
Detecting Meaningful Compounds in
Complex Class Labels

Heiner Stuckenschmidt, Simone Paolo Ponzetto, and Christian Meilicke

Data and Web Science Group, University of Mannheim, Germany
{heiner,simone,christian}@informatik.uni-mannheim.de

Abstract. Real-world ontologies such as, for instance, those for the
medical domain often represent highly specific, fine-grained concepts us-
ing complex labels that consist of a sequence of sublabels. In this paper,
we investigate the problem of automatically detecting meaningful com-
pounds in such complex class labels to support methods that require
an automatic understanding of their meaning such as, for example, on-
tology matching, ontology learning and semantic search. We formulate
compound identification as a supervised learning task and investigate a
variety of heterogeneous features, including statistical (i.e., knowledge-
lean) as well as knowledge-based, for the task at hand. Our classifiers
are trained and evaluated using a manually annotated dataset consisting
of about 300 complex labels taken from real-world ontologies, which we
designed to provide a benchmarking gold standard for this task. Exper-
imental results show that by using a combination of distributional and
knowledge-based features we are able to reach an accuracy of more than
90% for compounds of length one and almost 80% for compounds of
length two. Finally, we evaluate our method in an extrinsic experimen-
tal setting: this consists of a use case highlighting the benefits of using
automatically identified compounds for the high-end semantic task of
ontology matching.

1 Introduction

Conceptual models of information structures and information flows are a central
concept in computer science. They play a crucial role in the design and mainte-
nance of information systems. Besides the classical tasks of creating and evolving
conceptual models, the task of identifying mappings between different models as
a basis for integrating different systems has become more and more important.
The problem of integrating different representations of reality is a long-standing
problem in computer science. In particular, it is the core problem of the field of
data integration. The database community has developed a variety of methods
for identifying matching data elements both on the level of instance and schema
data [7]. More recently, the problem of matching elements from different ontolo-
gies, namely formal models of an application domain, has been investigated in
detail [36]. It has been argued that many matching techniques developed for
schema matching can also be applied to ontology matching. However, questions
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remain on whether further advances could be achieved by leveraging the formal
semantics of ontologies.

Despite much research work in the field, existing approaches to ontology
matching still have a number of limitations. For instance, almost all existing
methods produce simple one-to-one matches between elements in the represen-
tations to be compared [10]. That is, most existing systems rely on the naive
assumption that the representations to be compared represent reality at the very
same level of granularity. A particular problem that can be observed when trying
to match models that describe the domain at different levels of abstraction are
situations where the class names describe complex constructs that do not have
a direct counterpart in the other model, but their intended meaning can be ex-
pressed (or at least approximated) by a logical expression over simpler elements
[37]. A complete solution to this problem amounts to developing novel, full-
fledged methodologies to ontology matching that cover arbitrary one-to-many
mappings. While we envision this as a longer-term goal requiring substantial
research efforts, in this paper we provide a first step towards such a solution by
addressing the problem of understanding complex class labels. More specifically,
we focus on the task of identifying meaningful compounds in complex ontology
labels that might refer to independent classes in a differently structured ontology.
This is, to the best of our knowledge, the first attempt to address in detail this
problem, which bears nevertheless a strong resemblance with other well-known
tasks in Natural Language Processing and Information Retrieval – e.g., syn-
tactic disambiguation of multiword expressions (also known as noun compound
bracketing) [2] and query segmentation [3, 15, inter alia].

