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Preface

The prices of assets, such as stocks or houses, display large persistent varia-
tions, which are sometimes referred to as bubbles, or, more neutrally, as booms
and busts. The source of these swings in asset prices, which are far larger than
can be explained by fundamentals, have long fascinated as well as puzzled
economists (see for instance Bagehot (1873), and Kindleberger (1978)). It is
fair to say, that despite considerable interest in the topic, a consensus on what
explains this phenomenon has not yet been reached (see Cochrane (2016)).

Explanations of asset price dynamics range from models in which varia-
tions are fully efficient (e.g. Campbell and Cochrane (1999)) to models where
they are caused by irrational investors driven by psychological biases (Barberis,
Shleifer, and Vishny (1998)). This ambiguity was also reflected in the 2013 No-
bel prize awards to Eugene Fama, Lars Peter Hansen, and Robert Shiller, the
intellectual fathers of, respectively, ’efficient markets’ and ’behavioral finance’.
A different approach, which is pursued in this dissertation, considers a world
where agents are fully rational, but possess only imperfect knowledge of the
structure of the economy in which they live. As Adam and Marcet (2011) have
shown, if agents do not know the true mapping from fundamentals to asset
prices (which is precisely the source of the puzzle for economists), it is quite
possible that their beliefs about asset prices deviate from so-called Rational
Expectations.

This dissertation adds to the literature on asset price booms and busts and
expectations in three self-contained chapters, each of which coincides with a
specific paper. The first chapter is based on the paper ’Stock Price Booms
and Expected Capital Gains’ which is joint work with Klaus Adam and Al-
bert Marcet. The paper has been published as Adam, Beutel, and Marcet
(2014) and is forthcoming in the American Economic Review (AER). The lat-
est version is Adam, Marcet, and Beutel (2017). The paper incorporates and
builds on prior work by Adam and Marcet (2010). Parts of the paper, espe-
cially the numerical solution strategy, also build on my Master thesis (Beutel
(2011)). The second chapter is based on the paper ’Can a Financial Transac-
tion Tax Prevent Stock Price Booms?’ which is joint work with Klaus Adam,
Albert Marcet, and Sebastian Merkel. The paper has been published in the
Journal of Monetary Economics as Adam, Beutel, Marcet, and Merkel (2015).
Parts of this paper have also appeared as part of the Master thesis of Sebastian
Merkel (Merkel (2014)). The third and most recent chapter is based on the pa-
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Preface

per ’Smart Money? On Stock Market Expectations of Professional Investors’,
which is single-authored. The paper is available as Beutel (2016).

The first chapter shows that allowing for deviations from Rational Expec-
tations explains the otherwise puzzling booms and busts in asset prices. In this
model, agents use the Kalman filter to form beliefs about future price growth
based on the data they observe. As a consequence, past positive (negative)
surprises in price growth lead to upward (downward) revisions in their beliefs
about future price growth. Upward revisions of beliefs, lead to higher stock
prices, which in turn can lead to further positive surprises in price growth.
Hence, a self-reinforcing belief-driven asset price boom has emerged.

We show that under a plausible calibration, this model can quantitatively
replicate the postwar history of U.S. stock prices and the expectations of U.S.
households. The empirical success of the model is based on a crucial difference
to previous models of adaptive learning. Previous models have focussed on
imperfect knowledge about exogenous processes for fundamentals, whereas in
our model, agents have imperfect knowledge about the endogenous process for
prices. Only in the latter case, a feedback loop between beliefs and realizations
emerges, which is able to generate the empirically observed magnitudes of asset
price volatility (and persistence).

Additional empirical support for this model comes from survey data on
stock return expectations, which also motivates deviations from Rational Ex-
pectations. Using several surveys of household expectations on the stock
market, we show that return expectations co-move positively with the price-
dividend ratio. Beliefs in our model, which are the main driver of the results,
replicate the empirically observed dynamics of households’ expectations. In
contrast, Rational Expectations models are inconsistent with a positive cor-
relation between the price-dividend ratio and return expectations, which is
shown formally in the chapter as well. While subjective beliefs about endoge-
nous variables substantially enhance the empirical plausibility of our asset
pricing model, they also render the model substantially more difficult to solve
than under Rational Expectations. While a Rational Expectations version of
our model can be solved analytically, this is not the case for the model with
subjective beliefs, except in the special case of vanishing noise. (All details in
the chapter.) The chapter is therefore based on a numerical solution approach
called time iteration with the endogenous grid-point method, which allows us
to derive quantitative implications of the general model with subjective beliefs.

The second chapter investigates whether a financial transaction tax could
be used to reduce the likelihood of asset price boom-bust cycles. To this
end it builds on the model developed in chapter one, extending it to include
heterogeneous agents and a financial transaction tax. Mitigating asset price
boom-busts could be of interest, since, under the maintained model, booms
and busts are in fact inefficient bubbles. Moreover, some authors have associ-
ated asset price booms in the stock and housing market with financial crises
(e.g. Reinhart and Rogoff (2011)). The European Commission has advanced a
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proposal for the introduction of a European Financial Transaction Tax, which
among other things should contribute to ”providing disincentives for trans-
actions which do not enhance the efficiency of financial markets” (European
Commission (2013)). However, contrary to conventional wisdom, our results
indicate that introducing a financial transaction tax would in fact increase the
likelihood of asset price bubbles.

The intuition for this surprising finding is that the tax introduces inaction
regions into agents’ stock demand functions. In consequence, changes in stock
supply lead to larger price changes, which in turn make it more likely that
the economy enters a belief-driven boom. The interaction of the tax with the
self-reinforcing boom mechanism is crucial for our results. In other words, the
presence of a quantitatively credible source of asset price volatility, such as
belief-driven booms and busts, can be essential for assessing the impact of a
financial transaction tax. An additional contribution of the model is the intro-
duction of heterogeneous agents, who differ in their speed of belief updating.
The resulting heterogeneous belief dynamics, generate trade in equilibrium
and thereby allow us to capture additional empirical patterns of the data.
This makes our model the first to capture the empirical patterns of turnover,
beliefs and stock prices jointly.

The third chapter tries to move our understanding of asset price booms
and busts and expectations one step further by considering the differences in
expectations between different types of agents - namely between households
and professional investors. The first chapter presented an explanation for
asset price booms and busts based on subjective beliefs of households which is
consistent with several important empirical facts. The second chapter showed
that this can have important policy implications. Is the puzzle thus solved?

The models of chapter one and two focus exclusively on agents with ex-
trapolative beliefs, in the sense that recent positive surprises lead to upward
revisions of return beliefs. It was shown that these beliefs are consistent with
survey evidence on the expectations of average households. However, such be-
liefs lead to very large systematic expectational errors and are at odds with
much of standard finance theory. Thus, it is questionable that these beliefs are
also entertained by investment professionals, for instance at banks or hedge
funds. What happens in financial markets if professional investors and house-
holds hold such different beliefs? Conjectures range from the well-known idea
that professional investors’ arbitrage should restore efficiency, to the possibility
that speculation by well-informed investors could aggravate asset price booms
and busts.

The chapter is not trying to give an answer to these questions, but rather
tries to find out how ”smart” investment professionals’ expectations are in the
first place. Using several recently developed econometric tests and a unique
collection of three data sets on investment professionals’ expectations, I am
able to document several new findings. Expectations of professionals are in-
deed different from those of average households. Looking at the correlation
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of expectations and the price-dividend ratio, investment professionals’ expec-
tations do not appear to be of the extrapolative type, such that there might
be an important role for this type of agents in models of financial markets.
Therefore, I go on to investigate which model of expectations could be used to
characterize professionals’ expectations. The hypothesis that all professionals
have Rational Expectations can be rejected, even when allowing for general,
possibly asymmetric loss functions which are unknown to the econometrician.
Zooming into the micro data, I find that Rational Expectations can only be
rejected for around one third of the respondents. For those where forecast
optimality is rejected, I find that the rejection cannot be explained by simple
canonical models of information rigidities.
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Chapter 1

Stock Price Booms and
Expected Capital Gains

1.1 Abstract1

The booms and busts in U.S. stock prices over the post-war period can to a
large extent be explained by fluctuations in investors’ subjective capital gains
expectations. Survey measures of these expectations display excessive opti-
mism at market peaks and excessive pessimism at market troughs. Formally
incorporating subjective price beliefs into an otherwise standard asset pricing
model with utility maximizing investors, we show how subjective belief dynam-
ics can temporarily de-link stock prices from their fundamental value and give
rise to asset price booms that ultimately result in a price bust. The model
successfully replicates (1) the volatility of stock prices and (2) the positive
correlation between the price dividend ratio and expected returns observed in
survey data. We show that models imposing objective or ‘rational’ price ex-
pectations cannot simultaneously account for both facts. Our findings imply
that large parts of U.S. stock price fluctuations are not due to standard fun-
damental forces, instead result from self-reinforcing belief dynamics triggered
by these fundamentals.

1.2 Introduction

Following the recent boom and bust cycles in a number of asset markets around
the globe, there exists renewed interest in understanding better the forces
contributing to the emergence of such drastic asset price movements. This
paper argues that movements in investor optimism and pessimism, as measured
by the movements in investors’ subjective expectations about future capital
gains, are a crucial ingredient for understanding these fluctuations.

1This chapter is based on (verbally quoted from) the paper Adam, Beutel, and Marcet
(2014).
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CHAPTER 1. STOCK PRICE BOOMS AND EXPECTED CAPITAL
GAINS

We present an asset pricing model that incorporates endogenous belief dy-
namics about expected capital gains. The model gives rise to sustained stock
price booms and busts and is consistent with the behavior of investors’ capi-
tal gains expectations, as measured by survey data. The model suggests that
more than half of the variance of the price dividend ratio in U.S. post-WWII
data is due to movements in subjective expectations.

The standard approach in the consumption-based asset pricing literature
consists of assuming that stock price fluctuations are fully efficient. Camp-
bell and Cochrane (1999) and Bansal and Yaron (2004), for example, present
models in which stock price fluctuations reflect the interaction of investor pref-
erences and stochastic driving forces in a setting with optimizing investors who
hold rational expectations.

The empirical evidence we present casts considerable doubt on the prevail-
ing view that stock price fluctuations are efficient. Specifically, we show that
the RE hypothesis gives rise to an important counterfactual prediction for the
behavior of investors’ expectations. This counterfactual prediction is a model-
independent implication of the RE hypothesis, but - as we explain below - key
for understanding stock price volatility and its efficiency properties.

As previously noted by Fama and French (1988), the empirical behavior of
asset prices implies that rational return expectations correlate negatively with
the price dividend (PD) ratio.2 Somewhat counter-intuitively, the RE hy-
pothesis thus predicts that investors have been particularly pessimistic about
future stock returns in the early part of the year 2000, when the tech stock
boom and the PD ratio of the S&P500 reached its all-time maximum. As
we document, the available survey evidence implies precisely the opposite: all
quantitative survey measures of investors’ return (or capital gain) expectations
available for the U.S. economy, unambiguously and unanimously correlate pos-
itively with the PD ratio; and perhaps not surprisingly, return expectations
reached a temporary maximum rather than a minimum in the early part of the
year 2000, i.e., precisely at the peak of the tech stock boom, a fact previously
shown in Vissing-Jorgensen (2004). Using a formal test we confirm that the
survey data is at odds with the RE hypothesis at any conventional significance
level because survey expectations and RE covary differently with the PD ratio.

The positive comovement of stock prices and survey expectations suggests
that price fluctuations are amplified by overly optimistic beliefs at market
peaks and by overly pessimistic beliefs at market troughs. Furthermore, it sug-
gests that investors’ capital gains expectations are influenced - at least partly
- by the capital gains observed in the past, in line with evidence presented by
Malmendier and Nagel (2011). Indeed, a simple adaptive updating equation
captures the time series behavior of the survey data and its correlation with
the PD ratio very well.

2The RE hypothesis implies also a negative correlation between the PD ratio and expected
capital gains. Since most variation in returns is due to variation in capital gains, we tend
to use both terms interchangeably.
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1.2. INTRODUCTION

Taken together, these observations motivate the construction of an asset
pricing model in which investors hold subjective beliefs about the capital gains
from stock investments.3 We incorporate such beliefs into a Lucas (1978) asset
pricing model, assuming that agents are uncertain about the capital gains
process but invest optimally given their beliefs and update beliefs according
to Bayes’ law.

With this modification, the Lucas model with standard time separable
preferences and standard stochastic driving processes becomes quantitatively
consistent with the observed volatility of stock prices and the positive corre-
lation between the PD ratio and subjective return expectations. Considering
the same model under RE, produces - amongst other things - too little price
volatility and the wrong sign for the correlation between the PD ratio and
expected returns.

The strong improvement in the model’s empirical performance arises be-
cause agents’ attempts to improve their knowledge about price behavior can
temporarily de-link asset prices from their fundamental (RE) value and give
rise to belief-driven boom and bust cycles in stock prices. This occurs because
with imperfect information about the price process, optimal behavior dictates
that agents use past capital gains observations to learn about the stochas-
tic process governing the behavior of capital gains; this generates a feedback
between capital gain expectations and realized capital gains.

Suppose, in line with the empirical evidence, that agents become more
optimistic about future capital gains whenever they are positively surprised
by past capital gains.4 A positive surprise then increases asset prices further,
whenever increased optimism leads to an increase in investors’ asset demand. If
this effect is sufficiently strong, then positive surprises trigger further positive
surprises and thus further price increases. As we show analytically, stock prices
in our model do increase with capital gain optimism whenever the substitution
effect of increased optimism dominates the wealth effect of such belief changes.
Asset prices in the model then display sustained price booms, similar to those
observed in the data.

After a sequence of sustained increases, countervailing forces come into play
that endogenously dampen the upward price momentum, eventually halt it and
cause a reversal. Specifically, in a situation where increased optimism about
capital gains has led to a stock price boom, stock prices make up for a larger
share of agents’ total wealth.5 As we show analytically, this eventually causes
the wealth effect to become as strong as (or even stronger than) the substitution
effect.6 Increases in optimism then cease to cause further increases in stock

3As is explained in Adam and Marcet (2011), the presence of subjective price beliefs
reflects a lack of common knowledge about agents’ beliefs and preferences.

4Such positive surprises may be triggered by fundamental shocks, e.g., a high value for
realized dividend growth.

5This occurs because stock prices are high, but also because agents discount other income
streams, e.g., wage income, at a higher rate.

6With CRRA utility, this happens whenever the coefficient of relative risk aversion is

3



CHAPTER 1. STOCK PRICE BOOMS AND EXPECTED CAPITAL
GAINS

demand and thus stock prices, so that investors’ capital gains expectations
turn out to be too optimistic relative to the realized outcomes. This induces
downward revision in beliefs, which gives rise to negative price momentum and
an asset price bust.

The previous arguments show how belief dynamics can temporarily de-
link asset prices from their fundamental value. Clearly, these price dynamics
are inefficient as they are not justified by innovations to preferences or other
fundamentals.

We obtain these results even though we depart from the standard paradigm
in a minimal way only. Specifically, we assume that investors are internally
rational (IR) in the sense of Adam and Marcet (2011). This implies that all
investors hold an internally consistent system of beliefs about variables that are
exogenous to their decision problem and choose investment and consumption
optimally. Although agents’ beliefs do not fully capture the actual behavior
of prices in equilibrium, in line with the survey evidence, agents’ beliefs are
broadly plausible given the behavior of equilibrium prices and the behavior
of prices in the data. In particular, agents believe the average growth rate of
stock prices to slowly drift over time, which is consistent with the presence of
prolonged periods of price booms followed by price busts.

The current paper shows how the framework of internal rationality allows
studying learning about market behavior in a model of intertemporal decision
making, while avoiding some of the pitfalls of the adaptive learning literature,
where agents’ belief updating equations and choices are often not derived from
individual maximization. We thus show how explicit microfoundations can
guide modelling choices in settings featuring subjective beliefs about market
outcomes, as is the case in settings imposing RE.

The remainder of the paper is structured as follows. Section 1.4 documents
that there is a strong positive correlation between the PD ratio and survey
measures of investors’ return and capital gain expectations and that this is
incompatible with the RE hypothesis. It then documents that from a purely
statistical standpoint approximately two thirds of the variation in the PD ratio
of S&P500 can potentially be accounted for by variations in expected capital
gains. Section 2.5 presents our asset pricing model with subjective beliefs. For
benchmark purposes, section 1.6 determines the RE equilibrium. Section 1.7
introduces a specific model for subjective price beliefs; it does so by relax-
ing agents’ prior beliefs about price behavior relative to the RE equilibrium
beliefs. This section also derives the resulting Bayesian updating equations
characterizing belief dynamics over time, involving learning about the per-
manent component of stock price growth. After imposing market clearing in
section 1.8, we present closed form solutions for the PD ratio in section 1.9 in
the special case of vanishing uncertainty. We then explain how the interaction
between belief updating dynamics and price outcomes can endogenously gener-
ate boom and bust dynamics in asset prices. Section 1.10 considers the model

larger than one.
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1.3. RELATED LITERATURE

with empirically plausible amounts of uncertainty and documents its ability to
replicate the time series behavior of the postwar US PD ratio and of the survey
data. Section 1.11 documents that the model under learning replicates impor-
tant asset pricing moments much better than under RE. A conclusion briefly
summarizes and presents an outlook on future research avenues. Technical
material and proofs can be found in the appendix.

1.3 Related Literature

The literature on adaptive learning previously studied the role of deviations
from RE in asset pricing models. Work by Bullard and Duffy (2001) and Brock
and Hommes (1998), for example, explores learning about price forecasting and
shows that learning dynamics can converge to complicated attractors that in-
crease asset return volatility, if the RE equilibrium is unstable under learning
dynamics.7 Lansing (2010) shows how near-rational bubbles can arise under
learning dynamics when agents forecast a composite variable involving future
price and dividends. Branch and Evans (2011) present a model where agents
learn about risk and return and show how it gives rise to bubbles and crashes.
Boswijk, Hommes and Manzan (2007) estimate a model with fundamentalist
and chartist traders whose relative shares evolve according to an evolutionary
performance criterion, showing that the model can generate a run-up in asset
prices and subsequent mean-reversion to fundamental values. DeLong et al.
(1990) show how the pricing effects of positive feedback trading survives or
even get amplified by the introduction of rational speculators. Timmermann
(1993, 1996) explores learning about dividend behavior but finds overall lim-
ited pricing implications. Cogley and Sargent (2008) have studied a model of
robustness, where agents learn about fundamentals and behave according to
max-min utility.

We contribute to this literature in three ways. First, we compare the
implications of our model more closely to the data, both in terms of matching
the time series of asset prices and survey data, as well as in terms of matching
asset pricing moments.

Second, we specify proper microfoundations for agents’ infinite horizon de-
cision problem with subjective beliefs and derive agents’ optimal consumption
plans and belief updating equations from this problem. The subjective con-
sumption plans are then used to price the stock market. Earlier work on infinite
horizon models in the adaptive learning literature typically falls short of spec-
ifying proper optimization problems. As explained in section 2 in Adam and
Marcet (2011), this leads to arbitrariness in the modeling of agents’ behavior,
which can affect model predictions and the resulting conclusions. Important
progress has been made in recent work by Eusepi and Preston (2011, 2013),
who derive choices from properly formulated optimization problems featuring

7Stability under learning dynamics is defined in Marcet and Sargent (1989).
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CHAPTER 1. STOCK PRICE BOOMS AND EXPECTED CAPITAL
GAINS

subjective beliefs. Here we go a step further by jointly deriving the optimal
decisions and the belief updating rules from the utility maximization problem,
instead of making appeal to the anticipated utility framework in Kreps (1998),
which implies that future belief revisions are abstracted from when deriving
decisions.

Third, we are able to derive our main results using a closed-form solution.
This provides clearer insights into the economic mechanisms driving the asset
pricing results. We also discuss issues of existence and uniqueness of optimal
plans in models with subjective beliefs and conditions under which the optimal
plan has a recursive representation. Furthermore, we explain why rational
agents can hold separate subjective beliefs about prices and fundamentals.

Fuster, Herbert and Laibson (2011) present an asset pricing model where
fundamentals exhibit momentum in the short-run and partial mean reversion
in the long-run and where agents underparameterize the fundamental process,
thereby missing the long-run mean reversion. They show how such a model can
give rise to pro-cyclical excess optimism as in the present paper. Fundamentals
in our model display neither momentum nor mean reversion, excess optimism
and pessimism arise instead endogenously from the interaction between price
outcomes and expectations.

Hassan and Mertens (2011) present a stock market model where investors
deviate from fully rational behavior, as agents make small common errors in
formulating expectations. They show how the market amplifies these errors
and how this can have large welfare consequences by shifting investment away
from domestic production opportunities into foreign safe bonds. The present
model does not consider effects on output and welfare, instead derives empirical
implications for stock price volatility and the behavior of expectations in a
setting with fully optimal behavior and Bayesian updating, given imperfect
knowledge of the economy.

Adam, Marcet and Nicolini (2016) quantitatively evaluate the ability of
models of learning to explain asset price volatility. To be able to formally
estimate the model using the method of simulated moments, they rely on a
number of short-cuts. In particular, they assume dividends to be a negligible
part of total income, so that consumption equals exogenous labor income. As
a result, the stochastic discount factor is exogenous. While being analytically
convenient, this prevents the emergence of the wealth effects referred to in
the introduction, requiring asset price booms to be stopped by exogenously
imposing an upper bound on agents’ beliefs.8 Clearly, this prevents a discussion
of asset price booms and their end. They also do not discuss survey evidence.

The experimental and behavioral literature provides further evidence sup-
porting the presence of subjective price beliefs. Asparouhova, Bossaerts, Roy
and Zame (2011), for example, implement the Lucas asset pricing model in the

8The performance of the model in terms of quantitatively replicating asset pricing mo-
ments is, however, robust to the precise value chosen for this upper bound, because the
bound is binding only rarely along the equilibrium path.

6



1.4. STOCK PRICES & EXPECTATIONS: FACTS

experimental laboratory and document that there is excess volatility in prices
that is unaccounted for by the rational expectations equilibrium and that likely
arises from participants’ expectations about future prices. Furthermore, the
type of learning employed in the present model is in line with evidence pre-
sented in Malmendier and Nagel (2011) who show that experienced returns
affect beliefs about future asset returns.9

1.4 Stock Prices & Expectations: Facts

This section explains how two important and widely accepted asset pricing
facts imply a counterfactual behavior for the behavior of stock price expecta-
tions, whenever one imposes that agents hold rational price expectations. We
present the evidence informally in section 1.4.1 and derive a formal statistical
test in section 1.4.2. The test shows that the RE hypothesis is inconsistent
with the behavior of the survey data due to the way survey expectations covary
with the PD ratio. Section 1.4.3 illustrates how simple adaptive prediction of
prices, in line with Malmendier and Nagel (2011, 2016), quantitatively cap-
tures the relationship between survey expectations and the PD ratio. It also
shows how, in a purely statistical sense, variations in expected capital gains
can potentially account for up to two thirds of the variation of the U.S. PD
ratio over the postwar period.

1.4.1 Survey Expectations and the PD Ratio

This section explains how the presence of boom and bust dynamics in stock
prices, together with the unpredictability of dividend growth, imply that ra-
tional stock return forecasts should correlate negatively with the PD ratio. It
then documents that survey measures of investors’ return expectations corre-
late instead positively with the PD ratio.

The discrepancy in terms of correlations with the PD ratio is in line with
recent independent findings by Greenwood and Shleifer (2014a). The positive
co-movement between survey return expectations and the PD ratio has also
been noted before by Vissing-Jorgensen (2004) and Bacchetta, Mertens, and
Wincoop (2009). While generally insightful, one must emphasize that - in
econometric terms - the presence of such a discrepancy is only suggestive. In
particular, if investors possess private information that is not observed by the
econometrician or if survey expectations are measured with error, as one can
reasonably expect to be the case, then the correlation between fully rational
return forecasts and the PD ratio will differ from the correlation between re-
alized returns and the PD ratio. Simply comparing correlations is thus not

9Nagel and Greenwood (2009) show that - in line with this hypothesis - young mutual
fund managers displayed trend chasing behavior over the tech stock boom and bust around
the year 2000.
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sufficient to reject the hypothesis that survey expectations are rational. Fur-
thermore, formal tests must always take into account the joint distribution of
the correlation estimates in order to make statistically valid statements. While
the informal discussion below abstracts from these aspects, the next section
takes them fully into account.

As is well known, stock prices experience substantial price booms and price
busts. Figure 1.1 illustrates this behavior for the post-WWII period for the
United States, using the quarterly price dividend ratio (PD) of the S&P 500
index.10 The PD ratio displays persistent run-ups and reversals, with the
largest one occurring around the year 2000. This shows that price growth can
persistently outstrip dividend growth over a number of periods, but that the
situation eventually reverses. In fact, the quarterly autocorrelation of the PD
ratio equals 0.98. Similar run-ups and reversals can be documented for other
mature stock markets, e.g., for the European or Japanese markets.

Figure 1.1: Quarterly PD Ratio of the S&P 500

Equally well-known is the fact that the growth rate of dividends is largely
unpredictable, e.g., Campbell (2003). It is especially hard to predict using the
PD ratio. The R2 values of an in-sample predictive regression of cumulative
dividend growth 1, 5 or 10 years ahead on a constant and the log PD ratio

10Quarterly dividend payments have been deseasonalized in a standard way by averaging
them across the current and preceding 3 quarters. See appendix 2.12.1 for details about the
data used in this section.
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are rather small and amount to 0.03, 0.04, and 0.07, respectively, for the U.S.
post-war data.11

Taken together the previous two facts imply that under RE one would
expect that the PD ratio negatively predicts future stock market returns. To
see this, let the asset return Rt+1 be defined as

Rt+1 ≡
Pt+1 +Dt+1

Pt

=

Pt+1

Dt+1
+ 1

Pt

Dt

Dt+1

Dt

,

where P denotes the stock price and D dividends. Given a high value of
Pt/Dt, we have - due to the mean reverting behavior of the PD ratio - that
Pt+1/Dt+1 < Pt/Dt on average. Since Dt+1/Dt is unpredictable, it follows that
a high PD ratio negatively predicts future returns.12 A symmetric argument
holds if Pt/Dt is low.

In the setup just described, expectations about future stock returns should
covary negatively with the PD ratio if investors hold RE. In particular, rational
expectations about stock returns should be very low at the height of the tech
stock boom in the year 2000 when the PD ratio reached its historical peak.

Survey evidence on investors’ return expectations displays instead a strong
positive correlation between investors’ expected returns and the PD ratio. Fig-
ure 1.2 depicts this for our preferred survey, the UBS Gallup Survey, which is
based on a representative sample of approximately 1.000 U.S. investors that
own at least 10.000 US$ in financial wealth.13 Figure 1.2 graphs the US PD
ratio (the black line) together with measures of the cross-sectional average
of investors’ one-year ahead expected real return.14 Return expectations are
expressed in terms of quarterly real growth rates and the figure depicts two
expectations measures: investors’ expectations about the one year ahead stock
market return, as well as their expectations about the one year ahead returns
on their own stock portfolio. These measures behave very similarly over the
period for which both series are available, but the latter is reported for a
longer time period, so that we focus on it as our baseline. Figure 1.2 reveals
that there is a strong positive correlation between the PD ratio and expected
returns. The correlation between the expected own portfolio returns and the
PD ratio is +0.70 and even higher for the expected stock returns (+0.82).

11We use logPD as a regressor, in line with Campbell (2003). The R2 values are unchanged
when using the level of the PD ratio instead.

12There may exist, of course, other predictors of future returns which correlate negatively
with the PD ratio and that overturn the negative relationship between PD ratio and expected
stock returns emerging from the forces described above. We take these formally into account
in our statistical test in section 1.4.2.

13About 40% of respondents own more than 100.000 US$ in financial wealth. As docu-
mented below, this subgroup does not behave differently.

14To be consistent with the asset pricing model presented in later sections we report ex-
pectations of real returns. The nominal return expectations from the survey have been
transformed into real returns using inflation forecasts from the Survey of Professional Fore-
casters. Results are robust to using other approaches, see the subsequent discussion.
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Moreover, investors’ return expectations were highest at the beginning of the
year 2000, which is precisely the year the PD ratio reached its peak during
the tech stock boom. At that time, investors expected annualized real returns
of around 13% from stock investments. Conversely, investors were most pes-
simistic in the year 2003 when the PD ratio reached its bottom, expecting then
annualized real returns of below 4%.

Figure 1.2: PD ratio and investors’ expected returns (UBS Gallup Survey)

Table 1.1 shows that the strong positive correlation evident from figure 1.2
is robust to a number of alternative approaches for extracting expectations
from the UBS survey, such as using the median instead of the mean expec-
tation, when using inflation expectations from the Michigan survey to obtain
real return expectations, when considering plain nominal returns instead of
real returns, or when restricting attention to investors with more than 100.000
US$ in financial wealth. The numbers reported in brackets in table 1.1 (and in
subsequent tables) are autocorrelation robust p-values for the hypothesis that
the correlation is smaller or equal to zero.15 The p-values for this hypothesis
are all below the 5% significance level and in many cases below the 1% level.

15The sampling width is four quarters, as is standard for quarterly data, and the test
allows for contempraneous correlation, as well as for cross-correlations at leads und lags.
The p-values are computed using the result in Roy (1989).
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UBS Gallup
Nominal Real Ret. Exp. Real Ret. Exp.

Return Exp. (SPF) (Michigan)
Average Median Average Median Average Median

Own portfolio,
>100k US$

0.80
(0.01)

0.78
(0.01)

0.79
(0.01)

0.77
(0.01)

0.84
(0.01)

0.83
(0.01)

Own portfolio,
all investors

0.80
(0.01)

0.76
(0.02)

0.79
(0.01)

0.75
(0.02)

0.84
(0.01)

0.80
(0.01)

Stock market,
>100k US$

0.90
(0.03)

0.89
(0.04)

0.90
(0.03)

0.88
(0.03)

0.91
(0.03)

0.88
(0.03)

Stock market,
all investors

0.90
(0.03)

0.87
(0.04)

0.90
(0.03)

0.87
(0.04)

0.91
(0.03)

0.88
(0.03)

Table 1.1: Correlation between PD ratio and 1-year ahead expected return measures
(UBS Gallup Survey, robust p-values in parentheses)

Shiller Nominal Real Capital Gain. Real Capital Gain
Survey Capital Gain Exp. Exp. (SPF) Exp. (Michigan)
Horizon Average Median Average Median Average Median
1 month 0.46

(0.01)
0.48
(0.01)

0.45
(0.01)

0.47
(0.01)

0.46
(0.01)

0.49
(0.01)

3 months 0.57
(0.01)

0.64
(0.00)

0.54
(0.01)

0.61
(0.00)

0.56
(0.01)

0.62
(0.01)

6 months 0.58
(0.01)

0.75
(0.01)

0.54
(0.02)

0.70
(0.01)

0.56
(0.02)

0.71
(0.01)

1 year 0.43
(0.03)

0.69
(0.01)

0.38
(0.05)

0.62
(0.01)

0.42
(0.04)

0.64
(0.02)

10 years 0.74
(0.01)

0.75
(0.01)

0.66
(0.02)

0.71
(0.01)

0.71
(0.02)

0.75
(0.01)

Table 1.2: Correlation between PD ratio and expected stock price growth
(Shiller’s Individual Investors’ Survey, robust p-values in parentheses)

A positive and statistically significant correlation is equally obtained when
considering other survey data. Table 1.2 reports the correlations between the
PD ratio and the stock price growth expectations from Bob Shiller’s Individual
Investors’ Survey.16 The table shows that price growth expectations are also
strongly positively correlated with the PD ratio, suggesting that the variation
in expected returns observed in the UBS survey is due to variations in expected

16Shiller’s price growth data refers to the Dow Jones Index. The table thus reports the
correlation of the survey measure with the PD ratio of the Dow Jones.
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capital gains. Table 1.2 also shows that correlations seem to become stronger
for longer prediction horizons.

Table 1.3 reports the correlations for the stock return expectations reported
in the Chief Financial Officer (CFO) survey which surveys chief financial offi-
cers from large U.S. corporations. Again, one finds a strong positive correla-
tion; it is significant at the 1% level in all cases.

Table 1.4 reports the correlations between the PD ratio and the realized
real returns (or capital gains) in the data, using the same sample periods as
are available for the surveys considered in tables 1 to 3, respectively. The point
estimate for the correlation is negative in all cases, although the correlations
fall short of being significant the 5% level due to the short sample length
for which the survey data is available. Nevertheless, table 1.4 suggests that
investors’ expectations are most likely incompatible with RE. The next section
investigates this issue more formally.

CFO Nominal Real Return Real Return
Survey Return Exp. Exp. (SPF) Exp. (Michigan)

Average Median Average Median Average Median
1 year 0.71

(0.00)
0.75
(0.00)

0.62
(0.00)

0.69
(0.00)

0.67
(0.00)

0.72
(0.00)

Table 1.3: Correlation between PD ratio and 1-year ahead expected stock
return measures (CFO Survey, robust p-values in parentheses)

Variables Time Period Stock Index Correlation

PD, 1 year-ahead real return
UBS Gallup sample

(stock market exp.)
S&P 500

−0.66
(0.08)

PD, 1 year-ahead real price growth Shiller 1 year sample Dow Jones
−0.42
(0.06)

PD, 10 year-ahead real price growth Shiller 10 year sample Dow Jones
−0.88
(0.16)

PD, 1 year-ahead real return CFO sample S&P 500
−0.46
(0.06)

Table 1.4: Correlation between PD and actual real returns/capital gains
(robust p-value in parentheses)

1.4.2 Survey Expectations versus Rational Expectations

Using a formal econometric test, this section shows that the RE assumption is
indeed incompatible with the behavior of survey expectations. As suggested
by the informal arguments in the previous section, the failure is due to the
fact that RE and survey expectations covary differently with the PD ratio.

12



1.4. STOCK PRICES & EXPECTATIONS: FACTS

The test approach presented below is immune to the presence of measurement
error in surveys, allows for unobserved information on the side of investors and
properly takes into account the joint distribution of estimates.

