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Abstract

We introduce a decision-theoretic framework based on Description Logics
(DLs), which can be used to encode and solve single stage multi-attribute de-
cision problems. In particular, we consider the background knowledge as a DL
knowledge base where each attribute is represented by a concept, weighted by
a utility value which is asserted by the user. This yields a compact representa-
tion of preferences over attributes. Moreover, we represent choices as knowledge
base individuals, and induce a ranking via the aggregation of attributes that
they satisfy. We discuss the benefits of the approach from a decision theory
point of view. Furthermore, we introduce an implementation of the framework
as a Protégé plugin called uDecide. The plugin takes as input an ontology as
background knowledge, and returns the choices consistent with the user’s (the
knowledge base) preferences. We describe a use case with data from DBpedia.
We also provide empirical results for its performance in the size of the ontology
using the reasoner Konclude.

1 Introduction
The study of preference representation languages and decision support systems is an
ongoing research subject in artificial intelligence, gaining more popularity every day.
Since the inception multi-attribute utility theory (MAUT)[19], numerous approaches
have been studied, including probabilistic, possibilistic, fuzzy and graphical models
[9, 29, 18, 14] amongst others. One approach that has been gaining in interest over
the last two decades is the use of logical languages [5, 11, 17, 20, 26, 27] to encode
preferences and decision-theoretic problems.
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In this paper, we introduce a decision-theoretic framework to encode simple single
stage (or non-sequential) decision making problems using a weighted extension of
Description Logics (DLs). While we presented a first sketch of the framework in [2],
we now extend our formalism and give a full presentation in this paper. Furthermore,
we introduce our Protégé plugin uDecide which is based on this formalism. Our
framework combines ontology reasoning [4] in a basic MAUT [19] fashion to rank
the available choices with respect to a set of weighted attributes that have been
specified by the user; the greater the weight, the more important the attribute.
This yields a compact representation for a user’s preference over attributes. In that
manner, it is a multi-attribute account to decision making problems. The framework
may serve as a decision support system from three main perspectives: (1) in complex
domains in which an extensive amount of background knowledge is required and it
is hard to see the logical implications of any choice in terms of implying outcomes;
(2) in scenarios which the size of the set of possible choices is too large for a human
decision maker to operate; (3) when (1) and (2) are combined.

The required weighted DL (the DL decision base) can be built over any spe-
cific DL language. This provides flexibility in the sense that one can use tractable
fragments e.g., the DLLite family [7] or EL [3] if scalability is important, or more ex-
pressive fragments if the domain to be modelled requires, e.g., data types, a feature
desirable to express numeric domains, common in the literature of decision theory
[25].

A particular feature of our approach is that we make a distinction between choices
(alternatives, desired items or objects, etc.) and outcomes (which can be seen as
the result of an ontological approach to decision making). In particular, an outcome
is a subset of attributes which are represented by sets of description logic classes,
and choices are named individuals. We assume that the preferences of the user are
elicited (partially or completely) in the form of attributes, so that the preference
relation of the user rather than talking about any specific choices e.g., a, b, talks
about any anonymous or generic choices satisfying (i.e., instantiating) a given subset
of attributes or criteria.

The framework and its implementation can be understood as a generic out-of-
the-box expert system that turns an ontology for a specific domain into a decision
support system for the domain described by that ontology. Hereby, we note that we
do not make the strong claim that it can be directly applied to any decision prob-
lem scenario, but rather mean its applicability potential on domains where expert
knowledge is required e.g., to select between different treatments depending on char-
acteristics and preferences of a patient (medical domain), or a location for building a
power-plant depending on the preferences of corporate management (energy indus-
try domain). Our approach might also be used, for example, as a web-based decision
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support/recommender system for e-shopping. For the aforementioned perspective
(1), designed to stress the importance of logic reasoning, we will give a small example
in which the agent makes a decision between two cars with different specifications.
For the aforementioned perspective (2), we will present a use case to illustrate, us-
ing the implemented system, uDecide, how to to generate reading proposals from
thousands of choices. Loosely speaking, this use case will also demonstrate that our
approach can be easily applied to any kind of domain for which an ontological rep-
resentation or knowledge base is already available or can play a key role to encode
domain knowledge.

In the remainder of the paper, we present the basics of (classical) utility theory
and of DLs in Section 2.1. We assume that the reader has a basic familiarity with DL
and omit an extensive introduction, which can be found in [4]. Next, we introduce
the theoretical foundations of our framework in Section 3 and discuss it over an
example. In the example, we encode a car buying agents decision making problem
and show how our approach decides between two alternative cars according to the
patient preferences. In Section 4, we first give a general description of our plugin.
Then we present a use case which is based on an excerpt from DBpedia that deals
with books and authors. This use case illustrates how to convert an ontology into an
expert system by applying uDecide. Furthermore, we report on first runtime results
using Konclude [31] as reasoning engine in the background. In Section 5, we discuss
related works. Finally, we conclude and give a brief outline for future research in
Section 6.

