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Abstract

The recognition heuristic (RH) is one of the most prominent models of inferential

decision making, but also one of the simplest. Its basic premise is straightforward:

Whenever a decision maker is evaluating two objects according to a given criterion

(e.g., population size), one object being recognized and the other not, recognition

by itself is used to make an inference, ignoring all further knowledge one might

have about the recognized object (Goldstein & Gigerenzer, 1999). Surprisingly, this

simple strategy can be quite accurate. This accuracy stems from an exploitation

of the environmental structure. In fact, for objects in many domains (e.g., world

cities) there is a correlation between recognition and the corresponding criterion

value (e.g., population size). For example, if a city name is recognized and an-

other one is not, the former city is likely to be more populous than the latter one.

Goldstein and Gigerenzer assumed this to be the case because recognition judgments

are positively correlated with the criterion. However, Erdfelder, Küpper-Tetzel, and

Mattern (2011) questioned whether it makes sense to rely on the recognition cue

regardless of the memory strength associated with a certain recognition judgment.

Specifically, they proposed that memory strength, and not recognition judgments

per se, should influence reliance on recognition. Erdfelder et al. therefore proposed

to extend the RH to the memory state heuristic (MSH) by incorporating the no-

tions of a well-supported recognition memory model, the two-high-threshold model

(Snodgrass & Corwin, 1988), into the theory. The MSH assumes that three orderly

defined memory states can underlie recognition judgments - recognition certainty,

uncertainty, and rejection certainty - and that, when comparing two objects, people

should infer that the one in a higher memory state scores higher on the given crite-

rion. Moreover, it predicts that the higher the distance between memory states of

the objects under comparison, the higher should be the preference for objects in a

higher state. This implies that the MSH should be used more often when the objects

under comparison are in recognition certainty and rejection certainty, respectively,
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than when they are in recognition certainty and uncertainty, or uncertainty and

rejection certainty. It follows that, unlike the RH, the MSH’s spectrum of predic-

tions goes beyond so-called recognition pairs (pairs where one object is judged as

recognized and the other as unrecognized), and cover any combination of objects in

different memory-states.

Erdfelder et al. (2011) tested qualitative predictions of the MSH for recognition

pairs, but some questions were not addressed by them. The present thesis describes

a research program developed to overcome that gap and test some of the predictions

that stem from the core assumptions of the MSH. The first manuscript tested qual-

itative predictions of the MSH which complement the work developed by Erdfelder

et al. (2011). By relying on a simple assumption - that the uncertainty memory

state is associated with longer recognition or rejection latencies than the certainty

memory states - we tested the MSH predictions for three types of pairs: recogni-

tion pairs (one object is recognized and the other is not), knowledge pairs (both

objects are recognized) and guessing pairs (none of the objects is recognized). In a

second manuscript, we relied on a formal model to test the MSH against the RH

and knowledge integration accounts. We found evidence in favor of the MSH across

16 published data sets. Finally, in a third manuscript, we developed and success-

fully tested a new paradigm and formal model of the MSH, which incorporates its

predictions for all possible combinations of memory states.

In sum, the present thesis describes converging support for the MSH. From qual-

itative predictions to tests of a formal implementation of the MSH, I show how

memory states predict reliance on recognition and are correlated with the criterion

value. Therefore, I conclude that the inspiring but nevertheless simplistic RH theory

as originally proposed by Goldstein and Gigerenzer (1999) must be abandoned in

favor of an account that gives a more fine-grained characterization of the underlying

mnemonic processes involved in inferential decision making.
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Manuscripts

This thesis is based on three manuscripts which have been published or are currently
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2. Castela, M., Kellen, D., Erdfelder, E., & Hilbig, B. E. (2014). The impact of

subjective recognition experiences on recognition heuristic use: A multi-

nomial processing tree approach. Psychonomic Bulletin & Review, 21,

1131-1138.

3. Castela, M., Erdfelder, E. (in press). The Memory State Heuristic: A formal

model based on repeated recognition judgments. Journal of Experimental

Psychology: Learning, Memory, and Cognition.
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Introduction & Theoretical

Background

It is hard to deny that there is something remarkable about the feeling of recogni-

tion. Despite the frequency and easiness with which it occurs, recognition seems to

carry along a considerable amount of information with it. We recognize people that

we have seen or met before (even if only once), brands or products that we have

encountered or were exposed to somehow, names of books we may or not have read

before, etc. Along with all those feelings of recognition, some information can be

inferred. Anyone who ever watched a program like ”Who wants to be a Millionaire”

will probably relate to the feeling of thinking you know the correct answer, while

at the same time not being able to retrieve any argument for it other than the fact

that the option sounds familiar. We find ourselves compelled to produce a response

on the basis of familiarity alone. But can those inferences be accurate?

Goldstein and Gigerenzer (1999; see also Gigerenzer & Goldstein, 1996) thought

so. Based on the remarkable human ability to distinguish between what we have or

have not experienced before, they proposed a decision strategy that exploits that

simple distinction - the recognition heuristic (RH). The heuristic is defined within

the context of inferring which of two objects scores higher on a given criterion as

follows: ”If one of two objects is recognized and the other is not, then infer that

the recognized object has the higher value” (Goldstein & Gigerenzer, 1999, p. 41).

Importantly, they clearly stated that, in this context, what they mean by recognition

involves a division between the previously experienced and the novel. While this

distinction is sensible, it ignores important aspects, such as the degree of familiarity

of recognized items. Goldstein and Gigerenzer assumed the RH would ignore such

information, since once one object is recognized and another one is not, an inference
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can be made on the grounds of recognition alone. However, differences in the degree

of familiarity between recognized objects can be very marked, which brings up the

question: Do different degrees of familiarity impact reliance on recognition as a

single cue? This thesis explores this important question by testing an extension of

the RH which assumes that the memory states underlying recognition judgments,

and not the judgments per se, correlate with the criterion value and can be used

to make inferences. This extension has been introduced by Erdfelder et al. (2011)

and named the memory state heuristic (MSH). However, they only tested a few

qualitative predictions derived from a verbal model of the MSH. In this thesis I

extend these initial tests to cover the full spectrum of predictions of the MSH, test it

against competing models, and ultimately develop and test a formal implementation

of it. Before introducing the MSH, in the next section I will address the RH in more

detail by bringing it into context and discussing the major findings around it.

1.1 The Recognition Heuristic

According to a classical view of human reasoning, inferences are rational by virtue of

the use of the laws of probability and statistics. In turn, deviations from those laws

are perceived as errors (e.g., Gigerenzer & Goldstein, 1996; Tversky & Kahneman,

1974). However, given that most decisions are made under limited time and cogni-

tive resources, is it reasonable to expect judgments under uncertainty to perfectly

follow those laws? Gigerenzer and Goldstein revived Herbert Simon’s notions of

bounded rationality and satisficing (a combination of sufficing and satisfying) argu-

ing that accurate inferential strategies can deviate from classical norms of rational

inference. Briefly, these two concepts can be summarized by the idea that organisms

are bounded by limited external and internal resources (e.g., time, available infor-

mation, processing speed, memory, etc) and therefore will accept “good enough”

solutions rather than always try to optimize (e.g., Simon, 1956). It is in fact one

of Simon’s quotes that best describes Gigerenzer and Goldstein’s understanding of

human reasoning: “Human rational behavior is shaped by a scissors whose two

blades are the structure of task environments and the computation capabilities of

the actor” (Simon, 1990, p., 7).
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Gigerenzer and Goldstein’s (1996; Goldstein & Gigerenzer, 1999, 2002) approach

to human reasoning aimed at demonstrating how the use of heuristics can lead to

accurate inferences through the exploitation of the structures of the environment.

In other words, they intended to show that heuristics are ecologically rational, such

that they can adaptively explore the structure of the environment, leading to good

inferences with minimal effort. Hence, the fast and frugal heuristics program was

born. This program describes a metaphorical adaptive toolbox, that is, a set of

adaptive heuristics which can be used to make accurate inferences. One of the most

studied examples within the adaptive toolbox is the RH. As described above, the

RH relies on a single cue, recognition, to make inferences. It is therefore proposed

to function as a one-reason decision making process, since it bases judgments on

recognition alone, ignoring all further cues.

1.1.1 Ecological Rationality of the RH

The ecological rationality of the RH depends on three concepts: ecological correla-

tion, surrogate correlation and recognition validity (Goldstein & Gigerenzer, 1999).

If one were asked to estimate which of two cities is larger, the fact that one rec-

ognizes one city but not the other would be a good indicator that the recognized

city is larger. This occurs because in that domain recognition positively correlates

with the size of cities, meaning that recognition validity (proportion of recognition

pairs for which the recognized option is the correct one) is high. That correlation

occurs through the interaction with mediators. For example, the fact that larger

cities are more likely to be mentioned in TV, which corresponds to the ecological

correlation. This, in turn, creates a surrogate correlation: the number of times the

city is mentioned in TV will positively correlate with the probability that that city

is recognized. Some preconditions are necessary for the RH to be a good strategy

(Gigerenzer & Goldstein, 2011). First, it is only a good strategy for domains where

recognition is a valid cue. Second, recognition should be natural, learned from the

interaction with the environment, and not manipulated in the laboratory. Finally,

the RH is a model for inferences from memory, not from givens, meaning that other

cues should not be made readily available. These three preconditions determine

what should be the ideal paradigm for studying the RH. In what follows, I describe
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that paradigm, which I adhered to (sometimes with necessary extensions) in all

studies reported in this thesis.

1.1.2 Paradigm and Measurement of RH-use

The typical paradigm for investigating the RH involves a comparison task (usually a

two-alternative forced choice task) where items from a certain domain are compared

regarding a given criterion. Additionally, a recognition test is performed where

all items must be judged as recognized or not. This paradigm has been applied

in many domains from the length of rivers or size of islands (e.g., Hilbig & Pohl,

2008) to the success of celebrities or musicians (Michalkiewicz & Erdfelder, 2015),

among many others. However, the most vastly used domain is the population size

of cities, and the paradigm is in these cases referred to as the city-size task. For

example, in the domain of World cities, a typical trial in the comparison task would

be “Delhi - Foshan”. Following the RH, if a given participant recognized Delhi

but not Foshan, he or she should infer that Delhi has a larger population. In

this case, “Delhi - Foshan” would be a so-called recognition pair, a pair where one

object is recognized and the other is not. Additionally, there will be pairs where

both objects are recognized, so-called knowledge pairs, and pairs where both objects

are not recognized, so-called guessing pairs. Importantly, only recognition pairs are

appropriate for use of the RH, since the heuristic cannot be applied to the other

cases.

The measurement of RH-use was initially done by relying on adherence rates,

that is, the proportion of times the recognized option is chosen in recognition pairs.

However, this is an inherently biased measure, since by simply looking into choice

patterns it is not possible to discriminate between use of the RH or reliance on other

strategies, like knowledge-use or even guessing (e.g., Hilbig, 2010). In other words,

this means that the fact that the recognized option is chosen in a recognition pair

does not imply that recognition alone motivated that choice (e.g., Hilbig, Erdfelder,

& Pohl, 2010; Hilbig & Pohl, 2008).

Different measures have been proposed to improve the estimation of the RH (see

Hilbig & Pohl, 2008; Pachur, Mata, & Schooler, 2009), but one of them stands out

(Hilbig, 2010) and has proven very fruitful in the last years (e.g., Castela, Kellen,
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Erdfelder, & Hilbig, 2014; Hilbig, Michalkiewicz, Castela, Pohl, & Erdfelder, 2015;

Horn, Pachur, & Mata, 2015; Michalkiewicz & Erdfelder, 2015; Schwikert & Curran,

2014), the r-model. The r-model was proposed by Hilbig et al. (2010) to estimate

RH-use. It belongs to the class of multinomial processing tree models (Batchelder

& Riefer, 1999; Erdfelder et al., 2009), which postulate a set of latent discrete

states as the basis for observable categorical responses. Each latent state is associ-

ated with a parameter, which represents the probability of its occurrence. Multi-

nomial processing tree models can be represented by a tree structure, with each

branch representing the sequence of presupposed processes that should lead to a

specific response category. In the last decades, they have become an increasingly

attractive tool for psychologists, and have been successfully applied in a variety

of domains, including recognition memory (Snodgrass & Corwin, 1988), preference

construction (Erdfelder, Castela, Michalkiewicz, & Heck, 2015), consensus analysis

(Romney, Weller, & Batchelder, 1986), and attitude measurement (Conrey, Sher-

man, Gawronski, Hugenberg, & Groom, 2005), among others (see Erdfelder et al.,

2009, for a comprehensive review of many applications).

The r-model has three trees and four parameters. Each tree corresponds to a

type of pair, namely knowledge, recognition and guessing pairs (see Figure 1.1).

In both the knowledge and guessing trees, a single parameter accounts for accuracy,

the b parameter and the g parameter, respectively. In the recognition tree, the

probability of using the RH-use is estimated through parameter r. Additionally,

parameter a accounts for recognition validity (the proportion of times that choosing

the recognized object in recognition pairs leads to a correct inference). Therefore,

when using the RH, if the recognized object is the one scoring higher on the criterion,

the inference will be correct with probability r · a, if it is not, it will be wrong with

probability r · (1 − a). Whenever the RH is not used, accuracy will depend on the

validity of knowledge b (or other judgment strategy taking place).

The RH has inspired a lot of research in the last decades. Along with demon-

strations of its impressive ability to make fast and frugal yet accurate inferences in a

vast diversity of domains (e.g., Goldstein & Gigerenzer, 1999, 2002; Pachur & Her-

twig, 2006; Richter & Späth, 2006; Scheibehenne & Bröder, 2007; Serwe & Frings,

2006), it also led to a wave of criticism. Certainly, the most challenged aspect of the
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6 False, R
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Figure 1.1: Graphical representation of the r-model: Parameter r denotes the proba-

bility of applying the recognition heuristic as originally proposed, that is, by ignoring

any knowledge beyond recognition. a = recognition validity (probability of the rec-

ognized object representing the correct choice in a recognition case); b = probability

of valid knowledge; g = probability of a correct guess; rec. = recognized; R =

recognized; U = unrecognized.

RH was its noncompensatory nature (e.g., Bröder & Eichler, 2006; Hilbig & Pohl,

2008, 2009; Newell & Fernandez, 2006; Richter & Späth, 2006). In different ways,

the assumption that further knowledge is ignored whenever recognition is diagnostic

for inferences has been questioned time and time again. At times, the criticism has

been so harsh as to question the RH altogether due to an inability to find evidence

for its main premises (Newell & Fernandez, 2006). But what if a simple extension of

the RH that replaces recognition judgments with memory strength could (1) accom-

modate all those challenging findings, (2) and extend the spectrum of predictions?

Erdfelder et al.’s (2011) memory state heuristic (MSH) offers a promising start.

In the next section, I will address the role of recognition memory in the RH

literature and describe the MSH in detail. Then, I will demonstrate how the MSH
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redefines the literature by reviewing several findings which can be reinterpreted

through its lenses. Finally, in the Summary of Manuscripts section I will put forward

the building blocks of my thesis by describing a complete research program to test

the MSH which addresses the questions left unanswered by Erdfelder et al. (2011).

1.2 The Memory State Heuristic

1.2.1 Recognition Memory in the RH literature

One important yet largely overlooked aspect regarding the RH is the nature of the

recognition process underlying the recognition judgments on which the RH operates.

While the basis of the RH is a memory process, Goldstein and Gigerenzer (1999,

2002) assumed that the heuristic operates only on the output of that process, i.e.,

the recognition judgments, and that the process itself may be ignored. As outlined

above, this assumption is rather questionable, especially in as much as it implies

that differences in familiarity between recognized objects are inconsequential for

reliance on the RH. This simplification has been often questioned (e.g., Dougherty,

Franco-Watkins, & Thomas, 2008; Erdfelder et al., 2011; Hilbig & Pohl, 2008) and

explicit calls for theory integration have been made (e.g., Pachur, Todd, Gigerenzer,

Schooler, & Goldstein, 2011; Pohl, 2011; Tomlinson, Marewski, & Dougherty, 2011).

The few attempts done so far to link theories of recognition memory with the RH

have demonstrated that this exercise helps not only to understand RH-use better,

but also to draw new predictions (Pachur et al., 2011).

Schooler and Hertwig (2005), for instance, have integrated the RH within the

ACT-R cognitive architecture (Anderson, Bothell, Lebiere, & Matessa, 1998), which

involves a model of memory. The advantage of implementing the RH within the

ACT-R is that it enables a direct assessment of how differences in memory can affect

it. Specifically, they have shown that a moderate level of forgetting is beneficial

for the heuristic, as it creates partial ignorance. However, they have relied on an

all-or-none notion of recognition, aligned with Goldstein and Gigerenzer’s (2002)

definition. Therefore, while they take a step towards theory integration, they do

not improve on the simplified understanding of the recognition memory process

associated with the RH.



The Memory State Heuristic 11

Pachur and Hertwig (2006) also linked recognition memory theories with the RH.

They investigated whether the well documented distinction between familiarity and

recollection (e.g., Kelley & Jacoby, 2000) is relevant for the RH. Specifically, they

assumed that recognition processes relevant for use of the RH only regard familiarity,

while retrieval of other cues implies recollection. Since familiarity is known to enter

the mental stage earlier than information which needs to be recollected, they aimed

at demonstrating the retrieval primacy of recognition within the context of the RH.

In fact, they found evidence that recognition-based inferences are faster than choices

inconsistent with recognition. Moreover, that RH-use increases with time pressure,

which they interpreted as support for the retrieval primacy of recognition.

Schwikert and Curran (2014) also used the distinction between familiarity and

recollection to investigate the RH further. By using event-related potentials, they

found evidence suggesting that mostly familiarity processes are involved in RH-

use. These two related approaches represent another attempt to link theories of

recognition memory with the RH, but again, they do not tackle the question of

whether different levels of familiarity (or memory strength), will be associated with

a differential use of recognition as a single cue.

Furthermore, Pleskac (2007) has relied on signal detection theory in order to

demonstrate that the accuracy of memory affects the validity of the RH. Specifically,

he has shown that with the increase of false alarms (recognizing an item that has

not been experienced before) and misses (failing to recognize an item that has been

experienced before) the accuracy of the RH decreases. Pleskac’s work points out

the important fact that memory is not perfect and, by implication, if recognition

judgments per se are the base for inferences, the ecological rationality of the RH can

be compromised by memory errors (see also Erdfelder et al., 2011).

Dougherty et al. (2008) have also pointed out that the all-or-none treatment

of recognition adopted by Gigerenzer and Goldstein (1996) violates known aspects

of recognition memory, namely the fact that recognition is based on a continuous

underlying memory variable. While Gigerenzer, Hoffrage, and Goldstein (2008)

countered that argument by clarifying that the RH is not a model of memory pro-

cesses but of how inferences are made from the output of those processes, and that

the notion of binary recognition judgments is well integrated with the recognition
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memory literature, the point remains of whether something can be learned from a

deeper consideration of the memory processes. Dougherty et al. (2008) implemented

both the RH and a familiarity-based model in a simulation. The familiarity-based

model compares items regarding their echo intensity, which corresponds to the sum

of activation levels of all traces present in memory for that item (see Hintzman,

1988, for more details). Whenever two objects differed in their echo intensity, the

model chose the one with a higher one. This means that not only recognition pairs

can be compared in terms of recognition, but all pairs for which echo intensity dif-

fers. Through this simulation, they demonstrated that a familiarity-based model

can explain results observed for the RH.

All the studies described above have contributed to decreasing the unfortunate

distance between the recognition memory literature and the RH. Certainly, un-

derstanding the role of forgetting in RH-use (Schooler & Hertwig, 2005) and how

familiarity (versus recollection) seems to be the driving memory process behind the

heuristic (Schwikert & Curran, 2014), allowing it to drive fast inferences (Pachur

& Hertwig, 2006), helps us realize the relevance of the memory processes involved.

Moreover, the added value of considering the memory processes more carefully is well

demonstrated by the fact that the accuracy of the heuristic is affected by memory

errors, which are themselves a function of mnemonic (e.g., sensitivity) and decision

making processes (e.g., response bias; Pleskac, 2007). Finally, the work of Dougherty

et al. (2008) demonstrates that the spectrum of application of an heuristic relying on

recognition does not need to be limited to comparisons between one object judged

as recognized and another judged as unrecognized. Nevertheless, an important step

is missing. The RH theory and its notion that binary judgments determine reliance

on recognition should be replaced by a framework that considers the memory pro-

cesses as the relevant information on which inferences are based. In the next section

I describe such an approach.

1.2.2 Threshold Models of Recognition Memory and the

RH

Erdfelder et al. (2011) developed a framework with provides “(...) a formal link be-

tween (1) the memory strengths of choice option names - a latent variable which is
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affected by environmental frequency and previous processing - and (2) binary recog-

nition judgments for choice option names - an empirical variable which is assumed

to affect decision behavior” (Erdfelder et al., 2011, p. 8). While there are different

ways to link memory processes with recognition-based inferences, Erdfelder et al.

focused on a rather straightforward extension of the RH. Specifically, they proposed

to extend the RH to the MSH, a framework which assumes that three memory states

can underlie the binary recognition judgments. The central idea of this framework

is that those memory states, and not recognition judgments per se, will influence

reliance on recognition.

The MSH is based on the two-high-threshold model (Snodgrass & Corwin, 1988),

a well-supported model of recognition memory (e.g., Bröder, Kellen, Schütz, &

Rohrmeier, 2013; Kellen & Klauer, 2015). The two-high-threshold model assumes

that recognition judgments are determined by three underlying memory states,

namely recognition certainty, uncertainty and rejection certainty. The two-high

threshold model is a multinomial processing tree model (Batchelder & Riefer, 1999;

Erdfelder et al., 2009) with two trees, one for items experienced before, and another

for non-experienced items (see Figure 1.2). An object that has been experienced

before will enter the recognition certainty state with probability r if the memory

strength associated with that object exceeds the high threshold. Whenever that

happens, a yes recognition judgment will be given. If the memory strength asso-

ciated with that object lies below the high threshold (1 − r), the object will be in

uncertainty, and a second process of guessing will occur. In this case, with probabil-

ity g a correct yes judgment will be given, and with probability 1−g an incorrect no

judgment will be given. In the tree for new items, the logic is analogous. Whenever

the memory strength of a new object lies below the rejection threshold (with proba-

bility d), the object will be in rejection certainty and a correct no judgment will be

given. If the memory strength lies above the rejection threshold (with probability

1−d), the object will be in uncertainty and, again, a guessing process will determine

whether a correct no judgment (with probability 1−g) or an incorrect yes judgment

(with probability g) will be given.

Building up on the two-high-threshold model, the MSH operates under two as-

sumptions: Whenever comparing two objects in different memory states, (1) there
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objects experienced 
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uncertainty
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Figure 1.2: Graphical representation of the two-high-threshold model. Parameter

r denotes the probability of old objects exceeding the recognition thresholds. Pa-

rameter d denotes the probability of new objects exceeding the rejection threshold.

Parameter g denotes the conditional probability of guessing yes in the uncertainty

state.

is a preference for the object in a higher state; (2) the larger the distance between

the memory states of the objects under comparison, the larger is the probability of

following the MSH. From these two assumptions it is possible to derive predictions

for any combination of memory-states that involves two different ones. Whenever

the objects in a pair are in the same state, the MSH cannot be applied. For those

cases, inferences may rely on knowledge (if available), guessing processes, or other

inferential strategies.

Erdfelder et al. (2011) tested some of the predictions of the MSH by relying on a

serial processing interpretation of the two-high-threshold model that assumes that

each cognitive stage involved in a given branch is processed sequentially (Batchelder

& Riefer, 1999; Heck & Erdfelder, in press). It follows that the number of cognitive

processing stages on each branch influences its total processing time. In the case
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of the two-high-threshold model, this leads to the prediction that the response time

distributions associated with the uncertainty state are stochastically larger than the

ones associated with the certainty states, given the additional processing stage of

guessing in the former (Heck & Erdfelder, in press). Following from this, predic-

tions can be drawn regarding recognition latencies and decision times. Specifically,

Erdfelder et al. tested the following predictions:

1. RH accordance rates increase with decreasing recognition and rejection laten-

cies, and these effects are additive.

2. Decision latencies in recognition pairs increase with both the recognition la-

tency of the recognized object and the rejection latency of the unrecognized

object, and these effects are additive.

3. Response bias manipulations (aimed at selectively affecting the guessing proba-

bility) in the recognition test affect recognition judgments but not performance

in the comparison task.

Besides finding support for all of these hypotheses, Erdfelder et al. demonstrated

how the MSH framework allows a new interpretation of previous findings which had

challenged the RH. In the next session, I will describe those findings under the light

of the MSH.

1.2.3 Old findings, New explanations

Stating that recognition judgments alone determine inferences for recognition pairs

in domains where recognition is valid is certainly a bold assumption underlying the

RH. Unsurprisingly, it has been shown that other factors also play a role. Specifi-

cally, it has been shown that (1) the preference for the recognized object is stronger

for objects recognized faster (Hertwig, Herzog, Schooler, & Reimer, 2008; Marewski,

Gaissmaier, Schooler, Goldstein, & Gigerenzer, 2010; Newell & Fernandez, 2006);

(2) recognition pairs for which recognition leads to a correct inference are chosen

more often than recognition pairs for which recognition leads to an incorrect infer-

ence (Hilbig & Pohl, 2008); (3) recognition pairs for which there is further knowledge

about the recognized object are preferred over recognition pairs for which the rec-

ognized object is merely recognized (Hilbig & Pohl, 2008; Hilbig, Pohl, & Bröder,
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2009; Marewski et al., 2010; Newell & Fernandez, 2006; Pohl, 2006). These findings

seem to suggest that fluency and further cue knowledge are also taken into account

when making inferences about recognition pairs. But what if the MSH would be

sufficient to explain all of these? Erdfelder et al. (2011) convincingly demonstrated

that this is the case, since the MSH clearly predicts the findings described. First,

recognition accordance rates should decrease with recognition latencies (as stated

in the first prediction listed in section 1.2.2), because objects recognized faster are

more likely to be in recognition certainty than objects recognized slower.

