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Abstract
This thesis provides a construction of solutions to Markovian integral equations. By
introducing path-dependent diffusion processes, this yields a general existence and
uniqueness result for mild solutions to semilinear parabolic path-dependent partial
differential equations (PPDEs). In this connection, we verify that mild solutions are
also solutions in a viscosity sense.

In the first part of the thesis, we analyze multidimensional Markovian integral
equations that are formulated with an underlying time-inhomogeneous progressive
Markov process that has Borel measurable transition probabilities. For this purpose,
regularity conditions with respect to Borel measures are presented, and relevant
facts on Markov processes and additive maps are reviewed. Our goal is to establish
uniqueness, stability, existence, and non-extendibility of solutions among a certain
class of mappings. By requiring the Feller property of the Markov process, we give
weak conditions under which solutions become continuous. Moreover, we prove a
multidimensional Feynman-Kac formula and a one-dimensional global existence and
uniqueness result.

In the second part, we deal with semilinear parabolic PPDEs that are based on
horizontal and vertical derivatives of non-anticipative functionals on path spaces.
Within this infinite-dimensional framework, measurable structures and topologies
are discussed, and the time and space differential operators are recalled. Then we
consider path-dependent diffusion processes, which may fail to be Markov, but whose
path processes can be turned into diffusions. We thereby infer that solutions to the
associated Markovian integral equations lead to mild solutions to PPDEs. At last,
various notions of viscosity solutions are compared and the evidence that every mild
solution can indeed be regarded as a viscosity solution is provided under a weak
continuity assumption.
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Zusammenfassung
Diese Dissertation stellt eine Konstruktion von Lösungen zu Markovschen Inte-

gralgleichungen bereit. Indem pfadabhängige Diffusionsprozesse eingeführt werden,
ergibt dies ein allgemeines Existenz- und Eindeutigkeitsresultat für milde Lösun-
gen zu semilinearen parabolischen pfadabhängigen partiellen Differentialgleichungen
(PPDGLen). In diesem Zusammenhang weisen wir nach, dass milde Lösungen auch
Lösungen in einem Viskositätssinne sind.
In dem ersten Teil der Dissertation analysieren wir mehrdimensionale Markovsche
Integralgleichungen, die mit einem zugrunde liegenden zeitlich inhomogenen pro-
gressiven Markovschen Prozess, der Borel-messbare Übergangswahrscheinlichkeiten
besitzt, formuliert werden. Für diesen Zweck werden Regularitätsbedingungen be-
züglich Borel-Maße vorgestellt und relevante Tatsachen über Markovsche Prozesse
und additive Abbildungen nachgeprüft. Unser Ziel ist es, Eindeutigkeit, Stabilität
und Nicht-Erweiterbarkeit von Lösungen innerhalb einer Klasse von Abbildungen
festzustellen. Indem man die Feller-Eigenschaft des Markov-Prozesses fordert, ge-
ben wir schwache Bedingungen an, unter denen Lösungen stetig sind. Außerdem
beweisen wir eine mehrdimensionale Feynman-Kac Formel und ein eindimensionales
globales Existenz- und Eindeutigkeitsresultat.
Im zweiten Teil befassen wir uns mit semilinearen parabolischen PPDGLen, die
auf den horizontalen und vertikalen Ableitungen nicht-antizipativer Funktionale auf
Pfadräumen beruhen. Unter diesen unendlich-dimensionalen Rahmenbedingungen
werden messbare Strukturen und Topologien diskutiert, und die Zeit- und Raum-
Differentialoperatoren abgerufen. Dann betrachten wir pfadabhängie Diffusionspro-
zesse, für die die Markov-Eigenschaft fehlschlagen kann, deren Pfadprozesse jedoch
zu Diffusionen gemacht werden können. Damit folgern wir, dass Lösungen zu den
verbundenen Markovschen Integralgleichungen zu milden Lösungen zu PPDGLen
führen. Schließlich werden vielfältige Begriffe von Viskositätslösungen verglichen und
der Nachweis, dass jede milde Lösung tatsächlich als Viskositätslösung angesehen
werden kann, unter einer schwachen Stetigkeitsannahme erbracht.
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Chapter 1

Introduction

1.1 Markovian integral equations
Markovian integral equations arise when dealing with diffusion processes and mild
solutions to semilinear parabolic partial differential equations (PDEs). This fact was
utilized by Dynkin [13, 14] to give probabilistic formulas for mild solutions via the
Laplace functionals of superprocesses. In this context, Schied [32] used Markovian
integral equations to solve problems of optimal stochastic control in mathematical
finance. As we will verify, the connection of Markovian equations to PDEs can also
be extended to path-dependent partial differential equations (PPDEs). Inspired by
the applications of one-dimensional Markovian equations, the aim of this thesis is
to construct solutions in a multidimensional framework.

Let S be a Polish space and T > 0. Suppose that X = (X, (Ft)t∈[0,T ],P)
is a consistent progressive Markov process on some measurable space (Ω,F ) with
state space S that has Borel measurable transition probabilities. We will consider
the following multidimensional Markovian integral equation coupled with a terminal
value condition:

Er,x[u(t,Xt)] = u(r, x) + Er,x

[ ∫ t

r
f(s,Xs, u(s,Xs))κ(ds)

]
,

u(T, x) = g(x)
(1.1)

for all r, t ∈ [0, T ] with r ≤ t and each x ∈ S. Here, we implicitly assume that k ∈ N
and κ is an [−∞,∞]k-valued map on Ω × B([0, T ]) whose coordinate functions
κ1, . . . , κk are continuous additive functionals of X . It is required that |κi|([r, t])
≤ cµ([r, t]) for all i ∈ {1, . . . , k}, each r, t ∈ [0, T ] with r ≤ t, some c ≥ 0, and some
Borel measure µ on [0, T ] with µ({t}) = 0 for all t ∈ [0, T ]. In addition, D ∈ B(Rk)
has non-empty interior, f is an Rk-valued measurable map on [0, T ]×S ×D, and g
is a D-valued Borel measurable bounded map on S.

We first remark that for D = Rk a Picard iteration and Banach’s fixed-point
theorem produce existence of solutions to (1.1) locally in time. This can be found,
for example, in Pazy [26, Theorem 6.1.4] when X is a diffusion process. Regarding
existence, we will more generally suppose that D is convex. By modifying analytical

1



2 CHAPTER 1. INTRODUCTION

methods from the classical theory of ordinary differential equations (ODEs), we will
derive unique non-extendible solutions to (1.1) that are admissible in an appropriate
topological sense. Moreover, weak conditions ensuring the continuity of the derived
solutions will be provided. In the particular case when D = Rk and f is an affine
map in the third variable z ∈ Rk, we will prove a representation for solutions to
(1.1). This gives a multidimensional generalization to the Feynman-Kac formula in
Dynkin [15, Theorem 4.1.1].

Let us also emphasize that non-negative solutions to one-dimensional Markovian
integral equations are well-studied. Namely, for k = 1 and D = R+, solutions to
(1.1) have been deduced by a Picard iteration approach. For instance, the classical
references are Watanabe [35, Proposition 2.2], Fitzsimmons [17, Proposition 2.3],
and Iscoe [21, Theorem A]. In these works, the existence of solutions to (1.1) is used
for the construction of superprocesses. Dynkin [11,12,15] establishes superprocesses
with probabilistic methods by means of branching particle systems, which in turn
yields another existence result to our Markovian integral equations.

These treatments of (1.1) in one dimension require that the function f admits
a representation that is related to measure-valued branching processes. To give one
of the main examples, the following case is included in [11,12,15]:

f(t, x, z) = b(t, x)zα (1.2)

for every (t, x, z) ∈ [0, T ] × S × R+ with some Borel measurable bounded function
b : [0, T ]× S → R+, and some α ∈ [1, 2]. Here, the bound α ≤ 2 is strict. However,
this thesis intends to derive solutions without imposing a specific form of f . Rather,
as in the multidimensional case, we will introduce regularity conditions for f with
respect to the Borel measure µ like local Lipschitz µ-continuity. This will allow for
a more general treatment of (1.1). In particular, our approach includes the case

f(t, x, z) = a(t, x) + b(t, x)ϕ(z)

for all (t, x, z) ∈ [0, T ]×S×R+, some Borel measurable bounded a : [0, T ]×S → R,
and some locally Lipschitz continuous ϕ : R+ → R+ such that a ≤ 0 and ϕ(0) = 0.
Hence, (1.2) is also feasible for α > 2. Note that we will not restrict our attention
to the case D = R+. In fact, the one-dimensional global existence and uniqueness
result, we will establish, is applicable provided D is a non-degenerate interval, that
is, an interval with non-empty interior. In this connection, the same weak conditions
as before grant the continuity of solutions to (1.1).

1.2 Path-dependent partial differential equations
Recently, Dupire [10] and Cont and Fournié [6] introduced horizontal and vertical
derivatives of non-anticipative functionals on path spaces and proved the functional
Itô formula, the path-dependent generalization of the well-known Itô formula. These
concepts led to the exciting class of path-dependent partial differential equations.
In relevant publications such as Peng [27,28], Peng and Wang [29], Ji and Yang [22],
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Ekren, Keller, Touzi, and Zhang [16], and Henri-Labordere, Tan, and Touzi [19],
the most common approach to construct classical or viscosity solutions to PPDEs
is to utilize backward stochastic differential equations (BSDEs). In this thesis we
instead rely on Markovian integral equations to derive mild solutions to semilinear
parabolic PPDEs. The corresponding terminal value problem reads{

(∂t + L )(u)(t, x) = f(t, x, u(t, x)) for (t, x) ∈ [0, T )× C([0, T ],Rd),
u(T, x) = g(x) for x ∈ C([0, T ],Rd). (1.3)

Here, T > 0 and d ∈ N. We also tacitly suppose that ∂t denotes the horizontal
derivative, a is an Sd+-valued non-anticipative bounded map on [0, T ]×C([0, T ],Rd),
b is an Rd-valued non-anticipative bounded map on [0, T ]× C([0, T ],Rd), and L is
a second-order linear differential operator of the form

L (ϕ)(t, x) := 1
2tr(a(t, x)∂xxϕ(t, x)) + 〈b(t, x), ∂xϕ(t, x)〉 (1.4)

for all ϕ ∈ C1,2
b ([0, T ) × C([0, T ],Rd)), a certain space of bounded continuous test

functions that are once horizontally and twice vertically differentiable. We use ∂x
and ∂xx for the first- and second-order vertical derivative, respectively. Finally, D is
a non-degenerate interval in R, the inhomogeneity f is a real-valued non-anticipative
measurable function on [0, T ]×C([0, T ],Rd)×D, and the terminal value condition
g is a Borel measurable bounded function on C([0, T ],Rd).

We choose C([0, T ],Rd) as state space S and let X be an L -diffusion process
on some measurable space (Ω,F ), which we define to be a triple (X, (Ft)t∈[0,T ],P)
consisting of a continuous process X : [0, T ] × Ω → Rd, a filtration (Ft)t∈[0,T ] of
F to which X is adapted, and a set P = {Pr,x | (r, x) ∈ [0, T ] × S} of probability
measures on (Ω,F ) with Pr,x = Pr,xr for all (r, x) ∈ [0, T ]×S such that for the path
process of X given by X̂t = X t for all t ∈ [0, T ] the triple

X̂ := (X̂, (Ft)t∈[0,T ],P)

is a diffusion process with state space S satisfying the L -martingale property, which
will be explained accurately. Here, as usually, X t denotes the process X stopped at
time t ∈ [0, T ]. For example, if a = Id and b = 0, then X̂ is a historical Brownian
motion that was studied by Dawson and Perkins [7] and Dynkin [12] in connection
with historical superprocesses. An L -diffusion process allows us to determine mild
solutions to (1.3) as solutions to the Markovian terminal value problem (1.1) when
X is replaced by its path process X̂. This finding entails a general existence and
uniqueness result for mild solutions to semilinear parabolic PPDEs.

Furthermore, we compare various notions of viscosity solutions by studying a
couple of test function spaces. Under a weak continuity condition on a, b, and f , we
then establish that bounded continuous mild solutions can also be seen as viscosity
solutions. For this reason, an existence result for viscosity solutions follows, which
finishes our treatment of (1.3).
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1.3 Structure of the thesis
In Chapter 2 we introduce a variety of regularity conditions for multidimensional
measurable mappings relative to an underlying Borel measure. Namely, we make
use of local integrability to define dominance with respect to the Borel measure,
and combine this concept with notions of boundedness, Lipschitz continuity, and
differentiability. Additionally, we justify that the integral functions that show up in
the probabilistic construction of superprocesses in Dynkin [11,12,15] are within the
scope of this theory.

Chapter 3 reviews relevant facts on Markov processes and additive maps in a
pseudometric topological setting that allows for path spaces and path-dependent
diffusion processes. In this time-space framework, maps that are right-continuous in
time and continuous in space are examined. We further give an adjusted definition of
a consistent Markov process that is in line with the classical literature. By proving a
continuity result for progressive Markov processes that have the (right-hand) Feller
property, we get sufficient conditions for the (right-)continuity of solutions to (1.1).
In the end, we extend the Markovian Gronwall inequality given in Dynkin [11] that
has proven to be useful for estimating solutions.

Chapter 4 analyzes multidimensional Markovian integral equations and includes
the main content of the arXiv preprint [23]. At first, we introduce the Markovian
terminal value problem (1.1), by defining and describing (approximate) solutions.
Then a comparison, a stability result, and a growth estimation follow. Via regularity
conditions with respect to a continuous additive functional, we construct solutions
locally in time. This allows us to derive solutions that are unique and non-extendible
in time among a particular class of maps. In this context, a boundary and growth
criterion determines whether the deduced solutions remain non-extendible or become
global. Moreover, this criterion yields a Picard iteration result, which in turn leads
us to a multidimensional Feynman-Kac representation for global solutions to affine
Markovian equations. In one dimension, after studying the boundary and growth
behavior of solutions, a global existence and uniqueness result follows from a uniform
approximation approach.

Chapter 5 treats semilinear parabolic PPDEs and partially includes the arXiv
preprint [24]. We discuss Borel measurable structures and topologies with respect
to cylindrical σ-fields, separability, and pseudometrics. In addition, path processes
are briefly considered. Then we summarize several facts on horizontal and vertical
derivatives, which may be viewed as relaxed time and space differential operators on
path spaces. Afterwards, the parabolic terminal value problem (1.3) is presented. By
using path-dependent diffusion processes that satisfy a martingale property relative
to (1.4), we identify mild solutions as global solutions to the accompanied Markovian
integral equations. From this fact we infer a general existence and uniqueness result
for bounded mild solutions to semilinear parabolic PPDEs. At last, we prove that
bounded right-continuous mild solutions are actually solutions in a viscosity sense.
This concludes the thesis.



Chapter 2

Regularity with respect to Borel
Measures

In this chapter we present regularity conditions for multidimensional measurable
maps with respect to a given Borel measure. This leads us to the class of mappings
that will appear in the analysis of Markovian integral equations in Chapter 4. In
Section 2.1 we define the concepts of (local) dominance and consistent boundedness,
and introduce maps that are affine bounded or locally bounded relative to a Borel
measure. In one dimension, functions that are affine bounded from below or from
above in this sense are considered as well. In Section 2.2 we familiarize ourselves
with the notion of (local) Lipschitz continuity with respect to a Borel measure.
In this connection, we show that locally bounded maps that are locally Lipschitz
continuous must be Lipschitz continuous on compact sets.

In Section 2.3 we give a meaning to (uniform) differentiability relative to a Borel
measure. Under two reasonable topological conditions and a convexity assumption,
we prove that uniform differentiability implies Lipschitz continuity in our sense.
From this we infer that every map that is differentiable relative to a Borel measure
is locally Lipschitz continuous relative to the same measure. Finally, in Section 2.4
we study some of the developed conditions for measurable maps that admit an
integral representation. Here, the Bochner integral in finite dimension, provided in
Section A.6 of the appendix, applies. This shows that the integral functions that
arise in Dynkin [11,12,15] are included in our theory.

2.1 Dominance and boundedness
In the sequel, let J ⊂ R+ be a non-degenerate closed interval, (S,S ) be a measurable
space, and µ denote a Borel measure on J . We recall that a real-valued Borel
measurable function a on an interval I ⊂ J is locally µ-integrable if and only if∫

K
|a(t)|µ(dt) <∞

for each compact set K in I. We fix k ∈ N and let | · | denote the Euclidean norm
on Rk. For simplicity, | · | is also used for the Frobenius norm on Rk×k.

5
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2.1 Definition. Let I ⊂ J be a non-degenerate interval, E be a separable Banach
space with complete norm ‖ · ‖, and a : I × S → E be B(I)⊗S -measurable.

(i) The map a is called (locally) µ-dominated if there is a (locally) µ-integrable
function a ∈ B(I,R+) such that ‖a(·, y)‖ ≤ a for all y ∈ S µ-a.s. on I.

(ii) We say that a is µ-consistently bounded if for each r, t ∈ I with r ≤ t there is
a µ-null set N ∈ B(J) such that sup(s,y)∈(Nc∩[r,t])×S ‖a(s, y)‖ <∞.

(iii) We call a consistently bounded if it is locally bounded in s ∈ I, uniformly in
y ∈ S. That is, sup(s,y)∈[r,t]×S ‖a(s, y)‖ <∞ for all r, t ∈ I with r ≤ t.

By using the notation in the above definition, we immediately see that the set
of all E-valued B(I)⊗S -measurable locally µ-dominated maps on I×S is a linear
space that contains every E-valued B(I) ⊗S -measurable µ-consistently bounded
map on I × S, since µ is Borel.

2.2 Examples. (i) Suppose that b : J × S → Rk×k and c : J × S → Rk are two
B(J) ⊗ S -measurable maps such that c is bounded, and let a : J × S → Rk be
defined via

a(t, x) := b(t, x)c(t, x),
then a is (locally) µ-dominated if b shares this property. This follows from the
consistency of the Frobenius and the Euclidean norm, since |a(t, x)| ≤ |b(t, x)||c(t, x)|
for each (t, x) ∈ J × S.
(ii) Let J = [0, 1] and µ be the Lebesgue measure on [0, 1]. Assume that ‖ · ‖ is a
norm on S and S is the Borel σ-field with respect to ‖ · ‖. Then a : [0, 1]× S → R
given by

a(t, x) := log(t)
1 + ‖x‖α , if t > 0, and a(t, x) := 0, if t=0,

is µ-dominated, where α > 0. Due to the preceding example, this follows from the
Lebesgue-integrability of the logarithm function on (0, 1], which is readily inferred
from ∫ 1

0
| log(t)|µ(dt) = − lim

ε↓0

∫ 1

ε
log(t) dt = 1− lim

ε↓0
ε(1− log(ε)) = 1.

However, as limt↓0 |a(t, x)| =∞ for each x ∈ S, the function a is unbounded.

From now on, let S be Polish and S be its Borel σ-field. We equip J × S with
a topology that is coarser than the product topology and let B(J × S) denote the
corresponding Borel σ-field, which is included in the product σ-field B(J) ⊗ S ,
because J is closed and S is Polish. This choice takes the pseudometric setting for
path spaces in Section 3.1 into account.

Moreover, we assume that E is a separable Banach space with complete norm ‖·‖
and Borel σ-field B. Let D ∈ B be non-empty and J ×S×D be endowed with the
σ-field B(J ×S)⊗ (D∩B). For each map f : J ×S×D → Rk, (t, x, z) 7→ f(t, x, z)
that is measurable with respect to this σ-field, we introduce boundedness conditions
relative to µ.
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2.3 Definition. Let f : J × S ×D → Rk be B(J × S)⊗ (D ∩B)-measurable.
(i) We call f affine µ-bounded if there exist two locally µ-dominated functions

a, b ∈ B(J × S,R+) such that |f(t, x, z)| ≤ a(t, x) + b(t, x)‖z‖ for every
(t, x, z) ∈ J × S ×D. If one can take b = 0, then f is called µ-bounded.

(ii) We say that f is locally µ-bounded at ẑ ∈ D if there is a neighborhood W of
ẑ in D for which f |(J × S × (W ∩ D)) is µ-bounded. The map f is called
locally µ-bounded on a set C in D if it is locally µ-bounded at each ẑ ∈ C.
For C = D, we simply say that f is locally µ-bounded.

(iii) Let k = 1. Then f is said to be affine µ-bounded from below (resp. from above)
if f(t, x, z) ≥ −a(t, x)− b(t, x)‖z‖ (resp. f(t, x, z) ≤ a(t, x) + b(t, x)‖z‖) for all
(t, x, z) ∈ J × S × D and some locally µ-dominated a, b ∈ B(J × S,R+). If
b = 0 is possible, then f is called µ-bounded from below (resp. from above).

Whenever a mapping f : J × S × D → Rk that is measurable with respect to
B(J×S)⊗(D∩B) is affine µ-bounded, then it is locally µ-bounded on D. Suppose
instead that f is merely locally µ-bounded, then the Borel measurable map

J × S → Rk, (t, x) 7→ f(t, x, ẑ)

is locally µ-dominated for each ẑ ∈ D. Of course, for k = 1 the function f is (affine)
µ-bounded if and only if it is (affine) µ-bounded from below and from above.
2.4 Examples. (i) Let a ∈ B(J × S,Rk) and b ∈ B(J × S,Rk×k) be both locally
µ-dominated. Assume that ϕ ∈ B(D,Rk) fulfills

f(t, x, z) = a(t, x) + b(t, x)ϕ(z)

for all (t, x, z) ∈ J × S × D. Then f is (affine) µ-bounded whenever ϕ is (affine)
bounded. If instead ϕ is locally bounded, then f is locally µ-bounded. For k = 1
and b ≥ 0, it follows that f is (affine) µ-bounded from below (resp. from above) if
ϕ is (affine) bounded from below (resp. from above).
(ii) Suppose that a ∈ B(J × S,Rk) is locally µ-dominated, ϕ : J × S ×D → R+ is
B(J × S)⊗ (D ∩B)-measurable, and A ∈ Sk is positive semidefinite such that

f(t, x, z) = e−ϕ(t,x,z)Aa(t, x)

for all (t, x, z) ∈ J×S×D. Then f is µ-bounded, as we now check. By diagonalizing
A, we get a diagonal matrix D̂ ∈ Rk×k with non-negative entries and an orthogonal
matrix O ∈ Rk×k such that A = OD̂Ot. This yields

e−ϕ(t,x,z)A = Oe−ϕ(t,x,z)D̂Ot,

which implies that e−ϕ(t,x,z)A is symmetric and each of its eigenvalues is of the form
e−ϕ(t,x,z)λ for some λ ∈ σ(A), where (t, x, z) ∈ J × S ×D. Hence, as the Frobenius
norm satisfies |B|2 = ∑

λ∈σ(B) λ
2 for all B ∈ Sk, we get that∣∣∣e−ϕ(t,x,z)A
∣∣∣2 =

∑
λ∈σ(A)

e−2ϕ(t,x,z)λ ≤ k

for all (t, x, z) ∈ J × S ×D. This clarifies the µ-boundedness of f .
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In the end, we relate local µ-boundedness with µ-boundedness on compact sets.

2.5 Lemma. Let f : J × S × D → Rk be B(J × S) ⊗ (D ∩ B)-measurable and
locally µ-bounded on a Borel set C in D. Then for each compact set K in C there
is a neighborhood W of K in C such that f |(J × S × (W ∩D)) is µ-bounded.

Proof. By hypothesis, for each z ∈ K there are a neighborhood Wz of z in D and a
locally µ-dominated function az ∈ B(J × S,R+) such that

|f(t, x, z′)| ≤ az(t, x) for all (t, x, z′) ∈ J × S × (Wz ∩D).

Since K is compact, there are n ∈ N and z1, . . . , zn ∈ K such that ⋃ni=1Wzi is a
neighborhood of K in D. So, W := ⋃n

i=1(Wzi ∩C) must be a neighborhood of K in
C and we let a ∈ B(J × S,R+) be defined by a(t, x) := maxi∈{1,...,n} azi(t, x). Then
a is locally µ-dominated and |f(t, x, z)| ≤ a(t, x) for all (t, x, z) ∈ J × S × (W ∩D).
This shows the claim.

2.2 Lipschitz continuity
We intend to combine the property of a measurable map being (locally) Lipschitz
continuous with local µ-dominance. As before, assume that E is a separable Banach
space with complete norm ‖ · ‖ and Borel σ-field B, and D ∈ B is non-empty.

2.6 Definition. Let f : J × S ×D → Rk be B(J × S)⊗ (D ∩B)-measurable.

(i) We say that f is Lipschitz µ-continuous if there exists a locally µ-dominated
function λ ∈ B(J × S,R+) satisfying |f(t, x, z) − f(t, x, z′)| ≤ λ(t, x)‖z − z′‖
for all (t, x) ∈ J × S and each z, z′ ∈ D.

(ii) We call f locally Lipschitz µ-continuous at ẑ ∈ D if there is a neighborhood
W of ẑ in D such that f |(J × S × (W ∩ D)) is Lipschitz µ-continuous. The
map f is locally Lipschitz µ-continuous if it is locally Lipschitz µ-continuous
at every ẑ ∈ D.

The set of all Rk-valued B(J × S) ⊗ (D ∩B)-measurable maps on J × S × D
that are locally µ-bounded and locally Lipschitz µ-continuous is denoted by

BC1−
µ (J × S ×D,Rk), (2.1)

which constitutes a linear space. To simplify notation, we also let BC1−
µ (J×S×D)

represent BC1−
µ (J × S × D,R). Clearly, whenever f : J × S × D → Rk is some

B(J×S)⊗(D∩B)-measurable map that is Lipschitz µ-continuous, then it is locally
Lipschitz µ-continuous. Furthermore, we see that f is Lipschitz µ-continuous if and
only if the map

f(t, x, ·) : D → Rk, z 7→ f(t, x, z)
is Lipschitz continuous with Lipschitz constant λ(t, x) for all (t, x) ∈ J × S such
that the resulting function λ is Borel measurable and locally µ-dominated.
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To clarify local Lipschitz µ-continuity, we recall that each neighborhood V in
D can be written in the form V = W ∩ D for some neighborhood W in D and
vice versa. Thus, f is locally Lipschitz µ-continuous at ẑ ∈ D if and only if there
is a neighborhood V of ẑ in D such that f |(J × S × V ) is Lipschitz µ-continuous.
Suppose for the moment that D ( D and decompose D in the form

D = D ∪ (∂D ∩Dc) with D ∩ (∂D ∩Dc) = ∅.

Then local Lipschitz µ-continuity of f at ẑ ∈ ∂D ∩Dc yields a neighborhood W of
ẑ in D such that |f(t, x, z)− f(t, x, z′)| ≤ λ(t, x)‖z − z′‖ for all (t, x) ∈ J × S, each
z, z′ ∈ W ∩D, and some locally µ-dominated λ ∈ B(J × S,R+). Hence, it follows
from Proposition A.12 that the limit limz→ẑ f(t, x, z) exists for each (t, x) ∈ J × S.
Consequently, let f be the extension of f to J × S × (D ∪ {ẑ}) defined by

f(t, x, ẑ) := lim
z→ẑ

f(t, x, z),

then f is locally Lipschitz µ-continuous at ẑ in the sense discussed before, as ẑ
belongs to the domain D ∪ {ẑ} of f(t, x, ·) for all (t, x) ∈ J ×S. To facilitate access
to this continuity concept, we consider the two examples of the previous section.

2.7 Examples. (i) Let a ∈ B(J × S,Rk), b ∈ B(J × S,Rk×k), and ϕ ∈ B(D,Rk)
be such that b is locally µ-dominated. Suppose that

f(t, x, z) = a(t, x) + b(t, x)ϕ(z)

for all (t, x, z) ∈ J×S×D, then from the (local) Lipschitz continuity of ϕ the (local)
Lipschitz µ-continuity of f follows. Due to Examples 2.4, if a is locally µ-dominated
and ϕ is locally Lipschitz continuous, then f ∈ BC1−

µ (J × S ×D,Rk).
(ii) Let a ∈ Bb(J ×S,Rk), ϕ : J ×S×D → R+ be B(J ×S)⊗ (D∩B)-measurable,
and A ∈ Sk be positive semidefinite. Assume that f is of the form

f(t, x, z) = e−ϕ(t,x,z)Aa(t, x)

for each (t, x, z) ∈ J ×S×D. We show that if ϕ is (locally) Lipschitz µ-continuous,
then so is f . From Examples 2.4 we infer that f is bounded. Let D̂ ∈ Rk×k

be a diagonal matrix with non-negative entries and O ∈ Rk×k be an orthogonal
matrix such that A = OD̂Ot. Then exp(−ϕ(t, x, z)A) = O exp(−ϕ(t, x, z)D̂)Ot and
consequently,∣∣∣e−ϕ(t,x,z)A − e−ϕ(t,x,z′)A

∣∣∣2 =
∑

λ∈σ(A)

∣∣∣e−ϕ(t,x,z)λ − e−ϕ(t,x,z′)λ
∣∣∣2

≤ k
(

max
λ∈σ(A)

λ2
)
|ϕ(t, x, z)− ϕ(t, x, z′)|2

for every (t, x) ∈ J × S and all z, z′ ∈ D. Here, we have used that the function
R+ → (0, 1], x 7→ e−x is Lipschitz continuous with Lipschitz constant 1.
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We state some standard properties of (locally) Lipschitz µ-continuous maps.
Notice that the proof of the third claim is mainly inferred from Proposition 6.4 in
Amann [1].

2.8 Proposition. Let f : J × S ×D → Rk be B(J × S)⊗ (D ∩B)-measurable.

(i) Assume that f is locally Lipschitz µ-continuous and the map J × S → Rk,
(t, x) 7→ f(t, x, ẑ) is locally µ-dominated for every ẑ ∈ D. Then f is locally
µ-bounded.

(ii) If f is Lipschitz µ-continuous and the map J × S → Rk, (t, x) 7→ f(t, x, ẑ) is
locally µ-dominated just for some ẑ ∈ D, then f is affine µ-bounded.

(iii) Let f ∈ BC1−
µ (J × S ×D,Rk) and K be a compact set in D. Then there is a

neighborhood W of K in D for which f |(J×S×W ) is Lipschitz µ-continuous.

Proof. (i) For each ẑ ∈ D there are some neighborhood W of ẑ in D and a locally
µ-dominated λ ∈ B(J ×S,R+) such that |f(t, x, z)−f(t, x, z′)| ≤ λ(t, x)‖z− z′‖ for
all (t, x) ∈ J × S and each z, z′ ∈ W . Let δ > 0 and define a ∈ B(J × S,R+) by

a(t, x) := |f(t, x, ẑ)|+ λ(t, x)δ,

then W ′ := Bδ(ẑ)∩W is another neighborhood of ẑ in D and it follows immediately
that |f(t, x, z)| ≤ |f(t, x, ẑ)|+λ(t, x)‖z− ẑ‖ ≤ a(t, x) for each (t, x, z) ∈ J×S×W ′.
Since a is locally µ-dominated, the assertion is shown.

(ii) Let us choose some locally µ-dominated b ∈ B(J × S,R+) that satisfies
|f(t, x, z)− f(t, x, z′)| ≤ b(t, x)‖z− z′‖ for every (t, x) ∈ J ×S and all z, z′ ∈ D. We
define a ∈ B(J × S,R+) via

a(t, x) := |f(t, x, ẑ)|+ b(t, x)‖ẑ‖,

then we get that |f(t, x, z)| ≤ |f(t, x, ẑ)| + b(t, x)‖z − ẑ‖ ≤ a(t, x) + b(t, x)‖z‖ for
each (t, x, z) ∈ J × S ×D. Because a is locally µ-dominated, this justifies that f is
affine µ-bounded.

(iii) For each z ∈ K there are δz > 0 and a locally µ-dominated λz ∈ B(J×S,R+)
such that |f(t, x, z′)− f(t, x, z′′)| ≤ λz(t, x)‖z′ − z′′‖ for all (t, x) ∈ J × S and each
z′, z′′ ∈ Bδz(z) ∩ D. Since {Bδz/2(z) | z ∈ K} is an open covering of K, there are
n ∈ N and z1, . . . , zn ∈ K so that W := ⋃n

i=1(Bδzi/2(zi)∩D) is a neighborhood of K
in D. We now show that

diam(f(t, x,W )) = sup
z,z′∈W

|f(t, x, z)− f(t, x, z′)| ≤ a(t, x) (2.2)

for each (t, x) ∈ J × S and some locally µ-dominated a ∈ B(J × S,R+). For this
purpose, let (t, x) ∈ J × S and z, z′ ∈ W , then there are i, j ∈ {1, . . . , n} with
‖z − zi‖ < δzi/2 and ‖z′ − zj‖ < δzj/2. Hence,

|f(t, x, z)− f(t, x, z′)| ≤ |f(t, x, z)− f(t, x, zi)|+ |f(t, x, zi)− f(t, x, zj)|
+ |f(t, x, zj)− f(t, x, z′)|
≤ λzi(t, x)δzi/2 + |f(t, x, zi)− f(t, x, zj)|+ λzj(t, x)δzj/2.
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Thus, we set a(t, x) := maxi∈{1,...,n} λzi(t, x)δzi +maxi,j∈{1,...,n} |f(t, x, zi)−f(t, x, zj)|
for all (t, x) ∈ J × S. Then a is readily checked to be Borel measurable and locally
µ-dominated, and (2.2) holds.

Next, we let δ := (1/2) mini∈{1,...,n} δzi and define λ ∈ B(J × S,R+) through
λ(t, x) := a(t, x)/δ, then λ is locally µ-dominated and λ ≥ maxi∈{1,...,n} λzi . Choose
(t, x) ∈ J × S and z, z′ ∈ W . Assume initially that ‖z − z′‖ < δ, then there is
i ∈ {1, . . . , n} with ‖z − zi‖ < δzi/2, which gives

‖z′ − zi‖ ≤ ‖z′ − z‖+ ‖z − zi‖ < δzi .

Therefore, |f(t, x, z) − f(t, x, z′)| ≤ λzi(t, x)‖z − z′‖ ≤ λ(t, x)‖z − z′‖. If instead
‖z−z′‖ ≥ δ, then |f(t, x, z)−f(t, x, z′)| ≤ a(t, x) ≤ λ(t, x)‖z−z′‖, which concludes
the proof.

2.3 Differentiability
In this section we let the separable Banach space E be finite-dimensional and define
differentiability with respect to µ. To this end, let L (E,Rk) denote the linear space
of all Rk-valued linear continuous maps on E. We use the notation

‖g‖ = max
z∈E: ‖z‖=1

‖g(z)‖ for each g ∈ L (E,Rk)

and notice that L (E,Rk) equipped with ‖ · ‖ is another finite-dimensional Banach
space. Moreover, we assume that the set D ∈ B has non-empty interior.

2.9 Definition. Let f : J × S ×D → Rk be B(J × S)⊗ (D ∩B)-measurable.

(i) We call f uniformly µ-differentiable if the map D → Rk, z 7→ f(t, x, z) is
differentiable inD◦ for all (t, x) ∈ J×S such that there is a locally µ-dominated
a ∈ B(J × S,R+) with ‖Dzf(t, x, z)‖ ≤ a(t, x) for each (t, x, z) ∈ J × S ×D◦.

(ii) The map f is said to be µ-differentiable around ẑ ∈ D if there is a neighborhood
W of ẑ inD for which f |(J×S×W ) is uniformly µ-differentiable. Additionally,
f is µ-differentiable if it is µ-differentiable around each ẑ ∈ D.

Clearly, if a B(J×S)⊗(D∩B)-measurable map f : J×S×D → Rk is uniformly
µ-differentiable, then it is µ-differentiable. We further see that f is µ-differentiable
around ẑ ∈ D if and only if there is a neighborhood W of ẑ in D such that f(t, x, ·)
is differentiable in W ◦, and

‖Dzf(t, x, z)‖ ≤ a(t, x) for all (t, x, z) ∈ J × S ×W ◦

and some locally µ-dominated function a ∈ B(J × S,R+). Because W ◦ = W ∩D◦,
the set W ◦ contains no boundary point of D. This justifies that we only consider
differentiability at interior points of D.
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Although we do not assume that D is an open set, we impose two topological
conditions until the end of this section. The first is that D and its interior share the
same boundary. That is,

∂D = ∂(D◦).
For instance, this is true ifD is open. By decomposingD and (D◦) in their respective
interior and boundary, it follows that D and its interior have the same boundary if
and only if the closures of D and its interior coincide. Next, we require that

each ẑ ∈ ∂D ∩D has a convex neighborhood in D. (2.3)

This requirement becomes redundant if D is open or convex. In the one-dimensional
case E = R, we notice that both conditions are met provided D is a non-degenerate
interval. In the following, let

BC1
µ(J × S ×D,Rk) (2.4)

denote the linear space of all Rk-valued B(J × S) ⊗ (D ∩ B)-measurable locally
µ-bounded and µ-differentiable maps f on J×S×D such that f(t, x, ·) ∈ C(D,Rk)
for every (t, x) ∈ J ×S. We abbreviate BC1

µ(J ×S×D) := BC1
µ(J ×S×D,R) and

study our familiar examples.

2.10 Examples. (i) Let a ∈ B(J × S,Rk) and b ∈ B(J × S,Rk×k) be so that b is
locally µ-dominated. Suppose that ϕ ∈ C(D,Rk) is differentiable in D◦ and

f(t, x, z) = a(t, x) + b(t, x)ϕ(z)

for all (t, x, z) ∈ J × S ×D. If Dϕ is bounded, then f is uniformly µ-differentiable.
Assume instead that Dϕ is locally bounded on D, that is, Dϕ is locally bounded
and to each ẑ ∈ ∂D∩D there is a neighborhoodW of ẑ in D such that ‖Dϕ(z)‖ ≤ c
for all z ∈ W ◦ and some c ≥ 0. Then f is µ-differentiable. Moreover, if a is locally
µ-dominated and Dϕ is locally bounded on D, then f ∈ BC1

µ(J × S ×D,Rk).
(ii) Suppose that E = Rk and ‖·‖ = | · |. Let a ∈ Bb(J×S,Rk), ϕ : J×S×D → R+
be B(J × S)⊗ (D ∩B(Rk))-measurable, and A ∈ Sk be positive semidefinite such
that

f(t, x, z) = e−ϕ(t,x,z)Aa(t, x)
for all (t, x, z) ∈ J × S × D. Then the (uniform) µ-differentiability of ϕ entails
that of f . Indeed, let us write A in the form A = OD̂Ot with a diagonal matrix
D̂ ∈ Rk×k that has non-negative entries and an orthogonal matrix O ∈ Rk×k. We
let λ ∈ Rk be given by λi = D̂i,i for all i ∈ {1, . . . , k}. Then exp(−ϕ(t, x, z)A)
= O exp(−ϕ(t, x, z)D̂)Ot and for this reason,

Dzf(t, x, z) = −OλDzϕ(t, x, z)te−ϕ(t,x,z)D̂Ota(t, x)
= −OλDzϕ(t, x, z)tOtf(t, x, z),

which in turn gives |Dzf(t, x, z)| ≤
√
kc|OλDzϕ(t, x, z)tOt| =

√
kc|A||Dzϕ(t, x, z)|

for every (t, x, z) ∈ J × S × D◦, since |λ| = |A|. Here, c ≥ 0 is chosen such that
|a(t, x)| ≤ c for all (t, x) ∈ J × S. This justifies the claim.
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The next proposition ensures that BC1
µ(J ×S×D,Rk) ⊂ BC1−

µ (J ×S×D,Rk).

2.11 Proposition. Let f : J × S × D → Rk be B(J × S) ⊗ (D ∩B)-measurable
and f(t, x, ·) ∈ C(D,Rk) for all (t, x) ∈ J × S.

(i) If f is µ-differentiable and K is a compact set in D, then there exists some
neighborhood W of K in D so that f |(J×S×W ) is uniformly µ-differentiable.

(ii) Suppose that W is a convex neighborhood in D such that f |(J × S × W ) is
uniformly µ-differentiable, then f |(J × S ×W ) is Lipschitz µ-continuous.

(iii) Whenever f is µ-differentiable, then it is locally Lipschitz µ-continuous.

Proof. (i) From the preceding discussion we infer that f(t, x, ·) is differentiable in
D◦ for all (t, x) ∈ J × S such that the B(J × S)⊗ (D◦ ∩B)-measurable function

‖Dzf‖ : J × S ×D◦ → R+, (t, x, z) 7→ ‖Dzf(t, x, z)‖

is locally µ-bounded on D. According to Lemma 2.5, there is a neighborhood W
of K in D for which the restriction of ‖Dzf‖ to J × S × (W ∩ D◦) is µ-bounded.
Since W ◦ = W ∩ D◦, this is equivalent to the requirement that f |(J × S ×W ) is
uniformly µ-differentiable.

(ii) By hypothesis, f(t, x, ·) is differentiable inW ◦ for all (t, x) ∈ J×S and there
exists some locally µ-dominated function λ ∈ B(J × S,R+) such that

‖Dzf(t, x, z)‖ ≤ λ(t, x) for every (t, x, z) ∈ J × S ×W ◦.

We pick (t, x) ∈ J × S and z, z′ ∈ W . Then, since ∂D = ∂(D◦), there are two
sequences (zn)n∈N and (z′n)n∈N in W ◦ with limn↑∞ zn = z and limn↑∞ z

′
n = z′. By

Lemma A.5, the convexity ofW ensures that ofW ◦. Hence, the mean value theorem
yields for each n ∈ N some sn ∈ (0, 1) such that

f(t, x, zn)− f(t, x, z′n) = Dzf(t, x, snzn + (1− sn)z′n)(zn − z′n).

This gives us that |f(t, x, zn) − f(t, x, z′n)| ≤ λ(t, x)‖zn − z′n‖ for all n ∈ N. By
taking the limit n ↑ ∞, we obtain that |f(t, x, z)−f(t, x, z′)| ≤ λ(t, x)‖z−z′‖, since
f(t, x, ·) is continuous.

(iii) Let ẑ ∈ D, then there is a neighborhood W in D such that f |(J × S ×W )
is uniformly µ-differentiable. Hence, if we can find a convex neighborhood W ′ of ẑ
in D with W ′ ⊂ W , then (ii) yields that f |(J × S ×W ′) is Lipschitz µ-continuous,
which is exactly the local Lipschitz µ-continuity of f at ẑ.

If ẑ ∈ D◦, then there is some δ > 0 such that Bδ(ẑ) ⊂ W . Thus, here we set
W ′ := Bδ(ẑ). If instead ẑ ∈ ∂D ∩ D, then, by hypothesis (2.3), there is a convex
neighborhoodW ′′ of ẑ in D. In this case, we choose δ > 0 such that Bδ(ẑ)∩D ⊂ W ,
then W ′ := W ′′ ∩Bδ(ẑ) gives the correct result.
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2.4 Integral maps
We draw our attention to measurable maps that admit an integral representation.
Once again, let E be finite-dimensional, the set D ∈ B have non-empty interior,
and L (E,Rk) denote the Banach space of all Rk-valued linear continuous maps on
E. We let (U,U ) be a measurable space and

n : J × S ×U → [0,∞], (t, x, B) 7→ n(t, x, B)

be a kernel from J×S to (U,U ), where, as usually, J×S is equipped with the Borel
σ-field B(J×S). We choose some U ⊗(D∩B)-measurable map ϕ : U×D → Rk such
that the U -measurable map ϕ(·, z) : U → Rk, u 7→ ϕ(u, z) is n(t, x, ·)-integrable
for all (t, x, z) ∈ J × S × D. In what follows, we are concerned with the mapping
f : J × S ×D → Rk defined via

f(t, x, z) :=
∫
U
ϕ(u, z)n(t, x, du). (2.5)

One may question whether the integral map f is indeed measurable. This is answered
affirmatively.

2.12 Lemma. The map f is measurable with respect to B(J × S)⊗ (D ∩B).

Proof. By Lemma A.19, it suffices to show that the i-coordinate function fi of f
is measurable for each i ∈ {1, . . . , k}. We notice that the n(t, x, ·)-integrability of
ϕ(·, z) entails that of its i-th coordinate function ϕi(·, z) and

fi(t, x, z) =
∫
U
ϕi(u, z)n(t, x, du)

for all (t, x, z) ∈ J × S ×D. Thus, to show that fi is measurable, we may assume
that ϕi is bounded. In the general case, Corollary A.24 yields a sequence (ϕn)n∈N of
real-valued U ⊗ (D ∩B)-measurable bounded functions on U ×D that converges
pointwise to ϕi such that supn∈N |ϕn(u, z)| ≤ |ϕi(u, z)| for each (u, z) ∈ U×D. Then

lim
n↑∞

∫
U
ϕn(u, z)n(t, x, du) =

∫
U
ϕi(u, z)n(t, x, du) = fi(t, x, z)

for all (t, x, z) ∈ J × S ×D, by dominated convergence. This in turn shows that fi
is measurable. Finally, the set of all real-valued U ⊗ (D ∩B)-measurable bounded
functions ψ on U ×D for which the function

J × S ×D → R, (t, x, z) 7→
∫
U
ψ(u, z)n(t, x, du)

is measurable is a monotone class on U × D, as introduced in Section A.5 of the
appendix. If B ∈ U and C ∈ D∩B, then

∫
U 1B×C(u, z)n(t, x, du) = n(t, x, B)1C(z)

for every (t, x, z) ∈ J × S ×D. Since n is a kernel and U × (D ∩B) is an ∩-stable
generator of U ⊗ (D∩B), the Functional Monotone Class Theorem A.29 concludes
our verification.
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Let us check under which assumptions f is locally bounded with respect to µ. We
let ẑ ∈ D and assume temporarily that there are a neighborhood W of ẑ in D and
some U -measurable α : U → [0,∞] such that |ϕ(u, z)| ≤ α(u) for all (u, z) ∈ U×W .
Then

|f(t, x, z)| ≤
∫
U
α(u)n(t, x, du) for all (t, x, z) ∈ J × S ×W ,

by Proposition A.32. Hence, if the Borel measurable function
∫
U α(u)n(·, ·, du) is

finite and locally µ-dominated, then f becomes locally µ-bounded at ẑ. Let us also
study the continuity of f(t, x, ·) for each (t, x) ∈ J × S. To this end, we generalize
Lemma 16.1 in Bauer [2], from which the proof ideas originate.

2.13 Lemma. Let ẑ ∈ D and ϕ(u, ·) be continuous at ẑ for all u ∈ U . Suppose that
there is a neighborhood W of ẑ in D and an U -measurable α : U → [0,∞] with

|ϕ(u, z)| ≤ α(u) for all (u, z) ∈ U ×W

such that
∫
U α(u)n(t, x, du) <∞ for each (t, x) ∈ J×S. Then f(t, x, ·) is continuous

at ẑ for every (t, x) ∈ J × S.

Proof. Let (zn)n∈N be a sequence in D with limn↑∞ zn = ẑ. Then continuity of ϕ(u, ·)
at ẑ yields that limn↑∞ ϕ(u, zn) = ϕ(u, ẑ) for all u ∈ U . We choose n0 ∈ N such
that zn ∈ W for all n ∈ N with n ≥ n0, then supn∈N:n≥n0 |ϕ(u, zn)| ≤ α(u) for each
u ∈ U . This entails that

lim
n↑∞

f(t, x, zn) = lim
n↑∞

∫
U
ϕ(u, zn)n(t, x, du) =

∫
U
ϕ(u, ẑ)n(t, x, du) = f(t, x, ẑ)

for each (t, x) ∈ J × S, by the Dominated Convergence Theorem A.33.

Under the conditions stated below, the differentiability of f(t, x, ·) in an open
set W ⊂ D follows for all (t, x) ∈ J×S. We also consider the case when E = R and
W is a non-degenerate interval in D that fails to be open. Here, we extend Lemma
16.2 and Corollary 16.3 in Bauer [2].

2.14 Lemma. Let W ⊂ D and suppose that either W is open or instead E = R
and W is a non-degenerate interval that fails to be open. Moreover, let ϕ(u, ·) be
differentiable in W for each u ∈ U and assume that

‖Dzϕ(u, z)‖ ≤ α(u) for all (u, z) ∈ U ×W

and some U -measurable α : U → [0,∞] such that
∫
U α(u)n(t, x, du) <∞ for every

(t, x) ∈ J × S. Then f(t, x, ·) is differentiable in W and

Dzf(t, x, z)(z′) =
∫
U
Dzϕ(u, z)(z′)n(t, x, du)

for each (t, x, z) ∈ J × S ×W and every z′ ∈ E.
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Proof. Let z ∈ W , then in either case there is a convex neighborhood V of z in W .
We choose a sequence (zn)n∈N in D◦ with limn↑∞ zn = z, then there is n0 ∈ N such
that zn ∈ V for all n ∈ N with n ≥ n0. By the mean value theorem,

|ϕ(u, zn)− ϕ(u, z)| ≤ sup
s∈[0,1]

‖Dzϕ(u, szn + (1− s)z)‖‖zn − z‖ ≤ α(u)‖zn − z‖

for each u ∈ U and every n ∈ N with n ≥ n0. Additionally, |Dzϕ(u, z)(zn − z)|
≤ ‖Dzϕ(u, z)‖‖zn−z‖ ≤ α(u)‖zn−z‖ for every u ∈ U and each n ∈ N with n ≥ n0.
In consequence,

lim
n↑∞

f(t, x, zn)− f(t, x, z)−
∫
U Dzϕ(u, z)(zn − z)n(t, x, du)
‖zn − z‖

= lim
n↑∞

∫
U

ϕ(u, zn)− ϕ(u, z)−Dzϕ(u, z)(zn − z)
‖zn − z‖

n(t, x, du) = 0

for all (t, x) ∈ J × S, by the Dominated Convergence Theorem A.33, since ϕ(u, ·) is
differentiable at z for each u ∈ U .

Now sufficient conditions for the differentiability of f relative to µ can be given
without difficulty. Suppose for the time being that ϕ(u, ·) is differentiable in D◦ for
every u ∈ U and let ẑ ∈ D. Assume that there exists a neighborhood W of ẑ in D
such that

‖Dzϕ(u, z)‖ ≤ α(u) for each (u, z) ∈ U ×W ◦

and some U -measurable α : U → [0,∞] for which
∫
U α(u)n(·, ·, du) is finite. Then

Lemma 2.14 and Proposition A.32 imply that f(t, x, ·) is differentiable in W ◦ and

‖Dzf(t, x, z)‖ ≤
∫
U
‖Dzϕ(u, z)‖n(t, x, du) ≤

∫
U
α(u)n(t, x, du)

for all (t, x, z) ∈ J × S ×W ◦. Thus, if we further suppose that
∫
U α(u)n(·, ·, du) is

locally µ-dominated, then f becomes µ-differentiable around ẑ. This has been the
final thought regarding regularity with respect to µ. Next, to give an example of
an integral map that comes up in the construction of superprocesses, we make the
following preparations.

2.15 Lemma. Let ψ : R+ → R+ be a twice differentiable function with ψ(0) = 0,
ψ′(z) ≥ 0, and ψ′′(z) ≤ 0 for all z ≥ 0. Then φ ∈ B((0,∞)× R+,R+) given by

φ(u, z) := e−uψ(z) − 1 + uψ(z)

is both increasing and twice differentiable in z ∈ R+. Furthermore, for each r ≥ 0
there is c ≥ 0 such that

0 ≤ max
{
φ(u, z), ∂φ

∂z
(u, z)

}
≤ cumin{1, u}

for all u > 0 and each z ∈ [0, r].
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Proof. Since ψ is twice differentiable, it is continuous. For this reason, φ is Borel
measurable and also twice differentiable in z ∈ R+. Standard calculations yield

∂φ

∂z
(u, z) = uψ′(z)

(
1− e−uψ(z)

)
∈ [0, uψ′(z)],

∂2φ

∂z2 (u, z) = uψ′′(z)
(
1− e−uψ(z)

)
+ u2ψ′(z)2e−uψ(z) ≤ u2ψ′(z)2

for each u > 0 and every z ≥ 0. This justifies that φ is increasing in z ∈ R+. Next,
by Taylor’s formula, for each u > 0 and all z > 0 there are ξ, η ∈ (0, z) such that

φ(u, z) = φ(u, 0) + ∂φ

∂z
(u, 0)z + 1

2
∂2φ

∂z2 (u, ξ)z2 ≤ u2

2 ψ
′(0)2z2,

∂φ

∂z
(u, z) = ∂φ

∂z
(u, 0) + ∂2φ

∂z2 (u, η)z ≤ u2ψ′(0)2z,

because φ(u, 0) = ∂φ
∂z

(u, 0) = 0, and ψ′ is non-negative and decreasing. For r ≥ 0 we
set c := max{ψ(r), ψ′(0), ψ′(0)2 max{1, r}2}, then we obtain that

φ(u, z) ≤ min
{
uψ(z), u

2

2 ψ
′(0)2z2

}
≤ cumin{1, u},

∂φ

∂z
(u, z) ≤ min{uψ′(z), u2ψ′(0)2z} ≤ cumin{1, u}

for all u > 0 and every z ∈ [0, r]. This clarifies the lemma.

We also need some computations.
2.16 Lemma. Choose α ∈ (1, 2) and let Γ denote the Gamma function. That is,
Γ(x) =

∫∞
0 e−vvx−1 dv for all x > 0. Then

∫∞
0 min{1, u}u−α du <∞ and

α(α− 1)
Γ(2− α)

∫ ∞
0

(e−uz − 1 + uz)u−1−α du = zα for all z ≥ 0.