2 Preliminaries

2.1 Preferences and Utility

Preferences are of central importance in the study of decisions. In formal sci-
ences such as mathematical economics, social choice theory and artificial intelli-
gence, preferences are usually modelled as a binary relation over the set of choices
C [16, 24, 30, 6] i.e., c1 � c2, is read c1 is at least as good as c2 (for the agent
which/who has the preference relation �), where c1, c2 ∈ C. Other commonly used
synonym terms are outcome, alternative and object. Moreover, it is often assumed
that � is complete and transitive. The preference relations associated with � are
defined as follows: for any c, c′ ∈ C,

c1 � c2 iff c1 � c2 and c2 6� c1, (Strict preference)
c1 ∼ c2 iff c1 � c2 and c2 � c1, (Indifference)
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where the former is read c1 is better than c2, and the latter is read the agent is
indifferent between c1 and c2. In order to represent the preference relation compactly,
one introduces a utility function u [13], which is a function that maps a choice to a
real number reflecting the degree of desire. Observe that there can be more than one
such function which represents a preference relation. For the classical results that
guarantees the existence of such functions, we refer to the so-called representation
theorems [13]. Formally, given a choice c ∈ C, a utility function, u : C → R represents
� if

c1 � c2 iff u(c1) ≥ u(c2). (Utility function)
The associated preferences � (strict preference) and ∼ (equivalent preference or in-
difference) are defined analogously. For instance, if it is the case that u(low-price) =
20 and u(high-price) = 5, this would induce the preference low-price � high-price
since 5 < 20. Usually, choices are formalised as values or elements of attribute(s).
Here, the choices low-price and high-price which represent any item of interest (e.g.,
a book, car or treatment) can be thought of as values of a single attribute price, or
equally in set notation price = {low-price, high-price}.

Most of the time, our decisions depend on more than a single attribute; for
instance, if we intend to buy a book, we are interested usually not only in its price,
but also in its author, to which genre it belongs. MAUT is the extended variant of
utility theory that deals with such decision problems [19, 28]. We will denote the set
of attributes by X and refer to a specific attribute by Xi ∈ X where i ∈ {1, . . . , |X |}.
Then, the set of choices is lifted to the cartesian product of the set of attributes
that we read as (possible) outcomes, denoted Ω i.e., C ⊆ X1 × . . . × Xn = Ω.
We say, u : Ω → R is the (multiattribute) utility function which represents � iff
∀(x1, . . . , xn), (y1, . . . , yn) ∈ Ω,

(x1, . . . , xn) � (y1, . . . ,yn) iff u(x1, . . . , xn) ≥ u(y1, . . . , yn).

Proving such representing functions exist, is a standard work in decision theory
(see e.g., [13] and [19] for basic proofs).

Since the size of the Ω is large i.e., 2|X |, making the assumption that u is additive,
significantly decreases the computational complexity. An additive function satisfies
the following.

u(x1, . . . , xn) = u(x1) + · · ·+ u(xn) (Additivity)

where (x1, . . . , xn) ∈ Ω.
The basic rationality principle in utility theory is that a rational agent should

always try to maximise its utility, or should take the choice with the maximum utility:

Opt(C) := arg max
c∈C

u(c) (Optimal choice)
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where Opt(C) corresponds to maximal elements in C w.r.t. u (therefore w.r.t. �).
Note that there can be more than one (since utility values of choices are not unique).
The class of decision making problems which we limit ourselves with, are discrete
choice problems [34], that is C is a finite set. Examples of such discrete choice
problems include choosing a medical treatment program with respect to a patient’s
criteria, or selecting a location for a nuclear power plant following environmental and
financial criteria.1 For a comprehensive treatment on MAUT, we refer the reader to
standard texts [12, 19].

2.2 Description Logics

We assume that the reader has some familiarity with DL. If that is not the case, we
refer the interested reader to [4]. The framework that we are presenting is indepen-
dent from the choice of a specific DL language, that is, higher the expressivity of the
chosen DL language, more complex the statements one can use about the problem
domain.This comes with the usual implication of the more demanding computational
resource requirements. In what follows we recall briefly the basics of DL.

DL signatures can be thought of as triples (NC , NR, NI), where NC is the set
of atomic concepts, NR is the set of role names, and NI is the set of individuals.
Along the text, we assume the unique name assumption, which means that different
individuals have different names. We denote concepts or classes by C andD, roles by
r and S, and individuals as a and b.2 Concept descriptions are defined inductively
from NC as ¬C, C u D, and C t D if C and D are concept descriptions, and
∃r.C and ∀r.C if r ∈ NR and C is a concept description. The top concept > is
abbreviation for C t ¬C and the bottom concept ⊥ for ¬>. An interpretation
is a pair I := (∆I , ·I) where the domain ∆I is a non-empty set, and ·I is an
interpretation function which assigns to every concept name C a set CI ⊆ ∆I and
to every role name R a binary relation RI ⊆ ∆I × ∆I . It is defined inductively
for every concept description as follows; (¬C)I := ∆I \ CI , (C uD)I := CI ∩DI ,
(C tD)I := CI ∪DI , (∃r.C)I := {a ∈ ∆I | exists b, (a, b) ∈ rI and b ∈ CI}, and
(∀r.C)I := {a ∈ ∆I | for all b, (a, b) ∈ rI implies b ∈ CI}. Any other extension is
defined accordingly, and will be clarified when it is necessary.

In DLs, there is a distinction between terminological knowledge (TBox) and
assertional knowledge (Abox). A TBox is a set of concept inclusions: C v D which
has the semantics CI ⊆ DI under any interpretation I. Furthermore, a concept

1This setting is orthogonal to continuous set of choices (possibly a vector of arbitrary numerical
quantities) which corresponds to a real-valued optimisation problem.

2We will use the terms concept or class interchangeably. Both terms are common in DL litera-
ture.
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definition is C ≡ D if C v D and C v D. An ABox is a set of concept assertions
C(a) where a ∈ NI and C(a)I := aI ∈ CI , and role assertions R(a, b) where
(a, b) ∈ NI ×NI and R(a, b)I := (aI , bI) ∈ RI .