1.1 Problem Definition

Real-world ontologies, e.g., those providing semantic models of a highly spe-
cialized domain such as the medical one, often provide a description of their
fine-grained concepts by means of complex labels that typically require some
knowledge of the domain to make sense of. As an example, let us focus on the
concept label natural killer cell receptor 2B4, which can be found in the Gene On-
tology [1]. This label shows properties typical of complex ontology labels. Note
that with ‘complex’ we refer here to the fact that the noun compound exhibits
both syntactic and semantic ambiguity. That is, the label could be interpreted
in different ways, depending on how its internal syntax is disambiguated. For
instance, looking at the first four tokens of our example label, we see that there
are at least three ways in which it could be bracketed, and thus interpreted:

(1) [natural killer] [cell receptor]
(2) [natural] [killer cell receptor]
(3) [natural killer cell] [receptor]

The first interpretation would be that the label describes the cell receptor of a
natural killer. Clearly, this is for humans a quite implausible interpretation of the
intended meaning of the label. Nevertheless, the two other possible bracketings
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provide us with two equally plausible interpretations, which are both hard to
rank as preferred interpretation, even by human subjects. The second possible
interpretation, in fact, identifies the natural form of a killer cell receptor, whereas
the third one the receptor of a natural killer cell – which is actually the correct
interpretation, since ’natural killer cell’ is a technical term in immunology. Note
that, at a closer look, for semantic applications – such as, for instance, mapping
label constituents (i.e., substring) to another resource – we need in practice a
task formulation that goes beyond simple bracketing of adjacent noun phrases.
First of all, meaningful parts of a label can actually overlap. In our example,
these are ‘natural killer cell’ and ‘cell receptor’. The term ‘cell’ is part of both
components and links the two concepts to each other. Beyond that, there are
also cases where meaningful compounds consist of terms that are not adjacent in
the label. An example is the label ‘British Crown colony’ where all combinations
of terms actually identify a meaningful concept: i) the ‘British Crown’, which is
in charge of the colony, ii) ’Crown colony’ indicating the property of the colony
as belonging to a kingdom, and iii) ’British Colony’, which describes that the
colony is or was owned by great Britain.

To provide a workable problem definition, we define criteria for recognizing a
meaningful compound within a complex label as follows:

Definition 1. Given a complex concept label l = (l1, · · · , ln) a compound in l
is a subsequence s = (s1, · · · , sm) of l where m < n. A compound s in l is
meaningful if

– s is a grammatically correct noun phrase,
– s can be the label of a possible concept in some ontology,
– s retains a meaningful relation to l.

Rather than providing a general or exhaustive solution, this definition is inspired
by the intended application to ontology matching (Section 5). Since the ultimate
objective is to find semantic relations to other ontologies, we are interested in
parts of the label that can be found as concept labels in other ontologies (re-
quirement 2). Clearly, we are only interested in those concepts that play some
part in a complex mapping, and thus have some relation to the complex label
(requirement 3). Admittedly, the definition is not unambiguous, so we must rely
on human annotations as a reference (Section 4.1).

1.2 Contributions

In this paper, we investigate the problem of automatically detecting meaningful
compounds in complex class labels as a first step towards complex ontology
matching. The contributions of this paper are the following:

– We propose a supervised approach for recognizing meaningful compounds in
complex ontology labels1.

1 In this work, we focus primarily on labels of length 3: however, our approach can be
used in principle with labels of arbitrary lengths.
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– We investigate different sets of statistical and knowledge-based features as a
basis for the learning approach.

– We create a manually annotated benchmark dataset consisting of about 300
complex three-word labels taken from real-world ontologies.

– We show that, thanks to a combination of statistical and knowledge-based
features, we can reach an accuracy of about 90% for compounds of length
one and about 80% for compounds of length two.

– Based on the results of the experiments, we propose an unsupervised ap-
proach for detecting meaningful compounds in labels of arbitrary length.