Proof. Regarding the first claim,∫ ∞
0

min{1, u}u−α du =
∫ 1

0
u1−α du+

∫ ∞
1

u−α du

= 1
2− α + lim

u↑∞

1
1− α(u1−α − 1) = 1

(2− α)(α− 1) <∞.

By the substitution rule,∫ ∞
0

(e−uz − 1 + uz)u−1−α du = zα
∫ ∞

0
(e−v − 1 + v)v−1−α dv

for each z ≥ 0. Integration by parts yields that∫ ∞
0

(e−v − 1 + v)v−1−α dv = 1
α

∫ ∞
0

(1− e−v)v−α dv = Γ(2− α)
α(α− 1) ,

because from L’Hôpital’s rule it follows that

lim
v↑∞

e−v − 1 + v

vα
= 1
α

lim
v↑∞

1− e−v
vα−1 = 0 and lim

v↓0

e−v − 1 + v

vα
= 1
α

lim
v↓0

1− e−v
vα−1 = 0.

Hence, the lemma is verified.
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We conclude with the announced example.

2.17 Example. Let E = R, D = R+, k = 1, U = (0,∞), and U be the Borel
σ-field of (0,∞). Suppose that∫ ∞

0
umin{1, u}n(t, x, du) <∞

for all (t, x) ∈ J × S and ψ : R+ → R+ is twice differentiable such that ψ(0) = 0,
ψ′(z) ≥ 0, and ψ′′(z) ≤ 0 for every z ≥ 0. In addition, let ϕ be of the form
ϕ(u, z) = e−uψ(z) − 1 + uψ(z) for all (u, z) ∈ (0,∞)× R+. Then (2.5) becomes

f(t, x, z) =
∫ ∞

0
(e−uψ(z) − 1 + uψ(z))n(t, x, du) (2.6)

for each (t, x, z) ∈ J × S × R+. For instance, if n ∈ N, α1, . . . , αn ∈ (1, 2), and
d1, . . . , dn ∈ B(J × S,R+), then Lemma 2.16 shows that n could be of the form

n(t, x, B) =
n∑
i=1

di(t, x)αi(αi − 1)
Γ(2− αi)

∫
B
u−1−αi du

for all (t, x) ∈ J × S and each Borel set B in (0,∞), where, as before, Γ is the
Gamma function. Moreover, the lemma also implies that

f(t, x, z) =
n∑
i=1

di(t, x)ψ(z)αi

for every (t, x, z) ∈ J × S × R+. In the general case (2.6), we readily infer from
Lemmas 2.13, 2.14, and 2.15 that f(t, x, ·) ∈ C1(R+) with

∂f

∂z
(t, x, z) =

∫ ∞
0

uψ′(z)
(
1− e−uψ(z)

)
n(t, x, du)

for each (t, x, z) ∈ J × S × R+. Moreover, if the function
∫∞
0 umin{1, u}n(·, ·, du)

is locally µ-dominated, then f ∈ BC1
µ(J × S × R+). This follows directly from our

discussions to local µ-boundedness and µ-differentiability.



Chapter 3

Markov Processes

This chapter provides an exposition of time-inhomogeneous Markov processes and
additive maps in a pseudometric topological setting that allows for path spaces
and path-dependent diffusion processes. Throughout, standard notation and basic
results from stochastic calculus, summarized in Section A.7 of the appendix, are
used. In Section 3.1 we define a specific pseudometric and set up the topological and
measurable structure on a time-space Cartesian product. The concept of consistency
is introduced and maps that are right-continuous in time and continuous in space
are studied. In Section 3.2 we give an adjusted definition of a consistent Markov
process that is in accordance with the classical notion. In Section 3.3 we discuss
the strong Markov property that requires a progressive Markov process with Borel
measurable transition probabilities, and the (right-hand) Feller property, which in
combination with continuous paths leads to a diffusion process.

Moreover, in both these sections we enhance the measurability properties of the
transition probabilities and the (strong) Markov property, by using monotone class
theorems and the Bochner integral in finite dimension, given in Sections A.5 and A.6,
respectively. In Section 3.4 we compile several basic properties of additive maps,
which are multidimensional maps for which all coordinate functions are additive
functionals. Further, we prove a continuity result for progressive Markov processes
that possess the (right-hand) Feller property, by using local dominance with respect
to a continuous additive functional. As will be shown, this yields conditions that
guarantee the continuity of solutions to Markovian integral equations. Eventually,
in Section 3.5 two integration by parts formulas are deduced to obtain a general
Markovian Gronwall inequality.

3.1 Cartesian products in time and space
In the following, let J ⊂ R+ be a non-degenerate closed interval, S be at first
a completely metrizable topological space with Borel σ-field S , and ρ denote a
complete metric that induces the topology of S. We suppose that

Φ : J × S → S, (t, x) 7→ Φt(x)

19
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is a process with càdlàg paths. In other words, Φt : S → S, x 7→ Φt(x) is Borel
measurable for all t ∈ J and Φ(x) : J → S, t 7→ Φt(x) is càdlàg for each x ∈ S. For
some results, Φ has to be Lipschitz continuous in x ∈ S, locally uniformly in t ∈ J .
That is, for each compact interval I in J there is L ≥ 0 such that

ρ(Φt(x),Φt(y)) ≤ Lρ(x, y) (3.1)

for all t ∈ I and each x, y ∈ S. However, it is required that Φt ◦ Φs = Φs∧t for all
s, t ∈ J . We let (St)t∈J denote the natural filtration of Φ and equip J × S with the
pseudometric dS defined via

dS((r, x), (s, y)) := |r − s|+ ρ(Φr(x),Φs(y)), (PM)

then J × S becomes a pseudometric space. For instance, if Φt is the identity map
on S for all t ∈ J , then St coincides with the Borel σ-field S of S for each t ∈ J
and dS reduces to the metric d defined by

d((r, x), (s, y)) := |r − s|+ ρ(x, y),

which induces the product topology of J × S. We also notice that dS is a metric if
and only if Φt is injective for each t ∈ J . Finally, by B(J × S) we denote the Borel
σ-field of J × S with respect to the topology induced by dS.

Let us point out that in Chapter 5 we will consider path spaces that fit into this
general setting. More precisely, let temporarily T > 0, d ∈ N, and | · | denote the
Euclidean norm on Rd. The main case we will work with is

J = [0, T ] and S = C([0, T ],Rd).

We will assume that ρ induces the same topology as the maximum norm and ρ(x, y)
≤ Lmaxt∈[0,T ] |x(t)− y(t)| for all x, y ∈ C([0, T ],Rd) and some L ≥ 0. Moreover, we
will make the choice

Φt(x) = xt

for each (t, x) ∈ [0, T ] × C([0, T ],Rd), where xt : [0, T ] → Rd, xt(s) := x(s ∧ t) is
the map x stopped at time t. Then (St)t∈[0,T ] becomes the natural filtration of the
canonical process ξ : [0, T ] × C([0, T ],Rd) → Rd, ξt(x) := x(t) and ST agrees with
S . With this specific case in mind, we return to our general setting.

3.1 Proposition. Let S be separable, and Φ satisfy (3.1) and have continuous paths,
then the following three assertions hold:

(i) The topology induced by dS is coarser than the product topology of J × S and
B(J × S) ⊂ B(J)⊗S .

(ii) The set SΦ of all (t, x) ∈ J × S with x = Φt(x) is closed with respect to the
product topology, SΦ ∈ B(J)⊗S , and SΦ ∩B(J × S) = SΦ ∩ (B(J)⊗S ).

(iii) J × S equipped with dS is a separable complete pseudometric space.
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Proof. (i) To show the first assertion, assume that O ⊂ J × S is open with respect
to dS and let (r, x) ∈ O. Then there is ε > 0 such that for all (s, y) ∈ J × S with
dS((s, y), (r, x)) < ε it follows that (s, y) ∈ O. Since Φ is Lipschitz continuous in
y ∈ S, locally uniformly in s ∈ J , there are δ > 0 and L ≥ 1 such that

ρ(Φs(x′),Φs(y)) ≤ Lρ(x′, y)

for all s ∈ (r − δ, r + δ) ∩ J and every x′, y ∈ S. As Φ(x) is continuous, there exists
γ > 0 such that ρ(Φs(x),Φr(x)) ≤ ε/2 for each s ∈ (r − γ, r + γ) ∩ J . We set
η := min{γ, δ, ε/(2L)}, then

dS((s, y), (r, x)) ≤ |s− r|+ ρ(Φs(y),Φs(x)) + ρ(Φs(x),Φr(x))
≤ |s− r|+ Lρ(y, x) + ε/2 ≤ Ld((s, y), (r, x)) + ε/2 < ε

for all (s, y) ∈ J × S with d((s, y), (r, x)) < η, which yields (s, y) ∈ O. Thus, O
is open with respect to d, as claimed. Since J is closed and S equipped with ρ is
Polish, the Borel σ-field of J×S with respect to d coincides with the product σ-field
B(J)⊗S . Hence, B(J × S) ⊂ B(J)⊗S , by what we have just shown.

(ii) We first check that SΦ is closed with respect to d, which directly implies that
SΦ ∈ B(J)⊗S . Let (rn, xn)n∈N be a sequence in SΦ for which there is (r, x) ∈ J×S
such that limn↑∞ d((rn, xn), (r, x)) = 0. As xn = Φrn(xn), we get that

ρ(x,Φr(x)) ≤ ρ(x, xn) + ρ(Φrn(xn),Φrn(x)) + ρ(Φrn(x),Φr(x))

for every n ∈ N. Because Φ is Lipschitz continuous in y ∈ S, locally uniformly
in s ∈ J , and Φ(x) is continuous, we may take the limit n ↑ ∞ to obtain that
ρ(x,Φr(x)) = 0. That is, (r, x) ∈ SΦ. Finally, we observe that

dS((r, x), (s, y)) = |r − s|+ ρ(x, y) = d((r, x), (s, y))

for all (r, x), (s, y) ∈ SΦ. In other words, dS and the product metric d coincide on
SΦ × SΦ. This proves the last assertion.

(iii) To verify completeness, let (rn, xn)n∈N be a Cauchy sequence in J × S with
respect to dS. By the definition of dS, we see that (rn)n∈N and (Φrn(xn))n∈N are
Cauchy sequences in J and S, respectively. As J is closed and S is complete, there
is (r, x) ∈ J × S such that

lim
n↑∞

d((rn,Φrn(xn)), (r, x)) = 0.

By assumption, Φrn ◦ Φrn = Φrn and hence, (rn,Φrn(xn)) ∈ SΦ for all n ∈ N. So,
(ii) implies that (r, x) ∈ SΦ. From dS((rn, xn), (r, x)) = d((rn,Φrn(xn)), (r, x)) for
all n ∈ N the convergence of (rn, xn)n∈N to (r, x) with respect to dS follows.

We turn to the separability of J × S with respect to dS. At first, as J is closed
and S is Polish, J×S equipped with d instead of dS is another Polish space. Due to
(ii), SΦ is closed in J × S with respect to d, which in turn implies that SΦ endowed
with either dS or d is Polish as well, because dS = d on SΦ×SΦ. Let F be a countable
dense set in SΦ. We choose (r, x) ∈ J × S and let ε > 0, then, as (r,Φr(x)) ∈ SΦ,
there is (s, y) ∈ F with dS((s, y), (r, x)) = d((s, y), (r,Φr(x))) < ε, as desired.



22 CHAPTER 3. MARKOV PROCESSES

If E is a topological space and I is a non-degenerate interval in J , then we will
call a map u : I × S → E consistent if it satisfies u(t, x) = u(t,Φt(x)) for each
(t, x) ∈ I × S.
3.2 Lemma. Suppose that S is separable, E is a topological space with Borel σ-field
B, I is a non-degenerate interval in J , and u : I × S → E. Then the following two
assertions hold:
(i) Whenever u is consistent and B(I)⊗S -measurable, then it is Borel measurable

and progressively measurable.

(ii) Let E be a finite-dimensional Banach space. If u is progressively measurable,
then it is consistent and B(I)⊗S -measurable.

Proof. (i) First of all, from (PM) it follows immediately that the time-space process
J × S → J × S, (t, x) 7→ (t,Φt(x)) is a uniformly continuous map provided the
domain is equipped with dS and the image is equipped with d. In particular, Borel
measurability follows. That is,

{(t, x) ∈ J × S | (t,Φt(x)) ∈ F} ∈ B(J × S) for all F ∈ B(J)⊗S .

Hence, u−1(B) = {(t, x) ∈ I × S | (t,Φt(x)) ∈ u−1(B)} ∈ B(I × S) for each B ∈ B,
since u is consistent and u−1(B) ∈ B(I)⊗S . Thus, u is Borel measurable.

Moreover, because Φ has right-continuous paths, Proposition A.38 entails that
Φ is progressively measurable with respect to its natural filtration (St)t∈J . For this
reason, the time-space process

J × S → J × S, (t, x) 7→ (t,Φt(x))

is (St)t∈J -progressively measurable provided the image is equipped with the product
σ-field B(J) ⊗ S . Thus, the (St)t∈I-progressive measurability of u follows from
u(t, x) = u(t,Φt(x)) for all (t, x) ∈ I × S.

(ii) We note that, as Φs ◦ Φt = Φs for all s, t ∈ J with s ≤ t, we directly get
that σ(Φs) ⊂ σ(Φt) and hence, St = σ(Φt). Since u is necessarily (St)t∈J -adapted,
Corollary A.25 provides for each t ∈ I a map φt ∈ B(S,E) such that

u(t, x) = φt(Φt(x)) for each x ∈ S.

By using that Φt is idempotent for each t ∈ I, we conclude that u is consistent. As
the fact that u is B(I)⊗S -measurable follows readily from the assumption that u
is progressive measurable, the proof is complete.

Next, let (E, %) be a metric space and I be a non-degenerate interval in J . We
call a map u : I×S → E right-continuous at a point (r, x) ∈ I×S if for every ε > 0
there is δ > 0 such that

%(u(s, y), u(r, x)) < ε

for each (s, y) ∈ I × S with s ≥ r and dS((s, y), (r, x)) < δ. We notice that if u
is right-continuous, that is, it is right-continuous at each (r, x) ∈ I × S, then it
is automatically consistent. This follows directly from dS((t, x), (t,Φt(x))) = 0 for
each (t, x) ∈ I × S.
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3.3 Proposition. Let (3.1) hold, (E, %) be a metric space, I be a non-degenerate
interval in J , and u : I × S → E. Then the following three assertions are valid:

(i) Let u be right-continuous, then the map I → E, t 7→ u(t, x) is right-continuous
for each x ∈ S. Moreover, if u is actually continuous, then u(·, x) is càdlàg
and left-continuous at each continuity point of Φ(x).

(ii) Whenever u is right-continuous at a point (t, x) ∈ I×S, then the map S → E,
y 7→ u(t, y) is continuous at x. In particular, if u is right-continuous and S is
separable, then u is progressively measurable.

(iii) Suppose that Φ has continuous paths, I is compact, and u is continuous. Then
u is continuous in x ∈ S, uniformly in t ∈ I.

Proof. (i) We fix x ∈ S, and let r ∈ I with r < sup I and ε > 0. Then there
is δ > 0 such that %(u(t, y), u(r, x)) < ε for all (t, y) ∈ I × S with t ≥ r and
dS((t, y), (r, x)) < δ. Since Φ(x) is right-continuous, there is γ > 0 such that

ρ(Φt(x),Φr(x)) < δ/2

for all t ∈ [r, r + γ) ∩ J . We set η := γ ∧ (δ/2), then %(u(t, x), u(r, x)) < ε for all
t ∈ [r, r + η) ∩ I, because dS((t, x), (r, x)) < δ/2 + ρ(Φt(x),Φr(x)) < δ.

Next, assume that u is continuous and let t ∈ I with t > inf I. We prove
that lims↑t u(s, x) = u(t, x̂), where x̂ ∈ S denotes the left-hand limit lims↑t Φs(x).
Since Φt(Φs(x)) = Φs(x) for all s ∈ J with s ≤ t and Φt is Lipschitz continuous,
we see that Φt(x̂) = lims↑t Φs(x) = x̂. Let ε > 0, then there is δ > 0 such that
%(u(s, y), u(t, x̂)) < ε for all (s, y) ∈ I × S with dS((s, y), (t, x̂)) < δ. Moreover,
choose γ > 0 such that

ρ(Φs(x), x̂) < δ/2
for all s ∈ (t − γ, t) ∩ J . We define η := γ ∧ (δ/2), then %(u(s, x), u(t, x̂)) < ε for
every s ∈ (t − η, t) ∩ I, since dS((s, x), (t, x̂)) < δ/2 + ρ(Φs(x), x̂) < δ. This in fact
concludes the proof, because x̂ = Φt(x) whenever Φ(x) is continuous at t.

(ii) Initially, let u be right-continuous at a point (t, x) ∈ I × S and ε > 0. Then
there is δ > 0 such that %(u(s, y), (u(t, x)) < ε for each (s, y) ∈ I × S with s ≥ r
and dS((s, y), (t, x)) < δ. We let L > 0 denote a Lipschitz constant of Φt and set
η := δ/L, then we obtain that %(u(t, y), u(t, x)) < ε for every y ∈ S with ρ(y, x) < η,
since dS((t, y), (t, x)) = ρ(Φt(y),Φt(x)) < δ.

Now let u be right-continuous. To infer that u is progressive measurable, we first
recall that u(t, x) = u(t,Φt(x)) for all (t, x) ∈ I × S, since u is consistent. By what
we have just verified, u(t, ·) is continuous and thus, Borel measurable for each t ∈ I.
Hence, u is (St)t∈I-adapted. For this reason, (i) and Proposition A.38 yield that u
is in fact progressively measurable with respect to (St)t∈I .

(iii) Let ε > 0 and x ∈ S. We have to show that there is η > 0 such that
%(u(t, y), u(t, x)) < ε for all t ∈ I and each y ∈ S with ρ(y, x) < η. For each t ∈ I,
as u is continuous at (t, x), there is δt > 0 such that

%(u(s, y), u(t, x)) < ε/2
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for all (s, y) ∈ I × S with dS((s, y), (t, x)) < δt. In addition, the uniform continuity
of the map I → S, t 7→ Φt(x) gives for each t ∈ I some γt ∈ (0, δt/3] such that

ρ(Φr(x),Φs(x)) < δt/3

for all r, s ∈ I with |r− s| < γt. Since {(t− γt, t+ γt) | t ∈ I} is an open covering of
I, there are n ∈ N and t1, . . . , tn ∈ I with I ⊂ ⋃n

i=1(ti − γti , ti + γti). Because Φ is
Lipschitz continuous in y ∈ S, uniformly in s ∈ I, there is L > 0 such that

ρ(Φt(x′),Φt(y)) ≤ Lρ(x′, y)

for all t ∈ I and each x′, y ∈ S. We choose t ∈ I and y ∈ S with ρ(y, x) < η,
where η := (1/L) mini∈{1,...,n} γti . Let i ∈ {1, . . . , n} with t ∈ (ti − γti , ti + γti),
then %(u(t, y), u(t, x)) ≤ %(u(t, y), u(ti, x)) + %(u(ti, x), u(t, x)) < ε. Indeed, from
|t− ti| < γti we get that ρ(Φt(x),Φti(x)) < δti/3, which in turn yields that

dS((t, y), (ti, x)) ≤ |t− ti|+ ρ(Φt(y),Φt(x)) + ρ(Φt(x),Φti(x))
< γti + Lρ(y, x) + δti/3 < 2δti/3 + Lη < δti

and consequently, dS((t, x), (ti, x)) = |t−ti|+ρ(Φt(x),Φti(x)) < δti . This establishes
the proposition.

3.2 Consistent stochastic Markov families
In the sequel, we are concerned with time-inhomogeneous Markov processes that
are introduced within the pseudometric setting of the previous section. As classical
literature, we mainly use Dynkin [11,12]. Thus, suppose that S is separable, and Φ
fulfills (3.1) and has continuous paths, then the assertions of Proposition 3.1 hold.
Moreover, for each non-degenerate interval I in J and every topological space E,
it follows from B(J × S) ⊂ B(J) ⊗ S that a consistent map u : I × S → E is
Borel measurable if and only if it is measurable with respect to the product σ-field
B(I)⊗S , as Lemma 3.2 asserts.

Let (Ω,F ) be a measurable space. We associate with a consistent stochastic
family a triple X = (X, (Ft)t∈J ,P) that is composed of a process X : J ×Ω→ S, a
filtration (Ft)t∈J of F to which X is adapted, and a set P = {Pr,x | (r, x) ∈ J × S}
of probability measures on (Ω,F ) such that Pr,x = Pr,Φr(x) and

Φr(Xr) = Φr(x) Ps,x-a.s. (3.2)

for all r, s ∈ J with r ≤ s and each x ∈ S. If we want to emphasize the measurable
structures, we will refer to a consistent stochastic family on (Ω,F ) with state space
S. Additionally, we call P the transition probabilities of X . Note that (3.2) gives

dS((r,Xr), (r, x)) = 0 Ps,x-a.s.

while Xr = x Ps,x-a.s. may fail for each r, s ∈ J with r ≤ s and every x ∈ S. Hence,
if Φt is the identity map for each t ∈ J , then we will simply call X a stochastic
family.
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3.4 Definition. A consistent Markov process (on (Ω,F ) with state space S) is a
consistent stochastic family X satisfying the following two properties:

(i) The function S → [0, 1], x 7→ Ps,x(Xt ∈ B) is Borel measurable for all s, t ∈ J
with s ≤ t and each B ∈ S .

(ii) Pr,x(Xt ∈ B|Fs) = Ps,Xs(Xt ∈ B) Pr,x-a.s. for all r, s, t ∈ J with r ≤ s ≤ t,
each x ∈ S, and every B ∈ S .

In this case, we also say that X is Markov.

If a consistent stochastic family X fulfills (i), then (ii) is known as the Markov
property of X . Clearly, from the Monotone Class Theorem A.28 we infer that X
is Markov if there is an ∩-stable generator O of the Borel σ-field S for which the
function S → [0, 1], x 7→ Ps,x(Xt ∈ O) is Borel measurable and

Pr,x(Xt ∈ O|Fs) = Ps,Xs(Xt ∈ O) Pr,x-a.s.

for all r, s, t ∈ J with r ≤ s ≤ t, each x ∈ S, and every O ∈ O. Since the topology of
S is such a generator, we obtain two sufficient conditions for X to be Markov. For
example, see Chung [4, Section 1.1] in case S is locally compact. These conditions
are also necessary, as Proposition 3.7 shows in the end of this section.

3.5 Lemma. A consistent stochastic family X is Markov if the function S → [0, 1],
y 7→ Es,y[ϕ(Xt)] is Borel measurable and

Er,x[ϕ(Xt)|Fs] = Es,Xs [ϕ(Xt)] Pr,x-a.s.

for all r, s, t ∈ J with r ≤ s ≤ t, each x ∈ S, and every Lipschitz continuous
ϕ ∈ Cb(S, [0, 1]).

Proof. Let s, t ∈ J satisfy s ≤ t and O be an open set in S. Then Lemma A.17
gives an increasing sequence (ϕn)n∈N of [0, 1]-valued Lipschitz continuous functions
on S with limn↑∞ ϕn(y) = 1O(y) for each y ∈ S. By monotone convergence,

lim
n↑∞

Es,y[ϕn(Xt)] = Ps,y(Xt ∈ O) for all y ∈ S.

Hence, as pointwise limit of a sequence of Borel measurable [0, 1]-valued functions
on S, the function S → [0, 1], y 7→ Ps,y(Xt ∈ O) is Borel measurable. Therefore, the
measurability property (i) of Definition 3.4 holds.

To check the Markov property of X , let r ∈ J with r ≤ s and x ∈ S. Then the
assumptions give Er,x[ϕn(Xt)|Fs] = Es,Xs [ϕn(Xt)] Pr,x-a.s. for each n ∈ N. Thus,
monotone convergence for conditional expectations entails that

Pr,x(Xt ∈ O|Fs) = lim
n↑∞

Er,x[ϕn(Xt)|Fs]

= lim
n↑∞

Es,Xs [ϕn(Xt)] = Ps,Xs(Xt ∈ O) Pr,x-a.s.,

because limn↑∞Es,Xs(ω)[ϕn(Xt)] = Ps,Xs(ω)(Xt ∈ O) for each ω ∈ Ω, by standard
monotone convergence. The claim follows.
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For a consistent stochastic family X , we let (F̂ ′
s)s∈J denote the natural backward

filtration of X. That is, F̂ ′
s = σ(Xt : t ∈ J with t ≥ s) for each fixed s ∈ J . In

addition, let C ′s be the system of all sets C ′ ⊂ Ω for which there are n ∈ N,
t1, . . . , tn ∈ J with s ≤ t1 < · · · < tn, and B1, . . . , Bn ∈ S such that

C ′ = {Xt1 ∈ B1, . . . , Xtn ∈ Bn}.

Then C ′s is an ∩-stable generator of F̂ ′
s. In fact, since {Xt ∈ B} ∈ C ′s for all B ∈ S ,

we get that σ(Xt) ⊂ C ′s for each t ∈ J with t ≥ s. Hence, F̂ ′
s ⊂ σ(C ′s). Because

C ′s ⊂ F̂ ′
s follows from the definition of C ′s, this clarifies that σ(C ′s) = F̂ ′

s.

3.6 Lemma. Assume that X is a consistent Markov process. Then the subsequent
two conditions are valid:

(i) The function S → [0, 1], x 7→ Ps,x(A′) is Borel measurable for all s ∈ J and
each A′ ∈ F̂ ′

s.

(ii) Pr,x(A′|Fs) = Ps,Xs(A′) Pr,x-a.s. for all r, s ∈ J with r ≤ s, each x ∈ S, and
every A′ ∈ F̂ ′

s.

Proof. Since C ′s is an ∩-stable generator of F̂ ′
s for each s ∈ J , the Monotone Class

Theorem A.28 entails that (i) follows once we have shown that the function

S → [0, 1], x 7→ Ps,x(Xt1 ∈ B1, . . . , Xtn ∈ Bn)

is Borel measurable for all n ∈ N, each t1, . . . , tn ∈ J with s ≤ t1 < · · · < tn,
and every B1, . . . , Bn ∈ S . We prove this by induction over n ∈ N. As the initial
induction step n = 1 is valid by definition, we may assume that the claim holds for
some n ∈ N. We let t1, . . . , tn+1 ∈ J with s ≤ t1 < · · · < tn+1 and define H to be
the set of all ϕ ∈ Bb(Sn) for which the function

S → R, x 7→ Es,x[ϕ(Xt1 , . . . , Xtn)]

is Borel measurable. Then H is a monotone class on Sn and 1B1×···×Bn ∈ H for
all B1, . . . , Bn ∈ S , by induction hypothesis. Since S n is an ∩-stable generator of
the product σ-field ⊗ni=1S , the Functional Monotone Class Theorem A.29 implies
that H = Bb(Sn). Thus, let B1, . . . , Bn+1 ∈ S , then from the Markov property of
X we get that

Ps,x(Xt1 ∈ B1, . . . , Xtn+1 ∈ Bn+1) = Es,x[Ps,x(Xt1 ∈ B1, . . . , Xtn+1 ∈ Bn+1|Ftn)]
= Es,x[1{Xt1∈B1,...,Xtn∈Bn}Ps,x(Xtn+1 ∈ Bn+1|Ftn)]
= Es,x[1{Xt1∈B1,...,Xtn∈Bn}Ptn,Xtn (Xtn+1 ∈ Bn+1)].

This calculation completes the induction proof, because the function Sn → [0, 1],
(x1, . . . , xn) 7→ 1B1×···×Bn(x1, . . . , xn)Ptn,xn(Xtn+1 ∈ Bn+1) is a member of the linear
space Bb(Sn). Hence, (i) is proven.
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To show (ii), we also choose r ∈ J with r ≤ s and x ∈ S. By the Monotone
Class Theorem A.28, we merely have to check that

Pr,x(Xt1 ∈ B1, . . . , Xtn ∈ Bn|Fs) = Ps,Xs(Xt1 ∈ B1, . . . , Xtn ∈ Bn) Pr,x-a.s.

for all n ∈ N, each t1, . . . , tn ∈ J with s ≤ t1 < · · · < tn, and every B1, . . . , Bn ∈ S .
This is done by induction over n ∈ N. The initial induction step n = 1 is just
the Markov property of X . Therefore, we suppose that the claim is true for some
n ∈ N and pick t1, . . . , tn+1 ∈ J with s ≤ t1 < · · · < tn+1. Then the set H of all
ϕ ∈ Bb(Sn) satisfying

Er,x[ϕ(Xt1 , . . . , Xtn)|Fs] = Es,Xs [ϕ(Xt1 , . . . , Xtn)] Pr,x-a.s.

is a monotone class on Sn. The induction hypothesis ensures that 1B1×···×Bn ∈ H
for every B1, . . . , Bn ∈ S . Hence, the Functional Monotone Class Theorem A.29
gives H = Bb(Sn). Now, for each B1, . . . , Bn+1 ∈ S we infer from the Markov
property of X that

Pr,x(Xt1 ∈ B1, . . . ,Xtn+1 ∈ Bn+1|Fs)
= Er,x[1{Xt1∈B1,...,Xtn∈Bn}Ptn,Xtn (Xtn+1 ∈ Bn+1)|Fs]
= Es,Xs [1{Xt1∈B1,...,Xtn∈Bn}Ptn,Xtn (Xtn+1 ∈ Bn+1)] Pr,x-a.s.

In the last step, we used the previously mentioned fact that the function Sn → [0, 1],
(x1, . . . , xn) 7→ 1B1×···×Bn(x1, . . . , xn)Ptn,xn(Xtn+1 ∈ Bn+1) belongs to Bb(Sn). The
Markov property of X also implies that

Es,Xs(ω)[1{Xt1∈B1,...,Xtn∈Bn}Ptn,Xtn (Xtn+1 ∈ Bn+1)]
= Ps,Xs(ω)(Xt1 ∈ B1, . . . , Xtn+1 ∈ Bn+1)

for all ω ∈ Ω. By combining these two identities, we conclude the induction proof.
Thus, the lemma is established.

Let us further enhance the properties of a consistent Markov process. To this
end, we fix k ∈ N and let | · | be the Euclidean norm on Rk. For simplicity, we also
use | · | for the Frobenius norm on Rk×k. Note that the following one-dimensional
assertions are given as statement 0.1.B in Dynkin [11, Appendix].

3.7 Proposition. Let X be a consistent Markov process. Then the following two
assertions hold:

(i) Let s ∈ J and Y : Ω → Rk be F̂ ′
s-measurable. If Es,x[|Y |] < ∞ for all x ∈ S,

then the map S → Rk, x 7→ Es,x[Y ] is Borel measurable.

(ii) Let r, s ∈ J with r ≤ s, x ∈ S, and Y : Ω → Rk be F̂ ′
s-measurable such that

Er,x[|Y |] and Es,y[|Y |] are finite for all y ∈ S. Then

Er,x[Es,Xs [|Y |]] <∞ and Er,x[βY ] = Er,x[βEs,Xs [Y ]]

for each Fs-measurable bounded map β : Ω→ Rk×k.
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Proof. (i) It suffices to consider the case k = 1. This causes no loss of generality,
since once the claim holds in one dimension, then the fact that Es,x[|Yi|] ≤ Es,x[|Y |]
for all x ∈ S implies that the i-th coordinate function S → R, x 7→ Es,x[Yi] of the
map S → Rk, x 7→ Es,x[Y ] is Borel measurable for each i ∈ {1, . . . , k}. Then from
Lemma A.19 the assertion follows.

We may also suppose that Y is bounded. In the general case, Corollary A.24
provides a sequence (Yn)n∈N of real-valued F̂ ′

s-measurable bounded functions on Ω
that converges pointwise to Y with supn∈N |Yn| ≤ |Y |. Then dominated convergence
yields

lim
n↑∞

Es,x[Yn] = Es,x[Y ] for all x ∈ S,

which in turn shows the Borel measurability of the function S → R, x 7→ Es,x[Y ].
Next, the set of all real-valued F̂ ′

s-measurable bounded functions Z on Ω for which
the function S → R, x 7→ Es,x[Z] is Borel measurable constitutes a monotone class
on Ω. From Lemma 3.6 we know that this linear space contains every indicator
function 1A with A ∈ F̂ ′

s. Hence, the Functional Monotone Class Theorem A.29
completes the verification of (i).

(ii) As before, we may let k = 1. Indeed, suppose for the moment that the
assertion is true in one dimension. To establish the general assertion, we first prove
that

Er,x[Z|Fs] = Es,Xs [Z] Pr,x-a.s. (3.3)
for each F̂ ′

s-measurable Z : Ω→ R+. It is enough to show this when Z is bounded.
In the unbounded case, Corollary A.24 gives us an increasing sequence (Zn)n∈N of
R+-valued F̂ ′

s-measurable bounded functions on Ω that converges pointwise to Z.
Then monotone convergence for conditional expectations entails that

Er,x[Z|Fs] = lim
n↑∞

Er,x[Zn|Fs] = lim
n↑∞

Es,Xs [Zn] = Es,Xs [Z] Pr,x-a.s.,

since limn↑∞Es,Xs(ω)[Zn] = Es,Xs(ω)[Z] for all ω ∈ Ω, by monotone convergence. We
notice that the set of all real-valued F̂ ′

s-measurable bounded functions Ẑ on Ω with
Er,x[Ẑ|Fs] = Es,Xs [Ẑ] Pr,x-a.s. is a monotone class on Ω. Thus, (3.3) is implied by
Lemma 3.6 and the Functional Monotone Class Theorem A.29.

Now, to infer the multidimensional case, we make use of (3.3) to obtain that
Er,x[Es,Xs [|Y |]] = Er,x[|Y |] < ∞, which yields the Pr,x-integrability of Es,Xs [|Y |].
Let us suppose that β : Ω→ Rk×k is an Fs-measurable bounded map, then the i-th
coordinates of Er,x[βY ] and Er,x[βEs,Xs [Y ]] fulfill

Er,x[βY ]i =
k∑
j=1

Er,x[βi,jYj] =
k∑
j=1

Er,x[βi,jEs,Xs [Yj]] = Er,x[βEs,Xs [Y ]]i

for each i ∈ {1, . . . , k}. For these reasons, it suffices to prove the claim for k = 1.
In one dimension, by writing Y in the form Y = Y + − Y −, we get from (3.3) that

Er,x[βY ] = Er,x[βEr,x[Y +|Fs]]− Er,x[βEr,x[Y −|Fs]]
= Er,x[β(Es,Xs [Y ]− Es,Xs [Y −])] = Er,x[βEs,Xs [Y ]],

which completes the proof.
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3.3 The strong Markov and the Feller property
Let us proceed with the study of Markov processes by considering the progressive
measurability of the underlying process, the measurability and (right-)continuity
properties of the transition probabilities, and the strong Markov property. We refer
to Dynkin [11, 12] for definitions that we adjust. In what follows, for each t ∈ J let
Jt be the set of all s ∈ J with s ≤ t and (Ω,F ) be a measurable space.

3.8 Definition. Suppose that X is a consistent stochastic family.

(i) We call X progressive if the processX is progressively measurable with respect
to both its natural filtration and its natural backward filtration.

(ii) We say that X has Borel measurable transition probabilities if the consistent
function Jt × S → [0, 1], (s, x) 7→ Ps,x(Xt ∈ B) is Borel measurable for all
t ∈ J and each B ∈ S .

(iii) X is called strongly Markov if it is progressive and has Borel measurable
transition probabilities, and the strong Markov property holds:

Pr,x(Xt ∈ B|Fτ ) = Pτ,Xτ (Xt ∈ B) Pr,x-a.s. (3.4)

for all r, t ∈ J with r ≤ t, each finite (Fs)s∈[r,t]-stopping time τ , every x ∈ S,
and each B ∈ S .

For a consistent stochastic family X , we set F̂r,t := σ(Xs : s ∈ [r, t]) for each
r, t ∈ J with r ≤ t. These σ-fields allow for an equivalent description for X to be
progressive.

3.9 Lemma. A consistent stochastic family X is progressive if and only if the
restriction of X to [r, t]×Ω is B([r, t])⊗ F̂r,t-measurable for all r, t ∈ J with r ≤ t.

Proof. In the sequel, we denote the natural filtration of X by (F̂s)s∈J . Let initially
X be progressive and choose r, t ∈ J with r ≤ t. Since set of all D ⊂ Jt × Ω with
D ∩ ([r, t] × Ω) ∈ B([r, t]) ⊗ F̂t is a d-system in Jt × Ω that includes the ∩-stable
generator {Js | s ∈ Jt} × F̂t of B(Jt)⊗ F̂t, we get that

F ∩ ([r, t]× Ω) ∈ B([r, t])⊗ F̂t for each F ∈ B(Jt)⊗ F̂t,

by the Monotone Class Theorem A.28. This gives {(s, ω) ∈ [r, t] × Ω |Xs(ω) ∈ B}
= {(s, ω) ∈ Jt×Ω |Xs(ω) ∈ B}∩([r, t]×Ω) ∈ B([r, t])⊗F̂t for each chosen B ∈ S .
To abbreviate notation, let J ′r be the set of all s ∈ J with s ≥ r. Then

F ∩ ([r, t]× Ω) ∈ B([r, t])⊗ F̂ ′
r for every F ∈ B(J ′r)⊗ F̂ ′

r,

due to the Monotone Class Theorem A.28. Hence, {(s, ω) ∈ [r, t]× Ω |Xs(ω) ∈ B}
= {(s, ω) ∈ J ′r×Ω |Xs(ω) ∈ B}∩ ([r, t]×Ω) ∈ B([r, t])⊗ F̂ ′

r. Finally, from the fact
that B([r, t])⊗ F̂r,t is the intersection of B([r, t])⊗ F̂ ′

r and B([r, t])⊗ F̂t, the only
if direction is proven.
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For if we define r0 := min J and T := sup J . First of all, let t ∈ J and B ∈ S ,
then {(s, ω) ∈ [r0, t] × Ω |Xs(ω) ∈ B} ∈ B([r0, t]) ⊗ F̂r0,t. Because Jt = [r0, t]
and F̂t = F̂r0,t, this shows that X is progressively measurable with respect to
its natural filtration. Next, let r ∈ J and suppose initially that T ∈ J , then
{(s, ω) ∈ [r, T ] × Ω |Xs(ω) ∈ B} ∈ B([r, T ]) ⊗ F̂r,T . If instead T /∈ J , then we let
(tn)n∈N be a sequence in J ′r with limn↑∞ tn = T . This entails that

{(s, ω) ∈ J ′r ×Ω |Xs(ω) ∈ B} =
⋃
n∈N
{(s, ω) ∈ [r, tn]×Ω |Xs(ω) ∈ B} ∈ B(J ′r)⊗ F̂ ′

r,

since {(s, ω) ∈ [r, tn]× Ω |Xs(ω) ∈ B} ∈ B([r, tn])⊗ F̂r,tn and F̂r,tn ⊂ F̂ ′
r for each

n ∈ N. Hence, in either case, X is also progressively measurable with respect to its
natural backward filtration.

By the Monotone Class Theorem A.28, a consistent stochastic family X is Borel,
that is, it has Borel measurable transition probabilities, if there is some ∩-stable
generator O of S such that the function Jt × S → [0, 1], (s, x) 7→ Ps,x(Xt ∈ O) is
Borel measurable for all t ∈ J and each O ∈ O. Moreover, let X be progressive
and Borel, then it is strongly Markov if

Pr,x(Xt ∈ O|Fτ ) = Pτ,Xτ (Xt ∈ O) Pr,x-a.s.

for all r, t ∈ J with r ≤ t, every finite (Fs)s∈[r,t]-stopping time τ , all x ∈ S, and each
O ∈ O. Hence, we can give sufficient conditions for X to be Borel and strongly
Markov. The necessity is implied by Proposition 3.13.

3.10 Lemma. Assume that X is a consistent stochastic family. Then the following
two assertions are valid:

(i) X is Borel if the function Jt × S → [0, 1], (s, x) 7→ Es,x[ϕ(Xt)] is Borel
measurable for each t ∈ J and every Lipschitz continuous ϕ ∈ Cb(S, [0, 1]).

(ii) Let X be progressive and Borel. Then X is strongly Markov if

Er,x[ϕ(Xt)|Fτ ] = Eτ,Xτ [ϕ(Xt)] Pr,x-a.s.

for all r, t ∈ J with r ≤ t, every finite (Fs)s∈[r,t]-stopping time τ , each x ∈ S,
and every Lipschitz continuous ϕ ∈ Cb(S, [0, 1]).

Proof. (i) We proceed similarly as in Lemma 3.5. Let t ∈ J and O be an open
set in S. Then Lemma A.17 yields an increasing sequence (ϕn)n∈N of [0, 1]-valued
Lipschitz continuous functions on S that converges pointwise to 1O. By monotone
convergence,

lim
n↑∞

Es,x[ϕn(Xt)] = Ps,x(Xt ∈ O)

for all (s, x) ∈ Jt × S. Hence, as pointwise limit of a sequence of [0, 1]-valued Borel
measurable functions on Jt × S, the function Jt × S → [0, 1], (s, x) 7→ Ps,x(Xt ∈ O)
is Borel measurable as well.
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(ii) Let r, t ∈ J with r ≤ t, τ be a finite (Fs)s∈[r,t]-stopping time, and x ∈ S.
We once again choose an open set O in S and some increasing sequence (ϕn)n∈N of
[0, 1]-valued Lipschitz continuous functions on S that converges pointwise to 1O, then
Er,x[ϕn(Xt)|Fτ ] = Eτ,Xτ [ϕn(Xt)] Pr,x-a.s. for each n ∈ N. Monotone convergence
for conditional expectations guarantees that

Pr,x(Xt ∈ O|Fτ ) = lim
n↑∞

Er,x[ϕn(Xt)|Fτ ]

= lim
n↑∞

Eτ,Xτ [ϕn(Xt)] = Pτ,Xτ (Xt ∈ O) Pr,x-a.s.,

since limn↑∞Eτ(ω),Xτ (ω)[ϕn(Xt)] = Pτ(ω),Xτ (ω)(Xt ∈ O) for all ω ∈ Ω, due to standard
monotone convergence. Therefore, the claim is proven.

For a consistent stochastic family X and each t ∈ J , let us use the ∩-stable
generator C ′t of F̂ ′

t , which has been defined to be the system of all sets C ′ ⊂ Ω
of the form C ′ = {Xt1 ∈ B1, . . . , Xtn ∈ Bn} for some n ∈ N, t1, . . . , tn ∈ J with
t ≤ t1 < · · · < tn, and B1, . . . , Bn ∈ S .

3.11 Lemma. For every consistent Markov process X that is Borel the following
two assertions hold:

(i) The function Jt × S → [0, 1], (s, x) 7→ Ps,x(A′) is Borel measurable for each
t ∈ J and all A′ ∈ F̂ ′

t .

(ii) Assume that X is strongly Markov, then Pr,x(A′|Fτ ) = Pτ,Xτ (A′) Pr,x-a.s. for
all r, t ∈ J with r ≤ t, every finite (Fs)s∈[r,t]-stopping time τ , all x ∈ S, and
each A′ ∈ F̂ ′

t .

Proof. (i) Because the system C ′t is an ∩-stable generator of F̂ ′
t for every t ∈ J , it

follows from the Monotone Class Theorem A.28 that we only need to verify that the
function

Jt × S → [0, 1], (s, x) 7→ Ps,x(Xt1 ∈ B1, . . . , Xtn ∈ Bn)

is Borel measurable for each n ∈ N, all t1, . . . , tn ∈ J with t ≤ t1 < · · · < tn, and
every B1, . . . , Bn ∈ S . We show this inductively over n ∈ N. Since the initial
induction step n = 1 is true by definition, we suppose that the claim holds for
some n ∈ N. Let t1, . . . , tn+1 ∈ J with t ≤ t1 < · · · < tn+1, then the set of all
ϕ ∈ Bb(Sn) for which the function Jt × S → R, (s, x) 7→ Es,x[ϕ(Xt1 , . . . , Xtn)] is
Borel measurable is a monotone class on Sn. Hence, it coincides with Bb(Sn), by
the Functional Monotone Class Theorem A.29. Let B1, . . . , Bn+1 ∈ S , then the
Markov property of X yields that

Ps,x(Xt1 ∈ B1, . . . , Xtn+1 ∈ Bn+1) = Es,x[1{Xt1∈B1,...,Xtn∈Bn}Ptn,Xtn (Xtn+1 ∈ Bn+1)]

for all (s, x) ∈ Jt × S. This finishes the induction proof, because, as noted before,
the function Sn → [0, 1], (x1, . . . , xn) 7→ 1B1×···×Bn(x1, . . . , xn)Ptn,xn(Xtn+1 ∈ Bn+1)
is a member of Bb(Sn).
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(ii) Let r, t ∈ J with r ≤ t, τ be a finite (Fs)s∈[r,t]-stopping time, and x ∈ S.
Due to the Monotone Class Theorem A.28, it suffices to show that

Pr,x(Xt1 ∈ B1, . . . , Xtn ∈ Bn|Fτ ) = Pτ,Xτ (Xt1 ∈ B1, . . . , Xtn ∈ Bn) Pr,x-a.s.

for each n ∈ N, all t1, . . . , tn ∈ J with t ≤ t1 < · · · < tn, and every B1, . . . , Bn ∈ S .
This is carried out inductively over n ∈ N. Since X is strongly Markov, the initial
induction step n = 1 holds. We assume that the claim is valid for some n ∈ N. Let
t1, . . . , tn+1 ∈ J with t ≤ t1 < · · · < tn+1, then the set of all ϕ ∈ Bb(Sn) such that

Er,x[ϕ(Xt1 , . . . , Xtn)|Fτ ] = Eτ,Xτ [ϕ(Xt1 , . . . , Xtn)] Pr,x-a.s.

is a monotone class on Sn. For this reason, it equals Bb(Sn), by the Functional
Monotone Class Theorem A.29. Let B1, . . . , Bn+1 ∈ S , then the Markov property
of X leads us to

Pr,x(Xt1 ∈ B1, . . . ,Xtn+1 ∈ Bn+1|Fτ )
= Er,x[1{Xt1∈B1,...,Xtn∈Bn}Ptn,Xtn (Xtn+1 ∈ Bn+1)|Fτ ]
= Eτ,Xτ [1{Xt1∈B1,...,Xtn∈Bn}Ptn,Xtn (Xtn+1 ∈ Bn+1)] Pr,x-a.s.

The Markov property of X also implies that

Eτ(ω),Xτ (ω)[1{Xt1∈B1,...,Xtn∈Bn}Ptn,Xtn (Xtn+1 ∈ Bn+1)]
= Pτ(ω),Xτ (ω)(Xt1 ∈ B1, . . . , Xtn+1 ∈ Bn+1)

for all ω ∈ Ω. By putting these two equations together, we complete the induction
proof.

3.12 Remark. Assume that X is strongly Markov. Let r, t ∈ J with r ≤ t, x ∈ S,
and A′ ∈ F̂ ′

t , then every (Fs)s∈J -stopping time τ with τ ≥ r satisfies

Pr,x(A′|Fτ ) = Pτ,Xτ (A′) Pr,x-a.s. on {τ ≤ t}.

Indeed, Pr,x(A′|Fτ ) = Pr,x(A′|Ft∧τ ) Pr,x-a.s. on {τ ≤ t}, because

Er,x[Pr,x(A′|Fτ )1B∩{τ≤t}] = Pr,x(A′ ∩B ∩ {τ ≤ t}) = Er,x[Pr,x(A′|Ft∧τ )1B∩{τ≤t}]

for each B ∈ Fτ . Furthermore, Pr,x(A′|Ft∧τ ) = Pt∧τ,Xt∧τ (A′) Pr,x-a.s., since X is
strongly Markov. This gives the result.

Let X be a consistent stochastic family and I be a non-degenerate interval in J .
For each t ∈ I we denote by It the set of all s ∈ I with s ≤ t, then the reconstructible
σ-field on I is the σ-field generated by the system of all sets F in I ×Ω of the form
F = Iu × A′ for some u ∈ I and some A′ ∈ F̂ ′

u, as considered in Section A.7.
If E is a topological space, then a map Y : I × Ω→ E that is measurable with

respect to this σ-field will be called reconstructible. Note that if Y is (F̂ ′
t )t∈I-adapted

and has right-continuous paths, then it is reconstructible, due to Proposition A.40.
We now strengthen the measurability properties and the strong Markov property
(see statements 0.4 and 0.6.C in [11, Appendix] for the one-dimensional case).
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3.13 Proposition. For every consistent Markov process X with Borel measurable
transition probabilities the subsequent two assertions are valid:

(i) Let Y : I×Ω→ Rk be reconstructible with Er,x[|Yr|] <∞ for all (r, x) ∈ I×S,
then the map I×S → Rk, (r, x) 7→ Er,x[Yr] is consistent and Borel measurable.

(ii) Suppose that X is strongly Markov. Let (r, x) ∈ I × S, τ be some finite
(Fs)s∈I-stopping time with τ ≥ r, and Y : I ×Ω→ Rk be reconstructible such
that Er,x[|Yτ |] and Es,y[|Ys|] are finite for every (s, y) ∈ I×S with s ≥ r. Then∫

Ω
Eτ(ω),Xτ (ω)[|Yτ(ω)|]Pr,x(dω) <∞ and

Er,x[βYτ ] =
∫

Ω
β(ω)Eτ(ω),Xτ (ω)[Yτ(ω)]Pr,x(dω)

for every Fτ -measurable bounded map β : Ω→ Rk×k.

Proof. (i) We may let k = 1. In fact, assume that the assertion is true in one
dimension, then it follows from Er,x[|Y (i)

r |] ≤ Er,x[|Yr|] for all (r, x) ∈ I ×S that the
function I × S → R, (r, x) 7→ Er,x[Y (i)

r ] is Borel measurable for each i ∈ {1, . . . , k}.
As consistency is a direct consequence of the requirement that Pr,x = Pr,Φr(x) for all
(r, x) ∈ J × S, this yields the claim, by Lemma A.19.

We may also assume that Y is bounded. In the general case, Corollary A.24 yields
a sequence (Y (n))n∈N of real-valued reconstructible bounded processes on I×Ω with
limn↑∞ Y

(n)
t = Yt and supn∈N |Y

(n)
t | ≤ |Yt| for every t ∈ I. Dominated convergence

entails that
lim
n↑∞

Er,x[Y (n)
r ] = Er,x[Yr]

for each (r, x) ∈ I × S. This clarifies that the function I × S → R, (r, x) 7→ Er,x[Yr]
must then be Borel measurable. Moreover, the set of all reconstructible bounded
processes Z : I×Ω→ R for which the function I×S → R, (r, x) 7→ Er,x[Zr] is Borel
measurable is a monotone class in I×Ω. By Lemma 3.11, the process I×Ω→ [0, 1],
(t, ω) 7→ 1Iu(t)1A′(ω) belongs to this linear space for each u ∈ I and every A′ ∈ F̂ ′

u.
Hence, the Functional Monotone Class Theorem A.29 leads to the claim.

(ii) It is enough to deduce the assertion for k = 1. To infer the multidimensional
case, we utilize the fact that

Er,x[Zτ |Fτ ](ω) = Eτ(ω),Xτ (ω)[Zτ(ω)] for Pr,x-a.e. ω ∈ Ω (3.5)

for each reconstructible Z : I ×Ω→ R+. Indeed, for justifying this, we merely need
to consider the case when Z is bounded. In the unbounded case, Corollary A.24 gives
an increasing sequence (Z(n))n∈N of R+-valued reconstructible bounded processes on
I×Ω with limn↑∞ Z

(n)
t = Zt for all t ∈ I. Then monotone convergence for conditional

expectations implies that

Er,x[Zτ |Fτ ](ω) = lim
n↑∞

Er,x[Z(n)
τ |Fτ ](ω) = lim

n↑∞
Eτ(ω),Xτ (ω)[Z(n)

τ(ω)] = Eτ(ω),Xτ (ω)[Zτ(ω)]
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for Pr,x-a.e. ω ∈ Ω, since limn↑∞Eτ(ω),Xτ (ω)[Z(n)
τ(ω)] = Eτ(ω),Xτ (ω)[Zτ(ω)] follows from

standard monotone convergence for every ω ∈ Ω. Now, the set of all reconstructible
bounded processes Ẑ : I × Ω→ R such that

Er,x[Ẑτ |Fτ ](ω) = Eτ(ω),Xτ (ω)[Ẑτ(ω)] for Pr,x-a.e. ω ∈ Ω

is a monotone class in I × Ω. We fix u ∈ I and A′ ∈ F̂ ′
u, and let Ẑ : I × Ω→ [0, 1]

be given by Ẑt(ω) := 1Iu(t)1A′(ω). Then Remark 3.12 shows that

Er,x[Ẑτ |Fτ ](ω) = 1{τ≤u}(ω)Pr,x(A′|Fτ )(ω) = 1{τ≤u}(ω)Pτ(ω),Xτ (ω)(A′)
= Eτ(ω),Xτ (ω)[1{τ≤u}(ω)1A′ ] = Eτ(ω),Xτ (ω)[Ẑτ(ω)]

for Pr,x-a.e. ω ∈ Ω. In consequence, the Functional Monotone Class Theorem A.29
establishes the validity of (3.5). This in turn implies that∫

Ω
Eτ(ω),Xτ (ω)[|Yτ(ω)|]Pr,x(dω) = Er,x[|Yτ |] <∞,

which shows that the function Ω → R+, ω 7→ Eτ(ω),Xτ (ω)[|Yτ(ω)|] is Pr,x-integrable.
Next, we let β : Ω → Rk×k be some Fτ -measurable bounded map, then the i-th
coordinates of Er,x[βYτ ] and

∫
Ω β(ω)Eτ(ω),Xτ (ω)[Yτ(ω)]Pr,x(dω) satisfy

Er,x[βYτ ]i =
k∑
j=1

Er,x[βi,jEr,x[Y (j)
τ |Fτ ]] =

k∑
j=1

∫
Ω
βi,j(ω)Eτ(ω),Xτ (ω)[Y (j)

τ(ω)]Pr,x(dω)

=
∫

Ω
β(ω)Eτ(ω),Xτ (ω)[Yτ(ω)]Pr,x(dω)i

for all i ∈ {1, . . . , k}. Therefore, restricting the proof to k = 1 leads to no loss of
generality. In one dimension, we conclude from Y = Y + − Y − and (3.5) that

Er,x[βYτ ] = Er,x[βEr,x[Y +
τ |Fτ ]]− Er,x[βEr,x[Y −τ |Fτ ]]

=
∫

Ω
β(ω)Eτ(ω),Xτ (ω)[Yτ(ω)]Pr,x(dω).

