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Abstract
Domain-specific modeling has gained increased attention in industry and aca-
demia in recent years leading to the emergence of numerous highly specialized,
domain-specific modeling approaches and tools. However, the tools available
today focus on one specific aspect of domain-specific modeling and tend to be
isolated and difficult to integrate with each other. For instance, some tools
focus exclusively on graphical, diagrammatic languages, while others focus on
textual languages. The problems caused by this heterogeneous tool landscape
become most evident when attempting to use multiple formats together.

A first step towards integrating different modeling formats within one single
environment has been taken by the latest projective modeling environments
which support the embedding of non-textual formats (e.g. tables) into textual
model editors. However, in these modeling environments the textual format
dominates the embedded formats. Moreover, all of these tools are based on
two-level modeling technologies which are limited to one, hard-wired meta-
model describing the modeling language and one instance level describing the
user model expressed in terms of the language. In addition to the metamodel,
the concrete syntax features offered by today’s modeling tools are typically
hardwired as well. When multiple notations are available, modelers usually
have to decide for one notation before starting. To view the model in an
alternative notation, the model has to be opened in a second editor.

The approach presented in this thesis for the deep, seamless, multi-format,
multi-notation definition and use of domain-specific languages overcomes the
aforementioned weaknesses. First, it treats all formats equally, no matter
whether text, diagram or some other format. This allows different formats to
be used side-by-side, as desired, without influencing one another negatively.
Second, it allows a given format to be visualized in multiple notations in
one editor, side-by-side. Third, the inherently deep architecture allows deep
visualizations to be defined spanning as many classification levels as needed for
language definition and use. Fourth, language definitions and visualizations are
soft, like language applications, and can be changed at any time by modelers.
The approach has been validated by means of an Eclipse EMF-based prototype
implementation, called Melanee, and applied to a running example motivated
by the ArchiMate Enterprise Architecture Modeling standard.



Zusammenfassung
Domänenspezifische Modellierung hat in letzter Zeit hohe Aufmerksamkeit von
Industrie und Forschung bekommen. Dies führte zur Entwicklung von vielen
spezialisierten domänenspezifischen Modellierungswerkzeugen und Ansätzen.
Diese Werkzeuge fokussieren sich jedoch nur auf einzelne Aspekte der domä-
nenspezifischen Modellierung. Weiter sind diese isoliert und teils schwer mitein-
ander integrierbar, da sich beispielsweise manche Werkzeuge nur auf grafische
Modellierung und andere Werkzeuge auf textuelle Modellierung fokussieren.
Beim Versuch die verschiedenen Formate zu kombinieren werden die Proble-
me, die durch diese heterogene Werkzeuglandschaft entstehen, sichtbar.

Einen ersten Schritt zur Integration verschiedener Formate innerhalb ei-
nes Editors haben die neuesten projektionalen Modellierungsumgebungen un-
ternommen. Diese unterstützen das Einbetten von nicht textuellen Formaten
(z.B. Tabellen) in textuelle Editoren. Jedoch dominiert das textuelle Format
hierbei stark. Auch basieren all diese Werkzeuge auf einer zwei-level Architek-
tur. Diese Architektur ist beschränkt auf ein statisches Metamodell, welches
die Modellierungssprache beschreibt, und auf ein Instanzmodell, welches das
Benutzermodel mit Konzepten des Metamodells ausdrückt. Nicht nur das Me-
tamodell, sondern auch die Funktionalitäten im Bereich der konkreten Syntax
sind in den bereitgestellten Werkzeugen fest verankert. Wenn mehrere Nota-
tionen verfügbar sind muss sich der Benutzer in der Regel für eine von diesen
Notationen vor dem Modellieren entscheiden. Um eine alternative Notation zu
nutzen muss er das bearbeitete Modell in einem zweiten Editor öffnen.

Der in dieser Arbeit präsentierte deep, seamless, multi-format, multi-no-
tation definition and use of domain-specific languages Ansatz überwindet die
beschriebenen Schwächen. Dieser behandelt alle Formate gleichwertig egal ob
Text, Diagramm etc. Hierbei können die verschiedenen Formate parallel be-
nutzt werden ohne sich negativ zu beeinflussen. Auch können die einzelnen
Notationen innerhalb eines Formats nebeneinander benutzt werden. Durch die
durchgängig tiefe Architektur können Sprachen zusammen mit ihrer konkreten
Syntax über mehrere Level hinweg definiert werden. Da Sprachdefinition und
Visualisierung soft sind können Benutzer diese zu jeder Zeit ändern. Der An-
satz wird durch einen EMF-basierten Prototypen, Melanee, demonstriert und
auf ein laufendes Beispiel welches sich an ArchiMate orientiert angewandt.
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Chapter 1

Introduction

In recent years Model-Driven Software Development (MDSD) has received
growing attention in the domain of software engineering. In Gartner’s hype
cycle, published in 2006 [87], it is listed as one of the key emerging technologies
alongside corporate semantic webs. Both technologies have a predicted time
to mainstream adoption of 5 to 10 years. This assessment is reinforced by
the steady rise in modeling standards since the first modeling languages were
defined in the early 1920’s, cf. [223]. Today there is a mature tool industry
supporting the rapid creation of small and highly specialized domain-specific
modeling languages (DSML) [60, 126]. The success of MDSD is evidenced
by its central role in one of the most widely used open source development
platforms — Eclipse (used by 42% of java developers [123]). In the latest
release, Eclipse 4, MDSD has become such an integral part of the platform
that the bulk of Eclipse applications can be represented using Eclipse modeling
technology. The number of modeling projects supported by big companies
like SAP, Oracle, Red Hat and IBM, as seen in [65], also demonstrates the
significant interest in MDSD in the mainstream software industry.

1.1 Problem Fields of Language Engineering

Despite their success, there are some areas in which contemporary MDSD
technologies still have some significant weaknesses. The following paragraphs
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identify some of the problems documented in the literature and evident in
today’s modeling tools.

P1: Domains with Multiple Classification Levels Domains which fea-
ture more than one type and one instance level are referred to as deep domains.
All current practical modeling frameworks are based on an architecture in
which statically defined types are deployed to a tool and used to dynami-
cally create user models at the instance level. This type/instance modeling
dichotomy introduces accidental complexity [38] when used to model deep do-
mains which inherently feature more than one type/instance level pair. To a
certain extent workarounds can be used to circumvent this artificial type/in-
stance level pair restriction [151]. However, as the number of domains and use
cases featuring multiple classification levels grows, such workaround solutions
become less acceptable.

Atkinson and Kühne highlight the existence of domains with more than
one type/instance level pair when motivating the transition from the Unified
Modeling Language (UML) infrastructure to modeling architectures featuring
an arbitrary number of classification levels. In [31] they argue that multi-level
modeling can reduce accidental complexity in the context of a product model-
ing language. The specific example they present focuses on modeling different
product kinds, types and instances offered by a company. Other authors have
also published variants of this multi-level modeling approach and have applied
it to other domains featuring multiple classification levels. For example, de
Lara et al. highlights the need for domain-specific metamodeling languages
in [51] (i.e. metamodeling languages which are tailored for one specific pur-
pose such as creating transformations) while Frank describes the advantages
of multi-level modeling for enterprise architecture models (EAM) [82]. Other
authors have used multi-level modeling approaches in the definitions of stan-
dards such as the Software Process Engineering Metamodel (SPEM), OPEN
Process Framework (OPF) [92] and the ISO 15926 standard [119].

In [151] de Lara et al. analyze more than 400 metamodels for the use
of workarounds to accommodate multiple classification levels when using tra-
ditional modeling technologies. Overall they identify five common patterns

2



1.1. Problem Fields of Language Engineering

often repeated in the analyzed models. Furthermore, recent publications by
the author of this thesis [14, 15] classify workarounds applied to single type/in-
stance level pair modeling languages to improve the extensibility of deployed
languages at the type level and propose a framework featuring multiple clas-
sification levels.

The importance of multi-level modeling is not only described in academic
publications, but is also evidenced by the large number of multi-level model-
ing tools that have emerged in recent years. Two of the earliest multi-level
modeling tools are MetaDepth [50], focusing on textual multi-level model-
ing, and Melanee [8] focusing on graphical multi-level modeling [89]. Other
tools developed more recently include Modelverse [227], Diagram Predicate
Framework (DPF) Workbench [148] and Open MetaModeling Environment
(OMME) [237].

P2: Model Life Cycle Support Computer languages, like software, are
information artifacts [79] and hence, have a similar life-cycle which includes
phases such as: 1. development, 2. maintenance and 3. evolution. Like soft-
ware, modeling languages are also often developed in an iterative style in which
early prototypes are iteratively refined to the final product. Empirical research
conducted in [109] showed that, for example the metamodel of the Graphical
Modeling Framework (GMF) was changed 107 times in its first year of de-
velopment. This corresponds to one change every four days. Similarly [128]
identified 238 changes in the transition from UML version 1.5 to 2.0. Thus,
modeling frameworks which allow the rapid prototyping of languages without
the need for frequent re-compilation and re-deployment steps are most suited
to the development of a new modeling language. During this process, types
influencing other classification levels are steadily changed, and the affected
classification levels have to co-evolve with their typing levels. Keeping track of
all this co-evolution manually can be very time intensive and error prone, so
a modeling framework should ideally support model evolution out-of-the-box
and inherently support the iterative development of modeling languages.

Standardized modeling languages often do not fit the needs of a particular
organization in an optimal way and the use cases for which they are used
often change over time. An empirical study of the way languages are used
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and evolved in enterprises was conducted by Linden et al. [226] in 2014.
Evidence from [109] suggests that after change requests by users, technological
change is the second biggest driver of model evolution. Hence support for the
maintenance and evolution phases of a modeling language are essential. This
support has to deal with the evolution of deployed models written in, but
decoupled from, a language that is changed over time. Various papers on this
topic of decoupled model co-evolutions have been published, e.g. [128, 132,
165, 199], and tools such as [39, 108] have been built to provide appropriate
support.

Support for native model evolution is even more important in environments
where a modeler interacts with more than one classification level at the same
time such as in a multi-level modeling environment. Changes made at an
arbitrary level can immediately affect large parts of a model at all other clas-
sification levels. As described in [16] even changes to small models can cause
a huge amount of manual model evolution effort.

P3: Optimal Model Editing and Viewing The optimal style of interac-
tion with a model depends on the task that has to be fulfilled by the modelers.
Technical experts, who often have to enter large amounts of information, usu-
ally prefer textual representations, while business users, who require a less
technical way of interacting with information, usually prefer tabular or form-
based representations. On the other hand, when communicating the structure
of a large, complex system diagrammatic models are often preferred. Today,
most non-textual modeling tools support at least two model representation
formats, the format with which a human user views and enters information
(e.g. tabular, diagrammatic etc.) and the format which tools use to inter-
change data (e.g. XML). The need to represent models in various formats at
the same time has long been recognized in industry and is supported by tools
such as JetBrains MPS [41, 232, 234] or Intentional Domain Workbench [115].
These tools allow a model to be edited in a diagrammatic, textual and tabular
style simultaneously. Also languages such as UML-RT [209, 210] implemented
by Papyrus-RT [188, 196] which mix C++ code and graphical UML diagrams
highlight this need.
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P4: Multiple Stakeholder Support A given model is sometimes used by
multiple groups of stakeholders. For example one group of stakeholders may
want to view a model in a UML class diagram notation when doing software
modeling while another group may want to view it in an Entity-Relationship
(ER) [45] notation when doing data modeling. Each group of stakeholders
has different requirements on the model and wants to use highly specialized
notations supporting their use cases. In a tool it should therefore be possible
to show a model in the particular notation desired by the stakeholder working
with it. This is particularly useful when experts from different domains have to
work with each other in an interdisciplinary setting. In such cases it is useful
to be able to switch notations on-the-fly and view them side by side in the
same tool. However, to accommodate cases when the notation of a domain
expert is not defined it is advantageous to have a generally agreed fallback
modeling language that can be understood by domain and non domain experts
alike. Such a language should be based on the proven modeling contentions
popularized by the UML and should reinforce the information encoded in the
model using as much text as possible. The problem of providing support for
multiple stakeholders has been recognized by industry and is mainly being
tackled in MetaEdit+ [224] and by so-called view-based modeling tools, such
as Eclipse Sirius [211, 231].

P5: Representation of Model States In some domains it is mandatory
to customize the visualization of a model based on the state of the underlying
system. An example of a domain requiring such context-sensitive modeling
is the simulation and execution of models. In this domain a model needs to
express such things as whether a model element has achieved a simulation
target or what state the currently simulated system is in. An example of
a tool that supports the representation of model states during a simulation
is A Tool for Multi-Paradigm Modeling (AToMPM) [219] or the Executable
Meta-Object Facility (xMOF) tooling [164].

P6: Abstraction-aware Visualization Often model elements are visual-
ized based on their level of abstraction. A model element’s level of abstraction
depends on its position in the classification and inheritance hierarchies. Types
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are more abstract than instances and superclasses are more abstract than their
subclasses. This level of abstraction is represented by visualizations which be-
come more concrete with the decreasing level of abstraction. Superclasses and
meta types for example can be represented by generic, very abstract visualiza-
tions which are refined by subclasses and instances to visually indicate their
level of abstraction.

P7: Complex Domain Rules Domains often feature complex rules which
are reflected in the visualization of a model but not expressible through the lan-
guage constructs available in graphically supported metamodeling languages.
Such languages, e.g. Ecore or the Essential Meta-Object Facility (EMOF),
focus on constructs from object-oriented programming like class, attribute,
method and associations. Using these metamodeling frameworks, for exam-
ple, it is possible to express the fact that a plane can have a limited number
of passengers using association multiplicities. However, a rule that cannot be
expressed in such a language but can influence the visualization of a model
by highlighting model elements is: The total weight of all passengers in a
plane must be lower than the capacity of the plane in kilograms. For this pur-
pose, modeling tools need to be accompanied by constraint languages such as
the Object Constraint Language (OCL) [184] or Epsilon Validation Language
(EVL)[139]. These languages are used to express the kind of rules that are not
expressible through the limited features of a metamodeling language based on
the concepts of the aforementioned subset of object-oriented programming.

1.2 Requirements for Language Workbenches

Even though the problems previously outlined are known to academia and
tool vendors there is no tool tackling all these problems in an integrated way
at the time of writing. This section provides an overview of the requirements
which need to be fulfilled by a tool that effectively and intuitively solves all
the aforementioned problems in the domain of user-defined language (UDL)
creation.
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R1: Deep Modeling A language supporting deep modeling allows modelers
to define as many classification levels as needed in a uniform way, to optimally
represent the problem domain. A language workbench which supports deep
modeling offers all classification levels in the same style to a modeler without
the need to compile or deploy parts of a model. This allows deep domains
(P1) to be captured and lays the foundation for natively supporting the full
life cycle of a model (P2).

R2: Seamless Modeling Seamless modeling describes the ability to model
at any classification level with all changes taking immediate effect on all other
classification levels. This is usually achieved by adopting a deep modeling
architecture (R1). Changes which effect more than one classification level are,
however, hard for modelers to keep track of. Thus modelers need tool support
for real seamless modeling to fully and immediately support all appropriate
evolution operations needed during a model’s life cycle (P2).

R3: Multi-format Modeling Multi-format modeling describes the editing
and viewing of one model in different styles such as graph-based (diagram-
matic), text-based, table-based or form-based. These styles are referred to as
the representation format. All formats need to be equally supported by the
modeling language workbench and need to be seamlessly integrated with each
other. Editing information in one format should not negatively influence any
other format. For example, editing a model in a textual format should not
break the layout information in a representation of the model in a diagram-
matic format. This requirement allows different stakeholders to view and edit
a model in the most suitable way for the task in hand (P3).

R4: Multi-notation Modeling Multi-notation modeling offers the ability
to edit one model using more than one notation at the same time. Notations
can be switched on-the-fly and viewed side-by-side. A generally agreed fallback
syntax is provided in cases where no alternate domain-specific language is
defined. This allows multiple stakeholders to work individually on a model
using their own domain-specific language but to communicate with experts
from different domains using the general purpose language (P4).
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R5: Context-sensitive Visualization Context-sensitive visualization con-
trols the way a model is represented based on the context (i.e. state) of the
underlying system. This context can be expressed by attributes in a model of a
system. An example of context-sensitive visualization is a red background for
a business process model if its failed attribute is set to true. To support this
it is important to allow the concrete syntax used to represent model content
to be determined using dynamically calculated parameters as well as statically
defined values. In essence, this feature allows the state of a system instantiated
from a model to be visualized at run-time (P5).

R6: Aspect-oriented Concrete Syntax Definition Aspect-oriented con-
crete syntax definition transfers the concept of aspect-oriented programming to
the domain of concrete syntax definition. Parts of concrete syntax definitions
can be declared as so-called join points. Model elements in the inheritance
and classification hierarchies of a model element can then contribute aspects
to these join points. This allows each part of a concrete syntax to be defined
at the level of abstraction where it most naturally fits in a deep modeling lan-
guage definition. The requirement supports abstraction-aware visualization of
model elements (P6).

R7: Constraint Languages Supporting Deep Visualization Deep con-
straint languages enable a modeler to define constraints on deep models. These
constraints not only exploit and complement the deep modeling approach but
also support scoping across multiple classification levels. Furthermore, a deep
constraint language has to introduce new functions such as checking classifica-
tion and retrieving instances in a multi-level aware manner. Deep constraint
languages make it possible to define complex domain rules for model visu-
alization which are not expressible by metamodeling languages focusing on
object-oriented constructs only (P7). Furthermore, this requirement supports
the requirements R5 and R6 which use deep constraint languages for the cal-
culation of context-sensitive visualization information and the expression of
application conditions of aspects.
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1.3 Contribution

The contribution of this work is an approach to modeling which fulfills the re-
quirements R1-R7 to address problems P1-P7. To our knowledge no modeling
technology or tool is capable of this at the time of writing. This approach is
based on the deep modeling paradigm, operationally formalized for the first
time in [127], the strict application of projectional editing and a visualization
search algorithm which finds a suitable, abstraction-aware visualization for all
model elements across all levels in a deep model.

To demonstrate the feasibility of the approach a prototype has been imple-
mented— the deep modeling language workbench calledMelanee [8]. This pro-
totype supports 1. the creation of deep models, 2. assisted seamless-modeling,
3. multi-notation modeling 4. diagrammatic, textual, tabular and form-based
multi-format modeling, 5. context-sensitive concrete syntax 6. aspect-oriented
definition of concrete syntax, and 7. a deep OCL dialect. Melanee is the first
editor to support graphical deep modeling based on the orthogonal classifica-
tion architecture (OCA) [30] and is at the time of writing the only available
language workbench that implements all aforementioned requirements.

1.4 Research Communication

The research conducted during this work has been presented at various in-
ternational conferences and in several journals. It was first presented as a
poster at Modeling Wizards 2012, and in an info booth and live demos at the
2012 MODELS Conference. Others publications have appeared at the German
Modellierung conference’s co-located workshops [13], the European Conference
on Modeling Foundations and Applications (ECMFA) [10, 16] and co-located
workshops [9, 21, 24], the International Conference on Software Engineering
[17], the International Conference on Model Transformations [23], the Enter-
prise Distributed Object Computing Conference (EDOC) [14] and co-located
workshops [7] and the MODELS Conference [20] and co-located workshops
[8, 11, 12, 18, 19, 22]. Additionally, elements of the work have been published
in the Elsevier Information Systems Journal [15] and the Springer Software
and Systems Modeling Journal [25].
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1.5 Outline

The rest of the thesis is structured as follows: First, the foundations of the
thesis are laid out in Chapter 2. The foundations are language engineering,
model-driven development and deep modeling because the contributions made
here represent a delta to the state-of-practice in these fields. Furthermore, the
prototype implementation presented here is based on the concepts of model-
driven development. The deep modeling approach which addresses the require-
ment of deep domains (R1) is introduced in the foundations because it not
only addresses R1 but also builds the foundation for all other presented areas.
A further goal of the foundations chapter is not only to introduce all concepts
used throughout the work but also to create a common understanding of the
technical terms used.

The foundations chapter is followed by Chapter 3 focusing on technologies
which address requirements for displaying and editing models. First, user-
defined visualization definition and retrieval in deep models is discussed in
general. Then, multi-format visualization is discussed which addresses the re-
quirement of multi-format modeling (R3) followed by a description of how the
different formats are enriched with the option to model in multiple notations
(R4). Then, an aspect-oriented approach for defining user-defined syntax
across several inheritance and classification levels is presented (R6). Finally,
the different notations are enhanced by context-sensitive functions addressing
the requirement for context-sensitive visualization (R5).

The chapter about user-defined deep visualization of deep models is then
followed by a description of the various formats supporting user-defined, deep,
multi-format, multi-notation modeling. These formats are: diagram (Chap-
ter 4), text (Chapter 5), table (Chapter 6), and form (Chapter 7).

The deep visualization approach heavily depends on deep constraints in
all formats. Hence, a deep constraint language (R7) supporting user-defined,
deep, multi-format, mutli-notation modeling is presented in Chapter 8.

Seamless modeling is then described in Chapter 9 which enables all the
aforementioned technologies to be used in an efficient manner. Seamless mod-
eling is the ability to model across multiple classification levels without the
need to perform any manual or automatic deployment steps. This feature is
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founded on the deep modeling approach presented in Chapter 2. The main fo-
cus of this chapter, however, is to describe the problems which result from the
power of seamless modeling and point out ways of handling the complexity it
causes in a deep modeling environment. It therefore addresses the requirement
of seamless modeling (R2).

The theoretical part of the thesis’s contributions is then closed with a
description of the implementation of the Melanee tool in Chapter 10. This
chapter describes how the tool implements the described contributions and,
hence, demonstrates their feasibility. The chapter on Melanee closes with a
small tutorial on how to create a deep, multi-format, multi-notation user-
defined modeling language on the running ArchiMate business layer modeling
example which models a company’s structure.

The advantages of the approach introduced in this thesis over existing lan-
guage definition workbenches are shown in a comparative evaluation (Chap-
ter 11). In this evaluation, the company structure modeling language example
covering all aforementioned requirements is created once with the Melanee tool
and once with a widely-distributed, model-driven development tool stack. The
advantages and disadvantages of the two solutions are compared with respect
to each defined requirement for language workbenches.

The work closes with a discussion of related work in Chapter 12 followed
by suggestions for future work and conclusions in Chapter 13.
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Chapter 2

Foundations

This chapter describes the foundations for the work presented in the thesis,
which are primarily theories from classical language engineering, model-driven
language engineering and deep modeling. The first part therefore focuses on
language engineering, the second part focuses on model-driven language engi-
neering and the Object Management Group’s (OMG) model-driven architec-
ture [176], and the third part focuses on deep modeling.

2.1 Language Engineering

A software language is a “language that is created to describe and create
software systems” [133]. Such languages play a key role in all branches of
information technology and although the details of how they are defined and
used differ, they invariably contain the same basic ingredients. In this thesis a
language is defined as a set of concepts which, when combined according to a
set of well defined rules and represented using a set of well defined symbols, can
be used to make statements with a precise meaning about some subject (a.k.a.
domain) of interest. The concepts and rules used to construct statements
in a language are often referred to as the abstract syntax of the language,
the symbols mapped to the abstract syntax and used to represent sentences
are referred to as the concrete syntax of the language, and the meaning of
statements is referred to as the semantic domain of the language on which
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abstract syntax elements are mapped [101].
More formally speaking a language can be defined by a five-tuple L={C, A,

S, MS, MC} as for example described in [44, 86]. C is the concrete syntax, A
is the abstract syntax, S is the semantic domain, MS is the semantic mapping
which maps the abstract syntax to the semantic domain (MS: A → S) and
MC is the syntactic mapping which maps the concrete syntax to the abstract
syntax (MC : C → A).

Since the late 1950s, abstract syntax and concrete syntax have tradition-
ally been defined using grammar definition languages. One of the first and
most widely known languages for defining textual concrete and abstract syn-
tax is the Backus Normal Form (BNF) which was described for the first time
by Gorn in [93] after appearing two years earlier for the first time in [32].
This language evolved into grammarware systems [135] such as Yet Another
Compiler-Compiler (YACC) [117] which can automatically create parsers for
a given grammar. These are usually accompanied by additional construction
rules, called the static semantics, and a definition of the intended (dynamic)
semantics of the language. Semantics can be defined by means of natural lan-
guage text (informal), by constructing mathematical objects (denotational),
by a precise semantic mapping of the abstract syntax concepts to another
establish semantic domain (translational), by means of a reference implemen-
tation (pragmatic) or by describing how a program is interpreted as sequences
through formalisms such as statecharts (operational) (cf. [133]). Today, so-
called language workbenches are available which offer convenient creation of
abstract syntax, concrete syntax, static semantics, dynamic semantics and
corresponding tooling. Examples of such language workbenches are tools like
Meta-Environment [134] from the early 1990s or the more recently published
Spoofax [125]. Although the grammarware-based approach and its implement-
ing tools focus on textual languages, tools for other language formats such as
diagrammatic languages also exist today.

2.2 Model-driven Language Engineering

The goal of model-driven language engineering is to define the ingredients of
a language as models. However, in order to be able to combine and vary
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them in a simple and flexible way, it is not always convenient to have them
bound together as in traditional grammarware approaches. Instead, it is more
convenient to think of languages as being created from more or less indepen-
dent components which can be mixed in more flexible ways. In this context
the components of a language are referred to as the vocabulary, the notation
and the semantics. The vocabulary is the set of abstract concepts from which
statements in a language can be constructed and the rules by which they can
be combined. This corresponds roughly to the abstract syntax and static se-
mantics in traditional grammar-based definitions of languages. It is usually
described through metamodels expressed in metamodeling languages using
object-oriented concepts such as class, attribute and reference. Where needed
these metamodels are enriched with a constraint language expressing domain
rules which cannot be expressed in the used metamodeling language. The
notation is the set of symbols used to represent concepts appearing in a state-
ment in a language, along with the allowed mappings of those symbols to the
concepts. This corresponds roughly to the concrete syntax of grammar-based
language definitions, but does not contain some rules that would traditionally
be defined in the grammar. The concrete syntax of a language is modeled by
small, highly specialized, domain-specific modeling languages which focus on
modeling concrete syntax in a certain format (e.g. diagrammatic or textual).
The semantics contains the description of the meaning of the concepts in valid
statements of the language (i.e. the mapping of meanings to concepts in the
vocabulary). Below, tools which support the definition of the vocabulary, no-
tation and semantics of a modeling language are referred to as (modeling)
language workbenches.

It is also convenient to introduce the notion of format to represent the basic
style used to visualize statements in a language. Four basic styles are com-
monly used in computer science — text, diagram, tree and table visualizations
— but others are possible. The format in which a statement in a language is
represented obviously depends on the notation used to visualize it. A notation
can only support one format, but a format can be supported by many nota-
tions. For example, it is possible to have different sets of symbols to support
different diagrammatic visualizations of a statement in a language, or different
sets of strings to support different textual visualizations. The formats which
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are supported by model-driven language engineering tools range from textual
(e.g. XText [70] and EMFText [103]) and form-based (e.g. EMF Forms [72]
and EMF Parsley [191]) to diagrammatic (e.g. MetaEdit [224], Sirius [231]
and GMF [94]).

To allow more freedom for users to mix and match these ingredients it is
convenient to use the term language to refer to just the first of them — the
vocabulary, and to regard the others as being associated with the vocabulary.
Note that this is a subtle, but fundamental, departure from grammar-based
definitions of languages, where all the ingredients are regarded as character-
izing parts of the language. This new interpretation of the term language
makes it possible to talk about a language having more than one notation
(e.g. normal and interchange syntax [133]) and more than one semantics (e.g.
STATEMATE [100], fixpoint [194] and UML [181] semantics for statecharts
[75]). Strictly speaking this is not possible with the grammarware approach to
languages, but corresponds to every day usage of terminology. For example,
it is common to refer to different textual or graphical concrete syntax of the
UML or the previously mentioned semantic variants for statecharts. In both
cases, what characterizes the language that has multiple concrete syntax or
semantics associated with it, is the vocabulary.

An important distinction to make when discussing language engineering
is the difference between predefined language components and user-defined
language components. The former come predefined, out-of-the-box as part of
the environment or tool that is used to create models, while the latter are
created by users of the environment or tool for their own specific purpose.
This distinction is often alluded to using terms such as general-purpose lan-
guage and domain-specific language, since predefined languages are usually
general-purpose and user-defined languages are usually domain-specific. How-
ever, since this does not have to be the case and the terms general-purpose lan-
guage and domain-specific language are misleading, they are generally avoided
in favor of predefined language and user-defined language. It is important to
note that the notions of being predefined or user-defined apply to the individ-
ual components of languages as identified above (i.e. vocabulary, notation and
semantics) separately. Thus, it is possible to define a new semantics and/or
notation for a predefined vocabulary. A modeling tool or environment should
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M2 - UML
Meta-model

M1 - Model

M0 - Real World

M3 - MOF
Meta-meta-model

Figure 2.1: The OMG four-level architecture after [106].

offer at least one predefined language (i.e. vocabulary) with at least one prede-
fined notation and at least one predefined semantics to be useful out-of-the-box.

Another distinction to make when discussing model-driven approaches to
language engineering is the difference between defining a language and its
associated components (language definition) and using a language and its as-
sociated components (language use). Since both involve modeling, it is easy
to confuse them. However, it is important to be clear when one is referring
to the use of a language (or one of its components) or the definition of a
language (or one of its components) since these two activities take place at
different classification levels, are supported by different tools and are executed
by different actors. Languages are defined by language engineers, supported
by language workbenches, and used by language users, supported by modeling
workbenches. By definition, the model resulting from the use of a language
resides on the levels below the definition of that language.

At the time of writing the most widely applied architecture to support
model-driven language engineering is based on the four-level, OMG infras-
tructure shown in Figure 2.1. This infrastructure defines a stack of four model
levels M3, M2, M1 and M0. Each level is described by the previous level in
this stack. M3 is an exception because it is described by itself to prevent an
endless recursion. Apart from M0 each level is effectively a metamodel for the
level below. However, the levels in the OMG infrastructure are traditionally
named relative to M1. Thus, M2 is referred to as the metamodel, M3 as the
meta-metamodel, M1 as the model. M0 is usually referred to as the real world.
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When applying the previously defined terms to modeling language work-
benches based on the OMG four-level modeling infrastructure, the predefined
language is located at the highest meta-level — M3. This predefined language
is then used to create a user-defined language at level M2 which defines its own
vocabulary, notation and semantics. This language is then deployed to a tool
as a predefined language where it can be used to create model content (M1).

2.3 Deep Modeling

Deep modeling, also referred to as deep metamodeling, is an evolution of
model-driven development known from the previously described OMG four-
layer architecture. The fundamental difference is that deep modeling supports
modeling across as many classification levels as needed to represent the do-
main at hand — so-called multi-level modeling. Different flavors of multi-level
modeling are available depending on the primary format they use to represent
deep models, such as textual (e.g. MetaDepth [50], DeepJava [146]) or dia-
grammatic (e.g. OMME [236]) and the architecture on which they are based.
At the time of writing, the most widely adopted architecture for deep model-
ing is the so-called Orthogonal Classification Architecture (OCA) [30] which
is usually accompanied by the notions of deep characterization [105, 147] and
strict metamodeling [6].

Figure 2.2 shows the orthogonal classification architecture populated with
an excerpt of a language for modeling enterprise architectures. The modeling
language is based on ArchiMate [221] modeling constructs for modeling the
active structure of a company. The language definition consists of the concrete
incarnations of the BusinessActor extensions suggested by the ArchiMate stan-
dard [221]. These are CompanyType (Organization), Department (Organization
Unit) and the EmployeeType (Individual) which is not shown here. Company-
Types consist of DepartmentTypes and DepartmentTypes of EmployeeTypes. This
language is referred to as the company structure modeling language in the rest
of this thesis.

In contrast to the earlier presented four-layer OMG modeling infrastruc-
ture it can be observed that classification levels are present in two orthogonal
dimensions. The vertically stacked linguistic classification levels, labeled L2 -
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Figure 2.2: An illustration of the Orthogonal Classification Architecture.

L0 and the horizontally stacked ontological classification levels named O0 - O2.
This orthogonal arrangement of classification levels gives the OCA its name.

The top-most linguistic classification level, named L2, spans the ontological
classification levels, named O0 to On, which collectively constitute the deep
model. The L2 level, also referred to as the pan-level model (PLM), is hard-
coded into deep modeling tools and defines the predefined modeling language
used to create deep model content. This predefined language ships with a pre-
defined notation which is called the level-agnostic modeling language (LML)
[27]. The LML is designed to be compatible with as many concepts as possible
from existing diagrammatic notations such as the UML or ER. For exam-
ple, the box-notation for model entities containing a textual representation of
their attributes, as used for CompanyType in Figure 2.2, clearly originates from
the UML notation whereas the hexagonal notation for connections, as used
for the hasDepartments connection between CompanyType and DepartmentType in
Figure 2.2, is inspired by the diamond representation of connections in the ER
notation.

The ontological domain content modeled using the predefined deep model-
ing language is contained in the second linguistic level, L1. This level is divided
into three ontological levels O0 to O2. In this example three levels are shown
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for illustrative reasons, but in general there can be an unlimited number of
ontological classification levels. All model elements residing in the ontological
levels of Figure 2.2 are linguistically classified by elements in the PLM as indi-
cated by the vertical dotted classification arrows. Ontological classification is
denoted by horizontal dashed classification arrows. Alternatively, ontological
classification can be shown by placing a colon after a clabject’s name followed
by the name of the clabject’s ontological type. An example of such a type in-
dication is shown for QualityToysInc in Figure 2.2. The ontological entities and
connections are linguistically classified as Clabjects, which is a name derived by
concatenating the words class and objects to emphasize the type and instance
duality of model elements in a deep model [5]. Although the model elements
at the highest ontological level, O0 and the lowest ontological level, O2 are
either types only or instances only, they are also classified as clabjects for two
reasons. First, it allows all model elements to be referred to using uniform
terminology, and second it allows levels to be attached to both ends of a deep
model at any time.

All model elements in Figure 2.2, Clabjects and Attributes, have numbers at-
tached as superscript next to their name. In the case of Clabjects, this number
is called potency [29] and is always a non-negative Integer value (potentially
including infinity). The potency of a Clabject specifies how many other onto-
logical levels are influenced by it. In Figure 2.2, CompanyType has a potency
of two expressing the fact that it can influence the following two classification
levels. In other words this means that instances of CompanyType can exist at
level O1 and O2. Here these instances are ToyCompany at level O1 and Qual-
ityToysInc at level O2. The potency is decreased by one at each subsequent
instantiation step resulting in a potency of one for ToyCompany and zero for
QualityToysInc. An exception to the rule of decreasing the potency by one at
each instance occurs if the potency is a star value (∗) which corresponds to
infinity (or unlimited). Clabjects with ∗ potency can influence a deep model
over an unlimited number of subsequent classification levels. Instances of such
Clabjects can either have star potency or any non-negative numeric potency.

A special case for potency is illustrated by BusinessActor which has a po-
tency of zero but subclasses with a potency of two. Such superclasses with a
potency of zero but subclasses with potency higher than zero correspond to the
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concept of abstract classes in the UML. Moreover, a dot can be observed at the
location where the inheritance relationships between BusinessActor and its sub-
classes join. This shows the inheritance relationship in its collapsed, visually
insignificant form. Alternatively, inheritance relationships can be shown in an
expanded form as a rectangle with a curved top and bottom. This visualiza-
tion allows additional information to be displayed such as an inheritance name
or statements about instances, e.g. disjointness or completeness. This feature
called dotability is also extended to connections in order to save space in cases
where the connection itself does not convey additional useful information.

There are two additional forms of potency which help to support deep char-
acterization — attribute potency (durability) and value potency (mutability).
The durability, represented next to an Attribute’s name, specifies over how many
instantiation steps of the containing Clabject that Attribute endures. The mu-
tability, represented next to the value of an Attribute, specifies over how many
levels the value of an Attribute can be changed. For both, mutability and dura-
bility, the same basic rules as for Clabject potency apply. However, in the case
of mutability there is the additional rule that the mutability of an Attribute must
not be higher than its durability. In some cases the values for durability and
mutability can be elided in a deep model. Durability can be hidden when it is
the same as the potency of its Clabject and mutability is usually hidden when it
is the same value as the Attribute’s durability. The reduction rule for Clabject
potency is also applied to durability and mutability. Additionally, in the case of
mutability the value is set to zero if it is zero at the type level.

The real world represented by the deep model content is located in the
lowest linguistic level, L0. In the case of Figure 2.2 a house pictogram is
used to represent the concept of a company at various levels of abstraction.
At the most abstract level, O0 the concept CompanyType in the real world
is represented by a house symbol containing question marks to show that it
leaves a lot unspecified. At the next level, the company concept is refined to
a ToyCompany which is represented by a more detailed house symbol, a house
with Toy placed in it. At the lowest level of abstraction, the actual company
Quality Toys Inc. is represented by a house symbol showing the type (Toy) and
the name (QualityToysInc) of the company. In the case of a real company a
picture or logo of the actual company could have been used instead.
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From a tool point of view two of the three linguistic levels are available
to the user. The L2 level is available to the user in the form of a palette in
diagrammatic modeling environments, code completion in textual modeling
environments or any other form depending on the modeling format at hand.
L1 is the level with which a user will interact most of the time as it contains
the actual deep model content and thus usually occupies the largest portion of
the screen. Level L0 is not shown in a deep modeling tool because it represents
the actual concepts being modeled, and thus is not a part of the model per se.

A full formalization of this deep modeling approach forming the foundation
for this thesis is available in [127] which defines the linguistic metamodel, clas-
sification semantics and model checking services associated with deep models.
The work described in this thesis builds upon the first prototype implementa-
tion [89] of a diagrammatic deep modeling tool based on this formalism.

In practice, the deep modeling approach blurs the borders between language
definition and language use as previously defined. A user of a language defined
at a more abstract classification level is not only using this language but also
defines a new language for the following classification levels. The only levels
where the distinction between language use and language definition can be
clearly made are the most abstract ontological classification level (language
definition) and the most concrete ontological classification level (language use).
The blurring of the conceptual border between language definition and use
also blurs the practical distinction between the tools used for both activities.
In deep modeling the same tool is used by modeling language engineers and
modeling languages users. Hence, the roles of modeling language user and
language engineer are no longer bound to a certain classification level or tool
but to the usage scenario for which the model content is developed. An actor
creating a model for use as a modeling language by other actors is playing the
role of a language engineer regardless of the classification level at which the
modeling task is performed while an actor creating a model not intended to be
used as a modeling language by other actors is playing the role of a language
user, even though this task could take place at any ontological classification
level.
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User-defined Visualization
of Deep Models

The approach developed in this thesis for supporting the user-defined visual-
ization of deep models contains six key elements. The first is deep visualization
supported by a search algorithm which finds visualizations for model content
to be visualized using the inheritance hierarchy, ontological classification hi-
erarchy and linguistic classification hierarchy. The second is the capability to
edit and view deep models in multiple formats, including diagram, text, form
and table formats. The third is the capability to mix and match multiple no-
tations within one format in a way that best suits the stakeholder and task at
hand. The term notation refers to a specific visualization of a model element in
one format. A process step, for instance, could be visualized using the activity
diagram notation [61], Business Process Model and Notation (BPMN) [174]
notation or the built-in predefined LML notation. The fourth is support for
abstraction-aware notation definition through aspect orientation. The fifth is
the ability to represent states of executed models at the instance level through
context-sensitive visualizations. And sixth, the ability to use all of these fea-
tures side-by-side, on-the-fly with immediate impact on the visualization of
the currently viewed model.

This section introduces each of these ingredients and explains how they
contribute to the overall deep visualization mechanism developed as part of

23



Chapter 3. User-defined Visualization of Deep Models

this thesis to meet the requirements outlined in Chapter 1. The following
chapters then provide more details on the specific modeling formats.

3.1 Language Visualization for Deep Models

The foundations chapter made a clear distinction between language definition
and language use. Language definition was described as the definition of a
new language which, today, usually takes place at the meta-level. On the
other hand language use is defined as the usage of a user-defined language to
create a model which takes place one level below the meta-level. Usually, a
language is defined using a predefined visualization and is used using a user-
defined visualization. This definition and alignment of classification levels to
language definition/use originates from the nature of state-of-the-art meta-
modeling tools which only offer two classification levels for modeling. The
one is the meta-level which is available at language definition time and then
deployed into the modeling workbench. The other is the model level which
instantiates the metamodel in a tool to which it has been deployed. This tech-
nical limitation which strictly separates language definition and language use
leads to the traditional definitions presented previously.

Deep modeling, in contrast, blurs the border between language use and
language definition. In a deep model all levels are equally available for mod-
eling, and any model content defined at one level is immediately available for
use (via instantiation) at the next level. The only ontological classification
level where this is not the case is the most abstract level which is not classi-
fied by any higher level. Hence, except when modeling on the most abstract
classification level, a modeler is essentially using and defining a language at
the same time. Applying this principle, all the classification levels above a
given level contribute to the classification of model elements and the definition
of the language. Furthermore, predefined and user-defined visualizations for
modeling languages have to be available at all classification levels, as desired
by a modeler, and each level must be able to contribute to the visualization of
model elements.

Furthermore, unlike tools based on two modeling levels (class and instance
level) deep modeling tools offer enough levels to display the execution of state-
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Figure 3.1: The LMLVisualizer and AbstractUserDefinedVisualizer.

ments made in a language. This information usually occupies the most con-
crete level of a deep model. This level, however, is not necessarily created
using a modeling tool but rather through a tool interpreting the model at the
type level. We refer to such a scenario as model usage too because in most
cases the tool creating the instance level is controlled through a tool user and
thus at the same time a model user.

This gives rise to four key requirements for deep visualization: 1. A visu-
alization must be definable at each level, 2. a visualization definition must be
available more than one level below its definition, 3. visualizations must be
refinable across classification levels, and 4. a modeler must be able to choose
between the predefined visualization for defining new language concepts and
user-defined visualization for using a language.

3.2 Deep Visualization

Deep visualization refers to the ability to define user-defined visualizations for
model content which can be applied over an unlimited number of classification
levels. Furthermore, all changes to the visualization definition have immediate
effect to all classification levels without the need for deployment or compilation
steps. To define visualizations so-called predefined and user-defined visualizers
are attached to model elements. Figure 3.1 shows an excerpt of the PLM with
an enhancement allowing the configuration of the predefined visualization and
the attachment of user-defined visualizations. In this version of the linguis-
tic metamodel each linguistic Element has a predefined LMLVisualizer attached.
This visualizer drives the predefined LML visualization of deep-models. The
attributes map contains one key/value pair for each trait of the model element
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the LMLVisualizer is attached to. The key identifies the trait to be visualized and
the value represents the configuration for this trait. The configuration values
are: 1. default —the default visualization of the trait, 2. noshow — the trait
is not shown (i.e. hidden), 3. show — no elision rules are applied for the trait
(e.g. hide durability if equal to clabject potency) and 4. tvs — show the trait
in the so-called trait value specification underneath the clabject’s designator.
In the case of Clabject, for instance, the attributes map contains a key/value
pair for name and potency. Detailed specifications of the predefined diagram-
matic LML notation used for visualization of deep models can be found in
[27, 89]. Besides the trait visualization, the location (xLocation, yLocation) and
size (width, height) of the attached model element is stored in the predefined
LMLVisualizer.

It is possible to replace the predefined visualization with a user-defined vi-
sualization. AbstractUserDefinedVisualizers specifying such a user-defined visual-
ization can be attached to the LMLVisualizer for this purpose. When visualizing
a model element at a specific ontological level an algorithm is applied to search
for the visualization of the model element in question. This algorithm is called
the visualizer search algorithm.

Espinazo-Pagán et al. [76] introduced the first visualization search al-
gorithm for searching user-defined visualizations in the domain of two-level
user-defined modeling languages. This algorithm was proposed in the context
of textual user-defined languages for metamodels (e.g. Ecore, MOF). When
visualizing a metamodel instance, the algorithm searches the classification hi-
erarchy and the inheritance hierarchy of the instance’s types for visualization
descriptions. The algorithm was further improved to support deep models and
the orthogonal classification hierarchy by Atkinson et al. in [26] with a focus
on diagrammatic languages.

This deep form of the visualization search algorithm starts searching for a
visualization at the clabject to be visualized, then searches its supertypes. If no
visualization is found, the ontological types of the clabject to be visualized and
their inheritance hierarchy are searched. This algorithm is applied recursively
over all classification levels until the most abstract ontological classification
level is reached. If no user-defined visualization is found at this level, the
predefined LML notation is used as a backup for visualization. It is also
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possible to mix domain-specific and general purpose renderings in one view on
a model, as described for the first time by Atkinson et al. in [17]. The deep
visualization search algorithm was first implemented by Gerbig in [8, 89] as
part of the work presented here.

Data: elementToVisualize;
Result: A visualizer suitable for visualizing elementToVisualize

1 types ← elementToVisualize;
2 classification: while (type ← types.poll()) 6= null do
3 types ← types ∪ type.getDirectTypes();
4 superTypes ← type ∪ type.getDirectSupertypes();
5 inheritance: while (clabject ← superTypes.poll()) 6= null do
6 for udlVisualizer ∈ getUDLVisualizers(clabject) do
7 if applicable(elementToVisualize, udlVisualizer) then
8 return udlVisualizer;
9 superTypes ← superTypes ∪ clabject.getDirectSupertypes();

10 types ← types ∪ clabject.getDirectTypes();
11 end
12 end
13 end

Algorithm 3.1: The basic version of the visualizer search algorithm.

Algorithm 3.1 shows the basic deep visualization search algorithm. It ex-
pects the elementToVisualize clabject as input which is either an Entity or Connec-
tion to be visualized. First, the elementToVisualize is added to the types queue in
line 1. Then all types are iterated using the loop labeled classification in line 2.
The types of the current type are added to the types queue (line 3). After-
wards, the supertypes of the type and the current type itself are added to the
superTypes queue (line 4). The superTypes queue is then iterated over (line 5)
and searched for a visualizer.

All AbstractUserDefinedVisualizers of the current clabject in the inheritance tree
are iterated (line 6) and checked if applicable with the applicable() function. If
an AbstractUserDefinedVisualizer is applicable it is returned for visualization, oth-
erwise the types and supertypes of the current model element are stored in the
superTypes and types queues and the search is continued by further searching
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the inheritance hierarchies and ontological types in the following iterations.
If no result is found after searching the whole ontological classification hier-
archy and inheritance hierarchy, the predefined LMLVisualizer is returned for
visualization by the search algorithm.

The visualization search algorithm presented here uses queues instead of
lists to store the clabject hierarchies to be searched. This ensures that a
breadth first search algorithm is applied and, hence, that the nearest Abstrac-
tUserDefinedVisualizer in the classification and inheritance hierarchies is applied.
If two visualizers are the same distance from the model element to be visual-
ized the current version of the algorithm simply takes the first one discovered.
It would be possible to attach concepts such as visualizer priorities to visual-
izers to resolve such conflicts, but the visualizer search algorithm could still
find two visualizers with the same priority and distance to the clabject to be
visualized. The current version therefore aims to keep the user-defined visual-
izer definitions simple so that language engineers should find it easy to define
languages in such a way that only one visualization at a time is found by the
visualizer search algorithm.

Data: elementToVisualize; udlVisualizer;
Result: Check if a visualizer is applicable

1 if udlVislualizer.isInstanceLevel() then
2 if isSameLevel(elementToVisualize, udlVisualizer) then return false;
3 end
4 return true;
Algorithm 3.2: The basic version of the visualizer search algorithm’s appli-
cable function.

The basic version of the applicable function applied to user-defined visu-
alizers is shown in Algorithm 3.2. The function expects the elementToVisu-
alize (either an Entity or Connection) and the candidate user-defined visualizer
(udlVisualizer) as input. It then checks whether the latter is applicable to the for-
mer. In the current version of the function applicable means to check whether
the instanceLevel attribute is set to true and the elementToVisualize is on the same
level as the udlVisualizer. If this is the case, the applicable function returns false
because the instanceLevel attribute makes a visualizer applicable to instances
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Figure 3.2: A run of the visualization search algorithm for Bob and Online
Marketing Employee.

only. In all other cases the applicable function returns true.