2 Related Work

Label Analysis. Recently, there has been initial work addressing the analy-
sis and use of complex labels for ontology enrichment and semantic matching.
Manaf and others report results of a large scale analysis of the structure of class
names on the Semantic Web [21]. They conclude that almost 90% of all class
labels resp. identifiers on the semantic web are actually meaningful in that they
provide a natural language description of the intended meaning of the class. More
than 96% of these labels consists of more than one word. Further, they report
that complex labels can be parsed syntactically as most labels use camel case
syntax or special separators to delimit single words. In our previous work, we
have used patterns over linguistic features generated through part-of-speech tag-
ging, syntactic parsing and lexical semantic analysis to detect complex mappings
between ontologies [30, 31]. In the area of business process modeling, Mendling
and others have developed a method for analyzing activity labels based on dif-
ferent modeling styles observed in real world models [22, 20]. Other researchers
focused instead on domain-specific resources ranging from biomedical ontolo-
gies like the Gene Ontology [11] and those found on BioPortal [27], all the way
through identifiers found in source code [8].

Noun Phrase Chunking and Compound Bracketing. Two related prob-
lems from the field of Natural Language Processing (NLP) are text chunking
(also referred to as shallow parsing) and noun compound bracketing. In contrast
to full syntactic parsing, text chunking is concerned with the identification of
flat, non-overlapping segments of a sentence which identify its basic non-recursive
phrases corresponding to major parts-of-speech such as noun, verb and preposi-
tional phrases. Noun phrase chunking is the special problem of identifying basic
noun phrases within sentences. Due to the tight relation to full parsing, early ap-
proaches relied on established parsing methods [29]. Major advances were made
thanks to the organization of a shared task as part of the Conference on Natural
Language Learning in 2000 [33]. The participating systems reached an accuracy
of over 90%, with the best performance being reported for a supervised approach
based on Support Vector Machines [18]. Further advances were later achieved
using better statistical approaches to tagging such as, for instance, Conditional
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Random Fields [35]. While our task is similar to the chunking problem, iden-
tifying ’chunks’ in class labels is much harder as labels typically do not have
a regular grammatical structure. Similarly, meaningful compound identification
is related to the other NLP task of noun compound bracketing, namely the
syntactic disambiguation of multiword expressions [2]. For this task the best-
performing models are based on a variety of different syntactic and semantic
features [24, 39]. But while these contributions provide us with useful hints as
to which kind of features we need for the task at hand (e.g., N-gram statistics),
bracketing is primarily meant as a phrase-internal parsing task: that is, it does
not cover cases of meaningful non-adjacent compounds.

Query Segmentation. A problem that is actually closer to our task is that
of segmenting web search queries. Keyword queries, in fact, show similarities
with class labels as they typically do not have a regular grammatical structure
and are often composed of different meaningful compounds (e.g. ‘New York
budget hotels’). Bergsma and Wang showed that a combination of statistical
and linguistic features can be used to learn optimal segmentations from examples
with an accuracy ranging between 85% and 90% [3]. The results were obtained
on a set of 1500 queries sampled from the AOL search query database, a corpus
of more than 35 million queries. Zhang and others proposed an unsupervised
approach that makes extensive use of background resources like WordNet and
Wikipedia to detect potential segments, and applied it to the robust and ad-
hoc tracks of TREC reporting good results [41]. However, due to the task-based
evaluation approach they opted for, it is not possible to compare their results to
the supervised approach of Bergsma and Wang. More recently, Hagen et al. have
proposed in [14] a rather light-weight query segmentation method that mostly
relies on N-gram statistics from the Google N-gram Corpus [4]. In follow-up work,
they show that giving preference to segments that correspond to Wikipedia titles
further improves the results [15]. The results reported by Hagen et al. are in the
same range as the ones reported by Bergsma and Wang, thus showing that
unsupervised approaches can also be competitive.

3 Learning to Detect Meaningful Compounds

We present a method for automatically determining meaningful compounds in
complex class labels. Our approach builds upon existing techniques for query
segmentation, which are, however, adapted to our specific problem. Following
Bergsma and Wang, we propose a supervised approach, and focus in this first
initial attempt to explore in detail the feature space for the task at hand.