Second, accordance rates should be larger for recognition pairs when RH-consistent

decisions are correct because the MSH should be more valid and followed more of-

ten whenever the recognition pair originates from certainty memory states. In other

words, different combinations of memory states can underlie a recognition pair, but

according to the MSH, these different combinations should be treated differently.

Specifically, recognition pairs that originate from recognition and rejection certainty

states should lead to higher accordance rates and, in turn, to more correct inferences.

This is in line with Hilbig and Pohl (2008).

Finally, the higher accordance rates for recognition pairs when there is further

knowledge about the recognized object versus when the recognized object is merely

recognized invite the explanation that further knowledge is being used. But this too

can be explained by the MSH under a very reasonable assumption. Specifically, this

requires only the assumption that recognized objects for which further knowledge is

present are more likely to originate from a recognition certainty memory-state than

objects which are merely recognized. From this assumption it follows directly that

the MSH predicts the observed result, since accordance rates should be higher when

the recognized object is in the certainty state than when it is in the uncertainty

state.

Besides these findings regarding the differential treatment of different recognition

pairs, Erdfelder et al. (2011) also showed that the MSH can explain results involving

knowledge pairs. The RH, on the other hand, only makes predictions for recognition

pairs. However, another heuristic has been put forward to describe how fast and

frugal inferences can be made in knowledge pairs - the fluency heuristic (Hertwig et

al., 2008; Schooler & Hertwig, 2005; see also Pohl, Erdfelder, Michalkiewicz, Castela,



The Memory State Heuristic 17

& Hilbig, in press). The fluency heuristic is defined as follows: “If two objects, a and

b, are recognized, and one of two objects is more fluently retrieved, then infer that

this object has the higher value with respect to the criterion” (Hertwig et al., 2008, p.

1192). In fact, Hertwig et al. showed that, in line with the fluency heuristic, there is

a preference for the object recognized faster in knowledge pairs. However, the MSH

also makes this prediction, since the object recognized faster in a knowledge pair is

more likely to be in a recognition certainty memory-state. It follows that, while the

RH and the fluency heuristic could be invoked together to explain observations in

recognition and knowledge pairs, the MSH alone predicts all those observations.

In sum, the MSH can explain several intriguing results regarding recognition

cases and also knowledge cases under a single decision heuristic. Furthermore, it can

also make predictions for guessing cases. As long as objects are in different memory

states, the MSH predicts a preference for the one in a higher state. Moreover,

it predicts that this preference should be higher whenever the distance between

the memory state of the objects under comparison is maximal (one object in the

recognition certainty state and the other in rejection certainty). If the objects are in

adjacent memory states (recognition certainty and uncertainty or uncertainty and

rejection certainty) the preference for the one in a higher state should be less marked.

Although Erdfelder et al. (2011) already provided evidence for some of the MSH

predictions and showed how it allows a new interpretation of previously intriguing

results, important predictions were left untested. Moreover, the MSH was only

developed as a verbal model. The present thesis describes the execution of a research

program aimed at addressing those questions and ultimately testing the MSH by

implementing it in a formal model. This research program is developed in three

manuscripts, which will be summarized in the next section.
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Summary of Manuscripts

In this section I summarize the three manuscripts on which this thesis is based. The

focus will be on the main research question and the contribution to the literature.

For the sake of brevity, I will not address most details, including the method and

an exhaustive description of all results, since these can be found in the manuscripts

appended. After these summaries, I will draw some overall conclusions clarifying

the connection between all manuscripts and the general contribution of this thesis.

Finally, I will discuss limitations of my work and possible future directions.

2.1 On the relation between recognition latencies

and inference strategies

Castela, M., & Erdfelder, E. (2016). Further evidence for the memory state heuristic:

Recognition latency predictions for binary inferences. Manuscript submitted for

publication.

As discussed above, Erdfelder et al. (2011) tested core predictions of the MSH by

assessing how RH accordance rates are affected by recognition latencies. The ratio-

nale behind this lies on the assumption (derived from a serial interpretation of the

two-high-threshold model) that certainty memory-states are associated with shorter

recognition and rejection latencies than the uncertainty memory-state (Erdfelder et

al., 2011; Heck & Erdfelder, in press). Specifically, they showed that accordance

rates decrease with increasing recognition and rejection latencies, and that those

effects are additive. Also, that decision latencies for recognition pairs increase with

the recognition and rejection latencies of the recognized and the unrecognized ob-

jects, respectively, and that, again, those effects are additive. However, they did not
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address the predictions for knowledge and guessing cases. Moreover, they relied on

accordance rates to test the predictions for recognition cases, but better methods

for estimating RH-use are available.

We conducted two studies that complemented Erdfelder et al. (2011). In our first

study, we tested the MSH predictions regarding the effect of recognition latencies

on inferences for knowledge and guessing pairs. These predictions follow the same

logic as the predictions for recognition cases, as they too stem from the two core

assumptions of the MSH: 1) If objects are in different memory states, there should

be a preference for the one in the higher state; 2) this preference should increase with

the distance between the states. Therefore, assuming the association between longer

recognition or rejection latencies and the uncertainty state, in knowledge pairs there

should be a preference for the faster recognized object, and in guessing pairs there

should be a preference for the object rejected more slowly.

Regarding the size of the effect, it is important to note that for recognition pairs

there are four possible memory-state combinations underlying the yes−no recogni-

tion judgements (recognition certainty and rejection certainty, recognition certainty

and uncertainty, uncertainty and rejection certainty, uncertainty and uncertainty).

These cover all possible distances between memory-states, from maximal distance

to same state cases. However, for both knowledge and guessing pairs, only three

memory-state combinations are possible (certainty and certainty, certainty and un-

certainty, uncertainty and uncertainty). Therefore, the highest distance that can

underlie a knowledge or guessing pair is the case of adjacent memory-states. This

leads to the prediction that the preference for the object in a higher state in knowl-

edge and guessing cases should be weaker than what was observed for recognition

cases, where a maximal memory-state distance can occur. Accordingly, we observed

a consistent, although not large, preference for objects that are likely to be in a

higher memory state, both for knowledge and guessing cases (see Figure 2.1).

In a second study, we addressed recognition cases, but using a superior method

for estimating RH-use than Erdfelder et al. (2011). When investigating the associ-

ation between latencies and RH-use, Erdfelder et al. relied on RH accordance rates.

This necessarily leads to a bias in the estimation of RH-use, since accordance rates

cannot disentangle between the choice of the recognized object due to use of the
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Figure 2.1: Proportion of choices of the fastest or slowest recognized or unrecognized

object for knowelde and guessing cases, respectively, for all 14 reanalyzed datasets.

Error bars represent standard error of the mean.

RH or due to reliance on further knowledge or any other strategy. Therefore, we

wanted to replicate their finding using the r-model (Hilbig et al., 2010). Specifically,

we aimed at showing that shorter recognition and rejection latencies are associated

with higher r estimates. To test this, we fitted the r-model to four subsets of our

data sets. Each subset contained only objects in one of the four quartiles of the

individual recognition and rejection latency distributions. When fitting the r-model

to the data split into the four subsets, we obtained four different r parameters, and

could then test our prediction that r should be higher in the subsets which contained

objects with faster recognition and rejection latencies. This could be described as

an order restriction such that the r parameters decrease from r1 to r4, with 1 cor-

responding to the first quartile of the distributions (only the fastest recognized and

unrecognized objects are included) and 4 the last quartile (only the slowest recog-

nized and unrecognized objects are included). In short, we found support for our

hypothesis (see Figure 2.2).

In sum, this first manuscript consolidated the support Erdfelder et al. (2011)

found for the MSH by extending the tests of the MSH’s latency predictions to
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Figure 2.2: r probability estimates in all four quartiles of recognition and rejection

latency distributions for all reanalyzed datasets and for Experiment 2. Error bars

represent standard errors.

knowledge and guessing cases, and finding converging support for its core prediction

regarding recognition cases with a superior method for assessing RH-use.

2.2 Competitive testing of the MSH

Castela, M., Kellen, D., Erdfelder, E., & Hilbig, B. E. (2014). The impact of subjec-

tive recognition experiences on recognition heuristic use: A multinomial processing

tree approach. Psychonomic Bulletin & Review, 21, 1131-1138.

The goal of the second manuscript was to test the MSH against both the RH and

an account which assumes knowledge integration. This was possible by compar-

ing RH-use for two types of recognition pairs, which differ regarding the subjective

experience associated with the recognized object. Specifically, we compared recog-

nition pairs for which the recognized object was said to be merely recognized (mR)

or recognized along with further knowledge (R+). Comparing RH-use for these two

types of pairs was ideal because the RH, the knowledge integration account and the
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MSH all make different predictions. According to the RH, RH-use should not differ

between the two types of pairs, because once an object is recognized, the availability

of further knowledge is inconsequential. In contrast, knowledge integration accounts

predict that RH-use should be lower for pairs involving a R+ object than pairs in-

volving a mR object, because if knowledge is available it should be integrated into

the decision, leading to a decrease in reliance on the RH. Finally, the MSH predicts

the opposite pattern, that is, it predicts that RH-use will be larger in pairs involv-

ing a R+ object than pairs involving a mR object. This prediction follows from the

reasonable assumption that objects for which further knowledge is available (R+)

are more likely to originate from a recognition certainty memory-state than objects

that are merely recognized (Erdfelder et al., 2011).

In order to test these three predictions, we relied on a simple extension of the

r-model, the r*-model. This extension is straightforward, and essentially involves

duplicating the tree for recognition pairs in the original r-model, such that there is

one tree for recognition pairs involving a R+ object and another for recognition pairs

involving a mR object1. In this way, we can separately estimate RH-use for both

types of pairs. Importantly, this allows us to represent the three different accounts

through different parameter restrictions. These can be summarized as follows:

RH r1 = r2

knowledge-integration r1 < r2

MSH r1 > r2

where r1 is the estimate of RH-use for recognition pairs involving a R+ object and

r2 the estimate of RH-use for recognition pairs involving a mR object.

In sum, through the reanalysis of 16 published data sets, we consistently found

that RH-use was higher for recognition pairs involving a R+ object compared to

pairs involving a mR object. These results strongly supported the MSH, and could

not be accommodated by the other two accounts.

1For the sake of simplicity, I omit here the extension regarding the knowledge tree. However,

all details can be found in Castela et al. (2014)
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2.3 Developing and testing a formal model of the

MSH

Castela, M., & Erdfelder, E. (in press). The memory state heuristic: A formal

model based on repeated recognition judgments. Journal of Experimental Psychol-

ogy: Learning, Memory, and Cognition.

The first two manuscripts accumulated significant amount of evidence in favor of

the MSH. First, the predictions of the MSH appear to hold not only for recognition

pairs, but also for knowledge and guessing pairs. Second, when critically tested

against the RH and knowledge integration accounts, the MSH came out as the best

model. However, both manuscripts are limited by the fact that they do not measure

MSH-use directly, but must rely on assumptions (association between latencies and

memory-states in the first manuscript, and association between availability of further

knowledge and memory-states in the second manuscript) to test it. As stated in

Castela et al. (2014, p. 1137), “Despite the plausibility of [these] assumption[s],

future efforts should be placed on implementing a complete model that associates

choice predictions to latent memory states that are themselves estimated from the

data”. This is precisely what we aimed at in the last manuscript.

The biggest challenge associated with developing a formal model of the MSH

derives from the fact that the heuristic acts on natural recognition, that is, it ex-

ploits the memory strength associated with experiencing different objects through

mediators like newspapers, TV or the internet. Therefore, a crucial variable is miss-

ing: We do not know which objects were experienced before or not (Erdfelder et al.,

2011; Pleskac, 2007). It follows that there is no obvious way to categorize an item

as a hit or false alarm (or a correct rejection or a miss). Without the experience

variable, the estimation of the memory states is far beyond straightforward. To solve

this problem we relied on a proxy which allows for a good (although not perfect)

estimation of memory-states - the consistency of recognition judgments. This proxy

is associated with a simple extension of the r-model, only involving the addition of

two extra recognition tests. Furthermore, its association with memory-states can be
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derived from the two-high-threshold model. If an object is in a certainty memory

state, the recognition judgment can only be yes in the case of recognition and no in

the case of rejection. Consequentially, any inconsistent judgment should be associ-

ated with the uncertainty memory state. On the other hand, consistent judgments

are likely to be associated with certainty memory-states, although it is possible that

they occur through consistent guesses.

We developed a MSH model (called latent-states MSH model) by using the con-

sistency of recognition judgments to model the probability of an object being in a

certain memory state, and relied on the r-model to model the adequate decision

strategy for each combination of memory states. As can be seen in Figure 2.3, for

inconsistent judgments we directly assume that the objects are in the uncertainty

state. For consistent judgments we take into account the possibility of consistent

guesses, and therefore directly model the probability that consistent recognition

judgments are associated with certainty (h and l) or uncertainty (1 − h and 1 − l)

memory states. This is done for the two objects in a pair, and once the memory-state

combination is established, the appropriate decision strategy is modeled. Here, a

distinction between pairs of objects in the same memory state versus different mem-

ory states is useful. If objects are in the same memory state, the decision strategy

modeled corresponds to either the knowledge tree of the r-model (when both ob-

jects are in recognition certainty) or the guessing tree (when both objects are in

uncertainty or both objects are in rejection certainty). If objects are in different

memory states, the recognition tree of the r-model is used, with different parame-

ters for different combinations of memory states. Specifically, there is a distinction

between pairs of objects in (1) recognition certainty and rejection certainty (REC

- REJ), (2) recognition certainty and uncertainty (REC-UNC) and (3) uncertainty

and rejection certainty (UNC-REJ). This permits the estimation of MSH-use for

those different types of pairs, which allows the test of the MSH core predictions:

There is a preference for objects in a higher state, and this preference is stronger

the larger the distance between the memory states of the objects under comparison.

Within our model, this can be tested with a set of parameter restrictions involv-

ing the r parameter for the three types of pairs. Specifically, the core prediction

of the MSH corresponds to the following restrictions, rREC−REJ > rREC−UNC and
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Figure 2.3: Abstract representation of the latent-states MSH model, denoting how

the filter parameters determine the memory-state combination under comparison

and, consequently, the appropriate decision process. h, probability that consis-

tent recognition judgments originate from recognition certainty; l, probability that

consistent rejection judgments originate from rejection certainty; 111, consistently

recognized objects; 000, consistently rejected objects; REC, recognition certainty;

UNC, uncertainty; REJ, rejection certainty. The full model can be found in Ap-

pendix A of the corresonding manuscript.

rREC−REJ > rUNC−REJ . Additionally, the same pattern should be observed for

memory-state validity. We found support for this in two Experiments (see Figure

2.4).

Additionally, we tested an approximate MSH model which ignores the possibility
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Figure 2.4: Estimates of the three r and a parameters for Experiment 1 and 2.

Solid lines represent the estimates from the latent-states MSH model while dashed

lines represent estimates from the approximate MSH model. Error bars represent

bootstrapped standard errors of the parameter estimates.

of consistent guesses. In other words, it assumes that our proxy is a perfect indicator

of the memory states, and so the same way that inconsistent judgments indicate

a memory state of uncertainty, consistent judgments indicate a memory sate of

certainty. Despite the inherent error of the approximate model, it performed quite

well, and led to the same conclusions obtained with the latent-states MSH model.

Because this model has less parameters (h and l are fixed to 1) it is not so vulnerable

to sampling error and therefore more adequate for hypotheses testing. The fact that

both models fit the data nicely and that we find convergent results is ideal since

it allows us to not blindly rely on the assumption of the approximate model but,

at the same time, be able to assert that our hypotheses hold with a version of the

model not so vulnerable to sampling error.

In addition to using our models to test the core predictions of the MSH in

Experiment 1 and 2, in Experiment 2 we further tested whether choice consistency

is in line with the predictions of the MSH. In order to do so, we repeated through

the three sessions not only the recognition test but also the comparison task. If,

for simplicity, we assume that participants always resort to one of three strategies,

namely, MSH-use, knowledge-use and guessing, we can predict that (1) consistency
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should be highest when the distance between the memory-states of the objects under

comparison is maximal, (2) consistency should be lower when objects are in adjacent

memory-states, and (3) lowest when they are in the same state. However, within the

adjacent and same-state cases, (4) consistency should be higher when knowledge is

likely to be available, and lower when plain guessing is involved. We found support

for all these hypotheses.

Finally, we also validated critical parameters of our model, specifically, the filter

parameters h and l, and the r parameters. The former have to be validated since

they are newly developed. The latter are ”borrowed” from the r-model and have

been validated before (see Hilbig et al., 2010). However, due to their critical role,

and because there are three instead of a single r parameter, we validated them too.

With a cross-validation study we showed that the filter parameters, consistent with

what they are meant to measure, are larger when we consider two repetitions of the

recognition test versus a single one. Moreover, in a third experiment we compared

the r parameters between two conditions: One where memory-states were valid and

another where memory-states validity was very low. Since MSH-use should decrease

with memory-state validity, we predicted that all r parameter estimates should be

smaller in the latter condition. Accordingly, this is what we observed.

In sum, in this last paper we addressed the ultimate goal of this research pro-

gram - developing and testing a formal model of the MSH. This model has the main

advantage of incorporating all the possible memory state combinations and formal-

izing the MSH predictions for all of them. It therefore allows us to test the MSH

without requiring further assumptions.
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General Discussion & Outlook

In the three manuscripts summarized above I report the results from my research

program aimed at testing the MSH. The work described in this thesis succeed in

testing the MSH in three different ways. First, in Castela and Erdfelder (2016)

we started where Erdfelder et al. (2011) left off by showing how the recognition

and rejection latency predictions of the MSH find support beyond recognition cases.

Specifically, we have shown that in knowledge cases there is a preference for choosing

the object recognized faster, while in guessing cases there is a preference for choosing

the object rejected slower. Both these results are in line with the MSH hypothesis

that there should be a preference for the object in a higher memory-state. Addi-

tionally, we also tested this prediction for recognition cases, but instead of using

accordance rates like Erdfelder et al., we relied on the r-model (Hilbig et al., 2010).

In this way, we added support for the latency prediction regarding recognition cases

with a measure of RH-use that does not suffer from the biases of accordance rates.

Second, in Castela et al. (2014) we pitted the MSH against the RH and accounts

assuming knowledge integration by using a formal model which consists of a sim-

ple extension of the r-model. To do so, we relied on information beyond binary

recognition judgments, namely the distinction between two subjectively different

experiences of recognition, recognition with further knowledge and mere recogni-

tion. Consistently only with the MSH and not with the other two accounts, we

found that RH-use is higher for recognition pairs involving a recognized object with

further knowledge than for recognition pairs involving a merely recognized object.

This further hinted at the superiority of the MSH as an account able to explain and

predict many findings in the literature.

Finally, in Castela and Erdfelder (in press) we extended the RH paradigm in

order to test a formal model of the MSH. This model captures all possible combi-
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nations of memory-states and holds the MSH predictions for all of them. In two

experiments, the model fit the data well, and allowed us to test the MSH core pre-

dictions, namely, that MSH-use differs between the three possible combinations of

different memory-states. Consistently with the MSH, we observed that MSH-use

is higher when the difference in memory-states is maximal, and that it decreases

for adjacent memory-states combinations. In Experiment 2 we additionally tested

choice consistency predictions of the MSH, thereby accumulating more support for

it. Finally, we validated core parameters of the latent-states MSH model through a

cross-validation method and a third experiment, finding support for the role of the

filter parameters and the psychological meaning of all three MSH-use parameters.

In sum, in this third manuscript, Erdfelder et al.’s (2011) call for the development

of a formal model of the MSH incorporating all of its predictions has been answered,

with successful results.

Taken together, the three manuscripts gather a considerable amount of converg-

ing evidence for the MSH. By using different proxies, including recognition and

rejection latencies, subjective recognition experiences, and consistency of recogni-

tion judgments, and by relying on increasingly sophisticated methods, evidence for

the advantages of considering the underlying recognition process when investigating

recognition-based inferences has been put forward. Therefore, I believe the three

manuscripts nicely complement each other and together consist of a well-founded

research program. In the following, I will discuss a few points which have so far not

been addressed, and possible limitations and future directions of my work.

The goal of this thesis is to demonstrate that the RH should be extended to a

framework which considers the recognition process itself, and not just the output

of that process, i.e., recognition judgments. However, it is important to note that

the MSH is not only a rather straightforward extension of the RH, but also that

it reduces to it under ideal conditions (Erdfelder et al., 2011). Put simply, as the

threshold parameters in the two-high-threshold model approach 1, the uncertainty

state does not occur, and therefore the predictions of the MSH are the same as that

of the RH. Importantly, though, I want to stress that this does not imply that for

those cases the MSH should be used at all times and by all participants. In this

thesis, I support a probabilistic version of the RH and the MSH. This implies that
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when two objects are in different certainty states (recognition certainty and rejection

certainty) reliance on recognition should be highest, but it does not imply that it

is the only strategy used at all times. In all three manuscripts involved in this the-

sis that probabilistic interpretation has been tested by checking whether for those

recognition cases more likely to contain only objects in certainty states reliance on

recognition occurs every time, or whether other strategies (like knowledge-use) still

take place. Accordingly, in all three manuscripts there was evidence for this prob-

abilistic version, suggesting that people rely a lot on recognition-based inferences

under ideal conditions, but other strategies can also take place.

The choice to test the MSH, such a simple extension of the RH, is justified as

it allows one to draw simple predictions and is more testable than other options.

However, this is one possibility among several, and therefore worth questioning. Ul-

timately, the MSH is based on the two-high-threshold model, which, despite being a

very prominent model in the recognition memory literature, is by no means the only

possible model on which to develop such an approach. One of its fiercest competi-

tors, signal detection models (Kellen & Klauer, in press; Macmillan & Creelman,

2004), would be another option. Briefly, signal detection models assume there is a

continuous memory strength variable described by two normal distributions, one for

old items and one for new items. The degree of overlap between those distributions

corresponds to the ability to discriminate between old and new items. Recogni-

tion judgments are in turn determined by the placement of a criterion. If memory

strength surpasses it, an item will be judged as “old”, otherwise it is judged as “new”

(Kellen & Klauer, in press). I wish at this point to clarify that the current work does

not dismiss the possibility that signal detection models are more appropriate than

the two-high-threshold model. Additionally, while predictions were drawn from the

latter, the findings accumulated do not rule out the former.

The essential distinction between signal detection and the two-high-threshold as

models of recognition memory is that the former assumes that recognition judgments

reflect a direct mapping of graded memory representations while the latter proposes

that recognition judgments are mediated by a discrete-state representation (Kellen

& Klauer, 2015). How would that impact the predictions for use of recognition

as a cue in inferences? Perhaps the most evident implication is that, within a
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signal detection framework, any difference in memory strength could be explored,

regardless of the memory-state. That is, while the MSH predicts that recognition

can only be exploited when objects are in different memory-states, a signal-detection

based framework would predict that recognition can always be used since there

should be a preference for the object associated with a higher memory strength.

It would certainly be interesting to pit these two models against each other in the

context of recognition-based inferences. To do so, one could design inventive scenar-

ios where the predictions of each model collapse and the two can thereby be critically

tested. If memory-states and the underlying memory strength were observable vari-

ables, a simple way to approach this would be to test whether within the same

memory-state there is a preference for objects with a higher memory strength. Un-

fortunately, accessing those latent variables is rather challenging. Another, slightly

more straightforward approach, would only require knowledge about the experience

variable. If it were known which objects were experienced before and which were

not, a simple way to test signal detection-based inference models against the MSH

would be to assess whether there is a preference for false alarms over misses. While

a signal detection account would predict such preference (because false alarms will

be necessarily associated with a higher memory strength than misses), the MSH pre-

dicts that there should be no preference for one over the other, since both objects

necessarily originate from the uncertainty state.

However, as repeated throughout this thesis, one does not have access to the

experience variable, complicating any attempt to model the recognition process.

Moreover, while with the two-high-threshold model we used consistency as a proxy

and could make predictions in a relatively straightforward way, it is hard to think

either of what would be a signal detection model prediction for consistency, or

which other proxy could be used. For these reasons, while I do not at all dismiss

the possibility that signal detection models are more appropriate than the two-

high-threshold as a model of recognition memory in this context, I believe that the

two-high-threshold model does a better job in terms of eliciting testable predictions,

therefore being the more useful model to advance knowledge in this area and allow

a proof of concept regarding the possibility of incorporating recognition memory

models in recognition-based inferences.
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Besides the arguable option discussed above, and specific limitations of each

manuscript which are respectively discussed in each of them, one important limi-

tation of this thesis has so far not been addressed. In all formal modeling analysis

present in the three manuscripts we relied on aggregation across participants. How-

ever, for aggregation in multinomial processing tree models to be unproblematic,

there must be homogeneity between participants. In turn, if this assumption is vi-

olated, parameter estimates might be biased, and standard errors and confidence

intervals underestimated (see Michalkiewicz, 2016, for a detailed account of why

this might be a problem for the r-model). For these reasons, it would be an impor-

tant next step to try to extend the current MSH model to a hierarchical version,

in order to ensure that individual differences are not distorting our analysis. While

I find this to be a crucial development, let me clarify why it has not been done so

far. It is important to note that, as it is, the latent-states MSH is already a rather

complex model which, as discussed in detail in Castela and Erdfelder (in press), is

vulnerable to sampling error and not always ideal for hypotheses-testing. Given the

challenges surrounding the modeling of latent memory-states, it appeared essential

to first establish this possibility, before turning to another big challenge. However,

now that the model has been established and tested, an important future direction

would be to see how individual differences can be adequately taken into account.