A run of the basic visualizer search algorithm shown in Algorithm 3.1 is
demonstrated on the company structure modeling language example in Fig-
ure 3.2. For demonstration purpose a notation close to the ArchiMate icon
notation is chosen even though the box notation, visualizing model elements as
boxes with the icon located in the box’ upper right, is more popular. The icon
notation, however, is visually more distinctive. The figure shows the trace of
a request to visualize Online Marketing Employee and one to visualize Bob. The
dashed arrows with a number attached indicate the order in which nodes are
visited by the search algorithm. User-defined visualizers are attached to clab-
jects using a cloud symbol. The visualizers are defined using instances of a
format-specific visualizer metamodel, here the diagrammatic format indicated
by the D in the upper right of each cloud. However, to simplify the figure the
intended visualization is shown graphically using the intended user-defined vi-
sualization in Figure 3.2 instead of using object specifications based on the

29



Chapter 3. User-defined Visualization of Deep Models

diagrammatic user-defined visualization definition metamodel. Text in brack-
ets represents a mapping of an attribute’s value to a label while text enclosed
in single quotation marks represents a label containing static, unchangeable
text. Dashed clouds indicate that the instanceLevel attribute of the visualizer is
set to true and is thus not applied to clabjects residing at the same ontological
level as the visualizer. When these rules for user-defined visualizer definitions
are applied to Employee, instances of Employees are visualized as stickmen with
the value of the name attribute followed by a colon and the value of the salary
attribute displayed underneath the stickman icon. The visualization, however,
is only applied to instances of Employee because the dashed border of the cloud
representing the visualizer indicates that the instanceLevel attribute is set to
true.

In the case of Bob, the visualizer search algorithm first looks at Bob it-
self for a suitable visualization. Bob, however, has no user-defined visualizer
attached. Next the visualization search algorithm looks at the supertypes of
Bob for a suitable visualizer. As Bob does not participate in any inheritance
relationships and, thus, does not have any supertypes this step is skipped by
the visualization search algorithm. The search at the ontological types follows
the search of the supertypes. Bob has one ontological type, Webshop Admin,
which can be derived from its visualization. This ontological type has a vi-
sualizer attached which visualizes its instances as a stickman with a wrench
in the upper right-hand corner. Below the stickman, the name attribute value
followed by a semicolon and the salary attribute value of the Webshop Admin
are displayed. The visualizer search algorithm terminates after two steps once
this user-defined visualizer for the visualization of Bob has been applied.

The second visualizer search algorithm trace for Online Marketing Employee,
as displayed in Figure 3.2, involves more steps than the search for the user-
defined visualization of Bob. First the visualizer search algorithm searches
Online Marketing Employee itself for a visualizer but does not find one attached.
The supertypes (here the abstract Employee clabject) are then searched for vi-
sualizers. Employee does have a visualizer attached which has the instanceLevel
attribute set to true as indicated by the dashed border of the cloud repre-
senting the visualizer. Thus, because Online Marketing Employee and Employee
reside at the same level, the visualizer search algorithm has to continue and
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search further for a visualization of Online Marketing Employee from the ontolog-
ical types of Online Marketing Employee because no supertypes are left to search.
The ontological type of Online Marketing Employee, is BusinessEmployeeType which
does not have a visualizer attached. Hence, the visualization search algorithm
continues to search the inheritance hierarchy of BusinessEmployeeType. Its su-
pertype, EmployeeType, has a user-defined visualizer attached. This visualizer
visualizes instances of EmployeeType as a group of stickmen with the value of
the name, salary and expertise attributes rendered at the bottom. This visualizer
is then returned for visualization of Online Marketing Employee by the visualizer
search algorithm.

3.3 Multi-format Modeling

The format of a modeling language determines whether it is visualized in a
diagrammatic, textual or tabular form etc. A multi-format editor supports
modeling using different formats at the same time in a seamless manner. This
means that editing in one format does not negatively impact the editing ex-
perience in an other format. For instance it should not happen that editing a
model in a textual format causes the diagrammatic format to lose layout meta-
data for parts of the model. To support multi-format editing, the visualizer
search algorithm has to be extended to find visualizers in different formats, vi-
sualizer metamodels for different formats have to be present and editors which
are meta-data preserving (e.g. diagrammatic layout information) have to be
supplied.

A mockup of a multi-format modeling environment is shown in Figure 3.3.
The left-hand side shows the user-defined company structure modeling lan-
guage in a diagrammatic editor. The employees are rendered as stickmen.
Five employees exist which are Allen, Tim, Jim, Bob and Don. These employees
are located in boxes representing the departments they work in. The three
departments in this example are Online Marketing, Toy Research and Customer
Service. The departments themselves are located in the Quality Toys Inc. com-
pany represented by a house pictogram. The editor at the bottom of the
multi-format modeling environment shows the same model in a tabular for-
mat. Here the employees of the Online Marketing department are displayed
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Figure 3.3: A multi-format modeling environment.

in a tabular form. Rows represent the distinct employees and columns their
corresponding ontological attributes.

The right-hand side of the modeling environment shows the company struc-
ture model opened in a textual format in the upper half and in a form-based
format in the bottom half. The textual syntax represents the company by
its name and encloses its departments in curly brackets. The departments
are represented by their name and enclose their employees within curly brack-
ets. Employees are represented by their name followed by their salary and
expertise in round brackets. Employees are terminated with a semicolon. The
form-based format shows one selected employee, Allen. The attributes of Allen
can be edited through the text boxes holding the respective values.

In a multi-format modeling environment it is possible to use all these views
on a model in different formats in an equal way. The modeling workbench does
not prefer one format over another and editing in one format does not influ-
ence an other format in a negative way. To enable such a multi-format editing
experience a projectional approach to language editing is applied throughout
all formats including the textual format. This is a derivation from the classical
paradigm of editing text through parser-based technologies. In a projectional
approach the user directly interacts with the abstract syntax when manip-
ulating a model through the user interface (i.e. its concrete syntax). In a
parser-based approach, the concrete syntax is manipulated only through the
user interface and then at predefined points in time, e.g. compile or save,
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Figure 3.4: Abstraction of the weaving models underlying the projectional
editors.

transformed into a model. [235]
Projectional editing is supported by model weaving [35] between the ab-

stract and concrete syntax. This weaving model stores links between an ab-
stract syntax element and its representation in the concrete syntax. A widely
distributed example of such a weaving model is the GMF Notation Model [94]
based on the OMG Diagram Interchange Specification [179].

Figure 3.4 shows an abstract version of the weaving models created for each
format. In this model each AbstractWeavingLink connects an EObject through
the abstractSyntaxElement reference from the PLM with its representation in
the concrete syntax. By connecting to an EObject it is possible not only to
connect a weaving model to instances of metaclasses (e.g. Clabject and Fea-
ture) of the PLM but also to their traits (e.g. potency, durability) which are
of type EStructuralFeature inheriting from EObject. This ability to support the
editing of linguistic traits as well as ontological attributes makes it possible to
support format-specific editors leveraging the ontological and linguistic dimen-
sion. The subclasses of AbstractWeavingLink have format-specific attributes for
weaving an element in the concrete syntax to a model element in the abstract
syntax. The TableWeavingLink stores which abstractSyntaxElement is stored in
which cell in a table. The TextWeavingLink stores the offset (start position) and
the length of the text representing the abstractSyntaxElement in a certain textual
editor. A FormWeavingLink stores the widget in a form representing an abstract-
SyntaxElement and the DiagramWeavingLink stores which shape is representing
which abstractSyntaxElement in a certain diagrammatic editor.
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When an edit operation is performed in any format-specific editor the weav-
ing link is followed to the abstract syntax and changes are transported from
the format-specific editor to the abstract syntax. Each change to the abstract
syntax is then immediately transferred to all format-specific editors by follow-
ing their weaving links from the abstract syntax to the concrete syntax of the
changed abstract syntax element. By applying this edit and update procedure
all formats can be edited with equal rights by one modeler.

A weaving model needs to support model manipulation operations such
as editing, adding, deleting and moving model elements in both the format-
specific editor and the abstract syntax model representation of the model being
edited in the format-specific editor. These operations, however, are very spe-
cific to the format the weaving model is being applied to. Thus, their detailed
description is deferred to the subsequent format-specific chapters.

Data: elementToVisualize; udlVisualizer; helper
Result: Check if a visualizer is applicable

1 if udlVislualizer.isInstanceLevel() then
2 if isSameLevel(elementToVisualize, udlVisualizer) then return false;
3 end
4 if helper.isRightFormat(udlVisualizer) then return true;
5 return false;
Algorithm 3.3: Multi-format version of the visualizer search algorithm’s
applicable function.

The multi-format extension to the visualizer search algorithm’s applicable
function is shown in Algorithm 3.3. The extension consists of a new format-
specific helper input to the applicable function alongside the elementToVisualize
and udlVisualizer. This helper is used to configure the visualization search al-
gorithm for each specific format. In this version the helper provides only one
function, the isRightFormat()-function. This function takes a visualizer as input
and returns a boolean value stating whether the visualizer is applicable for
the format of the helper or not. This is usually done by checking whether the
visualizer conforms to the user-defined visualizer meta type from the format-
specific metamodel for which the helper is implemented. This helper is then
used in addition to the original, format unaware algorithm, in line 4 of the
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Figure 3.5: A run of the format-aware visualization search algorithm for Bob.

applicable-function as shown in Algorithm 3.3. The extension enables the visu-
alizer search algorithm to search for a format-specific user-defined visualizer
with the help of a format-specific helper.

A run of the format-aware visualization search algorithm is demonstrated
in Figure 3.5 on the example of Bob. This example shows a subset of the earlier
introduced company structure modeling language. User-defined visualizers for
four different formats are attached to the clabjects in the example. The format
they define the visualization for is indicated by the italic letters at the upper
right corner of the clouds representing the visualizers — F for form visualizer,
Te for textual visualizer, Ta for tabular visualizer and D for diagrammatic
visualizer. Additionally, the arrows representing the trace of the visualizer
search algorithm have been extended to show the format for which the search
is executed, here format=Ta to indicate a search for a visualizer in the tabular
format.

The visualizer search algorithm first looks at Bob for a visualizer but none
is found. Next, the supertypes of Bob are searched for a visualizer. This search
ends without a result because Bob does not have any supertypes. Afterwards,
the types of Bob are searched, WebshopAdmin which does have a visualizer at-
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tached. Hence, this visualizer is tested for application by the visualizer search
algorithm but the result is negative because the visualizer is for the diagram-
matic format and a visualizer for the tabular format is being sought. After this
check the supertypes of WebshopAdmin are searched, Employee. Employee does
not have a visualizer attached so the search continues at the type level with
TechnicalEmployeeType the ontological type of WebshopAdmin. TechnicalEmploy-
eeType does not have a visualizer attached either, so the visualization search
algorithm continues at the supertypes of TechnicalEmployeeType, EmployeeType.
EmployeeType has three visualizers for three different formats attached — form,
text and table. The visualizer search algorithm checks all three visualizers us-
ing the applicable function presented in Algorithm 3.3 and returns a positive
result for the tabular visualizer. The visualizer search algorithm then termi-
nates and returns the tabular user-defined visualizer.

3.4 Multi-notation Modeling

Until now one user-defined visualization is defined for each format and then
used in this format in isolation. Furthermore, a modeler has to decide whether
to use the predefined visualization shipped with the deep modeling environ-
ment or a particular user-defined visualization. In some situations, however,
it can be advantageous to mix and match notations within one format.

Logical gates are an example of a domain in which switching between dif-
ferent user-defined visualizations is beneficial. Three different widely known
languages exist to represent the same set of logical gates with exactly the same
semantics. Two are the AIEE No 91.-1962 (Figure 3.6(a)) and MIL-STD-806
(Figure 3.6(b)) standards which evolved into today’s IEEE Std 91 standard
[162]. In addition to these two standards from the American speaking world,
the German DIN published the DIN 40700 standard (Figure 3.6(c)). Which
standard a domain expert is trained in depends on his cultural background.
A domain expert from the English speaking world will more likely be familiar
with the ANSI and military notation whereas a person with a German speaking
or European background is more likely to be familiar with the DIN standard.
Figure 3.6 shows that one concept where the three notations strongly deviate
is the OR-gate.
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Figure 3.6: Logic Or-gate in ANSI (a) military (b), DIN (c) and LML (d)
notation.

Multi-notation modeling support within one format can be leveraged to
overcome this communication gap between domain experts with different back-
grounds talking about the same thing. One domain expert for example can
switch the diagram to the ANSI notation when editing while another can use
the DIN notation while editing the same model. Thus, every stakeholder on
the model has the notation which best fits his/her needs.

A second area of application for multi-notation editing is the ArchiMate
syntax of the running example presented here. The running example uses
modifications of the icon notation of the BusinessActor meta type only. A
second notation defined by the standard, however, is a box notation in which
model elements are distinguished by the shape of the box and the icon placed
in the upper right of the box. Multi-notation editing can optimally support
such a standard defining two parallel notations.

Multi-notation modeling support can also help a domain novice when using
a diagram as the user-defined notation can be exchanged with the predefined
notation on-the-fly. Often the classification information displayed by the name
compartment of the clabject can give hints about the semantics of a model
element when a domain novice does not know the symbol for the concept
under question or the name of its ontological type. Such a scenario, where two
notations enrich each other in terms of the information they convey, is referred
to as symbiotic language support as pointed out in [17].

Using the predefined LML language together with one of the user-defined
languages in Figure 3.6, lets a domain novice who does not know the three pre-
sented user-defined languages easily find out that the element under question
is an instance of OR and does not have a name itself (~). With this informa-
tion about the type of the model element its exact semantics (e.g. whether
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OR represents an exclusive or in the language) can be easily looked up in one
of the three language’s specifications. In addition to information about the
model element itself the domain novice can also look up more details about
the edges connected to the OR gate. From their type information it is possible
to infer that the two edges on the left are the input to the gate and the one
edge on the right is the output of the gate.

Multi-notation modeling support can also be used to offer multiple views
on one model as shown in [15]. In this example a business process modeling
language is enriched with security and performance information. The experts
of the different domains, however, do not need all information present when
modeling their concern, e.g. performance. Hence, notations for business pro-
cess modeling, business process performance modeling and business process
security modeling can be created to suit the need of each domain expert.

To realize multi-notation modeling support each AbstractUDLVisualizer
stores the names of all the user-defined notations it is defined for. Each model
element can store several AbstractUDLVisualizers in the same format provid-
ing different visualizations for different notations. Hence, a model element can
be visualized in different notations for each format. By contributing to more
than one notation, one single visualizer can, for example, contribute to a basic
and advanced version of a notation in case it is the same for both. In the con-
text of the company example, a department could refer to the same visualizer
for both a basic and advanced version of the notation while employees could
refer to different visualizers for the basic and advance versions. For example,
the advanced notation could show the salary while basic notation need not.

The default notations in each format are LML and derived. The LML
notation uses the default LML predefined visualization whereas the derived
notation uses the notation defined for the container of the model element to
be visualized. By providing the derived notation it is possible to switch the
notations of whole parts of a model to a certain notation by specifying this
notation for a container (e.g. level). Derived is the default value for all newly
created model elements. Instantiated elements inherit the notation settings
from their type as default values but can subsequently display a different no-
tation independent from their type.

The multi-format, multi-notation aware version of the visualization search
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Data: elementToVisualize; udlVisualizer; helper
Result: Check if a visualizer is applicable

1 if udlVislualizer.isInstanceLevel() then
2 if isSameLevel(elementToVisualize, udlVisualizer) then return false;
3 end
4 if helper.isRightFormat(udlVisualizer) then
5 notation ← helper.findNotation(elementToVisualize);
6 if helper.isRightNotation(udlVisualizer, notation) then
7 return true;
8 end
9 end

10 return false;
Algorithm 3.4:Multi-format, multi-notation version of the visualizer search
algorithm’s applicable function.

algorithm’s applicable operation is displayed in Algorithm 3.4. The operation
expects the elementToVisualize, the udlVisualizer currently under investigation
and a format-specific helper as input. The notation to visualize the elementTo-
Visualize is stored in the elementToVisualize as previously described. All mod-
ifications making the applicable operation notation aware are highlighted in
lines 5 and 6. First, the notation is retrieved by the format-specific helper’s
findNotation(elementToVisualize) operation in line 5. The findNotation() method
returns the notation defined for the elementToVisualize in the helper’s format,
or in case the elementToVisualize’s notation is set to derived, traverses the con-
tainment hierarchy until a notation which is not derived is found. In case no
notation other than derived is found the findNotation() operation returns the
predefined LML notation. After retrieving the notation in which the element-
ToVisualize is visualized, the operation checks whether this notation fits one of
the notations of the udlVisualizer currently under investigation in line 6.

Figure 3.7 shows a run of the multi-format, multi-notation aware search
algorithm for Jim. The notation in which model elements are visualized is
attached as text to model elements using a dotted line, in addition to the
visualizers which are attached as clouds to clabjects in the example. The
definition of the notation in which a model element is visualized follows the
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Figure 3.7: A run of the format and notation-aware visualization search algo-
rithm for Jim.

syntax format=notationName. The visualizers are extended with all notations
they are defined for. These notations are printed in italics below the visualizer’s
format. In Figure 3.7 only one diagrammatic notation is attached to the model
elements and each visualizer is defined for one single notation only. In general,
however, as many visualizers and notations in as many formats as needed can
be attached to model elements. The dashed arrows indicate the search order of
the visualization search algorithm when searching clabjects for an applicable
user-defined visualizer, whereas the dotted arrows indicate the search order of
the notation search part of the applicable operation presented in Algorithm 3.4.
The notation for which a user-defined visualizer is searched is attached to the
arrows indicating the search order of the visualization search algorithm in
addition to the format.
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The visualization search algorithm in Figure 3.7 starts its search with the
Jim clabject which does not have a user-defined visualizer attached and does
not have any supertypes. Hence, its ontological type Online Marketing Employee
is searched for a user-defined visualizer. Online Marketing Employee does not
have a visualizer attached either. Its supertype, however, has a visualizer
for the diagrammatic format attached as indicated by the D printed in italics
in the upper right part of the visualizer. The notation of the visualizer is
printed below the format, in this case company. When checking the visualizer
for applicability, the notation in which Jim is to be visualized is looked up.
The notation of Jim is set to derived so the algorithm uses the notation of
Jim’s container, the Online Marketing department. Online Marketing has derived
set for its notation too. Therefore, the container of Online Marketing is searched.
Quality Toys Inc. has derived set for its notation, but its container, level O2, has
the diagram notation set to company. By setting the notation of level O2 to
company all level content which has its notation set to derived is visualized using
the company notation, including Jim. Since the algorithm retrieved company as
notation of Jim and the visualizer under investigation is applicable for the
diagrammatic format and the company notation, the algorithm terminates and
returns the visualizer of Employee.

3.5 Aspect-oriented Visualization

The definition of deep modeling languages can span multiple levels as shown
in the previous examples. Typically, a general language is defined at the
higher levels of abstraction and then refined across the following levels. For
instance, in the example used to demonstrate the visualizer search algorithm,
very general concepts of workers are defined at the highest level of abstrac-
tion, level O0, and refined by concepts for a specific company in the following
level, level O1. In this example, web shop administrators and online market-
ing employees are introduced as company-specific types. The language is then
used to model the specific company on the lowest level, O2. This concept
of generic languages which are repeatedly refined across ontological levels is
a pattern that can be observed very often in the use of deep models, e.g. in
[7, 15, 21, 53, 55, 92, 113, 203]. This pattern of using domain-specific metamod-
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eling languages to model other domain-specific modeling languages is referred
to as domain-specific metamodeling [242]. De Lara et al. put this term into
the context of deep modeling in [55]. In a three level model they refer to O0

(the most abstract level) as the domain-specific metamodeling language defini-
tion, O1 as the domain-specific modeling language definition and O2 (the most
concrete level) as the model.

When defining such deep languages not only the concepts in the language
are refined across classification levels but also their notations. The example
in Figure 3.8 shows how the diagrammatic notation for a Webshop Admin is
refined across classification levels. Figure 3.8 demonstrates how the notation
from EmployeeType represented as a group of stickmen with their name, salary
and expertise printed at the bottom evolves to TechnicalEmployeeType, a group
of stickmen with a wrench displayed in their upper right, Employee, a single
stickman, and Webshop Admin, a stickman with a wrench at its upper right.
To define this language using the previously described approach four visual-
izers would need to be defined which differ only in minor ways as shown in
Figure 3.8(a). EmployeeType and TechnicalEmployeeType have basically the same
visualizer apart from the wrench in the top right of the symbol. Also Employee
and Webshop Admin basically replicate the visualizers of their types for the sole
purpose of replacing the group of stickmen with a single stickman.

The problem of defining visualizers in this way is not only that a comple-
mentary visualizer has to be defined even when there are only small modifica-
tions to the general visualizer provided at a higher level of abstraction. Addi-
tional maintenance issues arise when the general part of the notation changes
and this change has to be propagated to all visualizers applying modifications
manually. By applying aspect-oriented notation definition, as described in [11],
these drawbacks can be overcome. The aspect-oriented notation definition fea-
ture applies the concepts of aspect-oriented programming languages [130] such
as AspectJ [129]. A general notation can be defined and the variable parts can
be defined as join points which are configurable through aspects by assigning
an identifier (i.e. name) to them. Hence, only modifications to the general
notation are modeled and changes to the general notation are automatically
transported to all the elements that extend it.

Aspect-oriented notation definition revolves around the concepts of join
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Figure 3.8: Deep notation definition without (a) and with (b) aspects.

points and aspects consisting of point cuts and advices. The parts of a gen-
eral syntax which are customizable by ontological instances or subtypes in an
inheritance hierarchy are declared as join points by assigning them an iden-
tifier. Ontological instances and subtypes can then provide aspects for the
join points. Three application kinds of aspect advices are available: 1. around,
replacing the join point 2. after, placing the aspect content after the join point
and 3. before, placing the aspect content before the join point. The terms
before and after in the previous description refer to the position in the con-
tainment tree relative to the join point in the visualizer which is merged with
the provided aspect’s advice. In addition to the kind, aspects have a condition
which has to hold true in order to apply the aspect to a join point. The place of
the aspect in the inheritance and classification hierarchies, the condition and
the identifier of the join point together build the so-called point cut identifying
the join points to which an aspect contributes. The advice of the aspect is the
contributed concrete syntax.
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Figure 3.8(b) shows the same example as Figure 3.8(a) but with aspect-
oriented user-defined notation applied. The diagrammatic visualizer attached
to EmployeeType defines three join points for which aspects can provide content.
These are JA to allow an icon to be placed next to the model element’s icon
(stickman figure), JB to allow the text shown below the model element’s icon
to be customized and JC to allow the model element’s icon to be customized.
This general visualizer is then customized by TechnicalEmployeeType to display
a wrench in the upper right of the model element’s icon, where JA is placed.
The abstract Employee clabject further customizes this generic syntax to show
a single stickman instead of a group of stickmen (JC) and to limit the text
below the icon to the name and salary of the employee.

A comparison of Figure 3.8(a) and Figure 3.8(b) shows that the version us-
ing aspects features one visualizer less than the version not using aspects. Ad-
ditionally the aspects version does not duplicate the visualizers but only models
modifications. This leads to smaller, less complex visualizers and modifications
made to the general syntax definition of EmployeeType are automatically trans-
ported to all subtypes and instances. We argue that this reduction in the
number of model elements needed to model the notation reduces accidental
complexity [38]. The positive impact of aspect-oriented notation definition is
demonstrated in two case studies [11, 21].

The modified visualizer search algorithm supporting aspect-oriented nota-
tion definition is shown in Algorithm 3.5. The search algorithm is modified to
check whether discovered visualizers provide a visualizer containing aspects or
a visualizer providing a full visualization definition. Aspects are collected until
a full visualizer is found and then merged into this visualizer. To implement
this behavior a map, name2aspect, is introduced to the algorithm in line 1.
This map stores the name of the join point and a list of all aspects provided
for this join point. When merging the aspects into the final visualizer differ-
ent strategies are applied depending on the kind of aspect. Aspects of kind
before are applied so that aspects defined at more concrete classification and
inheritance levels are merged first, whereas aspects of kind after are applied
in the reverse order. In the case of aspects of kind around, only the aspect
defined at the most concrete classification level for which the condition holds
is applied. In addition to the mapping of join points to aspects, the behavior
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Data: elementToVisualize; helper; notation; mergeAspects
Result: A visualizer suitable for rendering elementToVisualize

1 name2aspect;
2 types ← elementToVisualize;
3 classification: while (type ← types.poll()) 6= null do
4 types ← types ∪ type.getDirectTypes();
5 superTypes ← type ∪ type.getDirectSupertypes();
6 inheritance: while (clabject ← superTypes.poll()) 6= null do
7 for udlVisualizer ∈ getUDLVisualizers(clabject) do
8 if applicable(elementToVisualize, udlVisualizer, helper) then
9 aspects ← getAspects(udlVisualizer, elementToVisualize,

helper);
10 if aspects = ∅ then
11 visualizerToMerge ← udlVisualizer;
12 break classification;
13 end
14 addActiveAspectsToMap(udlVisualizer,

elementToVisualize, name2aspect, helper);
15 end
16 end
17 superTypes ← superTypes ∪ clabject.getDirectSupertypes();
18 types ← types ∪ clabject.getDirectTypes();
19 end
20 end
21 return mergeVisualizer(visualizerToMerge, name2aspect, mergeAspects,

helper);
Algorithm 3.5: The aspect-aware visualizer search algorithm.
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of the visualizer search algorithm is modified in case a visualizer applicable to
the notation is discovered (line 9 - 14).

First, the aspects are retrieved from the udlVisualizer using the getAspects
operation and stored in the aspects list in line 9. The helper provided to
the getAspects operation identifies the format-specific meta types etc. for as-
pect orientation. Moving this functionality into format-specific helpers allows
aspect-orientation to be implemented in a way that optimally fits a specific
format. Then the aspects list is checked to determine whether the udlVisualizer
provides aspects or not by checking if the aspects list is empty (line 10). If
this list is empty the visualizer is stored as the visualizer into which all so far
discovered aspects are merged (visualizerToMerge) in line 11, and the search is
stopped in line 12. If the udlVisualizer provides aspects, these are stored in the
name2aspect map using the addActiveAspectsToMap operation in line 14. This
operation checks each aspect of the udlVisualizer whether the condition holds
true in the context of elementToVisualize and adds it to the name2aspects map.
The helper passed to the function, again, handles format specificities in the
notation definition metamodels. The final modification to the visualizer search
algorithm is the last line, line 21, in which the merged visualizer is returned.

In line 21 the aspect-aware visualization search algorithm terminates re-
turning a visualizer which is merged with its aspects by the mergeVisualizer
operation. This operation merges the udlVisualizer with aspects provided via
the name2aspects map for its join points in case that it contains entries and
the mergeAspects flag is set to true. Otherwise the visualizer is not merged and
returned by the mergeVisualizer operation.

A run of the aspect-aware visualizer search algorithm as described in Al-
gorithm 3.5 is shown in Figure 3.9 on the example of Bob. Again, the dashed
arrows show the traces of the search algorithm. Join points are declared by
dashed gray rectangles with a name attached to their border. For instance, the
gray rectangle around the group of stickmen in the visualizer of EmployeeType
is declared as a join point named JC . Aspects are defined in visualizers by first
stating the join point name, its type (i.e. around, after, before) and then the
content (i.e. advice) of the aspect. The visualizer of Employee, for example,
provides an aspect JC replacing (around) the group of stickmen defined in Em-
ployeeType with a single stickman. Visualizers providing aspects are attached
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Figure 3.9: A run of the aspect-aware visualization search algorithm for Bob.

to the arrows indicating the visualizer search algorithm trace when collected
for future merging by the algorithm.

The aspect-aware visualizer search algorithm trace for Bob shows that first
Bob itself is checked for a visualizer. Since Bob does not have any visualizer
attached and no supertypes, the ontological types of Bob are searched. Web-
shop Admin does not have any visualizers attached but its supertype, Employee
does. The visualizer provides two aspects: one for join pointJB, setting the
text displayed for the Employee to its name and salary; and one for join point
JC , setting the figure representing the Employee to a stickman. These two as-
pects are collected by the visualization search algorithm and the algorithm
continues searching in the ontological type hierarchy of Bob, which first con-
tains TechnicalEmployeeType and finally EmployeeType. TechnicalEmployeeType has
a visualizer attached providing an aspect for join point JA which is an icon
indicating that Bob is a technical employee. The visualizer search algorithm
collects this aspect, too and continues its search at EmployeeType.

EmployeeType specifies a full visualizer which describes a visualization of the
model element under investigation and does not provide any aspects. Hence,
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Figure 3.10: The context-sensitive form-based visualization of Jim.

this visualizer is used for the visualization and merged with the collected as-
pects. In this case, all aspects are of kind around replacing the join points in
the visualizer description of EmployeeType. The visualization created by the
aspect-aware visualization search algorithm is a stickman with a wrench at
the upper right-hand side and the values of the ontological name and salary
attributes below it.

3.6 Context-sensitive Visualization

Context-sensitive visualization is a feature frequently required in the domain
of model execution as described in [22]. Context-sensitive refers to the state
of a model at the point of time a visualization is requested. This state is
represented by the values of the ontological attributes of the model elements.
Examples for context-sensitive visualization are the red coloring of a bottle
neck in a business process, or the coloring of attributes when passing a certain
threshold.

To realize context-sensitive visualization the notation definitions have to be
enriched with constraint expressions. These expressions can for example set
attributes of visualizer content, show/hide subtrees of a visualizer or change
the color of notation elements.

Figure 3.10 shows a form-based visualization of Jim at its left-hand side.
The right-hand side of the figure shows a context-sensitive visualization defi-
nition attached to the salary text box and the Yearly Bonus Salary group. The
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definition of the context-sensitivity first shows the attribute to set and then
the expression calculating the value. In the example, the Salary text box gets
a red background color in case the Salary of Jim is bigger than 50k. Also the
Yearly Bonus Salary group becomes visible for employees which have a yearly
salary higher than 40k and thus qualify for a bonus.
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The Diagrammatic Format

Larkin and Simon [153] describe a diagram as a data structure in which infor-
mation is indexed in a two-dimensional space. Moody [170] lists lines, graphic
areas, 3D graphic elements, labels and spatial relationships as the graphical
symbols which can be used in a diagrammatic notation. This thesis does not
consider 3D graphic elements, but they could be added by extending the meta-
model for defining diagrammatic concrete syntax with concepts from the 3D
space. The layout of a diagram (i.e. the location of diagram content in the
two-dimensional space) is referred to as secondary notation in [192] which can
transport useful additional information in addition to the elements explicitly
expressed in the diagram. This information can play a key role in the read-
ability of a diagram. To demonstrate this, the authors of [192] show how bad
layout can lead to misunderstandings of diagrams in the electric circuit do-
main. Störrle [214, 215] also shows a correlation between layout quality and
understanding of UML models. Moreover, Klauske and Dziobek [131] argue
that their research and experience shows that in Simulink [241] up to 30% of
modeling time is spent on diagram layout.

The key advantage of the diagrammatic format over formats presented
later in this thesis is its effectiveness in communicating relationships between
model elements using spatial layout information and the visual representation
of dependencies through edges. The other formats (i.e. text, table, forms) do
not have such a feature for graphically representing relationships using edges
and spatial information.
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4.1 Diagrammatic Predefined Visualization

The predefined diagrammatic visualization for deep models is shown in Fig-
ure 4.1. The visual language used as predefined language is the LML as pre-
sented in [27, 89, 127]. The LML reuses as many concepts as possible from
established modeling languages such as the Entity-Relationship (ER) model-
ing language [45] and the UML [182] but extends the concrete syntax of these
languages in a level-agnostic way. The main goal of the LML is to use a uni-
form visualization for the type and instance facet of a concept in the problem
domain. This stands in clear contrast to the UML [182] which uses different
visualizations for model elements depending on whether their type or instance
facet is represented in a model. In the UML, types are represented by the con-
crete syntax for classes while instances are represented by a modification of the
class’ concrete syntax referred to as instance specifications. Other examples
of this distinction in the UML are attribute (type level) and slots (instance
level) or association (type level) and link (instance level).

The LML has three basic concepts: 1. entities with their attributes and
methods (Figure 4.1(a)), 2. connections with attributes, methods and asso-
ciated connection ends (Figure 4.1(b)) and 3. generalizations (Figure 4.1(c)).
Entities are visualized using the widely known UML concrete syntax for classes.
The identifier of an entity is a string positioned at the top of the box represent-
ing the clabject. Optionally, instead of a simple name, complex statements
indicating inheritance, location and classification hierarchies can be specified
using deep model element designation as presented in [10]. Next to the identifier
the potency of the clabject is displayed using the superscript (potency) nota-
tion. Below the identifier, a list of linguistic attributes and their values can
be displayed within square brackets, for example, to make trait values more
explicit to a modeler. This section is referred to as the trait value specifica-
tion (tvs) based on the name given to linguistic attributes — traits. The first
compartment of an entity displays its attributes. In Figure 4.1(a) the example
attribute is called id. The name of the attribute is followed by its durability,
1 in the example, its datatype if defined (here String), its value (here ’123’)
and the mutability displayed next to the value using potency notation, 1 in
the example. In order to promote readability and reduce the amount of infor-
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id1:String='123'1

identifier1

getId(p:String)1:String

[potency=1]

(a)

0..*
moniker ~1

(b)

complete;disjoint
identifier

(c) (d)

Figure 4.1: Visual concepts of the level-agnostic modeling language.

mation displayed in the LML, elision rules can be applied to hide information
which can be derived from the model context. For example, durability of an
attribute can be hidden if it is the same as the containing clabject’s potency
and the mutability can be hidden if it is equal to the attribute’s durability.

The second compartment of an entity contains the operations describing the
behavior of the entity. In the example an operation named getId is contained by
the entity. An operation’s parameters are displayed in round brackets. They
are defined through their name followed by a colon and the indication of their
data type. In the example one parameter named p of type String is defined for
the operation getId. The parameter definition is followed by the operation’s
durability in potency notation followed by a colon and the return type of the
operation, here String. Again elision rules are applied to the durability of
operations. In case that the durability is equal to the clabject potency it is
hidden.

Model elements which are owned by an entity are represented in the final
compartment which is blank in Figure 4.1(a). These can be entities, connec-
tions and inheritance relationships. Again, elision rules can be applied to hide
empty compartments if they do not contain any information.

The notation for connections is inspired by the ER notation in which re-
lationships are represented as diamonds to which attributes can be attached
in the form of ellipses. The UML supports this diamond notation for associ-
ations, too, but it is usually only used for higher-order associations. In the
UML, association’s can be given features using the association class concept.
Association classes are presented using a class symbol connected to the asso-
ciation via a dashed line. In LML all connections are essentially association
classes, in contrast to the UML which distinguishes between associations and
association classes.
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Figure 4.1(b) shows a connection rendered in the LML. This connection
has no name given (∼) and a potency of 1. The example connection does not
own any attributes, operations or model elements and, hence, the correspond-
ing compartments can be hidden for space reasons. Attributes, operations
and owned model elements are visualized in the same way as within entities
shown in Figure 4.1(a). A connection is connected with other clabjects (i.e.
entities and connections) via connection ends, represented as solid lines. Four
kinds of connection ends exist: 1. composition (filled diamond line decora-
tion), 2. aggregation (not filled diamond line decoration), 3. navigable (arrow
line decoration), and 4. not navigable (no line decoration). Monikers naming
the connection ends and multiplicities are attached as strings to the connec-
tion end that they name or constrain as seen in Figure 4.1(b). A detailed
description of connections supported in LML is found in [20, 97].

Generalizations (Figure 4.1(c)) are visualized as rectangles with a curved
top and bottom. An identifier can be placed within the shape together with
statements about properties of the associated generalization sets — complete,
incomplete, disjoint, overlapping. These properties cover the same semantics as in
the UML [182] and are, hence, not further described here. A generalization can
be connected with an unlimited number of super- and subtypes. A supertype is
indicated by a line decorated with a non-filled triangle while a subtype ending
has no line end decoration.

Connections and generalizations can alternatively be represented in an im-
ploded form as shown in Figure 4.1(d). In this form the node in the middle
of the connection is replaced by a small black rectangle about the size of the
lines it is connected with. This feature called dotability [127] is very useful for
reducing the space used by generalizations and connections which do not pro-
vide additional information (e.g. attributes) to be rendered inside the exploded
form.

4.2 Diagrammatic User-defined Visualization

The metamodel for defining the concrete syntax of a modeling language in the
diagrammatic format is based on the notions of layout, shapes and labels like
most metamodels for describing diagrammatic formats, e.g. [71, 94, 102, 175].
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With these concepts all ingredients of a diagrammatic modeling language as
earlier enumerated and defined by Moody in [170] can be modeled.

Figure 4.2 shows the metamodel used to describe visualizers for the dia-
grammatic format. The DiagramVisualizer is the root for the visualizer descrip-
tion. It consists of instances of the abstract subclasses of VisualizationDescrip-
tor which are LayoutDescriptor, describing the layout of content within shapes,
and LayoutContentDescriptor, describing the shapes and labels placed in layouts.
Three different layouts exist, FlowLayout, TableLayout and AbsoluteLayout. The
FlowLayout aligns its content either horizontally (vertical = false) or vertically
(vertical = true). The content is aligned in one row until the border of the
containing shape would be exceeded. The content exceeding the border is then
placed on the next row. The FlowLayout can be forced to be single-lined by
setting its singleLine attribute to true. The TableLayout organizes its content in
a grid where the number of columns is determined by the columns attribute.
Each piece of content is placed in its own column. When the number of columns
is exceeded, the content is placed on the next row. The AbsoluteLayout allows
its content to be freely positioned within the layout containing shape. For all
three forms of layout, the margin and padding can be configured through the
Margin and Padding types subclassing SpacingDescriptor which provides x and y
coordinates to describe spacings.

The different types of LayoutContentDescriptor contained in a LayoutDescrip-
tor through its content attribute are ConditionalLayoutContent and RenderedLay-
outContentDescriptor. ConditionalLayoutContent can be used to show or hide a
concrete syntax element depending on the condition attribute, which is inher-
ited from ConditionalDescriptor. If the condition evaluates to true the content is
shown, otherwise it is hidden. RenderedLayoutContent is the superclass for all
content in a layout which is intended to be viewed by a model user. Its back-
groundColor and foregroundColor can be set to either a user-defined color specified
as an RGB-value using the RGBColor class or to a predefined color using the
StandardColor class. In the current implementation, the predefined colors are
Black, White, Blue, Red, Green, Yellow and Orange but these can be extended as
needed.

The RenderedLayoutContent’s subclasses ShapeDescriptor and InformationDis-
playDescriptor are the shapes available in the diagrammatic format to visualize

55



Chapter 4. The Diagrammatic Format

DiagramVisualizer
1

*
content

1

* content

x:Integer
y:Integer

Margin

Padding

margin

padding
0..1

0..1

AbsoluteLayout

FlowLayout
vertical:Boolean
singleLine:Boolean

<<Enumeration>>
ColorConstant

Black = 0
White = 1
Blue = 2
Red = 3
Green = 4
Yellow = 5
Orange = 6

RenderedLayoutContentDescriptor

foregroundColor
outline:Boolean
fill:Boolean
outlineWidth:Integer

layout1

1

ConditionalValue
attribute:ecore::EStructuralFeature

1

*conditionalValues

Circle
radius:Integer

Rectangle
height:Integer
width:Integer

FreehandShape
width:Integer
height:Integer

Point
x:Integer
y:Integer

1

1..* points

orientation:LabelOrientation
connectionEnd:plm::ConnectionEnd

FontDescriptor
fontName:String
size:Integer
fontStyle:FontStyle

1
0..1 font

StaticLabel
text:String

ExpressionLabel
expression:String

MappingLabel
attribute:plm::Attribute

Compartment
connectionEnd:plm::ConnectionEnd

RoundedRectangle
radius:Integer

Pin
connectionEnd:plm::ConnectionEnd

SVGFigure
documentURI:String
width:Integer
height:Integer

Link
lineStyle:LineStyle

1

* label

fill:Boolean
outline:Boolean
foregroundColor:ColorConstant
backgroundColor:ColorConstant
outlineWidth:Integer
connectionEnd:plm::ConnectionEnd

1
*
decoration

content *

1

TableLayout
columns:Integer
equalWidth:Boolean

1content
0..1

TableLayoutInformation
rowSpan:Integer
columnSpan:Integer
grabHorizontalExcess:Boolean
grabVerticalExcess:Boolean
horizontalAlignment:Alignment
verticalAlignment:Alignment

BorderLayoutInformation
verticalAlignment:Alignment
horizontalAlignment:Alignment
verticalOffset:Integer
horizontalOffset:Integer

<<Enumeration>>
FontStyle

normal = 0
italics = 1
bold = 2

<<Enumeration>>
LineStyle

solid = 0
dashed = 1
dotted = 2

<<Enumeration>>
Alignment

begin = 0
center = 1
end = 2
fill = 3

DefaultLinkDecoration
decorationType:DefaultLinkDecorationType

CustomLinkDecoration 1

1..* points

<<Enumeration>>
LabelOrientation

horizontal = 0
vertical = 1

<<Enumeration>>
DefaultLinkDecorationTypes

PolylineDecoration = 0
PolygoneLineDecoration = 1
NoLineDecoration = 2

name:String

<<Enumeration>>
AspectKind

around = 0
before = 1
after = 2

Aspect
kind:AspectKind

RGBColor
R:Integer
G:Integer
B:Integer

StandardColor
color:ColorConstant

1
0..1

backgroundColor 1
0..1

instanceLevel:Boolean
notation:String

Figure 4.2: Diagrammatic visualizer metamodel.
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model content. The geometric shape (e.g. rectangle, circle) of a visualized
model element is modeled by subclasses of ShapeDescriptor. Each geomet-
ric shape contains a LayoutDescriptor which determines how content visualized
within the shape is arranged. The visualization of a ShapeDescriptor can be
influenced by the outline attribute, determining whether or not to draw the
border of the shape, the fill attribute, determining whether the background of
a shape is filled with a solid color (fill = true) or is transparent (fill = false), and
the outlineWidth attribute specifying the thickness of the shape’s border. The
geometric shapes available in the diagrammatic format are Circle, SVGFigure,
FreehandShape and Rectangle with its subclasses Compartment, Pin and Rounde-
dRectangle. The radius of a Circle can be specified through its radius attribute,
and the width and height attributes of SVGFigure, FreehandShape and Rectangle
influence the visual size properties of the corresponding shapes. RoundedRect-
angle is a special kind of Rectangle which has rounded corners defined through
the radius attribute. Compartments are a kind of rectangle which are place hold-
ers for abstract syntax elements owned by the model element to be visualized.
A well known example of this are UML classes which store attributes in their
attribute compartment. The abstract syntax instances to be stored in the com-
partment are specified through the connectionEnd attribute. In some graphical
languages, connections to a model element end in rectangles which are placed
at the border of the visualized model element, e.g. ports in the UML. This
is modeled through Pins which define the model elements to which they are
connected through the connectionEnd attribute.

For some languages the default geometric shapes provided by the visual-
izer definition metamodel are not sufficient. Two alternatives are offered to
address this, FreehandShape and SVGFigure. The shape of a FreehandShape is
defined through Points defined by x and y coordinates. These points are then
connected by straight lines. More complex shapes are possible by employing
the SVGFigure, which uses an image in the Scalable Vector Graphic (SVG)
format provided at the documentURI location for visualization.

Information from the model stored in the abstract syntax is displayed
through InformationDisplayDescriptors with their subclasses LabelDescriptor, and
the previously presented Compartment and Pin. A LabelDescriptor can be config-
ured to display its text either horizontally or vertically depending on the value
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of its orientation attribute. The font is configured by applying a FontDescrip-
tor which defines a fontName, size and fontStyle (normal, italics and bold). Three
kinds of labels exist: 1. StaticLabel, displaying non-changeable, predefined text,
2. ExpressionLabel, calculating its displayed text based on the result of the ex-
pression defined in the expression attribute, and 3. MappingLabel, displaying the
value of a specified attribute.

The attributes presented here for determining the visualization of a Sha-
peDescriptor do not have to be statically set at design time but can be calculated
during run time to support context-sensitive visualization. This is supported
by the ConditionalValue type connected to ShapeDescriptors through the condi-
tionalValues reference. For each attribute of a ShapeDescriptor a condition can be
defined. The result of this condition is then used to set the attribute’s value at
run time. For instance, using this feature the outlineWidth of a ShapeDescriptor
can be varied based on attribute values stored in the visualized model.

To refine the alignment of a shape within its container, RenderedLayout-
ContentDescriptors can provide a LayoutInformationDescriptor. These are avail-
able for shapes within a table layout (TableLayoutInformation) and shapes dis-
played outside the border of another shape (BorderLayoutInformation). A Table-
LayoutInformation can configure a shape to span a certain number of columns
(columnSpan), a certain number of rows (rowSpan), fill empty horizontal space
(grabHorizontalExcess), fill empty vertical space (grabVerticalExcess), define their
verticalAlignment and horizontalAlignment. The options for these alignments are
begin, center, end and fill.

Connections between model elements are visualized through Links. The vi-
sualization of the line of the connection is defined by the lineStyle attribute
which offers solid, dashed and dotted line styles. Labels can be attached to the
link by using LabelDescriptors via the label reference. The visualization of the
Link ends is specified by LinkDecorations via the decoration reference. LinkDecora-
tions can be set up to fill the background with a solid color or display a trans-
parent background, display a border (outline), have a certain foregroundColor,
backgroundColor, outlineWidth and be associated with a certain connectionEnd of
the Link. Two kinds of LinkDecorations are available: DefaultLinkDecoration being
visualized as one of the three decorationTypes — PolylineDecoration, Polygone-
LineDecoration and NoLineDecoration. CustomLinkDecorations are used to specify
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the link decoration as a set of Points via their x and y coordinates.
Parts of the diagrammatic visualization definition can be made addressable

as join points which can be further refined by aspects. To do so their name
attribute inherited from the VisualizationDescriptor is set to a unique value. As-
pects are then used to provide visualizations, modeled through their content
attribute, for these join points. An Aspect is applied only when the condition
attribute inherited from ConditionalDescriptor is true. Three application kinds
for Aspects are available as earlier described: 1. around, replacing the join point
with the Aspect content, 2. before, placing the content of the Aspect before the
join point and 3. after, placing the content of the Aspect behind the join point.

4.2.1 Diagrammatic Visualizer Metamodel Example

An instance of the diagrammatic visualizer definition metamodel is shown at
the top of Figure 4.3. The definition of the visualizer is shown as a containment
tree where the text at each node determines the type of the model element
and the attributes and their values are specified in brackets. The visualizer
shown in Figure 4.3 defines the diagrammatic visualization of employees in the
company structure modeling language example.

The shape consists of a Rectangle surrounding the whole visualization of
the employee. This rectangle has a transparent background (fill=false) and
does not show a border (outline=false). The outer rectangle uses a TableLay-
out with one column (columns=1) to arrange its content. First an SVGFigure
is placed into this Rectangle to display an icon of the visualized model ele-
ment. Second, a Rectangle containing labels displaying information from the
employee’s ontological attributes is placed in the outer Rectangle. The SVG-
Figure has TableLayoutInformation attached to occupy all available horizontal
space (grabHorizontalExcess=true) and all available vertical space (grabVertical-
Excess=true). Furthermore, it fills its container horizontally and vertically (ho-
rizontalAlignment=true and verticalAlignment=true). The displayed icon is made
context-sensitive by the use of a ConditionalValue which sets the documentURI of
the SVGFigure (attribute=documentURI). The documentURI is either researcher.svg,
a stickman with an R at the top right, or employee.svg, a plain stickman, based
on the value of the employee’s researcher attribute as the condition shows.

The rectangle containing the labels displaying the ontological attributes of
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Rectangle (outline=false; fill=false;)

 TableLayout (columns=1)

  SVGFigure

   TableLayoutInformation(grabHorizontalExcess=true;

                          grabVerticalExcess=true;

                          verticalAlignment=fill;

                          horizontalAlignment=fill;)

   ConditionalValue(attribute=documentURI;

                    condition=if researcher then 'researcher.svg'

                              else 'employee.svg' endif;)

  Rectangle

   TableLayoutInformation(verticalAlignment=center;

                          horizontalAlignment=center;)

   FlowLayout

    MappingLabel(atttibute=name;)

    StaticLabel(text=;;)

    MappingLabel(attribute=salary;)

Data (LML) User-defined Visualization

User-defined Visualizer

Tim;36k

Tim0:OnlineMarketingEmployee
name0= Tim
expertise0= Online Marketing
salary0= 36k
researcher0= false

Figure 4.3: Tim visualized in the diagrammatic company structure modeling
language.

the employee has a TableLayoutInformation attached which configures it to be
placed horizontally centered (horizontalAlignment=true) and vertically centered
(verticalAlignment=true) in its layout cell. The Rectangle uses a FlowLayout to
arrange its contents. The first label is a MappingLabel displaying the value of
the name attribute (attribute=name), the second label is a StaticLabel displaying
the static non-changeable text ; (text=;) and the third label is a MappingLabel
displaying the value of the salary attribute (attribute=salary).

