kj , hence Ω̃c
kj ⊆ Ωc

kj . Setting
Ykj := −Ikj(si), we obtain

t`′
kji(t) − `kji(t) ≤ tE[exp(tYkj)Ykj ] − E[etYkj ] logE[etYkj ]

≤ tE[exp(tYkj)Ykj1Ω̃c
kj

] + tE[exp(tYkj)Ykj1Ω̃kj
] − E[e

tYkj1
Ω̃kj ] logE[e

tYkj1
Ω̃kj ]. (2.27)

The first term on the right-hand side of (2.27) is bounded using Lemma 2.21:

tE[exp(tYkj)Ykj1Ω̃c
kj

] ≤ C · P(Ω̃c
kj)3/4 ≤ C · P(Ωc

kj)3/4 ≤ C · `−3/2.
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The second and third term on the right-hand side of (2.27) are bounded using Lemma 2.22 which
yields

E[t exp(tYkj)Ykj1Ω̃kj
] − E[e

tYkj1
Ω̃kj ] logE[e

tYkj1
Ω̃kj ]

= E[t exp(tYkj1Ω̃kj
)Ykj1Ω̃kj

] − E[e
tYkj1

Ω̃kj ] logE[e
tYkj1

Ω̃kj ]

≤
E[Y 2

kj ]
(1 + ∆)2 · (1 + ((1 + ∆)t− 1)e(1+∆)t).

Hence summing over all k and j in (2.27) yields

tL′
i(t) − Li(t) ≤ C · `−1/2 + Vn

(1 + ∆)2 · (1 + ((1 + ∆)t− 1)e(1+∆)t),

and this estimate holds for all i ∈ {1, . . . ,m}. Combining the obtained estimates with (2.25)
and (2.26) and letting ` tend to ∞, we obtain

tF ′(t) − (1 − ϕ(t))F (t) logF (t) ≤ (ψ(t) − 1)F (t)Vn(1 + (t− 1)et),

where ψ(t) = 1
2 (1 + e2t) and ϕ = ψ logψ. Division by F (t) yields

tL′(t) − (1 − ϕ(t))L(t) ≤ Vn

2 (e2t − 1)(1 + (t− 1)et).

This differential inequality for L coincides with equation (4.21) in [KR05] and the rest of the proof
follows along the lines of the one given in that paper (Lemma 4.1 in [KR05] which is used for
the proof translates without changes in the proof to our framework, whereas the purely analytical
Lemmata 4.5 and 4.6 in [KR05] can be borrowed unchanged).

We conclude this chapter with the remark that in most situations of interest, it is possible
to apply the concentration inequalities proved in this chapter also in setups with non-countable
classes of measurable functions. This practice can be made rigorous by means of standard density
arguments (see [Cha13] for details).
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Part II.

Applications to non-parametric estimation problems





3. Non-parametric intensity estimation

In this chapter, we consider the non-parametric estimation of the intensity of a PPP on the interval
[0, 1] from n independent observations of the process. More precisely, we assume that the intensity
measure is absolutely continuous with respect to the Lebesgue measure with Radon-Nikodym
derivative λ that we aim to estimate from the i.i.d. sample

N1, . . . , Nn. (3.1)

We assume that λ ∈ L2 := L2([0, 1], dx), the space of square-integrable real-valued functions on
[0, 1].

3.1. Methodology: Orthonormal series estimator of the intensity
Orthonormal series estimators represent a natural approach in non-parametric statistics. In this
chapter, we consider an orthonormal series estimator for the intensity λ with respect to the standard
trigonometric basis {ϕj}j∈Z where

ϕ0 ≡ 1, ϕj(x) =
√

2 cos(2πjx), ϕ−j(x) =
√

2 sin(2πjx), j = 1, 2, . . .

Setting [λ]j =
∫ 1

0 ϕj(x)λ(x)dx we have the representation

λ =
∑
j∈Z

[λ]jϕj (3.2)

as a L2-converging series. By Campbell’s theorem (see Theorem 1.14), the estimator

[̂λ]j := 1
n

n∑
i=1

∫ 1

0
ϕj(x)dNi(x).

is unbiased for all j ∈ Z. Replacing the unknown Fourier coefficients in (3.2) by these estimators
and truncating the series representation, we obtain the estimator

λ̂k =
∑

0≤|j|≤k

[̂λ]jϕj

where k ∈ N0 is a dimension parameter that has to be chosen appropriately.

3.2. Minimax theory
We will evaluate the performance of an arbitrary estimator λ̃ of λ by means of the mean integrated
squared error E[‖λ̃−λ‖2] where ‖ ·‖ denotes the usual L2-norm and expectation is taken under the
true functional parameter λ (of course, the expectation operator E is the one associated with the
distribution of the sample N1, . . . , Nn in (3.1)). Taking on the minimax point of view, we consider
the maximum risk

sup
λ∈Λ

E[‖λ̃− λ‖2]
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where Λ is a class of potential intensity functions with Λ ⊆ L2. In the minimax framework, the
class Λ is assumed to be known and our objective is to define a rate optimal estimator of λ, that
is, an estimator that attains the minimax rate

inf
λ̃

sup
λ∈Λ

E[‖λ̃− λ‖2]

at least up to a multiplicative numerical constant. Here, the infimum is taken over all estimators
λ̃ that are based on the observations (3.1). In this chapter, we assume that the unknown intensity
function λ belongs to the set Λr

γ defined via

Λr
γ := {λ ∈ L2 : λ ≥ 0 and ‖λ‖2

γ :=
∑
j∈Z

γj |[λ]j |2 ≤ r}

for some strictly positive symmetric sequence γ = (γj)j∈Z. We need the following mild assumption
concerning the sequence γ.

Assumption 3.1. γ = (γj)j∈Z is a strictly positive symmetric sequence with γ0 = 1 and the
sequence (γn)n∈N0 is non-decreasing.

In particular, Assumption 3.1 is satisfied by the following standard choices of the sequence γ:

• γ0 = 1, γj = |j|2p for j 6= 0 and some p > 0. This setting corresponds to λ belonging to some
Sobolev ellipsoid.

• γj = exp(2β|j|) for all j ∈ Z and some β > 0. This setting corresponds to λ belonging to
some space of analytic functions.

• γj = exp(2β|j|p) for all j ∈ Z and some β, p > 0. This setting corresponds to λ belonging to
some space of generalized analytic functions.

We will illustrate our abstract results by means of these three examples throughout the chapter.

3.2.1. Upper bound
The following proposition provides an upper bound for the maximum risk of the estimator λ̂k over
the class Λr

γ under a suitable choice of the dimension parameter k.

Proposition 3.2. Let Assumption 3.1 hold. Consider the estimator λ̂k∗
n

with dimension parameter
defined as k∗

n := argmink∈N0 max{ 1
γk
, 2k+1

n }. Then, for any n ∈ N,

sup
λ∈Λr

γ

E[‖λ̂k∗
n

− λ‖2] . max
{

1
γk∗

n

,
2k∗

n + 1
n

}
=: Ψn.

Proof. Introduce the function λk∗
n

:=
∑

0≤|j|≤k∗
n
[λ]jϕj which is used to obtain the decomposition

E[‖λ̂k∗
n

− λ‖2] = ‖λ− λk∗
n
‖2 + E[‖λ̂k∗

n
− λk∗

n
‖2]

of the risk into squared bias and variance. Using the fact that λ ∈ Λr
γ together with Assumption 3.1,

it is easy to see that ‖λ − λk∗
n
‖2 ≤ rγ−1

k∗
n

and E[‖λ̂k∗
n

− λk∗
n
‖2] ≤

√
r · 2k∗

n+1
n and the statement of

the proposition follows.

3.2.2. Lower bound
Under the validity of Assumption 3.1 and mild additional assumptions, the following theorem
provides a minimax lower bound for the estimation of the intensity from the observations (3.1)
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under the mean integrated squared error.

Theorem 3.3. Let Assumption 3.1 hold, and further assume that

(C1) Γ :=
∑

j∈Z γ
−1
j < ∞, and

(C2) 0 < η−1 := infn∈N Ψ−1
n min{ 1

γk∗
n

,
2k∗

n+1
n } for some 1 ≤ η < ∞

where the quantities k∗
n and Ψn are defined in Proposition 3.2. Then, for any n ∈ N,

inf
λ̃

sup
λ∈Λr

γ

E[‖λ̃− λ‖2] & Ψn.

Proof. Define ζ = min{ 1
Γη ,

16δ√
r

} with δ = 1
2 − 1

2
√

2 , and for each θ = (θj)0≤|j|≤k∗
n

∈ {±1}2k∗
n+1

the function λθ by

λθ :=
(r

4

)1/2
+ θ0

(
rζ

16n

)1/2
+
(
rζ

16n

)1/2 ∑
1≤|j|≤k∗

n

θjϕj =
(r

4

)1/2
+
(
rζ

16n

)1/2 ∑
0≤|j|≤k∗

n

θjϕj .

Then, the calculation∥∥∥∥∥∥
(
rζ

16n

)1/2 ∑
0≤|j|≤k∗

n

θjϕj

∥∥∥∥∥∥
∞

≤
(
rζ

16n

)1/2 ∑
0≤|j|≤k∗

n

√
2

≤
(
rζ

8

)1/2
 ∑

0≤|j|≤k∗
n

γ−1
j

1/2 ∑
0≤|j|≤k∗

n

γj

n

1/2

≤
(
rζΓ
8

)1/2(
γk∗

n
· 2k∗

n + 1
n

)1/2

≤
(
rζηΓ

8

)1/2
≤
(r

8

)1/2

shows that λθ ≥
√
r ·δ. In particular, λθ is non-negative for all θ ∈ {±1}2k∗

n+1. Moreover ‖λθ‖2
γ ≤ r

holds for each θ ∈ {±1}2k∗
n+1 due to the estimate

‖λθ‖2
γ =

∑
0≤|j|≤k∗

n

|[λθ]j |2 γj =
[(r

4

)1/2
+ θ0

(
rζ

16n

)1/2
]2

+ rζ

16
∑

1≤|j|≤k∗
n

γj

n

≤ r

2 +
(
rζ

8n

)
+ rζ

16 · γk∗
n

∑
1≤|j|≤k∗

n

1
n

≤ r

2 + rζ

8 · γk∗
n

· 2k∗
n + 1
n

≤ r.

This estimate and the non-negativity of λθ together imply λθ ∈ Λr
γ for all θ ∈ {±1}2k∗

n+1. Let Pθ

denote the joint distribution of the i.i.d. sample N1, . . . , Nn when the true parameter is λθ. Let
PNi

θ denote the corresponding one-dimensional marginal distributions and Eθ the expectation with
respect to Pθ. From now on, let λ̃ be an arbitrary estimator of λ. The key argument of the proof
is the reduction scheme

sup
λ∈Λr

γ

E[‖λ̃− λ‖2] ≥ sup
θ∈{±1}2k∗

n+1
Eθ[‖λ̃− λθ‖2] ≥ 1

22k∗
n+1

∑
θ∈{±1}2k∗

n+1

Eθ[‖λ̃− λθ‖2]

= 1
22k∗

n+1

∑
θ∈{±1}2k∗

n+1

∑
0≤|j|≤k∗

n

Eθ[|[λ̃− λθ]j |2]
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3. Non-parametric intensity estimation

= 1
22k∗

n+1

∑
θ∈{±1}2k∗

n+1

∑
0≤|j|≤k∗

n

1
2{Eθ[|[λ̃− λθ]j |2] + Eθ(j) [|[λ̃− λθ(j) ]j |2]}, (3.3)

where for θ ∈ {±1}2k∗
n+1 the element θ(j) ∈ {±1}2k∗

n+1 is defined by θ
(j)
k = θk for k 6= j and

θ
(j)
j = −θj . Consider the Hellinger affinity ρ(Pθ,Pθ(j)) :=

∫ √
dPθdPθ(j) . For an arbitrary estimator

λ̃ of λ we have

ρ(Pθ,Pθ(j)) ≤
∫

|[λ̃− λθ]j |
|[λθ − λθ(j) ]j |

√
dPθdPθ(j) +

∫
|[λ̃− λθ(j) ]j |
|[λθ − λθ(j) ]j |

√
dPθdPθ(j)

≤

(∫
|[λ̃− λθ]j |2

|[λθ − λθ(j) ]j |2
dPθ

)1/2

+
(∫

|[λ̃− λθ(j) ]j |2

|[λθ − λθ(j) ]j |2
dPθ(j)

)1/2

,

from which we conclude by means of the elementary inequality (a+ b)2 ≤ 2a2 + 2b2 that

1
2 |[λθ − λθ(j) ]j |2ρ2(Pθ,Pθ(j)) ≤ Eθ[|[λ̃− λθ]j |2] + Eθ(j) [|[λ̃− λθ(j) ]j |2].

Recall that the Hellinger distance between two probability measures P and Q is defined asH(P,Q) :=
(
∫

[
√
dP −

√
dQ]2)1/2. By means of Theorem A.8 (ii) we obtain

H2(PNi

θ ,PNi

θ(j)) ≤
∫

(
√
λθ −

√
λθ(j))2 =

∫
|λθ − λθ(j) |2

(
√
λθ +

√
λθ(j))2

≤ 1
4δ

√
r

‖λθ − λθ(j)‖2
2 = ζ

√
r

16δn ≤ 1
n
.

Consequently, with Lemma A.3 it follows

H2(Pθ,Pθ(j)) ≤
n∑

i=1
H2(PNi

θ ,PNi

θ(j)) ≤ 1.

Thus, the relation ρ(Pθ,Pθ(j)) = 1 − 1
2H

2(Pθ,Pθ(j)) implies ρ(Pθ,Pθ(j)) ≥ 1
2 . Finally, putting the

obtained estimates into the reduction scheme (3.3) leads to

sup
λ∈Λr

γ

E[‖λ̃− λ‖2] ≥ 1
22k∗

n+1

∑
θ∈{±1}2k∗

n+1

∑
0≤|j|≤k∗

n

1
2
{
Eθ[|[λ̃− λθ]j |2] + Eθ(j) [|[λ̃− λθ(j) ]j |2]

}
≥

∑
0≤|j|≤k∗

n

1
16 |[λθ − λθ(j) ]j |2 = ζr

64
∑

0≤|j|≤k∗
n

1
n

≥ ζr

64η · Ψn,

which finishes the proof of the theorem since λ̃ was arbitrary.

As a direct consequence of the lower bound and Proposition 3.2, we obtain that the estimator
λ̂k∗

n
is rate optimal under the assumptions stated in Proposition 3.2 and Theorem 3.3.

Remark 3.4. The proof of Theorem 3.3 is inspired by the proof of Theorem 2.1 in [JS13a] expanded
with the essential ingredient that the Hellinger distance between two PPPs is bounded by the
Hellinger distance of the corresponding intensity measures (see Theorem A.8). As in [JS13a],
the mild assumption (C1) on the convergence of the series

∑
j∈Z γ

−1
j is needed only in order to

guarantee the non-negativity of the candidate intensities considered in the proof.

Remark 3.5. The lower bound proof given above supplements the lower bound result in [RB03].
Note that the result in [RB03] cannot be applied for ellipsoids defined in terms of the trigonometric
basis that we consider here.

30



3.3. Adaptive estimation

3.2.3. Examples of convergence rates
Example 3.6 (Sobolev ellipsoids). Let γ0 = 1, γj = |j|2p for j 6= 0. Then, Assumption 3.1 is
satisfied and elementary computations show that k∗

n � n
1

2p+1 as well as Ψn � n− 2p
2p+1 . Furthermore,

the additional conditions of Theorem 3.3 are satisfied if p > 1
2 .

Example 3.7 (Analytic functions). Let γj = exp(2β|j|) for j ∈ Z for some β > 0. Assumption 3.1
is also fulfilled in this case and we obtain k∗

n � logn and Ψn � log n
n . The additional assumptions

of Theorem 3.3 do not impose any additional restriction on p.

Example 3.8 (Generalized analytic functions). Let γj = exp(2β|j|p) for β, p > 0. Assumption 3.1
is satisfied in this case and there are no additional restrictions on p due to Theorem 3.3. We have

k∗
n � (logn)

1
p resulting in the rate Ψn � (log n)

1
p

n .

3.3. Adaptive estimation
The definition of k∗

n in Proposition 3.2 depends on the sequence γ and hence on smoothness
characteristics of the functional parameter to be estimated. Thus, the estimator λ̂k∗

n
is not adaptive.

In the following, we propose a selection rule for the dimension parameter k ∈ N0 that is fully data-
driven and does not depend on any structural pre-assumptions on λ. In order to realize this plan,
we follow the model selection paradigm sketched already in the introduction and define the contrast
function

Υn(t) := ‖t‖2 − 2〈λ̂n, t〉, t ∈ L2

where for s, t ∈ L2 the standard scalar product is given by 〈s, t〉 =
∫ 1

0 s(x)t(x)dx. In addition,
define the random sequence of penalties (Penk)k∈N0 via

Penk := 12η−1 · ([̂λ]0 ∨ 1) · 2k + 1
n

for some tuning parameter η ∈ (0, 1). The dependence of the estimator on the parameter η will be
suppressed for the sake of convenience from now on. Building on the definitions made up to now,
the data-driven selection of the dimension parameter is defined as a minimizer of the penalized
contrast,

k̂n := argmin
0≤k≤n

{Υn(λ̂k) + Penk}.

The following theorem provides a uniform upper risk bound for the adaptive estimator λ̂
k̂
.

Theorem 3.9. Let Assumption 3.1 hold. Then, for any n ∈ N,

sup
λ∈Λr

γ

E[‖λ̂
k̂n

− λ‖2] . min
0≤k≤n

max
{

1
γk
,

2k + 1
n

}
+ 1
n
.

Proof. Let us introduce the event Ω := {η([λ]0 ∨ 1) ≤ [̂λ]0 ∨ 1 ≤ η−1([λ]0 ∨ 1)}, the definition of
which is used to obtain the decomposition

E[‖λ̂
k̂n

− λ‖2] ≤ E[‖λ̂
k̂n

− λ‖21Ω]︸ ︷︷ ︸
=:�

+E[‖λ̂
k̂n

− λ‖21Ωc ]︸ ︷︷ ︸
=:�

.

We establish uniform upper bounds for both terms separately.
Uniform upper bound for �: Since the equation Υn(t) = ‖λ̂n − t‖2 − ‖λ̂n‖2 holds for all t ∈ L2,
we obtain that argmint∈Sk

Υn(t) = λ̂k for all k ∈ {0, . . . , n} where Sk denotes the linear subspace
of L2 generated by the ϕj with j ∈ {−k, . . . , k}. This identity combined with the definition of k̂n
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3. Non-parametric intensity estimation

yields for all k ∈ {0, . . . , n} the inequality chain

Υn(λ̂
k̂n

) + Pen
k̂n

≤ Υn(λ̂k) + Penk ≤ Υn(λk) + Penk,

where λk :=
∑

0≤|j|≤k[λ]jϕj is the projection of λ on the finite-dimensional space Sk. Hence, using
the definition of the contrast, we obtain

‖λ̂
k̂n

‖2 ≤ ‖λk‖2 + 2〈λ̂n, λ̂k̂n
− λk〉 + Penk − Pen

k̂n

for all k ∈ {0, . . . , n}, from which we conclude, setting Θ̂n := λ̂n − λn, that

‖λ̂
k̂n

− λ‖2 ≤ ‖λ− λk‖2 + Penk − Pen
k̂n

+ 2〈Θ̂n, λ̂k̂n
− λk〉 (3.4)

for all k ∈ {0, . . . , n}. Consider the set Bk := {λ ∈ Sk : ‖λ‖2 ≤ 1}. By means of the inequality
2uv ≤ τu2 + τ−1v2, we obtain for every τ > 0 and t̃ ∈ Sk, h ∈ Sn that

2|〈h, t̃〉| ≤ 2 ‖t̃‖ sup
t∈Bk

|〈h, t〉| ≤ τ‖t̃‖2 + τ−1 sup
t∈Bk

|〈h, t〉|2

Combining this estimate with (3.4), we obtain (note that λ̂
k̂n

− λk ∈ S
k∨k̂n

)

‖λ̂
k̂n

− λ‖2 ≤ ‖λ− λk‖2 + Penk − Pen
k̂n

+ τ‖λ̂
k̂n

− λk‖2 + τ−1 sup
t∈B

k∨̂kn

|〈Θ̂n, t〉|2.

We have ‖λ̂
k̂n

− λk‖2 ≤ 2‖λ̂
k̂n

− λ‖2 + 2‖λk − λ‖2 and ‖λ− λk‖2 ≤ rγ−1
k for all λ ∈ Λr

γ thanks to
Assumption 3.1. Hence, specializing with τ = 1/4 implies

‖λ̂
k̂n

− λ‖2 ≤ 3rγ−1
k + 2Penk − 2Pen

k̂n
+ 8 sup

t∈B
k∨̂kn

|〈Θ̂n, t〉|2,

which is used to obtain

‖λ̂
k̂n

− λ‖2 ≤ 3rγ−1
k + 8

 sup
t∈B

k∨̂kn

|〈Θ̂n, t〉|2 − 3([λ]0 ∨ 1) · (2(k ∨ k̂n) + 1)
n


+

+ 24([λ]0 ∨ 1) · (2(k ∨ k̂n) + 1)
n

+ 2Penk − 2Pen
k̂n
.

Note that we have 2(k ∨ k̂n) + 1 ≤ 2k + 2k̂n + 2. Thus, due to the definition of both the penalty
and Ω we obtain

‖λ̂
k̂n

− λ‖2 1Ω ≤

3rγ−1
k + 8

 sup
t∈B

k∨̂kn

|〈Θ̂n, t〉|2 − 3([λ]0 ∨ 1) · (2(k ∨ k̂n) + 1)
n


+

+ 24(1 + η−2)
√
r · 2k + 1

n

}
1Ω.

Since the last estimate holds for all k ∈ {0, . . . , n} and λ ∈ Λr
γ , we obtain

E[‖λ̂
k̂n

− λ‖2 1Ω] ≤ 24
√
r((1 + η−2) +

√
r) min

0≤k≤n
max

{
1
γk
,

2k + 1
n

}
+ 8

n∑
k=0

E

[(
sup
t∈Bk

|〈Θ̂n, t〉|2 − 3([λ]0 ∨ 1)(2k + 1)
n

)
+

]
. (3.5)
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We now apply Lemma 3.11 from Section 3.4 which yields for λ ∈ Λr
γ that

E

[(
sup
t∈Bk

|〈Θ̂n, t〉|2 − 3([λ]0 ∨ 1)(2k + 1)
n

)
+

]

≤ K1

[√
(2k + 1)r
n

exp
(

−K2

√
2k + 1
r

)
+ 2k + 1

n2 exp
(
−K3

√
n
)]
,

where K1, K2 and K3 are numerical constants independent of n. The estimate 2k+ 1 ≤ 3n which
holds for k ∈ {0, . . . , n} implies that

n∑
k=0

[(
sup
t∈Bk

|〈Θ̂n, t〉|2 − 3(2k + 1)[λ]0
n

)
+

]
.

∞∑
k=0

√
2k + 1
n

exp
(

−K2

√
2k + 1
r

)
+ exp(−K3

√
n).

Note that we have
∑∞

k=0
√

2k + 1 exp(−K2
√

(2k + 1)/r) ≤ C for some numerical constant C < ∞.
Thus, plugging the derived estimates into (3.5) and taking into account that all the derived esti-
mates hold uniformly for λ ∈ Λr

γ , we obtain

sup
λ∈Λr

γ

E[‖λ̂
k̂n

− λ‖21Ω] . min
0≤k≤n

max
{

1
γk
,

2k + 1
n

}
+ 1
n

+ exp(−K3
√
n).