A concept is satisfiable if there is an interpretation I such that CI 6= ∅. A
concept is satisfiable with respect to a TBox T if and only if (iff) there is a model
I of T such that CI 6= ∅. An interpretation I satisfies a concept inclusion C v D
(I |= C v D) iff CI ⊆ DI . A concept C is subsumed by a concept D with respect
to a TBox T if CI ⊆ DI for every model of I of T (C vT D or T |= C v D).
An interpretation I is satisfies a TBox T if and only if I satisfies every concept
inclusion in T . A TBox T is called coherent if all of the appearing concepts in T are
satisfiable. We say that an assertion α is entailed by an ABox A and write A |= α,
if every model of A also satisfies α. An ABox A is consistent w.r.t. a TBox T if
there is an interpretation I which satisfies T and A. We call the pair K := 〈T ,A〉 a
knowledge base, and say that K is satisfiable if A is consistent w.r.t. T . One basic
reasoning service we will use is instance check: given a knowledge base K and an
assertion α, to check whether A |= α.

A concrete domain D is a pair (∆D, pred(D)) where ∆D is the domain of D and
pred(D) is the set of predicate names of D. It is assumed that ∆I ∩∆D = ∅, and
each P ∈ pred(D) with arity n is associated with PD ⊆ (∆D)n. We will denote
functional roles with lower case r. In DL with concrete domains, it is assumed that
NR is partitioned into a set of functional roles and the set of ordinary roles. A role r
is functional if for every (x, y) ∈ r and (w, z) ∈ r it implies that x = w =⇒ y = z.
Functional roles, in the extended language, are interpreted as partial functions from
∆I to ∆I × ∆D. Functional roles and ordinary roles are both allowed to be used
with both the existential quantification and the universal quantification. A concrete
domain is required to be closed under negation (denoted by P ), in order to be able to
compute the negation normal form of the concepts defined via extended constructs.

3 Weighted DLs for Decision Making

In this section, we introduce the theoretical underpinning of our plugin, which is
a framework based on weighted DLs. In a loose sense, we will follow a specific-to-
generic path while introducing definitions, ending up defining the generic framework,
the DL decision base.

As an ontological approach to decision making, our aim is to use an a priori
preference relation over attributes (ontological classes) to derive an a posteriori
preference relation over choices (ontological individuals). To this end, we define a
priori (given by the user) a utility function U over X . Then we extend it to the subset
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of attributes, via a utility function u defined over choices using logical entailment.
The use of lower case u, has two motivations: i) dealing with a technical subtlety,
that is, a choice is an individual while a corresponding outcome is a set of classes
(which are mathematically different types of objects), and ii) flexibility to aggregate
U in different forms e.g., max, mean, or a customized arbitrary aggregation.

3.1 Modeling Attributes as DL Concepts

We represent each attribute in the original decision making problem by a class.
Furthermore, for every value of an attribute in the original decision making problem,
we introduce a new (sub)class to the set of classes at hand. For instance, if colour
is an attribute in the decision making problem we would like to model, we simply
represent it by the class Colour (i.e., Colour ∈ X ). Being a colour can be considered
as it has a desirability on its own. Moreover, if its value is available; if blue is a value
of the attribute colour, we extend our attribute set X simply by adding the class
Blue, as a subclass of Colour. Furthermore, for each further available value e.g.,
red, we can add Red as a subclass, along with adding an axiom guaranteeing the
disjointness e.g., Red v ¬Blue. Note that w.l.o.g. this simple process will yield a
binary term vector for X . This is indeed our aim since in the sequel the aggregation
of utilities of classes will be done with respect to the entailed class membership (i.e.,
K |= X(c)) which has two possible cases in return : an individual c (as a choice) is
either a member of the class X or not.

We assume a total and transitive preference relation (i.e., �X ) over an ordered
set of attributes X that are not necessarily atomic, and a function U : X → R that
represents � (i.e., U(X1) ≥ U(X2) iff X1 �X X2 for X1, X2 ∈ X ). The function U
can be thought of as a weight function, which assigns an a priori weight to each
class X ∈ X , and makes the description logic weighted. We denote the utility
of a class X ∈ X by U(X). This reflects an agent’s preference relation over the
set of attributes X . The greater the utility an attribute has, the more preferable
the attribute is. Furthermore, we partition the attribute set X into two subsets;
desirable that is the set of attributes with non-negative weights, denoted X+, and
undesirable X−, i.e., X ∈ X iff U(X) ≥ 0 and X = X+ ∪ X− with X+ ∩ X− = ∅.
Intuitively, any attribute that is not desirable is undesirable, and a zero-weighted
attribute can be interpreted as desirable with zero utility.

3.2 From Utility of Criteria to Utility of Choices

We call NI as the set of named individuals. A choice is an individual c ∈ NI . We
denote by C the finite set of choices. In order to derive a preference relation (a
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posteriori) over C (i.e., �C) which respects �X , we will introduce a utility function
u(c) ∈ R, which measures the utility of a choice c relative to the attribute set X
and the utility function U over attributes as an aggregator. For simplicity, we will
abuse the notation and use the symbol � for both choices and attributes whenever
it is obvious from the context. In the following, we define a particular u, which we
call σ-utility. It is intuitively defined relative to a knowledge base.

Definition 3.1 (σ-utility of a choice). Given a consistent knowledge base K, and a
set of choices C, the sigma utility of a choice c ∈ C is

uσ(c) :=
∑
{U(X) | X ∈ X and K |= X(c)}.

It is easy to see that uσ induces a preference relation over C i.e., uσ(c1) ≥ uσ(c2)
iff c1 � c2. For a representability proof, see e.g., Theorem 2.2 in [13].

Also, notice that each choice corresponds to a set of attributes, those whose
membership is logically entailed e.g., K |= X(c). Such a summation function forms
an additive multi-attribute utility function given in previous section in the sense
that every choice c corresponds to an outcome.3.

Following DL terminology and putting things together, we introduce the notion
of a generic UBox, denoted by U which is the component we need, to generate utility
functions.