The bottom left of Figure 4.3 shows Tim in the LML notation to which the
user-defined visualizer is applied. The result of the visualizer application is
shown in the bottom right, which is a stickman pictogram with the text Tim;
36k placed below it.

4.3 Diagrammatic Weaving Model

The weaving model used to keep the model represented in the diagrammatic
format synchronized with its abstract syntax model representation is displayed
in Figure 4.4. The model is identical to the Notation Model [94] used in the
GMF run time project to connect diagrammatic editors with their abstract
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Figure 4.4: Diagrammatic weaving model (GMF Notation Model after [94]).

syntax. The central type in this metamodel is View which is the superclass
for Node, Edge and Diagram. A view is connected to the abstract syntax of the
model via the element attribute. The diagram editor uses this attribute to syn-
chronize changes between diagrammatic concrete syntax representations and
the abstract syntax. Besides establishing links between the concrete syntax
and abstract syntax, the metamodel is also used for persisting layout informa-
tion about a diagram. For instance, the visible attribute of View stores whether
a diagrammatic representation of an abstract syntax element is rendered or
not and the Size type stores the width and height of a diagram node. The layout
purpose of the weaving model is not discussed further here, however, since it
duplicates the information stored in the LML visualizers.

The weaving model operations for the diagrammatic format are not ex-
plained in detail here since they are rather trivial to realize. This is because
the add, remove, move and edit operations do not break any layout that would
cause recalculations for the not edited parts in the weaving model. Further-
more, both the abstract syntax model representation and the representation
in the format-specific editors can easily be addressed via pointers. When a
new element is added either via the abstract syntax model representation or
the format-specific editor, a new View corresponding to the visual type of the
added model element (i.e. Edge, Node) is added to the weaving model and the
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     Node(element=salary)

  Node(element=ToyResearch)

   ...

Figure 4.5: Diagrammatic weaving model on the company structure modeling
language example.

other side is updated correspondingly. The deletion operation is similar with
the only difference being that the deleted model’s view is removed from the
weaving model and, hence, is removed from the abstract syntax model rep-
resentation and the format-specific editor. When a model change occurs, the
edited element’s view is looked up in the weaving model and the format-specific
editor and abstract syntax model are updated.

4.3.1 Diagrammatic Weaving Model Example

Figure 4.5 shows an example instance of the diagrammatic weaving model
for the company structure modeling language. The right-hand side shows a
company producing toys, called Quality Toys Inc., visualized in a diagrammatic
user-defined language as a house. The company consists of two departments,
Online Marketing and Toy Research indicated by rectangles within the company.
These departments contain their employees which are represented by stickmen.
In addition, research staff have an R displayed in their upper right corner.
Below the stickman symbol the name and salary of the employee are rendered.
Four employees exist — Allen, Tim, Jim and Bob.

The left-hand side of Figure 4.5 shows the company structure in its abstract
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syntax representation visualized as a tree. For each entity and attribute a node
is created in the tree with the details of the represented entity in brackets. The
abstract syntax representation and user-defined diagrammatic representation
are connected through the weaving model in the top center of Figure 4.5. This
weaving model is a cut down version of the model a GMF editor would produce
since for example no layout information such as x and y coordinates is stored.
For each entity in the diagrammatic and abstract syntax representations of
the model, one Node is stored in the weaving model. These Nodes point to the
abstract syntax and diagrammatic representations. In the example, two weav-
ing links, for the name and salary attributes of Allen, are highlighted by solid
lines. The fact that weaving links are realized as pointers and that model ele-
ments do not influence each other’s information in the weaving model makes it
easy to implement model manipulation operations on top of the diagrammatic
weaving model.
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The Textual Format

In contrast to diagrams which encode information in a spatial way, text is
classified as sentential by Larkin and Simon [153], meaning that it is a se-
quential format. The lack of secondary notation (diagram layout) in models
represented as text is described as an advantage over diagrammatic repre-
sentations in [192] because the layout of a diagram can in many situations
lead to misinterpretations of the model. In a sentential format, text used to
represent domain concepts and their relations preserves logical and temporal
sequences in contrast to the diagrammatic format which focuses on the spatial
relationships between model elements [153].

The advantage of text over the other formats presented in this thesis is that
it is a very efficient way to enter lots of new data into a model. A modeler does
not have to interact with any mouse-driven user interface or care about layout,
etc. All that a user has to do is to type in text using the keyboard. Modern
textual modeling environments raise productivity even more in the form of
proven assistance mechanisms (e.g. automatic correction, code completion,
code snippets) or new research trends such as keyword programming [157],
semantic auto completion [112] and example-based code completion [40]. On
the other hand, to efficiently use text for inputting a model, a certain degree of
expertise in the applied textual modeling language is needed, because users do
not received as much guidance from the modeling environment’s user interface
as in other formats.
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Bob (65k)
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Figure 5.1: A user manipulating a model through a free text modeling tool
(a) and a projectional modeling tool (b).

5.1 Textual Editing Paradigms

In [235] two approaches for editing models in a textual format are described
— the widely applied free-text modeling tools (Figure 5.1(a)) supported by a
parser and command-directed, projectional modeling tools [80] (Figure 5.1(b))
which directly edit the text’s underlying abstract syntax model through a
textual projection. Text-based, projectional modeling tools have their origin
in syntax-directed editing tools [159] from the 1970s/80s such as Emily [99,
98], Mentor [149] or the Cornell Program Synthesizer [220]. In the following
subsections the advantages and disadvantages of these two approaches are
outlined.

5.1.1 Free-text Model Editing

When applying free-text model editing, a user can write any text without any
restrictions into a text editor. This plain text is then converted into a model
often referred to as the abstract syntax tree (AST) of the entered text. The
abstract syntax tree is the representation of the text which is processable by
a machine. The step from the plain text to the abstract syntax tree is called
parsing [3]. Parsers can be either implemented manually or generated using
grammarware tools based on a user-defined grammar. In the latter case a
parser generated automatically from the user-defined grammar recognizes text
according to its underlying context free grammar specification in e.g. EBNF
[239] and creates the corresponding abstract syntax tree. The clear advantage
of the free-text editing approach is that a modeler can freely type any text and
save the file at any state no matter whether the text conforms to the specified
grammar. This enables scenarios such as copying model snippets from any
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if B1 then

 if B2 then

   S1

else

 S2

(a)

if B1 then

 if B2 then

   S1

 else

   S2

(b)

Figure 5.2: The dangling else problem after [1].

external source (e.g. a website) and reusing them in a model. On the other
hand, the parser-based approach has several drawbacks when it comes to the
multi-format editing scenario proposed in this thesis — namely, the level of
expertise needed to define a textual language, the restrictions placed on the
defined language and merging issues.

First, mechanisms and rules to handle ambiguity [42] in the defined lan-
guage have to be employed. Ambiguity in a language is defined by Brabrand
et al. [37] as a “situation where a string may be parsed in multiple ways, lead-
ing to different parse trees.” One example of ambiguity is the dangling else
problem [1] shown in Figure 5.2(a) and Figure 5.2(b) that arises in computer
programming languages. Both figures show the same example with different
indentation to make the problem clear. Based on the language grammar it
is not possible to decide if the else clause belongs to the first if clause or the
second if clause. In XText grammar definitions, for example, such ambiguity
is resolved by enriching the grammar with syntactic predicates that give hints
to the parser. Ambiguities also occur in language composition scenarios where
two grammars are designed independently but then combined. Language com-
position is envisaged as central part of the deep modeling approach used in this
thesis as presented in [15] in the context of the composition of deep business
process modeling languages.

Second, the language defined using a grammarware tool has to match the
category of the generated parser. Example parser categories are LL(*) [190],
as supported by ANTLR [189] (and thus also XText which uses the ANTLR3
parser generation framework) and LALR(1), supported by YACC [118]. Even
when the language under design is supported by the chosen parser generation
framework, the grammar has to be designed so that a parser can be generated
for it by the language workbench’s underlying parser generation framework.
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This requires a language engineer to be aware of many technical details about
the underlying parser generation framework, for example how left recursive
grammars are handled.

The third, and for multi-format modeling, most significant drawback of
free-text model editing is that the primary representation form of the model
is unstructured data, and the abstract syntax tree model is only created at
the point in time when the model is consumed by a machine as for example
described in [78, 205, 206]. This reduces the abstract syntax model underlying
the textual representation to being a temporary artifact because modelers and
tools focus only on the concrete syntax which is then translated into a model
for machine interpretation.

In multi-format editing, however, the textual format is just another format
alongside the diagrammatic, tabular and form-based formats and does not
play a special role for interaction, computation and persistence. Furthermore,
by applying the multi-notation paradigm a certain textual representation of
a model is just one of many ways to express the model in a textual form.
To support multi-format, multi-notation model editing the model represented
as text is saved in a way that is independent of the (textual) format-specific
concrete syntax.

Shifting the focus from text as the primary artifact to the underlying model
represented in a format-independent way creates problems in situations in
which a modeler writes text which does not conform to the concrete syntax.
In such a situation, a user cannot save the edited model until it fully conforms
to the concrete syntax as it cannot be parsed into a form that can be merged
with the model represented through the abstract syntax model underlying all
the modeling formats.

Another problem is that multi-format textual editors rely on parsing the
free-text into a model and then merging this with the original abstract syntax
model underlying all the formats to be edited via the textual format. In
situations where the merging algorithm cannot detect changes correctly, such
as changes to attributes uniquely identifying model elements, the meta-data of
other formats (e.g. diagrammatic layout) can get lost. In this case, the merge
algorithm would assume that the modeler intends to delete the model element
holding the old value in the identifying attribute and would thus delete it.
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Then a new model element is created during the merge operation holding the
new identifying value. This newly created model element does not hold the
meta-data of the deleted model element and thus the non-textual formats in
which the model is also expressed (e.g. the layout of a diagram) are negatively
influenced.

Moreover, changes to the underlying model from any format other than the
textual one are difficult to merge into the displayed text. A naïve approach
for synchronizing changes from all other formats with the textual format is to
rewrite the text displayed in the textual editor. This, however, destroys the
text formatting created by a modeler and would move the cursor position in
the text. An alternative approach is to locally merge changes with their textual
representation. This, however, is not trivial due to the missing links between
the abstract syntax model element representations and their counterparts in
the unstructured textual representation in the textual editor.

5.1.2 Projectional Editing

The drawbacks caused by the combination of free-text editing with the meta-
model focused multi-format editing approach have led to interest in an alter-
native textual model editing paradigm — projectional editing. Projectional
editing essentially relies on the same model editing paradigm used to support
tabular, diagrammatic and form-based, etc. model editors. In this approach to
model editing, the model is stored in a representation independent format, the
abstract syntax representation, and no parser is needed to transform the edited
text into an abstract syntax model representation. If a modeler manipulates
a model through a projectional model editor, the abstract syntax representa-
tion is directly changed instead of the concrete syntax representation which
is then transformed into the abstract syntax model representation. In other
words, the modeler interacts with the model through a textual projection of
the abstract syntax representation of a model which is modeling format inde-
pendent. When editing, a user is directly editing the abstract syntax of the
model and not manipulating the concrete syntax which is then translated into
the abstract syntax representation of the edited model. By transferring this
paradigm to textual modeling the concrete syntax is no longer the primary
format to interact with a model and it is reduced to a secondary role. This
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solves the merge problem between abstract syntax and text in both directions
in a multi-format modeling environment because a modeler always immedi-
ately changes the abstract syntax representation underlying all formats of the
edited model. It is therefore no longer necessary to merge the model created by
a parser from the edited text with the abstract syntax representation underly-
ing all formats of the edited model. The lack of a parser, however, means that
no unstructured data (i.e. text) can be imported since model elements can
only be created through the projectional text editor. For instance, no model
snippets can be copied from e.g. a web page or e-mail into the projectional
editor.

Projectional editing not only solves the problem caused by merging in multi-
format editing but also the other aforementioned problems of free-text editing.
Ambiguity in grammars is no longer a problem since the user always selects
what role an element in the textual representation plays. Thus, disambiguation
is performed by the user at model creation time and not deferred to the parser
once the model content has been created. This frees a language engineer from
having to define syntactic predicates to address ambiguities in a grammar.
Also since no parser is required, the language engineer does not need to know
what the capabilities of the language workbench’s underlying parser generator
are. A language engineer can create the grammar that best fits the problem
in hand rather than the parser generator. In fact, it is possible to create
grammars which cannot be parsed at all. This also reduces the complexity of
specifying a grammar.

Directly editing the abstract syntax of a model through text, however,
places restrictions on how a textual model editor supports model editing. The
text in a projectional model editor must at all times fully conform to the
concrete syntax defined for representing the data stored in the underlying
abstract syntax model. Thus, all model elements must be expressed as a
whole in the projectional model editor and cannot be sequentially built up
by typing text as in a free-text editing environment. Hence, a user has to
use content creation operations offered by the projectional editor to create
text representing whole model elements. Examples of such operations are
content-assist pop-ups which offer entities to instantiate, connections available
for connecting elements and selectable enumeration attribute values etc.
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Because of the need for such content creation operations, free-text editors
were preferred to projectional editors for many years. In the early days of
syntax directed editing, Bernard Lang, for example, stated in [149] that the
user interfaces of the tools are too complex for inputting programs or per-
forming simple editing tasks. They, however, see strengths in maintenance
operations executed on programs stored in a projectional programming envi-
ronment. Voelter et al. identify several more drawbacks and classify them in
[233]. They then demonstrate that modern projectional editors such as Jet-
Brains MPS can overcome these drawbacks. Amongst other things, JetBrains
MPS applies a hybrid projectional / free-text editing approach in which a user
can start to write arbitrary text which is over time parsed into the underly-
ing model. This enables scenarios such as copying model snippets represented
in plain text into the modeling environment. Another modern projectional
editing workbench demonstrating the power of the approach is the Intentional
Domain Workbench [115].

In this thesis, the projectional approach to textual modeling was chosen
to support multi-format editing since the advantages of directly editing the
abstract syntax through text far outweighs the usability drawbacks in this
scenario.

5.2 Textual Predefined Language

The textual, predefined language used to visualize deep models is inspired by
the MetaDepth language developed by de Lara et al. [50, 167] which is a
deep version of the OMG’s Human-Usable Textual Notation (HUTN) [178].
The main modifications made to this syntax are the addition of: 1. durability
and mutability to attributes, 2. generalization sets and 3. the containment
relationship between clabjects. Since the complete integration of MetaDepth
was not a goal of this thesis, rather than giving a full specification of its
grammar this section provides only a brief example-based introduction to its
concrete syntax.

Even though the predefined textual syntax presented here is based on the
MetaDepth language there are significant differences between MetaDepth
and the LML supported deep modeling approach. For example, MetaDepth
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does not support mutability, the definition of methods inside clabjects and
declaring clabjects as abstract by setting their potency to zero. Additionally,
it has a slightly different classification semantics and features concepts such as
leap potency which are not available in the LML modeling approach. A more
detailed description of MetaDepth is available in [50] and the differences
between the two deep modeling approaches are outlined in [12].

Figure 5.3 shows the additions to MetaDepth’s concrete syntax to support
the LML deep modeling approach described here. The top half of the figure
shows a clabject, identifier, inheriting from (supertype)identifier and connected
to (target)identifier using the diagrammatic LML notation. The bottom half of
the picture shows the same model but in the MetaDepth inspired language
adopted here. The model is visualized using a small pseudo grammar in which
static text is written in single quotation marks (“ ’ ”) and linguistic trait
values derived from the metamodel are enclosed in square brackets (“[ ]”).
A choice between two representations is represented by the pipe symbol (“|”),
e.g. “’A’|[B]”. Some linguistic trait identifiers that retrieve data from the model
occur more than once in Figure 5.3, hence, they are made unique by putting
a string in round brackets before them (“( )”).

As shown in the bottom of Figure 5.3, in MetaDepth a clabject is de-
fined by the keyword Node if it does not have an ontological type followed by
its identifier. If a clabject does have one or more ontological types, all (classi-
fier)identifiers are listed in a comma-separated list instead of the Node keyword.
The identifier is followed by a colon and the (supertype)identifiers if the clabject
has any supertypes. Then the potency of the clabject is defined with a lead-
ing @ sign. The contents of a clabject, such as attributes, methods and other
clabjects, are enclosed in curly brackets.

Attributes are defined through their (attribute)name followed by the @ sign
and their durability followed by a comma followed by their mutability. Then the
datatype is separated from the durability and mutability by a colon followed by
an equals sign and the value of the attribute. Methods are represented first by
their (method)name followed by a pair of round brackets, their potency indicated
by a leading @, and their body surrounded by curly brackets. Connections in
which a clabject participates are represented through the [(t)moniker] located
at the opposite end of the connection, followed by a colon and the name of
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[(attribute)name][durability]:[datatype]=[value][mutability]

[identifier][potency]:[(classifier)identifier]

[(method)name]()[durability]:[returnType]

'Node'|[(classifier)identifier] [identifier]':'[(supertype)identifier]'@'[potency]'{'
   [(attribute)name]'@'[durability]','[mutability]':'[datatype]'='[value]
   [(method)name]'()@'[durability]':'[returnType]'{'[body]'}'
   [(t)moniker]':'[(target)identifier]'['[(t)lower]','[(t)upper]',''container'|'aggregate'|''']'
   'Node'|[(classifier)identifier] [identifier]':'[(supertype)identifier]'@'[potency]'{'...'}'
'}'
'Edge'|[(conclassfier)identifier] [(con)identifier]':'[(consupertype)identifier]'@'[potency]
      '('[(s)moniker]'.'[identifier]'[''>'|'X'',''composition'|'aggregation'|''','[(s)lower]','[(s)upper]']',
                          [(t)moniker]'.'[(target)identifier]'[''>'|'X'',''composition'|'aggregation'|''','[(t)lower]','[(t)upper]']')' '
'}'
'Inheritance' [(inh)identifier] [identifier]->[(supertype)identifier] 
                                                                                   '(' 'complete'|'incomplete'|'' ',' 'disjoint'|'overlapping'|'' ')'

[(t)lower]..[(t)upper]
[(t)moniker]

[(target)identifier][potency]

[(content)identifier][potency]

[(supertype)identifier][potency]

[(con)identifier][potency]:[(conclassifier)identifier]

[(s)lower]..[(s)upper]

[(s)moniker]

Textual Predefined
Language

LML[(consupertype)identifier][potency]

(inh)identifier
complete, disjoint

Figure 5.3: LML concepts in the textual predefined language.

the clabject connected via the connection end. The multiplicity is indicated
in square brackets using the notation “[(t)lower]’,’[(t)upper]”. Additionally, the
keywords container and aggregate can be defined if the connected clabject is
contained or aggregated by the model element. Instances of contained clabjects
are rendered within their owning clabject using the same syntax as if they were
located in a level.

Connections, which are clabjects connecting two or more other clabjects,
are represented through an extended clabject syntax. If they do not have an
ontological type their representation starts with the keyword Edge, otherwise
it starts with a comma-separated list of (conclassifier)identifiers. Subsequently
the (con)identifier is declared followed by the list of (consupertype)identifiers sep-
arated by a colon from the (con)identifier. The potency is then defined with a
leading @ symbol. Finally, the ends of the connection are defined in the form
[(s)moniker].[identifier], [(t)moniker].[(target)identifier]. The details of each connec-
tion end are stored in square brackets in the form ’>’|’X”,”composition’|’aggregation
’|”’,’[lower]’,’[upper]. The first entry in this expression specifies whether the con-
nection end is navigable (>) or not navigable (X), the second entry specifies
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the kind of the connection end (i.e. composition, aggregation or neither (empty
string) and the last two entries specify the lower and upper cardinalities of the
connection end. Connection content (e.g. attributes and methods) is enclosed
in curly brackets as previously shown.

Inheritance relationships are represented by the keyword Inheritance, fol-
lowed by the name of the (inh)identifier, if defined. Then all subtype identifiers
are listed in a comma-separated list followed by an arrow (->) and a comma-
separated list of all (supertype)identifiers. Optionally, the inheritance character-
istics (complete, incomplete, disjoint, overlapping) can be displayed in brackets as
needed.

5.3 Textual User-defined Language

Like diagrammatic user-defined languages, textual user-defined languages are
defined using visualizers. The textual visualizer definition metamodel is dis-
played in Figure 5.4. The meta metamodel mainly revolves around the concept
of Values which are retrieved from the abstract syntax model and Literals which
are static text (e.g. keywords) in the concrete syntax. A textual concrete syn-
tax is defined by attaching a TextualVisualizer, inheriting from AbstractUserDe-
finedVisualizer, to a model element. The concrete syntax itself is defined by
TextualVisualizationDescriptors which are contained in the TextualVisualizer.

Literal and Value specialize TextualVisualizationDescriptor and are used to de-
fine the textual concrete syntax. The literal attribute of Literal defines static,
unchangeable text to display, e.g. keywords. Values can be retrieved in differ-
ent ways from the abstract syntax model. AttributeValue displays the value of
an attribute through data type sensitive editing features, e.g. for an attribute
of an enumeration data type all possible enumeration values can be selected
from a list. This context-sensitive AttributeValue is further configured by ap-
plying its subclasses EnumerationValue and BooleanValue which can be used to
further configure the visualization of attributes of type boolean and enumera-
tions. The BooleanValue type can be configured to show a literal representing
the true value (trueLiteral) and a literal representing the false value (falseLiteral).
Additionally, the concrete syntax can be configured to not show a visualization
if the attribute is of value false (hideFalse = true). An example for this is the
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TextualVisualizer
1 *

content

<<Enumeration>>
ColorEnumeration

black = 0
red = 1
blue = 2
green = 3

Literal
literal:String

color0..1

1

StandardColor
color:ColorEnumeration

RGBColor
R:Integer
G:Integer
B:Integer

ExpressionValue
expression:String

ConnectionValue
connectionEnd:plm::ConnectionEnd

AttributeValue
attribute:plm::Attribute

EnumerationValue BooleanValue
hideFalse:Boolean
trueLiteral:String
falseLiteral:String

EnumerationLiteralMapping
enumerationLiteral:String
literal:String 1

*
mappings

Aspect
kind:AspectKind
condition:String
name:String

1

*
content

name:String
condition:String

<<Enumeration>>
AspectKind

before = 0
after = 1
around = 2

instanceLevel:Boolean
notation:String

CalculatedAttribute
attribute::ecore:Attribute
expression:String

1

calculated
Attribute

*

1

* aspect

Figure 5.4: Textual visualizer metamodel.

Java syntax for declaring a class to be static or not. If the static keyword is
present the static attribute of a class is set to true. If the keyword static is not
visible the class’ static attribute is set to false. Enumerations are visualized
through the definition of an EnumerationValue which allows enumerationLiterals
to be mapped to literals through EnumerationLiteralMappings. ConnectionValue
displays the visualization of all model elements connected via the specified
connectionEnd and ExpressionValue displays a non editable string calculated by
a constraint language expression.

Values and Literals are highlighted using AbstractColor via the color reference
of TextualVisualizationDescriptor. Two kinds of color are available: first, RGBColor
supporting the definition of arbitrary colors through Red, Blue and Green val-
ues; and second, StandardColor supporting the enumeration literals black, red,
blue and green of ColorEnumeration at the time of writing. To enable context-
sensitive textual visualization, the CalculatedAttribute metaclass is referenced by
TextualVisualizationDescriptor. The CalculatedAttribute sets the specified attribute
to the result of the specified expression. Furthermore, it can be determined
if a Value or Literal is visible by setting the condition attribute inherited from
TextualVisualizationDescriptor.

Aspect-orientation of the user-defined visualization definition is supported
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AttributeValue (attribute=name)

Literal (literal=' (')

AttributeValue (attribute=salary)

Literal (literal=', ')

AttributeValue (attribute=expertise)

Literal (literal=');%n')

Data (LML) User-defined Visualization

User-defined Visualizer

Tim0:OnlineMarketingEmployee
name0= Tim
expertise0= Online Marketing
salary0= 36k

Tim (36k, Online Marketing);

Figure 5.5: Tim visualized in the textual company structure modeling language.

through the Aspect metaclass. The name attribute defines which join point an
Aspect is applied to. The condition attribute can be used to determine under
what condition an Aspect is applied to a join point. An Aspect can be of kind
before — placing the content of an Aspect before the join point, after — placing
the content of an Aspect after the join point, or around — replacing the join point
with the content of an Aspect. Literals and Values can be defined as join points
to which an Aspect can contribute by setting their name attribute, inherited
from TextualVisualizationDescriptor, to a unique value.

5.3.1 Textual Visualizer Metamodel Example

An example of the application of a user-defined textual visualizer is demon-
strated in Figure 5.5. The top of the figure shows a textual user-defined
visualizer for visualizing employees. The intention of the visualizer is to first
show an employee’s name, list the salary and expertise in brackets and terminate
with a semicolon. For this purpose first an AttributeValue mapping pointing to
the name attribute of the employee is created. This mapping is followed by the
definition of a space and the start of the employee’s details section ( () using a
Literal. In this section first the salary of the employee in question is displayed by
an AttributeValue mapping pointing to the salary attribute of the employee. This
mapping to the salary is separated by a comma and a space (a Literal defining
’, ’ ) and then the employee’s expertise (an AttributeValue mapping pointing to
expertise). The details section is then closed with a bracket and the employee is
terminated with a semicolon followed by a line break defined through a Literal
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target:ecore::EObject
WeavingModel links

*

*
content WeavingModelContent

WeavingLink

offset:Integer
length:Integer
text:String

TextElement
trait:ecore::EStructuralFeature

TraitWeavingLink

definitionContext:ecore::EObject
expression:String

ExpressionWeavingLink

Figure 5.6: Textual weaving model.

();%n) in the textual user-defined visualizer.
The lower left of Figure 5.5 shows Tim, an employee to be textually visu-

alized using the LML notation. The two arrows next to Tim indicate that the
user-defined textual visualizer is applied to Tim resulting in the textual visual-
ization in the figure’s lower right. In this textual visualization Tim is visualized
as an employee earning 36k per year with Online Marketing as his expertise.

5.4 Textual Weaving Model

To realize the projectional textual editor it is necessary to know which part of
the text displayed to the modeler represents which part of the model in the un-
derlying abstract syntax model representation. For this reason, a link between
the edited text and the underlying model is established by employing an in-
stance of the weaving metamodel displayed in Figure 5.6. This weaving model
consists of four metaclasses specializing WeavingModelContent — TextElement
and WeavingLink with its subclasses TraitWeavingLink and ExpressionWeavingLink.
The target attribute of a WeavingLink points to a model element as a whole to vi-
sualize in the text. The WeavingLinks stored in the content of a WeavingLink then
either point to traits to be visualized (TraitWeavingLink), store an expression
used to calculate the displayed text (ExpressionWeavingLink) or point to con-
tained and connected model elements (WeavingLink). The trait attribute of the
TraitWeavingLink stores to which trait of a model element a weaving link maps
to. In case of a weaving link for an ontological attribute this can for instance
be the value of the attribute, the durability of the attribute or the name of
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the attribute represented by text. ExpressionWeavingLinks store the expression
used to calculate the textual visualization in their expression attribute and the
model element on which the expression is defined (definitionContext). The text
representing a weaving link is expressed as TextElements which are also stored
in the content attribute of WeavingLinks. TextElements store the offset and length
of the text they map to. Additionally, a copy of the represented text is stored
in the text attribute.

A scenario in which it is necessary to nest WeavingLinks within one another
is when the text to be visualized is composed out of several trait values from
the abstract syntax model. An example of this occurs when visualizing several
ontological attribute values in a user-defined language. In this case a Weav-
ingLink is established to the clabject containing the attributes and for each
attribute one TraitWeavingLink is added to the content of this WeavingLink point-
ing to the attribute and its trait (i.e. the value trait in case of a user-defined
language) to display in the text.

Several operations on the weaving model are required by a projectional
text-based model editor to realize projectional textual editing in a multi-format
modeling environment. These operations are 1. calculate TextElement offsets
2. edit model element trait, 3. delete model element and 4. add model element.

5.4.1 Textual Weaving Model Operations

The calculateOffset(weavingModel) operation, displayed in Algorithm 5.1, operat-
ing on the weavingModel recalculates the offsets of all TextElements and is called
after each change to the underlying data model and each change to the text
displayed in the model editor, because these two operations change the offsets
of model elements represented in the projected text. The input to the algo-
rithm is the weavingModel on which the offsets of all TextElements have to be
recalculated. First, the algorithm retrieves a treeIterator for the weavingModel
(line 1). The treeIterator traverses the containment tree of the weavingModel fol-
lowing a depth first approach. Calling hasNext(treeIterator) on the tree iterator
checks if there are more elements to traverse and the next(treeIterator) oper-
ation retrieves the next element in the containment tree of the weavingModel
from the treeIterator. Then the global currentOffset counter is set to its initial
value, 0, in line 2. The main work of the algorithm is done by lines 3 to 9.
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Data: weavingModel
Result: Recalculate all offsets after a change

1 treeIterator ← createTreeIterator(weavingModel);
2 currentOffset ← 0;
3 while hasNext(treeIterator) do
4 current ← next(treeIterator);
5 if isTextElement(current) then
6 setOffset(current, currentOffset);
7 setLength(current);
8 currentOffset ← currentOffset + length(current)
9 end

10 end
Algorithm 5.1: The calculateOffset(weavingModel) operation.

In this part of the algorithm, the current model element is checked to see if
it is of type TextElement (line 5). If this is the case the setOffset(current, cur-
rentOffset) operation (line 6) sets the value of the current TextElement to the
globally stored currentOffset, the length attribute of the current TextElement is
recalculated (line 7) and the value of the current TextElement’s length attribute
is added to the currentOffset (line 8).

The findTextElement(weavingModel, offset, searchStrategy) operation is speci-
fied in Algorithm 5.2. The algorithm retrieves a TextElement from a given
weavingModel for a given offset applying a given searchStrategy. The algorithm
first searches all TextElements for the offset which is closest to the cursor offset
(line 1 - line 9). Then the algorithm performs a depth first search on the
weavingModel’s containment tree for the TextElements which have the minimum
distance to the cursor offset (line 11 - line 21).

Each model element (current) is checked to determine if it is a WeavingLink or
a TextElement using the isTextElement(current) (line 13) operation. If the current
model element is a TextElement, it is determined whether the offset of the edited
text is: 1. at the beginning or within the TextElement (line 14) or 2. at the end
of the TextElement (line 18). In both cases the TextElement is added to the result.
If the edited offset is placed between two text elements in the edited file, both
conditions are executed and thus more than one result is potentially retrieved
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Data: weavingModel, offset, searchStrategy
Result: Finds a TextElement for a given offset.

1 offsets ← ∅, results ← ∅;
2 iterator ← createTreeIterator(weavingModel);
3 while hasNext(iterator) do
4 current ← next(iterator);
5 if ¬isTextEelement(current) then continue;
6 if offset - offset(current) ≥ 0 then
7 offsets ← offsets ∪ (offset - offset(current));
8 end
9 minDistance ← min(offsets);

10 iterator ← createTreeIterator(weavingModel);
11 while hasNext(iterator) do
12 current ← next(iterator);
13 if ¬isTextEelement(current) then continue;

// in model element or at beginning

14 if offset - offset(current) = minDistance then
15 results ← results ∪ current;
16 break;
17 end

// the end of a model element, when between two

18 if minDistance = 0 then
19 if offset - (offset(current)+length(current)) = minDistance then

results ← results ∪ current;
20 end
21 end
22 if size(results > 1) then
23 if strategy =ModelElementPreferred then getModelElement(results);
24 if strategy = TraitPreferred then getTrait(results);
25 else
26 first(results);
27 end
Algorithm 5.2: The findTextElement(weavingModel, offset, searchStrategy) op-
eration.
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from the weaving model.
To resolve this ambiguity the algorithm is configured with different strate-

gies when executed. The algorithm can either return the first model element
(line 23), the first trait (line 24) or the first element no matter what the type
of the weaved target (line 26) from the results set is. In case a search strategy
is configured to prefer a trait or model element and more than one trait or
model element is in the results list the element residing at the first position of
the list is returned.

Data: weavingModel, offset, file, add, length
Result: Change the model trait in the abstract syntax.

1 textElement ← findTextElement(weavingModel, offset, TraitPreferred);
2 weavingLink ← getWeavingLink(textElement);
3 if add then
4 textElement, setText(substring(file, offset, length(textElement)) +

length)
5 else
6 setText(textElement, substring(file, offset, length(textElement)) -

length)
7 end
8 recalculateOffset(weavingModel);
9 setAbstractSyntaxValue(weavingLink, textElement);
Algorithm 5.3: The editTrait(weavingModel, offset, file, add, length) operation.

The editTrait(weavingModel, offset, file, add, length) operation as described in
Algorithm 5.3 is responsible for transferring changes from the projection in the
text editor to the abstract syntax model. The algorithm first searches for the
TextElement at the current offset (line 1) using the findTextElement(weavingModel,
offset, TraitPreferred) operation and retrieves its corresponding WeavingLink us-
ing the getWeavingLink(textElement) operation (line 2). Then the text of the
textElement is set to the new value depending whether a character is being
added (line 4) or removed (line 6). Finally, the offsets for the changed weaving
model are recalculated (line 8) using the recalculateOffset(weavingModel) oper-
ation and the value is written into the abstract syntax representation of the
edited model (line 9) using the setAbstractSyntaxValue(weavingLink, textElement)
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operation.
The add and remove model element operations on the abstract syntax

model representation work in a similar way to the edit operation described in
Algorithm 5.3. The difference is that the remove operation deletes the Weav-
ingLink containing the TextElement and the add operation adds a new Weav-
ingLink and its corresponding TextElements to the model. Afterward, the offsets
in the WeavingModel have to be recalculated. In the predefined modeling mode
a modeler can use the textual model editor to add or remove all linguistic
model elements (i.e. clabject, model, attribute), whereas in the user-defined
mode the modeler can only add or delete clabjects.

Operations for synchronizing changes from the abstract syntax model to the
text editor also work in a similar way to Algorithm 5.3. The main difference is
that the weavingLink is not retrieved using an offset but using the edited model
element (i.e. trait for the editTrait() operation) to which the weavingLink points.
Then, the corresponding TextElement and the text editor are updated instead
of the abstract syntax as described in Algorithm 5.3. Since the algorithms
transporting information from the abstract syntax to the text editor are very
similar to the algorithms transporting information in the other direction they
are not explained in more detail here.

5.4.2 Textual Weaving Model Example

An example of a weaving model which weaves text representing the company
structure modeling language example to its abstract syntax representation is
displayed in Figure 5.7. The lower left side of the picture shows the Data which
underlies the edited text. A tree-based visualization is chosen to represent the
model which is edited by the textual projection on the right-hand side of the
figure. In the Text-based, user-defined representation a company is represented
by its name followed by its departments in curly brackets. Departments are
represented in the same way as companies but display their employees in curly
brackets. Each employee is represented on a new line starting with its name,
followed by the salary in brackets and terminated with a semicolon. The
Weaving Model in the top center of the figure connects the data model in the
bottom left with its textual representation in the bottom right.

For each clabject and attribute represented in the text, one WeavingLink is
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Quality Toys Inc.{

  Online Marketing{

    Allen (32k);

    Tim (36k);

  }

  Toy Research{

    Jim (42k);

    Bob (48k);

  }

}

WeavingLink (target=QualityToys)

 TraitWeavingLink (target=name; trait=value)

  TextElement(text='Quality Toys Inc.{'; offset=0; length=18)

 WeavingLink(target=OnlineMarketing)

  TraitWeavingLink(target=name; trait=value)

   TextElement(text='Online Marketing'; offset=19; length=16)

  TextElement(text='{'; offset=36; length=1)

  WeavingLink (target=Allen)

   TraitWeavingLink (target=name; trait=value)

    TextElement(text='Allen'; offset=38; length=5)

   TextElement(text=' ('; offset=44; length=2)

   TraitWeavingLink (target=salary; trait=value)

    TextElement (text='32k'; offset=47; length=3)

  WeavingLink (target=Tim)

   ...

Weaving Model

TextDataEntity(name='QualityToys')

Attribute(name='Quality Toys Inc.')

Entity(name='OnlineMarketing')

 Attribute(name='Online Marketing')

  Entity(name='Allen')

   Attribute (name='name'; value='Allen')

   Attribute(name='salary'; value='32k')

  Entity(name='Tim')

   Attribute(name='name'; value='Tim')

   Attribute(salary='36k')

Entity(name='ToyResearch')

 ...

Figure 5.7: Textual weaving model for the company structure modeling lan-
guage example.

created to the corresponding element in the abstract syntax representation of
the model. The weaving model shows only a few WeavingLinks for space reasons.
Where aWeavingLink points to is indicated by the target attribute value specified
in the brackets of the WeavingLink’s textual representation in the Weaving Model
tree. Here, WeavingLinks are shown for the clabjects Quality Toys Inc., Online
Marketing, Allen and Tim. Also, TraitWeavingLinks are shown for the value trait
(trait=value) of the name (target=name) and salary (target=salary) attributes of
Allen. Each WeavingLink contains TextElements as children indicating the text
representing the WeavingLink. These TextElements indicate first the text which
they represent, followed by the offset at which the element starts in the textual
visualization and the length. Hence, this model establishes a link for each piece
of text in the textual model to its representation in the abstract syntax model.
Two of these links are shown in Figure 5.7 by solid black lines. These lines
connect the name and salary of Allen with their representations in the abstract
syntax representation and their textual visualization.
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The Tabular Format

The tabular visualization format organizes model content in rows and columns.
The information belonging to a model element is contained in a row and is orga-
nized into columns based on the model element’s properties. Compared to the
two previously introduced formats it is clear that the tabular format is neither
a spatial format like diagrams nor a sequential format like text. It therefore
shares neither the advantages nor disadvantages of these formats. The tabular
format is most suitable for showing huge amounts of data in a condensed way
with sophisticated filtering, grouping, ordering and sorting mechanisms. This
makes the format a perfect fit for data analysis and simulation tasks.

6.1 Tabular Predefined Language

When applying the tabular editing paradigm to linguistic modeling, the en-
tities contained in a model element (e.g. clabjects contained in a level) are
visualized as rows and their linguistic attributes (e.g. name, potency) and
connections (e.g. list of an entity’s ontological attributes connected via con-
tainment references) as columns. A problem of this mapping of abstract syntax
elements to columns is that the content of a table can be of different linguis-
tic types characterized by different linguistic traits. A level for example can
contain amongst others inheritance relationships, connections and entities, all
featuring a different set of traits. To combine all these model elements of
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different linguistic types featuring different sets of traits in one single table,
content sensitive filtering and displaying algorithms have to be employed on
the table content.

To determine what is viewed in a table a context and viewpoint are set.
The context is the model element whose content is to be displayed in a table.
For a level, all clabjects, connections and inheritance relationships are shown.
For a clabject all attributes, methods, contained clabjects, connections, and
inheritance relationships are displayed. The viewpoint determines the columns
and content displayed in a table. If for example the viewpoint is set to clab-
ject only instances of the linguistic clabject type are displayed showing the
linguistic traits of clabject.

Data: modelElements
Result: Find the smallest common linguistic type.

1 viewpoint ← plm::Element;
2 apply ← true;
3 while apply do
4 for subtype ∈ subTypes(viewpoint) do
5 apply ← true;
6 for modelElement ∈ modelElements do
7 if ¬conforms(modelElement, subtype) then
8 apply ← false;
9 break;

10 end
11 end
12 if applies then
13 viewpoint ← subtype;
14 break;
15 end
16 end
17 if subTypes(viewpoint) = ∅ then break;
18 end
19 return viewpoint;
Algorithm 6.1: Search for the most concrete common linguistic type.
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When a table is opened the initial viewpoint is the most concrete common
linguistic type of the content of the table’s context. The algorithm determin-
ing the most concrete common linguistic type of a set of instances is shown
in Algorithm 6.1. The input to the algorithm are all modelElements to be
visualized in the table. The algorithm starts with the element at the root
of the linguistic metamodel inheritance hierarchy, Element, as initial viewpoint
(line 1). From this metaclass it traverses down the inheritance tree (line 4) un-
til a viewpoint is found which has only subtypes to which not all modelElements
conform (line 3). Conformance of modelElements to the subtype of the viewpoint
currently under investigation is checked in line 6 and 7. If one modelElement
does not conform to the currently investigated subtype, the apply variable is
set to false indicating that currently no subtype suitable as viewpoint is found
and the search is continued with the next subtype of the current viewpoint
(lines 8 and 9). If a subtype is found to which all modelElements conform, it is
used as the new viewpoint (line 13) and the subclasses of this viewpoint are
searched for a most concrete common type (line 14) for the modelElements to
be visualized. The algorithm terminates if the newly discovered viewpoint does
not have any subtypes (lines 17). Alternatively, the algorithm also terminates
when the first viewpoint is discovered which does not have any subtype to
which all modelElements conform.

While working with the table the user can change this preselected view-
point. So for example it can be switched from Clabject to Entity. After changing
the filter to Entity the table shows Entities only but with all linguistic traits of
Entity. Also the context of a table can be changed, by double clicking a row in
the table. After changing the context of a table the viewpoint is reset to the
most concrete common linguistic type of the new context’s content.

Displaying and filtering content based on a viewpoint and context is demon-
strated in Figure 6.1 which shows the company structure modeling language
modeled in the predefined diagrammatic LML notation on the left-hand side
(Figure 6.1(a)) and three corresponding predefined tabular visualizations on
the right-hand side (Firgue 6.1(b)). The first of the three tables shows the
O0-level set as context. The content of this table is equal to the content of the
Company Structure model’s L1 level shown in Figure 6.1(a), which is limited to
the O0 level for space reasons. The current context of the table is indicated by
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the horizontally aligned arrow signs above the table, also referred to as bread-
crumbs [114]. Here location breadcrumbs are used to indicate the location at
which the current context of the table is located within the edited deep model.
Each row in the table corresponds to one model element residing in level O0.
The initial viewpoint is the most concrete common type of all O0 content which
is Element as indicated by the brackets in the breadcrumb. The first column
shows the linguistic type of the model element represented by the row and the
second column shows the ontological type of the model element. Here, model
elements of the linguistic type Entity and Inheritance are displayed in the table.
Since O0 is the highest level, no ontological types are displayed for the O0

content. The rectangle pointing down next to the column heading of Linguistic
Type and Ontological Type indicate that the column values can be used to filter
the viewed model elements. The list available for filtering elements contains all
the values present in a column. In case of the Linguistic Type column Entity and
Inheritance can be selected. Additional columns can be included in the table
but are no shown in Figure 6.1(a) for space reasons. These include a possible
third and fourth column displaying the supertypes and subtypes of the model
elements and a possible fifth column showing model elements connected to the
model element via connections. All these cells can display multiple values since
multiple inheritance, multiple connections and multiple linguistic/ontological
classification relationships are supported. Clicking on the arrow button in one
of these columns opens a table displaying the cell content in its own table.

The following columns separated by a vertically double lined border show
the linguistic trait values of the model elements. The displayed columns de-
pend on the viewpoint which is the most concrete common type of the con-
text’s content, — Element, in this example. Hence, the linguistic name trait is
displayed for editing because this is the only linguistic trait of Element.

The table in the middle of Figure 6.1(b) shows the content of the O0 level
with the viewpoint set to the linguistic type Clabject as indicated by the last
segment of the middle table’s breadcrumb (O0 (Clabject)). Three Clabjects, Em-
ployeeType, TechnicalEmployeeType and BusinessEmployeeType conforming to the
linguistic type Clabject are displayed. In addition to the name trait the traits
potency and feature common to all Clabjects are included in the table.

The bottom table displays the effect of setting the context to EmployeeType
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L2

L1

name

potency durability

Method

Attribute
mutability* feature

O0

Level
*

content

EmployeeType0

name2

expertise2

salary2

TechnicalEmployeeType2

BusinessEmployeeType2

Inheritance

Entity Connection

(a)

Linguistic Type

Company Structure O0 (Element)

Entity
Entity
Entity

Inheritance

Ontological Type Name
EmployeeType
TechnicalEmployeeType
BusinessEmployeeType

Linguistic Type

O0 (Clabject)Company Structure

Entity
Entity
Entity

Ont... Name
EmployeeType
TechnicalEmployeeType
BusinessEmployeeType

Potency
0
2
2

Feature
name, ex...

Linguistic Type

Company Structure O0 EmployeeType (Attribute)

Attribute
Attribute
Attribute

Ont... Name
name
expertise
salary

Durability
2
2
2

Mutability
2
2
2

Value

(b)

Figure 6.1: EmployeeType LML model (a) and its predefined tabular represen-
tation (b).

by double clicking it in the middle table, as indicated by the table’s bread-
crumb. The EmployeeType clabject contains three Attributes and no operations.
For these attributes the name, durability, mutability and value traits are displayed.

New model elements can be instantiated by adding a new line to a table and
selecting a linguistic or ontological type from the Linguistic Type or Ontological
Type column. If a linguistic type is selected, the ontological type is left blank by
default. If an ontological type is selected, the linguistic type of the ontological
type is automatically selected. The ontological types available for selection
are context-sensitive to the current location of the model element edited by
the table. Delete operations can also be invoked on any row to delete the
corresponding model elements.

6.2 Tabular User-defined Language

Like diagrammatic and textual user-defined languages, tabular user-defined
languages are defined using visualizers tailored towards the definition of tab-
ular languages. The visualization is then applied to each model element by
invoking the corresponding format-aware visualization search algorithm. In
contrast to the previously described formats at least two visualizers always
participate in the visualization of one model element. One is the visualizer
configuring the table container that is the currently selected model element in
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1 *
content

EnumerationLiteralMapping
enumerationLiteral:String
literal:String

EnumerationColumn
BooleanColumn
checkbox:Boolean
trueLiteral:String
falseLiteral:String

1*
mappings

name:String

<<Enumeration>>
ColorEnumeration

black = 0
red = 1
blue = 2
green = 3

StandardColor
color:ColorEnumeration

RGBColor
R:Integer
G:Integer
B:Integer

ExpressionColumn
expression:String

ConnectionColumn
connectionEnd:plm::ConnectionEnd

AttributeColumn
attribute:plm::Attribute

Aspect
kind:AspectKind
condition:String

1
*

content

CellBorderStyle
1 top

CellFontStyle
name:String
size:Integer
fontStyle:FontStyle

CellStyle
hResizable:Boolean
vResizable:Boolean
width:Integer
height:Integer

1

*
cellStyle

1 1

cellFontStyle
*

cellBorderStyle
*

1

color1

CalculatedAttribute
attribute:ecore::Attribute
expression:String

<<Enumeration>>
LineStyle

solid = 0
dashed = 1
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<<Enumeration>>
AspectKind

before = 0
after = 1

around = 2

<<Enumeration>>
FontStyle

normal = 0
bold = 1

italics = 2

1
*calculated

Attribute

BorderStyle
width:Integer
lineStyle:LineStyle1 bottom

1 left

1 right

condition:String

width:Integer
lineStyle:LineStyle

1

111

title:String

instanceLevel:Boolean
notation:String

TableVisualizer
showOntologicalTypes:Boolean
showLinguisticTypes:Boolean BreadcrumbConfiguration

attribute:plm::Attribute
expression:String
hide:Boolean

0..1
breadcrumbConfiguration

1

Figure 6.2: Tabular visualizer metamodel.

the editor (i.e. the context). This visualizer is responsible for global settings
such as the breadcrumb and the ontological and linguistic type columns. The
other visualizers, defined on the table’s content, deal with the content of the
rendered table (model elements owned by the selected model element). The
actual visualizer content, e.g. mappings of attributes to columns, is used for
their rendering.

The metamodel to define user-defined tabular languages is shown in Fig-
ure 6.2. TableVisualizers own two attributes, showOntologicalTypes and showLin-
guisticTypes which determine whether the columns for ontological and linguistic
types are shown. The breadcrumb is configured by adding a BreadcrumbCon-
figuration to the visualizer. The breadcrumb can be set to be hidden (hide
attribute) and to either display an attribute value or the result of an expres-
sion defined in a deep constraint language. If the attribute and expression are
not set, the linguistic name trait is displayed in the breadcrumb. The de-
tails of the table visualized by the TableVisualizer are described by its owned
TableVisualizationDescriptors. These describe the Columns found in the tabular
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user-defined language. Columns can be either mapped to ontological attributes
(AttributeColumn), connections (ConnectionColumn) or can display values calcu-
lated by a constraint expression (ExpressionColumn). The title attribute of Col-
umn sets the title that is displayed for the column. If this attribute is not
set for AttributeColumn and ConnectionColumn, the mapped attribute name or
connection end name is used as the column title. If the title attribute is not
set for ExpressionColumn the title of the visualized column is blank.