Uniform upper bound for �: In order to derive an upper bound for �, first recall the definition
λk :=

∑
0≤|j|≤k[λ]jϕj from above. We obtain the identity

E[‖λ̂
k̂n

− λ‖21Ωc ] = E[‖λ̂
k̂n

− λ
k̂n

‖21Ωc ] + E[‖λ− λ
k̂n

‖21Ωc ]. (3.6)

Since ‖λ − λ
k̂n

‖2 ≤ ‖λ‖2 ≤ r due to Assumption 3.1, the second term on the right-hand side
of (3.6) satisfies

E[‖λ− λ
k̂n

‖21Ωc ] ≤ rP(Ωc) . 1
n
, (3.7)

where the probability estimate for Ωc will be obtained below. In order to bound the first term on
the right-hand side of (3.6), first note that

E[‖λ̂
k̂n

− λ
k̂n

‖21Ωc ] ≤
∑

0≤|j|≤n

E[|[̂λ]j − [λ]j |2 1Ωc ] ≤ P(Ωc)1/2
∑

0≤|j|≤n

E[|[̂λ]j − [λ]j |4]1/2.

Therefrom, by applying Theorem B.1 with p = 4, we can conclude

E[‖λ̂
k̂n

− λ
k̂n

‖21Ωc ] . P (Ωc)1/2
,

and it remains to find a suitable bound for P(Ωc). We have

P(Ωc) = P([̂λ]0 ∨ 1 < η([λ]0 ∨ 1)) + P([̂λ]0 ∨ 1 > η−1([λ]0 ∨ 1)),

and the probabilities on the right-hand side can be bounded by Theorem B.2. More precisely, we
have

P([̂λ]0 ∨ 1 < η([λ]0 ∨ 1)) ≤ exp(−ω1(η)n), and

P([̂λ]0 ∨ 1 > η−1([λ]0 ∨ 1)) ≤ exp(−ω2(η)n)

with ω1(η) = 1 − η + η log η > 0 and ω2(η) = 1 − η−1 − η−1 log η > 0 for all η ∈ (0, 1). Hence,
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3. Non-parametric intensity estimation

putting together the estimates derived so far, we obtain

E[‖λ̂
k̂n

− λ
k̂n

‖21Ωc ] . 1
n
. (3.8)

Putting the estimates (3.7) and (3.8) into (3.6), and again taking into account that all the estimates
hold uniformly for λ ∈ Λr

γ yields

sup
λ∈Λr

γ

E[‖λ̂
k̂n

− λ‖21Ωc ] . 1
n
.

Combining the derived uniform bounds for � and � implies the statement of the theorem.

Remark 3.10. The penalty term used in the definition of k̂n is non-deterministic which is in
contrast to penalty terms usually used in density estimation or density deconvolution problems.
The need for randomization is due to the factor [λ]0 in the definition of H in Lemma 3.11. If r (but
not γ) was known, one could proceed without randomization by choosing the penalty proportional
to

√
r(2k + 1)/n. However, the factor

√
r in this definition cannot be replaced by an estimate of√

r because a reasonable estimator of
√
r is not reachable from the data. Note that the penalty

terms considered in [RB03] in a point process framework contain a similar random proportionality
constant.

The adaptive estimator λ̂
k̂n

attains the rate Ψn if and only if min0≤k≤n max{ 1
γk
, 2k+1

n } has the
same order as Ψn. Since under Assumption 3.1 it holds that k∗

n . n, we immediately obtain that
the estimator λ̂

k̂n
is rate optimal over the class Λr

γ . In particular, the estimator λ̂
k̂n

is rate optimal
in the framework of Examples 3.6, 3.7 and 3.8 where k∗

n � n
1

2p+1 , k∗
n � logn, and k∗

n � (logn)1/p,
respectively.

3.4. An auxiliary result
The following lemma is a version of Lemma A4 in [JS13a] adapted to our framework. In that
paper, a circular deconvolution model was considered and the same way Lemma A4 in [JS13a] is
obtained from a variant of Proposition 2.13 in a non-point-process framework (see Lemma B.4,
Lemma A3 in [JS13a] or Lemma 1 in [CRT06]), the key ingredient for the proof of the following
Lemma 3.11 is Proposition 2.13.

Lemma 3.11. For all k ∈ {0, . . . , n}, we have

E

[(
sup
t∈Bk

|〈Θ̂n, t〉|2 − 3([λ]0 ∨ 1)(2k + 1)
n

)
+

]

≤ K1

{√
2k + 1 ‖λ‖

n
exp

(
−K2 ·

√
2k + 1
‖λ‖

)
+ 2k + 1

n2 exp
(
−K3

√
n
)}

,

with strictly positive numerical constants K1, K2, and K3.

Proof. For t ∈ Sk, we define the function rt by rt :=
∑k

j=−k[t]jϕj . Then, it is readily verified
that 〈Θ̂n, t〉 = 1

n

∑n
i=1{

∫ 1
0 rt(x)dNi(x) −

∫ 1
0 rt(x)λ(x)dx}. Hence, building on this definition of rt,

it remains to find constants M1, H and υ satisfying the preconditions of Proposition 2.13.
Condition concerning M1: We have

sup
t∈Bk

‖rt‖2
∞ = sup

t∈Bk

sup
y∈[0,1)

|rt(y)|2 ≤ sup
t∈Bk

sup
y∈[0,1)

 ∑
0≤|j|≤k

|[t]j ||ϕj(y)|

2
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≤ sup
t∈Bk

sup
y∈[0,1)

 ∑
0≤|j|≤k

|[t]j |2
 ∑

0≤|j|≤k

ϕ2
j (y)


≤ 2k + 1 =: M2

1 .

Condition concerning H: We have

E[ sup
t∈Bk

|〈Θ̂n, t〉|2] ≤ sup
t∈Bk

 ∑
0≤|j|≤k

|[t]j |2
 · E

 ∑
0≤|j|≤k

∣∣∣∣ 1n
n∑

i=1

{∫ 1

0
ϕj(x)[dNi(x) − dΛi(x)]

} ∣∣∣∣2


≤ 1
n

∑
0≤|j|≤k

Var
(∫ 1

0
ϕj(x)dN1(x)

)

≤ 1
n

∑
0≤|j|≤k

∫ 1

0
ϕ2

j (x)λ(x)dx

≤ 2k + 1
n

· ([λ]0 ∨ 1),

and it follows from Jensen’s inequality that we can choose H := (([λ]0 ∨ 1) · (2k + 1)/n)1/2.
Condition concerning υ: We have

Var
(∫ 1

0
rt(x)dN1(x)

)
=
∫ 1

0
|rt(x)|2λ(x)dx. (3.9)

Define ej(t) = exp(2πijt) and set 〈λ〉j =
∫ 1

0 λ(t)ej(−t)dt using which the identity λ =
∑

j∈Z〈λ〉jej

holds. We have

|rt(x)|2 =
〈 ∑

0≤|i|≤k

〈t〉iei(x),
∑

0≤|j|≤k

〈t〉jej(x)
〉
C

=
∑

0≤|i|≤k

∑
0≤|j|≤k

〈t〉i〈t〉jei(x)e−j(x),

and thus by means of (3.9) that Var(
∫ 1

0 rt(x)dN1(x)) =
∑

0≤|i|≤k

∑
0≤|j|≤k〈t〉i〈t〉j〈λ〉j−i. It follows

that
sup
t∈Bk

Var
(∫ 1

0
rt(x)dN1(x)

)
= sup

t∈Bk

〈At, t〉C2k+1

where for t ∈ Bk we denote by t the vector (〈t〉−k, . . . , 〈t〉k) and by A the positive semi-definite
matrix A = (〈λ〉i−j)i,j=−k,...,k. Hence,

sup
t∈Bk

Var
(∫ 1

0
rt(x)dN1(x)

)
= sup

t∈Bk

〈A1/2t, A1/2t〉C2k+1 = sup
t∈Bk

‖A1/2t‖2 = ‖A‖op.

In order to bound ‖A‖op, recall for an arbitrary matrix B = (bij) the definitions

‖B‖1 := max
j

∑
i

|bij | and ‖B‖∞ := max
i

∑
j

|bij |.

Note that by the Cauchy-Schwarz inequality we have both ‖A‖1 ≤
√

2k + 1‖λ‖ and ‖A‖∞ ≤√
2k + 1‖λ‖ and hence by the formula ‖A‖op ≤

√
‖A‖1 · ‖A‖∞ (see Corollary 2.3.2 in [GVL96])

we obtain ‖A‖op ≤
√

2k + 1 · ‖λ‖. Thus, we can choose υ =
√

2k + 1 · ‖λ‖ · ([λ]0 ∨ 1).
The claim assertion of the lemma follows now directly from Proposition 2.13 taking ε = 1

4 .
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4. Non-parametric inverse intensity estimation

This chapter is devoted to the problem of estimating the intensity of a PPP from indirect ob-
servations. This means that, in contrast to the previous chapter, we do not have direct access
to realizations of the point process of interest but only to a noisy version. We assume that the
observations take on the general form

Ni =
∑

j

δyij

where δ• denotes the Dirac measure concentrated at •. More precisely, we assume that a generic
observation N is related to the target intensity by the relation

yij = xij + εij − bxij + εijc (4.1)

where Ñi =
∑

j δxij
is the realization of a PPP with the target intensity function λ ∈ L2 :=

L2([0, 1), dx) (in this chapter, we consider L2([0, 1), dx) as the space of square-integrable complex-
valued functions on [0, 1)) and εij is additive error. As already mentioned in the introduction of
this thesis, concerning the relationship between the Ñi and the Ni, we distinguish between the
following two models:

1. the errors εij in (4.1) are i.i.d. ∼ f for some unknown density function f . From now on, we
refer to this model as model 1 or the model with Poisson observations.

2. the errors εij satisfy εij ≡ εi ∼ f , that is, all the single points from the hidden point processes
Ñi are shifted by the same amount modulo 1. We refer to this model as model 2 or the model
with Cox process observations.

Let us consider the models 1 and 2 in a more detailed way.

Model 1: Poisson observations

In the first model, we assume that the observed point processes are generated from the hidden
point processes Ñi by addition of i.i.d. errors εij ∼ f to all the single points of the Ñi and then
taking the fractional part of the shifted points. This model assumption results in the following
random measure representation of the observations:

Ni =
∑

j

δxij+εij−bxij+εijc.

Under the given assumption on the additive errors εij , the observable point processes Ni are again
Poisson. More precisely, the intensity function ` of the Ni is given by the circular convolution
` = λ ? f of the intensity λ with the error density f modulo 1:

`(t) :=
∫ 1

0
λ((t− ε) − bt− εc)f(ε)dε, t ∈ [0, 1). (4.2)

From Campbell’s theorem (see Theorem 1.14) it can be deduced that for all integrable functions
g : [0, 1) → C, we have

E
[∫ 1

0
g(t)dNi(t)

]
=
∫ 1

0
g(t)`(t)dt. (4.3)
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Let {ej}j∈Z be the complex trigonometric basis of L2 where ej(t) := exp(2πijt). For j ∈ Z, denote
with

[`]j :=
∫ 1

0
`(t)ej(−t)dt, [λ]j :=

∫ 1

0
λ(t)ej(−t)dt, [f ]j :=

∫ 1

0
f(t)ej(−t)dt

the Fourier coefficients of `, λ and f , respectively1. Setting

[̂`]j := 1
n

n∑
i=1

∫ 1

0
ej(−t)dNi(t), (4.4)

applying the convolution theorem and exploiting (4.3), we obtain that

E[̂`]j = [λ]j [f ]j for all j ∈ Z.

More precisely, we have
[̂`]j = [λ]j [f ]j + ξj for all j ∈ Z (4.5)

with centred random variables

ξj = [̂`]j − E[̂`]j = 1
n

n∑
i=1

[∫ 1

0
ej(−t)dNi(t) −

∫ 1

0
ej(−t)`(t)dt

]
.

Model 2: Cox observations

In the second model, we assume that all the points of the hidden point process Ñi are shifted by
the same amount εi ∼ f . Hence, the random measure representation of the observations reads

Ni =
∑

j

δxij+εi−bxij+εic. (4.6)

However, we assume that the errors ε1, . . . , εn are mutually independent. This model has already
been intensively considered in [Big+13]. Under the given assumptions, the observed point processes
Ni are not Poisson in general but only Cox processes. This fact becomes evident from the following
two-step procedure for the generation of observations under model 2: in the first step, random shifts
εi ∼ f are generated. In the second step, conditionally on the εi, the Ni are drawn as independent
realizations of a PPP on [0, 1) whose intensity function is λ(t− εi − bt− εic), respectively. Thus,
in this second model, the observations follow the distribution of a Cox process which is directed
by the random measure with random intensity λ(t− ε− bt− εc) for ε ∼ f .

We now derive a sequence space representation of the model with Cox observations similar to
the Poisson case. First, notice that for i = 1, . . . , n and integrable functions g we have

E
[∫ 1

0
g(t)dNi(t) | εi

]
=
∫ 1

0
g(t)λ(t− εi − bt− εic)dt

which implies

E
[∫ 1

0
g(t)dNi(t)

]
=
∫ 1

0
g(t)

∫ 1

0
λ(t− ε− bt− εc)f(ε)dεdt =

∫ 1

0
g(t)`(t)dt,

where ` = λ ? f denotes the circular convolution of the function λ and the density f defined as
in (4.2). Thus, the mean measure of a generic realization N obeying model 2 has the Radon-
Nikodym derivative ` with respect to the Lebesgue measure. Note that the mean measures of the
observed point processes under models 1 and 2 coincide, but the observations in model 2 stem from

1Since only the effect of the errors εij modulo Z is of interest, one can assume without loss of generality that f is
supported on [0, 1].
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4.1. Methodology: Orthonormal series estimator of the intensity

a Cox instead of a Poisson process. With [̂`]j defined as in (4.4) the relation

E[[̂`]j | ε1, . . . , εn] = [λ]j · [̃f ]j

holds where [̃f ]j := 1
n

∑n
i=1 ej(−εi). Thus, we get the following representation as a sequence space

model (cf. Equation (2.4) in [Big+13]):

[̂`]j = [λ]j · [̃f ]j + ξj for all j ∈ Z (4.7)

where ξj := 1
n

∑n
i=1[

∫ 1
0 ej(−t)dNi(t)−

∫ 1
0 ej(−t)λ(t−εi −bt−εic)dt] are centred random variables

for all j ∈ Z. The connection between the sequence space model at hand and the standard sequence
space model formulation for statistical linear inverse problems is discussed in detail in Section 2.1
of [Big+13].

Observation scheme

Estimation of the intensity λ under model 2 has been investigated in detail in [Big+13] under the
assumption that the error density is known and its Fourier coefficients obey a polynomial decay.
In this setup, the authors proved a minimax lower bound and proposed a wavelet-series estimator
which automatically adapts to unknown smoothness. Contrary to this, we will assume that the
error density f is unknown. Instead, we assume that one can observe an additional independent
sample Y1, . . . , Ym from the error density f . This second sample only makes inference possible,
and its availability ensures identifiability of the model under certain assumptions on f . Thus, our
complete set of observations is given by

N1, . . . , Nn i.i.d. ∼ L(N) and Y1, . . . , Ym i.i.d. ∼ f (4.8)

where N is a generic realization of the observed point process under one of the considered models.

4.1. Methodology: Orthonormal series estimator of the intensity
As in the previous chapter, we use an orthonormal series estimator as a natural device for the non-
parametric estimation of λ. In contrast to Chapter 3, we consider an orthonormal series estimator
in terms of the complex trigonometric basis {ej}j∈Z where ej(t) := exp(2πijt). This basis was
already considered in the derivation of the sequence space representations (4.5) and (4.7) above.
The considered estimators take on the form

λ̂k =
∑

0≤|j|≤k

[̂λ]jej

where [̂λ]j is a suitable estimator of [λ]j and k ∈ N0 is a dimension parameter that has to be
chosen appropriately. In view of equations (4.5) and (4.7), it seems natural to estimate [λ]j via
the quotient of suitable estimators [̂`]j and [̂f ]j of [`]j and [f ]j , respectively. Note that neither of
the quantities [`]j and [f ]j is known a priori. However, unbiased estimators of [`]j and [f ]j are
available by means of their empirical counterparts

[̂`]j := 1
n

n∑
i=1

∫ 1

0
ej(−t)dNi(t) and [̂f ]j := 1

m

m∑
i=1

ej(−Yi).

In order to account for ’too small’ absolute values of [̂f ]j which would result in unstable be-
haviour of the estimator, we insert an additional threshold by defining for j ∈ Z the event
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4. Non-parametric inverse intensity estimation

Ωj := {|[̂f ]j |2 ≥ m−1} and based on the definition of Ωj the final estimator

λ̂k :=
∑

0≤|j|≤k

[̂`]j
[̂f ]j

1Ωj
ej . (4.9)

The idea of adding the indicator 1Ωj
is taken from [NH97], and has been used for the construction

of a variety of non-parametric estimators in statistical inverse problems (see, for instance, [JS13a],
[JS13b]). As in the case of direct observations, the choice of the tuning parameter k ∈ N0 crucially
determines the performance of the estimator.

4.2. Minimax theory

Let us first consider the estimation of λ ∈ L2 under models 1 and 2 from the observations in (4.8)
taking on a minimax point of view. For some strictly positive sequence ω = (ωj)j∈Z of weights,
introduce the weighted squared norm ‖ · ‖2

ω defined via

‖g‖2
ω :=

∑
j∈Z

ωj |[g]j |2

for all g ∈ L2 such that the sum in the definition is finite. The performance of an arbitrary
estimator λ̃ of λ will be evaluated by means of the maximum risk

sup
λ∈Λ

sup
f∈F

E[‖λ̃− λ‖2
ω]

for appropriately defined classes Λ of intensities and F of error densities. Note that in this chapter
the supremum is taken both over a class of intensities and a class of error densities. Again, the
benchmark for potential estimators is the minimax risk

inf
λ̃

sup
λ∈Λ

sup
f∈F

E[‖λ̃− λ‖2
ω]

where the infimum is taken over all estimators λ̃ of λ based on the observations in (4.8). In the
following, we consider abstract smoothness classes Λ = Λr

γ and F = Fd
α defined in terms of strictly

positive symmetric sequences γ = (γj)j∈Z, α = (αj)j∈Z, and real numbers r > 0, d ≥ 1. More
precisely, we will derive minimax results under the assumption that the intensity λ is an element
of the ellipsoid

Λr
γ := {λ ∈ L2 : λ ≥ 0 and ‖λ‖2

γ :=
∑
j∈Z

γj |[λ]j |2 ≤ r},

and the error density f belongs to the hyperrectangle

Fd
α := {f ∈ L2 : f ≥ 0, [f ]0 = 1 and d−1 ≤ |[f ]j |2/αj ≤ d ∀j ∈ Z}.

The mild regularity assumptions which we impose on the sequences ω, γ, and α to obtain our
results are summarized in the following assumption.

Assumption 4.1. γ, ω and α are strictly positive symmetric sequences such that (ωnγ
−1
n )n∈N0 and

(αn)n∈N0 are non-increasing and ρ :=
∑

j∈Z αj < ∞. In addition, γ0 = ω0 = α0 = 1 and γj ≥ 1
for all j ∈ Z.
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4.2. Minimax theory

4.2.1. Upper bounds
We start our investigation with the derivation of upper bounds for the minimax risk under models 1
and 2. The bounds will turn out to be essentially the same and differ merely with respect to the
numerical constants involved. They are established by considering a suitable estimator which is
defined by specializing the orthonormal series estimator λ̂k in (4.9) with some specific choice of
the dimension parameter k. This choice of the dimension parameter will be the same for both
models 1 and 2. Given the sequences ω, γ and α, we put

k∗
n := argmin

k∈N0

max

ωk

γk
,
∑

0≤|j|≤k

ωj

nαj

 , (4.10)

and, in addition,

Ψn := max

ωk∗
n

γk∗
n

,
∑

0≤|j|≤k∗
n

ωj

nαj

 . (4.11)

The quantity Ψn will turn out to be the optimal rate of convergence in terms of the sample size
n under mild assumptions and k∗

n is the corresponding optimal choice of the dimension parameter
which remarkably does not depend on the sample size m. Note that, formally, the definition of
Ψn in Chapter 3 corresponds to the one in (4.11) with ωj = αj = 1 for all j ∈ Z. The rate of
convergence in terms of the sample size m will turn out to be given by

Φm := max
j∈N

{
ωj

γj
· min

{
1, 1
mαj

}}
. (4.12)

Theorem 4.2. Let Assumption 4.1 hold and further assume that the samples N1, . . . , Nn and
Y1, . . . , Ym in (4.8) are drawn in accordance with model 1 or 2. Then, for any n,m ∈ N,

sup
λ∈Λr

γ

sup
f∈Fd

α

E[‖λ̂k∗
n

− λ‖2
ω] . Ψn + Φm.

Proof. We give the proof for model 1 only. The proof for model 2 follows in complete analogy
by exploiting statement ii) instead of i) in part a) of Lemma 4.15 and leads to slightly different
numerical constants only.

Set λ̃k∗
n

:=
∑

0≤|j|≤k∗
n
[λ]j1Ωj

ej . The proof consists in finding appropriate upper bounds for the
quantities � and 4 in the estimate

E[‖λ̂k∗
n

− λ‖2
ω] ≤ 2E[‖λ̂k∗

n
− λ̃k∗

n
‖2

ω] + 2E[‖λ− λ̃k∗
n
‖2

ω] =: 2� + 24. (4.13)

Uniform upper bound for �: Using the identity E[̂`]j = [f ]j [λ]j we obtain

� =
∑

0≤|j|≤k∗
n

ωj E[|[̂`]j/[̂f ]j − [λ]j |21Ωj
]

≤ 2
∑

0≤|j|≤k∗
n

ωj E[|[̂`]j/[̂f ]j − E[̂`]j/[̂f ]j |2 1Ωj
] + 2

∑
0≤|j|≤k∗

n

ωj |[λ]j |2 E[|[f ]j/[̂f ]j − 1|2 1Ωj
]

=: 2�1 + 2�2.

Using the estimate |a|2 ≤ 2 |a− 1|2 +2 for a = [f ]j/[̂f ]j , the definition of Ωj and the independence
of [̂`]j and [̂f ]j we get

�1 =
∑

0≤|j|≤k∗
n

ωj E

[
|[̂`]j/[̂f ]j − E[̂`]j/[̂f ]j |2 ·

∣∣∣∣ [f ]j
[f ]j

∣∣∣∣2 1Ωj

]
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4. Non-parametric inverse intensity estimation

≤ 2
∑

0≤|j|≤k∗
n

mωj

Var([̂`]j) Var([̂f ]j)
|[f ]j |2

+ 2
∑

0≤|j|≤k∗
n

ωj

Var([̂`]j)
|[f ]j |2

.

Applying statements a) and b) from Lemma 4.15 together with f ∈ Fd
α yields

�1 ≤ 4d
∑

0≤|j|≤k∗
n

ωj
[λ]0
nαj

which using γ0 = 1 (which holds due to Assumption 4.1) implies

�1 ≤ 4d
√
r

∑
0≤|j|≤k∗

n

ωj

nαj
≤ 4d

√
r · Ψn.

Now consider �2. Using the estimate |a|2 ≤ 2 |a− 1|2 + 2 for a = [f ]j/[̂f ]j and the definition of
Ωj yields

E[|[f ]j/[̂f ]j − 1|2 1Ωj
] ≤ 2m

E[|[̂f ]j − [f ]j |4]
|[f ]j |2

+ 2
Var([̂f ]j)

|[f ]j |2
.

Notice that Theorem B.1 implies the existence of a constant C > 0 (independent of j) with
E[|[̂f ]j − [f ]j |4] ≤ C/m2. Using this inequality in combination with assertion b) from Lemma 4.15
and f ∈ Fd

α implies
E[|[f ]j/[̂f ]j − 1|2 1Ωj

] ≤ 2d(C + 1)/(mαj). (4.14)

In addition, E[|[f ]j/[̂f ]j − 1|21Ωj
] ≤ mVar([̂f ]j) ≤ 1 which in combination with (4.14) implies

�2 ≤ 2d(C + 1)
∑

0≤|j|≤k∗
n

ωj |[λ]j |2 min
(

1, 1
mαj

)
.