Let EP
t denote agents’ subjective (and potentially less-than-fully-rational)

expectations operator based on information up to time t, and Rt,t+N the cu-
mulative stock returns between period t and t+N . Furthermore, let EP

t Rt,t+N

denote the (potentially noisy) measurement of expected returns, as obtained -
for example - from survey data.17 Since we shall consider both the rationality
of real return expectations and the rationality of excess return expectations,
we let EP

t Rt,t+N denote both, the expectations of real returns and the expecta-
tions of real excess returns. We construct excess return expectations following
Bacchetta et al. (2009), i.e., assume that the N period ahead interest risk-
free interest rate is part of agents’ information set and subtract it from the
expected stock return.18

Given the observed (excess) return expectations, one can write the regres-
sion equation19

EP
t Rt,t+N = aN + cN

Pt

Dt

+ uN
t , (1.1)

where the regression residual uN
t captures the variation in agents’ expectations

that cannot be linearly attributed to the price-dividend ratio. It summarizes
all other information that agents believe to be useful in predicting Rt,t+N , as
well as potential measurement error from survey data.20,21 We then have the
orthogonality condition

E
(
xtu

N
t )
)
= 0 (1.2)

for x′
t = (1, Pt/Dt) where the operator E denotes the objective expectation for

the true data generating process, independently of how agents’ expectations
are formed. Finally, we let ĉN denote the OLS estimator of cN in equation
(1.1).

In the special case with rational expectations (EP
t = Et) equation (1.1)

implies

Rt,t+N = aN + cN
Pt

Dt

+ uN
t + εNt (1.3)

where εNt is equal to the sum of the prediction error Rt,t+N − EtRt,t+N from
the true data-generating process minus the measurement error contained in

17As is standard, we assume the measurement error to be uncorrelated with regressors,
i.e., the PD ratio.

18As in Bacchetta et al. (2009), we use the constant maturity interest rates available from
the FRED database at the St. Louis Federal Reserve Bank.

19This regression is well-defined, as long as agents’ measured expectations EP
t Rt,t+N and

the PD ratio Pt/Dt are stationary and have bounded second moments.
20The residual uN

t is likely to be correlated with current and past observables (other than
the PD ratio) and thus serially correlated.

21Since the Shiller survey reports expectations about capital gains instead of returns, we
interpret the variable Rt,t+N as the real (excess) growth rate of stock prices between periods
t and t+N when using the Shiller survey.
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survey data. Importantly, εNt is orthogonal to all past observations dated t or
earlier and satisfies

E
[
xt

(
uN
t + εNt

)]
= 0, (1.4)

so that an estimate of cN that is consistent with the RE assumption can be

derived by estimating (1.3) with OLS. We let ̂̂cN denote this estimate.
The correlations reported in tables 1-4 imply - by construction - that ĉN > 0

and ̂̂cN < 0. Yet, the regression estimates are useful here because under the

RE hypothesis ĉNand ̂̂cN are consistent estimates of the same parameter cN .

This allows to formally test the RE hypothesis, i.e., H0 : ĉ
N = ̂̂cN .22’23 Clearly,

if the asset price and survey data were generated by a rational expectations
model, say the models of Campbell and Cochrane (1999) or Bansal and Yaron
(2004), this test would be accepted.

ĉ · 103 ̂̂c · 103 p-value ĉ · 103 ̂̂c · 103 p-value

Survey measure H0 : ĉ = ̂̂c H0 : ĉ = ̂̂c
S&P 500, real returns

Survey Average Survey Median
UBS*, >100k, 1 yr, SPF 0.56 -2.93 0.0000 0.44 -2.93 0.0000
UBS*, >100k, 1 yr, Michigan 0.55 -2.93 0.0000 0.43 -2.93 0.0000
UBS*, all, 1 yr, SPF 0.54 -2.93 0.0000 0.45 -2.93 0.0000
UBS*, all, 1 yr, Michigan 0.53 -2.93 0.0000 0.44 -2.93 0.0000
CFO, 1 yr, SPF 0.20 -1.88 0.0004 0.24 -1.74 0.0366
CFO, 1 yr, Michigan 0.26 -1.88 0.0002 0.32 -1.74 0.0252

Dow Jones, real price growth
Survey Average Survey Median

Shiller, 1 yr, SPF 0.23 -1.48 0.0000 0.23 -1.48 0.0000
Shiller, 1 yr, Michigan 0.28 -1.48 0.0000 0.29 -1.48 0.0000
Shiller, 10 yrs, SPF 4.11 -6.48 0.0000 5.49 -6.48 0.0000
Shiller, 10 yrs, Michigan 3.51 -6.48 0.0000 4.89 -6.48 0.0000

*stock market return expectations

Table 1.5a: Forecast rationality test (returns)

22Under the RE hypothesis, the correlations in tables 1-3 are not equal to the correspond-
ing correlations reported in table 1.4, albeit both should have the same sign. Constructing
a formal test for the sign of the correlations being equal is a fairly non-trivial task.

23To obtain p-values for H0 : ĉN = ̂̂cN , we stack up equations (1.1) and (1.3), create a

SUR system of equations to find the joint distribution of ĉN and ̂̂cN and build a t-test for
H0. We use serial-correlation and heteroskedasticity robust asymptotic covariance matrix of
the estimators, using 4 lags, results are robust to increasing the lag length to up to 12 lags.
For each considered survey we use data on actual (excess) returns (or price growth) for the
same time period for which survey data is available when computing the p-values. Further
details of the test are described in appendix 1.13.2.
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Test outcomes are reported in table 1.5a using stock returns and table 1.5b

using excess returns. Both tables report the point estimates ĉ and ̂̂c, as well as
the p-values for H0 : ĉN = ̂̂c, using the survey data sources considered in the
previous section.24 The point estimates satisfy in all but two cases ĉ > 0 and

always satisfy ̂̂c < 0. The difference between the two estimates is statistically
significant at the 1% level in all cases, except for the survey median from the
CFO survey. Given the relatively short sample lengths, this is a remarkable
outcome. Tables 5a and 5b thus provide overwhelming evidence against the
notion that survey expectations are rational.

ĉ · 103 ̂̂c · 103 p-value ĉ · 103 ̂̂c · 103 p-value

Survey measure H0 : ĉ = ̂̂c H0 : ĉ = ̂̂c
S&P 500, real excess returns

Survey Average Survey Median
UBS*, >100k, 1 yr, SPF 0.25 -3.02 0.0000 0.14 -3.02 0.0000
UBS*, >100k, 1 yr, Michigan 0.24 -3.02 0.0000 0.14 -3.02 0.0000
UBS*, all, 1 yr, SPF 0.23 -3.02 0.0000 0.15 -3.02 0.0000
UBS*, all, 1 yr, Michigan 0.23 -3.02 0.0000 0.14 -3.02 0.0000
CFO, 1 yr, SPF 0.04 -1.97 0.0006 0.12 -1.66 0.0801
CFO, 1 yr, Michigan 0.04 -1.97 0.0005 0.12 -1.66 0.0796

Dow Jones, real excess price growth
Survey Average Survey Median

Shiller, 1 yr, SPF -0.04 -1.68 0.0001 -0.04 -1.68 0.0000
Shiller, 1 yr, Michigan -0.05 -1.68 0.0001 -0.05 -1.68 0.0000
Shiller, 10 yrs, SPF 2.24 -7.98 0.0000 3.62 -7.98 0.0000
Shiller, 10 yrs, Michigan 2.08 -7.98 0.0000 3.46 -7.98 0.0000

Table 1.5b: Forecast rationality test (excess returns)

1.4.3 How Models of Learning May Help

This section illustrates that a simple ‘adaptive’ approach to forecasting stock
prices is a promising alternative to explain the joint behavior of survey expec-
tations and stock price data.

Figure 1.2 shows that the peaks and troughs of the PD ratio are located
very closely to the peaks and troughs of investors’ return expectations. This
suggests that agents become optimistic about future capital gains whenever
they have observed capital gains in the past. Such behavior can be captured by
models where agents expectations are influenced by past experience prompting
us to assume for a moment that agents’ subjective conditional capital gain
expectations Ẽt [Pt+1/Pt] evolve according to the following adaptive prediction

24Tests for ‘own portfolio’ expectations are not shown because we do not observe agents’
returns on their own portfolio.
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model

Ẽt [Pt+1/Pt] = Ẽt−1 [Pt/Pt−1] + g

(
Pt

Pt−1

− Ẽt−1 [Pt/Pt−1]

)
, (1.5)

where g > 0 indicates how strongly capital gain expectations are updated in
the direction of the forecast error. While equation (1.5) may appear ad-hoc, we
show in section 1.7 how a very similar equation can be derived from Bayesian
belief updating in a setting where agents estimate the persistent component of
price growth from the data.

One can use equation (1.5) and feed into it the historical price growth data
of the S&P 500 over the postwar period. Together with an assumption about
capital gain expectations at the start of the sample this will deliver a time
series of implied capital gain expectations Ẽt [Pt+1/Pt] that can be compared
to the expectations from the UBS survey.25 Figure 1.3 reports the outcome of
this procedure when assuming initial beliefs in Q1:1946 to be equal to −1.11%
per quarter and g = 0.02515, which minimizes the sum of squared deviations
from the survey evidence.26 Figure 1.3 shows that the adaptive model captures
the behavior of UBS expectations extremely well: the correlation between the
two series is equal to +0.89.

A similarly strong positive relationship between the PD ratio and the capi-
tal gains expectations implied by equation (1.51) exists over the entire postwar
period, as figure 1.4 documents. The figure plots the joint distribution of the
capital gains expectations (as implied by equation (1.51)) and the PD ratio in
the data. When regressing the PD ratio on a constant and the expectations
of the adaptive prediction model, one obtains an R2 coefficient of 0.55; using
also the square of the expectations, the R2 rises further to 0.67. Variations in
expected capital gains can thus account - in a purely statistical sense - for up
to two thirds of the variability in the postwar PD ratio.27

The previous findings suggest that an asset pricing model consistent with
equation (1.5), which additionally predicts a positive relationship between the
PD ratio and subjective expectations about future capital gains, has a good
chance of replicating the observed positive co-movement between price growth
expectations and the PD ratio. The next sections spell out the microfounda-
tions of such a model. As we show, the model can simultaneously replicate the
behavior of stock prices and stock price expectations.

25We transform the UBS survey measures of return expectations into a measure of price
growth expectations using the identity Rt+1 = Pt+1

Pt

+Dt+1

Pt

= Pt+1

Pt

+βD Dt

Pt

where βD denotes
the expected quarterly growth rate of dividends that we set equal to the sample average of
dividend growth over Q1:1946-Q1:2012, i.e, βD = 1.0048. Results regarding implied price
growth are very robust towards changing βD to alternative empirically plausible values.

26The figure reports growth expectations in terms of quarterly real growth rates.
27Interestingly, the relationship between implied price growth expectations and the PD

ratio seems to have shifted upwards after the year 2000, as indicated by the squared icons
in figure 1.4. We will come back to this observation in section 1.10.
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Figure 1.3: UBS survey expectations versus adaptive prediction model

Figure 1.4: PD ratio S&P 500 vs. adaptive price growth predictions
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1.5 A Simple Asset Pricing Model

Consider an endowment economy populated by a unit mass of infinitely lived
agents i ∈ [0, 1] with time-separable preferences. Agents trade one unit of
a stock in a competitive stock market. They earn each period an exogenous
non-dividend income Wt > 0 that we refer to as ‘wages’ for simplicity. Stocks
deliver the dividend Dt > 0. Dividend and wage incomes take the form of
perishable consumption goods.

The Investment Problem. Investor i solves

max
{Ci

t≥0,Si
t∈S}∞

t=0

EPi

0

∞∑

t=0

δt u
(
C i

t

)
(1.6)

s.t. Si
tPt + C i

t = Si
t−1 (Pt +Dt) +Wt for all t ≥ 0

where Si
−1 = 1 and C i denotes consumption, u the instantaneous utility of

the consumer, assumed to be continuous, differentiable, increasing and strictly
concave, Si the agent’s stockholdings, chosen from some compact, non-empty
and convex set S such that 1 ∈ S, P ≥ 0 the (ex-dividend) price of the stock,
D ≥ 0 an exogenous dividend, W ≥ 0 the exogenous wage income, and P i

the agent’s subjective probability measure, which may or may not satisfy the
rational expectations hypothesis. Further details of P i will be specified below.

Dividend and Wage Income. As standard in the literature, we assume
that dividends grow at a constant rate and that dividend growth innovations
are unpredictable

lnDt = ln βD + lnDt−1 + ln εDt , (1.7)

where βD ≥ 1 denotes gross mean dividend growth, ln εDt an i.i.d. growth
innovation described further below.

We also specify an exogenous wage income process Wt , which is chosen
such that the resulting aggregate consumption process Ct = Wt + Dt is em-
pirically plausible. First, in line with Campbell and Cochrane (1999), we set
the standard deviation of consumption growth to be 1/7 of the standard de-
viation of dividend growth. Second, again following these authors, we set the
correlation between consumption and dividend growth equal to 0.2. Third,
we choose a wage process such that the average consumption-dividend ratio
in the model (E [Ct/Dt]) equals the average ratio of personal consumption
expenditure to net dividend income, which equals approximately 22 in U.S.
postwar data.28 All this can be parsimoniously achieved using the following
wage income process

lnWt = ln ρ+ lnDt + ln εWt ,

where (
ln εDt
ln εWt

)
∼ iiN

(
−1

2

(
σ2
D

σ2
W

)
,

(
σ2
D σDW

σDW σ2
W

))
(1.8)

28See appendix 1.13.3 for details.
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and EεDt = EεWt = 1. Given the variance of dividend growth σ2
D, which can be

estimated from dividend data, one can use σDW and σ2
W to impose the desired

volatility of consumption growth and the desired correlation with dividend
growth. Furthermore, one can choose ρ = 22 to obtain the targeted average
consumption-dividend ratio. Appendix 1.13.3 explains how this is achieved.

The Underlying Probability Space. Agents hold a set of subjective
probability beliefs about all payoff-relevant variables that are beyond their
control. In addition to fundamental variables such as dividends and wage in-
come, agents also perceive competitive stock prices to be beyond their control.
Therefore, the belief system also specifies probabilities about prices. Formally,
letting Ω denote the space of possible realizations for infinite sequences, a typ-
ical element ω ∈ Ω is given by ω = {Pt, Dt,Wt}∞t=0. As usual, Ω

t then denotes
the set of all (nonnegative) price, dividend and wage histories from period zero
up to period t and ωt its typical element. The underlying probability space for
agents’ beliefs is then given by (Ω,B,P i) with B denoting the corresponding
σ-Algebra of Borel subsets of Ω, and P i a probability measure over (Ω,B).

The agents’ plans will be contingent on the history ωt, i.e., the agent chooses
state-contingent consumption and stockholding functions

C i
t : Ωt → R+ (1.9)

Si
t : Ωt → S (1.10)

The fact that C i and Si depend on price realizations is a consequence of optimal
choice under uncertainty, given that agents consider prices to be exogenous
random variables.

The previous setup is general enough to accommodate situations where
agents learn about the stochastic processes governing the evolution of prices,
dividends, and wages. For example, P i may arise from a stochastic process
describing the evolution of these variables that contains unknown parameters
about which agents hold prior beliefs. The presence of unknown parameters
then implies that agents update their beliefs using the observed realizations
of prices, dividends and wages. A particular example of this kind will be
presented in section 1.7 when we discuss learning about stock price behavior.

The probability space defined above is more general than that specified in
a RE analysis of the model, where Ω contains usually only the variables that
are exogenous to the model (in this case Dt and Wt), but not variables that are
endogenous to the model and exogenous to the agent only (in this case Pt).
Under the RE hypothesis, agents are assumed to know the pricing function
Pt((D,W )t) mapping histories of dividends and wages into a market price. In
that case prices carry redundant information and can be excluded from the
probability space without loss of generality. The more general formulation
we entertain here allows us to consider agents who do not know exactly which
price materializes given a particular history of dividends and wages; our agents
do have a view about the distribution of Pt conditional on (D,W )t, but in their
minds this is a proper distribution, not a point mass as in the RE case. Much
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akin to academic economists, investors in our model have not converged on a
single asset pricing model that associates one market price with a given history
of exogenous fundamentals.

Parametric Utility Function. To obtain closed-form solutions, we con-
sider in the remaining part of the paper the utility function

u(Ct) =
C1−γ

t

1− γ
with γ > 1, (1.11)

and also consider agents who hold rational expectations about dividends and
wages (P i incorporates knowledge of the process (2.6)), so as to be able to
isolate the pricing effects arising from subjective capital gains beliefs. We
furthermore assume that

δβRE < 1, (1.12)

where βRE ≡ (βD)1−γeγ(γ−1)σ2
D/2, which insures existence of an equilibrium

under rational price expectations. Since solving the optimization problem (2.2)
for general (potentially non-rational) price beliefs is non-standard, appendix
1.13.4 discusses conditions guaranteeing existence of an optimum, sufficiency of
first order conditions and the existence of a recursive solution. These conditions
are all satisfied for the preference specification (1.11) and the subjective price
beliefs introduced in the remaining part of the paper and guarantee that the
optimal solution to (2.2) takes the form

Si
t = Si

(
Si
t−1,

Pt

Dt

,
Wt

Dt

,mi
t

)
. (1.13)

where mi
t is a sufficient statistic characterizing the subjective distributions

about future values of
(

Dt+j
Dt+j−1

,
Pt+j

Dt+j
,
Wt+j

Dt+j

)
for j > 0.

1.6 Rational Expectations (RE) Equilibrium

As a point of reference, we determine the equilibrium stock price implied by
the RE hypothesis. Appendix 1.13.5 derives the following result:

Proposition 1 If agents hold rational expectations and if price expectations
satisfy the usual transversality condition (stated explicitly in appendix 1.13.5),
then RE equilibrium price is given by

PRE
t

Dt

= (1 + ρεWt )γb
δβRE

1− δβRE
(1.14)

where b ≡ E[(1 + ρεWt )−γ
(
εDt
)1−γ

]eγ(1−γ)
σ2
D
2 and βRE ≡ (βD)1−γeγ(γ−1)σ2

D/2.
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The PD ratio is an iid process under RE, thus fails to match the persistence
of the PD ratio observed in the data. Moreover, since the volatility of εWt tends
to be small, it fails to match the large variability of stock prices. Furthermore,
the RE equilibrium implies a negative correlation between the PD ratio and
expected returns, contrary to what is evidenced by survey data. To see this
note that (1.14) implies

lnPRE
t+1 − lnPRE

t = ln βD + ln εPt+1, (1.15)

where εPt+1 ≡ εDt+1(1 + ρεWt+1)/(1 + ρεWt ), so that one-step-ahead price growth
expectations covary negatively with the current price dividend ratio.29 Since
the dividend component of returns also covaries negatively with the current
price, the same holds true for expected returns.

In the interest of deriving analytical solutions, we consider below the lim-
iting case with vanishing uncertainty (σ2

D, σ
2
W → 0). The RE solution then

simplifies to the perfect foresight outcome

PRE
t

Dt

=
δβRE

1− δβRE
, (1.16)

which has prices and dividends growing at the common rate βD.

1.7 Learning about Capital Gains and Inter-

nal Rationality

Price growth in the RE equilibrium displays only short-lived deviations from
dividend growth, with any such deviation being undone in the subsequent pe-
riod, see equation (1.15). Price growth in the data, however, can persistently
outstrip dividend growth, thereby giving rise to a persistent increase in the
PD ratio and an asset price boom; conversely it can fall persistently short of
dividend growth and give rise to a price bust, see figure 1.1. This behavior of
actual asset prices suggests that it is of interest to relax the RE beliefs about
price behavior. Indeed, in view of the behavior of actual asset prices in the
data, agents may entertain a more general model of price behavior, incorpo-
rating the possibility that the growth rate of prices persistently exceeds/falls
short of the growth rate of dividends. To the extent that the equilibrium asset
prices implied by these beliefs display such data-like behavior, agents’ beliefs
will be generically validated.

Generalized Price Beliefs. In line with the discussion in the previous
paragraph, we assume agents perceive prices evolving according to the process

lnPt+1 − lnPt = ln βt+1 + ln εt+1, (1.17)

29The PD ratio under RE is proportional to 1 + ρεWt , see equation (1.14), while εPt+1

depends inversely on 1 + ρεWt .
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where εt+1 denotes a transitory shock to price growth and βt+1 a persistent
price growth component that drifts slowly over time according to

ln βt+1 = ln βt + ln νt+1 . (1.18)

This setup can capture periods with sustained increases in the PD ratio (βt+1 >
βD) or sustained decreases (βt+1 < βD).30 In the limiting case where the
variance of the innovation ln νt+1 becomes small, the persistent price growth
component behaves almost like a constant, as is the case in the RE solution.

For simplicity, we assume that agents perceive the innovations ln εt+1 and
ln vt+1 to be jointly normally distributed according to

(
ln εt+1

ln νt+1

)
∼ iiN

((
−σ2

ε

2

−σ2
v

2

)
,

(
σ2
ε 0
0 σ2

ν

))
. (1.19)

Since agents observe the change of the asset price, but do not separately observe
the persistent and transitory elements driving it, the previous setup defines a
filtering problem in which agents need to decompose observed price growth
into the persistent and transitory subcomponents, so as to forecast optimally.

To emphasize the importance of learning about price behavior rather than
learning about the behavior of dividends or the wage income process, which
was the focus of much of an earlier literature on learning in asset markets,
e.g., Timmermann (1993, 1996), we continue to assume that agents know the
processes (2.6), i.e., hold rational dividend and wage expectations.

Internal Rationality of Price Beliefs. Among academics there appears
to exist a widespread belief that rational behavior and knowledge of the fun-
damental processes (dividends and wages in our case) jointly dictate a certain
process for prices and thus the price beliefs agents can rationally entertain.31

If this were true, then rational behavior would imply rational expectations,
so that postulating subjective price beliefs as those specified in equation (2.8)
would be inconsistent with the assumption of optimal behavior on the part of
agents.

This view is correct in some special cases, for example when agents are
risk neutral and do not face trading constraints. If fails to be true, however,
more generally. Therefore, agents in our model are ‘internally rational’: their
behavior is optimal given an internally consistent system of subjective beliefs
about variables that are beyond their control, including prices.

30We deliberately do not incorporate any mean-reversion into price growth beliefs as we
seek to determine model-endogenous forces that lead to a reversal of asset price booms and
busts, rather than having these features emerge because they are hard-wired into beliefs.
Incoporating such mean reversion in prices would not be difficult though. Furthermore, as
we discus below, return expectations display some degree of mean reversion even with the
present specification.

31We often received this reaction during seminar presentations.
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To illustrate this point, consider first risk neutral agents with rational div-
idend expectations and ignore limits to stock holdings. Forward-iteration on
the agents’ own optimality condition (1.42) then delivers the present value
relationship

Pt = Et

[
T∑

i=1

δiDt+i

]
+ δTEPi

t [Pt+T ] ,

which is independent of the agents’ own choices. Provided agents’ price beliefs
satisfy a standard transversality condition (limT→∞ δTEPi

t [Pt+T ] = 0 for all i),
then each rational agent would conclude that there must be a degenerate joint
distribution for prices and dividends given by

Pt = Et

[
∞∑

i=1

δiDt+i

]
a.s. (1.20)

Since the r.h.s of the previous equation is fully determined by dividend expec-
tations, the beliefs about the dividend process deliver the price process compat-
ible with optimal behavior. In such a setting, it would be plainly inconsistent
with optimal behavior to assume the subjective price beliefs (2.8)-(2.9).32

Next, consider a concave utility function u(·) satisfying standard Inada
conditions. Forward iteration on (1.42) and assuming an appropriate transver-
sality condition then delivers

Pt u
′(C i

t) = EPi

t

[
∞∑

j=1

δj Dt+j u
′(C i

t+j)

]
a.s. (1.21)

Unlike in equation (1.20), the previous equation depends on the agent’s current
and future consumption. Equation (1.21) thus falls short of mapping beliefs
about the dividend process into a price outcome. Indeed, given any equilibrium
price Pt, the agent will choose her consumption plans such that (1.21) holds,
i.e., such that the price equals the discounted sum of dividends, discounting
with her on internally rational consumption plan.33 Equation (1.21) thus fails
to deliver any restriction on what optimizing agents can possibly believe about
the price process.

With the considered non-linear utility function, we can thus simultaneously
assume that agents maximize utility, hold the subjective price beliefs (2.8)-(2.9)
and rational beliefs about dividends and wages.

Learning about the Capital Gains Process. The beliefs (2.8) give
rise to an optimal filtering problem. To obtain a parsimonious description of

32See Adam and Marcet (2011) for a discussion of how in the presence of trading con-
straints, this conclusion breaks down, even with risk-neutral consumption preferences.

33This follows directly from the fact that consumption plans must satisfy (1.42) at all
contingencies.
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the evolution of beliefs we specify conjugate prior beliefs about the unobserved
persistent component ln βt at t = 0. Specifically, agent i’s prior is

ln β0 ∼ N(lnmi
0, σ

2), (1.22)

where prior uncertainty σ2 is assumed to be equal to its Kalman filter steady
state value, i.e.,

σ2 ≡
−σ2

ν +
√

(σ2
ν)

2 + 4σ2
νσ

2
ε

2
, (1.23)

and the prior is also assumed independent of all other random variables at all
times. Equations (2.8), (2.9) and (1.22), and knowledge of the dividend and
wage income processes (2.6) then jointly specify agents’ probability beliefs P i.

The optimal Bayesian filter then implies that the posterior beliefs following
some history ωt are given by34

ln βt|ωt ∼ N(lnmi
t, σ

2), (1.24)

with

lnmi
t = lnmi

t−1 −
σ2
v

2
+ g

(
lnPt − lnPt−1 +

σ2
ε + σ2

v

2
− lnmi

t−1

)
(1.25)

g =
σ2

σ2
ε

. (1.26)

Agents’ beliefs can thus be parsimoniously summarized by a single state vari-
able (mi

t) describing agents’ degree of optimism about future capital gains.
These beliefs evolve recursively according to equation (2.11) and imply that

EPi

t

[
Pt+1

Pt

]
= elnmi

t eσ
2/2, (1.27)

which is - up to the presence of a log and exponential transformation and
some variance correction terms - identical to the adaptive prediction model
considered in section 1.4.3.

Nesting PF Equilibrium Expectations. The subjective price beliefs
(2.8),(2.9) and (1.22) generate perfect foresight equilibrium price expectations
in the special case in which prior beliefs are centered at the growth rate of
dividends, i.e.,

lnmi
0 = ln βD,

and when considering the limiting case with vanishing uncertainty, where
(σ2

ε, σ
2
ν , σ

2
D, σ

2
W ) → 0. Agents’ prior beliefs at t = 0 about price growth in

34See theorem 3.1 in West and Harrison (1999). Choosing a value for σ2 different from the
steady state value (1.23) would only add a deterministically evolving variance component σ2

t

to posterior beliefs with the property limt→∞ σ2
t = σ2, i.e., it would converge to the steady

state value.
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t ≥ 1 then increasingly concentrates at the perfect foresight outcome ln βD,
see equations (2.8) and (2.9). With price and dividend expectations being at
their PF value, the perfect foresight price PD0 = δβRE/(1 − δβRE) becomes
the equilibrium outcome at t = 0 in the limit. Importantly, it continues to be
possible to study learning dynamics in the limit with vanishing risk: keeping
the limiting ratio σ2

ν/σ
2
ε finite and bounded from zero as uncertainty vanishes,

the Kalman gain parameter g defined in (2.12), remains well-specified in the

limit and satisfies lim σ2
ν

σ2
ε
= lim g2

1−g
. We will exploit this fact in section 1.9

when presenting analytical results.

1.8 Dynamics under Learning

This section explains how equilibrium prices are determined under the sub-
jective beliefs introduced in the previous section and how they evolve over
time.

Agents’ stock demand is given by equation (1.13). Stock demand depends
on the belief mi

t, which characterizes agents’ capital gains expectations. These
beliefs evolve according to (2.11). As a benchmark, we shall now assume that
all agents hold identical beliefs (mi

t = mt for all i). While agents may initially
hold heterogenous prior beliefs mi

0, heterogeneity would asymptotically vanish
because all agents observe the same price history. The asset dynamics derived
under the assumption of identical beliefs thus describe the long-run outcome
of the model.

Using this assumption and imposing market clearing in periods t and t− 1
in equation (1.13) shows that the equilibrium price in any period t ≥ 0 solves

1 = S

(
1,

Pt

Dt

,
Wt

Dt

,mt

)
, (1.28)

which exploits the fact that the total supply of stocks is equal to one.
The beliefs mt and the price dividend ratio Pt/Dt are now simultaneously

determined via equations (2.11) and (2.16). Unfortunately, this simultaneity
could give rise to multiple market clearing price and belief pairs, due to a
complementarity between realized capital gains and expected future capital
gains.35 While this multiplicity may be a potentially interesting avenue to
explain asset price booms and busts, analyzing price dynamics within such
a setting would require introducing non-standard features, such as an equi-
librium selection device for periods in which there are multiple solutions to
(2.11) and (2.16). Instead, we resort to a standard approach of using only
lagged information for updating beliefs.

35Intuitively, a higher PD ratio implies higher realized capital gains and thus higher ex-
pectations of future gains via equation (2.11). Higher expected future gains may in turn
induce a higher willingness to pay for the asset, thereby justifying the higher initial PD
ratio.
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Appendix 1.13.6 shows that the simultaneity can be overcome by slightly
modifying the information structure. The modification is relatively straightfor-
ward and consists of assuming that agents observe at any time t information
about the lagged temporary price growth component εt−1 entering equation
(2.8). The appendix then shows that Bayesian updating implies that

lnmt = lnmt−1 + g (lnPt−1 − lnPt−2 − lnmt−1) + g ln ε1t , (1.29)

where updating now occurs using only lagged price growth (even though agents

do observe current prices) and where ln ε1t ∼ iiN(−σ2
ε

2
, σ2

ε) is a time t innovation
to agent’s information set (unpredictable using information available to agents
up to period t − 1), which reflects the information about the transitory price
growth component εt−1 received in period t.

With this slight modification, agents’ beliefs mt are now pre-determined
at time t, so that the economy evolves according to a uniquely determined
recursive process: equation (2.16) determines the market clearing price for
period t given the beliefs mt and equation (1.29) determines how time t beliefs
are updated following the observation of the new market clearing price.36

1.9 Equilibrium: Analytic Findings

This section derives a closed form solution for the equilibrium asset price for
the special case where all agents hold the same subjective beliefs P and where
these beliefs imply no (or vanishing) uncertainty about future prices, dividends
and wages. While the absence of uncertainty is unrealistic from an empirical
standpoint, it allows deriving key insights into how the equilibrium price de-
pends on agents’ beliefs, as well as on how prices and beliefs evolve over time.37

The empirically more relevant case with uncertainty will be considered in sec-
tion 1.10 using numerical solutions.

The next section provides a closed form expression for the equilibrium PD
ratio as a function of agents’ subjective expectations about future stock market
returns. Section 1.9.2 then discusses the pricing implications of this result for
the subjective capital gains beliefs introduced in section 1.7. Finally, section
1.9.3 shows how the interaction between asset price behavior and subjective
belief revisions can temporarily de-link asset prices from their fundamental
value, i.e., give rise to a self-feeding boom and bust in asset prices along which
subjective expected returns rise and fall.

36There could still be an indeterminacy arising from the fact that S (·) is non-linear, so
that equation (2.16) may not have a unique solution, but we have encountered such problems
neither in our analytical solution nor when numerically solving the model.

37In the absence of uncertainty one can evaluate more easily the expectations of nonlinear
functions of future variables showing up in agents’ FOCs.
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1.9.1 Main Result

The following proposition summarizes our main finding:38

Proposition 2 Suppose u(C) = C1−γ/(1 − γ) , agents’ beliefs P imply no
uncertainty about future prices, dividends and wages, and

lim
T→∞

EP
t RT > 1 and lim

T→∞
EP

t

(
T∑

j=1

(∏j

i=1

1

Rt+i

)
Wt+j

)
< ∞, (1.30)

then the equilibrium PD ratio in period t is given by

Pt

Dt

=

(
1 +

Wt

Dt

) ∞∑

j=1

((
δ

1
γ

)j (
EP

t

∏j

i=1

1

Rt+i

) γ−1
γ

)

− 1

Dt

EP
t

(
∞∑

j=1

(∏j

i=1

1

Rt+i

)
Wt+j

)
(1.31)

Conditions (1.30) insure that the infinite sums in the pricing equation (1.31)
converge.39 Under the additional assumption that agents hold rational wage
and dividend expectations, equation (1.31) simplifies further to

Pt

Dt

= (1 + ρ)
∞∑

j=1

((
δ

1
γ

)j (
EP

t

∏j

i=1

1

Rt+i

) γ−1
γ

)

−ρ

(
∞∑

j=1

(
βD
)j
(
EP

t

∏j

i=1

1

Rt+i

))
. (1.32)

We now discuss the implications of equation (1.32), focusing on the empirically
relevant case where ρ > 0 and γ > 1.

Consider first the upper term on the r.h.s. of equation (1.32), which is
decreasing in the expected asset returns. This emerges because for γ > 1 the
wealth effect of a change in return expectations then dominates the substitu-
tion effect, so that expected asset demand and therefore the asset price has
a tendency to decrease as return expectations increase. The negative wealth
effect thereby increases in strength if the ratio of wage to dividend income (ρ)
increases. This is the case because higher return expectations also reduce the
present value of wage income.