The attribute which is displayed in an AttributeColumn is specified by its
attribute attribute. This column offers data type specific cell editors, e.g. for
an attribute of data type boolean a cell displaying a checkbox is displayed.
The AttributeColumn can be further refined for enumeration and boolean at-
tributes by applying the corresponding EnumerationColumn and BooleanColumn
subtypes. BooleanColumns can be configured to display a checkbox indicating
true/false values (checkbox attribute set to true) or to display a drop-down list
for true/false value selection (checkbox attribute set to false). This drop-down
list offers true and false as default values. The literals displayed in the drop-
down list can be customized by setting values for the trueLiteral and falseLiteral
attributes. In case that the title attribute is not set, the trueLiteral is displayed
as the column title of a BooleanColumn if specified, otherwise the attribute name
is displayed. EnumerationColumns by default show the names of the literals de-
fined in the enumerations in a drop-down list. These values can be refined
to more human friendly text by defining EnumerationLiteralMappings for each
enumeration literal. The enumerationLiteral attribute maps the corresponding
enumerationLiteral of the underlying enumeration to the text displayed by the
UI as defined in the literal attribute. The ConnectionColumn is used to display
all Clabjects which are connected with one clabject via the specified connectio-
nEnd. This mapping is used in tabular languages to enable navigation from one
element to another. Furthermore, it can be used to allow convenient creation
of connections between clabjects. The tabular user interface supports naviga-
tion over connections in the way previously described for the ontological types
column. ExpressionColumns display the value defined by the expression attribute.
Arbitrary expressions defined in a deep constraint language can be used to
determine the value displayed in this column. This prohibits the content of
this type of column from being edited because the value placed in the column
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cannot be related to one single attribute.

The visualization of Columns is configured via CellStyle, FontStyle and Border-
Style instances. CellStyle configures the visualization of the cell which includes
the width and height of the cell as well as the property of being horizontally re-
sizable (hResizable) and vertically resizable (vResizable). The background color
of the cell is set by the color reference inherited from Style. There are two ways
of specifying colors in tabular user-defined languages. The first is using one of
the predefined colors which, at the time of writing, are black, red, blue and green.
The second is using R, G, B value-based color defined through RGBColor. To
configure the visualization of cell borders in a column CellBorderStyles are used.
For each cell the top, bottom, left and right are configured separately if required.
Each border of the cell can have a color, width and lineStyle configured. If the
same values shall be applied to more than one border these can also be set in
the CellBorderStyle and then refined using top, bottom, left and right BorderStyles.
The font in a cell is controlled by specifying a CellFontStyle, which supports the
definition of a fontName, size and fontStyle (i.e. normal, italics and bold).

The described styles are applied to all cells in a column by default. This
default behavior can be modified to apply a style to certain cells only by setting
the condition attribute of the Style metaclass to an expression defined in a deep
constraint language. Using this feature, multiple styles can be defined for
one column and applied in a context-sensitive way determined by the table’s
underlying data. Also the values defined for the Style’s attributes can be set in
a context-sensitive way. To do so one or more CalculatedAttributes have to be
added to a Style. The attribute attribute defines for which Style attribute (e.g.
width, lineStyle) the value shall be calculated. The expression attribute contains
a deep constraint expression to calculate the value of the specified attribute.

As in the previously presented diagrammatic and textual user-defined lan-
guage definition metamodels, aspect orientation is also supported in the tab-
ular user-defined language definition model. Columns can be marked as join
points by setting their name attribute inherited from TableVisualizationDescriptor
to a unique value. Aspects can then be defined to provide content to the join
point and an application strategy (before, after, around) for applying aspects to
the join point through the kind attribute.

In the user-defined table editor the concepts of viewpoint and context are
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available as in the predefined table editor. Equally, the context is the container
of the model elements to be displayed in the table editor. The viewpoint,
however, is moved from the linguistic dimension, declaring linguistic types, to
the ontological dimension, declaring ontological types. The types available for
viewpoint definition are all types of clabjects and connections contained by
the context and located in the context classifying level.

In the tabular, user-defined visualization language the content of the cur-
rently selected model element is always displayed in a table. Thus, model
elements of different ontological types are often displayed within the same ta-
ble. This raises a similar problem to that previously described in the context
of predefined tabular languages. Model elements viewed in the same table are
described by different sets of ontological features. To manage this situation the
most concrete common type search algorithm is applied again but on the onto-
logical dimension searching the most concrete common ontological type instead
of the linguistic dimension. The displayed columns, however, are not derived
from the ontological attributes and connections defined on the most concrete
ontological type but through the visualizers attached to the ontological types.
By combining the visualizers of the most concrete common ontological type
and its subtypes compatibility between the different visualizers is ensured. All
ontological types of model elements contained in the context are available as
viewpoint candidates, as are their supertypes.

When initially opening a user-defined table editor, the viewpoint is set
to the most concrete common ontological type of the context’s content (i.e.
table editor content). Furthermore, only entities are considered as candidates
for the initial viewpoint. A modeler, however, can set the viewpoint to a
connection at any time. An ontological model does not necessarily have a
single root element in the inheritance hierarchy like the linguistic model of the
deep modeling approach presented in this thesis. Thus, a bottom-up search
for the most concrete common supertype is performed in contrast to the top-
down search for the most concrete common linguistic type search applied to
linguistic classifiers. The bottom-up search starts at the most concrete types of
the table content, progressively traversing the inheritance trees towards more
abstract types. The ontological viewpoint search algorithm is displayed in
Algorithm 6.2.
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First, all ontological types of the modelEntities to be displayed are collected
in a queue (line 2). These are then iterated over (line 3 + 4). Each type is
checked to determine whether it is an ontological type of all the entities to
be visualized (lines 5 - 10). If a type for all modelEntities is found the search
is stopped (lines 11 - 14) and the most concrete common ontological type for
all modelEntities is found. Otherwise, the direct supertypes of the current type
under investigation are appended to the typesQueue and the search is continued
(line 15). If no common viewpoint is found, no viewpoint is returned resulting
in an empty table to be initially rendered. In this case the viewpoint is selected
by the user.

Data: modelEntities
Result: Find the smallest common ontological type.

1 viewpoint ← ∅;
2 typesQueue ← getAllOntologicalTypes(modelEntities);
3 while hasNext(typesQueue) do
4 type ← poll(typesQueue);
5 applicable ← true;
6 for modelEntity ∈ modelEntities do
7 if ¬ conformsTo(modelEntity, type) then
8 applicable ← false;
9 end

10 end
11 if applicable then
12 viewpoint ← type;
13 break;
14 end
15 append(typesQueue, getDirectSupertypes(type))
16 end
17 return viewpoint;
Algorithm 6.2: Search for the most concrete common ontological type.

In contrast to the predefined table editor which aims to display a mini-
mal number of columns, the user-defined table editor aims to display as many
columns as possible. This, for example, prohibits tables with a low number
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of columns from arising when one single ontological type has a rather small
visualizer defined in contrast to the others. The columns displayed in a user-
defined table are the union of all the columns defined in the visualizers of all
table content determined through the combination of context and viewpoint.
In addition, the combined visualizers have to be defined in the notation in-
tended for visualization. Algorithm 6.3 shows the visualizer column merge
algorithm.

Data: modelElements, notation
Result: Merge the visualizers.

1 mergedVisualizer;
2 for modelElement ∈ modelElements do
3 visualizer ← searchVisualizer(modelElement, notation, true);
4 columns ← getColumns(visualizer);
5 for column ∈ columns do
6 if ¬ column ∈ getColumns(mergedVisualizer) then

appendColumn(mergedVisualizer, column);
7 end
8 end
9 return mergedVisualizer;

Algorithm 6.3: Merge the visualizers columns.

The algorithm iterates through all modelElements to be visualized (line 2),
searches their visualizer through the visualizer search algorithm (line 3) for
the notation to be visualized and merges it in case aspects are collected by
the search algorithm (true). Then the columns of the visualizer are retrieved
(line 4), iterated over and appended to the mergedVisualizer in case they are not
already existing (line 5 - 7).

6.2.1 Tabular Visualizer Metamodel Example

The usage of the tabular user-defined language definition metamodel is demon-
strated in Figure 6.3. The data to be visualized in the user-defined tabular
visualization is shown at the bottom left of the figure — the Toy Research de-
partment containing two research employees, Jim and Bob. When a model
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TabularVisualizer (showOntologicalTypes=true, 

                       showLinguisticTypes=true)

 BreadrumbConfiguration (attribute=name; hide=false)

 AttributeColumn (attribute=name)

 AttributeColumn (attribute=salary)

 BooleanColumn (attribute=hasPhD, checkbox=true)

User-defined Visualizer

Data (Diagrammatic) User-defined Visualization

Toy Research

Bob;48k

R

Jim;42k

R
Ontological Type

Company Structure O0

Research Employee
Research Employee

Name
Jim
Bob

Quality Toys Inc.

Salary
42k
48k

hasPhD

Toy Research

Figure 6.3: The Toy Research department content visualized in the tabular
company structure modeling language.

element is selected in the tabular visualization its content is visualized. Here,
the two employees Jim and Bob are visualized when selecting the Toy Research
compartment in the tabular user-defined language.

The visualization definition of the two research employees Jim and Bob is
shown in the top center of Figure 6.3. The context of the table displayed in
the lower right of the figure, however, is the Toy Research department. The
visualizer of the Toy Research department (not shown in Figure 6.3) is con-
figured to hide the linguistic type column (showLinguisticType=false) but show
the ontological type column (showOntologicalType=true) and the breadcrumb is
configured to be visible (hide=false). Furthermore, the name attribute of the
department is displayed in the breadcrumb (attribute=name). These configura-
tions, showLinguisticType, showOntologicalType, hide and the string displayed in
the breadcrumb are taken from the context (Toy Research) of the visualized
table and not the content (here Jim and Bob) because the different contents of
a table can have contradictory breadcrumb configurations.

Three columns are displayed for Jim and Bob. The first two are Attribute-
Columns displaying the name attribute (attribute=name) and the salary attribute
(attribute=salary). The third is a BooleanColumn displaying whether the research
employee has a PhD (attribute=hasPhD). This is indicated through a checkbox
and not a selection of two literals showing either true or false (checkbox=true).
The hasPhD attribute of Research Employees was not defined in previous versions
of the company structure modeling language running example. It has been
explicitly added to this example to demonstrate the usage of the BooleanColumn
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WeavingModel
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Figure 6.4: Tabular weaving model.

meta type.
The bottom right side of Figure 6.3 shows the result of applying the tabu-

lar user-defined visualizer to the content of Toy Research, which is the current
context indicated by the breadcrumb above the table. A table featuring four
columns and two rows is created from the input. The first column displays the
Ontological Type of the model element represented in the rows, the second rep-
resents the name, the third represents the salary and the fourth represents the
PhD ownership. The two research employees Jim (first row) and Bob (second
row) and their corresponding attribute values are displayed as content of the
table. To add a new research employee, the ontological type Research Employee
has to be selected in the Ontological Type column of the last empty row in the
table.

6.3 Tabular Weaving Model

The tabular weaving model which is responsible for connecting cells in a ta-
ble to the underlying abstract syntax representation is shown in Figure 6.4.
This model consists of a WeavingModel containing RowWeavingLinks which con-
nect rows to their corresponding target elements in the abstract syntax model.
The RowWeavingLinks contain CellWeavingLinks linking cells to target model ele-
ments. CellWeavingLink is specialized by TraitWeavingLink, ExpressionWeavingLink
and CompoundWeavingLink. TraitWeavingLinks map cells to traits, ExpressionWeav-
ingLinks map cells to expressions and CompoundWeavingLinks map representa-
tions of multiple model elements into one cell through their contained Weav-
ingLinks. In the predefined modeling language the target of a RowWeavingLink
and its TraitWeavingLinks is identical because the cells edit traits of the model

97



Chapter 6. The Tabular Format

element displayed in a row, e.g. the potency trait of a clabject. In the user-
defined modeling language, however, the cells display the trait value of onto-
logical attributes of the model elements displayed in the rows (e.g. the value
of the salary attribute of an employee). Users can then edit the values of the
ontological attributes of a model element displayed in a row. Hence, the tar-
get attribute of RowWeavingLink points to the model element edited in a row,
the target of a TraitWeavingLink points to the ontological attribute edited by a
cell and the TraitWeavingLink’s trait points to the value trait of the ontological
attribute.

In addition to the information stored in the weaving model presented here
the layout could also be stored in a tabular weaving model as in the diagram-
matic and textual formats. Such layout information would include the order
of rows, the order of cells and their width and height. The tabular format,
however, is a format which does not rely heavily on user-defined layouts since
modelers typically use the automatic layout features of table editors such as
filtering, automatic ordering and automatic width and height adjustments of
columns and rows. Hence, the current version of the tabular weaving model
does not store layout information.

As with the diagrammatic weaving model, the manipulation operations —
add, remove, move and edit — are not explained in detail here. In contrast
to the textual weaving model, operations on one part of the tabular weaving
model do not influence other parts of the model because layout is not consid-
ered in the tabular weaving model. Furthermore, both representations of the
model rely on pointers in memory, making it trivial to trace a model element
from one side of the weaving model to the other. In general, the tabular weav-
ing model works in the same way as the diagrammatic weaving model when it
comes to weaving model manipulation operations.

6.3.1 Tabular Weaving Model Example

An example of how a tabular weaving model connects a tabular user-defined
language to its underlying model represented in the abstract syntax is shown
in Figure 6.5. The bottom left of the figure shows the Data model underlying
the Table in a tree-based visualization. The same model is represented using a
user-defined tabular language at the bottom right of the figure. The Weaving
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Weaving Model

TableData

RowWeavingLink (target=Bob; row=0)

 TraitWeavingLink (target=name; trait=value; cell=0)

 TraitWeavingLink(target=salary; trait=value; cell=1)

RowWeavingLink(target=Jim; row=1)

 TraitWeavingLink(target=name; trait=value; cell=0)

 TraitWeavingLink(target=salary; trait=value; cell=1)

Linguistic Type

Company Structure O2

Entity
Entity

Ontologica... Name
Bob
Jim

Quality Toys Inc.

Salary
48k
42k

Toy Research

Research ...
Research ...

Entity(name='QualityToys')

Attribute(name='Quality Toys Inc.')

Entity(name='ToyResearch')

 Attribute(name='Toy Research')

  Entity(name='Bob')

   Attribute (name='name'; value='Bob')

   Attribute(name='salary'; value='48k')

  Entity(name='Jim')

   Attribute(name='name'; value='Jim')

   Attribute(salary='42k')

Entity(name='OnlineMarketing')

 ...

Figure 6.5: Tabular weaving model for the company structure modeling lan-
guage example.

Model between the abstract syntax representation and its tabular visualization
is displayed as a tree structure at the top of Figure 6.5. The breadcrumb of
the tabular view shows that the context is the Toy Research department. Two
rows are displayed representing the two employees Bob and Jim. The first two
columns offer the linguistic and ontological types for navigation — Entity and
Research Employee respectively. The next two columns display mappings to the
name and salary attributes of Bob and Jim. The weaving model, shown at the
top center of the figure, consists of two RowWeavingLinks, one for Bob and one
for Jim. These RowWeavingLinks connect the table rows with the abstract syntax
model representation of the model elements in memory. This, however, is hard
to display in a tree view. Hence, the names of model elements and traits are
used to represent the pointers of a weaving link’s target and trait attributes
to their corresponding abstract syntax model representations. The row and
cell indexes are used to point to the table rows and cells representing the
model elements and their traits. The columns of each row are mapped to the
abstract syntax representation by TraitWeavingLinks, mapping cells to the value
trait of ontological attributes in the abstract syntax model representation.
For illustration purposes the pointers from the weaving model to the table
and abstract syntax are represented by black solid lines for the ontological
name and salary attribute of Jim.
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The Form-based Format

The goal of the form-based format is to provide a user interface to a model
which looks and feels like a desktop or web application. A form displays the
properties and relationships of one single model element. The forms for editing
a model use the well known concepts of buttons, text boxes, checkboxes, radio
buttons etc. from UI tool kits such as the standard widget toolkit (SWT)
[172] or GTK+ [143]. Using form-based languages for editing models, user
interfaces which hide all the complexity of a modeling environment can be
created. Hence, this format is suitable when targeting audiences with few if
any technical skill. The advantage of simplicity comes at the cost of power.
On the one hand, when compared to the previously presented formats, form-
based languages are not as efficient as text for entering huge amounts of data,
not as effective as diagrams for displaying relationships between model entities
and not as suitable as tables for working with huge amounts of data. On the
other hand, form-based languages do not have some of the drawbacks of these
formats such as the need to learn a technical, textual language, or the risk of
errors in communication through bad diagram layout.

7.1 Form-based Predefined Language

Example screens of the predefined form-based language covering all linguistic
types of the applied deep modeling approach are shown in Figure 7.1. The
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edited model is displayed in Figure 7.1(a) using the diagrammatic predefined
LML representation of an excerpt of the company structure modeling language.
In Figure 7.1(b) - (f), model elements are being edited using the predefined
form-based format. The EmployeeType entity is being edited in Figure 7.1(b),
the connection pointing to EmployeeType from its left-hand side in the dia-
grammatic format is being edited in Figure 7.1(c), the inheritance relationship
specifying the subtypes of EmployeeType is being edited in Figure 7.1(d), the
deep model containing all levels is being edited in Figure 7.1(e) and level O0 is
being edited in Figure 7.1(f). These figures exemplify the five kinds of forms
available for editing a deep model using the predefined form-based language.

All forms of the predefined form-based format have a common structure.
The top shows a breadcrumb indicating the location of the model element cur-
rently being edited and has additional navigation functions. The breadcrumb
works in the same way as in the tabular format. Below the breadcrumbs the
Linguistic Attributes, such as name and potency, are displayed for editing. The
bottom of the dialog shows the Navigate To section which offers options to
navigate the model, followed by buttons offering general operations on the
currently edited model element such as deletion.

Between the Linguistic Attributes section and the Navigate To section, lin-
guistic type specific sections are offered. For clabjects this is the Ontological
Features section as shown for the EmployeeType entity in Figure 7.1(b) and the
connection to EmployeeType in Figure 7.1(c). The single ontological features, i.e.
attributes and methods, contained by a clabject are displayed using expand-
able sections in the Ontological Features section. In the case of EmployeeType
(Figure 7.1(b)) the Ontological Features section displays the three ontological
attributes of EmployeeType — name, expertise and salary. The only ontological
attribute for which details are displayed in the example in Figure 7.1(b) is the
name attribute. All other ontological features, expertise and salary, are collapsed.
In each feature section a delete button is available to delete the feature, here
the Delete Attribute button to delete the name feature of EmployeeType. At the
bottom of the Ontological Properties section, the Add Method and Add Attribute
buttons are offered to create new methods and attributes.

In the case of connections, an additional Connection Ends section is placed
below the Ontological Features section as shown for the connection pointing to
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Linguistic Properties

Add Entity Delete Level

Navigate To
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employeeKinds
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Figure 7.1: Company structure LML model (a) and its predefined form-based
visualization of EmployeeType (b), DepartmentType.employee connection (c), em-
ployeeKinds inheritance (d), CompanyStructure deep model (e) and O0 level (f).
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EmployeeType which is being edited using the form-based predefined language
in Figure 7.1(c). This Connection Ends section displays the connection’s employee
and departmentType connection ends. The employee connection end is expanded
to show its details. Again, as in the case of ontological features, the text boxes
can be used to set the linguistic attributes of the connection end and the Delete
Connection End button can be used to delete the edited connection end. New
connection ends are created via the Add Connection End button at the bottom
of the Connection Ends section.

Forms displaying inheritance relationships offer the option to add or re-
move their super and subtype ends via the Supertypes and Subtypes sections. In
Figure 7.1(d) the Supertypes section of the employeeKinds inheritance contains
the inheritance relationship’s supertype pointing to EmployeeType. The Subtypes
sections displays two subtypes, one pointing to TechnicalEmployeeType and one
to BusinessEmployeeType. The super and subtypes can be changed through the
combo boxes displaying the connected model element and deleted through the
delete buttons displayed next to them. The add buttons located at the bottom
right of the corresponding sections are used to add new super or subtypes.

The form for editing the deep model which is the container of the levels
is shown in Figure 7.1(e). It offers the Linguistic Attributes section and the Add
Level button to edit the deep model. A Level is edited using the form displayed
in Figure 7.1(f). Again the Linguistic Attributes section is offered to edit the name
of the level, and Add Entity / Add Connection / Add Inheritance buttons are offered
to add new entities, connections and inheritance relationships respectively.

A form with the newly created model element is shown after clicking one
of the add buttons (e.g. the Add Level button of a deep model form or the Add
Connection button of an entity form). When clicking one of the delete buttons
(e.g. Delete Entity, Delete Connection) the model element’s container is displayed
after the delete operation has been completed.

7.2 Form-based User-defined Language

The visualizer metamodel for the definition of user-defined form-based lan-
guages is shown in Figure 7.2. Like the visualizers for all other formats the
FormVisualizer inherits from AbstractUserDefinedVisualizer so that it can be at-
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Figure 7.2: Form-based visualizer metamodel.

tached to instances of all linguistic types. All content in a FormVisualizer is
a subclass of VisualizerElement which can store CalculatedAttributes. These Cal-
culatedAttributes are used to set visualizer attributes based on the outcome of
statements in a constraint expression. For instance, the title of a Form can be
set to the name of the currently displayed ontological model element.

The FormVisualizer contains the Form describing the outer-most container of
a statement in the form-based language. The Form can be configured by setting
a title and the number of columns in its grid layout that arranges its content. For
simplicity, the grid layout is used as the default layout in the form-based visual-
ization implementation. The Form is further described by Containers which are
either Groups or Sections which contain Containers or other Widgets for displaying
and manipulating information using the form-based user-defined language. A
form can be configured to show or hide a breadcrumb (showBreadcrumb). If a
language engineer decides to show a breadcrumb in the form-based language,
it can be further configured through a BreadcrumbConfiguration to either display
the value of an ontological attribute or to show the value of an expression written
in a deep constraint language.

Groups are containers surrounding their content with a border displaying
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a label, inherited from Widget, in the top left corner of the border. This label
serves as a caption summarizing the nature of a Group’s content. A Section,
however, does not surround its content with a border. It just displays a header
at the section start. In contrast to a Group, a Section can be collapsed and
expanded by the modeler. The initial state is configured by setting its expanded
attribute to show or hide the section’s content. Additionally, a description of
the content located in the section can be displayed below the Section’s label.
Both, Section and Group can have the amount of columns they use to arrange
content in a grid set via the columns attribute inherited from Container.

Containers contain Widgets which themselves can be Containers organizing
form content or Widgets for viewing and manipulating model data. To execute
actions on a model the Action metaclass is available providing default actions
which are selected through the kind enumeration attribute of type ActionKind.
These ActionKinds include amongst other things the save, undo and close opera-
tions. User-defined actions can be used in a form-based language by defining
CustomActions. For these, a language engineer has to provide a label to be dis-
played for an action and an id identifying the operation to be performed when
it is selected. In the form-based language actions are visualized as buttons.

To display and manipulate data from the model represented by the form-
based language, Attribute, Connection and Expression are available. Attribute maps
an ontological attribute to a text box. By default the name of the mapped
attribute is displayed on the left of the text box. This text can be configured
by setting the Attribute’s label inherited from Widget. The visualized Attribute
controls are data type sensitive like in the textual and tabular formats. The
BooleanAttribute and EnumerationAttribute subtypes of Attribute offer advanced
configuration options mapping attributes of enumeration or boolean data type.
User-defined strings for displaying BooleanAttributes can be mapped to the true
(trueLiteral) and false (falseLiteral) values to display more informative text than
merely true or false to the user. To display a checkbox instead of a value
selection the checkbox attribute is set to true. EnumerationAttributes map the
single enumerationLiterals of an enumeration type to strings which are displayed
to the modeler instead of the enumeration literals as defined in the modeling
language’s abstract syntax when editing attributes of an enumeration data
type.
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To display values which do not depend on one single ontological attribute
but on a combination of several ontological attributes, an Expression in a deep
constraint language can be defined to calculate the value to be displayed.
Since they are calculated the results of Expressions are not editable by the user.
The label attribute defines the text shown next to the calculated expression
value. The label attribute of an Expression must be explicitly set because an
Expression cannot be mapped to one single attribute from which the title for
the calculated value can be derived.

Connection displays all entities connected via the specified connection. It can
be configured to allow: 1. navigation via the connection (navigable), 2. the dele-
tion of the connection and the connected elements (deletable), 3. the addition
of new elements by creating a new connection (addable), 4. the selection of
multiple connections at the same time and the execution of operations such as
delete on the selected items (multiselection) or 5. the overriding of the default
label’s text displayed next to the list of all connected elements (label inherited
from widget).

The font, backgroundColor and foregroundColor of Widgets are set using the
respective attributes. The used Font is specified by defining the name of the
font, size and style (i.e. normal, italics and bold). The foregroundColor and back-
groundColor are specified either through a StandardColor or an RGBColor. A
StandardColor offers the default colors defined in the ColorEnumeration. Even
though this enumeration is limit to three colors in Figure 7.2, it can be ex-
tended to as many colors as needed. The RGBColor can specify any color using
Red, Green, and Blue values. Furthermore, all Widgets can be configured to
span more than one row (rowSpan) and more than one column (columnSpan) in
the grid of its container. Widgets can also be configured to occupy all vertical
space (grabVerticalExcess) and occupy all horizontal space (grabHorizontalExcess).
The horizontalAlignment and verticalAlignment attributes are used to determine
the alignment of a Widget within a grid cell.

Aspect-orientation is supported by declaring Widgets as join points by set-
ting their name attribute. Aspects can then provide Widgets to these join points
through their content attribute. As with all other formats, Aspects can be con-
figured via their kind attribute to replace the join point (around), place the
widgets before the join point (before) or after the join point (after). The name
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Data (LML) User-defined Visualization

User-defined Visualizer
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name0=Bob
expertise0=RC Car Research
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  BreadcrumbConfiguration (attribute=name;)
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   Attribute (attribute=name)

   Attribute (attribute=salary)

   BooleanAttribute (attribute=hasPhD; checkbox=true; label='PhD')

   Attribute (attribute=expertise)

  Group (laebl=Operations, columns=1)

   Action (label='Delete Employee'; kind=remove; grabHorizontalExcess=true;

                                                       horizontalAlignment=end)

Operations

Figure 7.3: Bob visualized in the form-based company structure modeling lan-
guage.

attribute identifies the join point to which the aspect contributes and the condi-
tion attribute specifies a condition defined in a deep constraint language which
must hold true in order to apply the aspect.

7.2.1 Form-based Visualizer Metamodel Example

An example of the usage of the form-based user-defined visualization definition
metamodel is shown in Figure 7.3. The bottom left of the figure displays Bob,
an instance of ResearchEmployee, in the predefined diagrammatic LML notation.
Bob has expertise in RC Car Research, a salary of 48k and does not have a PhD.

The user-defined form-based visualizer which is applied to Bob is shown in
the center top of Figure 7.3. The FormVisualizer contains a Form which receives
its title from a CalculatedAttribute, which sets the title attribute of Form to the
expression retrieving the name of the currently displayed employee. The bread-
crumb of the Form is configured to be visible (showBreadcrumb=true) and to
display the name of the currently displayed employee (attribute=name) through
the BreadcrumbConfiguration owned by the Form. The grid layout of the Form has
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one column (columns=1). In this grid layout there are two Groups, one display-
ing General Information (title=General Information) and arranging its content in two
columns (columns=2) and one displaying Operations in its title (title=Operations).

The first widget placed in the General Information group is an Attributemapped
to the employee name (attribute=name). The second widget maps to the salary
attribute (attribute=salary) and the third to the boolean hasPhD attribute. A
BooleanAttribute is used to configure PhD as a label instead of hasPhD (label=PhD)
and to use a checkbox to select whether the employee has a PhD (checkbox=true).
The last Attribute maps to the expertise attribute.

In the Operations group there is only one Action which is of kind remove and
has its label set to Delete Employee. The grabHorizontalExcess attribute is set to
true and the horizontalAlignment attribute is set to end to right-align the button
in the group.

The effect of this user-defined form-based visualizer is shown at the bottom
right of Figure 7.3. The form displays Bob, the employee name, as its title.
Also the breadcrumb is visible and shows the employee’s name attribute value,
Bob, as the currently selected model element. The General Information group
is located below the breadcrumb containing text boxes for Name, Salary and
Expertise. One checkbox is included to represent whether or not the employee
has a PhD.

The operations group at the bottom of the form displays the Delete Employee
button as the only operation available on the current employee. Pressing this
button deletes the currently selected employee.

7.3 Form-based Weaving Model

The form-based format’s weaving model, displayed in Figure 7.4, consists of
five metaclasses — WeavingModel and WeavingLink with its three subclasses
TraitWeavingLink, ExpressionWeavingLink and CompoundWeavingLink. The Weav-
ingModel stores the WeavingLinks which establish a weaving between the model
element displayed (target) and the widget displaying the information in the
form-based language. The trait attribute of TraitWeavingLink determines which
trait of the target is displayed and the ExpressionWeavingLink holds the expression
used to calculate the text displayed in the widget together with the model
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content
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Figure 7.4: Form-based weaving model.

element on which the expression is defined (definitionContext). CompoundWeav-
ingLinks are used when more than one model-element is displayed in a widget
which is for example the case when displaying all connected clabjects in a list.

The available operations for manipulating the form-based weaving model
are not described further because the weaving models created for form-based
languages are trivial since they only depict one model element at a time. The
weaving models are therefore built per model element and do not store any
layout which could be influenced by a language user. Even when the delete or
add operations are executed a completely new weaving model for the newly
displayed model element is created which is independent of all previous weaving
models. Additionally, both ends of the weaving model are directly addressable
via pointers in memory making the implementation of editing functions trivial.

7.3.1 Form-based Weaving Model Example

An example of a user-defined, form-based language’s weaving model is shown
in Figure 7.5. The lower left of the figure shows an excerpt of the data un-
derlying the form-based language visualized in a tree structure. The company
example from previous chapters showing the Quality Toys Inc. is chosen. The
bottom right of the figure shows Bob, an employee working in the Toy Research
department of Quality Toys Inc. in a form-based view. The breadcrumb at the
top shows the location of Bob in the underlying model. It has been configured
to display the name attribute of companies, departments and employees in
the breadcrumb. Below the breadcrumb, General Information about the selected
employee (i.e. Bob) is shown. Bob has a Name set to Bob and a Salary set
to 48k, does not have a PhD and has expertise in RC Car Research. Below the
General Information group the Delete Employee button is placed in the Operations
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Figure 7.5: Form-based weaving model for the company structure modeling
language example.

group. By pressing this button the currently selected employee (here Bob) can
be deleted.

The Weaving Model instance at the top center of Figure 7.5 connects the Data
and its Form-based visualization. For each widget representing an ontological
attribute one TraitWeavingLink exists. All TraitWeavingLinks point to the value
trait of one ontological attribute of Bob. In the figure, the attribute to which
the TraitWeavingLinks point are identified by their name and the widget to which
a TraitWeavingLink points is defined by the order of occurrence from left to right
and top to bottom. In a tool, however, TraitWeavingLinks would address their
targets and widgets through pointers to memory locations. For visualization
purposes the TraitWeavingLinks of the name and salary attributes are indicated
through solid lines.
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Chapter 8

Deep Constraint Language
for Deep Visualization

All of the visualization definition languages described in the previous chap-
ters rely on constraints expressed in (deep) constraint languages to support
visualization. More specifically, deep constraint languages are used to define
expressions for: 1. calculating visualizer attributes, 2. defining the application
conditions of aspects and 3. calculating values displayed to the user etc. In this
chapter the challenges arising in the definition of deep constraint languages to
support deep visualization are described and solutions to the different prob-
lems are discussed. This chapter also presents the deep constraint language
developed in this thesis to support multi-format visualization.

8.1 Application Modes of Constraints in Deep
Models

In two-level modeling technologies like the OMG’s MOF, constraints are al-
ways defined on the fixed metamodel deployed into a modeling tool and are
then executed on the metamodel instances. In their book on OCL, Warmer
and Kleppe [238] refer to the metamodel types deployed in the modeling tool
as contextual types and to the instances at the instance level as contextual
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instances. In OCL, a constraint is defined on a contextual type and executed
only on the contextual instances. However, this approach requires a clear sepa-
ration of classes and instances in a modeling architecture. The deep modeling
approach, however, blurs the distinction between classes and objects by re-
placing them with the notion of clabjects. A clabject can play the role of a
type (i.e. a class) and an instance (i.e. an object) at the same time.

This blurring of the distinction between type level modeling and instance
level modeling is clarified by the deep visualization mechanisms for deep models
described in the previous chapters which simultaneously allow the definition
of a user-defined visualization on a clabject and then visualizing this clabject
in this user-defined visualization. This requires that constraints are not only
executable on instances but also on the type through which these instances
are defined. This lack of any distinction between types and instances makes
the definition of contextual type and contextual instance problematic.

Another problem with this OCL terminology is that in a deep visualization
setting it is not only necessary to apply constraints to direct instances at the
level below the constraint definition but also on all following instance levels
that contain instances more than one ontological classification level away from
the type on which the constraint is defined, i.e instances of instances etc.

For these reasons, in [124] the alternative terms definition context and
execution context were introduced to avoid this problem. These definitions do
not rely on the distinction between types and instances but depend on the role
a model element plays in the life cycle of a constraint. The definition context
is the clabject on which a constraint is defined and the execution context is the
clabject on which a constraint is executed. This definition allows a clabject
to serve as the definition and execution context at the same time in contrast
to the OCL which clearly requires contextual types and contextual instances
to be separated and exist at two different classification levels. Moreover, this
definition allows a constraint to be applied to instances more than one level
away from the constraint definition because there is no need for the execution
context to reside one level lower than the definition context.

Having introduced the notions of definition context and execution context
the next question is how the extension of the execution context (i.e. set of
all model elements on which a constraint is executed) is determined. A prag-
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Figure 8.1: Constraint-defined background color of EmployeeType.

matic definition of execution context extension was adopted in this thesis which
supports the need to define deep constraints for deep visualization. A deep vi-
sualization is applicable to the model element at which it is defined, that model
element’s subclasses and the whole classification tree derived from the model
including subclasses and instances of subclasses at intermediate levels. There-
fore, it makes sense to define all these clabjects on which a deep visualization
is executed as the execution context extension of a constraint supporting deep
visualization. Nevertheless, when defining the static semantics of a modeling
language it is also necessary to have different, configurable execution context
extensions. A discussion of this topic is provided in [19, 124].

Figure 8.1 shows an excerpt of the diagrammatic company structure mod-
eling language. The visualizer of EmployeeType defines the group of stickmen
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symbol used to represent EmployeeTypes in the previous chapters. The gray,
dotted rectangle represents the model element’s background which is defined
through the constraint located at bottom of the visualizer. The constraint
returns white as the background color for all EmployeeTypes with a salary lower
than 90k and red as the background color for all other EmployeeTypes.

The definition context of the constraint is EmployeeType and the model
elements which appear in the execution context extension are: 1. Employ-
eeType itself, 2. all subclasses of EmployeeType (BusinessEmployeeType and Tech-
nicalEmployeeType), 3. the direct and indirect instances at the following level
(OnlineMarketingEmployee and WebshopAdmin) and 4. the direct and indirect in-
stances of the direct and indirect instances of EmployeeType (Jim and Bob).
This large execution context extension allows the user-defined visualization
attached to EmployeeType to be applied across all ontological classification lev-
els in a deep model. A modeler can use the user-defined language, for exam-
ple, to add new subtypes of EmployeeTypes at level O0, create company-specific
employee profiles at level O1 or populate the O2 level with actually existing
employees in a company. At all levels, these clabjects will be rendered by the
symbol attached to EmployeeType and their background will be red if they have
a salary value higher than 90k.

8.2 Support of OCA-based Deep Modeling

Another difference between deep constraint languages and traditional con-
straint languages of the kind supported in the OMG’s modeling infrastructure
is that in deep modeling a clabject is classified by up to two types. One type,
analogous to an object’s type in the OMG’s infrastructure, is the so-called on-
tological type residing one ontological level above the classified clabject. The
other is the linguistic type which classifies all model content from a deep mod-
eling language or tool point of view. Both dimensions contribute attributes
(ontological attributes and linguistic traits) to clabjects which are useful for
defining constraints. However, attribute names from one dimension can clash
with attribute names from the other dimension. For instance, a modeler could
define an ontological attribute level to store the level of a customer within a
loyalty program (e.g. silver or gold member) but this would clash with (i.e.

116



8.2. Support of OCA-based Deep Modeling

O1

EmployeeType0

name2

level2

salary2

O0

BusinessEmployeeType2

Employee0

name1

level1
salary1

OnlineMarketingEmployee1

name1=Online Marketing Employee
salary1=35k

Clabject
potency
/level

potency = 0 implies 
  supertypes()->size()=0

L 2L 1

[name]
[salary]';'[expertise]

if level = manager then  'M'
else ' ' endif

Figure 8.2: Constraints on the linguistic and ontological dimensions.

have the same name as) the predefined linguistic attribute (i.e. trait) level
which points to the level containing the clabject (customer). A deep con-
straint language needs to allow such naming clashes to be disambiguated by
clarifying which dimension it is referred to in an expression.

When a clabject has types from both dimensions it should also be possible
to define constraints on both of them. Constraints on linguistic types effect
their instances across all ontological levels. For example, it is possible to pro-
hibit a clabject from having subtypes when it is located at a certain level or
to define an upper bound on the potency values of clabjects in a deep model.
Constraints on ontological types constrain only the ontological instances as
previously described. However, it can be advantageous to access linguistic
traits and operations when defining ontological constraints or the other way
around. Hence, an OCA-aware, deep constraint language needs to support ac-
cess to attributes/traits and operations from both dimensions in the definition
of constraints.

Figure 8.2 shows an example of constraints affecting the linguistic and
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ontological dimension. A linguistic constraint is defined on Clabject at the L2

level that prohibits clabjects with potency 0 from participating in inheritance
relationships. The ontological constraint on EmployeeType in O0 states that the
visualization of EmployeeTypes is dependent on the level attribute. If the level is
set to manager an M is displayed in the upper right corner of the visualization,
otherwise nothing is displayed at this location. This constraint highlights the
ambiguity problem since it is not obvious for a constraint execution engine
whether the ontological level attribute of EmployeeType or the linguistic trait of
Clabject is meant in the example.

In this thesis the definition context is always assumed to be in the ontolog-
ical dimension, because this is always the case for constraints used to support
deep user-defined visualization. Constraint definitions in the linguistic dimen-
sion are, thus, out of scope of this work even though they may be important
in other usage scenarios.

8.3 Definition of Constraints at Intermediate
Levels

In the context of deep visualization a user-defined language can span more than
one level. This is the case when instances provide aspects for user-defined
type model visualizations. A possible problem when defining visualizations
spanning more than one classification level is that on intermediate levels, con-
nections can be further split and refined through the concept of connection
diversification [20]. When combining the concept of connection diversification
with user-defined language definitions spanning more than one level, it can
happen that constraints at intermediate levels need to refer to navigations de-
fined at higher classification levels that are not available at the level of the
definition context.

An example of such a user-defined language definition spanning two levels
in a setting where connection diversification is employed is shown in Figure 8.3
on the example of the diagrammatic company structure modeling language.
At the highest level, O0, four ontological types are defined — the abstract
type EmployeeType and its subclasses BusinessEmployeeType, StudentEmployeeType
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Figure 8.3: Aspect with condition at O1 using a navigation defined on O0.

and ManagementEmployeeType. ManagementEmployeeTypes manage an unlimited
number of EmployeeTypes. As in previous examples EmployeeTypes are visualized
through a group of stickmen and the name, salary and expertise attributes printed
at the bottom.

At the intermediate level, O1, three EmployeeTypes are defined — InternEm-
ployee and FullTimeEmployee with its subclass ManagementEmployee. These three
classes provide aspects to modify the icon displayed for visualizing the in-
stance level (dashed border of visualizers), O2. InternEmployees are visualized
as a stickman wearing a square academic hat and FullTimeEmployees are visu-
alized as a plain stickman. ManagementEmployees are also rendered as a plain
stickman which is inherited from their supertype, FullTimeEmployee. Their as-
pect, however, implements the domain rule that the number of InternEmployees
managed by a manager should not be more than one third of all managed
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employees. If this rule is not followed, the aspect showing a stickman with Zs
next to its head is applied.

To realize ManagementEmployee’s visualization, its Aspect is enriched with
a condition which must hold true for the aspect to be applied. To be able
to distinguish between the managed FullTimeEmployees and InternEmployees the
manages connection from level O0 is diversified (i.e. split) into two connec-
tions with the connection end names fte pointing to FullTimeEmployee and intern
pointing to InternEmployee. The constraint for determining the percentage of
managed FullTimeEmployees divides the number of managed FullTimeEmployees
by the number of all managed employees. For this purpose the size of the set
of all FullTimeEmployees reachable via the fte navigation from O1 is divided by
the size of all managed employees reachable via the manages navigation from
O0.

In the example of Figure 8.3 the constraint is not ambiguous because the
manages navigation exists on the O0 level only and the fte navigation exists on
the O1 level only. This does not always have to be the case in more complex
modeling scenarios. In the example it is also feasible for a ManagementEmployee
to be connected to all managed FullTimeEmployees via a manages navigation and
only to InternEmployees via an intern navigation. In such a scenario it would not
be obvious whether the manages navigation used in the aspect defined at O1

refers to the navigation at O0 or O1. Hence, a syntax offering disambiguated
navigation access to navigations throughout all ontological classification levels
of a deep model is needed.

The second source of issues when defining constraints at intermediate levels
in a deep model is the lack of deep classification operations for checking the
ontological type of a clabject, casting a clabject to another ontological type
or retrieve the ontological instances of a clabject. In OCL all these operations
work only across two levels. An instance can be checked for its type at the
metamodel (e.g. oclIsTypeOf()), can be cast into another type from the meta-
model (e.g. oclAsType()) and instances from the instance level of a type can
be retrieved (e.g. allInstances()). However, as mentioned previously, these
OCL operations work only on a pair of classification levels. To support deep
visualization, therefore, these operations have to be extended to support deep
modeling or new operations have to be added.
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8.4 A Deep Constraint Language Supporting
Deep Visualization

To keep the learning curve for modeling language engineers low, the deep con-
straint language introduced to support the deep visualization approach pre-
sented in this thesis is based on the OCL. The deep OCL variant [19, 124] has
also been successfully used to extend the ATL [122] transformation language
for deep modeling [25]. However, this section focuses on the OCL enhance-
ments needed to support deep visualization scenarios. These are extensions
to OCL in the three previously outlined problem areas: application modes,
the support of OCA-based deep modeling and the definition of constraints on
intermediate levels.

8.4.1 Constraint Application Modes for Deep Visualiza-
tion

The default application mode for deep OCL constraints used in deep visualiza-
tion is an execution extension that spans the whole deep execution extension
described previously, i.e. a constraint is executed at the level on which it is
defined and at all following levels. This application mode ensures that visu-
alization definitions uniformly work across all visualization levels. However,
this application mode creates difficulties when navigating over connections in
a constraint language. When executing a navigation over a connection there is
no guarantee that all connection ends have a cardinality with an upper bound
of one leading to a single clabject as navigation result because, by definition,
a cardinality constraint is satisfied when the sum of all lower and upper car-
dinalities of a connection’s instances are within the range defined by the type.
Hence, it can happen that when executing a constraint a navigation over a con-
nection which has a cardinality range (e.g. 1..4) or an unlimited cardinality
(i.e. *) is performed. The problem also arises when executing the constraint
on the definition context, since the level typing other deep model elements
is very likely to have connection cardinalities with upper bounds different to
one. Clear semantics for navigation in such scenarios needs to be established
to keep the definition and execution of constraints deterministic.
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The issue is further illustrated in Figure 8.4 in which the constraint at-
tached to ManagementEmployeeType navigates over the manages connection to
EmployeeType. As part of a visualizer defined on ManagementEmployeeType this
constraint is executed on all three ontological levels — O0, O1 and O2. To
determine the result on the intermediate levels where the connection ends are
renamed, the type relationships between connection ends indicated as dashed
arrows are used to retrieve the originally defined connection end name. These
typing relationships are transitively followed until the executed constraint’s
definition context is reached. The only level at which the result is obvious
is O2 with the query result {Ann,Bree}, both are connected with cardinality 1
to Steve located in the classification tree of ManagementEmployeeType at which
the constraint is defined. This query is straightforward to resolve because all
connection cardinalities are 1. At the other levels, however, there are no clear
statements about how many model elements are connected. The 0 to * mul-
tiplicity constraints defined for the manages navigation of ManagementEmploy-
eeType and its instance at ManagementEmployee leaves the number of connected
clabjects open.

There are six options for resolving this problem which depend on how
cardinalities with upper bounds different to one are handled: 1. return a single
clabject, 2. return a set with a single clabject, 3. return a number of clabjects
equal to either the upper or lower bound, 4. return a statistically estimated
number of clabjects, 5. do not execute the constraint and 6. distinguish between
instance and type level navigation.

Single Clabject Returning a single clabject when a cardinality’s upper
bound is higher than one conforms to the definition of cardinalities making a
statement about the instances of a connection. In cases where more than one
clabject is reachable via the same navigation (i.e. more than one connection
using the same navigation name is defined), a set containing each clabject
exactly once is returned. In other words, a navigation always returns what
is actually modeled in terms of connections. The problem with this solution,
however, is that set operations such as size() do not run on a single model
element because they are only defined for collections. Hence, this option is not
compatible with the requirement that constraints should be applicable across
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Figure 8.4: Deep navigation over the manages connections of ManagementEm-
ployeeType.

all classification levels.

Constraint Example 8.4.1 (Single Clabject).
1 definition context ManagementEmployeeType: self.manages
2 execution context ManagementEmployeeType ⇒ EmployeeType
3 execution context ManagementEmployee ⇒ InternEmployee
4 execution context Steve ⇒ {Ann, Bree}

Constraint Example 8.4.1 defines a navigation over the manages connec-
tion in the context of ManagementEmployeeType as shown in Figure 8.4. The
first line of the example defines ManagementEmployeeType as the definition con-
text (definition context ...) and the navigation over the manages connection
(self.manages). The following lines first define on which clabject the constraint
is executed, e.g. execution context ManagementEmployeeType, followed by the ex-
ecution’s result, e.g. ⇒ EmployeeType in line two. For the first two ontological
levels, ManagementEmployeeType and ManagementEmployee, the navigation over
manages results in a single model element (EmployeeType and InternEmployee)
because cardinality upper bounds different to one are present. On the lowest

123



Chapter 8. Deep Constraint Language for Deep Visualization

level, O2, only cardinalities with upper bounds of one and two instances of the
manages connection exist, so the result is a set of two clabjects ({Ann, Bree}).

Set with a Single Clabject This approach is basically equivalent to the
single clabject approach but if the cardinality’s upper bound is higher than
one it wraps the result within a set. If more than one clabject is reachable
via a navigation they are wrapped within a set which is identical to the single
clabject approach. Returning a set with one clabject conforms with the intuition
that cardinalities make a statement about instances only. Furthermore, set
operations can be applied to such results and, hence, a constraint can be
applied across an unlimited number of classification levels. The result of a
query is also easy to predict. Here, Constraint Example 8.4.2 in the context of
Figure 8.4 returns a set with one clabject when executed on the types of the
first two ontological levels, ManagementEmployeeType and ManagementEmployee,
on which the manages connection defines cardinalities with upper bounds higher
than one. The results are {EmployeeType} for ManagementEmployeeType at level
O0 and {InternEmployee} for ManagementEmployee at level O1. On the lowest
ontological level again a set with two employees is returned {Ann, Bree}.