Exploiting the fact that λ ∈ Λr
γ and the definition of Φm in (4.12) we obtain

�2 ≤ 2dr(C + 1)(1 + γ1/ω1) · Φm.

Putting together the estimates for �1 and �2 yields

� ≤ 8d
√
r · Ψn + 4d(C + 1)(1 + γ1/ω1)r · Φm.

Uniform upper bound for 4: 4 can be decomposed as

4 =
∑
j∈Z

ωj |[λ]j |2 E[1 − 1{0≤|j|≤k∗
n} · 1Ωj

] =
∑

|j|>k∗
n

ωj |[λ]j |2 +
∑

0≤|j|≤k∗
n

ωj |[λ]j |2 · P(Ωc
j)

= 41 + 42.

λ ∈ Λr
γ implies 41 ≤ rωk∗

n
/γk∗

n
≤ r · Ψn, and Lemma 4.15 yields the estimate 42 ≤ 4dr · Φm which

together imply that 4 ≤ r · Ψn + 4dr · Φm. Putting the obtained estimates for � and 4 into (4.13)
finishes the proof of the theorem.

4.2.2. Lower bounds
In this section, we derive a lower bound for the minimax risk under model 1. For this purpose,
we provide lower bounds in terms of the sample sizes n and m in (4.8), separately. The following
theorem shows that the quantity Ψn is a lower bound for the minimax risk up to a multiplicative
numerical constant.
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Theorem 4.3 (Lower bound in n for model 1). Let Assumption 4.1 hold and further assume that

(C1) Γ :=
∑

j∈Z γ
−1
j < ∞, and

(C2) 0 < η−1 := infn∈N Ψ−1
n · min

{
ωk∗

n

γk∗
n

,
∑

0≤|j|≤k∗
n

ωj

nαj

}
for some 1 ≤ η < ∞

where the quantities k∗
n and Ψn are defined in (4.10) and (4.11), respectively. Then, for any n ∈ N,

inf
λ̃

sup
λ∈Λr

γ

sup
f∈Fd

α

E[‖λ̃− λ‖2
ω] ≥ ζr

16η · Ψn

where ζ = min{ 1
2dΓη ,

2δ
d

√
r
} with δ = 1

2 − 1
2

√
2 and the infimum is taken over all estimators λ̃ of λ

based on the observations from (4.8) under model 1.

Proof. Let us define ζ as in the statement of the theorem and for each θ = (θj)0≤j≤k∗
n

∈ {±1}k∗
n+1

the function λθ through

λθ :=
(r

4

)1/2
+ θ0

(
rζ

4n

)1/2
+
(
rζ

4n

)1/2 ∑
1≤|j|≤k∗

n

θ|j|α
−1/2
j ej

=
(r

4

)1/2
+
(
rζ

4n

)1/2 ∑
0≤|j|≤k∗

n

θ|j|α
−1/2
j ej .

Then each λθ is a real-valued function which is non-negative thanks to the estimate∥∥∥∥∥∥
(
rζ

4n

)1/2 ∑
0≤|j|≤k∗

n

θ|j|α
−1/2
j ej

∥∥∥∥∥∥
∞

≤
(
rζ

4n

)1/2 ∑
0≤|j|≤k∗

n

α
−1/2
j

≤
(
rζ

4

)1/2
 ∑

0≤|j|≤k∗
n

γ−1
j

1/2 ∑
0≤|j|≤k∗

n

γj

nαj

1/2

≤
(
rζΓ
4

)1/2
 γk∗

n

ωk∗
n

∑
0≤|j|≤k∗

n

ωj

nαj

1/2

≤
(
rζηΓ

4

)1/2
≤
(r

4

)1/2
.

Moreover ‖λθ‖2
γ ≤ r holds for each θ ∈ {±1}k∗

n+1 due to the estimate

‖λθ‖2
γ =

∑
0≤|j|≤k∗

n

|[λθ]j |2 γj =
[(r

4

)1/2
+ θ0

(
rζ

4n

)1/2
]2

+ rζ

4
∑

1≤|j|≤k∗
n

γj

nαj

≤ r

2 + rζ

2n + rζ

4 ·
γk∗

n

ωk∗
n

∑
1≤|j|≤k∗

n

ωj

nαj

≤ r

2 + rζ

2 ·
γk∗

n

ωk∗
n

∑
0≤|j|≤k∗

n

ωj

nαj
≤ r.

This estimate and the non-negativity of λθ together imply λθ ∈ Λr
γ for all θ ∈ {±1}k∗

n+1. From now
on let f ∈ Fd

α be fixed and let Pθ denote the joint distribution of the i.i.d. samples N1, . . . , Nn and
Y1, . . . , Ym when the true parameters are λθ and f , respectively. Let PNi

θ denote the corresponding
one-dimensional marginal distributions and Eθ the expectation with respect to Pθ. Let λ̃ be an
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arbitrary estimator of λ. The key argument of the proof is the following reduction scheme:

sup
λ∈Λr

γ

sup
f∈Fd

α

E[‖λ̃− λ‖2
ω] ≥ sup

θ∈{±1}k∗
n+1

Eθ[‖λ̃− λθ‖2
ω] ≥ 1

2k∗
n+1

∑
θ∈{±1}k∗

n+1

Eθ[‖λ̃− λθ‖2
ω]

= 1
2k∗

n+1

∑
θ∈{±1}k∗

n+1

∑
0≤|j|≤k∗

n

ωj Eθ[|[λ̃− λθ]j |2]

= 1
2k∗

n+1

∑
0≤|j|≤k∗

n

ωj

2
∑

θ∈{±1}k∗
n+1

{Eθ[|[λ̃− λθ]j |2] + Eθ(j) [|[λ̃− λθ(|j|) ]j |2]} (4.15)

where for θ ∈ {±1}k∗
n+1 and j ∈ {−k∗

n, . . . , k
∗
n} the element θ(|j|) ∈ {±1}k∗

n+1 is defined by θ(|j|)
k =

θk for k 6= |j| and θ
(|j|)
|j| = −θ|j|. Consider the Hellinger affinity ρ(Pθ,Pθ(|j|)) :=

∫ √
dPθdPθ(|j|) .

For an arbitrary estimator λ̃ of λ we have

ρ(Pθ,Pθ(|j|)) ≤
∫

|[λ̃− λθ]j |
|[λθ − λθ(|j|) ]j |

√
dPθdPθ(|j|) +

∫
|[λ̃− λθ(|j|) ]j |
|[λθ − λθ(|j|) ]j |

√
dPθdPθ(|j|)

≤

(∫
|[λ̃− λθ]j |2

|[λθ − λθ(|j|) ]j |2
dPθ

)1/2

+
(∫

|[λ̃− λθ(|j|) ]j |2

|[λθ − λθ(|j|) ]j |2
dPθ(|j|)

)1/2

from which we conclude by means of the elementary inequality (a+ b)2 ≤ 2a2 + 2b2 that

1
2 |[λθ − λθ(|j|) ]j |2ρ2(Pθ,Pθ(|j|)) ≤ Eθ[|[λ̃− λθ]j |2] + Eθ(|j|) [|[λ̃− λθ(|j|) ]j |2].

Recall the definition of the Hellinger distance between two probability measures P and Q as
H(P,Q) := (

∫
[
√
dP −

√
dQ]2)1/2 and, analogously, the Hellinger distance between two finite mea-

sures ν and µ (that not necessarily have total mass equal to one) by H(ν, µ) := (
∫

[
√
dν−

√
dµ]2)1/2

(as usual, the integral is formed with respect to any measure dominating both ν and µ). Let νθ

denote the intensity measure of a PPP N on [0, 1) whose Radon-Nikodym derivative with respect
to the Lebesgue measure is given by `θ := λθ ? f . Note that we have the estimate `θ ≥ δ

√
r for all

θ ∈ {±1}k∗
n+1 with δ = 1

2 − 1
2

√
2 due to

(
rζ

4n

)1/2
+

∑
1≤|j|≤k∗

n

|[λθ]j · [f ]j | ≤
(
rdζ

4n

)1/2 ∑
0≤|j|≤k∗

n

α
−1/2
j ≤

√
r

2
√

2

which can be realized in analogy to the non-negativity of λθ shown above. We obtain

H2(νθ, νθ(|j|)) =
∫

(
√
`θ −

√
`θ(|j|))2 =

∫
|`θ − `θ(|j|) |2

(
√
`θ +

√
`θ(|j|))2

≤ ‖`θ − `θ(|j|)‖2

4δ
√
r

= ζd
√
r

4δn ≤ 1
n
.

Since the distribution of the sample Y1, . . . , Ym does not depend on the choice of θ we obtain

H2(Pθ,Pθ(|j|)) ≤
n∑

i=1
H2(PNi

θ ,PNi

θ(|j|)) ≤
n∑

i=1
H2(νθ, νθ(|j|)) ≤ 1, (4.16)

where the first estimate follows from Lemma A.3 and the second one is due to Theorem A.8 (ii)
which can be applied since each Ni is a PPP under model 1. Thus, the relation ρ(Pθ,Pθ(|j|)) =
1 − 1

2H
2(Pθ,Pθ(|j|)) implies ρ(Pθ,Pθ(|j|)) ≥ 1

2 . Finally, putting the obtained estimates into the
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reduction scheme (4.15) leads to

sup
λ∈Λr

γ

sup
f∈Fd

α

E[‖λ̃− λ‖2
ω] ≥ 1

2k∗
n+1

∑
θ∈{±1}k∗

n+1

∑
0≤|j|≤k∗

n

ωj

2 {Eθ[|[λ̃− λθ]j |2] + Eθ(|j|) [|[λ̃− λθ(|j|) ]j |2]}

≥
∑

0≤|j|≤k∗
n

ωj

16 |[λθ − λθ(|j|) ]j |2 = ζr

16
∑

0≤|j|≤k∗
n

ωj

nαj
≥ ζr

16η · Ψn

which finishes the proof of the theorem since λ̃ was arbitrary.

Let us state some remarks concerning Theorem 4.3: firstly, the lower bound proportional to
Ψn holds already in case of a known error density because only one fixed error density f ∈ Fd

α is
considered in the proof of Theorem 4.3. Secondly, assuming the convergence of the series

∑
j∈Z γ

−1
j

through condition (C1) is necessary only in order to establish the non-negativity of the candidate
intensity functions λθ. The same condition appeared already in the lower bound proof in the setup
with direct observations (cf. Theorem 3.3 in Chapter 3). Thirdly, in the uninteresting case that r
equals 0 (which we have excluded from our investigation by assuming that r is strictly positive),
the lower bound equals 0 as well because in this case the only admissible intensity function is the
zero function. This is in accordance with the fact that the estimator λ̂k in (4.9) equals the zero
function almost surely if λ ≡ 0 (independent of the choice of the dimension parameter).

Remark 4.4. Unfortunately, the proof given above cannot be adopted directly to establish a lower
bound for model 2. The crux of the matter here is the second estimate in (4.16) which only holds
for PPPs. Thus, the establishment of such a lower bound in our framework remains an open
question for future work.

We now tackle the question whether the rate Φm of the estimator λk?
n

in terms of the sample
size m is optimal. The following theorem provides an affirmative answer under mild assumptions.

Theorem 4.5. Let Assumption 4.1 hold, and in addition assume that
(C3) there exists a density f in F

√
d

α satisfying f ≥ 1/2.
Then, for any m ∈ N,

inf
λ̃

sup
λ∈Λr

γ

sup
f∈Fd

α

E[‖λ̃− λ‖2
ω] ≥ 1

8

(
1 −

√
3

2

)
ζ2rd−1/2 · Φm

where Φm is defined in (4.12), ζ = min{ 1
4

√
d
, 1−d−1/4} and the infimum is taken over all estimators

λ̃ of λ based on the observations from (4.8) under model 1.

Proof. The following reduction scheme follows along a general strategy that is well-known for
the establishment of lower bounds in non-parametric estimation (for a detailed account cf. [Tsy08],
Chapter 2). Note that by Markov’s inequality we have for an arbitrary estimator λ̃ of λ and
arbitrary A > 0 (which will be specified below)

E[Φ−1
m ‖λ̃− λ‖2

ω] ≥ A · P(‖λ̃− λ‖2
ω ≥ AΦm),

which by reduction to two hypotheses implies

sup
λ∈Λr

γ

sup
f∈Fd

α

E[Φ−1
m ‖λ̃− λ‖2

ω] ≥ A sup
λ∈Λr

γ

sup
f∈Fd

α

P(‖λ̃− λ‖2
ω ≥ AΦm)

≥ A sup
θ∈{±1}

Pθ(‖λ̃− λθ‖2
ω ≥ AΦm)

where Pθ denotes the distribution when the true parameters are λθ and fθ, respectively. The
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specific hypotheses λ1, λ−1 and f1, f−1 will be specified below. If λ−1 and λ1 can be chosen such
that ‖λ1 − λ−1‖2

ω ≥ 4AΦm, application of the triangle inequality yields

Pθ(‖λ̃− λθ‖2
ω ≥ AΦm) ≥ Pθ(τ∗ 6= θ)

where τ∗ denotes the minimum distance test defined through τ∗ = arg minθ∈{±1} ‖λ̃−λθ‖2
ω. Hence,

we obtain

inf
λ̃

sup
λ∈Λr

γ

sup
f∈Fd

α

P(‖λ̃− λ‖2
ω ≥ AΦm) ≥ inf

λ̃

sup
θ∈{±1}

Pθ(‖λ̃− λθ‖2
ω ≥ AΦm)

≥ inf
τ

sup
θ∈{±1}

Pθ (τ 6= θ)

=: p∗ (4.17)

where the infimum is taken over all {±1}-valued functions τ based on the observations. Thus, it
remains to find hypotheses λ1, λ−1 ∈ Λr

γ and f1, f−1 ∈ Fd
α such that

‖λ1 − λ−1‖2
ω ≥ 4AΦm, (4.18)

and which allow us to bound p∗ by a universal constant (independent of m) from below.

For this purpose, set k∗
m := arg maxj∈N{ ωj

γj
min(1, 1

mαj
)} and am := ζ min(1,m−1/2α

−1/2
k∗

m
), where

ζ is defined as in the statement of the theorem. Take note of the inequalities

1/d1/2 = (1 − (1 − 1/d1/4))2 ≤ (1 − am)2 ≤ 1,

and
1 ≤ (1 + am)2 ≤ (1 + (1 − 1/d1/4))2 = (2 − 1/d1/4)2 ≤ d1/2

which in combination imply 1/d1/2 ≤ (1 + θam)2 ≤ d1/2 for θ ∈ {±1}. These inequalities will be
used below without further reference. For θ ∈ {±1}, we define

λθ =
(r

2

)1/2
+ (1 − θam)

(r
8

)1/2
d−1/4 γ

−1/2
k∗

m
(ek∗

m
+ e−k∗

m
).

Note that λθ is real-valued by definition. Furthermore, we have

‖λθ‖2
γ = r

2 + 2γk∗
m

|[λθ]k∗
m

|2 ≤ r

2 + (1 + am)2 r

4d
−1/2 ≤ 3r

4 ,

and
|λθ(t)| ≥

(r
2

)1/2
− 2

(r
8

)1/2
≥ 0 ∀t ∈ [0, 1),

which together imply that λθ ∈ Λr
γ for θ ∈ {±1}. The identity

‖λ1 − λ−1‖2
ω = ra2

md
−1/2ωk∗

m
γ−1

k∗
m

= ζ2rd−1/2 · Φm

shows that the condition in (4.18) is satisfied with A = ζ2r/(4
√
d).

Let f ∈ F
√

d
α be such that f ≥ 1/2 (the existence is guaranteed through condition (C3)) and

define for θ ∈ {±1}
fθ = f + θam([f ]k∗

m
ek∗

m
+ [f ]−k∗

m
e−k∗

m
).

Since k∗
m ≥ 1 we have

∫ 1
0 fθ(x)dx = 1 and fθ ≥ 0 holds because of the estimate

|fθ(t)| ≥ 1/2 − 2amα
1/2
k∗

m
d1/2 ≥ 0 for all t ∈ [0, 1).
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For |j| 6= k∗
m, we have [f ]j = [fθ]j and thus trivially 1/d ≤ |[fθ]j |2/αj ≤ d for |j| 6= k∗

m since
F

√
d

α ⊆ Fd
α. Moreover

1/d ≤ d−1/2 |[f ]±k∗
m

|2

α±k∗
m

≤
(1 + θam)2|[f ]±k∗

m
|2

α±k∗
m

≤ d1/2 |[f ]±k∗
m

|2

α±k∗
m

≤ d

and hence fθ ∈ Fd
α for θ ∈ {±1}.

To obtain a lower bound for p∗ defined in (4.17) consider the joint distribution Pθ of the samples
N1, . . . , Nn and Y1, . . . , Ym under λθ and fθ. Note that due to our construction we have λ−1?f−1 =
λ1 ? f1. Thus PNi

−1 = PNi
1 for all i = 1, . . . , n (due to the fact that the distribution of a Poisson

point process is determined by its intensity) and the Hellinger distance between P−1 and P1 does
only depend on the distribution of the sample Y1, . . . , Ym. More precisely,

H2(P−1,P1) = H2(PY1,...,Ym

−1 ,PY1,...,Ym

1 ) ≤ mH2(PY1
−1,P

Y1
1 ),

and we proceed by bounding H2(PY1
−1,P

Y1
1 ) from above. Recall that f ≥ 1/2 which is used to

obtain the estimate

H2(PY1
−1,P

Y1
1 ) =

∫ 1

0

|f1(x) − f−1(x)|2

2f(x) dx ≤
∫

|f1(x) − f−1(x)|2 dx ≤ 8da2
mαk∗

m
≤ 1
m
.

Hence we have H2(P−1,P1) ≤ 1 and application of statement (ii) of Theorem 2.2 in [Tsy08] with
α = 1 implies p∗ ≥ 1

2 (1 −
√

3/2).

For the proof of the theorem it was sufficient to construct two hypotheses which are statistically
indistinguishable but generate the lower bound Φm. This is in notable contrast to the proof of
Theorem 4.3 where we had to construct 2k∗

n+1 hypotheses. Condition (C3) has to be imposed in
order to guarantee that the considered hypotheses fθ, θ ∈ {±1} belong to Fd

α. It is easy to check
that this condition is satisfied if

∑
j 6=0 α

1/2
j ≤ 1

2
√

d
.

Remark 4.6. The stated proof is only valid in model 1 and cannot be transferred directly to
model 2. In the proof given above, the identity λ−1 ? f−1 = λ1 ? f1 would only imply equality of
the mean measures of the two Cox process hypotheses but not equality of their distributions. We
conjecture that the lower bound in Corollary 4.7 is valid for model 2 as well. Unfortunately, we
do not have a proof of this conjecture in our framework up to now. The article [Big+13] provides
a formidable proof of a lower bound in case of a known error density with polynomially decaying
Fourier coefficients when the smoothness class of the unknown intensity is a Besov ellipsoid (see
Theorem 3.1 in [Big+13]).

The following corollary merges the results of Theorems 4.3 and 4.5.

Corollary 4.7. Under the assumptions of Theorems 4.3 and 4.5, for any n,m ∈ N,

inf
λ̃

sup
λ∈Λr

γ

sup
f∈Fd

α

E[‖λ̃− λ‖2
ω] & max{Ψn,Φm}

where the infimum is taken over all estimators λ̃ of λ based on the observations from (4.8) under
model 1.

4.2.3. Examples of convergence rates
In order to flesh out the abstract results of this chapter, we consider special choices for the sequences
ω, γ and α and state the resulting rates of convergence with respect to both sample sizes n and
m. For the sequence ω, we will assume throughout that ω0 = 1 and ωj = |j|2s for j 6= 0. As
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4. Non-parametric inverse intensity estimation

γ α Θ(Ψn) Θ(Φm) Restrictions

(pol) (pol) n− 2(p−s)
2p+2a+1 m− (p−s)∧a

a p ≥ s, p > 1
2 , a > 1

2

(exp) (pol) (logn)2s+2a+1 · n−1 m−1 a > 1
2

(pol) (exp) (logn)−2(p−s) (logm)−2(p−s) p ≥ s, p > 1
2

(exp) (exp) (logn)2s · n− p
p+a

(log m)2s · m−p/a if a ≥ p

m−1 if a < p

Table 4.1.: Exemplary rates of convergence for non-parametric intensity estimation from indirect observations. The
rates are given in the framework of Theorems 4.2, 4.3, and 4.5 which impose the given restrictions. In
all the examples ω0 = 1, ωj = |j|2s for j 6= 0, whereas the choices (pol) and (exp) for the sequences γ
and α are explained in Section 4.2.3.

argumented in [JS13a], the resulting weighted norm corresponds to the L2-norm of the sth weak
derivative.
Choices for the sequence γ: Concerning the sequence γ we distinguish the following two scenarios:

(pol): γ0 = 0 and γj = |j|2p for all j 6= 0 and some p ≥ 0. This corresponds to the case when
the unknown intensity function belongs to some Sobolev space.

(exp): γj = exp(2p|j|) for all j ∈ Z and some p ≥ 0. In this case, λ belongs to some space of
analytic functions (see for instance [Cav08]).

Choices for the sequence α: Concerning the sequence α we consider the following scenarios:

(pol): α0 = 0 and αj = |j|−2a for all j 6= 0 and some a > 1
2 . This corresponds to the case

when the error density is ordinary smooth.

(exp): αj = exp(−2a|j|) for all j ∈ Z and some a ≥ 0.

Table 4.1 summarizes the rates Ψn and Φm corresponding to the different choices of γ and α.
The rates with respect to n coincide with the classical rates for non-parametric inverse problems
(see, for instance, Table 1 in [Cav08] where the error variance ε2 corresponds to n−1 in our setup
and only the case s = 0 is considered).

4.3. Adaptive estimation for model 1: PPP observations
The estimator considered in Theorem 4.2 is obtained by specializing the orthonormal series esti-
mator in (4.9) with dimension parameter k∗

n defined in (4.10). Thus, this procedure suffers from
the apparent drawback that it depends on the smoothness characteristics of both λ and f , namely
on the sequences γ and α. Since such characteristics are typically unavailable in advance, there
is need for an adaptive selection of the dimension parameter which does not require any a priori
knowledge on λ and f . In order to reach such an adaptive definition under model 1 we follow the
procedure proposed in [JS13a] and proceed in two steps. In the first step (treated in Section 4.3.1),
we assume that the class Λr

γ is unknown but assume the class Fd
α of potential error densities f to

be known. This assumption allows us to define a partially adaptive choice k̃ of k. In the second
step (treated in Section 4.3.2), we dispense with any knowledge on the smoothness both of λ and
f and propose a fully data-driven choice k̂ of the dimension parameter.

4.3.1. Partially adaptive estimation (Λr
γ unknown, Fd

α known)

First, we aim at choosing k equal to some k̃ that, in contrast to k∗
n in (4.10), does no longer depend

on the sequence γ but only on the sequence α. For the definition of k̃ some terminology has to be
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4.3. Adaptive estimation for model 1: PPP observations

introduced: for any k ∈ N0, let

∆α
k := max

0≤j≤k
ωjα

−1
j and δα

k := (2k + 1)∆α
k

log(∆α
k ∨ (k + 3))

log(k + 3) .

Put ω+
j := max0≤i≤|j| ωi, and for all n,m ∈ N,

Nα
n := inf

{
1 ≤ j ≤ n : αj

2j + 1 <
log(n+ 3)ω+

j

n

}
− 1 ∧ n,

Mα
m := inf{1 ≤ j ≤ m : αj < 640dm−1 log(m+ 1)} − 1 ∧m,

and set Kα
nm := Nα

n ∧Mα
m. Now, denoting 〈s, t〉ω :=

∑
j∈Z ωj [s]j [t]j , define the contrast function

Υ(t) := ‖t‖2
ω − 2<〈λ̂n∧m, t〉ω, t ∈ L2,

and define the random sequence of penalties (p̃enk)k∈N0 via

p̃enk := 165
4 dη−1 · ([̂`]0 ∨ 1) · δ

α
k

n

where η ∈ (0, 1) is some additional tuning parameter. The parameter η finds its way into the upper
risk bound only as a numerical constant and does not have any effect on the rate of convergence.
The dependence of the adaptive estimator on the specific choice of η will be suppressed for the
sake of convenience in the sequel. Building on our definition of contrast and penalty, we define the
partially adaptive selection of the tuning parameter k as

k̃ := argmin
0≤k≤Kα

nm

{Υ(λ̂k) + p̃enk}.