Next, consider the lower term on the r.h.s. of equation (1.32), including
the negative sign pre-multiplying it. This term depends positively on the

38The proof can be found in appendix 1.13.7.
39These are satisfied, for example, for the expectations associated with the perfect fore-

sight RE solution. Equation (1.31) then implies that the PD ratio equals the perfect foresight
PD ratio (1.16), as is easily verified. Conditions (1.30) are equally satisfied for the subjec-
tive beliefs defined in section 1.7, when considering the case with vanishing uncertainty
(σ2

ε, σ
2
ν , σ

2
D, σ2

W ) → 0.
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expected returns and captures a substitution effect that is associated with
increased return expectations. This substitution effect only exists if ρ > 0,
i.e., only in the presence of non-dividend income, and it is increasing in ρ. It
implies that increased return expectations are associated with increased stock
demand and thus with a higher PD ratio in equilibrium. It is this term that
allows the model to match the positive correlation between expected returns
and the PD ratio.

This substitution effect is present even in the limiting case with log con-
sumption utility (γ → 1). The upper term on the r.h.s. of equation (1.32) then
vanishes because the substitution and wealth effects associated with changes in
expected returns cancel each other, but the lower term still induces a positive
relationship between prices and return expectations. The substitution effect
is also present for γ > 1 and can then dominate the negative wealth effect
arising from the upper term on the r.h.s. of (1.32). Consider, for example, the
opposite limit with γ → ∞. Equation (1.32) then delivers

Pt

Dt

=
∞∑

j=1

(
1 + ρ

∞∑

j=1

(
1−

(
βD
)j)
)(

EP
t

∏j

i=1

1

Rt+i

)
.

Since βD > 1, there is a positive relationship between prices and expected
asset returns, whenever ρ is sufficiently large. The two limiting results (γ → 1
and γ → ∞) thus suggest that for sufficiently large ρ the model can generate
a positive relationship between return expectations and the PD ratio, in line
with the evidence obtained from survey data.

1.9.2 PD Ratio and Expected Capital Gains

We now consider the implications of equation (1.32) for the subjective capital
gains beliefs introduced in section 1.7.40 Equation (1.32) implies a non-linear
relationship between the PD ratio and the subjective capital gain expectations
mt, but one cannot obtain a closed-form solution for the PD ratio as a function
of the capital gains expectations.41 Figure 1.5 depicts the relationship between

40Appendix 1.13.8 proves that condition (1.30) is then satisfied for all beliefs mt > 0.
41More precisely, with vanishing uncertainty the beliefs from section 1.7 imply

EP

t [Pt+i] = (mt)
i
Pt,

which together with perfect foresight about dividends allows expressing agents’ expectations
of future inverse returns as a function of mt and the current PD ratio:

EP

t

1

Rt+i

=
EP

t Pt+i−1

EP
t Pt+i + EP

t Dt+i

=
(mt)

i−1 Pt

Dt

(mt)
i Pt

Dt

+
(
βD
)i .

Substituting this into (1.32) one can solve numerically for Pt/Dt as a function of mt.
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the PD ratio and mt using the parameterization employed in our quantitative
application in section 1.10, but abstracting from future uncertainty.42

Figure 1.5: PD ratio and expected capital gains (vanishing noise)

Figure 1.5 shows that there is a range of price growth beliefs in the neigh-
borhood of the perfect foresight value (mt = βD) over which the PD ratio de-
pends positively on expected price growth, similar to the positive relationship
between expected returns and the PD ratio derived analytically in the previous
section. Over this range, the substitution effect dominates the wealth effect
because our calibration implies that dividend income finances only a small
share of total consumption (approximately 4.3%). As a result, stock market
wealth is only a small share of the total present value of household wealth (the
same 4.3%) when beliefs assume their perfect foresight value (mt = βD).

Figure 1.5 also reveals that there exists a capital gains belief beyond which
the PD ratio starts to decrease. Mathematically, this occurs because if mt →
∞, expected returns also increase without bound43, so that EP

t

∏j
i=1

1
Rt+i

→ 0.

From equation (1.32) one then obtains Pt

Dt
→ 0.

The economic intuition for the existence of a maximum PD ratio is as
follows: for higher mt the present value of wage income is declining, as in-

42The parameterization assumes a moderate degree of risk aversion γ = 2, a quarterly
discount factor of δ = 0.995, quarterly real dividend growth equal to the average postwar
growth rate of real dividends βD = 1.0048, and ρ = 22 to match the average dividend-
consumption ratio in the U.S. over 1946-2011, see section 1.10 for further details.

43This follows from EP
t Rt+i+1 = EP

t
Pt+i+1+Dt+i+1

Pt+i

> EP
t

Pt+i+1

Pt+i

= mt.
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creased price growth optimism implies higher expected returns44 and therefore
a lower discount factor. This can be seen by noting that the FOC (1.42) can
alternatively be written as

1 = δEP
t

[(
Ct+1

Ct

)−γ

Rt+1

]
,

which implies that increased return expectations EP
t Rt+1 imply a lower dis-

count factor δEP
t

[
(Ct+1/Ct)

−γ].45 With increased optimism, the present value
of wage income thus falls. At the same time, stock market wealth initially in-
creases strongly. Indeed, at the maximum PD ratio, stock market wealth
amounts to approximately 4.5 times the value it assumes in the perfect fore-
sight solution, see figure 1.5. This relative wealth shift has the same effect
as a decrease in the wage to non-wage income ratio ρ. As argued in section
1.9.1, for sufficiently small values of ρ the income effect starts to dominate the
substitution effect, so that prices start to react negatively to increased return
optimism.

1.9.3 Endogenous Boom and Bust Dynamics

We now explain how the interplay between price realizations and belief up-
dating can temporarily de-link asset prices from their fundamental values.
This process emerges endogenously and takes the form of a sustained asset
price boom along which expected returns rise and that ultimately results in a
price bust along which expected returns fall. This feature allows the model to
generate volatile asset prices and to capture the positive correlation between
expected returns and the PD ratio.

Consider figure 1.5 and a situation in which agents become optimistic, in
the sense that their capital gains expectations mt increase slightly above the
perfect foresight value mt−1 = βD entertained in the previous period.46 Figure
1.5 shows that this increase in expectations leads to an increase in the PD
ratio, i.e., Pt/Dt > Pt−1/Dt−1. Moreover, due to the relatively steep slope of
the PD function, realized capital gains will strongly exceed the initial increase
in expected capital gains. The belief updating equation (1.29) then implies
further upward revisions in price growth expectations and thus further capital
gains, leading to a sustained asset price boom in which the PD ratio and return
expectations jointly move upward.

The price boom comes to an end when expected price growth reaches a

44This is hown in appendix 1.13.9, which depicts the relationship between expected capital
gains and expected returns at various forecast horizons.

45This holds true under the maintained assumption of no or vanishing uncertainty.
46In the model with uncertainty, such upward revisions can be triggered by fundamentals,

e.g., by an exceptionally high dividend growth realization in the previous period, which is
associated with an exceptionally high price growth realization.
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level close to where the PD function in figure 1.5 reaches its maximum.47

At this point, stock prices grow at most at the rate of dividends (βD), but
agents hold considerably more optimistic expectations about future capital
gains (mt > βD). Investors’ high expectations will thus be disappointed, which
subsequently leads to a reversal.

The previous dynamics are also present in a stochastic model considered
in the next sections. They introduce low frequency movements in the PD
ratio, allowing the model to replicate boom and bust dynamics and thereby
to empirically plausible amounts of asset price volatility, despite assuming
standard consumption preferences. These dynamics also generate a positive
correlation between the PD ratio and expected returns.48

1.10 Historical PD Ratio and Survey Evidence

This section considers the asset pricing model with subjective beliefs and un-
certainty; it shows that the model can successfully replicate the low-frequency
movements in the postwar U.S. PD ratio, as well as the available survey evi-
dence.

Solving the non-linear asset pricing model with subjective beliefs is compu-
tationally costly, which prevents us from pursuing formal estimation or moment
matching. We thus resort to calibration.

Table 1.6 reports the calibrated parameters and the calibration targets.49

The mean and standard deviation of dividend growth (βD and σD) are chosen
to match the corresponding empirical moments of the U.S. dividend process.
The ratio of non-dividend to dividend income (ρ) is chosen to match the av-
erage dividend-consumption ratio in the U.S. for 1946-2011.50 The standard
deviation of wage innovations (σW ) and the covariance between wage and
dividend innovations (σDW ) are chosen, in line with Campbell and Cochrane
(1999), such that the correlation between consumption and dividend growth
is 0.2 and the standard deviation of consumption growth is one seventh of
the the standard deviation of dividend growth.51 The perceived uncertainty
in stock price growth (σε) is set equal to the empirical standard deviation of
stock price growth.52

47In the model with noise, fundamental shocks, e.g., a low dividend growth realization,
can cause the process to end well before reaching this point.

48While the arguments above only show that expected capital gains correlate positively
with the PD ratio, Appendix 1.13.9 shows that expected capital gains and expected returns
comove positively, so that expected returns also comove positively with the PD ratio.

49The targets are chosen to match features of the fundamental processes emphasized in
the asset pricing literature.

50See appendix 1.13.3 for further details.
51For details on how this can be achieved, see appendix 1.13.3.
52Since the gain parameter g will be small, the contribution of σ2

ν in (2.8) is negligable.
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Parameter Value Calibration Target

βD 1.0048 average quarterly real dividend growth
σD 0.0192 std. deviation quarterly real dividend growth
ρ 22 average consumption-dividend ratio
σDW −3.74 · 10−4 jointly chosen s.t. corrt(Ct+1/Ct, Dt+1/Dt) = 0.2
σW 0.0197 and stdt(Ct+1/Ct) =

1
7
stdt(Dt+1/Dt)

σε 0.0816 std. deviation of quarterly real stock price growth

Table 1.6: Model calibration

This leaves us with four remaining parameters: the belief updating parame-
ter g, the initial price growth belief mQ1:1946, the time discount factor δ and the
risk aversion parameter γ. We choose g = 0.02515 and mQ1:1946 = −1.11%, in
line with the values employed in constructing figure 1.3, which allowed match-
ing the UBS survey expectations. We then assume risk aversion of γ = 2 and
choose the quarterly discount factor δ, so as to obtain a good match between
the model-implied and the empirical PD ratio over the postwar period. It
turns out that δ = 0.995 achieves a good fit.

Figure 1.6 depicts the equilibrium PD ratio obtained from numerically solv-
ing the asset pricing model with uncertainty, together with the equilibrium PD
ratio in the absence of uncertainty analyzed in the previous section.53 While
the presence of price, dividend, and wage risk lowers the equilibrium PD ratio
compared to a setting without risk, the functional form of the relationship re-
mains qualitatively unchanged. The findings obtained in the previous section
thus continue to apply in the presence of quantitatively realistic amounts of
uncertainty.

53The numerical solution is obtained by numerically determining the stock demand func-
tion (1.13) solving the FOC (1.42) under the subjectively perceived dividend, wage and
price dynamics, where agents understand that their beliefs evolve according to (1.29). The
PD ratio as a function of mt depicted in figure 1.6 is determined from the market clearing
condition (2.16) assuming Wt/Dt = ρ, to be comparable with the value this variable as-
sumes in the vanishing risk limit. We verified that in the limiting case without uncertainty,
our numerical solution algorithm recovers the analytical solution derived in proposition 2.
Furthermore, in the case with uncertainty, we insure the accuracy of the numerical solution
by verifying that the Euler equation errors are in the order of 10−5 over the relevant area of
the state space. Insuring this requires a considerable amount of adjustment by hand of the
grid points and grid size used for spanning the model’s state space. This prevents us from
formally estimating the model, as the model cannot be solved with sufficient accuracy using
an automated procedure. Further details of the solution approach are described in appendix
1.13.10. The MatLab code used for solving the model is available upon request.
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Figure 1.6: The effects of uncertainty on the equilibrium PD ratio

We now evaluate the ability of the model to replicate the postwar time series
of the PD ratio. We do so by first feeding the historical capital gains into our
model-based belief updating equation (1.29), so as to obtain a model-implied
value for expected capital gains.54 The resulting series is shown in figure 1.7.
It displays a strong rise and fall of price growth expectations around the year
2000, as well as relatively low capital gains expectations from the mid 1970’s
to the mid 1980’s. In a second step, we use the model-implied equilibrium PD
function to derive a model-implied time series for the PD ratio associated with
the model-based beliefs. Figure 1.8 depicts this model-implied PD series and
compares it with historical PD series.55

54We thereby shut down all other sources of information about price growth, i.e., set
ln ε1t = 0 for all t in equation (1.29).

55When computing the model-implied PD ratio, we set the non-dividend to dividend
income ratio equal to its steady state value (Wt/Dt = ρ), so as to obtain only pricing effects
due to variation in subjective capital gains expectations. The effects of fundamental shocks
to wages and dividends will be considered in section 1.11.
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Figure 1.7: Price growth expectations implied by Bayesian updating and his-
torical price growth information

Figure 1.8 reveals that the model captures a lot of the low-frequency vari-
ation in the historically observed PD ratio. It captures particularly well the
variations before the year 2000, including the strong run-up in the PD ratio
from the mid 1990’s to year 2000. The model also predicts a strong decline of
the PD ratio after the year 2000, but overpredicts the decline relative to the
data. For the period up to and including the year 2000, the variance of the
gap between the model predicted PD and the PD in the data amounts to just
20.1% of the overall variance of the PD in the data. In this sense, the subjec-
tive belief model is capable of capturing approximately 79.9% of the variation
of the PD ratio in the data. Since the fit deteriorates some time after the year
2000, it explains - using the same measure - about 52.5% of the variance for
the full sample. We find this to be a remarkable result.
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Figure 1.8: PD ratio - model vs. data

Figure 1.9 depicts the model-implied price growth expectations and those
implied by the UBS survey.56 While the model fits the survey data overall
well, the model predicts after the year 2003 considerably lower capital gains
expectations, which partly explains why the model underpredicts the PD ratio
in figure 1.8 towards the end of the sample period. Yet, the expectations gap
in figure 1.9 narrows considerably after the year 2004, while this fails to be
the case in figure 1.8. Underprediction of expected price growth thus explains
only partly the deterioration of the fit of the PD ratio towards the end of the
sample period .

The gap after the year 2000 emerging in figure 1.8 is hardly surprising,
given the empirical evidence presented in figure 1.4, which shows that the
relationship between the PD ratio and the expectations implied by equation
(1.5) has shifted upward in the data following the year 2000. While we can only
speculate about potential reasons causing this shift, the exceptionally low real
interest rates implemented by the Federal Reserve following the reversal of the
tech stock boom and following the collapse of the subsequent housing boom
may partly contribute to the observed discrepancy. Formally incorporating the
effects of monetary policy decisions - while of interest - is beyond the scope of
the present paper.

56See footnote 25 for how to compute price growth expectations from the UBS survey.
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Figure 1.9: Price growth expectations: UBS survey vs. Bayesian updating
model

1.11 Model Simulations

The previous section evaluated to what extent subjective belief updating dy-
namics alone can explain the behavior of the PD ratio in the data, but it
ignored the role of the fundamental dividend and wage processes as ultimate
drivers of asset price and belief dynamics. This section evaluates the ability
of the model to replicate key asset pricing moments, using model simulations
with dividend and wage shocks as fundamental drivers.

To do so, we compare the asset pricing moments in the data to those ob-
tained from simulating the model, considering both the model with subjective
beliefs as well as the RE model. We use the parameters from table 1.6 to sim-
ulate the model and formally evaluate the model fit by reporting t-statistics
for a number of asset pricing moments.57

Table 1.7 reports the data moments (column 2 of the table), the moments
of the subjective beliefs models and the implied t-statistic (columns 3 and 4),
as well as the moments and t-statistics of the RE version of the model (columns
5 and 6).58 The first eight asset pricing moments listed in the table are those

57The t-statistic is based on an estimate of the standard deviation of the data moment
as a measure of uncertainty, where we estimate the standard deviation of the moment in
the data using standard procedures. This delivers an asymptotically valid t-test given the
parameter values.

58All variables are reported in terms of quarterly real values.
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considered in Adam, Marcet, and Nicolini (2016); we augment these by the
correlation between the PD ratio and expected stock returns, as implied by
the UBS survey data.

The model with subjective beliefs turns out to be able to quantitatively
account for many asset pricing moments, even though parameters have not
been chosen to maximize the fit.59 The RE version of the model performs
rather poorly. Besides generating insufficient asset price volatility, it wrongly
predicts a negative sign for the correlation between the PD ratio and investors’
expected returns.

Table 1.7 reveals that the subjective belief model quantitatively replicates 7
of the 9 considered moments at the 1% significance level, while the RE version
matches only 3 of the 9 moments. The learning model replicates particularly
well the mean of the PD ratio (denoted by E[PD] in the table), the high
autocorrelation of the PD ratio (Corr[PDt,PDt−1]), the regression coefficient
obtained from regressing 5 year ahead excess returns on the current PD ratio
(c), as well as the R2 of that regression (R2).60 The model similarly matches
the mean of the stock returns (E[rs]) and the positive correlation between the
PD ratio and expected returns (Corr[PDt,E

P
t Rt+1]). It generates a somewhat

too high value for the standard deviation of the PD ratio (Std[PD]) and - as
a result - predicts a too high value for the standard deviation of stock returns
(Std[rs]). The learning model also misses the equity premium, although it
produces about half of the premium observed in the data. This is a considerable
success, given the low degree of risk aversion assumed (γ = 2).

U.S. Data Subj. Beliefs RE
Moment Moment t-stat Moment t-stat

E[PD] 139.7 122.2 0.70 105.5 1.37
Std[PD] 65.3 97.3 -2.17 3.94 4.15*
Corr[PDt, PDt−1] 0.98 0.98 0.54 -0.0058 >100*
Std[rs] 8.01 9.44 -3.57* 4.23 9.50*
c -0.0041 -0.0049 0.67 -0.0126 7.08*
R2 0.24 0.18 0.47 0.12 0.93
E[rs] 1.89 1.93 -0.09 1.50 0.84
E[rb] 0.13 0.97 -5.10* 1.50 -8.28*
UBS Survey Data:
Corr[PDt,E

P
t Rt+1] 0.79 0.85 -0.79 -0.99 24.86*

* indicates rejection at the 1% level

Table 1.7: Asset pricing moments

Since none of these moments have been targeted when calibrating the

59While this would be desirable, numerically solving the model with high accuracy is
rather time-consuming.

60The regression also includes a constant, which is statistically insignificant and whose
value is not reported.
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model, the ability of the subjective belief model to quantitatively replicate
the data moments is surprisingly good. This is especially true when compared
to the performance of the model under RE. Comparing the last column in table
1.7 to column 4 in the same table shows that the t-statistics all increase (in
absolute terms) when imposing RE, with some increases being quite dramatic.

The RE version of the model produces insufficient asset price volatility,
i.e., too low values for the standard deviation of the PD ratio and of stock
returns. It also produces a tiny equity premium only and gets the sign of
the correlation between the PD ratio and expected stock returns wrong. This
highlights the strong quantitative improvement in the empirical performance
obtained by incorporating subjective belief dynamics. It also highlights that
- according to our model - asset price volatility is to a large extent due to
subjective belief dynamics.

1.12 Conclusions

We present a model with rationally investing agents that gives rise to market
failures in the sense that the equilibrium stock price deviates from its funda-
mental value. These deviations take the form of asset price boom and bust
cycles that are fueled by the belief-updating dynamics of investors who behave
optimally given their imperfect knowledge of the world. Investors update be-
liefs about market behavior using observed market outcomes and Bayes’ law,
causing their subjective expectations about future capital gains to comove
positively with the price-dividend ratio, consistent with the evidence available
from investor surveys. As we argue, this feature cannot be replicated within
asset pricing models that impose rational price expectations.

We relax slightly the RE assumption but maintain full rationality of in-
vestors. The fact that a fairly small deviation from a standard asset pricing
model significantly improves the empirical fit of the model strongly suggests
that issues of learning are important when accounting for stock price fluctua-
tions. Indeed, our empirical analysis shows that more than half of the observed
variation of the S&P500 PD ratio over the post-war period can be accounted
for by variations in subjective beliefs.

If asset price dynamics are to a large extent influenced by investors’ subjec-
tive belief dynamics, i.e., by subjective optimism and pessimism, then the asset
price fluctuations observed in the data are to considerable extent inefficient.
Due to a number of simplifying assumptions, this did not yield adverse welfare
implications within the present setup.61 For more realistic models incorpo-
rating investor heterogeneity, endogenous output or endogenous stock supply,
such fluctuations can give rise to significant distortions that affect welfare. Ex-
ploring these within a setting that gives rise to quantitatively credible amounts
of asset price fluctuations appears to be an interesting avenue for further re-

61This is true if one evaluates welfare using ex-post realized consumption.
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search. Such research will in turn lead to further important questions, such as
whether policy can and should intervene with the objective to stabilize asset
prices.
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1.13 Appendix

1.13.1 Data Sources

Stock price data: our stock price data is for the United States and has been
downloaded from ‘The Global Financial Database’ 62. The period covered is
Q1:1946-Q1:2012. The nominal stock price series is the ‘SP 500 Composite
Price Index (w/GFD extension)’ (Global Fin code ‘ SPXD’). The daily series
has been transformed into quarterly data by taking the index value of the last
day of the considered quarter. To obtain real values, nominal variables have
been deflated using the ‘USA BLS Consumer Price Index’ (Global Fin code
‘CPUSAM’). The monthly price series has been transformed into a quarterly
series by taking the index value of the last month of the considered quarter.
Nominal dividends have been computed as follows

Dt =

(
ID(t)/ID(t− 1)

IND(t)/IND(t− 1)
− 1

)
IND(t)

where IND denotes the ‘SP 500 Composite Price Index (w/GFD extension)’
described above and ID is the ‘SP 500 Total Return Index (w/GFD extension)’
(Global Fin code ‘ SPXTRD ’). We first computed monthly dividends and then
quarterly dividends by adding up the monthly series. Following Campbell
(2003), dividends have been deseasonalized by taking averages of the actual
dividend payments over the current and preceding three quarters.

Stock market survey data: The UBS survey is the UBS Index of In-
vestor Optimism, which is available (against a fee) from the Roper Center at
the University of Connecticut.63

The quantitative question on stock market expectations has been surveyed
over the period Q2:1998-Q4:2007 with 702 responses per month on average
and has thereafter been suspended. For each quarter we have data from three
monthly surveys, except for the first four quarters and the last quarter of the
survey period where we have only one monthly survey per quarter. The Shiller
survey data covers individual investors over the period Q1:1999Q1-Q4:2012 and
has been kindly made available to us by Robert Shiller at Yale University. On
average 73 responses per quarter have been recorded for the question on stock
price growth. Since the Shiller data refers to the Dow Jones, we used the PD
ratio for the Dow Jones, which is available at http://www.djaverages.com/,
to compute correlations. The CFO survey is collected by Duke University
and CFO magazine and collects responses from U.S. based CFOs over the
period Q3:2000-Q4:2012 with on average 390 responses per quarter, available
at http://www.cfosurvey.org/ .

Inflation expectations data: The Survey of Professional Forecasters

62http://www.globalfinancialdata.com
63http://www.ropercenter.uconn.edu/ data access/data/datasets/ubs investor.html
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(SPF) is available from the Federal Reserve Bank of Philadelphia.64 The
Michigan Surveys of Consumers are collected by Thomson Reuters/University
of Michigan.65

1.13.2 Details of the t-Test in Section 1.4.2

Under the RE hypothesis, equations (1.1) and (1.3) both hold for the same pa-
rameters aN , cN , given any horizon N . These two equations define a standard
SUR model. Dependent variables are EP

t R
N
t+N and RN

t+N , where the latter is
the N -period rate of return and EP

t R
N
t+N is the observed survey expectation

at time t, explanatory variables in both equations are xt = (1, Pt

Dt
), satisfying

the orthogonality conditions (1.2)-(1.4). For expositional clarity we relabel
the true parameters in equation (1.3) as

(
āN , c̄N

)
. The aim is to design effi-

cient estimators of the true parameters βN
0 ≡ (aN , cN , āN , c̄N) and to test the

hypothesis H0 : c
N = c̄N .

As is standard in SUR models, without any additional assumption on the
distribution of u, ε, P/D, the OLS estimator equation by equation βT defined
by

βT ≡




aNT
cNT
āNT
c̄NT


 =

(
T∑

t=1

xtx
′
t ⊗ I2

)−1 T∑

t=1

xt

[
EP

t R
N
t+N

RN
t+N

]
,

where I2 is a 2× 2 identity matrix, is consistent and efficient among the set of
estimators using only orthogonality conditions (1.2)-(1.4).

To simplify on notation we now drop the superscripts N in the remaining
part of this appendix. As is well known, with stationarity, strong ergodicity
and bounded second moments, the estimator is consistent and its asymptotic
distribution as T → ∞ is given by

√
T (βT − β0) → N

(
0, [E(xtx

′
t)⊗ I2]

−1
Sw [E(xtx

′
t)⊗ I2]

−1
)
, (1.33)

where

Sw = Γ0 +
∞∑

k=1

Γk + Γ′
k

Γk = E

([
ut

uεt

]
[ut−k, uεt−k]⊗ xtx

′
t−k

)
,

where uεt ≡ ut + εt+N . To build the test-statistic, we now only need to find
an estimator for var-cov matrix in (1.33).

We can estimate E (xtx
′
t) by 1

T

∑T
t=1 xtx

′
t. To estimate the Γk terms, we

exploit the special form of the error uεt. In particular, partition each Γk into

64http://www.phil.frb.org/research-and-data/real-time-center/survey-of-professional-
forecasters/

65http://www.sca.isr.umich.edu/
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four 2×2 matrices, with Γij,k denoting the (i, j)− th element of this partition.
Then, letting ût and ûεt denote the calculated errors of each equation, we use
standard estimators

Γ11,k,T =
1

T − k

T−k∑

t=1

ût ût−k xtx
′
t−k

Γ12,k,T =
1

T − k

T−k∑

t=1

ût ûεt−k xtx
′
t−k

Since ut is not a forecasting error, there is no reason why Γ11,k should be zero
for any k. We deal with this by using Newey-West weights to truncate the
infinite sum in Sw.

Since εt+N is a forecast error using information up to t we have

Γ21,k = E([ut + εt+N ] ut−kxtx
′
t−k) = Γ11,k for all k ≥ 0,

so estimated Γ11,k,T is an estimate of Γ21,k,T . Furthermore, we have

Γ22,k = E(uεt uεt−k xtx
′
t−k)

= Γ12,k + E(εt+Nεt+N−k xtx
′
t−k) for all k

where the second equality follows from E(εt+N ut−k xtx
′
t−k) = 0. Moreover,

since εt+N is orthogonal to εt+N−kxtx
′
t−k for k ≥ N we have Γ22,k = Γ12,k for

k ≥ N. Therefore, we can use the relationship

Γ22,k,T = Γ21,k,T +
1

T − k

T−k∑

t=1

(ûεt − ût) (ûεt−k − ût−k) xtx
′
t−k for k < N

= Γ21,k,T for k ≥ N

which allows using the estimated Γ21,k,T as our estimate for Γ22,k.

1.13.3 Parameterization of the Wage Process

To calibrate ρ we compute the average dividend-consumption share in the U.S.
from 1946-2011, using the ‘Net Corporate Dividends’ and the ‘Personal Con-
sumption Expenditures’ series from the Bureau of Economic Analysis. This
delivers an average ratio of ρ = 22. Following Campbell and Cochrane (1999)
we then choose the standard deviation of one-step-ahead consumption growth
innovations to be 1/7 of that of one-step-ahead dividend growth innovations,
i.e., √

vart(lnCt+1 − lnCt)

vart(lnDt+1 − lnDt)
=

1

7
,

and the correlation between one-step-ahead consumption and dividend growth
to be equal to 0.2, i.e.

covt(lnCt+1 − lnCt, lnDt+1 − lnDt)√
vart(lnCt+1 − lnCt)vart(lnDt+1 − lnDt)

= 0.2
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To achieve this we need to compute the required variance and covariances. We
have

vart(lnDt+1 − lnDt) = σ2
D

vart(lnCt+1 − lnCt) = vart (ln(Dt+1 +Wt+1)− ln(Dt +Wt))

= vart
(
ln
(
Dt+1 + ρDt+1ε

W
t+1

))

= vart(lnDt+1 + ln(1 + ρεWt+1))

= vart(lnDt+1) + 2covt(lnDt+1, ln(1 + ρεWt+1)) + vart(ln(1 + ρεWt+1))

= σ2
D + 2covt(ln ε

D
t+1, ln(1 + ρεWt+1)) + vart(ln(1 + ρεWt+1)) (1.34)

and

covt(lnCt+1 − lnCt, lnDt+1 − lnDt) = covt(lnCt+1, ln ε
D
t+1)

= covt(ln(Dt+1 +Wt+1), ln ε
D
t+1)

= covt(lnDt+1 + ln(1 + ρεWt+1), ln ε
D
t+1)

= covt(ln ε
D
t+1 + ln(1 + ρεWt+1), ln ε

D
t+1)

= σ2
D + covt(ln(1 + ρεWt+1), ln ε

D
t+1)(1.35)

Linearly approximating ln(1 + ρεWt+1) around the unconditional mean εW = 1
delivers

ln(1 + ρεWt+1) ≈ c+
ρ

1 + ρ
ln εWt+1 +O(2)

where c is a constant and O(2) a second order approximation error. Using this
approximation we have

vart(lnCt+1 − lnCt) ≈ σ2
D + 2

ρ

1 + ρ
σDW +

(
ρ

1 + ρ

)2

σ2
W (1.36)

So that
√

vart(lnCt+1 − lnCt)

vart(lnDt+1 − lnDt)
≈

√
1 + 2

ρ

1 + ρ

σDW

σ2
D

+

(
ρ

1 + ρ

)2
σ2
W

σ2
D

=
1

7
(1.37)

Using the approximation we also have

covt(lnCt+1 − lnCt, lnDt+1 − lnDt)√
vart(lnCt+1 − lnCt)vart(lnDt+1 − lnDt)

≈

σ2
D + ρ

1+ρ
σWD√(

σ2
D + 2 ρ

1+ρ
σWD +

(
ρ

1+ρ

)2
σ2
W

)
σ2
D

= 0.2 (1.38)

Using (1.37) to substitute the root in the denominator in (1.38) we get

σ2
D + ρ

1+ρ
σWD

1
7
σ2
D

= 0.2 ⇐⇒ σWD = −68

70

1 + ρ

ρ
σ2
D (1.39)
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Using (1.37) we then get

σ2
W = −48

49

(
1 + ρ

ρ

)2

σ2
D − 2

1 + ρ

ρ
σWD

=
236

245

(
1 + ρ

ρ

)2

σ2
D. (1.40)

1.13.4 Existence of Optimum, Sufficiency of FOCs, Re-
cursive Solution

Existence of Optimum & Sufficiency of FOCs. The choice set in (2.2)
is compact and non-empty. The following condition then insures existence of
optimal plans:

Condition 1. The utility function u(·) is bounded above and for all i ∈
[0, 1]

EPi

0

∞∑

t=0

δt u (Wt +Dt) > −∞. (1.41)

The expression on the left-hand side of condition (1.41) is the utility asso-
ciated with never trading stocks (Si

t = 1 for all t). Since this policy is always
feasible, condition (1.41) guarantees that the objective function in (2.2) is also
bounded from below, even if the flow utility function u(·) is itself unbounded
below. The optimization problem (2.2) thus maximizes a bounded continuous
utility function over a compact set, which guarantees existence of a maximum.

Under the assumptions made in the main text (utility function given by
(1.11), knowledge of (2.6) and δβRE < 1), condition 1 holds, as can be seen
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from the following derivation:

EPi

0

∞∑

t=0

δt u (Wt +Dt)

= E0

∞∑

t=0

δt u (Wt +Dt)

= E0

∞∑

t=0

δt
(
(1 + ρεWt )Dt

)1−γ

=
(
(1 + ρεW0 )D0

)1−γ
+ E0

∞∑

t=1

δt
(
(1 + ρεWt )Dt

)1−γ

=
(
(1 + ρεW0 )D0

)1−γ
+ E0

∞∑

t=1

(
δ
(
βD
)1−γ

)t
(
(1 + ρεWt )εDt

t−1∏

k=1

εDt

)1−γ

=
(
(1 + ρεW0 )D0

)1−γ
+ E

[(
(1 + ρεW )εD

)1−γ
]
· E0

∞∑

t=1

(
δ
(
βD
)1−γ

)t
(

t−1∏

k=1

εDt

)1−γ

=
(
(1 + ρεW0 )D0

)1−γ
+ E

[(
(1 + ρεW )εD

)1−γ
]
·

∞∑

t=1

(
δ
(
βD
)1−γ

)t(
e

σ2
D
2

γ(γ−1)

)t−1

=
(
(1 + ρεW0 )D0

)1−γ
+

E
[(
(1 + ρεW )εD

)1−γ
]

e
σ2
D
2

γ(γ−1)

·
∞∑

t=1

(
δβRE

)t

Since (2.2) is a strictly concave maximization problem the maximum is
unique. With the utility function being differentiable, the first order conditions

u′(C i
t) = δEPi

t

[
u′(C i

t+1)
Pt+1 +Dt+1

Pt

]
(1.42)

plus a standard transversality condition are necessary and sufficient for the
optimum.

Recursive Solution. We have a recursive solution whenever the optimal
stockholding policy can be written as a time-invariant function Si

t = Si(xt)
of some state variables xt. We seek a recursive solution where xt contains
appropriately rescaled variables that do not grow to infinity. With this in
mind, we impose the following condition:

Condition 2 The flow utility function u (·) is homogeneous of degree η ≥ 0.

Furthermore, the beliefs P i imply that θt ≡
(

Dt

Dt−1
, Pt

Dt
, Wt

Dt

)
has a state

space representation, i.e., the conditional distribution P i(θt+1|ωt) can be
written as

P i(θt+1|ωt) = F i(mi
t) (1.43)

mi
t = Ri(mi

t−1, θt) (1.44)

45



CHAPTER 1. STOCK PRICE BOOMS AND EXPECTED CAPITAL
GAINS

for some finite-dimensional state vector lnmi
t and some time-invariant

functions F i and Ri.