Constraint Example 8.4.2 (Set with Single Clabject).
1 definition context ManagementEmployeeType: self.manages
2 execution context ManagementEmployeeType ⇒ {EmployeeType}
3 execution context ManagementEmployee ⇒ {InternEmployee}
4 execution context Steve ⇒ {Ann, Bree}

In the example, this approach would cause problems on the lowest level, O2,
if Steve was only connected to Ann because it would return Ann as one single
atomic model element, not wrapped up into a set. Hence, set operations valid
on all intermediate levels would not be valid on the instance level anymore.
To solve this issue the cardinality of the navigation on which the constraint is
originally defined is taken into consideration. If this cardinality’s upper bound
is higher than one, which is the case in this example, a set with one element
is returned regardless of whether the execution context is connected with one
model element only having a cardinality with an upper bound of one. This
principle is applied in all following approaches in order to maintain the validity
of set operations across all classification levels.

124



8.4. A Deep Constraint Language Supporting Deep Visualization

Upper or Lower Bound When returning the upper or lower bound number
of clabjects, the model element is duplicated as many times as the upper or
lower bound defined for the navigation. This design decision does not conform
to the intuition of only applying cardinalities to the number of connection
instances but also enables application of constraints to the type level on which
they are defined. It is necessary to decide which option to apply, either upper
or lower bound, and to apply it uniformly to all constraints in the model so
that the results of constraints are predictable by the modeler. Using the upper
bound is problematic for the unlimited star cardinality because executing set
operations on a set with an undefined number of elements is not supported by
the OCL at the time of writing. Hence, the lower border is preferable because
this problem does not exist since the lower border is always well defined. With
this choice constraints are applicable across all classification levels and the
results of constraints are predictable. In Constraint Example 8.4.3 it was
decided to use the lower bound to calculate the navigation result, because in
O0 and O1 two star potencies with an unlimited upper bound are present.
Hence, the result of the navigation over manages on ManagementEmployeeType
and ManagementEmployee is an empty set conforming to the star potency’s
lower bound of zero. Again, for Steve a set with two clabjects ({Ann, Bree})
is returned as a consequence of the lower bound of one of the cardinalities
present at (O2).

Constraint Example 8.4.3 (Upper Or Lower Bound).
1 definition context ManagementEmployeeType: self.manages
2 execution context ManagementEmployeeType ⇒ {}
3 execution context ManagementEmployee ⇒ {}
4 execution context Steve ⇒ {Ann, Bree}

Statistical Result Estimation The result of a constraint using a naviga-
tion can be estimated using statistical methods. An example of a probabilistic
variant of OCL is P2AMF [116], which for example can define derived attribute
values based on a statistical probability function. Two approaches would be
possible for such a scenario, either to have the modeler pick a statistical dis-
tribution underlying the navigation data or to have the constraint execution
engine analyze the whole content of the deep model and return a corresponding
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result. These solutions would work across all classification levels, but in the
first case would require advanced statistical knowledge by a modeler to pick
the right distribution and parameters. In the second case, navigations would
return results which heavily depend on the content of a deep model and, thus,
would be hard to predict when using the model for further modeling. Con-
straint Example 8.4.4 uses a simple prediction method to calculate the result
of the navigation by calculating the average number of instances existing at
all following levels. The calculation results in three clabjects for the level O0

((2 + 3)/2 = 2.5) and also for level O1 (3/1 = 3). Thus, a bag duplicating
EmployeeType three times is returned at level O0 for ManagementEmployeeType
and at level O1 for ManagementEmployee a bag containing InternEmployee three
times is returned. At the lowest level a bag containing Ann and Bree is returned
for Steve because two connections with a cardinality having an upper bound
of one are connected to Steve.

Constraint Example 8.4.4 (Statistical Result Estimation).
1 definition context ManagementEmployeeType: self.manages
2 execution context ManagementEmployeeType ⇒ {EmployeeType, Em-
ployeeType, EmployeeType}
3 execution context ManagementEmployee ⇒ {InternEmployee, InternEm-
ployee, InternEmployee}
4 execution context Steve ⇒ {Ann, Bree}

No Execution A very conservative approach is to detect any ambiguous
navigations, such as navigations with a cardinality upper bound higher than
one, and instead of attempting to evaluate the result of the navigation a default
value is returned by the whole constraint or parts of the constraint. The chosen
default value can be false, which is equal to ignoring conditional visualizations
with a constraint attached, or true, which is equal to ignoring conditions in
deep visualizations. When executing constraints which do not return a boolean
value but calculate a value (e.g. text for a label) the default could be to
return an empty set as the result of the navigation. This approach of not
executing an ambiguous navigation allows the constraint to be applied across
all classification levels and is very easy to predict. Not executing constraints
containing navigations with an upper bound cardinality different to one results
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in no returned value for the constraint executed on ManagementEmployeeType
and ManagementEmployee in Constraint Example 8.4.5. If these statements
would be part of a conditional constraint for deep visualization, the execution
would stop at this point and return false. The navigation from Steve returns
a bag containing Ann and Bree.

Constraint Example 8.4.5 (No Execution).
1 definition context ManagementEmployeeType: self.manages
2 execution context ManagementEmployeeType ⇒ ∅
3 execution context ManagementEmployee ⇒ ∅
4 execution context Steve ⇒ {Ann, Bree}

Instance and Type Level Navigation The instance and type level nav-
igation approach is a hybrid approach composed of the previously described
set with single clabject and upper or lower bound approaches. If the definition
context and execution context are equal, the navigation is viewed as a type
level navigation and the set with single clabject approach is applied. Thus, a
navigation returns exactly what is modeled, resulting in a set with all clab-
jects that are actually connected by the navigated connection in case of a
cardinality with an upper bound different to one and a single clabject in case
of a cardinality upper bound of one (if more than one clabject is reachable
via such a navigation a set with all connected clabjects is returned). When
the definition context is on a level above the execution context, an instance
level navigation is performed by applying the upper or lower bound approach.
Hence, a bag repeating the connected model element either as often as the
lower or upper bound is returned as the result of the navigation. By applying
the upper or lower bound approach on the execution context where an instance
level navigation takes place the cardinalities at the definition context level are
treated as statements about the instances of the definition context on which
the constraint is executed because the cardinalities at the instance levels are
defined to satisfy their type’s cardinalities. This option for resolving the prob-
lem of connection cardinalities is the one used in the rest of this work because
this is seen as the best way of treating cardinalities as statements on instances
and on the other hand being able to execute a constraint across all ontological
levels.
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When applying this approach in the context of Constraint Example 8.4.6
the constraint on ManagementEmployeeType is executed from a type level navi-
gation point of view in line 2, because the definition and execution contexts are
identical. This returns a set with the actually connected EmployeeType without
paying any attention to the modeled cardinality’s lower or upper bound. The
other navigations (line 3 and line 4) are viewed as instance level navigations
and therefore return the lower bound of the cardinalities which is an empty
set for ManagementEmployee and a set containing Ann and Bree ({Ann, Bree}) for
Steve.

Constraint Example 8.4.6 (Instance and Type Level Navigation).
1 definition context ManagementEmployeeType: self.manages
2 execution context ManagementEmployeeType ⇒ {EmployeeType}
3 execution context ManagementEmployee ⇒ {}
4 execution context Steve ⇒ {Ann, Bree}

8.4.2 (Re)Classification Operations

OCA-based deep modeling also has an impact on (re)classification operations
(i.e. type checking, type casting and instance retrieval) in a deep constraint
language. (Re)classification operations applied to a clabject are not only of
use across one type/instance classification level pair but across all ontological
classification levels in a deep model. For this purpose, the existing OCL in-
stance query operations (allInstances()), type checking operations (isKindOf(),
isTypeOf()) and type casting operations (asType()) have to be extended to
work across more than one ontological type/instance level pair. Below, we first
introduce suitable terminology related to typing in a deep model, clearly define
the main concepts in first order logic and finally present deep (re)classification
operations based on these definitions.

The instances of a clabject in deep modeling can be distinguished between
instances and deep instances. Instances exist at the level directly below the
clabject whereas deep instances exist across all classification levels determined
by the transitive closure of all classification relationships, i.e all instances,
including instances of instances etc. Additionally, a distinction can be made
between direct and indirect (deep)instances. Direct (deep)instances exclude
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instances of subtypes whereas indirect (deep)instances include instances of
subtypes only. The following sections discuss a formalization of these concepts
in first order logic extended by the transitive closure operator TC().

Definition 8.4.1 shows a formal definition of the direct instance relationship
(IsDirectInstance(t,i)) between an instance i and a type t. Direct instances of t are
instances which are modeled as instance of t only and not as instance of one of
t’s subtypes. Four functions are used to support the definition of this relation-
ship. The function classifications(x) maps each clabject x to the classifications
it participates in (clabject → classification). The function typeEnd(x) maps a
classification to the clabject located at its type end (classification → clabject).
The instanceEnd(x) function maps classifications to the clabject at the instance
end (classification→ clabject). These previous three functions are used to con-
struct the directInstancesOf(t) function which returns all instances of a clabject
t (clabject → clabject). The instances of t are located at the instance ends of
the classifications in which t participates minus t itself. In the function, t has
to be removed from this set because in a deep modeling framework t can play
the role of an instance that is located at the instance end of a classification
relationship and as a type that is located at the type end of a classification
relationship at the same time. The IsDirectInstance(t,i) relationship between an
instance i and a type t exists if i is in the set of direct instances of t.

Definition 8.4.1 (IsDirectInstance(t,i)).
1 classifications(x):= All classifications where x participates
2 typeEnd(x):= Clabject at the type end of classification x
3 instanceEnd(x):= Clabject at the instance end of classification x
4 directInstancesOf(t) = {instanceEnd(c) | c ∈ classifications(t)} \ {t}

5 IsDirectInstance(t,i):= i ∈ directInstancesOf(t)

The definition of the indirect instance relationship (IsIndirectInstance(t,i)) is
shown in Definition 8.4.2. Indirect instances are instances of the subtypes of
a type excluding direct instances of that type. The previously defined func-
tion directInstancesOf(t) and all of its supporting functions are reused in this
definition. Since indirect instances include subtypes, functions for querying
those have to be added to the formalization. These functions are inheritances(x)
(clabject → inheritance), superTypeEnd(x) (inheritance → clabject), subType-
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End(x) (inheritance → clabject) and subTypes(x) (clabject → clabject) which are
equivalent to the corresponding functions for classification retrieval with the
exception that they work on inheritance relationships. An important differ-
ence between the classifications(x) and the inheritances(x) functions is that the
inheritances(x) function not only returns the inheritance relationships pointing
to subtypes of x (direct) but also the inheritance relationships pointing to sub-
types of subtypes etc. (indirect). To retrieve the indirect instances of a type
t the indirectInstancesOf(t) (clabject → clabject) function is used to return the
instances of the subtypes of t. The indirectInstancesOf(t) function is then used to
define the IsIndirectInstance(t,i) relationship between an instance i and its type t.
An instance i satisfies the indirect instance requirement by being an instance
of one of t’s subtypes (i ∈ indirectInstancesOf(t)). If it is intended to make no
distinction between direct and indirect instances the IsInstance(t,i) relation is
applicable since it includes direct and indirect instances (IsDirectInstance(t,i) ∨
IsIndirectInstance(t,i)).

Definition 8.4.2 (IsIndirectInstance(t,i) and IsInstance(t,i)).
1 inheritances(x):= Direct and indirect subtype inheritance relationships of x
2 superTypeEnd(x):= Clabjects at supertype end of inheritance relationship x
3 subTypeEnd(x):= Clabjects at subtype end of inheritance relationship x
4 subTypes(x):= {subTypeEnd(i) | i ∈ inheritances(x)}
5 indirectInstancesOf(t):= {directInstancesOf(s) | s ∈ subTypes(t)}

6 IsIndirectInstance(t,i):= i ∈ indirectInstancesOf(t)
7 IsInstance(t,i):= IsDirectInstance(t,i) ∨ IsIndirectInstance(t,i)

The definitions so far have only included instances present at the classi-
fication level below the type’s classification level. Deep direct instances and
deep indirect instances include instances over the whole classification tree of
a type. The definition of the IsDeepDirectInstance(t,i) function is shown in Def-
inition 8.4.3. It uses the set of all classifications C which are directed edges
(t,i) pointing from the type t to the instance i (i = instanceEnd(c)). The tran-
sitive closure on the set of all classifications (TC(C)) is then used to define
the IsDeepDirectInstance(t,i) relationship. The TC() operation on a set adds all
indirect paths to this set. If, for example, two classifications (a,b) and (b,c)
are in the set of all classifications, the tuple (a,c) would be added to this set
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by the TC operation, because there is a path from a to c via b. The IsDeepDi-
rectInstance(t,i) relationship holds true if the tuple (t,i), where t is the type and
i is the instance, is in the transitive closure of all classification relationships
C. Being in the transitive closure means that there is a path of classification
relationships from the type t to the instance i.

Definition 8.4.3 (IsDeepDirectInstance(t,i)).
1 C:= {(t,i) | c ∈ classifications(t) ∧ i = instanceEnd(c)}
2 IsDeepDirectInstance(t,i):= (t,i) ∈ TC(C) (TC() - Transitive Closure)

The definition of the deep indirect instance relationship (Definition 8.4.4)
includes the set of all inheritance relationships I in addition to all classifications
C. Inheritance relationships are directed edges pointing from their supertype
x to their subtype y (y = subTypeEnd(i)). The IsDeepIndirectInstance(t,i) rela-
tionship includes the instances of subtypes of a type by using the union of
the inheritance and classification relationships as input for the transitive clo-
sure function (TC(C∪I)). The transitive closure on the set of classifications C
and inheritance relationships I includes all edges from a type t to an instance
i reachable via inheritance and classification relationships. Since the defini-
tion of indirect instances excludes direct instances, all direct instances which
are contained in the transitive closure over the classification relationships are
subtracted (\TC(C)). Furthermore, all inheritance relationships (direct and in-
direct) are subtracted (\TC(I)) since there is no interest in any inheritance
relationships. The IsDeepInstance(t,i) relationship is used in cases where the
distinction between direct and indirect deep instances is irrelevant.

Definition 8.4.4 (IsDeepIndirectInstance(t,i) and IsDeepInstance(t,i)).
1 I:= {(x,y) | i ∈ inheritance(x) ∧ y = subTypeEnd(i)}
2 IsDeepIndirectInstance(t,i):= (t,i) ∈ (TC(C ∪ I) \ TC(C) \ TC(I))

3 IsDeepInstance(x,y):=
_ IsDeepDirectInstance(x,y) ∨ IsDeepIndirectInstance(x,y)

An example calculation for the IsDeepIndirectInstance(t,i) relationship is shown
in Figure 8.5. In the example all relationships for which IsDeepIndirectInstance(t,i)
holds true are calculated in the context of the diagram on the figure’s left-hand
side. It is important to note that in the formalization the pointing directions
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O0

O1

A2

O2

B2

b1 a1

_b0 _a0

1 C = {(A, a ) , ( a , _a) , (B, b ) , ( b , _b) }
2 I = {(A,B) }
3 I∪C = {(A,B) , (A, a ) , ( a , _a) , (B, b ) , ( b , _b) }
4
5 TC(C) = C ∪ {(A, _a) , (B, _b) }
6 TC( I ) = I
7 TC( I∪C) = I ∪ TC(C) ∪ {(A, b ) , (A, _b) }
8 TC( I∪C) \TC(C) = TC( I∪C) \{(A, a ) , ( a , _a) , (B, b ) , ( b , _b) }
9 = {(A,B) , (A, b ) , (A, _b) } = X

10 X\TC( I ) = {(A,b),(A,_b)}
11 = TC(C∪ I ) \TC(C) \TC( I )

(a) (b)

Figure 8.5: Example of the IsDeepIndirectInstance(t,i) relationship.

of inheritance and classification relationships are reversed with respect to the
standard LML rendering shown in the figure. The result of the calculation,
shown in line 10 at the right side of Figure 8.5, is that b is a deep indirect
instance of A and _b is a deep indirect instance of A.

The operations of the deep constraint language for instance retrieval, type
checking and casting follow the semantics and naming schema of the previously
introduced formal definitions. For each operation four methods divided into
two dimensions are introduced, as shown in Figure 8.6. The operations are
divided according to their deepness (classification) and directness (inheritance)
properties. The deepness specifies whether an operation includes instances at
the next classification level only or over all following classification levels in a
deep model. The directness property specifies whether the operation also in-
cludes subtypes or is restricted to the type on which the operation is called.
All operations that exclude subtypes are designated with the word direct in
their name, and the others working on subtypes only have the word indirect in
their name. If no distinction is made between direct and indirect, no special
designation is given in the name. Operations which include all classification
levels carry the word deep in their name, while all others have no special desig-
nation in their name. The application of this naming scheme result yields the
following operations which are described in more detail in the following para-
graphs: classification checking — isInstanceOf(), isDeepInstanceOf(), isDi-
rectInstanceOf(), isDeepDirectInstanceOf(), isIndirectInstanceOf(), isDeepIndi-
rectInstanceOf() —, instance querying — allInstances(), allDeepInstances(),

132



8.4. A Deep Constraint Language Supporting Deep Visualization

D
ep

th

Directness
No Subtypes Subtypes

Al
l L

ev
el

s
N

ex
t 

Le
ve

l
*DeepDirect*

(Definition 9.4.3)
*DeepIndirect*

(Definition 9.4.4)
*Deep*

*
*Direct*

(Definition 9.4.1)
*Indirect*

(Definition 9.4.2)

Figure 8.6: Naming scheme for (re)classification operations.

allDirectInstances(), allDeepDirectInstances(), allIndirectInstances(), allDeep-
IndirectInstances() — type casting — asType(), asDeepType().

Classification Checking An example of the classification checking oper-
ation is given on the company structure modeling language example in Fig-
ure 8.7. The table in (b) shows the different classification checking methods
executed in the context of Steve. The model underlying the constraints is dis-
played in (a). It can be observed that the isInstanceOf() operation returning
true for types at the immediate level above the instance (here ManagementEm-
ployee) including their subtypes is equivalent to oclIsKindOf() in OCL. For all
other clabjects in the classification hierarchy false is returned because these
are more than one level away from Steve. If ManagementEmployee had subtypes
true would also be returned for these by the isInstanceOf() operation.

Furthermore, the isDirectInstanceOf() operation returning true for types at
the immediate level above the instance excluding subtypes of the type is equiv-
alent to the oclIsTypeOf() operation in OCL. Hence, the operation returns
true for ManagementEmployee and false for all other clabjects when executed
on Steve. In this example the execution of the isInstanceOf() and isDirectIn-
stanceOf() operations return the same result since Steve’s type has no subtypes.
If the operations were executed on Steve as an instance of a subtype of Manage-
mentEmployee and ManagementEmployee as parameter, false would be returned
by the isDirectInstanceOf() operation and true by the isInstanceOf() operation.

The deep versions of the isInstance() and isDirectInstanceOf() operations are is-
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O1

O0

O2

Steve0

name0=Steve
expertise0=Management
salary0=120k

EmployeeType0

name2

expertise2

salary2

ManagementEmployeeType2

ManagementEmployee1

name1=Management Employee
expertise1=Management
salary1=95k

context Steve isInstanceOf(...)
ManagementEmployee true
ManagementEmployeeType false
EmployeeType false

context Steve isDeepInstanceOf(...)
ManagementEmployee true
ManagementEmployeeType true
EmployeeType true

context Steve isDirectInstanceOf(...)
ManagementEmployee true
ManagementEmployeeType false
EmployeeType false

context Steve isDeepDirectInstanceOf(...)
ManagementEmployee true
ManagementEmployeeType true
EmployeeType false

context Steve isIndirectInstanceOf(...)
ManagementEmployee false
ManagementEmployeeType false
EmployeeType false

context Steve isDeepIndirectInstanceOf(...)
ManagementEmployee false
ManagementEmployeeType false
EmployeeType true

(a) (b)

Figure 8.7: Classification checking operations on the example of Steve.

DeepInstanceOf() and isDeepDirectInstanceOf(). These two operations are equal to
their non-deep versions except that they can check for classification across more
than one pair of classification levels. Hence, isDeepInstanceOf() returns true
for ManagementEmployee, ManagementEmployeeType and EmployeeType, whereas
isDeepDirectInstanceOf() returns false for EmployeeType as Steve is instance of a
subtype of EmployeeType and not a direct instance of EmployeeType.

In addition to these four functions inspired by OCL, two classification-
checking operations only for indirect instances are defined, isIndirectInstanceOf()
and isDeepIndirectInstanceOf(). These return true only for indirect instances
of a type. Thus, both the flat and deep versions return false for Manage-
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mentEmployee because Steve is a direct instance of ManagementEmployee. The
flat version, isIndirectInstanceOf(), returns false for ManagementEmployeeType and
EmployeeType since these are located more than one level above Steve. The
deep version returns false for ManagementEmployeeType because Steve is a deep,
direct instance of it and true for EmployeeType because Steve is a deep instance
of one of EmployeeType’s subtypes, and hence a deep, indirect instance of it.

Linguistic type checking can be invoked using the standard OCL type
checking operations oclIsTypeOf() and oclIsKindOf() available from the meta-
modeling framework in which the linguistic metamodel is implemented. In or-
der to check if Steve is an instance of the linguistic type clabject, it is necessary
to first switch to the linguistic dimension and then invoke the oclIsKindOf()
operation — self._l_.oclIsKindOf(Clabject). Such an operation call on Steve
returns true because Steve is a linguistic instance of the linguistic metamodel’s
clabject type.

Instance Retrieval Figure 8.8 illustrates the six instance retrieval opera-
tions available in a deep constraint language in the context of EmployeeType and
ManagementEmployeeType. Both, the directInstances() and deepDirectInstances(),
operations do not return a clabject when called on EmployeeType because Em-
ployeeType only possesses indirect instances. In contrast, the indirectInstances()
operation and its deep version, deepIndirectInstances(), return ManagementEm-
ployee and additionally Steve in the case of the deep version. Querying for both
indirect and direct instances through the instances() and deepInstances() oper-
ations returns ManagementEmployee for the flat version and additionally Steve
for the deep version.

Executing the instances() and deepInstances() operations on ManagementEm-
ployeeType returns the same values as previously described for EmployeeType.
However, the operations for indirect and direct instance retrieval return the op-
posite results as for EmployeeType because ManagementEmployeeType is a subtype
of EmployeeType. Hence, directInstances() returns ManagementEmployee and deep-
DirectInstances() additionally returns Steve. The indirectInstances() and deepIndi-
rectInstances() operation return empty sets because ManagementEmployee has no
indirect types at any level.

The deep instance retrieval operations presented so far return instances

135



Chapter 8. Deep Constraint Language for Deep Visualization

O1

O0

O2

Steve0

name0=Steve
expertise0=Management
salary0=120k

EmployeeType0

name2

expertise2

salary2

ManagementEmployeeType2

ManagementEmployee1

name1=Management Employee
expertise1=Management
salary1=95k

context EmployeeType
directInstances() ∅
indirectInstances() {ManagementEmployee}
instances() {ManagementEmployee}
deepDirectInstances() ∅
deepIndirectInstances() {ManagementEmployee,

Steve}
deepInstances() {ManagementEmployee,

Steve}

context ManagementEmployeeType
directInstances() {ManagementEmployee}
indirectInstances() ∅
instances() {ManagementEmployee}
deepDirectInstances() {ManagementEmployee,

Steve}
deepIndirectInstances() ∅
deepInstances() {ManagementEmployee,

Steve}

(a) (b)

Figure 8.8: Instance retrieval operation examples.

across all ontological levels or from the next ontological level. In some cases,
however, it is desirable to only query instances at a specific level or range
of levels. Therefore, the deep instance retrieval operations accept either one
parameter specifying the distance to the level to query (e.g. all direct instances
that are two levels away) or two parameters specifying the range of levels to
query (e.g. all instances from the levels with distance two to four). The
distance is always specified as a relative value with one specifying the next
level and star (*) specifying the last level.

It is possible to retrieve linguistic instances (e.g. all clabjects in a deep
model) by invoking the allInstances() OCL operation on the type of the lin-
guistic metamodel. To get all instances of the linguistic type of Steve for
example, one first switches to the linguistic dimension and then invokes the
allInstances() operation (self._l_.allInstances()). In the case of Steve, this
would return all clabjects of the deep model including Steve, because the lin-
guistic type of Steve is clabject.
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Reclassification Two reclassification operations are offered by the deep con-
straint language — asType() and asDeepType(). The condition for a type cast
to succeed is that the clabject to be cast is either an instance (asType()) or
deep instance (asDeepType()) of the type into which it is to be cast. The
asType() operation can cast a clabject into a type one ontological level above.
Hence, in the example displayed in Figure 8.8, Steve can be cast into Manage-
mentEmployee but not into ManagementEmployeeType. To cast Steve into Manage-
mentEmployeeType the asDeepType() operation is used which can also cast Steve
into ManagementEmployee and EmployeeType.

8.4.3 Constraints on Intermediate Levels using Higher
Level Navigations and OCA

To support the definition of constraints on intermediate levels which refer to
navigations defined at higher ontological classification levels a syntax modifi-
cation is introduced to dynamically move the definition context of a clabject
to a level on which the required navigations are available. To do this definition
context move, the new definition context is enclosed in underscores (_) and is
used in the same way as an attribute or operation access.

Constraint Example 8.4.7 (Definition Context Movement).
1 definition context Steve: self._ManagementEmployee_.intern
2 execution context Steve ⇒ {Ann,Bree}

Constraint Example 8.4.7 shows an example in the context of Figure 8.9.
The constraint is defined in the definition context of Steve. The intent of the
constraint is to retrieve all interns who are managed by Steve. Steve, however,
possesses two different ways of navigating to the managed interns (itIntern,
marketingIntern). The currently defined navigations can be extended in future
as needed, so for example an hrIntern navigation could be introduced if Steve
starts managing interns in the human resource department. Hence, the intern
navigation from level O1 must be used to navigate to all interns. To use
this navigation, a definition context move from Steve to ManagementEmployee is
made (self._ManagementEmployee_) in the first line of Constraint Example 8.4.7,
making the navigations of ManagementEmployee available — here intern only.

137



Chapter 8. Deep Constraint Language for Deep Visualization

The intern navigation is then used to navigate to all interns managed by Steve.
The result of this navigation, shown in line two, is a set containing Ann and
Bree who are connected with Steve via instances of the connection defining the
intern navigation.

A consequence of applying a definition context move is that a navigation
can change from a type level navigation to an instance level navigation if the
definition and execution context were equal before the move and are different
after. This influences the result of a navigation over connections with a cardi-
nality upper bound different to one. In the example shown here the navigation
changes from a type level navigation to an instance level navigation through
the definition context move. This is not a problem in this case because Steve
is only connected via connections with cardinality upper bounds of one.

Orthogonal classification of model elements is supported by the option to
select either the ontological or linguistic dimension for constraint definition
in the deep constraint language. The default context for constraints is the
ontological dimension because user-defined visualizations are defined within
this dimension. To switch to the linguistic dimension the expression _l_ is
used in the same way as an attribute access. Once the switch to the linguistic
dimension has been performed all following attribute calls etc. are performed
from a linguistic point of view. To switch back to the ontological dimension
the expression _o_ is used.

Constraint Example 8.4.8 (OCA Support).
1 definition context Steve: self._l_.getAllAttributes().value
2 execution context Steve ⇒ {’Steve’, ’Management’, ’120k’}

3 definition context StudentEmployeeType: self._l_.getAllSupertypes()._o_
_ .salary
4 execution context StudentEmployeeType ⇒ {”}

Constraint Example 8.4.8 demonstrates the seamless switching between the
linguistic and ontological dimension in the context of the example shown in
Figure 8.9. In the figure the linguistic metamodel (L2) is placed on the right
spanning all ontological classification levels (O0 - O2). The first line of the
constraint example defines a constraint on Steve that first switches over to the
linguistic dimension (_l_) to make all linguistic metamodel features of Clabject,
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ManagementEmployee1

name1=Management Employee
expertise1=Management
salary1=95k

InternEmployee1

name1=Intern Employee
expertise1

salary1=12k

:manages1*

intern

O1

Ann0:InternEmployee
name0=Ann
expertise0

salary0=15k

Bree0:InternEmployee
name0=Bree
expertise0

salary0=14.5k

Figure 8.9: Constraint example in the context of the OCA.

Steve’s linguistic type, available. Then the getAllAttributes() method of Clabject
is used to retrieve the list of all attributes belonging to Steve. These are then
queried for their values using the linguistic value trait. The second line of the
constraint example displays {’Steve’, ’management, ’120k’} as the result of the
executed query. The second constraint starting in the third line of the example
defines a constraint on StudentEmployeeType. First, it queries all supertypes of
StudentEmployeeType using the linguistic getAllSupertypes() operation and then
switches back to the ontological dimension (_o_) to get the salary of all su-
pertypes. The result of this query displayed in the last line of the constraint
example shows an empty string because EmployeeType, the only supertype of
StudentEmployeeType, does not have a salary value defined.
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Seamless Modeling

Deep modeling makes it possible for a modeler to work on several classification
levels at the same time since all levels are treated equally and no deployment
steps are required to make changes to one classification level available to the
others. This feature, called seamless modeling below, gives significantly more
flexibility to modelers than metamodeling approaches using a fixed metamodel
level and a soft user model level. To change the metamodel and apply the
changes to the deployed modeling tool, several steps have to be executed in
such approaches. First, the modeling environment has to be switched into
the metamodeling mode which often involves a switch from the tool in which
the modeling language is used to the tool in which the modeling language is
defined. Second, the new metamodel has to be supplied to the modeling envi-
ronment which often involves manual effort such as deploying the new version
of the metamodel including its accompanying tool to a central update reposi-
tory and invoking the update mechanism of each deployed tool. Third, model
evolution mechanisms have to be applied. When using deep modeling, the
first two of these tasks are completely unnecessary since there is no difference
between metamodeling and user modeling (i.e. a modeler can use all classifica-
tion levels seamlessly). The model evolution problem, however, also exists in
deep modeling. In fact, the problem is even more acute in deep modeling since
it is much easier for modelers to make changes to more than one classification
level. In contrast, in traditional modeling environments based on one clas-
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sification level pair, the operational classification level can only be switched
when the underlying modeling language is changed (e.g. from the user-defined
language at M1 to the metamodeling language at M2). As a consequence, the
vast majority of work is done at the user-model level.

Modeling across multiple classification levels also increases the impact of
changes to a model because it is not longer just one classification level that is
affected by a change, multiple classification levels can be affected in both the
type and instance directions of the classification hierarchy at the same time.
Figure 9.1 gives an example of the complexity introduced by a change in a
model consisting of seven model elements. The language shows an excerpt
of the company structure modeling language. Using this language, different
CompanyTypes can be created. ITCompany, a type of company producing in-
formation technology (IT) related goods, and ToyCompany, a type of company
producing toys, are created as two types of companies at level O1. These are
themselves instantiated with four concrete companies named Pineapple, Banana-
soft, Supertoys and Boringtoys. After the whole model has been created, it is
noticed that a company has to possess a taxID so the taxID attribute is added
to the CompanyType clabject. This change, however, makes all instances and
instances of instances of CompanyType invalid. To fix the model, all six clab-
jects in the classification hierarchy of CompanyType — ITCompany, ToyCompany,
Pineapple, Bananasoft, Supertoys and Boringtoys — have to have their taxID at-
tribute added manually. Moreover, the same manual effort would have to be
performed when changes to potencies, durabilities, attribute data types etc.
are performed. The effort of such manual changes grows as the number of
inheritance relationships, classification levels and model elements increases,
making the approach increasingly difficult to use in an iterative development
process.

To handle the complexity of these knock-on changes when working at mul-
tiple classification levels, a good deep modeling tool should provide a so-called
emendation service [16]. Such a service constantly watches for changes to
the edited deep model at all ontological levels and automatically calculates
the impact of these changes in terms of violations of the classification consis-
tency rules, as e.g. defined by Kennel in [127]. If a violation of these rules is
detected, the service attempts to correct the classification relationships con-
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companyName =2 2

taxID =2 2

Figure 9.1: Impact of adding the taxID attribute.

cerned by executing changes to repair the affected parts of the model. This is
done by suggesting update operations over the whole deep model and applying
them if confirmed by the modeler.

The idea of applying evolution services to models is not new. Research on
this topic has been performed in the area of metamodel (co)-evolution (e.g.
[39, 107, 108, 199, 200]), ontology evolution (e.g. [132, 165, 173]) and deep
modeling (e.g. [16, 56, 57]). The first research on model evolution in the
context of deep models was performed by Demuth et al. in [57]. However, this
only briefly covered the evolution of deep models as a side aspect of a deep
modeling extension to Rational Software Architect [156] (at the time of writing
known as IBM Rational Software Modeler). The most complete consideration
of deep model emendation, upon which this work is based, is described by the
author of this thesis in [16].

9.1 Used Formalism

The classification rules for the deep modeling approach used in this work as
the foundations of the emendation service are defined by Kennel in [127]. The
principles of the emendation service, however, also work with other formaliza-
tions of deep modeling such as that of Rossini et al. [204]. In the following,
classification rules are expressed using first order logic and set theory. The
for-all (∀) and exists (∃) quantifiers as well as the element-of (∈) operator
are used from set theory. Furthermore, the logical and (∧), or (∨), implies
( =⇒ ), equal (=) and not-equal (6=) operators are used from propositional
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Symbol Description

C The set of all clabjects (entities and connections)
c A clabject from the set of all clabjects
potency(c) The potency of c
ct The type of the clabject c, i.e. ct = type(c)
connections(c) The connections associated with c
attributes(c) All attributes of c including inherited attributes
con A connection from the set of all clabjects
cont The type of a connection, i.e. cont = type(con)
mandatory(cont,c) Is connection cont mandatory for c?
conforms(cont,con) Does connection con conform to its type cont?
∀c ∈ C For each clabject c from the set of all clabjects C
∃c ∈ C It exists one clabject c in the set of all clabjects C

Table 9.1: Description of the used symbols.

logic, functions and predicates are used from first order logic. Table 9.1 gives
an overview of the symbols and conventions used in the formalization. Cap-
ital letters represent the set of all instances of a linguistic meta type. For
instance C refers to the set of all clabjects in a deep model. Lowercase letters
refer to a single element in the set of all elements of a type. Hence, c refers
to one particular clabject from the set of all clabjects C. Access to linguistic
metamodel attributes (also known as traits) and methods is designated by a
function named after the method name (e.g. conforms(cont,con)) or trait name
which is accessed (e.g. durability(c)). An ontological type of a model element
is designated by a t in the index (e.g. ct) and ontological instances by an i in
the index (e.g. ci).

9.2 Deep Model Consistency

When a clabject is changed a deep model can cease to be well-formed. For
a deep model to be well-formed, the content of all its levels has to be well-
formed. This, in turn, depends on classification correctness and inheritance
correctness, which can both be violated through a change to a deep model.
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Definitions for these well-formedness properties are extensively introduced by
Kennel in [127] and are shortly summarized in the following.

For a type to satisfy classification correctness, all instances of the type must
be valid instances. To be a valid instance of a type, a clabject has to fulfill
the following conditions: 1. the potency of the instance must conform to the
potency of the type (Definition 9.2.1), 2. an instance has to have a conforming
attribute for every attribute of the type (Definition 9.2.2) and 3. an instance
must have at least one connection for every mandatory connection (i.e. lower
multiplicity bound greater one) of the type the (Definition 9.2.3).

Definition 9.2.1 (Potency Correctness). Every clabject (c) must have a po-
tency (potency(c)) one lower than its type’s potency (potency(ct)), except for
star potency.

PotencyCorrect(c, ct) := ct = type(c)

∧ ((potency(c) ≥ 0 ∧ potency(c) = potency(ct)− 1)

∨ potency(ct) = ∗ =⇒ potency(c) ∈ {∗,N≥0})

Potency correctness (Definition 9.2.1) is the most basic requirement for a
deep model to be well-formed. The potency of a clabject defines the depth
of its classification tree. Hence, a clabject with a potency of three has a
classification tree of depth three meaning that direct and indirect instances
exist in the next three classification levels. Following this rule all instances of
a type must have a classification tree with a depth of one less than that of their
type. Hence, their potency must be one lower than their type’s. An exception
to this rule is star potency (*), which represents clabjects with an unspecified
classification tree depth. However, instances of a clabject with star potency
can constrain their classification tree depth by defining a non-star potency or
leave the depth of the classification tree unspecified by defining a star potency,
too.

The attribute correctness well-formedness property (Definition 9.2.2) is sat-
isfied if all clabjects which conform to their type in terms of potency possess at
least the number of conforming attributes defined by their type. An instance
containing the same number of attributes as its type is called an isonym while
an instance containing more attributes is called a hyponym in [127]. An at-
tribute conforms if its durability is not negative and one lower than that of the
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corresponding attribute at the type level (or in the case of a star durability (*)
is not negative or star itself), the data type and name are equal to the type
level attribute and the value is the same as the value at the type level in cases
where the type level attribute has a mutability of zero. Mutability has to be
one lower than at the type level unless it is zero. If the mutability at the type
level is the star value, it has to be non-negative or star itself. In addition, the
mutability cannot be higher than the durability. If the mutability at the type
level is zero it has to be zero at the instance level, too.

Definition 9.2.2 (Attribute Correctness). For every attribute (at) of clabject
c’s type (ct) with a durability (durability(at)) greater than 0, the instance needs
to have one conforming attribute (ai).

AttributeCorrect(c, ct) := ct = type(c)

∧ (∀at ∈ attributes(ct) : durability(at) > 0 =⇒ ∃ai ∈ attributes(c) :

name(ai) = name(at)

∧ ((durability(ai) ≥ 0 ∧ durability(ai) = durability(at)− 1)

∨ durability(at) = ∗ =⇒ durability(ai) ∈ {∗,N≥0})

∧ (mutability(ai) = max[0, mutability(at)− 1]

∨mutability(at) = ∗ =⇒ mutability(ai) ∈ {∗,N≥0})

∧mutability(ai) ≤ durability(ai)

∧mutability(at) = 0 =⇒ value(ai) = value(at)

∧ datatype(ai) = datatype(at))

Connection correctness (Definition 9.2.3) requires that each instance of a
type must be connected to instances of connections which are connected to
the type with a lower multiplicity of one (i.e. mandatory connections). These
connections need to conform to their types in terms of connection conformance,
i.e. follow rules for multiplicities, connection end names etc. as described in
[20, 97]. Connection correctness includes clabjects which are connected to
more connections than required by their type as it is the case with attribute
correctness.
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Definition 9.2.3 (Connection Correctness). For every mandatory connection
(mandatory(cont, c)) of a clabject c’s type (ct), the clabject needs to have con-
forming connections (conforms(cont, con)).

ConnectionCorrect(c, ct) := ct = type(c)

∧ (∀cont ∈ connections(ct) : mandatory(cont, c) =⇒

∃con ∈ connections(c) : conforms(cont, con))

For generalization correctness to be satisfied by instances they must fulfill
the criteria defined in the inheritance relationship at the type level (disjoint-
ness, completeness). In contrast to violations of the classification correctness
rules which can be detected without domain knowledge, violations of the gen-
eralization correctness rules are non-trivial to detect as domain knowledge is
required for this task. Only modeled facts that contradict the implications
of generalization relationships can be automatically identified. An example of
such a contradiction would be an instance which is an instance of two clab-
ject’s participating in a generalization set marked as disjoint. Because of the
limited possibilities to automatically judge violations of generalization correct-
ness the following subsection focuses on emendation support for the violation
of classification correctness rules.

9.3 The Emendation Service

According to [110] there are two ways to realize an emendation service — the
difference-based and operation-based approach. The former creates model evo-
lution operations based on a model difference analysis between the unchanged
and the changed versions of the model. The latter requires a user to explic-
itly invoke model evolution actions while editing the model. Based on these
user-invoked operations the model co-evolution operations are determined and
recorded. A further refinement is the automatic recording of these operations
as suggested in [128]. In both approaches, once the evolution operations have
been identified they are applied to model instances conforming to the originally
changed model.

There are three categories of changes for evolving a model [95]: 1. not
breaking changes, 2. breaking and resolvable changes, and 3. breaking and
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Figure 9.2: The emendation service architecture after [16].

unresolvable changes. Not breaking changes are changes which do not violate
any classification rules, breaking and resolvable changes do break the classifica-
tion rules but can be resolved automatically, while breaking and unresolvable
changes can only be resolved with help from the modeler. The emendation
service presented below focuses on breaking changes only.

The overall architecture of the emendation service is shown in Figure 9.2.
It consists of three components — the Emendation Service, the Impact Analyzer
and the Deep Model. The Emendation Service subscribes to changes to the Deep
Model using the observer pattern. After a User makes a change to the Deep
Model, the Emendation Service is notified. It then requests the Impact Analyzer
to analyze whether the change made by the User violates potency correctness
(Definition 9.2.1), attribute correctness (Definition 9.2.2) or connection cor-
rectness (Definition 9.2.3). The Emendation Service interprets this result and
suggests emendation operations to the User that can be further parametrized.
Finally, using the result of the Impact Analyzer and the parameters provided by
the User, the Emendation Service applies emendation operations to the changed
Deep Model.

As this architecture shows, this emendation service realization does not use
calculated model differences between the base and changed models to calculate
model evolution operations such as approaches described in [47, 84, 150, 229].
Instead, the emendation service directly supports the user while working with
the model. A similar approach is suggested in [128] which is founded on the
Praxis tool presented in [36]. The Praxis tool [36] records changes at run-
time and is extended in [128] with an extensible change detection algorithm
that can detect complex changes in the atomic evolution trace recorded using
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the Praxis tool. The three most notable advantages of an approach based on
operation recording are: 1. changes cannot hide each other (e.g. an attribute
can be renamed before being moved which would lead to one delete and one add
operation instead of a rename and move operation when applying a differencing
algorithm), 2. the order in which the changes are executed is preserved and
3. atomic changes do not overlap (e.g. when two model elements are connected
via a reference and a generalization, the move operation of an attribute to
the superclass can overlap with the movement via the reference instead of
the generalization relationship [128]). The emendation approach presented
here essentially works in the same way as [128] and [36]. As the co-evolved
models are not decoupled from the evolved model, emendation operations are
performed after each atomic and complex change rather than collecting a trace
of several changes and then calculating and executing the model evolution
operations on a decoupled model instance as in [128] and [36].

9.3.1 Impact Analyzer

The emendation service and impact analyzer focus on the model manipulation
operation categories identified in literature such as [110, 173, 186]. As a basis
for the set of operations used for deep model emendation, the basic opera-
tions defined by Opdyke [186] are chosen. These are: 1. Creating an Entity,
2. Deleting an Entity, 3. Changing an Entity and 4. Moving an Entity. The
first three are atomic changes to a metamodel whereas the fourth is a complex
change composed of the create and delete operations. Other complex changes
can be envisaged but are out of scope here. The following paragraphs provide
an overview of how these operations occur in deep modeling and can violate
the aforementioned classification rules.

Creating an Entity. In the case of deep modeling the operation for creating
a program entity can be applied to entities, connections, features and inheri-
tance relationships. The operations which affect classification correctness are
the addition of attributes, connections and supertypes (through inheritance
relationships) to entities and connections. The addition of an attribute effects
attribute correctness (Definition 9.2.2) as instances of a clabject no longer have
one conforming attribute for each attribute of their type. This is not a problem
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for the clabjects in the level above the changed clabject (i.e. type level) because
Definition 9.2.2 only restricts instances to having at least the attributes of their
type without making any statement about the maximum number of attributes
an instance can possess. Hence, instances can have more attributes than their
type without violating the attribute correctness well-formedness rule. Never-
theless, an instance might change from an isonym to a hyponym. The add
attribute operation is also indirectly executed when adding supertypes to a
clabject through inheritance as the clabject inherits all attributes of the newly
added supertype. When adding a connection to a clabject which is manda-
tory for instances (i.e. lower bound higher than one), connection correctness
(Definition 9.2.3) is violated by instances.

Deleting an Entity. The attribute correctness constraint is violated by each
delete operation that changes the set of attributes available to a clabject. Ex-
amples of such delete operations are the deletion of attributes, the deletion of
clabjects serving as supertypes for other clabjects and the deletion of inher-
itance relationships. After such an operation has been performed, clabjects
potentially no longer have all the attributes required to be a valid instance of
their types. Moreover, connection correctness (Definition 9.2.3) is potentially
violated by deleting mandatory connections or clabjects connected to other
clabjects . However, it is not a problem to delete clabjects which are not as-
sociated to connections and do not participate in any inheritance relationship
or classification relationships.

Changing an Entity. Changing an entity refers to changing the values of
meta-attributes of clabjects and features. For potency correctness (Defini-
tion 9.2.1) the potency values of clabjects are relevant. Hence, changes to
the potency of a clabject can effect the validity of classification relationships
in the type and instance direction. Attribute correctness (Definition 9.2.2) is
effected by changes to the name, data type, durability, mutability and values
of an attribute. Again, this effects types as well as instances of the clabjects
which contain the changed attribute and their subclasses. Also connection cor-
rectness (Definition 9.2.3) can be effected by changes to traits of connections
and their connection ends such as lower and upper cardinalities. A connection
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that was originally not mandatory, for instance, can become mandatory after
a change to the cardinality of a connection.

Moving an Entity. The move operation is a composition of the delete op-
eration at the source and the add operation at the target. Hence, it can be
treated as a complex evolution operation with the effects of a remove operation
at the source followed by an add operation at the target.

Data: changedClabject, changedTrait, oldValue, newValue
Result: List of by a change possibly impacted clabjects.

1 impact;
2 if classificationEffectingChange(changedClabject, changedTrait,

oldValue, newValue) then
3 possibleImpact ← buildClassificationTree(changedClabject);
4 for current ∈ possibleImpact do
5 if violatesClassification(changedClabject, current, changedTrait,

oldValue, newValue) then
6 impact ← impact ∪ current;
7 end
8 end
9 return impact;

Algorithm 9.1: The impact analyzer algorithm.

The operations presented previously and the checking of the rules they
violate are implemented in the Impact Analyzer. The algorithm describing its
operation is displayed in Algorithm 9.1. The algorithm expects the changed-
Clabject, the changedTrait, the oldValue and newValue as input and calculates a
list of all model elements which are impacted by the change. This list not only
contains the minimal set of changes needed to keep classifications valid but is
extended to include the maximum set of all impacted model elements. When
adding an attribute, for example, it would be possible to calculate the impact
only in the instance direction of the classification tree. For a modeler, however,
it can also be desirable to additionally add the attribute in the type direction
to apply a more strict style of attribute correctness (Definition 9.2.2) which
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Figure 9.3: The impact of a change.

would ensure that instances do not have more attributes than their types (i.e.
are isonyms only).

The algorithm first checks in line 2 whether the change is one of the former
described changes which effect either potency correctness (Definition 9.2.1), at-
tribute correctness (Definition 9.2.2) or connection correctness (Definition 9.2.3).
Examples of such changes are a change to the potency of a clabject or the ad-
dition/removal of features from a clabject. If a change potentially violates
the classification rules, the algorithm builds up the classification tree for the
changed model element using the buildClassificationTree(changedClabject) opera-
tion in line 3. The classification tree is the transitive closure over all classi-
fication and generalization relations which originate from the changedClabject.
For each of the elements in the classification tree the algorithm then checks
whether one of the definitions for classification correctness (Definition 9.2.1 -
Definition 9.2.3) is violated by the change (line 5). If the change to the clabject
violates the classification rules it is included as an impacted item (line 6). The
algorithm terminates after the whole classification tree of the changedClabject
has been checked and returns the impact in line 9.

Figure 9.3 illustrates a change and the result of a run of the impact analyzer
presented in Algorithm 9.1. The figure shows two abstract deep models con-
sisting of three levels in which clabjects are represented by black solid circles
connected via classification relationships (dashed arrows) and generalization
relationships (solid arrows). The left-hand side shows the model with a change
applied to a clabject indicated by a non-solid circle. The impact calculated
for the change is shown on the right-hand side of the figure, indicated in gray.
It can be observed that a change to one model can have multiple knock-on
changes which makes it important to help users keep track of things. The
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emendation service supporting these changes is presented in the following sec-
tion.

9.3.2 Emendation Service

Depending on the kind of change made to a deep model, different emendation
operations are suggested to keep classification relationships valid. These are
listed in the following paragraphs:

Add/Remove/Move Attribute. The move attribute operation can be
subsumed by the add and remove operations on attributes, because the move
operation can be understood, as previously described, as a remove operation
at the source followed by an add operation at the target. Both the add and
remove operations on attributes have an impact on the classification relation-
ships in a deep model. The minimum change which has to be performed
after adding an attribute to a clabject is to add the same attribute to the
instances of the changed clabject. The instances then conform to their type
again because they have at least the set of attributes required by their type
(Definition 9.2.2). As an instance can have more features than the type it is
left to the modeler to configure an emendation service in such a way that the
types and their instances also obtain new attributes that are added. When
removing an attribute which is defined at the changed clabject’s types, it also
has to be removed in the type direction of the classification hierarchy to retain
attribute correctness (Definition 9.2.2). It is left to the modeler to configure the
emendation service so that the feature is also removed in the instance direc-
tion. This is not required to satisfy the attribute correctness well-formedness
property because instances are allowed to posses more attributes than their
types.