The following theorem provides an upper bound for the partially adaptive estimator λ̂
k̃
.

Theorem 4.8. Let Assumption 4.1 hold. Then, for any n,m ∈ N,

sup
λ∈Λr

γ

sup
f∈Fd

α

E[‖λ̂
k̃

− λ‖2
ω] . min

0≤k≤Kα
nm

max
{
ωk

γk
,
δα

k

n

}
+ Φm + 1

m
+ 1
n

where the observations in (4.8) stem from model 1.

Proof. Define the events Ξ1 := {η([`]0 ∨ 1) ≤ [̂`]0 ∨ 1 ≤ η−1([`]0 ∨ 1)} and

Ξ2 :=
{

∀ 0 ≤ |j| ≤ Mα
m :

∣∣∣∣∣ 1
[̂f ]j

− 1
[f ]j

∣∣∣∣∣ ≤ 1
2|[f ]j |

and |[̂f ]j | ≥ 1
m

}
.

The identity 1 = 1Ξ1∩Ξ2 + 1Ξc
2

+ 1Ξc
1∩Ξ2 provides the decomposition

E[‖λ̂
k̃

− λ‖2
ω] = E[‖λ̂

k̃
− λ‖2

ω1Ξ1∩Ξ2 ]︸ ︷︷ ︸
=:�1

+E[‖λ̂
k̃

− λ‖2
ω1Ξc

2
]︸ ︷︷ ︸

=:�2

+E[‖λ̂
k̃

− λ‖2
ω1Ξc

1∩Ξ2 ]︸ ︷︷ ︸
=:�3

,

and we will establish uniform upper bounds over the ellipsoids Λr
γ and Fd

α for the three terms on
the right-hand side separately.

Uniform upper bound for �1: Denote by Sk the linear subspace of L2 spanned by the functions
ej(·) for j ∈ {−k, . . . , k}. Since the identity Υ(t) = ‖t − λ̂k‖2

ω − ‖λ̂k‖2
ω holds for all t ∈ Sk,

k ∈ {0, . . . , n ∧ m}, we obtain for all such k that argmint∈Sk
Υ(t) = λ̂k. Using this identity and
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4. Non-parametric inverse intensity estimation

the definition of k̃ yields for all k ∈ {0, . . . ,Kα
nm} that

Υ(λ̂
k̃
) + p̃en

k̃
≤ Υ(λ̂k) + p̃enk ≤ Υ(λk) + p̃enk

where λk :=
∑

0≤|j|≤k[λ]jej denotes the projection of λ on the subspace Sk. Elementary compu-
tations imply

‖λ̂
k̃
‖2

ω ≤ ‖λk‖2
ω + 2<〈λ̂n∧m, λ̂k̃

− λk〉ω + p̃enk − p̃en
k̃

(4.19)

for all k ∈ {0, . . . ,Kα
nm}. In addition to λk defined above, introduce the further abbreviations

λ̃k :=
∑

0≤|j|≤k

[̂`]j
[f ]j

ej and λ̌k :=
∑

0≤|j|≤k

[`]j
[̂f ]j

1Ωj
ej ,

as well as
Θk := λ̂k − λ̌k − λ̃k + λk, Θ̃k := λ̃k − λk, and Θ̌k := λ̌k − λk.

Using these abbrevations and the identity λ̂n∧m − λn∧m = Θn∧m + Θ̃n∧m + Θ̌n∧m, we deduce
from (4.19) that

‖λ̂
k̃

− λ‖2
ω ≤ ‖λ− λk‖2

ω + p̃enk − p̃en
k̃

+ 2<〈Θ̃n∧m, λ̂k̃
− λk〉ω

+ 2<〈Θn∧m, λ̂k̃
− λk〉ω + 2<〈Θ̌n∧m, λ̂k̃

− λk〉ω (4.20)

for all k ∈ {0, . . . ,Kα
nm}. Define Bk := {λ ∈ Sk : ‖λ‖ω ≤ 1}. For every τ > 0 and h ∈ Sn∧m, t ∈ Sk,

the estimate 2uv ≤ τu2 + τ−1v2 implies

2
∣∣〈h, t̃〉ω

∣∣ ≤ 2‖t̃‖ω sup
t∈Bk

|〈h, t〉ω| ≤ τ‖t̃‖2
ω + τ−1 sup

t∈Bk

|〈h, t〉ω|2 .

Because λ̂
k̃

− λk ∈ S
k̃∨k

, combining the last estimate with (4.20) we get

‖λ̂
k̃

− λ‖2
ω ≤ ‖λ− λk‖2

ω + 3τ‖λ̂
k̃

− λk‖2
ω + p̃enk − p̃en

k̃
+

+ τ−1 sup
t∈B

k∨̃k

|〈Θ̃n∧m, t〉ω|2 + τ−1 sup
t∈B

k∨̃k

|〈Θn∧m, t〉ω|2 + τ−1 sup
t∈B

k∨̃k

|〈Θ̌n∧m, t〉ω|2.

Note that ‖λ̂
k̃

− λk‖2
ω ≤ 2‖λ̂

k̃
− λ‖2

ω + 2 ‖λk − λ‖2
ω and ‖λ− λk‖2

ω ≤ rωkγ
−1
k for all λ ∈ Λr

γ since
(ωnγ

−1
n )n∈N0 is non-increasing due to Assumption 4.1. Specializing with τ = 1/8 we obtain

‖λ̂
k̃

− λ‖2
ω ≤ 7rωkγ

−1
k + 4p̃enk − 4p̃en

k̃
+ 32 sup

t∈B
k∨̃k

|〈Θ̃n∧m, t〉ω|2

+ 32 sup
t∈B

k∨̃k

|〈Θn∧m, t〉ω|2 + 32 sup
t∈B

k∨̃k

|〈Θ̌n∧m, t〉ω|2. (4.21)

Combining the facts that 1Ωj1Ξ2 = 1Ξ2 for 0 ≤ |j| ≤ Mα
m and Kα

nm ≤ Mα
m by definition, we obtain

for all 0 ≤ |j| ≤ Kα
nm the estimate

|[f ]j/[̂f ]j1Ωj
− 1|21Ξ2 = |[f ]j |2 · |1/[̂f ]j − 1/[f ]j |21Ξ2 ≤ 1/4.

Hence, supt∈Bk
|〈Θn∧m, t〉ω|21Ξ2 ≤ 1

4 supt∈Bk
|〈Θ̃n∧m, t〉ω|2 for all 0 ≤ k ≤ Kα

nm. Thus, from (4.21)
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we obtain

‖λ̂
k̃

− λ‖2
ω 1Ξ1∩Ξ2 ≤ 7rωkγ

−1
k + 40

 sup
t∈B

k∨̃k

|〈Θ̃n∧m, t〉ω|2 −
33d([`]0 ∨ 1)δα

k∨k̃

8n


+

+ (165d([`]0 ∨ 1)δα

k∨k̃
/n+ 4p̃enk − 4p̃en

k̃
)1Ξ1∩Ξ2 + 32 sup

t∈BKα
nm

|〈Θ̌n∧m, t〉ω|2.

Exploiting the definition of both the penalty p̃en and the event Ξ1, we obtain

E[‖λ̂
k̃

− λ‖2
ω 1Ξ1∩Ξ2 ] ≤ C(d, r) min

0≤k≤Kα
nm

max
{
ωk

γk
,
δα

k

n

}

+ 40
Kα

nm∑
k=0

E

[(
sup
t∈Bk

|〈Θ̃n∧m, t〉ω|2 − 33([`]0 ∨ 1)dδα
k

8n

)
+

]

+ 32E
[

sup
t∈BKα

nm

|〈Θ̌n∧m, t〉ω|2
]
. (4.22)

Applying Lemma 4.17 with δ∗
k = dδα

k and ∆∗
k = d∆α

k yields

E

[(
sup
t∈Bk

|〈Θ̃n∧m, t〉ω|2 − 33d([`]0 ∨ 1)δα
k

8n

)
+

]
≤ K1

[
d‖f‖‖λ‖∆α

k

n
exp

(
−K2

δα
k

‖f‖2‖λ‖2∆α
k

)
+ dδα

k

n2 exp(−K3
√
n)
]
.

Using statement a) of Lemma 4.16 and the fact that Kα
nm ≤ n by definition, we obtain that

Kα
nm∑

k=0
E

[(
sup
t∈Bk

|〈Θ̃n∧m, t〉ω| − 33d([`]0 ∨ 1)δα
k

8n

)
+

]

.
d3/2√

rρ

n

∞∑
k=0

∆α
k exp

(
−2K2k√

drρ
· log(∆α

k ∨ (k + 3))
log(k + 3)

)
+ exp(−K3

√
n)

where the last estimate is due to the fact that ‖f‖2 ≤ dρ for all f ∈ Fd
α and ‖λ‖2 ≤ r for all

λ ∈ Λr
γ . Note that we have

∞∑
k=0

∆α
k exp

(
−2K2k√

drρ
· log(∆α

k ∨ (k + 3))
log(k + 3)

)
≤ C < ∞

with a numerical constant C which implies

Kα
nm∑

k=0
E

[(
sup
t∈Bk

|〈Θ̃n∧m, t〉ω| − 33d([`]0 ∨ 1)δα
k

8n

)
+

]
.

1
n
.

The last term on the right-hand side of (4.22) is bounded by means of Lemma 4.18 which imme-
diately yields

E

[
sup

t∈BKα
nm

|〈Θ̌n∧m, t〉ω|2
]
. Φm.

Combining the preceeding estimates, which hold uniformly for all λ ∈ Λr
γ and f ∈ Fd

α, we conclude
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from Equation (4.22) that

sup
λ∈Λr

γ

sup
f∈Fd

α

E[‖λ̂
k̃

− λ‖2
ω 1Ξ1∩Ξ2 ] . min

0≤k≤Kα
nm

max
{
ωk

γk
,
δα

k

n

}
+ Φm + 1

n
.

Uniform upper bound for �2: Define λ̆k :=
∑

0≤|j|≤k[λ]j1Ωj
ej . Note that ‖λ̂k−λ̆k‖2

ω ≤ ‖λ̂k′ −λ̆k′‖2
ω

for k ≤ k′ and ‖λ̆k − λ‖2
ω ≤ ‖λ‖2

ω for all k ∈ N0. Consequently, since 0 ≤ k̃ ≤ Kα
nm, we obtain the

estimate

E[‖λ̂
k̃

− λ‖2
ω 1Ξc

2
] ≤ 2E[‖λ̂

k̃
− λ̆

k̃
‖2

ω 1Ξc
2
] + 2E[‖λ̆

k̃
− λ‖2

ω1Ξc
2
]

≤ 2E[‖λ̂Kα
nm

− λ̆Kα
nm

‖2
ω 1Ξc

2
] + 2 ‖λ‖2

ω P(Ξc
2),

and due to Assumption 4.1 and Lemma 4.20 it is easily seen that ‖λ‖2
ω · P(Ξc

2) . m−4. Using the
definition of Ωj , we further obtain

E[‖λ̂Kα
nm

− λ̆Kα
nm

‖2
ω 1Ξc

2
] ≤ 2m

∑
0≤|j|≤Kα

nm

ωj{E[|[̂`]j − [`]j |2 1Ξc
2
] + E[|[f ]j [λ]j − [̂f ]j [λ]j |2 1Ξc

2
]}

≤ 2m
∑

0≤|j|≤Kα
nm

ωj(E[|[̂`]j − [`]j |4])1/2P(Ξc
2)1/2

+ 2m
∑

0≤|j|≤Kα
nm

ωj |[λ]j |2 (E[|[̂f ]j − [f ]j |4])1/2P (Ξc
2)1/2

. mP(Ξc
2)1/2

∑
0≤|j|≤Kα

nm

ωj

n
+ P(Ξc

2)1/2
∑

0≤|j|≤Kα
nm

ωj |[λ]j |2 (4.23)

where the last estimate follows by applying Theorem B.1 with p = 4 two times. If Kα
nm = 0,

Lemma 4.20 implies
E[‖λ̂Kα

nm
− λ̆Kα

nm
‖2

ω 1Ξc
2
] . 1

nm
+ 1
m2 .

Otherwise, if Kα
nm > 0, we exploit ωj ≤ ω+

j α
−1
j , Kα

nm ≤ Nα
n and the definition of Nα

n to bound
the first term on the right-hand side of (4.23). The second term on the right-hand side of (4.23)
can be bounded from above by noting that ωj ≤ γj thanks to Assumption 4.1. We obtain

E[‖λ̂Kα
nm

− λ̆Kα
nm

‖2
ω 1Ξc

2
] . mP(Ξc

2)1/2

 ∑
0≤|j|≤Nα

n

1
2|j| + 1

 1
log(n+ 3) + P(Ξc

2)1/2.

Thanks to the logarithmic increase of the harmonic series, Nα
n ≤ n and Lemma 4.20, the last

estimate implies
E[‖λ̂Kα

nm
− λ̆Kα

nm
‖2

ω 1Ξc
2
] . 1

m
+ 1
m2 ,

if Kα
nm > 0, and thus

E[‖λ̂Kα
nm

− λ̆Kα
nm

‖2
ω 1Ξc

2
] . 1

m
+ 1
m2 ,

independent of the actual value of Kα
nm. Using the obtained estimates, which hold uniformly for

λ ∈ Λr
γ and f ∈ Fd

α, we conclude

sup
λ∈Λr

γ

sup
f∈Fd

α

E[‖λ̂
k̃

− λ‖2
ω 1Ξc

2
] . 1

m
.

Uniform upper bound for �3: In order to find a uniform upper bound for �3, first recall the
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definition λ̆k :=
∑

0≤|j|≤k[λ]j1Ωj
ej , and consider the estimate

E[‖λ̂
k̃

− λ‖2
ω1Ξc

1∩Ξ2 ] ≤ 2E[‖λ̂
k̃

− λ̆
k̃
‖2

ω1Ξc
1∩Ξ2 ] + 2E[‖λ̆

k̃
− λ‖2

ω1Ξc
1∩Ξ2 ]. (4.24)

Using the estimate ‖λ̆
k̃

− λ‖2
ω ≤ ‖λ‖2

ω, we obtain for λ ∈ Λr
γ by means of Lemma 4.19 that

E[‖λ̆
k̃

− λ‖2
ω1Ξc

1∩Ξ2 ] ≤ rP(Ξc
1) . 1

n

which controls the second term on the right-hand side of (4.24). We now bound the first term on
the right-hand side of (4.24). If Kα

nm = 0, we have k̃ = 0, and by means of the Cauchy-Schwarz
inequality and Theorem B.1 it is easily seen that

E[‖λ̂
k̃

− λ̆
k̃
‖2

ω1Ξc
1∩Ξ2 ] . 1

n
.

Otherwise, Kα
nm > 0, and we need the following further estimate which is easily verified:

E[‖λ̂
k̃

− λ̆
k̃
‖2

ω1Ξc
1∩Ξ2 ] ≤ 3

∑
0≤|j|≤Kα

nm

ωjE[|[`]j/[̂f ]j − [`]j/[f ]j |21Ξc
1∩Ξ2 ]

+ 3
∑

0≤|j|≤Kα
nm

ωjE[|[̂`]j − [`]j |2/|[f ]j |21Ξc
1∩Ξ2 ]

+ 3
∑

0≤|j|≤Kα
nm

ωjE[|[̂`]j − [`]j |2 · |1/[̂f ]j − 1/[f ]j |21Ξc
1∩Ξ2 ]. (4.25)

We start by bounding the first term on the right-hand side of (4.25). Using the definition of Ξ2
and ωj ≤ γj , we obtain for all λ ∈ Λr

γ that

∑
0≤|j|≤Kα

nm

ωjE[|[`]j/[̂f ]j − [`]j/[f ]j |21Ξc
1∩Ξ2 ] ≤ r

4 · P(Ξc
1) . 1

n
.

Since |[f ]j |−2 ≤ dαj for f ∈ Fd
α, the Cauchy-Schwarz inequality in combination with Theorem B.1

implies for the second term on the right-hand side of (4.25) that

∑
0≤|j|≤Kα

nm

ωjE[|[̂`]j − [`]j |2/|[f ]j |21Ξc
1∩Ξ2 ] . P(Ξc

1)1/2
∑

0≤|j|≤Kα
nm

ω+
j

nαj
.

We exploit the definition of Nα
n together with Kα

nm ≤ Nα
n in order to obtain

∑
0≤|j|≤Kα

nm

ωjE[|[̂`]j − [`]j |2/|[f ]j |21Ξc
1∩Ξ2 ] . P(Ξc

1)1/2

log(n+ 3)
∑

0≤|j|≤Nα
n

1
2|j| + 1

from which by the logarithmic growth of the harmonic series and Lemma 4.19 we can conclude
that ∑

0≤|j|≤Kα
nm

ωjE[|[̂`]j − [`]j |2/|[f ]j |21Ξc
1∩Ξ2 ] . 1

n
,

independent of the actual value of Kα
nm. Finally, the third and last term on the right-hand side

of (4.25) can be bounded from above the same way after exploiting the definition of Ξ2, and we
obtain ∑

0≤|j|≤Kα
nm

ωjE[|[̂`]j − [`]j |2 · |1/[̂f ]j − 1/[f ]j |21Ξc
1∩Ξ2 ] . 1

n
.

Putting together the derived estimates, that again hold uniformly for all λ ∈ Λr
γ and f ∈ Fd

α, we
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obtain
sup

λ∈Λr
γ

sup
f∈Fd

α

E[‖λ̂
k̃

− λ‖2
ω1Ξc

1∩Ξ2 ] . 1
n
.

Finally, the statement of the theorem follows by combining the obtained uniform upper bounds
for �1, �2, and �3.

4.3.2. Fully adaptive estimation (Λr
γ and Fd

α unknown)

We now also dispense with the knowledge of the smoothness of the error density f and propose
an adaptive choice k̂ of the dimension parameter such that the resulting estimator λ̂

k̂
adapts to

the unknown smoothness of both λ and f and attains the optimal rate of convergence in a variety
of scenarios. As in the case of partially adaptive estimation, we have to introduce some notation
first. For k ∈ N0, let

∆̂k := max
0≤j≤k

ωj

|[̂f ]j |2
1Ωj and δ̂k := (2k + 1)∆̂k

log(∆̂k ∨ (k + 4))
log(k + 4) .

For n,m ∈ N, set

N̂n := inf{1 ≤ j ≤ n : |[̂f ]j |2/(2j + 1) < log(n+ 4)ω+
j /n} − 1 ∧ n,

M̂m := inf{1 ≤ j ≤ m : |[̂f ]j |2 < m−1 logm} − 1 ∧m,

and K̂nm := N̂n ∧ M̂m. We consider the same contrast function as in the partially adaptive case
but define the random sequence (P̂enk)k∈N0 of penalities now by

P̂enk := 1375η−1 · ([̂`]0 ∨ 1) · δ̂k

n
.

Note that this definition does not depend on the knowledge of the sequence α. Using this definition
of a completely data-driven penalty, we define the fully adaptive selection k̂ of the dimension
parameter k by means of

k̂ := argmin
0≤k≤K̂nm

{Υ(λ̂k) + P̂enk}.

In order to state and prove the upper risk bound of the estimator λ̂
k̂
, we have to introduce some

further notation. We keep the definition of ∆α
k from Section 4.3.1 but slightly redefine δα

k as

δα
k := (2k + 1)∆α

k

log(∆α
k ∨ (k + 4))

log(k + 4) .

For k ∈ N0, we also define

∆k := max
0≤j≤k

ωj/ |[f ]j |2 and δk := (2k + 1)∆k
log(∆k ∨ (k + 4))

log(k + 4) ,

which can be regarded as analogues of ∆α
k and δα

k in Section 4.3.1 in the case of a known error
density f . Finally, for n,m ∈ N, define

Nα−
n := inf{1 ≤ j ≤ n : αj/(2j + 1) < 4d log(n+ 4)ω+

j /n} − 1 ∧ n,

Nα+
n := inf{1 ≤ j ≤ n : αj/(2j + 1) < log(n+ 4)ω+

j /(4dn)} − 1 ∧ n,

Mα−
m := inf{1 ≤ j ≤ m : αj < 4dm−1 logm} − 1 ∧m,

Mα+
m := inf{1 ≤ j ≤ m : 4dαj < m−1 logm} − 1 ∧m,

54



4.3. Adaptive estimation for model 1: PPP observations

and set Kα−
nm := Nα−

n ∧ Mα−
m , Kα+

nm := Nα+
n ∧ Mα+

m . In contrast to the proof of Theorem 4.8 we
have to impose an additional assumption for the proof of an upper risk bound of λ̂

k̂
:

Assumption 4.9. exp(−mαMα+
m +1/(128d)) ≤ C(α, d)m−5 for all m ∈ N.

Theorem 4.10. Let Assumptions 4.1 and 4.9 hold. Then, for any n,m ∈ N,

sup
λ∈Λr

γ

sup
f∈Fd

α

E[‖λ̂
k̂

− λ‖2
ω] . min

0≤k≤Kα−
nm

max
{
ωk

γk
,
δα

k

n

}
+ Φm + 1

m
+ 1
n

where the observations in (4.8) stem from model 1.

Proof. Consider the event

Ξ3 := {Nα−
n ∧Mα−

m ≤ K̂nm ≤ Nα+
n ∧Mα+

m } (4.26)

in addition to the event Ξ1 introduced in the proof of Theorem 4.8 and the slightly redefined event
Ξ2 defined as

Ξ2 := {∀0 ≤ |j| ≤ Mα+
m : |1/[̂f ]j − 1/[f ]j | ≤ 1/(2|[f ]j |) and |[̂f ]j | ≥ 1/m}.

Defining Ξ := Ξ1 ∩ Ξ2 ∩ Ξ3, the identity 1 = 1Ξ + 1Ξc
2

+ 1Ξc
1∩Ξ2 + 1Ξ1∩Ξ2∩Ξc

3
motivates the

decomposition

E[‖λ̂
k̂

− λ‖2
ω] = E[‖λ̂

k̂
− λ‖2

ω1Ξ] + E[‖λ̂
k̂

− λ‖2
ω1Ξc

2
]

+ E[‖λ̂
k̂

− λ‖2
ω1Ξc

1∩Ξ2 ] + E[‖λ̂
k̂

− λ‖2
ω1Ξ1∩Ξ2∩Ξc

3
]

=: �1 + �2 + �3 + �4,

and we establish uniform upper risk bounds for the four terms on the right-hand side separately.