Under Condition 2 problem (2.2) can then be re-expressed as

max
{Si

t∈S}∞

t=0

EPi

0

∞∑

t=0

δt Dt u

(
Si
t−1

(
Pt

Dt

+ 1

)
− Si

t

Pt

Dt

+
Wt

Dt

)
, (1.45)

given Si
−1 = 1, where Dt is a time-varying discount factor satisfying D−1 = 1

and

Dt = Dt−1

(
βDεDt

)η
.

The return function in (1.45) depends only on the exogenous variables con-
tained in the vector θt. Since the beliefs P i are assumed to be recursive in
θt, standard arguments in dynamic programming guarantee that the optimal
solution to (1.45) takes the form (1.13). This formulation of the recursive so-
lution is useful, because scaling Pt and Wt by the level of dividends eliminates
the trend in these variables, as desired. This will be useful when computing
numerical approximations to Si(·). The belief systems P i introduced in section
1.7 will satisfy the requirements stated in condition 2.

1.13.5 Proof of Proposition 1

In equilibrium Si
t = 1 for all t ≥ 0, so that the budget constraint implies

C i
t = Dt +Wt = (1 + ρεWt )Dt.

Substituting into the agent’s first order condition delivers

Pt = δEt

[(
(1 + ρεWt+1)Dt+1

(1 + ρεWt )Dt

)−γ

(Pt+1 +Dt+1)

]
. (1.46)

Assuming that the following transversality condition holds

lim
j→∞

Et

[
δj

{(
1 + ρεWt+j

1 + ρεWt

)
Dt+j

Dt

}−γ

Pt+j

]
= 0, (1.47)

one can iterate forward on (1.46) to obtain

Pt

Dt

= Et

[
∞∑

j=1

δj

(
1 + ρεWt+j

1 + ρεWt

)−γ (
Dt+j

Dt

)1−γ
]
,
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Using Dt+j/Dt = (βD)j
∏j

k=1 ǫ
D
t+k one has

Pt

Dt

= (1 + ρεWt )γ
∞∑

j=1

(
δ(βD)1−γ

)j
Et


(1 + ρεWt+j

)−γ

(
j∏

k=1

ǫDt+k

)1−γ



= (1 + ρεWt )γ
∞∑

j=1

(
δ(βD)1−γ

)j
Et

[(
1 + ρεWt+j

)−γ
(ǫDt+j)

1−γ
]
Et



(

j−1∏

k=1

ǫDt+k

)1−γ



= (1 + ρεWt )γEt

[(
1 + ρεWt+j

)−γ
(ǫDt+j)

1−γ
]
eγ(1−γ)σ2

D/2 δβRE

1− δβRE
,

as claimed in proposition 1.

1.13.6 Bayesian Foundations for Lagged Belief Updat-
ing

We now present a slightly modified information structure for which Bayesian
updating gives rise to the lagged belief updating equation (1.29). Specifically,
we generalize the perceived price process (2.8) by splitting the temporary re-
turn innovation ln εt+1 into two independent subcomponents:

lnPt+1 − lnPt = ln βt+1 + ln ε1t+2 + ln ε2t+1

with ln ε1t+2 ∼ iiN(−σ2
ε,1

2
, σ2

ε1), ln ε
2
t+1 ∼ iiN(−σ2

ε2

2
, σ2

ε2) and

σ2
ε = σ2

ε1 + σ2
ε2.

We then assume that in any period t agents observe the prices, dividends and
wages up to period t, as well as the innovations ε1t up to period t. Agents’ time t
information set thus consists of It = {Pt, Dt,Wt, ε

1
t , Pt−1, Dt−1,Wt−1, ε

1
t−1, ...}.

By observing the innovations ε1t , agents learn - with a one period lag - some-
thing about the temporary components of price growth. The process for the
persistent price growth component ln βt remains as stated in equation (2.9),
but we now denote the innovation variance by σ2

ṽ instead of σ2
v. As before,

lnmt denotes the posterior mean of ln βt given the information available at
time t. We prove below the following result:

Proposition 3 Fix σ2
ε > 0 and consider the limit σ2

ε2 → 0 with σ2
ṽ = σ2

ε2g
2/(1−

g). Bayesian updating then implies

lnmt = lnmt−1 + g (lnPt−1 − lnPt−2 − lnmt−1)− g ln ε1t (1.48)

The modified information structure thus implies that only lagged price
growth rates enter the current state estimate, so that beliefs are predetermined,
precisely as assumed in equation (1.29). Intuitively, this is so because lagged
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returns become infinitely more informative relative to current returns as σ2
ε2 →

0, which eliminates the simultaneity problem. For non-vanishing uncertainty
σ2
ε2 the weight of the last observation actually remains positive but would still

be lower than that given to the lagged return observation, see equation (1.51)
in the proof below and the subsequent discussion for details.

We now sketch the proof of the previous proposition. Let us define the
following augmented information set Ĩt−1 = It−1 ∪ {ε1t}. The posterior mean

for βt given Ĩt−1, denoted lnmt|Ĩt−1
is readily recursively determined via

lnmt|Ĩt−1
= lnmt−1|Ĩt−2

−σ2
ṽ

2
+g̃

(
lnPt−1 − lnPt−2 − ln ε1t +

σ2
ṽ + σ2

ε2

2
− lnmt−1|t−1

)

(1.49)
and the steady state posterior uncertainty and the Kalman gain by

σ2 =
−σ2

ν̃ +
√
(σ2

ν̃)
2
+ 4σ2

ν̃σ
2
ε2

2

g̃ =
σ2

σ2
ε2

(1.50)

Standard updating formulas for normal distributions then imply that the pos-
terior mean of ln βt using information set It can be derived by updating the

posterior mean based on Ĩt−1 according to

lnmt|It = lnmt|Ĩt−1
+

σ2

σ2 + σ2
ε1 + σ2

ε2 + σ2
ṽ

(lnPt−lnPt−1+
σ2
ε1 + σ2

ε2 + σ2
ṽ

2
−lnmt|Ĩt−1

)

(1.51)
Since σ2

σ2+σ2
ε1+σ2

ε2+σ2
ṽ

< σ2

σ2
ε2

= g̃, the weight of the price observation dated t is

reduced relative to the earlier observation dated t − 1 because it is ‘noisier’.
Now consider the limit σ2

ε2 → 0 and along the limit choose σ2
ε1 = σ2

ε − σ2
ε2

and σ2
ṽ =

g2

1−g
σ2
ε2, as assumed in the proposition. Equation (1.51) then implies

that lnmt|It = lnmt|Ĩt−1
, i.e., the weight of the last observation price converges

to zero. Moreover, from σ2
ṽ = g2

1−g
σ2
ε2 and (1.50) we get g̃ = g. Using these

results, equation (1.49) can exactly be written as stated by equation (2.13) in
the main text.

1.13.7 Proof of Proposition 2

The proof relies on the fact that in a situation without uncertainty the expecta-
tion of a non-linear function of ‘random’ variables is identical to the non-linear
function of the expectation of these random variables, i.e., for some continu-
ous non-linear function f(·, ·) and some random variables Xt+j, Yt+j we have
under the stated assumptions EP

t f(Xt+j, Yt+j) = f(EP
t Xt+j, E

P
t Yt+j). Simpli-

fying notation (and slightly abusing it) we let Xt+j = EP
t Xt+j for all j ≥ 1, so

that Xt+j below denotes the subjective expectation conditional on information
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at time t of the variable X at time t+ j. The first order conditions (1.42) can
then be written as

1 =

(
Ct+1+j

Ct+j

)−γ

δRt+1+j ⇐⇒

Ct+1+j

Pt+1+j +Dt+1+j

= δ
1
γ (Rt+1+j)

1−γ

γ
Ct+j

Pt+j

(1.52)

for all j ≥ 0. The budget constraint implies

St−1(Pt +Dt) = Ct −Wt + StPt =⇒ St−1 =
Ct −Wt

Pt +Dt

+
Pt

Pt +Dt

St

Iterating forward on the latter equation gives

St−1 =
Ct −Wt

Pt +Dt

+
Pt

Pt +Dt

Ct+1 −Wt+1

Pt+1 +Dt+1

+
Pt

Pt +Dt

Pt+1

Pt+1 +Dt+1

Ct+2 −Wt+2

Pt+2 +Dt+2

+. . .

Repeatedly using equation (1.52) gives

St−1 =
Ct −Wt

Pt +Dt

+
Pt

Pt +Dt

(
δ

1
γ (Rt+1)

1−γ

γ
Ct

Pt

− Wt+1

Pt+1 +Dt+1

)

+
Pt

Pt +Dt

Pt+1

Pt+1 +Dt+1

(
δ

1
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1−γ

γ
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)
+ . . .

=
Ct
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+ δ
1
γ (Rt+1)

1−γ

γ
Ct
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+
Pt

Pt +Dt

δ
1
γ (Rt+2)

1−γ

γ
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Pt+1 +Dt+1

+ . . .

− Wt

Pt +Dt

− Wt+1

Pt +Dt

1
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− Wt+2

Pt +Dt

1

Rt+1Rt+2

− ...

=
Ct

Pt +Dt

+ δ
1
γ (Rt+1)

1−γ

γ
Ct

Pt +Dt

+
(
δ

1
γ

)2
(Rt+2Rt+1)
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γ
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Pt +Dt

+ . . .

− 1

Pt +Dt

(
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j=0

Wt+j

∏j

i=1

1

Rt+i

)

=
Dt

Pt +Dt

+
Ct

Pt +Dt

∞∑

j=1

((
δ

1
γ

)j (∏j

i=1

1

Rt+i

) γ−1
γ

)

− 1

Pt +Dt

(
∞∑

j=1

(∏j
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1

Rt+i

)
Wt+j

)
(1.53)

Imposing on the previous equation St−1 = 1 (the market clearing condition for
period t−1 if t > 1, or the initial condition for period t = 0) and Ct = Dt+Wt

(the market clearing condition for period t ≥ 0) one obtains the result stated
in the proposition under the convention that Rt+i = EP

t Rt+i.
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1.13.8 Verification of Conditions (1.30)

For the vanishing noise limit of the beliefs specified in section 1.7 we have

EP
t [Pt+j] = (mt)

j Pt

EP
t [Dt+j] =

(
βD
)j
Dt

EP
t [Wt+j] =

(
βD
)j
Wt.

We first verify the inequality on the l.h.s. of equation (1.30). We have

lim
T→∞

EP
t [RT ] = mt + lim

T→∞

(
βD

mt

)T−1

βDDt

Pt

,

so that for mt > 1 the limit clearly satisfies limT→∞ EP
t [RT ] > 1 due to the

first term on the r.h.s.; for mt < 1 the second term on the r.h.s. increases
without bound, due to βD > 1, so that limT→∞ EP

t [RT ] > 1 also holds.
In a second step we verify that the inequality condition on the r.h.s. of

equation (1.30) holds for all subjective beliefs mt > 0. We have

lim
T→∞

EP
t

(
T∑

j=1

(∏j

i=1

1

Rt+i

)
Wt+j

)
= lim

T→∞
WtE

P
t

(
T∑

j=1

(
βD
)j
(∏j

i=1

1

Rt+i

))

= lim
T→∞

Wt

T∑

j=1

Xj (1.54)

where

Xj =

(
βD
)j

∏j
i=1(mt +

(
βD

mt

)i−1

βDDt

Pt
)
≥ 0 (1.55)

A sufficient condition for the infinite sum in (1.54) to converge is that the terms
Xj are bounded by some exponentially decaying function. The denominator
in (1.55) satisfies

∏j

i=1
(mt +

(
βD

mt

)i−1

βDDt

Pt

)

≥ (mt)
j +

(
βD

mt

)j( j−1
2 )

βDDt

Pt

, (1.56)

where the first term captures the the pure products in mt, the second term the

pure products in
(

βD

mt

)i−1

βDDt

Pt
, and all cross terms have been dropped. We

then have
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Xj =

(
βD
)j

∏j
i=1(mt +

(
βD

mt

)i−1

βDDt

Pt
)

≤
(
βD
)j

(mt)
j +
(

βD

mt

)j( j−1
2 )

βDDt

Pt

=
1

(
mt

βD

)j
+
(

βD

mt

)j( j−1
2 )

1

(βD)
j−1

Dt

Pt

,

where all terms in the denominator are positive. For mt ≥ βD > 1 we can use

the first term in the denominator to exponentially bound Xj , as Xj ≤
(

βD

mt

)j
;

for mt < βD we can use the second term:

Xj ≤
1

(
βD

mt

)j( j−1
2 )

1

(βD)
j−1

Dt

Pt

=
1

((
βD

mt

) j

2 1
βD

)j−1

Dt

Pt

Since mt < βD there must be a J < ∞ such that

(
βD

mt

) j

2 1

βD
≥ βD

mt

> 1

for all j ≥ J , so that the Xj are exponentially bounded for all j ≥ J .

1.13.9 Capital Gains Expectations and Expected Re-
turns: Further Details

Figure 1.10 depicts how expected returns at various horizons depend on agent’s
expected price growth expectations using the same parameterization as used
in figure 1.5. It shows that expected returns covary positively with capital
gains expectations for mt ≥ βD, as has been claimed in the main text. The
flatish part at around mt − 1 ≈ 0.01 arises because in that area the PD ratio
increases strongly, so that the dividend yield falls. Only for pessimistic price
growth expectations (mt < βD) and long horizons of expected returns we find a
negative relationship. The latter emerges because with prices expected to fall,
the dividend yield will rise and eventually result in high return expectations.

51



CHAPTER 1. STOCK PRICE BOOMS AND EXPECTED CAPITAL
GAINS

Figure 1.10: Expected return as a function of expected capital gain

1.13.10 Numerical Solution Algorithm

Algorithm: We solve for agents’ state-contingent, time-invariant stockhold-
ings (and consumption) policy (1.13) using time iteration in combination with
the method of endogenous grid points. Time iteration is a computationally
efficient, e.g., Aruoba et al. (2006), and convergent solution algorithm, see
Rendahl (2015). The method of endogenous grid points, see Carroll (2006),
economizes on a costly root finding step which speeds up computations further.

Evaluations of Expectations: Importantly, agents evaluate the expec-
tations in the first order condition (1.42) according to their subjective beliefs
about future price growth and their (objective) beliefs about the exogenous
dividend and wage processes. Expectations are approximated via Hermite
Gaussian quadrature using three interpolation nodes for the exogenous inno-
vations.

Approximation of Optimal Policy Functions: The consumption/stockholding
policy is approximated by piecewise linear splines, which preserves the non-
linearities arising in particular in the PD dimension of the state space. Once
the state-contingent consumption policy has been found, we use the market
clearing condition for consumption goods to determine the market clearing PD
ratio for each price-growth belief mt.

Accuracy: Carefully choosing appropriate grids for each belief is crucial
for the accuracy of the numerical solution. We achieve maximum (relative)
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Euler errors on the order of 10−3 and median Euler errors on the order of 10−5

(average: 10−4).
Using our analytical solution for the case with vanishing noise, we can assess

the accuracy of our solution algorithm more directly. Setting the standard
deviations of exogenous disturbances to 10−16 the algorithm almost perfectly
recovers the equilibrium PD ratio of the analytical solution: the error for the
numerically computed equilibrium PD ratio for any price growth belief mt on
our grid is within 0.5 % of the analytical solution.
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Chapter 2

Can a Financial Transaction Tax
Prevent Stock Price Booms?

2.1 Abstract1

We present a stock market model that quantitatively replicates the joint be-
havior of stock prices, trading volume and investor expectations. Stock prices
in the model occasionally display belief-driven boom and bust cycles that
delink asset prices from fundamentals and redistribute considerable amounts
of wealth from less to more experienced investors. Although gains from trade
arise only from subjective belief differences, introducing financial transactions
taxes (FTTs) remains undesirable. While FTTs reduce the size and length of
boom-bust cycles, they increase the likelihood of such cycles, thereby overall
return volatility and wealth redistribution. Contingent FTTs, which are levied
only above a certain price threshold, give rise to problems of equilibrium mul-
tiplicity and non-existence.

2.2 Introduction

Following the financial crisis, there has been a widespread desire among pol-
icymakers to introduce financial transaction taxes (FTTs). The European
Commission, for example, proposed the introduction of FTTs in September
2011. Subsequently, France introduced in 2012 a 0.1% tax on stock market
and related transactions and has recently increased the tax rate to 0.2%. Italy
introduced a 0.1% tax on stock market transactions in 2013.2

One of the stated policy objectives of the European Commission is that
FTTs should ‘discourage financial transactions which do not contribute to the

1This chapter is based on (verbally quoted from) the paper Adam, Beutel, Marcet, and
Merkel (2015).

2FTTs are already a widely used tax instrument in housing markets. Spain, for example,
levies an 8% transaction tax on real estate transactions and Germany levies a 5% tax, both
additionally levy capital gains taxes.
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efficiency of financial markets’. The present paper seeks to analyze to what
extent FTTs actually increase the efficiency of stock market transactions and
stock market prices. In particular, it investigates whether FTTs can prevent
boom and bust like dynamics in stock prices; over recent decades such price
dynamics have become pervasive in a number of important stock markets and
have contributed to the redistribution of wealth between different kinds of
investors.3 The effect that FTTs have on boom-bust like dynamics in stock
markets should thus be of prime importance to policymakers.

To analyze this issue, we use a modeling framework that can generate
stock price fluctuations roughly of the size observed in the data, including
occasional large upswings and reversals in stock market prices. The model also
quantitatively replicates important data moments characterizing the behavior
of trading volume, as well as its comovement with stock prices and investor
expectations. Credibly replicating the behavior of trading volume appears key
for an analysis that seeks to understand the effects of taxing trading activity
and is a distinguishing feature of the present analysis.4

Besides being quantitatively plausible, our modeling framework gives FTTs
the best possible chance to generate positive welfare effects: first, we consider
a framework where subjective belief components cause asset prices not to be
fully efficient, so that there is - at least in principle - room for increasing the
efficiency of financial market prices; second, within the presented framework,
the gains from trade exist only in subjective terms, i.e., due to belief differences,
so that taxing trading activity may appear desirable on a priori grounds, see
Simsek (2013); third, we abstract from a number of adverse consequences likely
to be associated with the introduction of FTTs, such as costly evasive behavior,
which may involve redirecting orders to other exchanges, the adverse liquidity
effects resulting from financial market fragmentation, or the costly creation of
alternative financial instruments that are not subject to the tax.

Our main finding is that even within this very conducive setting, the in-
troduction of FTTs fails to ‘discourage transactions which do not contribute
to the efficiency of financial markets’. Indeed, we find that the introduction of
FTTs increases the likelihood that the stock market embarks on a significant
boom and bust cycle in valuation, and thereby increases the overall amount
of wealth redistribution. The reasons for this finding are subtle, as we explain
below, but show that FTTs may actually not be a suitable policy instrument
for increasing the efficiency of stock markets.

The modeling framework used in the present paper builds upon prior work
by Adam, Beutel and Marcet (2014), which replicates stock price behavior
within a representative agent framework with time separable preferences. The
present analysis adds (1) by introducing investor heterogeneity and thereby
equilibrium trade, (2) by showing that the resulting trading patterns are em-

3See Brunnermeier and Nagel (2004) for evidence on how the tech stock boom and bust
around the year 2000 redistributed wealth between hedge fund and other investors.

4See section 2.3 for a discussion of the related literature.
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pirically plausible, and (3) by studying the pricing and welfare effects of intro-
ducing FTTs.

While the equilibrium pricing patterns of the representative agent model
in Adam, Beutel and Marcet (2014) prove rather robust to introducing agent
heterogeneity, i.e., stock prices continue to be very volatile and to display occa-
sional boom-bust cycles, the addition of agent heterogeneity helps in generat-
ing auto-correlated trading volume, trading volume that correlates positively
with absolute price changes, and trading volume that correlates positively with
investor disagreement, in line with what is found in the data.

The presented model is one where boom-bust dynamics arise from subjec-
tive price beliefs, but in a setting where investors take fully optimal investment
decisions given their beliefs, following Adam and Marcet (2011). The intro-
duction of subjective stock price beliefs is motivated by empirical evidence
presented in Adam, Beutel and Marcet (2014), who show that the joint dy-
namics of realized capital gains and capital gain expectations, as observed from
survey data, are strongly inconsistent with the rational expectations hypothe-
sis. This implies - amongst other things - that rational asset price bubbles, e.g.,
those derived in classic work by Froot and Obstfeld (1991), are inconsistent
with the joint dynamics of actual and expected capital gains in the data.

Following Adam, Beutel and Marcet (2014), we consider investors who
hold subjective stock price beliefs of a kind such that Bayesian updating causes
investors to extrapolate (to different degrees) past capital gains into the future.
The degree of extrapolation is thereby calibrated to the one that we document
to be present in survey data. In particular, we show that less experienced
stock market investors extrapolate more compared to investors with longer
investment experience.

Extrapolative behavior, which gives rise to investor optimism and pes-
simism, potentially supports a strong argument in favor of introducing FTTs.
Specifically, in our setting, price booms emerge because investors become op-
timistic once they see past prices going up, causing them to bid up today’s
prices, thereby creating additional optimism in the next period and further
price increases. FTTs can prevent investors from trading on their optimistic
beliefs, i.e., prevent them from bidding up prices once optimism has increased,
thereby preventing the positive feedback loop between price increases and in-
creased optimism just described.

While intuitively plausible, this argument ignores an important additional
consequence of FTTs. By preventing agents from trading, even arbitrarily
small exogenous shocks to stock supply can have a disproportionately large
effect on realized prices. Specifically, linear transaction taxes imply that in-
vestors, whose stockholdings are close to their subjectively optimal level, do
not want to trade, unless there is a significant change in the stock price.5 As a
result, FTTs can increase price volatility in normal times. With realized prices

5This is so because the gains from trade are of second order close to the optimum, while
the cost of the tax are of first order.
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feeding into investors’ beliefs, due to extrapolative behavior, this ultimately
increases the likelihood that the stock market embarks on a large self-fueling
boom and subsequent bust. The predicted effect of a 4% FTT is an increase
by one third of the number of stock price boom episodes relative to the case
without taxes.

Our quantitative analysis shows that FTTs manage to decrease the size
and duration of stock price booms, including the volatility of prices during
boom times. At the same time, FTTs increase price volatility during normal
times.6 The latter together with increased likelihood of (volatile) boom and
bust episodes causes FTTs to increase overall stock price volatility.

Motivated by the observation that it is undesirable to levy FTTs in normal
times, as they increase price volatility and thereby the likelihood of boom-
bust cycles, we also consider the effects of state contingent taxes that are only
levied once prices exceed a certain threshold. We show that such taxes give
rise to non-continuous stock demand functions and thereby to problems of
equilibrium multiplicity and non-existence. State-contingent transaction taxes
appear problematic on these grounds.

The remainder of this paper is organized as follows. Section 2.3 discusses
some of the related literature. Section 2.4 provides basic facts about the joint
behavior of stock prices, trading volume and investor expectations that we
seek to quantitatively match within our asset pricing framework. Section 2.5
introduces the asset pricing model. Section 2.6 shows that the model performs
poorly in terms of replicating price and trading dynamics when investors hold
rational price expectations. Section 2.7 evaluates the quantitative performance
of the model with subjective price beliefs and in the absence of a transactions
tax. In section 2.8 we show how stock price boom and bust dynamics re-
distribute wealth between different investor types. Section 2.9 presents the
implications of introducing linear FTTs and section 2.10 considers the effects
of state-contingent taxes. A conclusion briefly summarizes. Technical mate-
rial and information about the employed data sources is summarized in an
appendix.

2.3 Related Literature

The present paper is closely connected to an extensive literature on financial
transaction taxes going at least back to the well-known proposal by Tobin
(1978). We provide here a selective overview of the literature, making reference
to work that is most closely related to the present paper.

In a comprehensive theoretical study, Dávila (2014) determines optimal
linear transaction taxes for a setting where investors hold heterogeneous beliefs.

6Normal times are times that are not classified as boom times. Boom times begin when
the quarterly price dividend ratio exceeds a certain level and end when the PD ratio falls
below a certain lower level. In our numerical application, we set the first threshold to 250
and latter to 200. Results turn out to be are rather robust to the precise threshold values.
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He shows that the optimal transaction tax of a social planner who maximizes
social welfare under her own (possibly different) probability beliefs, depends
on the cross-sectional covariance between investors’ beliefs and equilibrium
portfolio sensitivities.

Scheinkman and Xiong (2003) analyze how asset price bubbles and trading
volume are affected by transactions taxes in a setting with risk neutral in-
vestors who face a short-sale constraint and who hold different beliefs because
they assign different information content to publicly available signals. In their
setting, transaction taxes strongly affect trading volume but may have only a
limited effect on the size of asset price bubbles.

The present paper adds to these contributions by considering the effects of
FTTs within a quantitatively credible setting that replicates important data
moments describing the joint behavior of stock prices, trading volume and
investor expectations. Furthermore, by incorporating learning from market
prices, investors’ belief distortions depend in important ways on market out-
comes. This gives rise to feedback effects that are absent in models in which
agents consider market prices to offer only redundant information.

In related work, Buss et al. (2013) consider the effects of FTTs and other
policy instruments on stock market volatility in a production economy in which
some stock market participants overinterpret the information content of public
signals, as in Dumas et al. (2009). The present paper considers an endowment
economy but evaluates model performance also with regard to the ability to
match trading activity. Similar to our findings, Buss et al. (2013) show how
financial transaction taxes increase the volatility of stock market returns.

With financial transaction taxes being almost equivalent to trading costs,
the present paper also relates to the transaction costs literature. As in Con-
stantinides (1986), transaction costs generate within the present setup partially
flat demand curves, see also subsequent work by Aiyagari and Gertler (1991)
and Heaton and Lucas (1996). Different from Constantinides (1986), the asset
price effects of transaction costs fail to be of second order within the present
setting because we consider agents that use price realizations to update beliefs
about the price process. Guasoni and Muhle-Karbe (2013) and Vayanos and
Wang (2012) provide recent surveys of the transaction cost literature.

Empirical evidence on the volatility effects of financial transaction taxes is
provided in Umlauf (1993), Jones and Seguin (1997) and Hau (2006). These
studies tend to find that market volatility increases with the introducing of a
tax, see also McCulloch and Pacillo (2011) for a recent overview of the empirical
literature. Coelho (2015) and Colliard and Hoffmann (2015) analyze the recent
experiences with the introduction of FTTs in France and Italy, documenting
how FTTs increase price volatility and reduce market depth.

The market microstructure literature also studies financial transaction taxes,
focusing on the differential impact that such taxes have on the participation of
noise traders, which create exogenous market volatility or mispricing, versus
the participation of informed traders who evaluate prices according to funda-
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mentals, see for example Jeanne and Rose (2002) or Hau (1998). The general
conclusion of this theoretical literature is that if financial transaction taxes
cause noise traders to participate less in the market, then market volatility
can fall as a result.

2.4 Stock Prices, Price Expectations and Trad-

ing Volume: Empirical Evidence

This section documents key facts about the joint behavior of U.S. stock prices,
investors’ price expectations and stock market trading volume that we seek
to quantitatively replicate with our asset pricing model. The next section
presents empirical evidence about stock price behavior, the behavior of div-
idends and the behavior of average stock price expectations. Section 2.4.2
complements this with key facts about the behavior of trading volume and
its relation with price behavior and the behavior of price expectations. It
shows - amongst other things - that trading volume correlates positively with
disagreement across investors about future prices. Finally, section 2.4.3 shows
that disagreement between investors can be systematically related to investors’
stock market experience.

2.4.1 Stock Prices, Dividends and Average Price Ex-
pectations

Table 2.1 presents key facts about the behavior of quarterly U.S. stock prices,
dividends and stock return expectations as available from survey data.7 The
facts presented in table 2.1 are the main data moments guiding the analysis
in Adam, Beutel and Marcet (2014) and we summarize them here for conve-
nience.8

Table 2.1 shows that the average quarterly price dividend ratio (E[PD])
is around 140 and has a standard deviation (std(PD)) of approximately half
its average value.9 Stock prices are thus very volatile. The quarterly auto-
correlation of the price dividend (PD) ratio (corr(PDt, PDt−1)) is 0.98, show-
ing that deviations of the PD ratio from its sample mean are very persistent
over time. As a result, quarterly real stock returns are very volatile, with a
standard deviation (std(rs)) of around 8% per quarter. Real stock returns
are thus much more volatile than real dividend growth, which has a standard
deviation (std(Dt/Dt−1)) of just 1.92%. The mean real stock return (E[rs])

7The data sources used in this and the subsequent sections are described in appendix
2.12.1.

8We include here all asset pricing facts considered in Adam, Beutel and Marcet (2014),
except for those involving the bond market, as the present model does not feature a bond
market.

9The quarterly PD ratio is defined as the price over quarterly dividend payments, see
appendix 2.12.1 for further details.
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is 1.89% per quarter and much higher than the average growth rate of real
dividends (E[Dt/Dt−1 − 1]), which equals 0.48% per quarter.

Table 2.1 also documents that the average investor’s expected real re-
turns in the UBS survey correlates strongly and positively with the PD ratio
(corr(PDt, EtRt+1)): the correlation equals 0.79.10 Adam, Beutel and Marcet
(2014) show that this fact is robust against using other survey data sources
and against alternative ways to distill expectations from the survey data. They
also show that this fact is inconsistent with investors holding rational price ex-
pectations, which is why we include the correlation between the PD ratio and
expected returns in the set of data moments that we seek to match.

U.S. Data
1949:Q1-2012:Q1

Stock prices:
E[PD] 139.7
std(PD) 65.3
corr(PDt, PDt−1) 0.98
std(rs) 8.01%
E[rs] 1.89%
Survey expectations:
corr(PDt, EtRt+1) 0.79
Dividends:
E[Dt/Dt−1 − 1] 0.48%
std(Dt/Dt−1) 1.92%

Table 2.1: Quarterly stock prices, dividends and survey expectations

2.4.2 Trading Volume, Stock Prices and Disagreement

This section presents empirical facts about trading activity and its comovement
with prices and price expectations. It shows that trading volume is highly per-
sistent, that trading volume is largely uncorrelated with stock market valua-
tion, instead correlates positively with absolute price changes. Furthermore, it
documents - to our knowledge for the first time - that aggregate trading volume
and disagreement about future aggregate stock market returns, as measured
by survey data, are positively correlated.

The finance literature studies a range of empirical measures to capture
trading activity, see Lo and Wang (2009) for an overview. To account for
trading in individual shares, Lo and Wang argue that ‘shares traded divided
by shares outstanding is a natural measure of trading activity when viewed in

10The number reported in table 2.1 uses the mean of the expected returns of the own
portfolio return expectations of all investors in the UBS survey. The survey data are avaial-
able from 1998:Q2 to 2007:Q2 and have been transformed into real values using the median
of expected inflation reported in the survey of professional forecasters.
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the context of standard portfolio theory and equilibrium asset-pricing models’
(p.243). Clearly, for individual shares, this measure is identical to using the
dollar volume of shares traded divided by the dollar volume of shares out-
standing. Since this latter measure aggregates more naturally across different
stocks and since we are interested in the aggregate stock market, we use the
dollar volume of shares traded over the dollar volume of share outstanding as
our preferred measure of trading volume.

We aggregate daily trading volume into a quarterly series by summing
up the daily trading volumes over the quarter, following Lo and Wang (2009).
While being standard, this procedure is likely going to lead to an overstatement
of the model relevant trading volume, as many of the daily trades recorded
in the data may be reversed with opposing trades within the same quarter.
Indeed, with the advent of high frequency trading strategies, many of the
recorded trades are likely to be undone within seconds, if not milliseconds.
Dealing properly with this issue in the data is difficult, as it would require
information about individual portfolios of all investors. We seek to account -
at least partially - for the increasing share of high-frequency trades over time,
therefore use detrended data on trading volume. Since detrending can affect
the cyclical properties of the trading volume series, we report below only facts
that turn out to be robust to a range of plausible detrending methods.

Figure 2.1 depicts the (undetrended) quarterly trading volume of the U.S.
stock market, where data is available from January 1973. Trading volume
displays a clear upward trend over time. In the early 1970’s trade during a
quarter amounted to around 5% of the market value of outstanding shares; at
the end of the sample period this number reaches close to 50%; the data also
shows temporary spikes in trading volume around the 1987, 2000 and 2008
stock market busts.

Table 2.2 presents a number of facts about detrended trading volume. As
a baseline, we use simple linear detrending, but the table also displays out-
comes for other commonly used detrending methods. In particular, it consid-
ers linear-quadratic detrending, the outcomes obtained from HP-filtering with
a smoothing parameter of 1600, as well as so-called moving average (MA)
detrending, which normalizes trading volume by the average trading volume
recorded in the preceding four quarters.

Table 2.2 shows that trading volume displays considerable autocorrelation
across quarters. The autocorrelation is statistically significant at the 1% level
for all detrending methods.11 For higher frequencies, this is a well-known fact
that has been documented in the finance literature, we show it here for the
quarterly frequency at which we will evaluate our asset pricing model.

Table 2.2 also shows that there exists no statistically significant correlation

11We test the null hypothesis H0 : corr(·, ·) = 0 in this and subsequent tables using
robust standard errors, following Roy and Cléroux (1993), which are implemented with a
Newey-West estimator with 4 leads and lags.
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Figure 2.1: Quarterly trading volume (% of outstanding shares, undetrended)

between trading volume and the level of the PD ratio.12 This illustrates that
claims about the existence of a high positive correlation between the level
of stock prices and trading volume, see for example Scheinkman and Xiong
(2003) and the references cited therein, disappear once one removes the trend
displayed by trading volume.13

The previous finding does not imply that trading volume and prices are
unrelated. Indeed, as table 2.2 documents, trading volume correlates positively
and in a statistically highly significant way with normalized absolute price
changes. This finding holds again for all detrending methods. It is in line with
patterns documented by Karpoff (1987) and shows that periods of high volume
are associated with large relative price changes.

12Table 2.2 uses the undetrended PD ratio. Detrending the PD ratio leads to very similar
conclusions. For example, using instead the linearly detrended or HP filtered PD ratio, the
point estimates for the correlations with turnover range between -0.27 and 0.02, depending
on the way turnover is detrended.