Add/Delete Connection. Connecting and disconnecting connections to
and from clabjects can effect connection correctness (Definition 9.2.3). Con-
nection correctness requires all instances of a clabject to have conforming con-
nections for type level connections which are defined as mandatory by their
lower cardinality constraint. All connections, both mandatory and not manda-
tory, must adhere to the cardinality constraints at the type level. In the case
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of the addition of a newly created connection, the user is not supported by the
emendation service since all connections are initially connected to clabjects
with a lower multiplicity of zero allowing instances of the connected clabject
to be valid without having instances of this connection connected. The delete
operation, however, can affect a clabject’s conformance to its type and should,
thus, be supported by an emendation service.

Add/Remove Supertype. Adding and removing supertypes of a clabject
in an inheritance hierarchy results in a change to the set of attributes pos-
sessed by the clabject with the added or removed supertype in its inheritance
hierarchy. In the case of the addition of a new supertype, the emendation
operation for adding an attribute has to be executed for each newly inherited
attribute and in the case of the removal of the supertype the remove attribute
operation has to be executed for each attribute which is no longer inherited.
The same applies to inherited connections.

Change Attribute Traits. The events which effect classification relation-
ships when traits of features are changed are changes to the durability, mutabil-
ity, data type, name and value of an attribute as indicated by Definition 9.2.2
describing attribute correctness. When a change is made to the durability of
an attribute, all model elements in the classification tree are analyzed to de-
termine whether the feature needs to be added or removed at instance levels.
Additionally, the durability value has to be recalculated for the whole classifi-
cation hierarchy. Mutability has an effect on the values of attributes. When
a change is made to the mutability of an attribute it has to be determined
whether the value of any instance’s attributes has to be set to the value de-
fined by its type. Like durability, the analysis has to be performed on the whole
classification hierarchy. A change to the data type and name of an attribute
requires this change to be made to all derived attributes in the classification
hierarchy. When changing the value of an attribute with mutability zero, the
new value has to be propagated to the effected attributes.

Change Clabject Traits. Changes to the traits of a clabject as well as
to the connections they are connected to can effect the validity of classifica-
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tion relationships. The only trait of clabjects which influences classification is
the potency trait as defined in the potency correctness (Definition 9.2.1) well-
formedness rule. A change to this trait immediately effects the maximum depth
of the classification tree that can be generated from the clabject. If the potency
value is reduced the depth of the classification tree has to be decreased, either
by deleting classification relationships, which creates untyped clabjects, or by
deleting clabjects which would otherwise have a negative potency (which is for-
bidden). Potency is recalculated throughout the whole classification tree after
a potency change no matter whether it is increased or decreased. Changes to
traits of connections and their connection ends (e.g. lower cardinality bound)
effect connection correctness (Definition 9.2.3). Hence, emendation operations
have to be offered to ensure that a clabject conforms to its types after changes
to such traits. These include 1. automatic addition and deletion of connec-
tions, 2. automatic renaming of connection end monikers, and 3. automatic
adjustment of connection multiplicities.

Data: changedClabject, changedTrait, oldValue, newValue, operation
Result: All instances are updated to conform after the operation

1 impact ← calculateImpact(changedClabject, changedTrait, oldValue,
newValue);

2 if impact 6= ∅ then
3 options ← queryOptionsFromUser(changedClabject, changedTrait,

oldValue, newValue, operation, impact);
4 impact ← reduceImpactBasedOnOptions(changedClabject,

changedTrait, oldValue, newValue, impact, options);
5 if impact 6= ∅ then
6 for current ∈ impact do
7 applyEmendationOperation(current, changedClabject,

changedTrait, oldValue, newValue, options);
8 end
9 end

10 end
Algorithm 9.2: The emendation service algorithm.
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Figure 9.4: A dialog for querying emendation parameters.

The algorithm applied by the emendation service is shown in Algorithm 9.2.
The expected input to the algorithm is the changedClabject, changedTrait, old-
Value, newValue and executed operation. The effect of the algorithm is to change
all model elements in changedClabject’s classification tree to ensure that all clas-
sification relationships are valid after a change. The emendation service first
uses the previously introduced impact analyzer algorithm to calculate the im-
pact of a change (line 1). As earlier mentioned, this impact is calculated in
such a way that the entire set of clabjects that are possibly effected by a change
are taken into account.

If the impact analyzer identifies an impact on the model (line 2), the user is
queried about the options that the emendation operation could apply (line 3).
These options, together with the possible parametrization of the emendation
service, allow modelers to use the emendation service in a way that best fits
their modeling style. For example, a user can apply a style in which types and
instances must always have exactly the same number of attributes or in which
attributes are only added to supertypes and never to subtypes.

Figure 9.4 shows a mockup of a dialog box querying the user for such
a parametrization decision. The title of the dialog shows the identified op-
eration ({Executed Operation}), e.g. Change Potency or Add Attribute. The
Changes group shows the applied change, e.g. a change to the durability of an
attribute. The Effected Model Elements group displays model elements effected
by the change (i.e. the impact). By deselecting model elements, a user can
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exclude them from consideration. The Emendation Parameters group allows the
emendation algorithm to be further configured to fit a modelers style of mod-
eling. For example, a modeler could choose to add an attribute to instances
only and not to types, or to add an attribute to supertypes of instances only.

Based on the parameters provided by the user, the impact is recalculated
(line 4) and the set of model elements to emend is potentially reduced. If the
recalculated set of impacted model elements is not empty, these elements are
emended (line 7). The emendation service applies the previously introduced
emendation principles during emendation.

9.4 Limitations

Even though the emendation service described above is fully functional and is
useful, there are many opportunities for improvements and new functionality.
For example, it is possible to support dynamic definitions of classification con-
sistency and emendation rules. Dynamically changing the consistency rules
without the need for tool re-deployment allows different styles of deep model-
ing to be created with relaxed or more strict classification rules as desired by
a modeler. Also, the addition of emendation rules on-the-fly allows them to
be adapted to specific modeling styles dynamically. To realize such a feature
the emendation service architecture can be enhanced as shown in Figure 9.5.
This enhancement proposes an additional Consistency Requirements definition
containing consistency rules as input to the Impact Analyzer and Emendation
Operations definitions as input to the Emendation Service. The emendation op-
erations can then be mapped to violated consistency requirements and thus
automatically selected and displayed to the user for selection. A version of
an impact analyzer running on a recorded change trace using this feature is
suggested in [128] for example. Their so-called Complex Change Detection
Engine takes definitions of changes as input so that it can detect new kinds of
changes on-the-fly.

The proposed parametrization of the emendation service can be enhanced
to allow different decisions to be taken on each subtree of the classification
tree rather than on the whole classification tree as currently suggested. To
realize this, the suggested emendation parametrization UI mock-up displayed
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Figure 9.5: The extended emendation service architecture after [16].

in Figure 9.4 needs to visualize the classification tree, allow subtree selection
and accept corresponding emendation parameters for each subtree. The emen-
dation algorithm as presented in Figure 9.2 would also have to be adopted to
focus on subtrees rather than always on the whole classification tree.

Currently the emendation service focuses on applying changes to models
which are stored locally. However, it is possible to build a web of deep models
which reference each other. The presented approach in this chapter does not
scale to such a scenario since local changes can also logically effect remote
model content linking to the changed model. To support such a case, change
recording technologies can be applied which record local changes and transport
them to remote models containing links to the changed model on request.
Research on this has for example been done in the ontology evolution domain
in [132] and modeling in [128]. Such approaches can be adapted to support
emendation and evolution in linked deep-model scenarios.

Another possible extension of the emendation service is to support clabject
retyping as suggested by de Lara et al. in [56]. This deep modeling approach
allows the types of clabjects to be changed dynamically during run-time. How-
ever, this is not covered by the emendation service described in this chapter
since it focuses on the definition and usage of deep user-defined languages
and therefore assumes a constructive rather than exploratory modeling ap-
proach [28]. In constructive modeling, instances are built from their types, so
the types of clabjects rarely change after creation. In exploratory modeling,
however, a bottom up approach is applied which builds types from instances,
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so possible types of instances are discovered after the instances have already
been created. If a user retypes a clabject it has to be manually ensured that
the classification conformance rules are adhered to in the current version of
the emendation service. In the tool described in [56] this is taken care of
automatically.

In [96], de Lara et. al describe an approach for multi-level model-satisfiability
checking and model completion. This approach can be used to check that a
model satisfies existing constraints after a change or to generate new model
elements to ensure that a model adheres to newly defined constraints.

When a model evolves, the artifacts accompanying it also have to be
evolved. These include constraints, transformations, interpreters, concrete
syntax etc. This, however, is beyond the scope of the emendation service
presented here but is an option for future research. A tool supporting the
evolution of constraints in a deep modeling framework is Cross Layer Modeler
[57]. The co-evolution of transformations is supported by the CO-URE tool
presented in [85], while Di Ruscio et al. [58] support abstract and concrete
syntax co-evolution.
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Chapter 10

Deep, Seamless,
Multi-format,
Multi-notation Modeling
with Melanee

In [26] the idea for a deep modeling environment was described for the first
time by Atkinson et al. This represented the start of a quest to develop a
deep modeling environment at the University of Mannheim which ended in
the deep modeling environment Melanee [8] developed as part of this thesis.
This section first describes the architecture of Melanee and then walks through
an example of how to create a language that demonstrates the key features of
the tool.

10.1 Melanee Architecture

Melanee is built using the Eclipse Platform as indicated by Figure 10.1. This
provides a stable, well-tested foundation with long maintenance cycles. The
specific features of Melanee are realized by leveraging state-of-the-art modeling
technology to the greatest extent possible. The metamodel, which is based on
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Figure 10.1: The Melanee architecture overview.

the definitions presented in [127] is implemented using EMF modeling technol-
ogy [213], a de-facto industry standard for model-driven development at the
time of writing. The query operations provided by the metamodel elements
are implemented using OCL body statements [177, 184], while constraints on
the metamodel are defined and validated using the Epsilon Validation Lan-
guage [139] of the Eclipse Epsilon Framework [187]. This language basically
resembles the OCL [184] when it comes to defining constraints but allows
them to be enriched with richer information for displaying error messages and
offering automatic quick fixes. The diagrammatic Deep-model Editor is imple-
mented using the Graphical Modeling Framework [94]. Wherever features
of the model editor are not provided by the default GMF modeling capa-
bilities, they are added by extending its XPand-based [69] code generation
templates using aspect-oriented technology [197]. The combination of these
technologies made it possible to implement Melanee almost exclusively with
well-established, model-driven technologies.

The core component shipped with the basic version of Melanee is the Mela-
nee Workbench which offers extension points and extension point management
features for all functionality except the hardwired diagrammatic predefined
language editor. All other parts of Melanee can be added and exchanged
to fit a particular user’s needs as indicated by the extension points in Fig-
ure 10.1. Default implementations of various extensions are available for instal-
lation via Melanee’s plug-in manager — namely, 1. a deep constraint language
(Deep-OCL), 2. a deep, rule-based transformation language (Deep-ATL), 3. dia-
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grammatic, pre and user-defined languages (Diagram DSL), 4. textual, pre and
user-defined languages (Text DSL), 5. tabular pre and user-defined language
(Table DSL), 6. form-based pre and user-defined languages (Form DSL), 7. a
service for deriving names of modeling elements (Designation), 8. a language to
model the configuration of the modeling environment itself (Application DSL)
and 9. a service for executing ontology like reasoning operations on a deep-
model (Reasoning). Custom applications are built on top of all these plug-ins
and the Melanee workbench. Examples are the deep orthographic modeling
environment Naomi [24], the Deep-Robot Modeling Framework [21] and the GeoWars
game [22].

The metamodel on which all plug-ins are build, the PLM, is shown in Fig-
ure 10.2. The root class for all meta types is Element which defines the name
attribute for all types and connects them to their LMLVisualizer. The LMLVisu-
alizer stores the visualization parameters for model elements when visualized
in the predefined, diagrammatic LML. These parameters are the location rel-
ative to the container (xLocation and yLocation), the size (width and height) and
an extensible list of rendering parameters in attributes. This list specifies how
each linguistic trait of a model element is visualized. The options range from
default, which applies the default information hiding rules of the LML, over
noshow, which always hides the trait, and tvs, which displays the trait value
in the trait value specification below a clabject’s name, to show which ensures
that the trait is always visible regardless of the LML elision rules. Addition-
ally, for each format the list stores what notation a model element is visualized
in. At the time of writing text, diagram, form, table and app are available. The
application (app) format is not a format in the usual sense, rather, its visualiz-
ers are used to configure the modeling workbench in which the format-specific
editors are displayed. Using the feature it is, for example, possible to configure
the menus, views and toolbars visible in the modeling workbench. The list of
LMLVisualizer attributes can, however, be extended as necessary.

User-defined visualization of model elements is defined through the Abstrac-
tUserDefinedVisualizers attached to the LMLVisualizer. As many AbstractUserDe-
finedVisualizers for as many formats and notations as needed can be attached
to an LMLVisualizer. For each format, there is a subclass of AbstractUserDe-
finedVisualizer which contains a format-specific notation description. The no-
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Figure 10.2: The in Melanee implemented PLM.

tations to which an AbstractUserDefinedVisualizer contributes are referred to in
the notations list. Furthermore, it is possible to configure whether to apply an
AbstractUserDefinedVisualizer to the instanceLevels only or in addition to the level
in which the visualizer containing model element resides (i.e. the type level).

The Domain class is the outer most container for DeepModels. It has a name
identifying the domain and an attribute storing the version of the employed
linguistic metamodel (plmVersion). DeepModels store the Levels which organize
domain content into ontological classification levels. All level content that is
contained in a container inherits from the OwnedElement type. These OwnedEle-
ments are either Packages, Correlations or Clabjects. The Inheritance and Classifi-
cation Correlations describe logical relationships between the domain concepts
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(i.e. Connections and Entities). The Inheritance relationship specifies whether
one class is a subclass of another. Superclasses are connected via the supertype
reference and subclasses via the subtype reference. An Inheritance relationship
can connect an infinite number of Subtypes and Supertypes enabling multiple
inheritance. Furthermore, an Inheritance can be characterized using the dis-
joint and complete attributes to make set theoretic statements about instances
of subclasses. Distinct classes were chosen for Supertype and Subtype to make
mappings to relational databases more natural since tables storing the connec-
tion information are explicitly created for super- and subclasses. The Classifi-
cation relationship expresses the fact that one Clabject is an instance of another.
Classifications are restricted to connecting Clabjects at adjacent levels and are
always stored in the container of the instance end. Four kinds of Classifications,
specified through the kind attribute, exist: instance, isonym, hyponym and instan-
tiation. Instance classifications do not specify further what kind of instances
are connected to the classification. Isonym and hyponym declare whether the
instance has exactly the same attributes as the ontological type (isonym) or
whether the instance has additional attributes beyond the minimal set needed
for conformance to the type (hyponym). Instantiation declares that an instance
has been created through instantiation rather than, for example, through type
inference by a reasoning service.

Domain content is expressed through subclasses of Clabject and their char-
acterizing Features. Two subclasses of Clabject exist which are Entities, repre-
senting entities in the problem domain, and Connections, describing relation-
ships between Entities in the problem domain. A Clabject’s potency is defined
by the potency trait. In the deep modeling approach supported by Melanee
Entities and Connections can be further characterized through Features. Thus,
all Connections are equivalent to association classes in the UML. Connections
are connected to Entities through ConnectionEnds which are stored in the Con-
nections. ConnectionEnds are not first class model elements themselves, they
exist to group ConnectionEnd traits so that Connections can be implemented
more efficiently. A ConnectionEnd specifies: 1. the moniker used to refer to a
ConnectionEnd, 2. whether the connection end is navigable , 3. lower and upper
cardinality constraints and 4. a kind (basic, aggregation, composition). A basic
ConnectionEnd does not convey any kind of containment or ownership relation-
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ship. Aggregation requires aggregated instances to be connected to a connection
with its connection end kind set to aggregation or composition. The aggregation
kind, however, places no restriction on where the instances are physically lo-
cated. Composition, the most restrictive kind, forces the instances to be owned
by an instance of the composition connection end and to connect to it through
a Connection of kind composition.

Features further characterize Clabjects. Two flavors of features exist as sub-
classes of Feature — Attribute and Method. Both have a durability trait describ-
ing their durability. Furthermore, Attributes have a mutability trait to define
the mutability of an Attribute’s value. In addition to the potencies, Attributes
have a value trait describing the current value of the attribute and a data type
describing the data type of the value. Data types are predefined in the PLM
through the Datatypes annotation attached to the EMF package containing the
metamodel. The annotation defines the available data types through tuples
mapping the data type name to a regular expression in order to check the
value trait of Attributes for correctness regarding their data type. Methods have
a body trait which defines the functionality of the method in a constraint or
action language. A method’s inputs and outputs are represented by Parame-
ters. Each Parameter has a name trait to identify the Parameter in the body of
the owning Method. The expression trait specifies the data type in a constraint
or action language’s syntax. By setting the output trait to true, a Parameter
can be declared as the result of a method.

All potencies — clabject potency, durability, mutability – and the lower and
upper bounds of ConnectionEnds are of data type EInt which is an integer data
type. To present the infinite *-value, -1 is used as in other modeling frame-
works such as the EMF.

10.2 Melanee Tool Walkthrough: Creating a
Domain-specific Language for Enterprise
Modeling

This walkthrough shows how to build a part of a language for enterprise ar-
chitecture modeling in Melanee. The language focuses on features needed to
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Figure 10.3: Melanee after start with the context menu for project and file
creation opened.

model the structure of companies, departments and their employees. In Archi-
Mate this language would be regarded as supporting the description of part of
the active structure of the business layer. Four formats are made available for
editing — namely, graphical diagrams for communicating the company struc-
ture, text for rapid content creation by a technical user, tables for providing a
condensed and efficient overview and forms for data administration by business
focused employees.

Since Melanee is an Eclipse-based product it uses the concepts of workspaces,
projects and files to organize information. The workspace, which is chosen
while starting Melanee, is the place where all information managed by Mela-
nee is located. Projects are then created in the workspace to organize files.
Figure 10.3 shows Melanee just after it has been started with the plug-ins
for reasoning and diagrammatic, textual, tabular and form-based languages
installed. The Melanee perspective is displayed as indicated by the Melanee
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text in the tool bar located in the upper right of Melanee. On the left the
Project Explorer is shown with the context menu invoked to provide menu items
for creating Melanee Projects and LML Diagrams. The view below the Project
Explorer shows an outline indicating which excerpt of the model is currently
being viewed in the model editor usually located at the center of the model-
ing environment. The bottom left shows the Properties view which allows the
properties of any selected element to be changed. Finally, located to the right
of the Properties view is the Visualization Editor which can be used to define the
visualization of model elements in all formats supported by Melanee.

Once a project has been created, which is named Quality Toys in the example
in Figure 10.4, files containing models can be added. Here, a file called Company
Structure.lml is created containing the company structure of the company to be
modeled. The model in the figure shows a first draft of the company structure
language. A deep model named Quality Toys Structure has been created con-
taining two levels — O0 and O1. The highest level is populated with the types
present in the domain to be modeled. These are CompanyType, DepartmentType
and EmployeeType. The connections between the model elements indicate that
a CompanyType is composed of an unlimited number of DepartmentTypes which
itself is composed of an unlimited number of EmployeeTypes. These concepts
are in the process of being instantiated at level O1. At the time when the snap-
shot was taken, a ToyCompany instantiates CompanyType, and DepartmentType
is instantiated by MarketingDepartment and ResearchDepartment. A ToyCompany
consists of one MarketingDepartment and one ResearchDepartment as indicated by
the instances of the connection between CompanyType and DepartmentType.

Model elements are instantiated by selecting the type to instantiate from
the Palette located on the right side of the deep model editor and clicking at
the location where the model element is to be placed. While selecting a loca-
tion for the model element to be instantiated, the user is given visual feedback
on whether the instantiation is allowed at the current location. If instantia-
tion is allowed at the current position the mouse cursor displays a small plus
sign, otherwise it displays a red strike-through circle. The elements to be in-
stantiated are grouped into groups for DeepModel Definition, Domain Definition,
Correlation Definition and DSL Elements. The DeepModel Definition group contains
Deep Model and Level since these are the outer most containers from which
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Figure 10.4: Melanee while building up the company structure modeling lan-
guage.

every deep model is composed. Enumeration is also contained in this group
since in the LML enumerations are owned by deep models and can be used
at all classification levels. The second group, Domain Definition, contains all
types which are needed to define domain content. These are Entity, Connec-
tion/ Role, Attribute and Method but not all of these are shown in Figure 10.4
for space reasons. Logical relations between domain elements are expressed
through correlations located in the Correlation Definition group, which contains
Classification and Inheritance with its Super-/Suptype endings. The instantiation
of ontological types is supported through the DSL Elements group. This group
allows ontological types to be instantiated in a context-sensitive way based
on the model element currently selected in the diagrammatic editor. In the
example, a model element at O1 is selected (MarketingDepartment) so the palette
offers the ontological types CompanyType, DepartmentType and EmployeeType for
instantiation at level O1.
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The properties view at the bottom allows the model element selected in
the diagrammatic editor to be modified. The tab pages on the left of the
view allow the model element to be edited either from the linguistic point
of view using the Linguistic tab page or the ontological point of view using
the ontological tab page. The Constraints tab page allows constraints in a deep
constraint language to be defined on the selected model element. Additionally,
a Visualization tab page is available for manipulating the LML visualization
of a model element but is not shown for space reasons. Here, the linguistic
properties of the selected MarketingDepartment model element are shown in the
properties view. Name and Potency of the MarketingDepartment can be set. The
Level Index entry is for informational purpose only and helps with orientation
on big deep models where the level of a model element is not immediately
obvious.

Above the selected MarketingDepartment model element a toolbar is dis-
played. This toolbar is extendable by plugins available with Melanee and
offers quick access to the most important actions available on the selected
model element. The first icon — I — is used to select the model element for
instantiation at a lower level. The arrow pointing to the bottom next to the
I indicates that more than one option for instantiation is available. These are
instantiating the model element without content and instantiating the model
element and its content together in one step. The following two tools — ?S,
?T — set the current model element as the source or target element for the
reasoning service. The next four tools — G, Te, Ta, F — set the format and
notation to be used for the selected model element, in this case the graphi-
cal/diagrammatic (G), textual (Te), tabular (Ta) and form-based (F) formats.
The drop-down values of the selection shows the notation to display. Since no
user-defined notations have been created at the time the snapshot was taken,
only Derived and LML are offered. Selecting Derived causes the model element
to use the notation selected to visualize its parent container, which is the level
O1 in the case of MarketingDepartment selected here, whereas the selection of
LML uses the predefined LML language for visualization. The last tool — A —
switches the modeling environment into a layout defined through application
visualizers. Again, different notations (i.e. layouts) are provided by the drop
down list of the tool.
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Located at the top of the editor are tools related to the editor as whole
and not to a single, selected model element. The first two groups of tools
help align multiple selected model elements with options like left-align, center-
align etc. This group is followed by a group with a single icon which opens
the properties view if it is closed. The next group contains a drop-down box
which offers different zoom levels for the diagram followed by a tool group
which contains a button to open a dialog for discovering remote deep models
and linking content from these remote models into the currently edited deep
model. Finally, a selection is available to select whether the model shall be
validated against consistency rules of the Melanee or MetaDepth approach.

Once the domain model has been created it can be enriched by making
further changes. In the current state of the example only the name attributes
(companyName, departmentName, employeeName) have been modeled. When new
information is added, the consistency of the model can be maintained us-
ing the emendation service which automatically detects changes to the model
and offers options to keep the classification relationships valid. When adding
the name attributes to CompanyType, DepartmentType and EmployeeType in Fig-
ure 10.4 the emendation service ensured that these attributes were also added
to existing instances as necessary

In Figure 10.5 the salary attribute is currently being added to EmployeeType
while the snapshot is taken. This change is detected by the emendation ser-
vice which calculates that MarketingExpert and Researcher need to be emended,
i.e. also need the salary attribute. The user is notified of this need by the
emendation service through the dialog shown in the bottom left of the figure.
The dialog queries the user for the traits of the attribute to be added — Name,
Datatype, Durability and Mutability. Further configuration of the emendation
service is possible through the checkboxes at the bottom of the dialog. These
options include whether duplicates should be prevented by the emendation op-
eration or whether certain directions in the classification hierarchy shall not be
considered by the emendation service. The emendation service can be switched
off globally by deselecting the tick in the Enable emendation service checkbox, and
can be re-enabled in the global Melanee preferences dialog. By pressing OK
the operation is executed on the whole model, while by pressing Cancel the
operation is only executed for the changed model element. In the example the
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Figure 10.5: Configuration of the emendation service to add the salary attribute
to EmployeeType.

Add attributes to supertypes only option is checked so that the attribute is added
only to Employee, the supertype of MarketingExpert and Researcher. Furthermore
the emendation service is configured to execute changes in both the type and
instance directions and prevent duplicated features where necessary.

After completing the model with all attributes and types, user-defined nota-
tions can be defined. In this case a diagrammatic notation for communicating
the company structure, a textual syntax for fast model content creation, a tab-
ular syntax for analyzing data and a form-based syntax for daily work tasks are
created. The graphical syntax represents instances of CompanyType as a house,
instances of DepartmentType as boxes dividing the house and the EmployeeTypes
as a group of stickmen. The visualization of EmployeeType is further refined
by MarketingExpert and Researcher which define a stickman with an M at its top
right-hand side to represent the former and a stickman with an R at its top
right-hand side to represent the latter. The textual syntax represents compa-
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Figure 10.6: Diagrammatic user-defined language definition for Researcher using
aspect-oriented features.

nies and departments through the keyword company and department followed
by their name and their content in curly brackets. CompanyTypes contain De-
partmentTypes and DepartmentTypes contain EmployeeTypes. EmployeeTypes are
represented by their name followed by their attributes (salary) in brackets and
terminated by a semicolon. The form-based syntax allows all attributes to be
edited through text boxes and uses list boxes to add, remove and navigate to
the content of CompanyTypes and DepartmentTypes. In the tabular format the
connections and attributes of a model element are visualized through columns
which can also be used for navigation.

The example in Figure 10.6 shows the definition of the user-defined visu-
alization of Researcher. To gain more space for the deep model editor, the
project explorer and outline are collapsed. The visualization is defined by
adding a Graphical DSL Visualizer to the LML Visualizer of the model element
in the Visualization Editor at the bottom right of the screen. The visualizer
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is named after the notation, here Structure. Multiple visualizers of the same
format can be defined but need to have different notation names. A user can
later select one of the defined notations in which a model element is visual-
ized from the format drop-downs in the toolbar (G, Te, Ta, F). In the example
of Figure 10.6 the user-defined language definition for Researcher is shown in
the Visualization Editor. The shape itself is defined in the visualizer defined on
Employee (not shown here) and Researcher provides an aspect only to modify
this shape. The visualizer of EmployeeType consists of two vertically stacked
(layout) rectangles not displaying their border. The top rectangle contains the
stickman pictogram and is named icon while the lower rectangle contains the
information about the employee (here employeeName and salary). The Researcher
for which the visualizer is shown in the Visualization Editor customizes the icon
of the user-defined symbol. The stickman is replaced by a stickman with an R
at its upper right-hand side to depict the research nature of the employee.

Customizations of visualizations by ontological types or supertypes are de-
fined by means of Aspects. Around is selected as the kind of the aspect resulting
in the replacement of the definition called icon in the merged graphical visu-
alizer. The provided condition is true, which applies the aspect to all instances
of Researcher. The aspect consists of the Rectangle defining the upper part of
the user-defined diagrammatic visualization. This rectangle contains a Table
Layout with one column. In this, a stickman figure with an R at its upper right-
hand side is placed. Defining notations in other formats can also be achieved
using the tree-based Visualization Editor. For this purpose form, table and text
visualizers can be added as children to the LML Visualizer.

Once all the shapes have been defined, the user can start to model with the
user-defined language in Figure 10.6. In the example, the whole O2 level has
been switched to the Structure notation. It is also possible to switch individual
model elements to a specific notation, but this is not shown in this example.

The resulting workbench after defining and invoking diagrammatic, tex-
tual, tabular and form-based user-defined languages on the company structure
modeling language is displayed in Figure 10.7. The workbench includes four
format-specific editors, a diagrammatic editor shown on the left of the screen
(the palette located to the right of the editor is collapsed for space reasons),
and a form-based, a table-based and a text-based editor stacked vertically on
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Figure 10.7: The Toy Research department edited in diagrammatic, form-based,
tabular and textual user-defined languages.

the right-hand side of the screen. The department Toy Research is selected in
all four editors and can be updated equally in any of them. The selection is
indicated in the diagrammatic editor by a square surrounding the Toy Research
shape, in the form editor by showing the department name in the form title,
in the tabular format through its breadcrumb and in the textual editor by
placing the cursor at the selected element (not shown here because the editor
is inactive).

Usually a modeler would not interact with all four formats at the same
time but only in a customized environment that offers the options needed for
the task in hand. Such a customized environment can be defined using an
application visualizer for the container of the model excerpt to be edited. In
this case it would be defined for the whole level since it is intended that all
level content is editable. The visualizer can be activated through the toolbar of
the model element it is defined at. After activation, the environment switches
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to the layout defined in the application visualizer. The application visualizer
creator can define which views, menus, toolbars and pages in the Properties
View are visible to the model user. Additionally, it is possible to define what
format and notation the model content is to be edited in when activating an
application visualizer. In the model shown here four application visualizers
can be envisaged, one for the diagrammatic format and notation, one for the
textual format and notation, one for the tabular format and notation and one
for the form-based format and notation. All four show the Project Explorer
but hide all other views. The toolbars beneath the main menu are hidden
as well as all main menu entries except the File menu. The graphical editor
additionally shows the Properties View with only the Ontological tab since all
other options are irrelevant to the user of a modeling language. This allows
four different applications to be shipped for four different stakeholders based
on one underlying deep model.
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Evaluation

This chapter evaluates to what extent the previously described technologies
and their combination within one modeling approach address the seven re-
quirements for a modeling environment presented in the introduction. It does
this by using the deep modeling approach to model a case study and compar-
ing it to other models developed using an alternative state-of-the-art modeling
environment. In each of the following sections one of the seven requirements
is presented in the context of the company structure modeling language used
throughout this thesis. After first showing how the requirement is addressed
with the technology developed in this thesis the section examines how it is
addressed by the selected state-of-the-art modeling tool and then presents a
comparison.

The criteria for selecting the competing state-of-the-art comparison tool for
the evaluation are as follows: first, the tool has to be widely adopted and best-
in-class, second, the complete set of requirements defined in the introduction
needs to be addressable in some form, and third, the tool must be freely avail-
able to public. The last point excludes some commercial tools, but guarantees
that the results of the case study can be reproduced without commercial li-
cense obstacles. Besides this in depth comparison to one tool, the related work
chapter provides a more comprehensive comparison of the Melanee technology
to all major academic and industrial tools available on the market at the time
of writing.
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The environment that is chosen is a combination of various subprojects from
the Eclipse Modeling Project [66, 213] which is one of the most successful and
widely distributed open source modeling platforms available at the time of
writing. The different EMF subprojects used in the evaluation are presented
when they first appear.

11.1 R1: Deep Modeling

The company modeling language features more than one classification level
starting with a very general language specific to the domain of modeling com-
pany structures. This level of abstraction provides types for modeling different
kinds of companies, departments and employees which can be instantiated to
model types specific to the kind of company to be modeled. This means
that company, department and employee blueprints are introduced into the
language which are customized for modeling the company at hand. These
blueprints are then further instantiated to model the actual company structure.
The two instantiation steps described here imply three different classification
levels: first, the classification level holding the very general company structure
modeling language, second, the classification level holding the language which
is tailored towards a specific kind of company and third, the structure of the
actually modeled company.

11.1.1 Deep Model of the Company Structure Language

The realization of the deep company structure modeling language using Mela-
nee is rather straightforward because the LML-based deep modeling approach,
implementing the work of Kennel [127], natively supports modeling over an un-
limited number of classification levels. In this approach each of the languages
is defined at its an own classification level and model elements at one level
are classified by model elements at a more abstract (i.e. higher) classification
level. The corresponding deep model is displayed in Figure 11.1. The generic
types supporting the creation of a company-specific language are placed at
level O0. These are CompanyType for the creation of different types of com-
panies, DepartmentType for the creation of different types of departments and
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several EmployeeTypes, namely ManagementEmployeeType, FullTimeEmployeeType
and TemporaryEmployeeType. All of the types at this level have potency of two
so that they can be instantiated on the following two levels resulting in a deep
model with three levels in total. The only type that does not have potency two
is EmployeeType which serves as the supertype for the different employee types.
The instance of this type is an abstract supertype for the different employees
modeled at level O1. The possible combinations of the generic type’s instances
are indicated by the connections with potency two. CompanyType instances
are connected with their corresponding DepartmentType instances through the
departments connection and DepartmentType instances can be connected with
instances of EmployeeType. Moreover, a ManagementEmployeeType is connected
to all EmployeeTypes it manages via the manages connection. The generic com-
pany structure modeling types are further characterized by the definition of
attributes. All attributes at level O0 are defined with potency two so that they
endure across the following two classification levels. CompanyType is charac-
terized by a name and a legalForm (e.g. Ltd.). DepartmentTypes own attributes
describing their name and location. Each EmployeeType is described by a name,
its salary and expertise.

To create a company-specific modeling language, the generic types from
the O0 level are instantiated on the second level, O1. A ToyCompany is defined
as type representing a company creating toys. In this example a ToyCompany
usually consists of two different types of Departments: one MarketingDepartment
and one ResearchDepartment. Different Employees can work in these Departments.
The language shown here defines Researchers, MarketingExperts, Interns and Pro-
jectLeads managing other Employees. All clabjects and connections at level O1

have a potency of one except two clabjects, which are Department and Employee
with a potency of zero. These, therefore, play the role of abstract clabjects for
their subtypes. The only clabject not typed by a clabject from O0 is Depart-
ment. Department is introduced with potency zero to simplify the definition of
the connection between Departments and their Employees because a connection
from each Department to each single Employee would have to be created other-
wise. For the same reason Employee is instantiated at level O1 as a superclass
to be connected to the ProjectLead so that ProjectLeads can manage any kind
of Employee. For all subclasses of Employee a default value for the expertise at-
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Figure 11.1: Deep Model of the Quality Toys Inc.
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tribute is set. Except for Interns which do not have any expertise given that
they are still learning. An attribute is added to ProjectLead naming the project
which is currently being led (projectName). Also a default value for each clab-
ject’s name attribute is set to the linguistic identifier of the clabject. A special
value is set for the location of ResearchDepartment, which is set to Mannheim
with a mutability of zero. Setting the mutability to zero changes the nature of
this value from a default value to a constant value which cannot be changed
at instance levels. Hence, ResearchDepartments can only exist in Mannheim.

On O2, the most concrete level, the QualityToysInc company is modeled us-
ing the types made available at level O1. The QualityToysInc company consists
of two departments which are OnlineMarketing and ToyResearch. The ToyRe-
search department is located in Mannheim which is the constant value defined
by its type ResearchDepartment and the OnlineMarketing department is located
in Madrid. Bob, a researcher, and Ann, an intern, work in the ToyResearch de-
partment. The expertise of Bob is RC Car Research and he has a salary of 48k.
Ann does not have any expertise because she is an intern, and earns a salary of
15k. The ToyResearch department also has Steve, a project lead, responsible for
managing Ann and Bob. Steve’s expertise is Management, his salary is 120k and
he leads the Fancy Car project. Two other employees who are also managed by
Steve work in the OnlineMarketing department. These are Bree, an intern with
no expertise and a salary of 14.5k, and Tim, a marketing expert with expertise in
Online Marketing and a salary of 36k.

11.1.2 Non-deep EMF Model of the Company Structure
Language Example

The model displayed in Figure 11.1 shows that the deep company structure
modeling language can be modeled using the standard constructs of Melanee
without applying any workarounds. However, modeling this scenario using
a non-deep modeling language such as the EMF forces a modeler to squeeze
the three classification levels of the company structure modeling language into
two. Additionally, one of these two levels is fixed while the other is soft (i.e.
editable) when modeling. Hence, a decision about which parts of the company
structure language are hard-wired and which are soft has to be made upfront
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when developing the company structure modeling language. In [151] de Lara
et al. present modeling patterns which make more than one classification level
available to a modeling language limited to one hard-wired and one soft-wired
classification level. These patterns are applied in this context to model the
deep company structure modeling language using a non-deep framework.

In the example, two patterns are identified as applicable for building a
minimalistic version of the deep company structure modeling language, the
type-object and the dynamic features patterns. Below these two patterns are
used to build the company structure modeling language in the EMF. The
choice of EMF rules out solutions involving stereotypes or powertypes since
they are not fully supported in the EMF.

Type-object Pattern

To build up the structure of the company modeling language, the type-object
pattern is employed first. All types residing at level O0 in the deep version
are put at level M2 in Figure 11.2 and are thus hard wired into the two level
company structure modeling language. These are CompanyType, Department-
Type and EmployeeType inheriting from the abstract metaclass ElementType. O1

instances are modeled as instances of these types at level M1. To simulate deep
modeling, in this case modeling instances of instances of the types defined in
M2 (i.e. O2 instances), the type-object pattern is applied. This pattern adds a
metaclass representing these instances to M2. Here Company, Department and
Employee as subtypes of the abstract metaclass ElementInstance are added as
types for instances of the corresponding types (e.g. instances of Company are
instances of CompanyType instances). To represent this type/instance relation-
ship in the model, the type reference pointing from ElementInstance to Element-
Type is introduced. This reference is redefined at each subtype to ensure that
instances are instance of the correct type. Hence Company instances, for exam-
ple, can only be instances of CompanyType instances. The redefines property
is not available for references in EMF but is used here to reduce the complex-
ity of the example. The classes representing the type instances duplicate the
attributes and references defined by the classes representing their types. This
allows attribute values to be set and model elements to be connected at the
type and instance level in an appropriate way.
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Figure 11.2: EMF Model of the Quality Toys Inc.
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The different kinds of employees, FullTimeEmployeeType, TemporaryEmploy-
eeType and ManagementEmployeeType, are modeled as subtypes of EmployeeType.
In addition, ManagementEmployeeType has a manages reference to EmployeeType
defined which represents all EmployeeTypes that can be managed by a cer-
tain type of manager. ManagementEmployee is added as a subtype of Employee
to connect instances of ManagementEmployeesTypes to their managed Employ-
ees. ManagementEmployee redefines the type reference of Employee so that only
instances of ManagementEmployeeTypes manage other employees. Additionally
two OCL constraints are applied to the model. The first constraint on Employee
(Constraint 11.1.1 line 1-3) ensures that no Employee instance is connected to
ManagementEmployeeType via a type reference instance, i.e. only ManagementEm-
ployees can be instance of ManagementEmployeeType. The second constraint
(Constraint 11.1.1 line 4-5) ensures that ManagementEmployees manage only
instances of EmployeeTypes which are also managed by their ManagementEm-
ployeeType.

Constraint 11.1.1 (Constraints on M2 of Figure 11.2).
1 context Employee
2 self.oclIsTypeOf(Employee) implies
3 not type.oclIsKindOf(ManagementEmployeeType)

4 context ManagementEmployee
5 manages->forAll(e | type.manages->includes(e.type))

On the M1 level in Figure 11.2 the O1 and O2 levels of the deep version
are modeled. A ToyCompany is modeled together with a choice of departments
(ResearchDepartment, MarketingDepartment) of which such a ToyCompany can be
composed. The ResearchDepartment employs Researchers, Interns and ProjectLeads.
MarketingExperts and Interns are employed in the MarketingDepartment. These O1

types are then instantiated via the type relationships. ResearchDepartment is
instantiated by ToyResearch and MarketingDepartment by OnlineMarketing. Ann,
an Intern, Bob, a Researcher, and Steve, a ProjectLead work in the ToyResearch
department. Whereas Bree, an Intern, and Tim, a MarketingExpert, work in the
OnlineMarketing department.
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The example in Figure 11.2 deviates from the deep version in that the de-
partments and employees defined at O1 are directly connected with each other
in the non-deep version. In the deep version, however, all employees can work
in all departments because Department, the supertype of ResearchDepartment
and MarketingDepartment, is connected to Employee. In the non-deep version,
(i.e. EMF) no inheritance is supported on the M1 level. Hence, the depart-
ments are directly connected to the types of employees that work in them. If
in the future it is intended that an instance of MarketingExpert shall work in
a ResearchDepartment, these two types would have to be connected with each
other on M1. In contrast, in the deep version this is achieved by connecting
supertypes.

Constraint 11.1.2 (Ensuring Correct Instance Linking).
1 context Company
2 department->forAll(d | type.department->includes(d.type))

3 context Department
4 employee->forAll(e | type.employee->includes(e.type))

Based on the metamodel at M2 of Figure 11.2, the Department and Employee
instances can be connected independently of their types. For instance, Bob
could work in the OnlineMarketing department even though no link between its
type, Researcher, and the type of OnlineMarketing, MarketingDepartment, exists.
To ensure the correct linking of instances of types defined at M1, additional
constraints shown in Constraint 11.1.2 are defined. The first constraint (line 1 -
2) ensures that instances of a Company are linked to instances of Department
as defined by their types (CompanyType and DepartmentType instances) and the
second constraint (line 3 - 4) ensures that instances of Departments are linked
to instances of Employees to which their type (instance of DepartmentType) is
linked.

Dynamic Features Pattern

In the deep version of the example a projectName attribute describing the name
of the project being led is added to ProjectLead. The dynamic addition of at-
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tributes to types defined in M1 is realized through the application of the dy-
namic features pattern. By applying this pattern ElementType, representing the
types at M1, is connected to Feature representing the type facet of attributes.
ElementInstance, representing the instances at level M1, is connected to Slot rep-
resenting an attribute’s instance facet. Each Slot is connected to its type facet
(Feature) via a type reference.

The pattern is applied to ProjectLead defining the ProjectName attribute as
an instance of Feature. Hence, all instances of ProjectLead can define Slots
providing a value for the managed ProjectName. Here, Steve sets the value
Fancy Car for the project he manages through the ProjectName slot which is an
instance of the ProjectName feature.

Constraint 11.1.3 (One Slot for each Feature).
1 context ElementInstance
2 type.feature->forAll(f | slot.type->includes(f))

The metamodel at M2 does not specify that an ElementInstance has to define
one Slot for each Feature defined by its ElementType. Hence, in the example
it is possible to create ProjectLead instances which do not provide a Slot for
the ProjectName feature. Constraint 11.1.3 defined on ElementInstance forces
an instance to have one Slot for each Feature defined at the type. The con-
straint first navigates to the ElementInstance’s type and collects all of its de-
fined Features (type.feature). Then, for each Feature of the type (→forAll(f|...)), it
checks whether ElementInstance has a Slot with this Feature as its type (slot.type-
>includes(f)). This requirement is not expressible via the definition of cardi-
nalities on references between Feature and Slot.

Application of Further Patterns

The non-deep EMF version of the deep model presented so far features ev-
erything needed to build the deep company structure example as shown in
Figure 11.1. However, to simulate the full power of deep modeling, additional
patterns have to be employed. These patterns, however, have not been intro-
duced into the non-deep company structure modeling language as displayed in
Figure 11.2 for space reasons. In the following sections the dynamic auxiliary
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Figure 11.3: Addition of the dynamic auxiliary domain concepts pattern.

domain concepts pattern, for adding new types and their instances to M1, the
relation configuration pattern, for setting cardinalities for connections between
types and instances defined at M1 and the element classification pattern for
introducing super and subtype relationships between types at level M1 are
introduced.

Figure 11.3 shows an excerpt of the non-deep company structure language
to which the dynamic auxiliary domain concepts pattern is applied. To allow
new types to be introduced at M1 the metaclasses ElementType and ElementIn-
stance are no longer abstract. Additionally, relatedTo references pointing from
ElementTypes and ElementInstances to themselves are added. These generic meta-
classes together with the Feature and Slot metaclasses can be used to model
new types and their instances at M1

In the example, Customers relatedTo ToyCompanies are added as instance of
EntityType. The type is further described by Feature instances holding the
customers name and turnover. The Customer is instantiated by QualityShop filling
the Name slot with the value Quality Shop and the Turnover slot with the value
450k. The QualityShop is relatedTo the QualityToys company.

187



Chapter 11. Evaluation

The metamodel shown at level M2 of Figure 11.3 does not ensure that
links of instances conform to the links of their type. Thus, in the example,
the QualityShop could be connected to any object such as any department or
employee. Constraint 11.1.4 ensures that instances of a type are linked to
instances of types to which their type is linked.

Constraint 11.1.4 (Correct Linking of Dynamic Domain Concepts).
1 context ElementInstance
2 relatedTo→forAll(r | type.relatedTo→includes(r.type))

Until now it is not possible to refine the cardinalities between model ele-
ments at the M1 level which corresponds to the O1 and O2 levels of the deep
version. Using the deep modeling approach this is possible out-of-the-box. The
cardinality at any connection end can be chosen as desired and the constraint
it defines is enforced across all following classification levels. To achieve the
same in the non-deep version, the relation configurator pattern has to be applied
as shown in Figure 11.4. In this example a class representing the connection
at the type level (RelatedToType) is associated with ElementType. Using this
metaclass, cardinalities (min, max) can be defined between linked ElementType
instances. The connection cardinalities are enforced via Constraint 11.1.5 for
all RelatedTo instances connecting instances of connected types.

Constraint 11.1.5 (Cardinality Constraints).
1 context ElementInstance
2 type.relatedTo→forAll(type | let instanceCount:Integer =
3 irelatedTo→select(instance | instance.type = type)→size()
4 in (instanceCount ≤ type.max or type.max = -1)
5 and instanceCount ≥ type.min
6)

The constraint in the context of ElementInstance checks for all connections
at the type level (type.relatedTo→ forAll()) whether the size of the instance
connections (irelatedTo→select(instance | instance.type = type)→size()) is less than
or equal to the max attribute value (instanceCount ≤ type.max) and greater than
the min value (instanceCount ≥ type.min). Also unbounded cardinality, expressed
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Figure 11.4: Addition of the relation configurator pattern.

as an upper bound of -1, is supported by the constraint (or type.max = -1). In
the case of an unbound maximal cardinality the check for the upper bound is
simply skipped.

The last modification to the non-deep company structure modeling lan-
guage is the application of the element classification pattern. Until now the
EMF-based version has no inheritance relationships on M1 in contrast to the
deep version. For a model of this size it is no problem to explicitly link all
types at M1 with each other. For bigger models, however, it is desirable to link
supertypes and inherit links to subtypes. For this reason the element classifi-
cation pattern, which adds references representing inheritance relationships to
M1, is applied.

Figure 11.5 shows the application of the element classification pattern to an
excerpt of the non-deep company structure modeling language. ElementTypes
can define inheritance relationships via the super/sub reference which is refined
at each subtype of ElementType so that types can only inherit from the same
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Figure 11.5: Addition of the element classification pattern.

type, i.e. DepartmentTypes inherit from DepartmentTypes etc. On level M1 Re-
searchDepartment and MarketingDepartment use the super/sub reference to express
their subtype relationship to Department and MarketingExpert and Researcher use
the reference to express that they are subtypes of Employee. The two super-
types Department and Employee are connected via an instance of the employee
reference, expressing the fact that all Employees can work in all Departments.
Without this modification, each department type is directly connected to all
types of employees working in the department. This creates complexity when
adding new types of employees or when employee types can be assigned to
department types to which they could not be assigned before. After applying
the classification pattern this complexity is reduced and the deep and non-deep
version of the model are equivalent in this regard.

Constraint 11.1.6 ensures that instances of types are only linked in the
way defined by their type. The constraint checks for each connected employee
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(employee->forAll(...)) if the Department’s type or the supertypes of the type
(type->append(type->closure(super)) is connected via an employee reference to the
type of the connected employee or one of its subtypes (.employee→closure(sub)→
includes(e.type)).