Uniform upper bound for �1: On Ξ we have the estimate 1
4 ∆k ≤ ∆̂k ≤ 9

4 ∆k, and thus

1
4 [∆k ∨ (k + 4)] ≤ ∆̂k ∨ (k + 4) ≤ 9

4 [∆k ∨ (k + 4)]

for all k ∈ {0, . . . ,Mα+
m }. This last estimate implies

2k + 1
4 ∆k

log(∆k ∨ (k + 4))
log(k + 4)

(
1 − log 4

log(k + 4)
log(k + 4)

log(∆k ∨ (k + 4))

)
≤ δ̂k

≤ 9(2k + 1)
4 ∆k

log(∆k ∨ (k + 4))
log(k + 4)

(
1 + log(9/4)

log(k + 4)
log(k + 4)

log(∆k ∨ (k + 4))

)
,

from which we conclude 3
100 · δk ≤ δ̂k ≤ 17

5 · δk. Putting Penk := 165
4 η−1([̂`]0 ∨ 1) · δk

n , we observe
that on Ξ2 the estimate

Penk ≤ P̂enk ≤ 340
3 Penk

holds for all k ∈ {0, . . . ,Mα+
m }. Note that on Ξ we have k̂ ≤ Mα+

m which implies

(Pen
k∨k̂

+ P̂enk − P̂en
k̂
)1Ξ ≤ (Penk + Pen

k̂
+ P̂enk − P̂en

k̂
)1Ξ ≤ 343

3 Penk 1Ξ. (4.27)

Now, we can proceed by mimicking the derivation of (4.22) in the proof of Theorem 4.8. More
precisely, replacing the penalty term p̃enk used in that proof by P̂enk, using the definition of Penk
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above and (4.27), we obtain

E[‖λ̂
k̂

− λ‖2
ω 1Ξ] ≤ 7rωkγ

−1
k + 40

Nα+
n∑

k=0
E

[(
sup
t∈Bk

|〈Θ̃n∧m, t〉ω|2 − 33([`]0 ∨ 1)δk

8n

)
+

]
+ 32E[ sup

t∈B
K

α+
nm

|〈Θ̌n∧m, t〉ω|2] + 4E[(Pen
k∨k̂

+ P̂enk − P̂en
k̂
)1Ξ]

≤ 7rωkγ
−1
k + 40

Nα+
n∑

k=0
E

[(
sup
t∈Bk

|〈Θ̃n∧m, t〉ω|2 − 33([`]0 ∨ 1)δk

8n

)
+

]

+ 32E[ sup
t∈B

K
α+
nm

|〈Θ̌n∧m, t〉ω|2] + 1372
3 Penk.

As in the proof of Theorem 4.8, the second and the third term are bounded applying Lemmata 4.17
(with δ∗

k = δk and ∆∗
k = ∆k) and 4.18, respectively. Hence, by means of an obvious adaption of

statement a) in Lemma 4.16 (with Nα
n replaced by Nα+

n ) and the estimates

∆k ≤ d∆α
k , δk ≤ dζdδ

α
k ,

δk

∆k
≥ 2kζ−1

d

log(∆α
k ∨ (k + 4))

log(k + 4)

with ζd = log(4d)/ log(4), we obtain in analogy to the way of proceeding in the proof of Theorem 4.8
that

sup
λ∈Λr

γ

sup
f∈Fd

α

E[‖λ̂
k̂

− λ‖2
ω 1Ξ] . min

0≤k≤Kα−
nm

max
{
ωk

γk
,
δα

k

n

}
+ Φm + 1

n
. (4.28)

Upper bound for �2: The uniform upper bound for �2 can be derived in analogy to the bound for
�2 in the proof of Theorem 4.8 using Assumption 4.9 instead of statement b) from Lemma 4.16
in the proof of Lemma 4.20. Hence, we obtain

sup
λ∈Λr

γ

sup
f∈Fd

α

E[‖λ̂
k̃

− λ‖2
ω 1Ξc

2
] . 1

m
. (4.29)

Upper bound for �3: The term �3 can also be bounded analogously to the bound established for
�3 in the proof of Theorem 4.8 (here, we do not have to exploit the additional Assumption 4.9),
and we get

sup
λ∈Λr

γ

sup
f∈Fd

α

E[‖λ̂
k̃

− λ‖2
ω1Ξc

1∩Ξ2 ] . 1
n
. (4.30)

Upper bound for �4: To find a uniform upper bound for the term �4, one can use exactly the same
decompositions as in the proof of the uniform upper bound for �3 in Theorem 4.8 by replacing
the probability of Ξc

1 with the one of Ξc
3. Doing this, we obtain by means of Lemma 4.21 that

sup
λ∈Λr

γ

sup
f∈Fd

α

E[‖λ̂
k̃

− λ‖2
ω1Ξ1∩Ξ2∩Ξc

3
] . 1

m
. (4.31)

The result of the theorem now follows by combining (4.28), (4.29), (4.30) and (4.31).

Note that the only additional prerequisite of Theorem 4.10 in contrast to Theorem 4.8 is the
validity of Assumption 4.9.

4.3.3. Examples of convergence rates
We consider the same configurations for the sequences ω, γ and α as in Section 4.2.3. In particular,
we assume that ω0 = 1 and ωj = |j|2s for all j 6= 0. The different configurations for γ and α will
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4.4. Adaptive estimation for model 2: Cox process observations

be investigated in the following (compare also with the minimax rates of convergence given in
Table 4.1). Note that the additional Assumption 4.9 is satisfied in all the considered cases. Let us
define k�

n := argmink∈N0 max
{

ωk

γk
,

δα
k

n

}
, that is, k�

n realizes the best compromise between squared
bias and penalty.

Scenario (pol)-(pol): In this scenario, k�
n � n

1
2p+2a+1 and Nα−

n � (n/ logn) 1
2s+2a+1 . First assume

that Nα−
n ≤ Mα−

m . In case that s < p, the rate with respect to n is n− 2(p−s)
2p+2a+1 which is the

minimax optimal rate. In case that s = p, it holds Nα−
n � k�

n and the rate is (n/ log(n))− 2(p−s)
2p+2a+1

which is minimax optimal up to a logarithmic factor. Assume now that Mα−
m ≤ Nα−

n . If k�
n .

Mα−
m , then the estimator obtains the optimal rate with respect to n and m. Otherwise, Mα−

m �
(m/ logm)1/(2a) yields the contribution (m/ logm)− p−s

a to the rate.

Scenario (exp)-(pol): Nα−
n � (n/ logn)1/(2a+2s+1) as in scenario (pol)-(pol). Since k�

n � logn, it
holds k�

n . Nα−
n and the optimal rate with respect to n holds in case that k�

n .Mα−
m . Otherwise,

the bias-penalty tradeoff generates the contribution (Mα−
m )2s · exp(−2p ·Mα−

m ) to the rate.

Scenario (pol)-(exp): It holds that k�
n � Nα−

n and again the sample size n is no obstacle for
attaining the optimal rate of convergence. If k�

n .Mα−
m , the minimax optimal rate is also attained.

If Mα−
m � k�

n, we get the rate (logm)−2(p−s) which coincides with the optimal rate with respect
to the sample size m.

Scenario (exp)-(exp): We have Nα−
n � logn and k1 ≤ k�

n ≤ k2 where k1 is the solution of
k2

1 exp((2a + 2p)k1) � n and k2 the solution of exp((2a + 2p)k2) � n. Thus, we have k�
n � Nα−

n

and computation of ωk1
γk1

and δα
k2
n shows that only a loss by a logarithmic factor can occur as far as

k�
n ≤ Nα−

n ∧Mα−
m . If Mα−

m ≤ k�
n, the contribution to the rate from the trade-off between squared

bias and penalty is determined by (Mα−
m )2s · exp(−2pMα−

m ) which deteriorates the optimal rate
with respect to m at most by a logarithmic factor.

We have not considered the case that the Fourier coefficients of the error density obey a power-
exponential decay, that is αj = exp(−2κ|j|a) for some κ > 0 and arbitrary a > 0. Indeed, for
our definition of the quantity Mα+

m , Assumption 4.9 is in general not satisfied in this case. This
shortage can be removed by considering a more elaborate choice of the quantities Mα−

m , Mα+
m , and

M̂m as was considered in [JS13a] but we do not include this here.

4.4. Adaptive estimation for model 2: Cox process observations

Unfortunately, the approach from Section 4.3 cannot be transferred in order to obtain an upper risk
bound for an adaptive estimator in the case of Cox observations. Thus, in this section, we follow
another approach. The price we have to pay is that we can only obtain rates which are optimal up
to some additional logarithmic factors. Again we split our investigation into the partially adaptive
and the fully adaptive case.

4.4.1. Partially adaptive estimation

We define Dα
k :=

∑
0≤|j|≤k

ωj

αj
which might be interpreted as the dimension of the model associated

with the linear subspace spanned by the ej for j ∈ {−k, . . . , k} for the inverse problem at hand.
In addition, we define the quantities Nα

n , Mα
m, and Kα

nm as well as the contrast function Υ exactly
as in Section 4.3. However, we replace the definition of the penalty given in the case of Poisson
observations with

p̃enk := 2000η−1 · ([̂`]0 ∨ 1) · dD
α
k log(n+ 2)

n
+ 2000η−2 · ([̂`]

2
0 ∨ 1) · dD

α
k log(n+ 2)

n
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where η ∈ (0, 1) is an additional tuning parameter that effects the rate of convergence only by
a numerical constant. Based on this updated definition of the penalty we define the adaptive
selection of the dimension parameter in the case of Cox observations by means of

k̃ := argmin
0≤k≤Kα

nm

{Υ(λ̂k) + p̃enk}.

Theorem 4.11. Let Assumption 4.1 hold. Then, for any n,m ∈ N,

sup
λ∈Λr

γ

sup
f∈Fd

α

E[‖λ̂
k̃

− λ‖2
ω] . min

0≤k≤Kα
nm

max
{
ωk

γk
,
Dα

k log(n+ 2)
n

}
+ Φm + 1

m
+ 1
n

where the observations in (4.8) stem from model 2.

The following proof of Theorem 4.11 turns out to be more intricate than the one of Theorem 4.8
due to the fact that we need to smuggle in an additional term. In order to deal with this term we
have to apply consequences of Talagrand type concentration inequalities both for Poisson processes
(see Proposition 2.13) and the analogue result for ’ordinary’ random variables (see Lemma B.4 in
the appendix).

Proof. We define all the sets Ξ1,Ξ2 and (based on the updated definition of the penalty) the
terms �1, �2 and �3 as in the proof of Theorem 4.8. We use the decomposition

E[‖λ̂
k̃

− λ‖2
ω] = �1 + �2 + �3

established in the proof of Theorem 4.8 and use exactly the same arguments as in that proof to
bound the terms �2 and �3. Thus, it remains to find an appropriate uniform bound for �1. In
order to get such a bound, we first proceed as in the proof of Theorem 4.8 in order to obtain on
Ξ1 ∩ Ξ2 the estimate

‖λ̂
k̃

− λ‖2
ω ≤ 7rωkγ

−1
k + 4p̃enk − 4p̃en

k̃
+ 40 sup

t∈B
k∨̃k

|〈Θ̃n∧m, t〉ω|2 + 32 sup
t∈B

k∨̃k

|〈Θ̌n∧m, t〉ω|2 (4.32)

(here, Θ̃ and Θ̌ are defined as in the proof of Theorem 4.8). Let us now introduce the function

λ̈k :=
∑

0≤|j|≤k

E[[̂`]j |ε]
[f ]j

ej

where ε = (ε1, . . . , εn) is the vector containing the unobservable shifts εi in (4.6). Using the
decomposition Θ̃n∧m = λ̃n∧m − λn∧m = λ̃n∧m − λ̈n∧m + λ̈n∧m − λn∧m and setting

Θ(1)
n∧m = λ̃n∧m − λ̈n∧m and Θ(2)

n∧m = λ̈n∧m − λn∧m

we obtain from (4.32) that on Ξ1 ∩ Ξ2

‖λ̂
k̃

− λ‖2
ω ≤ 7rωkγ

−1
k + 4p̃enk − 4p̃en

k̃
+ 80 sup

t∈B
k∨̃k

|〈Θ(1)
n∧m, t〉ω|2

+ 80 sup
t∈B

k∨̃k

|〈Θ(2)
n∧m, t〉ω|2 + 32 sup

t∈B
k∨̃k

|〈Θ̌n∧m, t〉ω|2.

Following along the lines of the proof of Theorem 4.8 we obtain that

E[‖λ̂
k̃

− λ‖2
ω1Ξ1∩Ξ2 ] ≤ C(d, r) min

0≤k≤Kα
nm

max
{
ωk

γk
,
Dα

k log(n+ 2)
n

}
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+ 80
Kα

nm∑
k=0

E

[(
sup
t∈Bk

|〈Θ(1)
n∧m, t〉ω|2 − 100 log(n+ 2)dDα

k ([`]0 ∨ 1)
n

)
+

]

+ 80
Kα

nm∑
k=0

E

[(
sup
t∈Bk

|〈Θ(2)
n∧m, t〉ω|2 − 100 log(n+ 2)dDα

k ([`]20 ∨ 1)
n

)
+

]
+ 32E[ sup

t∈B
k∨̃k

|〈Θ̌n∧m, t〉ω|2]. (4.33)

We have

E

[(
sup
t∈Bk

|〈Θ(1)
n∧m, t〉ω|2 − 100 log(n+ 2)dDα

k ([`]0 ∨ 1)
n

)
+

]

= E

[
E

[(
sup
t∈Bk

|〈Θ(1)
n∧m, t〉ω|2 − 100 log(n+ 2)dDα

k ([`]0 ∨ 1)
n

)
+

|ε

]]
.

We apply Lemma 4.23 with δ∗
k = dDα

k in order to obtain

E

[(
sup
t∈Bk

|〈Θ(1)
n∧m, t〉ω|2 − 100 log(n+ 2)dDα

k ([`]0 ∨ 1)
n

)
+

|ε

]

.
Dα

k

n3 + Dα
k

n2 exp(−K2
√
n log(n+ 2)).

Hence

E

[(
sup
t∈Bk

|〈Θ(1)
n∧m, t〉ω|2 − 100 log(n+ 2)dDα

k ([`]0 ∨ 1)
n

)
+

]
.

Dα
k

n3 + Dα
k

n2 exp(−K2
√
n log(n+ 2)).

We have Kα
nm ≤ Nα

n and hence by the definition of Nα
n that for k ∈ {0, . . . ,Kα

nm}

Dα
k ≤ Dα

Nα
n

=
∑

0≤|j|≤Nα
n

ωj

αj
≤ n

log(n+ 3)
∑

0≤|j|≤Nα
n

1
2|j| + 1 . n

where we obtain the last estimate thanks to the logarithmic increase of the harmonic series. Due
to Kα

nm ≤ n we get

Kα
nm∑

k=0
E

[(
sup
t∈Bk

|〈Θ(1)
n∧m, t〉ω|2 − 100 log(n+ 2)dDα

k ([`]0 ∨ 1)
n

)
+

]
.

1
n
.

Applying Lemma 4.24 with δ∗
k = dDα

k we obtain that

E

[(
sup
t∈Bk

|〈Θ(2)
n∧m, t〉ω|2 − 100 log(n+ 2)dDα

k ([`]20 ∨ 1)
n

)
+

]
.

Dα
k

n
exp (−2 log(n+ 2))

+ Dα
k

n2 exp(−K2
√
n log(n+ 2)).

Using the relation Dα
k . n established above we obtain

Kα
nm∑

k=0
E

[(
sup
t∈Bk

|〈Θ(2)
n∧m, t〉ω|2 − 100 log(n+ 2)dDα

k ([`]20 ∨ 1)
n

)
+

]
.

1
n
.

Finally, bounding the last term on the right-hand side of (4.33) by means of Lemma 4.18 we obtain
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from (4.33) using the obtained estimates that

sup
λ∈Λr

γ

sup
f∈Fd

α

E[‖λ̂
k̃

− λ‖2
ω1Ξ1∩Ξ2 ] . min

0≤k≤Kα
nm

max
{
ωk

γk
,
Dα

k log(n+ 2)
n

}
+ Φm + 1

n
.

This shows the desired uniform upper bound for �1 and combining it with the bounds for �2 and
�3 yields the result.

4.4.2. Fully adaptive estimation

In the fully adaptive case, we replace the ’model dimension’ Dα
k from Section 4.4.1 by its natural

estimate
D̂k :=

∑
0≤|j|≤k

ωj

|[̂f ]j |2
1Ωj

.

Based on the definition of D̂k we define

P̂enk := 8000η−1 · ([̂`]0 ∨ 1) · D̂k log(n+ 2)
n

+ 8000η−2 · ([̂`]
2
0 ∨ 1) · D̂k log(n+ 2)

n
.

Note that this definition of the penalty is fully data-driven. We define the contrast function Υ
exactly as in Section 4.3.1. For n,m ∈ N, set

N̂n := inf{1 ≤ j ≤ n : |[̂f ]j |2/(2j + 1) < log(n+ 3)ω+
j /n} − 1 ∧ n

M̂m := inf{1 ≤ j ≤ m : |[̂f ]j |2 < m−1 logm} − 1 ∧m,

and K̂nm := N̂n ∧ M̂m. We define the fully data-driven choice k̂ of k in analogy to the approach
for model 1 via

k̂ := argmin
0≤k≤K̂nm

{Υ(λ̂k) + P̂enk}.

For the statement and the proof of the following theorem, define for n,m ∈ N the quantities

Nα−
n := inf{1 ≤ j ≤ n : αj/(2j + 1) < 4d log(n+ 3)ω+

j /n} − 1 ∧ n,

Nα+
n := inf{1 ≤ j ≤ n : αj/(2j + 1) < log(n+ 3)ω+

j /(4dn)} − 1 ∧ n,

Mα−
m := inf{1 ≤ j ≤ m : αj < 4dm−1 logm} − 1 ∧m,

Mα+
m := inf{1 ≤ j ≤ m : 4dαj < m−1 logm} − 1 ∧m,

Kα−
nm := Nα−

n ∧ Mα−
m , and Kα+

nm := Nα+
n ∧ Mα+

m . Note that the proof of the following theorem
requires the validity of Assumption 4.9 again.

Theorem 4.12. Let Assumptions 4.1 and 4.9 hold. Then, for any n,m ∈ N,

sup
λ∈Λr

γ

sup
f∈Fd

α

E[‖λ̂
k̂

− λ‖2
ω] . min

0≤k≤Kα−
nm

max
{
ωk

γk
,
Dα

k log(n+ 2)
n

}
+ Φm + 1

m
+ 1
n

where Dα
k :=

∑
0≤|j|≤k

ωj

αj
.

Proof. We define the sets Ξi for i = 1, 2, 3 and Ξ as in the proof of Theorem 4.10 and consider
the decomposition

E[‖λ̂
k̂

− λ‖2
ω] = �1 + �2 + �3 + �4

where �i, i = 1, 2, 3, 4 are also defined as in the proof of Theorem 4.10. The terms �2, �3, and �4
are bounded exactly as in the proof of Theorem 4.10 and it remains to find an appropriate bound
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for �1. Set Dk :=
∑

0≤|j|≤k
ωj

|[f ]j |2 and

Penk = 2000η−1 · ([̂`]0 ∨ 1) · Dk log(n+ 2)
n

+ 2000η−2 · ([̂`]
2
0 ∨ 1) · Dk log(n+ 2)

n
.

From the definition of Penk and P̂enk one immediately obtains that on Ξ

Penk ≤ P̂enk ≤ 9Penk

from which one follows that

(Pen
k∨k̂

+ P̂enk − P̂en
k̂
)1Ξ ≤ (Penk + Pen

k̂
+ P̂enk − P̂en

k̂
)1Ξ ≤ 10Penk.

Now, combining the argumentation from the proofs of Theorems 4.10 and 4.11 one can show that

sup
λ∈Λr

γ

sup
f∈Fd

α

E[‖λ̂
k̂

− λ‖2
ω1Ξ] ≤ min

0≤k≤Kα−
nm

max
{
ωk

γk
,
Dα

k log(n+ 2)
n

}
+ Φm + 1

n
.

The claim assertion of the theorem follows now by combining the bounds established for �1, �2,
�3, and �4.

Remark 4.13. Of course, the approach presented in this section can also be applied to the case of
Poisson observations but since the logarithmic factor in the rates is unavoidable we would obtain
worse rates than using the approach from Section 4.3. Using the approach presented in this section
we are not able to dispense with the additional logarithmic factor in the rates neither in case of
model 1 nor model 2. Note that in case that the error density f is known (which is, vaguely spoken,
equivalent to m = ∞) we regain the adaptive rate established in [Big+13] for the case that the
unknown intensity is ordinary smooth and the Fourier coefficients of f obey a polynomial decay.
However, our results are more general since we do not exclusively consider the case of polynomially
decreasing Fourier coefficients.

Remark 4.14. Needless to say, the numerical constants in the definition of the penalty are ridicu-
lously large which makes our rate optimal estimator nearly useless for small sample sizes. Hence
there is still research necessary to establish an estimator which performs well both from a the-
oretical point of view and also yields good results for simulations with relatively small sample
sizes. Another approach would be to calibrate numerical constants in the penalty by means of a
simulation study as was done, for instance, in [CRT06].

4.4.3. Examples of convergence rates
Note that in all the scenarios considered in Table 4.1 we have k�

n . Nα−
n where k�

n denotes the
optimal trade-off between the squared bias ωk/γk and the term Dα

k log(n + 2)/n. Computations
similar to the ones leading to the rates in Table 4.1 show that the rates with respect to the sample
size n are those from the minimax framework in Table 4.1 with n replaced with n/ log(n + 2) as
long as k�

n ≤ Nα−
n ∧ Mα−

m . If Mα−
m ≤ k�

n, Mα−
m contributes to the rate exactly with the same

contribution as in Section 4.3.3.

4.5. Auxiliary results

4.5.1. Auxiliary results for Section 4.2
Lemma 4.15. With the notations introduced in the main part of the present chapter, the following
assertions hold true:
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a) i) Var([̂`]j) ≤ [λ]0/n under model 1 and

ii) Var([̂`]j) ≤ 2(|[λ]|2j + [λ]0)/n under model 2.

b) Var([̂f ]j) ≤ 1/m,

c) P(Ωc
j) = P(|[̂f ]j |2 < 1/m) ≤ min {1, 4d/(mαj)} ∀f ∈ Fd

α.

Proof. The proof of statement i) in a) is given by the identity

Var([̂`]j) = 1
n

Var
(∫ 1

0
ej(t)dN1(t)

)
= 1
n

∫ 1

0
|ej(t)|2(λ ? f)(t)dt = 1

n
· [λ]0.

To prove ii), the identity E[̂`]j = [λ]j [f ]j implies

Var([̂`]j) := E[|[̂`]j − E[̂`]j |2] ≤ 2E[|[̃f ]j [λ]j − [f ]j [λ]j |2] + 2E[|ξj |2] =: 2V1 + 2V2

where V1 ≤ |[λ]j |2 · Var([̃f ]j) ≤ |[λ]j |2 /n. Here, the estimate Var([̃f ]j) ≤ 1/n is easily derived in
analogy to the proof of part b). In order to bound V2 from above, notice

E[|ξj |2] = 1
n
E

[
E

[∣∣∣∣∫ 1

0
ej(−t) {dN1(t) − λ(t− ε1 − bt− ε1c)dt}

∣∣∣∣2 | ε1

]]

= 1
n
E
[∫ 1

0
|ej(−t)|2 λ(t− ε1 − bt− ε1c)dt

]
= 1
n
E
[∫ 1

0
λ(t− ε1 − bt− ε1c)dt

]
= [λ]0/n.

The assertion follows now by combining the obtained bounds for V1 and V2.
For the proof of b), note that we have Var([̂f ]j) = 1

m Var (ej(−Y1)) and the assertion follows
from the estimate

Var(ej(−Y1)) = E[|ej(−Y1)|2] − |E [ej(−Y1)]|2 ≤ E[|ej(−Y1)|2] = 1.

For the proof of c), we consider two cases: if |[f ]j |2 < 4/m we have 1 < 4d
mαj

because f ∈ Fd
α

and the statement is evident. Otherwise, |[f ]j |2 ≥ 4/m which implies

P(|[̂f ]j |2 < 1/m) ≤ P(|[̂f ]j |/ |[f ]j | < 1/2) ≤ P(|[̂f ]j/[f ]j − 1| > 1/2).

Applying Chebyshev’s inequality and exploiting the definition of Fd
α yields

P(|[̂f ]j |2 < 1/m) ≤ 4/ |[f ]j |2 · Var([̂f ]j) ≤ 4d/(mαj)

and statement c) follows.