3.1 Approach

Successful approaches to query segmentation detect segment boundaries based
on different features of the neighboring words or, in the case of the unsupervised
approach of Hagen et al. [14, 15], based on features of all words in the query. This
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approach does not work for us, as we want to consider all word combinations in
a complex label. We solve this problem by regarding each possible word com-
bination as the binary decision problem of determining whether the respective
word combination is a meaningful compound or not, and learn a decision func-
tion using supervised learning methods. That is, given a concept label, our task
is to consider all proper subsequences and decide for each of them whether they
are meaningful or not (along the lines of Definition 1). We train the classifier
using a wide range of different features. While many features are taken directly
from previous work on query segmentation, we go one step further by adding
a number of new features more specifically targeted to capture the nature of
ontology class labels. We finally arrived at a set of about 80 individual features
from different categories, which we now turn to describe in detail.

3.2 Features

Statistical Features Building on the results of Hagen et al. that show the
benefits of N-gram statistics for query segmentation, we use statistical features
from large corpora, more specifically the N-gram-based scores for segments (same
as proposed by Hagen et al.), as well as features capturing the distributional
similarity and relations between words occurring within a label.

Features based on N-gram Statistics In [14] the authors propose a measure to
estimate the quality of a complete segmentation of a keyword query based on
the number of occurrences of a possible segment, normalized by the length of
the segment (to account for the power law distribution of N-grams on the web):

score(S) =
∑

s∈S,|s|≥2

|s||s| · count(s)

Here S is the complete segmentation consisting of individual segments s ∈ S.
Thus the score of a segment is given by |s||s| × count(s) where count(s) is the
number of occurrences in the N-gram corpus. We use this segment score for all
possible word combinations in a class label as feature. Since Hagen et al. treat
query segmentation as a global optimization problem, they implicitly consider
the relation between the scores of different segments. In order to take this relation
into account, we also use the quotient of the scores of all possible compounds
as features. We use the Google N-gram corpus [4] to collect statistics for all N-
grams up to length 5 and the jWeb1T API [13] to determine their frequency. In
[15] the authors show that treating segments that correspond to Wikipedia titles
differently improves the results. In the present work, we use empirical evidence
from Wikipedia titles as a separate feature (see below), rather than integrating
them directly into the N-gram score.

Features based on Word Similarity N-gram statistics crucially rely on counting
the occurrence of the exact string making up the compound label in very large,
i.e., Web-scale corpora. This way, bank account is a likely compound, as it fre-
quently occurs in text. However, this is not able to capture that, for instance,
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bank and account are strongly associated with each other since they also fre-
quently occur in context, albeit not necessarily in adjacent order – e.g., as in
‘open an account in a bank ’. Accordingly, we propose to relax the requirement
of exact matching and turn to distributional semantic [38] as a way to estimate
the degree of association between each of the compounds’ constituents. For each
segment s of a complex concept label (of length two), we accordingly compute
the pairwise similarity between its tokens. To this end, we use DISCO [17], a
freely available toolkit to build semantic spaces from text and compute distribu-
tional similarity. In this work, we use both first-order and second-order context
vectors [34] to compute the semantic similarity between the compounds’ tokens,
and use these two similarity scores directly as features for the classifier.

Features based on Relation Extraction Open Information Extraction systems
such as ReVerb [9] offer another rich source of information to compute the degree
of relatedness between the constituents of a compound. Accordingly, we used the
ReVerb dataset2 to compute such a score based on the extraction of relations
between sublabels. Given two sublabels, we query for all those triples where
one appears in subject position and the other as object, and vice versa. We
then count the number of distinct relations that appear in the resulting set of
triples in the predicate position, and use this as feature for our classifier. Note
that this provides us with an IE-based relatedness score that, in contrast to
distributional similarity features, takes explicitly into account the context in
which two constituents occur.