Definition 3.2 (UBox). A UBox is a pair U := (uσ, U), where U is a utility function
over X and u is the utility function over C.

Next, we introduce the key notion of decision base, which can be interpreted as
a (formal, logical) model for an artificial agent in a decision situation, or a decision
support system. A decision base is a triple which consists of a consistent background
knowledge, a DL knowledge base K, a finite set of available choices C which is
represented as a set of individuals, a utility box, the component to encode user
preferences and to generate a respective a utility function. For simplicity, we will
drop the subscript σ and write u instead.

Definition 3.3 (Decision Base). A decision base is a triple D = (K, C,U) where
K = (T ,A) is a consistent knowledge base, T is a TBox and A is an ABox, C ⊆ NI

is the set of choices, and U = (u, U) is a UBox.

3Note that such simple additive utility function is a strong simplification in decision theory
literature such that it assumes implicitly that those values can be added. In contrast, additive
forms are common in Artificial Intelligence literature [28].
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Informally, the role of K is to provide assertional information about the choices
at hand, along with the general terminological knowledge information that the agent
may require to reason further over choices. Note that this is just as in the case of
σ-utility, that is meant to measure the value of a choice with respect to the classes
(possibly deduced) which it belongs to. In this work, we will restrict ourselves to uσ
and the maximality principle (picking up the choice(s) with the maximum utility).

The proposed ontological approach to decision making provides an intuitive rela-
tion between attributes. Assume that we limit ourselves to desirable attributes X+.
Then ceteris paribus anything that belongs to a particular class should be at least as
desirable as something that belongs to its superclass. For instance, a new sport car
is at least as desirable as a sport car (since anything that is a new sport car is also
a sport car i.e., new sport car v sport car). Generalizing this fact about desirable
attributes: the more specific the attributes a choice satisfies, the more utility it gets.
The opposite is the case for undesirable attributes: the more specific the attributes
a choice satisfies, the less utility it gets. The following result formalizes this idea.

Proposition 1. Let K be a knowledge base from a decision base D and c1, c2 ∈ C be
any two choices. i) Assume that c1 and c2 are instances of exactly the same set of
attributes from X−. If for every X2 ∈ X+ with K |= X2(c2) there is a X1 ∈ X+ with
K |= X1(c1) such that K |= X1 v X2, then c1 � c2. ii) If X+ is mutatis mutandis
replaced by X− in i), then c2 � c1.

Proof. i) Let c1, c2 ∈ C. By assumption, the negative utilities c1 and c2 get are
equal (i.e., u−(c1) = u−(c2) =

∑
K|=X(c2)∧X∈X− U(X)). Let us call this value ∆. It

follows that u(c1) ≥ u(c2) if and only if u+(c1) + ∆ ≥ u+(c2) + ∆ if and only if
u+(c1) ≥ u+(c2), where u+(c1) (resp. u+(c2)) is the overall positive utility that c1
(resp. c2 has). Therefore, all we need to show is that u+(c1) ≥ u+(c2). Now assume
that u+(c2) is generated by the set {X1

2 , . . . , X
m
2 } ⊆ X+, and u+(c1) is generated by

the set {X1
1 , . . . , X

k
1 } ⊆ X+. Since for every X2 ∈ X+ with K |= X2(c2) there is a

X1 ∈ X+ with K |= X1(c1) such that K |= X1 v X2 (by assumption), it follows that
{X1

2 , . . . , X
m
2 } ⊆ {X1

1 , . . . , X
k
1 }, hence u+(c1) ≥ u+(c2). ii) Similar to the previous

case.

The following corollary is a natural result of this approach to decision theory,
which says that two choices are of same desirability (i.e., indistinguishable w.r.t.
desirability) if they belong to exactly the same classes.

Corollary 1 (Indistinguishableness). Let D be a decision base, then for any c1, c2 ∈
C, c1 ∼ c2 iff {X1 ∈ X | K |= X1(c1)} = {X2 ∈ X | K |= X2(c2)}.

Proof. By applying Proposition 1 in both directions.
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The intuitive explanation for Corollary 1 is that we measure the desirability
(and non-desirability) of things, according to what they are, or which classes they
do belong to. This brings forward the importance of reasoning, since it might not
be obvious at all that two choices actually belong to exactly the same classes as
attributes.
Remark 1. Note that w.l.o.g. the complexity of calculating the optimal choice is
as high as the complexity of the instance checking problem in the employed DL
language, since to calculate the optimal choice, given m choices and n attributes, in
the worst case there are m · n instance checking to be performed.

Decision bases offer high flexibility in representing preferences, due to having
both qualitative (logical) and quantitative (weights) components. The following
example illustrates their main properties.

3.3 Example: Car Buyer

Consider an agent who wants to buy a second hand sports car. After visiting various
car dealers, he finds two alternatives as fair deals; a sport Mazda (Mx-5 Miata
Roadster, 2013 ) which fits his original purpose and a BMW (335i Sedan, 2008 )
which is also worth considering since it has a very strong engine (300 horsepower
(hp)) and also comes with a sport kit. The car buyer’s decision base (background
knowledge (T ,A), choices C = {car1, car2}, and attributes mentioned in U) is as in
Figure 1.

As the use of numerical domains is common to classical Decision Theory, we
will use the language with concrete domains. If the reader is already familiar with
concrete domains, she can skip the technical definitions and go directly to Figure 1.