In what follows, we call a consistent stochastic family X a diffusion process if it
is strongly Markov and the process X is continuous. Moreover, X is said to have
the (right-hand) Feller property if the function

Jt × S → R, (r, x) 7→ Er,x[ϕ(Xt)] (3.6)

is (right-)continuous for all t ∈ J and every ϕ ∈ Cb(S). We make two observations.
First, if X is (right-hand) Feller, that is, it has the (right-hand) Feller property, then
(3.6) is Borel measurable for each t ∈ J and every ϕ ∈ Cb(S), by Proposition 3.3
and Lemma 3.2. This in turn implies that X is Borel, as Lemma 3.10 shows.
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Secondly, the strong Markov property holds provided X is Markov and the
finite (Fs)s∈[r,t]-stopping time τ appearing in (3.4) takes finitely many values. More
precisely, let r, t ∈ J with r ≤ t, x ∈ S, and B ∈ S , then

Pr,x(Xt ∈ B|Fτ ) = Pτ,Xτ (Xt ∈ B) Pr,x-a.s.

for each finite (Fs)s∈[r,t]-stopping time τ taking finitely many values. To see this,
let n ∈ N and s1, . . . , sn ∈ [r, t] be the pairwise distinct values of τ . Then we obtain
that Pτ,Xτ (Xt ∈ B) = ∑n

i=1 Psi,Xsi (Xt ∈ B)1{τ=si}. Thus, Pτ,Xτ (Xt ∈ B) is actually
Fτ -measurable. Furthermore,

Pr,x({Xt ∈ B} ∩ A) =
n∑
i=1

Er,x[Psi,Xsi (Xt ∈ B)1A∩{τ=si}] = Er,x[Pτ,Xτ (Xt ∈ B)1A]

for all A ∈ Fτ , which yields the assertion. These considerations lead to the following
conclusion.

3.14 Lemma. A consistent Markov process X that is right-hand Feller and for
which X has right-continuous paths is strongly Markov. In particular, if X has
continuous paths, then X is a diffusion process.

Proof. SinceX is adapted to its natural filtration and its natural backward filtration,
Propositions A.38 and A.40 imply that X is progressively measurable with respect
to both filtrations. Thus, X is progressive and Borel. By Lemma 3.10, to show the
strong Markov property, we merely have to prove that

Er,x[ϕ(Xt)|Fτ ] = Eτ,Xτ [ϕ(Xt)] Pr,x-a.s.

for all r, t ∈ J with r ≤ t, each finite (Fs)s∈[r,t]-stopping time τ , all x ∈ S, and every
ϕ ∈ Cb(S). To this end, Proposition A.44 gives us a decreasing sequence (τn)n∈N
of finite (Fs)s∈[r,t]-stopping times, each taking only finite many values, such that
infn∈N τn = τ . Due to the preceding discussion,

Er,x[ϕ(Xt)|Fτn ] = Eτn,Xτn [ϕ(Xt)] Pr,x-a.s.

for each n ∈ N. Since X has right-continuous paths, we get limn↑∞Xτn = Xτ , which
entails that limn↑∞ dS((τn, Xτn), (τ,Xτ )) = 0. For this reason, the right-hand Feller
property of X implies that

lim
n↑∞

Eτn,Xτn [ϕ(Xt)] = Eτ,Xτ [ϕ(Xt)].

Because τ ≤ τn, we must have Fτ ⊂ Fτn for each n ∈ N. Thus, we obtain that
Er,x[ϕ(Xt)|Fτ ] = Er,x[Er,x[ϕ(Xt)|Fτn ]|Fτ ] = Er,x[Eτn,Xτn [ϕ(Xt)]|Fτ ] Pr,x-a.s. for
all n ∈ N. By dominated convergence for conditional expectations,

Er,x[ϕ(Xt)|Fτ ] = lim
n↑∞

Er,x[Eτn,Xτn [ϕ(Xt)]|Fτ ] = Eτ,Xτ [ϕ(Xt)] Pr,x-a.s.

This justifies the claim.
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3.4 Multidimensional additive maps
In this section we are concerned with multidimensional additive maps and several of
its properties. Let X be a consistent progressive Markov process on a measurable
space (Ω,F ) with state space S. We utilize the natural backward filtration (F̂ ′

t )t∈J
of X and the σ-fields F̂r,t = σ(Xs : s ∈ [r, t]) for all r, t ∈ J with r ≤ t. As before,
k ∈ N, and | · | is the Euclidean norm on Rk and the Frobenius norm on Rk×k.

3.15 Definition. A k-dimensional additive map (of X ) is given through a map
κ : Ω×B(J)→ [−∞,∞]k, (ω,B) 7→ κ(B)(ω) with the following two properties:

(i) κi(·)(ω) : B(J) → [−∞,∞], B 7→ κi(B)(ω) is a signed Borel measure for all
i ∈ {1, . . . , k} and each ω ∈ Ω.

(ii) The map κ([r, t]) : Ω → Rk, ω 7→ κ([r, t])(ω) is F̂r,t-measurable for every
r, t ∈ J with r ≤ t.

If in addition κi ≥ 0 for all i ∈ {1, . . . , k}, then we call κ non-negative. Moreover, a
k-dimensional additive map κ with κ({t}) = 0 for all t ∈ J is said to be continuous.

In alignment with the literature, we call every one-dimensional additive map an
additive functional (cf. Dynkin [11, Appendix], [12, Section 1.1]). From Lemma A.19
we easily draw the conclusion that an [−∞,∞]k-valued map κ on Ω ×B(J) is a
k-dimensional additive map if and only if all its coordinate functions κ1, . . . , κk
are additive functionals. In this case, κ is non-negative (resp. continuous) if and
only if κ1, . . . , κk are. Let us prove a multidimensional analogue to statement 0.2.E
in [12, Appendix].

3.16 Lemma. Assume that κ is a non-negative k-dimensional additive map of X .
Let θ ∈ B(J × S,Rk

+) be such that the function J → R+, s 7→ θi(s,Xs(ω)) is
locally κi(·)(ω)-integrable for every i ∈ {1, . . . , k} and each ω ∈ Ω. Then the map
ν : Ω×B(J)→ [0,∞]k given by

ν(B)(ω) :=
∫
B
θ(s,Xs(ω))κ(ds)(ω)

is another non-negative k-dimensional additive map that is continuous if κ is.

Proof. From above remarks we infer that it suffices to show the claim for k = 1.
Because X is progressive and θ is Borel measurable, the process

J × Ω→ R+, (s, ω) 7→ θ(s,Xs(ω))

must be B(J) ⊗F -measurable. Hence, the function J → R+, s 7→ θ(s,Xs(ω)) is
B(J)-measurable and, by hypothesis, locally κ(·)(ω)-integrable for each ω ∈ Ω. For
this reason, ν(·)(ω) is a Borel measure on J .

It remains to verify that ν([r, t]) is F̂r,t-measurable for all r, t ∈ J with r ≤ t.
Here, we may suppose that θ is bounded. In the general case, Corollary A.24 yields
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an increasing sequence (θn)n∈N in Bb(J × S,R+) that converges pointwise to θ. By
monotone convergence,

lim
n↑∞

∫ t

r
θn(s,Xs(ω))κ(ds)(ω) =

∫ t

r
θ(s,Xs(ω))κ(ds)(ω) = ν([r, t])(ω)

for all ω ∈ Ω. Thus, as pointwise limit of a sequence of R+-valued F̂r,t-measurable
functions on Ω, it follows that ν([r, t]) is F̂r,t-measurable. This justifies that the
boundedness assumption on θ leads to no loss of generality. Now, the set Hr,t of all
B([r, t])⊗ F̂r,t-measurable bounded processes Z : [r, t]× Ω→ R for which∫ t

r
Zs κ(ds) is F̂r,t-measurable

is a monotone class on [r, t] × Ω. For each s ∈ [r, t] and all A ∈ F̂r,t, the process
[r, t]× Ω→ [0, 1], (r′, ω) 7→ 1[r,s]×A(r′, ω) is a member of Hr,t, since∫ t

r
1[r,s]×A(r′, ω)κ(dr′)(ω) = κ([r, s])(ω)1A(ω)

for all ω ∈ Ω. Consequently, the Functional Monotone Class Theorem A.29 implies
that Hr,t is the linear space of all real-valued B([r, t]) ⊗ F̂r,t-measurable bounded
processes on [r, t] × Ω. As X is progressive and θ is assumed to be bounded, the
process [r, t]×Ω→ R+, (s, ω) 7→ θ(s,Xs(ω)) belongs to Hr,t, by Lemma 3.9. Hence,
ν is a non-negative additive functional.

Lastly, from the definition of ν we conclude that ν(·)(ω) is absolutely continuous
with respect to κ(·)(ω) for all ω ∈ Ω. This in turn entails that if κ is continuous,
then {t} is not only a κ(·)(ω)-null set, but also a ν(·)(ω)-null set for each t ∈ J and
every ω ∈ Ω. This proves the assertion.

Let temporarily µ be a signed Borel measure on J . Then the positive part µ+

and negative part µ− of µ are given by µ+(B) = sup{µ(A) |A ∈ B(J) : A ⊂ B}
and µ−(B) = sup{−µ(A) |A ∈ B(J) : A ⊂ B} for each B ∈ B(J), which are two
Borel measures that satisfy the Jordan decomposition

µ = µ+ − µ−.

The variation of µ is another Borel measure given by |µ| = µ+ + µ− that fulfills
|µ(B)| ≤ |µ|(B) for all B ∈ B(J) (see for instance Cohn [5, Section 4.1]). In what
follows, let I be a non-degenerate interval in J .
3.17 Lemma. Suppose that κ is a continuous k-dimensional additive map of X .
Let Y : I × Ω → Rk be an (F̂ ′

s)s∈I-progressively measurable process and t ∈ I such
that ∫ t

r
|Y (i)
s (ω)| |κi|(ds)(ω) <∞ (3.7)

for all i ∈ {1, . . . , k} and each (r, ω) ∈ It × Ω. Then the map Z : It × Ω → Rk

defined via
Zr(ω) :=

∫ t

r
Ys(ω)κ(ds)(ω)

is a reconstructible continuous process.
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Proof. As Y is (F̂ ′
s)s∈I-progressively measurable, its restriction to [r, t] × Ω must

be B([r, t]) ⊗ F̂ ′
r-measurable for all r ∈ It. Hence, from (3.7) we deduce that Z is

well-defined. Moreover, since an [−∞,∞]k-valued map on Ω×B(J) is a continuous
k-dimensional additive map if and only if all its coordinate functions are continuous
additive functionals, it is enough to show the assertion for k = 1.

Let us prove that Z(ω) is continuous for each ω ∈ Ω. To this end, let r ∈ It
and (rn)n∈N be a sequence in It with limn↑∞ rn = r. Then it is readily checked that
limn↑∞ 1[rn,t](s) = 1[r,t](s) for all s ∈ It with s 6= r. Because κ({r})(ω) = 0, we
obtain from dominated convergence that

lim
n↑∞

Zrn(ω) = lim
n↑∞

∫
It
1[rn,t](s)Ys(ω)κ(ds)(ω) =

∫
It
1[r,t](s)Ys(ω)κ(ds)(ω) = Zr(ω).

In consequence, if we can verify that Z is adapted to (F̂ ′
s)s∈It , then Proposition A.40

implies that Z is reconstructible, which concludes the proof.
For this purpose, we may suppose that Y is bounded. Indeed, once the claim is

true in this case, then Lemma A.39 and Corollary A.24 give us a sequence (Y (n))n∈N
of real-valued (F̂ ′

s)s∈It-progressively measurable bounded processes on It × Ω with
limn↑∞ Y

(n)
s = Ys and supn∈N |Y (n)

s | ≤ |Ys| for all s ∈ It. Then

lim
n↑∞

∫ t

r
Y (n)
s (ω)κ(ds)(ω) =

∫ t

r
Ys(ω)κ(ds)(ω) = Zr(ω)

for each (r, ω) ∈ It×Ω, by dominated convergence. As pointwise limit of a sequence
of real-valued (F̂ ′

s)s∈It-adapted bounded processes on It × Ω, the process Z must
also be (F̂ ′

s)s∈It-adapted. This explains the simplification. At last, let r ∈ It, then
the set Hr of all B([r, t])⊗ F̂ ′

r-measurable bounded processes Ŷ : [r, t]×Ω→ R for
which ∫ t

r
Ŷs κ(ds) is F̂ ′

r-measurable

is a monotone class in [r, t]× Ω. For every s ∈ [r, t] and each A′ ∈ F̂ ′
r, the process

[r, t] × Ω → [0, 1], (r′, ω) 7→ 1[r,s]×A′(r′, ω) is a member of Hr. So, the Functional
Monotone Class Theorem A.29 entails that Hr coincides with the linear space of
all real-valued B([r, t]) ⊗ F̂ ′

r-measurable bounded processes on [r, t] × Ω. Because
the restriction of Y to [r, t] × Ω is B([r, t]) ⊗ F̂ ′

r-measurable and r ∈ It has been
arbitrarily chosen, the claim follows.

Until the end of this section, we suppose that µ is a Borel measure on J with
µ({t}) = 0 for all t ∈ J and θ ∈ B(J × S,R+) is consistently bounded. Then
Lemma 3.16 guarantees that the function ν : Ω×B(J)→ [0,∞] defined by

ν(B)(ω) :=
∫
B
θ(s,Xs(ω))µ(ds)

is a non-negative continuous additive functional of X . By using standard properties
of conditional expectations, we show the following integral identity that is used in
the upcoming section and in Chapter 4. In one dimension, this is a special case of
Theorem 57 in Dellacherie and Meyer [9, Section 6.2].



3.4. MULTIDIMENSIONAL ADDITIVE MAPS 39

3.18 Proposition. Suppose that X has Borel measurable transition probabilities.
Let b ∈ B(I×S,Rk×k) be locally µ-dominated and Y : I×Ω→ Rk be reconstructible
and consistently bounded. Then

Er,x

[ ∫ t

r
b(s,Xs)Ys ν(ds)

]
= Er,x

[ ∫ t

r
b(s,Xs)Es,Xs [Ys] ν(ds)

]
(3.8)

for all r, t ∈ I with r ≤ t and each x ∈ S.

Proof. Because X is progressive, b is Borel measurable, and Y is reconstructible, it
follows from Lemma 3.9 and Proposition 3.13 that the processes

I × Ω→ Rk, (s, ω) 7→ b(s,Xs(ω))Ys(ω)

and I × Ω → Rk, (s, ω) 7→ b(s,Xs(ω))Es,Xs(ω)[Ys] must be (F̂ ′
s)s∈I-progressively

measurable. Let b ∈ B(I,R+) be a locally µ-integrable function with |b(·, y)| ≤ b
for all y ∈ S µ-a.s. on I. For each r, t ∈ I with r ≤ t, let cr,t ≥ 0 and θr,t ≥ 0 be
such that |Ys(ω)| ≤ cr,t and |θ(s, y)| ≤ θr,t for all s ∈ [r, t], each ω ∈ Ω, and every
y ∈ S. Then∫ t

r
|b(s,Xs)|(|Ys| ∨ Es,Xs [|Ys|]) ν(ds) ≤ cr,t

∫ t

r
b(s)|θ(s,Xs)|µ(ds)

≤ cr,tθr,t

∫ t

r
b(s)µ(ds) <∞

for each r, t ∈ I with r ≤ t. Hence, Lemma 3.17 implies that for fixed t ∈ I the
processes

It × Ω→ Rk, (s, ω) 7→
∫ t

r
b(s,Xs(ω))Ys(ω) ν(ds)(ω)

and It × Ω → Rk, (s, ω) 7→
∫ t
r b(s,Xs(ω))Es,Xs(ω)[Ys] ν(ds)(ω) are reconstructible,

consistently bounded, and continuous. This also justifies that the two expectations
appearing in (3.8) are well-defined for all r ∈ It and each x ∈ S.

Let us show that these two expectations coincide. We pick a µ-null set N ∈ B(J)
such that |b(s, y)| ≤ b(s) for all (s, y) ∈ (N c ∩ I)×S, then from Proposition 3.7 and
the standard properties of conditional expectations we infer that

Er,x[bi,j(s,Xs)Y (j)
s θ(s,Xs)] = Er,x[bi,j(s,Xs)Er,x[Y (j)

s |Fs]θ(s,Xs)]
= Er,x[bi,j(s,Xs)Es,Xs [Y (j)

s ]θ(s,Xs)]

for each s ∈ N c ∩ [r, t] and every i, j ∈ {1, . . . , k}. In combination with Fubini’s
theorem, this gives

Er,x

[ ∫ t

r
bi,j(s,Xs)Y (j)

s ν(ds)
]

=
∫
Nc∩[r,t]

Er,x[bi,j(s,Xs)Y (j)
s θ(s,Xs)]µ(ds)

=
∫
Nc∩[r,t]

Er,x[bi,j(s,Xs)Es,Xs [Y (j)
s ]θ(s,Xs)]µ(ds)

= Er,x

[ ∫ t

r
bi,j(s,Xs)Es,Xs [Y (j)

s ] ν(ds)
]
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for each i, j ∈ {1, . . . , k}. Consequently, we compute that

Er,x

[ ∫ t

r
b(s,Xs)Ys ν(ds)

]
i

=
k∑
j=1

Er,x

[ ∫ t

r
bi,j(s,Xs)Y (j)

s ν(ds)
]

=
k∑
j=1

Er,x

[ ∫ t

r
bi,j(s,Xs)Es,Xs [Y (j)

s ] ν(ds)
]

= Er,x

[ ∫ t

r
b(s,Xs)Es,Xs [Ys] ν(ds)

]
i

for all i ∈ {1, . . . , k}. Hence, the proof is complete.

We conclude with a (right-)continuity result for consistent progressive Markov
processes that are (right-hand) Feller. The idea to use dominated convergence comes
from Professor Dr. Schied.

3.19 Proposition. Assume that X is (right-hand) Feller. Let ϕ ∈ B(I×S,Rk) be
locally µ-dominated and t ∈ I. If there is a µ-null set N ∈ B(J) such that θ and ϕ
are right-continuous at each point of (N c ∩ It)× S, then the map

ψ : It × S → Rk, ψ(r, x) := Er,x

[ ∫ t

r
ϕ(s,Xs) ν(ds)

]

is consistently bounded and (right-)continuous.

Proof. Since ϕ is Borel measurable, the process I × Ω → Rk, (s, ω) 7→ ϕ(s,Xs(ω))
is (F̂ ′

s)s∈I-progressively measurable. Let a ∈ B(I,R+) be some locally µ-integrable
function with |ϕ(·, y)| ≤ a for all y ∈ S µ-a.s. on I, and for each r ∈ It choose θr ≥ 0
such that |θ(s, y)| ≤ θr for every (s, y) ∈ [r, t]× S. Then∫ t

r
|ϕ(s,Xs)| ν(ds) =

∫ t

r
|ϕ(s,Xs)||θ(s,Xs)|µ(ds) ≤ θr

∫ t

r
a(s)µ(ds) <∞

for each r ∈ It. These considerations in combination with Lemma 3.17 imply that
the process It × Ω→ Rk, (r, ω) 7→

∫ t
r ϕ(s,Xs(ω)) ν(ds)(ω) is in fact reconstructible,

consistently bounded, and continuous. So, we have clarified that ψ is well-defined
and consistently bounded.

To show that ψ is (right-)continuous, let (r, x) ∈ It × S and (rn, xn)n∈N be a
sequence in It × S (with rn ≥ r for all n ∈ N) that converges to (r, x). First, we
consider the case r = t, then ψ(t, x) = 0, since µ({t}) = 0. Let q ∈ It be such that
q ≤ rn for almost all n ∈ N. Then

|ψ(rn, xn)| ≤ θq

∫ t

rn
a(s)µ(ds)

for almost each n ∈ N. By dominated convergence, limn↑∞
∫ t
rn
a(s)µ(ds) = 0, which

gives limn↑∞ ψ(rn, xn) = ψ(t, x).
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Let now r < t and choose a µ-null set L ∈ B(J) such that |ϕ(s, y)| ≤ a(s) for
all (s, y) ∈ (Lc ∩ I)× S. For each n ∈ N we define the map φn : It → Rk through

φn(s) := Ern,xn [ϕ(s,Xs)θ(s,Xs)], if s ∈ Lc ∩ [rn, t],

and φn(s) := 0, otherwise. In a similar way, we let φ : It → Rk be defined through
φ(s) := Er,x[ϕ(s,Xs)θ(s,Xs)], if s ∈ Lc ∩ [r, t], and φ(s) := 0, otherwise. Then
Fubini’s theorem entails that

ψ(rn, xn) =
∫
Lc∩[rn,t]

Ern,xn [ϕ(s,Xs)θ(s,Xs)]µ(ds) =
∫
It
φn(s)µ(ds),

ψ(r, x) =
∫
Lc∩[r,t]

Er,x[ϕ(s,Xs)θ(s,Xs)]µ(ds) =
∫
It
φ(s)µ(ds)

for all n ∈ N. Let s ∈ N c ∩ Lc ∩ (r, t], then the map S → Rk, x 7→ ϕ(s, x)θ(s, x)
belongs to Cb(S,Rk), by Proposition 3.3. Hence, the (right-hand) Feller property of
X entails that the map

Is × S → Rk, (r′, x′) 7→ Er′,x′ [ϕ(s,Xs)θ(s,Xs)]

is (right-)continuous. We pick n0 ∈ N such that rn < s for every n ∈ N with n > n0
and set (r(s)

n , x(s)
n ) := (rn+n0 , xn+n0) for all n ∈ N, then (r(s)

n , x(s)
n )n∈N is a sequence

in Is × S that converges to (r, x). Thus,

lim
n↑∞

φn(s) = lim
n↑∞

E
r

(s)
n ,x

(s)
n

[ϕ(s,Xs)θ(s,Xs)] = Er,x[ϕ(s,Xs)θ(s,Xs)] = φ(s).

For s ∈ I with s < r it follows that φn(s) = 0 for almost each n ∈ N. As µ({r}) = 0,
we have shown that limn↑∞ φn(s) = φ(s) for µ-a.e. s ∈ It. Let us choose q ∈ I
and n0 ∈ N such that q ≤ rn for all n ∈ N with n ≥ n0. This in turn gives
supn∈N:n≥n0 |φn(s)| ≤ 1[q,t](s)a(s)θq for µ-a.e. s ∈ It. For this reason, the Dominated
Convergence Theorem A.33 yields that

lim
n↑∞

ψ(rn, xn) = lim
n↑∞

∫
It
φn(s)µ(ds) =

∫
It
φ(s)µ(ds) = ψ(r, x).

This proves the proposition.

3.5 A Markovian Gronwall inequality
By using the concepts of consistent boundedness and local dominance, we aim to
give a general Markovian Gronwall inequality. A well-known result in this direction
is provided by Dynkin [11, Lemma 3.2]. First, two integration by parts formulas are
derived on a non-degenerate interval I in J with T := sup I ∈ I. We initially let ν
be a Borel measure on J with ν({t}) = 0 for all t ∈ J .
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3.20 Lemma. Let a ∈ C(I) be locally of bounded variation, b ∈ B(I) be locally
ν-integrable, and ϕ ∈ C1(R). Then

∫ T

r
ϕ′
(∫ t

r
b(s) ν(ds)

)
b(t)a(t) ν(dt) = ϕ

(∫ T

r
b(s) ν(ds)

)
a(T )

− ϕ(0)a(r)−
∫ T

r
ϕ

(∫ t

r
b(s) ν(ds)

)
a(dt)

for each r ∈ I.

Proof. Clearly, the function B : [r, T ] → R defined via B(t) :=
∫ t
r b(s) ν(ds) is

continuous and of bounded variation. For this reason, the Fundamental Theorem
of Calculus for Lebesgue-Stieltjes integrals entails that C : [r, T ] → R given by
C(t) := ϕ(B(t)) is also continuous and of bounded variation, and satisfies

C(t)− C(r) =
∫ t

r
ϕ′(B(s))B(ds) =

∫ t

r
ϕ′(B(s))b(s) ν(ds)

for all t ∈ [r, T ]. Moreover, the integration by parts formula for Lebesgue-Stieltjes
integrals yields that

∫ T

r
ϕ′(B(t))b(t)a(t) ν(dt) =

∫ T

r
a(t)C(dt)

= C(T )a(T )− C(r)a(r)−
∫ T

r
C(t) a(dt).

By inserting the definition of B and C, we obtain the claim.

In the context of the lemma, there are two cases for the function a that we are
mainly interested in. First, suppose that a(r) =

∫ T
r a(t) ν(dt) for every r ∈ I and

some locally ν-integrable a ∈ B(I). Then we infer that

∫ T

r
ϕ′
(∫ t

r
b(s) ν(ds)

)
b(t)

∫ T

t
a(t′) ν(dt′) ν(dt)

=
∫ T

r

(
ϕ

(∫ t

r
b(s) ν(ds)

)
− ϕ(0)

)
a(t) ν(dt)

for each r ∈ I. Secondly, let a(t) = 1 for all t ∈ I. Then the assertion of the lemma
reduces to

∫ T

r
ϕ′
(∫ t

r
b(s) ν(ds)

)
b(t) ν(dt) = ϕ

(∫ T

r
b(s) ν(ds)

)
− ϕ(0)

for every r ∈ I. After having considered these specific cases, let us prove another
integration by parts formula.
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3.21 Lemma. Let a ∈ B(I) be locally bounded, b ∈ B(I) be locally ν-integrable,
and ϕ ∈ C1(R). Then∫ T

r
b(s)

∫ T

s
ϕ′
(∫ t

s
b(s′) ν(ds′)

)
a(t) ν(dt) ν(ds)

=
∫ T

r

(
ϕ

(∫ t

r
b(s) ν(ds)

)
− ϕ(0)

)
a(t) ν(dt)

for all r ∈ I.

Proof. From Fubini’s theorem and the fact that 1[s,T ](t) = 1[r,t](s) for all s, t ∈ [r, T ]
we get that ∫ T

r
b(s)

∫ T

s
ϕ′
(∫ t

s
b(s′) ν(ds′)

)
a(t) ν(dt) ν(ds)

=
∫ T

r

∫ t

r
b(s)ϕ′

(∫ t

s
b(s′) ν(ds′)

)
ν(ds)a(t) ν(dt).

Let t ∈ [r, T ], then B : [r, t] → R defined by B(s) :=
∫ t
s b(s′) ν(ds′) is continuous

and of bounded variation. Therefore, the Fundamental Theorem of Calculus for
Lebesgue-Stieltjes integrals implies that

ϕ(B(t))− ϕ(B(r)) =
∫ t

r
ϕ′(B(s))B(ds) = −

∫ t

r
ϕ′(B(s))b(s) ν(ds).

Together with the last equation, this yields the correct result.

Under the hypotheses of the lemma, let us make the choice ϕ(x) = xn+1/(n+ 1)!
for all x ∈ R and some n ∈ N0, then∫ T

r
b(s)

∫ T

s

(∫ t

s
b(s′) ν(ds′)

)n
a(t)
n! ν(dt) ν(ds)

=
∫ T

r

(∫ t

r
b(s) ν(ds)

)n+1
a(t)

(n+ 1)! ν(dt)

for each r ∈ I. This is the main case that is of our interest. From now on we suppose
more generally that ν is a non-negative continuous additive functional of X that is
of the form

ν(B)(ω) =
∫
B
θ(s,Xs(ω))µ(ds)

for all (ω,B) ∈ Ω×B(J), some consistently bounded θ ∈ B(J × S,R+), and some
Borel measure µ on J with µ({t}) = 0 for all t ∈ J .

3.22 Proposition. Let α : I×Ω→ R+ be reconstructible and consistently bounded,
b ∈ B(I × S,R+) be locally µ-dominated, and c ∈ Bb(I,R+). Suppose that (un)n∈N0

is a sequence of µ-consistently bounded functions in B(I × S,R+) subject to

un(r, x) ≤ Er,x[αr] + c(r)Er,x
[ ∫ T

r
b(s,Xs)un−1(s,Xs) ν(ds)

]
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for each n ∈ N and every (r, x) ∈ I × S. Then

un(r, x) ≤ Er,x[αr]

+ c(r)
n−2∑
i=0

Er,x

[ ∫ T

r

(∫ t

r
b(s,Xs)c(s) ν(ds)

)i
b(t,Xt)
i! αt ν(dt)

]

+ c(r)Er,x
[ ∫ T

r

(∫ t

r
b(s,Xs)c(s) ν(ds)

)n−1 (b · u0)
(n− 1)!(t,Xt) ν(dt)

]

for all n ∈ N with n ≥ 2 and each (r, x) ∈ I × S.

Proof. Let us prove the assertion by induction over n ∈ N with n ≥ 2. To abbreviate
notation, we set γ(r, x) := b(r, x)c(r) for all (r, x) ∈ I × S. In the initial induction
step n = 2 Proposition 3.18 yields that

u2(r, x) ≤ Er,x[αr] + c(r)Er,x
[ ∫ T

r
b(s,Xs)αs ν(ds)

]

+ c(r)Er,x
[ ∫ T

r
γ(s,Xs)

∫ T

s
(b · u0)(t,Xt) ν(dt) ν(ds)

]

for each (r, x) ∈ I × S. For the last expectation Lemma 3.21 gives us that

Er,x

[ ∫ T

r
γ(s,Xs)

∫ T

s
(b · u0)(t,Xt) ν(dt) ν(ds)

]

= Er,x

[ ∫ T

r

(∫ t

r
γ(s,Xs) ν(ds)

)
(b · u0)(t,Xt) ν(dt)

]
.

This concludes the initial induction step. Let us now suppose that the claim is valid
for some n ∈ N with n ≥ 2 and fix (r, x) ∈ I × S. Then Proposition 3.18 implies
that

un+1(r, x) ≤ Er,x[αr] + c(r)Er,x
[ ∫ T

r
b(s,Xs)αs ν(ds)

]

+ c(r)Er,x
[
n−2∑
i=0

∫ T

r
γ(s,Xs)

∫ T

s

(∫ t

s
γ(s′, Xs′) ν(ds′)

)i
b(t,Xt)
i! αt ν(dt) ν(ds)

]

+ c(r)Er,x
[ ∫ T

r
γ(s,Xs)

∫ T

s

(∫ t

s
γ(s′, Xs′) ν(ds′)

)n−1 (b · u0)
(n− 1)!(t,Xt) ν(dt) ν(ds)

]
.

Consequently, we deduce from Lemma 3.21 that

un+1(r, x) ≤ Er,x[αr] + c(r)Er,x
[ ∫ T

r
b(s,Xs)αs ν(ds)

]

+ c(r)
n−2∑
i=0

Er,x

[ ∫ T

r

(∫ t

r
γ(s,Xs) ν(ds)

)i+1
b(t,Xt)
(i+ 1)!αt ν(dt)

]

+ c(r)Er,x
[ ∫ T

r

(∫ t

r
γ(s,Xs) ν(ds)

)n (b · u0)
n! (t,Xt) ν(dt)

]
.

Hence, the assertion follows.
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By using the estimate in Amann [1, Lemma 6.1], the announced inequality can
be proven inductively.
3.23 Markovian Gronwall Inequality. Let α : I × Ω → R+ be reconstructible
and consistently bounded, b ∈ B(I×S,R+) be locally µ-dominated, and in addition
c ∈ Bb(I,R+). If u ∈ B(I × S,R+) is µ-consistently bounded and satisfies

u(r, x) ≤ Er,x[αr] + c(r)Er,x
[ ∫ T

r
b(s,Xs)u(s,Xs) ν(ds)

]
for each (r, x) ∈ I × S, then

u(r, x) ≤ Er,x[αr] + c(r)Er,x
[ ∫ T

r
exp

(∫ t

r
b(s,Xs)c(s) ν(ds)

)
b(t,Xt)αt ν(dt)

]
for every (r, x) ∈ I × S.
Proof. Proposition 3.22 implies that

u(r, x) ≤ Er,x[αr]

+ c(r)
n−1∑
i=0

Er,x

[ ∫ T

r

(∫ t

r
b(s,Xs)c(s) ν(ds)

)i
b(t,Xt)
i! αt ν(dt)

]

+ c(r)Er,x
[ ∫ T

r

(∫ t

r
b(s,Xs)c(s) ν(ds)

)n (b · u)
n! (t,Xt) ν(dt)

]
for every (r, x) ∈ I × S and each n ∈ N. Monotone convergence entails that

lim
n↑∞

n−1∑
i=0

Er,x

[ ∫ T

r

(∫ t

r
b(s,Xs)c(s) ν(ds)

)i
b(t,Xt)
i! αt ν(dt)

]

= Er,x

[ ∫ T

r
exp

(∫ t

r
b(s,Xs)c(s) ν(ds)

)
b(t,Xt)αt ν(dt)

]
.

Moreover, since u is µ-consistently bounded, dominated convergence gives

lim
n↑∞

Er,x

[ ∫ T

r

(∫ t

r
b(s,Xs)c(s) ν(ds)

)n (b · u)
n! (t,Xt) ν(dt)

]
= 0.

This establishes the claim.

We make another estimation that rests on Amann [1, Corollary 6.2].
3.24 Corollary. Let α : I × Ω → R+ be reconstructible and consistently bounded,
and a, b ∈ B(I × S,R+) be locally µ-dominated. Suppose that c ∈ Bb(I,R+), and
u ∈ B(I × S,R+) is µ-consistently bounded and fulfills

u(r, x) ≤ Er,x[αr] + c(r)Er,x
[ ∫ T

r
a(s,Xs) + b(s,Xs)u(s,Xs) ν(ds)

]
for all (r, x) ∈ I × S. If α has decreasing paths and c is decreasing, then

u(r, x) ≤ Er,x

[
ec(r)

∫ T
r
b(s,Xs) ν(ds)αr

]
+ c(r)Er,x

[ ∫ T

r
e
∫ t
r
b(s,Xs)c(s) ν(ds)a(t,Xt) ν(dt)

]
for each (r, x) ∈ I × S.
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Proof. First, η : I ×Ω→ R+ given by ηr(ω) := αr(ω) + c(r)
∫ T
r a(s,Xs(ω)) ν(ds)(ω)

is a reconstructible consistently bounded process, as Lemma 3.17 asserts. Hence,
the Markovian Gronwall Inequality 3.23 in combination with Lemma 3.20 yield

u(r, x) ≤ Er,x[ηr] + c(r)Er,x
[ ∫ T

r
ec(r)

∫ t
r
b(s,Xs) ν(ds)b(t,Xt) ν(dt)αr

]

+ c(r)Er,x
[ ∫ T

r
e
∫ t
r
b(s,Xs)c(s) ν(ds)b(t,Xt)c(t)

∫ T

t
a(t′, Xt′) ν(dt′) ν(dt)

]

= Er,x

[
ec(r)

∫ T
r
b(s,Xs) ν(ds)αr

]
+ c(r)Er,x

[ ∫ T

r
e
∫ t
r
b(s,Xs)c(s) ν(ds)a(t,Xt) ν(dt)

]

for all (r, x) ∈ I × S, since, by assumption, αt(ω) ≤ αr(ω) and c(t) ≤ c(r) for each
(t, ω) ∈ [r, T ]× Ω.



Chapter 4

Markovian Integral Equations

This chapter contains an analysis of multidimensional Markovian integral equations
that are formulated with a consistent progressive Markov process that has Borel
measurable transition probabilities. In Section 4.1 we first give a precise meaning to
Markovian terminal value problems by defining (approximate) solutions. Under the
hypothesis that the strong Markov property holds, we prove a characterization of
solutions that turns out to be useful for mild solutions to PPDEs in Chapter 5. In
Section 4.2 we compare (approximate) solutions, prove their stability, and investigate
their growth behavior. In Section 4.3 we construct solutions locally in time via local
boundedness and local Lipschitz continuity with respect to a certain non-negative
continuous additive functional.

In Section 4.4 we are concerned with the derivation of a solution that is unique
and non-extendible in time among a certain class of maps. In this connection, a
boundary and growth criterion decides whether the non-extendible solution turns
into a global solution. By requiring the (right-hand) Feller property of the underlying
Markov process, we give weak conditions under which the derived solution becomes
continuous. Furthermore, a Picard iteration result ensures global solutions to affine
Markovian equations, the type of integral equations we treat in Section 4.5. There,
we verify the absolute convergence of an intrinsic matrix series. This produces a
matrix-valued operator that leads us to a multidimensional Feynman-Kac formula.
The aim of Section 4.6 is to establish a global existence and uniqueness result for
one-dimensional Markovian equations. To this end, we represent the difference of
two solutions via the Feynman-Kac formula, deduce one-sided bounds for solutions,
and study the boundary behavior of solutions.

4.1 The Markovian terminal value problem
In what follows, we use the pseudometric topological setting of Section 3.1 for the
choice J = [0, T ] with T > 0. More precisely, let S be a Polish space with Borel
σ-field S and ρ be a complete metric that induces the topology of S. We require
that

Φ : [0, T ]× S → S, (t, x) 7→ Φt(x)

47
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is a continuous process such that Φ is Lipschitz continuous in x ∈ S, uniformly in
t ∈ [0, T ], and Φt ◦ Φs = Φs∧t for all s, t ∈ [0, T ]. We let ΦT (x) = x for all x ∈ S
and endow [0, T ]× S with the pseudometric dS given by (PM). Then [0, T ]× S is a
separable complete pseudometric space whose Borel σ-field B([0, T ]×S) is included
in B([0, T ])⊗S .

We also assume that X = (X, (Ft)t∈[0,T ],P) is a consistent progressive Markov
process on a measurable space (Ω,F ) with state space S that is Borel. Let k ∈ N,
and | · | denote both the Euclidean norm on Rk and the Frobenius norm on Rk×k.
Moreover, let κ be a continuous k-dimensional additive map of X for which there
are a right-continuous θ ∈ Bb([0, T ] × S,R+) and a Borel measure µ on [0, T ] with
µ({t}) = 0 for all t ∈ [0, T ] such that

|κi|([r, t]) ≤
∫ t

r
θ(s,Xs)µ(ds) (4.1)

for all i ∈ {1, . . . , k} and each r, t ∈ [0, T ] with r ≤ t. Eventually, we note that
ν : Ω × B([0, T ]) → [0,∞] defined via ν(B)(ω) :=

∫
B θ(s,Xs(ω))µ(ds) is itself a

non-negative continuous additive functional, by Lemma 3.16. Hence, let us call κ of
standard form if κi = ν for each i ∈ {1, . . . , k}.

We let D ∈ B(Rk) have non-empty interior and f : [0, T ] × S × D → Rk be
measurable with respect to B([0, T ]× S)⊗ (D ∩B(Rk)). The mapping f is called
right-continuous if for each (r, x, z) ∈ [0, T ]× S ×D and every ε > 0 there is δ > 0
such that

|f(s, y, z′)− f(r, x, z)| < ε

for all (s, y, z′) ∈ [r, T ]× S ×D with dS((s, y), (r, x)) + |z′ − z| < δ. Clearly, if this
is the case, then f is consistent in the sense that f(r, x, z) = f(r,Φr(x), z) for all
(r, x, z) ∈ [0, T ]× S ×D. After these preparations, let us introduce the Markovian
integral equation

E[du(t,Xt)] = E[f(t,Xt, u(t,Xt))κ(dt)] for t ∈ [0, T ]. (4.2)

Namely, for each ε ∈ B([0, T ] × S,R+) for which
∫ T
r ε(s,Xs) ν(ds) is finite and

Pr,x-integrable for all (r, x) ∈ [0, T ] × S, we introduce the notion of ε-approximate
solutions.

4.1 Definition. An ε-approximate solution to (4.2) on a non-degenerate interval I
in [0, T ] is a consistent map u ∈ B(I × S,D) such that

|u(t,Xt)|+ max
i∈{1,...,k}

∫ t

r
|fi(s,Xs, u(s,Xs))| |κi|(ds)

is a finite Pr,x-integrable function and∣∣∣∣∣Er,x[u(t,Xt)]−u(r, x)−Er,x
[ ∫ t

r
f(s,Xs, u(s,Xs))κ(ds)

]∣∣∣∣∣ ≤ Er,x

[ ∫ t

r
ε(s,Xs) ν(ds)

]

for all r, t ∈ I with r ≤ t and each x ∈ S. Every 0-approximate solution to (4.2)
on I is called a solution to (4.2) on I. If in addition I = [0, T ], then we will speak
about a global solution.
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Let us discuss several facts on approximate solutions. We temporarily let I be
a non-degenerate interval in [0, T ] and u ∈ B(I × S,D). Then the F̂r,t-measurable
function maxi∈{1,...,k}

∫ t
r |fi(s,Xs, u(s,Xs))| |κi|(ds) is finite for all r, t ∈ I with r ≤ t

if and only if the Borel measurable function

I → R, s 7→ fi(s,Xs(ω), u(s,Xs(ω)))

is locally |κi|(·)(ω)-integrable for every i ∈ {1, . . . , k} and each ω ∈ Ω. In this case,
it follows readily that∣∣∣∣∣

∫ t

r
f(s,Xs, u(s,Xs))κ(ds)

∣∣∣∣∣
2

=
k∑
i=1

∣∣∣∣∣
∫ t

r
fi(s,Xs, u(s,Xs))κi(ds)

∣∣∣∣∣
2

≤
k∑
i=1

∣∣∣∣∣
∫ t

r
|fi(s,Xs, u(s,Xs))| |κi|(ds)

∣∣∣∣∣
2 (4.3)

for each r, t ∈ I with r ≤ t. Hence, if maxi∈{1,...,k}
∫ t
r |fi(s,Xs, u(s,Xs))| |κi|(ds)

is finite and Pr,x-integrable, then
∫ t
r f(s,Xs, u(s,Xs))κ(ds) is well-defined and also

Pr,x-integrable.
Assume now that u is an ε-approximate solution to (4.2) on I. Then for each

non-degenerate interval H in I, the restriction of u to H × S is an ε-approximate
solution to (4.2) on H. Furthermore,∣∣∣∣∣Er,x[u(t,Xt)]− Er,x[u(s,Xs)]− Er,x

[ ∫ t

s
f(s′, Xs′ , u(s′, Xs′))κ(ds′)

]∣∣∣∣∣
≤ Er,x

[∣∣∣∣∣Es,Xs [u(t,Xt)]− u(s,Xs)− Es,Xs
[ ∫ t

s
f(s′, Xs′ , u(s′, Xs′))κ(ds′)

]∣∣∣∣∣
]

≤ Er,x

[
Es,Xs

[ ∫ t

s
ε(s′, Xs′) ν(ds′)

]]
= Er,x

[ ∫ t

s
ε(s′, Xs′) ν(ds′)

]

for all r, s, t ∈ I with r ≤ s ≤ t and each x ∈ S, by Propositions A.32 and 3.7. In
particular, if u is a solution to (4.2), then this shows us that

Er,x[u(t,Xt)] = Er,x[u(s,Xs)] + Er,x

[ ∫ t

s
f(s′, Xs′ , u(s′, Xs′))κ(ds′)

]

for each r, s, t ∈ I with r ≤ s ≤ t and every x ∈ S. Finally, under an integrability
condition, the concatenation of two approximate solutions in time yields another
approximate solution.

4.2 Lemma. Let u and v be two ε-approximate solutions to (4.2) on non-degenerate
intervals H and I in [0, T ], respectively, with s0 := supH ∈ H and s0 = inf I ∈ I.
Assume that u(s0, ·) = v(s0, ·) and

|v(t,Xt)|+ max
i∈{1,...,k}

∫ t

s0
|fi(s,Xs, v(s,Xs))| |κi|(ds)

is a finite Pr,x-integrable function for all r, t ∈ H ∪ I with r < s0 < t and each
x ∈ S. Then w : (H ∪ I) × S → D given by w(r, x) := u(r, x) for r < s0 and
w(r, x) := v(r, x) for r ≥ s0 is another ε-approximate solution to (4.2) on H ∪ I.
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Proof. First, since u ∈ B(H × S,D) and v ∈ B(I × S,D), we directly obtain that
w ∈ B((H ∪ I) × S,D), and the consistency of w is easily seen. Let r, t ∈ H ∪ I
with r ≤ t. If either t ≤ s0 or r ≥ s0, then the definition of w implies that

|w(t,Xt)|+ max
i∈{1,...,k}

∫ t

r
|fi(s,Xs, w(s,Xs))| |κi|(ds) (4.4)

is a finite Pr,x-integrable function and∣∣∣∣∣Er,x
[
w(t,Xt)− w(r,Xr)−

∫ t

r
f(s,Xs, w(s,Xs))κ(ds)

]∣∣∣∣∣ ≤ Er,x

[ ∫ t

r
ε(s,Xs) ν(ds)

]

for each x ∈ S, as u and v are two ε-approximate solutions to (4.2) on H and I,
respectively. Now, let r < s0 < t, then the splitting∫ t

r
|fi(s,Xs, w(s,Xs))| |κi|(ds) =

∫ s0

r
|fi(r′, Xr′ , u(r′, Xr′))| |κi|(dr′)

+
∫ t

s0
|fi(s,Xs, v(s,Xs))| |κi|(ds)

for all i ∈ {1, . . . , k} in combination with the assumptions of the lemma show that
(4.4) is once again a finite Pr,x-integrable function. By Proposition 3.7,∣∣∣∣∣Er,x[w(t,Xt)]− w(r, x)− Er,x

[ ∫ t

r
f(s,Xs, w(s,Xs))κ(ds)

]∣∣∣∣∣
≤
∣∣∣∣∣Er,x[u(s0, Xs0)]− u(r, x)− Er,x

[ ∫ s0

r
f(r′, Xr′ , u(r′, Xr′))κ(dr′)

]∣∣∣∣∣
+
∣∣∣∣∣Er,x[v(t,Xt)]− Er,x[v(s0, Xs0)]− Er,x

[ ∫ t

s0
f(s,Xs, v(s,Xs))κ(ds)

]∣∣∣∣∣
≤ Er,x

[ ∫ s0

r
ε(s,Xs) ν(ds)

]
+ Er,x

[
Es0,Xs0

[ ∫ t

s0
ε(s,Xs) ν(ds)

]]

= Er,x

[ ∫ t

r
ε(s,Xs) ν(ds)

]
,

because u(s0, ·) = v(s0, ·). This completes the proof.

On a non-degenerate interval I in [0, T ], we introduce notions of admissibility of
a map u ∈ B(I × S,D). We call u (weakly) µ-admissible if for each r, t ∈ I with
r ≤ t there is a µ-null set N ∈ B([0, T ]) such that

u((N c ∩ [r, t])× S) is relatively compact in D◦ (resp. D).

We say that u is (weakly) admissible if u([r, t] × S) is relatively compact in D◦

(resp. D) for all r, t ∈ I with r ≤ t. For example, let for the moment f be locally
µ-bounded and u be weakly µ-admissible. Then for each r, t ∈ I with r ≤ t there is
a compact set K in D such that

u(·, y) ∈ K for all y ∈ S µ-a.s. on [r, t].
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By Lemma 2.5, we can choose a µ-dominated function a ∈ B([0, T ]×S,R+) so that
|f(t, x, z)| ≤ a(t, x) for all (t, x, z) ∈ [0, T ]× S ×K. Then from (4.1) we get

max
i∈{1,...,k}

∫ t

r
|fi(s,Xs, u(s,Xs))| |κi|(ds) ≤

∫ t

r
a(s,Xs) ν(ds).

This implies that the left-hand expression is finite and Pr,x-integrable. Hence, u is
an ε-approximate solution if and only if it is consistent and the inequality appearing
in Definition 4.1 holds.

Let us add a terminal value condition to our Markovian integral equation. We
choose a map g ∈ B(S,D) for which Er,x[|g(XT )|] is finite for all (r, x) ∈ [0, T ]× S,
and introduce the Markovian terminal value problem

E[du(t,Xt)] = E[f(t,Xt, u(t,Xt))κ(dt)] for t ∈ [0, T ], u(T, ·) = g. (M)

To this end, we define a non-degenerate interval I in [0, T ] to be admissible whenever
max I = T . In other words, I is admissible if it is of the form I = (t, T ] or I = [t, T ]
for some t ∈ [0, T ). By an ε-approximate solution to (M) on an admissible interval
I, we mean an ε-approximate solution u to (4.2) on I that satisfies

u(T, x) = g(x) for all x ∈ S.

Correspondingly, every 0-approximate solution to (M) on I is a solution to (M) on
I, and we refer to a global solution provided I = [0, T ]. Additionally, an admissible
solution u to (M) on I is said to be extendible if there is an admissible solution v to
(M) on another admissible interval J such that

I ( J and u = v on I × S.

Otherwise, we say that u is non-extendible and I is called a maximal interval of
existence. In Section 4.4 we derive a non-extendible admissible solution such that
the maximal interval of existence is open in [0, T ]. To this end, a characterization
of solutions is required.

4.3 Lemma. Let I be an admissible interval. Then a mapping u ∈ B(I × S,D)
solves (M) on I if and only if maxi∈{1,...,k}

∫ T
r |fi(s,Xs, u(s,Xs))| |κi|(ds) is a finite

Pr,x-integrable function such that

Er,x[g(XT )] = u(r, x) + Er,x

[ ∫ T

r
f(s,Xs, u(s,Xs))κ(ds)

]

for each (r, x) ∈ I × S.

Proof. The only if direction is covered by the definition of a solution to (4.2) on I,
because u(T, x) = g(x) for each x ∈ S. For if we first notice that u is automatically
consistent, as Pr,x = Pr,Φr(x) for all (r, x) ∈ [0, T ] × S. Let r, t ∈ I with r ≤ t and
x ∈ S, then

max
i∈{1,...,k}

∫ t

r
|fi(s,Xs, u(s,Xs))| |κi|(ds)
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is clearly finite and Pr,x-integrable. From Propositions A.32 and 3.7 in combination
with (4.3) we get that

Er,x[|u(t,Xt)|] ≤ Er,x[Et,Xt [|g(XT )|]]

+
√
kEr,x

[
Et,Xt

[
max

i∈{1,...,k}

∫ T

t
|fi(t′, Xt′ , u(t′, Xt′))| |κi|(dt′)

]]

= Er,x[|g(XT )|] +
√
kEr,x

[
max

i∈{1,...,k}

∫ T

t
|fi(t′, Xt′ , u(t′, Xt′))| |κi|(dt′)

]

and the last term is finite. Another application of Proposition 3.7 yields that

Er,x[u(t,Xt)] = Er,x[Et,Xt [g(XT )]]− Er,x
[
Et,Xt

[ ∫ T

t
f(t′, Xt′ , u(t′, Xt′))κ(dt′)

]]

= Er,x[g(XT )]− Er,x
[ ∫ T

t
f(t′, Xt′ , u(t′, Xt′))κ(dt′)

]

= u(r, x) + Er,x

[ ∫ t

r
f(s,Xs, u(s,Xs))κ(ds)

]
,

as desired. Now, the claim follows.

In the end, we give an equivalent description of solutions to Markovian integral
equations under the hypothesis that X is strongly Markov.

4.4 Lemma. Suppose that X is strongly Markov and let I be a non-degenerate
interval in [0, T ]. Then a map u ∈ B(I × S,D) solves (4.2) on I if and only if

|u(t ∧ τ,Xt∧τ )|+ max
i∈{1,...,k}

∫ t∧τ

r
|fi(s,Xs, u(s,Xs))| |κi|(ds)

is a finite Pr,x-integrable function and

Er,x[u(t ∧ τ,Xt∧τ )] = u(r, x) + Er,x

[ ∫ t∧τ

r
f(s,Xs, u(s,Xs))κ(ds)

]

for all r, t ∈ I with r ≤ t, each (Fs)s∈I-stopping time τ with τ ≥ r, and every x ∈ S.