4.5.2. Auxiliary results for Section 4.3

Lemma 4.16. Let Assumption 4.1 hold. Then the following assertions hold true:

a) δα
j /n ≤ 1 for all n ∈ N and 0 ≤ j ≤ Nα

n ,

b) exp
(
−mαMα

m
/(128d)

)
≤ C(d)m−5 for all m ∈ N, and

c) min1≤j≤Mα
m

|[f ]j |2 ≥ 2m−1 for all m ∈ N.
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Proof. a) In case Nα
n = 0, we have δα

Nα
n

= 1 and there is nothing to show. Otherwise 0 < Nα
n ≤

n, and by definition of Nα
n we have (2j+ 1)∆α

j ≤ n/ log(n+ 3) for 0 ≤ j ≤ Nα
n which by definition

of δα
j implies that

δα
j ≤ n

log(n+ 3) · log(n/((2j + 1) log(n+ 3)) ∨ (j + 3))
log(j + 3) .

We consider two cases: In the first case, n/((2j + 1) log(n + 3)) ∨ (j + 3) = j + 3. Then n ≥ 1
directly implies the estimate δα

j ≤ n. In the second case, we have n/((2j+1) log(n+3))∨ (j+3) =
n/((2j + 1) log(n+ 3)), and therefrom

δα
j ≤ n log(n)/(log(n+ 3) log(j + 3)) ≤ n,

and thus δα
j ≤ n in both cases. Division by n yields the claim assertion.

b) Note that, due to Assumption 4.1, we have Mα
m > 0 for all sufficiently large m and that it is

sufficient to show the desired inequality for such values of m. By the definition of Mα
m, we have

αMα
m

≥ 640dm−1 · log(m+ 1) which implies

exp(−mαMα
m
/(128d)) ≤ exp(−5 logm) = m−5,

and the assertion follows.

c) The assertion follows from the observation that

min
1≤j≤Mα

m

|[f ]j |2 ≥ min
1≤j≤Mα

m

αj

d
=
αMα

m

d
≥ 640m−1 · log(m+ 1)

combined with the fact that 640m−1 · log(m+ 1) ≥ 2m−1 for all m ∈ N.

Lemma 4.17. Let (δ∗
k)k∈N0 and (∆∗

k)k∈N0 be sequences such that for all k ∈ N0,

δ∗
k ≥

∑
0≤|j|≤k

ωj

|[f ]j |2
and ∆∗

k ≥ max
0≤|j|≤k

ωj

|[f ]j |2
.

Then, for all k ∈ {1, . . . , n ∧m}, we have

E

[(
sup
t∈Bk

|〈Θ̃n∧m, t〉|2 − 33δ∗
k([`]0 ∨ 1)

8n

)
+

]

≤ K1

{
‖f‖ ‖λ‖ ∆∗

k

n
exp

(
−K2 · δ∗

k

‖f‖ ‖λ‖ ∆∗
k

)
+ δ∗

k

n2 exp
(
−K3

√
n
)}

with positive numerical constants K1, K2, and K3.

Proof. We start the proof with the observation that, putting rt =
∑

0≤|j|≤k ωj [t]−j [f ]−1
−jej , we

have
1
n

n∑
i=1

∫ 1

0
rt(x)[dNi(x) − `(x)dx] = 〈Θ̃n∧m, t〉ω.

Thus, we are in the framework of Proposition 2.13 and it remains to find suitable quantities M1,
H and υ that satisfy the pre-conditions of that proposition.
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Condition concerning M1:

sup
t∈Bk

‖rt‖2
∞ = sup

t∈Bk

sup
y∈[0,1)

|rt(y)|2 ≤ sup
t∈Bk

sup
y∈[0,1)

 ∑
0≤|j|≤k

ωj [t]−j [f ]−1
−j |ej(y)|

2

≤ sup
t∈Bk

sup
y∈[0,1)

 ∑
0≤|j|≤k

ωj |[t]j |2
 ∑

0≤|j|≤k

ωj

|[f ]j |2

 ≤ δ∗
k =: M2

1 .

Condition concerning H:

E[ sup
t∈Bk

|〈Ξk, t〉ω|2] ≤ sup
t∈Bk

 ∑
0≤|j|≤k

ωj |[t]j |2


· E

 ∑
0≤|j|≤k

ωj

|[f ]j |2

∣∣∣∣∣ 1n
n∑

i=1

∫ 1

0
ej(x)[dNi(x) − `(x)dx]

∣∣∣∣∣
2


≤ 1
n

∑
0≤|j|≤k

ωj

|[f ]j |2
· Var

(∫ 1

0
ej(x)dN1(x)

)

= 1
n

∑
0≤|j|≤k

ωj

|[f ]j |2
·
∫ 1

0
`(x)dx = [`]0

n

∑
0≤|j|≤k

ωj

|[f ]j |2
.

Hence, by Jensen’s inequality it follows that we can choose H2 = δ∗
k

n · ([`]0 ∨ 1).

Condition concerning υ: First, note that

Var
(∫ 1

0
rt(x)dNi(x)

)
= [`]0 · E[|rt(X)|2]

where X is a random variable with density proportional to `. It remains to find an appropriate
bound for E[|rt(X)|2] = E[〈rt(X), rt(X)〉] (here 〈·, ·〉 denotes the standard scalar product in C).
By some calculations it follows that

E[|rt(X)|2] = 1
[`]0

〈ADωt, Dωt〉C2k+1

where t = ([t]i)i=−k,...,k, Dω ∈ R(2k+1)×(2k+1) is the diagonal matrix with diagonal (ωi)i=−k,...,k

and the matrix A = ([A]ij)i,j=−k,...,k ∈ R(2k+1)×(2k+1) is given by means of

[A]ij = [f ]−1
i [f ]−1

j [f ]i−j [λ]i−j .

The matrix A is positive semi-definite and we obtain for any t ∈ Bk

Var
(∫ 1

0
rt(x)dNi(x)

)
= 〈ADωt, Dωt〉C2k+1 = 〈

√
ADωt,

√
ADωt〉C2k+1

= ‖
√
ADωt‖2 = ‖

√
ADω‖2

op ≤ ‖
√
DωA

√
Dω‖op

where the last identity holds since ‖S‖2
op ≤ ‖S∗S‖ for a linear operator S between Hilbert spaces.

One has the decomposition A = D[f ]−1BD[f ]−1 with B = ([f ]i−j [λ]i−j)i,j=−k,...,k from which we
conclude

Var
(∫ 1

0
rt(x)dNi(x)

)
≤ ∆∗

k · ‖B‖op,
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and it remains to find a suitable bound for ‖B‖op. Note that ‖B‖op ≤
√

‖B‖1 · ‖B‖∞ where

‖B‖1 = max
j

∑
i

|bij |, and

‖B‖∞ = max
i

∑
j

|bij |

(see Corollary 2.3.2 in [GVL96]). The Cauchy-Schwarz inequality shows that ‖B‖1, ‖B‖∞ ≤
‖λ‖ · ‖f‖ and we can finally conclude that

Var
(∫ 1

0
rt(x)dNi(x)

)
≤ ∆∗

k · ‖f‖ · ‖λ‖ · ([`]0 ∨ 1) =: υ.

The statement of the lemma follows now by applying Proposition 2.13 with ε = 1
64 .

Lemma 4.18. Let m ∈ N and k ∈ N0. Then

sup
λ∈Λr

γ

E
[

sup
t∈Bk

|〈Θ̌n∧m, t〉ω|2
]

≤ C(d, r) · Φm.

Proof. Note that λ ∈ Λr
γ implies

E[ sup
t∈Bk

|〈Θ̌n∧m, t〉ω|2] ≤ r sup
−k≤j≤k

ωjγ
−1
j E[|[f ]j/[̂f ]j · 1Ωj − 1|2]

Thus, recalling the definition of Φm in (4.12), it suffices to show that

E[|[f ]j/[̂f ]j · 1Ωj
− 1|2] ≤ C(d, r) min{1, 1/(mαj)},

which can be realized by means of the identity

E[|[f ]j/[̂f ]j · 1Ωj − 1|2] = E[|[f ]j/[̂f ]j1Ωj − 1|2 · 1Ωj ] + P(Ωc
j) =: � + 4.

The bound � ≤ C(d, r) min{1, 1/(mαj)} was already derived in the proof of Theorem 4.2. For 4,
the corresponding upper bound can be obtained from statement c) of Lemma 4.15.

Lemma 4.19. Let Assumption 4.1 hold and consider the event Ξ1 defined in Theorem 4.8. Then,
for any n ∈ N, P(Ξc

1) ≤ 2 exp(−Cn) with a numerical constant C = C(η) > 0.

Proof. Note that

P(Ξc
1) = P([̂`]0 ∨ 1 < η([`]0 ∨ 1)) + P([̂`]0 ∨ 1 > η−1([`]0 ∨ 1)),

and the two terms on the right-hand side can be bounded by Chernoff bounds for Poisson dis-
tributed random variables (see Theorem B.2). More precisely, we have

P([̂`]0 ∨ 1 < η([`]0 ∨ 1)) ≤ exp(−ω1(η)n) and

P([̂`]0 ∨ 1 > η−1([`]0 ∨ 1)) ≤ exp(−ω2(η)n)

with ω1(η) = 1 − η + η log η > 0 and ω2(η) = 1 − η−1 − η−1 log η > 0 for all η ∈ (0, 1).

Lemma 4.20. Let Assumption 4.1 hold and consider the event Ξ2 defined in the proof of Theo-
rem 4.8. Then, for any m ∈ N, P(Ξc

2) ≤ C(d)m−4.
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Proof. The complement Ξc
2 of Ξ2 is

Ξc
2 = {∃1 ≤ |j| ≤ Mα

m : |[f ]j/[̂f ]j − 1| > 1/2 or |[̂f ]j |2 < 1/m}.

Owing to statement c) from Lemma 4.16 we have |[f ]j |2 ≥ 2/m for all 1 ≤ |j| ≤ Mα
m. In case that

|[̂f ]j |2 < 1/m a direct calculation using the reverse triangle inequality shows that |[̂f ]j/[f ]j − 1| ≥
1/

√
2−1 > 1/4. In case that |[f ]j/[̂f ]j −1| > 1

2 , one obtains |[̂f ]j/[f ]j −1| > 1/3, and thus together
we have

Ξc
2 ⊆ {∃1 ≤ |j| ≤ Mα

m : |[̂f ]j/[f ]j − 1| > 1/4}.

Now, Hoeffding’s inequality implies for |j| ≤ Mα
m that

P(|[̂f ]j/[f ]j − 1| > 1/4) ≤ 4 exp
(

−m|[f ]j |2

128

)
≤ 4 exp

(
−
mαMα

m

128d

)
,

and the statement of the lemma follows from statement b) of Lemma 4.16 and the estimateMα
m ≤ m

which holds by definition of Mα
m.

Lemma 4.21. Let Assumptions 4.1 and 4.9 hold. The event Ξ3 defined in (4.26) satisfies P(Ξc
3) ≤

C(α, d)m−4 for all m ∈ N.

Proof. Let us consider the random sets

Ξ31 := {Nα−
n ∧Mα−

m > K̂nm} and Ξ32 := {K̂nm > Nα+
n ∧Mα+

m }.

Then, Ξc
3 = Ξ31 ∪ Ξ32 and we establish bounds for P (Ξ31) and P (Ξ32), separately.

Upper bound for P (Ξ31): We use the identity Ξ31 = {N̂n < Kα−
nm} ∪ {M̂m < Kα−

nm}. Owing to the
definition of Nα−

n , we have |[f ]j |2 /((2j+ 1)ω+
j ) ≥ 4 log(n+ 4)/n for all 1 ≤ j ≤ Nα−

n , which yields

{N̂n < Kα−
nm} ⊆ {∃1 ≤ j ≤ Kα−

nm : |[̂f ]j |2/((2j + 1)ω+
j ) < log(n+ 4)/n}

⊆
⋃

1≤j≤Kα−
nm

{|[̂f ]j |/|[f ]j | ≤ 1/2}

⊆
⋃

1≤j≤Kα−
nm

{|[̂f ]j/[f ]j − 1| ≥ 1/2}.

In a similar way, we obtain {M̂m < Kα−
nm} ⊆

⋃
1≤j≤Kα−

nm
{|[̂f ]j/[f ]j − 1| ≥ 1/2}. Thus, since

Mα−
m ≤ Mα+

m by definition, we have

Ξ31 ⊆
⋃

1≤j≤Mα+
m

{|[̂f ]j/[f ]j − 1| ≥ 1/2}.

Applying Hoeffding’s inequality as in the proof of Lemma 4.20 and exploiting Assumption 4.9
yields

P(Ξ31) ≤ 4
∑

1≤j≤Mα+
m

exp
(

−m|[f ]j |2

128

)
≤ C(α, d) ·m−4. (4.34)

Upper bound for P (Ξ32): First, note that Ξ32 = {N̂n > Kα+
nm} ∩ {M̂m > Kα+

nm}. In particular,
Kα+

nm < n ∧m. If Kα+
nm = Nα+

n < n, we obtain

Ξ32 ⊆ {N̂n > Nα+
n } ⊆ {∀1 ≤ j ≤ Nα+

n + 1 : |[̂f ]j |2/((2j + 1)ω+
j ) ≥ log(n+ 4)/n}

⊆ {|[̂f ]Nα+
n +1|/|[f ]Nα+

n +1| ≥ 2} ⊆ {|[̂f ]Nα+
n +1/[f ]Nα+

n +1 − 1| ≥ 1}.
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Analogously, if Kα+
nm = Mα+

m < m, using m−1 logm ≥ 4|[f ]Mα+
m +1|2 yields

Ξ32 ⊆ {M̂m > Mα+
m } ⊆ {|[̂f ]Mα+

m +1/[f ]Mα+
m +1 − 1| ≥ 1}

and thus Ξ32 ⊆ {|[̂f ]Kα+
nm+1/[f ]Kα+

nm+1 − 1| ≥ 1}. Application of Hoeffding’s inequality and exploit-
ing Assumption 4.9 yields

P(Ξ32) ≤ 4 exp
(

−
m|[f ]Kα+

nm+1|2

128

)
≤ 4 exp

(
−
mαMα+

m +1

128d

)
≤ C(α, d)m−5. (4.35)

The statement of the lemma follows by combining Equations (4.34) and (4.35).

4.5.3. Auxiliary results for Section 4.4

The following result is a condtional version of Proposition 2.13. Since the proof is exactly the same
as the one in the unconditional case we omit its proof.

Proposition 4.22. Let N1, . . . , Nn be independent Cox processes driven by finite random mea-
sures η1, . . . , ηn (that is, given ηi, Ni is a PPP with intensity measure ηi) that are conditionally
independent given η1, . . . , ηn. Set νn(r) = 1

n

∑n
k=1{

∫
X r(x)dNk(x)−

∫
X r(x)dηk(x)} for r contained

in a countable class of complex-valued measurable functions. Then, for any ε > 0, there exist
constants c1, c2 = 1

6 , and c3 such that

E

[(
sup
r∈R

|νn(r)|2 − c(ε)H2
)

+
|η

]

≤ c1

{
υ

n
exp

(
−c2ε

nH2

υ

)
+ M2

1
C2(ε)n2 exp

(
−c3C(ε)

√
ε
nH

M1

)}
where C(ε) = (

√
1 + ε − 1) ∧ 1, c(ε) = 4(1 + 2ε) and M1, H and υ are such that (denoting

η = (η1, . . . , ηn))

sup
r∈R

‖r‖∞ ≤ M1, E[sup
r∈R

|νn(r)||η] ≤ H, sup
r∈R

Var
(∫

X
r(x)dNk(x)|η

)
≤ υ ∀k.

Lemma 4.23. Let (δ∗
k)k∈N0 be a sequence such that δ∗

k ≥
∑

0≤|j|≤k
ωj

|[f ]j |2 for all k ∈ N0. Then,

E

[(
sup
t∈Bk

|〈Θ(1)
n∧m, t〉|2 − 100 log(n+ 2)δ∗

k([`]0 ∨ 1)
n

)
+

| ε

]

≤ K1

{
2δ∗

k([`]0 ∨ 1)
n

exp (−2 log(n+ 2)) + δ∗
k

n2 exp
(

−K2
√
n log(n+ 2)

)}
with positive numerical constants K1 and K2.

Proof. Putting rt =
∑

0≤|j|≤k ωj [f ]−1
−j [t]−jej , it is easy to check that given ε

〈Θ(1)
n∧m, t〉ω = 1

n

n∑
i=1

∫ 1

0
rt(x)(dNi(x) − λεi(x)dx)

where λεi
(x) = λ(x − εi − bx − εic). Thus, we are in the framework of Proposition 4.22 and it

remains to find suitable constants M1, H, and υ satisfying its preconditions.

67



4. Non-parametric inverse intensity estimation

Condition concerning M1: We have

sup
t∈Bk

‖rt‖2
∞ = sup

t∈Bk

sup
y∈[0,1)

|rt(y)|2 ≤
∑

0≤|j|≤k

ωj

|[f ]j |2
≤ δ∗

k,

and one can choose M1 = (δ∗
k) 1

2 .
Condition concerning H: We have

E[ sup
t∈Bk

|〈Θ(1)
n∧m, t〉ω|2 | ε] = [`]0

n
·
∑

0≤|j|≤k

ωj

|[f ]j |2
≤ ([`]0 ∨ 1)δ∗

k log(n+ 2)
n

,

and one can choose H =
(

([`]0∨1)δ∗
k log(n+2)
n

)1/2
.

Condition concerning υ: It holds that

Var
(∫ 1

0
rt(x)Nk(x) | ε

)
=
∫ 1

0
|rt(x)|2λεk

(x)dx ≤

 ∑
0≤|j|≤k

ωj

|[f ]j |2

 · [`]0 ≤ δ∗
k · ([`]0 ∨ 1),

and one can choose υ = δ∗
k · ([`]0 ∨ 1). The statement of the lemma follows now by applying

Proposition 4.22 with ε = 12.

Lemma 4.24. Let (δ∗
k)k∈N0 be a sequence such that δ∗

k ≥
∑

0≤|j|≤k
ωj

|[f ]j |2 for all k ∈ N0. Then

E

[(
sup
t∈Bk

|〈Θ(2)
n∧m, t〉|2 − 100 log(n+ 2)δ∗

k([`]20 ∨ 1)
n

)
+

]

≤ K1

{
δ∗

k([`]20 ∨ 1)
n

exp(−2 log(n+ 2)) + ([`]20 ∨ 1)δ∗
k

n2 · exp(−K2
√
n log(n+ 2))

}
with strictly positive numerical constants K1 and K2.

Proof. We define r′
t =

∑
0≤|j|≤k ωj [f ]−1

−j [t]−jej which coincides with the definition of rt in the
proof of Lemma 4.23. Then, we have

〈Θ(2)
n∧m, t〉ω = 1

n

n∑
i=1

∫ 1

0
r′

t(x)λεi(x)dx−
∫ 1

0
r′

t(x)`(x)dx

where λε is defined as in the proof of Lemma 4.23. Setting rt(εi) :=
∫ 1

0 r
′
t(x)λεi

(x)dx, we are in
the framework of Proposition B.4 and it remains to find suitable constants M1, H and υ satisfying
the preconditions of that proposition.
Condition concerning M1: Note that the definition of r′

t is the same as the definition of rt in the
proof of Lemma 4.23. Thus we obtain

sup
t∈Bk

‖rt‖∞ = sup
ε∈[0,1)

sup
t∈Bk

|
∫ 1

0
r′

t(x)λε(x)dx| ≤ (δ∗
k)1/2 · sup

ε∈[0,1)

∫ 1

0
λε(x)dx = (δ∗

k)1/2 · ([`]0 ∨ 1),

and we can take M1 = (δ∗
k)1/2 · ([`]0 ∨ 1).

Condition concerning H: We have

E[ sup
t∈Bk

|〈Θ(2)
n∧m, t〉ω|2] ≤

 ∑
0≤|j|≤k

ωj

|[f ]j |2

 1
n
E[|
∫ 1

0
ej(x)(λε1(x)dx− `(x)dx)|2]

≤ δ∗
k[`]20
n

≤ δ∗
k[`]20 log(n+ 2)

n
,
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and we can set H =
(

δ∗
k log(n+2)

n

)1/2
· ([`]0 ∨ 1).

Condition concerning υ: It holds

Var(rt(εk)) ≤ E

[∣∣∣∣∫ 1

0
r′

t(x)λεk
(x)dx

∣∣∣∣2
]

≤ [`]20 · E
[∫ 1

0
|r′

t(x)|2λεk
(x)

[λ]0
dx

]
≤ ([`]20 ∨ 1) · δ∗

k,

and we define υ = ([`]20 ∨ 1) · δ∗
k. Now that statement of the lemma follows from Proposition B.4

(together with Remark B.5) with ε = 12.
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5. Non-parametric Poisson regression

In this chapter, we consider a non-parametric Poisson regression model. We assume that the
observations are given by an i.i.d. sample

(X1, Y1), . . . , (Xn, Yn) ∈ [0, 1] × N0 (5.1)

satisfying the relationship
Yi|Xi ∼ P(Tλ(Xi)).

Here, P(α) denotes the Poisson distribution with parameter α ≥ 01, T > 0 and λ : [0, 1] → [0,∞) is
a non-negative function. The aim of this chapter is to derive an adaptive estimator of the unknown
function λ from the observations (5.1).

The classical distinction in non-parametric regression is made between random and deterministic
design: in the deterministic design framework, one assumes that the Xi are predetermined and
fixed sampling points. Most frequently, the so-called equidistant deterministic design where Xi = i

n

for i = 1, . . . , n is considered. In the random design framework, one assumes that X1, . . . , Xn is
an i.i.d. sample drawn according to some known probability density function f : [0, 1] → R.

In this thesis, we restrict ourselves to the random design case. It is intuitively appealing that
the explanatory variables Xi should be scattered over the interval [0, 1] in a sufficiently uniform
way to make a reasonable estimate of λ over the whole interval possible. In order to ensure this,
we will assume that the density f is bounded away from zero (see Assumption 5.2 below) which
is a standard assumption in non-parametric regression (see, for instance, [Sto82] but also [Che07]
for a study that does not use such an assumption).

5.1. Methodology: Orthonormal series estimator of the regression
function

As in Chapter 3, we assume that the unknown functional parameter belongs to the space L2 :=
L2([0, 1], dx) of square-integrable and real-valued functions. In addition, we again use an orthonor-
mal series estimator in terms of the trigonometric orthonormal basis {ϕj}j∈Z given by

ϕ0 ≡ 1, ϕj(x) =
√

2 cos(2πjx), ϕ−j(x) =
√

2 sin(2πjx), j = 1, 2, . . .

The Fourier coefficients of a function λ ∈ L2 are denoted with

[λ]j :=
∫ 1

0
λ(x)ϕj(x)dx

leading to the L2-convergent representation λ =
∑

j∈Z[λ]jϕj . As in the previous chapters, we
consider projection estimators of the form

λ̂k :=
∑

0≤|j|≤k

[̂λ]jϕj

1By convention, we define the Poisson distribution with parameter α = 0 to be the probability distribution
degenerated at 0.
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5. Non-parametric Poisson regression

where [̂λ]j is an appropriate estimator of [λ]j for all j ∈ Z and k ∈ N0 a dimension parameter.
Under the assumption that f(x) > 0 for all x ∈ [0, 1], we have for the bivariate random variable
(X,Y ) with X ∼ f and Y |X ∼ P(Tλ(X)) for all j ∈ Z the identity

E
[

Y

f(X)ϕj(X)
]

= E
[
E
[

Y

f(X)ϕj(X)|X
]]

= E
[
ϕj(X)
f(X) · E[Y |X]

]
= T E

[
λ(X)
f(X)ϕj(X)

]
= T

∫ 1

0

λ(x)
f(x)ϕj(x)f(x)dx = T

∫ 1

0
λ(x)ϕj(x)dx = T [λ]j ,

and thus
[̂λ]j := 1

nT

n∑
i=1

Yi

f(Xi)
ϕj(Xi) (5.2)

is an unbiased estimator of [λ]j for all j ∈ Z.