Let us clarify concrete domains and predicates which are used in the example.
We take the concrete domain Car and ∆Car := ∆$ ∪ ∆sec ∪ ∆mpg ∪ ∆mph ∪ ∆hp

with ∆$ ∩∆sec ∩∆mpg ∩∆mph ∩∆hp = ∅, and pred(Car) := pred($)∪ pred(mpg)∪
pred(mph) ∪ pred(sec). For S ⊂ Q is a sufficiently large finite set of rationals, we
define the partition (of the domain ∆Car) ∆$ as {i$ | i ∈ S}, pred($) := {<$, >$,≥$
,≤$,=$, 6=$}. (<$)$(x, y) = {(x, y) ∈ ∆$×∆$ | i, j ∈ S with x := i$ and y := j$ such
that i < j}. Other predicates are defined similarly in an obvious way parallel to usual
binary relations over S. For convenience, we extend pred($) with finitely many unary
predicates in the form of <x:= {∀y ∈ ∆$ |<$ (x, y)} and also of >x, ≤x, ≥x, =x, 6=x

which are similarly defined, enough to express the intended TBox. Note that pred($)
is closed under negation: <$(x, y) =≥$ (x, y), etc. For other partitions, we take
∆sec := {i sec | i ∈ S+ \ {0}}, ∆mpg := {i mpg | i ∈ S}, ∆mph := {i mph | i ∈ S},
∆hp := {i hp | i ∈ S\{0}}. The rest of the respective predicate names and functional
roles are defined in an obvious way (hasPriceI : ∆I ×∆$, hasKit : ∆I ×∆I , etc).
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T = {∃hasPrice. ≤30000 $≡ InexpensiveCar, Bmw uMazda v ⊥,
ExpensiveCar v HighClassCar, Bmw335i v Bmw,
HighClassCar v PrestigiousCar, ∃hasModelY ear. ≥2012≡NewCar,
∃hasFuelConsumpt. ≥20mpg≡ EconomicCar, Bmw v PrestigiousCar,
Roadster v PrestigiousCar, SportsCaruConvertible≡Roadster,
MiddleClassCar uHighClassCar v ⊥, ClassicalKit v Kit,
SportsCar t ∃hasHP. ≥200hpv StrongCar, SportKit v Kit,
2Doors u 4Doors v ⊥, Car uKit v ⊥,
∃has0− 60mph. ≤7.0sec u ClassicalKit u SportKit v ⊥}
∃hasHP. ≥270hpv V eryStrongCar,
2Doors u ¬Convertible ≡ Coupé,
¬ Coupé u¬Convertible u ¬Hatchback v Sedan,
2Doors u ∃has0− 60mph. ≤7.0sec u
∀hasKit.SportKit v SportsCar,

A = {MazdaMx5Miata(car1), Bmw335i(car2),
hasHP (car1, 167hp), hasHP (car2, 300hp),
hasFuelConsumption(car1, 24mpg), hasFuelConsumption(car2, 19mpg),
hasModelY ear(car1, 2013), hasModelY ear(car2, 2008),
has0− 60mph(car1, 6.9sec), has0− 60mph(car2, 4, 8sec),
hasPrice(car1, 29960$), hasPrice(car2, 42560$),
Convertible(car1), Sedan(car2),
2Doors(car1), 4doors(car2),
ClassicalKit(kit1) SportKit(kit2),
hasKit(car1, kit1), hasKit(car2, kit2)}

U = {(InexpensiveCar, 30), C = {car1, car2}
(PrestigiousCar, 55),
(V eryStrongCar, 50),
(StrongCar, 40),
(EconomicCar, 30),
(NewCar, 35),
(Convertible, 10),
(Sedan, 5),
(∃hasKit.SportKit, 20),
(∃hasKit.ClasicalKit, 10)}

Figure 1: The car buyer’s background knowledge K = (T ,A), the set of choices
C = {car1, car2}, and preferences encoded as U . We omit the trivial axioms with
the super concept Car: HighClassCar v Car, PrestigiousCar v Car, . . . , etc.
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According to the agent, taking T into account, a Bmw is a prestigious car.
Considering a 200 hp or above is enough to refer to a car as strong. An economic
car should go for more than 20 miles per gallon (mpg). A car is new if it was
manufactured in 2012 or later.

Considering U in Figure 1, the agent (car buyer) is more interested in having
a prestigious car than having an inexpensive car. He prefers convertible to sedan.
However, these are not as important as a car to be an economic car, or a strong car.
Using the given decision base, we can calculate the utility of each choice (uσ(car1) =
220, uσ(car2) = 170), which implies (by the assumption: the greater the utility, the
more desirable is the choice) that car1 � car2.
Remark 2. Note that the DL we have used in this example is quite expressive. The
aim here is to simply show that using an enough expressive DL, one can talk about
some natural decision problems in a reasonable way. As an example we chose a com-
mon human decision problem, dealing with it in an automated manner to support
the intuition that it can be used in, say, e-shopping scenario. For convenience, in
the example we set the concrete domain to a sufficiently large finite subset of ratio-
nals. Moreover without arithmetic functions over the concrete domain, it should be
convenient that it is decidable [22].

4 System Description
We implemented our approach as Protégé plugin available at the link https://
code.google.com/p/udecide/. We first briefly describe the functionality and ar-
chitecture of our plugin in Section 4.1. Then we present a use case that shows how
a user interacts with the plugin in Section 4.2. This use case also illustrates how the
plugin can be used as an out-of-the-box expert system for any knowledge domain
available as ontology.

4.1 Implementation

Our Protégé plugin is compatible with both Protégé Desktop version 4.3 and 5.0. As
reasoning component we used the Konclude reasoner [31] which turned out to be the
best OWL reasoner for our purpose with regards to performance issues.4 When we
start Protégé Konclude is required to be running in the background. The connection
to Konclude is established via OWLlink.