Proof. By choosing τ = ∞, we immediately see that the stated conditions are
sufficient. To show the necessity, let t ∈ I, then from Lemma 3.17 we learn that the
process Y : It × Ω→ Rk defined through

Yr(ω) := u(t,Xt(ω))−
∫ t

r
f(s,Xs(ω), u(s,Xs(ω)))κ(ds)(ω)

is reconstructible and continuous. Here, as usually, It denotes the set of all s ∈ I
with s ≤ t. We let (r, x) ∈ It × S and fix an (Fs)s∈I-stopping time with τ with
τ ≥ r. By (4.3),∣∣∣∣∣

∫ t

s
f(s′, Xs′ , u(s′, Xs′))κ(ds′)

∣∣∣∣∣ ≤ √k max
i∈{1,...,k}

∫ t

r
|fi(s′, Xs′ , u(s′, Xs′))| |κi|(ds′)
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for all s ∈ [r, t]. Hence, Er,x[|Yt∧τ |] and Es,y[|Ys|] are finite for every (s, y) ∈ [r, t]×S.
In consequence, Proposition 3.13 implies that u(t ∧ τ,Xt∧τ ) is Pr,x-integrable and
Er,x[u(t ∧ τ,Xt∧τ )] = Er,x[Yt∧τ ]. Thus,

Er,x[u(t ∧ τ,Xt∧τ )] = Er,x[u(t,Xt)]− Er,x
[ ∫ t

t∧τ
f(s,Xs, u(s,Xs))κ(ds)

]

= u(r, x) + Er,x

[ ∫ t∧τ

r
f(s,Xs, u(s,Xs))κ(ds)

]
.

This proves the assertion.

4.2 Comparison, stability, and growth behavior

We first intend to compare (approximate) solutions, which yields an uniqueness
result for weakly µ-admissible solutions. Afterwards a stability result is proven that
is used to construct solutions in Sections 4.3 and 4.6. Furthermore, we deduce a
growth estimate that plays a major role in the proof of Proposition 4.17, where we
show the uniform convergence of Picard iterations. We recall that D ∈ B(Rk) and
f : [0, T ]×S×D → Rk is B([0, T ]×S)⊗ (D∩B(Rk))-measurable. Let in addition
g ∈ Bb(S,D) and note that

∣∣∣∣∣
∫ t

r
a(s,Xs)κ(ds)

∣∣∣∣∣ ≤
∫ t

r
|a(s,Xs)| ν(ds) (4.5)

for each admissible interval I, every locally µ-dominated map a ∈ B(I×S,Rk), and
all r, t ∈ I with r ≤ t, by Proposition A.32 and (4.1). We use this fact in what
follows.

4.5 Proposition. Assume that f |([0, T ] × S × W ) is Lipschitz µ-continuous for
some set W ⊂ D. That is, there is a µ-dominated λ ∈ B([0, T ]× S,R+) such that

|f(t, x, z)− f(t, x, z′)| ≤ λ(t, x)|z − z′| for all (t, x) ∈ [0, T ]× S

and each z, z′ ∈ W . Let δ, ε ∈ B([0, T ]× S,R+) be µ-dominated, h ∈ Bb(S,D), and
I be an admissible interval. Then every δ-approximate solution u to (M) on I and
each ε-approximate solution v to (M) on I, where g is replaced by h, satisfy

|u−v|(r, x) ≤ Er,x

[
exp

(∫ T

r
λ(s,Xs) ν(ds)

)(
|g−h|(XT )+

∫ T

r
(δ+ε)(s,Xs) ν(ds)

)]

for all (r, x) ∈ I×S provided u, v are µ-consistently bounded and u(·, y), v(·, y) ∈ W
for each y ∈ S µ-a.s. on I.
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Proof. Let N ∈ B([0, T ]) be some µ-null set such that u(s, y), v(s, y) ∈ W for every
(s, y) ∈ (N c ∩ I)× S. Then the triangle inequality and (4.5) yield

|u− v|(r, x) ≤ Er,x

[ ∫ T

r
(δ + ε)(s,Xs) ν(ds)

]
+ |Er,x[(g − h)(XT )]|

+
∣∣∣∣∣Er,x

[ ∫ T

r
(f(s,Xs, u(s,Xs))− f(s,Xs, v(s,Xs)))κ(ds)

]∣∣∣∣∣
≤ Er,x[|g − h|(XT )] + Er,x

[ ∫ T

r
(δ + ε)(s,Xs) ν(ds)

]

+ Er,x

[ ∫ T

r
λ(s,Xs)|u− v|(s,Xs) ν(ds)

]

for all (r, x) ∈ I × S, since |f(s, y, u(s, y))− f(s, y, v(s, y))| ≤ λ(s, y)|u− v|(s, y) for
each (s, y) ∈ (N c ∩ [r, T ])×S. By Lemma 3.17, the process α : I ×Ω→ R+ defined
by

αr(ω) := |g − h|(XT (ω)) +
∫ T

r
(δ + ε)(s,Xs(ω)) ν(ds)(ω)

is reconstructible and consistently bounded, and has decreasing continuous paths.
Hence, Corollary 3.24 leads us to the asserted estimate.

From the comparison we get an uniqueness result, by using the linear space (2.1).
Note that the procedure of the proof originates from Theorem 6.7 in Amann [1].

4.6 Corollary. Assume that f ∈ BC1−
µ ([0, T ]× S ×D,Rk). Then there is at most

a unique weakly µ-admissible solution to (M) on every admissible interval I.

Proof. Suppose that u and v are two weakly µ-admissible solutions to (M) on I and
let r ∈ I. Then there is a compact set K in D such that u(·, y), v(·, y) ∈ K for
all y ∈ S µ-a.s. on [r, T ]. Proposition 2.8 yields a neighborhood W of K in D such
that f |([0, T ] × S ×W ) is Lipschitz µ-continuous. Hence, u = v on [r, T ] × S, by
Proposition 4.5. The assertion follows.

Now, we consider stability.

4.7 Proposition. Let f ∈ BC1−
µ ([0, T ]×S×D,Rk) and I be an admissible interval.

For all n ∈ N let εn ∈ B([0, T ] × S,R+) be µ-dominated, gn ∈ Bb(S,D), and un
be an εn-approximate solution to (M) on I with g replaced by gn. Assume that the
following two conditions hold:

(i) The sequences (gn)n∈N and
( ∫ T

0 εn(t,Xt) ν(dt)
)
n∈N

converge uniformly to g and
0, respectively.

(ii) For each r ∈ I there is a compact set K in D with ⋃n∈N un([r, T ]× S) ⊂ K.

Then (un)n∈N converges locally uniformly in t ∈ I and uniformly in x ∈ S to the
unique weakly admissible solution to (M) on I.
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Proof. As uniqueness is covered by Corollary 4.6, we directly turn to the existence
claim. Let r ∈ I and K be a compact set in D such that un([r, T ] × S) ⊂ K for
all n ∈ N. By Proposition 2.8, there exist some neighborhood W of K in D and a
µ-dominated λ ∈ B([r, T ] × S,R+) with |f(t, x, z) − f(t, x, z′)| ≤ λ(t, x)|z − z′| for
all (t, x) ∈ [r, T ]× S and each z, z′ ∈ W . Thus, Proposition 4.5 ensures that

|um − un|(s, x) ≤ Es,x

[
e
∫ T
s
λ(t,Xt) ν(dt)

(
|gm − gn|(XT ) +

∫ T

s
(εm + εn)(t,Xt) ν(dt)

)]

for allm,n ∈ N and every (s, x) ∈ [r, T ]×S. Since (gn)n∈N is uniformly convergent, it
is a uniformly Cauchy sequence. That is, limn↑∞ supm∈N:m≥n supx∈S |gm−gn|(x) = 0.
As limn↑∞ supω∈Ω

∫ T
0 εn(t,Xt(ω)) ν(dt)(ω) = 0, it follows that

lim
n↑∞

sup
m∈N:m≥n

sup
(s,x)∈[r,T ]×S

|um − un|(s, x) = 0.

In other words, (un)n∈N is a uniformly Cauchy sequence on [r, T ]× S. As r ∈ I has
been arbitrarily chosen, this shows that (un)n∈N converges locally uniformly in t ∈ I
and uniformly in x ∈ S to some consistently bounded u ∈ B(I × S,Rk).

We now check that u is a weakly admissible solution to (M) on I. To this end, let
r ∈ I andK be a compact set inD fulfilling un([r, T ]×S) ⊂ K for all n ∈ N, which in
turn gives u([r, T ]×S) ⊂ K. Let us also pick some µ-dominated λ ∈ B([r, T ]×S,R+)
such that |f(t, x, z)− f(t, x, z′)| ≤ λ(t, x)|z − z′| for all (t, x) ∈ [r, T ]× S and every
z, z′ ∈ K. Then∣∣∣∣∣un(s, x)− Es,x[g(XT )]− Es,x

[ ∫ T

s
f(t,Xt, u(t,Xt))κ(dt)

]∣∣∣∣∣
≤ Es,x[|gn − g|(XT )] + Es,x

[ ∫ T

s
λ(t,Xt)|un − u|(t,Xt) + εn(t,Xt) ν(dt)

]

for all n ∈ N and each (s, x) ∈ [r, T ] × S. This entails that (un)n∈N also converges
locally uniformly in t ∈ I and uniformly in x ∈ S to the map

I × S → Rk, (r, x) 7→ Er,x[g(XT )]− Er,x
[ ∫ T

r
f(s,Xs, u(s,Xs))κ(ds)

]
.

This proves the proposition.

We conclude with a growth estimate.

4.8 Proposition. Assume that f is affine µ-bounded. In other words, there are
two µ-dominated a, b ∈ B([0, T ]× S,R+) with |f(t, x, z)| ≤ a(t, x) + b(t, x)|z| for all
(t, x, z) ∈ [0, T ] × S × D. Let ε ∈ B([0, T ] × S,R+) be µ-dominated and I be an
admissible interval, then

|u(r, x)| ≤ Er,x

[
exp

(∫ T

r
b(s,Xs) ν(ds)

)(
|g(XT )|+

∫ T

r
(a+ ε)(s,Xs) ν(ds)

)]

for every µ-consistently bounded ε-approximate solution u to (M) on I and each
(r, x) ∈ I × S. In particular, u is bounded.
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Proof. From the triangle inequality and (4.5) we get that

|u(r, x)| ≤ Er,x

[ ∫ T

r
ε(s,Xs) ν(ds)

]
+ |Er,x[g(XT )]|

+
∣∣∣∣∣Er,x

[ ∫ T

r
f(s,Xs, u(s,Xs))κ(ds)

]∣∣∣∣∣
≤ Er,x[|g(XT )|] + Er,x

[ ∫ T

r
(a+ ε)(s,Xs) ν(ds)

]

+ Er,x

[ ∫ T

r
b(s,Xs)|u(s,Xs)| ν(ds)

]

for every (r, x) ∈ I × S, as |f(s,Xs, u(s,Xs))| ≤ a(s,Xs) + b(s,Xs)|u(s,Xs)| for all
s ∈ [r, T ]. From Lemma 3.17 we know that the process α : I × Ω→ R+ defined by

αr(ω) := |g(XT (ω))|+
∫ T

r
(a+ ε)(s,Xs(ω)) ν(ds)(ω)

is reconstructible and consistently bounded, and has decreasing continuous paths.
In consequence, Corollary 3.24 gives the claimed estimate. To justify that u is
actually bounded, let a, b, ε ∈ B([0, T ],R+) be three µ-integrable functions such
that a(·, y) ≤ a, b(·, y) ≤ b, and ε(·, y) ≤ ε for all y ∈ S µ-a.s. Then

|u(r, x)| ≤ exp
(
θ
∫ T

0
b(s)µ(ds)

)(
sup
y∈S
|g(y)|+ θ

∫ T

0
a(s) + ε(s)µ(ds)

)

for every (r, x) ∈ I × S with θ := sup(s,y)∈[0,T ]×S θ(s, y).

4.3 Local existence in time
We aim to construct an approximate solution locally in time as concatenation of
approximate solutions. Once this is achieved, we apply the stability result of the
previous section to deduce a solution locally in time as uniform limit of a sequence of
approximate solutions. This is a common approach in the classical theory of ODEs
(see for instance Amann [1, Section 7]). Furthermore, we are concerned with the
continuity of the deduced solution. For every mapping g ∈ Bb(S,D) and each β > 0,
we define NX ,β(g) to be the set of all z ∈ Rk such that

|z − Er,x[g(XT )]| < β

for some (r, x) ∈ [0, T ]× S. Because we are dealing with transition probabilities P,
convexity of D should be required, as the lemma below indicates. Here, we use the
notation dist(z, C) = infz′∈C |z − z′| for all z ∈ Rk and each C ⊂ Rk, as introduced
in Section A.3 of the appendix.
4.9 Lemma. Let D be convex and g ∈ Bb(S,D) be bounded away from ∂D, that
means, there is ε > 0 such that dist(g(x), ∂D) ≥ ε for all x ∈ S. Then there exists
β > 0 such that

NX ,β(g) is relatively compact in D◦. (4.6)
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Proof. Since g is bounded away from ∂D, Lemma A.13 entails that the image of
g is relatively compact in D◦. So, let K be a compact set in D◦ with g(S) ⊂ K.
Recall that for each C ⊂ Rk, the convex hull of C, denoted by conv(C), is the set
of all convex combinations of points of C, as considered in Section A.1. Because K
is compact, Proposition A.34 implies that∫

S
g(x)P (dx) ∈ conv(K) (4.7)

for each probability measure P on (S,S ). Since D is convex, Lemma A.5 ensures
that its interior is convex as well. In consequence, from K ⊂ D◦ we obtain that
conv(K) ⊂ conv(D◦) = D◦. By Corollary A.4, along with K the convex hull of K
is compact.

Next, we recall that for each C ⊂ Rk and every β > 0, the set ⋃z∈C Bβ(z) is the
β-neighborhood of C, as introduced in Section A.3. Due to our considerations, (4.7)
in combination with Lemma A.13 give some β > 0 such that

inf
(r,x)∈[0,T ]×S

dist(Er,x[g(XT )], ∂D) > β.

Since NX ,β(g) is simply the β-neighborhood of {Er,x[g(XT )] | (r, x) ∈ [0, T ] × S},
Corollary A.16 ensures the validity of (4.6).

Until the end of this section, let D be convex, f be locally µ-bounded, and
g ∈ Bb(S,D) be a map that is bounded away from ∂D. Due to the lemma, we can
choose β > 0 satisfying (4.6). Let a ∈ B([0, T ] × S,R+) be µ-dominated such that
|f(t, x, z)| ≤ a(t, x) for all (t, x) ∈ [0, T ] × S and each z ∈ NX ,β(g), the closure of
NX ,β(g). Then there exists α ∈ (0, T ] such that

Er,x

[ ∫ T

r
a(s,Xs) ν(ds)

]
≤ β (4.8)

for all (r, x) ∈ [T − α, T ]× S. Indeed, we can pick a µ-integrable a ∈ B([0, T ],R+)
with a(·, y) ≤ a for each y ∈ S µ-a.s., then limr↑T

∫ T
r a(s)µ(ds) = 0, by dominated

convergence, which yields the result. The choices of β and α such that (4.6) and
(4.8) hold, respectively, are used to construct a solution to (M) on [T − α, T ] with
values in NX ,β(g).

4.10 Proposition. Suppose that ε ∈ B([T−α, T ]×S,R+) is µ-dominated and there
is δ > 0 such that |f(t, x, z)− f(t, x, z′)| ≤ ε(t, x) for all (t, x) ∈ [T − α, T ]× S and
each z, z′ ∈ NX ,β(g) with |z − z′| < δ. Then there is an ε-approximate solution u
to (M) on [T − α, T ] such that

u([T − α, T ]× S) ⊂ NX ,β(g).

In addition, whenever X has the (right-hand) Feller property, κ is of standard form,
f is right-continuous, and g ∈ Cb(S,Rk), then u is (right-)continuous.
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Proof. At first, the function [T − α, T ]→ R+, s 7→
∫ T
s a(t)µ(dt) must be uniformly

continuous. Hence, we let θ := sup(s,y)∈[0,T ]×S θ(s, y), then there exists η ∈ (0, α]
such that

Er,x

[ ∫ t

r
a(s,Xs) ν(ds)

]
≤ θ

∫ t

r
a(s)µ(ds) < δ (4.9)

for all r, t ∈ [T − α, T ] with r ≤ t < r + η and each x ∈ S. Given η, we choose
n ∈ N and t0, . . . , tn ∈ [T − α, T ] such that T − α = tn < · · · < t0 = T and
maxi∈{1,...,n}(ti−1 − ti) < η.

Starting with u0 : [T −α, T ]×S → NX ,β(g) given by u0(r, x) := Er,x[g(XT )], we
recursively introduce a sequence (ui)i∈{1,...,n} of consistent Borel measurable maps,
by letting for each i ∈ {0, . . . , n − 1} the map ui+1 : [ti+1, ti] × S → NX ,β(g) be
defined via

ui+1(r, x) := Er,x[ui(ti, Xti)]− Er,x
[ ∫ ti

r
f(s,Xs, Es,Xs [ui(ti, Xti)])κ(ds)

]
. (4.10)

We verify by induction over i ∈ {1, . . . , n} that ui is indeed a well-defined consistent
Borel measurable map taking all its values in NX ,β(g) such that

|Er,x[ui(t,Xt)]− u0(r, x)| ≤ Er,x

[ ∫ t0

t
a(t′, Xt′) ν(dt′)

]
(4.11)

and
|Er,x[ui(t,Xt)]− ui(r, x)| ≤ Er,x

[ ∫ t

r
a(s,Xs) ν(ds)

]
(4.12)

for all r, t ∈ [ti, ti−1] with r ≤ t and each x ∈ S. In the initial induction step i = 1
it follows from Proposition 3.7 that Es,y[u0(t0, Xt0)] = u0(s, y) ∈ NX ,β(g) for every
(s, y) ∈ [t1, t0]× S. Due to Lemma 3.17 and (4.5), the process [t1, t0]× Ω→ Rk,

(r, ω) 7→ g(Xt0(ω))−
∫ t0

r
f(s,Xs(ω), u0(s,Xs(ω)))κ(ds)(ω)

is reconstructible, bounded, and continuous. Thus, from Proposition 3.13 it follows
that u1 is well-defined, consistent, and Borel measurable. In addition, we infer from
Proposition 3.7 that

Er,x[u1(t,Xt)] = u0(r, x)− Er,x
[ ∫ t0

t
f(t′, Xt′ , u0(t′, Xt′))κ(dt′)

]

for all r, t ∈ [t1, t0] with r ≤ t and each x ∈ S, which in turn yields (4.11) and (4.12).
This concludes the initial induction step. We now assume that the claim holds for
some i ∈ {1, . . . , n− 1}, then (4.11) and (4.8) entail that

|Es,y[ui(ti, Xti)]− u0(s, y)| ≤ Es,y

[ ∫ t0

ti
a(t′, Xt′) ν(dt′)

]
≤ β

for all (s, y) ∈ [ti+1, ti]× S, which gives us that Es,y[ui(ti, Xti)] ∈ NX ,β(g). For this
reason, we infer from Lemma 3.17 and (4.5) that the process [ti+1, ti]× Ω→ Rk,

(r, ω) 7→ ui(ti, Xti(ω))−
∫ ti

r
f(s,Xs(ω), Es,Xs(ω)[ui(ti, Xti)])κ(ds)(ω)
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is reconstructible, bounded, and continuous. According to Proposition 3.13, ui+1 is
a well-defined consistent Borel measurable map. By Proposition 3.7,

Er,x[ui+1(t,Xt)] = Er,x[ui(ti, Xti)]− Er,x
[ ∫ ti

t
f(t′, Xt′ , Et′,Xt′ [ui(ti, Xti)])κ(dt′)

]

for all r, t ∈ [ti+1, ti] with r ≤ t and every x ∈ S, which immediately entails that
(4.12) is valid with ui+1 instead of ui. We observe that (4.11) guarantees

|ui(ti, y)− u0(ti, y)| ≤ Eti,y

[ ∫ t0

ti
a(t′, Xt′) ν(dt′)

]

for each y ∈ S. Eventually, by using that u0(r, x) = Er,x[u0(ti, Xti)], we obtain from
Proposition 3.7 that

|Er,x[ui+1(t,Xt)]− u0(r, x)| ≤ |Er,x[ui+1(t,Xt)]− Er,x[ui(ti, Xti)]|

+ Er,x

[ ∫ t0

ti
a(t′, Xt′) ν(dt′)

]

for each r, t ∈ [ti+1, ti] with r ≤ t and every x ∈ S, which shows that (4.11) holds
when ui is replaced by ui+1. Hence, the induction proof is complete.

The crucial outcome of this construction is that ui is an ε-approximate solution
to (4.2) on [ti, ti−1] for each i ∈ {1, . . . , n}. To see this, note that∣∣∣∣∣Er,x[ui(t,Xt)]− ui(r, x)− Er,x

[ ∫ t

r
f(s,Xs, ui(s,Xs))κ(ds)

]∣∣∣∣∣
=
∣∣∣∣∣Er,x

[ ∫ t

r
(f(s,Xs, Es,Xs [ui−1(ti−1, Xti−1)])− f(s,Xs, ui(s,Xs)))κ(ds)

]∣∣∣∣∣
≤ Er,x

[ ∫ t

r
ε(s,Xs) ν(ds)

]

for all r, t ∈ [ti, ti−1] with r ≤ t and each x ∈ S, since ui−1(ti−1, ·) = ui(ti−1, ·) and
from ti−1 − ti < η in combination with (4.12) and (4.9) we infer that

|Es,y[ui(ti−1, Xti−1)]− ui(s, y)| ≤ Es,y

[ ∫ ti−1

s
a(s′, Xs′) ν(ds′)

]
< δ

for all (s, y) ∈ [ti, ti−1] × S. As a result, if we define u : [T − α, T ] × S → NX ,β(g)
by u(r, x) := ui(r, x) with i ∈ {1, . . . , n} such that r ∈ [ti, ti−1], then Lemma 4.2
ensures that u is an ε-approximate solution to (M) on [T − α, T ]. Hence, the first
assertion follows.

Let us now suppose that X is (right-hand) Feller, κ is of standard form, f is
right-continuous, and g ∈ Cb(S,Rk). Then we easily see that for each non-degenerate
interval I in [0, T ] and every right-continuous v ∈ B(I × S,D), the map

I × S → Rk, (r, x) 7→ f(r, x, v(r, x))
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is right-continuous. By using this fact, we justify inductively over i ∈ {1, . . . , n}
that ui is (right-)continuous. As soon as this is shown, the (right-)continuity of
u follows, because ui+1(ti, ·) = ui(ti, ·) for each i ∈ {0, . . . , n − 1}. In the initial
induction step i = 1 the (right-hand) Feller property of X directly implies that u0
is (right-)continuous. From Proposition 3.19 and the representation

u1(r, x) = u0(r, x)− Er,x
[ ∫ t0

r
f(s,Xs, u0(s,Xs))κ(ds)

]
for every (r, x) ∈ [t1, t0]× S we infer that u1 is (right-)continuous, which completes
the initial induction step. Next, let us assume that ui is (right-)continuous for some
i ∈ {1, . . . , n − 1}. Then u(ti, ·) ∈ Cb(S,Rk), by Proposition 3.3. Therefore, the
(right-hand) Feller property of X makes sure that the map

[ti+1, ti]× S → Rk, (r, x) 7→ Er,x[u(ti, Xti)]

is (right-)continuous. Finally, from (4.10), which is just the definition of ui+1, and
Proposition 3.19 it follows that ui+1 is (right-)continuous. Thus, the induction proof
is complete.

By constructing a suitable sequence of approximate solutions, a local existence
result can be derived.

4.11 Proposition. Let f ∈ BC1−
µ ([0, T ] × S × D,Rk), then there exists a unique

admissible solution u to (M) on [T − α, T ], which only takes its values in NX ,β(g).
Moreover, if X is (right-hand) Feller, κ is of standard form, f is right-continuous,
and g ∈ Cb(S,Rk), then u is (right-)continuous.

Proof. The uniqueness assertion follows directly from Corollary 4.6. To establish
existence, we note that, asNX ,β(g) is compact, Proposition 2.8 yields a µ-dominated
λ ∈ B([T − α, T ]× S,R+) such that

|f(t, x, z)− f(t, x, z′)| ≤ λ(t, x)|z − z′|

for all (t, x) ∈ [T − α, T ] × S and each z, z′ ∈ NX ,β(g). Thus, for each n ∈ N
Proposition 4.10 provides some (λ/n)-approximate solution un to (M) on [T −α, T ]
with

un([T − α, T ]× S) ⊂ NX ,β(g).
Additionally, if X is (right-hand) Feller, κ is of standard form, f is right-continuous,
and g ∈ Cb(S,Rk), then un must be (right-)continuous for every n ∈ N. Because λ
is µ-dominated,

lim
n↑∞

1
n

sup
ω∈Ω

∫ T

T−α
λ(s,Xs(ω)) ν(ds)(ω) = 0.

Hence, Proposition 4.7 entails that (un)n∈N converges uniformly to a solution u to
(M) on [T − α, T ] that merely takes all its values in NX ,β(g). This proves the first
claim. Since Lemma A.9 implies that the uniform limit of a sequence of Rk-valued
(right-)continuous maps on [T − α, T ] × S is again (right-)continuous, the second
assertion follows directly from what we have just shown.
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Now, we prove a fixed-point result, which we need later on.

4.12 Proposition. Suppose that I is a compact admissible interval, H is a closed
set in Bb(I × S,Rk), and Ψ : H → H a map for which there is a µ-dominated
λ ∈ B(I × S,R+) such that

|Ψ(u)−Ψ(v)|(r, x) ≤ Er,x

[ ∫ T

r
λ(s,Xs)|u− v|(s,Xs) ν(ds)

]
(4.13)

for all u, v ∈ H and each (r, x) ∈ I × S. Then for every u0 ∈ H the sequence
(un)n∈N0, recursively given by un := Ψ(un−1) for all n ∈ N, converges uniformly to
the unique fixed-point of Ψ.

Proof. Because the uniqueness assertion can be readily inferred from Corollary 3.24,
we just show that (un)n∈N0 converges uniformly to some fixed-point of Ψ. To this
end, note that

|un+1 − un|(r, x) ≤ Er,x

[ ∫ T

r
λ(s,Xs)|un − un−1|(s,Xs) ν(ds)

]

for all n ∈ N and every (r, x) ∈ I × S. By Proposition 3.22,

|un+1 − un|(r, x) ≤ Er,x

[ ∫ T

r

(∫ t

r
λ(s,Xs) ν(ds)

)n−1
λ(t,Xt)
(n− 1)!∆(t,Xt) ν(dt)

]

for all n ∈ N and each (r, x) ∈ I × S, where ∆ := |Ψ(u0) − u0|. From the triangle
inequality we get that |um − un| ≤

∑m−1
i=n |ui+1 − ui|, which in combination with

Lemma 3.20 gives

|um − un|(r, x) ≤
m−1∑
i=n

Er,x

[ ∫ T

r

(∫ t

r
λ(s,Xs) ν(ds)

)i−1
λ(t,Xt)
(i− 1)! ∆(t,Xt) ν(dt)

]

≤
m−1∑
i=n

1
i!Er,x

[( ∫ T

r
λ(s,Xs) ν(ds)

)i]
sup

(s,y)∈[r,T ]×S
∆(s, y)

for all m,n ∈ N with m > n and each (r, x) ∈ I × S. This in turn shows that
(un)n∈N0 is a uniformly Cauchy sequence. Since H is closed in Bb(I × S,Rk), it
converges uniformly to some u ∈H . In the end, as

|Ψ(u)− un+1|(r, x) ≤ Er,x

[ ∫ T

r
λ(s,Xs)|u− un|(s,Xs) ν(ds)

]

for all n ∈ N0 and each (r, x) ∈ I × S, the sequence (un+1)n∈N0 converges uniformly
to Ψ(u). Hence, we conclude that u = Ψ(u).

4.13 Remark. The sequence (un)n∈N0 fulfills the following error estimate:

|u− un|(r, x) ≤
∞∑
i=n

Er,x

[ ∫ T

r

(∫ t

r
λ(s,Xs) ν(ds)

)i−1
λ(t,Xt)
(i− 1)! ∆(t,Xt) ν(dt)

]

for each n ∈ N and every (r, x) ∈ I ×S with ∆ = |Ψ(u0)−u0|. This follows directly
by taking the limit m ↑ ∞ in the estimate for |um − un|, appearing in above proof.
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Let us indicate another local existence approach.

4.14 Remark. Since NX ,β(g) is compact, the set H := Bb([T−α, T ]×S,NX ,β(g))
is closed in Bb([T −α, T ]×S,Rk). Furthermore, (4.8) guarantees that the mapping
Ψ : H → B([T − α, T ]× S,Rk) defined via

Ψ(u)(r, x) := Er,x[g(XT )]− Er,x
[ ∫ T

r
f(s,Xs, u(s,Xs))κ(ds)

]
maps H into itself. So, let f be locally Lipschitz µ-continuous, then Proposition 2.8
gives some µ-dominated λ ∈ B([T − α, T ] × S,R+) such that (4.13) holds for all
u, v ∈H and each (r, x) ∈ [T −α, T ]×S. For this reason, Proposition 4.12 implies
that Ψ has a unique fixed-point, which is exactly the unique admissible solution to
(M) on [T − α, T ] that takes all its values in NX ,β(g).

4.4 Non-extendibility and global existence
After having constructed solutions locally in time, we derive a unique non-extendible
admissible solution and provide conditions ensuring its continuity. As it turns out, a
boundary and growth criterion determines whether the derived solution is actually
global. In this regard, the proof of Theorem 7.6 in Amann [1] has been a good
source for ideas. In second part of this section, we approximate solutions uniformly
by Picard iterations for D = Rk.

4.15 Non-Extendibility Theorem. Let f ∈ BC1−
µ ([0, T ] × S × D,Rk), D be

convex, and g ∈ Bb(S,D) be bounded away from ∂D. Then there exists a unique
non-extendible admissible solution ug to (M) on a maximal interval of existence Ig
that is open in [0, T ]. With t−g := inf Ig either Ig = [0, T ] or

lim
t↓t−g

inf
x∈S

min
{

dist(ug(t, x), ∂D), 1
1 + |ug(t, x)|

}
= 0. (B)

Moreover, suppose that X has the (right-hand) Feller property, κ is of standard
form, f is right-continuous, and g ∈ Cb(S,Rk), then ug is (right-)continuous.

Proof. We begin with the first claim and define Ig to be the set consisting of {T}
and of all t ∈ [0, T ) for which (M) admits an admissible solution on [t, T ]. By
Proposition 4.11, we have {T} ( Ig and hence, t−g = inf Ig < T . Let t ∈ (t−g , T ],
then there is s ∈ Ig with s < t, which means that there is an admissible solution u
to (M) on [s, T ]. As the restriction u|([t, T ]×S) is an admissible solution to (M) on
[t, T ], we get that t ∈ Ig. Thus, Ig is an admissible interval.

To verify that Ig is open in [0, T ], we have to show that if Ig 6= [0, T ], then
t−g /∈ Ig. On the contrary, assume that Ig 6= [0, T ] but t−g ∈ Ig. Then t−g > 0 and
there is an admissible solution u to (M) on [t−g , T ]. Since u(t−g , ·) belongs to Bb(S,D)
and is bounded away from ∂D, Proposition 4.11 entails that the Markovian terminal
value problem

E[dv(s,Xs)] = E[f(s,Xs, v(s,Xs))κ(ds)] for s ∈ [0, t−g ], v(t−g , ·) = u(t−g , ·)
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has an admissible solution v on [t−g − α, t−g ] for some α ∈ (0, t−g ]. Consequently,
the map w : [t−g − α, T ] × S → D◦ given by w(r, x) := u(r, x), if r ≥ t−g , and
w(r, x) := v(r, x), if r < t−g , is another solution to (M) on [t−g −α, T ], by Lemma 4.2.
From the fact that w is admissible, we conclude that t−g −α ∈ Ig, which contradicts
the definition of t−g .

Let us now introduce the unique non-extendible admissible solution. We recall
that if r, t ∈ Ig satisfy r ≤ t, and u, v are two admissible solutions to (M) on [r, T ]
and [t, T ], respectively, then u = v on [t, T ] × S, due to Corollary 4.6. So, we can
mark for each r ∈ Ig the unique admissible solution to (M) on [r, T ] by ur. Then

ug : Ig × S → D◦, ug(r, x) := ur(r, x)

is well-defined and the unique non-extendible admissible solution to (M). In fact, if
t−g ∈ Ig, which occurs if and only if t−g = 0 and Ig = [0, T ], then ug(r, x) = ut−g (r, x)
for all (r, x) ∈ [0, T ] × S. This in turn implies that ug is well-defined and a global
admissible solution to (M). Now, let instead t−g /∈ Ig, then Ig = (t−g , T ]. We pick a
strictly decreasing sequence (tn)n∈N in Ig with limn↑∞ tn = t−g , then

u−1
g (B) =

⋃
n∈N

u−1
tn (B) ∈ B(Ig × S)

for all B ∈ D∩B(Rk), since u−1
g (B)∩([tn, T ]×S) = u−1

tn (B) ∈ B([tn, T ]×S) for each
n ∈ N. Thus, ug is Borel measurable. The representation ug|([r, T ] × S) = ur for
each r ∈ Ig entails that ug is an admissible solution to (M) on Ig. Finally, suppose
that J is an admissible interval with Ig ( J and v is an admissible solution to (M)
on J , then there is t ∈ J with t ≤ t−g . Since the restriction of v to [t, T ] × S is an
admissible solution to (M) on [t, T ], we obtain that t ∈ Ig, which is a contradiction
to Ig = (t−g , T ]. This justifies that ug is non-extendible.

We turn to the second claim. By way of contradiction, assume that Ig 6= [0, T ]
but (B) fails. Then Ig = (t−g , T ] and there exist ε ∈ (0, 1/

√
2) and some sequence

(tn)n∈N in Ig with limn↑∞ tn = t−g such that

inf
x∈S

min
{

dist(ug(tn, x), ∂D), 1
1 + |ug(tn, x)|

}
≥ 2ε

for every n ∈ N. As the intersection of two convex sets in Rk is convex, it follows
from Lemma A.16 that Dη := {z ∈ D | dist(z, ∂D) ≥ η and |z| ≤ 1/η} is a convex
compact set in D◦ for each η ∈ (0, 2ε]. Hence, Proposition A.34 guarantees that

Er,x[ug(tn, Xtn)] ∈ D2ε (4.14)

for all n ∈ N and each (r, x) ∈ [0, tn]× S. Since f is locally µ-bounded, Lemma 2.5
yields a µ-dominated a ∈ B([t−g , T ] × S,R+) fulfilling |f(t, x, z)| ≤ a(t, x) for every
(t, x, z) ∈ [t−g , T ]× S ×Dε. In addition, there exists δ ∈ (0, T − t−g ] such that

sup
x∈S

Er,x

[ ∫ t

r
a(s,Xs) ν(ds)

]
< ε (4.15)
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for all r, t ∈ [t−g , T ] with r ≤ t < r + δ. This entails that

ug(t, S) is relatively compact in D◦ε (4.16)

for every n ∈ N and each t ∈ (tn− δn, tn], where δn := δ∧ (tn− t−g ). Indeed, suppose
this is false, then there is n ∈ N for which ug(t, S) fails to be relatively compact in
D◦ε for at least one t ∈ (tn − δn, tn]. We set

sn := sup{t ∈ (tn − δn, tn] |ug(t, S) is not relatively compact in D◦ε}.

Let us show that ug(sn, S) is not relatively compact in D◦ε , which implies sn < tn,
since D2ε ⊂ D◦ε and (4.14) gives ug(tn, S) ⊂ D2ε. On the contrary, suppose that
ug(sn, S) is relatively compact in D◦ε . As the restriction f := f |([0, T ] × S × D◦ε)
belongs to BC1−

µ ([0, T ] × S × D◦ε), Proposition 4.11 ensures that the Markovian
terminal value problem

E[dv(s,Xs)] = E[f(s,Xs, v(s,Xs))κ(ds)] for s ∈ [0, sn], v(sn, ·) = ug(sn, ·)

admits a solution v to (M) on [sn − α, sn] for some α ∈ (0, sn − t−g ) such that the
image of v is relatively compact in D◦ε . From Corollary 4.6 we get that ug = v on
[sn − α, sn] × S, which contradicts the definition of sn. Hence, ug(sn, S) cannot be
relatively compact in D◦ε . In particular, sn < tn and ug(t, S) is relatively compact
in D◦ε for each t ∈ (sn, tn]. These considerations imply that

|Esn,x[ug(tn, Xtn)]− ug(sn, x)| =
∣∣∣∣∣Esn,x

[ ∫ tn

sn
f(s,Xs, ug(s,Xs))κ(ds)

]∣∣∣∣∣
≤ Esn,x

[ ∫ tn

sn
a(s,Xs) ν(ds)

]
< ε

for every x ∈ S, since ν({sn}) = 0 and tn − sn < δn ≤ δ. From (4.14) and ε2 < 1/2
it follows that |ug(sn, x)| < |Esn,x[ug(tn, Xtn)]|+ ε ≤ 1/(2ε) + ε < 1/ε for all x ∈ S.
Moreover, by Lemma A.13,

dist(ug(sn, x), ∂D) ≥ dist(Esn,x[ug(tn, Xtn)], ∂D)− |Esn,x[ug(tn, Xtn)]− ug(sn, x)|
≥ 2ε− |Esn,x[ug(tn, Xtn)]− ug(sn, x)| > ε

for all x ∈ S. In consequence, due to (4.15), it follows that ug(sn, S) is relatively
compact in D◦ε , which is a contradiction. Therefore, condition (4.16) is valid.

Next, since limn↑∞ tn = t−g , there is n0 ∈ N such that tn − t−g ≤ δ and hence,
tn − δn = t−g for all n ∈ N with n ≥ n0. Thus, (4.16) leads us to

|Et−g ,x[ug(r,Xr)]− Et−g ,x[ug(t,Xt)]| =
∣∣∣∣∣Et−g ,x

[ ∫ t

r
f(s,Xs, ug(s,Xs))κ(ds)

]∣∣∣∣∣
≤ Et−g ,x

[ ∫ t

r
a(s,Xs) ν(ds)

]
< ε

(4.17)
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for every r, t ∈ (t−g , tn0 ] with r ≤ t and each x ∈ S. For this reason, the map
(t−g , T ] × S → D◦, (t, x) 7→ Et−g ,x[ug(t,Xt)] is uniformly continuous in t ∈ (t−g , T ],
uniformly in x ∈ S. By Proposition A.12, there exists a unique map ẑ ∈ B(S,Dε)
such that

lim
t↓t−g

Et−g ,x[ug(t,Xt)] = ẑ(x), uniformly in x ∈ S. (4.18)

At the same time, it follows from (4.16) together with the Dominated Convergence
Theorem A.33 that

lim
r↓t−g

Et−g ,x

[ ∫ T

r
f(s,Xs, ug(s,Xs))κ(ds)

]

= Et−g ,x

[ ∫
(t−g ,T ]

f(s,Xs, ug(s,Xs))κ(ds)
] (4.19)

for every x ∈ S. Furthermore, from (4.17) we see that the map (t−g , T ]× S → Rk,

(r, x) 7→ Et−g ,x

[ ∫ T

r
f(s,Xs, ug(s,Xs))κ(ds)

]

is uniformly continuous in r ∈ (t−g , T ], uniformly in x ∈ S. So, another application
of Proposition A.12 implies that the limit (4.19) holds uniformly in x ∈ S.

Thus, we define v : [t−g , T ] × S → D◦ by v(t, x) := ug(t, x), if t > t−g , and
v(t, x) := ẑ(x), if t = t−g , then v is an admissible solution to (M) on [t−g , T ]. In
fact, from (4.18) we infer that v is consistent, and its Borel measurability is readily
checked. Since ug((t−g , T ]× S) and ẑ(S) are relatively compact in D◦, we see that v
is admissible. Finally, let (t, x) ∈ (t−g , T ]× S, then

Et−g ,x[v(t,Xt)] = Et−g ,x[v(r,Xr)] + Et−g ,x

[ ∫ t

r
f(s,Xs, v(s,Xs))κ(ds)

]

for every r ∈ (t−g , T ] with r ≤ t. By taking the limit r ↓ t−g , we obtain from (4.18)
and (4.19) that

Et−g ,x[v(t,Xt)] = v(t−g , x) + Et−g ,x

[ ∫ t

t−g
f(s,Xs, v(s,Xs))κ(ds)

]
.

This is the last piece of information to conclude that v solves (M) on [t−g , T ]. Hence,
t−g ∈ Ig, which contradicts that Ig is open in [0, T ]. This concludes the verification
of the second claim.

At last, let us assume that X is (right-hand) Feller, κ is of standard form, f is
right-continuous, and g ∈ Cb(S,Rk). We define Îg to be the set consisting of {T}
and of all t ∈ [0, T ) for which (M) admits an admissible (right-)continuous solution
on [t, T ]. We set t̂−g := inf Îg, then Proposition 4.11 makes sure that {T} ( Îg and
thus, t̂−g < T . Using similar arguments as before, it follows that Îg is an admissible
interval that is open in [0, T ].
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By Corollary 4.6, the proof is complete, once we have shown that t̂−g = t−g . Since
t̂−g ≥ t−g , let us suppose that t̂−g > t−g . Then Îg 6= [0, T ] and hence, Îg = (t̂−g , T ]. As
the restriction of ug to [t, T ] × S is (right-)continuous for each t ∈ Îg, we see that
ug|(Îg × S) is (right-)continuous. Because κ({t̂−g }) = 0 and

ug(r, x) = Er,x[g(XT )]− Er,x
[ ∫ T

r
f(s,Xs, ug(s,Xs))κ(ds)

]

for all (r, x) ∈ [t̂−g , T ]×S, the (right-hand) Feller property of X and Proposition 3.19
imply that ug is (right-)continuous on [t̂−g , T ]×S. For this reason, we must face the
contradiction that t̂−g ∈ Îg. This completes the proof.

4.16 Remarks. (i) Assume that ug is bounded away from ∂D. That is, there is
ε > 0 such that dist(ug(t, x), ∂D) ≥ ε for all (t, x) ∈ Ig × S. Let Ig 6= [0, T ], then
from (B) it follows that

lim
t↓t−g

sup
x∈S
|ug(t, x)| =∞. (4.20)

In fact, for each η > 0 with 1/(1+η) < ε there must be some δ ∈ (0, T−t−g ) such that
infx∈S min{dist(ug(t, x), ∂D), 1/(1 + |ug(t, x)|)} < 1/(1 + η) for all t ∈ (t−g , t−g + δ).
Thus, supx∈S |ug(t, x)| > η for each t ∈ (t−g , t−g + δ), which shows (4.20).
(ii) Let us instead assume that ug is bounded. For instance, this occurs whenever
f is affine µ-bounded, by Proposition 4.8. Then the preceding theorem states that
either ug is a global solution or

lim
t↓t−g

inf
x∈S

dist(ug(t, x), ∂D) = 0. (4.21)

This follows readily from the fact that if c ≥ 0 satisfies |ug(t, x)| ≤ c for every
(t, x) ∈ Ig × S, then infx∈S 1/(1 + |ug(t, x)|) ≥ 1/(1 + c) for all t ∈ Ig.
(iii) In particular, suppose that ug is not only bounded, but also its image is relatively
compact in D◦, then

Ig = [0, T ].
To clarify this, note that ug(Ig × S) is included in a compact set in D◦ if and only
if ug is both bounded and bounded away from ∂D, by Lemma A.13. Hence, the
assertion follows from (i) and (ii), because neither limt↓t−g supx∈S |ug(t, x)| = ∞ nor
limt↓t−g infx∈S dist(ug(t, x), ∂D) = 0.

In the special case D = Rk, we combine these considerations with a Picard
iteration to obtain the following approximation result.

4.17 Proposition. Let D = Rk, f ∈ BC1−
µ ([0, T ]×S×Rk,Rk), and g ∈ Bb(S,Rk).

Assume that f is affine µ-bounded, then Ig = [0, T ] and the sequence (un)n∈N0 in
Bb([0, T ]× S,Rk), recursively defined by u0(r, x) := Er,x[g(XT )] and

un(r, x) := u0(r, x)− Er,x
[ ∫ T

r
f(s,Xs, un−1(s,Xs))κ(ds)

]

for all n ∈ N, converges uniformly to ug, the unique global bounded solution to (M).
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Proof. To establish the claim, we invoke Proposition 4.12. First, since f is affine
µ-bounded, Proposition 4.8 implies that ug is bounded. As (4.21) cannot hold, we
get from Remarks 4.16 that Ig = [0, T ]. We also notice that a solution to (M) on an
admissible interval is admissible if and only if it is consistently bounded. Hence, ug
is the unique global bounded solution to (M), by the preceding theorem.

We choose two µ-dominated functions a, b ∈ B([0, T ]×S,R+) such that |f(t, x, z)|
≤ a(t, x) + b(t, x)|z| for all (t, x, z) ∈ [0, T ] × S × Rk and let H be the set of all
u ∈ B([0, T ] × S,Rk) satisfying the estimate in Proposition 4.8 for ε = 0, which
amounts to

|u(r, x)| ≤ Er,x

[
exp

(∫ T

r
b(s,Xs) ν(ds)

)(
|g(XT )|+

∫ T

r
a(s,Xs) ν(ds)

)]

for all (r, x) ∈ [0, T ] × S. Then H is closed in Bb([0, T ] × S,Rk) and u0, ug ∈ H .
Let us be more specific about the fact that every u ∈ H is bounded. We pick two
µ-integrable a, b ∈ B([0, T ],R+) with a(·, y) ≤ a and b(·, y) ≤ b for all y ∈ S µ-a.s.,
and set

c := exp
(
θ
∫ T

0
b(s)µ(ds)

)(
sup
y∈S
|g(y)|+ θ

∫ T

0
a(s)µ(ds)

)
,

where, as usually, θ denotes sup(s,y)∈[0,T ]×S θ(s, y). Then each map u ∈ H satisfies
|u(r, x)| ≤ c for each (r, x) ∈ [0, T ] × S. In addition, we introduce the mapping
Ψ : H → Bb([0, T ]× S,Rk) defined via

Ψ(u)(r, x) := u0(r, x)− Er,x
[ ∫ T

r
f(s,Xs, u(s,Xs))κ(ds)

]
,

then a map u ∈H is a global solution to (M) if and only if it coincides with ug, the
unique fixed-point of Ψ. Furthermore, Ψ maps H into itself. Indeed, let u ∈ H ,
then Proposition 3.18 and Lemma 3.20 yield

|Ψ(u)(r, x)| ≤ Er,x

[(
1 +

∫ T

r
b(s,Xs)e

∫ T
s
b(t,Xt) ν(dt) ν(ds)

)
|g(XT )|

]

+ Er,x

[(
1 +

∫ T

r
b(s,Xs)e

∫ T
s
b(t,Xt) ν(dt) ν(ds)

)∫ T

r
a(s,Xs) ν(ds)

]

= Er,x

[
exp

(∫ T

r
b(s,Xs) ν(ds)

)(
|g(XT )|+

∫ T

r
a(s,Xs) ν(ds)

)]

for all (r, x) ∈ [0, T ]× S. Hence, Ψ(u) ∈ H , which justifies that Ψ(H ) ⊂ H . By
Proposition 2.8, there exists some µ-dominated function λ ∈ B([0, T ]× S,R+) such
that

|f(t, x, z)− f(t, x, z′)| ≤ λ(t, x)|z − z′|

for every (t, x) ∈ [0, T ]× S and each z, z′ ∈ Rk with |z| ∨ |z′| ≤ c. This guarantees
that (4.13) is valid for all u, v ∈ H and each (r, x) ∈ [0, T ] × S. As this was the
last condition we had to check, the claim follows from Proposition 4.12.
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4.18 Remark. The sequence (un)n∈N0 is subject to the following growth estimate:

|un(r, x)| ≤
n∑
i=0

Er,x

[
1
i!

(∫ T

r
b(s,Xs) ν(ds)

)i
|g(XT )|

]

+
n−1∑
i=0

Er,x

[ ∫ T

r

1
i!

(∫ t

r
b(s,Xs) ν(ds)

)i
a(t,Xt) ν(dt)

] (4.22)

for all n ∈ N and each (r, x) ∈ [0, T ] × S. Certainly, α : [0, T ] × Ω → R+ defined
via αr(ω) := |g(XT (ω))| +

∫ T
r a(s,Xs(ω)) ν(ds)(ω) is a reconstructible consistently

bounded continuous process, due to Lemma 3.17. Hence,

|un(r, x)| ≤ Er,x[αr] +
n−2∑
i=0

Er,x

[ ∫ T

r

(∫ t

r
b(s,Xs) ν(ds)

)i
b(t,Xt)
i! αt ν(dt)

]

+ Er,x

[ ∫ T

r

(∫ t

r
b(s,Xs) ν(ds)

)n−1
b(t,Xt)
(n− 1)! |u0(t,Xt)| ν(dt)

]

for all n ∈ N with n ≥ 2 and every (r, x) ∈ [0, T ] × S, by Proposition 3.22. Thus,
(4.22) follows from Proposition 3.18 and Lemma 3.20.

4.5 Affine Markovian equations
We now focus on Markovian integral equations that are affine or actually linear. By
constructing a matrix-valued operator, which reduces to a matrix exponential under
a commutation condition, we inductively derive a multidimensional Feynman-Kac
formula. Let D = Rk and assume that there are two maps a : [0, T ]× S → Rk and
b : [0, T ]× S → Rk×k such that f is of the form

f(t, x, z) = a(t, x) + b(t, x)z for all (t, x, z) ∈ [0, T ]× S × Rk.

Note that a and b are necessarily Borel measurable, since the map [0, T ]× S → Rk,
(t, x) 7→ f(t, x, z) is Borel measurable for all z ∈ Rk. Then every Markovian integral
equation (4.2) is called affine and it can be written in the form

E[du(t,Xt)] = E[a(t,Xt) + b(t,Xt)u(t,Xt)κ(dt)] for t ∈ [0, T ]. (4.23)

For a = 0 we call (4.23) homogeneous. Otherwise, it is said to be non-homogeneous.
Throughout the section, we assume that a and b are µ-dominated. Then f is affine
µ-bounded and uniformly µ-differentiable, as discussed in Examples 2.4 and 2.10. In
particular, f ∈ BC1

µ([0, T ]× S × Rk,Rk), which can be recalled from (2.4). Hence,
Proposition 4.17 implies that for each g ∈ Bb(S,Rk) there is a unique global bounded
solution ug to the corresponding Markovian terminal value problem

E[du(t,Xt)] = E[a(t,Xt) + b(t,Xt)u(t,Xt)κ(dt)] for t ∈ [0, T ],
u(T, ·) = g.

(AM)

After these preliminaries, we begin with the homogeneous case. It is treated similarly
as in the theory of ODEs (cf. Theorem 11.2 in Amann [1]).
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4.19 Lemma. Let a = 0. Then for each non-degenerate interval I in [0, T ] the set
VI of all admissible solutions to (4.23) on I is a linear space. Moreover, the map
Bb(S,Rk)→ V[0,T ], g 7→ ug is an isomorphism.

Proof. Let α, β ∈ R and assume that u, v are two admissible solutions to (4.23) on
a non-degenerate interval I in [0, T ]. Then αu + βv is admissible, because the set
of all Rk-valued Borel measurable consistently bounded maps on I × S is a linear
space. Moreover, linearity of f in the third variable z ∈ Rk gives

Er,x[(αu+ βv)(t,Xt)] = αu(r, x) + αEr,x

[ ∫ t

r
b(s,Xs)u(s,Xs)κ(ds)

]

+ βv(r, x) + βEr,x

[ ∫ t

r
b(s,Xs)v(s,Xs)κ(ds)

]

= (αu+ βv)(r, x) + Er,x

[ ∫ t

r
b(s,Xs)(αu+ βv)(s,Xs)κ(ds)

]
for all r, t ∈ I with r ≤ t and each x ∈ S. Thus, αu + βv is another admissible
solution to (4.23) on I. In other words, αu+ βv ∈ VI .

Now, let g, h ∈ Bb(S,Rk), then αug + βuh ∈ V[0,T ], by what we have just shown.
In addition, (αug + βuh)(T, x) = (αg + βh)(x) = uαg+βh(T, x) for every x ∈ S.
So, αug + βuh is a global bounded solution to (AM). Corollary 4.6 entails that
αug + βuh = uαg+βh. Hence, the map Bb(S,Rk)→ V[0,T ], g 7→ ug is linear. It is also
injective, because if ug = 0 for some g ∈ Bb(S,Rk), then

g(x) = ug(T, x) = 0 for all x ∈ S.

Finally, let u ∈ V[0,T ]. Then, since u(T, ·) ∈ Bb(S,Rk), Corollary 4.6 yields that
u = uu(T,·). So, every u ∈ V[0,T ] is of the form u = ug for some g ∈ Bb(S,Rk). This
shows that the map Bb(S,Rk)→ V[0,T ], g 7→ ug is onto as well.

We turn to the non-homogeneous case.
4.20 Lemma. For every non-degenerate interval I in [0, T ] the set of all admissible
solutions to (4.23) on I is given by the affine space v + VI , where v is an arbitrary
admissible solution to (4.23) on I.
Proof. As before, we suppose that u and v are two admissible solutions to (4.23) on
a non-degenerate interval I in [0, T ], then u − v is admissible. Since f is affine in
z ∈ Rk, we get that

Er,x[(u− v)(t,Xt)] = u(r, x) + Er,x

[ ∫ t

r
a(s,Xs) + b(s,Xs)u(s,Xs)κ(ds)

]

− v(r, x)− Er,x
[ ∫ t

r
a(s,Xs) + b(s,Xs)v(s,Xs)κ(ds)

]

= (u− v)(r, x) + Er,x

[ ∫ t

r
b(s,Xs)(u− v)(s,Xs)κ(ds)

]
for each r, t ∈ I with r ≤ t and all x ∈ S. Thus, u− v is an admissible solution to
(4.23) on I for a = 0. Put differently, u− v ∈ VI .
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We next consider an integral sequence of Rk×k-valued maps. To this end, we use
the conventions that [r, t] := [t, r],∫ t

r
b(s) ν(ds) := −

∫ r

t
b(s) ν(ds),

and F̂r,t := F̂t,r for all r, t ∈ [0, T ] with t < r, each d ∈ N, and every µ-integrable
map b ∈ B([0, T ],Rd×d).
4.21 Lemma. Let the sequence (Σn)n∈N0 of Rk×k-valued maps on [0, T ]× [0, T ]×Ω
be recursively given by Σ0(r, t)(ω) := Ik and

Σn(r, t)(ω) :=
∫ t

r
b(s,Xs(ω))Σn−1(s, t)(ω) ν(ds)(ω)

for all n ∈ N. Then Σn(r, t) is F̂r,t-measurable and bounded, and satisfies

|Σn(r, t)| ≤
√
k

n!