Resource-Based Features Previous work on query segmentation has shown
that background knowledge from linguistic resources can significantly improve
the identification of meaningful segments. We therefore also include a number of
features based on available resources. Following the approach of Zhang and Ha-
gen, we include WordNet and Wikipedia-based features. Since we are concerned
here with ontology labels, we also add new, previously unexplored features that
are based on the occurrence of words and compounds in the labels of classes,
instances and relations of ontologies found on the semantic web.

Wikipedia-based Features Successful unsupervised approaches to query segmen-
tation make use of Wikipedia to determine segments that correspond to meaning-
ful concepts. We adopt this approach and test whether combinations of words
from a concept label, including the complete label, correspond to a title of a
Wikipedia page. The wide coverage of Wikipedia and the fact that Wikipedia
pages are created by human editors and are subject to an intellectual revision
process make it a very useful source of information about descriptions of mean-
ingful concepts [16]. In order to determine whether a sequence of words corre-
sponds to a Wikipedia title, we use the JWPL Wikipedia API [40].

2 http://openie.cs.washington.edu/
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WordNet-based Features WordNet was used as a dictionary in [41] to check
whether a word in a query is a proper noun. We adopt and extend this idea.
In particular, for each word in a class label, we collect all parts-of-speech (PoS)
– namely any of noun, verb, adjective or adverb – it can have in WordNet.
We consider PoS other than nouns to capture context-specific ambiguity across
PoS – e.g., ‘light’ used as an adjective as in ‘light armored vehicle’. We do not
attempt at determining the unique exact PoS of the word in context, e.g., using a
syntactic parser, as these typically perform badly when applied to small concept
labels [26]. PoS of WordNet terms are retrieved using the JWNL API3.

Ontology-based Features We additionally define a set of new, previously unex-
plored features that are more directly related to the nature of our task. Since,
in our case, a meaningful compound consists of a phrase that could appear as
a concept name within an ontology, we test for all words in a label whether
they occur as the description of an element in existing ontologies available on
the Semantic Web. Similar to the case of PoS in WordNet, we do not restrict
the search to class names, but also test whether the phrase is used in the de-
scriptions of relations or instances, since this make the candidate less likely to
be a meaningful class name. This can be seen as an ontological version of the
WordNet-based features described above. Further, for each pair of words in a
label, we count the number of ontologies both words occur in. This can be seen
as an ontological version of computing word co-occurrence. We use the Watson
search engine for ontologies [6] as a tool for accessing available ontologies on
the web and computing our features. This approach was inspired by [32], where
the authors use Watson as a mechanism to detect background knowledge for
ontology matching.

Using Classification Results within a Bootstrapping Architecture The
different classification tasks that originate from a single label are not independent
of each other. Consequently, we first classify shorter compounds and then use
the predicted class and the confidence of the classifier for compounds of length n
as additional features for classifying compounds of length n+ 1. To this end, we
first train base classifiers to decide whether the individual tokens of the label,
say ‘British Crown Colony’ - (referred to as (A) British, (B) Crown and (C)
Colony) are meaningful terms on their own. In the next step, the class labels
and confidence values of these classifiers are used as features for classifiers that
decide whether two-word combinations – i.e., British Crown (AB), Crown Colony
(BC) and British Colony (AC), in our case – are meaningful labels themselves.

4 Experiments

4.1 Gold-standard Dataset

To create a gold-standard for training and evaluating our classifiers, we used
the Suggested Upper Merged Ontology (SUMO) [25]. SUMO, and its domain

3 http://sourceforge.net/projects/jwordnet/
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ontologies, form a large formal ontology used for research and applications in
search, linguistics and reasoning. SUMO contains concepts that describe the
world on a very abstract level, while some of the integrated ontologies cover very
specific topics like communication or transportation – the latter, for instance,
distinguishing between different types of cargo ships4.

Analysis of the concept labels found within SUMO revealed that 1579 con-
cepts are described by non-compound labels, whereas 1755 concepts have two-
word labels, 635 have three-word labels, and 236 are described using concept
labels made up of more than three words. From the whole set of three-word
compounds we randomly sampled a subset of 300 labels. These labels cover
completely different topics, and range across domains as diverse as from mili-
tary (e.g., amphibious assault vehicle) to medical ones (e.g., yellow fever virus)5.