Other potentially interesting routes to take in the future regard the way to

estimate the underlying memory strength or memory states. One possibility would

be to control the experience variable. To do this, we could have participants learn

the material in the laboratory and thereby control which objects were effectively

experienced before or not (see Bröder & Eichler, 2006; Newell & Shanks, 2004, for

a similar approach). An obvious criticism to such approach is that one would no

longer be dealing with natural recognition, and therefore the domain may not be

adequate for the application of strategies like the RH or the MSH (Gigerenzer &

Goldstein, 2011; Pachur, Bröder, & Marewski, 2008). Nevertheless, there might

be some merit to this approach. If it would work, it would at least allow one

to establish that the memory-strength-based inferences extend to experimentally

induced recognition settings. However, if it does not work, that finding cannot

be extrapolated to natural recognition settings. Another possibility would be to



The Memory State Heuristic 33

look for a middle ground by designing an experiment which holds a learning period

spanning a reasonable amount of time. In such an experiment, participants could be

exposed to the material in a somewhat natural way, by, for example, reading news

pieces involving the target objects at different points in time. While this would

certainly be an effortful procedure, it might be worthwhile to consider, since it has

the benefit of simulating a natural learning experience while at the same time giving

the experimenter control over which objects are experienced and which are not.
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Conclusion

The research program developed in my thesis has addressed a largely overlooked

aspect of the RH literature: The influence of recognition memory processes under-

lying recognition judgments on recognition-based inferences. Through testing and

ultimately developing a formal model of the MSH, I have shown that, indeed, recog-

nition judgments are a poor approximation of what determines recognition-based

inferences. In turn, considering the memory-states underlying those judgments is

worthwhile, as it presents a new and interesting pattern of results: Different levels

of memory strength are associated with different validity and use of recognition as

a cue. Ignoring those differences is ignoring a large chunk of the story. While that

story may never be finished, I hope my work will inspire further developments, and

that new and exciting chapters will follow.
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Abstract

According to the recognition heuristic (RH) theory, for decision domains where

recognition is a valid predictor of a choice criterion, recognition can be used to make

inferences whenever one object is recognized and the other is not, irrespective of

further knowledge. Erdfelder, Küpper-Tetzel, and Mattern (2011) questioned whether

the recognition judgment itself affects decisions or rather the memory strength

underlying it. Specifically, they proposed to extend the RH to the memory state

heuristic (MSH), which assumes a third memory state of uncertainty. They tested

several qualitative predictions of the MSH, but left some questions unanswered that

we address in two studies. First, we show that in knowledge pairs (both objects

recognized) and guessing pairs (none of the objects recognized), the object that is

more likely to be in a higher memory state is chosen. Second, we used a better

measure of RH-use to show that reliance on recognition increases with the proportion

of objects in certainty states. In sum, our two studies nicely complement the work of

Erdfelder et al. by lending additional evidence to the MSH.

Keywords: recognition heuristic; memory-state heuristic; threshold models;

multinomial processing tree models
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The recognition heuristic (RH) is a fast and frugal decision strategy proposing that,

for binary decisions, if one object is recognized and the other is not, one should infer

that the recognized object scores higher on the criterion under consideration

(Goldstein & Gigerenzer, 2002). This simple decision rule has gained a lot of

attention, and there is a large body of research dedicated to it (see Gigerenzer &

Goldstein, 2011; Pachur, Todd, Gigerenzer, Schooler, & Goldstein, 2011, for reviews).

However, one key concept of the RH seems to be often neglected: recognition. While

literally at the core of the heuristic, not so much research has been dedicated to

understanding the role of recognition in use of the RH. However, there are some

exceptions (e.g., Erdfelder et al., 2011; Pachur & Hertwig, 2006; Pleskac, 2007).

Notably, Erdfelder et al. proposed a framework that extends the RH by

accommodating the role of recognition memory. In this paper, we aim at generalizing

their work by providing further tests of their framework. First, we will describe the

RH theory in more detail. Then, we will discuss how recognition memory has been

understood in the RH theory so far. Afterwards we will describe the contribution of

Erdfelder et al. to linking recognition memory and the RH, along with the evidence

they accumulated. Finally, we will introduce two new studies that complement the

evidence presented by Erdfelder et al. (2011).

The RH theory

To better understand how recognition memory has been (or can be) integrated in the

RH, it is first essential to describe more precisely how the heuristic has been

proposed. To simplify that process, we will refer to the most prominent paradigm

associated with the RH as an illustrative example. This is the city size paradigm,

which involves a pairwise comparison task where people must infer which of two cities

has a larger population, and a recognition task, where for all cities involved people

must judge whether they have heard of them before or not. With the data from the
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recognition task, all pairs in the comparison task can be categorized into three types:

knowledge pairs (both objects are recognized), recognition pairs (one object is

recognized and the other is not), and guessing pairs (none of the objects is

recognized). The RH applies only to recognition pairs, for the obvious reason that it

cannot discriminate between objects in the other two types of pairs. Importantly,

Gigerenzer and Goldstein (2011) specified additional preconditions for use of the RH.

First, there should be a strong correlation between recognition and the decision

criterion. In our example, recognition should be strongly correlated to the size of a

city (which, indeed, it is). Additionally, further cues should not be readily available.

This means that, for example, when comparing the sizes of Berlin and Mannheim, the

information that Berlin is the capital of Germany, or that it has an international

airport, should not be presented to the participant simultaneously (whereas, of

course, it could be retrieved from memory). Finally, they asserted that the RH

applies only to natural recognition, that is, artificially inducing recognition in the

laboratory (by, for example, presenting the objects several times) should not

necessarily lead to use of the RH.

This relates to the notion of how recognition comes to be a valid cue, that is,

its ecological rationality. Here, three concepts are important: recognition validity,

ecological correlation and surrogate correlation (Goldstein & Gigerenzer, 1999).

Going back to our cities example, the ecological correlation – the correlation between

the city size and the frequency of occurence of the city in natural encounters – is

exemplified by the fact that larger cities are more likely to be mentioned in the

Internet, TV, newspapers, or other type of mediator. This, in turn, affects the

surrogate correlation, which is the correlation between the number of times a city is

mentioned and the recognition of the name of that city. Naturally, cities that are

mentioned more often will have a higher probability of being remembered. Finally,

recognition validity is defined as the strength of the relationship between recognition

and the criterion (Goldstein & Gigerenzer, 1999).
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Recognition memory in the RH theory

Now with a clearer understanding of how and under which conditions the RH was

proposed to apply, we can address the question of how recognition memory plays a

role in the heuristic. In its original definition, the RH was not related to recognition

memory, but only to recognition judgments. Goldstein and Gigerenzer (2002)

assumed that the RH works on the output of the recognition process, and that the

process itself can be disregarded. In other words, they claimed the RH operates on

yes or no recognition judgments, and whatever underlies that judgment can be

ignored for the purpose of investigating the heuristic. This also implies that the

frequency with which an object has been encountered does not affect use of the RH,

but merely the final all-or-none process of remembering any encounter or not. As

stated by Pachur et al. (2011, p. 4), “the recognition heuristic does not distinguish

between objects one has encountered 10 times and those encountered 60 times (as

long as both are recognized or unrecognized)”. Erdfelder et al. (2011, p. 8)

challenged this view by stating that “Showing that the RH is an ecologically rational

and well-adapted choice strategy obviously requires a formal theoretical link between

(1) the memory strengths of choice option names - a latent variable which is affected

by environmental frequency and previous processing - and (2) binary recognition

judgments for choice option names - an empirical variable which is assumed to affect

decision behavior”.

Following from this understanding of a necessary link between memory

strength and recognition judgments, Erdfelder et al. (2011) proposed to integrate a

model of recognition memory with the RH theory. To do so, they relied on one of the

most well-supported models of recognition memory available - the two-high-threshold

(2HT) model (Snodgrass & Corwin, 1988). Besides being one of the most successful

models of recognition memory, the 2HT model has the added advantage of being

easily combinable with the RH (Erdfelder et al., 2011).

The 2HT model belongs to the class of multinomial processing tree models
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(Batchelder & Riefer, 1999; Erdfelder et al., 2009). Like other multinomial processing

tree models, the 2HT model is based on the assumption that observed categorical

responses are a result of a defined set of discrete states and that the probability of

such states being entered depends on the probability of certain cognitive processes

occurring or not. The basic premise of the 2HT model is that there are three possible

memory states underlying recognition judgments - recognition certainty, uncertainty,

and rejection certainty. The probability of those states being entered depends on the

probability of two thresholds being exceeded (see Figure 1). Specifically, for objects

experienced before, if the memory strength exceeds the first threshold with

probability r, the object will be in the recognition certainty state and a yes

recognition judgment will be given. If, with complementary probability 1 − r, the

memory strength lies below this threshold, the object will be in the uncertainty state,

and the recognition judgment will depend on a second process of guessing, resulting

in a yes judgment with probability g and a no judgment with probability 1 − g. For

objects not experienced before, if the memory strength lies below the second

threshold with probability d, the object will be in the rejection certainty state and a

no recognition judgment will be given. With complementary probability 1 − d, if the

memory strength lies above this second threshold, the object will be in the

uncertainty state and, again, the recognition judgment will depend on guessing.

To combine this model with the RH theory, Erdfelder et al. (2011) suggested

a new framework - the memory state heuristic (MSH). The MSH is a straightforward

extension of the RH, which mainly replaces recognition judgments by memory

strengths. That is, it assumes that memory strengths, and not recognition judgments

per se, are correlated with the criterion. This simple extension enriches both the

predictions that can be drawn and the explanatory scope of the heuristic. Whereas

the RH has predictions for recognition pairs only, the MSH has predictions for any

pair that involves objects in different memory states. These predictions can be

summarized by two simple premises: (1) if objects are in different memory states,

there should be a preference for the object in a higher state; (2) the larger the
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discrepancy between the memory states of objects in a pair, the higher should be the

probability of choosing the object in a higher state. By implication, the probability of

choosing the object in a higher memory state should be larger for pairs of one object

in the recognition certainty state and the other in the rejection certainty state, than

for pairs where the objects are in recognition certainty and uncertainty or uncertainty

and rejection certainty. Based on these two principles, Erdfelder et al. managed to

both explain previous results that challenged the RH and also draw and test new

predictions. To do so, they relied on the fact that multinomial processing tree models

like the 2HT model can be interpreted as probabilistic serial processing models

(Batchelder & Riefer, 1999; Heck & Erdfelder, in press). By implication, the number

of cognitive processing stages in a given branch of the model will influence its total

processing time. Specifically, in the case of the 2HT model, whenever an object

reaches the memory state of uncertainty and a second cognitive stage is required -

guessing - the response time distribution should be stochastically larger than when an

object reaches one of the two certainty memory states (Heck & Erdfelder, in press).

Following from this interpretation of the 2HT model, a clear prediction can be made:

“The larger the recognition judgment latencies, the more likely it is that the

judgment originates from guessing and the less likely it is that it originates from

memory certainty” (Erdfelder et al., 2011, p. 13).

As mentioned, the MSH offers a simple explanation for previous results that

challenged the RH. One example is that, in recognition pairs, recognized objects for

which participants claim to have further knowledge are chosen more often than

recognized objects that participants claim to merely recognize the name of (e.g.,

Pohl, 2006). This has been explained by assuming that people are relying on further

knowledge, thereby challenging the RH. However, the same result is predicted by the

MSH if one makes the reasonable assumption that objects for which participants

claim to have further knowledge are more likely to have originated from recognition

certainty than objects that are merely recognized. Castela, Kellen, Erdfelder, and

Hilbig (2014) tested the three accounts (RH, use of further knowledge, and MSH) and
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found support for the MSH.

Along with this, Erdfelder et al. (2011) described other examples of how the

MSH can accommodate previously problematic results. But most importantly, they

directly tested seven predictions of the MSH, focused on RH accordance rates

(proportion of times the recognized object is chosen in recognition pairs) and decision

latencies, both as a function of recognition and rejection latencies. The first three

predictions, which state that RH accordance rates should increase with decreasing

recognition and rejection latencies, and that their effect is additive, were supported in

their study. Additionally, they tested whether the decision latency in recognition

pairs increases with both the recognition latency of the recognized object and the

rejection latency of the unrecognized object, and if their effect is additive. These

further three predictions were also supported by their data. Finally, they found

support for their seventh prediction, which stated that response bias manipulations

(aimed at selectively affecting the guessing probability) in the recognition test should

affect recognition judgments but not performance in the comparison task. Since the

RH theory assumes that recognition judgments per se influence decisions, it would

predict that a bias manipulation will also affect choices. The MSH, in turn, predicts

the observed result, since memory-states and not recognition judgments should

influence decisions, that is, since biasing the guessing probability does not alter the

memory-states distribution, choices should be left unaffected.

The focus of Erdfelder et al. (2011) has been on testing predictions for

recognition pairs, but as explained before, the MSH also makes predictions for

guessing and knowledge pairs, as long as the objects under comparison are in

different memory states. This will be the focus of our first study. As for recognition

pairs, the predictions follow from the basic premise of the MSH: If objects are in

different memory states, there should be a preference for the one in a higher state.

Therefore, in this study we will test two predictions:

1. In knowledge pairs there should be a preference for the object recognized faster
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(as this one is more likely in the memory certainty state)

2. In guessing pairs, there should be a preference for the object recognized slower

(since this one is more likely in the uncertainty state, which is the highest

possible state for unrecognized objects).

However, as outlined above, the MSH also predicts that the preference for the object

in a higher state should be strongest the highest the discrepancy between the states.

While in recognition pairs the maximal memory state distance can be observed (one

object in recognition certainty and the other in rejection certainty), in both

knowledge and guessing pairs this can never occur, since objects will either be in the

same state or in adjacent states (recognition certainty and uncertainty or rejection

certainty and uncertainty, respectively). For this reason, as already noted by

Erdfelder et al., we expect weaker effects of recognition latency differences than those

found for recognition cases. Additionally, we will also test whether the effect is

stronger when the difference in latencies is higher, therefore increasing the probability

of the objects being in adjacent states versus in the same state.

We should note at this point that the prediction regarding knowledge cases

has already been tested in a different context. Actually, this prediction of the MSH

overlaps with what is called the fluency heuristic (Hertwig, Herzog, Schooler, &

Reimer, 2008; Schooler & Hertwig, 2005), which states that, in knowledge cases, the

fastest retrieved option should be chosen. Its premise is that the fluency with which

an object is retrieved from memory (approximated by the latency of the recognition

judgment) can be used as a single cue and determine inferences. They measured the

accordance rate of the fluency heuristic by computing, for each participant, how

many times the object retrieved faster is chosen in knowledge pairs (pairs with

differences in recognition latency smaller than 100 ms were excluded)1, and found

that it is higher than the individual baseline accordance. Furthermore, they observed

1The threshold of 100 ms was shown to be sufficient for discriminating between recognition latencies

(Hertwig et al., 2008).
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that accordance rates increase with the difference in latencies between objects. While

the fluency heuristic can accommodate these results, it is very limited: it only applies

to knowledge pairs, and within those, to pairs where the fluency difference is larger

than 100ms. The MSH, on the other hand, also predicts these results, and does so

while being able to predict much more about the data - predictions for guessing and

recognition cases. It is, therefore, a far more parsimonious framework (Erdfelder et

al., 2011). Moreover, the MSH predicts that the preference for the faster recognized

object should be weak at best, simply because the memory-state discrepancy for

knowledge pairs can only be small (i.e., recognition certainty and uncertainty) or even

nonexistent (i.e., when both objects are in the same state). The fluency heuristic, in

contrast, fails to provide an explanation for the smaller preferences in knowledge

pairs compared to recognition pairs (see Pohl, Erdfelder, Michalkiewicz, Castela, &

Hilbig, in press).

While the prediction for knowledge pairs seems straightforward and has

already been tested in another context, it should be emphasized that the prediction

for guessing cases is completely new, and surprising in the sense that it leads to the

expectation of a preference for less fluent objects. To the best of our knowledge, no

framework other than the MSH makes or can accommodate such prediction.

Besides these predictions for knowledge and guessing cases, in a second study

we wanted to test a further prediction of the MSH. Erdfelder et al. (2011) already

showed that larger recognition and rejection latencies are associated with smaller RH

accordance rates. However, we wanted to test this in a more refined way using a

better measure of RH-use. Although the RH accordance rates used by Erdfelder et al.

provide an approximation of RH-use, they are a biased measure because counting the

number of times choices are in line with recognition does not take into account what

led to that choice. An option might have been chosen because it was recognized, or

because other information, which points in the same direction, was used. For

example, when comparing supposed population sizes of Berlin and Mannheim, a

non-european person might chose Berlin because she recognizes it and does not
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recognize Mannheim, or because she knows Berlin is the capital of Germany, and

therefore likely to be a large city. For this reason, Hilbig, Erdfelder, and Pohl (2010)

developed a multinomial processing tree model which estimates RH-use in a more

sophisticated way. The r-model (see Figure 2) consists of three trees, which

correspond to the three types of pairs. For knowledge and guessing pairs, the trees

have only a single parameter that accounts for the accuracy for knowledge and

guessing pairs, respectively. For recognition pairs, on the other hand, the model

considers the possibility that a recognized option is chosen through use of further

knowledge, and provides in this way an unbiased estimate of RH-use (which

corresponds to parameter r in the model; see Hilbig et al. (2010, for additional details

about the r-model)). By using this model, we can assess in a more precise way how

recognition and rejection latencies are associated with reliance on recognition alone.

Additionally, we can test whether in the more extreme cases, when the latencies are

very short (so that both objects are most likely in recognition and rejection certainty

states), people always rely on memory-states only, or whether even then other

processes such as integration of further knowledge can take place.

MSH predictions for guessing and knowledge cases: A

reanalysis of published data

We first tested whether choices for guessing and knowledge cases are in accordance

with the MSH prediction that there is a preference for the object in a higher state.

Specifically, as outlined above, we used recognition and rejection latencies as proxies

for underlying memory states. Therefore, we predicted that in knowledge pairs there

is a preference for the object with a shorter recognition latency (and therefore a

higher probability of being in a recognition certainty state) while in guessing pairs

there is a preference for the object with the longest rejection latency (and therefore a

higher probability of being in the uncertainty state).

We first reanalyzed the data of 14 published datasets from our lab (see Table
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1), in order to look for preliminary evidence for our hypotheses. As shown in Figure

3, we observed that for all 14 datasets the proportion of choosing the object

recognized faster in knowledge cases was significantly larger than .5 (smallest

t(21) = 2.78, all p < .01). Regarding guessing cases, in 12 of the 14 datasets the

proportion of choosing the object recognized slower was significantly larger than .5

(smallest significant t(63) = 2.08, p = .02). Clearly, these results are in line with our

expectations. However, the studies included in the reanalysis were not conducted

with our hypotheses in mind. In order to collect further evidence, we designed a new

experiment specifically tailored to our hypotheses. With this new experiment, we

primarily aimed at optimizing the proportion of knowledge and guessing cases in

order to achieve more powerful tests of the MSH predictions for these cases.

Moreover, we were also interested in generalizing the results across different decision

domains beyond city-size comparisons.

Experiment 1

Material and Procedure

The paradigm we used resembles the city-size paradigm outlined in the Introduction

but actually involves different types of decisions. This paradigm includes two tasks:

(1) a recognition test, where objects are presented and participants must judge

whether they have seen them before or not; (2) a comparison task, where participants

see pairs of the objects and must infer which scores higher on a given criterion. Since

the objects are paired exhaustively, the relative proportion of knowledge, recognition

and guessing cases will depend on the proportion of objects recognized. Therefore, in

order to optimize the proportion of knowledge and guessing cases, it is important to

include in the experiment a condition for which the proportion of recognized objects

across participants is larger than .50 (resulting in many knowledge cases) and a

different condition in which the proportion of recognized objects is clearly less than

.50 (resulting in many guessing cases). A third condition should involve a recognition
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rate of about .50, resulting in (almost) equal frequencies of knowledge and guessing

cases. Moreover, since we also wanted to generalize our findings across different

domains, we made use of different types of objects and inference criteria in the three

conditions. Specifically, all participants were presented with objects from three

domains: largest world cities (with over 3 million inhabitants; see

http://en.wikipedia.org/wiki/List of cities proper by population), most successful

celebrities (100 most successful celebrities according to the Forbes list of 2015; see

www.forbes.com) and longest rivers in the world (over 1900 km long; see

https://en.wikipedia.org/wiki/List of rivers by length). According to pre-tests

conducted in our lab, we know that for the domain of world cities normally 50% of

the objects are recognized. We included this domain for generalizability, and also

because it is one of the most often used domain in the study of the RH and should

serve as benchmark. For the domain of celebrities, normally 65% of the objects are

recognized. Therefore, this domain is ideal to test the hypothesis regarding knowledge

cases. Finally, the rivers domain is ideal for testing the hypothesis regarding guessing

cases, since usually 35% of the objects are recognized. The experiment included three

blocks, each consisting of the recognition test and the comparison task for each

domain. The order of blocks was randomized for all participants. In each block, the

recognition test always preceded the comparison task. In the recognition test

participants saw all 20 objects (randomly selected from each domain, but the same

for all participants) and had to decide whether they have heard of them before or not.

Objects were presented one at a time, in random order, and a 500 ms interstimulus

fixation-cross followed each response. Response times were recorded along with the

recognition judgments. After each recognition test, a comparison task followed. In

the comparison task, participants saw 190 pairs, consisting of the exhaustive pairing

of the 20 objects, and had to infer which one scored higher on the criterion. Each

pair was presented at a time, in random order, and a 500 ms interstimulus

fixation-cross followed each response. Response times were recorded along with the

responses. For the world cities, the criterion was city-size; for celebrities, the criterion
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was how successful they were; and for the rivers, the criterion was their length.

Participants

We recruited 75 students (50 women) from the University of Mannheim aged between

19 and 46 (M = 22.00, SD = 5.04). Participation was compensated monetarily as a

function of performance in the comparison task. Every participant received at least

two euros, and they could earn up to 7.70. They gained one cent for each correct

answer, and lost one cent for each wrong one.

Results

One participant had to be removed from the analysis for all domains, because he

indicated that he did not recognize any object in any domain. Furthermore, one

participant was removed from the guessing analysis of the cities domain because he

recognized 19 out of the 20 cities, therefore having no guessing pairs. Finally, two

additional participants were removed from the knowledge analysis of the rivers

domain because they only recognized one river and therefore had no knowledge pairs.

For the remaining participants, the proportion of recognized items was on average .68

for celebrities, .58 for the world cities, and .36 for rivers. This was in line with the

pre-tests, although a bit higher than what we expected for the world cities domain.

Since our hypotheses refer to the preference for the object recognized fastest

in knowledge pairs, and the one judged unrecognized slowest in guessing pairs, we

first calculated per participant the proportion of times their choices were in line with

those hypotheses (accordance rate). We then performed one-sample t-tests to assess

whether the mean accordance rates were larger than .50. As can be seen in Table 2,

we found support for both hypotheses in all three domains assessed.

In addition to testing whether there would be an above chance preference for

the items more likely to be in a higher state, we also wanted to assess whether this

preference would increase with an increasing difference in recognition latencies (i.e.,
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latencies of yes judgments) or rejection latencies (i.e., latencies of no judgments)

between objects in a pair (and therefore an increasingly higher probability of being in

adjacent states). To do so, we ran a multilevel logistic regression2 with Accordance as

a dependent variable. Accordance is essentially a binary variable which takes the

value one if choices are in line with our hypotheses, and zero when they are not.

Specifically, for knowledge pairs, Accordance will be one whenever the fastest

recognized object is chosen, and zero otherwise. Conversely, for guessing pairs,

Accordance will be one whenever the slowest unrecognized object is chosen, and zero

otherwise. As predictors, we included both the main effects and the interactions of

the RT difference (difference in recognition or rejection latencies between the objects

in a pair) with Case (knowledge or guessing) and with Domain (celebrities, cities or

rivers). Additionally, the model includes a random intercept for each participant and

a random slope for each participant regarding the effect of RT difference. Our

hypothesis would be that RT difference has a positive effect on Accordance for both

cases and in all domains. We find support for our hypothesis. As can be seen in

Table 3, RT difference has a significant positive effect on Accordance. Additionally,

there are no differences in Accordance between the domains3. Moreover, while the

effect is present for both knowledge and guessing cases (see Figure 4), we find that it

is significantly stronger for knowledge cases. While this was not directly predicted, it

does not compromise our findings. This will be addressed in more detail in the

Discussion section.

2The model was estimated using the glmer function of the lme4 package (Bates, Mächler, Bolker,

& Walker, 2015) in R (R Core Team, 2015).
3Adding the interaction of Domain and RT difference does not change the overall pattern of results

and the interaction is not significant. Therefore, we opted to present the results of a model without

the interaction, so that we can observe the main effect of RT difference for all domains and not only

for the reference level of the Domain variable.
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The influence of removing items with longer

recognition/rejection judgment latencies on RH-use:

A reanalysis of published data

As mentioned above, in our second study we wanted to test the MSH predictions

regarding recognition latencies. This had been already successfully tested by

Erdfelder et al. (2011), but by relying on accordance rates. Since we now have access

to a better (less biased) method to estimate RH-use – the r parameter of the r-model

(Hilbig et al., 2010) –, we can test these predictions in a more precise way.

Specifically, we can test if there is an increase in r when we sequentially remove items

with longer recognition and rejection latencies and fit the r-model to those subsets of

data. The rationale behind this is that by removing those “slow” items we reduce the

subset mostly to objects in recognition certainty and rejection certainty states. While

doing so, we artificially create the perfect preconditions for relying uniquely on

recognition, which should lead to higher r estimates. Additionally, we would like to

test if r = 1 in the most extreme cases, when only the items with shorter recognition

and rejection latencies are involved. To address these questions, we first reanalyzed

the data for the 14 published datasets that were also used in our previous study.

For each data set, we first identified for each participant which items where

in the first, second, third or fourth quartile of their individual recognition and

rejection latency distributions. In a second step, we created (at the aggregate level)4

four subsets of pairs that consisted only of objects with latencies in each of the

quartiles of the latency distributions5. Next, we fitted the r-model simultaneously to

these four disjoint subsets of data by replicating the r-model trees four times, that is,

4While we do the analysis at the aggregate level, it is individual recognition and rejection latency

distributions that are considered when assigning the data categories to each subset.
5This procedure heavily restricted the amount of available data, since for each subset of data,

only pairs where both objects are in the respective quartile of the recognition or rejection latency

distributions can be analyzed.
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for each subset of pairs. By implication, we ended up with four r estimates. At the

level of parameters, our hypothesis can be described as an order restriction such that

the r parameters decrease from r1 to r4, with the index 1 corresponding to the first

quartile of the distributions (only the fastest recognized and unrecognized objects are

included) and 4 the last quartile of the distributions (only the slowest recognized and

unrecognized objects are included).