Constraint 11.1.6 (Ensuring Correct Subtype Instance Linking).
1 context Department
2 employee->forAll(e | type->append(type->closure(super)).employee
3 →closure(sub)→includes(e.type))

11.1.3 Metric-based Comparison for R1

To compare the deep and non-deep versions of the company structure mod-
eling language different metrics can be applied. The first metric applied here
is accidental complexity [38] followed by several metrics from the domain of
object-oriented design.

Following Atkinson and Kühne [31], the accidental complexity of a model
can be measured by counting the difference in the number of model elements
present in alternative versions of the measured model. In this evaluation the
complete deep version of the company structure modeling language as shown
in Figure 11.1 and the EMF version as shown in Figure 11.2 are compared. For
the comparison, the EMF version with the type object pattern and dynamic
features pattern is chosen because this is the minimal EMF model which is
needed to represent the same domain content as the deep version of the model.
The other applied patterns are included to make the feature set of the non-
deep version match that of the deep version (e.g. inheritance of clabjects at
intermediate levels), but are not strictly needed to convey the same amount
of information. In general, however, it can be observed that applying these
patterns increases the number of model elements in the EMF version and thus
the accidental complexity, impacting the result of the evaluation even more
negatively for the EMF model.

The results of the accidental complexity analysis are summarized in Ta-
ble 11.1 and show a clear advantage for the deep version even when compared
to the minimal EMF solution. The deep version uses 23 clabjects compared
to 31 classes in the EMF version which is an increase of 34.78%. The increase
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Metric Deep EMF Accidental Complexity %

Class Count (DSC) 23 31 8 34.78%
Connection Count 18 47 29 161.11%
Inheritance Count 9 12 3 33.33%
Well-formdness Rules 0 5 5 —
Total 50 95 45 90.00%

Table 11.1: Calculation of accidental complexity to express the whole model.

in the number of classes is caused by the application of the type object pattern
which adds one class representing the instance facet of a type to each type.
Additionally, four classes are added to realize the dynamic features pattern.
In general, however, the impact of the type object pattern on the number of
classes becomes insignificant when the number of O2 instances greatly exceeds
the number of model elements at the upper levels, as accidental complexity
is only introduced to the O0 and O1 levels in the example. The dynamic fea-
tures pattern, in contrast, can have a more significant impact on the number of
classes depending on the number of features introduced in O1.

The increase of accidental complexity is even more dramatic when looking
at the number of connections present in the deep and EMF versions of the
company structure modeling language. The EMF version features 47 refer-
ences compared to 18 connections in the deep version which corresponds to
an increase of 161.11%. When first looking at the model, the vast number of
references between model elements is not immediately obvious because some
references are rendered as attributes in Figure 11.2 for reasons of readability.
The increase is mainly caused by the application of the type object pattern
which adds one reference between the type and instance facets of classes at
M2 and M1. Additionally more relationships exist at M1 because of the lack
of inheritance at this level. The introduction of the classification pattern as
previously shown would not dramatically improve this number because it intro-
duces additional references and constraints on M2 for defining the inheritance
capabilities of the company structure modeling language and additional links
on M1 for modeling the inheritance relationships through references. The pat-
tern, however, can decrease complexity in scenarios with a large number of
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Figure 11.6: EMF model corresponding to O0 and O1 of the deep company
structure modeling language.

inter-connected model elements at O1.

Also, the number of inheritance connections defined in the EMF version
is 33.33% higher (9 deep model, 12 EMF) and the number of well-formedness
constraints in the EMF version is five compared to zero in the deep version.
In total the deep version is modeled using 50 modeling constructs, whereas
the EMF version is modeled using 95 modeling constructs. This corresponds
to a difference of 45 modeling constructs and an additional overall accidental
complexity of 90%.

In terms of accidental complexity, therefore, the deep version has a clear
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Metric Description

DSC number of clabjects/classes
NOH number of inheritance root classes
ANA average number of subclasses
ANDC average number of distinct connected classes (outgoing references)
ANAG average number of compositions
ADI average inheritance tree depth
NAC number of abstract (potency zero) clabjects
ANAT average number of attributes
AWF average number of well-formedness rules
AAP average number of additional operations

Table 11.2: Object-oriented metric descriptions.

advantage over the EMF version. Besides the accidental complexity metric
it is also possible to apply object-oriented design metrics [46, 158, 198] and
quality attributes [33] to metamodels as shown by [160]. In this evaluation, the
quality attributes are calculated for the O0 and O1 levels of the deep company
structure modeling language (Figure 11.1), because these two levels define the
company structure modeling language used for modeling a specific company,
i.e. Quality Toys Inc. in the example. The corresponding classes of the EMF
version are shown in Figure 11.6.

The metrics measured on the deep and EMF version of the metamodel
are described in Table 11.2. The descriptions show that all metrics are de-
termined by counting certain types of modeling constructs. The DSC metric,
for example, counts all clabjects/classes, and the NOH metric counts all class-
es/clabjects which are the root of an inheritance hierarchy. The metrics are
assigned to design properties in Table 11.3 according to a one-to-one mapping
except in the case of the Complexity design property which is a composition
of the average of the well-formedness rules defined per class/clabject and the
average of the additional operations per class/clabject. For two design proper-
ties from the object-oriented design space, Encapsulation and Cohesion, no metric
is calculated following the approach of [160]. These two concepts have been
assigned a default value of one.
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Design Property Metric Deep EMF

Design Size (DeS) DSC 15 22
Hierarchies (Hier) NOH 3 2
Abstraction (Abs) ANA 3 3
Encapsulation (Enc) — 1 1
Coupling (Coup) ANDC 0.33 1.09
Cohesion (Coh) — 1 1
Composition (Compo) ANAG 0.33 0.64
Inheritance (Inh) ADI 1 2
Polymorphism (Pol) NAC 2 2
Messaging (Mes) ANAT 1.73 1.59
Complexity (Compl) AW F +AAP

DSC
0+0
15 = 0 5+0

22 = 0.23

Table 11.3: Design properties of the modeling language definition (O0 + O1).

Comparing the metrics and, thus, the design properties in Table 11.3 shows
that both versions of the company structure modeling language are quite sim-
ilar. The most significant differences are the design size which is 15 for the
deep model compared to 22 for the EMF model, a coupling of 0.33 for the
deep model compared to 1.09 for the EMF version, a composition of 0.33 for
the deep model compared to 0.64 for the EMF version and a complexity of 0
for the deep model compared to 0.23 for the EMF version. The difference in
design sizes can be explained by the increased accidental complexity produced
by applying the type object pattern (addition of ElementType, ElementInstance,
Company, Department, Employee) and the dynamic features pattern (addition of
Feature, Slot) to the EMF model to allow the deep company structure to be
modeled. The increase in coupling is caused amongst other things by the type
object pattern which assigns each instance metaclass a second reference to its
type metaclass at M2, e.g. the reference between Company and CompanyType.
In general, references have to be used to express language constructs which in
deep modeling are present out-of-the-box, raising the number of defined ref-
erences per class. The complexity difference arises from the fact that the type
object pattern and dynamic features patterns are accompanied by constraints
ensuring well-formedness rules which cannot be expressed through metamod-
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Quality Attribute Deep EMF

Reusability
(− 1

4 Coup + 1
4 Coh + 1

2 Mes + 1
2 DeS)

8.53 11.77

Flexibility
( 1

4 Enc− 1
4 Coup + 1

2 Compo + 1
2 Pol)

1.33 1.30

Understandability
(− 1

3 Abs+ 1
3 Enc− 1

3 Coup+ 1
3 Coh− 1

3 Pol− 1
3 Compl− 1

3 DeS)
-6.16 -8.82

Functionality
(0.12∗Coh+0.22∗Pol+0.22∗Mes+0.22∗DeS+0.22∗Hier)

4.90 6.19

Extendability
( 1

2 Abs− 1
2 Coup + 1

2 Inh + 1
2 Pol)

2.84 2.96

Effectiveness
( 1

5 Abs + 1
5 Enc + 1

5 Compo + 1
5 Inh + 1

5 Pol)
1.47 1.73

Table 11.4: Quality attributes of the modeling language definition (O0 + O1).

eling concepts. Other patterns, not used in the model displayed in Figure 11.2,
such as the relation configurator pattern and element classification pattern in-
crease, amongst others, the number of constraints, and thus the complexity
design property, even more when applied. Hence, a correlation between deep-
ness of the EMF model and the resulting complexity can be observed.

The measured design properties are used to create indicators which mea-
sure about the quality of the deep and EMF version of the company structure
modeling language. The criteria are: 1. Reusability — the degree to which a
model can be reapplied to a new problem without significant effort, 2. Flexi-
bility — the ability to which a model can be adapted to provide functionality
for related capabilities, 3. Understandability — the degree to which the meta-
model can be easily learned and comprehended, 4. Functionality — the degree
of responsibility assigned to one metaclass, 5. Extendability — the availability
of concepts for introducing new requirements into the design and 6. Effective-
ness — the ability of a metamodel to achieve the desired functionality and
behavior using metamodeling concepts. [33, 160]

Table 11.4 compares the quality attributes of the deep and EMF versions.
Since both versions are constructed to have roughly the same feature set the
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metrics for the languages are similar. The most significant deviation between
the deep and EMF version is in the Reusability, Understandability, and Functionality
quality attributes.

The Reusability metric as calculated in Table 11.4 assumes that a meta-
model consisting of more classes is more reusable than one consisting of fewer
classes. This may hold true when comparing two models created using the
same modeling paradigm. In this case, however, the higher number of classes
in the EMF version is caused by accidental complexity produced by having
to simulate a deep version of a model with more than two classification levels
using a technology limited to two classification levels only. When removing
the accidental complexity from the calculation and setting the design size of the
EMF version to the design size of the deep version a Reusability value of 8.27
is calculated which is slightly lower than the value of the deep version (8.53).
This value is more realistic since the feature sets of both models support the
same level of re-applicability to new situations. Whether the nature of the
modeling language (i.e. being deep) has a positive effect on Reusability and
should therefore be considered in the calculation of this quality attribute is a
question for future research.

The difference in Understandability is caused by the application of workarounds
for emulating deep modeling in the EMF version. The metric is mainly influ-
enced by the increase in accidental complexity which is created through the
introduction of additional metaclasses that negatively influence the design size
and the introduction of new references on the type and instance levels to mimic
deep typing, that negatively influences coupling. All other ingredients of Under-
standability do not significantly differ. Hence, the decreased Understandability of
the EMF version goes hand-in-hand with its increased accidental complexity.

The final deviating quality attribute is the Functionality which again is pos-
itively impacted by the accidental complexity created when emulating deep
modeling since the design size positively impacts this indicator. When calcu-
lating the Functionality value using the design size of the deep version, and
thus ignoring the accidental complexity of the EMF version, the Functionality
indicator is 4.65 which is close to the value of the deep version of 4.90.
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11.1.4 Summary R1: Deep Modeling

To evaluate the advantages of deep user-defined languages over non-deep user-
defined languages, the company structure modeling language was modeled
completely in the deep LML-based Melanee approach and EMF. The deep
model version leveraged all the deep modeling features to model the company
structure modeling language without application of any workarounds. All
model elements are placed at their natural classification levels and all features
such as instance checking, constraint language etc. are available on the deep
company structure modeling language out-of-the-box. In contrast, the lack
of more than one type/object level pair in the EMF version of the company
structure modeling language forces the application of workarounds as defined
by de Lara et al. in [151] in order to emulate deep modeling features. By
applying these patterns the deep company structure modeling language can
be modeled with the non-deep EMF framework at the cost of the application of
workarounds to simulate deepness in the underlying metamodeling framework
(i.e. EMF) and the deepness simulation of out-of-the-box language features
such as type checking and constraint languages.

To objectively judge the two models regarding their quality, they were
compared using different metrics. The accidental complexity metric measures
which version introduces the most complexity due to the inclusion of additional
model elements, while the object-oriented design metrics (reusability, flexibility
etc.) ensure that both models have the same level of expressiveness and are
thus comparable.

The accidental complexity metric shows a clear advantage of the deep ver-
sion of the company structure modeling language over the non-deep version.
In total, the deep version has 90% fewer model elements than the non-deep
version which is clearly significant. In theory, the worst case performance that
a deep modeling language can have compared to a non-deep modeling language
is an accidental complexity of 0 since deep modeling languages have all the
features of non-deep modeling languages but have extensions which provide
clear advantages in deep modeling scenarios.

The object-oriented design quality attributes were equal in all but three
of the cases. Two of these are explained by the positive impact of model size
on the metrics. The model size, however, is caused by accidental complexity
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and does not show any advantage for any of these quality attributes. Thus,
the metric calculations ignored the introduced accidental complexity and set
the design size of the non-deep versions to the design size of the deep version.
In these calculations the quality attribute indicators are close to equal. This
shows that the two models used for the accidental complexity evaluation were
indeed comparable. The difference in the understandability quality attribute
is explained by the increased accidental complexity.

Bansiya et. al. [33] state that the weights and impacting factors of the
quality attributes can be modified to fit the exact needs of an evaluation. This
is not done here to avoid choosing weights in a way that gives an advantage to
one of the solutions, and thus maximize objectivity. For future research the use
of weights to accurately reflect the advantages of a modeling approach could
be evaluated, helping to compare solutions in different modeling approaches.

11.2 R2: Seamless Modeling

The seamless modeling feature is evaluated by defining a set of changes cov-
ering the previously presented modeling operations: 1. creating an entity,
2. deleting an entity, 3. changing an entity and 4. moving an entity. The
changes executed on the models during evaluation are listed in Table 11.5.
These changes reflect standard modeling operations executed several times on
a model during its life cycle. Examples of such operations are a change to
the potency of a clabject (C5) or the addition of attributes (A3). For a better
overview, the changes are grouped into the model manipulation categories and
have an ID assigned.

The first group of changes tests the impact of adding new types at different
classification levels (A1 - A3) and addition of new attributes at different clas-
sification levels (A4 - A5). First, a new type of employee, ExternalEmployeeType,
is added to O0 which represents employees working in a company who are
employed by a third party (A1). Then, a QualityExpert which is a FullTimeEm-
ployeeType instance and subtype of Employee is added to O1 (A2). Cora at O2

instantiates this QualityExpert (A3). After adding the new types, new attributes
are assigned. First, a gender attribute is added to EmployeeType (A4). Then, an
errorRate is added to QualityExperts describing the rate of errors made by the
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Category ID Modification Operation

Add
A1 ExternalEmployeeType at O0

A2 QualityExpert as instance of FulltimeEmployeeType at O1

A3 Cora as instance of QualityExpert at O2

A4 Gender attribute for EmployeeType at O0

A5 ErrorRate attribute for QualityExpert at O1

Remove
R1 TemporaryEmployeeType at O0

R2 Researcher at O1

R3 Expertise attribute of EmployeeType at O0

R4 ProjectName attribute of ProjectLead at O1

Change
C1 EmployeeType to EmployeeBaseType at O0

C2 ProjectLead to ProjectManager at O1

C3 Potency of ManagementEmployeeType to 3
C4 Salary attribute to yearlySalary at O0

C5 ProjectName attribute to projectTitle at O1

Move
M1 Expertise attribute to FullTimeEmployeeType at O0

Table 11.5: Change set applied for seamless modeling evaluation.

QualityExpert.
The changes concerned with the remove operations first remove the Tem-

poraryEmployeeType clabject from O0 (R1) and then the Researcher clabject from
O1 (R2). Afterwards the expertise attribute is removed from EmployeeType (R3)
and the projectName attribute is removed from ProjectLead (R4).

Changes are first made to EmployeeType which is renamed to EmployeeBase-
Type (C1) and then ProjectLead is renamed to ProjectManager. The potency of
ManagementEmployeeType is then set to three to enable modeling at a further
ontological classification level (C3). In a real world scenario, this one change
would be part of a series of changes increasing the potency of all types present
at O0. Finally, the salary attribute is renamed to yearlySalary (C4) and the pro-
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jectName attribute to projectTitle (C5). The modification set includes only one
move operation which is the movement of the expertise attribute from Employ-
eeType to FullTimeEmployeeType (M1).

11.2.1 Applying Changes to the Deep Model

The application of the change set to the deep version of the company modeling
language is shown in Figure 11.7. The changes are marked as gray circles with
the change ID in their center at the point where the change is made. The
change implications are not indicated to avoid cluttering the diagram. It can
be observed that all changes take place at the ontological classification levels
(O0 - O2). Changes at the ontological classification levels take immediate effect
in a deep model. Some changes do not need a modeler to take action in order
to keep classification semantics intact while others do. The emendation service
supports the user in cases where action to fix the classification semantics has
to be taken.

Changes without an effect on the classification semantics are the additions
of ExternalEmployeeType (A1), QualityExpert (A2) and Cora (A3). The newly added
types are immediately available for modeling on all other classification levels.
The removal of TemporaryEmployeeType (R1) and Researcher (R2) do not force the
modeler to take action either. The types are removed and the classification
relationships for all their instances are lost. However, if desired, the instances
can be retyped by introducing new classification relationships. This task could
be taken over by the emendation service on big models to save modeling effort.
The renaming of the clabjects EmployeeType (R1) and ProjectLead (R2) does
not have any impact on classification relationships and thus no actions have
to be taken. The changed names are immediately available for use on all
classification levels.

All other changes from the change set as shown in Table 11.5 do influence
classification semantics and are thus accompanied by actions taken through the
emendation service. The addition of the gender attribute to EmployeeType (A4)
and of the errorRate attribute to QualityExpert involve the addition of attributes
to the instances of the types to which the attributes are added to fix violations
of the Attribute Correctness well-formedness constraint. In case of gender this
would include the instances of EmployeeType which are Employee, Ann, Steve,
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Figure 11.7: Changes to the deep model of the Quality Toys Inc.

Bob, Bree, Tim and Cora if she was already instantiated. Adding the attribute
to the subclasses of Employee is optional as the attribute is inherited from
Employee. When adding the errorRate attribute to QualityExpert action is only
taken if Cora exists at the time of the attribute creation. If Cora exists the
attribute is added.

When removing the expertise attribute from EmployeeType (R3) and the pro-
jectName attribute from ProjectLead (R4) the attribute can optionally be re-
moved from the instances of these types as well if instances shall keep their
isonym nature after the change. In the case of expertise the attribute can be
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removed from Employee, Researcher, ProjectLead, QualityExpert, MarketingExpert,
ProjectLead,Intern, Ann, Steve, Cora, Bob, Bree and Tim. The large number of
clabjects to be modified shows that this task is hardly manageable without
using the emendation service. When removing projectName only Steve is mod-
ified if desired. If the projectName existed in the type hierarchy of ProjectLead
it would have to be removed from the types in order to maintain attribute
correctness. Otherwise ProjectLead would have less attributes than its types.

The change operations effecting classification semantics are the change of
the potency of ManagementEmployeeType to 3 (C3). This change increases the
potency of ProjectLead and Steve which is handled by the emendation service.
The renaming of the salary and projectName attributes also effects instances.
When changing the name of the salary attribute all salary attributes of in-
stances of EmployeeType are changed which are previously listed for change R3
to maintain attribute correctness. The change of projectName to projectTitle only
effects Steve. Both change operations are again supported by the emendation
service.

The move of the expertise attribute from EmployeeType to FullTimeEmploy-
eeType is a composition of an addition operation and a removal operation which
is also supported by the emendation service. After the change, the expertise
attribute is removed from all EmployeeType instances except from those that
are instances of FullTimeEmployeeType. Additionally the attribute is added to
FullTimeEmployeeType instances where needed. In the example, all FullTimeEm-
ployeeType instances inherit the expertise attribute from Employee and thus need
to have the attribute added, if not already present, once it is removed from
Employee which is not an instance of FullTimeEmployeeType.

11.2.2 Changes to the Non-Deep EMF Version

The indication of changes from the change set presented in Table 11.5 on the
non-deep version of the company structure modeling language in Figure 11.8
shows that two meta levels are involved in the changes. One is meta level M2

which is hard coded in the modeling tool and is effected by A1, A4, C1, C3, C4,
R1, R3. The other is M1, which is soft (i.e. data from the tool’s point of view),
and is effected by A2, A3, C2, C5, R2 and R4.

To make changes to the M2 level in EMF it is necessary to switch from
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Figure 11.8: Changes to the non-deep model of the Quality Toys Inc.
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the modeling environment to the tool development environment. In the de-
velopment environment the metamodel is adapted and then redeployed as an
update for all modeling environments. The modeling environment then applies
the new metamodel. Depending on the change the already created models may
no longer conform to the metamodel and are thus not usable anymore. These
change are C1, C4, R1, R3, M1 in the case of the change set applied in this
evaluation. The only changes which do not have this effect on the M2 in-
stances are A1, A4 and C3 (potency change) as these only add new modeling
constructs. To handle metamodel changes different tools are available for the
EMF. These include, amongst other things, a fuzzy parsing approach to model
loading, [141] which can deal with a huge number of changes to metamodels or
an operation recording approach [108, 68] which applies recorded operations to
model instances. The operation recording approach works in a similar way to
the emendation approach presented for deep model evolution. The difference is
that the operations are collected and applied to the decoupled model instance.
The applied operations themselves, however, are identical to the emendation
service operations.

The only change at M2 which is executed differently from the deep version
of the company structure modeling language is the increase to the potency
of ManagementEmployeeType. To emulate this potency increase an additional
metaclass associated with ManagementEmployee through a type reference has to
be added to M2. In contrast to the deep version where the potency change
has to be backed up by the emendation service to keep classification semantics
intact, no further actions are needed in the EMF version.

Changes at the M1 meta level are not supported by any out-of-the-box
EMF project. Changes maintaining classification semantics thus have to be
executed by hand or M1-specific tooling that supports such changes has to be
developed. Changes that need additional actions are A5, R4 and C5. Changes
which do not need any attention are A2, A3, C2 and R2 in case the modeling
language would regard an untyped Bob as correct.

To handle A5, which is the addition of the errorRate attribute to QualityEx-
pert, a slot typed by errorRate has to be added to Cora so that the QualityExpert
instances have one Slot for each Feature of their type. The removal of the pro-
jectName feature (R4) requires all Slots which are typed by it to be removed
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so that no instance has a slot which is untyped. Depending on constraints
defined on the Feature and Slot metaclasses it might be necessary to rename all
Slots typed by projectName after executing the rename operation (C5).

11.2.3 Summary R2: Seamless Modeling

The evaluation shows that in deep modeling all changes defined in the change
set are all equally supported across all ontological classification levels. In
particular, a modeler does not need to change the modeling environment to edit
certain parts of a model and all changes are immediately available for further
modeling without any deployment steps. The emendation service is able to
back up all changes defined in the change set because the deep classification
semantics is defined on the linguistic metamodel which spans all ontological
classification levels. On the other hand, the evaluation shows that even small
changes have many knock-on changes which are hardly manageable without
an emendation service.

In the EMF version, in contrast, one subset of the changes takes place at
the M2 level and the other subset at the M1 level. The classification seman-
tics between M2 and M1 is clearly defined and thus supported by EMF tools
out-of-the-box. Hence, deep modeling and EMF are aligned when changes are
made between M2 and M1 (corresponding to changes at O0 of the deep version).
However, changes to the M1 level (corresponding to O1 and O2 of the deep ver-
sion) which effect the artifacts simulating deepness are not supported by any
EMF tooling out-of-the-box. To support such changes custom model evolu-
tion support would have to be developed based on the applied deep modeling
patterns. This is a clear disadvantage compared to deep modeling which can
support modifications across all classification levels in an equal way through
the emendation service.

Changes to the meta levels M2 and M1 are executed in two different mod-
eling environments. To edit the M2 level, the modeling environment has to be
switched to the metamodeling environment and the changes made to the M2

level have to be propagated to the modeling tool (M1) after modification of M2.
This is not the case for deep modeling where all levels are equally available and
no deployment steps are needed between ontological classification levels after
model modification. Changes at the M1 level are immediately available for
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modeling in EMF as is the case for deep modeling. Another disadvantage of
EMF is that M1 models which do not conform to M2 anymore are not useable
until either a manual or automatic model evolution operation is applied to the
M1 level. The deep model still works with non-conforming levels, but would
show validation errors.

A problem which is not directly addressed in this evaluation is the impact
of model changes on concrete syntax and their accompanying constraint defini-
tions. In Melanee, concrete syntax definitions and their supporting constraints
are directly defined within the deep model. In the current version, the concrete
syntax definitions use pointers to the deep model wherever deep model content
is referenced, but the constraints supporting the concrete syntax definition do
not. In future implementations it is planned to use pointers when referring
to model elements in a deep model from these constraints. These are then
automatically updated when changing the deep model and the emendation
service can even be extended to fully support the handling of the impact of
abstract syntax changes to concrete syntax and constraints. To realize this,
constraints have to be stored in a half-parsed format in which all text point-
ing to deep model content is replaced by a pointer to the corresponding deep
model content.

The EMF version, however, does not support co-evolution of abstract and
concrete syntax in the way deep modeling does. Concrete syntax is defined in
either text (e.g. XText, Parsley) or models (e.g. GMF, Sirius) which are both
stored independently of the abstract syntax definition. Hence, these models
do not evolve together with the abstract syntax and additional steps as e.g.
described in [58] have to be performed.

11.3 R3: Multi-notation Modeling

To evaluate the multi-notation requirement, three diagrammatic notations are
created. Even though the evaluation is limited to diagrammatic notations
the results can be transferred to other formats because the strengths and
weaknesses relate to the general concepts on which the modeling workbenches
are based rather than the specific details of particular formats.

The first notation chosen for the evaluation is a UML like instance specifi-
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cation notation which views model content in a class diagram like view. The
second is the full version of the previously introduced company structure mod-
eling language (private notation) and the third is a version of the company
structure language that does not contain sensitive employee-related informa-
tion (public notation). Hence, the salary and expertise of employees is not
shown in this notation.

11.3.1 Deep Notation Definition

In the deep modeling approach a notation is defined by attaching several vi-
sualizers to the clabject types. When visualizing a model the visualizer search
algorithm searches a visualizer for each clabject. If no visualizer is found or
the user decides not to use a visualizer, the predefined LML notation is used
to represent the clabject. This already fulfills the requirement for the first
notation identified in the evaluation, a UML class diagram like instance spec-
ification notation.

The other two diagrammatic notations, public and private, are defined using
visualizers as previously described. The private notation shows all employee
information whereas the public notation hides sensitive employee information.
Figure 11.9 shows the definition of the two user-defined visualizations. The
visualizers defined for CompanyType and DepartmentType contribute to the pri-
vate and public notation because there is no difference between the displayed
information in the two notations. EmployeeType has two visualizers attached,
one for the private and one for the public notation.

On the O2 level the different notations are used to visualize the company
structure of the Quality Toys Inc. company. The figure shows that the different
notations can be mixed and matched as needed. Steve is visualized using
the predefined out-of-the-box, UML class diagram like LML notation, Bree is
visualized in the public notation whereas Ann, Bob, and Tim are visualized in
the private notation.

Even though a mix of different notations in one level is shown in Figure 11.9
it is possible to switch the whole level into one single notation by a simple no-
tation toggle operation. This is a more likely scenario in this example because
a user typically wants to see all information about all employees or to hide all
sensitive information for all employees. In addition it would be possible to use
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Figure 11.9: Notation definition for the deep model of the Quality Toys Inc.

209



Chapter 11. Evaluation

the languages defined at O0 to model at O1. Moreover, the notation can be
refined across the other classification levels.

11.3.2 Non-deep Notation Definition

To define the three notations in EMF a concrete syntax modeling framework
has to be chosen. For the evaluation, GMF was chosen because it is model-
driven and offers high flexibility through its customizable code generation ca-
pabilities. EMF and GMF do not ship with any predefined diagrammatic
language for visualizing model instances, so three concrete syntaxes are de-
fined here. These are the instance specification notation, the private notation
including all employee details and the public notation excluding employee de-
tails.

To define a notation in GMF four models are created, a tooling model, a
graphical definition model, a mapping model and a generator model in addition
to EMF’s abstract syntax model. From these models source code containing
a notation-specific instance editor is generated. The tooling model defines
the palette available for modeling and is thus an ideal model to be shared
between all three notations since they all visualize the same language. The
graphical definition model is similar for the private and public notation except
for the employee figure which has to be defined once for the public and once
for the private notation. Hence, this model can also be shared between the
two notations. A new model is created for the UML instance specification like
notation. The concrete syntax defined in the three graphical definition models
is then mapped to the abstract syntax model and the tooling model by three
different mapping models, one for each notation. These mapping models are
then used to create three different generator models which generate the source
code of the notation specific editors.

Figure 11.10 gives an overview of all models participating in the definition
of the three notations. Models are solid boxes with their name located at the
bottom except for the tooling model displaying its name at the top. Links
between models are represented by dashed/dotted lines and in case of the
tooling model by a dashed background mapping one tool to the content of
three mapping models which in the case of the example contain one mapping
to Employee only. The Graphical model in the upper left defines the graphical
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M1

M2

EmployeeType
name
expertise
salary

Employee
name
salary
expertise

type
{redefines type}

[name]
[salary]';'[expertise]

Graphical

[name]

'name='[name]
'salary='[salary]
'expertise='[expertise]

[name]':'[type.name]

Graphical
Abstract Syntax

Quality Toys Inc.
Inc.

Ann
15k;

Bob
48k;RC Car Research

Tim
36k;Online Marketing

Steve
120k;Management

Bree
14.5k;

Mapping (private)

Mapping (public)

Mapping (instance)

Tooling

Toy Research
Mannheim

Online Marketing
Madrid

1

Figure 11.10: Notation definition for the non-deep model of the Quality Toys
Inc.

shapes for the user-defined notation of the deep company structure modeling
language. One shape is defined showing the salary and expertise of an employee
and one hiding this information. These two graphical shapes are then mapped
onto Employee via two different mapping models — the private notation and
public notation mapping models. The tooling model is for both notations the
same because the concepts to be added to a model are equal in both cases.

The shapes for the UML instance specification like language are modeled
in the graphical definition model designated as instance in Figure 11.10. The
instance mapping model maps the shapes to same tooling model which is used
for the public and private notations and on Employee defined in the abstract
syntax.

For each mapping model one generator model is generated which is not
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displayed in Figure 11.10 for space reasons. The generator models combine
all information from the graphical definition models, mapping models, tooling
model and abstract syntax model to generate three separate diagram editors
for the private, public and instance notation. The bottom level of Figure 11.10,
M2, shows the Quality Toys Inc. opened in the private editor, displaying all
information about employees. To switch between notations a completely new
editor has to be opened. Moreover, notations cannot be mixed as needed
within one editor.

11.3.3 Summary R3: Multi-notation Modeling

The evaluation shows that in both approaches, the deep and non-deep, it is
possible to define several notations for one model. Three main differences
between the approaches exist in this respect. First, in the deep version a
notation is defined within the deep model in form of visualizers attached to
clabjects while in the EMF version the notation is defined in models which are
external to the model defining the abstract syntax. The external storage of
the graphical shapes can promote reuse by providing symbol libraries which
can be reused in other languages. However, current lack of these libraries,
given the maturity of the GMF framework, indicates that there is not a big
demand for such reuse in practice. The other models used in GMF such as the
mapping model, tooling model and generator model are so specific that there is
little potential for their reuse. The clear disadvantage of the external storage
of concrete syntax definition models lies in the domain of model evolution
as previously outlined. Each time the abstract syntax evolves, the concrete
syntax has to be co-evolved through some kind of tooling. In a deep model
all concrete syntax information is directly coupled to the abstract syntax via
pointers. Hence, this approach is more robust against evolution scenarios such
as renaming or movement of attributes.

Second, in the GMF version, notations cannot be mixed and matched on-
the-fly as needed. A user has to decide in which notation the model is viewed
before it is opened. If a modeler decides to view a part of a model in a different
notation, the diagram has to be opened in a different editor and the user has
to navigate to the part viewed in the alternative notation. In GMF, a dialog
which allows a modeler to select a notation, similar to the one present in Sirius,
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has to be developed by hand to support this. These limitations have a high
impact on the symbiotic language scenario [17] in which one notation enriches
another. A modeling novice for example could switch parts of a model to
the UML instance specification diagram to capture the meaning of graphical
shapes in a concrete syntax. An example of this is shown in the deep version
of the notation definition example where Steve is switched to the instance
specification like LML visualization to capture information in a more explicit
way (e.g. values are named through variables).

The third and final limitation is the lack of support for defining user-defined
syntax at any classification level in the non-deep EMF version. In the example,
this leads to the problem that the projectName attribute defined for ProjectLead
at level M1 (cf. Figure 11.8) cannot be included in the concrete syntax. In the
deep modeling version, in contrast, this can be covered by defining a visualizer
specifically for ProjectLead at O1 in the same way as at O0.

The evaluation can for example be extended to XText for defining and using
textual notations. Again, the definition of the textual notation is separated
from the abstract syntax in the EMF model and one different model for each
notation definition has to be created. This raises the same model evolution
issues as with the GMF solution. Also, the notation used to display a model in
an XText editor cannot be switched on-the-fly. A new model editor displaying
the alternative notation has to be opened instead, which prevents the mixing of
notations as needed. Xtext’s two-level technology only allows concrete syntax
to be defined on the highest level, like GMF. This makes it impossible to define
concrete syntaxes on O1, e.g. to include the projectName attribute of ProjectLead
in the textual concrete syntax.

11.4 R4: Multi-format Modeling

The multi-format modeling requirement is evaluated on four formats for editing
the company structure modeling language — the diagram, table, text and
form-based formats. One notation is defined in each format although in general
it is possible to define more.
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11.4.1 Deep Multi-format Modeling

Figure 11.11 shows how deep multi-format modeling is realized. Basically, one
visualizer is defined for each format and is attached to the clabjects (diagram
— D, text — Te, table — Ta and form — F). For space reasons, the O1 level is
elided and only the format-specific visualizers for DepartmentType are shown.

The diagrammatic visualizer specifies DepartmentType instances to be visu-
alized as rectangles in the public and private notations. They display their name
in the top of the rectangle and their location below the name. The compart-
ment displaying the employees is indicated through the gray dashed line and
occupies all free space in the department shape below the name and location.
The textual visualizer defined for the public and private notation first prints
the name of the department followed by curly brackets in which the employees
working in the department are contained. The form visualizer for the public
and private notation displays two rows with labels and text boxes. The first
row displays the name of the department and the second displays the location.
The employees are displayed in a list box at the bottom of the form.

In contrast to the previous three visualizers, the table visualizer for Em-
ployeeType is shown in Figure 11.11 because when selecting a department for
visualization the content of the department is displayed using the content’s
visualizer. The DepartmentType’s visualizer only configures options such as
whether to view the linguistic or ontological type column and what to display
in the breadcrumb. Hence, it is hidden in favor of the EmployeeType’s visual-
izer which describes what is actually displayed in the table. In the table each
EmployeeType instance is displayed in its own row. The first column displays
the employee’s name, the second the salary and the third the expertise. This
visualizer is only defined for the private notation because it contains sensitive
information.

Having these visualizers defined, a modeler can invoke the different format-
specific editors as needed at any level. In the example in Figure 11.11 the O2

level is displayed in all four defined formats, the diagrammatic format is at the
top left, the tabular format is at the bottom left, the textual is at the bottom
right and the form-based format at the top right. A modeler using Melanee
can actually align the different format-specific editors as shown in the figure.
When using the format-specific editors, they are seamlessly synchronized with
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Name Salary Expertise
Ann 15k
Bob 48k RC Car Research
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  Toy Research{
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  }
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*

employee

*
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[name]
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Steve 120k Management

Quality Toys Inc. Toy Research

Qua... Toy Research

AddDeleteNavigate

...

Mannheim Madrid

Location Mannheim

[Name] [Salary] [Expertise]

[name]'{'
'\t'[employee]
'}'

Name [name]

[employee]

Location [location]

Figure 11.11: Deep multi-format modeling example.

each other and have equal importance. Changes in any format are immediately
reflected in all other format-specific editors and do not impact any other format
negatively. Although the example shows multi-format editing at the O2 level,
it can be used at the O1 and O0 levels as well.

11.4.2 Non-deep Multi-format Modeling

Multi-format modeling in EMF-based tools requires a distinct technology for
each format. As previously shown, GMF was chosen for the diagrammatic
format, while the textual format can be realized in XText [70] and the tabular
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and form-based formats can be realized in EMF Parsley [191]. After defining
the concrete syntax in each technology (i.e. format) using distinct formalisms,
the editors have to be integrated with each other so that a modeler can invoke
the different formats and work in them simultaneously. The most complex task
when combining the different formats is to integrate the XText editor, because
unlike the other editors it is a non-projectional editor. To integrate the XText
editor a bidirectional model merging mechanism has to be implemented. The
text displayed in the textual editor has to be updated in a way that formatting
is preserved when one of the other formats commits changes to the edited
model. When changing text in the textual model editor the parsed model
has to be merged with the model underlying all other format-specific editors.
Of special interest here is the diagrammatic GMF editor which stores layout
meta data for the edited model elements. Hence, the merging of the parser
generated model edited in XText with the model underlying all other formats
must be implemented in a meta data preserving way.

The arrangement of this technology stack in context of the EMF version of
the model is shown in Figure 11.12. The boxes at M2 represent the different
artifacts needed for the multi-format editing environment definition. These are
the Abstract Syntax definition which shows an excerpt of the company structure
modeling language from the EMF version in Figure 11.2, and the concrete syn-
tax definitions in GMF, Parsley and XText connected to the Abstract Syntax by
the dashed lines. Three different formalisms are used to define concrete syn-
tax. GMF uses four EMF models as explained earlier, Parsley uses a dedicated,
textual domain-specific language and XText follows a grammar-based approach
popularized by tools such as ANTLR [189]. The editors created using these
three isolated technologies are then integrated using Integration Code. To inte-
grate GMF and XText, for example, the resource used by the GMF editor that
is responsible for saving and loading models has to be replaced by a resource
compatible to XText [64].

The resulting multi-format editing environment is shown in M1. The three
editors are aligned in the same way as in the deep modeling version. The
difference between the two versions is that the modeling environment can only
display M1 level content and thus the editors are limited to this level. The
editors, however, can be aligned as shown in the figure.
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Name Salary Expertise
Ann 15k
Bob 48k RC Car Research

Quality Toys Inc.{

  Toy Research{

    Ann (15k,);
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14.5k;

M2
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GMF Definition
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(Textual DSL)
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name
salary
expertise
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name
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Department
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Employee
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*
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type {redefines type}
type {redefines type}

1
1

Figure 11.12: Non-deep multi-format modeling example.

11.4.3 Summary R4: Multi-format Modeling

In non-deep modeling three different technologies are used to define notations
for the different formats while in deep modeling the concept of visualizers
is used throughout all formats. Moreover, different non-deep modeling tech-
nologies use different paradigms for notation definition, e.g. textual grammar
definition, tree-based models and textual models expressed in domain-specific
languages. In deep modeling, however, the paradigm is the same across all
formats — that is tree-based modeling. All format-specific visualizers share
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the concepts of attributes, connections and expressions which are visualized
in the target notation. The names are just slightly differing for the different
formats to make them more format-specific, e.g. AttributeLabel in the dia-
grammatic format and AttributeColumn in the tabular format. In addition
the languages share the concepts of visual grouping and layout, e.g. Rectangle
and TableLayout for the diagrammatic format and Group together with its
default TableLayout for the form-based format. In the non-deep EMF ver-
sion, however, three distinct technologies with different terminology are used.
For example, while GMF uses labels to display attributes this concept is not
found anywhere in XText which uses only terminology originating from gram-
mar definition languages such as EBNF.

From an integration point of view no additional work is needed to integrate
the different format-specific editors in Melanee because its deep modeling ap-
proach is designed to deliver multi-format editing functionality out-of-the-box.
However, as mentioned earlier, glue code has to be written to integrate the
GMF and XText editor with each other. Moreover, since XText is based on
free text parsing while the other editors are based on projectional editing,
non-trivial merging problems arise such as how to proceed if a modeler saves
a piece of text that does not conform to the concrete syntax or how to update
the textual editor after changes to the model so that the current formatting
is preserved. The grammars are also limited to the capabilities of ANTLR
3, XText’s underlying parser generation framework. In contrast, projectional,
deep model editors are not limited by the parsing restrictions of a parser and
no merging problems arise because the textual format shares the projectional
editing paradigm with all other formats.

Supporting evolution of the abstract and concrete syntax models is also a
challenge in the non-deep multi-format editing scenario. For each technology
a dedicated model co-evolution support tool has to be deployed (or developed
if not available). In deep modeling, the format-specific notation definitions
are stored together with the modeling language definition and pointers are
used to point to model content which automatically updates the models on
name changes etc. In cases where this is not sufficient, the emendation service
can be extended to support the evolution of visualization definitions across all
formats thanks to the common formalism and vocabulary of them.
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11.5 R5 & R6: Context-sensitive and Aspect-
oriented Visualization

Context-sensitive and aspect-oriented visualization is evaluated here for the
diagrammatic format only. The results, however, are generalizable across all
formats of the deep modeling approach because they are all based on the
same underlying concepts. In the non-deep EMF technology space, the format
offering the best capabilities in this area is the diagrammatic format. In gen-
eral, the context-sensitive and aspect-oriented capabilities vary significantly
depending on the format and technology employed. This is elaborated further
in the summary of this requirement evaluation.

To evaluate context-sensitive visualization, the background of Management-
EmployeeType instances is colored red in case they manage an EmployeeType with
a higher salary than the ManagementEmployeeType instance itself has. Aspect-
oriented concrete syntax definition is demonstrated on the example of Re-
searcher. Researchers shall be represented by a stickman wearing a square aca-
demic hat.

11.5.1 Deep Context-sensitive and Aspect-oriented Vi-
sualization

In deep modeling, context-sensitive visualization is realized by calculating val-
ues driving a visualizer through expressions defined in a deep constraint lan-
guage. For this purpose, all visualizer elements in all formats can have a model
element attached which defines the visualizer attribute to set and the expres-
sion to calculate its value. Whenever a change occurs to the abstract syntax
model representation, the visualizations are updated to reflect the expression
outcome defined on the visualizers.

An example for an expression defining the background color of a visualizer
model element is shown for ManagementEmployeeType in Figure 11.13. The
expression attached to the shape’s background via a dashed line navigates
to all managed employees and checks if one exists with a higher salary than
that of the manager. If any employee has a higher salary than the manager
red is returned by the query, otherwise white is returned. When this calculated
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Figure 11.13: Deep context-sensitive and aspect-oriented visualization.

visualizer value is applied to Steve, a deep instance of ManagementEmployeeType,
its background color becomes white because all employees managed by Steve
have a salary lower than Steve’s.

The visualization of Researchers as a stickman wearing a square academic
hat is realized through the application of the approach’s deep, aspect-oriented
concrete syntax definition capabilities. The visualizer of EmployeeType defines a
join point named JA for the stickman symbol. Researcher replaces this stickman
by a stickman wearing a square academic hat by defining an aspect of kind
around for join point JA. The visualization of Bob, a Researcher, shows the
result of the aspect-oriented concrete syntax definition. Bob is visualized as a
stickman wearing a square academic hat while the others are all visualized by
plain stickmen.
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Figure 11.14: Non-deep context-sensitive and aspect-oriented visualization.

11.5.2 Non-deep, Context-sensitive and Aspect-oriented
Visualization

The use of the non-deep version of the company structure modeling language,
featuring context-sensitivity and aspect-oriented visualization, to model an ac-
tual company is shown in Figure 11.14. At the M1 level one would typically
only view the most concrete instances of the company to be modeled which
here are the different employees actually working in the company. To have
the same information present as in the deep model the types of the employees
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are added to M1 in gray color. The visualization is attached via clouds to
classes in M2. The clouds combine the graphical definition model and map-
ping model into one entity. To realize the context-sensitive visualization of
ManagementEmployeeType instances more than one classification level away, a
graphical visualization is defined for ManagementEmployee representing these
instances. This context-sensitive diagrammatic visualization definition is sup-
ported by GMF through the Pin concept and constraints in the graphical
mapping model. In this evaluation, Pins are used to set the background color
of a shape depending on the outcome of an expression. This is again indicated
through an expression connected via a dashed line to the shape’s background
as in the previous deep version of the example. Steve at M1 is an instance
of ManagementEmployee and earns more than all of the employees managed by
Steve. Hence, its background color is white.

In this example the definition of the visualization works on instances of
instances of ManagementEmployeeType because a dedicated subclass for Man-
agementEmployees is added to the Employee metaclass representing instances of
ManagementEmployeeType two levels away. To specify a specific visualization
of other employees e.g. Researchers an additional metaclass would have to be
added as subclass of Employee to M2 and a visualization would have to be
provided for this newly introduced metaclass.

The aspect-oriented concrete syntax definition feature is not available in
GMF and graphical definitions cannot be distributed alongside classification
and inheritance hierarchies. Thus, an additional, fully-defined graphical visu-
alizer has to be created for Researcher which applies the stickman wearing a
square academic hat visualization to its instances. In EMF-based tools, how-
ever, a concrete syntax can only be defined on the M2 level and Researcher
resides at the M1 level making it impossible to define a visualization for Re-
searcher. As discussed earlier, the only way to achieve a specialized visualization
for Researchers is to add a Researcher metaclass as subclass of Employee to M2,
retype all existing (M1-)Researcher instances to this new M2-type and define a
concrete syntax for this M2-type. This, however, conflicts with the premise
that it should be possible to add new types to the M1 level dynamically at
run-time, because no specific visualizations can be defined for these.
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11.5.3 Summary R5 & R6: Context-sensitive and Aspect-
oriented Visualization

Context-sensitive visualization is available in deep modeling for all formats.
Here the diagrammatic format is compared to GMF which supports this fea-
ture through the concept of pins and constraints in the mapping model. In
other formats this feature is not present in the concrete syntax definition for-
malism. In XText, for example, java interfaces have to be implemented to
achieve context-sensitivity to a certain degree. Furthermore, context-sensitive
concrete syntax definition is limited to the M2 level in EMF. Although it is
possible to introduce new types at the M1 level by applying the presented pat-
terns for simulating deep modeling, it is not possible to define any specialized
visualization including context-sensitivity on these types due to the lack of
notation definition capabilities on M1 model elements.

Aspect-oriented concrete syntax definition as demonstrated in the deep
approach is not available in any of the concrete syntax definition technologies
considered in the evaluation (i.e. GMF, XText, EMF Parsley). Hence, for each
customization of a type’s concrete syntax through subclasses and instances a
fully defined visualizer has to be created at the type where the modification
takes place. This visualizer duplicates all information of the original visualizer
and adds its customizations. Moreover, in the evaluation, it was not possi-
ble to apply aspect-oriented concrete syntax definition along the classification
hierarchy due to the lack of notation definition capabilities on M1 model el-
ements. Hence, it would not even be possible to simulate the capabilities of
the deep model version by duplicating and customizing the notation at the M1

type.

The evaluation also shows that the limitations of the EMF version and
its accompanying concrete syntax definition technologies introduce additional
accidental complexity in the presented example. First, accidental complexity
is added to the abstract syntax because for each EmployeeType instance at
M1 which defines a new visualization, a new subtype of Employee has to be
added so that instances of the newly defined types at M1 are visualized in the
corresponding visualization. This also contradicts the premise of dynamically
adding new types at modeling time because M2 and its concrete syntax is
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ID Modification Operation

C1 Background of departments is red if they employ over 50% managers.
C2 A department displays the average salary.
C3 A project lead displays “ZZZ” if more than 33% of the managed em-

ployees are interns.
C4 Employees have potency zero at the O2 level.

Table 11.6: Set of constraints for evaluating deep constraint language support.

defined in a different modeling environment than M1 and changes have to be
propagated between the two modeling environments.

Second, accidental complexity is added to the concrete syntax definition.
Fully specifying a new visualizer for each visualization customization signifi-
cantly increases the number of model elements participating in the concrete
syntax definition. A new visualizer has to be defined when the modification
is as small as changing a visualization’s icon which is done in this evaluation.
This accidental complexity also tremendously increases the effort needed to
evolve a concrete syntax, because all changes made to the general part of a con-
crete syntax must be transported to all customized visualizers which duplicate
the general part of the concrete syntax for the pure purpose of visualization
customization.

11.6 R7: Constraint Languages for Deep Visu-
alization

The constraint language used to support deep visualization in Melanee is a
deep OCL dialect [124] while GMF uses an implementation of OCL as specified
by the OMG [184]. Hence, in this section it is evaluated how well the deep
version of OCL and the EMF OCL implementation support the visualization of
models. The constraints are defined in the context of the deep model displayed
in Figure 11.1 and the EMF model displayed in Figure 11.2.