(∣∣∣∣∣
∫ t

r
|b(s,Xs)| ν(ds)

∣∣∣∣∣
)n

(4.24)

for all n ∈ N0 and each r, t ∈ [0, T ]. Moreover, Σn(·, ·)(ω) ∈ C([0, T ]× [0, T ],Rk×k)
for every n ∈ N0 and each ω ∈ Ω.
Proof. We prove the lemma by induction over n ∈ N0. In the initial induction step
n = 0 the assignment Σ0 = Ik gives all results, since |Ik| =

√
k. Therefore, let us

suppose that the claims are true for some n ∈ N0 and pick r, t ∈ [0, T ]. Then, since
X is progressive and b is Borel measurable, Lemma 3.9 ensures that the map

[r, t]× Ω→ Rk×k, (s, ω) 7→ b(s,Xs(ω))Σn(s, t)(ω)

is B([r, t])⊗F̂r,t-measurable. As the Frobenius norm on Rk×k is submultiplicative in
the sense that |AB| ≤ |A||B| for all A,B ∈ Rk×k, it follows from (4.24), Lemma 3.20,
and the Fundamental Theorem of Calculus for Lebesgue-Stieltjes integrals that∣∣∣∣∣

∫ t

r
|b(s,Xs)Σn(s, t)| ν(ds)

∣∣∣∣∣ ≤ √k
∣∣∣∣∣
∫ t

r

|b(s,Xs)|
n!

(∣∣∣∣∣
∫ t

s
|b(s′, Xs′)| ν(ds′)

∣∣∣∣∣
)n

ν(ds)
∣∣∣∣∣

=
√
k

(n+ 1)!

(∣∣∣∣∣
∫ t

r
|b(s,Xs)| ν(ds)

∣∣∣∣∣
)n+1

.

Thus, Σn+1(r, t) is well-defined and (4.24) holds when n is replaced by n+ 1, which
implies that Σn+1(r, t) is also bounded. In addition, an application of Fubini’s
theorem to each coordinate ensures that Σn+1(r, t) is F̂r,t-measurable.

To show that Σn+1(·, ·)(ω) is continuous for all ω ∈ Ω, let (r, t) ∈ [0, T ] × [0, T ]
and (rm, tm)m∈N be a sequence in [0, T ]× [0, T ] that converges to (r, t). Then (4.24)
and the Dominated Convergence Theorem A.33 give us

lim
m↑∞

Σn+1(rm, tm)(ω) = lim
m↑∞

∫ T

0
1[rm,tm](s)b(s,Xs(ω))Σn(s, tm)(ω) ν(ds)(ω)

=
∫ T

0
1[r,t](s)b(s,Xs(ω))Σn(s, t)(ω) ν(ds)(ω) = Σn+1(r, t)(ω),

as Σn(·, ·)(ω) is continuous and from µ({r, t}) = 0 it follows that limm↑∞ 1[rm,tm](s)
= 1[r,t](s) for µ-a.e. s ∈ [0, T ].
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The recursive definition of (Σn)n∈N0 allows for an explicit formula. Namely, for
every n ∈ N and each r, t ∈ [0, T ] with r ≤ t, we define Cn(r, t) to be the set of all
(s1, . . . , sn) ∈ [r, t]n with s1 ≤ · · · ≤ sn, then

Σn(r, t) =
∫
Cn(r,t)

b(s1, Xs1) · · · b(sn, Xsn) dνn(s1, . . . , sn). (4.25)

Here, νn(·)(ω) denotes the product measure ⊗ni=1ν(·)(ω) for all ω ∈ Ω. Let us check
the formula inductively. For n = 1 its validity follows immediately from Σ0 = Ik. If
(4.25) also holds for some n ∈ N, then Fubini’s theorem yields that

Σn+1(r, t) =
∫ t

r
b(s1, Xs1)Σn(s1, t) ν(ds1)

=
∫ t

r

∫
Cn(s1,t)

b(s1, Xs1) · · · b(sn+1, Xsn+1) dνn(s2, . . . , sn+1) ν(ds1)

=
∫
Cn+1(r,t)

b(s1, Xs1) · · · b(sn+1, Xsn+1) dνn+1(s1, . . . , sn+1)

for all r, t ∈ [0, T ] with r ≤ t. This concludes the induction proof. We continue with
an absolute convergence result for an intrinsic matrix series.

4.22 Proposition. The series map ∑∞n=0(−1)nΣn converges absolutely, uniformly
in (r, t, ω) ∈ [0, T ] × [0, T ] × Ω, and the limit map Σ := ∑∞

n=0(−1)nΣn satisfies the
following three properties:

(i) Σ(r, t) is F̂r,t-measurable and bounded, and fulfills

|Σ(r, t)| ≤
√
k exp

(∣∣∣∣∣
∫ t

r
|b(s,Xs)| ν(ds)

∣∣∣∣∣
)

(4.26)

for all r, t ∈ [0, T ]. Moreover, Σ(·, ·)(ω) ∈ C([0, T ]×[0, T ],Rk×k) for all ω ∈ Ω.

(ii) Σ(r, r) = Ik, Σ(r, s)Σ(s, t) = Σ(r, t), and Σ(r, t)(ω) is an invertible matrix
such that Σ(r, t)(ω)−1 = Σ(t, r)(ω) for all r, s, t ∈ [0, T ] and every ω ∈ Ω.

(iii) If b(r, x)b(s, y) = b(s, y)b(r, x) for each (r, x), (s, y) ∈ [0, T ]× S, then

Σ(r, t) = exp
(
−
∫ t

r
b(s,Xs) ν(ds)

)
for all r, t ∈ [0, T ].

Proof. From (4.24) we immediately get that
∞∑
n=0
|(−1)nΣn(r, t)| ≤

√
k exp

(∣∣∣∣∣
∫ t

r
|b(s,Xs)| ν(ds)

∣∣∣∣∣
)

(4.27)

for each r, t ∈ [0, T ]. Because b is µ-dominated, there is a µ-integrable function
b ∈ B([0, T ],R+) such that |b(·, y)| ≤ b for all y ∈ S µ-a.s. Hence,

sup
(r,t,ω)∈[0,T ]×[0,T ]×Ω

∞∑
n=0
|(−1)nΣn(r, t)(ω)| ≤

√
k exp

(
θ
∫ T

0
b(s)µ(ds)

)
, (4.28)
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where θ := sup(s,y)∈[0,T ]×S θ(s, y). This justifies the first assertion. From (4.27) we
infer that Σ(r, t) satisfies (4.26) and hence, is bounded for each r, t ∈ [0, T ]. The
F̂r,t-measurability of Σ(r, t) for each r, t ∈ [0, T ] and the continuity of Σ(·, ·)(ω) for
all ω ∈ Ω follow from Lemma 4.21 and the first claim. This is because (4.28) gives

lim
n↑∞

sup
(r,t,ω)∈[0,T ]×[0,T ]×Ω

∣∣∣∣∣
n∑
i=0

(−1)iΣi(r, t)(ω)− Σ(r, t)(ω)
∣∣∣∣∣ = 0.

Hence, Σ fulfills (i). Let us verify that (ii) holds as well. From Σ0(r, r) = Ik and
Σn(r, r) = 0 for all n ∈ N we get that Σ(r, r) = Ik for each r ∈ [0, T ]. To verify that
Σ(r, s)Σ(s, t) = Σ(r, t) for all r, s, t ∈ [0, T ], it is enough to show that

n∑
i=0

Σi(r, s)Σn−i(s, t) = Σn(r, t) (4.29)

for all n ∈ N0. Indeed, we first note that Rk×k equipped with the Frobenius norm
| · | is a Banach algebra. Consequently, once (4.29) is established, it follows from the
Cauchy product for absolutely convergent matrix series that

Σ(r, s)Σ(s, t) =
( ∞∑
n=0

(−1)nΣn(r, s)
)( ∞∑

n=0
(−1)nΣn(s, t)

)

=
∞∑
n=0

(−1)n
(

n∑
i=0

Σi(r, s)Σn−i(s, t)
)

=
∞∑
n=0

(−1)nΣn(r, t) = Σ(r, t)

for every r, s, t ∈ [0, T ]. Thus, let us justify (4.29) by induction over n ∈ N0. In the
initial induction step n = 0 we directly obtain the assertion from Σ0 = Ik. So, let
us assume that (4.29) is true for some n ∈ N0. Then

n+1∑
i=0

Σi(r, s)Σn+1−i(s, t) = Σ0(r, s)Σn+1(s, t) +
n∑
i=0

Σi+1(r, s)Σn−i(s, t)

= Σn+1(s, t) +
n∑
i=0

∫ s

r
b(r′, Xr′)Σi(r′, s) ν(dr′)Σn−i(s, t)

=
∫ t

s
b(s′, Xs′)Σn(s′, t) ν(ds′) +

∫ s

r
b(r′, Xr′)Σn(r′, t) ν(dr′)

=
∫ t

r
b(s′, Xs′)Σn(s′, t) ν(ds′) = Σn+1(r, t)

for every r, s, t ∈ [0, T ]. This completes the induction proof. Furthermore, from
Σ(r, t)Σ(t, r) = Σ(r, r) = Ik we draw the conclusion that the matrix Σ(r, t)(ω) is
invertible and Σ(r, t)(ω)−1 = Σ(t, r)(ω) for all r, t ∈ [0, T ] and each ω ∈ Ω.

Regarding (iii), assume that b fulfills b(r, x)b(s, y) = b(s, y)b(r, x) for every
(r, x), (s, y) ∈ [0, T ] × S. Then the proposition follows as soon as we have proven
that

Σn(r, t) = 1
n!

(∫ t

r
b(s,Xs) ν(ds)

)n
(4.30)
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for every n ∈ N and each r, t ∈ [0, T ] with r ≤ t. In fact, the definition of Σ would
then yield

Σ(r, t) =
∞∑
n=0

(−1)n
n!

(∫ t

r
b(s,Xs) ν(ds)

)n
= exp

(
−
∫ t

r
b(s,Xs) ν(ds)

)

for all r, t ∈ [0, T ] with r ≤ t, which together with Σ(t, r)(ω) = Σ(r, t)(ω)−1 for each
ω ∈ Ω would give the complete result. Hence, we let n ∈ N and and write Sn for the
set of all permutations of {1, . . . , n}. For each σ ∈ Sn we define ϕσ : [0, T ]n → [0, T ]n
by

ϕσ(s1, . . . , sn) := (sσ(1), . . . , sσ(n))
and set Cσ

n(r, t) := {(s1, . . . , sn) ∈ [r, t]n | sσ(1) ≤ · · · ≤ sσ(n)} for each r, t ∈ [0, T ]
with r ≤ t. Then ϕσ is a homeomorphism such that ϕ−1

σ = ϕσ−1 and ϕσ(Cσ
n(r, t))

= Cn(r, t) for each σ ∈ Sn. Let νnσ (·)(ω) denote the image measure of νn(·)(ω) under
ϕσ, that is, νnσ (B)(ω) := νn(ϕ−1

σ (B))(ω) for all ω ∈ Ω and each B ∈ B([0, T ]n).
Then

νnσ (B1 × · · · ×Bn) = ν(Bσ−1(1)) · · · ν(Bσ−1(n))
= ν(B1) · · · ν(Bn) = νn(B1 × · · · ×Bn)

for all B1, . . . , Bn ∈ B([0, T ]). Therefore, νnσ (B) = νn(B) for each B ∈ B([0, T ]n),
by the Monotone Class Theorem A.28. From the measure transformation formula
and the representation (4.25) we now obtain that∫

Cσn(r,t)
b(s1, Xs1) · · · b(sn, Xsn) dνn(s1, . . . , sn)

=
∫
Cσn(r,t)

b(sσ(1), Xsσ(1)) · · · b(sσ(n), Xsσ(n)) dν
n(s1, . . . , sn)

=
∫
Cn(r,t)

b(s1, Xs1) · · · b(sn, Xsn) dνnσ (s1, . . . , sn) = Σn(r, t).

In the end, we use that [r, t]n = ⋃
σ∈Sn C

σ
n(r, t). Since the continuity of ν yields that

νn(Cσ
n(r, t) ∩ Cτ

n(r, t)) = 0 for all σ, τ ∈ Sn with σ 6= τ , Fubini’s theorem leads to(∫ t

r
b(s,Xs) ν(ds)

)n
=
∫

[r,t]n
b(s1, Xs1) · · · b(sn, Xsn) dνn(s1, . . . , sn)

=
∑
σ∈Sn

∫
Cσn(r,t)

b(s1, Xs1) · · · b(sn, Xsn) dνn(s1, . . . , sn)

= n!Σn(r, t).

That is, (4.30) is justified and the claim follows.

Let us now prove a multidimensional Feynman-Kac representation.
4.23 Proposition. Let κ be of standard form and g ∈ Bb(S,Rk). Then the unique
global bounded solution ug to (AM) is of the form

ug(r, x) = Er,x[Σ(r, T )g(XT )]− Er,x
[ ∫ T

r
Σ(r, t)a(t,Xt) ν(dt)

]
for all (r, x) ∈ [0, T ]× S.
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Proof. Let us denote the unique global bounded solution to (AM) for a = 0 by
vg. Then Proposition 4.17 entails that the sequence (vn)n∈N0 in Bb([0, T ] × S,Rk),
recursively given by v0(r, x) := Er,x[g(XT )] and

vn(r, x) := v0(r, x)− Er,x
[ ∫ T

r
b(s,Xs)vn−1(s,Xs) ν(ds)

]

for every n ∈ N, converges uniformly to vg. We show by induction that vn is of the
form

vn(r, x) =
n∑
i=0

(−1)iEr,x[Σi(r, T )g(XT )]

for each n ∈ N0 and all (r, x) ∈ [0, T ]× S. The initial induction step n = 0 is valid
due to Σ0 = Ik. We assume that the claim is true for some n ∈ N0. By Lemma 4.21
and Proposition A.40, the process [0, T ] × Ω → Rk, (r, ω) 7→ Σi(r, T )(ω)g(XT (ω))
is reconstructible, bounded, and continuous for all i ∈ N0. Hence, Proposition 3.18
entails that

vn+1(r, x) = v0(r, x)−
n∑
i=0

(−1)iEr,x
[ ∫ T

r
b(s,Xs)Σi(s, T )g(XT ) ν(ds)

]

= Er,x[Σ0(r, T )g(XT )] +
n∑
i=0

(−1)i+1Er,x[Σi+1(r, T )g(XT )]

=
n+1∑
i=0

(−1)iEr,x[Σi(r, T )g(XT )]

for each (r, x) ∈ [0, T ]× S. This concludes the induction proof. Moreover, another
application of Proposition 4.17 yields that the sequence (wn)n∈N0 inBb([0, T ]×S,Rk),
recursively given via w0(r, x) := 0 and

wn(r, x) := −Er,x
[ ∫ T

r
a(s,Xs) + b(s,Xs)wn−1(s,Xs) ν(ds)

]

for each n ∈ N, converges uniformly to u0, the unique global bounded solution to
(AM) when g = 0. We prove inductively that wn can be written in the form

wn(r, x) = −
n−1∑
i=0

(−1)iEr,x
[ ∫ T

r
Σi(r, t)a(t,Xt) ν(dt)

]

for all n ∈ N and each (r, x) ∈ [0, T ]×S. The initial induction step n = 1 is certainly
true, since w0 = 0. So, let us assume that the formula holds for some n ∈ N. Then
it is readily seen that the process [0, T ]× Ω→ Rk,

(r, ω) 7→
∫ T

r
Σi(r, t)(ω)a(t,Xt(ω)) ν(dt)(ω)

is reconstructible, bounded, and continuous for each i ∈ N0. For this reason, from
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Proposition 3.18 and Fubini’s theorem it follows that

wn+1(r, x) = −Er,x
[ ∫ T

r
a(s,Xs) ν(ds)

]

+
n−1∑
i=0

(−1)iEr,x
[ ∫ T

r
b(s,Xs)

∫ T

s
Σi(s, t)a(t,Xt) ν(dt) ν(ds)

]

= −Er,x
[ ∫ T

r
Σ0(r, t)a(t,Xt) ν(dt)

]

+
n−1∑
i=0

(−1)iEr,x
[ ∫ T

r

∫ t

r
b(s,Xs)Σi(s, t) ν(ds)a(t,Xt) ν(dt)

]

= −
n∑
i=0

(−1)iEr,x
[ ∫ T

r
Σi(r, t)a(t,Xt) ν(dt)

]

for each (r, x) ∈ [0, T ] × S. This completes the induction proof. Now the decisive
observation comes from Lemmas 4.19 and 4.20. Namely, the unique global bounded
solution ug to (AM) is of the form ug = vg + u0. Moreover,

vg(r, x) = lim
n↑∞

Er,x

[(
n∑
i=0

(−1)iΣi(r, T )
)
g(XT )

]
= Er,x[Σ(r, T )g(XT )]

and

u0(r, x) = − lim
n↑∞

Er,x

[ ∫ T

r

(
n−1∑
i=0

(−1)iΣi(r, t)
)
a(t,Xt) ν(dt)

]

= −Er,x
[ ∫ T

r
Σ(r, t)a(t,Xt) ν(dt)

]

for every (r, x) ∈ [0, T ] × S, by Proposition 4.22 and the Dominated Convergence
Theorem A.33. The asserted representation follows.

We note that if there are a µ-dominated c ∈ B([0, T ]×S) and a matrix B ∈ Rk×k

such that b is of the form b(r, x) = c(r, x)B for each (r, x) ∈ [0, T ] × S, then the
commutation condition in Proposition 4.22 holds. More precisely,

b(r, x)b(s, y) = c(r, x)c(s, y)B2 = b(s, y)b(r, x)

for all (r, x), (s, y) ∈ [0, T ]×S. Let us further suppose that B is diagonalizable, that
is, there are a diagonal matrix D̂ ∈ Rk×k and an invertible matrix U ∈ Rk×k such
that B = UD̂U−1. Then

Σ(r, t) = exp
(
−
∫ t

r
c(s,Xs) ν(ds)B

)

= U exp
(
−
∫ t

r
c(s,Xs) ν(ds)D̂

)
U−1

(4.31)

for every r, t ∈ [0, T ] with r ≤ t, because (αB)n = αnUD̂nU−1 for each n ∈ N and all
α ∈ R. Hence, we may consider an example that involves trigonometric functions.
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4.24 Example. Let k = 2, a = 0, and κ be of standard form. Suppose that there
are some µ-dominated function c ∈ B([0, T ]× S) and δ, ε ∈ R\{0} such that

b(r, x) = c(r, x)
(

0 δ
ε 0

)
for all (r, x) ∈ [0, T ]× S. (4.32)

We set ρ := 1 for δε > 0 and ρ := i ∈ C for δε < 0. Then for every g ∈ Bb(S,Rk)
the unique global bounded solution ug to (AM) is of the form

(ug)1(r, x) = Er,x

[
cosh

(
− ρ

√
|δε|

∫ T

r
c(s,Xs) ν(ds)

)
g1(XT )

]

+ ρ

√
|δε|
ε

Er,x

[
sinh

(
− ρ

√
|δε|

∫ T

r
c(s,Xs) ν(ds)

)
g2(XT )

]
,

(ug)2(r, x) = ρ

√
|δε|
δ

Er,x

[
sinh

(
− ρ

√
|δε|

∫ T

r
c(s,Xs) ν(ds)

)
g1(XT )

]

+ Er,x

[
cosh

(
− ρ

√
|δε|

∫ T

r
c(s,Xs) ν(ds)

)
g2(XT )

]

for each (r, x) ∈ [0, T ]× S. In particular, for δ = −1, ε = 1, and g2 = 0 we recover
from the trigonometric formulas cosh(iz) = cos(z) and sinh(iz) = i sin(z), where
z ∈ C, that

(ug)1(r, x) = Er,x

[
cos

(
−
∫ T

r
c(s,Xs) ν(ds)

)
g1(XT )

]
,

(ug)2(r, x) = Er,x

[
sin

(
−
∫ T

r
c(s,Xs) ν(ds)

)
g1(XT )

]

for all (r, x) ∈ [0, T ] × S. To see this, note that the two distinct eigenvalues of the
matrix appearing in (4.32) are ρ

√
|δε| and −ρ

√
|δε| with respective eigenvectors

1√
2

 δ

ρ
√
|δε|

 and 1√
2

 δ

−ρ
√
|δε|

 .
Hence, this matrix is diagonalizable and it admits the representation(

0 δ
ε 0

)
= 1√

2

 δ δ

ρ
√
|δε| −ρ

√
|δε|

ρ√|δε| 0
0 −ρ

√
|δε|

 1√
2

1
δ

1
ρ
√
|δε|

1
δ
− 1
ρ
√
|δε|

 .
For this reason, the solution formulas follow from Proposition 4.23 and (4.31) after
standard computations.

4.6 Global existence in one dimension
We restrict our attention to one-dimensional Markovian equations and prove global
existence and uniqueness in a general setting. Conditions granting the continuity
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of the derived solution are also given. Let k = 1, κ be of standard form, and
g ∈ Bb(S,D). First, we use the Feynman-Kac formula to represent the difference of
two solutions. This idea is essentially based on Proposition 3.1 in Schied [32].
4.25 Lemma. Let f ∈ BC1−

µ ([0, T ]×S×D), ψ : [0, T ]×S×D → R be measurable
with respect to B([0, T ]×S)⊗ (D∩B(R)) and locally µ-bounded, h ∈ Bb(S,D), and
I be some admissible interval. Suppose that u is a weakly µ-admissible solution to
(M) on I and v is a weakly µ-admissible solution to (M) on I with f and g replaced
by ψ and h, respectively. Define δ, ε ∈ B(I × S) by δ(r, x) := (f − ψ)(r, x, v(r, x))
and

ε(r, x) := f(r, x, u(r, x))− f(r, x, v(r, x))
(u− v)(r, x) , if u(r, x) 6= v(r, x),

and ε(r, x) := 0, if u(r, x) = v(r, x). Then δ, ε are locally µ-dominated and

(u− v)(r, x) = Er,x

[
exp

(
−
∫ T

r
ε(s,Xs) ν(ds)

)
(g − h)(XT )

]

− Er,x
[ ∫ T

r
exp

(
−
∫ t

r
ε(s,Xs) ν(ds)

)
δ(t,Xt) ν(dt)

]
for each (r, x) ∈ I × S. In particular, if f ≤ ψ and g ≥ h, then u ≥ v.
Proof. The second claim is a direct consequence of the first, since δ ≤ 0 whenever
f ≤ ψ. Thus, we merely have to prove the first assertion. The fact that δ and ε are
Borel measurable follows from the B([0, T ] × S) ⊗ (D ∩B(R))-measurability of f
and ψ. To check that δ and ε are locally µ-dominated, it suffices to show that for
each r ∈ I there is a µ-dominated γ ∈ B([r, T ]× S,R+) such that

|δ(·, y)| ∨ |ε(·, y)| ≤ γ(·, y) for all y ∈ S µ-a.s. on [r, T ].

Let K be a compact set in D such that u(·, y), v(·, y) ∈ K for each y ∈ S µ-a.s. on
[r, T ]. According to Lemma 2.5 and Proposition 2.8, there exist two µ-dominated
a, λ ∈ B([r, T ]× S,R+) such that

|f(t, x, z)| ∨ |ψ(t, x, z)| ≤ a(t, x) and |f(t, x, z)− f(t, x, z′)| ≤ λ(t, x)|z − z′|

for all (t, x) ∈ [r, T ] × S and each z, z′ ∈ K. This in turn gives |δ(·, y)| ≤ 2a(·, y)
and |ε(·, y)| ≤ λ(·, y) for every y ∈ S µ-a.s. on [r, T ]. Hence, all that remains is to
set γ := (2a) ∨ λ. Next, we note that

δ(t, x) + ε(t, x)(u− v)(t, x) = f(t, x, u(t, x))− ψ(t, x, v(t, x)) (4.33)

for each (t, x) ∈ I×S. Let r ∈ I and define δr, εr ∈ B([0, T ]×S) by δr(t, x) := δ(t, x),
if t ≥ r, and δr(t, x) := 0, otherwise, and εr(t, x) := ε(t, x), if t ≥ r, and εr(t, x) := 0,
otherwise. Then the function [0, T ] × S × R → R, (t, x, z) 7→ δr(t, x) + εr(t, x)z
belongs to BC1

µ([0, T ]× S ×R). By (4.33), the restriction of u− v to [r, T ]× S is a
µ-admissible solution to the linear Markovian terminal value problem

E[dw(t,Xt)] = E[δr(t,Xt)+εr(t,Xt)w(t,Xt) ν(dt)] for t ∈ [0, T ], w(T, ·) = g−h.

Thus, from Proposition 4.23, Corollary 4.6, and the arbitrariness of r ∈ I we infer
the assertion.
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As the only convex sets in R are intervals, we suppose in the sequel that D is an
interval. Additionally, we set d := inf D and d := supD, then ∂D = {d, d} ∩ R.

4.26 Lemma. Let d > −∞ (resp. d < ∞) and f be affine µ-bounded from below
(resp. from above). That is, there are two µ-dominated a, b ∈ B([0, T ]×S,R+) with

f(t, x, z) ≥ −a(t, x)− b(t, x)|z| (resp. f(t, x, z) ≤ a(t, x) + b(t, x)|z|)

for every (t, x, z) ∈ [0, T ]× S ×D. Then every µ-consistently bounded solution u to
(M) on an admissible interval I fulfills either

u(r, x)− d ≤ −|d|+ Er,x

[
e
∫ T
r
b(s,Xs) ν(ds)

(
g(XT ) + 2d− +

∫ T

r
a(s,Xs) ν(ds)

)]

for all (r, x) ∈ I × S or

d− u(r, x) ≤ −|d|+ Er,x

[
e
∫ T
r
b(s,Xs) ν(ds)

(
2d+ − g(XT ) +

∫ T

r
a(s,Xs) ν(ds)

)]

for each (r, x) ∈ I × S, respectively.

Proof. First of all, it is enough to show the assertion in the first case. In fact, suppose
temporarily that d <∞ and write −D for the set {−z | z ∈ D}. Then −d = inf −D
and −d = sup−D. In addition, the function ψ : [0, T ] × S × (−D) → R defined
via ψ(t, x, z) := −f(t, x,−z) is B([0, T ] × S) ⊗ (D ∩B(R))-measurable and affine
µ-bounded from below.

We also observe that if I is an admissible interval, then a map u ∈ B(I × S,D)
solves (M) if and only if the map I × S → −D, (r, x) 7→ −u(r, x) solves (M) when
f and g are replaced by ψ and −g, respectively. Thus, an application of the lemma
in the case inf −D > −∞ to ψ yields the asserted estimate in the case supD <∞
for f . For this reason, let d > −∞ and suppose that u is a µ-consistently bounded
solution to (M) on an admissible interval I. Then

u(r, x)− d ≤ Er,x[g(XT )− d] + Er,x

[ ∫ T

r
(a+ b|d|)(s,Xs) ν(ds)

]

+ Er,x

[ ∫ T

r
b(s,Xs)(u(s,Xs)− d) ν(ds)

]

for each (r, x) ∈ I ×S, because |u(s,Xs)| ≤ (u(s,Xs)− d) + |d| for all s ∈ [r, T ]. By
Corollary 3.24, we obtain that

u(r, x)− d ≤ Er,x

[
e
∫ T
r
b(s,Xs) ν(ds)(g(XT )− d)

]

+ Er,x

[ ∫ T

r
e
∫ t
r
b(s,Xs) ν(ds)(a+ b|d|)(t,Xt) ν(dt)

]

for all (r, x) ∈ I×S. Because |d|−d = 2d−, the asserted estimate follows immediately
from Lemma 3.20.
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4.27 Remark. Let d > −∞ and f be affine µ-bounded from below. Then there is
c > d such that every µ-consistently bounded solution u to (M) on an admissible
interval I satisfies

u(I × S) ⊂ [d, c] ∩D.
In fact, let a, b ∈ B([0, T ],R+) be two µ-integrable functions with a(·, y) ≤ a and
b(·, y) ≤ b for all y ∈ S µ-a.s. Then

c := exp
(
θ
∫ T

0
b(s)µ(ds)

)(
sup
y∈S

g(y) + 2d− + θ
∫ T

0
a(s)µ(ds)

)

with θ := sup(s,y)∈[0,T ]×S θ(s, y) clarifies the claim. Of course, a similar remark holds
when d <∞ and f is affine µ-bounded from above.

Next, we study the boundary behavior of solutions in comparison to the terminal
value condition.

4.28 Proposition. Let f ∈ BC1−
µ ([0, T ] × S × D) and d > −∞ (resp. d < ∞).

Suppose that f is both locally µ-bounded and locally Lipschitz µ-continuous at d
(resp. d) with limz↓d f(·, x, z) ≤ 0 (resp. limz↑d f(·, x, z) ≥ 0) for all x ∈ S µ-a.s.
Morever, let one of the following two conditions hold:

(i) f is µ-bounded from above (resp. from below).

(ii) d = ∞ (resp. d = −∞) and f is affine µ-bounded from below (resp. from
above).

Then there is c ∈ (0, 1] such that each weakly µ-admissible solution u to (M) on an
admissible interval I is subject to

u(r, x)− d ≥ c(Er,x[g(XT )]− d) (resp. d− u(r, x) ≥ c(d− Er,x[g(XT )]))

for all (r, x) ∈ I × S.

Proof. Once again, it suffices to prove the claim in the case d > −∞. Indeed,
assume for the moment that d <∞ and let ψ ∈ BC1−

µ ([0, T ]× S × (−D)) be given
by ψ(t, x, z) := −f(t, x,−z). Then ψ is both locally µ-bounded and locally Lipschitz
µ-continuous at −d with limz↓−d ψ(·, x, z) ≤ 0 for all x ∈ S µ-a.s. In addition, if
I is an admissible interval, then a map u ∈ B(I × S,D) solves (M) exactly if the
map I ×S → −D, (r, x) 7→ −u(r, x) is a solution to (M) when f and g are replaced
by ψ and −g, respectively. Hence, an application of the proposition in the case
inf −D > −∞ to ψ establishes the claim in the case supD <∞ for f .

Thus, let d > −∞. Whenever d /∈ D, then we define the extension f of f to
[0, T ]×S× (D∪{d}) through f(t, x, d) := limz↓d f(t, x, z). Otherwise, we simply set
f := f . This gives f ∈ BC1−

µ ([0, T ]× S × (D ∪ {d})). Furthermore, we see that the
constant function [0, T ]×S → {d}, (r, x) 7→ d is a global weakly admissible solution
to the Markovian terminal value problem

E[dv(t,Xt)] = E[(f(t,Xt, v(t,Xt))− f(t,Xt, d)) ν(dt)] for t ∈ [0, T ], v(T, ·) = d.
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Now, let u be a weakly µ-admissible solution to (M) on an admissible interval I.
Then, as u is D-valued, it is also a weakly µ-admissible solution to (M) when f is
replaced by f . Hence, Lemma 4.25 implies that εu ∈ B(I × S) given by

εu(r, x) := f(r, x, u(r, x))− f(r, x, d)
u(r, x)− d , if u(r, x) > d,

and εu(r, x) := 0, otherwise, is locally µ-dominated and satisfies

u(r, x)− d ≥ Er,x

[
exp

(
−
∫ T

r
εu(s,Xs) ν(ds)

)
(g(XT )− d

)]

for each (r, x) ∈ I × S, since f(t,Xt, d) ≤ 0 for µ-a.e. t ∈ [r, T ]. We derive some
µ-dominated n ∈ B([0, T ] × S,R+) such that every weakly µ-admissible solution u
to (M) on an admissible interval I satisfies εu(r, x) ≤ n(r, x) for each (r, x) ∈ I ×S.
Once this is shown, the assertion follows. Indeed, the only remaining task is to
choose a µ-integrable n ∈ B([0, T ],R+) such that n(·, y) ≤ n for all y ∈ S µ-a.s. and
set

c := exp
(
− θ

∫ T

0
n(s)µ(ds)

)
with θ := sup

(s,y)∈[0,T ]×S
θ(s, y).

So, let us at first assume that (i) holds. Then there exists some µ-dominated
a ∈ B([0, T ] × S,R+) with f(t, x, z) ≤ a(t, x) for each (t, x, z) ∈ [0, T ] × S × D.
Since f is locally Lipschitz µ-continuous at d, there are δ > 0 and a µ-dominated
λ ∈ B([0, T ] × S,R+) fulfilling |f(t, x, z) − f(t, x, z′)| ≤ λ(t, x)|z − z′| for every
(t, x) ∈ [0, T ]×S and all z, z′ ∈ [d, d+ δ)∩D. Hence, for every weakly µ-admissible
solution u to (M) on an admissible interval I we obtain that

εu(r, x) ≤ λ(r, x)1[d,d+δ)(u(r, x)) + a(r, x)− f(r, x, d)
δ

1[d+δ,∞)(u(r, x)) ≤ n(r, x)

for all (r, x) ∈ I × S with n(r, x) := max{λ(r, x), (a(r, x) − f(r, x, d))/δ} for each
(r, x) ∈ [0, T ] × S. Note that the function [0, T ] × S → R, (t, x) 7→ f(t, x, d) is
µ-dominated, as f is locally µ-bounded at d. For this reason, n is µ-dominated, as
desired.

In place of assuming that f is µ-bounded from above, let (ii) be true. That is,
d =∞ and f is affine µ-bounded from below. Then Remark 4.27 yields c > d such
that

u(I × S) ⊂ [d, c] ∩D
for each weakly µ-admissible solution u to (M) on an admissible interval I. Because
[d, c] is compact, there is a µ-dominated function λ ∈ B([0, T ] × S,R+) such that
|f(t, x, z)−f(t, x, z′)| ≤ λ(t, x)|z−z′| for all (t, x) ∈ [0, T ]×S and each z, z′ ∈ [d, c].
Hence, each weakly µ-admissible solution u to (M) on an admissible interval I fulfills
|εu(r, x)| ≤ n(r, x) for every (r, x) ∈ I × S with n := λ.

Eventually, we are ready to establish the main result of this section. Namely,
the one-dimensional global existence and uniqueness theorem.
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4.29 Theorem. Let f ∈ BC1−
µ ([0, T ]× S ×D) and suppose that the following two

conditions hold:

(i) If d > −∞ (resp. d <∞), then f is both locally µ-bounded and locally Lipschitz
µ-continuous at d (resp. d) with limz↓d f(·, x, z) ≤ 0 (resp. limz↑d f(·, x, z) ≥ 0)
for all x ∈ S µ-a.s.

(ii) If d = −∞ (resp. d = ∞), then f is affine µ-bounded from above (resp. from
below).

Then there exists a unique global bounded solution ug to (M) that coincides with ug
if g is bounded away from {d, d} ∩ R. Moreover, if X is (right-hand) Feller, f is
right-continuous, and g ∈ Cb(S), then ug is (right-)continuous.

Proof. Let us verify the first claim. We begin with the case d > −∞ and d < ∞.
Proposition 4.28 and Remarks 4.16 yield that Ih = [0, T ] for each h ∈ Bb(S, (d, d))
that is bounded away from {d, d}. Thus, for all n ∈ N we define

gn := (g ∨ (d+ (d− d)2−n)) ∧ (d− (d− d)2−n), (4.34)

then gn ∈ Bb(S, (d, d)) and dist(gn, {d, d}) ≥ (d − d)2−n, which guarantees that
Ign = [0, T ]. Because |gn − g| ≤ (d − d)2−n for all n ∈ N, the sequence (gn)n∈N
converges uniformly to g. If D ( [d, d], then we let f denote the unique extension
of f to [0, T ]× S × [d, d] such that

f ∈ BC1−
µ ([0, T ]× S × [d, d]).

Otherwise, we just set f := f . According to Proposition 4.7, the sequence (ugn)n∈N
converges uniformly to the unique global bounded solution to (M) with f instead
of f , which we denote by ug. By uniqueness, ug = ug whenever g is bounded away
from {d, d}. Since Proposition 4.28 also shows that ug does not attain the value
d (resp. d) if the same is true for g, the function ug is D-valued. Hence, ug is the
unique global bounded solution to (M).

Let us turn to the case d > −∞ and d =∞. Lemma 4.26 and Proposition 4.28
entail that Ih = [0, T ] for every h ∈ Bb(S, (d,∞)) that is bounded away from d. For
each n ∈ N we set

gn := g ∨ (d+ 2−n), (4.35)
then gn ∈ Bb(S, (d,∞)) and dist(gn, d) ≥ 2−n, which implies that Ign = [0, T ]. In
addition, |gn − g| ≤ 2−n and gn(x) − d ≤ (g(x) − d) ∨ (1/2) for all n ∈ N and
each x ∈ S. We can now infer from Remark 4.27 and Proposition 4.7 that (ugn)n∈N
converges uniformly to the unique global bounded solution to (M), which we denote
by ug. Of course, uniqueness forces ug = ug if g is bounded away from d. From
Proposition 4.28 we see that ug cannot attain the value d if g(x) > d for all x ∈ S.
For this reason, ug is D-valued, which concludes the case d > −∞ and d =∞. The
case d = −∞ and d <∞ is a consequence of the last case by using the transformed
function ψ ∈ BC1−

µ ([0, T ] × S × (−D)) defined through ψ(t, x, z) := −f(t, x,−z),
as the considerations in the beginning of the proof of Proposition 4.28 show.
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In the end, we note that for each n ∈ N the function gn given either by (4.34)
or (4.35), depending on which case occurs, is continuous if g ∈ Cb(S). Hence,
because Lemma A.9 guarantees that the uniform limit of a sequence of real-valued
(right-)continuous functions on [0, T ]×S is (right-)continuous, the Non-Extendibility
Theorem 4.15 implies the second assertion.

In the case that f(t, x, z) = a(t, x) + b(t, x)z for all (t, x, z) ∈ [0, T ]× S ×D and
some a, b ∈ B([0, T ] × S), we get a one-dimensional Feynman-Kac formula, which
for D = R, a = 0, and b ≥ 0 can also be inferred from Theorem 4.1.1 in Dynkin [15].

4.30 Corollary. Suppose that there are two µ-dominated a, b ∈ B([0, T ] × S) with
f(t, x, z) = a(t, x) + b(t, x)z for all (t, x, z) ∈ [0, T ] × S × D such that if d > −∞
(resp. d <∞), then

a(·, x) + b(·, x)d ≤ 0 (resp. a(·, x) + b(·, x)d ≥ 0) (4.36)

for each x ∈ S µ-a.s. Then the unique global bounded solution ug to (M) admits the
representation

ug(r, x) = Er,x

[
e−
∫ T
r
b(s,Xs) ν(ds)g(XT )

]
− Er,x

[ ∫ T

r
e−
∫ t
r
b(s,Xs) ν(ds)a(t,Xt) ν(dt)

]

for all (r, x) ∈ [0, T ] × S. Furthermore, if X is (right-hand) Feller, a and b are
right-continuous, and g ∈ Cb(S), then ug is (right-)continuous.

Proof. Clearly, f is affine µ-bounded and uniformly µ-differentiable. In particular,
f ∈ BC1

µ([0, T ]×S×D). Condition (4.36) translates to requirement that if d > −∞
(resp. d <∞), then

lim
z↓d

f(·, x, z) ≤ 0
(
resp. lim

z↑d
f(·, x, z) ≥ 0

)
for each x ∈ S µ-a.s. We observe that f is right-continuous provided a and b are
right-continuous. Hence, Theorem 4.29 entails that (M) admits the unique global
bounded solution ug, which is (right-)continuous if X is (right-hand) Feller, a and
b are right-continuous, and g ∈ Cb(S). Let us set

f(t, x, z) := a(t, x) + b(t, x)z for all (t, x, z) ∈ [0, T ]× S × R,

then Proposition 4.23 implies that the unique global bounded solution vg to (M)
with f replaced by f admits the required representation

vg(r, x) = Er,x

[
e−
∫ T
r
b(s,Xs) ν(ds)g(XT )

]
− Er,x

[ ∫ T

r
e−
∫ t
r
b(s,Xs) ν(ds)a(t,Xt) ν(dt)

]

for every (r, x) ∈ [0, T ]× S. However, as ug is D-valued, it is also a global bounded
solution to (M) with f replaced by f . Uniqueness, manifested in Corollary 4.6, gives
ug = vg, which concludes the proof.
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In the specific case D = R+, global bounded solutions to (M) can be represented
via the log-Laplace functionals of superprocesses.

4.31 Example. Let D = R+ and a, b, c ∈ B([0, T ]×S,R+) be µ-dominated. We let
ϕa, ϕb, ϕc : R+ → R be locally Lipschitz continuous and n be a kernel from [0, T ]×S
to (0,∞) such that ∫ ∞

0
umin{1, u}n(·, ·, du)

is finite and µ-dominated. In addition, let ϕd : R+ → R+ be twice differentiable
with ϕd(0) = 0, ϕ′d(z) ≥ 0, and ϕ′′d(z) ≤ 0 for all z ≥ 0. Assume that f is of the
form

f(t, x, z) = a(t, x)ϕa(z) + b(t, x)ϕb(z) + c(t, x)ϕc(z)

+
∫ ∞

0
(e−uϕd(z) − 1 + uϕd(z))n(t, x, du)

(4.37)

for all (t, x, z) ∈ [0, T ]×S×R+. Then f ∈ BC1−
µ ([0, T ]×S×R+), by Example 2.17.

Moreover, if we had ϕa, ϕb, ϕc ∈ C1(R+), then f ∈ BC1
µ([0, T ] × S × R+) would

follow. We suppose that ϕa(z) ≥ −ca, ϕb(z) ≥ −cb|z|, and ϕc(z) ≥ 0 for all z ≥ 0
and some ca, cb ≥ 0. Then f is affine µ-bounded from below, because

f(t, x, z) ≥ −a(t, x)ca − b(t, x)cb|z|

for every (t, x, z) ∈ [0, T ] × S × R+. Let in addition ϕa(0) ≤ 0, ϕb(0) ≤ 0, and
ϕc(0) = 0, then f(t, x, 0) ≤ 0 for each (t, x) ∈ [0, T ] × S. Hence, under these
conditions, Theorem 4.29 yields a unique global bounded solution to (M).

Let us now specifically suppose that a = 0 and that the functions b, c, and
[0, T ] × S → R+, (t, x) 7→

∫∞
0 umin{1, u}n(t, x, du) are bounded. Furthermore, let

ϕb(z) = ϕd(z) = z and ϕc(z) = z2 for all z ≥ 0. Then (4.37) becomes

f(t, x, z) = b(t, x)z + c(t, x)z2 +
∫ ∞

0
(e−uz − 1 + uz)n(t, x, du)

for every (t, x, z) ∈ [0, T ] × S × R+ and f ∈ BC1
µ([0, T ] × S × R+). In this case,

by Theorem 1.1 in Dynkin [12] there exists an (X , ν, f)-superprocess, which is a
progressive Markov process Z = (Z, (Gt)t∈[0,T ],Q) with state space Mf (S), the set of
all finite Borel measures on S, such that for each t ∈ (0, T ] and every h ∈ Bb(S,R+),
the function

[0, t]× S → R+, (r, x) 7→ − log
(
EQ
r,δx

[
exp

(
−
∫
S
h(x) dZt(x)

)])

is Borel measurable and a global solution to (M) when T and g are replaced by t
and h, respectively. Here, Q is of the form Q = {Qr,λ | (r, λ) ∈ [0, T ]×Mf (S)} and
EQ
r,x denotes the expectation with respect to Qr,δx for all (r, x) ∈ [0, T ]× S. Thus,

ug(r, x) = − log
(
EQ
r,δx

[
exp

(
−
∫
S
g(x) dZT (x)

)])

for each (r, x) ∈ [0, T ]× S, due to Theorem 4.29.



Chapter 5

Path-Dependent PDEs

In the final chapter we deal with semilinear parabolic PPDEs that rest on horizontal
and vertical derivatives of non-anticipative functionals on path spaces. In Section 5.1
we set up our notation, discuss measurable structures and topologies, and recover
the familiar pseudometric topological setting. A short overview of path processes is
given as well. In Section 5.2 the definitions of horizontal and vertical derivatives of
non-anticipative maps on path spaces are recalled. Furthermore, we compile some
facts on these relaxed time and space differential operators. Section 5.3 introduces
the parabolic terminal value problem that is formulated with a linear differential
operator and an inhomogeneity that depends on the solution.

By making use of path-dependent diffusion processes that fulfill a martingale
property, we relate classical solutions to mild solutions and conclude that the latter
are in fact global solutions to the associated Markovian integral equations. After
this, we compare various notions of viscosity solutions in Section 5.4. To this end,
we study several test function spaces and discuss the relations between them. The
goal of Section 5.5 is to provide the evidence that each bounded right-continuous
mild solution may also be viewed as a viscosity solution. In the case that the PPDE
is affine, we can show that right-continuity is redundant. Moreover, we verify that
the right-hand semicontinuous envelopes of a bounded mild solution, introduced in
Section A.2, fulfill a right-hand viscosity property. This concludes our work.

5.1 Path spaces and path processes
Throughout the chapter, assume that T > 0, d ∈ N, and | · | is the Euclidean norm
on Rd. Let S̃ denote the linear space of all Rd-valued càdlàg maps on [0, T ] and set
S := C([0, T ],Rd). We work with the canonical process

ξ̃ : [0, T ]× S̃ → Rd, ξ̃t(x) := x(t)

and its restriction ξ to [0, T ]× S. By (S̃t)t∈[0,T ] we denote the natural filtration of
ξ̃ and set St := S ∩ S̃t for all t ∈ [0, T ], which in turn gives the natural filtration
(St)t∈[0,T ] of ξ. To keep notation simple, we set S̃ := S̃T and S := S ∩ S̃ . Next,

84
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for each t ∈ [0, T ] and all x ∈ S̃, we define ‖x‖ := sups∈[0,T ] |x(s)| and let xt ∈ S̃
be the map x stopped at time t. That is, xt(s) = x(s ∧ t) for every s ∈ [0, T ]. Of
course, S̃ equipped with ‖ · ‖ becomes a Banach space, which, however, fails to be
separable, and S is a separable closed set in S̃.

Due to the non-separability of S̃ under the supremum norm and the fact that the
Borel σ-field of S̃ with respect to ‖ · ‖ is strictly larger than the cylindrical σ-field
S̃ , we equip S̃ with a complete metric ρ that induces the Skorohod topology and
which satisfies

ρ(x, y) ≤ L‖x− y‖ (5.1)
for all x, y ∈ S̃ and some L > 0. Then S̃ endowed with ρ turns into a Polish space
and the Borel σ-field of S̃ with respect to ρ is exactly S̃ . Moreover, ρ and ‖ · ‖
induce the same topology on S.

5.1 Example. In Billingsley [3, Section 12] such a metric is defined for T = 1,
which can be generalized to arbitrarily T > 0. Namely, let Λ be the set of all
strictly increasing homeomorphisms from [0, 1] onto [0, 1] and set

|λ|Λ := sup
s,t∈[0,1]: s<t

∣∣∣∣∣ log
(
λ(t)− λ(s)

t− s

)∣∣∣∣∣ for all λ ∈ Λ,

then |λ|Λ = 0 if and only if λ is the identity map on [0, T ]. The metric ρ on S̃ is
then defined via ρ(x, y) := infλ∈Λ(|λ|Λ ∨ ‖x − y ◦ λ‖). Billingsley verifies that ρ is
a complete metric that is equivalent to another metric which induces the Skorohod
topology. Moreover, ρ(x, y) ≤ ‖x− y‖ for all x, y ∈ S̃.

We intend to use the pseudometric topological setting introduced in Section 3.1
for the choice J = [0, T ] and Φ : [0, T ]× S̃ → S̃, Φt(x) = xt. Then (xs)t = xs∧t for
all s, t ∈ [0, T ] and each x ∈ S̃, which entails that σ(Φt) = S̃t for each t ∈ [0, T ].
Let us also verify that Φ, regarded as a process, has càdlàg paths.

5.2 Lemma. For each x ∈ S̃ the map [0, T ] → S̃, t 7→ xt is càdlàg and also
left-continuous at each continuity point of x.

Proof. Initially, we show that the map [0, T ] → S̃, r 7→ xr is right-continuous.
Let r ∈ [0, T ), then there is δ ∈ (0, T − r) such that |x(s) − x(r)| < ε/L for all
s ∈ [r, r + δ), since x is right-continuous. By (5.1),

ρ(xt, xr) ≤ L‖xt − xr‖ = L sup
s∈[r,t]

|x(s)− x(r)| ≤ ε

for all t ∈ [r, r + δ). Now let t ∈ (0, T ] and denote the left-hand limit lims↑t x(s)
by x(t−). We define xt ∈ S̃ via xt(s) := x(s)1[0,t)(s) + x(t−)1[t,T ](s), then xt = xt

whenever x is continuous at t. Hence, the proof is complete, once we have shown
that

lim
r↑t

ρ(xr, xt) = 0.

We pick δ ∈ (0, t) such that |x(s) − x(t−)| < ε/(2L) for each s ∈ (t − δ, t), then
ρ(xr, xt) ≤ L‖xr − xt‖ ≤ L|x(r) − x(t−)| + L sups∈[r,t) |x(t−) − x(s)| < ε for every
r ∈ (t− δ, t).
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We recall that if (E, %) is a metric space and I is a non-degenerate interval in
[0, T ], then a map u : I× S̃ → E is called non-anticipative if u(t, x) = u(t, xt) for all
(t, x) ∈ I × S̃. This coincides with our notion of consistency and also works if the
domain of u is merely I×S. Following Cont and Fournié [6], and using the Cartesian
setting in Ekren, Keller, Touzi, and Zhang [16], we consider the pseudometric d∞
on [0, T ]× S̃ given by

d∞((r, x), (s, y)) := |r − s|+ ‖xr − ys‖.

Then d∞((r, x), (s, y)) = 0 exactly if r = s and xr = yr for all r, s ∈ [0, T ] and each
x, y ∈ S̃. Thus, if u is continuous with respect to d∞, then it is non-anticipative.
However, there is no reason that u is (S̃t)t∈I-progressively measurable or at least
B(I)⊗ S̃ -measurable. To circumvent this difficulty, we endow [0, T ]× S̃ with the
pseudometric dS defined via

dS((r, x), (s, y)) := |r − s|+ ρ(xr, ys).

From (5.1) we infer that if u is continuous with respect to dS, then continuity relative
to d∞ follows. The same is true for right-continuity, in which case u is progressively
measurable. Indeed, u(·, x) is right-continuous for each x ∈ S̃, by Proposition 3.3,
and non-anticipation yields that u(t, ·) is S̃t-measurable for every t ∈ I. Thus,
Proposition A.38 applies. Finally, a combination of Lemma 3.2 with Proposition 3.3
summarizes two more facts.

5.3 Corollary. Let (E, %) be a metric space, I be a non-degenerate interval in [0, T ],
and u : I × S̃ → E. Then the following two assertions hold:

(i) If u is non-anticipative and B(I) ⊗ S̃ -measurable, then it is progressively
measurable. Then converse is true provided E is a finite-dimensional linear
space and % is induced by a norm.

(ii) Let u be right-continuous with respect to d∞, then u(·, x) is right-continuous
for each x ∈ S̃ and u(t, ·) is continuous relative to ‖ · ‖ for all t ∈ I. Further,
if u is actually continuous, then u(·, x) is càdlàg and left-continuous at each
continuity point of x.

From Section 5.3 onwards, when mild and viscosity solutions to path-dependent
PDEs are considered, we work with S rather than S̃. Certainly, Proposition 3.1
ensures that [0, T ]×S equipped with the corresponding restriction of dS is a separable
complete pseudometric space and its Borel σ-field fulfills

B([0, T ]× S) ⊂ B([0, T ])⊗S .

In addition, for each non-degenerate interval I in [0, T ] and every topological space
E, a non-anticipative map u : I × S → E is Borel measurable if and only if it is
measurable with respect to B(I)⊗S . We conclude the introduction to path spaces
with a continuity statement that follows from Proposition 3.3.
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5.4 Corollary. Let (E, %) be a metric space, I be a non-degenerate interval in [0, T ],
and u : I × S → E. Then the subsequent two assertions are valid:
(i) Whenever u is (right-)continuous, then it is progressively measurable, u(·, x)

is (right-)continuous for each x ∈ S, and u(t, ·) is continuous for all t ∈ I.

(ii) Suppose that I is compact and u is continuous. Then u is continuous in x ∈ S,
uniformly in t ∈ I.