All model-based analyses were performed with MPTinR (Singmann &

Kellen, 2013) in R (R Core Team, 2015). We first fitted the model without any

restrictions; this baseline model fits the data well for 9 of the 14 datasets (see Table

4). To test our hypothesis, we excluded the 5 datasets that were associated with

misfit6. In order to evaluate our order restriction we need two tests. First, we test the

order restriction, r1 ≥ r2 ≥ r3 ≥ r4, against the baseline model (with no restriction on

the four r parameters). Second, we test the model with order restrictions,

r1 ≥ r2 ≥ r3 ≥ r4, against a model imposing equality restrictions, r1 = r2 = r3 = r4.

If the order restriction corresponds to the most suitable version of the model, the first

test should fail to reach statistical significance, while the second test should lead to

statistically significant results.

Since our hypothesis involves an order restriction between four parameters,

the sampling distribution of the likelihood-ratio test statistic ∆G2 does not follow a

chi-square distribution with the appropriate degrees of freedom. Given the challenge

involved in determining the appropriate distribution, we opted for using a double

bootstrap method (Van De Schoot, Hoijtink, & Deković, 2010) to compute p-values.

For example, when we want to test the order restrictions, r1 ≥ r2 ≥ r3 ≥ r4, against

the baseline model, the double bootstrap consists of the following steps: (1) a

6In most cases, misfit in the r-model is associated with its inherent restriction in the b parameters,

implying that that knowledge validity is the same for knowledge and recognition pairs (Hilbig et al.,

2010). Removing this constraint eliminated misfit for 4 out of the 5 datasets, but because the model

with two b parameters is saturated, we refrained from including these datasets in the subsequent

analysis.
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non-parametric bootstrap sample is obtained from a given data set (2) the model

imposing the null hypothesis, r1 ≥ r2 ≥ r3 ≥ r4, is fitted to that data set; (3) those

parameter estimates are used to obtain a parametric bootstrap sample (4) both

models being tested (model imposing the order restriction r1 ≥ r2 ≥ r3 ≥ r4 and the

baseline model) are fitted to that sample and the difference in fit is calculated; (5)

steps 1 to 4 are repeated many times (we repeated it 1000 times). We then compute

the p-value by assessing how many times the difference in fit obtained with the

bootstrapped samples is equal or more extreme than the difference in fit obtained

with the original data set, and reject the null hypothesis if this proportion is smaller

than .05. Additionally, we also compare the models through the model selection

measure FIA (Fisher Information Approximation), which takes complexity into

account7.

The results are shown in Table 5 and Figure 5. We find a clear support for

the order-restricted model both with the goodness-of-fit test and the FIA comparison.

In all except one data set (data set 14) the order restriction did not lead to significant

misfit, while the equality restriction did. Accordingly, FIA was for all data sets

smaller for the order restricted model than for the baseline or the equality restricted

model. Only for Data Set 14, in line with the results from the goodness-of-fit test, the

difference in FIA between the baseline and the order restricted model is not sufficient

to support the former.

Additionally, to test whether r approaches one for the subset including only

the items recognized and rejected fastest, we tested the following restriction:

r1 = .998. In all 9 datasets, this restriction led to a significant increase in misfit

7When using FIA to compare two models, a difference larger than 1.1 is considered to be substantial

evidence in favor of the model with smaller FIA (see Kellen, Klauer, & Bröder, 2013). For comparisons

in terms of FIA we additionally made sure that the sample-size of all data sets involved was above

the lower-bound recommended by Heck, Moshagen, and Erdfelder (2014).
8We tested r1 = .99 instead of r1 = 1 because the latter restriction predicts zero frequencies for

some categories of the model and therefore a unique observation in one of those categories would lead

to severe misfit. A rejection of such model would therefore be trivial.
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(smallest ∆G2(1) = 14.55, p < .001, smallest ∆FIA = 6.11) suggesting that even

under the ideal conditions for use of memory state information alone, people still

sometimes rely on other strategies, like use of further knowledge.

While these results lend support to our hypothesis, the reanalyses are not

ideal because when creating the subsets of pairs we necessarily limit the data points

available for analysis (see Table 5). Therefore, we conducted Experiment 2 that, by

being designed specifically to test our hypothesis, allows us to test them with greater

power.

Experiment 2

Participants

We recruited 52 students (35 women) from the University of Mannheim aged between

18 and 45 (M = 22.38, SD = 5.49). Participation was rewarded either with a

monetary compensation (2 euros) or with study participation credits. Additionally,

for each correct response in the comparison task, participants gained 2.5 cents, and

for each incorrect response they lost 2.5 cents.

Material and Procedure

The experiment consisted of the city-size paradigm, involving two tasks. First,

participants had a recognition task, where they saw 60 city names and had to

indicate whether they recognize them or not. Naturally, response times were recorded

along with the recognition judgments. The 60 cities were a random selection from the

largest world cities (with over 3 million inhabitants; see

http://en.wikipedia.org/wiki/List of cities proper by population). After the

recognition task, cities were paired according to their recognition and rejection

latencies, with the fastest being paired together, and so on. Specifically, there were

four subsamples of pairs, created according to the corresponding four bins of
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recognition and rejection latencies. Whenever the number of recognized or rejected

objects was not divisible by four, it was randomly defined which bin(s) would have

one object more than the other(s). After the pairs were created (the number of pairs

varied between participants, being either 420, 421 or 422), participants saw them and

had to decide for each pair which city was more populous.

Results

Before fitting the model, we removed one participant because he recognized only one

of the 60 cities, while the remaining participants recognized on average 57% of the

objects. With the data from the remaining 51 participants, we determined the

frequencies for each category of the model, separately for the four bins of data. Then,

we fitted the r-model to the four bins of data. The model performed very well in

describing the data (G2(4) = 7.44, p = .11, F IA = 65.49). We repeated the same

analysis that we performed with the published data sets, with the goal of testing our

order hypothesis on the parameters r1 to r4. As can be seen in Table 5 and Figure 5,

we again find support for our hypothesis. Additionally, we again tested whether

adding the equality restriction r1 = .99 leads to a significant increase in misfit. We

observed a very extreme increase in misfit with this restriction

(∆G2(1) = 1806.84, p < .001,∆FIA = 899.78), which again supports the notion that

even under ideal conditions for reliance on memory states alone, other strategies than

mere reliance on memory strength take place.

Discussion

When they introduced the MSH, Erdfelder et al. (2011) contributed to the RH

literature by providing an extension of the heuristic which parsimoniously links it

with the recognition memory literature. The MSH not only explains a lot of

previously problematic results but also provides a set of new predictions. While

Erdfelder et al. tested many of these predictions in their original paper, some were
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left untested. Our aim was to address this gap by (1) testing the MSH predictions for

guessing and knowledge cases and (2) provide further evidence for a crucial prediction

regarding recognition cases. We addressed both these issues in two studies by

reanalyzing previously published data sets and conducting two new experiments. In

this way, we found strong converging evidence in line with the MSH.

In our first study, by relying on recognition and rejection latencies as a proxy

for memory states – under the assumption that longer latencies are associated with

the uncertainty memory state while shorter latencies are associated with certainty

memory states – we found evidence for the MSH prediction that for knowledge and

guessing cases people also have a preference for objects that are likely to be in a

higher memory state. While for knowledge cases this is not a new prediction – as it

can be alternatively explained by the fluency heuristic (Hertwig et al., 2008) – , the

prediction regarding guessing cases cannot be accounted by any other framework we

are aware of. Furthermore, that latter prediction appears quite counterintuitive, since

objects recognized slower should be preferred in guessing cases. Nevertheless, we

found evidence for this in all data sets we analyzed.

It is also worth noting that the MSH not only predicts the preference effects,

but also predicts they should be smaller than the corresponding effects in recognition

cases. This is due to the fact that, in knowledge and guessing pairs, the objects can

only be either in the same memory state or in adjacent memory states. Therefore, the

preference for the object in a higher state should be less marked than in cases where

the distance between states is maximal (pairs of one object in recognition certainty

and one object in rejection certainty), a combination that can only occur for

recognition pairs. We thus believe the MSH presents itself as the most parsimonious

framework for understanding how recognition is used in binary inferences, clearly

outperforming other approaches, like the RH and the fluency heuristic, in its

explanatory power and predictive reach. While for recognition cases this had already

been shown (see Erdfelder et al., 2011), our results extend the support of the MSH to

knowledge and guessing cases, thereby closing a gap that was left open.
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One result worth noting is the fact that the effect of latencies was stronger

for knowledge cases than for guessing cases. While we had not predicted this

explicitly, it fits nicely with previous results. Specifically, Castela and Erdfelder (in

press) have implemented the MSH in a formal model that accommodates all memory

state combinations, and observed that MSH-use is higher for recognition pairs if one

object is in recognition certainty and one object in the uncertainty state than for

recognition pairs with one object in uncertainty and one object in the rejection

certainty state. Since these are the memory state combinations that can underlie

adjacent state cases within knowledge and guessing pairs, respectively, our result

seems to be exactly in line with was found in Castela and Erdfelder – a stronger

tendency to use the MSH in the former cases. Given the converging evidence

concerning this effect, future studies should focus on testing possible explanations for

it. One such explanation, already suggested by Castela and Erdfelder, is that the

distance in memory strength between the recognition certainty and uncertainty

memory states might be larger than the corresponding difference between the

uncertainty and rejection certainty memory states. This would suggest that a simple

ordinal description of the states might be insufficient.

With our second study we aimed at further testing the effect of recognition

and rejection latencies in choices for recognition pairs. While this is a conceptual

replication of the test carried out by Erdfelder et al. (2011), we relied on a different

measure of RH-use, which we believe is far mode adequate. Erdfelder et al. relied on

accordance rates to the RH, which, as explained above, are a severely confounded

measure since people might choose the recognized option for reasons other than the

fact that they are applying the RH, namely because they rely on further knowledge.

For this reason, Hilbig et al. (2010) proposed the r-model, and specifically the r

parameter of the model, as a better measure of RH-use. The main advantage is that

the r-model disentangles choices of the recognized option in recognition pairs that

originate from use of the RH from the ones steaming from use of further knowledge.

Making use of this superior measurement tool, we investigated the MSH prediction
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that RH-use should increase the shorter the recognition and rejection latencies of

objects in a pair. We found support for this hypothesis by reanalyzing 9 data sets

and, in addition, with a new experiment tailored exactly to this test. Furthermore,

we tested whether in the most extreme cases, that is, when the recognition and

rejection latencies were shortest and therefore the probabilities that both objects are

in recognition and rejection certainty states were highest, MSH-use would be the only

strategy used. Our results suggested that this is not the case, therefore indicating

that even under perfect conditions for relying on memory strength, people will

sometimes resort to other inference strategies and integrate further knowledge.

In sum, with our work we tried to answer some questions left open by

Erdfelder et al. (2011), thereby accumulating further support for the MSH. We

believe we achieved this goal in two different ways: First, by finding support for its

predictions for guessing and knowledge cases and in this way showing how it can

parsimoniously explain a much larger chunk of data than the RH or the fluency

heuristic; second, by finding converging support for its main prediction while using a

more sophisticated measure of MSH use than the one employed by Erdfelder et al.

(2011). Finally, our results also show that while the MSH appears to be a more useful

framework than the RH, it should not be understood in a deterministic way, since

even when the objects are (likely to be) in the two extreme memory states –

recognition certainty and rejection certainty – people sometimes resort to strategies

other than choosing the option in a higher memory-state.
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Table 2: Results of one-sample t-test testing if the mean of individual proportion of

choices in Accordance with our hypotheses is higher than .50. For knowledge cases,

Accordance means choosing the fastest recognized object, while for guessing cases Ac-

cordance means choosing the slowest unrecognized object.

Knowledge Cases Guessing Cases

Accordance t df p Accordance t df p

World Cities (size) .60 8.28 73 < .001∗ .55 2.85 72 < .01∗

Celebrities (success) .60 7.78 73 < .001∗ .55 2.13 73 .02∗

Rivers (length) .67 9.35 71 < .001∗ .54 3.53 73 .001∗

Note: *significant at the .05 α level.
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Table 3: Summary of fixed effects results in multivel logistic regression showing how

the difference in latencies between two objects in a pair (RT difference) predicts the

Accordance. Accordance is defined as choosing the fastest recognized object in knowledge

cases, and the slowest recognized object in guessing cases.

Predictor Coefficient SE z value p

Intercept 0.10 0.04 2.23 .03∗

RT difference 0.24 0.08 3.06 < .01∗

Case (Knowledge vs. Guessing) 0.14 0.04 3.28 < .01∗

Domain Celebrities (vs. Cities) 0.01 0.03 0.39 .70

Domain Rivers (vs. Cities) .02 0.04 0.67 .50

RT difference x Case Knowledge (vs. Guessing) 0.48 0.07 6.59 < .001∗

Note: For discrete predictors, information in parentheses clarifies the levels of the pre-

dictor which are being compared. The RT difference is scaled in seconds. *significant

at the .05 α level.
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Table 4: Goodness-of-fit statistics, corresponding degrees of freedom and p-values for

all reanalyzed data sets and Experiment 2.

Data Set G2 df p-value

1 10.35 4 .03∗

2 3.87 4 .42

3 10.58 4 .03∗

4 9.22 4 .06

5 2.51 4 .64

6 0.50 4 .97

7 10.85 4 .03∗

8 2.74 4 .60

9 4.53 4 .34

10 9.97 4 .04∗

11 4.62 4 .33

12 12.03 4 .02∗

13 5.22 4 .27

14 0.79 4 .94

Exp 2 7.44 4 .11

Note: * indicates that the baseline model does not fit the data well, leading to statis-

cally significant misfit.
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Figure 1: Graphical representation of the two-high-threshold model. Parameter r

denotes the probability of old objects exceeding the recognition thresholds. Parameter

d denotes the probability of new objects exceeding the rejection threshold. Parameter

g denotes the conditional probability of guessing yes in the uncertainty state.
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Figure 2: Graphical representation of the r-model: Parameter r denotes the proba-

bility of applying the recognition heuristic as originally proposed, that is, by ignoring

any knowledge beyond recognition. a = recognition validity (probability of the rec-

ognized object representing the correct choice in a recognition case); b = probability

of valid knowledge; g = probability of a correct guess; rec. = recognized; unrec. =

unrecognized.
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Figure 3: Proportion of choices of the fastest or slowest recognized or unrecognized

object for knowledge and guessing cases, respectively, for all 14 reanalyzed datasets.

Error bars represent standard error of the mean.
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distributions for all reanalyzed datasets and for Experiment 2. Error bars represent

standard errors.
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Abstract The recognition heuristic (RH) theory states that, in
comparative judgments (e.g., Which of two cities has more
inhabitants?), individuals infer that recognized objects score
higher on the criterion (e.g., population) than unrecognized
objects. Indeed, it has often been shown that recognized
options are judged to outscore unrecognized ones (e.g., rec-
ognized cities are judged as larger than unrecognized ones),
although different accounts of this general finding have been
proposed. According to the RH theory, this pattern occurs
because the binary recognition judgment determines the in-
ference and no other information will reverse this. An alter-
native account posits that recognized objects are chosen be-
cause knowledge beyond mere recognition typically points to
the recognized object. A third account can be derived from the
memory-state heuristic framework. According to this frame-
work, underlying memory states of objects (rather than rec-
ognition judgments) determine the extent of RH use: When
two objects are compared, the one associated with a “higher”
memory state is preferred, and reliance on recognition in-
creases with the “distance” between their memory states.
The three accounts make different predictions about the im-
pact of subjective recognition experiences—whether an object

is merely recognized or recognized with further knowledge—
on RH use. We estimated RH use for different recognition
experiences across 16 published data sets, using a multinomial
processing tree model. Results supported the memory-state
heuristic in showing that RH use increases when recognition
is accompanied by further knowledge.

Keywords Recognition heuristic .Memory-state heuristic .

Recognitionmemory . Decisionmaking .Multinomial
processing treemodels

The recognition heuristic (RH) for comparative judgments is
among the simplest heuristics proposed by Goldstein and
Gigerenzer (2002) within their program of the “adaptive tool-
box”—metaphorically standing for decision makers’ repertoire
of judgment and choice strategies. For pairwise comparisons,
the RH can be stated as follows: “If one of two objects is
recognized and the other is not, then infer that the recognized
object has the higher value with respect to the criterion”
(Goldstein&Gigerenzer, 2002, p. 76). For the RH to be applied,
the following preconditions have been proposed: (1) recognition
is a valid cue strongly correlated with the criterion; (2) further
cues are not openly available; (3) recognition stems from natural
encounters in the world (Gigerenzer & Goldstein, 2011).

The typical paradigm for investigating the RH consists of a
comparison task in which participants see pairs of objects and
must infer, for each pair, which object has a higher value on a
criterion dimension. The most common example is the city-
size task in which participants decide which of two cities has
the larger population. Additionally, participants engage in a
recognition task for each object. That is, they state for each
object whether they recognize it or not. On the basis of this
information, three types of object pairs can be defined: recog-
nition pairs (one object is recognized and the other is not),
knowledge pairs (both objects are recognized), and guessing
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pairs (neither of the objects is recognized). In some experi-
ments, the recognition task additionally asks participants to
state whether they merely recognized the name of the object or
whether they have further knowledge about it (e.g., Hilbig &
Pohl, 2009). However, despite this distinction of recognition
experiences, participants’ judgments are usually simply ana-
lyzed as recognized versus unrecognized (some exceptions are
Hilbig & Pohl, 2009; Hilbig, Pohl, & Bröder, 2009).

Several studies showed that recognized objects are chosen
more often than unrecognized ones in recognition pairs (for
reviews, see Gigerenzer & Goldstein, 2011; Pachur, Todd,
Gigerenzer, Schooler, &Goldstein, 2011). However, choosing
the recognized object does not necessarily involve use of the
RH. Whereas the latter implies that recognition alone deter-
mined the choice, the former can occur either from consider-
ation of recognition alone or in combination with further
knowledge about the recognized object (which will typically
be in line with the recognition cue). In this sense, different
accounts have been proposed for the observable tendency to
choose the recognized object. According to the original RH
theory, the recognized object is chosen more often because “if
one object is recognized and the other one is not, then the
inference is determined; no other information about the rec-
ognized object is searched for and, therefore, no other infor-
mation can reverse the choice determined by recognition”
(Goldstein & Gigerenzer, 2002, p. 82). We will refer to this
account as the invariance account.

An alternative account, which we will designate as the
inhibition account, presumes that the recognition cue can be
overruled by further knowledge. Specifically, the recognized
object is chosen more often not for being recognized per se, but
because further information about this object leads to the same
choice. This account is corroborated by several studies showing
that further knowledge affects choices in recognition pairs (e.g.,
Bröder & Eichler, 2006; Hilbig & Richter, 2011; Newell &
Fernandez, 2006). For example, people are more likely to infer
that a recognized city is more populous than an unrecognized
one if they know that the recognized city has a major league
soccer team (Newell & Fernandez, 2006). Naturally, further
knowledge can also result in the choice of the unrecognized
object when the available information indicates that the recog-
nized object is small. Nevertheless, since nothing is known
(and little can be inferred) about unrecognized objects, knowl-
edge will typically support choice of recognized objects.

A third account is given by the memory-state heuristic
(MSH; Erdfelder, Küpper-Tetzel, & Mattern, 2011). The
MSH presumes that individuals tend to choose the object that
reaches a “higher” memory state—that is, a higher level of
memory strength. Because criterion values are typically
strongly correlated with memory strengths (Erdfelder et al.,
2011), MSH use will often result in correct inferences. In line
with the two-high-thresholdmodel of recognition (e.g., Kellen,
Klauer, & Bröder, 2013), the MSH assumes that objects are in

one of three memory states: recognition certainty, uncertainty,
or rejection certainty. Objects with memory strengths exceed-
ing a recognition threshold are in the recognition certainty state
and are judged as recognized. If the memory strength falls
below this recognition threshold but is still larger than a
rejection threshold, an object is in the uncertainty state, and
the recognition judgment is determined by guessing. Finally, if
the memory strength falls below the rejection threshold, an
object is in the rejection certainty state and is judged as
unrecognized. According to the MSH, reliance on recognition
should increase with the “distance” between memory states of
the to-be-compared objects. Specifically, if one object is in the
recognition certainty state and the other in the rejection cer-
tainty state, reliance on recognition should be highest.

Beyond binary recognition judgments: New predictions

As was previously mentioned, the majority of studies investi-
gating the RH have relied on binary recognition judgments,
ignoring the reported subjective recognition experiences.
However, when distinguishing between nonrecognition (U),
mere recognition (mR), and recognition with further knowl-
edge (R+) judgments, it can be seen that the different accounts
make distinct predictions.

According to the invariance account, RH use should not vary
with the composition of the recognition pairs (i.e., pairs judged
R+–U vs.mR–U), because only the binary recognition judgment
determines choices and the distinction between R+ and mR
should not matter. In contrast, the inhibition account predicts
that RH use will be less frequent for R+–U pairs than for mR–U
pairs, since the availability of knowledge should lead to integra-
tion of this knowledge and, by implication, decrease reliance on
the RH. The MSH account makes the opposite prediction; that
is, RH use should be more frequent for R+–U than for mR–U
pairs, because it is more likely that the recognized object in the
former pair is in the recognition certainty state than that the
recognized object in the latter pair is. Note that this prediction
assumes only that reported recognition experiences (R+ vs. mR)
and underlying memory states (recognition certainty vs. uncer-
tainty) are positively correlated. It does not require that all R+

objects be in the recognition certainty state. To derive the MSH
prediction, it suffices to assume that R+ objects more likely
originate from recognition certainty than mR objects do.

TheMSH account makes an interesting additional prediction.
Specifically, the availability of further knowledge should be used
as a cue in R+–mR knowledge pairs as well, leading to the R+

object being judged as having a higher criterion value (e.g., being
judged as the more populous city). Again, this prediction
emerges from the fact that R+ objects are more likely in a
recognition certainty state than mR objects. The other two ac-
counts make no such prediction, since they predict that choices
for knowledge pairs will be based on retrieved knowledge only.
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Finally, predictions regarding the ecological validity of the
different recognition experiences can also bemade. According
to the MSH account, objects in the recognition certainty state
should have higher criterion values than objects in the uncer-
tainty state (Erdfelder et al., 2011). Thus, the MSH predicts
that the probability of the recognized object having the larger
criterion value should be greater for R+–U than for mR–U
pairs. The invariance account predicts no such difference,
because R+ and mR objects are treated as equivalent if com-
pared with unrecognized objects.

The evaluation of the above-described predictions requires
the ability to disentangle the relative contributions of RH use
and reliance on further knowledge. The r-model proposed by
Hilbig, Erdfelder, and Pohl (2010) provides such a measure of
RH use (via parameter r), while also taking into account the
contribution of further knowledge. However, this model does
not distinguish between different types of recognition experi-
ences. In the next section, we first present the r-model and then
propose an extension, the r*-model, that incorporates different
recognition experiences.

From the r-model to the r*-model

The r-model belongs to the class of multinomial processing tree
models (Batchelder & Riefer, 1999; Erdfelder et al., 2009). This
class of models assumes that the observed categorical responses
are produced by a set of discrete mental states. The probability
of each state being entered is determined by the probability of

certain cognitive processes taking place or not. The models
provide estimates for the probability of each of these processes
taking place, producing a characterization of categorical data in
terms of latent cognitive processes. Multinomial processing tree
models are usually depicted as trees, with each branching pre-
senting the occurrence (or not) of cognitive processes and the
terminal nodes representing the observed categorical responses.

The r-model (Hilbig, Erdfelder, & Pohl, 2010) models data
from a two-alternative forced choice comparison task and a
yes–no recognition task. The recognition judgments are used
to categorize the pairs into knowledge, recognition, or guess-
ing cases, defining the three trees of the model (see Fig. 1).
They lead to eight outcome categories that are described by
four parameters: r, the probability of applying the recognition
heuristic; a, the probability of recognition being a valid cue; b,
the probability of valid knowledge; and g, the probability of a
correct guess. While both the knowledge and guessing trees
are defined by a single parameter that accounts for accuracy (b
and g, respectively), the recognition tree is slightly more
complex. If the RH is used (with probability r), accuracy
depends on recognition validity; with probability a, the infer-
encewill be correct; andwith probability 1−a, it will be false.1

If further knowledge or any other judgment strategy is used,

1 The a parameter represents the proportion of recognition cases in which
the recognized object has the larger criterion value. This parameter could
be placedwithout loss of generality at the root of the tree or even removed
implicitly via the use of two trees (for pairs in which the recognized item
has the smaller or larger criterion value, respectively). We find the present
parametrization the most convenient one for several (pragmatic) reasons.
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Fig. 1 Parameter r denotes the probability of applying the recognition
heuristic as originally proposed—that is, by ignoring any knowledge
beyond recognition. a = recognition validity (probability of the

recognized object representing the correct choice when paired with an
unrecognized object); b = probability of valid knowledge; g = probability
of a correct guess; rec. = R = recognized; unrec. = U = unrecognized
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the RH is not applied (with probability 1−r), and accuracy
depends on (knowledge) validity. With probability b, the
answer is correct, and with probability 1 – b, it is false.
Again, the choice of either the recognized or the unrec-
ognized object will depend on the recognition validity
(but see footnote 1).

To investigate whether use of the RH varies between rec-
ognition pairs in which the recognized object is judged as
either R+ ormR, we extended the r-model to the r*-model (see
Fig. 2). The r*-model consists of six trees with 18 outcome
categories in total. Because the category probabilities must
sum up to one for each tree, only 12 of the 18 probabilities are
free to vary. These category probabilities are represented by
10 parameters, resulting in a testable model with 12−10=2
degrees of freedom. The r*-model comprises three trees for
knowledge cases, two trees for recognition cases, and one
guessing tree. The three knowledge trees refer to (1) R+–R+

pairs, (2) R+–mR pairs, and (3) mR–mR pairs. It could be
argued that this is not a knowledge tree, since, according to
the participant’s judgments, there is no knowledge available.
Nevertheless, we refer to the parameter that accounts for
accuracy in these pairs as a knowledge parameter, but more
for reasons of consistency and simplicity than due to a strong
claim about the availability of valid knowledge for these
cases. The two recognition trees correspond to simple dupli-
cations of the original recognition tree in the r-model (each
with its own set of r and b parameters), accounting both for
R+–U andmR–U pairs. Finally, as in the r-model, the guessing
tree includes pairs of two unrecognized objects (U–U).