Our implementation is straightforward. First, an ontology needs to be loaded via
the standard Protégé file menu. This ontology acts as a knowledge base K. After

4We would like to thank Andreas Steigmiller for his support related to using Konclude.

https://code.google.com/p/udecide/
https://code.google.com/p/udecide/
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switching to the uDecide tab, the user can specify the set of possible choices by
specifying a class C defined in K 5. All instances of C are treated as choices, which
corresponds to the set of choices C in the theoretical framework. The attributes
and their utility can then be specified on top of the vocabulary defined in K. Once
the type of choices and the attributes with their corresponding utility have been
specified, a connection to Konclude is established via HTTP. We will illustrate these
steps in the subsequent section in more details. For each attribute, we request from
the reasoner all named individuals satisfying the intersection of the attribute’s class
expression and the class that defines the type of choices. The result shown consists of
a ranked list of all individuals returned by at least one query and their utility which
is derived from the satisfied attributes. Since Konclude does not support instance
satisfaction queries for anonymous class expressions, we create a temporary ontology
that is transferred to Konclude at runtime. We add to this ontology an equivalent
classes axiom between each utility assertion’s class expression and a named dummy
class. We then separately query the individuals for each named dummy class.

As described on our homepage we recommend to configure Konclude to load
the knowledge base already on start-up to speed up the calculation. Because of
increasing computation time and memory limitations it is required to do this when
working with large knowledge bases. If the knowledge base was already loaded into
Konclude at start-up, only a (very small) temporary ontology will be built and
used by Konclude. Otherwise the union of both the temporary ontology and the
(potentially very large) knowledge base will be loaded in primary memory. This
behaviour can be controlled by a checkbox which is used to specify if the knowledge
base is already loaded into Konclude at start-up.

4.2 Use Case

As an illustrating use case, we applied our approach to the domain of books and
authors. In particular, we used our framework to support a user in finding interesting
books or authors by specifying his interests as attributes. Instead of working with
an artificial example, we used an existing subset of DBpedia that deals with the
chosen topic. The core domain contains relevant information about books and their
authors. With respect to our use case, DBpedia suffers a bit from its restricted set
of terminological axioms and its incompleteness regarding the sparse usage of some
properties.

In order to illustrate how to overcome such problems, we decided to extend it
with information about cities. In particular, we added for each city the country
in which it is located. Furthermore, we added some axioms specifying nationality

5Recall that the number of named instances for any class is finite.
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classes e.g., "Spanish" is defined as "the set of those persons that were born in or
died in a city located in Spain or whose nationality is Spain, Spanish_language or
Spanish_people". Thus, by using the nationality classes, the nationality of authors
for whom no nationality object property assertion exists, can still be inferred by their
birth and death places. We did so because in the core domain the nationality was
specified directly for only 21,3% authors, while 46,9% have a "derived nationality"
via our axiomatisation. Note that these axioms are not always true, because there
obviously exist some people that were born in Spain whose nationality is not Spanish.

This extension illustrates that, in the context of a reasoning based approach,
it is possible to leverage background knowledge that seemed not to be relevant at
first sight. Information that Barcelona is located in Spain and that some author
was born in Barcelona can affect the ranking of choices, if we specified that we
prefer Spanish authors as an attribute. It shows that a reasoning based approach
can help to overcome some problems related to incomplete data in the knowledge
base. The dataset and some instructions on how to use it can be found at https:
//code.google.com/p/udecide/wiki/BookUseCaseExample.

Suppose that a user wants to find a new author who writes books that are
similar to the ones that she likes. First of all, feasible choices have to be defined as
the instances of the class dbp:Author. Figure 2 depicts a screenshot of the uDecide
tab. The class to which the choices belong has been specified in the respective text
field in the upper right corner. An arbitrary concept description can be specified as
long as it is in the signature of the previously loaded ontology.

Now suppose that our user likes the authors Stephen King, Edgar Allan Poe,
and H.P. Lovecraft. Thus, she adds for each of the three authors an attribute to U :

U = {(∃influencedBy.{Stephen_King}, 70), . . . }.

The resulting list of attributes can be seen in the uDecide tab on the left side of
Figure 2. Note that the concept descriptions are specified in the Manchester syntax6

supported by the Protégé Editor. All attributes are specified within a dialog box
that uses the auto-complete functionality of Protégé as well as its syntax checking
capability. Only if a class expression is syntactically correct, a button will be enabled
to add it to the UBox.

Overall, nine attributes have been specified. The first three attributes express
that the user prefers authors that are influenced by her favourite authors. By adding
a negative value to the fourth attribute, the user ensures that the three authors that
she already knows will be ranked low in the ranking of choices. The fifth attribute
is added to increase the utility of those authors that received some award by 50.

6http://www.w3.org/TR/owl2-manchester-syntax/#The_Grammar

https://code.google.com/p/udecide/wiki/BookUseCaseExample
https://code.google.com/p/udecide/wiki/BookUseCaseExample
http://www.w3.org/TR/owl2-manchester-syntax/#The_Grammar
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Figure 2: Screenshot of uDecide displaying a ranked list of authors according to
the attribute specification of a user.

Moreover, the user specifies that she likes authors writing books that belong to
the genre of horror fiction or science fiction. These attributes have a relatively low
utility value. Finally, it is specified that the user likes American and British authors,
slightly preferring British.

The results that are finally calculated will only include individuals that satisfy
the choice class expression and at least one of the attributes.7 This calculation
is started by clicking on the "Calculate Utilities” button. The ranked choices are
presented on the right side of Figure 2 in descending order based on their utility.
The best choice is the author Wolfgang Hohlbein (240), followed by Joyce Carol
Oates (230) and many lower ranked choices. Thus, the most reasonable choice for
the user is to look at the author Wolfgang Hohlbein in more details, given that his
attribute specification and the underlying knowledge base is complete and correct.