Given a concept label of the form ABC, three human judges were asked to
provide a ground truth by annotating the label’s compounds, namely any of A,
B, C, AB, BC, or AC, as meaningful or not, based on Definition 1. The final
gold standard was created by aggregating the single annotators’ judgments based
on majority voting. In order to quantify the quality of the annotations and the
difficulty of the task we computed the inter-annotator agreement using the kappa
coefficient [5] – we use Fleiss’ kappa [12]. Our annotators achieved an agreement
coefficient κ of .73, .70 and .60 for annotating the two-word compounds AB,
BC and AC, respectively. An average agreement of κ = .68 indicates substantial
agreement between annotators, thus corroborating the overall quality of the
annotated data, as well as the well-definedness of our task.

4.2 Experimental Setting

We perform experiments using the Rapidminer toolkit [23], version 5. We set
up two learning processes: i) one for classifying single words that uses solely
external features of words and word combinations, and ii) a second one for
classifying two-word segments that uses the results of classifying single words,
together with external features. For both tasks, we experimented with a number
of different learning algorithms. Below, we report results using Support Vector
Machines (SVM) and Neural Networks (NN), since these methods showed a
significantly better performance than other methods. We use SVM with dot
product kernels and NNs with one hidden layer (additional parameters can be
found in the process definitions).

Many of our features (e.g., distributional similarity) can be only computed
pairwise between different words, and thus require multi-word compounds. Ac-
cordingly, we conducted a finer-grained feature analysis using two-word com-
binations only: in this setting, statistical and knowledge-based features were
evaluated separately, in order to quantify the different contribution of back-
ground knowledge vs. statistics from large corpora for our task. Given the

4 SUMO is originally published in the SUMO-KIF format [25]. In our work we use the
OWL version available at http://www.ontologyportal.org/.

5 The gold standard is freely available at https://madata.bib.uni-mannheim.de/57/.
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feature type statistical knowledge-based all
learning algorithm SVM NN SVM NN SVM NN

A 87.91 91.21
B 90.11 87.91
C 94.51 98.90

average 90.84 92.67

AB 74.34 79.96 79.28 79.95 79.27 80.27
BC 70.04 74.35 69.70 81.84 80.60 79.27
AC 65.78 63.13 75.96 71.37 75.30 74.03

average 70.05 72.48 74.99 77.72 78.39 77.86
Table 1. Results on the identification of meaningful compounds. Performance figures
for AB, BC and AC are obtained using the bootstrapping architecture described in
Section 3, and thus use classification results for A, B and C as additional features.

limited size of our dataset, we employ ten-fold cross validation for all our ex-
periments. For evaluation, we use standard measures of recall, precision and
accuracy: below, we only report accuracy for each classification task for the
sake of brevity. However, all detailed results for our experiments, the Rapid-
miner processes, and the full feature tables can be found online at https:

//madata.bib.uni-mannheim.de/57/.

4.3 Results

We present our results in Table 1, where we report accuracy figures for the
detection of meaningful, single-word compounds (i.e., A, B or C), as well as
two-words (namely, any of AB, BC or AC). Overall, our results for the clas-
sification of single-word compounds are generally favorable, with performance
figures on average > 90% for both SVMs and neural networks. When looking
at the performance on each single token position, we notice the higher results
on the rightmost word, namely C: this is because this generally corresponds to
the lexical head of the noun phrase6. These constituents typically identify, from
a semantic point of view, the concept’s super-concept, e.g., amphibious assault
vehicles are vehicles (cf. also the head-matching heuristics from [26]) and pro-
vide a meaningful concept label in the vast majority of cases. Results on A and
B, in contrast, are lower since these tokens are meaningful in a smaller number
of cases, which crucially depends on a variety of complex factors, ranging from
syntactic – like, for instance, the token having a PoS other than noun (e.g., an
adjective, as in “merchant marine ship”) – through semantic – for example, the
single constituent having no meaning related to that of the overall phrase, as in
“rift valley fever”).