5.2. Minimax theory

As in Chapter 3, we evaluate the performance of an arbitrary estimator λ̃ by means of its maximum
risk defined through

sup
λ∈Λ

E[‖λ̃− λ‖2],

and aim at finding an estimator that attains the minimax risk defined through

inf
λ̃

sup
λ∈Λ

E[‖λ̃− λ‖2]

at least up to a multiplicative numerical constant. We work with the same abstract smoothness
assumptions as in the previous chapters, that is, we will assume that λ belongs to some ellipsoid

Λr
γ = {λ ∈ L2 : λ ≥ 0 and ‖λ‖2

γ :=
∑
j∈Z

γj |[λ]j |2 ≤ r}

for some r > 0 and a strictly positive symmetric sequence γ = (γj)j∈Z. We will impose the
following assumption on γ which coincides with Assumption 3.1 in Chapter 3.

Assumption 5.1. γ = (γj)j∈Z is a strictly positive symmetric sequence with γ0 = 1 and the
sequence (γn)n∈N0 is non-decreasing.

In addition, we need the following assumption on the density f .

Assumption 5.2. f(x) ≥ f0 > 0 for all x ∈ [0, 1].

5.2.1. Upper bound

We start our investigation with the derivation of an upper bound for the estimator λ̂k with [̂λ]j
defined in (5.2) and suitably chosen dimension parameter k ∈ N0.

Theorem 5.3. Let Assumptions 5.1 and 5.2 hold. Then, for any n ∈ N,

sup
λ∈Λr

γ

E[‖λ̂k∗
n

− λ‖2] . min
k∈N0

max
{

1
γk
,

2k + 1
n

}
=: Ψn

for k∗
n chosen as k∗

n := argmink∈N0 max
{

1
γk
, 2k+1

n

}
.
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Proof. We have the bias-variance decomposition

E[‖λ̂k∗
n

− λ‖2] ≤
∑

|j|>k∗
n

|[λ]j |2 +
∑

0≤|j|≤k∗
n

E[|[̂λ]j − [λ]j |2] =: b2 + v.

From the definition of Λr
γ it can be deduced under the validity of Assumption 5.1 that

b2 ≤ r · γ−1
k∗

n
.

For the variance term, we obtain for arbitrary λ ∈ Λr
γ that

v =
∑

0≤|j|≤k∗
n

1
n2T 2E

∣∣∣∣∣
n∑

i=1

Yiϕj(Xi)
f(Xi)

−
n∑

i=1
T [λ]j

∣∣∣∣∣
2


=
∑

0≤|j|≤k∗
n

1
nT 2E

[∣∣∣∣Y1ϕj(X1)
f(X1) − T [λ]j

∣∣∣∣2
]

≤
∑

0≤|j|≤k∗
n

1
nT 2

{
T 2
∫ 1

0

ϕ2
j (x)
f(x) λ

2(x)dx+ T

∫ 1

0

ϕ2
j (x)
f(x) λ(x)dx

}

≤ 2 · 2k∗
n + 1
n

(
r

f0
+ [λ]0
Tf0

)
.

2k∗
n + 1
n

.

The statement of the theorem follows now by combining the obtained bounds for b2 and v.

5.2.2. Lower bound

Theorem 5.4. Let Assumption 5.1 hold, and further assume that

(C1) Γ :=
∑

j∈Z γ
−1
j < ∞, and

(C2) 0 < η−1 := infn∈N Ψ−1
n min{ 1

γk∗
n

,
2k∗

n+1
n } for some 1 ≤ η < ∞

where the quantities k∗
n and Ψn are defined in Theorem 5.3. Then, for any n ∈ N,

inf
λ̃

sup
λ∈Λr

γ

E[‖λ̃− λ‖2] & Ψn

where the infimum is taken over all estimators λ̃ of λ.

Proof. For each θ = (θj)0≤|j|≤k∗
n

∈ {±1}2k∗
n+1 we define the function λθ exactly as in the proof

of Theorem 3.3 with ζ from this proof replaced with ζ = min{ 1
Γη ,

8δ
T

√
r
} where δ = 1

2 − 1
2

√
2 . Then

one can proceed exactly as in the proof of Theorem 3.3 in order to show that λθ ∈ Λr
γ for all

θ ∈ {±1}2k∗
n+1.

Consider the following reduction argument which holds for an arbitrary estimator λ̃ of λ. In con-
trast to the argument in the proof of Theorem 3.3, it contains conditional instead of unconditional
expectations. More precisely, denote X = (X1, . . . , Xn), Y = (Y1, . . . , Yn). Then

sup
λ∈Λr

γ

E[‖λ̃− λ‖2] ≥ 1
22k∗

n+1

∑
θ∈{±1}2k∗

n+1

∑
0≤|j|≤k∗

n

E[Eθ[|[λ̃− λθ]j |2|X]]

= 1
22k∗

n+1

∑
0≤|j|≤k∗

n

∑
θ∈{±1}2k∗

n+1

1
2{E[Eθ[|[λ̃− λθ]j |2|X]] + E[Eθ(j) [|[λ̃− λθ(j) ]j |2|X]]} (5.3)

where for θ ∈ {±1}2k∗
n+1 the element θ(j) ∈ {±1}2k∗

n+1 is defined by θ
(j)
k = θk for k 6= j and
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θ
(j)
j = −θj . Consider the Hellinger affinity ρ(PY|X

θ ,PY|X
θ(j) ) :=

∫ √
dPY|X

θ dPY|X
θ(j) . We have

ρ(PY|X
θ ,PY|X

θ(j) ) ≤
∫

|[λ̃− λθ]j |
|[λθ − λθ(j) ]j |

√
dPY|X

θ dPY|X
θ(j) +

∫
|[λ̃− λθ(j) ]j |
|[λθ − λθ(j) ]j |

√
dPY|X

θ dPY|X
θ(j)

≤

(∫
|[λ̃− λθ]j |2

|[λθ − λθ(j) ]j |2
dPY|X

θ

)1/2

+
(∫

|[λ̃− λθ(j) ]j |2

|[λθ − λθ(j) ]j |2
dPY|X

θ(j)

)1/2

.

By means of the estimate (a+ b)2 ≤ 2a2 + 2b2 we obtain

1
2 |[λθ − λθ(j) ]j |2ρ2(PY|X

θ ,PY|X
θ(j) ) ≤ Eθ[|[λ̃− λθ]j |2|X] + Eθ(j) [|[λ̃− λθ(j) ]j |2|X].

Recall the definition of the Hellinger distance,

H(PY|X
θ ,PY|X

θ(j) ) :=
(∫ [√

PY|X
θ −

√
PY|X

θ(j)

]2
)1/2

.

Let Ni be a PPP on [0, T ] with constant intensity equal to λ(Xi). Consider the transformation
which maps the point process Ni to Yi = Ni([0, T ]). Using Lemma A.4 we can conclude

H2(PYi|X
θ ,PYi|X

θ(j) ) ≤ H2(PNi|X
θ ,PNi|X

θ(j) ) ≤
∫ T

0
(
√
λθ(Xi) −

√
λθ(j)(Xi))2

=
∫ T

0

|λθ(Xi) − λθ(j)(Xi)|2

(
√
λθ(Xi) +

√
λθ(j)(Xi))2

≤ Tζ
√
r

8nδ ≤ 1
n
.

Since Y1, . . . , Yn are independent conditionally on X1, . . . , Xn we obtain by Lemma A.3 that

H2(PY|X
θ ,PY|X

θ(j) ) ≤
n∑

i=1
H2(PYi|X

θ ,PYi|X
θ(j) ) ≤ 1.

Hence the relation ρ(PY|X
θ ,PY|X

θ(j) ) = 1 − 1
2H

2(PY|X
θ ,PY|X

θ(j) ) implies ρ(PY|X
θ ,PY|X

θ(j) ) ≥ 1
2 . Putting

this estimate into the reduction scheme (5.3) yields

sup
λ∈Λr

γ

E[‖λ̃− λ‖2] ≥ 1
22k∗

n+1

∑
θ∈{±1}2k∗

n+1

∑
0≤|j|≤k∗

n

1
2E[Eθ[|[λ̃− λθ]j |2|X] + Eθ(j) [|[λ̃− λθ(j) ]j |2|X]]

≥ 1
16

∑
0≤|j|≤k∗

n

|[λθ − λθ(j) ]j |2 ≥ ζr

64
∑

0≤|j|≤k∗
n

1
n

= ζr

64 · 2k∗
n + 1
n

.

Since the last estimate holds for arbitrary λ̃, we obtain the claim assertion thanks to Assump-
tion (C2).

Theorems 5.3 and 5.4 show that under the stated assumptions the minimax rate of convergence
is given by Ψn, and that this rate is attained by the estimator λ̂k∗

n
. For the examples of sequences

γ considered in Chapter 3, we obtain exactly the same rates for the Poisson regression model as for
intensity estimation. Note that, as in the previous chapters, the estimator λ̂k∗

n
is not fully data-

driven but depends on a priori knowledge concerning the class of potential regression functions,
namely the knowledge of the sequence γ.
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5.3. Adaptive estimation
In order to construct an adaptive estimator we make again use of the model selection paradigm
already applied in Chapters 3 and 4. Again, our derivation of the adaptive estimator is split into
two parts. In the first part, we will construct a preliminary estimator whose definition is based on
the knowledge of an upper bound of the regression function. In the second part, we replace this
known upper bound by an appropriate estimator of ‖λ‖∞ in order to obtain a fully data-driven
estimator.

5.3.1. Known upper bound of the regression function

Denoting 〈s, t〉 :=
∫ 1

0 s(x)t(x)dx for s, t ∈ L2, we define the contrast function

Υn(t) := ‖t‖2 − 2〈λ̂n, t〉, t ∈ L2.

Our definition of the penalty term in this section is based on the validity of the following assump-
tion.

Assumption 5.5. We know some ξ > 0 such that ‖λ‖∞ ≤ ξ.

Based on the knowledge of ξ, we define the penalty via

Penk := 24µ · 2k + 1
n

+ 400µ · (2k + 1) · log(n+ 2)
nT

(5.4)

where µ = 1∨ξ2

f2
0

≥ 1. The resulting data-driven choice of the dimension parameter k ∈ N0 is as in
the previous chapters defined as the minimizer of the penalized contrast, that is

k̃n := argmin
0≤k≤n

{Υn(λ̂k) + Penk}.

Theorem 5.6. Let Assumptions 5.1, 5.2, and 5.5 hold. Then, for any n ∈ N,

sup
λ∈Λr

γ

‖λ‖∞≤ξ

E[‖λ̂
k̃n

− λ‖2] . min
0≤k≤n

max
{
γ−1

k ,Penk

}
+ 1
n
.

Proof. Using the same arguments as in the proof of Theorem 3.9 we can derive the inequality
chain

‖λ̂
k̃n

− λ‖2 ≤ ‖λk − λ‖2 + 2〈λ̂n − λn, λ̂k̃n
− λk〉 + Penk − Pen

k̃n

with λk :=
∑

0≤|j|≤k[λ]jϕj for k ∈ {0, . . . , n}. Putting

[̃λ]j := 1
n

n∑
i=1

λ(Xi)
f(Xi)

ϕj(Xi) and λ̃n :=
∑

0≤|j|≤n

[̃λ]jϕj

we obtain

‖λ̂
k̃n

− λ‖2 ≤ ‖λk − λ‖2 + 2〈Θ̂n, λ̂k̃n
− λk〉 + 2〈Θ̃n, λ̂k̃n

− λk〉 + Penk − Pen
k̃n

where Θ̂n := λ̂n − λ̃n and Θ̃n := λ̃n − λn. Set Bk := {λ ∈ Sk : ‖λ‖2 ≤ 1}. Using the estimate
2uv ≤ τu2 + τ−1v2 for positive τ we can conclude

‖λ̂
k̃n

− λ‖2 ≤ ‖λk − λ‖2 + 2τ‖λ̂
k̃n

− λk‖2 + τ−1 sup
t∈B

k∨̃kn

|〈Θ̂n, t〉|2
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+ τ−1 sup
t∈B

k∨̃kn

|〈Θ̃n, t〉|2 + Penk − Pen
k̃n
.

Note that ‖λ̂
k̃n

− λk‖2 ≤ 2‖λ̂
k̃n

− λ‖2 + 2‖λk − λ‖2 and ‖λ − λk‖2 ≤ rγ−1
k for all λ ∈ Λr

γ thanks
to Assumption 5.1. Taking τ = 1/8 we obtain

‖λ̂
k̃n

− λ‖2 ≤ 3rγ−1
k + 16 sup

t∈B
k∨̃kn

|〈Θ̂n, t〉|2 + 16 sup
t∈B

k∨̃kn

|〈Θ̃n, t〉|2 + 2Penk − 2Pen
k̃n

≤ 3rγ−1
k + 16

 sup
t∈B

k∨̃kn

|〈Θ̂n, t〉|2 − 50µ · (2(k ∨ k̃n) + 1) log(n+ 2)
nT


+

+ 16

 sup
t∈B

k∨̃kn

|〈Θ̃n, t〉|2 − 3µ · 2(k ∨ k̃n) + 1
n


+

+ 800µ · (2(k ∨ k̃n) + 1) log(n+ 2)
nT

+ 48µ · 2(k ∨ k̃n) + 1
n

+ 2Penk − 2Pen
k̃n
.

By definition of the penalty and roughly bounding the brackets (. . .)+ by summing over all potential
values of k, this implies

‖λ̂
k̃n

− λ‖2 ≤ 3rγ−1
k + 16

n∑
k=0

(
sup
t∈Bk

|〈Θ̂n, t〉|2 − 50µ · (2k + 1) log(n+ 2)
nT

)
+

+ 16
n∑

k=0

(
sup
t∈Bk

|〈Θ̃n, t〉|2 − 3µ · 2k + 1
n

)
+

+ 4Penk.

Consequently, taking expectations and into account that the last estimate holds for arbitrary k,
we obtain

sup
λ∈Λr

γ

‖λ‖∞≤ξ

E[‖λ̂
k̃n

− λ‖2] ≤ min
0≤k≤n

{3rγ−1
k + 4Penk}

+ 16 sup
λ∈Λr

γ

‖λ‖∞≤ξ

n∑
k=0

E

[(
sup
t∈Bk

|〈Θ̂n, t〉|2 − 50µ · (2k + 1) log(n+ 2)
nT

)
+

]
︸ ︷︷ ︸

=:�k

+ 16 sup
λ∈Λr

γ

‖λ‖∞≤ξ

n∑
k=0

E

[(
sup
t∈Bk

|〈Θ̃n, t〉|2 − 3µ · 2k + 1
n

)
+

]
︸ ︷︷ ︸

=:�k

. (5.5)

We now use Lemmata 5.9 and 5.11 in order to bound the terms �k and �k which yields for
k ∈ {0, . . . , n} that

�k ≤ K ′
1

{
(2k + 1)µ

nT
exp(−2 log(n+ 2)) + (2k + 1)µ

n2T 2 exp(−K ′
2
√
nT )

}
and

�k ≤ K1

{
µ

n
exp(−K2(2k + 1)) + 2k + 1

n2 exp(−K3
√
n)
}
.

Putting these estimates into (5.5), using the estimate 2k + 1 ≤ 3n for k ≤ n, and the convergence
of
∑∞

k=0 exp(−K2(2k + 1)), we obtain that

sup
λ∈Λr

γ

‖λ‖∞≤ξ

E[‖λ̂
k̃n

− λ‖2] . min
0≤k≤n

max{γ−1
k ,Penk} + 1

n
+ exp(−κ

√
n)
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5.3. Adaptive estimation

with κ = K ′
2
√
T ∧K3.

Since the penalty term Penk differs from the variance term in Theorem 5.3 by addition of an
extra logarithmic factor and k∗

n ≤ n, the estimator λ̂
k̃n

is rate optimal only up to a logarithmic
factor.

5.3.2. Unknown upper bound of the regression function

We now propose an adaptive estimator of the regression function λ that does not depend on a
priori knowledge of an upper bound for ‖λ‖∞, and is thus fully data-driven. Not surprisingly, the
key idea is to replace the quantity ξ in the definition of the penalty in (5.4) by an appropriate
estimator of ‖λ‖∞. For the construction of the estimator of ‖λ‖∞, we follow an approach that was
used in [Com01] in the context of adaptive estimation of the spectral density from a stationary
Gaussian sequence. More precisely, the estimator of ‖λ‖∞ is obtained as the plug-in estimator
‖λ̂m‖∞ where λ̂m is a suitable projection estimator of λ in some space of piecewise polynomials.
The following brief disgression provides a short overview of piecewise polynomials.

Piecewise polynomials

The presentation in this section is based on [BM97] and provides in a nutshell the basic properties
of piecewise polynomials that we will use in the following. As in the whole chapter, we restrict
ourselves to piecewise polynomials defined on [0, 1]. The linear space Pm of piecewise polynomials
is characterized by the ’model’ m = (q, {b0, . . . , bD : 0 = b0 < b1 < . . . < bD = 1}). Here, q ∈ N0 is
the maximal degree of the admissible polynomials and the knots b0, b1, . . ., bD define a partition
of [0, 1] into D intervals. The dimension of Pm is Dm = D · (q + 1).

The point of origin in order to find a convenient basis are the Legendre polynomials. We recall that
the set of Legendre polynomials {Qj}j∈N0 is a family of orthogonal polynomials in L2([−1, 1], dx)
where each Qj is a polynomial of degree j with

|Qj(x)| ≤ 1 for all x ∈ [−1, 1], Qj(1) = 1,
∫ 1

−1
Q2

j (t)dt = 2
2j + 1 .

Hence, {Rj}j∈N0 with

Rj(x) =
√

2j + 1
b− a

Qj

(
2

b− a
x−

(
1 − 2a

b− a

))
is an orthonormal basis for the space of polynomials on [a, b] (cf. [DL93], p. 328 for an explicit
representation of the polynomials Rj). If P is a polynomial of degree ≤ q with representation
P (x) =

∑q
j=0 ajRj(x), then

|P (x)|2 ≤

 q∑
j=0

a2
j

 q∑
j=0

2j + 1
b− a

 = (q + 1)2

b− a

 q∑
j=0

a2
j

 ,

and thus ‖P‖∞ ≤ q+1√
b−a

· ‖P‖. For our purposes, it is sufficient to consider regular piecewise
polynomials where bi = i/M for some M ∈ N and i = 0, . . . ,M . In this case, one can write
m = (q,M) instead of m = (q, {0, 1/M, . . . , 1}). For a space Pm of piecewise polynomials we
denote with {ϕη}η∈Im

the orthonormal basis obtained from transformed Legendre polynomials as
above (then, |Im| = Dm = M · (q + 1) if m = (q,M)).
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5. Non-parametric Poisson regression

Definition of the fully data-driven estimator

Let λ̂m be the projection estimator of λ on the space of regular piecewise polynomials Pm with
m = (q,M) as introduced above. We substitute the quantity ξ in the definition of the penalty term
in the previous section with ‖λ̂m‖∞. Precise assumptions on the ’model’ m, that is, on q and M

will be stated in Theorem 5.7 below. We replace the deterministic penalty Penk by the random
penalty

P̂enk = 384µ̂ · 2k + 1
n

+ 6400µ̂ · (2k + 1) · log(n+ 2)
nT

(5.6)

where µ̂ = 1∨‖λ̂m‖2
∞

f2
0

≥ 1. Keeping the contrast function Υn from Section 5.3.1, we define

k̂n := argmin
0≤k≤n

{Υn(λ̂k) + P̂enk}.

The following theorem provides a risk bound for the fully data-driven estimator λ̂
k̂n

.

Theorem 5.7. Let Assumptions 5.1 and 5.2 hold, and further assume that

(m1) ‖λ− λm‖∞ ≤ 1
4 ‖λ‖∞ where λm denotes the projection of λ on Pm, and

(m2) the model m = (q,M) in the definition of the auxiliary estimator λ̂m satisfies

Dm ≤ 1
4
√

10
·
√
f0 ∧ f2

0T

(q + 1)3/2 ·
√
n

log(n+ 2) .

Then, for any n ∈ N,

E[‖λ̂
k̂n

− λ‖2] . min
0≤k≤n

max
{

1
γk
,Penk

}
+ 1
n

where Penk = 24µ · 2k+1
n + 400µ · (2k + 1) · log(n+2)

nT and µ = 1∨ξ2

f2
0

≥ 1.

Remark 5.8. The additonal Assumptions (m1) and (m2) are inspired by the assumptions made in
Theorem 2 of [Com01].

Proof. Introduce the event Ξ :=
{∣∣∣∣‖λ̂m‖∞∨1

‖λ‖∞∨1 − 1
∣∣∣∣ < 3

4

}
. It is readily verified that on Ξ it holds

that
‖λ‖∞ ∨ 1 ≤ 4(‖λ̂m‖∞ ∨ 1) and ‖λ̂m‖∞ ∨ 1 ≤ 7

4(‖λ‖∞ ∨ 1).

These estimates will be used below without further reference. We consider the decomposition

E[‖λ̂
k̂n

− λ‖2] ≤ E[‖λ̂
k̂n

− λ‖21Ξ] + E[‖λ̂
k̂n

− λ‖21Ξc ] =: �1 + �2.

In the sequel, we will derive uniform upper bounds for the terms �1 and �2, respectively.
Uniform upper bound for �1: In analogy to the proof of Theorem 5.6 one can derive

‖λ̂
k̂n

− λ‖2 ≤ ‖λk − λ‖2 + 2τ‖λ̂
k̂n

− λk‖2 + τ−1 sup
t∈B

k∨̂kn

|〈Θ̂n, t〉|2

+ τ−1 sup
t∈B

k∨̂kn

|〈Θ̃n, t〉|2 + P̂enk − P̂en
k̂n

for all k ∈ {0, . . . , n} and all the appearing quantities are defined exactly as in the proof of
Theorem 5.6. Using the same arguments as in that proof, one obtains by specializing with τ = 1/8
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5.3. Adaptive estimation

and setting µ = 1∨ξ2

f2
0

(recall that ξ satisfies ‖λ‖∞ ≤ ξ) that

‖λ̂
k̂n

− λ‖2 ≤ 3rγ−1
k + 16 sup

t∈B
k∨̂kn

|〈Θ̂n, t〉|2 + 16 sup
t∈B

k∨̂kn

|〈Θ̃n, t〉|2 + 2P̂enk − 2P̂en
k̂n

≤ 3rγ−1
k + 16

 sup
t∈B

k∨̂kn

|〈Θ̂n, t〉|2 − 50µ · (2(k ∨ k̂n) + 1) log(n+ 2)
nT


+

+ 16

 sup
t∈B

k∨̂kn

|〈Θ̃n, t〉|2 − 3µ · 2(k ∨ k̂n) + 1
n


+

+ 800µ · (2(k ∨ k̂n) + 1) log(n+ 2)
nT

+ 48µ · 2(k ∨ k̂n) + 1
n

+ 2P̂enk − 2P̂en
k̂n
.

By definition of Ξ and the random penalty function, we obtain using the estimate 2(k ∨ k̂n) + 1 ≤
2k + 2k̂n + 2 that

‖λ̂
k̂n

− λ‖21Ξ ≤ 3rγ−1
k + 16

 sup
t∈B

k∨̂kn

|〈Θ̂n, t〉|2 − 50µ · (2(k ∨ k̂n) + 1) log(n+ 2)
nT


+

+ 16

 sup
t∈B

k∨̂kn

|〈Θ̃n, t〉|2 − 3µ · 2(k ∨ k̂n) + 1
n


+

+ 100Penk.