7The rationale with at least one of the attributes is the large knowledge bases; when one deals
with large knowledge bases, most of the time, we experienced that the list is filled with so many
choices with 0 utility. In order to overcome that, we filter them out by default. However it is still
easy to have the whole list of choices, simply by entering the restriction class as an attribute with
0 weight.
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However, it might often be the case that a user wants to explore the results in
more detail, for example to get an explanation about their ranking position. This can
be done by clicking on one of the proposed choices. Figure 2 illustrates this for Joyce
Carol Oates. The utility score of 230 is based on the fact that Joyce Carol Oates
was influenced by Edgar Allen Poe and by H.P. Lovecraft, that she won at least one
award and that she was born in New York, therefore being classified as American.
Each of the satisfied attributes is highlighted in the left panel. Furthermore, all
assertions about the selected choice are shown in a panel in the lower right corner.
Again, we have used the Protégé default way of presenting this information. Vice
versa, it is also possible to select one of the (or multiple) attributes. This results in
those choices being highlighted that satisfy the selected (all the selected) attribute(s)
(not shown in Figure 2).

Our use case and the presented example illustrate both the benefits as well as
some drawbacks of our approach. First of all, we could apply our Protégé plugin to
the domain of books and authors without the plugin requiring any further modifica-
tions or extensions. This resulted in an expert system which makes proposals about
interesting authors or books. The only required ingredient was an ontology that
covers the domain in an appropriate way. We decided to use DBpedia, which fea-
tures a comprehensive ABox but a flat and inexpressive TBox. Thus, the potential
reasoning capabilities of our approach had only a limited impact: whether a choice
satisfies an attribute can be decided by a direct look-up over most attributes. This
changes with the use of an expressive TBox where some of the attributes are satis-
fied due to a chain of non-trivial logical dependencies and background knowledge.
In such a setting our approach can be used to provide non-immediately obvious
recommendation, as well as elicit their explanation, a key issue in decision support.

4.3 Scalability

In some preliminary experiments we have also tested the scalability of our approach.
We used both (1) standard datasets of our DBpedia book use case as well as (2) ex-
tended datasets (in the sense that new –not present in DBpedia– terminological and
assertional knowledge was added). For each case we created subsets that differed
with respect to the contained number of instances. The smallest dataset contained
13307 individuals and 51149 assertions and axioms. The largest dataset contained
54018 individuals and 300653 assertions and axioms covering all authors and books
in DBpedia. The extended datasets are slightly larger in each case because they
contain assertions about the countries of the cities. To further highlight the differ-
ences between the standard and the extended datasets, we used different UBoxes to
measure their runtime. The UBoxes as well as the resulting choice ranking for the
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Figure 3: Screenshot of uDecide performance test displaying a ranked list of authors
using the standard DBpedia book knowledge base.

Figure 4: Screenshot of uDecide performance test displaying a ranked list of authors
using the extended DBpedia book knowledge base.

complete dataset can be seen in Figures 3 and 4.
The UBoxes share most of their attributes, differing only on the attributes giving

preference to authors with American and British nationality. In the standard case
they were expressed only with the nationality object property on the domain of
dbp:Author while in the extended case the added nationality classes were used. The
results of our experiments are shown in Tables 1 and 2.

We conducted our experiments on a Win 7 desktop machine with four 3,4
Ghz cores and 8 GB DDR3-Ram using Protege 5.0 Desktop Beta build 17 and
Konclude-v0.6.1-527-Windows-x64-VS05-Dynamic-Qt4.8.5. As described above, we
forced Konclude to load the knowledge base already on start-up. This required less
than 4 seconds for each of the datasets listed in the table. It can be seen that the
runtime behaviour of uDecide is linear with respect to the size of the knowledge
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Table 1: Runtime results for differ-
ent sizes of the DBpedia standard book
knowledge base.
Size # Individuals # Axioms Runtime

66 MB 53991 297926 5.8 sec
55 MB 47311 249126 4.6 sec
44 MB 40044 199898 4.1 sec
33 MB 33253 150900 3.1 sec
22 MB 23456 101162 2.1 sec
11 MB 13307 51149 1.0 sec

Table 2: Runtime results for different
sizes of the DBpedia extended book
knowledge base.
Size # Individuals # Axioms Runtime

66 MB 54018 300653 8.2 sec
55 MB 47338 251454 6.9 sec
44 MB 40068 201883 5.3 sec
33 MB 32114 152023 3.8 sec
22 MB 23487 102357 2.6 sec
11 MB 13335 51893 1.3 sec

base. However, the runtime of uDecide is mainly based on the reasoning system
that is used in the background which was Konclude in our experiments. It can also
be observed that the extended case takes more time than the standard case. This
is no surprise, given that the added nationality classes, being rather complex DL
concepts, required more expressive reasoning than the original flat attributes. In
any case, even for the complete and extended dataset, we measured a runtime of not
more than 8.2 seconds, which is probably still acceptable for an application where a
user is waiting for an on-the-fly response.

As already described above, our experiments are currently based on an the DB-
pedia ontology which corresponds to a very light weight DL; without disjunction
and negation, yet with (simple) concrete domains. Further experiments have to be
conducted where we use more expressive knowledge bases. We are not expecting a
linear runtime behaviour in such a setting.

5 Related Work

On the theory side, regarding preference representations, approaches [11, 20, 33]
among many others have been proposed using propositional logic. This body of
works is especially relevant to mention as they provided the inspirational basis for
the design of our framework.

In [11, 33], authors investigate expressiveness of weighted propositional logics
on representing classes of utility functions. In doing so, they present some corre-
spondences between particular types of weighted formulas and well-known classes
of utility functions such as monotonic, concave, and study succinctness of differ-
ent types of weighted formulas for representing the same class of utility functions.
The work [20] using the similar framework focuses on representing group prefer-
ences. They consider to aggregation functions sum (like our uσ) and max (simply
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considering the maximum weight).
In [15] authors propose a propositional modal logic, multi-attribute preference

logic, to represent and reason about multi-attribute preferences. Their main objec-
tive is to represent well-known preference relations, rather than proposing a decision
support model. It must also be noted that their work is purely qualitative in contrast
to ours.