As can be seen in Fig. 2, in the R+–mR knowledge tree, we
assume that the distinction between merely recognized objects
(mR) and recognized objects with further knowledge (R+) can
be used as a simple cue. In other words, irrespective of the
retrieved knowledge, the R+ object would be preferred over
themR object (as measured by parameter k). If participants use
this strategy (as predicted by the MSH), a correct answer
depends on the R+ cue’s validity (as measured by parameter
c)—that is, on the proportion of times the object with the
higher criterion value is the one judged as R+. However, if
this strategy is not used, participants rely on the knowledge
they possess, and a correct answer will depend on the validity
of knowledge (as measured by parameter b2). Choice of the R

+

or the mR object will again depend on parameter c.

Model-based hypothesis testing

The hypotheses discussed previously can be represented by
parameter restrictions in the r*-model:

invariance account : r1 ¼ r2; a1 ¼ a2;
inhibition account : r1 < r2;
MSH : r1 > r2; a1 > a2:

In addition to these restrictions, the MSH predicts that
people use the strategy modeled by parameter k. Therefore,
the MSH predicts that the restriction k=0 should produce
gross misfits.

The suitability of the different parameter restrictions can be
compared by evaluating the relative performance of the models
instantiating them. A model selection analysis will allow us to
assess which hypotheses are corroborated by the data and
which are rejected. Model selection requires a weighting be-
tween the ability of eachmodel to account for the observed data
and the ability of each model to account for data in general
(model complexity or flexibility), since more flexible models
provide a better fit to data a priori. The goal is to find the model
with the best trade-off between fit and flexibility (see
Vandekerckhove, Matzke, & Wagenmakers, in press).

One prominent approach in model selection is based on the
minimum description length principle (MDL; Kellen et al.,
2013). According to the MDL approach, both models
and data are understood as codes that can be com-
pressed. The goal of MDL is to assess models in terms
of their ability to compress data. The greater the com-
pression, the better the account of the underlying regu-
larities that are present in the data. One of the indices
emerging from the MDL principle is the Fisher infor-
mation approximation (FIA), which combines a model’s
goodness of fit with model flexibility penalties:

ð1Þ
The first summand of FIA corresponds to the (minus) max-

imum log-likelihood of observed data x in a particular experi-
ment, quantifying model ℳ’s fit, and the second and third
summands correspond to the model penalties. The second
summand takes the number of parameters p and sample size
N into account. The third summand accounts for the flexibility
of the model due to its functional form by integrating over the
determinant of the expected Fisher informationmatrix I(θ). FIA
differences larger than 1.1 already represent substantial evi-
dence in favor of the winning model (Kellen et al., 2013).

Analysis of data sets

The r*-model requires responses discriminating between
objects that were unrecognized, merely recognized, and
recognized with further knowledge. Sixteen previously pub-
lished data sets fulfilled this requirement (Hilbig, Erdfelder,
& Pohl, 2010, 2011, 2012; Hilbig & Pohl, 2008, 2009;
Hilbig et al., 2009; Hilbig, Scholl, & Pohl, 2010). The
choice task used in all data sets was the city-size task.
Table 1 provides a description of each data set (additional
details can be found in the Supplemental Material).
FIA values and parameter estimates were calculated using
the MPTinR package (Singmann & Kellen, 2013).
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Fig. 2 Tree representation of the r*-model. R+, object recognized with
further knowledge; mR, object merely recognized; U, object unrecog-
nized; b1, b2, and b3, knowledge validity parameters; k, probability of
using the further knowledge cue; c, validity of choosing the R+ object
(probability that it represents the correct choice) in R+–mR pairs; r1,
probability of applying the recognition heuristic (RH) in pairs for which
the recognized object received an R+ judgment; a1, recognition validity

(probability of the recognized object representing the correct choice) in
pairs for which the recognized object received an R+ judgment; r2,
probability of applying the RH in pairs for which the recognized object
received an mR judgment; a2, recognition validity (probability of the
recognized object representing the correct choice) in pairs for which the
recognized object received an mR judgment; g, probability of a valid
guess
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Following Hilbig, Erdfelder, Pohl (2010), the baseline re-
strictions b1=b4 and b3=b5 were imposed on the model.

The baseline model performed well in describing the data
(see Table 2). For 12 of the 16 data sets, it fitted the data
according to the standardG2 goodness-of-fit test using α = .05
as a criterion of significance. For 4 of the 16 data sets (data sets

5, 13, 15, and 16), there was misfit at this level of significance.
However, these misfits did not exceed the critical G2 values
obtained in compromise power analysis (i.e., balancing of
type I and type II error probabilities) given an effect size of
ω=0.1 under H1 (see Erdfelder, 1984; Faul, Erdfelder, Lang,
& Buchner, 2007).

Table 1 Data sets

Data Set Origin Materials N

1 Hilbig & Pohl, 2009, Experiment 1 20 largest Swiss cities 4,560

2 Hilbig & Pohl, 2009, Experiment 2 17 random world cities 9,969∗

3 Hilbig & Pohl, 2009, Experiment 3 14 largest Swiss cities 6,188

4 Hilbig & Pohl, 2008, Experiment 5 11 random world cities 5,776∗

5 Hilbig, Erdfelder, & Pohl, 2011 14 Polish and 14 Austrian cities 12,012

6 Hilbig, Pohl, & Bröder, 2009 14 largest Belgian cities 7,358∗

7 Hilbig, Erdfelder, & Pohl, 2010 (6a) 17 random world cities 2,312

8 Hilbig, Erdfelder, & Pohl, 2010 (6b) 17 random world cities 2,584

9 Hilbig, Erdfelder, & Pohl, 2010 (7a) 14 largest Italian cities 1,183

10 Hilbig, Scholl, & Pohl, 2010, Experiment 1a 16 largest Canadian cities 1,320

11 Hilbig, Scholl, & Pohl, 2010, Experiment 1b 16 largest Canadian cities 960

12 Hilbig, Scholl, & Pohl, 2010, Experiment 2a 16 largest Canadian cities 2,400

13 Hilbig, Scholl, & Pohl, 2010, Experiment 2b 16 largest Canadian cities 2,040

14 Hilbig, Erdfelder, & Pohl, 2012, Experiment 1a 18 random world cities 3,672

15 Hilbig, Erdfelder, & Pohl, 2012, Experiment 1b 18 random world cities 3,213

16 Hilbig, Erdfelder, & Pohl, 2012, Experiment 1c 18 random World cities 3,672

Note. The sample size corresponds to the aggregate level: total number of trials multiplied by number of participants. For the data sets marked with an *,
the total N does not match what was reported in the published articles. This is due to missing values in variables required for the analysis.

Table 2 Model fit and maximum likelihood parameter estimates

Data Set G2 p-value b1 b2 b3 k c g r1 r2 a1 a2

1 4.85 .09 .75 (.02) .85 (.02) .68 (.02) .37 (.05) .80 (.02) .52 (.02) .77 (.03) .63 (.03) .93 (.01) .79 (.01)

2 2.44 .30 .70 (.01) .73 (.02) .62 (.02) .46 (.03) .70 (.01) .54 (.01) .73 (.01) .45 (.03) .82 (.01) .74 (.01)

3 3.67 .16 .74 (.01) .78 (.02) .64 (.02) .42 (.03) .70 (.01) .56 (.02) .84 (.02) .67 (.02) .82 (.01) .73 (.01)

4 0.94 .62 .65 (.01) .67 (.03) .52 (.02) .60 (.02) .48 (.02) .53 (.02) .70 (.02) .49 (.03) .57 (.01) .62 (.01)

5 8.00 .02 .66 (.02) .69 (.02) .63 (.01) .50 (.02) .65 (.01) .53 (.01) .82 (.01) .70 (.02) .86 (.01) .81 (.01)

6 5.08 .08 .69 (.02) .71 (.04) .64 (.02) .61 (.04) .78 (.02) .57 (.01) .82 (.02) .52 (.02) .94 (.01) .78 (.01)

7 3.82 .15 .64 (.03) .84 (.04) .66 (.03) .50 (.06) .72 (.03) .52 (.02) .74 (.03) .63 (.04) .79 (.02) .70 (.02)

8 1.34 .51 .63 (.02) .63 (.04) .61 (.04) .50 (.05) .58 (.03) .51 (.02) .84 (.02) .75 (.04) .79 (.01) .77 (.02)

9 0.99 .61 .71 (.04) .81 (.05) .53 (.05) .41 (.11) .86 (.03) .50 (.03) .75 (.05) .57 (.06) .94 (.01) .69 (.03)

10 1.42 .49 .52 (.08) .65 (.09) .51 (.04) .64 (.08) .67 (.04) .59 (.02) .98 (.01) .67 (.04) .82 (.02) .74 (.02)

11 0.03 .98 .58 (.06) .72 (.10) .58 (.04) .67 (.09) .75 (.04) .54 (.03) .95 (.02) .50 (.06) .82 (.02) .70 (.03)

12 2.38 .30 .62 (.03) .67 (.04) .56 (.03) .40 (.06) .62 (.03) .53 (.02) .77 (.03) .52 (.04) .80 (.02) .68 (.02)

13 6.09 .05 .63 (.03) .84 (.05) .62 (.04) .60 (.07) .75 (.03) .53 (.02) .85 (.02) .56 (.05) .78 (.02) .68 (.02)

14 3.17 .20 .66 (.01) .74 (.03) .67 (.02) .30 (.04) .56 (.02) .45 (.02) .56 (.03) .42 (.04) .59 (.02) .59 (.02)

15 6.48 .04 .68 (.01) .75 (.03) .64 (.03) .39 (.04) .55 (.02) .50 (.02) .58 (.03) .41 (.05) .64 (.01) .57 (.03)

16 8.07 .02 .64 (.02) .62 (.03) .64 (.02) .13 (.05) .53 (.02) .46 (.02) .69 (.02) .63 (.03) .57 (.02) .56 (.02)

Mean 3.67 – .66 .73 .61 .47 .67 .52 .77 .57 .78 .70

Note. Standard errors in parentheses

1136 Psychon Bull Rev (2014) 21:1131–1138



The results reported in Table 3 show that for the majority of
the data sets (12 out of 16), the FIA metric prefers the model
imposing the full set of MSH restrictions, r1>r2 and a1>a2,
and provides support for k>0. These results are corroborated
by the parameter estimates obtained with the unrestricted
model, which are almost invariably consistent with these
parameter restrictions (see Table 2).2

Three data sets (4, 7, and 14) were better accounted for by a
model imposing the restrictions r1>r2 and a1=a2. This departs
from theMSH only in terms of the latter’s expected ecological
validity, since the probability of the recognized object having
the larger criterion value was not found to be reliably greater
in R+–U pairs than in mR–U pairs. Finally, data set 16 was
better described by a model imposing the restrictions r1=r2
and a1=a2. As can be seen in the Supplemental Material, data
set 16 corresponds to a condition in which speeded responses
were collected. It is plausible that the retrieval of additional
information from memory was impaired by this experimental
constraint, leading to the use of fast, familiarity-based recog-
nition judgments (e.g., Pachur & Hertwig, 2006).

General discussion

We tested the predictions of three different accounts about the
impact of subjective recognition experiences on RH use.
Overall, we found a clear pattern that was predicted by the
MSH and is inconsistent with both the invariance and the
inhibition accounts. RH use is more frequent when the recog-
nized object is judged as R+ than when judged asmR. TheMSH
predictions about RH use for different recognition experiences
rely on the assumption that objects judged as R+ are more likely
to have originated from a certainty state than objects judged as
mR. Despite the plausibility of this assumption, future efforts
should be placed on implementing a complete model that
associates choice predictions to latent memory states that are
themselves estimated from the data (Erdfelder et al., 2011;
Pachur et al., 2011). This, however, implies the possibility of
distinguishing whether an object (e.g., a city name) was expe-
rienced previously or not. One way to achieve this is by induc-
ing recognition experimentally (see Bröder & Eichler, 2006),
although it can be argued that this “artificial” recognition is
beyond the domain of the RH (Gigerenzer & Goldstein, 2011).

In addition to the main hypotheses, we derived two other
predictions from the MSH framework. The first prediction
concerns a strategy that was not investigated before—namely,
choosing the object judged as “recognized with further

Table 3 Model-Selection Results: FIA indices for different versions of the r*-model applied to 16 data sets

Parameter Restrictions

Data Set baseline r1=r2 r1=r2
a1=a2

r1=r2
a1=a2
k=0

r1≤r2 r1≤r2
k=0

r1≥r2
a1≥a2

r1≥r2
a1=a2

r1≥r2
a1≥a2
k=0

1 34.80 37.13 83.09 118.34 39.01 74.25 33.41 80.09 68.65

2 37.29 81.21 95.15 224.39 83.38 212.63 35.92 50.57 165.17

3 36.17 50.02 60.99 171.04 52.02 162.07 34.79 46.47 144.84

4 34.46 54.29 53.68 255.12 56.28 257.72 35.95 33.18 237.39

5 41.08 52.36 61.89 240.86 54.72 233.69 39.68 49.94 218.66

6 36.84 65.42 155.66 270.67 67.49 182.49 35.45 126.41 150.45

7 30.90 31.21 34.04 73.67 32.73 72.36 29.50 33.05 69.14

8 30.03 30.25 27.61 69.10 31.78 73.26 28.65 26.74 70.14

9 25.85 26.41 53.08 60.61 27.52 35.05 24.48 51.89 32.02

10 26.20 46.46 46.50 70.48 47.68 71.66 24.79 25.55 48.78

11 24.40 46.34 48.46 68.23 47.45 67.21 23.02 25.85 42.79

12 30.37 40.81 49.58 72.69 42.38 65.48 28.98 38.48 52.09

13 30.79 46.14 48.35 80.25 47.55 79.45 29.43 32.36 61.32

14 32.81 35.64 32.44 56.79 37.35 61.70 31.47 28.98 55.82

15 33.55 36.69 36.18 72.52 38.28 74.62 32.19 32.38 68.52

16 35.46 34.27 31.27 34.09 36.08 38.89 34.08 31.79 36.90

Total 521.00 714.65 917.97 1,938.85 741.70 1,762.53 501.79 713.73 1,522.68

Note. FIA indices of the winningmodel for each data set are set in boldface type. FollowingHilbig, Erdfelder, Pohl (2010), all models have the restriction
b1=b4 and b3=b5. The baseline model had no further restrictions. Extending the set of candidate models by including models without these restrictions
does not change the model selection results

2 The preference for this particular restricted model did not change when
including equivalent candidate models that did not include the baseline
restrictions b1=b4 and b3=b5. Moreover, the FIA-based results were
corroborated by order-restricted significance tests on parameter restric-
tions (see the Supplemental Material).
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knowledge” (R+) in a heterogeneous R+–mR knowledge pair,
irrespective of the retrieved knowledge. The observed use of
this strategy suggests that participants are relying on a differ-
ence in memory states. The second prediction relates to the
recognition validities in the two recognition trees. We ob-
served that recognition validity was (in most data sets) higher
in R+–U than in mR–U recognition pairs. This shows that the
MSH framework reflects the environmental structure better
than does the invariance account. Both results reinforce the
importance of memory states in adaptive decision making
and, thus, the need to go beyond simple binary yes–no recog-
nition judgments.

In sum, we found strong support for theMSH by testing the
influence of recognition experiences on RH use. The inhibi-
tion account prediction that the availability of knowledge
reduces RH use was not supported, and only in one data set
(under time pressure conditions) did we find support for the
invariance account prediction that RH use should not differ
between recognition experiences. We believe that our work
shows the importance of focusing on underlying memory
processes when investigating memory-based probabilistic in-
ferences and strategies such as the RH.
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Abstract

The recognition heuristic (RH) theory predicts that, in comparative judgment tasks,

if one object is recognized and the other is not, the recognized one is chosen. The

memory-state heuristic (MSH) extends the RH by assuming that choices are not

affected by recognition judgments per se, but by the memory states underlying these

judgments (i.e., recognition certainty, uncertainty, or rejection certainty). Specifically,

the larger the discrepancy between memory states, the larger the probability of

choosing the object in the higher state. The typical RH paradigm does not allow

estimation of the underlying memory states because it is unknown whether the

objects were previously experienced or not. Therefore, we extended the paradigm by

repeating the recognition task twice. In line with high threshold models of

recognition, we assumed that inconsistent recognition judgments result from

uncertainty whereas consistent judgments most likely result from memory certainty.

In Experiment 1, we fitted two nested multinomial models to the data: an MSH

model that formalizes the relation between memory states and binary choices

explicitly and an approximate model that ignores the (unlikely) possibility of

consistent guesses. Both models provided converging results. As predicted, reliance

on recognition increased with the discrepancy in the underlying memory states. In

Experiment 2, we replicated these results and found support for choice consistency

predictions of the MSH. Additionally, recognition and choice latencies were in

agreement with the MSH in both experiments. Finally, we validated critical

parameters of our MSH model through a cross-validation method and a third

experiment.

Keywords: recognition heuristic; memory-state heuristic; threshold models;

multinomial processing tree models
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In everyday life, we continually draw inferences about the world, often with

partial knowledge, varying degrees of uncertainty, and limited time. For some of us,

like medical doctors or stock market investors, these types of inferences are an

integral part of our job, and often must be made under severe time constraints.

Therefore, it comes as no surprise that a lot of psychological research has focused on

how we arrive at judgments based on the integration of probabilistic cues and how

accurate those judgments are. Specifically, in the last decades many researchers were

interested in how people manage to make fast and frugal but yet good inferences in

typical everyday contexts. One example is the research dedicated to a very simple

judgment strategy, the recognition heuristic (RH; Goldstein & Gigerenzer, 1999). For

pairwise comparisons, this heuristic can be described as follows:“if one of two objects

is recognized and the other is not, then infer that the recognized object has the

higher value with respect to the criterion” (Goldstein & Gigerenzer, 2002, p. 76).

Despite the fact that the heuristic assumes that people ignore further cue knowledge

they might have, the RH can be very accurate. For example, imagine that a

non-expert in German soccer championships is wondering on which team to bet on

for the next Bundesliga year, Bayern München or TSG Hoffenheim. Assuming this

person recognizes the former but not the latter team, she can (most likely correctly)

infer that Bayern München will do better, simply by relying on recognition.

The RH is ecologically rational in the sense that it exploits the structure of

the environment by relying on a single cue - recognition - that correlates with the

choice criterion (performance of soccer teams in our example). Therefore, it is

domain-specific, as it only performs well in environments where recognition correlates

with the criterion (Goldstein & Gigerenzer, 1999). Moreover, it applies only to

memory-based inferences, and not when information about other cues is readily

available. Also, it relies on natural recognition, acquired from experience, and not on

experimental recognition, manipulated in the laboratory (Gigerenzer & Goldstein,

2011).

A large body of research has investigated use of the RH and challenged its
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boundaries and limitations (for reviews see Gigerenzer & Goldstein, 2011; Pachur,

Todd, Gigerenzer, Schooler & Goldstein, 2011). Surprisingly, one prominent aspect

remains rather unexplored: the nature of the recognition process underlying the

application of the RH (see Pachur, 2011). Aside from a few exceptions (e.g.,

Erdfelder, Küpper-Tetzel, & Mattern, 2011; Pachur & Hertwig, 2006; Pleskac, 2007;

Schooler & Hertwig, 2005; Schwikert & Curran, 2014), little attention was devoted to

trying to link models of recognition memory with the RH. Within these exceptions,

some have notably shown how the consideration of memory processes helps

understanding the RH better. For example, Schooler and Hertwig (2005) have shown

that a moderate level of forgetting benefits the RH by creating partial ignorance.

Pleskac (2007) has shown that as memory sensitivity (ability to distinguish novel

from experienced objects) gets worse the accuracy of the RH decreases. Schwikert

and Curran (2014) have used event-related potentials to distinguish the separate

contributions of familiarity and recollection. While these approaches have made

significant contributions, we believe there is still a major gap, namely, directly

modeling the recognition process along with the decision process, thereby estimating

the influence of recognition memory. We aim at addressing this gap by using a formal

model to explore the influence of underlying memory processes on RH-use.

Extending the recognition heuristic to the memory-state heuristic

When trying to link the recognition memory literature and the RH, it is

important to consider how recognition is understood in both (see Pachur, 2011). In

most recognition memory studies, participants first study a list of known words and

are later asked to discriminate the studied items from new (but also known) items.

Therefore, in this context, all items (new and old) will have some degree of

familiarity. In contrast, the typical paradigm in studies of the RH involves two tasks:

a comparison task, in which participants see pairs of objects and must infer which

one scores higher on a certain criterion (e.g. “Which city is more populous?”) and a

recognition task, where participants see all objects involved and must say which they
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recognize and which they do not (e.g. “Do you recognize this city?”). The judgments

from the recognition task allow the definition of three types of object pairs:

knowledge pairs (both objects are recognized), recognition pairs (one object is

recognized and the other is not), guessing pairs (neither of the objects is recognized).

The recognition pairs will be the ones of interest since they allow use of the RH. Note

that the recognition task in this case is somewhat different from the one in recognition

memory studies. While in a memory recognition test the material consists of known

objects for which an episodic judgment must be made, in the RH paradigm some

items will have been experienced before (outside the experimental setting) and others

not. Due to this difference, Goldstein and Gigerenzer (2002) made the simplifying

assumption that the RH acts on the binary output of the recognition process, that is,

an all-or-none distinction between the novel and the previously experienced, and that

the process itself can be ignored for the purpose of studying the heuristic. Moreover,

they asserted that “how often one has been exposed to something is (...) irrelevant

for the frugal recognition heuristic” (Goldstein & Gigerenzer, 1999, p. 56). We argue

that the ecological rationality of ignoring differences in the degree of familiarity of

objects is quite questionable. If recognition is valid because exposure to objects in the

natural environment (via newspapers, TV programmes, etc) correlates with the

criterion, differences in the memory strength of recognized objects should be relevant.

This is the premise of the memory-state heuristic (MSH). The MSH can be

seen as a straightforward extension of the RH (Erdfelder et al., 2011). It incorporates

the assumption that memory strength is correlated with the criterion value, and

therefore, when comparing two objects, individuals will tend to choose the one

associated with a higher level of memory strength. This extension connects models of

recognition memory with the RH. Specifically, its predictions follow from the

two-high-threshold (2HT) model of recognition memory (Snodgrass & Corwin, 1988),

which postulates that objects can be in one of three memory states: recognition

certainty, uncertainty, or rejection certainty. The three states are separated by two

thresholds, the recognition and the rejection threshold. If the memory strength
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associated with an object exceeds the recognition threshold, the object will enter the

recognition certainty state. If it lies between the recognition threshold and the

rejection threshold, the object will enter an uncertainty state, and the recognition

judgment is determined by guessing. Finally, if the memory strength falls below the

rejection threshold, the object enters the rejection certainty state in which it will

always receive a negative recognition judgment. The combination of these three

states leads to different combinations of recognition pairs, depending on the memory

states that underlie the recognized and the unrecognized object, respectively.

Regardless of the effective yes− no recognition judgment, given a decision criterion

that is strongly correlated with memory strength, the two core predictions of the

MSH are quite straightforward: First, if objects are in different memory states, there

should be a preference for the one in a higher state; and second, the larger the

discrepancy between memory states, the larger the probability of choosing the object

in the higher state. Thus, the MSH makes predictions beyond recognition pairs, since

these two “rules” can be applied also to knowledge pairs or guessing pairs, simply by

identifying the memory states that underlie each case.

Evidence supporting the memory-state heuristic

To test these predictions, Erdfelder et al. (2011) relied on the fact that

multinomial processing tree models like the 2HT model can be interpreted as

probabilistic serial processing models of cognition (Batchelder & Riefer, 1999). This

means that each branch of the model’s tree corresponds to a temporal sequence of

processing stages, and therefore the number of cognitive stages in each branch will

influence its total processing time (Erdfelder et al., 2011). This interpretation has

recently been supported by response time analyses of the 2HT model (Heck &

Erdfelder, in press). It follows that in the 2HT model, recognition and rejection

latencies originating from uncertainty will be stochastically larger than the ones

originating from certainty, since in the former there is an additional processing stage

of guessing. This allows direct response time predictions to be drawn. In this way,
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Erdfelder et al. (2011) were able to explain previous results that posed a challenge for

the RH. For example, it had been found that the RH adherence rate decreases with

increasing recognition latencies of the recognized object (e.g., Hertwig, Herzog,

Schooler, & Reimer, 2008; Newell & Fernandez, 2006). While posing a serious

challenge for the RH, this result is strictly predicted by the MSH, given the

assumptions outlined above.

Moreover, it was found that RH accordance rates (the amount of times the

recognized object is chosen in recognition pairs) are usually larger when recognition is

valid, that is, when recognition leads to a correct response (Hilbig & Pohl, 2008).

This was explained by assuming use of further knowledge. However, it can be

explained by the MSH without resorting to knowledge-use, since recognition should

be more valid for pairs of recognition and rejection certainty than for recognition

pairs involving uncertainty.

Another problematic result was observed by Hilbig and Pohl (2009) and

Castela, Kellen, Erdfelder, and Hilbig (2014). This refers to the phenomenon that the

RH adherence rate is higher for recognition pairs for which participants report having

further knowledge about the recognized object (R+) than in cases of mere recognition

(mR) when only the name of the object is recognized without further knowledge.

While the RH predicts the difference should not exist, the result can be explained by

assuming that the recognition cue can be overruled by further knowledge (e.g., Hilbig

& Pohl, 2008). However, the MSH would predict the same result, but by resting on

the assumption that R+ objects are more likely to have originated from the

recognition certainty state, while mR objects are more likely to have originated from

the uncertainty state. Using an extension of the r-model (Hilbig, Erdfelder, & Pohl,

2010) which allows for an unbiased estimation of RH-use for both types of recognition

pairs (involving R+ or mR), Castela et al. (2014) found support for the MSH.