Results on the classification of two-word constituents are lower in that these
instances also require in many cases complex decisions integrating heterogeneous

6 The head of a phrase is the word which is grammatically most important in the
phrase, since it determines the nature of the overall phrase [28]. For basic non-
recursive noun phrases, this typically corresponds to the rightmost noun.
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features. In general, we note that results on AC are lower that those on AB or
BC, which is in line with the higher difficulty of the task highlighted by the lower
inter-annotator agreement of our human raters (Section 4.1). When looking at
the contribution of each single feature group, we note that, in general, knowledge-
based features tend to perform better than statistical ones. This is because,
while statistical information provides us with better coverage, knowledge-based
features are indeed superior for the present task in that they rely on very large
amounts of human supervision from large-scale, high-quality semantic resources
like Watson, WordNet and Wikipedia. However, the complementarity of both
feature types is shown by the overall results – namely those obtained by averaging
performance over AB, BC and AC – being obtained when using both statistical
and knowledge-based features. We take this to be good news, since it suggests
that better performance on this task can be achieved in the future by exploring
other heterogeneous knowledge sources, as well as their combination with robust
learning algorithms.

5 Use Case

We next analyze whether the detection of meaningful compounds provides us
with a valuable knowledge source for the task of matching complex ontology
labels. A complete solution for the mapping task itself is beyond the scope of
this paper: however, in this work we can already report about some experiments
that yield relevant insights. Given a complex compound label, we first apply our
method to segment the labels into meaningful parts. We then try to detect a
concept with an equivalent or highly similar meaning within a target ontology.
Our hunch here is that robust performance on this simplified task indicates
that we can use use the results of our segmentation as input to generate partial
mappings, which are later used to solve the complex matching task as a whole.

In the following we make use of the same dataset described in Section 4.1.
Since there exists no evaluation dataset that deals with the problem of complex
ontology matching, we formulate a pseudo-matching task as follows. For each
compound label from our dataset we remove the corresponding concept from
the SUMO ontology. Then we try to anchor this concept back within the target
resource. This simulates the task of mapping a concept to an ontology, where
an equivalent concept does not exist as named concept. In such a scenario, the
concept can be anchored at the right position in the concept hierarchy, or it might
be possible to construct an equivalent complex concept description. Let C denote
such an concept, let l(C) denote its label, and let lm(C) = {m1, ...,mn} denote
the set of compounds that have been annotated as meaningful (either from our
system or from the human annotators). In our experiments we then aim at
creating a mapping for each mi to one of the concepts in SUMO. In particular,
we create a mapping if we find a concept D with l(D) ∼= mi, where ∼= refers
to string equality after normalization. The results of the Ontology Alignment
Evaluation Initiative have shown that this approach results in highly precise
mappings that are often hard to beat in terms of F-measure [10].
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baseline learning algorithm gold standard

precision 20.1 33.1 31.6
recall 100 91.6 93.2
F-Measure 33.5 48.6 47.2

Table 2. Mapping fragments of a compound label to concepts.

In Table 2 we report on the fraction of labels from lm(C) that can be matched
to a concept in SUMO. Performance is computed using standard metrics of pre-
cision (fraction of all labels for which a mapping has been generated), recall
(fraction of generated mappings compared to the mappings generated by taking
all possible sublabels into account) and F1-measure (the harmonic mean of pre-
cision and recall). We compute these scores in three different settings, namely
for: (1) a baseline that considers all sublabels as meaningful combinations; (2)
the output of our best-performing supervised classifier from Section 4.3; (3) the
gold standard provided by human annotators (Section 4.1), which theoretically
provides us with an upper bound for this task. Taking all sublabels into account,
we achieve a recall of 100% (by definition) and a precision of 20.1%. Using the
output of our algorithm yields instead an increased precision of 33.1%, while
maintain recall above 90%. Overall, we can increase the F-measure from 33.5%
to 48.6%: we take these as good results with respect the second bullet point in
Definition 1 (‘it must be a possible concept in some ontology’). Finally, we note
that precision and recall change only to a very limited degree when compared
against the results of using the gold-standard labels, thus indicating the overall
robustness of our approach.