13Our findings also hold true if one uses data only up to the year 2006, which shows that
results are not driven by the recent financial crisis.
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Detrending Method
Baseline (linear) Linear-quadratic HP filter MA

corr(TVt, TVt−1) 0.89*** 0.88*** 0.66*** 0.43***
corr(TVt, PDt) -0.07 0.01 -0.03 -0.06
corr(TVt, |Pt/Pt−1 − 1|) 0.34*** 0.33*** 0.33*** 0.23***

∗/∗∗/∗∗∗ indicates significance at the 10%/5%/1% significance level, respectively.

Table 2.2: Trading Volume and Price Behavior

The facts presented in table 2.2 are fairly standard in the light of the
existing finance literature studying trading volume. We complement these
facts below with additional empirical evidence on the relationship between
trading volume and belief disagreement. Models in which investors disagree
about the future prospects from investment have a long tradition in the finance
literature, see Hong and Stein (2007) for a survey. We document in table 2.3
below that there exists a fairly robust positive correlation between aggregate
trading volume and the amount of cross-sectional disagreement about future
aggregate stock market returns.

Table 2.3 reports the correlation between trading volume and the cross-
sectional standard deviations of real survey return expectations (corr(TVt, std(Ẽ

i
tRt+1))),

as obtained from various survey data sources.14 The point estimate of the cor-
relation is always positive and often statistically significant when using linear
or linear-quadratic detrending or the HP filter. The evidence is less strong
when detrending trading volume using the moving average approach, but is
otherwise rather robust. Furthermore, to document that results are not driven
by outliers in the surveys, table 2.3 also reports the correlation between de-
trended trading volume and the inter-quartile range (IQR) of the cross-section

of survey expectations (corr(TVt, IQR(Ẽi
tRt+1))).

15 Results turn out to be
robust towards using this alternative dispersion measure.

Overall, the evidence in table 2.3 shows that trading volume and disagree-
ment are positively correlated in the data.

14Since the Shiller survey asks for expected capital gains, the reported correlations for
this survey pertain to the cross-sectional dispersion of capital gain expectations.

15For the CFO survey, we do not observe individual survey responses or the interquartile
range, thus cannot perform this robustness check.

64



2.4. STOCK PRICES, PRICE EXPECTATIONS AND TRADING
VOLUME: EMPIRICAL EVIDENCE

Detrending Method
Baseline (linear) Linear-quadratic HP filter MA

UBS-Gallup Survey (1-year horizon)

corr(TVt, std(Ẽ
i
tRt+1)) 0.41* 0.41** 0.43* 0.17

corr(TVt, IQR(Ẽi
tRt+1)) 0.36 0.50* 0.65** 0.41**

Shiller Survey (3-months horizon)

corr(TVt, std(Ẽ
i
tRt+1)) 0.37* 0.40* 0.43** -0.06

corr(TVt, IQR(Ẽi
tRt+1)) 0.52** 0.54** 0.63*** 0.19

Shiller Survey (6-months horizon)

corr(TVt, std(Ẽ
i
tRt+1)) 0.60*** 0.60* 0.58*** 0.03

corr(TVt, IQR(Ẽi
tRt+1)) 0.43* 0.46* 0.47** 0.09

Shiller Survey (1-year horizon)

corr(TVt, std(Ẽ
i
tRt+1)) 0.51** 0.52** 0.51*** 0.18

corr(TVt, IQR(Ẽi
tRt+1)) 0.49** 0.55** 0.56*** 0.23

CFO Survey (1-year horizon)

corr(TVt, std(Ẽ
i
tRt+1)) 0.70** 0.65** 0.64*** -0.02

∗/∗∗/∗∗∗ indicates significance at the 10%/5%/1% significance level, respectively.

Table 2.3: Trading volume and disagreement

2.4.3 Disagreement and Stock Market Experience

Given the evidence presented in the previous section, which shows that in-
vestor disagreement is systematically related to trading volume, this section
explores potential sources of investor disagreement more closely. In particu-
lar, it shows that disagreement can be partly related to investor experience:
the price expectations of investors with less stock market experience are more
heavily influenced by recent stock market performance than those with more
experience.

Adam, Beutel and Marcet (2014) show that the empirical time series behav-
ior of the average price growth expectation in the UBS survey data (Et[Pt+1/Pt])
can be captured very well by an extrapolative updating equation of the form

Et[Pt+1/Pt] = Et−1[Pt/Pt−1] + g

(
Pt

Pt−1

− Et−1[Pt/Pt−1]

)
, (2.1)

which stipulates that the average investor extrapolates observed capital gains
into the future. We document below that investors with different numbers of
years of experience extrapolate to different degrees.

Figure 2.2 depicts the evolution of quarterly real price growth expectations
held by investors with different years of stock market experience, as available
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from the UBS survey.16’17 It shows that in the year 1999 and until the begin-
ning of the year 2000, when prior stock market returns have been very high
due to the preceding tech stock boom, it is the less experienced investors that
tend to be most optimistic about future capital gains. Indeed, investors with
0-5 years of experience expect an average real capital gain of around 3.5% per
quarter, i.e., a real gain of about 14% per year, while the most experienced
group expects considerably lower capital gains (albeit still very high ones by
historical standards). Following the subsequent stock market bust, belief dis-
persion across investor groups significantly narrows and reaches a low point
during the stock market trough in the year 2003. Clearly, this happens be-
cause less experienced investors updated expectations more strongly during the
market bust. Following the stock market recovery after the year 2003, belief
dispersion widened again, with the least experienced investor group then hold-
ing once more the highest return expectations, while the two most experienced
groups hold the lowest expectations.

Figure 2.2 suggests, in line with evidence presented in Malmendier and
Nagel (2011), that the capital gain expectations of less experienced investors
react more strongly to realized capital gains. We formally check this hypothesis
by estimating the updating parameter g in equation (2.1) for each experience
group separately, using the same approach as employed in Adam, Beutel and
Marcet (2014). Table 2.4 reports the estimation outcome and shows that the
updating parameter is monotonically decreasing with experience, with the up-
dating parameter of the most inexperienced group of investors being approx-
imately 75% higher than that of the most experienced investor group. The
estimated updating gains are all statistically significantly different from zero
at the 1% level.18 Appendix 2.12.4 shows that the gains are significantly dif-
ferent from each other for sufficiently distant experience groups and that the
gain of the most experienced investor group is different from those of all other

16We choose experience groups with equidistant group boundaries (except for the highest
group) and in a way that groups are approximately of similar size. The reported results
are robust to using different numbers of groups or different group boundaries, provided one
does not consider too many groups, which causes results to become more noisy.

17The figure reports the ’own portfolio’ return expectations from the UBS survey, as these
are available for a longer time period. Results do not depend on this choice, though. We
transform nominal return expectations into real expectations using the median inflation
forecast from the Survey of Professional Forecasters. To be consistent with our asset pricing
model, which models capital gain expectations, we transform real return expectations into
a measure of real price growth expectations using the identity Rt+1 = Pt+1

Pt

+ Dt+1

Pt

=
Pt+1

Pt

+ βD Dt

Pt

where βD denotes the expected gross quarterly real growth rate of dividends

that we set equal to its sample average, i.e, βD = 1.0048, see table 1. Results are very
similar when using alternative plausible values for βD. Also, since the UBS survey does not
have a panel structure, the figure is based on a pseudo panel and reports at each point in
time the median expectation of the considered experience group.

18Standard errors in table 2.4 and the p-values reported in appendix 2.12.4 are computed
in a standard way, exploiting the fact that the procedure used for estimating the gain is a
nonlinear least squares estimation.
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Figure 2.2: Price growth expectations by experience group (UBS survey, real,
in quarterly growth rates)

groups at the 1% level.

Experience (yrs) 0-5 6-11 12-17 18-23 > 23
Estimated gi 0.0316 0.0286 0.0264 0.0230 0.0180
(std. deviation) (0.0028) (0.0013) (0.0017) (0.0013) (0.0090)

Table 2.4: Estimated updating parameters

2.5 The Asset Pricing Model

This section presents the asset pricing model that we use to replicate the
empirical facts documented in the previous section. We consider a model with
a unit mass of atomistic investors who trade on a competitive stock market,
where trade may be subject to a linear transactions tax. At the beginning of
each period, stocks pay a stochastic dividend Dt per unit and investors earn
an exogenous wage income Wt. Income from both sources takes the form of
perishable consumption goods.

There are I ≥ 1 types of investors in the economy and a mass µi > 0 of
each type i ∈ {0, . . . , I}, where ∑I

i=1 µi = 1. Types differ with respect to the
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beliefs they entertain about the behavior of future stock prices and with regard
to their accumulated stockholdings. For the special case without a financial
transactions tax and when there is a single investor type, the setup reduces to
the one studied in Adam, Beutel and Marcet (2014).

The Investment Problem. The representative investor of type i ∈
{1, ..., I} solves

max
{Ci

t≥0,Si
t}∞

t=0

EPi

0

∞∑

t=0

δt
(C i

t)
1−γ

1− γ
(2.2)

s.t.: Si
tPt + C i

t = Si
t−1 (Pt +Dt) +Wt − τ

∣∣(Si
t − Si

t−1)Pt

∣∣+ T i
t

Si
−1 given,

where C i denotes consumption, γ > 1 the coefficient of relative risk aversion, Si

the agent’s stockholdings, P ≥ 0 the (ex-dividend) price of the stock, τ ≥ 0 a
linear financial transactions tax, which is levied on the agents’ trading volume∣∣(Si

t − Si
t−1)Pt

∣∣ and T i ≥ 0 lump sum tax rebates.
Investors’ choices are contingent on the history of variables that are exoge-

nous to their decision problem, i.e., time t choices depend on {Pj, Dj,Wj, Tj}tj=0

and the initial condition Si
−1. P i denotes a subjective probability measure,

which assigns probabilities to all possible infinite histories {Pt, Dt,Wt, Tt}∞t=0.
The agent’s subjective probabilities may or may not coincide with the objective
probabilities, i.e., agents may not know the true probabilities characterizing
the behavior of the variables {Pt, Dt,Wt, Tt}∞t=0, which are beyond their con-
trol, but agents are ‘internally rational’ in the sense of Adam and Marcet
(2011), i.e., behave optimally given their beliefs about external variables.

We consider linear transaction taxes because they are most easily imple-
mented in practice. In addition, non-linear transaction taxes would create
incentives to either partition trades into smaller increments or bundle trades
of several investors into larger packages, so as to economize on transaction
costs. The resulting tax rate would effectively be linear again. To simplify the
analysis, we also assume that transaction taxes paid by investors of type i are
rebated in the same period in a lump sum fashion, i.e.,

T i
t = τ

∣∣(Si
t − Si

t−1)Pt

∣∣ , (2.3)

where Si
t and Si

t−1 on the r.h.s. of the previous equation denote the choices
of the representative investor of type i.19 We thereby eliminate the income
effects associated with raising transaction taxes.20 Appendix 2.12.5 considers

19Agents’ fully understand that what matters for tax rebates is the trading decision of the
representative investor of type i and not their own decision.

20Alternative assumptions, e.g., a rebate that is identical across investors at each point in
time, would make rebates dependent on the whole distribution of trades in equilibrium and
thus on the distribution of investors’ beliefs. This would add many additional state variables
into investors’ decision problem.
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an alternative setup without tax rebates (T i
t ≡ 0 for all t, i). It shows that the

main quantitative findings are robust to assuming that taxes are not rebated
to investors.

The exogenous wage and dividend processes take the form considered pre-
viously in Adam, Beutel and Marcet (2014), with dividends evolving according
to

lnDt = ln βD + lnDt−1 + ln εDt , (2.4)

where βD ≥ 1 denotes the mean growth rate of dividends and, ln εDt an i.i.d.
growth innovation described further below. The wage income process Wt is
chosen such that the resulting aggregate consumption process Ct = Wt+Dt is
empirically appealing.21 In particular, we assume

lnWt = ln ρ+ lnDt + ln εWt , (2.5)

where (
ln εDt
ln εWt

)
∼ iiN

(
−1

2

(
σ2
D

σ2
W

)
,

(
σ2
D σDW

σDW σ2
W

))
(2.6)

which implies EεDt = EεWt = 1.
Substituting the constraint into the objective function and dividing the

objective function by D1−γ
0 , the investor’s problem can be written as

max
{Si

t}∞

t=0

EPi

0

∞∑

t=0

δt
(
Dt

D0

)1−γ

(
Si
t−1

(
Pt

Dt
+ 1
)
+

Wt+T i
t

Dt
− τ

∣∣∣ (S
i
t−Si

t−1)Pt

Dt

∣∣∣− Si
t
Pt

Dt

)1−γ

1− γ

s.t. : Si
−1 given (2.7)

Due to the linear transaction cost specification, the preceding optimization
problem fails to be differentiable. We explain in section 2.5.1 how we deal
with this difficulty.

Subjective Beliefs. To complete the description of the investment prob-
lem we now specify investors’ subjective probability measure P i. We first
assume that agents know the processes (2.4) and (2.5), i.e., hold rational divi-
dend and wage expectations.22 In a second step, we seek to specify subjective
price beliefs in a way that allows us to capture the extrapolative nature of
price expectations, as implied by survey data. In particular, following Adam,
Beutel and Marcet (2014), we set up a belief system for prices that leads to
expectation dynamics of the kind described by equation (2.1), which captures
the empirical behavior of survey expectations. To this end, we endow agents

21For further details, we refer the reader to Adam, Beutel and Marcet (2014), section 4.
22This is motivated by the fact that wihtin the present setting with time separable pref-

erences, (reasonable amounts of) extrapolation of wage and dividend beliefs would add very
little to price volatility. This holds true for models with rational price expectations, as dis-
cussed in section 2 in Adam, Beutel and Marcet (2014), but also for models with subjective
price beliefs, see for example section V.A in Adam, Marcet and Nicolini (2016).
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with a belief system that allows for persistent deviations of the growth rate of
prices from the growth rate of dividends. Specifically, we assume that agent
i’s perceived law of motion of prices is given by

lnPt+1 − lnPt = ln βi
t+1 + ln ε1,it+2 + ln ε2,it+1, (2.8)

where ε1,it+2, ε
2,i
t+1 denote (not directly observable) transitory shocks to price

growth and βi
t+1 a persistent price growth component that slowly drifts over

time according to
ln βi

t+1 = ln βi
t + ln νi

t+1, (2.9)

and where the persistent component of price growth ln βi
t+1 is also unobserved.

The setup just described can capture periods with sustained increases in the
price dividend ratio (βi

t+1 > βD), as well as periods with sustained decreases

(βi
t+1 < βD). The perceived innovations ln ε1,it+2, ln ε

2,i
t+1 and ln vit+1 are assumed

to be jointly normally distributed according to




ln ε1,it+2

ln ε2,it+1

ln νi
t+1


 ∼ iiN





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−σ2
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2

−σ2
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2

− (σi
v)

2

2


 ,




σ2
ε,1 0 0
0 σ2

ε,2 0
0 0 σi

ν
2





 , (2.10)

where the variances σ2
ε,1, σ

2
ε,2 of the transitory components are identical for all

agents. We allow the perceived variance of the innovation to the persistent
component (σi

ν
2) to differ across investors, so as to be able to capture the

different responsiveness of survey expectations to realized price growth rates,
as documented in section 2.4.3.

The previous setup defines an optimal filtering problem for agents, in which
they need to decompose observed price growth (lnPt+1 − lnPt) into its per-
sistent and transitory components (ln βi

t+1 and ln ε1,it+2 + ln ε2,it+1, respectively).
In the special case, that the two transitory shock components are both un-
observed and can thus be combined to ln εit = ln ε1,it+1 + ln ε2,it with variance
σ2
ε = σ2

ε,1 + σ2
ε,2, Adam, Beutel and Marcet (2014) show, that under the as-

sumption of a normal prior with variance equal to its Kalman filter steady
state value, price growth beliefs can be summarized by a single state variable
mi

t that evolves according to

lnmi
t = lnmi

t−1 −
(σi

v)
2

2

+ gi
(
lnPt − lnPt−1 +

(σi
ε)

2 + (σi
v)

2

2
− lnmi

t−1

)
(2.11)

gi =
(σi)2

σ2
ε + (σi)2

, (2.12)

where

(σi)2 ≡
−(σi

ν)
2 +

√
((σi

ν)
2)2 + 4(σi

ν)
2σ2

ε

2
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is the Kalman filter steady state variance. The state variable lnmi
t describes

the mean of ln βi
t conditional on the information available at time t, i.e., ln βi

t

is conditionally N(lnmi
t, (σ

i)2)-distributed, which implies

EPi

t

[
Pt+1

Pt

]
= mi

te
(σi)2/2.

This previous result, together with equation (2.11) shows that optimal belief
updating delivers - up to a log-exponential transformation - the updating equa-
tion (2.1) considered in the empirical section. Moreover, equation (2.12) shows
that the optimal updating parameter gi is a positive function of the variance
(σi

ν)
2, which allows us to replicate the empirically observed heterogeneity in

the belief updating equations.
To avoid simultaneity between prices and price beliefs, which may give rise

to multiple market clearing price and price belief pairs, we shall rely on a
slightly modified information structure, where agents observe ln ε1,it as part of
their time t information set. Adam, Beutel and Marcet (2014) show how such
a modified information structure gives rise to an updating equation of the form

lnmi
t = lnmi

t−1 + gi
(
lnPt−1 − lnPt−2 − lnmi

t−1

)
− g ln ε1,it , (2.13)

which has lagged price growth enter.23

To complete the description of the belief system, we need to specify in-
vestors’ beliefs about the behavior of the lump sum tax rebate T i

t . We shall
assume that agents understand that the tax rebates do not depend on their
own decision, instead on the choices of the representative investor of the same
type i. Moreover, we assume that agents know the tax rebate function (2.3).24

Market Clearing. The stock market clearing condition is given by

I∑

i=1

Si
tµi = 1 + ut,

where the left-hand side denotes total stock demand by investors of all types
and the right-hand side total stock supply. We incorporate a small exogenous
stochastic component ut into stock supply, which we assume to be white noise,
uniformly distributed and to have support [−u, u] for some u > 0 sufficiently
close to zero. Stock supply shocks ut may thereby capture the issuance of new
stocks or stock repurchases by firms.25 We add these shocks because linear

23Price growth expectations are then given by EP
i

t [Pt+1/Pt] = mi
t.

24This assumption considerably simplifies the analysis: since in equilibrium individual
actions coincide with those of the representative investor of the same type, we do not need
to incorporate any additional state variables that characterize the future evolution of lump
sum taxes, when writing a recursive representation of the agents’ decision problem.

25Alternatively, they may capture changes to asset float, as discussed in Ofek and Richard-
son (2003) and Hong, Scheinkman, and Xiong (2006). In any case, these shocks capture (ex-
ogenous) stock demand or supply that is not coming from the consumers described around
equation (2.2).
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financial transaction taxes lead to piecewise price-insensitive demand curves,
which can give rise to equilibrium price indeterminacy in the absence of supply
shocks. In our numerical applications, we make sure that u is sufficiently
small such that it has no noticeable effects on the outcomes that emerge in
the absence of a financial transaction tax. For the case with transaction taxes,
the supply shock effectively only selects the equilibrium price whenever price-
insenstitive demand curve may create the potential for price indeterminacy.

2.5.1 Solution Approach

This section explains how one can solve for the optimal solution of the non-
differentiable problem (2.7). The approach we pursue consists of defining an
alternative optimization problem with a differentiable transaction cost speci-
fication, so that a standard solution approach based on first order conditions
can be applied. The alternative problem has the property that all choices that
are feasible in the original problem are also feasible in the alternative problem.
Therefore, if the optimal solution to the differentiable problem is a feasible
choice in (2.7), then it must also solve (2.7).

The alternative problem we consider is

max
{Si

t}∞

t=0

EPi

0

∞∑

t=0

δt
(
Dt

D0

)1−γ

(
Si
t−1

(
Pt

Dt
+ 1
)
+

Wt+T i
t

Dt
− τ it

(Si
t−Si

t−1)Pt

Dt
− Si

t
Pt

Dt

)1−γ

1− γ

s.t. : Si
−1 given (2.14)

where τ it ∈ [−τ , τ ] denotes a state-contingent but fully linear transaction
tax/subsidy and where T i

t is given by (2.3). Problem (2.14) is differentiable and
can be solved in a standard way using first-order conditions. Moreover, since
τ it ∈ [−τ , τ ], all stockholding plans that are feasible in the original problem
(2.7) continue to be feasible in the alternative problem (2.14).

Suppose that the state-contingent transactions cost function τ it and the
associated optimal stockholding plan

{
Si,opt
t

}∞
t=0

solving (2.14) jointly satisfy
for all t ≥ 0 the following property

τ it = τ at contingencies where Si,opt
t > Si,opt

t−1

τ it = −τ at contingencies where Si,opt
t < Si,opt

t−1

τ it ∈ [−τ , τ ] at contingencies where Si,opt
t = Si,opt

t−1 ,

(2.15)

then
{
Si,opt
t

}∞
t=0

is also feasible in the original problem (2.7) and thus the
solution to (2.7). The task of solving the original non-differentiable problem
(2.7) is thus equivalent to finding a state contingent tax function τ it such that
condition (2.15) holds for the optimal solution of the alternative differentiable
problem (2.14).

For a given {τ it}
∞
t=0 the solution to (2.14) is characterized by the first order

condition

72



2.6. OUTCOMES UNDER OBJECTIVE PRICE BELIEFS

(
Ct

Dt

)−γ

(1 + τ it)
Pt

Dt

= δEP
t

(
Ct+1

Dt+1

)−γ (
Dt+1

Dt

)1−γ (
Pt+1

Dt+1

(1 + τ it+1) + 1

)

(2.16)
As noted above, investor i’s subjective beliefs can be summarized by the re-
cursively evolving state variable mi

t. Provided the state contingency of the
tax function can be expressed in the form τ it = τ i(Si

t−1,
Pt

Dt
, Wt

Dt
,mi

t), where the
arguments in the function should be interpreted as the choices and beliefs of
the representative agent of type i, the optimal stock holding policy then also
has a recursive representation of the form St = Si(Si

t−1,
Pt

Dt
, Wt

Dt
,mi

t), by the

same arguments as put forward in Adam, Beutel and Marcet (2014).26,27

Our numerical solution routines, which are described in appendix 2.12.2
simultaneously solve for the functions τ i(·) and Si(·) that jointly satisfy equa-
tions (2.15) and (2.16). Numerically solving for the optimal solution is compu-
tationally costly. Despite extensive reliance on parallelization, the numerical
computation of the solution and the evaluation of the Euler errors takes around
30 hours of computing time.

2.6 Outcomes under Objective Price Beliefs

Before presenting the model outcome under subjective price beliefs, this section
briefly discusses the model predictions for the case where agents hold rational
price expectations. With objective price beliefs and with investors holding
identical initial stock endowments, differences between investor types disap-
pear. The model then reduces to a representative agent rational expectations
model with time separable preferences. As shown in Adam, Beutel and Marcet
(2014), the pricing implications of the model then display a well-known set of
shortcomings. The standard deviation of the price dividend ratio, for instance,
is one order of magnitude below that observed in the data and displays virtu-
ally no persistence over time. The model thus fails to replicate the large and
protracted run-ups and reversals that can be observed for the PD ratio in U.S.
data. The model also fails to replicate the positive correlation between the PD
ratio and expected returns, as evidenced in survey data. Finally, with rational
price expectations, the model does not give rise to trade in equilibrium, thus
cannot be related to the documented facts on trading activity. As we show in
the next section, model performance strongly improves, once one incorporates
the kind of extrapolative behavior documented in survey data.

26The fact that the transaction costs are linear and that under the stated assumptions
the tax rebate T i is a function of the same state variables is key for this result.

27The fact that τ it depends on Si
t−1 is just a convenient way to summarize dependence of

the tax function on past values of Pt, Dt and Wt. It does not mean that the agent thinks
that τ it depends on its own choices, in fact, as should be clear from the first order condition
(2.16), the agent takes τ it as exogenously given.
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2.7 Quantitative Model Performance

This section evaluates the quantitative performance of our asset pricing model
in the absence of FTTs with subjective price beliefs given by equations (2.8)
and (2.9). Performance is evaluated in terms of the ability to match the stylized
facts presented in section 2.4. The effects of introducing FTTs will be studied
in section 2.9.

We parameterize our model using the model parameters employed in Adam,
Beutel and Marcet (2014), which are summarized in table 2.5. Table 2.5 also
lists the value for the support of stock supply shocks, which is a new parameter
and set such that the amount of trade caused by these shocks amounts to less
than 0.3% of the average trading volume in a setting without FTTs. Since
trading volume is only weakly affected for the considered range of FTTs, the
same holds approximately true for the case with FTTs. Furthermore, we verify
that in the absence of FTTs, stock supply shocks affect the model moments in
almost non-noticable ways.

Motivated by the evidence in table 2.4, we consider a model with 5 agent
types, each of which has mass 1/5, and assign to them the point estimates of
the updating gains from table 2.4.28

Parameter Value Calibration Target

βD 1.0048 average quarterly real dividend growth
σD 0.0192 std. deviation quarterly real dividend growth
ρ 22 average consumption-dividend ratio
σDW −3.74 · 10−4 jointly chosen s.t. corrt(Ct/Ct−1, Dt/Dt−1) = 0.2
σW 0.0197 and stdt(Ct/Ct−1) =

1
7
stdt(Dt/Dt−1)

σε 0.0816 std. deviation of quarterly real stock price growth
δ 0.995 average PD ratio
γ 2 - none -
u 1 · 10−5 - none -

Table 2.5: Model calibration

Table 2.6 compares the model generated moments in the absence of FTTs
to those in the data.29 The model moments for our baseline calibration are
reported in the third column, while the fourth column reports the associated
t-ratios for each considered data moment.30 Overall, our asset pricing model
does a good job in replicating the pure stock price moments, i.e., the first

28Recall that we chose the experience groups in table 2.4 so as to have approximately the
same number of investors in each group.

29All simulation results are based on 100.000 quarters of simulated data, where the first
10.000 quarters are considered as a burn-in and discarded when calculating model moments.
Also, to make results from different simulations more comparable, we use fixed sequences
for the exogenous driving processes (wages, dividends, stock supply shocks).

30The t-ratio is based on an estimate of the standard deviation of the data moment as a
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five moments reported in the table. It matches particularly well the mean
and autocorrelation of the PD ratio, as well as the mean of quarterly real
stock returns. It produces, however, too much volatility for the PD ratio and
for returns. The model also does a good job in capturing the observed high
positive correlation between the PD ratio and average return expectations in
the survey data (corr(PDt, EtRt+1)).

Regarding the newly added moments, the model generates a high positive
autocorrelation in trading volume (corr(TVt, TVt−1)), albeit the model cor-
relation is too high relative to the one found in the data. The model also
manages to quantitatively capture the positive correlation between trading
volume and (normalized) absolute price changes (corr(TVt, |Pt/Pt−1 − 1|)).
When looking at the correlation between trading volume and the PD ratio
(corr(TVt, PDt)), the model produces a fairly weak positive correlation, but
one that is stronger than in the data. The model also generates a positive cor-
relation between trading volume and cross sectional dispersion of return expec-
tations (corr(TVt, std(Ẽ

i
tRt+1))), but again overstates this correlation relative

to the data.31 The latter should not be surprising, given that in our simple
model belief dispersion is the only reason why agents want to trade.

Since the baseline model produces an ‘anti-puzzle’ in the form of too much
stock price volatility relative to the data, we also consider a model version
in which we dampen the extrapolative component in belief updating. This
is motivated by the fact that the updating gains in table 2.4 are themselves
estimated with uncertainty. Specifically, we reduce the point estimates from
table 2.4 by 2.5 times the estimated standard deviation of the point estimate32,
leaving all other parameters unchanged. The resulting model moments are
reported in the second to last column in table 2.6 below, with the last column
reporting the associated t-ratios. Price and return volatility are now in line
with data, while all other moments remain largely unaffected.

Overall, we find that the model does a good job in quantitatively replicating
the joint behavior of stock price, trading volume and price expectations.

measure of uncertainty. Since the data moments in table 2.6 are not truly data moments,
but functions of such moments, we estimate the standard deviation using the so-called delta
method, as described in Cox (1998) or in the online appendix to Adam, Marcet and Nicolini
(2016).

31The data moment reported in table 2.6 is the one pertaining to the UBS survey, which
has also been used to compute corr(PDt, EtRt+1) in the data.

32We use for each gain parameter the gain specific standard deviation reported in the last
row of table 2.4.
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U.S. Data Baseline t-ratio Reduced t-ratio
Model Gain
(no tax) (no tax)

E[PD] 139.77 135.77 0.16 117.16 0.91
std(PD) 65.17 122.13 -3.84 92.96 -1.88
corr(PDt, PDt−1) 0.98 0.98 0.84 0.98 -0.13
std(rs) 8.00% 11.63% -9.05 8.27% -0.68
E[rs] 1.89% 2.11% -0.47 1.84% 0.11
corr(PDt, EtRt+1) 0.79 0.84 -0.78 0.84 -0.73
corr(TVt, TVt−1) 0.89 0.97 -4.29 0.97 -4.14
corr(TVt, PDt) -0.07 0.37 -5.79 0.47 -7.09
corr(TVt, |Pt/Pt−1 − 1|) 0.34 0.25 1.12 0.28 0.78

corr(TVt, std(Ẽ
i
tRt+1)) 0.41 0.95 -3.67 0.92 -3.50

Table 2.6: Quantitative match of the asset pricing model

2.8 Asset Price Booms and their Implications

This section illustrates that stock prices in the model occasionally embark on
a self-sustaining asset price boom and bust cycle. Unlike in the representative
agent model of Adam, Beutel and Marcet (2014), such cycles have large welfare
implications for different agent types.

To illustrate the potential of the model to generate boom-bust cycles and to
compute the welfare implications of such cycles, we conduct a simple controlled
experiment using the baseline model from the previous section: we fix agents’
initial stockholdings and initial beliefs at their ergodic sample means; we then
shock the economy with n positive dividend growth shocks of a two standard
deviation size. Such or larger positive dividend shocks occur with a probability
of about 2.5% per quarter. We shut down all other shocks, including dividend
growth shocks after period n. We begin the experiment with n = 1 and
successively increase n until we obtain a stock price boom and bust cycle
from period n+ 1 onwards. Figure 2.3 depicts - for different values of n - the
equilibrium outcomes for the PD ratio during the initial periods. While the PD
ratio reacts very little to the positive news when n = 1 (stock prices, however,
do react to the positive dividend news), the increase in price optimism starts
to increase slightly the PD ratio for n = 2 and n = 3. For n = 4 one suddenly
obtains a very large stock price boom and a subsequent price bust, see figure
2.4.33

The economic forces driving the boom and bust dynamics are explained in
detail in Adam, Beutel and Marcet (2014). Here, we only note that the boom

33Increasing n further would lead to very similar boom-bust dynamics as for the case with
n = 4.
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Figure 2.3: Response of the PD ratio to dividend growth shocks: initial periods

results from the fact that agents - having observed price increases - become
optimistic about future price growth and eventually bid up stock prices by
sufficient amounts, so that price increases and increasing optimism mutually
reinforce each other. This effect is set in motion whenever a sufficient number
of positive fundamental shocks, e.g., dividend growth shocks, occurs. The
boom comes to an end, when agents’ increased wealth leads them to eventually
increase consumption demand, so that stock demand ceases to increase further
with increased optimism. Prices then stagnate, which means that they fail
to fulfill the high growth expectations of agents. Agents then revise growth
beliefs downwards and set in motion a price bust. The bust causes a temporary
undershooting of the PD ratio below its ergodic mean, but prices eventually
return close to their ergodic mean absent further shocks, see figure 2.4.

Figure 2.5 depicts the PD ratio (top panel) together with agents’ equilib-
rium trading decisions (middle panel) and return expectations (bottom panel)
for the boom-bust episode triggered by four positive dividend growth shocks.
To increase readability of the graph, we only report the trading patterns and
return expectations of agents with the highest and lowest updating gain pa-
rameters.34 In the UBS survey, high gains were estimated for agents with few
years of stock market experience, while the most experienced group displayed
a low updating gain. For this reason we refer to agents with a high (low) gain

34Agents types with intermediate updating gain values take intermediate decisions that
are in between those shown in the figure.
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Figure 2.4: Response of the PD ratio: three versus four dividend growth shocks

as inexperienced (experienced) agents.

Figure 2.5 shows that in the initial phase of the stock price boom, inexperi-
enced agents do rather well. They start buying stocks early on and well before
prices approach their peak value. Experienced investors sell assets during the
boom phase, i.e., much too early. Yet, once the PD ratio is high, inexperienced
investors are much more optimistic about future returns than experienced in-
vestors, see the bottom panel. As a result, inexperienced investors continue
buying stocks from low gain types at high prices (relative to dividends). Also,
inexperienced investors continue buying during much of the price bust phase
and only sell in significant amounts once the PD ratio started undershooting
its long-run mean. Thus, even though inexperienced investors are doing well
initially, this fails to be the case over the entire boom-bust cycle.

To gauge the welfare effects of a boom-bust episode, we compare the out-
come in figure 2.5 to a situation in which the same shocks occur, but where
agents hold their beliefs constant at the initial value, i.e., do not respond to
the price movements triggered by the dividend growth shocks, so that there
is no asset price boom. We can then compute the permanent proportional
consumption variation that would make (ex-post realized) utility in the set-
ting with constant beliefs and without an asset price boom identical to the
(ex-post realized) utility in the setting with the asset price boom shown in
figure 2.5. Outcomes are reported in table 2.7, which shows that asset price
booms are extremely costly for inexperienced agents and extremely beneficial
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Figure 2.5: PD ratio, trading and return expectations over a boom-bust cylce
(baseline model, no tax)

for experienced investors: the welfare equivalent consumption variations of a
boom-bust episode amount to a permanent change in consumption of several
percentage points.