Specifically, it was shown that the differences between RH adherence for the two

types of pairs are due to higher reliance on recognition for pairs involving a R+

object, and not due to use of further knowledge.
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A further result that can be similarly explained has been reported by

Schwikert and Curran (2014). They observed higher estimates of RH-use for

recognition pairs for which the recognized item was said to be recollected than

recognition pairs for which the recognized item was said to be only familiar.

Assuming that recollected items are more often in the memory certainty state than

familiar items, this result is clearly in line with the MSH.

Besides helping explain these previously challenging results, the MSH also led

to new qualitative predictions about response latencies that could be tested. These

concerned not only recognition and rejection latencies but also choice latencies, as a

function of the memory state of the objects in a pair (see Erdfelder et al., 2011 for a

detailed description of all predictions and results). Importantly, Erdfelder et al. have

shown that RH accordance rates increase with the decreasing recognition and

rejection latencies, in an additive manner. Moreover, they have shown that decision

latencies in recognition pairs increase with both recognition latency of the recognized

object and the rejection latency of the unrecognized object, these effects being, again,

additive.

The support found for the MSH’s predictions suggests its added value.

However, tests of the heuristic were limited since it is only a verbal model so far.

Implementing the MSH as a formal model would be ideal for testing it, but this is

challenging, since a crucial variable is missing in the data: whether an object was

experienced before by a participant or not. This information is missing because, as

outlined before, unlike in memory studies, in studies investigating the RH one deals

with natural recognition. Therefore, we simply lack knowledge about the actual

status of the recognition judgments of the participants. Specifically, we do not know

whether a “yes” recognition judgment is a hit or a false alarm, and whether a “no”

recognition response is a correct rejection or a miss. It follows that we cannot

estimate the probability of an object entering one of the three memory states using a

single yes− no recognition task.
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Measuring memory states through repeated recognition judgments

To overcome this incomplete data problem we wanted to find a way to

measure the memory states. Specifically, we were looking for an approach that allows

us to integrate all memory state combinations and their corresponding predictions

(regarding the preference for a given object) in a single formal model. Erdfelder et al.

(2011) relied on response times as a proxy for the memory state and thereby

successfully tested the MSH for recognition pairs. However, as already noted, this is a

very limited strategy because it relies on an approximation only and does not allow

formal testing. It is unclear what the cut-off point should be for a response time to

be classified as originating from uncertainty versus certainty, so while response times

can be used to test certain predictions, they do not allow the classification of pairs in

terms of underlying memory states.

Castela et al. (2014) came closer by including the distinction between

recognition with further knowledge (R+) and mere recognition (mR) in a formal

model, the r*-model. They used these two subjective experiences of recognition as a

proxy to the memory state, in the sense that objects classified as R+ are more likely

to come from certainty than objects classified as mR. While this is a step forward

from simply relying on response times and was very useful for critically testing the

RH, evidence accumulation models and the MSH (see Castela et al., 2014), the R+

versus mR distinction is a relatively poor estimate of memory states. First, it is a

subjective measure as it relies on participants understanding of what mR or R+

represents, and the idiosyncratic criteria they set for R+ responses. Second, they are

only informative about the memory state of recognized objects and therefore do not

provide a way to model all possible memory state combinations.

Finally, another option would be to use confidence ratings, which seem like a

quite appealing option. However, like the mR and R+ judgments, they are subjective

measures, depending on the participants understanding of and idiosyncratic way to

use the scale. Moreover, there is the question of how to map certain confidence

ratings to memory states. While in a standard recognition memory test it has been
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shown that the mapping can be done under minimal assumptions (see Bröder, Kellen,

Schütz, and Rohrmeier, 2013), it is largely unclear how this could be achieved

without the knowledge of which items are old and which are new.

Given all the limitations described above, we were not satisfied with any of

the options listed. Therefore, we wanted to come up with a new measure that fits our

goals better. This led us to consistency of recognition judgments as a proxy for

memory certainty. This measure is associated with a simple extension of the RH

paradigm, only involving the addition of two extra recognition tests. Furthermore, it

allows for a better (although not perfect) identification of the memory states

underlying the recognition judgments. According to the 2HT, if an object is in a

certainty state and participants are properly instructed1, the judgment should be

consistent across repeated recognition tests. Therefore, it follows that inconsistent

judgments must arise from the uncertainty state. Consistent judgments, on the other

hand, will most likely arise from certainty states, although they can also result from

consistent guesses. By modeling the probability of both objects in a pair entering

certain memory states, we can estimate RH-use for all different memory state

combinations.

To estimate MSH-use for different memory state combinations, we rely on

the r-model that was originally developed for the standard RH paradigm with a

single recognition test (Hilbig et al., 2010). Like threshold models, the r-model

belongs to the class of multinomial processing tree models (Batchelder & Riefer,

1999; Erdfelder et al., 2009), that allow for a characterization of categorical data in

terms of underlying cognitive processes. The r-model (see Figure 1) consists of three

submodels that describe the three possible combinations of recognized and

1The assumption only holds if participants are properly instructed not to respond yes in subsequent

recognition tests because they recognize the item from the previous test. Therefore, instructions have

to be very clear, and additional measures to assess possible biases in the participants understanding

of the instructions should be considered. In the Methods Section we will describe how we dealt with

this problem.
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unrecognized objects into pairs (knowledge, guessing, and recognition pairs). The

three trees that represent the submodels lead to eight outcome categories, described

by four parameters: r, the probability of applying the RH; a, the probability of

recognition being a valid cue (recognition validity); b, the probability of valid

knowledge (knowledge validity); and g, the probability of a correct guess. The

knowledge and guessing trees are described by a single parameter each, accounting for

the accuracy of the comparative judgment for the object pair (b and g, respectively).

In the recognition tree, if the RH is applied (with probability r), the choice will be

correct with probability a if recognition is valid, and it will be incorrect with

probability 1− a. If the RH is not applied (1− r), accuracy will depend on the

validity of knowledge (or other judgment strategy taking place).

Extending the r-model to our repeated recognition judgments paradigm

involves essentially two steps. First, we need to account for the different memory

states associated with consistent versus inconsistent recognition judgments. As

clarified above, inconsistent judgments imply a memory uncertainty state. In

contrast, consistent recognition judgments may arise from either certainty or

uncertainty states. For consistent judgments, we model the probabilities that they

originate from certainty, and, with complementary probability, that they occurred

through consistent guessing. Specifically, h denotes the probability that consistent

“yes” judgments originate from recognition certainty whereas l denotes the

probability that consistent “no” judgments originate from rejection certainty. Then,

depending on the memory state combination, we can use the r-model to estimate

MSH-use for this specific combination. Applying the r-model to all possible

combinations of memory states is straightforward. When objects are in the same

state we use the knowledge tree of the r-model (if both objects are recognized with

certainty) or its guessing tree (if objects are in uncertainty or in rejection states). In

contrast, when objects are in different states we use the recognition tree of the

r-model, here implying MSH-use for different memory-states combinations. We will

refer to this extension of the r-model as the latent-states MSH model. This model is
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composed of six trees leading to 18 data categories (of which 12 are free to vary)2

that are described by 14 parameters. Obviously, this version of the model is not

identifiable, since it has negative degrees of freedom. Some basic restrictions that

render the model identifiable will be described in the Results Section. The six trees of

the model correspond to all pair combinations of the three possibilities for repeated

recognition judgments: (1) consistently recognized (repeated “yes” judgments); (2)

inconsistent judgments (any combination of inconsistent judgments); (3) consistently

rejected (repeated “no” judgments).

Figure 2 displays the six trees. To illustrate the logic of the model, let us

describe the first one, which corresponds to the tree for pairs of objects that were

both consistently recognized. We first model the probability that the consistent

recognition judgment for the first object is associated with recognition certainty.

With probability h the first object reaches the recognition certainty state, with

probability 1− h it is in the uncertainty state. Then, the same is modeled for the

second object. At this point, it is possible to determine which tree of the r-model will

be appropriate, depending on the memory states of both objects in the pair.

The remaining five trees are built according to the same logic (model

equations and a figure with the full model can be found in Appendix A). Aside from

the r-model parameters for different memory state combinations, the latent-states

MSH model has two parameters h and l that represent the probabilities of an object’s

consistent judgment being associated with the recognition or rejection threshold,

respectively. Regarding the r-model parameters, these capture similar processes as

the r-model does. However, now there are different sets of parameters that refer to

the combinations of memory states they represent. For clarity, when we refer to

specific parameters we will use an index that describes the type of pair, using the

subscript R for recognition certainty, U for uncertainty and N for rejection certainty.

Most importantly, now there are three r and three a parameters. This allows us to

2Because the category probabilities must sum up to one for each tree, only 12 of the 18 probabilities

are free to vary.
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test differences in MSH-use and memory-state validity between recognition pairs that

originate from different memory states. Specifically, we can test the MSH prediction

that both the validity and reliance on recognition should be highest when the

difference between the memory states of the two objects is highest, that is, when

objects are in the recognition certainty and the rejection certainty state, respectively.

In our MSH model, this translates into the predictions that rRN > rRU and

rRN > rUN for MSH-use. Analogously, we predict aRN > aRU and aRN > aUN for the

memory-state specific validities.

Experiment 1 was designed to test these four main hypotheses. In addition,

we were also interested in assessing whether an approximate version of the MSH

model would be adequate to capture the results and how this affects the accuracy of

the parameter estimates. In contrast to the latent-states MSH model introduced

above, the approximate model version assumes that consistent judgments always

originate from certainty states, thus ignoring the (unlikely) possibility of consistent

guesses.

Experiment 1

Materials and Procedure

The experiment was conducted using E-Prime 2.0. software (Psychology

Software Tools, Pittsburgh, PA). To test the latent-states MSH model, we extended

the most common paradigm in the study of the RH: the city-size paradigm. As

outlined above, the original paradigm incorporates two tasks, a recognition test and a

city-size comparison task. We extended this paradigm by including repeated

recognition judgments. Thus, the experiment consisted of three sessions, all spaced

by a one-week interval.3 In the first session, participants performed the city-size task

and then the recognition test. In the subsequent two sessions they repeated the

recognition test.

3We chose a one-week interval to ensure that sufficient time passed and therefore it is unlikely that

participants can remember the full list of items from the previous session(s).
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In the recognition tests, participants were instructed to indicate whether they

recognize the city name or not. The instructions clearly stated that by recognition we

meant having at least heard of an object before the experiment started, and not just

recognizing its name from a previous session. Besides the clarity in the instructions,

we took additional measures to avoid and control for a potential bias to respond yes

in the second and third recognition tests because of the familiarity of the object

associated with the previous session(s). First, we chose a large set of cities to

decrease the possibility of participants memorizing the full set. Moreover, we included

fillers and lures. Fillers were real city names but changed through the three sessions

to add heterogeneity between sessions. Lures were fictitious city names. Since these

were necessarily unknown to the participants, their recognition status in the second

and third session served as proxy for the bias to respond yes.

In all three recognition tests, participants were presented with 100 city

names. Eighty of those corresponded to a random sample drawn from the 150 largest

US cities. Additionally, 45 city names were drawn from the remaining set of US

cities. These items served as fillers, and 15 were presented at each session. Finally, we

included five4 lures, which were presented at all sessions. Each item was presented at

a time, and responses were self-paced. The order of item presentation was

randomized. A 500 ms interstimulus fixation-cross followed each response. Reaction

times were recorded along with the participants response.

For the city-size task, the 100 items were paired. Fillers and lures were

included to prevent making them recognizable as in any way different from the other

objects, but we made sure that target objects were always paired with other target

objects. Each target object was presented 6 times, resulting in 240 pairs that could

be used for the analysis. On each trial participants were presented with a pair (order

of pairs was randomized) and had to infer which of the two cities is more populous. A

500 ms interstimulus fixation-cross followed each response. Reaction times were

4We only included a small proportion of lures because we wanted to ensure that their presence

would not impact the overall proportion of recognized items.
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recorded.

Participants

Forty-four students were recruited from the University of Mannheim. Five

participants did not attend all required sessions and were therefore excluded from the

analysis. The 39 participants that completed the experiment (29 women) were

between 18 and 35 (M = 22; SD = 4.09) years old. Participation was monetarily

compensated at the end of the last session.

Results

As already mentioned, to minimize the likelihood that there is a yes bias in

the second and third recognition tests despite the unambiguous instructions, we

included fillers and lures in the set of cities. In all three recognition tests, recognition

of lures was generally very low and there were no significant differences between

sessions (M1 = .05, SD1 = .13, M2 = .08, SD2 = .18, and M3 = .06, SD3 = .13, in

Phases 1 to 3, respectively; F (2, 76) = .44, p = .65). Moreover, the mean proportion

of recognized objects was stable between sessions (M1 = .50, SD1 = .13, M2 = .50,

SD2 = .16, and M3 = .50, SD3 = .14; F (2, 76) = .10, p = .91). Taken together, these

results indicate there was no considerable yes bias.

Model-based Analysis

Model-based analyses were done with MPTinR (Singmann & Kellen, 2013) in

R (R Core Team, 2015), using maximum likelihood parameter estimation and model

evaluation based on both the likelihood-ratio goodness-of-fit statistic G2 and the

Fisher Information Approximation (FIA) model selection measure that takes model

complexity into account (see, e.g., Heck, Moshagen, & Erdfelder, 2014).5 Some of the

hypotheses we wish to test involve inequality restrictions (e.g., rRN ≥ rRU or

5When comparing two models in terms of FIA, a difference larger than 1.1 represents substantial

evidence in favor of the model with smaller FIA (e.g., Kellen, Klauer, & Bröder, 2013). Moreover, for

all comparisons in terms of FIA, we ensured the sample-size was above the lower-bound recommended

by Heck et al. (2014).
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parameters at the boundary of the parameter space (e.g., h = 1). For these cases, the

sampling distribution of the likelihood-ratio test statistic ∆G2 under the null

hypothesis does not follow a standard χ2 distribution with the appropriate degrees of

freedom, but a mixture of χ2 distributions (see Iverson, 2006). For simplicity,

whenever we test this type of restrictions we will do so by using a double bootstrap

procedure (see van de Schoot, Hoijtink, & Dekovic, 2010). For example, if we wanted

to test h = 1, the procedure goes as follows: 1) a non-parametric bootstrap sample is

obtained from our data; 2) we fit the model imposing the null hypothesis h = 1 to

that sample; 3) a parametric bootstrap sample is obtained from the estimated

parameters; 4) both models under test (model with h = 1 restriction and model with

no restriction on the h parameter) are fitted to that sample and the difference in fit is

calculated; 5) steps 1 to 4 are repeated many times (in our case, 1000 times). We

then compute the p-value by assessing how many times the difference in fit obtained

with the bootstrapped samples is equal or more extreme than the one observed with

our original data set. Note that, for tests of inequality restrictions, this is a two-step

process. First, we test a model imposing the inequality restriction (e.g., rRN ≥ rRU)

against a model imposing no restriction on these parameters. Second, we test the

model imposing the inequality restriction (e.g., rRN ≥ rRU) against a model imposing

an equality restriction on those parameters (e.g., rRN = rRU). If the inequality

restriction (e.g., rRN > rRU) is the most suitable parameter restriction, the first test

should fail to reach statistical significance while the second test should lead to

statistically significant results. For tests involving the double bootstrap method, we

will report the ∆G2 we obtain with our data, and the double bootstrap p-value

computed by comparing it to the ∆G2 in our bootstrap samples. For clarity, we will

denote misfits and p-values obtained through this method with ∆G2 and p.

We started by determining the frequencies for each data category of the

model. As explained before, objects for which the recognition judgments were

consistently yes or no were assumed as most likely originating from recognition and

rejection certainty, respectively, whereas objects for which the recognition judgment
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varied were assumed to originate from the uncertainty state. The first of the three

recognition judgments per object was always used as the binary recognition answer

(“yes” or “no”) required by the model-based analysis. The mean proportion of

consistent recognition judgments (of target items) across sessions was .75 (.47 of

which were consistent “no” judgments).

We fitted the latent-states MSH model with three sets of a priori restrictions,

(1) aUU = .5, (2) b = bRN = bRU , and (3) g = bUN = .5. The first restriction concerns

parameter aUU , that is, the memory-state validity in pairs where both objects are in

the uncertainty state. Following the logic outlined above, when two unrecognized

objects are in the same state we model the choices through a guessing process.

However, the combination of two objects in the uncertainty memory state can occur

for cases where the data categories distinguish between recognized (there was a “yes”

judgment in the first session) and unrecognized (there was a “no” judgment in the

first session) objects. In order to model a pathway to those categories while assuming

there should be no preference for one or the other, we implemented a recognition-use

tree with a rUU parameter fixed to zero. When rUU is fixed to zero, the branch

becomes mathematically equivalent to just having a guessing parameter if the aUU

parameter is fixed to .5, hence the restriction. The restriction set (2) follows from the

original r-model (Hilbig et al., 2010): The probability of a correct judgment based on

information other than recognition is invariant whenever at least one of the objects is

recognized. As Hilbig et al. (2010) corroborated this assumption empirically, we

decided to stick to it in order to render the model as parsimonious as possible.

Finally, the last set of restrictions (3) implies that when no object is recognized there

is no valid information available and participants should guess, leading to

performance approximately at chance level.

All these restriction patterns are reasonable on a priori grounds. In fact, as

expected, the baseline model incorporating these restrictions performed very well in

describing the data (G2(3) = 3.21, p = .36, FIA = 28.87). Additionally, we tested

whether we can further simplify our model by imposing an equality restriction on the
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probabilities of consistent recognition judgments originating from certainty states,

that is h = l. As show in Appendix B, the constraint h = l holds if and only if

g3

(1−g)3
= p(111)

p(000)
, where g denotes the guessing probability for a “yes” recognition

judgment in the memory uncertainty state, p(111) represents the probability of three

“yes” judgments and p(000) represents the probability of three “no” judgments in the

three repeated recognition tests. In other words, the h = l restriction entails the

assumption that people adjust their guessing probabilities such that they mirror the

proportions of presumably old and presumably new items in the recognition test.

Hence, the higher the proportion of items consistently judged “old” relative to the

proportion of items consistently judged “new”, the higher the probability of guessing

“yes”. This behavior corresponds to what is known as probability matching, a

strategy that is well documented in many domains (Bayen & Kuhlmann, 2011;

Gaissmaier & Schooler, 2008; Koehler & James, 2009; Shanks, Tunney, & McCarthy,

2002; Spaniol & Bayen, 2002). When we add the equality restriction corresponding to

this assumption, model misfit increases only slightly and non-significantly

(∆G2(1) = .63, p = .43). Moreover, the model selection criterion FIA decreases,

although not in a substantial amount (∆ FIA = .40). This indicates that the

latent-states MSH model combined with the h = l restriction provides a better

balance between model fit and parsimony than a model that allows them to differ.

Therefore, we added this restriction to our baseline model.

As can be seen in Figure 3 and Table 1, the pattern of the r and a parameter

estimates is consistent with our hypotheses. If two objects are in recognition and

rejection certainty states, estimated reliance on recognition is highest (r̂RN = .88).

When one object is in the uncertainty state, reliance on memory-state differences

decreases (r̂RU = .55, r̂UN = .46). By implication, when we add the inequality

restrictions rRN ≥ rRU and rRN ≥ rUN to the model, model misfit does not increase

(∆G2 = 0, p = 1) and FIA decreases (∆FIA = 1.18). Moreover, when we compare a

model including the inequality restrictions with a model including the equality

restrictions rRN = rRU = rUN , model misfit increases drastically (∆G2 = 94.43, p = 0)
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and so does FIA (∆ FIA = 42.64). Importantly, both restrictions lead to a significant

increase in misfit (rRN = rRU : ∆G2 = 55.68, p = 0 and rRN = rRU :

∆G2 = 90.58, p = 0), indicating that none of the equality restrictions is compatible

with the data. In summary, the results strongly support the MSH hypothesis that

reliance on memory states is highest when the discrepancy between memory states of

objects under comparison is largest. While we did not have a hypothesis regarding a

difference between rRU and rUN , it is worth noting that rRU is estimated to be

significantly larger than rUN (∆G2(1) = 7.14, p < .01, ∆ FIA = .87). This will be

addressed in the Discussion Section.

We also see the predicted pattern in the estimated memory-state validities.

When we add the inequality restrictions aRN ≥ aRU and aRN ≥ aUN to the model,

model misfit does not increase (∆G2 = 0, p = 1) and FIA decreases (∆ FIA = 1.14).

In contrast, when we compare a model including the inequality restrictions with a

model imposing the equality restrictions aRN = aRU and aRN = aUN , model misfit

increases significantly (∆G2 = 96.10, p = 0) and FIA also increases (∆ FIA = 42.06).

Again, both restrictions lead to a significant increase in misfit (aRN = aRU :

∆G2 = 36.35, p = 0 and aRN = aUN : ∆G2 = 96.06, p = 0), indicating that none of the

restrictions is compatible with the data. Resembling the pattern we observed for the

r parameters, we also observe a significant difference between aRU and aUN

(∆G2(1) = 16.87, p < .001, ∆ FIA = 4.99), a result that will also be addressed in the

Discussion Section.

Approximate MSH model

In addition to our main hypotheses we wanted to test an approximate version

of our latent-states MSH model. The approximate model relies on the simplifying

assumption that repeated recognition judgments indicate memory states perfectly

and can be directly used to measure them. Specifically, just as inconsistent

recognition judgments necessarily indicate memory uncertainty, consistent judgments

are assumed to always indicate memory certainty in the approximate model. The
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idea behind this model is that it could nicely complement the latent-states version.

While the latent-states MSH model has the advantage of directly measuring the

probabilities h and l that consistent judgments originate from recognition or rejection

certainty states and therefore does not rely on further assumptions, it has the

disadvantage that the extra parameters make it more vulnerable to sampling error,

resulting in larger standard errors of the parameter estimates. In contrast, the

approximate version, by having less parameters, will provide higher stability (i.e.,

smaller standard errors) of the parameter estimates, and therefore may be more

adequate for hypotheses testing, despite the fact that it is based on an assumption

that only holds approximately.

Since the approximate model corresponds to a nested version of the

latent-states model, testing it simply requires fixing both certainty state probabilities

h and l to 1. When we add this restriction h = l = 1 to the model, model misfit does

not increase significantly (∆G2 = .66, p = .19), although the decrease in FIA is not

conclusive by itself (∆ FIA = 0.09). This indicates that the approximate model can

adequately describe the data, and is suitable for testing our hypotheses. With this

version of the model, the pattern in the r and a parameters does not change (see

Figure 3), and the results perfectly converge with the results from the latent-states

model.6

Test of latency predictions

As outlined above, so far the MSH had only been tested through latency

predictions drawn from a serial processing interpretation of the 2HT model (see

Erdfelder et al., 2011, p.13). According to this interpretation, when an object’s

memory strength exceeds one of the high thresholds to either recognition or a

rejection certainty state, a fast judgment can be made. However, if the memory

strength lies between the two thresholds, a second process (i.e., guessing) is required.

6The replication of all results with the approximate version of the model can be found in Appendix

C
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Therefore, it follows that the recognition latency distributions for responses

originating from the uncertainty state should be stochastically larger than recognition

latencies for responses originating from certainty states (Erdfelder et al., 2011; Heck

& Erdfelder, in press).

Since we have shown that consistency versus inconsistency of repeated

recognition judgment patterns is a valid proxy for memory states, we were able to

test several latency predictions7 that can be derived from the MSH more directly

than was possible before. Specifically,

(a) both recognition and rejection latencies in the first session should be shorter for

consistent recognition and rejection patterns (indicating recognition and

rejection certainty), respectively, compared to those associated with inconsistent

patterns (indicating recognition uncertainty);

(b) choice latencies should differ as a function of the distance between memory

states of the objects in a pair. More precisely, choice latency should decrease

with increasing distance between states.

To test prediction (a), we looked at the response latencies in the first

recognition test as a function of whether they correspond to consistent or inconsistent

repeated recognition judgments (see Figure 4, left-side, for visualization of the effect

with untransformed response times). We then fitted a linear mixed model8 to predict

latency in the first recognition test with recognition status (yes/no) and consistency

(consistent/inconsistent) as fixed effects and participant as a random effect. In line

with our hypotheses, rather than testing for the main effects and the interaction of

7In all these and further analysis involving response times we use log-transformed response times

to reduce skewness (the results do not change when we use untransformed response times). The mean

of individual response times is used.
8The model was estimated using the lmer function of the lme4 package (Bates, Maechler, Bolkner

& Walker, 2015) in R (R Core Team, 2015) and p-values were obtained by using the lmerTest package

(Kuznetsova, Brockhoff & Christensen, 2016) which uses Satterthwaites approximations.
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the two fixed factors, we compared the mean latencies as a function of consistency

within recognition and rejection cases (simple main effects analyses). As predicted,

both recognition and rejection latencies were significantly higher for inconsistent

cases than for consistent cases (∆M = 0.24, SE = 0.05, t(114) = 4.51, p < .001 and

∆M = 0.18, SE = 0.05, t(114) = 3.43, p < .001; for recognition and rejection cases,

respectively).

Prediction (b) involves looking at choice latencies for different types of pairs

(see Figure 4, right-side, for visualization of the effects with untransformed response

times). Therefore, we used the repeated recognition judgments to categorize pairs as

a function of the distance between the states. There were three categories: maximal

distance between states (recognition certainty and rejection certainty); adjacent

memory states (recognition certainty and uncertainty and uncertainty and rejection

certainty); and same memory state (both objects in recognition certainty, both in

rejection certainty and both in uncertainty). We then calculated the individual mean

choice latencies for each participant and type of pair (see Figure 4) and fitted a linear

mixed model predicting choice latency with type of pair (maximal, adjacent or same)

as a fixed factor and participant as a random factor. As predicted, the results

indicate that choices are faster for maximal pairs than for adjacent pairs

(∆M = 0.11, SE = 0.02, t(76) = 6.30, p < .001) and faster for adjacent pairs than for

same pairs (∆M = 0.07, SE = 0.02, t(76) = 4.09, p < .001).