Bounding the terms in the brackets (. . .)+ by summing over all admissible values of k and taking
expectations on both sides yield

sup
λ∈Λr

γ

‖λ‖∞≤ξ

E[‖λ̂
k̂n

− λk‖21Ξ] ≤ 3rγ−1
k + 100Penk

+ 16 sup
λ∈Λr

γ

‖λ‖∞≤ξ

n∑
k=0

E

 sup
t∈B

k∨̂kn

|〈Θ̂n, t〉|2 − 50µ · (2k + 1) log(n+ 2)
nT


+



+ 16 sup
λ∈Λr

γ

‖λ‖∞≤ξ

n∑
k=0

E

 sup
t∈B

k∨̂kn

|〈Θ̃n, t〉|2 − 3µ · 2k + 1
n


+

 .
Applying Lemmata 5.9 and 5.11 as in the proof of Theorem 5.6 finally implies

sup
λ∈Λr

γ

‖λ‖∞≤ξ

E[‖λ̂
k̂n

− λ‖21Ξ] . min
0≤k≤n

max{γ−1
k ,Penk} + 1

n
+ exp(−κ

√
n)

for some numerical constant κ > 0.
Uniform upper bound for �2: For λ ∈ Λr

γ , take note of the estimate

E[‖λ̂
k̂n

− λ‖21Ξc ] ≤ E[‖λ̂
k̂n

− λ
k̂n

‖21Ξc ] + E[‖λ
k̂n

− λ‖21Ξc ]

≤ P(Ξc)1/2
∑

0≤|j|≤k̂n

E[|[̂λ]j − [λ]j |4]1/2 + rP(Ξc)

.
2k̂n + 1

n
P(Ξc)1/2 + rP(Ξc)

where λ
k̂n

=
∑

0≤|j|≤k̂n
[λ]jej and we used Theorem B.1 with p = 4. Because 2k + 1 ≤ 3n for all
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5. Non-parametric Poisson regression

k ∈ {0, . . . , n} it suffices to show that P(Ξc) . n−2. Note that we have

|‖λ̂m‖∞ − ‖λ‖∞| ≤ ‖λ̂m − λm‖∞ + ‖λm − λ‖∞ ≤ ‖λ̂m − λm‖∞ + 1
4‖λ‖∞ (5.7)

where the last estimate holds due to Assumption (m1). Put Ij = [ j−1
M , j

M ] for j = 1, . . . ,M and let
{ϕη}η∈Im

be the basis of Pm consisting of transformed Legendre polynomials (see the disgression
on piecewise polynomials above). We have

‖λ̂m − λm‖∞ = sup
1≤j≤M

‖(λ̂m − λm)1Ij
‖∞

≤ sup
1≤j≤M

(q + 1)
√
M‖(λ̂m − λm)1Ij ‖

≤ (q + 1)3/2
√
M sup

η∈Im

|〈λ̂m − λm, ϕη〉|

≤ (q + 1)3/2
√
M{ sup

η∈Im

|〈λ̂m − E[λ̂m|X], ϕη〉| + sup
η∈Im

|〈E[λ̂m|X] − λm, ϕη〉|}

= (q + 1)
√
Dm{ sup

η∈Im

|ν(ϕη)| + sup
η∈Im

|ν̃(ϕη)|}

where ν(ϕη) := 〈λ̂m−E[λ̂m|X], ϕη〉, and ν̃(ϕη) := 〈E[λ̂m|X]−λm, ϕη〉. Using (5.7) and the estimate
|a ∨ 1 − b ∨ 1| ≤ |a− b|, we obtain

P(Ξc) = P(|‖λ̂m‖∞ ∨ 1 − ‖λ‖∞ ∨ 1| ≥ 3/4 · (‖λ‖∞ ∨ 1))

≤ P(‖λ̂m − λm‖∞ ≥ 1/2 · (‖λ‖∞ ∨ 1))

≤ P((q + 1)
√
Dm sup

η∈Im

|νn(ϕη)| ≥ 1/4 · (‖λ‖∞ ∨ 1))

+ P((q + 1)
√
Dm sup

η∈Im

|ν̃n(ϕη)| ≥ 1/4 · (‖λ‖∞ ∨ 1))

≤
∑

η∈Im

[P (νn(ϕη) ≥ ξ) + P (−νn(ϕη) ≥ ξ) + P (ν̃n(ϕη) ≥ ξ) + P (−ν̃n(ϕη) ≥ ξ)] ,

where ξ = ‖λ‖∞∨1
4·(q+1)·

√
Dm

. We will now obtain upper bounds for the probabilities on the right-
hand side via Bernstein type inequalities. Note that ‖ϕη‖ = 1 and ‖ϕη‖∞ ≤

√
(q + 1)Dm. By

application of Proposition B.7 we obtain

P (±νn(ϕη) ≥ ξ) ≤ exp
(

− nTξ2

2‖ϕη‖2
∞‖λ‖∞/f2

0 + 2/3 · ξ · ‖ϕη‖∞/f0

)
≤ exp

(
−1

4

(
nTξ2

‖ϕη‖2
∞(‖λ‖∞ ∨ 1)/f2

0
∧ 3nTξ

‖ϕη‖∞/f0

))
≤ exp

(
−nTf2

0 (‖λ‖∞ ∨ 1)
64(q + 1)3D2

m

)
≤ exp

(
− nTf2

0
64(q + 1)3D2

m

)
Analogously, exploiting Proposition B.6, we get

P (±ν̃n(ϕη) ≥ ξ) ≤ exp
(

− nf0

64(q + 1)3D2
m

)
,

and hence

P(Ξc) ≤ 4Dm exp
(

− n(f0 ∧ Tf2
0 )

64(q + 1)3D2
m

)
.

Assumption (m2) finally implies P(Ξc) ≤ 1√
10

√
f0∧f2

0 T

(q+1)3/2

√
n

log(n+2) · n−5/2 . 1
n2 .
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Figure 3.: Outcome of 25 replications (in grey) of the fully data-driven estimator in the non-parametric Poisson
regression model for n = 250 and different values of T . The true regression function (in black) is given
through λ(x) = 20x(1 − x)(x − 0.5) + 4.
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Figure 4.: Outcome of 25 replications (in grey) of the fully data-driven estimator in the non-parametric Poisson
regression model for n = 1000 and different values of T . The true regression function (in black) is given
through λ(x) = 20x(1 − x)(x − 0.5) + 4.

Note that we the have considered the parameter T > 0 as a fixed constant in our setup. However,
our analysis has en passant shown that our estimator performs better for larger values of T which
is intuitively clear. It might be worth to have a closer look on the effect of the parameter T and,
more precisely, the interplay of n and T in future work.

As in the previous chapter, the numerical constants in the definition of the penalty in (5.6) are
too large in order to obtain a practicable estimator for small sample sizes. As usual in model
selection frameworks, a reasonable constant for the definition of the penalty might be found by
means of some calibration experiments. Figures 3 and 4 provide, for the sake of illustration,
outcomes of some simulations for the fully data-driven estimator for different values of n and T

in the case that the constant is set equal to 2 (in the Gaussian regression framework, this choice
of the constant is known as Mallow’s Cp, cf. [BBM99], p. 313). The unknown regression function
in this illustrative simulation is λ(x) = 20x(1 − x)(x − 0.5) + 4 and the auxiliary estimator was
λ̂m with m = (0, 10), that is, λ̂m is chosen as a histogram estimator. As one would expect from
the definition of the penalty, smaller values of n and T favour the selection of less complex models
with few basis functions.

5.3.3. Auxiliary results
Lemma 5.9. For all k ∈ {0, . . . , n}, we have

E

[(
sup
t∈Bk

|〈Θ̃n, t〉|2 − 3µ · 2k + 1
n

)
+

]
≤ K1

{
µ

n
exp(−K2(2k + 1)) + 2k + 1

n2 exp(−K3
√
n)
}

with strictly positive numerical constants K1, K2, and K3.
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5. Non-parametric Poisson regression

Proof. With t ∈ Bk, we associate the function

rt(x) :=
∑

0≤|j|≤k

[t]jλ(x)ϕj(x)
f(x) .

Evidently, for X ∼ f we have E[rt(X)] =
∑

0≤|j|≤k[t]j [λ]j . Consequently, one has the identity

〈Θ̃n, t〉 = 1
n

n∑
i=1

rt(Xi) − E[rt(Xi)],

and 〈Θ̃n, t〉 will take the role of νn(·) in Lemma B.4. We now check the preconditions concerning
the existence of suitable constants M1, H and υ in the framework of Lemma B.4.
Condition concerning M1: We have

sup
t∈Bk

‖rt‖2
∞ = sup

t∈Bk

sup
y∈[0,1]

|rt(y)|2 ≤ sup
t∈Bk

sup
y∈[0,1]

 ∑
0≤|j|≤k

|[t]j |2
 ∑

0≤|j|≤k

λ2(y) ·
ϕ2

j (y)
f2(y)


≤ ‖λ‖2

∞
f2

0
· (2k + 1) ≤ µ · (2k + 1),

and we can put M1 := (µ · (2k + 1))1/2.
Condition concerning H: We have

E[ sup
t∈Bk

|〈Θ̃n, t〉|2] ≤ 1
n2E

 sup
t∈Bk

 ∑
0≤|j|≤k

|[t]j |2
 ∑

0≤|j|≤k

∣∣∣∣∣
n∑

i=1

{
ϕj(Xi)
f(Xi)

λ(Xi) − [λ]j
}∣∣∣∣∣

2


≤ 1
n

∑
0≤|j|≤k

Var
(
ϕj(X1)
f(X1) λ(X1)

)
≤ 1
n

∑
0≤|j|≤k

E

[(
ϕj(X1)
f(X1) λ(X1)

)2
]

≤ 2k + 1
n

· ‖λ‖2
∞

f0
≤ µ · 2k + 1

n
,

and thus by Jensen’s inequality we can put H :=
(

µ·(2k+1)
n

)1/2
.

Condition concerning υ: For arbitrary t ∈ Bk, it holds

Var (rt(X)) = Var

 ∑
0≤|j|≤k

[t]j
ϕj(X)
f(X) λ(X)

 ≤ E


 ∑

0≤|j|≤k

[t]j
ϕj(X)
f(X) λ(X)

2
 ≤ µ.

Thus, we can take υ := µ and the statement of the lemma follows now by applying Lemma B.4
with ε = 1

4 .

In order to deal with the terms �k in the proof of Theorem 5.6 we need to the following
conditional version of Proposition 2.13. Since the proof is exactly the same as in the unconditional
case (replacing all probabilities and expectations by their conditional counterparts), we omit the
proof.

Lemma 5.10. Let N1, . . . , Nn be independent Cox processes driven by finite random measures
η1, . . . , ηn (that is, given ηi, Ni is a PPP with intensity measure ηi) that are conditionally in-
dependent given η1, . . . , ηn. Set νn(r) = 1

n

∑n
k=1{

∫
X r(x)dNk(x) −

∫
X r(x)dηk(x)} for r contained

in a countable class of real-valued measurable functions. Then, for any ε > 0, there exist constants
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c1, c2 = 1
6 , and c3 such that

E

[(
sup
r∈R

|νn(r)|2 − c(ε)H2
)

+
|η

]
≤ c1

{
υ

n
exp

(
−c2ε

nH2

υ

)
+ M2

1
C2(ε)n2 exp

(
−c3C(ε)

√
ε
nH

M1

)}

where C(ε) = (
√

1 + ε − 1) ∧ 1, c(ε) = 2(1 + 2ε) and M1, H and υ are such that (denoting
η = (η1, . . . , ηn))

sup
r∈R

‖r‖∞ ≤ M1, E[sup
r∈R

|νn(r)||η] ≤ H, sup
r∈R

Var
(∫

X
r(x)dNk(x)|η

)
≤ υ ∀k.

We need Lemma 5.10 to prove the following Lemma 5.11. The crucial fact that we will exploit
here is that the constantsM1, H and υ in the statement of Lemma 5.10 can be chosen independently
from the underlying directing measure in our specific setup. Thus, we obtain the identical bound
also for the unconditional case.

Lemma 5.11. With the notation from the proof of Theorem 5.6 it holds for all k ∈ {0, . . . , n}

E

[(
sup
t∈Bk

|〈Θ̂n, t〉|2 − 50µ · (2k + 1) log(n+ 2)
nT

)
+

]
≤ K ′

1

{
(2k + 1)µ

nT
exp(−2 log(n+ 2))

+ (2k + 1)µ
n2T 2 exp(−K ′

2
√
nT )

}
with strictly positive numerical constants K ′

1 and K ′
2.

Proof. Given X = (X1, . . . , Xn), we can write Yi as
∫ T

0 dNi(s) where Ni is a Poisson process
with homogeneous intensity equal to λ(Xi). Thus, conditional on X, it holds

〈Θ̂n, t〉 = 1
nT

∑
0≤|j|≤k

[t]j
n∑

i=1

{∫ T

0

ϕj(Xi)
f(Xi)

dNi(s) − ϕj(Xi)
f(Xi)

· Tλ(Xi)
}

= 1
n

n∑
i=1

{∫ T

0
rt(s)dNi(s) −

∫ T

0
rt(s)λ(Xi)ds

}

where rt is the function given by rt(s) := 1
T

∑
0≤|j|≤k[t]j ϕj(Xi)

f(Xi) (note that this is a constant function
given X). We now check the preconditions concerning the existence of suitable constants M1, H
and υ from Lemma 5.10.

Condition concerning M1: We have

sup
t∈Bk

‖rt‖2
∞ = sup

t∈Bk

1
T 2

 ∑
0≤|j|≤k

[t]j
ϕj(Xi)
f(Xi)

2

≤ sup
t∈Bk

1
T 2

 ∑
0≤|j|≤k

|[t]j |2
 ·

 ∑
0≤|j|≤k

ϕ2
j (Xi)
f2(Xi)


≤ 2k + 1

T 2f2
0
,

and we can take M1 := 1
T

√
µ · (2k + 1).

Condition concerning H: It holds

E[ sup
t∈Bk

|〈Θ̂n, t〉|2|X] ≤ sup
t∈Bk

 ∑
0≤|j|≤k

|[t]j |2
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· E

 ∑
0≤|j|≤k

| 1
nT

n∑
i=1

{∫ T

0

ϕj(Xi)
f(Xi)

[dNi(s) − λ(Xi)ds]
}

|2|X


≤ 1
nT 2

∑
0≤|j|≤k

Var
(∫ T

0

ϕj(X1)
f(X1) dN1(s)|X1

)

= 1
nT 2

∑
0≤|j|≤k

∫ T

0

ϕ2
j (Xi)
f2(Xi)

λ(Xi)ds

≤ 2k + 1
n

· 1
T

· ‖λ‖∞

f2
0

≤ 2k + 1
n

· µ
T
.

Thus, we can put H :=
(

(2k+1)µ log(n+2)
nT

)1/2
.

Condition concerning υ: For arbitrary k ∈ {0, . . . , n} and t ∈ Bk it holds

Var
(∫ T

0
rt(s)dNk(s)|Xk

)
=
∫ T

0
|rt(s)|2λ(Xk)ds ≤ T · ‖λ‖∞ · ‖rt‖2

∞ ≤ ξ

Tf2
0

· (2k + 1),

and we can put υ := µ
T · (2k + 1).

We can apply Lemma 5.10 with ε = 12 which yields

E

[(
sup
t∈Bk

|〈Θ̂n, t〉|2 − 50µ · (2k + 1) log(n+ 2)
nT

)
+

|X

]
≤

K ′
1

{
(2k + 1)µ

nT
exp(−2 log(n+ 2)) + (2k + 1)µ

n2T 2 exp(−K ′
2
√
nT log(n+ 2))

}
.

Because the right-hand side of the last estimate does not depend on X, taking expectations on
both sides implies the assertion of the lemma.
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6. Conclusion and perspectives

In the first part of this thesis, we have derived concentration inequalities for maxima of empirical
processes associated with Poisson point processes. In the second part, we have considered different
non-parametric models related to point processes and demonstrated that the concentration results
from the first part turn out to be useful for the theoretical study of adaptive non-parametric
estimators.

During the research which led to the results of this thesis, some questions have arisen that might
be worth being dealt with in future research projects:

Concerning the first part of the thesis, it might be of interest whether the concentration results
derived in Chapter 2 in a setup with Poisson processes can be transferred to more general point
process setups, for instance setups with Cox processes. Moreover, our method of proof might also
be appropriate in order to derive concentration inequalities for general stochastic integrals: our
results from Chapter 2 might then be seen as special cases where the integrator is just a Poisson
process.

In the second part of the thesis, we have assumed throughout that the observations in the
considered non-parametric estimation problems are i.i.d. samples. It should be possible to transfer
methodology recently derived in [AJ16a] and [AJ16b] (these papers dispense with the independence
assumption and replace it with suitable mixing-conditions), to at least some of our problems.

In the context of Chapter 4, it might be of interest to study adaptive estimation procedures not
only for the two models considered in this thesis, but under the more general assumption that the
errors εij are only stationary (note that some of the arguments used in the proofs of Chapter 4
fail to hold in this general framework). In addition, the question of lower bounds with respect to
both sample sizes n and m remains open in the setup of model 2.

For the analysis of the Poisson regression problem in Chapter 5, we have restricted ourselves to
an orthonormal series estimator in terms of the standard trigonometric basis. Since the properties
of this basis (for instance, the boundedness of the basis functions) were exploited only at some
places, it would be of interest to investigate whether our analysis can be performed also under
weaker assumptions that are often used in papers using model selection techniques (cf., for instance,
Assumption N in [BM97] or Assumption 4 in [Com01]).

Besides non-parametric estimation, non-parametric testing following along the guidelines of the
general theory developed in [IS03] might be considered, for instance, in the setup of Chapter 4.
There is already some work on hypothesis testing for Poisson point processes in case of direct
observations, that is, the framework of Chapter 3, see [IK07], for instance. Furthermore, there
exist already papers on non-parametric testing for inverse problems, for example [ISS12] where a
Gaussian sequence space model is considered. A starting point for a research project here might
be to combine ideas both from [IK07] and [ISS12] in order to develop non-parametric testing
procedures for the setup of Chapter 4.
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Part III.

Appendix





A. Hellinger distance between (probability) measures

Let (Ω,A ) be a measurable space and P1,P2 be probability measures on (Ω,A ). Let us assume
that there exists a σ-finite measure ν on (Ω,A ) such that P1 � ν and P2 � ν. By the Radon-
Nikodym theorem, P1, P2 have densities with respect to ν which we denote with p1 = dP1

dν and
p2 = dP2

dν , respectively.

Definition A.1. The Hellinger distance between P1 and P2 is defined via

H(P1,P2) =
(∫ [√

dP1 −
√
dP2

]2
)1/2

=
(∫

(√p1 − √
p2)2dν

)1/2
.

Remark A.2. The Hellinger distance H(P1,P2) does not depend on the choice of the dominating
measure ν.

Lemma A.3 ([Rei89], Lemma 3.3.10 (i)). Let P =
⊗n

i=1 Pi, Q =
⊗n

i=1 Qi be product probability
measures. Then

H2(P,Q) ≤
n∑

i=1
H2(Pi,Qi).

Let P1 and P2 be probability measures on the same measurable space and T a measurable map
into another measurable space. Denote by PT

i the probability measure induced by Pi and T , that
is PT

i (B) = Pi(T ∈ B).

Lemma A.4 ([Rei89], Lemma 3.3.13).

H(PT
1 ,PT

2 ) ≤ H(P1,P2).

Definition A.5. The Hellinger affinity between P1 and P2 is defined via

ρ(P1,P2) =
∫ √

dP1dP2dν.

Lemma A.6 ([Tsy08], Section 2.4).

ρ(P1,P2) = 1 − H2(P1,P2)
2 .

In analogy to the definition for probability measures, one can also define the Hellinger distance
between measures µ1 and µ2.

Definition A.7. Let µ1 and µ2 be measures on the same measure space. Then, the Hellinger
distance between µ1 and µ2 is defined via

H(µ1, µ2) =
(∫

[
√
h1 −

√
h2]2dµ0

)1/2

where hi is a density of µi with respect to the measure µ0.

Theorem A.8 ([Rei93], Theorem 3.2.1). For i = 1, 2, let Ni be Poisson processes with finite
intensity measures µi, respectively. Then
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A. Hellinger distance between (probability) measures

(i) H2(PN1 ,PN2) = 2
{

1 − exp(− 1
2H

2(µ1, µ2))
}

,
(ii) H(PN1 ,PN2) ≤ H(µ1, µ2).
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B. Auxiliary results

Theorem B.1 ([Pet95], Theorem 2.10). Let X1, . . . , Xn be independent random variables with zero
means, and let p ≥ 2. Then

E

[
|

n∑
k=1

Xk|p
]

≤ C(p)np/2−1
n∑

k=1
E[|Xk|p]

where C(p) is a positive constant depending only on p.

Theorem B.2 (Chernoff bound for Poisson distributed random variables, [MU05], Theorem 5.4).
Let X be Poisson random variable with parameter µ.

(i) If x > µ, then

P(X ≥ x) ≤ e−µ(eµ)x

xx
;

(ii) If x < µ, then

P(X ≤ x) ≤ e−µ(eµ)x

xx
.

Theorem B.3 (Hoeffding’s inequality, [BLM16], Theorem 2.8). Let X1, . . . , Xn be independent
random variables such that Xi takes its values in [ai, bi] almost surely for all i ≤ n. Let

S =
n∑

i=1
(Xi − EXi).

Then for every t > 0,

P(S ≥ t) ≤ exp
(

− 2t2∑n
i=1(bi − ai)2

)
.

A consequence from the classical Talagrand inequality

The following lemma is a consequence from Talagrand’s inequality and is taken from [CL15]. For
a detailed proof, we refer to [Cha13].

Lemma B.4. Let X1, . . . , Xn be i.i.d. random variables with values in some Polish space and define
νn(s) = 1

n

∑n
i=1 s(Xi) − E[s(Xi)], for s belonging to a countable class S of measurable real-valued

functions. Then, for any ε > 0, there exist positive constants c1, c2 = 1
6 , and c3 such that

E

[(
sup
s∈S

|νn(s)|2 − c(ε)H2
)

+

]
≤ c1

{
υ

n
exp

(
−c2ε

nH2

υ

)
+ M2

1
C2(ε)n2 exp

(
−c3C(ε)

√
ε
nH

M1

)}
,

with C(ε) = (
√

1 + ε− 1) ∧ 1, c(ε) = 2(1 + 2ε) and

sup
s∈S

‖s‖∞ ≤ M1, E[sup
s∈S

|νn(s)|] ≤ H, and sup
s∈S

Var(s(X1)) ≤ υ.

Remark B.5. In the case that one wants to consider complex-valued functions s, the statement of
Lemma B.4 holds true with the quantity c(ε) replaced with c(ε) = 4(1 + 2ε).
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Bernstein type inequalities

Proposition B.6 (Bernstein’s inequality, [BLM16], Corollary 2.11). Let X1, . . . , Xn be indepen-
dent real-valued random variables with |Xi| ≤ b for some b > 0 almost surely for all i ≤ n. Let
S =

∑n
i=1(Xi − EXi) and υ =

∑n
i=1 E[X2

i ]. Then

P(S ≥ t) ≤ exp
(

− t2

2(υ + bt/3)

)
.

Proposition B.7 ([RB03], Proposition 7). Let N be a PPP on some measurable space (X,X )
with finite intensity measure µ. Let g be a measurable function on (X,X ), essentially bounded,
such that

∫
X g

2(x)µ(dx) > 0. Then

P
(∫

X
g(x)(dN(x) − µ(dx)) ≥ t

)
≤ exp

(
− t2

2(
∫
X g

2(x)µ(dx) + ‖g‖∞t/3)

)
, t > 0.
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Notation

N {1, 2, . . .}
N0 {0, 1, 2, . . .}
Z {. . . ,−2,−1, 0, 1, 2, . . .}
R Set of real numbers
C Set of complex numbers
<z Real part of a complex number z
=z Imaginary part of a complex number z
1A Indicator function of the event A
an . bn ∃C > 0 such that an ≤ Cbn ∀n ∈ N
an � bn an . bn and bn . an hold simultaneously
argmint∈T f(t) (T ⊂ N0 finite) By convention the minimal t? ∈ T such that f(t?) = mint∈T f(t)
H(µ, ν) Hellinger distance between (probability) measures P1 and P2
ρ(P1,P2) Hellinger affinity between probability measures P1 and P2
‖ · ‖ L2 norm
‖ · ‖∞ Sup norm
‖ · ‖op Operator norm

Acronyms

LCCB space Locally compact second countable Hausdorff space
PPP Poisson point process
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