We now give a concise overview to path processes that are used in Section 5.3 for
presenting path-dependent diffusion processes. Let (Ω,F ) be a measurable space
and assume that X : [0, T ]×Ω→ Rd is a continuous process whose natural filtration
we denote by (F̂t)t∈[0,T ]. By the path process of X, we mean the process

X̂ : [0, T ]× Ω→ S, X̂t(ω) := X t(ω).

For instance, whenever (Ω,F ) = (S,S ) and X = ξ, then ξ̂t(x) = xt for every
(t, x) ∈ [0, T ] × S. The natural filtration of X̂ is easily identified. Let t ∈ [0, T ],
then {X̂t ∈ ξ−1

s (B)} = {Xs∧t ∈ B} for all s ∈ [0, T ] and each B ∈ B(Rd). On the
one hand, this implies that σ(Xs) ⊂ σ(X̂t) for all s ∈ [0, t]. On the other hand, as
{ξ−1

s (B) | s ∈ [0, T ], B ∈ B(Rd)} is a generator of S , this shows that X̂t is in fact
F̂t-measurable. For this reason,

σ(X̂t) = F̂t and σ(X̂s) ⊂ σ(X̂t) for all s ∈ [0, t]. (5.2)

Consequently, X is adapted to a filtration of F if and only if X̂ is. Regarding the
natural backward filtration of X̂, we simply note that σ(X̂u : u ∈ [t, T ]) = F̂T for
every t ∈ [0, T ]. Moreover,

‖X̂r − X̂t‖ = max
s∈[0,T ]

|Xr
s −X t

s| = max
s∈[r,t]

|Xr −Xs|

for each r, t ∈ [0, T ] with r ≤ t. Thus, X̂ has continuous paths. In conclusion, for
each continuous process X : [0, T ] × Ω → Rd, the path process X̂ : [0, T ] × Ω → S
is another continuous process that fulfills (5.2) for each t ∈ [0, T ].

5.2 Differential calculus on path spaces
Let us review several of the standard facts on horizontal and vertical derivatives of
non-anticipative maps on path spaces that were introduced by Dupire [10] and Cont
and Fournié [6]. Again, the Cartesian setting in [16] is used. We fix r ∈ [0, T ) and
k ∈ N, and let {e1, . . . , ed} denote the standard basis of Rd.
5.5 Definition. A non-anticipative map u : [r, T )×S̃ → Rk is said to be horizontally
differentiable at (t, x) ∈ [r, T )× S̃ if the map

[0, T − t)→ Rk, h 7→ u(t+ h, xt)

is differentiable at 0. Its derivative at 0 is called the the horizontal derivative of
u at (t, x) and is denoted by ∂tu(t, x). We call u horizontally differentiable if it is
horizontally differentiable at each (t, x) ∈ [r, T )× S̃.
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Suppose that u : [r, T ) × S̃ → Rk is non-anticipative and (t, x) ∈ [r, T ) × S̃.
Clearly, u(t+ h, (xt)t) = u(t+ h, xt) for all h ∈ [0, T − t). Thus, if u is horizontally
differentiable at (t, x), then it is also horizontally differentiable at (t, xt) and

∂tu(t, x) = lim
h↓0

u(t+ h, xt)− u(t, x)
h

= ∂tu(t, xt).

In particular, whenever u is horizontally differentiable, then its horizontal derivative
∂tu : [r, T )× S̃ → Rk is automatically non-anticipative.

5.6 Definition. Let u : [r, T )× S̃ → Rk be non-anticipative.

(i) We call u vertically differentiable at (t, x) ∈ [r, T )× S̃ if the map

Rd → Rk, h 7→ u(t, x+ h1[t,T ])

is differentiable at 0. Its derivative at 0, called the vertical derivative of u at
(t, x), is represented by ∂xu(t, x).

(ii) Let i ∈ {1, . . . , d}. Then u is said to be partially vertically differentiable in the
i-th direction at (t, x) ∈ [r, T )× S̃ if the map

R→ Rk, h 7→ u(t, x+ hei1[t,T ])

is differentiable at 0. Its derivative at 0, called the i-th partial vertical derivative
of u at (t, x), is denoted by ∂xiu(t, x).

(iii) We say that u is partially vertically differentiable at (t, x) ∈ [r, T ) × S̃ if it is
partially vertically differentiable in every direction at this point.

By saying that u is vertically differentiable or partially vertically differentiable (in the
i-th direction for some i ∈ {1, . . . , d}), we demand that u fulfills the corresponding
property at each (t, x) ∈ [r, T )× S̃.

Let u : [r, T )×S̃ → Rk be non-anticipative, i ∈ {1, . . . , d}, and (t, x) ∈ [r, T )×S̃,
then xt(s) + hei1[t,T ](s) = x(s) + hei1[t,T ](s) for all s ∈ [r, t] and each h ∈ R. So, if
u is partially vertically differentiable in the i-th direction at (t, x), then the same is
true at (t, xt) and

∂xiu(t, x) = lim
h→0

u(t, xt + hei1[t,T ])− u(t, x)
h

= ∂xiu(t, xt).

Hence, if u is partially vertically differentiable in the i-th direction, then its i-th
partial vertical derivative ∂xiu : [r, T )× S̃ → Rk is non-anticipative. Let us assume
that u is vertically differentiable at (t, x). Then the i-th column of ∂xu(t, x) ∈ Rk×d,
which is exactly ∂xu(t, x)ei, satisfies

lim
h→0

u(t, x+ hei1[t,T ])− u(t, x)
h

= ∂xu(t, x)ei.
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This forces u to be partially vertically differentiable in the i-th direction at (t, x)
and ∂xiu(t, x) = ∂xu(t, x)ei. As i ∈ {1, . . . , d} has been arbitrarily chosen, u must
be partially vertically differentiable at (t, x) and

∂xu(t, x) = (∂x1u(t, x), . . . , ∂xdu(t, x)) ∈ Rk×d.

For this reason, if u is vertically differentiable, then ∂xu is non-anticipative. Next,
let i, j ∈ {1, . . . , d} and suppose that u is partially vertically differentiable in the
i-th direction such that ∂xiu is partially vertically differentiable in the j-th direction
at (t, x), then we set

∂xjxiu(t, x) := ∂xj(∂xiu)(t, x).
For k = 1 the function u is said to be twice vertically differentiable at (t, x) if its
vertical derivative ∂xu is vertically differentiable there. In this case, we define

∂xxu(t, x) := ∂x(∂xu)(t, x).

At last, we call u twice vertically differentiable if it is twice vertically differentiable
at each (t, x) ∈ [r, T )×S̃. From Schwarz’s lemma, we obtain a rule for interchanging
the order of partial vertical derivatives.

5.7 Lemma. Let u : [r, T ) × S̃ → R be non-anticipative and partially vertically
differentiable in the i-th and in the j-th direction for some i, j ∈ {1, . . . , d} with
i 6= j. If ∂xiu is partially vertically differentiable in the j-th direction and ∂xjxiu is
right-continuous with respect to d∞, then ∂xju is partially vertically differentiable in
the i-th direction and

∂xixju = ∂xjxiu.

Proof. We choose (t, x) ∈ [r, T ) × S̃ and set xa,b := x + (aei + bej)1[t,T ] for all
a, b ∈ R. Let ϕ : R×R→ R be defined via ϕ(a, b) := u(t, xa,b). Then ϕ is partially
differentiable with

∂ϕ

∂a
(a, b) = ∂xiu(t, xa,b) and ∂ϕ

∂b
(a, b) = ∂xju(t, xa,b)

for every a, b ∈ R, because xa+h,b = xa,b + hei1[t,T ] and xa,b+h = xa,b + hej1[t,T ] for
each h ∈ R. Moreover, ∂ϕ

∂a
is partially differentiable in the second direction and

∂2ϕ

∂b∂a
(a, b) = ∂xjxiu(t, xa,b).

Due to Corollary 5.3, right-continuity of ∂xjxiu with respect to d∞ implies continuity
of ∂xjxiu(t, ·) relative to ‖ · ‖. For this reason, ∂2ϕ

∂b∂a
is continuous. By Schwarz’s

lemma, ∂ϕ
∂b

is partially differentiable in the first direction and

∂2ϕ

∂a∂b
(a, b) = ∂2ϕ

∂b∂a
(a, b) for all a, b ∈ R.

Hence, ∂xju is partially vertically differentiable in the i-th direction at (t, xa,b) with
∂xixju(t, xa,b) = ∂2ϕ

∂a∂b
(a, b) for all a, b ∈ R. This yields that ∂xixju(t, x) = ∂2ϕ

∂a∂b
(0, 0)

= ∂2ϕ
∂b∂a

(0, 0) = ∂xjxiu(t, x).



90 CHAPTER 5. PATH-DEPENDENT PDES

As a matter of fact, the lemma entails that for every non-anticipative twice
vertically differentiable function u : [r, T ) × S̃ → R whose second-order vertical
derivative ∂xxu is right-continuous with respect to d∞,

∂xjxiu = ∂xixju for all i, j ∈ {1, . . . , d}.

Put differently, in this case, ∂xxu is Sd-valued. In what follows, let us define
C1,2
b ([r, T ) × S̃) to be the linear space of all functions u ∈ Cb([r, T ) × S̃) that are

once horizontally differentiable and twice vertically differentiable such that

∂tu, ∂xiu, ∂xixju ∈ Cb([r, T )× S̃) for all i, j ∈ {1, . . . , d}.

Moreover, let C1,2
b ([r, T ) × S) denote the linear space of all u : [r, T ) × S → R for

which there is ũ ∈ C1,2
b ([r, T )× S̃) satisfying u = ũ on [r, T )×S. The motivation of

the latter space comes from the following fact. Let u ∈ C1,2
b ([r, T )×S) and suppose

that ũ ∈ C1,2
b ([r, T ) × S̃) is an extension of u to [r, T ) × S̃. Then it follows from

Theorem 2.3 in Fournié [18] and the functional Itô formula in Cont and Fournié [6]
that the definitions

∂tu := ∂tũ, ∂xu := ∂xũ, and ∂xxu := ∂xxũ on [r, T )× S

are independent of the choice of the extension ũ. This has already been noted in
Ekren, Keller, Touzi, and Zhang [16, Theorem 2.4]. Moreover, we let C1,2

b ([r, T )×Rd)
denote the set of all v ∈ Cb([r, T ) × Rd) that are once differentiable in the time
variable and twice differentiable in the space variable such that

∂v

∂t
,
∂v

∂xi
,

∂2v

∂xi∂xj
∈ Cb([r, T )× Rd) for all i, j ∈ {1, . . . , d}.

To conclude this section, we investigate three examples of a non-anticipative function
u : [r, T )× S̃ → R with respect to horizontal and vertical differentiability.

5.8 Examples. (i) Suppose that there is a function v : [r, T ) × Rd → R such that
u is of the form

u(t, x) = v(t, x(t))

for all (t, x) ∈ [r, T )×S̃. If u is horizontally differentiable at a point (t, x) ∈ [r, T )×S̃,
then the right-hand time derivative of v at (t, x(t)) exists and vice versa. In this
case,

∂tu(t, x) = lim
h↓0

v(t+ h, x(t))− v(t, x(t))
h

= ∂+v

∂t
(t, x(t)).

Moreover, u(t, x + h1[t,T ]) = v(t, x(t) + h) for each h ∈ Rd. Thus, u is vertically
differentiable at (t, x) if and only if the space derivative of v at (t, x(t)) exists. In
this case,

∂xu(t, x) = Dxv(t, x(t)) and ∂xiu(t, x) = ∂v

∂xi
(t, x(t))

for all i ∈ {1, . . . , d}. Therefore, if v ∈ C1,2
b ([r, T )× Rd), then u ∈ C1,2

b ([r, T )× S̃).
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(ii) Let α, β ∈ C([0, T ]) and assume that there is a locally Lebesgue-integrable
function ϕ ∈ B(Rd) such that

u(t, x) =
∫ t

r
α(s) + β(s)ϕ(x(s)) ds

for every (t, x) ∈ [r, T ) × S̃. Then u is horizontally differentiable at every point
(t, x) ∈ [r, T )× S̃ and

∂tu(t, x) = α(t) + β(t)ϕ(x(t)).
This follows immediately from u(t+ h, xt) = u(t, x) +

∫ t+h
t α(s) + β(s)ϕ(x(t)) ds for

all h ∈ [0, T − t). In addition, u is twice vertically differentiable with

∂xu(t, x) = 0 and ∂xxu(t, x) = 0

for each (t, x) ∈ [r, T ) × S̃, since u(t, x + h1[t,T ]) = u(t, x) for every h ∈ Rd. Thus,
if we also suppose that ϕ ∈ Cb(Rd), then u ∈ C1,2

b ([r, T )× S̃).
(iii) Assume that ϕ ∈ C(Rd) fails to be differentiable at some point x ∈ Rd such
that ϕ(x+ h) > ϕ(x) for all h ∈ Rd\{0} and let u admit the representation

u(t, x) = sup
s∈[r,t]

ϕ(x(s))

for all (t, x) ∈ [r, T )× S̃. For instance, we could take ϕ(y) = |y| for all y ∈ Rd, then
ϕ is not differentiable at 0 and ϕ(h) > 0 for each h ∈ Rd\{0}. We readily see that
u is horizontally differentiable with

∂tu(t, x) = 0

for all (t, x) ∈ [r, T ) × S̃. However, u fails to be vertically differentiable at each
(t, x) ∈ [r, T )× S̃ with x(s) = x for all s ∈ [r, t], because u(t, x+ h1[t,T ]) = ϕ(x+ h)
for all h ∈ Rd. In consequence, u /∈ C1,2

b ([r, T )× S̃).

5.3 The parabolic terminal value problem
In the sequel, we assume that a ∈ Bb([0, T ] × S,Sd+) and b ∈ Bb([0, T ] × S,Rd)
are non-anticipative. Here, Sd+ represents the set of all positive definite matrices in
Sd. To the mappings a and b we always associate the linear differential operator
L : C1,2

b ([0, T )× S)→ Bb([0, T )× S) defined via

L (ϕ)(t, x) := 1
2tr(a(t, x)∂xxϕ(t, x)) + 〈b(t, x), ∂xϕ(t, x)〉. (L)

Let D ⊂ R be a non-degenerate interval, f : [0, T ]×S×D → R be non-anticipative
and B([0, T ] × S) ⊗ (D ∩B(R))-measurable, and g ∈ Bb(S,D). In what follows,
we analyze the following semilinear parabolic path-dependent PDE combined with a
terminal value condition:{

(∂t + L )(u)(t, x) = f(t, x, u(t, x)) for (t, x) ∈ [0, T )× S,
u(T, x) = g(x) for x ∈ S. (P)
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Initially, we recall those classical solutions which together with their horizontal
derivatives and their first- and second-order vertical derivatives are bounded. That
is, a classical subsolution (resp. supersolution) to (P) in C1,2

b ([0, T )×S) is a function
u ∈ C1,2

b ([0, T )× S) ∩ C([0, T ]× S,D) such that

(∂t + L )(ϕ)(t, x) ≥ (resp. ≤) f(t, x, u(t, x)) and u(T, x) ≤ (resp. ≥) g(x)

for each (t, x) ∈ [0, T ) × S. Hence, a classical solution to (P) in C1,2
b ([0, T ) × S)

is a function u ∈ C1,2
b ([0, T ) × S) ∩ C([0, T ] × S,D) that is a classical sub- and

supersolution to (P) in the same space. For existence and uniqueness results for
classical solutions, the reader may consult Peng and Wang [29] and Ji and Yang [22].
We intend to utilize classical solutions only to introduce mild solutions.

In this regard, we require the notion of an L -diffusion process that is based on
path-dependency. At first, a path-dependent diffusion process on some measurable
space (Ω,F ) is a triple X = (X, (Ft)t∈[0,T ],P) that consists of a continuous process
X : [0, T ] × Ω → Rd, a filtration (Ft)t∈[0,T ] of F to which X is adapted, and a set
P = {Pr,x | (r, x) ∈ [0, T ] × S} of probability measures on (Ω,F ) such that for the
path process of X given by X̂t = X t for all t ∈ [0, T ] the triple

X̂ := (X̂, (Ft)t∈[0,T ],P)

is a non-anticipative diffusion process on (Ω,F ) with state space S, as introduced in
Section 3.3. Since X̂ has continuous paths, this results in the additional requirement
that X̂ is a non-anticipative stochastic family that is Borel and satisfies the strong
Markov property. That means, the subsequent three conditions hold:

(i) Pr,x = Pr,xr and X̂r = xr Pr,x-a.s. for each (r, x) ∈ [0, T ]× S.

(ii) The function [0, t]× S → [0, 1], (s, y) 7→ Ps,y(X̂t ∈ B) is Borel measurable for
all t ∈ [0, T ] and each B ∈ S .

(iii) Pr,x(X̂t ∈ B|Fτ ) = Pτ,X̂τ (X̂t ∈ B) Pr,x-a.s. for all r, t ∈ [0, T ] with r ≤ t, each
finite (Fs)s∈[r,t]-stopping time τ , every x ∈ S, and all B ∈ S .

This notion includes in particular the class of path or historical processes used by
Dawson and Perkins [7] and Dynkin [12] for constructing historical superprocesses.
Furthermore, an L -diffusion process is a path-dependent diffusion process X such
that the following additional condition holds: the process [r, T )× Ω→ R,

(t, ω) 7→ ϕ(t,X t(ω))−
∫ t

r
(∂s + L )(ϕ)(s,Xs(ω)) ds

must be an (Ft)t∈[r,T )-martingale under Pr,x for each (r, x) ∈ [0, T ) × S and every
ϕ ∈ C1,2

b ([0, T ) × S). This is what we call the L -martingale property of X . The
following example explains how standard diffusion processes fit into our framework
of L -diffusion processes.
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5.9 Example. Assume that there are two mappings a ∈ Bb([0, T ] × Rd, Sd+) and
b ∈ Bb([0, T ]×Rd,Rd) such that a(t, x) = a(t, x(t)) and b(t, x) = b(t, x(t)) for every
(t, x) ∈ [0, T ] × S. Then with a and b we can link the linear differential operator
L : C1,2

b ([0, T )× Rd)→ Bb([0, T )× Rd) given by

L (ϕ)(t, x) := 1
2tr(a(t, x)D2

xϕ(t, x)) + 〈b(t, x), Dxϕ(t, x)〉.

Suppose that there is a set P = {P r,x | (r, x) ∈ [0, T ]× Rd} of probability measures
on (S,S ) for which (ξ, (St)t∈[0,T ],P) becomes a canonical L -diffusion process in the
standard sense. In other words, it is a diffusion process on (S,S ) with state space
Rd for which the L -martingale property holds, that is, the process [r, T )× S → R,

(t, x) 7→ ϕ(t, x(t))−
∫ t

r

(
∂

∂s
+ L

)
(ϕ)(s, x(s)) ds

is always an (St)t∈[r,T )-martingale under P r,x for each (r, x) ∈ [0, T )×Rd and every
ϕ ∈ C1,2

b ([0, T )×Rd). Then for each (r, x) ∈ [0, T ]×S, we let Pr,x denote the unique
probability measure on (S,S ) with ξr = xr Pr,x-a.s. such that the law of ξ restricted
to [r, T ]× S under P r,x(r) remains the same under Pr,x (cf. Lemma 6.1.1 in Stroock
and Varadhan [33]). By setting

P := {Pr,x | (r, x) ∈ [0, T ]× S},

it follows that (ξ, (St)t∈[0,T ],P) is a path-dependent diffusion process on (S,S ).
This procedure appears for instance in the construction of historical superprocesses
(see [7], [11], and [12]). Next, since a is Sd+-valued, there is σ ∈ Bb([0, T ]×Rd,Rd×d)
such that σ(t, x) is an invertible matrix and

a(t, x) = σ(t, x)σ(t, x)t

for every (t, x) ∈ [0, T ]×Rd. We choose (r, x) ∈ [0, T )×S and letW : [r, T ]×S → Rd

be an (St)t∈[r,T ]-adapted right-continuous process with Pr,x-a.s. continuous paths
such that

Wt =
∫ t

r
σ(s, ξs)−1 dξs −

∫ t

r
σ(s, ξs)−1b(s, ξs) ds for all t ∈ [r, T ] Pr,x-a.s.,

then W becomes a standard d-dimensional (St)t∈[r,T ]-Brownian motion under Pr,x
(cf. Theorem 4.5.1 in [33]). This simply amounts to Wr = 0 Pr,x-a.s., and Wt −Ws

is independent of Ss and N (0, (t− s)Id)-distributed under Pr,x for each s, t ∈ [r, T ]
with s ≤ t. Moreover, we obtain that

ξt = x(r) +
∫ t

r
b(s, ξs) ds+

∫ t

r
σ(s, ξs) dWs for all t ∈ [r, T ] Pr,x-a.s.

Consequently, it follows from the functional Itô formula in Cont and Fournié [6] that
(ξ, (St)t∈[0,T ],P) is an L -diffusion process on (S,S ).
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From now on, we suppose that X is an L -diffusion process on some measurable
space (Ω,F ). Then we can accomplish the following. Let u be a classical subsolution
(resp. supersolution) to (P) in C1,2

b ([0, T )× S), then

Er,x[u(t ∧ τ,X t∧τ )]− u(r, x) = Er,x

[ ∫ t∧τ

r
(∂s + L )(u)(s,Xs) ds

]

≥ (resp. ≤) Er,x
[ ∫ t∧τ

r
f(s,Xs, u(s,Xs)) ds

]

for all r, t ∈ [0, T ) with r ≤ t, every (Fs)s∈[r,T ]-stopping time τ , and each x ∈ S, due
to the L -martingale property of X and optional sampling. Hence, if τ is finite,
then we may take the limit t ↑ T to obtain that

Er,x[u(τ,Xτ )]− u(r, x) ≥ (resp. ≤) Er,x
[ ∫ τ

r
f(s,Xs, u(s,Xs)) ds

]
,

by dominated convergence. This motivates notions of mild sub- and supersolutions
as well as mild solutions to (P).

5.10 Definition. A mild subsolution (resp. supersolution) to the parabolic terminal
value problem (P) is a non-anticipative function u ∈ B([0, T ]× S,D) for which

|u(τ,Xτ )|+
∫ τ

r
|f(s,Xs, u(s,Xs))| ds

is finite and Pr,x-integrable such that

Er,x[u(τ,Xτ )]− u(r, x) ≥ (resp. ≤) Er,x
[ ∫ τ

r
f(s,Xs, u(s,Xs)) ds

]

for all (r, x) ∈ [0, T ] × S and each finite (Ft)t∈[r,T ]-stopping time τ . In addition,
we require that u(T, x) ≤ (resp. ≥) g(x) for all x ∈ S. A mild solution to (P) is a
function u ∈ B([0, T ]× S,D) that is a mild sub- and supersolution to (P).

Because X̂ is a non-anticipative diffusion process on (Ω,F ) with state space S,
it follows immediately from Lemmas 4.3 and 4.4 that a function u ∈ B([0, T ]×S,D)
is a mild solution to (P) if and only if it is a global solution to the Markovian terminal
value problem

E[du(t, X̂t)] = E[f(t, X̂t, u(t, X̂t)) dt] for t ∈ [0, T ], u(T, ·) = g.

Put differently, u is a mild solution to (P) if and only if
∫ T
r |f(s,Xs, u(s,Xs))| ds is

a finite Pr,x-integrable function and

u(r, x) = Er,x[g(XT )]− Er,x
[ ∫ T

r
f(s,Xs, u(s,Xs)) ds

]

for all (r, x) ∈ [0, T ]×S. In addition, u is automatically non-anticipative as soon as
these two conditions hold. We also get a representation for mild solutions.
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5.11 Lemma. Let u be a mild solution to (P), then φ : [0, T ]× S → R defined via

φ(r, x) := g(x)−
∫ T

r
f(s, xs, u(s, xs)) ds

is B([0, T ])⊗S -measurable and the function [0, T ]→ R, r 7→ φ(r, x) is continuous
for each x ∈ S. Moreover, Er,x[|φ(r,X)|] <∞ and

u(r, x) = Er,x[φ(r,X)] for all (r, x) ∈ [0, T ]× S.

Proof. Let x ∈ S, then, since X = x PT,x-a.s., there is at least one ω ∈ Ω such that
X(ω) = x. By the characterization of a mild solution,∫ T

r
|f(s, xs, u(s, xs))| ds =

∫ T

r
|f(s,Xs(ω), u(s,Xs(ω)))| ds <∞

for each r ∈ [0, T ]. Thus, φ is well-defined and the function [0, T ]→ R, r 7→ φ(r, x)
is continuous for all x ∈ S, according to dominated convergence. As the function

[0, T ]× S → R, (s, x) 7→ f(s, x, u(s, x))

is in particular B([0, T ])⊗S -measurable, Fubini’s theorem implies that the function
S → R, x 7→ φ(r, x) is Borel measurable for every r ∈ [0, T ]. Consequently, φ must
be B([0, T ])⊗S -measurable, by Proposition A.38. Finally, the facts that

Er,x[|φ(r,X)|] <∞ and u(r, x) = Er,x[φ(r,X)]

for all (r, x) ∈ [0, T ] × S also follow from the characterization of a mild solution,
which concludes the proof.

We let λ be the Lebesgue measure on [0, T ], and set d := inf D and d := supD,
then Theorem 4.29 directly entails an existence and uniqueness result for bounded
mild solutions.

5.12 Corollary. Let f ∈ BC1−
λ ([0, T ]× S ×D) and suppose that the following two

conditions hold:

(i) If d > −∞ (resp. d <∞), then f is both locally λ-bounded and locally Lipschitz
λ-continuous at d (resp. d) with limz↓d f(·, x, z) ≤ 0 (resp. limz↑d f(·, x, z) ≥ 0)
for all x ∈ S λ-a.s.

(ii) If d = −∞ (resp. d = ∞), then f is affine λ-bounded from above (resp. from
below).

Then there is a unique bounded mild solution u to (P). Moreover, whenever X̂ has
the (right-hand) Feller property, f is right-continuous, and g ∈ Cb(S), then u must
be (right-)continuous.

At last, Corollary 4.30 yields a Feynman-Kac formula for bounded mild solutions.
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5.13 Corollary. Suppose that there are two λ-dominated α, β ∈ B([0, T ]× S) with
f(t, x, z) = α(t, x) + β(t, x)z for all (t, x, z) ∈ [0, T ] × S ×D such that if d > −∞
(resp. d <∞), then

α(·, x) + β(·, x)d ≤ 0 (resp. α(·, x) + β(·, x)d ≥ 0)

for each x ∈ S λ-a.s. Then the unique bounded mild solution u to (P) admits the
representation

u(r, x) = Er,x

[
e−
∫ t
r
β(s,Xs) dsg(XT )

]
− Er,x

[ ∫ T

r
e−
∫ t
r
β(s,Xs) dsα(t,X t) dt

]

for each (r, x) ∈ [0, T ]× S. Furthermore, if X̂ is (right-hand) Feller, α and β are
right-continuous, and g ∈ Cb(S), then u is (right-)continuous.

5.4 Notions of viscosity solutions
Since we intend to compare a variety of notions of viscosity solutions, we present
several test function spaces. Let T denote the set of all (Ft)t∈[0,T ]-stopping times
τ for which there exists a lower semicontinuous function φ : S → [0, T ] such that

τ(ω) = φ(X(ω)) for all ω ∈ Ω. (5.3)

It follows from the lemma below that if X is canonical, that is, (Ω,F ) = (S,S ),
X = ξ, and Ft = St for all t ∈ [0, T ], then our definition of T reduces to that in
Ekren, Keller, Touzi, and Zhang [16]. Let use here X̂T instead of X, which should
make clear that {X̂T ∈ B} = {ω ∈ Ω |X(ω) ∈ B} for all B ∈ S .

5.14 Lemma. A finite (Ft)t∈[0,T ]-stopping time τ is a member of T if and only if
for each t ∈ [0, T ) there is an open set Ot in S such that {τ > t} = {X̂T ∈ Ot}.

Proof. Suppose first that τ ∈ T , then τ(ω) = φ(X̂T (ω)) for each ω ∈ Ω and some
lower semicontinuous function φ : S → [0, T ]. We choose t ∈ [0, T ) and see that
{τ > t} = {X̂T ∈ Ot} with Ot := φ−1((t, T ]). Since (t, T ] is open in [0, T ], it follows
from Lemma A.11 that Ot is open in S.

Conversely, assume that for each t ∈ [0, T ) there is an open set Ot in S with
{τ > t} = {X̂T ∈ Ot}. Then τ is measurable with respect to the σ-field σ(X̂T ).
Hence, Corollary A.25 provides a function φ ∈ B(S, [0, T ]) satisfying (5.3). Clearly,
for each x ∈ S there is at least one ω ∈ Ω such that X̂T (ω) = x, since X̂T = x
PT,x-a.s. Thus, the mapping X̂T : Ω→ S is onto and therefore,

φ−1((t, T ]) = X̂T ({τ > t}) = X̂T ({X̂T ∈ Ot}) = Ot

for all t ∈ [0, T ), which entails the lower semicontinuity of φ, by Lemma A.11.

Our main example of a stopping time in T is a hitting time. Therefore, some
considerations with respect to lower semicontinuity have to be made.
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5.15 Lemma. Let r ∈ [0, T ], u ∈ C([r, T ]×S), and I be a closed interval in R. Then
the function φ : S → [r, T ] ∪ {∞} defined via φ(x) := inf{t ∈ [r, T ] |u(t, xt) ∈ I} is
lower semicontinuous.

Proof. Let x ∈ S and ε > 0. For φ(x) = r it holds that φ(y) ≥ r > φ(x) − ε for
all y ∈ S. Suppose instead that r < φ(x) < ∞. If ε > φ(x) − r, then φ(y) ≥ r
> φ(x)− ε for each y ∈ S. Hence, let ε ≤ φ(x)− r. By Corollary 5.4, the function
[r, φ(x)− ε]→ R, t 7→ u(t, xt) is continuous and so,

K := {u(t, xt) | t ∈ [r, φ(x)− ε]}

is a compact set in Ic. A combination of Lemma A.13 with Corollary A.16 gives
η > 0 such that the η-neighborhood Nη(K) of K is relatively compact in the open
set Ic. Now, Corollary 5.4 also yields δ > 0 such that

|u(t, yt)− u(t, xt)| < η

for all t ∈ [r, φ(x) − ε] and each y ∈ S with ρ(y, x) < δ. So, we choose y ∈ S with
ρ(y, x) < δ, then u(t, yt) ∈ Nη(K) for all t ∈ [r, φ(x)− ε]. As φ(y) = φ(x)− ε would
yield a contradiction, we get that φ(y) > φ(x)− ε.

Eventually, let φ(x) =∞, then u(t, xt) /∈ I for all t ∈ [r, T ]. Similarly as before,
because K := {u(t, xt) | t ∈ [r, T ]} is a compact set in Ic, there is η > 0 such that
Nη(K) is relatively compact in Ic. We let δ > 0 be such that |u(t, yt)− u(t, xt)| < η
for all t ∈ [r, T ] and each y ∈ S with ρ(y, x) < δ. Then φ(y) = φ(x) = ∞ for all
y ∈ S with ρ(y, x) < δ. This verifies the lemma.

5.16 Example. Let r, t ∈ [0, T ] with r ≤ t, u ∈ C([r, T ] × S), and I be a closed
interval in R. Then

τ := inf{s ∈ [r, T ] |u(s,Xs) ∈ I} ∧ t ∈ T .

In fact, as the process [r, T ] × Ω → R, (s, ω) 7→ u(s,Xs(ω)) is (Fs)s∈[r,T ]-adapted
and continuous, Proposition A.42 entails that τ is a finite (Ft)t∈[r,T ]-stopping time.
Hence, the assertion follows from Lemmas 5.15 and A.11.

For every (r, x) ∈ [0, T )×S and each non-anticipative function u ∈ Bb([0, T )×S),
we define SP u(r, x) to be the set of all ϕ ∈ C1,2

b ([0, T )× S) for which there is an
(Ft)t∈[r,T ]-stopping time τ with Pr,x(τ > r) > 0 such that

(u− ϕ)(r, x) ≥ Er,x[(u− ϕ)(τ̃ ∧ τ,X τ̃∧τ )]

for every τ̃ ∈ T with τ̃ ∈ [r, r + δ) and some δ ∈ (0, T − r). In addition, we set
SP u(r, x) := −SP (−u)(r, x). Let P u(r, x) be the set of all ϕ ∈ C1,2

b ([0, T )×S)
such that u− ϕ has a right-hand local maximum at (r, x) in the sense that

(u− ϕ)(r, x) ≥ (u− ϕ)(s, y)

for all (s, y) ∈ [r, T )×S with dS((s, y), (r, x)) < δ and some δ ∈ (0, T−r). Moreover,
we set P u(r, x) := −P(−u)(r, x).
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5.17 Definition. Let u ∈ Bb([0, T ]× S,D) be non-anticipative.

(i) We call u a stochastic viscosity subsolution (resp. supersolution) to (P) if for
every (r, x) ∈ [0, T )× S and each ϕ ∈ SP u(r, x) (resp. ϕ ∈ SP u(r, x)),

(∂r + L )(ϕ)(r, x) ≥ (resp. ≤) f(r, x, u(r, x)) and u(T, x) ≤ (resp. ≥) g(x).

Moreover, u is said to be a stochastic viscosity solution to (P) if it is a stochastic
viscosity sub- and supersolution to (P).

(ii) We say that u is a right-hand viscosity subsolution (resp. supersolution) to (P)
if for all (r, x) ∈ [0, T )× S and each ϕ ∈P u(r, x) (resp. ϕ ∈P u(r, x)),

(∂r + L )(ϕ)(r, x) ≥ (resp. ≤) f(r, x, u(r, x)) and u(T, x) ≤ (resp. ≥) g(x).

Furthermore, u is a right-hand viscosity solution to (P) if it is a right-hand
viscosity sub- and supersolution to (P).

As we will show, each stochastic viscosity subsolution (resp. supersolution) is
a right-hand viscosity subsolution (resp. supersolution). To discuss the relations
between the notion of a viscosity solution in [16] and the above definition, we fix
(r, x) ∈ [0, T )×S and L ≥ 0, and let U L

r denote the set of all (Ft)t∈[r,T ]-progressively
measurable processes β : [r, T ] × Ω → Rd for which each coordinate function is
bounded by L.

For every β ∈ U L
r , we choose an (Ft)t∈[r,T ]-progressively measurable process

M r,β : [r, T ]× Ω→ (0,∞) that has right-continuous and Pr,x-a.s. continuous paths
such that

M r,β
t = exp

(∫ t

r
βs dXs −

∫ t

r
〈b(s,Xs), βs〉 ds−

1
2

∫ t

r
〈βs, a(s,Xs)βs〉 ds

)

for all t ∈ [r, T ] Pr,x-a.s., thenM r,β becomes an (Ft)t∈[r,T ]-martingale under Pr,x with
Er,x[M r,β

T ] = 1, due to Itô’s formula. For each non-anticipative u ∈ Bb([0, T ) × S),
we let A Lu(r, x) represent the set of all ϕ ∈ C1,2

b ([0, T ) × S) for which there are
δ ∈ (0, T − r) and τ ∈ T with τ > r Pr,x-a.s. such that

(u− ϕ)(r, x) ≥ Er,x[M r,β
T (u− ϕ)(τ̃ ∧ τ,X τ̃∧τ )]

for each τ̃ ∈ T with τ̃ ∈ [r, r+δ) and all β ∈ U L
r . Let A

L
u(r, x) := −A L(−u)(r, x),

as before. This translates the concepts and spaces of test functions used for the
definition of a viscosity solution in [16] to our current setting. So, a non-anticipative
u ∈ Bb([0, T ] × S,D) is a viscosity subsolution (resp. supersolution) to (P) in the
sense of [16] if there is L ≥ 0 such that

(∂r + L )(ϕ)(r, x) ≥ (resp. ≤) f(r, x, u(r, x)) and u(T, x) ≤ (resp. ≥) g(x)

for all (r, x) ∈ [0, T )×S and each ϕ ∈ A Lu(r, x) (resp. ϕ ∈ A
L
u(r, x)). Accordingly,

u is a viscosity solution to (P) in the sense of the paper if it is a viscosity sub- and
supersolution to (P) in the same sense.
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In comparison to [16], where d∞ is used and only continuous functions u are
considered, the choice of dS should have a negligible effect on the sizes of the test
functions spaces that we use for our Definition 5.17 of viscosity solutions. Finally,
the lemma below concludes our discussion on the notions of viscosity solutions.
Note that the second assertion remains true if solution is either replaced by sub- or
supersolution.
5.18 Lemma. Let (r, x) ∈ [0, T ) × S, u ∈ Bb([0, T ) × S) be non-anticipative, and
L ≥ 0, then P u(r, x) ⊂ A Lu(r, x) ⊂ SP u(r, x). In particular, each stochastic
viscosity solution to (P) is a viscosity solution in the sense of [16] and every such
solution is a right-hand viscosity solution.
Proof. As the second assertion is an immediate consequence of the first, we only
show the first claim. The inclusion A 0 u(r, x) ⊂ SP u(r, x) follows from M r,0

T = 1
Pr,x-a.s. We notice that if L′ ≥ 0 is such that L′ ≤ L, then U L′

r ⊂ U L
r , which in

turn gives us that A L u(r, x) ⊂ A L′ u(r, x). Hence,

A L u(r, x) ⊂ A 0 u(r, x) ⊂ SP u(r, x).

It remains to verify that P u(r, x) ⊂ A L u(r, x). Thus, let ϕ ∈ P u(r, x). Then
(u− ϕ)(r, x) ≥ (u− ϕ)(s, y) for all (s, y) ∈ [r, T )× S with dS((s, y), (r, x)) < δ and
some δ ∈ (0, T − r). We define τ := inf{t ∈ [r, T ] | ‖X t − xr‖ ≥ δ/3} ∧ (r + δ/2),
then τ ∈ T and τ > r Pr,x-a.s., by Example 5.16. Let τ̃ ∈ T with τ̃ ≥ r, then

dS((τ̃ ∧ τ,X τ̃∧τ ), (r, x)) ≤ dS((τ,Xτ ), (r, x)) ≤ δ/2 + ‖Xτ − xr‖ < δ

on {Xr = xr}. Hence, (u − ϕ)(r, x) ≥ (u − ϕ)(τ̃ ∧ τ,X τ̃∧τ ) on the same set. Let
β ∈ U L

r , then, as M r,β is positive and Er,x[M r,β
T ] = 1, we get that

(u− ϕ)(r, x) = Er,x[M r,β
T (u− ϕ)(r, x)] ≥ Er,x[M r,β

T (u− ϕ)(τ̃ ∧ τ,X τ̃∧τ )].

This justifies that ϕ ∈ A L u(r, x), which completes the proof.

5.5 Relation between mild and viscosity solutions
Here, we prove that if the maps a and b, and the function f are right-continuous,
then every bounded mild solution to (P) that is right-continuous on [0, T )× S is a
stochastic viscosity solution. In this connection, we look more closely at the case
that

f(t, x, z) = α(t, x) + β(t, x)z
for all (t, x, z) ∈ [0, T ] × S × D and some right-continuous α, β ∈ B([0, T ] × S)
such that α(·, x) and β(·, x) are Lebesgue-integrable for all x ∈ S. In this specific
case, each bounded mild solution is a stochastic viscosity solution regardless of
whether it is right-continuous on [0, T ) × S. If additionally D is closed and X
satisfies a reasonable topological condition, we can identify the upper and lower
right-hand semicontinuous envelope of a bounded mild solution to (P) as right-hand
viscosity sub- and supersolution, respectively. Thus, let us begin with a crucial limit
inequality.
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5.19 Lemma. Let (r, x) ∈ [0, T )×S and τ be an (Ft)t∈[r,T ]-stopping time. Assume
that ϕ ∈ B([r, T )× S) is non-anticipative and the following two conditions hold:

(i)
∫ t∧τ
r |ϕ(s,Xs)| ds is finite and Pr,x-integrable for all t ∈ [r, T ).

(ii) There are ζ ∈ (0, T−r) and c ≥ 0 so that |ϕ(s,Xs)| ≤ c for all s ∈ [r, (r+ζ)∧τ ]
Pr,x-a.s.

If ϕ is upper right-hand semicontinuous at (r, x), then

lim sup
t↓r

Er,x

[ ∫ t∧τ

r

ϕ(s,Xs)
t− r

ds

]
≤ ϕ(r, x)Pr,x(τ > r).

Proof. Let ε > 0 and ω ∈ {Xr = xr} ∩ {τ > r}. Then there exists δ > 0 such that
ϕ(s, y) < ϕ(r, x) + ε for every (s, y) ∈ [r, T ) × S with dS((s, y), (r, x)) < δ. Since
X(ω) is right-continuous, there is γ ∈ (0, T − r) such that ‖Xs(ω) − xr‖ < δ/2 for
each s ∈ [r, r + γ). We define η := γ ∧ (δ/2) ∧ (τ(ω)− r), then

∫ t∧τ(ω)

r

ϕ(s,Xs(ω))
t− r

ds ≤ ϕ(r, x) + ε

for every t ∈ (r, r + η), because we can use that t < τ(ω) and dS((s,Xs(ω)), (r, x))
= (s− r) + ‖Xs(ω)− xr‖ < δ for all s ∈ [r, t]. Thus, we have shown that

lim sup
t↓r

∫ t∧τ

r

ϕ(s,Xs)
t− r

ds ≤ ϕ(r, x) Pr,x-a.s. on {τ > r}.

Because
∫ t∧τ
r |ϕ(s,Xs)| ds ≤ c(t− r) for each t ∈ [r, r+ ζ] Pr,x-a.s., the claim follows

from Fatou’s lemma.

This produces our first announced result.

5.20 Theorem. Suppose that a, b, and f are right-continuous. Then every bounded
mild subsolution (resp. supersolution) u to (P) that is right-continuous on [0, T )×S
is a stochastic viscosity subsolution (resp. supersolution) to (P).

Proof. We consider the case that u is a mild subsolution. Let (r, x) ∈ [0, T )×S and
ϕ ∈ SP u(r, x). Then there are δ ∈ (0, T − r) and some (Ft)t∈[r,T ]-stopping time τ
with Pr,x(τ > r) > 0 such that

(u− ϕ)(r, x) ≥ Er,x[(u− ϕ)(τ̃ ∧ τ,X τ̃∧τ )] (5.4)

for each τ̃ ∈ T with τ̃ ∈ [r, r + δ). We note that, as the function [r, T ) × S → R,
(s, y) 7→ f(s, ys, u(s, ys)) is right-continuous, it must be right-hand locally bounded
at (r, x). That is, there are c ≥ 0 and γ ∈ (0, δ] such that |f(s, y, u(s, y))| ≤ c for
each (s, y) ∈ [r, T )× S with dS((s, y), (r, x)) < γ. Then

τ̃ := inf{t ∈ [r, T ] | ‖X t − xr‖ ≥ γ/2} ∧ T ∈ T ,
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by Example 5.16, and dS((s,Xs(ω)), (r, x)) < γ for all ω ∈ {Xr = xr} and each
s ∈ [r, (r + γ/3) ∧ τ̃(ω)]. We set τ̂ := τ̃ ∧ τ , then the L -martingale property of X
and optional sampling entail that the stopped process [r, T )× Ω→ R,

(t, ω) 7→ ϕ(t ∧ τ̂(ω), X t∧τ̂ (ω))−
∫ t∧τ̂(ω)

r
(∂s + L )(ϕ)(s,Xs(ω)) ds

is an (Ft)t∈[r,T )-martingale under Pr,x. Moreover, because u is a mild subsolution to
(P), it follows that

Er,x[(u− ϕ)(t ∧ τ̂ , X t∧τ̂ )] ≥ (u− ϕ)(r, x) + Er,x

[ ∫ t∧τ̂

r
f(s,Xs, u(s,Xs)) ds

]

− Er,x
[ ∫ t∧τ̂

r
(∂s + L )(ϕ)(s,Xs) ds

]
for all t ∈ [r, T ). Hence, we obtain from (5.4) that

1
t− r

Er,x

[ ∫ t∧τ̂

r
(∂s + L )(ϕ)(s,Xs) ds

]
≥ 1
t− r

Er,x

[ ∫ t∧τ̂

r
f(s,Xs, u(s,Xs)) ds

]
for each t ∈ (r, r+γ/3). Since the Borel measurable bounded function [r, T )×S → R,
(s, y) 7→ (∂s + L )(ϕ)(s, ys) is right-continuous and |f(s,Xs, u(s,Xs))| ≤ c for all
s ∈ [r, (r + γ/3) ∧ τ̂ ] Pr,x-a.s., Lemma 5.19 allows us to take the limit t ↓ r, which
establishes that

(∂r + L )(ϕ)(r, x) ≥ f(r, x, u(r, x)).
Thus, u is a stochastic viscosity subsolution to (P). Eventually, if u is a mild
supersolution, then similar arguments yield that it is also a stochastic viscosity
supersolution.

A combination of Theorem 5.20 with Corollary 5.12 gives an existence result for
stochastic viscosity solutions. Here, as usually, λ is the Lebesgue measure on [0, T ].
5.21 Corollary. Assume that X̂ has the (right-hand) Feller property, and a, b, and
f are right-continuous. Let f ∈ BC1−

λ ([0, T ]× S ×D) and g ∈ Cb(S), and suppose
that the following two conditions hold:
(i) If d > −∞ (resp. d <∞), then f is both locally λ-bounded and locally Lipschitz

λ-continuous at d (resp. d) with limz↓d f(·, x, z) ≤ 0 (resp. limz↑d f(·, x, z) ≥ 0)
for all x ∈ S λ-a.s.

(ii) If d = −∞ (resp. d = ∞), then f is affine λ-bounded from above (resp. from
below).

Then there is a bounded (right-)continuous stochastic viscosity solution to (P).
From now on, we let α, β ∈ B([0, T ]×S) be two non-anticipative functions such

that α(·, x) and β(·, x) are Lebesgue-integrable for each x ∈ S and f is of the form

f(t, x, z) = α(t, x) + β(t, x)z for all (t, x, z) ∈ [0, T ]× S ×D.

Then we can verify another limit equality without assuming right-continuity of the
mild solution in question.
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5.22 Lemma. Let (r, x) ∈ [0, T )×S and τ be an (Ft)t∈[r,T ]-stopping time. Suppose
that β is right-continuous at (r, x), and there are ζ ∈ (0, T − r) and c ≥ 0 such that
|β(s,Xs)| ≤ c for all s ∈ [r, (r + ζ) ∧ τ ] Pr,x-a.s. Then each mild solution u to (P)
fulfills

lim
t↓r

Er,x

[ ∫ t∧τ

r

β(s,Xs)
t− r

u(s,Xs) ds
]

= β(r, x)u(r, x)Pr,x(τ > r).

Proof. By Lemma 5.11, the B([0, T ])⊗S -measurable function φ : [0, T ]× S → R
defined by

φ(s, y) := g(y)−
∫ T

s
α(t, yt) + β(t, yt)u(t, yt) dt

satisfies Es,y[|φ(s,X)|] < ∞ and u(s, y) = Es,y[φ(s,X)] for each (s, y) ∈ [0, T ] × S.
In addition, the function [0, T ] → R, s 7→ φ(s, y) is continuous for all y ∈ S. For
this reason, the Borel measurable function [0, T ] → R, s 7→ β(s,Xs(ω))φ(s,X(ω))
is Lebesgue-integrable for each ω ∈ Ω. Moreover,∫ t∧τ

r
|β(s,Xs)φ(s,X)| ds ≤ c(t− r)|g(XT )|

+ c(t− r)
∫ T

r
|α(s,Xs) + β(s,Xs)u(s,Xs)| ds

(5.5)

for all t ∈ [r, r+ζ] Pr,x-a.s. As the right-hand expression is finite and Pr,x-integrable,
and Er,x[|φ(s,X)|] < ∞ for every s ∈ [r, T ], it follows from Fubini’s theorem and
Proposition 3.7 that

Er,x

[ ∫ t∧τ

r
|β(s,Xs)|Es,Xs [|φ(s,X)|] ds

]
=
∫ t

r
Er,x[|β(s,Xs)||φ(s,X)|1{τ>s}] ds

= Er,x

[ ∫ t∧τ

r
|β(s,Xs)φ(s,X)| ds

]
<∞

for each t ∈ [r, r+ ζ]. Because |u(s,Xs)| ≤ Es,Xs [|φ(s,X)|] for all s ∈ [r, T ], another
application of Fubini’s theorem and Proposition 3.7 yield that

Er,x

[ ∫ t∧τ

r
β(s,Xs)u(s,Xs) ds

]
=
∫ t

r
Er,x[β(s,Xs)φ(s,X)1{τ>s}] ds

= Er,x

[ ∫ t∧τ

r
β(s,Xs)φ(s,X) ds

]

for every t ∈ [r, r + ζ]. The next step of the proof is to choose some Pr,x-null set
N ∈ F such that |β(s,Xs(ω))| ≤ c for all ω ∈ N c and each s ∈ [r, (r + ζ) ∧ τ(ω)].
We let ε > 0 and ω ∈ N c ∩ {Xr = xr} ∩ {τ > r}. Then the right-continuity of
β at (r, x) yields some δ > 0 such that |φ(r,X(ω))||β(s, y) − β(r, x)| < ε/2 for all
(s, y) ∈ [r, T )×S with dS((s, y), (r, x)) < δ. Since X(ω) and the function [0, T ]→ R,
s 7→ φ(s,X(ω)) are right-continuous, we get γ ∈ (0, T − r) such that

‖Xs(ω)− xr‖ < δ/2 and c|φ(s,X(ω))− φ(r,X(ω))| < ε/2
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for each s ∈ [r, r + γ). Consequently, |β(s,Xs(ω))φ(s,X(ω)) − β(r, x)φ(r,X(ω))|
≤ c|φ(s,X(ω)) − φ(r,X(ω))| + |φ(r,X(ω))||β(s,Xs(ω)) − β(r, x)| < ε for every
s ∈ [r, r + η), where η := γ ∧ (δ/2) ∧ ζ ∧ (τ(ω)− r). If in addition we use that

β(r, x)φ(r,X(ω)) =
∫ t∧τ(ω)

r

β(r, x)
t− r

φ(r,X(ω)) ds

for each t ∈ (r, r + η), then our considerations show that∣∣∣∣∣
∫ t∧τ(ω)

r

β(s,Xs(ω))
t− r

φ(s,X(ω)) ds− β(r, x)φ(r,X(ω))
∣∣∣∣∣ < ε

for all t ∈ (r, r + η). Therefore, we have proven that

lim
t↓r

∫ t∧τ

r

β(s,Xs)
t− r

φ(s,X) ds = β(r, x)φ(r,X) Pr,x-a.s. on {τ > r}.

Because Er,x[φ(r,X)1{τ>r}] = Er,x[Er,x[φ(r,X)|Fr]1{τ>r}] = u(r, x)Pr,x(τ > r) and
(5.5) holds, the claim follows from dominated convergence.

We are now in a position to drop the right-continuity assumption for bounded
mild solutions to become stochastic viscosity solutions.

5.23 Proposition. Suppose that a, b, α, and β are right-continuous. Then each
bounded mild solution u to (P) is a stochastic viscosity solution to (P).

Proof. We proceed similarly as in the proof of Theorem 5.20. Let (r, x) ∈ [0, T )×S
and ϕ ∈ SP u(r, x). Then there exist δ ∈ (0, T − r) and an (Ft)t∈[r,T ]-stopping
time τ with Pr,x(τ > r) > 0 such that

(u− ϕ)(r, x) ≥ Er,x[(u− ϕ)(τ̃ ∧ τ,X τ̃∧τ )]

for every τ̃ ∈ T with τ̃ ∈ [r, r + δ). Let us choose c ≥ 0 and γ ∈ (0, δ] such that
|α(s, y)| ∨ |β(s, y)| ≤ c for all (s, y) ∈ [r, T ) × S with dS((s, y), (r, x)) < γ. We set
τ̃ := inf{t ∈ [r, T ] | ‖X t − xr‖ ≥ γ/2} ∧ T and τ̂ := τ̃ ∧ τ , then, as X fulfills the
L -martingale property and u is a mild subsolution to (P), it follows that

1
t− r

Er,x

[ ∫ t∧τ̂

r
(∂s + L )(ϕ)(s,Xs) ds

]
≥ 1
t− r

Er,x

[ ∫ t∧τ̂

r
α(s,Xs) ds

]

+ 1
t− r

Er,x

[ ∫ t∧τ̂

r
β(s,Xs)u(s,Xs) ds

]

for each t ∈ (r, r + γ/3). Due to Lemmas 5.19 and 5.22, regardless of whether u is
right-continuous on [0, T )× S, we may take the limit t ↓ r to obtain that

(∂r + L )(ϕ)(r, x) ≥ α(r, x) + β(r, x)u(r, x),

since |α(s,Xs)| ∨ |β(s,Xs)| ≤ c for all s ∈ [r, (r+ γ/3)∧ τ̂ ] Pr,x-a.s. For this reason,
u is a stochastic viscosity subsolution to (P). The fact that u is also a stochastic
viscosity supersolution can be proven with similar reasoning.
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We turn to the final aim of this section. Notice that, according to Lemma A.10,
the upper and lower right-hand semicontinuous envelopes of a right-hand locally
bounded function u : [0, T ]× S → R are given by

u←(r, x) = lim sup
(s,y)→(r,x): s≥r

u(s, y) and u←(r, x) = lim inf
(s,y)→(r,x): s≥r

u(s, y)

for all (r, x) ∈ [0, T ]× S, respectively. Indeed, u← (resp. u←) is of this form as soon
as u is merely right-hand locally bounded from above (resp. from below). We are
now concerned with another decisive limit inequality.