Additionally, another interesting hypothesis is suggested by our model-based

results. We found that reliance on recognition is higher for pairs of objects in

recognition certainty and uncertainty states than for pairs of objects in uncertainty

and rejection certainty states, and the same pattern occurred for the memory-state

validity parameters. Therefore, we also tested if, in line with the parameter

estimates, choices were faster for the former type of pairs. This was indeed the case

(∆M = 0.09, t(38) = 4.14, p < .001). Thus, choices between objects in adjacent

memory states are not equally fast. They are fastest for pairs in recognition certainty

and uncertainty states.
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Discussion

In Experiment 1, we introduced an extension to the city-size paradigm based

on repeated recognition judgments. This extended paradigm allowed us to test core

predictions of the MSH through a formal model. Our results support the formal MSH

model and suggest that patterns of repeated recognition judgments provide excellent

indicators for the latent memory states underlying participants’ recognition

judgments. We tested two nested versions of our MPT model, namely the

latent-states MSH model and the approximate MSH model. They are both useful and

informative, and complement each other nicely. The latent-states MSH model allows

us to test the MSH core predictions without relying on the simplifying assumption of

the approximate MSH model that consistent recognition patterns are always

associated with certainty memory states. By directly modeling the probabilities that

objects with consistent recognition judgments originated from certainty states, the

latent-states MSH model takes the possibility of consistent guesses into account and

thus provides purer estimates of the processes relevant during paired comparison

choices than the approximate MSH model. However, as outlined above, this

advantage comes at a cost: As a consequence of the extra parameters h and l, the

latent-states MSH model is more vulnerable to sampling error, resulting in larger

standard errors of the parameter estimates. In contrast, the simplifications implied

by the approximate model result in a higher stability (i.e., smaller standard errors) of

the parameter estimates, making this parsimonious version of the model more

adequate for hypothesis testing, provided that the approximation inherent to this

model is at least roughly in line with the data. Therefore, by finding convergent

results with both models, we can adequately test our hypotheses while asserting the

quality of the repeated recognition judgments as a proxy for the memory states.

Indeed, both models fitted our data well, and results based on both models are

consistent with the MSH core predictions, suggesting that noncompensatory reliance

on recognition in inferential decision making depends on the underlying memory

states and not on the recognition judgments per se. The high degree of convergence
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between the latent-states and the approximate model is due to the fact that the

certainty parameters h and l are estimated to be close to 1 in the former model,

suggesting that consistency versus inconsistency across three recognition judgments is

an almost perfect empirical indicator of certainty versus uncertainty memory states,

respectively.

Besides corroboration of our hypotheses, we found a result that is worth

discussing: MSH-use is higher for pairs of an object in recognition certainty and an

object in uncertainty than for pairs of an object in uncertainty and an object in

rejection certainty. While not explicitly predicted by the MSH, this could be

reasonably accommodated through an extension of the theory. In fact, the result is

perfectly compatible with the MSH, since it does not contradict any of its core

predictions. So far, the MSH (in line with the 2HT model) assumed a simple ordinal

relationship between the states, but was silent about the distance between them.

However, it is reasonable to question whether this distance is the same between

different types of adjacent states. Accordingly, we found that memory-state validity

mirrors the pattern in MSH-use. Therefore, at least in this dimension, it seems like

the distance between states is different: Rejection certainty appears to be quite close

to uncertainty, whereas recognition certainty appears to be clearly distinct from

uncertainty. Correspondingly, we also observed that choices are faster for recognition

certainty and uncertainty pairs than for uncertainty and rejection certainty pairs. It

follows that the difference in the rRU and rUN parameters is in line with several other

aspects of our data. This motivates a reconsideration of a plain ordinal assumption

about how the three memory states relate, that could be explored in future studies.

Finally, we used consistency versus inconsistency of recognition judgments as

an indicator for underlying memory states to test latency predictions that follow from

the MSH and found support for them. Specifically, we found that (a) both

recognition and rejection latencies are shorter when they originate from a certainty

state than when they originate from uncertainty and that (b) choice latencies differ

between pairs of different memory states in a way consistent with the MSH.
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Experiment 2

To complement Experiment 1, Experiment 2 was designed around two main

goals: (1) replicating the findings of Experiment 1, thereby lending further support to

the MSH and our models; (2) testing MSH predictions about choice consistency. To

fulfill the first goal, we again relied on the repeated recognition judgments paradigm.

Additionally, to address our second goal, we further extended the procedure so that

the city-size task was also repeated across sessions. This means that participants

attended the lab three times, and in each of the three sessions they performed the

recognition test and the city-size task. The advantage of repeating the city-size task

is that we have a measure of choice consistency in addition, which allows us to test

another prediction of the MSH. Specifically, the MSH predicts that consistency

should be higher for pairs of objects in different certainty states. Because reliance on

the heuristic will be highest for these cases, the likelihood of consistency should also

be higher. For pairs of objects in adjacent memory states, in contrast, the heuristic is

not applied as often, and therefore consistency should be lower. Finally, consistency

should be lowest for pairs of objects in the same state, for which the heuristic cannot

be applied. In addition to the distance between the memory states of objects in a

pair, one could also argue that the specific memory-state combinations matters

within the adjacent and same state cases, due to state-specific differences in

availability of further knowledge. Specifically, for the cases of adjacent memory

states, consistency should be higher for recognition certainty and uncertainty pairs

than for uncertainty and rejection certainty pairs, since in the former available

knowledge about the recognized object could lead to inferences that foster consistent

choices across time. Analogously, regarding same state cases, consistency should be

highest for pairs of two objects in recognition certainty since, again, retrieval of

further knowledge could lead to consistent choices. In contrast, it should be lower for

pairs of two objects in uncertainty and two objects in rejection certainty, since,

especially in the latter cases, choices rely on guessing in the first place.



A formal model of the Memory State Heuristic 26

Materials and Procedure

This experiment was conducted using OpenSesame (Mathôt, Schreij, &

Theeuwes, 2012). The procedure was very similar to Experiment 1, the main

difference being that not only the recognition test but also the city-size comparison

task was repeated across sessions. To ensure a full replication, the material was

identical to Experiment 1. The pairs for the second and third session were the same

as the pairs used in the first session of Experiment 1, with the exception that the 80

pairs that contain fillers and lures included the fillers corresponding to that session.

Participants

Thirty-nine students were recruited from the University of Mannheim. Four

participants did not attend all required sessions and therefore were not included in

the analysis. Two additional participants were removed because they recognized none

or all of the objects in the second and third session, respectively. The 33 participants

(25 women) that were included in the analysis are aged between 17 and 26

(M = 20.82;SD = 1.89). Participants were monetarily compensated at the end of the

last session.

Results

We took the same precautions as in Experiment 1 to prevent a yes bias in

the second and third recognition test. In all three recognition tests, recognition of

lures was generally low, but there were significant differences between sessions

(M1 = .01, SD1 = .05,M2 = .10, SD2 = .10, and M3 = .08, SD3 = .19, in Phases 1 to

3, respectively; F (2, 64) = 3.15, p = .05). Therefore, we excluded four participants

that recognized more than half of the lures in the second or third session. Excluding

these participants successfully eliminated the effect of session in proportion of

recognized lures (M1 = .01, SD1 = .05,M2 = .03, SD2 = .09, and

M3 = .04, SD3 = .10, in Phases 1 to 3, respectively; F (2, 56) = 1.19, p = .31). The

mean proportion of recognized objects was stable between sessions

(M1 = .57, SD1 = .11,M2 = .58, SD2 = .18, and
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M3 = .56, SD3 = .17;F (2, 64) = .43, p = .65).

Model-based analysis

As in Experiment 1, we determined the frequencies of each data category by

considering the consistency of the recognition judgments and using the recognition

judgment from the first recognition test to determine the recognition status of each

object. The mean proportion of consistent recognition judgments across sessions was

.78 (of which .43 were no judgments). Again, we first fitted the latent-states MSH

model with the following baseline restrictions: aUU = .5, b = bRN = bRU , g = bUN = .5.

This baseline model performed well in describing the data (G2(3) = 2.84, p = .42, FIA

= 27.44). Also, adding an equality restriction in the parameters h = l did not

increase misfit significantly and slightly decreased FIA (∆G2(1) = 0.60, p = .44,∆FIA

= .25). Therefore, we again relied on this more parsimonious version of the model.

As clearly shown in Figure 3, we observed the same pattern as in Experiment

1 (see also Table 1). When both objects are in certainty states (recognition and

rejection) estimated reliance on recognition is highest (r̂RN = .86). When one object

is in the uncertainty state reliance on recognition decreases (r̂RU = .63, r̂UN = .56).

When we add the inequality restrictions rRN ≥ rRU and rRN ≥ rUN to the model,

model misfit does not increase (∆G2 = 0, p = 1) and FIA decreases (∆ FIA = 1.16).

When we compare a model including the inequality restrictions with a model

including the equality restrictions rRN = rRU and rRN = rUN , both model misfit and

FIA increase significantly (∆G2 = 29.25, p = 0,∆FIA = 10.34). Both restrictions lead

to a significant increase in misfit (rRN = rRU : ∆G2 = 12.03, p = 0 and rRN = rRU :

∆G2 = 26.49, p = 0), indicating that none of the equality restrictions is compatible

with the data. In summary, replicating Experiment 1, the results from Experiment 2

support the MSH hypothesis that reliance on recognition is highest when the distance

between memory states of the objects under comparison increases. Again, we observe

that rRU is significantly higher than rUN (∆G2(1) = 4.38, p = .04,∆FIA = 0.36).

Additionally, we see the predicted pattern in estimated memory-state
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validities. When we add the inequality restrictions aRN ≥ aRU and aRN ≥ aUN to the

model, model misfit does not increase (∆G2 = 0, p = 1) and FIA decreases (∆ FIA =

1.13). In contrast, when we compare a model including the inequality restrictions

with a model based on an equality restrictions aRN = aRU and aRN = aUN , model

misfit increases significantly (∆G2 = 59.55, p = 0) and FIA also increases (∆ FIA =

23.12). Both restrictions led to an increase in misfit, indicating that none of them is

compatible with the data (aRN = aRU : ∆G2 = 7.51, p < .01; aRN = aUN :

∆G2 = 50.65, p = 0). Again, we additionally observe a significant difference between

aRU and aUN (∆G2(1) = 29.63, p < .001,∆FIA = 11.53) that mirrors the effect

evident in the r parameters.

Approximate MSH model

In Experiment 2, h and l were estimated as 1 in the baseline latent-states

model. Therefore, imposing the restriction h = l = 1 leads to no increase in model

misfit (∆G2 = 0, p = 1). This further validates the adequacy of our proxy and the

approximate model as a parsimonious measurement tool.

Test of latency predictions

To check full replicability of the results of Experiment 1, we tested the same

latency predictions in Experiment 2. Specifically, we predicted that,

(a) both recognition and rejection latencies in the first recognition judgment should

be shorter for consistent recognition and rejection patterns, respectively,

compared to those for inconsistent patterns;

(b) choice latencies should differ as a function of the distance between memory

states of the objects in a pair. More precisely, choice latency should decrease

with increasing distance between states;

(c) choice latencies should be faster for recognition certainty and uncertainty pairs

than for uncertainty and rejection certainty pairs.
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To test prediction (a) we looked at the response latencies of the first

recognition test as a function of whether they correspond to consistent or inconsistent

repeated recognition judgments (see Figure 4). We then fitted a linear mixed model

to predict latency in the first recognition task with recognition status (yes/no) and

consistency (consistent/inconsistent) as fixed effects and participant as a random

effect. Again, we tested the simple main effects of consistency within the two levels of

recognition status. As predicted, both recognition and rejection latencies,

respectively, were significantly higher for inconsistent cases than for consistent cases

(∆M = 0.31, SE = 0.04, t(83.25) = 7.23, p < .001 and

∆M = 0.15, SE = 0.04, t(83.03) = 3.45, p < .01).

To test prediction (b), we again used the repeated recognition judgments to

assign pairs to memory state combinations, and calculated the individual median

choice latencies for each participant and type of pair. We fitted a linear mixed model

predicting choice latency with type of pair (maximal, adjacent or same) as a fixed

factor and participant as random factor. As predicted, the results indicate that

choices are faster for maximal pairs than for adjacent pairs

(∆M = 0.10, SE = 0.19, t(64) = 5.28, p < .001) and faster for adjacent pairs than for

same pairs (∆M = 0.07, SE = 0.02, t(64) = 3.54, p < .001, respectively).

Prediction (c), that choice latencies are faster for recognition certainty and

uncertainty pairs than for uncertainty and rejection certainty pairs, was also

supported by our results (∆M = 0.11, t(28) = 4.08, p < .001).

Choice consistency

In addition to the replication of Experiment 1, the second goal of this

Experiment was to analyze the consistency in choices throughout the three sessions.

According to the MSH, consistency in choices should relate to the distance between

states: it should be highest if both objects in a pair are in different certainty states

(maximal distance), less likely if one object is in the uncertainty state (adjacent

states), and least likely when both objects are in the same state. Naturally, whenever
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the MSH is not used, knowledge may also induce consistency. Therefore, for adjacent

states, we expect that recognition certainty and uncertainty pairs will be associated

with more consistency than uncertainty and rejection certainty pairs. Regarding same

state pairs, we expect highest consistency for pairs when both objects are recognized

with certainty. Pairs of objects in uncertainty or in rejection certainty states should

be associated with less consistency.

To evaluate our predictions, we first coded consistency as a binary variable:

for each pair and participant, choosing the same object in the three sessions versus

making a different choice at least once. The mean proportion of consistent choices

across participants was .65. We fitted a mixed effects logistic regression predicting

consistency with type of pair (memory-state combination) as a fixed effect and

participant as a random effect. As summarized in Table 2 (see also Figure 5), the

results were in line with our predictions. The maximal distance pairs were associated

with the highest consistency and adjacent states pairs were associated with higher

consistency than same state pairs. Additionally, within adjacent states, recognition

certainty and uncertainty pairs were associated with higher consistency than

uncertainty and rejection certainty. Finally, within same state pairs, pairs of two

objects in recognition certainty were also associated with higher consistency than

pairs of two objects in uncertainty or in rejection certainty, although there is no

significant difference between the last two.

Discussion

Experiment 2 had two goals: replicating Experiment 1 and assessing the

MSH predictions concerning choice consistency. We fully replicated the results of

Experiment 1, thereby finding additional support for MSH-use. We found that

reliance on recognition is highest when the distance between the memory states is

also high, and that this pattern is mirrored by the memory-states validity parameters.

Furthermore, we again found that reliance on memory state information is higher for

pairs of objects in recognition certainty and uncertainty than pairs of objects in
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uncertainty and rejection certainty. The replication of this result adds support to the

idea that the distance between these combinations of memory states might not be

equivalent. Moreover, we also successfully replicated the validation of latency

predictions of the MSH by using our proxy for memory states.

Regarding the second goal, we have tested yet another prediction of the MSH

relating choice consistency. We have shown that, as predicted, consistency is higher

for cases where the distance between states is maximal, and therefore the MSH is

often used; and that consistency decreases with this distance, being smaller for pairs

of objects in adjacent states, and lowest when objects are in the same state.

Moreover, choices are more consistent when it is more likely that further knowledge is

available.

Validation Studies

In this paper we have introduced a new paradigm and measurement model.

Both the paradigm and the MSH model are extensions of the RH paradigm and the

r-model. Thus, in many ways, our model involves similar processes as the r-model

does. Although the r-model has been validated previously (see Hilbig et al, 2010), we

aimed (1) to establish the validity of the new parameters we introduce in the MSH

model, h and l, and (2) to demonstrate that, just like the r parameter of the r-model,

our three r parameters mirror manipulations of MSH validities for different memory

state combinations.

Validation of the h and l parameters

The parameters h and l represent probabilities that consistent recognition

judgments originated from a certainty state (recognition certainty or rejection

certainty), such that the complementary probabilities (1− h and 1− l) represent the

probability that consistency originated from guessing. In other words, these

parameters prevent the requirement that consistency of recognition judgments is a

perfect indicator of memory states (as the approximate MSH model assumes). While

these parameters do not represent psychological processes per se, it is nevertheless
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important to demonstrate that they reflect what they are supposed to measure. One

clear prediction regarding these parameters is that the larger the number of sessions

we include, the higher the probability that consistency of recognition judgments

across these sessions is associated with memory certainty. If we increase the number

of repetitions of recognition judgments, the probability of consistent judgments will

be progressively less likely to be associated with an uncertainty state. Following this

logic, we wanted to compare a case where recognition judgments are only repeated

once (two sessions cases, 2x) with the case we used in our experiments, where the

recognition judgments are repeated twice (three sessions cases, 3x). Our prediction is

that h and l estimates are smaller in the 2x case than in the 3x case. Henceforth we

will only refer to h, since both parameters have an equality restriction and therefore

always have the same value. Thus, in a nutshell, we predict h2x < h3x.

First, we used our data of Experiment 1 and 2 to estimate h for both cases,

by only considering the first two sessions for the 2x case. We found that the estimates

of h follow the predicted pattern (Experiment 1, h2x = .84 and h3x = .92; Experiment

2, h2x = .85 and h3x = 1). Unfortunately, standard statistical analysis would not be

appropriate to test whether these differences are significant, since the data in the 2x

and the 3x case are statistically dependent. To overcome this problem, we opted for

using a Monte Carlo cross-validation method. We split our original data into two

datasets by randomly assigning half of our data points to the 2x case, and the other

half to the 3x case. We then fitted the latent-states MSH model to both datasets.

This process was repeated 1000 times, so we can asses how often we observe the

predicted pattern h2x < h3x. Besides the baseline predictions, we included equality

restrictions in the r parameters between the two cases. This means that all r

parameters were restricted to be equal between the 2x and 3x cases

(rRN2x = rRN3x, rRU2x = rRU3x and rUN2x = rUN3x). These restrictions are justified to

ensure that the model will not adjust the r parameters to accommodate the

differences between the cases, but only if they are shown to be reasonable. Therefore,

before assessing the pattern in the h parameters we wanted to assess the impact of
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these restrictions. We first performed a compromise power-analysis with G*power

(Faul, Erdfelder, Lang, Buchner, 2007) to calculate the optimal critical ∆G2 value

(for a χ2(3) test detecting small deviations from the null, w = .1, and ensuring that

type 1 and type 2 error probabilities are equal). The optimum critical value is 28.2

for the data of Experiment 1, and 24.4 for the data of Experiment 2. In all 1000

iterations, ∆G2(3) never exceeded the corresponding critical value in Experiment 1,

and only 0.1% of the times for Experiment 2. In fact, had we used the standard α

level of .05, the increase in misfit due to the constraints rRN2x = rRN3x, rRU2x = rRU3x

and rUN2x = rUN3x would be significant in 5% of the samples for Experiment 1 and

7% for Experiment 2, a result that almost perfectly matches the expectation when

the constraints hold in both experiments. In light of these results, we decided to

assess our hypothesis concerning h2x and h3x under these restrictions. We observe the

expected pattern, h2x < h3x, in 99% of the cases for Experiment 1 and 96% for

Experiment 2. We tested the increase in misfit caused by adding the h2x ≤ h3x

restriction. The addition of this restriction resulted in no increase in misfit in any of

the 1000 iterations, for both experiments. When comparing a model including an

inequality restriction, h2x ≤ h3x, with a model with an equality restriction, h2x = h3x,

we observe this leads to a significant increase in misfit in 71% of the cases for

Experiment 1 and 52% for Experiment 2. Thus, the overall pattern of results is quite

consistent and in line with our interpretation of the model parameters h and l.

Experiment 3: Validation of the r parameters

As mentioned before, the r parameters in our model are borrowed from the

r-model, which has been validated. However, given the more complex nature of our

model, showing that all our three r parameters reflect manipulations of the degree of

reliance on MSH-use should add additionally confidence to our results. Therefore, we

conducted an experiment that mimics the second experiment in Hilbig et al. (2010;

Data Set 7). In brief, we present one group of participants with a domain where

memory strength is a valid cue, and the other with a domain where it is not. In line
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with Hilbig et al. (2010; see also Pohl, 2006, Experiment 1) we hypothesized that

MSH-use should decrease for the latter case. Within our model, this would translate

into the following three hypotheses: (1) rRN1 > rRN2 ,(2) rRU1 > rRU2 ,(3)

rUN1 > rUN2, where 1 denotes the condition with a valid domain, and 2 denotes the

condition with a non-valid domain.

Materials and Procedure

We followed the same procedure as in Experiment 1 but with different

materials. The target items consisted of the 30 largest Italian cities. Additionally, we

randomly selected 30 more Italian city names by drawing from the 31st largest to the

70th largest Italian cities. These served as fillers, and 10 were presented at each

session. Finally, we used 5 very small (less than 600 inhabitants) Italian comunes as

lures. In the first session, participants in both groups first had a recognition test with

all 45 cities. The cities were paired so that target items are only paired with other

target items, while fillers and lures are paired together. Each target city appeared 16

times, creating 240 target pairs. Additionally, each filler and lure was repeated 4

times, resulting in 30 additional pairs. For the comparison task, participants were

randomly assigned either to a control condition where they had to judge which of the

cities is more populous (domain where recognition is valid) or to an experimental

condition where they had to judge which city is higher above sea level (domain where

recognition is not valid). Performance on the comparison task was monetarily

incentivized.

Participants

We initially recruited 54 participants from the University of Mannheim, but

unfortunately, 9 participants did not return to the second and/or third session. Of

these 45 participants, 6 of them recognized all cities in one or more of the sessions,

and therefore had to be removed before the analysis. Of the remaining 39

participants, 23 (12 women; aged between 19 and 41, M = 24, SD = 5.98) had been

assigned to the city-size group, while 16 (9 women; aged between 18 and 35, M =
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21.31, SD = 4.00) were in the height-above-sea-level group. At the end of the third

session, participants were compensated with money or course credit, and had an

additional monetary bonus which was a function of their performance in the

comparison task.

Results

In all three recognition tests, recognition of lures was generally low, and there

were no significant differences between sessions

(M1 = .09, SD1 = .17,M2 = .12, SD2 = .23, and M3 = .08, SD3 = .14, in Phases 1 to

3, respectively; F (2, 88) = 0.79, p = .46). The mean proportion of recognized objects

was also stable across sessions (M1 = .67, SD1 = .18,M2 = .69, SD2 = .21, and

M3 = .68, SD3 = .22;F (2, 88) = 0.56, p = .57). This is in line with the assumption

that participants followed our instructions for the repeated recognition tests.

Model-based Analysis

We first fit the latent-states MSH model to the data of both conditions. The

model performed well with the baseline restrictions,

aUU = .5, b = bRN = bRU , g = bUN = .5, for both conditions analyzed simultaneously

(G2(6) = 8.15, p = .23, FIA = 50.95). Once more, adding the equality restriction

h = l in each of the two conditions led to no significant increase in misfit and FIA

(∆G2(2) = 1.35, p = .51,∆FIA = .32). Thus, replicating Experiments 1 and 2, the

probabilities of originating from recognition and rejection certainty states,

respectively, do not differ between consistent yes and consistent no recognition

judgments.

A first test of validity concerns the parameter h = l. Since the object domain

(i.e., Italian cities) and material does not differ between conditions and participants

were randomly assigned to conditions, the h = l parameter must not differ between

the city-size (C) and height (H) conditions. To test this straightforward prediction,

we added the restriction hC = lC = hH = lH . As predicted, this restriction led to no

significant increase in misfit and slightly reduced FIA (∆G2(1) = 0.57, p = .32,∆FIA
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= .21). In light of these results, all additional tests of our hypotheses are based on

the baseline model assuming hC = lC = hH = lH . All parameter estimates (and

corresponding standard errors) for this baseline model can be found in Table 1.

Second, as a manipulation check, we wanted to make sure that the

memory-state validity is higher in the city-size group for all three types of recognition

pairs. As can be seen in Table 1, this is the case for all three memory-state validity

parameter estimates. Therefore, we compared the baseline model with a model

imposing the inequality restrictions, aRN,C ≥ aRN,H , aRU,C ≥ aRU,H and

aUN,C ≥ aUN,H . This leads to no significant increase in misfit or FIA

(∆G2 = 0, p = 1,∆FIA = 2.02). In contrast, comparing the inequality restricted

model with one imposing equality restrictions between conditions in the a

parameters, aRN,C = aRN,H , aRU,C = aRU,H and aUN,C = aUN,H , leads to a significant

increase in misfit and FIA (∆G2 = 194.29, p = 0,∆FIA = 89.92). Importantly, all

three restrictions separately led to a significant increase in misfit (aRN,C = aRN,H :

∆G2 = 32.53, p = 0; aRU,C = aRU,H : ∆G2 = 43.34, p = 0; aUN,C = aUN,H :

∆G2 = 19.08, p = 0), indicating that none of them is compatible with the data.

Third, since our manipulation worked as predicted, we then tested our main

hypotheses. As can be seen in Table 1, all three r parameter estimates are larger in

the city-size group than in the heigth-above-sea-level group. Therefore, we compared

the baseline model with a model imposing the following inequality restrictions,

rRN,C ≥ rRN,H , rRU,C ≥ rRU,H and rUN,C ≥ rUN,H . This led to no increase in misfit

and a decrease in FIA (∆G2 = 0, p = 1,∆FIA = 2.07). Furthermore, in line with our

hypotheses, comparing the inequality restricted model with a model imposing equality

restrictions, rRN,C = rRN,H , rRU,C = rRU,H and rUN,C = rUN,H , resulted in a significant

increase in misfit and FIA (∆G2 = 242.38, p = 0,∆FIA = 116.08). Importantly, all

three restrictions separately led to a significant increase in misfit(rRN,C = rRN,H :

∆G2 = 54.48, p = 0; rRU,C = rRU,H : ∆G2 = 87.66, p = 0; rUN,C = rUN,H :

∆G2 = 10.01, p = 0), indicating that none of them is compatible with the data. In

sum, the results clearly support our hypothesis, showing that, like RH-use (Hilbig et
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al., 2010), MSH-use adaptively adjusts to the memory-state validity.