We next analyzed how many mappings generated during our experiments led
to a concept that is a superclass of C. This happens for 58.9% of the instances in
the dataset, regardless of whether we use automatically-detected compounds or
gold-standard labels. Due to the artificial nature of these experiments – which
merely consisting of removing a concept from its place in the reference ontology,
as opposed to the full-fledged ontology matching task – we can easily compute
these figures in our experimental setting. However, note that in a real matching
scenario it is a challenging task to find the right position in the concept hierarchy
for a given complex concept label. While in our use case ≈60% of the generated
mappings help us solve the task of attaching the concept to the right place in the
target concept hierarchy, the remaining ≈40% of the mappings establish links to
other concepts. Error analysis revealed that these 40% do not necessarily con-
sist of incorrect mappings. Quite contrary, they might be required to construct
complex concept expressions. An example is the concept fish carrier ship. The
concept ship is a superclass of the concept, while the concept fish is located in a
different branch of the concept hierarchy. A correct mapping would express that
a fish carrier ship is a ship that carries the cargo fish. That is, this example
illustrates the task that needs to be solved for constructing precise equivalence
mappings to complex concept descriptions.



Detecting Meaningful Compounds in Complex Class Labels 13

6 Conclusions and Future Work

In this paper we presented an approach to detect meaningful compounds within
complex ontology class labels. We proposed to view this as a binary classification
task, and used a supervised classifier to explore a wide variety of features for
solving this problem. Our results indicate that similarly, for instance, to previ-
ous results in query segmentation, supervised learning methods offer a viable
solution for our task. In particular, they provided us with a complete framework
to test many different features and accordingly understand the role and benefits
of different knowledge sources. Our best results are obtained by combining sta-
tistical and knowledge-rich features, and indicate that future advances could be
obtained by additional work on the feature engineering side.

We additionally evaluated the output of our classifier as source for a pseudo
ontology matching task with complex class labels. The results indicate that we
have to distinguish between two main objectives, in order to solve the challenging
problem of matching compound labels. First, we need to identify a concept in
the target ontology that is more general than the concept we want to match.
So far, we can use our algorithm for detecting meaningful compounds: however,
our algorithm cannot determine which of these compounds corresponds to a
more general class, i.e., which of the constituents is the head noun. With this
additional information we would be able to generate mappings expressing a
subsumption relation. Extending our method to detect head nouns would thus be
highly beneficial for generating correct subsumption mappings. Second, we have
to aim at the construction of complex concept descriptions that are equivalent
to the concept denoted by the compound label. This task is obviously much
harder than the previously mentioned task. Let us focus again on the example
fish carrier ship from the previous section. Constructing the equivalent concept
description requires more knowledge than identifying the head noun. Moreover,
we need to understand which relations hold between those sublabels that have
been annotated to be meaningful. For this, relation extraction (which we merely
used as a feature in this work) and semantic parsing [19] could prove useful.

With this work we aim at providing a first step towards understanding and
solving the problem of matching complex concepts labels. The first results are
promising in that our experiments helped us better understand the next steps
that need to be taken into account for solving the concrete matching problem.
Future work will focus on the open challenge of generating mappings for concepts
labeled by compound expression. For generating equivalence mappings, we will
turn to analyzing the relation between meaningful sublabels, in order to find an
isomorphism between the structures on the linguistic layer and the structures
that can be constructed by building complex concept descriptions.
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