Gain 0.0316 0.0286 0.0264 0.0230 0.0180
Permanent cons. variation -7.01% -3.51% -1.27% 1.73% 5.24%

Table 2.7: Welfare cost of a stock price boom-bust episode

2.9 The Effects of Financial Transaction Taxes

We now consider the implications of introducing linear financial transaction
taxes, focusing on the implication of FTTs for the behavior of asset pricing
moments, the patterns of boom-bust dynamics and trading volume.

Table 2.8 reports how the asset pricing moments from the baseline model
in table 2.6 are affected by various tax rates. The main effect of financial
transaction taxes consists of increasing asset price volatility, as measured by
the standard deviation of quarterly stock returns (std(rs)) and the standard
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deviation of the PD ratio (std(PD)).35 Except for the reduced correlation
between trading volume and prices (corr(TVt, PDt), corr(TVt, |Pt/Pt−1− 1|)),
the remaining asset pricing moments from table 2.6 prove to be rather robust
towards the introduction of FTTs.

The last four rows in table 2.8 report a number of additional statistics
about asset price boom-bust episodes and trading volume. These statistics
allow to asses in greater detail why asset price volatility increases with the
introduction of FTTs. The fourth to last row in table 2.8, for example, reports
the number of asset price boom episodes per 100 years of simulated data, where
we define the beginning of a boom as the first time in which the quarterly PD
ratio exceeds a level of 250 and the end of a boom as the first time it falls
below 200 thereafter.36 The results in the table show that the number of stock
price booms is monotonically increasing in the FTTs, with boom-bust episodes
becoming about a third more likely relative to the case without transaction
taxes when the tax rate reaches 4%.

The third and second to last rows in table 2.8 display, respectively, infor-
mation about the length of the boom episodes and the average peak value of
the PD reached during these episodes. It shows that booms tend to become
shorter lived and somewhat less pronounced as the tax rate rises, but these
effects are not very strong for tax rates up to 4%. As a result, the effect of
an increased number of booms dominates and the standard deviation of the
PD ratio increases with the tax rate. For a 10% tax rate, the decrease in
the peak level of the PD during booms and the reduced length of stock price
booms start to dominate, causing the standard deviation of the PD ratio to
decreases, even if the standard deviation of returns still increases.

Somewhat surprisingly, the average trading volume (relative to the case
without FTTs) tends to increase with the level of FTTs. This occurs because
there is more trade during booms times, as belief disagreements are then larger,
and because booms become more likely with the introduction of FTTs.

35For very high tax rates (10%) the volatility of the PD ratio starts to fall, while return
volatility continues to increase. We discuss this issue further below.

36The reported numbers are very robust to choosing different thresholds because boom-
bust episodes are periods in which prices display a clearly distinct behavior.

80



2.9. THE EFFECTS OF FINANCIAL TRANSACTION TAXES

No Tax 1% Tax 2% Tax 4% Tax 10% Tax
E[PD] 135.77 137.21 139.74 142.47 146.27
std(PD) 122.13 123.18 125.42 127.10 125.24
corr(PDt, PDt−1) 0.98 0.98 0.98 0.98 0.98
std(rs) 11.63% 11.85% 12.14% 12.55% 14.04%
E[rs] 2.11% 2.14% 2.18% 2.24% 2.49%
corr(PDt, EtRt+1) 0.84 0.85 0.86 0.87 0.89
corr(TVt, TVt−1) 0.97 0.97 0.97 0.97 0.94
corr(TVt, PDt) 0.37 0.35 0.33 0.29 0.17
corr(TVt, |Pt/Pt−1 − 1|) 0.25 0.25 0.24 0.21 0.05

corr(TVt, std(Ẽ
i
tRt+1)) 0.95 0.94 0.93 0.92 0.87

# of booms per 100 yrs∗ 1.82 1.95 2.12 2.40 3.06
average boom length (quarters)∗ 32.42 31.87 31.41 30.44 27.21
average boom peak (PD)∗ 491.03 485.82 480.31 469.95 443.86
E[TV ] relative to no tax 100.00% 99.64% 101.49% 102.52% 117.85%
*A boom starts in the first period in which the quarterly PD ratio exceeds a value of 250 and ends once it falls below 200.

Table 2.8: Effects of introducing financial transaction taxes

Table 2.9 reports the welfare implications associated with introducing dif-
ferent tax rates. Starting from the ergodic mean for stock holdings and beliefs
in the no-tax economy, the table reports the welfare equivalent permanent
consumption variation that would make different agent types in the economy
with taxes as well-off in expected terms as in the economy without taxes.37

Table 2.9 clearly shows that agents that extrapolate more, i.e., inexperienced
investors in our survey sample, tend to lose, while more experienced investors
tend to win in expected terms.38 For all agent types, except the median type,
whose utility is largely unaffected by the tax rate, the gains and losses mono-
tonically increase with the tax rate. Wealth redistribution between investors
thus increases with the tax rate.

37We use objective probabilities to compute agents’ expected utility.
38The welfare effects in table 2.9 are smaller than those reported in table 2.7. The latter

reports the effects of a single stock price boom episode relative to the counterfactual out-
come without a boom. Since booms are (in expected terms) not likely to occur within the
immediate future, when starting the simulation at the ergodic mean, the welfare effects in
table 2.9 are not as large as those reported in table 2.7.
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Gain 0.0316 0.0286 0.0264 0.0230 0.0180
1% Tax -0.34% -0.14% -0.02% 0.06% 0.25%
2% Tax -0.84% -0.36% -0.06% 0.16% 0.62%
4% Tax -1.56% -0.64% -0.07% 0.28% 1.18%
10% Tax -2.76% -1.00% 0.10% 0.39% 2.15%

Table 2.9: Welfare implications of FTTs
(welfare equiv. permanent cons. variations)

Table 2.10 provides additional insights by reporting asset price moments
conditional on being in a boom period, as defined above, and conditional on
being in ‘normal times’, i.e., periods that are not identified as boom periods.
Clearly, the PD ratio is considerably higher during boom times and so is the
standard deviation of the PD ratio. Mean quarterly stock returns during
boom periods are considerably higher than in normal times, but stock returns
also display a considerably larger standard deviation. Furthermore, while the
introduction of FTTs reduces the volatility of the PD ratio and returns during
boom periods, FTTs increase both of these standard deviations during normal
times. As we show below, it is precisely the increase in volatility during normal
times coupled with extrapolative behavior which causes stock price booms to
become more likely.

Table 2.10 shows that trading volume decreases with the size of the FTT
during boom periods, but - somewhat paradoxically - increases during normal
times. Upon closer inspection, we find that for tax rates up to 4% the increase
in trading volume during normal times is purely driven by post-boom trading
activity. As can be seen from figure 2.5, trading activity stays high long after
the PD ratio returned to values below 200. Once one removes these post-boom
periods from the normal times, trading volume is actually decreasing with the
FTTs in normal times.39

39The situation is different for very high tax rates (10%). Trading activity then increases
also during normal times, even when excluding post-boom periods. This occurs because the
large increase in price volatility leads to an amount of belief disagreement and thus trade in
normal times, which more than compensates the trade-reducing effect of the tax.
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No Tax 1% Tax 2% Tax 4% Tax 10% Tax
Boom times∗

E[PD] 424.63 419.79 415.04 406.56 384.06
std(PD) 44.93 44.13 44.27 42.89 42.01
corr(PDt, PDt−1) 0.48 0.48 0.47 0.49 0.53
std(rs) 23.06% 22.86% 22.52% 21.76% 19.34%
E[rs] 3.68% 3.74% 3.67% 3.55% 3.15%
E[TV ] rel. to no tax 100.00% 96.13% 93.12% 88.27% 80.13%

Normal times+

E[PD] 85.87 85.33 84.63 83.59 83.72
std(PD) 15.37 15.89 16.68 18.14 23.62
corr(PDt, PDt−1) 0.84 0.84 0.85 0.85 0.86
std(rs) 8.15% 8.36% 8.65% 9.31% 12.26%
E[rs] 1.84% 1.84% 1.88% 1.95% 2.32%
E[TV ] rel. to no tax 100.00% 99.60% 101.43% 102.69% 129.90%
* A boom starts in the first period in which the quarterly PD ratio exceeds a value of 250 and ends once it falls below 200.

+ Normal times are all those periods not classified as boom periods.

Table 2.10: Conditional Asset Price Moments

To illustrate further how FTTs increase the likelihood of boom-bust cycles,
we now perform a similar experiment as carried out in section 2.8 for the case
without a tax. Specifically, we consider the model with a FTT of 4% and
fix initial stockholdings and initial beliefs at their ergodic sample means. We
then shock the economy with n ≥ 0 positive dividend growth shocks of two
standard deviations. Yet, this time we continue to let the small exogenous
stock supply shocks operate at all times. These shocks are themselves not
enough to generate stock price booms, but can do so in combination with
dividend shocks.

Figure 2.6 depicts the probability that the economy embarks on a stock
price boom as a function of the number of dividend growth shocks, integrating
over possible realizations of the stock supply shocks.40 For the case without a
FTT, booms start to emerge once n increases above 4.41 The situation differs
for the case with a 4% FTT, where fewer fundamental shocks are required to
start a boom episode. For n ≤ 1, the economy never embarks on a stock price
boom, but for n = 2 stock price booms emerge in more than 60% of the cases
and for n ≥ 3 virtually always. This shows that booms become more likely in

40As before, we define a boom as a stituation where the PD ratio subsequently increases
above 250 at some point. We consider up to 12 quarters after the last dividend shock.
Results prove very robust to choosing different thresholds and period limits. Probabilities
are computed from averaging the outcome of 500 stochastic realizations.

41Since we now let stock supply shocks also operate in the case without a tax, this shows
that the findings of figure 2.4 are robust to the introduction of the stock supply shock.
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Figure 2.6: FTTs and the likelihood of stock price booms

a situation with FTTs, as fewer fundamental shocks are required to set it in
motion.

Figure 2.7 illustrates the driving force giving rise to this outcome. The
figure depicts the stock demand function for a 4% FTT.42 It shows that around
the level of prior stockholding (assumed to be equal to one), stock demand
(shown on the vertical axis) is not sensitive to the stock price (shown on the
horizontal axis). This price insensitivity of stock demand covers a considerable
price range and is actually increasing with the tax rate.43 Therefore, in the
presence of FTTs, even very small exogenous variations in stock supply can
lead to large movements in realized prices, explaining why prices become more
volatile during ‘normal times’. Since agents use realized price growth to update
price expectations, FTTs increase the likelihood that stock prices embark on
a belief-driven stock price boom.

2.10 State-Contingent Financial Transaction Taxes

Motivated by the results in the previous section, this section considers the
effects of introducing state-contingent transaction taxes that are only levied

42The figure assumes τ = 4% and the following values for the state variables: Wt/Dt = ρ,
mt = βD, and S−1 = 1.

43Appendix 2.12.3 explains how one can accurately determine the inaction regions.
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Figure 2.7: Stock demand function (4% tax)

once the PD ratio exceeds a certain (sufficiently high) threshold value PD.
The idea behind such a state-contingent tax is that it avoids the increase in
price volatility during ‘normal times’, thereby avoiding that the stock market
embarks with higher likelihood on a boom-bust cycle, while potentially limiting
the duration and extent of stock price booms once they have taken hold.

Specifically, consider a setting with linear transaction taxes τ > 0, which
are levied only if PDt ≥ PD, and zero taxes otherwise. We set the threshold
value PD equal to 250, which is the value used to identify the beginning of a
stock price boom episodes in previous sections. After solving for the optimal
stock demand functions44, it turns out that state-contingent taxes lead to
problems of non-existence of equilibrium prices, as well as to the possibility of

44The solution strategy outlined in section 2.5.1 for the case with a non-state contingent
tax can then still be applied because the tax function τ i(Si

t−1,
Pt

Dt

, Wt

Dt

,mi
t) derived in section

2.5.1 can already depend on the PD ratio. Instead of satisfying equations (2.15) and (2.16),
the tax function and the stock holding policy must now jointly satisfy the first order condition
(2.16) and

τ it = τ at contingencies where Si,opt
t > Si,opt

t−1 and PD ≥ PD

τ it = −τ at contingencies where Si,opt
t < Si,opt

t−1 and PD ≥ PD

τ it ∈ [−τ , τ ] at contingencies where Si,opt
t = Si,opt

t−1 and PD ≥ PD
τ it = 0 otherwise,

so as to be feasible in the original problem with a non-differentiable tax function (above the
PD threshold).

85



CHAPTER 2. CAN A FINANCIAL TRANSACTION TAX PREVENT
STOCK PRICE BOOMS?

equilibrium multiplicities.
The non-existence problem is illustrated in figure 2.8, which depicts the

excess stock demand (on the vertical axis) as a function of the price dividend
ratio (horizontal axis). The figure depicts these functions for all agent types,
as well as the aggregate excess demand function.45

Figure 2.8 shows that once the PD ratio exceeds its critical value PD,
agents want to buy or sell less stocks, i.e., the excess demand functions dis-
continuously jump to a value closer to the no trade line (the zero line). As a
result, the aggregate excess demand function also has a jump at PD = PD
and for the case depicted in figure 2.8, this leads to non-existence of an equi-
librium price: the excess demand function is strictly positive for PD < PD
but strictly negative for PD ≥ PD.

Obviously, the jump in the aggregate excess stock demand function does
not necessarily have to be of the kind shown in figure 2.8. We also encountered
cases in which there was an upward jump at the critical value PD. This can
happen whenever agents who seek to sell stocks respond more to the tax once
its levied than agents who want to purchase stocks. Figure 2.9 depicts an
example, where the aggregate excess demand jumps upwards at PD = PD. As
the figure illustrates, this can give rise to multiple market clearing equilibrium
prices. Since realized prices feed into agents’ price beliefs, price multiplicities
have the potential to significantly increase price volatility.

While the non-existence problem could possibly be overcome by introducing
taxes that are a continuous function of the PD ratio, the multiplicity issue is
harder to address. One would have to design state-contingent taxes in such a
way that aggregate stock excess demand functions are never upward sloping
in the vicinity of the zero point. It is unclear which tax design would be able
to achieve this outcome.

45To illustrate the effects in the most transparent way, we use the setting with a 10%
transaction tax, but the effects are qualitatively the same for lower tax rates.
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Figure 2.8: Non-existence of equilibrium with state-contingent FTTs

Figure 2.9: Multiple equilibrium prices with state-contingent transaction taxes
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2.11 Conclusions

We present a quantitatively credible asset pricing model in which stock prices
display occasional boom and bust cycles in valuation, which redistribute large
amounts of wealth between different investor types. We show how the intro-
duction of financial transactions taxes increases price volatility during ‘normal
times’ and thereby the likelihood that the stock market embarks on a belief-
driven boom and bust cycle. State-contingent transaction taxes, which seek
to avoid the increase in price volatility during normal times, generate prob-
lems via equilibrium multiplicities and non-existence. Taken together, these
findings cast serious doubts on whether financial transaction taxes can fruit-
fully contribute towards increasing the efficiency of stock market prices and
transactions.

A key insight highlighted by the present framework is that the presence
of extrapolation by investors makes it an important requirement that market
interventions do not increase stock price volatility during normal times, so as
to avoid creating additional boom-bust episodes. Throughout the analysis, we
have taken the degree of extrapolation as given. Conceivably, market interven-
tions can also have a direct effect on the degree to which investors extrapolate
past capital gains. To the extent that FTTs reduce extrapolation, FTTs can
generate additional benefits that are not captured within the present analysis
and may overturn our results. Obviously, if FTTs give rise to more extrap-
olation, they generate additional costs and strengthen the point made in the
present paper. Empirically investigating the effects of FTTs on the degree
of investor extrapolation thus appears to be an interesting avenue for future
research.
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2.12 Appendix

2.12.1 Data sources

Stock price data: Our stock price data is for the United States and has been
downloaded from ‘The Global Financial Database’.46 The period covered is
Q1:1949-Q1:2012. The nominal stock price series is the ”‘SP 500 Composite
Price Index (w/GFD extension)”’ (Global Fin code ”‘ SPXD”’). The daily
series has been transformed into quarterly data by taking the index value of
the last day of the considered quarter. To obtain real values, nominal vari-
ables have been deflated using the ‘USA BLS Consumer Price Index’ (Global
Fin code ‘CPUSAM’). The monthly price series has been transformed into a
quarterly series by taking the index value of the last month of the considered
quarter. Nominal dividends have been computed as follows

Dt =

(
ID(t)/ID(t− 1)

IND(t)/IND(t− 1)
− 1

)
IND(t)

where IND denotes the ”‘SP 500 Composite Price Index (w/GFD extension)”’
described above and ID is the ”‘SP 500 Total Return Index (w/GFD exten-
sion)”’ (Global Fin code ”‘ SPXTRD”’), which contains returns from price
changes and dividend payouts. In the notation of our model, ID(t) is equal to
Pt and IND(t)/IND(t− 1) equal to (Pt +Dt)/Pt−1.We first computed monthly
dividends and then quarterly dividends by adding up the monthly series. Fol-
lowing Campbell (2003), dividends have been deseasonalized by taking aver-
ages of the actual dividend payments over the current and preceding three
quarters.

Stock market survey data: The UBS survey is the UBS Index of In-
vestor Optimism.47 For all our calculations we use own portfolio return ex-
pectations from 1999:Q1 to 2007:Q2. We do not use data from 1998 due to
missing values. The micro dataset of the UBS survey consists of 92823 record.
Data-cleaning results in the removal of 18379 this records: Following Vissing-
Jorgensen (2004), we ignore survey responses with stated expected returns
larger than 95% in absolute value, which results in the elimination of 16380
observations. Furthermore, we ignore records, where the difference between
the respondent’s age and his stated stock market experience is less than 16
years, which eliminates 2378.48

The Shiller survey covers individual investors and has been kindly made
available to us by Robert Shiller at Yale University. The survey spans the
period 1999:Q1-2012:Q4. The CFO survey is collected by Duke University
and CFO magazine and collects responses from about 450 CFOs. The data
span the period 2000:Q3-2012:Q4.

46It is available at http://www.globalfinancialdata.com.
47See http://www.ropercenter.uconn.edu/data access/data/datasets/ubs investor.html.
48The two numbers do not add up to 18379, since some records satisfy both criteria for

elimination.
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Inflation expectations data: The Survey of Professional Forecasters
(SPF) is available from the Federal Reserve Bank of Philadelphia.

Trading volume: We have daily data from Thomson Reuters Financial
Datastream from 2nd January 1973 until 31st March 2014. We look at the
series ”‘US-DS Market”’ (TOTMKUS), an index of 1000 U.S. stocks traded
on NYSE and Nasdaq.

We compute quarterly trading volume as follows: Starting from daily trad-
ing volume (DS: VA) and daily market value (DS: MV) we compute daily
trading volume (VA/MV), i.e. the share of the market that is traded on each
day. We then aggregate this up, following Lo and Wang (2009), by summing
the shares over all trading days in the quarter, thus arriving at the share of
the market that is traded in a particular quarter up to the last trading day
of the quarter (end of March, June, September, December). Thus volume is
measured over the same time period where expectations are measured. More-
over, end of quarter PDs are associated with the trading volume accumulated
in the preceding 3 months.

2.12.2 Numerical solution approach

We now describe the solution strategy for determining the functions Si(·) and
τ i(·) and the associated lump sum rebate T i(·). To simplify notation we drop
all i superscripts. Also, instead of solving for the optimal stockholding function
S(·), we solve in our numerical approach for the optimal consumption dividend
ratio Ct/Dt = CD(St−1,

Pt

Dt
, Wt

Dt
,mt). There is a one-to-one mapping between

the S (·) policy and the CD (·) policy due to the flow budget constraint, which
implies

Ct

Dt

= St−1

(
Pt

Dt

+ 1

)
+

Wt + Tt

Dt

− τ t(St − St−1)
Pt

Dt

− St
Pt

Dt

,

and due to the assumption that τ t = τ(St−1,
Pt

Dt
, Wt

Dt
,mi

t) and Tt/Dt = τ |(St − St−1)Pt/Dt|.
We solve the first order condition by combining time iteration with an

endogenous grid point method, thereby avoiding any root finding steps in the
solution procedure. This considerably speeds up the numerical solution. We
now describe this procedure in detail.

We start with a guess for the future consumption policy CD(j)(·), the
transactions tax function τ (j)(·) and the lump sum rebate relative to dividends
TD(j)(·) = T j(·)/Dt, where the superscript (j) denotes the j-th guess in the
time iteration procedure and where all functions depend on the arguments
(St−1,

Pt

Dt
, Wt

Dt
,mt).

Given the guesses CD(j)(·), τ (j)(·) and TD(j) (·) and given an alternative
grid of current values (St,

Pt

Dt
, Wt

Dt
,mt) - note this alternative grid contains St not

St−1 - we can compute the updated consumption policy C̃D
(j+1)

(St,
Pt

Dt
, Wt

Dt
,mt)

and the updated marginal tax function τ̃ (j+1), which are both defined over the

90



2.12. APPENDIX

alternative grid, by iterating on the FOC (2.16). In particular, equation (2.16)
implies

(
C̃D

(j+1)
)−γ

(1 + τ̃
(j+1)
t ) =

δEP
t

(
CD(j)

)−γ
(

Dt+1

Dt

)1−γ (
Pt+1

Dt+1
(1 + τ

(j)
t+1) + 1

)

Pt/Dt

(2.17)
Given any point (St,

Pt

Dt
, Wt

Dt
,mt) on the alternative grid, we can compute the

distribution over future (standard) grid points (St,
Pt+1

Dt+1
, Wt+1

Dt+1
,mt+1), using the

perceived evolution over prices, dividends, wages and beliefs. Together with
the guesses CD(j)(·) and τ (j), this allows evaluating the r.h.s. of (2.17) using a
standard numerical integration method (we use deterministic integration based
on quadrature points). For future reference, let M(St,

Pt

Dt
, Wt

Dt
,mt) denote the

value of the r.h.s. of (2.17). The l.h.s. of equation (2.17) then implies that
we have also determined the value of the product (Ct/Dt)

1−γ(1− τ t), at every
alternative grid point.

It now remains to compute the updated functions CD(j+1), τ
(j+1)
t and

TD(j+1) which are defined over the standard grid (St−1,
Pt

Dt
, Wt

Dt
,mt). We do

so by fixing an arbitrary alternative grid point (S∗
t ,
(

Pt

Dt

)∗
,
(

Wt

Dt

)∗
,m∗

t ) and by

checking the range of possible situations St−1 ≶ S∗
t .

We begin by conjecturing St−1 = S∗
t . The flow budget constraint then

determines the implied consumption dividend ratio, i.e.,

Ct

Dt

= S∗
t +

(
Wt

Dt

)∗

. (2.18)

We can then check whether the tax rate τ
(j+1)
t associated with (2.18), defined

as (
Ct

Dt

)−γ

(1 + τ
(j+1)
t ) = M(S∗

t ,

(
Pt

Dt

)∗

,

(
Wt

Dt

)∗

,m∗
t ), (2.19)

satisfies τ
(j+1)
t ∈ [−τ ,+τ ]. If so, then we have found the optimal consumption

dividend ratio CD(j+1) and associated shadow tax rate τ
(j+1)
t at the standard

grid point
(
St−1 = S∗

t ,
(

Pt

Dt

)∗
,
(

Wt

Dt

)∗
,m∗

t

)
. The updated lump sum tax rebate

over dividends at this gridpoint is simply TD(j+1) = 0.
If the value of τ

(j+1)
t solving (2.19) satisfies τ

(j+1)
t > τ , then it must be

that S∗
t > St−1.

49 We therefore set τ
(j+1)
t = τ and determine the equilibrium

consumption dividend ratio CD(j+1) from equation (2.17), which delivers

(CD(j+1))−γ(1 + τ) = M(S∗
t ,

(
Pt

Dt

)∗

,

(
Wt

Dt

)∗

,m∗
t ).

49Reducing τ t so that it satisfies τ t ≤ τ requires that (Ct/Dt)
−γ increases, see the l.h.s.

of equation (2.17). From the flow budget constraint follows that this can only happen if
St−1 decreases below S∗

t , given the values for (Pt/Dt)
∗
and (Wt/Dt)

∗
.
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Finally, we use the budget constraint to compute the associated initial grid
point St−1, which must solve

CD(j+1) = St−1

((
Pt

Dt

)∗

+ 1

)
+

(
Wt

Dt

)∗

− S∗
t

(
Pt

Dt

)∗

, (2.20)

where we used the updated lump sum rebate function TD(j+1) = τ · (S∗
t −

St−1)
(

Pt

Dt

)∗
. We have thus determined CD(j+1), τ (j+1) and TD(j+1) at the

grid point
(
St−1,

(
Pt

Dt

)∗
,
(

Wt

Dt

)∗
,m∗

t

)
.

If the value of τ
(j+1)
t solving (2.19) satisfies τ

(j+1)
t < −τ , then we must

assume S∗
t < St−1 and thus set τ

(j+1)
t = −τ . Using (2.17) we can determine

the equilibrium consumption dividend ratio CD(j+1)

u′(CD(j+1))(1− τ) = M(S∗
t ,

(
Pt

Dt

)∗

,

(
Wt

Dt

)∗

,m∗
t ).

Again, we use the budget constraint to compute the associated grid point St−1,
which must solve

CD(j+1) = St−1

((
Pt

Dt

)∗

+ 1

)
+

(
Wt

Dt

)∗

− S∗
t

(
Pt

Dt

)∗

, (2.21)

where we use the updated lump sum rebate function TD(j+1) = −τ · (S∗
t −

St−1)
(

Pt

Dt

)∗

We perform the iterations described above until convergence of the func-
tions CD(j) (·), τ (j) (·) and TD(j).

2.12.3 Inaction Regions and Adaptive Grid Point Choice

A transaction tax leads to partially flat stock demand curves (inaction regions)
and thereby introduces a high degree of nonlinearity - non-differentiabilities
in the Pt

Dt
-dimension - into the consumption policy function CD(j) (·) and the

associated shadow tax τ (j) (·). While linear interpolation between two grid
points yields very accurate approximations of these functions for most Pt

Dt
val-

ues, this is generally not true close to the boundaries of the inaction regions,
if these boundaries are not elements of our discretized state space.

Including the Pt

Dt
boundaries of the inaction region into the discretized state

space poses two challenges: First, the exact locations of these boundaries are
not known a priori, but depend on the optimal solution. Therefore, the Pt

Dt

grid is required to change in every iteration. We describe in the sequel how we
use an adaptive grid point choice to ensure that our best guess for the inaction
region boundaries is always part of the Pt

Dt
grid. Second, these boundaries are

not independent of other states, but vary with (St−1,
Wt

Dt
,mt). Hence, the Pt

Dt

grid is not only required to change in every iteration of the algorithm, but
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also to be dependent on other state variables.50 We clarify below how we
interpolate our policy to states not contained in the discretized state space.

Adaptive grid points: Since the non-differentiability problem only oc-
curs in the Pt

Dt
-dimension, we fix a vector (St−1,

Wt

Dt
,mt) in the sequel. First,

we observe, that the interior of the inaction region in the Pt

Dt
-dimension can

be identified by the shadow tax function τ (·): The optimal consumption (or,
equivalently, stock holding) policy does not change in a neighborhood of the

current value of Pt

Dt
, if and only if τ

(
St−1,

Pt

Dt
, Wt

Dt
,mt

)
∈ (−τ , τ). Since in such

cases St−1 = St, the same relationship must hold for the function τ̃ defined
on the alternative ”state space” (St,

Pt

Dt
, Wt

Dt
,mt). In our solution algorithm, we

solve for this function τ̃ by solving equation (2.19) under the assumption that
consumption satisfies the no trade relationship (2.18) and set it to τ , when-
ever its value exceeds τ and to −τ , whenever its value is less than −τ . The
boundaries of the inaction region are therefore given for those values of Pt

Dt
,

for which no trade consumption defined by (2.18) and τ
(j+1)
t ∈ {−τ , τ} solve

equation (2.19). This yields two equations

(
S∗
t +

(
Wt

Dt

)∗)−γ

(1± τ) = M(S∗
t ,

(
P

D

)

±

,

(
Wt

Dt

)∗

,m∗
t )

which we solve for the adapted grid points
(
P
D

)
±
in each iteration of the above

algorithm.51 We make sure, that in our algorithm not only the functions
CD(j) (·), τ (j) (·) and TD(j), but also these adapted grid points converge. The
present approach is similar to the approach proposed in Brumm and Grill
(2014). The latter cover the discretized state space with simplices and look for
‘just binding’ constraints on each edge of these simplices. We only look at edges
that are orthogonal to the (St−1,

Wt

Dt
,mt)-hyperplane, which is computationally

more efficient within the present setup.

Interpolation: We fix the set of initial grid points GS, GWD, GPD, Gm

for the state space. Our discretized state space is, however, not given by the
product GS ×GWD ×GPD ×Gm, but instead by

GS ×GWD ×GPD ×Gm

∪ {(S,WD,PD+(S,WD,m),m) | (S,WD,m) ∈ GS ×GWD ×Gm}
∪ {(S,WD,PD−(S,WD,m),m) | (S,WD,m) ∈ GS ×GWD ×Gm}

The standard linear interpolation method on a Cartesian product of one-
dimensional grids is therefore augmented as follows: for a given query point

50Including all inaction boundaries for any combination of (St−1,
Wt

Dt

,mt) into a common
Pt

Dt

grid creates a computationally prohibitively large number of discretization points.

51Note, that
(
P
D

)
+

and
(
P
D

)
−

are functions of ((S∗
t ,
(

Wt

Dt

)∗
,m∗

t ), although this is sup-

pressed in our notation.
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(Sq,WDq, PDq,mq), we first search for indices i, j, k, such that Sq ∈ [Si, Si+1],
WDq ∈ [WDj,WDj+1] and mq ∈ [mk,mk+1] and then linearly interpolate the
policy in the PD-dimension for each combination (S,WD,m) ∈ {Si, Si+1} ×
{WDj,WDj+1} × {mk,mk+1} using as a PD grid the intersection of the dis-
cretized state space with the line parallel to the PD-axis that crosses (S,WD,m).
This yields eight interpolated policy values CDu,v,w with (u, v, w) ∈ {i, i+1}×
{j, j + 1} × {k, k + 1} of the function

(S,WD,m) 7→ CD(S,WD,PDq,m)

at the chosen closest (S,WD,m)-grid points. We then use ordinary three-
dimensional linear interpolation to obtain the interpolated policy value for
CD(Sq,WDq, PDq,mq), i.e.

CDinterp(Sq,WDq, PDq,mq)

=
∑

u=i,i+1

∑

v=j,j+1

∑

w=k,k+1

|Sq − Su||WDq −WDv||mq −mw|
(Si+1 − Si)(WDj+1 −WDj)(mk+1 −mk)

CDu,v,w

We proceed analogously for linear extrapolation.

2.12.4 Testing for Equality of Gain Estimates
in Table 2.4

Table A.2.1 reports the p-values for the null hypothesis H0 : g
i = gj for i 6= j.

Experience Groups 6-11 12-17 18-23 >23
0-5 0.33 0.11 0.01 0.00
6-11 - 0.30 0.00 0.00
12-17 - - 0.11 0.00
18-23 - - - 0.00

Table A.2.1: P-values for Equality of Gain Estimates

2.12.5 No Tax Rebates

Table A.2.2 reports the outcomes shown in table 2.8 in the main text for the
case where tax revenue is not rebated to investors (T i

t = 0 for all t,i). It shows
that findings a robust to making this alternative assumption on tax rebates.
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No Tax 1% Tax 2% Tax 4% Tax 10% Tax
E[PD] 135.77 137.11 140.18 143.99 152.01
std(PD) 122.13 122.89 125.54 128.29 131.48
corr(PDt, PDt−1) 0.98 0.98 0.98 0.98 0.98
std(rs) 11.63% 11.72% 11.97% 12.26% 13.78%
E[rs] 2.11% 2.12% 2.15% 2.19% 2.41%
corr(PDt, EtRt+1) 0.84 0.85 0.86 0.87 0.89
corr(TVt, TVt−1) 0.97 0.97 0.97 0.97 0.94
corr(TVt, PDt) 0.37 0.35 0.33 0.29 0.16
corr(TVt, |Pt/Pt−1 − 1|) 0.25 0.25 0.24 0.22 0.04

corr(TVt, std(Ẽ
i
tRt+1)) 0.95 0.94 0.93 0.91 0.87

# of booms per 100 yrs 1.82 1.92 2.08 2.32 2.88
average boom length (quarters) 32.42 31.97 31.44 30.72 28.24
average boom peak (PD) 491.01 487.57 484.54 478.82 468.96
E[TV ] relative to no tax 100.00% 97.33% 97.96% 96.69% 105.66%

Table A.2.2: Effects of introducing financial transaction taxes
(no tax rebate)
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Chapter 3

Smart Money? Investment
Professionals’ Expectations
about the Stock Market

3.1 Abstract1

Using a comprehensive data set based on three different surveys, I establish
new empirical facts on investment professionals’ expectations about future
stock market returns. I show that professionals’ expectations differ substan-
tially from those of households. While household expectations may be well-
described by an extrapolative model of expectations, investment professionals’
expectations show a more sophisticated pattern. At the same time, profes-
sionals’ expectations deviate from rational expectations, even when taking
into account potential asymmetries in their loss functions. Micro level evi-
dence confirms these findings, but also documents substantial heterogeneity
in the cross-section of investment professionals. The deviations from rational
expectations cannot be explained by simple models of information rigidities.
Overall, the results point to an important role for including investment profes-
sionals’ into models of financial markets although modelling their expectations
and interactions with other agents may be challenging.

3.2 Introduction

It is well known to economists that ”expectations matter” (Coibion and Gorod-
nichenko (2015)). But when does it matter most to take a closer look at how
expectations are formed? The way we think about expectations is particu-
larly consequential when deviations from rational expectations are large and
such deviations produce strong economic effects. In this case, explanations

1This chapter is based on the paper Beutel (2016).
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of economic phenomena and their implications may differ strongly from those
derived under the assumption of rational expectations.