General Discussion

In this paper, we aimed at testing a formal model of the MSH with a new

paradigm especially suited to acquiring better estimates of the memory states

underlying binary recognition judgments. In two experiments, our model-based

analyses consistently revealed that, as predicted, reliance on memory states increases

with the discrepancy in the underlying states. Moreover, the same pattern was

observed in memory-state validity, supporting the ecological validity of the MSH.

Our two nested MSH models constitute the first attempt at formalizing the

MSH. With these models, we could independently estimate reliance on recognition for

pairs of all different combinations of memory states, allowing a direct test of the core

predictions of the MSH. Consistent with previous work (Castela et al., 2014;

Erdfelder et al., 2011) we found strong support for the idea that underlying memory

states, and not recognition judgments per se, influence reliance on recognition as a

single cue in inferential judgments. Importantly, these core predictions of the MSH

rely on the assumption that memory strength, and not recognition judgments,

correlates with the criterion value in the first place. It follows that memory-state

validity should also be higher for recognition pairs of two objects in certainty memory

states. We have also successfully tested this prediction, which underlines the fact that

following the MSH is an ecologically rational and well-adapted choice strategy.

Furthermore, we successfully validated critical parameters of our model.

Specifically, we first focused on the two filter parameters of the latent-states MSH

model, h and l. These parameters should estimate the probability that consistency in

recognition judgments is associated with a recognition or rejection certainty state,

respectively. To ensure they correctly serve that purpose, we tested the

straightforward prediction that increasing the number of repetitions of the

recognition test should lead to higher estimates of h and l. This prediction is based

on the 2HT: If an object is in a certainty state, the recognition judgment can only be
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yes for the case of recognition certainty and no for the case of rejection certainty; if

an object is in the state of uncertainty, the recognition judgment will be based on a

guessing process, and can vary. It directly follows that the probability of consistent

judgments originating from uncertainty decreases when the number of repetitions

increases. We compared the case of one repetition with the cases of two repetitions,

and found the predicted pattern: the estimates of h and l are smaller in the former

case. In this way, we validated the filter parameters.

In addition, we also wanted to validate the three r parameters. While the r

parameter has been validated in the context of the r-model, since we have three

different ones to account for all types of recognition cases, it is important to show

they all respond to manipulations that should affect MSH-use. Therefore, we

compared MSH-use between two conditions with different memory-state validities.

Specifically, we predicted that when memory-state validity is very low, MSH-use for

all types of recognition pairs should decrease. This same manipulation has been used

to validate the r parameters of the r-model (Hilbig et al., 2010), and it should also

affect our r parameters. Accordingly, we have shown that all three r parameters are

significantly smaller in a condition with low memory-state validity compared to a

condition with higher memory-state validity.

Our experiments also revealed a consistent pattern that initially had not been

predicted: MSH-use is higher for pairs of objects in recognition certainty and objects

in uncertainty states than for pairs of objects in uncertainty and rejection certainty

states. As discussed before, we found this pattern in Experiment 1 and 2 and also

observed corresponding results for the memory-state validities and choice latencies in

both experiments. Additionally, the pattern in MSH-use and memory-state validity is

present for both groups in Experiment 3 (MSH-use: ∆G2(1) = 14.33, p < .001,∆FIA

= 2.72; memory-state validity: ∆G2(1) = 24.88, p < .001,∆FIA = 6.53). Taken

together, these results should motivate a reconsideration of a simple ordinal view of

the three states. This could be pursued in future studies where specific hypotheses

would guide a clear test of its source.
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Besides all tests of hypotheses, we also conducted comparative model-based

analyses to find the best version of our model. In this process, we found a reasonable

set of restrictions. One important restriction is in the h and l parameters. When they

are both constrained to be equal to 1, our latent-states model becomes the

approximate MSH model, by incorporating the assumption that the memory state is

perfectly captured by consistency versus inconsistency in recognition judgments. As

becomes clear by inspecting Figure 3, the pattern of results does not change given the

model. However, there are differences that, while quite predictable, are still

interesting to discuss. While the latent-states MSH model is the superior model in

terms of how it captures the processes without further assumptions, the question

remains of whether it is the best measurement tool. Despite its inherent

misspecification, the parsimonious approximate MSH model does a great job at

capturing the pattern of results, and it does not suffer from estimation uncertainty as

much as the latent-states model does. This becomes clear by looking at the standard

errors of the parameter estimates (see Figure 3). We find that we have the best of

two worlds by having both models. Since the results converge, we can surpass the

limitations of the approximate model - showing that the pattern of results does not

depend on using consistency versus inconsistency of recognition judgments as perfect

indicators of memory states. At the same time, we can also surpass the limitations of

the latent-states model - ensuring that our results hold even when we test our

hypotheses with parameter estimates that are less uncertain.

In addition to the model-based analyses, we used repeated recognition

judgments to test latency predictions of the MSH. Assumptions about recognition

latency differences between memory states had previously been used to test the MSH

(see Erdfelder et al., 2011), but had not been validated so far. With our proxy

measure we had an opportunity to validate them using an independent and arguably

better indicator of memory states. Based on the data from both experiments, we were

able to show that recognition and rejection latencies are generally faster for objects in

certainty states (indicated by consistent recognition judgments) than for objects in
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the uncertainty state (indicated by inconsistent recognition judgments). Also, we

have shown that choices tend to be faster with increasing distance between states.

Finally, since in Experiment 2 we repeated both the recognition test and the

inference task, we were able to test the MSH predictions regarding choice consistency,

most importantly, that when the distance between memory states of an object pair is

maximal, choices are most consistent. Consistency should be lower when objects are

in adjacent memory states (and MSH-use is lower), and lowest when they are in the

same state, since for this case the heuristic cannot be applied. This is exactly the

pattern we observed, lending further support to the MSH and showing its vast

predictive potential. Moreover, when we look at the different cases within the

adjacent states and same state categories, we observe that choices are more consistent

when further knowledge is likely to be available, and less consistent in cases where

plain guessing is involved.

We have discussed earlier why we chose the consistency of recognition

judgments as our proxy due to its advantages over other options. But naturally, it

also has limitations. Perhaps the most evident one is the paradigm. The fact that it

requires three separate recognition tasks forces a costly procedure, where participants

must be asked to return to the lab for two subsequent sessions. In our case, we have

opted for a one-week interval between sessions, since we thought this would provide

sufficient time to avoid perfect memory of previous judgments. One evident way to

simplify the procedure would be to have all recognition testes in a single session,

separated by some distractor tasks. It remains an empirical question whether this

would compromise the procedure, and while we think it would lead to a higher

number of consistent judgments, it is hard to argue either against or for it without

appropriate testing.

Another way to simplify the procedure would be to reduce the number of

sessions to two. Given the quality of the proxy with three sessions, we believe it

would be sufficient to repeat the judgments once without severe contamination, even

if using only the approximate MSH model. But most importantly, we would like to
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clarify that we developed this paradigm and new model in order to test the MSH, and

we do not wish to suggest that this should be the new standard paradigm for

studying the RH. While we strongly recommend that the recognition processes are

taken into consideration for drawing new predictions, we do not wish to promote the

use of our paradigm as a standard tool. Ideally, we hope our work can inspire the

development of even better methods that involve a less costly paradigm and take us

one more step forward.

Another aspect worth addressing is how our estimates of MSH-use compare

to previous findings of RH-use that ignore differences in underlying memory states.

By working with the latent MSH model, we isolated the ideal preconditions for

reliance on recognition, that is, the subset of recognition cases where both objects are

in different certainty states (i.e., recognition versus rejection certainty). Following the

rationale of the MSH, this should lead to comparably higher estimates of reliance on

recognition than found before. Indeed, we observed that, for two objects in opposing

certainty states, reliance on recognition was .86 and .88 on average (for Experiment 1

and 2, respectively). This is considerably larger than the usual estimates of RH-use

previously found with the r-model for similar judgment domains (see Table 1 of

Hilbig et al., 2010 for an overview), and even higher than the level of RH-use

observed in an experiment where participants were explicitly instructed to use the

RH as often as possible (r̂ = .82, cf. Hilbig et al., 2010, Experiment 6). This suggests

that estimating reliance on recognition by only considering binary recognition

judgments leads to a gross underestimation of the use of memory strength in

inferential decision making when conditions for using it are ideal. When defined in

terms of memory states, we see that recognition information is actually used more

often, in line with the ecological validity of memory states. Accordingly, Castela et al.

(2014) found similarly high estimates of RH-use between .69 and .98 (.77 on average),

but only for recognition cases for which there was further knowledge about the

recognized object (arguably associated with the recognition certainty state). For

recognition cases where there was mere recognition only, RH-use was much lower
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(between .45 and .70, .57 on average; see Table 2 of Castela et al., 2014 for an

overview of the estimates of RH-use for both types of recognition cases).

The high estimates for parameter rRN bring up the question whether the

hypothesis rRN = 1 is compatible with our data. This would imply that further

knowledge is entirely ignored when one object is certainly recognized and the other is

certainly rejected, much in line with a deterministic interpretation of RH use under

ideal conditions (cf., Hilbig et al., 2010). We opted to test this hypothesis based on

the approximate MSH model because (a) this model is compatible with the data of

both experiments and (b) it provides the more powerful test due to smaller standard

errors of r̂. More precisely, we tested H0 : rRN = .99 rather than H0 : rRN = 1. This

slightly weaker null model is more reasonable because the latter restriction would

predict zero frequencies for some categories of the model. A single observation in one

of these cells would thus result in infinite misfit, rendering a rejection of this model

trivial. Notably, for both experiments the hypothesis rRN ≥ .99 leads to severe

increase in both misfit and FIA (∆G2(1) = 783.09, p < .001,∆FIA = 389.36, and

∆G2(1) = 388.75, p < .001,∆FIA = 191.47, for Experiment 1 and 2, respectively)9.

These results are clear-cut and conceptually replicate corresponding results of Castela

et al. (2014). In sum, while our model-based results show that people rely on the

MSH quite often when the conditions for successful applications of this strategy are

ideal, we still see that this is not the only strategy in play, even under ideal conditions.

Finally, we would like to point out that there are alternatives to the MSH

model proposed in the current paper, some of which have already been discussed in

the relevant literature. The present model is probably most similar to the r*-model

previously proposed by Castela et al. (2014). Compared to the latter model, however,

the MSH model has two major advantages: it does not assume perfect empirical

indicators for the latent memory states and it accommodates all three memory states

(recognition certainty, uncertainty, and rejection certainty) underlying recognized and

9A similar, although less extreme, pattern of results is found when testing rRN = 1 based on the

latent-states MSH model.
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unrecognized objects, while the r*-model only approximates the recognition certainty

state and the uncertainty state for recognized objects. Moreover, rather than

conceptualizing memory strength (or activation, cf. Schooler & Hertwig, 2005) as a

discrete variable with three states it is of course also possible to conceive it as a

continuous variable. This would be consistent with signal detection theory which, like

the 2HT model, is a prominent model in the recognition memory literature (see

Kellen & Klauer, in press; Pleskac, 2007) but also with the ACT-R approach (see

Schooler & Hertwig, 2005). However, we aimed at formalizing a model of

recognition-based inference that is closest to the original idea of the RH (Goldstein &

Gigerenzer, 2002), with the single exception that it takes the possibility of memory

uncertainty into account. We believe that the MSH model allows for such a

generalization of the RH in a more parsimonious way than approaches based on the

notion of continuous memory strength. In fact, the MSH-model proposed here

contains the original RH-model as a special case that occurs when the probability of

memory uncertainty is zero.

In sum, by formalizing the MSH and finding support for its main predictions,

the current work takes a new step in bridging the gap between theories of recognition

memory and the RH theory. Furthermore, we have shown the potential of our

memory states proxy measure (consistent versus inconsistent recognition judgments)

to validate previous predictions of the MSH regarding recognition and choice latencies

and to derive and test new predictions regarding choice consistency. We believe our

vast set of results shows the benefits of extending the RH to the MSH and having a

formal model of the latter, allowing us to test several predictions and better

understand the processes involved in reliance on recognition for probabilistic

inferences.
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Table 1: Latent-states MSH parameter estimates (and bootstrapped standard errors)

of Experiment 1, Experiment 2 and Experiment 3.

Experiment 1 Experiment 2 Experiment 3: city-size Experiment 3: height

aUU .50 (-) .50 (-) .50 (-) .50 (-)

aRN .80 (.02) .76 (.02) .82 (.02) .57 (.03)

aRU .69 (.02) .70 (.03) .84 (.04) .64 (.03)

aUN .61 (.01) .60 (.02) .70 (03) .51 (.03)

rRN .88 (.06) .86 (.05) 1 (.10) .26 (.06)

rRU .55 (.05) .63 (.08) .74 (.13) .02 (.05)

rUN .46 (.04) .56 (.06) .54 (.07) .27 (.07)

b .65 (.01) .64 (.02) .74 (.02) .57 (.01)

bRN .65 (.01) .64 (.02) .74 (.02) .57 (.01)

bRU .65 (.01) .64 (.02) .74 (.02) .57 (.01)

bUN .50 (-) .50 (-) .50 (-) .50 (-)

g .50 (-) .50 (-) .50 (-) .50 (-)

h .92 (.06) 1 (.08) .76 (.07) .76 (.07)

l .92 (.06) 1 (.08) .76 (.07) .76 (.07)

Note: Parameters aUU , bUN , and g are fixed to .50. Additionally, parameters b, bRN ,

and bRU are restricted to be equal, as well as parameters h and l. In Experiment 3,

parameters h and l are additionally restricted to be equal between the city-size and

height condition.
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Table 2: Summary of mixed effects logistic regression showing how the combination of

memory states within a pair predicts choice consistency in Experiment 2.

Predictor Coefficient SE Wald Z p

Intercept 0.41 0.10 4.11 < .001

Maximal vs. all others 0.27 0.01 21.29 < .001

Adjacent vs. Same 0.14 0.01 10.25 < .001

REC-UNC vs.UNC-REJ 0.28 0.05 6.07 < .001

REC-REC vs. UNC-UNC and REJ-REJ 0.27 0.03 8.93 < .001

UNC-UNC vs. REJ-REJ 0.13 0.07 1.81 .07

Note: REC - recognition certainty; UNC - uncertainty; REJ - rejection certainty.
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Figure 1: Graphical representation of the r-model: Parameter r denotes the proba-

bility of applying the recognition heuristic as originally proposed, that is, by ignoring

any knowledge beyond recognition. a = recognition validity (probability of the rec-

ognized object representing the correct choice in a recognition case); b = probability

of valid knowledge; g = probability of a correct guess; rec. = recognized; unrec. =

unrecognized.
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Figure 2: Abstract representation of the latent-states MSH model, denoting how the

filter parameters determine the memory-state combination under comparison and, con-

sequently, the appropriate decision process. h, probability that consistent recognition

judgments originate from recognition certainty; l, probability that consistent rejec-

tion judgments originate from rejection certainty; 111, consistently recognized objects;

000, consistently rejected objects; REC, recognition certainty; UNC, uncertainty; REJ,

rejection certainty. The full model is presented in Appendix A.
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Figure 3: Estimates of the three r and a parameters for Experiment 1 and 2. Solid

lines represent the estimates from the latent-states MSH model while dashed lines rep-

resent estimates from the approximate MSH model. Error bars represent bootstrapped

standard errors of the parameter estimates.
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Figure 4: Left-side plots show means of individual median recognition (REC) and re-

jection (REJ) latencies from the first session, separately for consistent and inconsistent

repeated recognition judgments in Experiment 1 and 2. Right-side plots represent

means of individual median choice latencies in the first session for pairs where the

distance between the states is maximal (recognition certainty and rejection certainty);

for pairs where objects are in adjacent memory-states (recognition certainty and un-

certainty; rejection certainty and uncertainty); and for pairs in the same state (both

objects in recognition certainty, both in rejection certainty and both in uncertainty)

for Experiment 1 and 2. Error bars represent standard errors.



A formal model of the Memory State Heuristic 54

0.2

0.4

0.6

0.8

1.0

P
ro

po
rti

on
 o

f C
on

si
st

en
t C

ho
ic

es

MAXIMAL ADJACENT SAME

REC-UNC

UNC-REJ

REC-REC

UNC-UNC

REJ-REJ
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APPENDIX A

Model equations (.eqn format) and full model figure of latent - states MSH model

1 1 h * h * b

1 2 h * h * (1 - b)

1 1 h * (1 - h) * rRU * aRU

1 2 h * (1 - h) * rRU * (1 - aRU )

1 1 h * (1 - h) * (1 - rRU ) * bRU * aRU

1 1 h * (1 - h) * (1 - rRU ) * bRU * (1 - aRU )

1 2 h * (1 - h) * (1 - rRU ) * (1 - bRU ) * aRU

1 2 h * (1 - h) * (1 - rRU ) * (1 - bRU ) * (1 - aRU )

1 1 (1 - h) * h * rRU * aRU

1 2 (1 - h) * h * rRU * (1 - aRU )

1 1 (1 - h) * h * (1 - rRU ) * bRU * aRU

1 1 (1 - h) * h * (1 - rRU ) * bRU * (1 - aRU )

1 2 (1 - h) * h * (1 - rRU ) * (1 - bRU ) * aRU

1 2 (1 - h) * h * (1 - rRU ) * (1 - bRU ) * (1 - aRU )

1 1 (1 - h) * (1 - h) * g

1 2 (1 - h) * (1 - h) * (1 - g)

2 3 g

2 4 (1 - g)

3 5 l * l * g

3 6 l * l * (1 - g)

3 5 l * (1 - l) * rUN * aUN

3 6 l * (1 - l) * rUN * (1 - aUN )

3 5 l * (1 - l) * (1 - rUN ) * bUN * aUN

3 5 l * (1 - l) * (1 - rUN ) * bUN * (1 - aUN )

3 6 l * (1 - l) * (1 - rUN ) * (1 - bUN ) * aUN

3 6 l * (1 - l) * (1 - rUN ) * (1 - bUN ) * (1 - aUN )

3 5 (1 - l) * l * rUN * aUN

3 6 (1 - l) * l * rUN * (1 - aUN )

3 5 (1 - l) * l * (1 - rUN ) * bUN * aUN

3 5 (1 - l) * l * (1 - rUN ) * bUN * (1 - aUN )

3 6 (1 - l) * l * (1 - rUN ) * (1 - bUN ) * aUN

3 6 (1 - l) * l * (1 - rUN ) * (1 - bUN ) * (1 - aUN )

3 5 (1 - l) * (1 - l) * g

3 6 (1 - l) * (1 - l) * (1 - g)

4 7 h * l * rRN * aRN

4 8 h * l * rRN * (1 - aRN )

4 7 h * l * (1 - rRN ) * bRN * aRN

4 9 h * l * (1 - rRN ) * bRN * (1 - aRN )

4 10 h * l * (1 - rRN ) * (1 - bRN ) * aRN

4 8 h * l * (1 - rRN ) * (1 - bRN ) * (1 - aRN )

4 7 h * (1 - l) * rRU * aRU

4 8 h * (1 - l) * rRU * (1 - aRU )

4 7 h * (1 - l) * (1 - rRU ) * bRU * aRU

4 9 h * (1 - l) * (1 - rRU ) * bRU * (1 - aRU )

4 10 h * (1 - l) * (1 - rRU ) * (1 - bRU ) * aRU

4 8 h * (1 - l) * (1 - rRU ) * (1 - bRU ) * (1 - aRU )

4 7 (1 - h) * l * rUN * aUN

4 8 (1 - h) * l * rUN * (1 - aUN )

4 7 (1 - h) * l * (1 - rUN ) * bUN * aUN

4 9 (1 - h) * l * (1 - rUN ) * bUN * (1 - aUN )

4 10 (1 - h) * l * (1 - rUN ) * (1 - bUN ) * aUN

4 8 (1 - h) * l * (1 - rUN ) * (1 - bUN ) * (1 - aUN )

4 7 (1 - h) * (1 - l) * rUU * aUU
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4 8 (1 - h) * (1 - l) * rUU * (1 - aUU )

4 7 (1 - h) * (1 - l) * (1 - rUU ) * g * aUU

4 9 (1 - h) * (1 - l) * (1 - rUU ) * g * (1 - aUU )

4 10 (1 - h) * (1 - l) *(1 - rUU ) * (1 - g) * aUU

4 8 (1 - h) * (1 - l) * (1 - rUU ) *(1 - g) * (1 - aUU )

5 11 h * rRU * aRU

5 12 h * rRU * (1 - aRU )

5 11 h * (1 - rRU ) * bRU * aRU

5 13 h * (1 - rRU ) * bRU * (1 - aRU )

5 14 h * (1 - rRU ) * (1 - bRU ) * aRU

5 12 h * (1 - rRU ) * (1 - bRU ) * (1 - aRU )

5 11 (1 - h) * rUU * aUU

5 12 (1 - h) * rUU * (1 - aUU )

5 11 (1 - h) * (1 - rUU ) * g * aUU

5 13 (1 - h) * (1 - rUU ) * g * (1 - aUU )

5 14 (1 - h) * (1 - rUU ) * (1 - g) * aUU

5 12 (1 - h) * (1 - rUU ) * (1 - g) * (1 - aUU )

6 15 l * rUN * aUN

6 16 l * rUN * (1 - aUN )

6 15 l * (1 - rUN ) * bUN * aUN

6 17 l * (1 - rUN ) * bUN * (1 - aUN )

6 18 l * (1 - rUN ) * (1 - bUN ) * aUN

6 16 l * (1 - rUN ) * (1 - bUN ) * (1 - aUN )

6 15 (1 - l) * rUU * aUU

6 16 (1 - l) * rUU * (1 - aUU )

6 15 (1 - l) * (1 - rUU ) * g * aUU

6 17 (1 - l) * (1- rUU ) * g * (1 - aUU )

6 18 (1 - l) * (1 - rUU ) * (1 - g) * aUU

6 16 (1 - l) * (1 - rUU ) * (1 - g) * (1 - aUU )
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APPENDIX B

Necessary and sufficient conditions for h = l

Since h represents the probability of a consistent “yes” judgment (111) originating from

recognition certainty (REC) and l the probability of a consistent “no” judgment (000)

originating from rejection certainty (REJ), it follows that

h = Pr(REC|111) (1a)

l = Pr(REJ |000). (1b)

Additonally, this also implies that, for the uncertainty memory state (UNC)

1− h = Pr(UNC|111) (2a)

1− l = Pr(UNC|000). (2b)

It follows from Bayes’ theorem that

Pr(UNC|111) = Pr(111|UNC)
Pr(UNC)

Pr(111)
(3a)

Pr(UNC|000) = Pr(000|UNC)
Pr(UNC)

Pr(000)
. (3b)

Since we know from the 2HT model that, assuming independent recognition judgments,

Pr(111|UNC) = g3 and Pr(000|UNC) = (1− g)3, it follows that

Pr(UNC|111) = g3
Pr(UNC)

Pr(111)
(4a)

Pr(UNC|000) = (1− g)3
Pr(UNC)

Pr(000)
. (4b)



A formal model of the Memory State Heuristic 59

After dividing Equation (4a) by Equation (4b) we see that the equality h = l ⇔
P (UNC|111) = P (UNC|000) holds if and only if

g3

(1− g)3
=
Pr(111)

Pr(000)
. (5)

Hence, g monotonically increases with Pr(111)
Pr(000)

.
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APPENDIX C

Approximate Model

The baseline model with the restrictions b = bRN = bRU and g = bUN = .5 fit quite

well (Experiment 1: G2(5) = 4.50, p = .48, FIA = 28.37; Experiment 2: G2(5) = 3.44,

p = .63, FIA = 26.91). When adding the inequality restrictions rRN ≥ rRU and

rRN ≥ rUN , model misfit did not increase and FIA decreased (Experiment 1: ∆G2 = 0,

p = 1, ∆FIA = 1.20; Experiment 2: ∆G2 = 0, p = 1, ∆FIA = 1.19). When we

compared the inequality with an equality restriction rRN = rRU = rRN , model misfit

increased significantly and so did FIA (Experiment 1: ∆G
2

= 260.78, p = 0 , ∆FIA

= 125.53; Experiment 2: ∆G
2

= 128.75, p = 0, ∆FIA = 59.79), indicating that the

equality restriction is not compatible with the data. According to the G2 goodness-of-

fit statistic, the difference between rRU and rUN was also replicated, but the differences

in FIA are too small to allow a preference for any of the two models (Experiment 1:

∆G2(1) = 6.73, p < .01, ∆FIA = .50; Experiment 2: ∆G2(1) = 4.38, p = .04, ∆FIA

= −.53).

Regarding the a parameter, adding the inequality restrictions aRN ≥ aRU and

aRN ≥ rUN did not increase model misfit and decreased FIA (Experiment 1: ∆G2 = 0,

p = 1, ∆FIA = 1.12; Experiment 2: ∆G2 = 0, p = 1, ∆FIA = 1.12). When we

compared the inequality with the equality restriction aRN = aRU = aRN , we observed

a significant increase in model misfit and FIA (Experiment 1: ∆G
2

= 135.47, p = 0 ,

∆FIA = 61.53; Experiment 2: ∆G
2

= 78.71, p = 0, ∆FIA = 33.46). The difference

between aRU and aUN was replicated with the approximate model, since imposing

the equality restriction aRU = aUN led to a significant increase in model misfit and

in FIA (Experiment 1: ∆G2(1) = 16.67, p < .001, ∆FIA = 4.77; Experiment 2:

∆G2(1) = 29.63, p < .001, ∆FIA = 11.40).
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APPENDIX D

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Exp 1 1041 549 377 356 611 641 1901 503 77 120 977 384 177 205 635 391 173 242

Exp 2 1023 589 183 167 347 363 1307 390 38 73 932 333 109 134 464 296 92 120

Exp 3: size 1537 511 78 69 263 240 1061 266 38 87 608 148 87 89 209 100 58 71

Exp 3: heigth 672 506 73 73 215 192 377 257 192 215 239 126 152 182 112 110 73 74

Note: Aggreagated response frequencies for all experiments, separately for each of the

18 response categories.