5.24 Lemma. Let (r, x) ∈ [0, T ) × S and ϕ ∈ B([r, T ) × S) be non-anticipative.
Suppose that (rn, xn)n∈N is a sequence in [r, T )× S, (tn)n∈N is a sequence in [r, T ),
and (τn)n∈N is a sequence of (Ft)t∈[0,T ]-stopping times such that the following three
conditions hold:

(i) τn > rn Prn,xn-a.s., τn ≥ rn, and rn < tn for each n ∈ N. In addition,
limn↑∞ dS((rn, xn), (r, x)) = 0 and limn↑∞ tn = r.

(ii)
∫ tn∧τn
rn

|ϕ(s,Xs)| ds is finite for all n ∈ N and there exists c ≥ 0 such that
|ϕ(s,Xs)| ≤ c for all s ∈ [rn, tn ∧ τn] Prn,xn-a.s. for every n ∈ N.

(iii) limn↑∞ Prn,xn(τn ≤ tn) = 0 and limn↑∞ Prn,xn(‖X tn − xrnn ‖ ≥ γ) = 0 for each
γ > 0.

If ϕ is upper right-hand semicontinuous at (r, x), then

lim sup
n↑∞

Ern,xn

[ ∫ tn∧τn

rn

ϕ(s,Xs)
tn − rn

ds

]
≤ ϕ(r, x).

Proof. Let ε > 0, then there is some δ > 0 such that ϕ(s, y) < ϕ(r, x) + ε/4 for each
(s, y) ∈ [r, T )×S with dS((s, y), (r, x)) < δ. By (i), we can choose n0 ∈ N such that

(tn − rn) + dS((rn, xn), (r, x)) < δ/2

for all n ∈ N with n ≥ n0. Moreover, for each n ∈ N we let Y (n) : [rn, T ]×Ω→ R+ be
given by Y (n)

s (ω) := ‖Xs(ω)−xrnn ‖ and set σn := inf{t ∈ [rn, T ] | ‖X t−xrnn ‖ ≥ δ/2},
then Y (n) is an (Ft)t∈[rn,T ]-adapted process with increasing continuous paths and σn
is an (Ft)t∈[rn,T ]-stopping time with σn > rn Prn,xn-a.s. and {σn > s} = {Y (n)

s < δ/2}
for all s ∈ [rn, T ]. This yields that

Ern,xn

[ ∫ tn∧τn

rn

ϕ(s,Xs)
tn − rn

1{
Y

(n)
s <δ/2

} ds] ≤ ϕ(r, x)
tn − rn

Ern,xn [(tn ∧ τn ∧ σn − rn)] + ε/4

for every n ∈ N with n ≥ n0, because dS((s,Xs(ω)), (r, x)) ≤ (s − rn) + Y (n)
s (ω)

+ dS((rn, xn), (r, x)) < δ for all ω ∈ {Xrn = xrnn } and each s ∈ [rn, tn∧τn(ω)∧σn(ω)].
We observe that

1
tn − rn

Ern,xn [(tn − tn ∧ τn ∧ σn)] ≤ Prn,xn(τn ≤ tn) + Prn,xn(Y (n)
tn ≥ δ/2)
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for each n ∈ N, since it holds that (tn − tn ∧ τn ∧ σn) = (tn − τn ∧ σn)1{τn∧σn≤tn}
≤ (tn − rn)1{τn∧σn≤tn}. At the same time it follows from (ii) that

Ern,xn

[ ∫ tn∧τn

rn

|ϕ(s,Xs)|
tn − rn

1{
Y

(n)
s ≥δ/2

} ds] ≤ cPrn,xn(Y (n)
tn ≥ δ/2)

for all n ∈ N. For c′ := c∨ |ϕ(r, x)| there is n1 ∈ N such that c′Prn,xn(τn ≤ tn) < ε/4
and c′Prn,xn(Y (n)

tn ≥ δ/2) < ε/4 for all n ∈ N with n ≥ n1, due to (iii). Hence, we
set n2 := n0 ∨ n1, then we obtain that

Ern,xn

[ ∫ tn∧τn

rn

ϕ(s,Xs)
tn − rn

ds

]
≤ ϕ(r, x) + c′

tn − rn
Ern,xn [(tn − tn ∧ τn ∧ σn)] + ε/2

< ϕ(r, x) + ε

for each n ∈ N with n ≥ n2. This entails the assertion.

To clarify the way we proceed, note that for every function u : [0, T ] × S → R
that is right-hand locally bounded from above and each (r, x) ∈ [0, T ) × S, there
exists a sequence (rn, xn)n∈N in [r, T ) × S with limn↑∞ dS((rn, xn), (r, x)) = 0 and
limn↑∞ u(rn, xn) = u←(r, x), by Lemma A.7. This technique is well-known in the
literature of viscosity solutions (see for example Pham [30, Section 4.3]).

5.25 Lemma. Let (r, x) ∈ [0, T ) × S, β be right-continuous at (r, x), and u be
a right-hand locally bounded mild solution to (P). Suppose that (rn, xn)n∈N is a
sequence in [r, T )× S, (tn)n∈N is a sequence in [r, T ), and (τn)n∈N is some sequence
of (F̂t)t∈[0,T ]-stopping times such that the following three conditions hold:

(i) τn > rn Prn,xn-a.s., τn ≥ rn, and rn < tn for every n ∈ N. Furthermore,
limn↑∞ dS((rn, xn), (r, x)) = 0, limn↑∞ u(rn, xn) = u←(r, x), and limn↑∞ tn = r.

(ii) There is c ≥ 0 such that |α(s,Xs)| ∨ |β(s,Xs)| ∨ |u(s,Xs)| ≤ c for each
s ∈ [rn, tn ∧ τn] Prn,xn-a.s. for every n ∈ N.

(iii) limn↑∞ Prn,xn(τn ≤ tn) = 0 and limn↑∞ Prn,xn(‖X tn − xrnn ‖ ≥ γ) = 0 for all
γ > 0.

Then
lim
n↑∞

Ern,xn

[ ∫ tn∧τn

rn

β(s,Xs)
tn − rn

u(s,Xs) ds
]

= β(r, x)u←(r, x).

Proof. Since u is a mild solution to (P), it holds that

Ern,xn [u(tn ∧ τn, X tn∧τn)] = u(rn, xn)

+ Ern,xn

[ ∫ tn∧τn

rn
α(s,Xs) + β(s,Xs)u(s,Xs) ds

]

for all n ∈ N. Together with (ii), this gives |Ern,xn [u(tn ∧ τn, X tn∧τn)] − u(rn, xn)|
≤ c(1 + c)(tn − rn) for each n ∈ N. Hence,

lim
n↑∞

Ern,xn [u(tn ∧ τn, X tn∧τn)] = lim
n↑∞

u(rn, xn) = u←(r, x). (5.6)
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We note that, because the function [0, T ] × S → R+, (s, y) 7→ |β(s, y) − β(r, x)| is
right-continuous at (r, x), Lemma 5.24 implies that

lim
n↑∞

Ern,xn

[ ∫ tn∧τn

rn

|β(s,Xs)− β(r, x)|
tn − rn

ds

]
= 0.

So, from the hypothesis that |u(tn∧ τn, X tn∧τn)| ≤ c Prn,xn-a.s. for all n ∈ N and the
fact that

β(r, x) =
∫ tn∧τn

rn

β(r, x)
tn − rn

ds+ β(r, x)
tn − rn

(tn − tn ∧ τn)

for each n ∈ N, we readily infer from (5.6) that

lim
n↑∞

Ern,xn

[ ∫ tn∧τn

rn

β(s,Xs)
tn − rn

u(tn ∧ τn, X tn∧τn) ds
]

= β(r, x)u←(r, x).

Here, similarly as in the proof of Lemma 5.24, we can utilize that

lim
n↑∞

1
tn − rn

Ern,xn [(tn − tn ∧ τn)] = lim
n↑∞

Prn,xn(τn ≤ tn) = 0,

since (tn−tn∧τn) = (tn−τn)1{τn≤tn} ≤ (tn−rn)1{τn≤tn} for all n ∈ N. Consequently,
the claim follows once we have shown that

lim
n↑∞

Ern,xn

[ ∫ tn∧τn

rn

β(s,Xs)
tn − rn

(u(tn ∧ τn, X tn∧τn)− u(s,Xs)) ds
]

= 0. (5.7)

To this end, we let n ∈ N and set τn,s := τn ∨ s for each s ∈ [rn, tn], then τn,s is an
(F̂t)t∈[s,T ]-stopping time. As u is a mild solution to (P), we get that

Es,y[u(tn ∧ τn,s, X tn∧τn,s)] = u(s, y)

+ Es,y

[ ∫ tn∧τn,s

s
α(s′, Xs′) + β(s′, Xs′)u(s′, Xs′) ds′

]

for each (s, y) ∈ [rn, tn] × S. Hence, Fubini’s theorem and Propositions 3.7, 3.13
yield that∣∣∣∣∣Ern,xn

[ ∫ tn∧τn

rn

β(s,Xs)
tn − rn

(u(tn ∧ τn, X tn∧τn)− u(s,Xs)) ds
]∣∣∣∣∣

=
∣∣∣∣∣
∫ tn

rn
Ern,xn

[
β(s,Xs)
tn − rn

(Es,Xs [u(tn ∧ τn,s, X tn∧τn,s)]− u(s,Xs))1{τn>s}
]
ds

∣∣∣∣∣
=
∣∣∣∣∣
∫ tn

rn
Ern,xn

[
β(s,Xs)
tn − rn

∫ tn∧τn,s

s
α(s′, Xs′) + β(s′, Xs′)u(s′, Xs′) ds′1{τn>s}

]
ds

∣∣∣∣∣
≤ c(1 + c)

∫ tn

rn
Ern,xn [|β(s,Xs)|1{τn>s}] ds ≤ c2(1 + c)(tn − rn),

since τn = τn,s on {τn > s} for all s ∈ [rn, tn]. As n ∈ N has been arbitrarily chosen,
we may take the limit n ↑ ∞ to obtain (5.7), which proves the assertion.
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We recall that, as X̂ is in particular a non-anticipative Markov process, it follows
for each γ > 0 and every (r, x) ∈ [0, T )× S that

lim
t↓r

Pr,x(‖X t − xr‖ ≥ γ) = 0.

However, let us now require that for all γ > 0, every (r, x) ∈ [0, T ) × S, and each
sequence (rn, xn, tn)n∈N in [r, T ) × S × [r, T ) such that tn ≥ rn for all n ∈ N and
limn↑∞(tn − r) + dS((rn, xn), (r, x)) = 0 it holds that

lim
n↑∞

Prn,xn(‖X tn − xrnn ‖ ≥ γ) = 0. (5.8)

This slightly stronger condition leads us to our final result, which establishes the
relation between the upper and lower right-hand semicontinuous envelopes of a mild
solution and right-hand viscosity sub- and supersolutions.

5.26 Proposition. Suppose that X satisfies (5.8), D is closed, and a, b, α, β are
right-continuous. If u is a bounded mild solution to (P), then u← (resp. u←) must
be a right-hand viscosity subsolution (resp. supersolution) to (P).

Proof. To verify that u← is a right-hand viscosity subsolution, let (r, x) ∈ [0, T )×S
and ϕ ∈P u←(r, x). Then there is δ ∈ (0, T − r) such that

(u← − ϕ)(r, x) ≥ (u← − ϕ)(s, y) (5.9)

for each (s, y) ∈ [r, T )× S fulfilling dS((s, y), (r, x)) < δ. Due to Lemma A.7, there
exists a sequence (rn, xn)n∈N in [r, T ) × S such that limn↑∞ dS((rn, xn), (r, x)) = 0
and limn↑∞ u(rn, xn) = u←(r, x). We set

ηn := (u← − ϕ)(r, x)− (u− ϕ)(rn, xn) for all n ∈ N.

Then, since limn↑∞ ηn = 0, there is a sequence (tn)n∈N in [r, T ) such that rn < tn
for each n ∈ N, limn↑∞ tn = r, and limn↑∞ ηn/(tn − rn) = 0. For instance, we could
have set tn := rn + (1/2) min

{√
|ηn|+ 1/n, T − rn

}
for each n ∈ N.

As α and β are right-continuous at (r, x), there are c > 0 and γ ∈ (0, δ] satisfying
|α(s, y)| ∨ |β(s, y)| ≤ c for all (s, y) ∈ [r, T )× S with dS((s, y), (r, x)) < γ. We set

τn := inf{t ∈ [rn, T ] | ‖X t − xrnn ‖ ≥ γ/2} for each n ∈ N,

then τn is an (F̂t)t∈[rn,T ]-stopping time with τn > rn Prn,xn-a.s. In addition, let
n0 ∈ N be such that (tn − rn) + dS((rn, xn), (r, x)) < γ/2 for all n ∈ N with n ≥ n0.
Then from (5.9) and u← ≥ u we infer that

(u← − ϕ)(r, x) ≥ Ern,xn [(u− ϕ)(tn ∧ τn, X tn∧τn)]

for every n ∈ N such that n ≥ n0, because it holds that dS((tn ∧ τn, X tn∧τn), (r, x))
≤ dS((tn ∧ τn, X tn∧τn), (rn, xn)) + dS((rn, xn), (r, x)) < γ on {Xrn = xrnn }. Moreover,
since u is a mild subsolution to (P) and the stopped process [rn, T )× Ω→ R,

(t, ω) 7→ ϕ(t ∧ τn(ω), X t∧τn(ω))−
∫ t∧τn(ω)

rn
(∂s + L )(ϕ)(s,Xs(ω)) ds
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is an (Ft)t∈[rn,T )-martingale under Prn,xn , it follows that

Ern,xn [(u− ϕ)(tn ∧ τn, X tn∧τn)] ≥ (u− ϕ)(rn, xn)

+ Ern,xn

[ ∫ tn∧τn

rn
α(s,Xs) + β(s,Xs)u(s,Xs) ds

]

− Ern,xn
[ ∫ tn∧τn

rn
(∂s + L )(ϕ)(s,Xs) ds

]

for each n ∈ N with n ≥ n0. By recalling the definition of ηn, this implies that

ηn
tn − rn

+ 1
tn − rn

Ern,xn

[ ∫ tn∧τn

rn
(∂s + L )(ϕ)(s,Xs) ds

]

≥ 1
tn − rn

Ern,xn

[ ∫ tn∧τn

rn
α(s,Xs) + β(s,Xs)u(s,Xs) ds

]

for all n ∈ N with n ≥ n0. Hence, Lemmas 5.24 and 5.25 ensure that we may take
the limit n ↑ ∞, which yields that

(∂r + L )(ϕ)(r, x) ≥ α(r, x) + β(r, x)u←(r, x).

Here, we have used that the function [r, T )×S → R, (s, y) 7→ (∂s+L )(ϕ)(s, ys) and
α, β are right-continuous. Moreover, the fact that {τn ≤ tn} = {‖X tn−xrnn ‖ ≥ γ/2}
for all n ∈ N and the hypothesis that X fulfills (5.8) ensure that

lim
n↑∞

Prn,xn(τn ≤ tn) = lim
n↑∞

Prn,xn(‖X tn − xrnn ‖ ≥ γ/2) = 0.

This shows that u← is a right-hand viscosity subsolution to (P). Since the verification
that u← is a right-hand viscosity supersolution can be handled in much the same
way, the claim is proven.

In conclusion, in the first part of the thesis, we derived unique non-extendible
admissible solutions to multidimensional Markovian integral equations that involve a
progressive Markov process with Polish state space and Borel measurable transition
probabilities. Then a boundary and growth analysis led us to unique global bounded
solutions to one-dimensional Markovian integral equations. In the second part, by
using path-dependent diffusion processes, we were able to identify mild solutions to
semilinear parabolic PPDEs as global solutions to the associated Markovian integral
equations. Consequently, existence and uniqueness for bounded mild solutions were
inferred. In the end, under weak continuity conditions, we verified that bounded
right-continuous mild solutions are also solutions in a viscosity sense, which in turn
yielded existence for bounded (right-)continuous viscosity solutions.



Appendix

A.1 Convex sets
Here, we review some standard facts on convex sets and consider Carathéodory’s
Convex Hull Theorem. To this end, we follow [31, Section 2.1] mainly. Let E be a
linear space, then a set D ⊂ E is convex if αz + (1− α)z′ ∈ D for all z, z′ ∈ D and
each α ∈ (0, 1). A point z ∈ E is said to be a convex combination of points of D if
there are n ∈ N, z1, . . . , zn ∈ D, and α1, . . . , αn ∈ [0, 1] such that

z = α1z1 + · · ·+ αnzn and α1 + · · ·+ αn = 1.

A.1 Lemma. Every convex set D ⊂ E contains all convex combinations of its
points. That is, α1z1 + · · ·+αnzn ∈ D for all n ∈ N with n ≥ 2, each z1, . . . , zn ∈ D,
and every α1, . . . , αn ∈ [0, 1] with α1 + · · ·+ αn = 1.

Proof. We verify the claim by induction over n ∈ N with n ≥ 2. In the initial
induction step n = 2, the claim reduces to the convexity of D. Thus, we may
assume that the claim holds for some n ∈ N with n ≥ 2. Let z1, . . . , zn+1 ∈ D and
α1, . . . , αn+1 ∈ [0, 1] be such that α1 + · · ·+αn+1 = 1. For αn+1 = 1 there is nothing
to show. So, let αn+1 < 1, then the induction hypothesis entails that

z := α1/(1− αn+1)z1 + · · ·+ αn/(1− αn+1)zn ∈ D,

since α1/(1 − αn+1) + · · · + αn/(1 − αn+1) = (α1 + · · · + αn)/(1 − αn+1) = 1. For
this reason, α1z1 + · · ·+ αn+1zn+1 = (1− αn+1)z + αn+1zn+1 ∈ D, which completes
the induction proof.

Note that if D is a family of convex sets in E, then the intersection ⋂D∈DD is
another convex set in E. Indeed, for all z, z′ ∈ ⋂D∈DD and each α ∈ (0, 1) we have
that αz + (1− α)z′ ∈ D for every D ∈ D, which directly yields that

αz + (1− α)z′ ∈
⋂
D∈D

D.

So, for a set D ⊂ E, the convex hull of D, denoted by conv(D), is defined to be
the smallest convex set in E including D in the sense that conv(D) is a convex set
in E that includes D and which is included in every convex set in E including D.
Clearly, the convex hull of D must be unique. Regarding existence, let D be the
family of all convex sets in E which include D, then conv(D) = ⋂

D′∈DD
′. This is

because D ⊂ ⋂D′∈DD′ and ⋂D′∈DD′ ⊂ D′′ for each D′′ ∈ D.

109
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A.2 Lemma. Let D ⊂ E, then conv(D) is the set of all convex combinations of
points of D.

Proof. We have to check that the set of all convex combinations of points of D is
convex and included in each convex set in E which includes D. Thus, let z, z′ ∈ E
be convex combinations of points of D and γ ∈ (0, 1). Then

z = α1z1 + · · ·+ αmzm and z′ = β1z
′
1 + · · ·+ βnz

′
n

for somem,n ∈ N, z1, . . . , zm, z
′
1, . . . , z

′
n ∈ E, and α1, . . . , αm, β1, . . . , βn ∈ [0, 1] with

α1 + · · ·+ αm = β1 + · · ·+ βn = 1. The representation

γz + (1− γ)z′ = γα1z1 + · · ·+ γαmzm + (1− γ)β1z
′
1 + · · ·+ (1− γ)βnz′n

shows that γz + (1 − γ)z′ is also a convex combination of points of D, because
γα1 + · · ·+γαm+(1−γ)β1 + · · ·+(1−γ)βn = 1. Finally, let D′ be a convex set in E
which includes D. Then the set of all convex combinations of points of D is included
in the set of all convex combinations of points of D′. As D′ is convex, Lemma A.1
yields that D′ agrees with the latter set, which is the desired conclusion.

If E is finite-dimensional, then we can bound the number of points of a set D in
E that are needed to represent a point in conv(D).

A.3 Carathéodory’s Convex Hull Theorem. Let d := dim(E) <∞ andD ⊂ E.
Then each point z ∈ conv(D) is a convex combination of at most d+ 1 points of E.
That means, z can be written in the form

z = α1z1 + · · ·+ αd+1zd+1

for some z1, . . . , zd+1 ∈ D and α1, . . . , αd+1 ∈ [0, 1] with α1 + · · ·+ αd+1 = 1.

Proof. By Lemma A.2, it suffices to show that if n ∈ N is such that n > d + 1 and
z is a convex combination of n points of D, say z = β1z1 + · · · + βnzn for some
z1, . . . , zn ∈ D and some β1, . . . , βn ∈ [0, 1] with β1 + · · · + βn = 1, then n can be
reduced by one in the sense that there are α1, . . . , αn ∈ [0, 1] such that

z = α1z1 + · · ·+ αnzn and α1 + · · ·+ αn = 1,

but αi = 0 for at least one i ∈ {1, . . . , n}. If βi = 0 for some i ∈ {1, . . . , n}, then
this is certainly true. Thus, let us assume that β1, . . . , βn are positive. We notice
that z1− zn, . . . , zn−1− zn are linearly dependent, since n > d+ 1. Hence, there are
γ1, . . . , γn−1 ∈ R such that

γ1(z1 − zn) + · · ·+ γn−1(zn−1 − zn) = 0

and γi 6= 0 for at least one i ∈ {1, . . . , n− 1}. By setting γn := −γ1− · · · − γn−1, we
obtain that γ1z1 + · · · + γnzn = 0 and γ1 + · · · + γn = 0. For the second equation
to be valid, we must have γi > 0 for at least one i ∈ {1, . . . , n}. This entails
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that τ := min{βi/γi | i ∈ {1, . . . , n} : γi > 0} is well-defined and positive. We set
αi := βi − τγi, then αi ≥ 0 for each i ∈ {1, . . . , n}. In addition,

α1z1 + · · ·+ αnzn = β1z1 + · · ·+ βnzn − τ(γ1z1 + · · ·+ γnzn)
= β1z1 + · · ·+ βnzn = z

and α1 + · · ·+αn = β1 + · · ·+βn−τ(γ1 + · · ·+γn) = 1. Eventually, let i ∈ {1, . . . , n}
be such that γi > 0 and τ = βi/γi, then αi = βi−τγi = 0. This shows the claim.

Until the end of this section, we require that E is equipped with a norm ‖ · ‖.

A.4 Corollary. Assume that d := dim(E) < ∞, then the convex hull of each
compact set D ⊂ E must be compact.

Proof. Let K be set of all (α1, . . . , αd+1) ∈ [0, 1]d+1 with α1 + · · · + αd+1 = 1. As
the function [0, 1]d+1 → [0, 1], (α1, . . . , αd+1) 7→ α1 + · · · + αd+1 is continuous, K is
closed in the compact set [0, 1]d+1. Therefore, K is compact. This in turn ensures
that K ×Dd+1 is compact as well. The map ϕ : Rd+1 × Ed+1 → E defined via

ϕ(α1, . . . , αd+1, z1, . . . , zd+1) := α1z1 + · · ·+ αd+1zd+1

is readily seen to be continuous and Carathéodory’s Convex Hull Theorem A.3 yields
the representation conv(D) = ϕ(K ×Dd+1). This establishes the claim.

Let us note at this point that the union of each increasing sequence (Dn)n∈N of
convex sets in E is convex. Indeed, let z, z′ ∈ ⋃n∈NDn and α ∈ (0, 1), then there is
m ∈ N with z, z′ ∈ Dm. Since Dm is convex, αz + (1− α)z′ ∈ Dm, which shows the
convexity of ⋃n∈NDn. We conclude with topological properties for convex sets.

A.5 Lemma. Let D ⊂ E be convex, then Dε := {z ∈ D |Bε(z) ⊂ D} is convex for
each ε > 0. Moreover, the interior D◦ and the closure D of D are convex.

Proof. At first, let ε > 0, z, z′ ∈ Dε, and α ∈ (0, 1). We fix ẑ ∈ Bε(αz + (1− α)z′)
and show that ẑ ∈ D, which then yields the first claim. To this end, let us set

z0 := z + ẑ − αz − (1− α)z′ and z′0 := z′ + ẑ − αz − (1− α)z′,

then ‖z0 − z‖ = ‖z′0 − z′‖ = ‖ẑ − αz − (1 − α)z′‖ < ε. Thus, z0 ∈ Bε(z) and
z′0 ∈ Bε(z′). Furthermore, z0 = (1− α)(z − z′) + ẑ and z′0 = −α(z − z′) + ẑ, which
entails that ẑ = αz0 + (1− α)z′0 ∈ D, as desired.

Next, we observe that Dε ⊂ Dδ for all δ, ε > 0 with δ ≤ ε. Therefore, (D1/n)n∈N
is an increasing sequence of convex sets in E. From the preceding remark and
fact that D◦ = ⋃

n∈ND
1/n, we obtain the convexity of D◦. To show the convexity

of D, let z, z′ ∈ D and α ∈ (0, 1). Then there exist two sequences (zn)n∈N and
(z′n)n∈N in D such that limn↑∞ zn = z and limn↑∞ z

′
n = z′. Because D is convex,

αzn + (1− α)z′n ∈ D for all n ∈ N. From limn↑∞ αzn + (1− α)z′n = αz + (1− α)z′
we infer that αz + (1− α)z′ ∈ D. Hence, the lemma is proven.
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A.2 Right-hand semicontinuity
The purpose of this section is to present the notion of right-hand semicontinuity and
verify a representation for right-hand semicontinuous envelopes. In the end, some
basic results on semicontinuity and uniform continuity are provided as well.

We suppose that J ⊂ R is a non-degenerate interval, S is a non-empty set, and
dS is a pseudometric on J×S. Let J×S be endowed with the topology induced by dS
and for each (r, x) ∈ J×S we define U (r, x) to be the system of all neighborhoods of
(r, x) in J×S. If in addition δ > 0, then Bδ(r, x) denotes the set of all (s, y) ∈ J×S
with dS((s, y), (r, x)) < δ.

Let F ⊂ J × S be non-empty, then a function u : F → [−∞,∞] is said to be
right-hand locally bounded from above (resp. from below) at a point (r, x) ∈ F if
there is U ∈ U (r, x) such that

sup
(s,y)∈U∩F : s≥r

u(s, y) <∞
(
resp. inf

(s,y)∈U∩F : s≥r
u(s, y) > −∞

)
.

We call u right-hand locally bounded at (r, x) if it is right-hand locally bounded from
above and from below there. At last, u is right-hand locally bounded (from above
or from below) if it fulfills the corresponding property at all (r, x) ∈ F .

Whenever u is right-hand locally bounded from above at a point (r, x) ∈ F , then
the right-hand limit superior of u at (r, x) is given by

lim sup
(s,y)→(r,x): s≥r

u(s, y) := inf
U∈U (r,x)

sup
(s,y)∈U∩F : s≥r

u(s, y).

In a similar way, if u is right-hand locally bounded from below at (r, x), then the
right-hand limit inferior of u at (r, x) is defined by

lim inf
(s,y)→(r,x): s≥r

u(s, y) := sup
U∈U (r,x)

inf
(s,y)∈U∩F : s≥r

u(s, y).

In what follows, to each fact on right-hand local boundedness from above there is a
dual fact on right-hand local boundedness from below. So, we omit the former.

A.6 Lemma. Suppose that u : F → [−∞,∞) is right-hand locally bounded from
above at a point (r, x) ∈ F , then the right-hand limit superior of u at (r, x) coincides
with infδ∈∆ sup(s,y)∈Bδ(r,x)∩F : s≥r u(s, y) for every set ∆ in (0,∞) with inf ∆ = 0.

Proof. Let us first assume that there is U ∈ U (r, x) such that sup(s,y)∈U∩F : s≥r u(s, y)
< infδ∈∆ sup(s,y)∈Bδ(r,x)∩F : s≥r u(s, y). As U is open, there is ε > 0 with Bε(r, x) ⊂ U .
Since inf ∆ = 0, there is γ ∈ ∆ with γ ≤ ε. Thus,

sup
(s,y)∈Bγ(r,x)∩F : s≥r

u(s, y) < inf
δ∈∆

sup
(s,y)∈Bδ(r,x)∩F : s≥r

u(s, y),

a contradiction. In combination with the fact that Bδ(r, x) ∈ U (r, x) for every
δ > 0, this gives the claim.
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Let u : F → [−∞,∞] and (r, x) ∈ F . If there is z ∈ R such that for each
ε > 0 there is U ∈ U (r, x) with |u(s, y) − z| < ε for all (s, y) ∈ U ∩ F with
s ≥ r, then we say that z is the right-hand limit of u at (r, x) and denote it by
lim(s,y)→(r,x): s≥r u(s, y).

A.7 Lemma. Let u : F → [−∞,∞) be right-hand locally bounded from above at a
point (r, x) ∈ F . Then the following three assertions hold:

(i) Every sequence (rn, xn)n∈N in F that converges to (r, x) with rn ≥ r for almost
all n ∈ N satisfies lim supn↑∞ u(rn, xn) ≤ lim sup(s,y)→(r,x): s≥r u(s, y).

(ii) There exists a sequence (rn, xn)n∈N in F that converges to (r, x) with rn ≥ r
for all n ∈ N and limn↑∞ u(rn, xn) = lim sup(s,y)→(r,x): s≥r u(s, y).

(iii) Let u be right-hand locally bounded from below at (r, x). Then the right-hand
limit lim(s,y)→(r,x): s≥r u(s, y) exists if and only if

lim inf
(s,y)→(r,x): s≥r

u(s, y) = lim sup
(s,y)→(r,x): s≥r

u(s, y). (A.1)

In this case, it coincides with the common value.

Proof. (i) Suppose that there is a sequence (rn, xn)n∈N in F that converges to (r, x)
such that rn ≥ r for almost all n ∈ N and for which the asserted inequality fails.
Then there is U ∈ U (r, x) such that

sup
n∈N:n≥n0

u(rn, xn) > sup
(s,y)∈U∩F : s≥r

u(s, y)

for each n0 ∈ N. Since (rn, xn)n∈N converges to (r, x), there is some n1 ∈ N such
that (rn, xn) ∈ U ∩ F and rn ≥ r for each n ∈ N with n ≥ n1. This implies that
supn∈N:n≥n1 u(rn, xn) ≤ sup(s,y)∈U∩F : s≥r u(s, y), which is a contradiction.

(ii) First of all, we choose a strictly decreasing sequence (αn)n∈N in R such that
limn↑∞ αn = lim sup(s,y)→(r,x): s≥r u(s, y) ∈ [−∞,∞). By Lemma A.6, for each n ∈ N
there is νn ∈ N with νn ≥ n such that

sup
(s,y)∈B1/νn (r,x)∩F : s≥r

u(s, y) < αn. (A.2)

Moreover, for every n ∈ N there exists some (rn, xn) ∈ B1/νn(r, x) ∩ F with rn ≥ r
and sup(s,y)∈B1/νn (r,x)∩F : s≥r u(s, y) < u(rn, xn) + 1/n. From limn↑∞ νn = ∞ and
(A.2) we infer that the resulting sequence (rn, xn)n∈N converges to (r, x) and satisfies
limn↑∞ u(rn, xn) = lim sup(s,y)→(r,x): s≥r u(s, y).

(iii) To show the only if direction, suppose that (A.1) fails. By (ii), there are
two sequences (rn, xn)n∈N and (rn, xn)n∈N in F that converge to (r, x) such that
rn ∧ rn ≥ r for all n ∈ N and

lim
n↑∞

u(rn, xn) = lim inf
(s,y)→(r,x): s≥r

u(s, y) < lim sup
(s,y)→(r,x): s≥r

u(s, y) = lim
n↑∞

u(rn, xn),
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which is a contradiction. For the converse direction, let (rn, xn)n∈N be a sequence in
F that converges to (r, x) with rn ≥ r for all n ∈ N, then (i) ensures that

lim inf
(s,y)→(r,x): s≥r

u(s, y) ≤ lim inf
n↑∞

u(rn, xn) ≤ lim sup
n↑∞

u(rn, xn) ≤ lim sup
(s,y)→(r,x)

u(s, y).

Thus, (u(rn, xn))n∈N converges to the common value of lim inf(s,y)→(r,x): s≥r u(s, y)
and lim sup(s,y)→(r,x): s≥r u(s, y). This in turn concludes the proof.

Now, a function u : F → [−∞,∞] is called upper right-hand semicontinuous at
a point (r, x) ∈ F if u(r, x) <∞ and for each ε > 0 there is U ∈ U (r, x) such that

u(s, y) <

u(r, x) + ε, if u(r, x) > −∞,
−ε, if u(r, x) = −∞,

for all (s, y) ∈ U∩F with s ≥ r. We say that u is lower right-hand semicontinuous at
(r, x) if −u is upper right-hand semicontinuous there. Hence, u is upper (resp. lower)
right-hand semicontinuous if it is upper (resp. lower) right-hand semicontinuous at
each (r, x) ∈ F . As before, to each fact on upper right-hand semicontinuity there is
a dual fact on lower right-hand semicontinuity.

A.8 Lemma. A function u : F → [−∞,∞) is upper right-hand semicontinuous at
a point (r, x) ∈ F if and only if one of the following three equivalent conditions hold:

(i) For each α ∈ R with u(r, x) < α there is U ∈ U (r, x) such that u(s, y) < α
for all (s, y) ∈ U ∩ F with s ≥ r.

(ii) lim sup(s,y)→(r,x): s≥r u(s, y) ≤ u(r, x).

(iii) For every sequence (rn, xn)n∈N in F that converges to (r, x) with rn ≥ r for
almost all n ∈ N it holds that lim supn↑∞ u(rn, xn) ≤ u(r, x).

Proof. We at first show that if u is upper right-hand semicontinuous at (r, x), then
(i) holds. Let α ∈ R satisfy u(r, x) < α. If u(r, x) > −∞, then for ε := α − u(r, x)
there is U ∈ U (r, x) such that u(s, y) < u(r, x) + ε = α for all (s, y) ∈ U ∩ F with
s ≥ r. Otherwise, there exists some U ∈ U (r, x) with u(s, y) < −|α| ≤ α for every
(s, y) ∈ U ∩ F with s ≥ r, as desired.

(i) ⇒ (ii): Suppose the claimed inequality fails. Then we can pick α ∈ R with
u(r, x) < α < lim sup(s,y)→(r,x): s≥r u(s, y). According to (i), there is U ∈ U (r, x)
such that u(s, y) < α for all (s, y) ∈ U ∩ F with s ≥ r. However, this is in conflict
with sup(s,y)∈U∩F : s≥r u(s, y) ≥ lim sup(s,y)→(r,x): s≥r u(s, y).

(ii)⇒ (iii): Let (rn, xn)n∈N be a sequence in F that converges to (r, x) and fulfills
rn ≥ r for almost all n ∈ N. Then lim supn↑∞ u(rn, xn) ≤ lim sup(s,y)→(r,x): s≥r u(s, y)
≤ u(r, x), by Lemma A.7, which is the correct conclusion.

Finally, assume that (iii) holds but u fails to be upper right-hand semicontinuous
at (r, x). We first let u(r, x) > −∞. Then there exists ε > 0 such that for every
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n ∈ N there is (rn, xn) ∈ B1/n(r, x)∩F with rn ≥ r and u(rn, xn) ≥ u(r, x) + ε. The
resulting sequence (rn, xn)n∈N converges to (r, x) and satisfies

lim sup
n↑∞

u(rn, xn) ≥ u(r, x) + ε,

which is a contradiction to (iii). Suppose now that u(r, x) = −∞, then there is some
ε > 0 such that for each n ∈ N there is (rn, xn) ∈ B1/n(r, x) ∩ F with rn ≥ r and
u(rn, xn) ≥ −ε. Thus, (rn, xn)n∈N converges to (r, x) and lim supn↑∞ u(rn, xn) ≥ −ε,
which is impossible. This shows the lemma.

Let us denote the set of all [−∞,∞)-valued upper right-hand semicontinuous
functions on F by USC←(F ) and the set of all (−∞,∞]-valued lower right-hand
semicontinuous functions on F by LSC←(F ). Then we can state two crucial facts.
The proof of the first one is based on Theorem 7.22 in [20].

A.9 Lemma. The following two assertions hold:

(i) If H ⊂ USC←(F ) is non-empty, then the function v : F → [−∞,∞) defined
via v(r, x) := infu∈H u(r, x) belongs to USC←(F ).

(ii) Let (un)n∈N be a sequence of real-valued functions in USC←(F ) that converges
locally uniformly to some function u : F → R, then u ∈ USC←(F ).

Proof. (i) Let (r, x) ∈ F and α ∈ R with v(r, x) < α. Then the definition of v
yields u ∈H with v(r, x) ≤ u(r, x) < α. As u is upper right-hand semicontinuous,
Lemma A.8 gives U ∈ U (r, x) such that u(s, y) < α for all (s, y) ∈ U ∩ F with
s ≥ r. Thus, v(s, y) ≤ u(s, y) < α for each (s, y) ∈ U ∩ F with s ≥ r, which shows
the upper right-hand semicontinuity of v.

(ii) Let (r, x) ∈ F and ε > 0, then there is U ∈ U (r, x) such that (un)n∈N
converges uniformly to u on U ∩ F . We choose n0 ∈ N fulfilling

|un(s, y)− u(s, y)| < ε/3

for every (s, y) ∈ U ∩ F and each n ∈ N with n ≥ n0. We let n ∈ N satisfy
n ≥ n0, then the upper right-hand semicontinuity of un yields V ∈ U (r, x) such
that un(s, y) < un(r, x) + ε/3 for all (s, y) ∈ V ∩ F with s ≥ r. Thus,

u(s, y) < un(s, y) + ε

3 < un(r, x) + 2ε
3 < u(r, x) + ε

for all (s, y) ∈ U ∩ V ∩ F with s ≥ r. This concludes the proof.

Our considerations motivate right-hand semicontinuous envelopes. So, let us fix
a function u : F → [−∞,∞]. First, if u is right-hand locally bounded from above,
then the function

u← : F → [−∞,∞), u←(r, x) := inf{v(r, x) | v ∈ USC←(F ) : u ≤ v}



116 APPENDIX

is called the upper right-hand semicontinuous envelope of u. Similarly, whenever u
is right-hand locally bounded from below, then

u← : F → (−∞,∞], u←(r, x) := sup{v(r, x) | v ∈ LSC←(F ) : u ≥ v}

is the lower right-hand semicontinuous envelope of u. Let us emphasize that there
cannot exist v ∈ USC←(F ) with u ≤ v as soon as u fails to be right-hand locally
bounded from above. Indeed, in this case, there is (r, x) ∈ F such that for each
n ∈ N there is νn ∈ N with νn ≥ n and

sup
(s,y)∈B1/νn (r,x)∩F : s≥r

u(s, y) > n.

For each n ∈ N we choose (rn, xn) ∈ B1/νn(r, x) ∩ F with rn ≥ r and u(rn, xn) > n,
then the resulting sequence (rn, xn)n∈N converges to (r, x) and limn↑∞ u(rn, xn) =∞.
Therefore, if there was v ∈ USC←(F ) with u ≤ v, then

v(r, x) ≥ lim sup
n↑∞

v(rn, xn) ≥ lim sup
n↑∞

u(rn, xn) =∞,

due to Lemma A.8, which is a contradiction. A similar remark holds for the lower
right-hand semicontinuous envelope.

A.10 Lemma. Let u : F → [−∞,∞) be right-hand locally bounded from above.
Then u← ∈ USC←(F ) and the representation

u←(r, x) = lim sup
(s,y)→(r,x): s≥r

u(s, y)

holds for every (r, x) ∈ F . In particular, u is upper right-hand semicontinuous at a
point (r, x) ∈ F if and only if u(r, x) = u←(r, x).

Proof. Let us first of all prove that the function w : F → [−∞,∞) defined via
w(r, x) := lim sup(s,y)→(r,x): s≥r u(s, y) is upper right-hand semicontinuous. We fix
(r, x) ∈ F and α ∈ R with w(r, x) < α. Then there is U ∈ U (r, x) fulfilling

sup
(s,y)∈U∩F : s≥r

u(s, y) < α.

We see that for each (s, y) ∈ U it holds that U ∈ U (s, y). Thus, the definition of
w gives w(s, y) ≤ sup(s′,y′)∈U∩F : s′≥r u(s′, y′) < α for each (s, y) ∈ U with s ≥ r. By
Lemma A.8, the upper right-hand semicontinuity of w is verified. Let us now choose
a function v ∈ USC←(F ) with u ≤ v. Then we obtain

w(r, x) = lim sup
(s,y)→(r,x): s≥r

u(s, y) ≤ lim sup
(s,y)→(r,x): s≥r

v(s, y) ≤ v(r, x)

from Lemma A.8, because v is upper right-hand semicontinuous at (r, x). Hence, as
u(r, x) ≤ w(r, x) and (r, x) ∈ F has been arbitrarily chosen, both claims follow.
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Let us now suppose that ρ is a metric on S and for each x ∈ S let U (x) be the
system of all neighborhoods of x in S. We let R ⊂ S be non-empty and recall that
a function u : R → [−∞,∞] is upper semicontinuous if u <∞ and for each x ∈ R
and every ε > 0 there is U ∈ U (x) such that

u(y) <

u(x) + ε, if u(x) > −∞,
−ε, if u(x) = −∞,

for all y ∈ U . Moreover, u is lower semicontinuous if −u is upper semicontinuous
(cf. Definition 7.20 in [20]).

A.11 Lemma. Let u : R→ [−∞,∞), then the following three assertions hold:

(i) u is upper semicontinuous if and only if u−1([−∞, α)) is open in R for all
α ∈ R.

(ii) Whenever u is upper semicontinuous, then it attains its maximum on every
compact set K in R.

(iii) Let D ⊂ R be a non-degenerate interval, u(R) ⊂ D, and Φ : D → R be
increasing and right-continuous. If u is upper semicontinuous, then so is Φ◦u.

Proof. (i) For the only if direction let α ∈ R and x ∈ u−1([−∞, α)). If u(x) > −∞,
then for ε := α − u(x) there is U ∈ U (x) such that u(y) < u(x) + ε = α for all
y ∈ U ∩ R. If instead u(x) = −∞, then there is U ∈ U (x) with u(y) < −|α| ≤ α
for each y ∈ U ∩R. In either case, U ⊂ u−1([−∞, α)), as desired.

For if pick x ∈ R and ε > 0. If u(x) = −∞, then, as x ∈ u−1([−∞,−ε)),
there is U ∈ U (x) with u(y) < −ε for all y ∈ U ∩ R. Otherwise, we see from
x ∈ u−1([−∞, u(x) + ε)) that there is U ∈ U (x) with u(y) < u(x) + ε for every
y ∈ U ∩R, which concludes the proof of (i).

(ii) Let us suppose the contrary. That is, u(x) < supy∈K u(y) for each x ∈ K.
According to (i), for all x ∈ K we can pick αx ∈ R and Ux ∈ U (x) such that

u(y) < αx < sup
y′∈K

u(y′)

for each y ∈ Ux ∩R. As {Ux |x ∈ K} is an open covering of K, there are n ∈ N and
x1, . . . , xn ∈ K such that K ⊂ ⋃ni=1 Uxi . Let y ∈ K, then there is i ∈ {1, . . . , n} with
y ∈ Uxi and hence, u(y) < αxi . So, supy∈K u(y) ≤ maxi∈{1,...,n} αxi , a contradiction.
Therefore, there is x ∈ K with u(x) = supy∈K u(y), which is the claim.

(iii) Let x ∈ R and α ∈ R be such that Φ(u(x)) < α. If Φ(z) < α for every
z ∈ D, then Φ(u(y)) < α for each y ∈ R. Otherwise, there is at least one z′ ∈ D
with Φ(z′) ≥ α. We set qα := sup{z ∈ D |Φ(z) < α}, then u(x) ≤ qα ≤ z′, as Φ
is increasing. This also shows that qα ∈ D, since D is an interval. Right-continuity
of Φ at qα gives Φ(qα) ≥ α. Hence, u(x) < qα and there is U ∈ U (x) such that
u(y) < qα for all y ∈ U ∩ R. Because for each y ∈ U ∩ R there is ẑ ∈ D with
Φ(ẑ) < α and u(y) < ẑ < qα, the proof is complete.



118 APPENDIX

Finally, we change the setting, and suppose more generally that J is merely a
metric space and S is a non-empty set. We denote the underlying metric on J by ρ
and let D be a non-empty closed set in a Banach space E with complete norm ‖ · ‖.
A.12 Proposition. Let I be a dense set in J and u : I × S → D be uniformly
continuous in r ∈ I, uniformly in x ∈ S. Then there is a unique extension u of u
to J × S such that u(·, x) is continuous for each x ∈ S. Moreover, u(J × S) ⊂ D,

lim
r→t

u(r, x) = u(t, x), uniformly in x ∈ S, (A.3)

for each t ∈ J , and u is actually uniformly continuous in t ∈ J , uniformly in x ∈ S.
Proof. To verify uniqueness, assume that v and w are two extensions of u to J × S
such that v(·, x) and w(·, x) are continuous for all x ∈ S. Let t ∈ J , then there
is a sequence (rn)n∈N in I such that limn↑∞ rn = t. We also choose x ∈ S, then
v(rn, x) = u(rn, x) = w(rn, x) for all n ∈ N. By taking the limit n ↑ ∞, we obtain
that v(t, x) = limn↑∞ v(rn, x) = limn↑∞w(rn, x) = w(t, x). Hence, v = w.

Let us establish the existence of u. We first note that if (rn)n∈N is a Cauchy
sequence in I, then (u(rn, ·))n∈N is a uniformly Cauchy sequence. Indeed, for each
ε > 0 there is δ > 0 such that ‖u(q, x)− u(r, x)‖ < ε for all q, r ∈ I with ρ(q, r) < δ
and each x ∈ S. Thus, if n0 ∈ N is such that ρ(rm, rn) < δ for all m,n ∈ N with
m ∧ n ≥ n0, then ‖u(rm, x)− u(rn, x)‖ < ε for each m,n ∈ N with m ∧ n ≥ n0 and
every x ∈ S, as claimed.

We let t ∈ J and (rn)n∈N be a sequence in I with limn↑∞ rn = t, then (u(rn, ·))n∈N
converges uniformly to some map z : S → D, since D is closed and E is complete.
If we can show that for each sequence (qn)n∈N in I with limn↑∞ qn = t it follows that
(u(qn, ·))n∈N also converges uniformly to z, then, by defining u(t, x) := z(x) for each
x ∈ S, the existence of u and (A.3) follow. So, let ε > 0, then there is δ > 0 such
that ‖u(q, x)− u(r, x)‖ < ε/2 for all q, r ∈ I with ρ(q, r) < δ and every x ∈ S. We
choose n0 ∈ N such that

ρ(qn, t) ∨ ρ(rn, t) < δ/2 and ‖u(rn, x)− z(x)‖ < ε/2
for all n ∈ N with n ≥ n0 and each x ∈ S. Then ρ(qn, rn) < δ, which gives
‖u(qn, x)− z(x)‖ ≤ ‖u(qn, x)−u(rn, x)‖+‖u(rn, x)− z(x)‖ < ε for each n ∈ N with
n ≥ n0 and every x ∈ S. Thus, (u(qn, ·))n∈N converges uniformly to z as well.

Finally, let us show that u is uniformly continuous in t ∈ J , uniformly in x ∈ S.
We pick ε > 0, then there is some δ > 0 such that ‖u(q, x) − u(r, x)‖ < ε/3 for all
q, r ∈ I with ρ(q, r) < δ and each x ∈ S. We choose s, t ∈ J with ρ(s, t) < δ/3, then
(A.3) gives δs > 0 and δt > 0 such that

‖u(q, x)− u(s, x)‖ < ε/3 and ‖u(r, x)− u(t, x)‖ < ε/3
for all q, r ∈ I with ρ(q, s) < δs and ρ(r, t) < δt and every x ∈ S. We pick q, r ∈ I
such that ρ(q, s) < (δ/3) ∧ δs and ρ(r, t) < (δ/3) ∧ δt, then we conclude that

‖u(s, x)− u(t, x)‖ ≤ ‖u(s, x)− u(q, x)‖
+ ‖u(q, x)− u(r, x)‖+ ‖u(r, x)− u(t, x)‖ < ε,

because ρ(q, r) ≤ ρ(q, s) + ρ(s, t) + ρ(t, r) < δ.
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A.3 Distance functions
The purpose of this section is to summarize relevant facts on distance functions and
neighborhoods of sets. Furthermore, we approximate open sets in a metric space
pointwise by a sequence of Lipschitz continuous functions.

Let (E, %) be a metric space. For ẑ ∈ E and D ⊂ E we recall that the number
dist(ẑ, D) := infz∈D %(ẑ, z) is called the distance from ẑ to D. If in addition C ⊂ E,
then dist(C,D) := inf(z,z′)∈C×D %(z, z′) is said to be the distance from C to D. We
first state several standard properties of distance functions (cf. Exercises 6.86 and
6.87 in [20]).

A.13 Lemma. Let C,D ⊂ E, then the following four assertions hold:

(i) D = {z ∈ E | dist(z,D) = 0} and dist(C,D) = dist(C,D).

(ii) The function dist(·, D) : E → R+, z 7→ dist(z,D) is Lipschitz continuous with
Lipschitz constant 1.

(iii) If D is relatively compact, then there is ẑ ∈ D with dist(C,D) = dist(C, ẑ).

(iv) Let C ⊂ D. If dist(C, ∂D) > 0, then C ⊂ D◦. Conversely, if C or ∂D is
relatively compact and C ⊂ D◦, then dist(C, ∂D) > 0.

Proof. (i) Let ẑ ∈ E, then, by definition, dist(ẑ, D) = 0 if and only if for each
ε > 0 there exists some z ∈ D such that %(z, ẑ) < ε, which is equivalent to ẑ ∈ D.
Thus, D = {z ∈ E | dist(z,D) = 0}. Next, from D ⊂ D we directly obtain that
dist(C,D) ≥ dist(C,D). Contrary to the claim, assume that

dist(C,D) > dist(C,D).

Then there is (z, z′) ∈ C × D with dist(C,D) > %(z, z′). Since z′ is a limit point
of D, there is z′′ ∈ D such that %(z′, z′′) < dist(C,D)− %(z, z′). This gives us that
%(z, z′′) ≤ %(z, z′) + %(z′, z′′) < dist(C,D), a contradiction.

(ii) As % is symmetric, that is, %(z, z′) = %(z′, z) for all z, z′ ∈ E, it is enough
to show that dist(z,D)− dist(z′, D) ≤ %(z, z′) for each z, z′ ∈ E. By contradiction,
suppose that there are z, z′ ∈ E for which this inequality fails. Then there is z′′ ∈ D
such that %(z′, z′′) < dist(z,D)−%(z, z′). Consequently, %(z, z′′) ≤ %(z, z′)+%(z′, z′′)
< dist(z,D), which is impossible.

(iii) We note that dist(C,D) = infz∈D dist(C, z), even if D is not relatively
compact. By (ii) and Lemma A.11, the function dist(C, ·) : E → R+, z 7→ dist(C, z)
attains a minimum over D, say at ẑ. In consequence, from (i) we conclude that
dist(C,D) = dist(C,D) = minz∈D dist(C, z) = dist(C, ẑ).

(iv) If there exists ẑ ∈ C ∩ ∂D, then (i) gives us that dist(C, ∂D) = dist(C, ∂D)
≤ %(ẑ, ∂D) = 0, a contradiction. Conversely, let C or ∂D be relatively compact and
suppose that dist(C, ∂D) = 0. If C is relatively compact, then (iii) yields ẑ ∈ C with
dist(ẑ, ∂D) = 0. But then (i) implies that ẑ ∈ ∂D, since ∂D is closed. Similarly,
if ∂D is relatively compact, then there is some ẑ ∈ ∂D with dist(C, ẑ) = 0, which
entails that ẑ ∈ C. In either case, a contradiction follows.
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A.14 Example. Let E = R2, C = {(x, y) ∈ (0,∞)2 | y > 1/x}, and D = R2
+.

Then C and ∂D are unbounded and C ⊂ D◦. However, dist(C, ∂D) = 0, because
limx↑∞ 1/x = 0.

We notice that for each D ⊂ E the interior of Dc is exactly (D)c. More precisely,
D is closed and hence, (D)c is an open set included in Dc. Moreover,

Dc\(D)c = Dc ∩D = Dc ∩ ∂D.

But if ẑ ∈ Dc∩∂D, then for each ε > 0 there is z ∈ D with %(z, ẑ) < ε. So, ẑ cannot
be an interior point of Dc, and (Dc)◦ = (D)c follows. Next, we recall that for each
z, ẑ ∈ E a path from z to ẑ is a map γ ∈ C([0, 1], E) with γ(0) = z and γ(1) = ẑ.

A.15 Lemma. Let D ⊂ E and z ∈ D◦. If for ẑ ∈ E there is a path γ from z to ẑ
such that %(z, γ(t)) < dist(z, ∂D) for all t ∈ [0, 1], then ẑ ∈ D◦.

Proof. If ẑ ∈ ∂D, then %(z, γ(1)) = %(z, ẑ) ≥ dist(z, ∂D), which is impossible. Thus,
since E is the union of the disjoint sets D◦, ∂D and (D)c, we either have ẑ ∈ D◦ or
ẑ ∈ (D)c. Contrary to our assertion, let us assume that ẑ ∈ (D)c. By hypothesis,
γ(0) = z ∈ D and γ(1) = ẑ ∈ (D)c. Therefore, γ−1(D) is not empty and included
in [0, 1).