There is a growing body of evidence that this is the case in financial mar-
kets. Using direct evidence from surveys, Vissing-Jorgensen (2004), Bacchetta,
Mertens, and Van Wincoop (2009), Greenwood and Shleifer (2014b), Green-
wood and Shleifer (2014b), and Adam, Marcet, and Beutel (2017) document
statistically and economically important deviations from rational expectations
about the stock market.2 Across several different surveys, respondents expect
high returns when stock prices are high, which is diametrically opposed to
models of rational expectations.3 Very similar patterns, have been found for
house price expectations, see Piazzesi and Schneider (2009), Case, Shiller, and
Thompson (2012) and Gelain and Lansing (2014). On the theory side, it has
been shown that taking into account the evidence on how expectations are
formed, may explain otherwise puzzling phenomena such as the ”Dot com”
boom bust in the U.S. stock market (Adam, Marcet, and Beutel (2017)) or
the U.S. housing boom prior to the financial crisis in 2008 (Gelain and Lansing
(2014), Hoffmann (2016)).4 Moreover, Winkler (2016) shows that incorporat-
ing extrapolative expectations into an otherwise standard DSGE macro model
with financial frictions has strong implications for the effects of monetary pol-
icy, too. In summary, there is a growing amount of empirical evidence docu-
menting deviations from rational expectations about stock prices (and house
prices) and these deviations have strong implications in models of asset prices
and even macroeconomic DSGE models.

However, while a consensus appears to have been reached on the extrapola-
tive nature of the average households’ stock return expectations, it should not
be forgotten that households are not the only players on the stock market. In
fact, the share of U.S. stocks owned directly by households decreased steadily
over the last 60 years. While direct ownership by households amounted to
91.6% in 1950 (Friedman (1996)) it has decreased to less than 32% in 2007
(Lewellen (2011)). Thus, around two thirds of the toal stock market value is
nowadays held by institutional investors, such as mutual funds, pension funds,
banks, insurance companies, hedge funds and other types of investors.

Therefore, knowing more about the expectation formation of these profes-
sional investors may be crucial for understanding asset price dynamics. Of
course, there is by no means a consensus on how professional investors affect
stock prices. While the traditional view (Shleifer and Summers (1990)) is that

2Given that these surveys contain explicit and simple questions, it is unlikely that findings
are due to respondents misunderstanding the questions. In anonymous surveys, it is also
unlikely that answers are distorted by reputation considerations, or other incentives. More-
over, the evidence is robust across several surveys, differing in the questionnaire (framing),
sampling period or index considered, and covers household respondents as well as CFOs.

3See Adam, Marcet, and Beutel (2017) for a formal statement of this point.
4Alternative explanations of asset price volatility include Campbell and Cochrane (1999),

and Bansal and Yaron (2004). Given that these are rational expectations models, they stand
in contrast to the empirical evidence on stock market expectations just described.
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rational arbitrageurs bring prices closer to fundamentals, De Long, Shleifer,
Summers, and Waldmann (1990) show that rational arbitrageurs may choose
to ”ride the bubble” and thereby aggravate booms and busts. At the same
time, there is a debate about how much discretion upon their investments in-
stitutional investors actually exert, or in other words how sizeable the fraction
of rational arbitrageurs is. While Lewellen (2011) argues that institutional
investors mostly just mimic the market portfolio, other authors argue that
institutional investors do show systematic investment patterns (Brunnermeier
and Nagel (2004), Gompers and Metrick (2001)).5 Thus, while there is a size-
able literature about the consequences of rational arbitrage and its limits (e.g.
Shleifer and Vishny (1997), Abreu and Brunnermeier (2003)), little evidence
exists about how smart or well-informed modern professional investors actually
are.

In this paper, I therefore take a closer look at the rationality of investment
professionals’ expectations.6 I do not want to take a stand on the impact of
these investors on financial markets or beyond, but rather focus on establish-
ing empirical facts on how they form expectations. These facts, could serve
as a useful ingredient to models including both households and investment
professionals.

My data consists of three different surveys of investment professionals’ ex-
pectations (ZEW Financial Market Survey, Livingston Survey, Shiller Profes-
sional Investor Survey) and one survey about household expectations (Shiller
Individual Investor Survey). To the best of my knowledge, this is the most
comprehensive data set on investment professionals’ stock market expecta-
tions used in the literature thus far. It allows me to draw conclusions which
are robust across all data sources, and to establish new findings - for instance
by directly comparing the expectations of households and investment profes-
sionals, by conducting forecast optimality tests at the level of the individual
forecaster, or by testing for information rigidities in investment professionals’
expectation formation process.

I establish that investment professionals’ expectations differ markedly from
those of households. While household expectations may be well described by

5Clearly, some professionals at institutions, e.g. mutual funds restricted to U.S. stocks,
have little discretion over their investment shares into the aggregate stock market. However,
it may be sufficient that some professional investors, for example hedge funds, have discretion
over their investments. Another important group of stock market participants are firms, who
decide on the quantity of equity issued in each period. Coibion and Gorodnichenko (2012)
think of banks’ expectations as proxies of the expectations of these firms in the context of
inflation, which may also not be unreasonable for stock market expectations if one thinks of
the consulting element included in banks’ services. Finally, professionals’ expectations may
also matter by influencing households’ expectations as in Carroll (2003).

6In the following, I will speak of investment professionals and households, where the
latter refers to the average household as identified by representative surveys. The former
refers to the group of people selected by the corresponding surveys, which focus on portfolio
and fund managers, securities analysts or other specialists at banks, insurance companies,
and other institutions.
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an extrapolative model where expectations comove positively with the price-
dividend ratio, this is not the case for investment professionals whose expec-
tations are not significantly correlated with the price-dividend ratio. Thus,
the expectation formation process of investment professionals has to be char-
acterized seperately and there is a potential role for this type of investors in
economic models.

To further characterize the expectation formation process of investment
professionals, I test three leading models of expectation formation: Full Infor-
mation Rational Expectations (FIRE), Sticky Information, and Noisy Infor-
mation.

Using standard tests of FIRE, based on the orthogonality property of fore-
cast errors with respect to information up to the time where the optimal fore-
cast was made, I reject forecast optimality for aggregate expectations of in-
vestment professionals. A recent paper by Patton and Timmermann (2007b)
shows that such rejections may in fact be due to asymmetric loss functions
rather than non-optimality. Therefore, I also employ a quantile-based test
proposed by these authors, which allows for asymmetric loss. However, fore-
cast optimality at the aggregate level is still rejected.

I then zoom in to the micro level and conduct tests for each individual
forecaster separately.7 I find that, while there is a substantial fraction of
individual respondents’ forecasts for which I reject forecast optimality, for the
majority of the respondents optimality cannot be rejected. Overall, while these
findings support the rejection of FIRE at the aggregate level, they also point
to substantial heterogeneity in the cross-section of investment professionals.

To further investigate the source of the rejection, I test whether investment
professionals’ expectations are consistent with the Sticky Information or Noisy
Information model. Coibion and Gorodnichenko (2015) recently showed, that
both of these models imply that aggregate forecast errors are predictable using
aggregate forecast revisions. I reject this implication as well. This could
suggest that frictions other than Sticky Information or Noisy Information may
be responsible for the rejection of FIRE. For example, respondents simply may
not know the true model of stock returns, such that they operate not only
under incomplete information but potentially also (or alternatively) under a
misspecified model of stock returns.

My paper is closely related to Coibion and Gorodnichenko (2015). However,
while they test for Sticky Information and Noisy Information in expectations
about inflation and several other macroeconomic variables, they do not con-
sider expectations about the stock market. Aretz, Bartram, and Pope (2011)
test forecast optimality of stock market expectations from the Livingston sur-
vey under asymmetric loss. While their results are broadly in line with my
findings, they restrict themselves to Livingston survey data, and do not run

7These micro level tests can only be conducted for the ZEW Survey data, as it is the only
of the three data sources considered for which sufficiently long time series from individual
respondents are available.
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tests separately for individual forecasters. Moreover, they do not consider the
tests proposed by Coibion and Gorodnichenko (2015).

The rest of the paper is structured as follows. Section 2 reviews the liter-
ature on theories and tests of expectation formation more broadly. Section 3
introduces the datasets. Section 4 establishes differences between household
and investment professionals’ expectations. Section 5 explains the economet-
ric approach and results for the tests of FIRE as well as of Sticky and Noisy
Information. Section 6 concludes.

3.3 Theories and Tests of Expectation Forma-

tion in the Literature

In this section I review theories and empirical tests of expectation formation
on the stock market, and more generally in macroeconomics. With respect to
the empirical literature, I focus on tests using survey data on expectations.
Survey data on expectations offer the possibility to test assumptions about
expectations directly and independent of a specific economic model, whereas
traditional tests of economic models are always joint tests of assumptions about
expectations and the structure of the economic model (preferences, technology,
market (in)completeness, exogenous processes, types of agents, etc.).

3.3.1 Expectation Formation on the Stock Market

Dominitz and Manski (2011) provide a useful framework for thinking about
stock market expectations. They categorize agents forecasting stock returns
into three types:8

1. Random-walk (RW) type: Believes that returns are distributed i.i.d.
over time. Thus, the RW type uses the long-run distribution of returns
to form beliefs about the future.

2. Persistence type (P) type: Believes that stock market performance is
persistent, such that recent past returns are indicative of near future
returns.

3. Mean-reversion (MR) type: Believes that stock returns mean-revert, such
that a sequence of high (low) returns, may indicate low (high) returns in

8Other approaches which do not lend themselves readily into these categories are Bar-
beris, Shleifer, and Vishny (1998) and Afik and Lahav (2015). The former present ”a model
of investor sentiment” based on psychological evidence, in which people see patterns in
truly random sequences (and therefore start using misspecified models). The latter is an
experimental setup capturing the idea, that in forecasting prices, people switch between
extrapolating the recent past or applying historical patterns (e.g. boom-bust episodes).

101



CHAPTER 3. SMART MONEY? INVESTMENT PROFESSIONALS’
EXPECTATIONS ABOUT THE STOCK MARKET

the near future.9

On the empirical side, Dominitz and Manski (2011) show, that while ag-
gregate expectations most closely resemble the persistence type, agents are
really heterogeneous across types. Using data from the Michigan Survey of
Consumers (from 2002-2004) they find that the shares of individuals of types
(RW, P, MR) are (0.27, 0.41, 0.32) in a basic classification.

As mentioned in the introduction, a number of papers have also found
stock market expectations to be of the persistence type. Graham and Harvey
(2001) find that expectations of CFOs (mainly from the manufacturing sec-
tor) comove with past returns. Hurd, Van Rooij, and Winter (2011) look at
a two year sample of dutch households’ stock market expectations and find
that expected capital gains are positively correlated with stock prices as well
as stock ownership. Vissing-Jorgensen (2004) documents similar patterns for
the UBS-Gallup survey, a representative survey of U.S. households. Adam,
Marcet, and Beutel (2017) update the evidence for the UBS-Gallup survey,
and additionally the CFO, and the Shiller individual investor survey. They
show that the survey data formally rejects Full Information Rational Expecta-
tions and can be well-explained by Bayesian learning from past price growth.
Adam, Beutel, Marcet, and Merkel (2015) show that the Bayesian learning
model also applies to subgroups of investors with different years of experience
in the stock market. Greenwood and Shleifer (2014b) present evidence from
these three surveys as well, and additionally from the American Association of
Individual Investor Sentiment Survey and Investors’ Intelligence newsletter ex-
pectations, confirming the findings of the previous literature, that households
tend to extrapolate past returns into the future.

3.3.2 Expectation Formation in Macroeconomics

In macroeconomics, microfounded theories of expectation formation lead to a
different typology of models of expectation formation. Figure 3.1 provides an
overview of existing theories.

In the Sticky Information model of Mankiw and Reis (2002), a randomly
drawn fraction λ of the population updates its information set each period,
while a fraction 1 − λ continues to use the information from last period, and
therefore operates with outdated plans. When agents update, they immedi-
ately acquire Full Information Rational Expectations (FIRE) beliefs for the
given period. This has important implications for the effects of monetary
policy on inflation and was sought to bring the model closer to the data.10

9The three types are not fully formalized in Dominitz and Manski (2011) which is reflected
here. Nevertheless, the three types are useful as a framework for subsuming several of the
existing approaches in the literature.

10Another well-known paper by Carroll (2003) can be thought of as providing microfoun-
dations for Sticky Information. In their setup, households derive their expectations not from
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In the Noisy Information model of Kydland and Prescott (1982), the level
of technology reflects both a permanent and a transitory component but agents
cannot separately identify these two components. In Woodford (2003), firms
observe aggregate demand subject to idiosyncratic errors. Note that in Kyd-
land and Prescott (1982), the Noisy Information is about an exogenous vari-
able, whereas it is about an endogenous variable in Woodford (2003).11

As illustrated in Figure 3.1, both the Sticky and Noisy Information models
are Rational Expectations models, given that while information is incomplete,
agents’ perceived model of the economy is correctly specified. By contrast, a
different class of models arises, when agents do not know the true model of
the economy. In such models, agents can have subjective beliefs about exoge-
nous processes, as in the Bayesian RE model of Barberis, Shleifer, and Vishny
(1998), and/or about endogenous processes, as in the Internally Rational Ex-
pectations Equilibrium of Adam and Marcet (2011).

Full Information Rational Expectations (FIRE) 
Knowledge about Model Incomplete (misspecified model) Information complete 

complete incomplete Updating of Info Sets infrequent each period Sticky Information RE Noisy Information RE e.g. Mankiw and Reis (2002)  e.g.  Kydland and Prescott (1982) Woodford (2003 
Incomplete Info About exogenous variable endogenous variable Bayesian RE e.g.  Barberis, Shleifer, Vishny (1998) Internally Rational RE e.g.  Adam and Marcet (2011) 

Figure 3.1: Overview of Theories of Expectation Formation

Mankiw, Reis, and Wolfers (2004) test empirically, which of the alterna-
tives, Sticky Information, FIRE, or adaptive learning is capable of explaining
survey data on inflation expectations. They reject FIRE after finding that
median inflation forecasts are biased and corresponding forecast errors are

original data but from forecasts of professionals published in news media. Each period they
encounter a newspaper article on the variables they have to forecast with probability λ,
which leads to a mathematically equivalent formulation to Mankiw and Reis (2002). Carroll
finds some empirical evidence for household expectations being influenced by those of pro-
fessional forecasters, using the Michigan Consumer Survey and the Survey of Professional
Forecasters. The updating rate λ may vary with the amount of newspaper articles published
in a given period.

11Another influential paper motivating noisy information is Sims (2003) which emphasizes
the role of limited information-processing capacities on behalf of the agents.
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predictable by both the previous period’s forecast error and recent macroeco-
nomic data. Comparing data from the Michigan Survey of Consumers, Survey
of Professional Forecasters (SPF), and Livingston Survey they also find that
forecasts of consumers are less efficient than those of professionals.

Given that not only past observations of inflation, but also other macroeco-
nomic variables affect forecasts, they conclude that a (naive) model of adaptive
expectations is also inconsistent with the data. They show that a calibrated
model of Sticky Information, in which agents update their beliefs infrequently,
is able to generate patterns of disagreement similar to those observed in the
surveys.

Andolfatto, Hendry, and Moran (2008) think that a Noisy Information
model can explain deviations from FIRE found in survey data. They argue,
that while in a Noisy Information model, agents’ use of the Kalman Filter
should lead to unbiased expectations and serially uncorrelated forecast er-
rors in population, in short samples, significant bias and autocorrelation will
be detected. Thus according to these authors, a Noisy Information rational
expectations model is able to explain deviations from FIRE found in short
samples.

Branch (2007) finds evidence for model-switching in expectation formation.
They compare three different setups: the static Sticky Information model of
Mankiw and Reis (2002), a Sticky Information model with time-varying updat-
ing frequency, and a model uncertainty framework, where each period, agents
choose between the full information VAR, adaptive learning and a naive model.
They suggest that the two dynamic models provide a better fit of survey data
on inflation expectations than the static Sticky Information model.

In a suite of two papers, Coibion and Gorodnichenko (2012) and Coibion
and Gorodnichenko (2015) present econometric tests which have a direct linkt
to an underlying microfounded theory of expectation formation. They there-
fore offer clear advantages relative to more ad-hoc approaches such as Dominitz
and Manski (2011).

Coibion and Gorodnichenko (2012) study the response of disagreement to
macroeconomic shocks. They test whether the following classes of models are
consistent with the data: Sticky Information, Noisy Information, or hetero-
geneous Noisy Information. They can reject the Sticky Information and het-
erogeneous Noisy Information models, as well as the alternative explanation
of heterogeneity in loss aversion by Capistrán and Timmermann (2009) and
therefore conclude that the basic Noisy Information model provides the best
characterization of the data. Their analysis is ”model-free” in the sense that
their results do not hinge on a specific economic model, but instead are tested
directly with survey data on expectations. On the other hand, the approach
does rely on the identification of shocks, which requires a number of auxiliary
assumptions.

A subsequent paper by Coibion and Gorodnichenko (2015) tests the above
mentioned theories of expectation formation directly, without the need to iden-
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tify shocks. Thus, the results of this paper hold independent of an economic
model and require only a minimum of auxiliary assumptions. Therefore, my
tests of the Sticky and Noisy Information models will build on Coibion and
Gorodnichenko (2015).

3.4 Data

3.4.1 Survey Data on Investment Professionals’ Expec-
tations

I use three distinct data sets on stock market expectations, namely the ZEW
Financial Market Survey, Livingston Survey, and Robert Shiller’s Stock Mar-
ket Confidence Indices Survey data.12 The most important characteristics of
these data sets are summarized in table 3.1.13 To my knowledge, this is the
most comprehensive collection of data on investment professionals stock mar-
ket expectations analyzed so far.

I have chosen to use these three data sets, in order to cover several features
which are desirable for the purpose of this paper. These are:

1. large cross-section dimension (reliable aggregate statistics)

2. long time series dimension (limit impact of sample period)

3. micro data available with panel structure (analysis at individual level)

4. expectations of both investment professionals and households available
(differences in expectations of the two groups)

None of the three data sets in isolation satisfies all of these points, but taken
together, the three data sets cover all of the desired features. While differences
between the three surveys naturally imply some degree of heterogeneity of
results, all main findings of my paper are robust across data sources.

12ZEW Financial Market Survey data provided by the Centre of European Economic
Research (ZEW) at Mannheim. Livingston survey data provided by the Federal Reserve
Bank of Philadelphia. Stock Market Confidence Indices data provided by International
Center for Finance at Yale School of Management. I thank the respective institutions and
their staff for making these data sets available to me.

13Corresponding realizations data has been obtained from Datastream (see Appendix for
details).
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ZEW Livingston Shiller Prof. Shiller HH
Respondent
Type

Professionals Professionals Professionals Households

Time Period 2003:02-2015:10 1952:6-2015:12 1989:7-2016:5 1999:2-2016:5
Frequency Monthly Semi-annually Monthly Monthly
Forecast of DAX S&P 500 Dow Jones Dow Jones
Cross-section
observations
per wave (mean)

233 32 26 28

Panel Yes Yes No No
Horizon (months) 6 6, 12, (18, 24) 1, 3, 6, 12, 120 1, 3, 6, 12, 120
T (# of waves) 153 128 249 190
Total # of obs. 34993 4134 6397 5245

Table 3.1: Overview of Survey Data Sources

The longest available time series of stock market expectations is found in
the Livingston survey, which is at the same time an (unbalanced) panel.14

However, its cross-section is quite small, which may lead to considerable noise
in cross-section aggregates. The latter is a crucial drawback given that the
Coibion and Gorodnichenko (2015) tests are based purely on cross-section
aggregates.

In contrast the ZEW Financial Market Survey has the largest cross-section.
It is a monthly survey of investment professionals (mainly from banks) who are
asked about their expected level of the German Stock Market Index DAX in
6 months and the uncertainty surrounding their expectation. As a (rotating)
panel with around 250 valid quantitative responses per month, spanning the
period from 2003:02 until 2015:10, it is clearly one of the most notable data
sets on stock market expectations. At the same time it appears to be relatively
little known in the international literature on stock market expectations (see
the above literature review).

Finally, the only data source which allows to directly compare the expecta-
tions of investment professionals and households are the Shiller Surveys, which
are conducted separately for these two groups of respondents. Similar to the
Livingston survey the cross-section dimension of the Shiller surveys can be
rather small.

Overall the ZEW Survey appears to offer the best quality of data, but it
has to be augmented by the Livingston survey to be sure that results also hold

14Unfortunately, the Livingston survey data on stock market expectations is known to
suffer from several problems before the Federal Reserve Bank (FRB) of Philadelphia took
over its administration in 1990, such as unclear base-values and several changes of the index
to be forecasted (see Aretz, Bartram, and Pope (2011)). Therefore, in line with Aretz,
Bartram, and Pope (2011), I restrict myself to Livingston data from 1990 onwards.

106



3.4. DATA

over long time periods and also hold for U.S. data. The Shiller data is needed
if one wants to have directly comparable data on investment professionals and
households. An additional benefit of the Shiller and Livingston data is that
they do not require the use of instruments in the estimation for tests of models
of information rigidities. Therefore, including these data sources also provides
a natural check of the results from the ZEW Survey, where instrumental vari-
able estimation is necessary to implement the tests proposed by Coibion and
Gorodnichenko (2015).

In choosing data sets, I have restricted myself to surveys including quan-
titative questions on stock market expectations (i.e. those where respondents
had to give a number for expected index level or expected return) and surveys
which are ongoing.15 Table 3.2 shows the exact questions used in each survey.

3.4.2 Stock Market Realizations Data

To compute forecast errors and price-dividend ratios, I use the following stock
market indices (datastream codes in parentheses): DAX-30 (DAXINDX; PI,
RI), S&P 500 (S&PCOMP; PI, RI), and Dow Jones Industrial Average (DJIN-
DUS; PI, RI). Details on how the price-dividend ratio is computed are given
in the appendix. I also obtain from datastream the 3-month treasury bill rate
(henceforth called the short term interest rate) for Germany (TRBD3MT) and
the U.S. (DTB3).

3.4.3 Notation Used Throughout the Paper

Let Ft(i)xt+h denote agent i’s h-period ahead forecast of variable x made at

time t, and let Ftxt+h ≡ 1
N

N∑
i=1

Ft(i)xt+h denote the average forecast across all

N agents in the cross-section.16 In this paper, xt+h will be the growth rate
from t to t+ h of a stock market index.

15The first knock-out criterion excludes many alternative data sources (including another
sub-question of the ZEW survey) on the grounds that it provides much coarser information
than quantitative data, and on the grounds that quantification would require auxiliary
assumptions which would reduce the decisiveness of the subsequent tests. The second knock-
out criterion excludes the UBS-Gallup survey which was terminated in 2007 (somewhat
unfortunately) rendering it the shortest time series of those mentioned here (it was also
not conducted as a panel and included only households). Another well-known data set is
the CFO survey, which started in 2001. The respondents were CFOs of U.S. companies
(mainly from the manufacturing sector). One might a priori tend to think of these CFOs
as investment professionals, however, it turns out that their aggregate expectations behave
very much like those of households (see Adam, Marcet, and Beutel (2017)). Thus, the
CFO survey expectations are difficult to classify neither as investment professionals nor as
households and thus shed little light on the questions considered in this paper.

16Using the median instead of the mean to aggregate the cross-section of forecasts does
not induce any major changes to my results.
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For the tests of information rigidities in section 5.2 I use the more precise
notation Ftxt,t+h instead of the simple notation Ftxt+h to make explicit that
the growth rate is computed over the time period from t to t+h. While for all
other sections, this would only complicate the notation given that we always
have s = q in Fsxq,t+h, the more precise notation is necessary when computing
forecast revisions in section 5.2, where we can have s 6= q.

ZEW Livingston Shiller Prof. Shiller HH

Level of DAX
in 6 months:
Min (90%):
Expectation:
Max (90%):

June 2016:
Please provide
your forecasts [...]:
STOCK PRICES
(S&P500)
Monthly Data,
End-of-Period
2016
29. Apr: 2065,30
30. Jun:
30. Dec:
2017
30. Jun:
Annual,
End-of-Period
2015: 2043,94
2016: Same as
Dec 30 2016
2017:

How much of a change
in percentage terms do

you expect in the following
(use + before your number to
indicate an expected increase,
a − to indicate an expected
decrease, leave blanks where

you do not know):
Dow Jones

Industrial Average
In 1 month:
In 3 months:
In 6 months:
In 1 year:
In 10 years:

Table 3.2: Exact Questions Asked in Each Survey

Notes: Exact questions are represented in very much the same format that

has been used in the respective survey questionnaires. For example, in the June

2016 Livingston survey, realized values for April 2016 and end of 2015 are given

to the forecaster, who is asked to provide her forecasts for the dates indicated.

The ZEW Financial Market Survey and the Shiller Survey are confidential, whereas

the Livingston survey data is publicly available. The data from the ZEW Financial

Market Survey is not to be confused with the ZEW Indicator of Economic Sentiment,

which is derived from a different question within the same survey (referring to the

general macroeconomic outlook).17

17More information about each survey can be found on the following websites:
http://www.zew.de/WS99-1
https://www.philadelphiafed.org/research-and-data/real-time-center/livingston-survey
http://som.yale.edu/faculty-research/centers-initiatives/international-center-for-
finance/data/stock-market-confidence-indices/stock-market-confidence-indices
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Depending on the survey, the relevant index for computing the growth rate
xt,t+h will be the DAX (ZEW survey), S&P 500 (Livingston survey), or the
Dow Jones (Shiller survey). Notice that the DAX is a return index, such that
in this case xt,t+h is a return (i.e. xt,t+h = Pt+h+Dt+h

Pt
, where Pt denotes the

ex-dividend price of the index, and Dt denotes the dividend), whereas the S&P
500 and the Dow Jones are price indices, such that xt,t+h is the price growth

rate (i.e. xt,t+h = Pt+h

Pt
). However, given that this is not important for the

econometric treatment, I use the the same notation for returns and for price
growth rates.

For the equations I use the general notation Ftxt+h to emphasize that they
could be applied to forecasts about any variable. In the tables with the empir-
ical results, I use more specific variable names, such as FtRt+h to emphasize
that this is an application to returns or respectively price growth rates on stock
market indices (in both cases, I use FtRt+h).

3.5 Differences Between Household and Invest-

ment Professional Expectations

In this section, I show that while aggregate stock market expectations of house-
holds may be well described by an extrapolative model (”persistence” type of
Dominitz and Manski (2011)), as found in several papers, this is not true for
the expectations of investment professionals, which show a markedly different
dynamic pattern. Therefore, a closer look at how investment professionals
form expectations seems warranted.

The extrapolative nature of household expectations is documented in Adam,
Marcet, and Beutel (2017) based on a variety of data sources on household ex-
pectations. The key stylized fact documented in this paper is that aggregate
household expectations, FtRt+h, comove positively with the price-dividend ra-
tio, PDt, i.e. corr(PDt, FtRt+h) > 0. The benchmark value for the correlation
used in Adam, Marcet, and Beutel (2017) is 0.79, i.e. expectations comove
strongly with the price-dividend ratio (see also Figure 2 in their paper). Thus
household expectations are high when the price-dividend ratio is high and low
during busts.

In contrast, when we look at the expectations of investment professionals in
Figure 3.2 we see a very different pattern. Investment professional expectations
peak during busts and are lower when the price-dividend ratio is high. Thus,
investment professional expectations appear to be counter-cyclical, i.e. closer
to Dominitz and Manski’s ”mean reversion” type.

As a consequence, I do not find robust evidence for a positive correlation
of investment professional expectations and the price-dividend ratio. Table
3.3 shows the correlation, corr(PDt, FtRt+h), for different data sources and
forecast horizons. For households, I find significant positive correlations at
all forecast horizons. In contrast, for investment professionals, I find that
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Figure 3.2: Investment Professionals’ Expectations and Market Valuations
Notes: Monthly, aggregate net stock return expectations, Ftxt+h, over the period

2003:02-2015:10 from the ZEW survey plotted on the right axis. Price-dividend ratio

of the DAX-30 plotted on the left axis (in per annum units).

correlations are not significantly different from zero, except for one out of
15 specifications (The only exception occurs at the 10 year horizon, when
the sample is restricted to coincide with the sampling period of household
expectations).1819

Thus, investment professional expectations do not seem to be well described
by a simple model of extrapolative expectations as in Adam, Marcet, and Beu-
tel (2017). For investment professionals, the pattern of expectations appears
to be more complex. In the following section I will therefore investigate in
more detail which model of expectation formation could potentially explain
the observed beliefs of investment professionals.

18Notice that under the hypothesis that the expectations of both types of investors have
the same correlation with the price-dividend ratio, a possible small sample bias (see Stam-
baugh (1999) or Campbell and Yogo (2006)) would affect the correlations of both types.
Thus, even when not correcting for a possible small sample bias in correlations (as there is
no standard way of doing so), the difference between the correlations shows that expectations
of both types of investors covary differently with the price-dividend ratio.

19Findings are robust to using the median instead of the mean to aggregate the cross-
section of expectations. Moreover, Adam, Beutel and Marcet (2016) document that using
real instead of nominal return expectations have only neglible effects on such correlations.
This is because fluctuations in asset price expectations of households are much larger than
fluctuations in inflation or inflation expectations.
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Survey (horizon)
Households
(1999-2016)

(1)

Professionals
(1999-2016)

(2)

Professionals
(sample start - 2016)

(3)

ZEW (6m) - -
0.126
(0.138)

Livingston (6m) -
−0.278
(0.268)

−0.050
(0.251)

Livingston (12m) -
−0.210
(0.275)

0.009
(0.260)

Shiller (1m)
0.265∗∗∗

(0.130)
0.098
(0.104)

0.067
(0.098)

Shiller (3m)
0.400∗∗∗

(0.134)
0.030
(0.112)

0.110
(0.106)

Shiller (6m)
0.42∗∗∗

(0.130)
−0.084
(0.124)

0.040
(0.116)

Shiller (12m)
0.343∗∗∗

(0.135)
−0.100
(0.128)

−0.010
(0.116)

Shiller (10y)
0.707∗∗∗

(0.183)
0.274∗∗∗

(0.123)
−0.025
(0.118)

Table 3.3: Comparison of Household and Investment Professional Expectations
- Correlation with Price-Dividend Ratio

Notes: The table reports estimates of the contemporaneous correlation between the

price-dividend ratio at time t, PDt, and the aggregate forecast made at time t

for different horizons h, FtRt+h, made by different groups of forecasters. Details

on the computation of the price-dividend ratio, PDt, are given in the appendix.

Column (1) reports correlations for households. Column (2) reports correlations

for professional investors, restricting the sample period to be identical with that of

households. Column (3) reports correlations for professional investors using the full

sample from each survey (see Table 3.1 for the respective sample periods). Significant

correlations in bold. Serial correlation robust standard errors (Roy and Cléroux

(1993)) in parentheses.
∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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3.6 The Expectations Formation Process of In-

vestment Professionals

This section presents tests of three of the most prevalent models of expecta-
tion formation, namely Full Information Rational Expectations (FIRE), Sticky
Information, and Noisy Information.

3.6.1 Are Expectations of Investment Professionals Con-
sistent with Full Information Rational Expecta-
tions?

Full Information Rational Expectations (FIRE) implies that agents’ forecasts
are optimal. An optimal forecast, F ∗

t (i)xt+h, is defined as minimizing the ex-
pected loss, L(xt+h, Ft(i)xt+h), associated with the forecast and the realization,
conditional on the forecaster’s information set at time t, It (see Patton and
Timmermann (2007a)):

F ∗
t (i)xt+h ≡ arg min

Ft(i)xt+h

E[L(xt+h, Ft(i)xt+h)|It], (3.1)

where It = {(xt−k, zt−k) : k ≥ 0} naturally includes all past realizations of
x, as well as additional predictor variables, z, up to the time where the fore-
cast is made. In the following, I first derive testable implications of FIRE
under mean-squared error (MSE) loss and test whether these are satisfied by
investment professionals’ expectations. Second, I derive testable implications
of FIRE under more general, potentially asymmetric loss functions, which have
been emphasized in the literature (Granger (1969), Patton and Timmermann
(2007b)).

Mean-Squared-Error Loss

Under mean-squared-error (MSE) loss optimal forecasts have several well-
known testable properties. Suppose the loss function is MSE:

L(xt+h, Ft(i)xt+h) ≡ (xt+h − Ft(i)xt+h)
2 . (3.2)

Then, the first-order condition of equation (3.1) reads:

0 = −2E[xt+h − F ∗
t (i)xt+h|It]. (3.3)

Thus, the optimal forecast under MSE loss is given by the conditional expec-
tation of xt+h:

F ∗
t (i)xt+h = E[xt+h|It]. (3.4)
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Moreover, Patton and Timmermann (2007a) show that forecast errors, et+h ≡
xt+h − F ∗

t (i)xt+h, resulting from optimal forecasts under MSE loss satisfy the
following properties:

1. h-period forecast errors are serially uncorrelated at lags greater than or
equal to h: Cov(et+h, et+h−k) = 0 for k ≥ h

2. Forecast errors resulting from forecasts made at time t, are uncorrelated
with information dated t or earlier: Cov(et+h, Ĩt) = 0, where Ĩt ∈ It.

These properties hold under the assumption that the process {xt} is covari-
ance stationary. Notice that, while this requires the unconditional mean and
variance of {xt} to be constant, the conditional mean and variance are allowed
to be time-varying. Thus, the class of time series processes under which the
above conditions hold is rather broad, including for instance ARMA processes
with GARCH dynamics.