Textual descriptions of the constraints to be implemented during the eval-
uation are found in Table 11.6. These constraints cover the previously named
features needed to support deep visualization which are: 1. deep constraint
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application mode (C1, C2, C3, C4 ), 2. deep (re)classification operations (C1 ),
3. constraints using higher level navigations (C2 ), 4. definition on intermediate
levels (C3 ), and 5. support for the OCA (C4 ) .

11.6.1 Deep Constraint Languages for Deep Visualiza-
tion

The constraint for changing the background color of a department to red when
more than 50% managers work within it is shown in Constraint 11.6.1. The
constraint is defined as part of the DepartmentType’s visualizer which is indi-
cated by the context of the constraint (line 1). The constraint is then executed
together with the visualization on all three levels of the deep model.

Constraint 11.6.1 (C1: Deep Department Background Color).
1 context DepartmentType
2 let numberManagers:Integer=
3 employee→select(isDeepInstanceOf(ManagementEmployeeType))→size()
4 in
5 let numberNotManagers:Integer=
6 employee→reject(isDeepInstanceOf(ManagementEmployeeType))→size()
7 in
8 if ((numberManagers / numberNotManagers) > 1) then red
9 else white endif

To obtain the number of managers (numberManagers) working in a de-
partment the constraint navigates over the employee connection to all Employ-
eeTypes. Of these EmployeeTypes the ManagementEmployees are selected and the
size of the set is determined (line 3). The number of non-managers working
(numberNotManagers) in a department is determined using the same expression
but rejecting all ManagementEmployees (line 6). Finally the constraint checks
whether the ratio between numberManagers and numberNotManagers is greater
than 1 and, hence, more managers are working in a department than other
employees. If this is the case, red is returned as the color to use for the back-
ground, else white is returned.

Constraint 11.6.2 calculates the average salary in a department. It is there-
fore defined as part of the visualizer of DepartmentType indicated by the context
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of the constraint. The constraint navigates to all employees and sums up their
salary. Then the sum of all salaries is divided by the number of all employees
working in the department.

Constraint 11.6.2 (C2: Deep Average Salary).
1 context DepartmentType
2 employee.salary→sum() / employee→size()

To visualize a lazy project leader, an aspect is defined on ProjectLead at the
O1 level. The constraint used to control the application of the aspect is shown
in Constraint 11.6.3. The constraint navigates to all managed employees via
the manages connection provided by ManagementEmployeeType and selects all
Interns of the managed employees. The number of managed interns is then
divided by the number of all managed employees which is again retrieved via
the manages connection provided by ManagementEmployeeType. Finally, the ratio
between the managed interns and all managed employees is then calculated.
If this ratio is higher than one third (here 0.34 is chosen) the aspect is applied
because the constraint returns true.

Constraint 11.6.3 (C3: Deep Lazy Project Lead).
1 context ProjectLead
2 _ManagementEmployeeType_.manages→select(isInstanceOf(Intern))
3 →size() / _ManagementEmployeeType_manages→size() ≥ 0.34

When writing the constraint for the model as shown in the Figure 11.1 it
is not necessary to use the navigation provided by ManagementEmployeeType. It
is sufficient to use the manages connection defined by ProjectLead at O1. This,
however, would not support future connection diversification of ProjectLead. It
is possible, for example, to extend the model in such a way that a ProjectLead
has two manages connections with two different names. For instance, one could
be for employees permanently managed by a project lead and one for employees
only managed for a limited duration. In such a case it would be necessary to
rewrite the constraint when not using the navigation provided at the type
level.

Constraint 11.6.4 (C4: Deep Potency Zero Employees).
1 context EmployeeType
2 self._l_.levelIndex = 2 implies self._l_potency = 0
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Constraint 11.6.4 defined on EmployeeType forces all concrete employees
working in a company to have a zero potency and thus to not be instantiable
below level O2. The constraint first navigates via the linguistic dimension and
retrieves the index of the level in which the employee is located. If it is located
at the second level (O2) it checks whether the potency is zero by accessing the
employee’s linguistic potency trait.

11.6.2 Non-deep Constraint Languages for Deep Visual-
ization

Constraint 11.6.5 is the non-deep version of the constraint which colors depart-
ments red when more than 50% of employees are managers. In contrast to the
deep version the constraint is defined on Department as part of its GMF visu-
alization definition and not on DepartmentType. This is necessary because the
diagrammatic concrete syntax is defined on Departments, representing the O2

instance facet, and not on DepartmentType, representing the O1 type facet, due
to the lack of a deep visualization and a deep constraint application strategy.
Hence, visualizations and their accompanying constraints are not applicable to
O1 level content but only to O2 level content when mapping the model elements
from the EMF version to the ontological levels of the deep version.

Constraint 11.6.5 (C1: Non-deep Department Background Color).
1 context Department
2 let numberManagers:Integer=
3 employee→select(isTypeOf(ManagementEmployee))→size()
4 in
5 let allEmployees:Integer=
6 employee→size()
7 in
8 if ((numberManagers / allEmployees) > 0.5) then red
9 else white endif

Similarly to the deep constraint previously defined in Constraint 11.6.1, first
the number of ManagementEmployees (let expression in lines 2 - 4) is calculated
and then the number of all Employees (let expression in lines 5 - 7) is calculated.
Finally, the ratio of the numberManagers to allEmployees is calculated. If this

227



Chapter 11. Evaluation

ratio is higher than 0.5 the background color is set to red, otherwise it is set
to white.

Constraint 11.6.6 (C2: Non-deep Average Salary).
1 context Department
2 employee.salary→sum() / employee→size()

Constraint 11.6.6 calculates the value displayed as the average salary for a
department. The constraint is defined as part of a GMF expression label for
Department, the instance facet of DepartmentType. In GMF, expression labels
display the result of an OCL expression. As in the deep version, the constraint
navigates to the salary of the employees working in the visualized department.
The salary then is summed up and divided by the number of all employees
working in a department.

Constraint 11.6.7 (C3: Non-deep Lazy Project Lead).
1 context ManagementEmployee
2 type.name = ’Project Lead’ implies manages→select(type.name = ’Intern’)
3 →size() / manages→size() ≥ 0.34

The lazy project leader visualization cannot be defined on the ProjectLead
class because it is located at theM1 level which is not available for concrete syn-
tax definition. Hence, Constraint 11.6.7 has to be defined on ManagementEm-
ployee. Instances are then checked whether their type is named Project Lead.
If this is the case they are checked if more than one third of the managed
employees are interns. This second part of the constraint is equal to the deep
version.

Constraint 11.6.8 (C4: Non-deep Potency Zero Employees).
1 context Employee
2 – not supported

Constraint C4 cannot be expressed in the EMF-based, non-deep OCL ver-
sion for two reasons. The first reason is that access to the linguistic dimension
is not available in OCL as defined in the OMG Standard [184]. The EMF
version of OCL, however, offers the workaround of casting any model element
to the EMF base class EObject which provides reflective access to all model

228



11.6. R7: Constraint Languages for Deep Visualization

elements. This allows linguistic attributes of model elements to be accessed.
The second reason is that in the non-deep EMF version of the company mod-
eling language the deepness of a class is not controlled via potency. Deepness
is controlled via explicit modeling of types and their instances at the M2 level.
Thus, to raise the potency of EmployeeType an additional model element defin-
ing a type relation to Employee, the metaclass representing the instances of
EmployeeType, has to be added to M2.

11.6.3 Summary R7: Constraint Languages for Deep Vi-
sualization

Both the deep and non-deep versions of OCL are able to support the con-
straints defined in the evaluation, except for C4 which is not supported in
non-deep OCL due to the lack of the potency concept in EMF. While the
deep version allows constraints to be defined at the most abstract level and
then applied to all ontological levels, this is not possible in the non-deep EMF
version. In the EMF version visualizations and constraints are always defined
on the metaclasses representing the instance facet of types defined at M1. If
constraints shall be applied to types and instances residing at M1, they have to
be defined twice on M2: once on the type metaclass and once on the instance
metaclass of M1 model elements.

Furthermore, the non-deep version of OCL lacks the option to define vi-
sualizations and constraints on model elements introduced at intermediate
classification levels, e.g. ProjectLead at M1. Hence, it is not possible to define
constraint C3 on ProjectLead. A workaround is to define the visualization and
its constraint on the instance facet of the types specified at M2 and check the
name of the type referenced via the type reference on M1 as application condi-
tion of the constraint. In the example this pattern is applied when defining C3
on ManagementEmployee. By default, the constraint is applied to all instances
of ManagementEmployee and thus to all instances of ManagementEmployeeType
instances. To restrict the execution to instances of ProjectLead only, the typing
ManagementEmployeeType instance is checked to see whether it designates the
type Project Lead in its name attribute via the type reference between Manage-
mentEmployeeType instances and their instances.
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Connection diversification and navigation over connections introduced on
ontological type levels other than O0 and hence M2 in the EMF version of the
company structure modeling language is not supported in the non-deep OCL
version. An example is a ProjectLead connected to managed employee types via
more than one navigation name such as managedFTEs and managedInterns at
M1. The constraints defined at M2 are blind to these newly defined navigation
names at M1 and only manages, defined at M2, is available for navigation at this
level. To realize a navigation via these identifiers defined at M1 a navigation
based on the instance names of the manages reference has to be applied. The
deep version supports this scenario by being able to define the constraint at
the type introducing new navigations independent of the classification level
at which this type resides. In the example, the constraint would be directly
defined on ProjectLead at O1 and thus all navigations defined by this type are
available for navigation in the constraint.

Access to the linguistic dimension is provided by EMF OCL and the deep
OCL dialect of Melanee. While deep modeling offers native support for ac-
cessing the linguistic dimension of a model element, workarounds have to be
applied in the EMF version. These include casting to the base class EObject
of all EMF model content and then invoking EMF’s reflective API. Constraint
C4, however, could not be supported in EMF’s OCL version due to the lack
of the potency concept in EMF. It would be possible to raise the potency of a
model element by changing the M2 metamodel of a language and introducing a
type for the new instance level. However, this is not possible in an EMF-based
modeling tool without recompilation and deployment steps.

In the EMF modeling environment used for this evaluation, OCL con-
straints are not supported for all modeling formats. For example, XText for
defining notations in the textual format does not allow these to be enriched
with context-sensitivity through constraints in its concrete syntax definition
formalism.

11.7 Evaluation Summary

The evaluation shows that it is possible to build a deep, multi-format, multi-
notation modeling workbench with today’s technology using the Eclipse plat-

230



11.7. Evaluation Summary

form as the basis for the modeling environment, EMF for metamodel definition,
GMF for diagrammatic editor definition, XText for textual editor definition
and EMF Parsley for form and table editors. The evaluation also showed that
this is only possible by applying workarounds introducing accidental complex-
ity.

To achieve deepness of the company structure modeling language the pat-
terns described by de Lara et al. [151] have to be applied. When applying
only the patterns necessary to transfer the content modeled in the deep ver-
sion to the EMF version, the number of model elements nearly doubled and
significant accidental complexity was introduced. Applying further patterns
giving modeling capabilities to the EMF version similar to those of the deep
modeling version increased the complexity even further.

Also the lack of integrated concrete syntax modeling technology in EMF
creates complexity. The different format-specific technologies for defining con-
crete syntax are not built with each other in mind. Thus isolated island so-
lutions are created which have to be manually integrated with each other. A
full, seamless integration of the different formats can only be achieved with
significant development effort. Furthermore, the presented tools are built to
support one notation at a time when working with a model in an editor. To
support a multi-notation feature the editors supplied by the format-specific
concrete syntax definition frameworks would have to be manually tailored.
The high heterogeneity of the tools not only causes increased development
effort related to concrete syntax development but also significant additional
complexity. So for example in GMF three different mapping models had to
be created to support modeling in three different notations due to the lack
of multi-notation support out-of-the-box. Also the differing formalisms for
defining concrete syntax introduce complexity because a modeling language
engineer has to learn all of these formalisms in order to define concrete syntax
or understand their definition.

The lack of context-sensitivity in all formats except the diagrammatic for-
mat, backed by GMF, and the lack of aspect orientation throughout all tech-
nologies for defining concrete syntax also introduces additional complexity. In
formats such as XText, context sensitivity has to be implemented by enriching
generated source code, thus breaking the model-driven development paradigm
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and increasing the effort needed to maintain a developed language. The lack
of aspect orientation leads to duplication of concrete syntax definitions and
thus to increased accidental complexity. This duplication also makes language
maintenance much more difficult.

In general, it can be observed throughout the evaluation that complexity is
introduced whenever deepness has to be emulated due to the lack of inherent
support for deepness in the modeling technologies accompanying EMF. Ex-
amples are the inability to define visualizations on M1 model elements in any
of the concrete syntax definition frameworks and missing support for defining
constraints on types introduced at the M1 level.

Even though the evaluation did not go into full details about each format
but rather focused on the underlying concepts, it found the EMF environment
to be deficient with respect to all the modeling environment requirements
established in this thesis. The deep, multi-notation, multi-format approach
presented in this thesis, supported by Melanee, in general performed much
better than the EMF version in all areas of the evaluation and fulfills all
modeling goals identified in the introduction chapter. The reason, of course,
is that the Melanee framework was designed with all these requirements in
mind in contrast to the EMF technologies which independently evolved for
one specific purpose (e.g. textual DSL definition).
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Related Work

This chapter gives an overview of work related to the approach presented in
this thesis. It considers multi-level and non multi-level modeling tools that pro-
vide state-of-the-art support for domain-specific language engineering and/or
multi-level modeling. The following sections describe the most influential aca-
demic and commercial technologies available for multi-level modeling and for
leveraging the different formats considered in this thesis. They first provide an
introduction to several commercial and academic tools that are subsequently
considered in detail. Tools that are either not big competitors in the market
or not actively maintained are named but not closer described. The chapter
closes with a tabular comparison of all the closely examined tools.

12.1 Diagrammatic Domain-specific Language
Workbenches

In the area of diagrammatic language workbenches five tools are considered
as related work. The Graphical Modeling Framework, Sirius and MetaEdit+
are three of the most widely distributed commercial tools, while AToMPM
and the Generic Modeling Environment (GME) are two of the most influential
academic tools. All of these tools focus exclusively on the diagrammatic for-
mat and are thus not regarded as multi-format except Sirius and MetaEdit+
which also support tables and trees but do not support the textual format.
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A limited kind of multi-notation editing can be achieved in Sirius through
its viewpoint and layer features and in MetaEdit+ through its layer feature.
However, none of the diagrammatic language workbenches considered in this
section supports seamless, deep modeling since they are inherently based on a
single class/instance level pair. Moreover, none of the tools supports aspect-
oriented, concrete syntax definition and provides a predefined notation for
visualizing model instances out-of-the-box. Context sensitivity is supported
by all of the tools except GME.

The tools Poseidon for DSL [88], Microsoft Modeling SDK for Visual Studio
[169], XModeler [49], Visual Modeling and Transformation System [168, 230],
TIGER [71, 222], Clooca [111], GMFGen [207], Intentional [115] and EuGENia
[140] are not analyzed in detail due to their relatively limited user bases.

12.1.1 Graphical Modeling Framework Tooling

The Graphical Modeling Framework (GMF) [94] consists of two components
— the Graphical Modeling Framework Tooling (GMF-T) and the Graphical
Modeling Framework Runtime (GMF-R). GMF-T allows a language engineer
to create graphical modeling workbenches by defining a set of models. These
models are then translated into Java source code which uses the GMF-R offer-
ing an API for implementing graphical EMF model editors. The GMF-R API
essentially is an extension of the Graphical Editing Framework (GEF). GEF is
built on top of the Standard Widget Toolkit, Eclipse’s UI Toolkit, and aims to
support the simple creation of graphical model editors leveraging the Model
View Controller Pattern (MVC). The extensions provided by GMF-R cover
the basic functionality needed when creating GEF editors for models based on
the Eclipse Modeling Framework (EMF).

In GMF-T, five models are involved in the definition of a diagrammatic
model editor — the domain model, the graphical definition model, the tool
definition model, the mapping model and the generator model. The graphical
definition model offers shapes (e.g. rectangle, label) and layouts (e.g. ta-
ble layout) to model the appearance of domain model elements. The domain
model describes the model elements which are available in a language and how
they relate to one another. The tool definition model describes the tools avail-
able for model element creation in the palette placed at the right-hand side of
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the model editor. These three models are linked together using the mapping
model. It defines mappings from domain elements to tools which create them
and graphical definitions which visualize them. The mapping model can spec-
ify further information such as the default initialization of domain elements or
constraints which are evaluated on the domain model. The mapping model is
used to generate the generator model which configures the code generation pro-
cess. This model includes information on how the generated plug-in is named,
which dependencies are used etc. The processes for creating the generator
model and the generated code can be customized by the user. The creation
of the generator model is customized by using QVTo [185] templates, while
XPand-based [69] Model-to-Text (M2T) transformation templates can provide
aspects which customize the default code generation templates [197]. These
two techniques allow a language engineer to enhance the GMF-T framework
with functionality which is not provided out-of-the-box.

12.1.2 Sirius

At the time of writing, Sirius [43, 63, 211, 231] is the latest contribution to
the Eclipse Platform in the area of domain-specific language definition. Like
GMF-T, Sirius is built on GMF-R and can be used to build diagrammatic
modeling workbenches using models. In contrast to GMF-T, these models are
interpreted at run-time. This means that editors can be changed on-the-fly
by changing the model that defines them. The tool focuses on providing edit-
ing capabilities using different viewpoints offering different editors which can
be diagrammatic, tabular or tree-based. Other formats are possible but not
implemented at the time of writing. These features could be used to emu-
late multi-format and multi-notation editing by opening a model in different
viewpoints defining different notations and formats. This however, would still
not allow modelers to mix notations freely in one editor as the notations are
isolated from each other in distinct editors. Moreover, the textual format is
not available for editing in Sirius out-of-the-box. XText can be manually inte-
grated with the other Sirius formats but has some weaknesses because of the
integration of the projectional Sirius editors with the non-projectional XText
editors [195].

The different Sirius editors can offer different levels of granularity when
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viewing a model. Using layers it is possible to hide parts of a tool palette,
introduce new model elements or influence the current style (i.e. visual shape)
of model elements. Editors, by default, do not show any model. They need to
be populated by hand with the model elements they are intended to display.
This can be done via drag-and-drop, a button in the tool palette or in other
ways which the language engineer can freely define. Views on a model are by
default synchronized with each other, but this can also be influenced by a lan-
guage workbench engineer who can choose different modes of synchronization
including no synchronization.

To define a language workbench one monolithic model, the View Point
Specification Model (VPSM), is created which defines how the modeling work-
bench behaves. This model defines the viewpoints that are available in the final
modeling workbench. The viewpoints contain the definitions of the different
editors which are defined by the graphical shapes used to visualize model con-
tent, the tools that are available to manipulate the model and a mapping
between the domain models and the graphical visualizations.

The graphical definition is created similar to the GMF-T by combining
several predefined styles (i.e. shapes such as squares, triangles, diamonds etc.)
to visualize domain elements. In the mapping definition, domain elements are
mapped to their corresponding visualizations. The mappings to the domain
model consist of two parts, the mandatory domain element to which the map-
ping applies and an optional candidate expression which allows selected model
elements to which the mapping shall be applied to be further refined based on
domain rules in a constraint language.

In the tool definition, actions available for model manipulation are defined.
The tools are modeled using a small action language which allows constructs
such as create instance, delete view, navigation, set value etc. to be defined.
These actions can be further refined by the modeling language engineer using
a constraint language. In cases where a constraint language is not sufficient,
such as the parsing of input after the direct editing of a label, calls to func-
tionality coded in Java can be made. Additionally, layers, toolbars, filters,
and decorators can be defined for a model. A layer allows mappings, tools and
graphical customization to be defined which are only available when the layer
is selected by a modeler.
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12.1.3 MetaEdit+

MetaEdit+ [166, 224] is, at the time of writing, the most successful commercial
workbench for defining diagrammatic domain-specific languages. It focuses
on the definition of diagrammatic languages and the generation of running
programs from models created in these domain-specific languages. MetaEdit+
uses a four step approach to define domain-specific modeling workbenches:
1. Concepts, 2. Rules, 3. Symbols and 4. Generators.

Concepts (domain models) are either defined in a dialog box or graphical
editor based on the preference of the domain-specific language engineer. A
proprietary metamodeling language is used by MetaEdit+ which offers well
known concepts like entities, attributes etc. Static semantics is defined using
the rule editor. Templates are provided (e.g. maximal occurrence of a meta-
model instance) which are parametrized to support the writing of rules. Rules
can be checked and enforced directly when a model instance is created.

The symbol editor offers convenient what you see is what you get editing
of metamodel element visualizations. Graphical shapes can change their visu-
alization in a context-sensitive way depending on defined rules. A language
engineer can define different layers of abstraction for one model, so that for
example a detailed view can be shown to domain experts and a simplified view
can be shown to business stakeholders. MetaEdit+ supports diagrammatic,
matrix and table editors. Hence, it is also possible to define multiple notations
and multiple formats for a model. Again, as with Sirius, the textual format is
not available and notations cannot be freely mixed within one editor.

Generators allow models to be serialized to textual formats such as XML or
a programming language for further processing. Either the predefined built-in
generators can be tailored and reused or custom generators can be defined
using the generator editor. Advanced tools exist to debug the generators,
including step-by-step execution, breakpoints and tracing of text output to
the original graphical model element.

A key feature of MetaEdit+ is its support for metamodel evolution. All
changes which are made at the metamodel level are immediately reflected in the
rules and generator definitions. In particular, existing models still conform to
the evolved metamodel in contrast to modeling infrastructures like EMF. This
conformance, however, is not achieved by applying model evolution operations
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but declaring the old typing information as still valid [225]. This facilitates
the long term evolution of models over several decades.

MetaEdit+ offers an API and interchange format (XML) for integration
with external tools. A central repository is used to store all model content —
concept definitions, rule definitions, symbol definitions, generator definitions
and model instances. Collaborative teamwork is made possible by means of
model sharing. Multiple modelers can work on different parts of a system
at the same time without interfering each other. MetaEdit+ takes care of
synchronization and conflict management during collaborative work.

12.1.4 AToMPM

AToMPM [77, 163, 219], the successor of AToM3 [152], is an open and ex-
tensible web-based multi-paradigm modeling tool for modeling in the cloud.
AToMPM runs in every SVG compliant web browser. It focuses on the defini-
tion of abstract syntax, multiple concrete syntaxes which can be mapped to an
abstract syntax, transformations and collaborative modeling. The AToMPM
language workbench itself is an interpretation of models created in AToMPM.
Hence, full customization of the modeling environment through the usage of
AToMPM models is supported.

The default language for defining abstract syntax is a simplified UML mod-
eling language which can be replaced by any metamodeling language as needed.
Static semantics is defined in a textual DSL or JavaScript. The concrete syntax
is defined and mapped to the abstract syntax in so-called icon models. These
are defined through a DSL tailored for defining SVG-based graphics. In this
language all SVG properties are available to create graphical shapes (icons).
Context-sensitive concrete syntax definition is also supported. It is possible
to define multiple concrete syntaxes for one abstract syntax. A language user
can exchange the concrete syntax that is used for modeling on-the-fly with
the click of a button. In addition to switching the concrete syntax, the model
editor also supports model elements in the editor to be hidden so that the
content displayed in the editor is limited to the information needed for the
needs of a specific modeler.

A unique feature of AToMPM compared to the other tools presented here
is collaborative modeling by either screen sharing or model sharing. In the
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first scenario multiple modelers work simultaneously on the same view of the
model. In the second scenario multiple modelers work on different views of
the model which can for example have different concrete syntax. Changes by
one modeler in one view are synchronized to the views of all other modelers.

Transformations are used, amongst other things, to simulate, animate and
analyze models. Additionally, they are used to translate from one abstract
syntax to another. These model transformations are defined in a rule-based
transformation language generated from the domain-specific input and output
modeling languages [216]. This enables a modeler to use the domain-specific
input and output languages to define the preconditions for a rule to be ap-
plied, optional negative application conditions (patterns to which the rule is
not applied) and the post condition (result of transformation rule). The trans-
formation rules are scheduled using the Motif [217] language. Furthermore,
the transformation language included out-of-the-box can be extended with
new concepts or fully replaced. This is achieved by specifying a higher-order
transformation which translates the newly introduced concepts into the trans-
formation language shipped with AToMPM (T-Core [218]). Using a graphical
debugger, transformations can be paused, executed step-by-step etc.

Complex editing operations can be performed via scripts that are typed into
the command line at the top of the editor. An example of such an operation
is to create five new places in a petri net.

12.1.5 Generic Modeling Environment

The Generic Modeling Environment (GME) [90, 154, 155] is a configurable
domain-specific modeling environment. A model containing the abstract syn-
tax, static semantics and concrete syntax is used to configure the environment
to the desired modeling paradigm for the modeling workbench to be devel-
oped. The GME language workbench itself is built using such models, and
hence GME is defined in GME.

In GME domain-specific languages are defined through so-called modeling
paradigms and aspects. A modeling paradigm defines the domain-specific mod-
eling language (i.e. abstract syntax, concrete syntax and semantics), whereas
an aspect defines a special view on a model (e.g. which model elements are
visible or can be created). GME uses a modeling language that consists of
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models, atoms, connections and references. A model is a container that can
contain other elements such as atoms or connections. An example of a model
could be an actor that contains the steps it is executing. Every GME edi-
tor has one root model. Atoms are the most atomic constructs in a language
which cannot contain any other constructs. Examples would be gateways in
a process modeling language such as XOR or AND. Connections are model
elements themselves which can contain attributes and can connect model el-
ements such as models and atoms. They are restricted to connecting model
elements within the same container only. References, which are essentially like
pointers in a programming language, can be used to overcome this restriction,
but they cannot have attributes. The language engineer uses a metamodeling
language close to the UML to define modeling paradigms. The created classes
indicate which concepts in GME they are related to by applying stereotypes.
Static semantics can be defined using an OCL like constraint language. The
visualization of a model is also defined in the paradigm metamodel by assign-
ing icons (i.e. bitmap graphics) to atoms and models. Additionally, graphical
properties such as the color and kind of lines (e.g. dashed) or the color of model
element backgrounds can be set. Moreover, it is possible to define which meta-
model elements are visible in an aspect by modeling these together with the
metamodel of the modeling paradigm.

GME can be extended using the COM programing model. An API to
access and manipulate models programmatically is provided, as well as an
event mechanism to which plug-ins can subscribe. The storage format of GME
is either a proprietary binary format or an XML-based format.

12.2 Textual Domain-specific Language Work-
benches

This section covers the major commercial, textual, domain-specific language
workbenches, – XText [70] as the representative for grammar and parser-based
language workbenches and JetBrains MPS [41] as the representative for gram-
mar and projection-based language workbenches – as well as the academic
EMFText [103] as the representative of parser-based language workbenches
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which annotate metamodels with concrete syntax information.
Of these, only JetBrains MPS supports multi-format editing out-of-the-box.

In MPS, for example, a table or mathematical formula editor can be hosted
within the textual editor. It is also the only projectional, textual language
workbench discussed here. The language for defining concrete syntaxes is
similar to Melanee’s which mainly relies on literals and values. EMFText and
MPS both provide a predefined textual syntax. Multi-notation editing is not
possible in any of the tools. Separate editors are defined for each notation
and files need to be opened with the notation-specific editors. None of the
tools supports seamless deep modeling since they are inherently based on a
single class/instance level pair. Moreover, none of these tools supports aspect-
oriented concrete syntax definition or context-sensitive syntaxes.

Many other textual domain-specific language workbenches exist on the mar-
ket at the time of writing, such as TCS [121, 120], which was used to create
the ATL [122] editors, Spoofax [125], Monticore [142], Whole Platform [212]
and Meta Model Syntactic Sheets [76]. However we do not analyze these in
detail here due to their relatively limited user bases.

12.2.1 XText

XText [70, 240] is an Eclipse-based textual language workbench for creating
textual domain-specific languages. These languages are supported through
features such as syntax highlighting, code completion, code generators etc.
Editors for Eclipse, IntelliJ IDEA [144] and web browsers can be generated.

XText supports two modes for defining a domain-specific language, one is
to start with a grammar definition and infer the EMF-based domain model
from this grammar and the other is to start with an EMF-based domain model
and import it into the XText grammar definition. Both modes can be mixed
as needed within one grammar. One part of a grammar can be, for example,
used to infer an Ecore model and the other part can reuse an existing Ecore
model. The grammar definition language is very similar to standard grammar
definition languages such as ANTLR or EBNF. Since the underlying parser
generation framework of XText is ANTLR3 it is limited to grammars which
are parsable by an ANTLR3 generated parser. This excludes left recursive
grammars, for example.
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The generated editor can be customized through the MWE2 [171] based
language generator and Google Guice [228] based dependency injection. The
MWE2 customization is used to configure code generation properties such
as the file extension of the model instances or which platform is supported
(e.g. eclipse or web). Dependency injection is used to extend the functionality
of XText through such things as custom value converters which convert the
parsed text into data conforming to a data type. An example for the applica-
tion of a value converter is to parse cardinalities to integer values in situations
where an infinite upper bound is represented by the non-integer star (*) literal
in the textual language but internally represented by an integer value of -1 as
e.g. in EMF Ecore.

12.2.2 JetBrains MPS

JetBrains MPS [41, 232, 234] is an IntelliJ IDEA based language workbench for
the development of textual, projective programming environments. Through
its projective editing capabilities it is possible to host other formats such as
table or mathematical formula editors within the created text editors.

A user creates a language in MPS by defining a structure model (abstract
syntax), editor model, constraints, behavior, a type system and generators.
The structure is modeled by a combination of an EMF-like tree editor and
text for specifying the properties of metamodel elements. In contrast, Eclipse
EMF uses property tables for this task. The metamodel elements available in
MPS are Concept (i.e. metaclass), Enum Data Type, Constrained Data Type,
Primitive Data Type Declaration and Interface Concept. Interface Concepts
define properties, containment references and references to be reused by con-
cepts. The defined structure can be edited in a predefined language shipped
with MPS. To replace this predefined language with a user-defined language
the editor model is employed. For each concept from the structure a Concept
Editor defining the concrete syntax is created in a textual language. Editor
Components representing concrete syntax definition snippets to be reused by
Concept Editors can also be defined. The concrete syntax definition language
consists of layout managers, for laying out the text, labels showing static strings
and values displaying values from the underlying model.

Constraints are defined in the constraint model in a Java-like constraint

242



12.2. Textual Domain-specific Language Workbenches

DSL and can be linked to properties or references. Code generation is de-
fined in the generator model via a rule-based modeling language which maps
model elements to templates. This concept works in a similar way to model
to text transformation languages such as Acceleo [2], an implementation of
the MOFM2T [180] OMG standard. Behaviors, defined in a Java-like textual
syntax, define how a concept behaves in the editor. An example is a for-loop
making its loop-variable available to all statements in it (scoping), or the def-
inition of default values on instantiation. Type systems, defined in a textual
DSL, define rules on types which are used for validation. For instance, it is
possible to define that a string cannot have an integer assigned to it.

12.2.3 EMFText

EMFText [74, 103] is an EMF-based tool for annotating Ecore metamodels
with textual concrete syntax definitions. Furthermore, it supports the genera-
tion of default syntaxes (e.g. HUTN) for Ecore metamodels which can then be
tailored towards the desired user-defined language. An EMFText definition
always consists of two artifacts, the Ecore model for which the language is
defined and the file containing the annotations to the Ecore model in a textual
language which looks similar to grammar specification languages like ANTLR
or EBNF. Like in XText, fully functional Eclipse editors including syntax high-
lighting, code completion etc. are generated out of the Ecore metamodel and
the concrete syntax definition. The UI independent code of EMFText does
not have any dependencies to Eclipse or EMFText and can thus be run on any
platform supporting Java.

The generated editor can be customized by either overriding generated
artifacts, overriding meta information classes or using generated extension
points [73]. For parts which are independent of the grammar the authors of
EMFText recommend to override generated artifacts which involves manually
changing generated code and directing the code generator to not replace the
modifications. They point out, however, that in future EMFText versions a
revision of the modified editor source code may be necessary. The approach of
overriding meta information classes involves changing the factories generated
by EMFText to return subclasses of the originally generated classes. The
authors recommend this for customization of concrete syntax relevant code.
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The extension points offered by EMFText provide customization capabilities
for model loading and making extensions to the parser.

12.3 Form-based and Tabular Domain-specific
Language Workbenches

At the time of writing no language workbench exclusively focused on creating
form or table-based languages exists. However, such formats are covered by
more general tools that address other formats as well. Tables, for example,
are supported in Sirius although its focus is on diagrammatic language engi-
neering. Forms and tables are covered by EMF Forms [72] as part of the EMF
Client Platform [193] and by EMF Parsley [191]. EMF Parsley uses textual
models while Sirius and EMF Forms use tree-based models for defining forms
and tables. All three define the concrete syntax in a separate model from the
abstract syntax. Of the three tools, Sirius offers the most customization possi-
bilities for tablular, domain-specific language definition beyond the mere map-
ping of columns to metamodel element attributes as supported in EMF Forms
and EMF Parsley. However, none of these tools offer explicit multi-format
or multi-notation support (except Sirius partially through its viewpoint and
layers feature) and they do not support deep, seamless editing since they are
inherently based on a single class/instance level pair. Furthermore, no prede-
fined tabular or form-based language is provided by any of the tools and they
do not support aspect-oriented concrete syntax definition.

12.4 Multi-level Modeling Tools

The main multi-level modeling tool competitors to Melanee are MetaDepth
and DPF. Of the two, the tool which offers the most similar capabilities to
Melanee is MetaDepth. Like Melanee it is based on the orthogonal classifica-
tion architecture and provides a textual predefined notation for deep models,
a deep constraint language and support for defining textual user-defined lan-
guages. DPF is a diagrammatic deep modeling tool which allows modelers
to define diagrammatic user-defined languages and provides a predefined dia-
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grammatic language out-of-the-box. However, it does not provide a constraint
language. Both tools lack support for multi-notation/multi-format, context-
sensitive editing, and aspect-oriented concrete syntax definition. Seamless
modeling is supported without an emendation service and thus the complexity
of changes has to be handled manually by a modeler.

At the time of writing there are many other multi-level modeling tools such
as the Open MetaModeling Environment [236, 237], Cross Layer Modeler [57],
Modelverse [227], Nivel [4], MultCore [161], XModeler [48, 49, 83, 104], Xome
[91] and Deep Java [146] . However, we do not analyze these in detail here due
to their lack of maintenance, or relatively limited user base.

12.4.1 MetaDepth

MetaDepth [50, 51, 54, 167] aims at supporting textual, deep modeling based
on the orthogonal classification architecture. Hence, it follows the same ba-
sic deep modeling approach as the one supported by Melanee. The target
audience of MetaDepth is developers who want to use a textual syntax to
define executable deep models. For this purpose MetaDepth is built on the
epsilon framework [187] which provides a textual HUTN [178] like notation
for model definition and an OCL-based transformation [138], code generation
[201], action [137], validation [139] and query language. Using these ingredi-
ents MetaDepth provides powerful features for creating deep models that
can be executed via an action script written in the Epsilon Object Language
(EOL).

An in depth comparison of MetaDepth and Melanee is provided in [12].
This comparison shows that most of differences between the languages under-
pinning the tools originate for their different foci. While Melanee primarily
targets language engineers aiming at defining user-defined languages in any for-
mat, MetaDepth focuses on supporting programmers aiming at defining deep
models that can be executed or used in deep action, transformation and gener-
ation languages. This influences the classification semantics of MetaDepth,
which are more strictly focused on creating models which are easier to program
against with as little ambiguity as possible. Example features are leap potency
and deep references.

For concrete syntax definition, MetaDepth uses a template based ap-
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proach in which every clabject has a template attached describing its concrete
syntax. The visualization search algorithm from [76] (on which Melanee is also
based) is used to find templates for clabjects in their classification and inheri-
tance trees should they not have templates themselves. The definition of con-
crete syntax templates mainly relies on literals to define static, non-changeable
text and values showing the values of clabject attributes. In MetaDepth a
potency is assigned to each template to define how many levels below a con-
crete syntax definition a template is applied. This differs from Melanee which
applies a template as long as no new template is defined in the inheritance or
classification hierarchy.

The deep constraint language of MetaDepth supports navigation between
the linguistic and ontological dimensions and navigation via reference names
defined on higher ontological levels. Hence, the Melanee and MetaDepth
constraint languages are very similar. One of the few differences is the default
level at which constraints are evaluated. In MetaDepth constraints are eval-
uated on the level defined by their potency, whereas for the deep visualization
scenario, Melanee constraints are by default applied across all classification
levels. In addition to plain constraint definition, MetaDepth also provides
capabilities to check whether a constraint is satisfiable or not [52, 96] by using
the USE Validator model finder [145]. This feature is not present in Melanee.

12.4.2 Diagram Predicate Framework

DPF [81, 136, 148, 202] is a diagrammatic, deep modeling tool with capabilities
for defining diagrammatic user-defined languages. DPF is available as a web
tool (Web DPF) and Eclipse plug-in. The version of DPF described here is the
Eclipse plug-in version which supports diagrammatic user-defined languages
(unlike the web-based DPF version). DPF adopts a formal approach to deep
modeling like Nivel [4]. It is based on the generalized sketches formalism [59]
and category theory [34]. While Nivel has not been implemented, however, two
implementations of DPF exist as formerly described. From an implementation
point of view the tool is based on the Graphical Editing Framework and the
Eclipse Modeling Framework like Melanee.

Since DPF assumes a linear organization of linguistic and ontological levels
it is not based on the orthogonal classification architecture like Melanee and
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MetaDepth. A user always starts with a model conforming to the default
metamodel shipped by DPF. This model is called an enriched graph in [136]
and is written in terms of the following metamodel concepts – DeepArrow,
Inheritance, NodeProperty, Value, ArrowProperty, Containment, DeepNode,
EString, EDataType and EBoolean. From this point on models are always
instantiated on classification levels further down.

User-defined notations for model elements are created using the so-called
visualization editor and are then mapped to the concrete syntax. This ap-
proach follows the previously presented GMF approach which uses one model
for concrete syntax modeling, one for abstract syntax modeling and one for
mapping concrete and abstract syntax to each other. DPF’s visualizer search
algorithm is based on name matching and classification. Metamodel elements
are assigned the ids specified for visualization descriptions in the visualization
model. Based on this information, the mapping between abstract and concrete
syntax is made. Visualization information is then mapped to instances via a
wizard which takes the visualization model of the meta level as input and cre-
ates all information for instance visualization. The current implementation is
somewhat limited, as evidenced by the limitations listed in [136] and does not
attempt to support multi-notation, multi-format seamless editing.

12.5 Related Work Summary

As the previous sections demonstrate there are a lot of tool implementations
and theoretical approaches that can be regarded as related work. The results
of the previous discussions are summarized in Table 12.1 to give a condensed
overview of the relationships between the analyzed tools and the deep, multi-
format, multi-notation, seamless modeling approach presented in this thesis
and realized by Melanee.

The summary shows that of the thirteen tools discussed in this chapter
only Melanee fulfills all requirements outlined in the introduction. Only two
of the tools are deep (MetaDepth and DPF) and therefore support seamless
modeling. However, they do so but in an unassisted way, so this feature has
been marked as partially supported by both tools in the table. Moreover, they
do not support any of the other user-defined syntax features such as multi-format
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Deep Seamless
Multi-
format

Multi-
notation

Aspect-
oriented

Context
Sensitive

D
ia
gr
am

m
at
ic GMF 7 7 7 7 7 3

Sirius 7 7 (3) (3) 7 3

MetaEdit+ 7 7 (3) (3) 7 3

AToMPM 7 7 7 (3) 7 3

GME 7 7 7 (3) 7 7

Te
xt
ua

l XText 7 7 7 7 7 7

MPS 7 7 3 (3) 7 7

EMFText 7 7 7 7 7 7

Ta
bl
e Parsley 7 7 7 7 7 7

EMF Forms 7 7 7 7 7 7

Sirius 7 7 (3) (3) 7 7

Fo
rm

s Parsley 7 7 7 7 7 7

EMF Forms 7 7 7 7 7 7

D
ee
p

MetaDepth 3 (3) 7 7 7 7

DPF 3 (3) 7 7 7 7

Melanee 3 3 3 3 3 3

Table 12.1: Summary of the related work. Ticks in brackets indicate partial
support.

and multi-notation modeling. Multi-format editing is partly supported by Sirius
and MetaEdit+ which support diagrams and tables, but because this support
is not available out-of-the-box for text the corresponding tick in Table 12.1
is placed in brackets. The only tool fully supporting multi-format editing is
Jetbrains MPS. Multi-notation support is not present in any tool in such a way
that within one model the notations can be exchanged and mixed as desired
by a modeler. Sirius, MetaEdit+, AToMPM and GME support multi-notation in a
limited form by allowing the whole model to be viewed in different notations.
Aspect-oriented concrete syntax definition is not supported by any of the tools,
while context sensitivity is supported only by the diagrammatic tools GMF, Sirius,
MetaEdit+, and AToMPM. Deep constraint languages, per se, are not considered
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in this related work chapter because they are an enabler for other features and
not the focus of this work. Apart from Melanee, however, MetaDepth is the
only tool providing a deep constraint language.

The related work overview shows that the most feature-rich tools are in
the domain of diagrammatic, user-defined languages, with partial support for
context-sensitive, multi-format, multi-notation user-defined languages. Nearly all
tools from the other domains (text, table and forms) lack these features. As
the table shows, the only tool which supports all features across all formats is
Melanee.
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Conclusions & Future
Work

This thesis has presented the deep, seamless, multi-format, multi-notation
modeling approach for defining and using domain-specific languages imple-
mented in the Melanee tool. The approach was developed to support the
seven requirements identified in the introduction. Meeting these requirements
allows the various stakeholders of a model to use the notation (R3) and for-
mat (R4) that best fits their needs. Moreover, the native support for deep
domains (R1) and seamless modeling (R2) greatly simplifies the definition of
languages by making changes to the abstract and concrete syntax immedi-
ately available to all classified levels. Deep, seamless modeling is backed up
by a model evolution assistance service (i.e. emendation service) which helps
the user effectively handle changes in models representing deep domains. The
provided mechanism for user-defined visualization definition allows the visu-
alization of models to depend on their current context/state (R5) and the
definition of deep concrete syntax is driven by aspects (R6). Aspect-oriented
visualization definition makes general, user-defined visualizations defined at
abstract classification and inheritance levels easily refineable at more concrete
levels. Finally, all user-defined visualization features are supported by a deep
constraint language (R7).
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13.1 Future Work

Although this work addresses most of the established requirements for a mod-
ern language workbench, some points are open for future work. The only way
to define an execution semantics at the moment is to write Java code against
the tool API or to write a deep transformation [25] to an executable model.
More convenient ways of defining semantics are possible such as integrating the
graphical fUML [183] approach (cf. XMOF [164] for EMF) or implementing
a textual deep action language (as in MetaDepth or the ALF language for
UML [208]). In an fUML like environment a modeler could graphically define
the behavior of models across multiple classification levels using an abstract,
programming-oriented language and a search algorithm similar to that used in
the deep visualization mechanism developed in this thesis. This would enable
the definition of general languages with general execution semantics and con-
crete syntax that can be further refined, using aspect-oriented technology, as
needed for the scenario to be modeled. Execution would then naturally take
place at lower classification levels without the need to apply workarounds such
as stereotypes to type levels for visualizing execution. Moreover, the current
execution state would not only be visualizable at the instance levels but the
instance levels could also be used to pause and resume an execution.

In comparison to tools such as JetBrains MPS and XText, it is clear that
the textual format supported by Melanee lacks features such as type system
definition and interpreter definition. Adding these features to the approach, for
example, would allow textual programming languages to be defined. Another
interesting question is the extent to which other formats such as diagrams and
tables can benefit from these features. In the current version of Melanee the
textual format is supported by pure projectional editing. However, a hybrid
parser/projection-based approach, as used in JetBrains MPS, can enhance the
usability of the text editor.

Concerning the aspect-oriented, user-defined visualization approach it would
be beneficial to support aspects for the attributes of metaclasses in language
definitions. In a diagrammatic language, for example, this would allow the
background color of a model element defined at O0 to be overridden by a
model element at O1 without replacing the full visualization containing the
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recolored background.

At the time of writing the potential of the approach is limited due to
the fact that a language is always defined and used within one single deep
model. To overcome this limitation it would be advantageous to be able to
link distributed, deep models with one another. For example, a snippet of a
user-defined language (e.g. the general company modeling language at O0 of
the running example) could be placed in a GIT repository on the internet and
then linked by other models for reuse. To make the feature useable in practice
the emendation service would have to be extended to support the emendation
of remote models. This service could then transport emendation operations
across cascades of linked models (i.e. linked models which link other models).
Further research, however, has to be done on this topic.

When the modeling environment becomes distributed it is important to in-
troduce rights management for deep models. In Melanee this could be achieved
by extending application visualizers to control which groups of users can view
and/or edit which parts of a model in certain notations and formats. Such
a rights management approach would ensure that unauthorized modelers are
unable to make changes to deep models which could negatively effect other
linked models.

It would not only be interesting to extend the emendation service to sup-
port distributed models but also to support user-defined visualization defini-
tions and their accompanying constraints. The current implementation of the
user-defined visualization definition approach stores constraints as plain text
but it would be possible to store pointers to deep model content wherever it
is referenced in a constraint. A constraint would then be stored as a mix of
static text and pointers to the abstract syntax model representation of a deep
model. All other references to deep model content in a user-defined visualiza-
tion definition are already stored as pointers in the current version. By having
this information available, in future implementations the emendation service
can calculate the impact of a change on user-defined syntax definitions and
make suggestions for automatic emendation operations.

At the time of writing only the diagrammatic format persists its weaving
model to store layout information. In all other formats user-defined layout
customizations are lost after closing a format specific editor. A study on how
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users actually work with the non-diagrammatic formats can give insights into
the benefit of enriching these weaving models with layout information and
persisting them for reuse once the format-specific editor is closed.

The current implementation of the approach is dominated by the diagram-
matic editor. All other formats, for example, are invoked from the diagram-
matic format. Hence, this format plays a more prominent role than others
at the moment. In future it would be interesting to explore how this domi-
nance of the diagrammatic format can be weakened and eventually removed
altogether. One solution could be to display a dialog box prompting for the
format and notation to be used when the deep model is opened. Another po-
tential solution is to allow the application visualizers to be configured by the
user for this purpose.

In Melanee, the tree format is also available for modeling but not further
described here. This format is currently limited to the predefined tree mod-
eling language offered by EMF out-of-the-box. In future versions of Melanee,
this predefined language could be further tailored for deep modeling, e.g. by
offering deep modeling features such as ontological instantiation through its
user interface. It would also be possible to enrich this format with user-defined
tree language definition capabilities.

Currently, Melanee is a desktop-based Eclipse application. However, with
the advent of web-based Eclipse versions such as the Eclipse Remote Appli-
cation Platform [67] or Eclipse Che [62] interesting future work would be to
evaluate which parts of Melanee can be usefully ported to these web technolo-
gies.

13.2 Conclusions

At the time of writing the approach to user-defined language definition and use
presented in this thesis is one of the most advanced available by addressing the
in the introduction established requirements. The related work chapter shows
that no tool currently exists which addresses all features offered by Melanee.
The strict application of the visualizer search algorithm in a deep environment
together with the strict application of the projectional editing approach across
all modeling formats allows Melanee to offer a deep, seamless, multi-notation
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and multi-format editing experience that is unlike anything currently available.
The evaluation shows that a whole stack of tools and technologies is needed

to create a modeling workbench which is comparable to the approach devel-
oped as part of this thesis. A comparison of such tool stacks (e.g. the EMF tool
stack) with Melanee shows that they introduce significant accidental complex-
ity not only due to their reliance on workarounds to emulate deep modeling
but also due to the heterogeneous technologies and tools that need to be inte-
grated. In the textual format, for example, model merging problems between
the parser-based textual editor and projectional editors of other formats would
have to be solved to introduce new formats besides the textual one. The prob-
lems of a heterogeneous technology landscape are also highlighted by language
evolution. For instance, different modeling language evolution tools have to be
deployed to co-evolve the concrete syntax definitions in format-specific tech-
nologies and the abstract syntax definition in EMF. Moreover, although the
EMF-based domain model can represent the content in the running example,
it lacks deep features such as control of attribute mutability etc.

In conclusion, we believe the deep user-defined language technology de-
veloped in this thesis and implemented in Melanee represents a significant
contribution to the state of the art, and hope it will form the basis for more
useful, flexible and exciting modeling features in the future.
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