On DL side, there have also been some works [26, 27] which have a machinery
similar to ours. In their work, the utility of a concept (proposal) is defined as the sum
of the weights of its superconcepts. In particular, in [26], Ragone et al. show how to
represent preferences using weighted DL- formulas. Claiming that the definition of
utility by subsumption yields unintuitive results, they base their modified definition
of utility on semantic implication. This means that the utility of a concept C w.r.t.
a TBox is defined as the sum of the weights of the concepts that are logically implied
by C. According to terminology they used, our approach can be understood as an
implication-based approach. However, they define logical implication in terms of
membership, i.e., m |= C iff m ∈ CI . The minimal model that they introduced in
order to define the minimal utility value is more restrictive than ordinary models in
DL. They change this definition to ordinary models in their next paper [27], while
keeping the formal machinery the same (except the way they compute utilities). We
should note that their preference set, which is a set of weighted concepts, is similar
to our UBox. Hence, the main difference of our approach is the formal extension to
multiple alternatives and the use of individuals; they represent choices as concepts.
Moreover, we provide an implementation of our framework as a decision support
tool.

In [32], authors show how to encode fuzzy multicriteria decision making (MCDM)
problems in the formalism of fuzzy DL. They base their work on a standard feature
of MCDM on continuous domains: a decision matrix wherein the performance score
of each choice over each criteria is explicitly stated. Criteria are expressed as fuzzy
concepts. The optimal choice (w.r.t the fuzzy knowledge base) is the one with
the highest maximum satisfiability degree. The authors do not explicitly make a
distinction between the knowledge base and the set of criteria. In general, the focus
of the work is to show the potential and flexibility of fuzzy DL in encompassing the
usual numerical methods used in MCDM, rather than leveraging a formal concept
hierarchy in MCDM for expressing relations and handling inconsistencies between
criteria, choices, and the knowledge base.

On the practical side, we briefly mention [8, 10] mainly because they are deci-
sion support systems and they use Protégé (to our knowledge the only ones). It
is important to note that these systems have no multiattribute character. They
are designed to serve solely as a clinical decision support system. The basic idea
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is to represent clinical practice guidelines (CPGs) as ontologies and make use of
ontological inference, SWRL8 and Jess9.

6 Conclusion and Further Work
We have presented a DL based decision theoretic framework for representing ba-
sic decision problems which arise in a multiattribute fashion. This work can be
understood as the first step of our working line. A preliminary version of this frame-
work was first described in [2]. Within this paper we have improved this framework
and presented a refined version. However, the main contribution of this paper is
the Protégé plugin uDecide. This plugin is a straightforward implementation of the
proposed framework. It computes the utility for each of the defined choices by aggre-
gating the utility value for each satisfied attribute. Since each attribute corresponds
to a class description, standard reasoning techniques can be used to check whether
an attribute is satisfied. We have used the Konclude [31] reasoning system to con-
duct the required reasoning tasks. The results of this computation are presented to
the user as a ranked list of choices.

Since we implemented our approach as a Protégé plugin, our approach can easily
be used by the DL community. The current form of uDecide works with the uσ utility
function and we are currently working on extending the plug-in as an implementation
of a generic decision base, where one can also define arbitrary utility functions.

We have demonstrated within our use case, where we used a DBpedia fragment
concerned with the book domain, how to use uDecide as an expert system that
recommends new authors to a user. Moreover, we have also shown that our current
implementation, by using the reasoning system Konclude, is capable to deal with
large real-world datasets. We already pointed out that the benefits of reasoning
are rather limited in the context of the DBpedia subset we used. For that reason,
we have to identify another use case where we can clearly show that reasoning is
beneficial by making logical dependencies explicit in calculating the final ranking.
It will also be interesting to perform runtime experiments on the dataset of such a
use case. We are currently investigating datasets from the biomedical domain and
from the domain of life sciences. A remaining task is to conclude user-experiments
to check how satisfying is the choices uDecide provides for the users. This is in our
agenda.

As in many other disciplines, in decision theory it is common to deal with deci-
sions where uncertainty is present. For that reason, one major future research direc-

8http://www.w3.org/Submission/SWRL/
9http://herzberg.ca.sandia.gov/jess/

http://www.w3.org/Submission/SWRL/
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tion is to extend the framework with probabilistic description logics, e.g., [21, 23].
A first attempt in that direction can be found in [1]. A probabilistic approach would
allow us to face the challenge of representing typical problems defined in the decision
theoretic literature, along with lots of new application possibilities. In particular,
a probabilistic extension would allow us to compute the expected utility of choices
(lotteries) in terms of logical entailment, beside the possibility for employing differ-
ent logics for different types of probabilities (e.g., subjective, statistical) that the
decision problem involves. Having said that, the work we presented in this paper
must be understood as a very first step in that direction with strong simplifications
regarding decision problems.

A second major plan is to keep developing the theory and extend the frame-
work with a functionality that one can use concrete domains as a part of the utility
function. This would allow in return to construct ontologies which represent op-
timisation problems with continuous domain that is common to MAUT literature
[12, 19, 18].

Another future plan is to extend the framework to sequential decisions (e.g.,
Di → Di+1, sequence of decision bases). Once sequential decisions are defined, we
can deal with policies, strategies and decision-theoretic planning. Besides all we
believe that, with a proper multi-agent extension, uDecide could also be used to
reason for group decisions, along with potential applications in computational social
choice or algorithmic game theory.
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