Thus, I test FIRE by estimating the following specifications. Uncorrelated
forecast errors at lags greater than or equal to h imply β = 0 in the following
equation:

xt,t+h − Ftxt+h = c+ β(xt−h,t − Ft−hxt) + εt,t+h. (3.5)

Ftxt+h is the cross-sectional average of all forecasts made in t. Thus, in line
with most of the literature, I start with tests of forecast rationality at the
aggregate level. If all individual forecasts are optimal, β = 0 also has to hold at
the aggregate level. I discuss alternative specifications and conduct micro level
tests in section 5.1.3. The equation is estimated for each survey data source
separately. xt,t+h is the growth rate from t to t+ h of the index corresponding
to each survey, i.e. the growth rates of the DAX (ZEW survey), the S&P 500
(Livingston survey) or the Dow Jones (Shiller survey), respectively.

In the next specification, I test whether forecast errors are uncorrelated
with information dated t or earlier, i.e.whether β = 0 in the following equation:

xt,t+h − Ftxt+h = c+ βzt + εt,t+h. (3.6)

Here, zt could be any information contained in the information set at t. I
focus on the price-dividend ratio, PDt, and the short-term interest rate, it,
as predictor variables. Both of these variables have been shown to forecast
stock returns (Campbell and Thompson (2008), Cochrane (2008)). Campbell
and Yogo (2006) show that predictability regressions using a highly persis-
tent regressor such as the price-dividend ratio are subject to a small sample
bias which leads to over-rejection of the null-hypothesis of no predictability.20

20The finite-sample bias, which has been introduced into the return predictability liter-
ature by Stambaugh (1999), basically results from a violation of ”strict exogeneity” of the
regressor, such that standard finite sample theory based on strict exogeneity is not appli-
cable (Hayashi (2000)). The issue is that strict exogeneity would require the error term
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Interestingly, they also show that no correction is required when using the
short-term interest rate as regressor. Therefore, the short-term interest rate is
a particularly useful variable in these kind of regressions.

Thus far, the short-term interest rate has been a reliable return predictor
over the post-war sample (Campbell and Yogo (2006)). However, the short-
term interest rate has recently become uninformative, given that it has been
staying at zero almost constantly for several years (as some argue, perhaps
partly as a result of central bank policies in the aftermath of the financial
crisis.) Therefore, I have restricted the sample of the short-term interest rate
to exclude the period of near zero interest rates. For the U.S., I use interest
rate data only up to August 2008 and for Germany, where it took interest rates
longer to reach zero, I use interest rate data up to June 2012.

In both of the previous regressions, I denote the error term by εt,t+h, since
under the null-hypothesis of forecast optimality, it is the forecast error realized
in period t + h associated with an optimal forecast made in t. Thus, the
first of the two properties of optimal forecasts under MSE loss shown above
(Cov(et+h, et+h−k) = 0 for k ≥ h), implies that the error terms of the regression
will be serially correlated unless h = 1. This is the case for the ZEW survey,
where h = 6 since the sampling frequency is monthly and forecasts are made
6 months ahead. Similarly, it is the case for the Shiller survey except for the
1-month forecast. For the Livingston survey, h = 1 given that the sampling
frequency is at six month intervals and forecasts are made 6 months ahead (in
other words, there is no overlap of forecast intervals). Therefore, to account for
the serial correlation in the error terms, I use robust standard errors following
Newey and West (1987) and Andrews and Monahan (1992).

For equation (3.5), orthogonality of regressor and error term also follows
directly from property 1. For equation (3.6) orthogonality follows from the
second property of optimal forecasts, which implies that Cov(εt,t+h, zt) = 0.
Therefore, both equations can be estimated by OLS.

Table 3.4 shows the results of the tests of FIRE under MSE loss. I restrict
myself to forecasts at most at the 6 months horizon, given that Torous, Valka-
nov, and Yan (2004) as well as Boudoukh, Richardson, and Whitelaw (2008)
document that standard estimates of coefficients and R2 of return predictabil-
ity at long horizons are unreliable.

The results in Table 3.4 show that across all specifications (surveys and
horizons) the price-dividend ratio does not significantly predict investment
professionals’ forecast errors.21 Correcting for potential small-sample bias of

to be orthogonal to past, current and future regressors. However, while optimal forecast
errors are orthogonal to information dated t or earlier, they are not orthogonal to future

regressors. Therefore, contrary to the argument in Bacchetta, Mertens, and Van Wincoop
(2009), finite sample bias may also arise when predicting forecast errors, albeit the effect
may be quantitatively smaller than in pure predictability regressions (of future realizations).

21 Througout the paper, the number of observations, N, used in the regressions naturally
varies by survey data source and by forecast horizon. Sometimes, N can vary additionally
due to missing observations. For example, in the Shiller survey the number of observations
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the coefficient on the price-dividend ratio is therefore unnecessary given that
the bias goes in the direction of over-rejections of the null.

Rt+h−FtRt+h PDt it Rt−Ft−hRt

(1) (2) (3)

ZEW
(6 m)

-0.002
(0.002)

R2: 0.009

-0.038∗

(0.022)
R2: 0.114

0.007
0.176

R2: 0.000
147

Livingston
(6 m)

-0.002
(0.001)

R2: 0.067

0.034∗

(0.018)
R2: 0.201

0.469∗∗

(0.179)
R2: 0.220

46

Shiller
(6 m)

-0.003
(0.002)

R2: 0.037

0.028∗

(0.011)
R2: 0.174

0.175
(0.148)

R2: 0.029
143

Shiller
(3 m)

-0.001
(0.001)

R2: 0.009

0.012∗

(0.006)
R2: 0.088

0.264∗

(0.136)
R2: 0.070

120

Shiller
(1 m)

0.000
(0.000)

R2: 0.001

0.004∗

(0.002)
R2: 0.031

0.13
(0.08)

R2: 0.015
133

Table 3.4: Tests of Forecast Optimality under MSE Loss

Notes: The table reports estimates of the coefficient beta in equations (3.5) and

(3.6) Columns 1-3 refer to univariate regressions of the forecast error on different

potential predictor variables (including the lagged forecast error). N refers to the

number of observations used in the regression with lagged forecast errors as regressors

(i.e. column 3). Significant coefficients in bold. Newey West standard errors in

parentheses.
∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.

The non-rejection of forecast optimality with respect to the price-dividend
ratio is in line with the insignificant correlation of investment profession-
als’ forecasts and the price-dividend ratio documented in the previous sec-
tion. Given that the correlation between future realized returns and the

for the 3 months and 1 months horizon are lower than for the 6 months horizon due to
several missing observations at the 3 months and 1 months horizon (which occur mainly
between the beginning of the sample and the year 2002).
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price-dividend ratio is either zero or negative, investment professionals’ fore-
casts are in this sense more rational than those of households (for whom
corr(PDt, FtRt+h) is significantly positive). This may explain why for invest-
ment professionals FIRE cannot be rejected based on the price-dividend ratio,
whereas for households Adam, Marcet, and Beutel (2017) reject FIRE.

In contrast, the short term interest rate significantly predicts forecast errors
in all specifications. Coefficients are significant at the 10% level only, but
the fraction of explained variance of the forecast errors (R2) is substantial,
especially for the 6 month horizon forecast errors. The low significance level
of the short-term interest rate can at least partly be explained by the lower
number of observations resulting from the above mentioned sample restriction
due to the very low interest rate environment at the end of my sample. Lagged
forecast errors are significant for some of the specifications.22 Overall, the
hypothesis of FIRE is rejected.

Unknown Loss

The previous section made it clear that the standard properties of optimal
forecasts are derived under MSE loss. However, Patton and Timmermann
(2007b) argue that it is often likely that agents use asymmetric loss functions.
For example, stock market forecasters might dislike negative return surprises
(negative forecast errors) more than positive surprises. In this case, the prop-
erties of optimal forecasts derived above do not hold (Patton and Timmermann
(2007a)), unless conditional variances are constant (which clearly is not a real-
istic assumption for stock market returns). Thus, the above rejections of FIRE
under MSE loss may be due either to a violation of FIRE or of the MSE loss
assumption.

Since we do not know the loss function of our forecasters, we need properties
of optimal forecasts under general loss functions of unknown form. Such are
derived by Patton and Timmermann (2007b). Perhaps not surprisingly, it
turns out that some restrictions on the loss function and the data generating
process (DGP) are needed to obtain testable implications.

Specifically, let us assume that the loss function is a homogeneous function
solely of the forecast error, et,t+h ≡ xt+h − Ft(i)xt+h i.e.

L(xt+h, Ft(i)xt+h) = L(et,t+h) = g(a)L(e) (3.7)

for some positive function g.

22Correcting for the short-sample bias in estimated autocorrelations (using the result in

Sawa (1978), i.e. β = β̂+ 1+3β̂
T

) does not introduce any significant changes to the estimated
autocorrelations of forecast errors. Firstly, it can be seen from the formula, that for a
positive estimated coefficient, β̂, the corrected coefficient will always be even more positive
such that rejcections of forecast optimality would remain. Secondly, the bias is small for the
sample lengths considered here.
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As a second assumption, let us assume that the DGP has dynamics in
the conditional mean, µt+h,t, and variance, σ2

t+h,t, but no dynamics in higher
moments of the conditional distribution. Specifically, let the DGP be given by

xt+h = µt+h,t + σt+h,tηt+h, ηt+h|It ∼ Jh(0, 1), (3.8)

where Jh(0, 1) is some distribution with mean 0 and unit variance which may
depend on h, but does not depend on It.

Notice that again, the assumption on the DGP is rather mild and includes
a broad range of sophisticated DGPs. The assumption on the loss function
is also not very restrictive. It includes common loss functions such as mean
absolute error (MAE), so called lin-lin loss (which is a linear function from the
origin for positive and negative forecast errors, but slopes are different which
introduces asymmetry) or asymmetric quadratic loss. On the other hand, it
does exclude linear-exponential (Linex) loss.

Thus, it has to be noted that, under full generality with respect to the
loss function and/or the DGP, testable properties of optimal forecasts cannot
readily be derived (Patton and Timmermann (2007b) derive an ”impossibility
result” showing this explicitely.). This is were we approach the boundary of
what can be said about the optimality of forecasts under very general circum-
stances. Another complication is that macroeconomists usually think of FIRE
not in terms of point forecast optimality but in terms of agents’ knowing the
entire conditional distribution associated with the true DGP. However, here we
also reach the boundaries of what is currently possible, both conceptually and
practically given that the availability of survey data about density forecasts is
limited up to now. Thus, these points remain challenging for both theoretical
and empirical research.

Returning to what is currently feasible, let us suppose that the two as-
sumptions specified in equations (3.7) and (3.8) hold. Then, Patton and Tim-
mermann (2007b) show that the following binary variable is independent of
any element of the time t information set It:.

V ∗
t+h,t ≡ 1(xt+h ≤ F ∗

t (i)xt+h), (3.9)

where 1(Q) equals 1 if Q is true and zero otherwise. Thus, this indicator
variable is equal to 1 whenever the forecast error is negative and zero otherwise.
To see why this indicator variable is independent of time t information, first
note that the optimal forecast under (3.7) and (3.8) is given as

F ∗
t (i)xt+h = µt+h,t + σt+h,tθ

∗
h, (3.10)

where θ∗h depends on the loss function and Jh, but not on time t. The proof
of this result is given in Patton and Timmermann (2007b) and not reiterated
here. What is important to note, however, is that due to the conditional
variance component in the optimal forecast, forecast errors will be predictable
by time t information. This highlights the difference to MSE loss, where the
optimal forecast simply consists of the conditional mean µt+h,t.
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Moreover, given the optimal forecast under general loss functions, and let-
ting P [.|It] denote probabilities conditional on time t information, we have

P [V ∗
t+h,t = 1|It] = P [xt+h ≤ F ∗

t (i)xt+h|It]
= P [µt+h,t + σt+h,tηt+h ≤ µt+h,t + σt+h,tθ

∗
h|It]

= P [ηt+h ≤ θ∗h|It]
= q∗h

Thus, the optimal forecast F ∗
t (i)xt+h is the q∗h quantile of the distribution

of xt+h conditional on information It. Given that V ∗
t+h,t is a binary variable

and q∗h does not depend on t, V ∗
t+h,t is independent of any variable contained

in the information set at t.

Thus forecast optimality under these more general conditions implies β = 0
in

V ∗
t+h,t = c+ βzt + ut,t+h (3.11)

Our objective is to test whether the rejections of forecast optimality under
MSE loss also hold under more general loss functions. Therefore, I use those
variables for which optimality has been rejected under MSE loss, namely the
short-term interest rate it and lagged forecast errors xt−h,t − Ft−hxt as condi-
tioning variables. Table 3.5 shows the results of these tests.23

Given the coarser information used in the quantile-based approach, it is
not surprising that not all coefficients remain significant, as is the case for the
short-term interest rate. However, across both conditioning variables we still
get rejections for each of the three data sources and horizons considered. Thus,
these results indicate that rejections of forecast optimality are robust to using
more general, possibly asymmetric loss functions (at least as long as they are
homogeneous functions solely of the forecast error).

23For the empirical results, I use V ∗

t+h,t ≡ 1(xt+h > F ∗
t (i)xt+h) instead of V ∗

t+h,t ≡
1(xt+h ≤ F ∗

t (i)xt+h). The only difference between the two variants is that all β coefficients
change sign. In this way, coefficients in Table 3.5 have the same sign as those in Table 3
such that the two tables are easier to compare.
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1(Rt+h−FtRt+h > 0) it Rt−Ft−hRt N
(1) (2)

ZEW
(6 m)

-0.135∗∗

(0.052)
R2: 0.164

0.149
0.449

R2: 0.002
147

Livingston
(6 m)

0.069
(0.060)

R2: 0.047

1.589∗∗

(0.596)
R2: 0.128

46

Shiller
(6 m)

0.072∗∗

(0.035)
R2: 0.070

0.437
(0.469)

R2: 0.010
143

Shiller
(3 m)

0.054
(0.036)

R2: 0.041

1.32∗∗

(0.600)
R2: 0.038

120

Shiller
(1 m)

0.051
(0.033)

R2: 0.028

2.355∗∗∗

(0.839)
R2: 0.032

133

Table 3.5: Tests of Forecast Optimality under Unknown Loss

Notes: The table reports estimates of the coefficient beta in equation (3.11). Columns

1-2 refer to univariate regressions of the indicator variable 1(Rt+h−FtRt+h > 0) on
different potential predictor variables.The indicator variable 1(Rt+h−FtRt+h > 0)
takes the values 1 if Rt+h − FtRt+h > 0 and 0 otherwise. N refers to the number

of observations used in the regression with lagged forecast errors as regressors (i.e.

column 2). Significant coefficients in bold. Newey West standard errors in paren-

theses.
∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.

Micro-Level Evidence

In line with most of the literature, the above tests have all been conducted
at the level of aggregate expectations. This has (at least) two disadvantages:
Firstly, non-rejection of forecast optimality can (in principle) occur, even when
all forecasters in fact make sub-optimal forecasts. This is the case when het-
erogenous biases in individual forecasts have offsetting effects such that they
average out in the aggregate forecast. Secondly, the other extreme can also
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occur: Even if only one (or only a few) of the forecasts is (sufficiently) sub-
optimal, while all other are optimal, the aggregate forecast would be sub-
optimal. Notice that the first problem remains even as the number of fore-
casters in the cross-section, n, goes to infinity, whereas the second problem
vanishes asymptotically, as n → ∞.24,25

To address these issues, I present evidence at the individual forecaster
level, complementing the tests at the aggregate level. I do this by running
the above tests of FIRE for each forecaster separately. To guard against small
sample problems (and to make results comparable across forecasters), I do this
for all forecasters with a certain minimum number of observations. Thus, I
report findings for the ZEW survey in two setups with a minimum of 50 and
100 observations per forecaster, respectively. For the Shiller survey, tracking
individuals over time is not possible, given that no identifiers for individuals
are recorded. For the Livingston survey, given that there are less than 9
responses per forecaster on average, tests at the individual forecaster level are
also not meaningful. (Grouping forecasters by affiliation is also severly limited
by the fact that we have on average only 32 obervations per survey date for the
Livingston survey.) Thus, I focus on zooming into the ZEW survey, in which
we have Nmax = 296 forecasters with at least 50 forecast error observations,
and N ′

max = 138 forecasters with at least 100 forecast error observations, such
that tests at the individual level are meaningful.

Table 3.6 shows the results of running the specifications (3.5), (3.6), and
(3.11) for each individual forecaster separately.

For different significance levels a ∈ (0.01, 0.05, 0.1), I calculate the share of
forecasters for which optimality is rejected, sα. When running a large number

24These issues have also been noted in the literature. See Bonham and Cohen (2001) and
Pesaran and Weale (2006) for a more formal discussion of these and related issues when
aggregating or pooling forecasts.

25Potential alternatives for tests using micro-data could be to pool all individual observa-
tions or to use panel fixed effects. However, in the context of testing for forecast optimality,
both of these approaches suffer from significant drawbacks. Therefore, I do not include them
in this paper.
First, due to the common slope assumption, pooled and standard panel fixed effects

regression also suffer from the two fundamental disadvantages just desribed for tests at the
aggregate level. In addition, pooled regression and panel fixed effects come with additional
problems specific to each of them.
A major additional problem with pooled regression is that a common intercept across all

forecasters is assumed. When this is not the case, the estimated slope coefficient can be
biased. Consider for example the case of regressing forecast errors on lagged forecast errors.
Suppose that forecast optimality holds, but forecasters have heterogenous asymmetric loss.
In this case, each forecaster’s forecast errors are serially uncorrelated but each forecaster has
a different unconditional bias. Pooling forecasts (and therefore not accounting for each fore-
caster’s unconditional bias) would then detect forecast error autocorrelation and wrongfully
conclude a rejection of forecast optimality.
The additional problem with panel regressions is that they can be particularly strongly

affected by short-sample bias, which would lead to over-rejection of the H0 (see Hjalmarsson
(2008)).
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of level α tests, we would of course expect a share of ”chance” rejections
due to estimation uncertainty. Therefore, I report ”excess” rejection rates,
defined as sα − α. When these are positive, forecast optimality is rejected
for more forecasters than could be explained by randomness in the estimated
coefficients. The results in Table 3.6 show that excess rejection rates when
using lagged forecast errors as conditioning variables are negative or close to
zero in all specifications. In contrast, excess rejection rates are substantial
when using the short term interest rate, it, as the conditioning variable. For
example, for tests at level a = 0.05, I find an excess rejection rate of almost
30% for forecasters with at least 50 observations (Panel A), and a rate of 15%
for those with at least 100 observations (Panel B). Differences between the two
panels may at least partly be explained by the fact that forecasts in Panel B
are more likely to include the period following the Lehman collapse in 2008,
where returns and forecast errors have been difficult to predict by the short-
term interest rate. An alternative explanation could be self-selection, where
more successful forecasters stay longer in the sample.

”Excess” Rejection Rates, ZEW (6m)
Panel A.
minT= 50 MSE Loss Unknown Loss

it Rt−Ft−hRt it Rt−Ft−hRt

(1) (2) (3) (4)
α = 0.01 0.132 0.023 0.163 0.014
α = 0.05 0.295 0.011 0.353 -0.017
α = 0.1 0.404 -0.015 0.466 -0.025

N 226 212 226 212

Panel B.
minT= 100 MSE Loss Unknown Loss

it Rt−Ft−hRt it Rt−Ft−hRt

(1’) (2’) (3’) (4’)
α = 0.01 0.058 0.011 0.024 0.011
α = 0.05 0.153 -0.008 0.221 -0.008
α = 0.1 0.273 -0.047 0.392 -0.026

N 59 95 59 95

Table 3.6: Tests of Forecast Optimality at the Individual Forecaster Level

Notes: The table reports ”excess” rejection rates from running equations (3.5), (3.6),

(MSE Loss) and (3.11) (Unknown Loss) for each individual forecaster of the ZEW

Financial Market Survey separately. Rejection rates at level a measure the share of

forecasters, sα, for which a given predictor variable is significant at level a. ”Ex-
cess” rejection rates are defined as sα −α. Panel A and B report ”excess” rejection
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rates for all forecasters with more than 50 or respectively 100 (not necessarily ad-

jacent) observations. The usual Newey West standard errors have been used in the

significance tests.

Notice that, in contrast to the previous tables, N refers to the number of fore-

casters upon which the ”excess” rejection rates are based. N reported in Panel A

and B is the number of forecasters with at least 50 or, respectively, with at least

100 observations in the corresponding regression. Thus, for example, in Panel A,

column (1), N = 226, is the number of forecasters, which have at least 50 matching

observations for both the dependent variable (Rt+h − FtRt+h) and the predictor

variable (it) in equation (3.6). This N is substantially lower than Nmax, since the

short term interest rate it is restricted to the period up to June 2012, which excludes

the last 40 survey dates, thereby reducing the number of forecasters which have at

least 50 observations in both it and Rt+h − FtRt+h. Similarily, in column (2), N is

based on the set of observations for which both Rt+h − FtRt+h and Rt − Ft−hRt

(with h = 6) are available. Every time a forecaster is skipping a survey (which

happens frequently), two observations are lost for her regression at the individual

level. Thus, again, we expect N < Nmax. Whether there are more or less responses

in column (1) compared to column (2), or in column(1’) compared to column(2’) de-

pends on the exact pattern of responses and non-responses and its interaction with

the sample restriction on it. In Panel A, response behavior dominates N , whereas

in Panel B, the sample restriction on it dominates N . (Given that the restriction

limits the maximum possible number of observations per forecaster to 113, it also

strongly limits the number of forecasters with more than 100 observations).

Overall, the conclusion is that, while we cannot reject forecast optimality
for the majority of the respondents, a fraction of up to around 30 % of the re-
spondents’ forecasts are sub-optimal and therefore inconsistent with the FIRE
hypothesis. Thus, one finding of our analysis thus far is, that there is a sub-
stantial amount of heterogeneity in the optimality of investment professionals’
forecasts. The other finding is that FIRE is rejected at the aggregate level
and this rejection is supported also by the micro level evidence. In the next
section, we will therefore test two explanations for the deviations of FIRE,
namely Sticky Information and Noisy Information.

3.6.2 Can Canonical Models of Information Rigidities
(Sticky Information or Noisy Information) Explain
the Deviations from FIRE?

A novel prediction of both the Sticky Information model and the Noisy In-
formation model of expectations formation, proposed by Coibion and Gorod-
nichenko (2015), is that aggregate forecast errors should be predictable by
revisions of aggregate forecasts, i.e. β > 0 in:

xt,t+h − Ftxt,t+h = c+ β(Ftxt,t+h − Ft−1xt,t+h) + νt,t+h. (3.12)
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While this is a special case of regressing forecast errors on information dated
t or earlier, a key advantage of this specification is that the estimated param-
eter β maps directly into the underlying degree of information rigidity. Thus,
in contrast to standard tests of FIRE, it has a direct economic interpretation.

In the Sticky Information model (i.e. provided β > 0) we have that the
fraction of the population, λ, who do not update their information set in a
given period is given by λ = β

1+β
. In the Noisy Information model, the Kalman

gain G, governs the degree of information rigidity 1 − G, which is given by
1−G = β

1+β
.

The derivation of equation (3.12) for Sticky Information is given in the
appendix (for the derivation under Noisy Information see Coibion and Gorod-
nichenko (2015)). Notice that for the Sticky Information model, no assumption
is needed, apart from the assumption that only a fraction 1 − λ of the pop-
ulation is updating each period. Thus the predicition holds independent of
an economic model, and independent of the specific exogenous or endogenous
stochastic processes. For the Noisy Information model, equation (3.12) re-
quires the assumption that xt follows an AR(1) process. More general AR(p)
and VAR(p) processes are discussed in Coibion and Gorodnichenko (2015).
However, tests of these are infeasible given my data set, as they would require
forecast revisions at p different horizons.

As Coibion and Gorodnichenko (2015) point out, this prediction of the
Sticky and the Noisy Information model only holds at the aggregate level.
In the Sticky Information model, agents randomly update their information
sets. If an agent does not update her information set, the forecast revision is
zero, if she does update, she updates to FIRE such that the resulting forecast
error is uncorrelated with her information set at time t (which includes her
lagged revisions). In the Noisy Information model, agents use the Kalman
filter, which implies that resulting forecast errors should also be unpredictable
using their information set. Thus equation (3.12) can only be tested at the
aggregate level.

The tricky part in estimating equation (3.12) is the construction of the fore-
cast revisions Ftxt,t+h − Ft−1xt,t+h. Notice that these require forecasts made
at different points in time about the same target date. In contrast, my survey
data contains forecasts made at fixed horizons i.e. Ftxt,t+h, Ft−1xt−1,t+h−1. For
the Livingston survey, I can use forecasts at the 6 months and 12 months hori-
zon to construct 6 months horizon revisions Ftxt,t+6 − Ft−6xt,t+6, by defining:

Ft−6xt,t+6 =
Ft−6xt−6,t+6

Ft−6xt−6,t

. (3.13)

Thus, we can compute an implied lagged forecast of xt,t+6 by dividing the
lagged 12 months forecast by the lagged 6 months forecast. For the Shiller
survey, I can use the same procedure to construct 6 months revisions, and
additionally I can construct 3 months revisions from 3 and 6 months forecasts.

For the ZEW survey, I only have one forecast horizon (6 months). In this
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case, only a modified version of equation (3.12) can be estimated, namely:

xt,t+h − Ftxt,t+h = c+ β(Ftxt,t+h − Ft−1xt−1,t+h−1) + ν ′
t,t+h.(3.12’)

This means replacing forecast revisions by forecast changes at fixed horizon.
Under the two models of information rigidities, the error term ν ′

t,t+h then
contains the FIRE error (orthogonal to information dated t or earlier) plus the
following term:

β(Ft−1xt−1,t+h−1 − Ft−1xt,t+h). (3.14)

In this case, the error term ν ′
t,t+h is correlated with the regressor, such

that estimating (3.12’) by OLS would result in biased coefficients. Therefore,
I estimate this equation using an instrumentable variable (IV) approach. As
usual, the instrument has to be correlated with the endogenous variable (here:
changes in 6 months horizon stock return forecasts), and uncorrelated with
the error term (difference between t− 1 forecasts about returns from t− 1 to
t+h−1 and from t to t+h). I use the change in disagreement among forecasters
between t − 1 and t (measured as the change in the cross-sectional standard
deviation of forecasts). It turns out that this variable is highly correlated with
the endogenous variable and therefore a useful instrument. At the same time,
this variable becomes known only in period t, such that exogeneity of the
instrument is given.

Table 3.7 shows the results of the tests of information rigidities. Findings
are not consistent with the two models of information rigidities. All estimated
β coefficients are negative and only the coefficient for the ZEW survey is in-
significant, likely due to the reduced precision introduced by the need to use
instruments. In sum, the consistently negative estimates of β reject the possi-
bility that the stock market expectations of investment professionals have been
generated by these (simple) canonical models of information rigidities.

This is notable, given that these findings stand in contrast to those found
by Coibion and Gorodnichenko (2015) for inflation expectations. This must
not be a contradiction, but could reflect rational behavior of respondents when
confronted with cost-benefit analysis of information acquisition and processing.
In the context of a Sticky Information model, it may be perfectly rational to
update information sets infrequently (e.g. on average every second quarter
as the estimates of Coibion and Gorodnichenko (2015) suggest) given that the
cost of updating inflation forecasts every quarter may be larger than its benefit.
However, for the stock market, whose price index is far more volatile than the
CPI, it may be very costly, not to update expectations at least once a month
(ZEW) or respectively every quarter (Shiller 3m) or semi-annually (Shiller 6m
and Livingston 6m).

The bottomline is that it is likely that agents use different models of ex-
pectation formation for different economic variables (e.g. inflation and stock
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returns). To my knowledge, this finding is not yet taken into account in eco-
nomic models, although it could potentially lead to interesting new findings.26

Rt+h−FtRt+h FtRt+h−Ft−kRt,t+h R2 N IV

ZEW (6m)
- 0.754
(0.720)

1st stage: 0.510
2nd stage: 0.007

152 Yes

Livingston (6m)
-1.932∗∗∗

(0.535)
0.116 46 No

Shiller (6m)
- 1.107∗∗∗

(0.349)
0.070 143 No

Shiller (3m)
- 0.800∗∗

(0.380)
0.061 118 No

Table 3.7: Tests of Information Rigidities

Notes: The table reports estimates of the coefficient beta in equation (3.12) and

respectively (3.12’), where forecast errors are regressed on lagged forecast revisions.

The last column indicates whether the equation had to be estimated by Instrumental

Variables (IV) or could be estimated by OLS. Significant coefficients in bold. Newey

West standard errors in parentheses.27,28,29

∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.

26Of course, the possibility remains that at higher frequencies (say daily or hourly) the
sticky or noisy information model is a better approximation to the stock market expectation
formation process than at monthly, quarterly or semi-annual frequency. Nevertheless, given
that most (macro-)economic models are formulated at lower frequencies (e.g. quarterly),
the failure of sticky and noisy info at these frequencies remains important.

27The number of observations for the ZEW survey is higher than in the previous tables,
as forecast errors have to be lagged by 6 months to construct lagged forecast errors, whereas
equation (3.12’) requires only a 1 month lag.The number of observations for Shiller (3m)
is slightly lower, because in order to construct the corresponding revisions, observations at
both the 3 months and the 6 months horizon have to be used.

28 Forecasts may also change because of changes in the composition of forecasters. How-
ever, including only forecasters who were present in the two surveys used to construct forecast
revisions does not introduce any substantial changes to the results.

29Note that the persistence of forecast revisions is much lower than that of the price-
dividend ratio. Therefore, in line with Coibion and Gorodnichenko (2015), I do not correct
for a potential small sample bias.
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3.7 Conclusion

This paper presented evidence from one of the most comprehensive data sets
on investment professionals’ stock market expectations, consisting of the ZEW
survey, the Livingston survey and the Shiller survey, covering the period from
1990 to 2016 in the U.S. and Germany.

I find that professionals’ expectations follow a markedly different pattern
than those of households. While households’ expectations comove positively
with market valuation measured in terms of the price-dividend ratio, profes-
sionals’ expectations peak during busts. Thus, while households’ expectations
may be well-described by an extrapolative model of expectations where agents
expect high returns after a sequence of past high returns, professionals’ expec-
tations are more of a contrarian type. Therefore, establishing separate facts
on investment professionals’ expectations and including these types of agents
into models of financial markets is potentially crucial for such issues as un-
derstanding financial bubbles and the impact of monetary policy on financial
markets.

Therefore, this paper further characterizes the expectations of investment
professionals. I find that Full Information Rational Expectations (FIRE) is
rejected, even when taking account potentially asymmetric loss functions. I
also add to the literature by showing that these tests are not just rejected at the
aggregate level, but also for a substantial share of the individual forecasters.
At the same time, these tests also reveal significant heterogeneity in the cross-
section of forecasters.

Moreover, this paper is the first to apply the methodology of Coibion and
Gorodnichenko (2015) for testing whether stock market expectations are con-
sistent with simple models of information rigidities. In contrast to previous
findings about inflation expectations, I show that simple Sticky or Noisy Infor-
mation models cannot explain the deviations from FIRE in the context of stock
market expectations. Thus, exploring the consequences of different expecta-
tion formation models for different economic variables might be an interesting
avenue for future research.

With respect to further pinning down the expectation formation process
of investment professionals, this paper has also highlights the importance of
high quality survey data. One central aspect is that for tests at the individual
forecaster level, it is important that forecasters stay in the survey long enough.
This is the case for the ZEW survey. Moreover, for testing forecast optimality
under asymmetric loss functions, it could be beneficial to have information
about density forecasts (e.g. to infer conditional variances) included in the
surveys. For testing models of information rigidities, it is important to have
forecasts at several horizons available.
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3.8 Appendix

3.8.1 Derivation of the Prediction of the Sticky Infor-
mation Model

Following Coibion and Gorodnichenko (2015), suppose that each period only
a fraction 1 − λ of the population updates their information set (and conse-
quently their forecast). When they update, they update to the full information
Rational Expectation (FIRE). Let FIRE expectations be denoted Etxt+h and
let the average forecast across agents at time t of a random variable realized
at time t+ h be denoted by Ftxt+h. Then we have:

Ftxt+h = (1− λ)F updaterst
t xt+h + λF non−updaterst

t xt+h

= (1− λ)Etxt+h + λ((1− λ)Et−1xt+h + λF
non−updaterst−1

t−1 xt+h)

= (1− λ)
∞∑

k=0

λkEt−kxt+h,

or equivalently,

Ftxt+h = (1− λ)Etxt+h + λFt−1xt+h, (3.15)

such that the current average forecast Ftxt+h is a weighted average of the
current rational expectation of xt+h and last period’s average forecast.

Let the full information rational expectation (FIRE) expectational error
xt+h − Etxt+h be denoted νt+h,t, i.e.

xt+h − Etxt+h ≡ νt+h,t. (3.16)

Using definition (3.16) in (3.15) we obtain an equation of the form in the text:

xt+h − Ftxt+h =
λ

1− λ
(Ftxt+h − Ft−1xt+h) + νt+h,t,

where vt+h,t is the FIRE expectational error, which is (under MSE loss) un-

predictable using information dated t or earlier.

3.8.2 Calculation of the Price-Dividend Ratio

By the definition of returns we have that dividends between t− h and t are:

D(t− h, t) = R(t− h, t)P (t− h)− P (t). (3.17)

Thus, given a price index P (t) and a return index INDR(t), we compute
R(t−h, t) = INDR(t)/INDR(t−h) and D(t−h, t) as in (3.17). For example,
when t is at monthly frequency, we can compute quarterly dividends for h = 3.
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The price dividend ratio is then simply given as:

PDt =
P (t)

(D(t− h, t) ∗ 12/h) ,

where the term 12/h normalizes PDt to per annum units. I compute price-
dividend ratios for each observation date in the sample (i.e. daily for the ZEW
and Shiller surveys and monthly for Livingston).30

30Dividends could additionally be deseasoned as in Adam, Marcet, and Beutel (2017).
This can make sense when fitting a theoretical model (which typically does not include
seasonal effects) to empirical data. However, for the purpose of evaluting forecasts it is
unnecessary, therefore I do not use deseasoning. In any case, the difference between the two
methods is quantitatively minor since most of the variation in the price-dividend ratio is
driven by the price component.
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