In addition, since z and ẑ are interior points of D and Dc, respectively, there
is ε > 0 with Bε(z) ⊂ D and Bε(ẑ) ⊂ Dc. As γ is right-continuous at 0 and
left-continuous at 1, there is δ ∈ (0, 1/2] with

[0, δ) ⊂ γ−1(Bε(z)) and (1− δ, 1] ⊂ γ−1(Bε(ẑ)).

Hence, γ(t) ∈ D for all t ∈ [0, δ) and γ(t) ∈ Dc for all t ∈ (1− δ, 1]. Consequently,
t∗ := sup γ−1(D) is subject to 0 < δ ≤ t∗ ≤ 1 − δ < 1. Eventually, we verify that
γ(t∗) ∈ ∂D, which contradicts %(z, γ(t∗)) < dist(z, ∂D).

For this purpose, let η > 0, then the continuity of γ at t∗ yields δ′ ∈ (0, t∗∧(1−t∗))
such that γ(t) ∈ Bη(γ(t∗)) for all t ∈ (t∗ − δ′, t∗ + δ′). At the same time the
definition of t∗ gives s ∈ [0, t∗] with γ(s) ∈ D and t∗ < s + δ′, which implies that
γ(s) ∈ Bη(γ(t∗)). However, the definition of t∗ also entails that γ(t) ∈ Dc for all
t ∈ (t∗, 1]. That is, Bη(γ(t∗))∩D and Bη(γ(t∗))∩Dc are not empty. Hence, as η > 0
has been arbitrarily chosen, γ(t∗) ∈ ∂D.

As we know, for D ⊂ E and ε > 0, the set Nε(D) := ⋃
z∈D Bε(z) is called the

ε-neighborhood of D. Since the union of arbitrarily many open sets is open, Nε(D)
is open. Moreover,

Nε(D) = {z ∈ E | dist(z,D) < ε}.
Indeed, z ∈ E belongs to Nε(D) if and only if there is ẑ ∈ D with %(z, ẑ) < ε,
which is equivalent to dist(z,D) < ε. By Lemma A.13, dist(z,D) = dist(z,D) for
all z ∈ E. This implies that

Nε(D) = {z ∈ E | dist(z,D) < ε} = Nε(D).

From D ⊂ Nε(D) we also get that D ⊂ Nε(D). Finally, to keep notation simple, we
denote the closure of Nε(D) by N ε(D).



A.3. DISTANCE FUNCTIONS 121

A.16 Corollary. Suppose that E is a linear space and % is induced by a norm ‖ · ‖.
That is, %(z, z′) = ‖z − z′‖ for all z, z′ ∈ E. In addition, let D ⊂ E.

(i) Let C ⊂ D be such that dist(C, ∂D) > 0. Then N ε(C) ⊂ D◦ for every
ε ∈ (0, dist(C, ∂D)].

(ii) If D is convex, then Dε := {z ∈ D | dist(z, ∂D) ≥ ε} is convex for each ε > 0.

Proof. (i) By the preceding discussion, Nε(C) = {z ∈ E | dist(z, C) < ε}. Thus, let
ẑ ∈ Nε(C), then there exists z ∈ C with ‖z − ẑ‖ < ε. Now, the map γ : [0, 1]→ E,
γ(t) := tẑ + (1− t)z is a path from z to ẑ and it holds that

%(z, γ(t)) = t‖z − ẑ‖ ≤ ‖z − ẑ‖ < ε

for all t ∈ [0, 1]. We notice that z ∈ D◦, by Lemma A.13. Since ε ≤ dist(C, ∂D)
≤ dist(z, ∂D), we conclude from Lemma A.15 that ẑ ∈ D◦.

(ii) To show the claim, it suffices to verify that Dε = {z ∈ D |Bε(z) ⊂ D}, by
Lemma A.5. Let z ∈ Dε, then z ∈ D◦, since dist(z, ∂D) > 0. Moreover,

‖z − ẑ‖ < ε ≤ dist(z, ∂D) for all ẑ ∈ Bε(z).

For this reason, Lemma A.15 shows that Bε(z) ⊂ D◦. For the converse inclusion, let
z ∈ D fulfill Bε(z) ⊂ D, then, as Bε(z) is an open set included in D, we must have
Bε(z) ⊂ D◦. Suppose that dist(z, ∂D) < ε, then there is ẑ ∈ ∂D with ‖z − ẑ‖ < ε,
which yields the contradiction Bε(z) ∩ ∂D 6= ∅. Thus, the claim is verified.

We conclude this section with the pointwise approximation of indicator functions
of open sets in E.

A.17 Lemma. For each open set O in E there is an increasing sequence (ϕn)n∈N
of [0, 1]-valued Lipschitz continuous functions on E that converges pointwise to 10.

Proof. Let us choose an increasing Lipschitz continuous function ϕ : R+ → [0, 1]
with ϕ(0) = 0 and limx↑∞ ϕ(x) = 1. For instance, ϕ(x) = 1 − e−x for all x ≥ 0.
Indeed, limx↑∞ e

−x = 0 and the Lipschitz continuity follows from the mean value
theorem, which gives |ϕ(x)− ϕ(y)| ≤ maxt∈[0,1] e

−tx−(1−t)y|x− y| ≤ |x− y| for each
x, y ≥ 0. We define a sequence (ϕn)n∈N of [0, 1]-valued functions on E through

ϕn(z) := ϕ(ndist(z,Oc)) for all n ∈ N.

Then ϕn(z) ≤ ϕn+1(z) for every n ∈ N and each z ∈ E, because ϕ is increasing. Let
L ≥ 0 be a Lipschitz constant of ϕ, then Lemma A.13 yields that

|ϕn(z)− ϕn(z′)| ≤ Ln|dist(z,Oc)− dist(z′, Oc)| ≤ Ln%(z, z′)

for all n ∈ N and every z, z′ ∈ E, which entails that ϕn has Lipschitz constant Ln.
Since O is open, we know from Lemma A.13 that each z ∈ E fulfills dist(z,Oc) > 0
if and only if z ∈ O. Hence, limn↑∞ ϕn(z) = 1 for all z ∈ O. As ϕn(z) = ϕ(0) = 0
for all n ∈ N and each z ∈ Oc, the claim is proven.
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A.4 Approximation of measurable maps
The main content of this section is the pointwise approximation of a measurable
map taking values in a finite-dimensional Banach space by a suitable sequence of
simple maps. As we will see, in one dimension, this reduces to the classical result
that every non-negative measurable function is the pointwise limit of an increasing
sequence of non-negative simple functions (see for instance Theorem 11.6 in [2]).

We start with a measurable space (Ω,F ) and a metric space (E, %). The Borel
σ-field of E is denoted by B. In our setting, a map f : Ω → E is F -measurable if
f−1(B) ∈ F for all B ∈ B. Since the set of all B ∈ B such that f−1(B) ∈ F is a
σ-field in E and the topology of E generates B, it follows that f is F -measurable
if and only if f−1(O) ∈ F for each open set O in E. Let us consider two results
on measurability, stated as Lemma 8.1.9 and Proposition 8.1.10 in [5]. First, f is
F -measurable if and only if

ϕ ◦ f is F -measurable for all ϕ ∈ C(E,R+).

Since every R+-valued continuous function on E is Borel measurable, we only have
to check the if direction. To this end, let O be an open set in E. Then Lemma A.13
yields that ϕ : E → R+ defined by ϕ(z) := dist(z,Oc) is Lipschitz continuous and
satisfies O = {z ∈ E |ϕ(z) > 0} = ϕ−1((0,∞)). Hence, f−1(O) = f−1(ϕ−1((0,∞)))
= (ϕ ◦ f)−1((0,∞)) ∈ F , as desired. The second result deals with pointwise limits
of sequences of measurable maps.

A.18 Lemma. Let (fn)n∈N be a sequence of E-valued F -measurable maps on Ω
that converges pointwise to some map f : Ω→ E, then f is F -measurable.

Proof. By the preceding discussion, it is enough to show that ϕ◦f is F -measurable
for each ϕ ∈ C(E,R+). As fn is F -measurable, so is ϕ◦fn for all n ∈ N. Continuity
of ϕ entails that the sequence (ϕ ◦ fn)n∈N of R+-valued F -measurable functions on
Ω converges pointwise to ϕ ◦ f . Hence, ϕ ◦ f is F -measurable.

From here on, let E be a finite-dimensional linear space and ρ be induced by
a complete norm ‖ · ‖ on E. That is, %(z, z′) = ‖z − z′‖ for each z, z′ ∈ E. We
set k := dim(E), then there is an isomorphism φ : E → Rk, which is necessarily
bimeausurable in the sense that φ and its inverse φ−1 are Borel measurable.

A.19 Lemma. A map f : Ω→ E is F -measurable if and only if the i-th coordinate
function φi ◦ f of the map φ ◦ f : Ω→ Rk is F -measurable for all i ∈ {1, . . . , k}.

Proof. The only if direction is valid, since the composition of two measurable maps
is measurable. For if it suffices to show that φ ◦ f is F -measurable, because from
f = φ−1 ◦ (φ ◦ f) the F -measurability of f follows. We note that

(φ ◦ f)−1(B) = (φ1 ◦ f)−1(B1) ∩ · · · ∩ (φk ◦ f)−1(Bk) ∈ F

for each B ∈ B(Rk) of the form B = B1 × · · · × Bk for some B1, . . . , Bk ∈ B(R).
Since the set of all B ∈ B(Rk) with (φ ◦ f)−1(B) ∈ F is a σ-field in Rk and
×ki=1B(R) generates B(Rk), the assertion follows.
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We recall that a map f : Ω → E is F -simple if it is F -measurable and takes
finitely many values. In this case, there exists m ∈ N such that z1, . . . , zm ∈ E are
the pairwise distinct values of f . The sets A1 := {f = z1}, . . . , Am := {f = zm}
belong to F and form a decomposition of Ω. That means, A1, . . . , Am are pairwise
disjoint and ⋃mi=1Ai = Ω. Furthermore,

f =
m∑
i=1

zi1Ai . (A.4)

Conversely, assume that m ∈ N, z1, . . . , zm ∈ E, and A1, . . . , Am ∈ F are such that
above representation holds. Then f is F -measurable and takes at most m pairwise
distinct values. Hence, f is F -simple if and only if (A.4) is valid for some m ∈ N,
z1, . . . , zm ∈ E, and A1, . . . , Am ∈ F . Every representation (A.4) for f in which
the sets A1, . . . , Am form a decomposition of Ω is called normal. As we wish to
approximate every E-valued F -measurable map on Ω by an appropriate sequence
of E-valued F -simple maps on Ω, we introduce set partitions.

A.20 Definition. Let C,D ∈ B be non-empty with C ⊂ D and (Cn)n∈N be an
increasing sequence in B with C1 6= ∅.

(i) A set partition of C is a countable system T of bounded and pairwise disjoint
Borel sets in C with ⋃B∈TB = C. If C is compact, then we also require that
T has finitely many elements.

(ii) Let T be a set partition of C. Then |T| := supB∈T diam(B) is called the mesh
of T.

(iii) Let S and T be two set partitions of C and D, respectively. We say that
T refines S if for each B ∈ S there are n ∈ N and pairwise distinct sets
B1, . . . , Bn ∈ T such that ⋃ni=1Bi = B.

(iv) A refining sequence of set partitions of (Cn)n∈N is a sequence (Tn)n∈N, where
Tn is a set partition of Cn for all n ∈ N, such that Tn+1 refines Tn for each
n ∈ N and limn↑∞ |Tn| = 0.

We justify the existence of set partitions and refining sequences of set partitions.

A.21 Lemma. Let C ∈ B be non-empty and δ > 0, then there is a set partition
T of C with |T| ≤ δ that has finitely many elements if C is bounded. Moreover,
for each increasing sequence (Cn)n∈N in B with C1 6= ∅ there is a refining sequence
(Tn)n∈N of set partitions of (Cn)n∈N.

Proof. Let first assume that C is bounded. Since C is compact and {Bδ/2(z) | z ∈ C}
is an open covering of C, there are n ∈ N and pairwise distinct z1, . . . , zn ∈ C such
that ⋃ni=1Bδ/2(zi) includes C while

m⋃
j=1

Bδ/2(zij) fails to include C
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for each m ∈ {1, . . . , n − 1} and every i1, . . . , im ∈ {1, . . . , n} with i1 < · · · < im.
We let B1 := Bδ/2(z1) ∩ C and define recursively Bi := (Bδ/2(zi) ∩ C)\Bi−1 for all
i ∈ {2, . . . , n}. Then B1, . . . , Bn are non-empty and pairwise disjoint Borel sets in C
with ⋃ni=1Bi = ⋃n

i=1(Bδ/2(zi) ∩ C) = C. Thus, T := {B1, . . . , Bn} is a set partition
of C and |T| ≤ supi∈{1,...,n} diam(Bδ/2(zi)) = δ.

Now, let C be unbounded. We define a sequence (νn)n∈N in N recursively by
ν0 := 0 and νn := min{m ∈ N |m > νn−1, m − 1 ≤ ‖z‖ < m for some z ∈ C} for
each n ∈ N, then (νn)n∈N is strictly increasing. Moreover, we set

Cn := {z ∈ C | νn − 1 ≤ ‖z‖ < νn} for all n ∈ N.

Then (Cn)n∈N is a sequence of non-empty, bounded, and pairwise disjoint Borel sets
in C with ⋃n∈NCn = C. By what we have shown, for each n ∈ N there exists a set
partition Tn of Cn with finitely many elements such that |Tn| ≤ δ. Consequently,

T :=
⋃
n∈N

Tn

is a set partition of C. Clearly, T must be countable. In addition, for each A,B ∈ T
there are m,n ∈ N such that A ∈ Tm and B ∈ Tn. If m = n, then A ∩ B = ∅,
as Tn is a set partition of Cn. Otherwise, it follows from A ⊂ Cm, B ⊂ Cn, and
Cm ∩ Cn = ∅ that A ∩B = ∅. Moreover,⋃

A∈T
A =

⋃
n∈N

⋃
B∈Tn

B =
⋃
n∈N

Cn = C.

In the same manner, |T| = supn∈N supB∈Tn diam(B) = supn∈N |Tn| ≤ δ. Hence, the
first assertion is proven.

We turn to the second claim. Let (Cn)n∈N be an increasing sequence in B with
C1 6= ∅. We use the first assertion to construct a sequence of set partitions (Tn)n∈N
of (Cn)n∈N recursively as follows:

(i) Let T1 be a set partition of C1 with |T1| ≤ 1.

(ii) For n ∈ N suppose that Tn is a set partition of Cn with |Tn| ≤ 1/n. For each
B ∈ Tn we choose a set partition TB of B with |TB| ≤ 1/(n+ 1) and let Sn+1
be a set partition of Cn+1\Cn with |Sn+1| ≤ 1/(n+ 1) provided Cn+1\Cn 6= ∅,
otherwise let Sn+1 := ∅. Finally, we set Tn+1 :=

(⋃
B∈Tn TB

)
∪ Sn+1.

This yields the correct result. To see this, let n ∈ N, then Tn+1 contains only
bounded and pairwise disjoint Borel sets in Cn+1, by construction. This system
must be countable, and has finitely many elements whenever Cn+1 is bounded. We
also observe that ⋃

B∈Tn+1

=
⋃

B∈Tn

( ⋃
A∈TB

A
)
∪
(
Cn+1\Cn) = Cn+1.

Finally, let B ∈ Tn and write TB = {A1, . . . , Am} for some m ∈ N and some
bounded and pairwise disjoint Borel sets A1, . . . , Am in B, then B = ⋃m

i=1 Ai. Since
A1, . . . , Am ∈ Tn+1, this shows that Tn+1 refines Tn. Hence, we set |∅| := 0, then
from |Tn+1| = max{supB∈Tn |TB|, |Sn+1|} ≤ 1/(n+ 1) we infer the claim.
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A.22 Example. Let E = Rk and ‖ ·‖ be the Euclidean norm | · |, then B = B(Rk).
We set Cn := [−n, n)k for each n ∈ N, which gives an increasing sequence (Cn)n∈N
of bounded sets in B(Rk) with ⋃n∈NCn = Rk, and for each compact set K in Rk

there is n ∈ N with K ⊂ Cn. We readily see that

max
z∈Cn
|z| =

√
kn = min

z∈Cn+1\C◦n
|z| for all n ∈ N.

Furthermore, for each n ∈ N we define Tn to be the system of all sets B ⊂ Cn
that can be written in the form B = 2−n([i1, i1 + 1) × · · · × [ik, ik + 1)) for some
i1, . . . , ik ∈ {−n2n,−n2n + 1, . . . , n2n − 1}, then Tn is a set partition of Cn with

diam(B) =
√
k2−n for each B ∈ Tn.

The definition entails that Tn ⊂ Tn+1 for all n ∈ N. Hence, (Tn)n∈N is a refining
sequence of set partitions of (Cn)n∈N.

Set partitions allow for a local uniform approximation of the identity map on a
closed set by a suitable sequence.

A.23 Proposition. Let D be a non-empty closed set in E. Then there is a sequence
(ϕn)n∈N of E-valued B-simple maps on E with ϕn(D) ⊂ D for all n ∈ N that
converges locally uniformly to the identity map E → E, z 7→ z on D such that

‖ϕn(z)‖ ≤ ‖ϕn+1(z)‖ ≤ ‖ϕ(z)‖ for all n ∈ N and each z ∈ D.

Proof. We choose an increasing sequence (Cn)n∈N of bounded Borel sets in D with
C1 6= ∅ satisfying the following two properties:

(i) ⋃n∈NCn = D and for each compact set K in D there is n ∈ N with K ⊂ Cn.

(ii) maxz∈Cn ‖z‖ ≤ minz∈Cn+1\C◦n ‖z‖ for all n ∈ N.

For instance, we could choose c > 0 such that ‖z‖ ≤ c for at least one z ∈ D
and let Cn = {z ∈ D | ‖z‖ ≤ cn} for each n ∈ N. By Lemma A.21, there is a
refining sequence of set partitions (Tn)n∈N of (Cn)n∈N. For each n ∈ N we choose
zn ∈ Cn such that ‖zn‖ = maxz∈Cn ‖z‖ and for each B ∈ Tn we let zB ∈ B satisfy
‖zB‖ = minz∈B ‖z‖. Then ϕn : E → E defined by

ϕn(z) :=
∑
B∈Tn

zB1B(z) + zn1Ccn(z)

is B-simple and fulfills ϕn(D) ⊂ D. In fact, each set B ∈ Tn is Borel and Cc
n ∈ B,

which implies that ϕn is B-simple. Next, let z ∈ D. If z ∈ Cn, then there is a
unique B ∈ Tn with z ∈ B, which gives ϕn(z) = zB ∈ B. If instead z ∈ Cc

n, then
ϕn(z) = zn ∈ Cn. Hence, from the fact that B ⊂ Cn ⊂ D for all B ∈ Tn we get
that ϕn(z) ∈ D for all z ∈ D, as desired.
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Now, let K be a compact set in D. Then (i) gives n0 ∈ N such that K ⊂ Cn for
all n ∈ N with n ≥ n0. We choose such an n ∈ N, then for each z ∈ K there is a
unique set B ∈ Tn with z ∈ B, which entails that

‖ϕn(z)− z‖ = ‖zB − z‖ ≤ diam(B) = diam(B) ≤ |Tn|.

So, limn↑∞ supz∈K ‖ϕn(z)−z‖ = 0. As E is locally compact, this shows that (ϕn)n∈N
converges locally uniformly to the identity map E → E, z 7→ z on D.

Let us prove that ‖ϕn(z)‖ ≤ ‖ϕn+1(z)‖ for all n ∈ N and each z ∈ D. Assume
initially that z ∈ Cn, then there is a unique B ∈ Tn with z ∈ B. Since Tn+1 refines
Tn, there are a unique m ∈ N and unique pairwise distinct sets B1, . . . , Bm ∈ Tn+1
with B = ⋃m

i=1Bi. We choose the unique i ∈ {1, . . . ,m} such that z ∈ Bi, then

‖ϕn(z)‖ = ‖zB‖ = min
z′∈B
‖z′‖ ≤ min

z′∈Bi
‖z′‖ = ‖zBi‖ = ‖ϕn+1(z)‖.

For z ∈ Cn+1\Cn there is a unique B ∈ Tn+1 with B ⊂ Cn+1\Cn and z ∈ B, because
Tn+1\Tn is a set partition of Cn+1\Cn. Thus, (ii) yields that

‖ϕn(z)‖ = ‖zn‖ = max
z′∈Cn

‖z′‖ ≤ min
Cn+1\C◦n

‖z′‖ ≤ min
z′∈B
‖z′‖ = ‖zB‖ = ‖ϕn+1(z)‖.

In the last case z /∈ Cn+1, we have that ‖ϕn(z)‖ = ‖zn‖ ≤ ‖zn+1‖ = ‖ϕn+1(z)‖.
Hence, the claim is established.

This gives the main result of this section.
A.24 Corollary. Let D be a non-empty closed set in E. Then to each F -measurable
map f : Ω → D there is a sequence (fn)n∈N of D-valued F -simple maps on Ω that
converges pointwise to f such that

‖fn(ω)‖ ≤ ‖fn+1(ω)‖ ≤ ‖f(ω)‖ for all n ∈ N and every ω ∈ Ω.

Moreover, if f is bounded, then the convergence is uniform.

Proof. Proposition A.23 yields a sequence (ϕn)n∈N of E-valued B-simple maps on
E with ϕn(D) ⊂ D for all n ∈ N that converges locally uniformly to the identity
map E → E, z 7→ z on D such that

‖ϕn(z)‖ ≤ ‖ϕn+1(z)‖ ≤ ‖ϕ(z)‖ for all n ∈ N and each z ∈ D.

We set fn := ϕn ◦ f for all n ∈ N. Then fn is a D-valued F -simple map on Ω, since
f(Ω) ⊂ D. We also see that limn↑∞ fn(ω) = limn↑∞ ϕn(f(ω)) = f(ω) and

‖fn(ω)‖ = ‖ϕn(f(ω))‖ ≤ ‖ϕn+1(f(ω))‖ = ‖fn+1(ω)‖

for all n ∈ N and each ω ∈ Ω. To justify the second claim, let f be bounded. Then
there is c ≥ 0 with ‖f(ω)‖ ≤ c for each ω ∈ Ω. Since K := {z ∈ D| ‖z‖ ≤ c} is a
compact set in D and

sup
ω∈Ω
‖fn(ω)− f(ω)‖ ≤ sup

z∈K
‖ϕn(z)− z‖

for each n ∈ N, we obtain that limn↑∞ supω∈Ω ‖fn(ω)− f(ω)‖ = 0, which completes
the proof.
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The pointwise approximation of measurable maps by simple maps leads us to a
classical statement (cf. Theorem 18 in [8, Section 1.2]).

A.25 Corollary. Let (Ω′,F ′) be another measurable space and h : Ω → Ω′ be a
F -F ′-measurable map. Then a F -measurable map f : Ω → E is measurable with
respect to σ(h) if and only if there is a F ′-measurable map g : Ω′ → E such that

f(ω) = g(h(ω)) for all ω ∈ Ω.

Proof. As the composition of two measurable maps is measurable, the condition is
clearly sufficient. To prove its necessity, we first assume that f is F -simple. Then
there are m ∈ N and pairwise distinct z1, . . . , zm ∈ E with f(Ω) = {z1, . . . , zm}.
The sets A1 := {f = z1}, . . . , Am := {f = zm} belong to F , form a decomposition
of Ω, and satisfy

f =
m∑
i=1

zi1Ai .

Because σ(h) = {h−1(A′) |A′ ∈ F ′} ⊂ F and f is σ(h)-measurable, there must
exist A′1, . . . , A′m ∈ F ′ such that Ai = {h ∈ A′i} for all i ∈ {1, . . . ,m}. Hence, the
map

g :=
m∑
i=1

zi1A′i

is F ′-simple and satisfies f(ω) = g(h(ω)) for each ω ∈ Ω, which follows directly
from 1A′i

(h(ω)) = 1Ai(ω) for all i ∈ {1, . . . ,m}. We turn to the general case. The
preceding corollary provides a sequence (fn)n∈N of E-valued σ(h)-simple maps on Ω
that converges pointwise to f and fulfills ‖fn(ω)‖ ≤ ‖fn+1(ω)‖ ≤ ‖f(ω)‖ for each
n ∈ N and all ω ∈ Ω. By what we have shown, for each n ∈ N there is a F ′-simple
map gn : Ω′ → E such that

fn(ω) = gn(h(ω)) for all ω ∈ Ω.

Let A′ be the set of all ω′ ∈ Ω′ for which the sequence (gn(ω′))n∈N converges, then
A′ ∈ F ′ and h(Ω) ⊂ A′. For this reason, we can conclude that g : Ω′ → E defined
by g(ω′) := limn↑∞ gn(ω′), if ω′ ∈ A′, and g(ω′) := 0, if ω′ /∈ A′, is the demanded
map.

A.5 Monotone class theorems
In this section, we recall the standard and the functional monotone class theorem.
For this purpose, [2, Section 2] and [5, Section 1.6] are used as references. Let Ω
be a non-empty set, then a system D of sets in Ω with Ω ∈ D is a d-system (in Ω)
if it satisfies D\C ∈ D for all C,D ∈ D with C ⊂ D and ⋃n∈NDn ∈ D for each
increasing sequence (Dn)n∈N in D . We also make use of another characterization of
d-systems.
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A.26 Lemma. A system D of sets in Ω with Ω ∈ D is a d-system if and only if
the following two properties hold:

(i) Dc ∈ D for all D ∈ D .

(ii) ⋃n∈NDn ∈ D for each sequence (Dn)n∈N of pairwise disjoint sets in D .

Proof. Assume that D is a d-system, then Dc = Ω\D ∈ D for all D ∈ D , since
Ω ∈ D . Hence, (i) is valid. Now let (Dn)n∈N be a sequence of pairwise disjoint sets
in D . We set

Cn :=
n⋃
i=1

Di for all n ∈ N.

Then C1 = D1 ∈ D and Cn+1 = Cn ∪Dn+1 = (Dc
n+1\Cn)c with Cn ⊂ Dc

n+1 for all
n ∈ N. Thus, it follows inductively from (i) that (Cn)n∈N is an increasing sequence
in D . We conclude from ⋃

n∈NDn = ⋃
n∈NCn ∈ D that (ii) holds as well.

Conversely, suppose that D fulfills the stated properties. Let C,D ∈ D with
C ⊂ D, then C and Dc are disjoint, which yields that Dc ∪ C ∈ D . So,

D\C = D ∩ Cc = (Dc ∪ C)c ∈ D .

Next, let (Dn)n∈N be an increasing sequence in D . By using the property of D
that we have just shown, we define a sequence (Cn)n∈N of pairwise disjoint sets in
D through C1 := D1 and Cn+1 := Dn+1\Dn for all n ∈ N. Hence, the fact that⋃
n∈NDn = ⋃

n∈NCn ∈ D shows the lemma.

As verified below, d-systems are plainly related to σ-fields.

A.27 Lemma. A system F of sets in Ω is a σ-field if and only if it is an ∩-stable
d-system.

Proof. Since every σ-field is σ-∩-stable, the only if direction follows directly from
Lemma A.26. For the converse implication, it suffices to show that F is σ-∪-stable.
First, let A,B ∈ F , then Ac, Bc ∈ F and hence, A ∪ B = Ac ∩ Bc ∈ F , which
shows that F is ∪-stable. Now let (An)n∈N be a sequence in F . We set

Bn :=
n⋃
i=1

Ai for all n ∈ N.

Then (Bn)n∈N is an increasing sequence in F . Thus, ⋃n∈NAn = ⋃
n∈NBn ∈ F .

We note that if D is a family of d-systems, then the intersection ⋂
D∈D D is

another a d-system. Clearly, let D ∈ ⋂
D∈D D , then Dc ∈ D for all D ∈ D, and

whenever (Dn)n∈N is a sequence of pairwise disjoint sets in ⋂D∈D D , then⋃
n∈N

Dn ∈ D for each D ∈ D.

Thus, for a system C of sets in Ω, the d-system generated by C , denoted by d(C ), is
defined to be the smallest d-system including C in the sense that d(C ) is a d-system
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that includes C and which is included in every d-system including C . This directly
implies that the d-system generated by C is necessarily unique. To verify existence,
let E be the family of all d-systems which include C , then d(C ) = ⋂

D∈E D . This is
due to C ⊂ ⋂D∈E D and ⋂D∈E D ⊂ D ′ for each D ′ ∈ E.

A.28 Monotone Class Theorem. Let C be an ∩-stable system of sets in Ω, then
d(C ) = σ(C ). In particular, if D is a d-system that includes C , then σ(C ) ⊂ D .

Proof. We merely have to show the first assertion, since the second follows directly
from the definition of d(C ). By Lemma A.27, every σ-field is a d-system. Thus,
d(C ) ⊂ σ(C ). To justify the converse inclusion, it is enough to check that d(C ) is
∩-stable. Let D ∈ d(C ), then

DD := {C ⊂ Ω |C ∩D ∈ d(C )}

is a d-system. Indeed, Ω ∈ DD, and if B,C ∈ DD satisfy B ⊂ C, then B∩D ⊂ C∩D,
which gives (C\B) ∩D = (C ∩D)\(B ∩D) ∈ d(C ). So, C\B ∈ DD. If (Cn)n∈N is
an increasing sequence in DD whose union is C, then (Cn ∩D)n∈N is an increasing
sequence in d(C ). Hence, C ∩D = ⋃

n∈N(Cn ∩D) ∈ d(C ).
We notice that DD includes C for each D ∈ C , because C is ∩-stable. Hence,

d(C ) ⊂ DD for every D ∈ C . This yields that C ∩D ∈ d(C ) for all C ∈ d(C ) and
each D ∈ C . But then DD is a d-system including C for every D ∈ d(C ), which
entails that d(C ) is ∩-stable.

We recall that a linear space H of real-valued bounded functions on Ω is a
monotone class if it contains the constant function 1Ω and if it fulfills supn∈N hn ∈H
for each R+-valued increasing bounded sequence (hn)n∈N in H .

A.29 Functional Monotone Class Theorem. Let H be a monotone class and
C be an ∩-stable system of sets in Ω. If 1C ∈ H for all C ∈ C , then H contains
all real-valued σ(C )-measurable bounded functions on Ω.

Proof. First, we show that 1A ∈H for all A ∈ σ(C ). Let D := {D ⊂ Ω |1D ∈H },
then D is a d-system including C . Clearly, Ω ∈ D , and for each C,D ∈ D such that
C ⊂ D, 1D\C = 1D − 1C ∈ H . If (Dn)n∈N is an increasing sequence in D whose
union is D, then (1Dn)n∈N is a non-negative increasing bounded sequence in H .
Thus, 1D = supn∈N 1Dn ∈ H . Consequently, the Monotone Class Theorem A.28
implies that σ(C ) ⊂ D .

The next step of the proof is to check that if h : Ω→ R+ is σ(C )-measurable and
bounded, then h ∈ H . By Corollary A.24, there is an increasing sequence (hn)n∈N
of R+-valued σ(C )-simple functions on Ω with supn∈N hn = h. Since 1A ∈ H for
all A ∈ σ(C ) and H is a linear space, hn ∈ H for all n ∈ N. This in turn gives
h ∈ H . If more generally h is real-valued, then h+ and h− belong to H . For this
reason, h = h+ − h− ∈H , which completes the proof.
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A.6 The Bochner integral in finite dimension
This section contains a concise introduction of the Bochner integral in a Banach
space of finite dimension. The presentation is mainly based on [5, Appendix E].
Additionally, under the hypothesis that the underlying measure is a probability
measure, we verify that if a measurable integrable map takes all its values in a
closed convex set, then so does its integral.

Let (Ω,F , µ) be a measure space and E be a finite-dimensional Banach space
with complete norm ‖ · ‖ and Borel σ-field B. A F -measurable map f : Ω → E
is said to be µ-integrable if ‖f‖ is µ-integrable in the usual sense. First, let f be
F -simple, as introduced in Section A.4. If f is µ-integrable, then the set {f 6= 0}
has finite µ-measure. In fact, let m ∈ N, z1, . . . , zm ∈ E, and A1, . . . , Am ∈ F form
a decomposition of Ω such that f = ∑m

i=1 zi1Ai . Then

µ(Ai) ≤ µ(f = zi) ≤ µ(‖f‖ = ‖zi‖) ≤
1
‖zi‖

∫
Ω
‖f(ω)‖µ(dω) <∞

for each i ∈ {1, . . . ,m} with zi 6= 0. From {f 6= 0} = ⋃m
i=1: zi 6=0Ai we see that

µ(f 6= 0) = ∑m
i=1: zi 6=0 µ(Ai) < ∞. For this reason, the (Bochner) µ-integral of f

(over Ω) can be defined by∫
Ω
f(ω)µ(dω) :=

m∑
i=1: zi 6=0

ziµ(Ai).

This definition does not dependent on the choice of the normal representation for f .
To see this, let n ∈ N, z′1, . . . , z′n ∈ E, and B1, . . . , Bn ∈ F form a decomposition of
Ω such that f = ∑n

j=1 z
′
j1Bj . Then

µ(Ai) =
n∑
l=1

µ(Ai ∩Bl) and µ(Bj) =
m∑
l=1

µ(Al ∩Bj)

for all i ∈ {1, . . . ,m} and each j ∈ {1 . . . , n} with zi 6= 0 and z′j 6= 0. We observe
that whenever i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} are such that Ai ∩ Bj 6= ∅, which
in particular follows from µ(Ai ∩Bj) > 0, then zi = z′j. Consequently,

m∑
i=1: zi 6=0

ziµ(Ai) =
m∑

i=1: zi 6=0

n∑
j=1

ziµ(Ai ∩Bj)

=
m∑
i=1

n∑
j=1: z′j 6=0

z′jµ(Ai ∩Bj) =
n∑

j=1: z′j 6=0
z′jµ(Bj),

which is the correct result. In the sequel, we let S(Ω,F ) denote the linear space
of all E-valued F -simple µ-integrable maps on Ω. Then the basic properties of the
µ-integral of each f ∈ S(Ω,F ) can be summarized as follows.
A.30 Lemma. The map S(Ω,F )→ E, f 7→

∫
Ω f(ω)µ(dω) is linear and satisfies∫

Ω
z1A(ω)µ(dω) = zµ(A) and

∥∥∥∥∥
∫

Ω
f(ω)µ(dω)

∥∥∥∥∥ ≤
∫

Ω
‖f(ω)‖µ(dω)

for all A ∈ F with µ(A) <∞, each z ∈ E, and every f ∈ S(Ω,F ).
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Proof. Let α ∈ R and f ∈ S(Ω,F ). Then there are m ∈ N, z1, . . . , zm ∈ E, and
A1, . . . , Am ∈ F that form a decomposition of Ω such that f = ∑m

i=1 zi1Ai . By
definition,

α
∫

Ω
f(ω)µ(dω) =

m∑
i=1: zi 6=0

αziµ(Ai) =
∫

Ω
αf(ω)µ(dω).

Let moreover g ∈ S(Ω,F ). We choose n ∈ N, z′1, . . . , z′n ∈ E, and B1, . . . , Bn ∈ F
forming a decomposition of Ω such that g = ∑n

j=1 z
′
j1Bj . Then it follows that∫

Ω
(f + g)(ω)µ(dω) =

m∑
i=1

n∑
j=1:

zi+z′j 6=0

(zi + z′j)µ(Ai ∩Bj)

=
m∑

i=1: zi 6=0

n∑
j=1

ziµ(Ai ∩Bj) +
m∑
i=1

n∑
j=1: z′j 6=0

z′jµ(Ai ∩Bj)

=
∫

Ω
f(ω)µ(dω) +

∫
Ω
g(ω)µ(dω).

This shows the linearity of the map S(Ω,F ) → E, f 7→
∫

Ω f(ω)µ(dω). Now let
A ∈ F with µ(A) < ∞ and z ∈ E. Then A,Ac form a decomposition of Ω and
z1A = z1A + 01Ac . Thus, ∫

Ω
z1A(ω)µ(dω) = zµ(A).

Eventually, the triangle inequality and the standard definition of the µ-integral of
‖f‖ imply that∥∥∥∥∥

∫
Ω
f(ω)µ(dω)

∥∥∥∥∥ =
∥∥∥∥∥

m∑
i=1: zi 6=0

ziµ(Ai)
∥∥∥∥∥ ≤

m∑
i=1: zi 6=0

‖zi‖µ(Ai) =
∫

Ω
‖f(ω)‖µ(dω).

This proves the lemma.

For a F -measurable µ-integrable map f : Ω → E that may not be F -simple,
Corollary A.24 yields a sequence (fn)n∈N in S(Ω,F ) that converges pointwise to f
such that the function Ω → [0,∞], ω 7→ supn∈N ‖fn(ω)‖ is µ-integrable. Because
(fn(ω))n∈N is a Cauchy sequence,

lim
n↑∞

sup
m∈N:m≥n

‖fm(ω)− fn(ω)‖ = 0 for all ω ∈ Ω.

It is clear that supn∈N supm∈N:m≥n ‖fm(ω) − fn(ω)‖ ≤ 2 supn∈N ‖fn(ω)‖ for each
ω ∈ Ω. Hence, from dominated convergence it follows readily that

lim
n↑∞

sup
m∈N:m≥n

∫
Ω
‖fm(ω)− fn(ω)‖µ(dω) = 0.

Due to Lemma A.30, this implies that (
∫

Ω fn(ω)µ(dω))n∈N is a Cauchy sequence.
Since E is complete, it must converge. The (Bochner) µ-integral of f (over Ω) is
defined to be this limit, that is,∫

Ω
f(ω)µ(dω) := lim

n↑∞

∫
Ω
fn(ω)µ(dω).
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This definition is independent of the choice of the sequence (fn)n∈N. More precisely,
suppose that (gn)n∈N is another sequence in S(Ω,F ) that converges pointwise to f
such that the function Ω→ [0,∞], ω 7→ supn∈N ‖gn(ω)‖ is µ-integrable. Then from
limn↑∞ ‖fn(ω)− gn(ω)‖ = 0 for all ω ∈ Ω we infer that

lim
n↑∞

∫
Ω
‖fn(ω)− gn(ω)‖µ(dω) = 0,

by dominated convergence. In view of Lemma A.30, this gives us that

lim
n↑∞

∫
Ω
gn(ω)µ(dω) = lim

n↑∞

∫
Ω
fn(ω)µ(dω),

which is the desired conclusion. Clearly, the extended µ-integral remains linear, as
we shortly verify.

A.31 Lemma. Let α, β ∈ R and f, g be two E-valued F -measurable µ-integrable
maps on Ω. Then αf + βg is µ-integrable and∫

Ω
(αf + βg)(ω)µ(dω) = α

∫
Ω
f(ω)µ(dω) + β

∫
Ω
g(ω)µ(dω).

Proof. Let (fn)n∈N and (gn)n∈N be two sequences of E-valued F -simple maps on
Ω that converge to f and g, respectively, such that the functions Ω → [0,∞],
ω 7→ supn∈N ‖fn(ω)‖ and Ω → [0,∞], ω 7→ supn∈N ‖gn(ω)‖ are µ-integrable. In
Lemma A.30 we have shown that αfn + βgn is a F -simple µ-integrable map that
satisfies ∫

Ω
(αfn + βgn)(ω)µ(dω) = α

∫
Ω
fn(ω)µ(dω) + β

∫
Ω
gn(ω)µ(dω)

for every n ∈ N. Clearly, limn↑∞(αfn+βgn)(ω) = (αf +βg)(ω) and ‖αfn+βgn‖(ω)
≤ |α|‖fn(ω)‖+ |β|‖gn(ω)‖ for all n ∈ N and each ω ∈ Ω. For this reason,∫

Ω
(αf + βg)(ω)µ(dω) = lim

n↑∞

∫
Ω

(αfn + βgn)(ω)µ(dω)

= α lim
n↑∞

∫
Ω
fn(ω)µ(dω) + β lim

n↑∞

∫
Ω
gn(ω)µ(dω)

= α
∫

Ω
f(ω)µ(dω) + β

∫
Ω
g(ω)µ(dω).

The norm inequality for the µ-integral in Lemma A.30 remains valid as well.

A.32 Proposition. Let f : Ω→ E be a F -measurable µ-integrable map, then∥∥∥∥∥
∫

Ω
f(ω)µ(dω)

∥∥∥∥∥ ≤
∫

Ω
‖f(ω)‖µ(dω).



A.6. THE BOCHNER INTEGRAL IN FINITE DIMENSION 133

Proof. By Corollary A.24, we can choose a sequence (fn)n∈N of E-valued F -simple
maps on Ω such that limn↑∞ fn(ω) = f(ω) and supn∈N ‖fn(ω)‖ ≤ ‖f(ω)‖ for each
ω ∈ Ω. According to Lemma A.30,∥∥∥∥∥

∫
Ω
fn(ω)µ(dω)

∥∥∥∥∥ ≤
∫

Ω
‖fn(ω)‖µ(dω) ≤

∫
Ω
‖f(ω)‖µ(dω)

for all n ∈ N. Hence,∥∥∥∥∥
∫

Ω
f(ω)µ(dω)

∥∥∥∥∥ = lim
n↑∞

∥∥∥∥∥
∫

Ω
fn(ω)µ(dω)

∥∥∥∥∥ ≤
∫

Ω
‖f(ω)‖µ(dω).

Finally, we derive the multidimensional version of dominated convergence.

A.33 Dominated Convergence Theorem. Let (fn)n∈N be a sequence of E-valued
F -measurable maps on Ω and f : Ω→ E be F -measurable. Suppose that

lim
n↑∞

fn(ω) = f(ω) and sup
n∈N
‖fn(ω)‖ ≤ g(ω)

for µ-a.e. ω ∈ Ω and some F -measurable µ-integrable function g : Ω → [0,∞].
Then fn and f are µ-integrable for all n ∈ N and

lim
n↑∞

∫
Ω
fn(ω)µ(dω) =

∫
Ω
f(ω)µ(dω).

Proof. Since ‖f(ω)‖ = limn↑∞ ‖fn(ω)‖ ≤ g(ω) for µ-a.e. ω ∈ Ω, it follows that ‖fn‖
and ‖f‖ are µ-integrable for each n ∈ N. Furthermore,

lim
n↑∞
‖fn(ω)− f(ω)‖ = 0 and sup

n∈N
‖fn(ω)− f(ω)‖ ≤ 2g(ω)

for µ-a.e. ω ∈ Ω. By standard dominated convergence,

lim
n↑∞

∫
Ω
‖fn(ω)− f(ω)‖µ(dω) = 0.

Hence, from Proposition A.32 the claim follows.

After this introduction to multidimensional integration theory, we suppose that
µ is a probability measure. In the one-dimensional case E = R,∫

Ω
f(ω)µ(dω) ∈ D

for each non-degenerate closed interval D in R and every F -measurable µ-integrable
function f : Ω→ D. Let us prove the multidimensional generalization.

A.34 Proposition. Let µ be a probability measure and D be a non-empty closed
convex set in E. Then every F -measurable µ-integrable map f : Ω → D satisfies∫

Ω f(ω)µ(dω) ∈ D.
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Proof. At first, we assume that f is F -simple. Thus, let m ∈ N, z1, . . . , zm ∈ D,
and A1, . . . , Am ∈ F form a decomposition of Ω such that f = ∑m

i=1 zi1Ai . Then
from Lemma A.1 we obtain that∫

Ω
f(ω)µ(dω) =

m∑
i=1

ziµ(Ai) ∈ D,

since µ(A1), . . . , µ(Am) ∈ [0, 1] and ∑m
i=1 µ(Ai) = 1. In other words,

∫
Ω f(ω)µ(dω)

is a convex combination of points of D. Next, Corollary A.24 provides a sequence
(fn)n∈N of D-valued F -simple maps on Ω such that limn↑∞ fn(ω) = f(ω) and
supn∈N ‖fn(ω)‖ ≤ ‖f(ω)‖ for all ω ∈ Ω. By what we have just shown,∫

Ω
fn(ω)µ(dω) ∈ D for all n ∈ N.

Since D is closed, we conclude that∫
Ω
f(ω)µ(dω) = lim

n↑∞

∫
Ω
fn(ω)µ(dω) ∈ D.

A.7 Stochastic processes and stopping times
Here, we summarize the relevant material on adapted and progressively measurable
stochastic processes and on stopping times. In particular, we look more closely at
hitting times. To this end, [25, Sections 1.1 and 1.2] and [33, Section 1.5] are mainly
used as references. Reconstructibility that originates from the classical theory of
Markov processes is also studied (cf. [11, Appendix]).

Let J be a non-degenerate interval in R+ and (Ω,F ), (S,S ) be two measurable
spaces. We assume that (Ft)t∈J is a family of sub-σ-fields of F . In our context, a
process is a map

X : J × Ω→ S, (t, ω) 7→ Xt(ω)
such that the map Xt : Ω → S, ω 7→ Xt(ω) is F -measurable for each t ∈ J .
The map J → S, t 7→ Xt(ω) is called a path of X for each ω ∈ Ω. In case there
is no reason of ambiguity, we say that X is (right-)continuous if all its paths are
(right-)continuous. Next, if Xt is Ft-measurable for all t ∈ J , then X is said to be
(Ft)t∈J -adapted.

Let us further suppose that (Ft)t∈J is a filtration of F , that is, Fs ⊂ Ft for all
s, t ∈ J with s ≤ t. To abbreviate notation, we set Jt := {s ∈ J | s ≤ t} for each
t ∈ J . Then X is called (Ft)t∈J -progressively measurable if the map

Jt × Ω→ S, (s, ω) 7→ Xs(ω)

is B(Jt)⊗Ft-measurable for all t ∈ J . Put differently, X is progressively measurable
with respect to (Ft)t∈J if {(s, ω) ∈ Jt × Ω |Xs(ω) ∈ B} ∈ B(Jt)⊗Ft for all t ∈ J
and each B ∈ S .
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Let us now consider a backward filtration of F , which is a family (F ′
t )t∈J of

sub-σ-fields of F with F ′
t ⊂ F ′

s for each s, t ∈ J with s ≤ t. For convenience, we
write J ′t := {u ∈ J |u ≥ t} for all t ∈ J . Then X is said to be (F ′

t )t∈J -progressively
measurable if the map

J ′t × Ω→ S, (u, ω) 7→ Xu(ω)

is B(J ′t)⊗F ′
t -measurable for all t ∈ J . In other words, X is progressively measurable

with respect to (F ′
t )t∈J if {(u, ω) ∈ J ′t ×Ω |Xu(ω) ∈ B} ∈ B(J ′t)⊗F ′

t for all t ∈ J
and every B ∈ S .

A.35 Example. Suppose that (Ft)t∈J and (F ′
t )t∈J are of the form

Ft = σ(Xs : s ∈ Jt) and F ′
t = σ(Xu : u ∈ J ′t) for all t ∈ J.

Then (Ft)t∈J and (F ′
t )t∈J are called the natural filtration and the natural backward

filtration of X, respectively.

We say that a set F in J ×Ω is (Ft)t∈J -progressively measurable if the indicator
function 1F : J ×Ω→ {0, 1}, (t, ω) 7→ 1F (t, ω) is (Ft)t∈J -progressively measurable.
This leads us to a characterization of progressive measurability of processes (see
Exercise 1.5.11 in [33]).

A.36 Lemma. The system of all (Ft)t∈J-progressively measurable sets in J ×Ω is
a σ-field. Moreover, a process X : J ×Ω→ S is (Ft)t∈J-progressively measurable if
and only if it is measurable with respect to this σ-field.

Proof. It is readily seen that a set F in J ×Ω is (Ft)t∈J -progressively measurable if
and only if the set {(s, ω) ∈ Jt×Ω |1F (s, ω) = 1}, which coincides with F ∩(Jt×Ω),
is a member of B(Jt)⊗Ft for all t ∈ J .

Since (J × Ω) ∩ (Jt × Ω) = Jt × Ω ∈ B(Jt) ⊗Ft for each t ∈ J , the set J × Ω
is (Ft)t∈J -progressively measurable. Let F be an (Ft)t∈J -progressively measurable
set in J × Ω and choose t ∈ J , then

F c ∩ (Jt × Ω) = {(s, ω) ∈ Jt × Ω | (s, ω) /∈ F}.

Thus, F c ∩ (Jt×Ω) is the complement of F ∩ (Jt×Ω) in Jt×Ω, which implies that
F c ∩ (Jt×Ω) ∈ B(Jt)⊗Ft. So, F c is another (Ft)t∈J -progressively measurable set
in J ×Ω. If (Fn)n∈N is a sequence of (Ft)t∈J -progressively measurable sets in J ×Ω,
then its union F := ⋃

n∈N Fn satisfies F ∩ (Jt × Ω) = ⋃
n∈N(Fn ∩ (Jt × Ω)). For this

reason, F is (Ft)t∈J -progressively measurable. This clarifies the first claim.
Now, let X : J × Ω → S be a process and B ∈ S . Then X−1(B) ∩ (Jt × Ω)

agrees with {(s, ω) ∈ Jt × Ω |Xs(ω) ∈ B} for all t ∈ J . Consequently, X−1(B) is
(Ft)t∈J -progressively measurable if and only if {(s, ω) ∈ Jt×Ω |Xs(ω) ∈ B} belongs
to B(Jt)⊗Ft for each t ∈ J . The lemma is established.

The σ-field of all (Ft)t∈J -progressively measurable sets in J × Ω is called the
(Ft)t∈J -progressive σ-field. Of course, if Ft = F for every t ∈ J , then it reduces to
the product σ-field B(J) ⊗F . At this place, we recall partitions, which are used
to approximate right-continuous processes and stopping times.
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A.37 Definition. Let H, I ⊂ R be two non-degenerate intervals with H ⊂ I and
(In)n∈N be an increasing sequence of non-degenerate intervals in R.

(i) A partition of I is a countable set T ⊂ I so that inf I ∈ T, if inf I ∈ I, and
sup I ∈ T, if sup I ∈ I. Moreover, if I is compact, then T is required to be
finite.

(ii) Let T be a partition of I. The successor of a point t ∈ T with respect to T is
defined by t′ := min{u ∈ T |u > t}, if t < sup I, and t′ := t, if t = sup I. In
addition, |T| := supt∈T(t′ − t) is called the mesh of T.

(iii) Let S and T be two partitions of H and I, respectively. We say that T refines
S if S ⊂ T.

(iv) A refining sequence of partitions of (In)n∈N is a sequence (Tn)n∈N, where Tn is
a partition of In for all n ∈ N, such that Tn+1 refines Tn for each n ∈ N and
limn↑∞ |Tn| = 0. If I = In for all n ∈ N, then we will speak about a refining
sequence of partitions of I.

We now relate (Ft)t∈J -adapted and (Ft)t∈J -progressively measurable processes,
which partially extends Proposition 1.13 in [25].

A.38 Proposition. Assume that ρ is some metric on S for which S is the Borel
σ-field of S with respect to ρ. Then every (Ft)t∈J-adapted right-continuous process
X : J × Ω→ S is (Ft)t∈J-progressively measurable.

Proof. Let t ∈ J and (Tn)n∈N be a refining sequence of partitions of Jt. Then
for all r ∈ J with r < t and each n ∈ N there is a unique s ∈ Tn such that
r ∈ [s, s′). So, for each n ∈ N we may define an B(Jt) ⊗ Ft-measurable process
X(n) : Jt × Ω → S by X(n)

r (ω) := Xs′(ω), if r < t and with s ∈ Tn satisfying
r ∈ [s, s′), and X(n)

r (ω) := Xt(ω), if r = t. The B(Jt)⊗Ft-measurability of X(n) is
easily checked. Let B ∈ S , then

{(r, ω) ∈ Jt × Ω |X(n)
r (ω) ∈ B} =

( ⋃
s∈Tn

[s, s′)× {Xs′ ∈ B}
)
∪ ({t} × {Xt ∈ B}),

as Jt is the union of ⋃s∈Tn [s, s′) and {t}. From [s, s′) ∈ B(Jt) and {Xs′ ∈ B} ∈ Ft

we conclude that [s, s′)×{Xs′ ∈ B} ∈ B(Jt)⊗Ft for all s ∈ Tn. Since {t}×{Xt ∈ B}
also belongs to B(Jt) ⊗Ft and Tn is countable, the B(Jt) ⊗Ft-measurability of
X(n) is clarified.

We now show that (X(n))n∈N converges pointwise to the restriction ofX to Jt×Ω,
which then completes the proof, by Lemma A.18. Let (r, ω) ∈ Jt × Ω and ε > 0. If
r = t, then X(n)

t (ω) = Xt(ω) for all n ∈ N. Otherwise, the right-continuity of X(ω)
gives δ > 0 with

ρ(Xs(ω), Xr(ω)) < ε

for all s ∈ [r, r + δ) ∩ J . We choose n0 ∈ N such that |Tn| < δ for all n ∈ N with
n ≥ n0. Then ρ(X(n)

r (ω), Xr(ω)) < ε for every such n ∈ N, since X(n)
r (ω) = Xs′(ω)

and 0 < s′ − r ≤ |Tn| < δ with s ∈ Tn fulfilling r ∈ [s, s′).
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Similarly, we define a set F in J × Ω to be (F ′
t )t∈J -progressively measurable if

the indicator function 1F shares this property. By proceeding as in Lemma A.36,
we readily see that the system of all (F ′

t )t∈J -progressively measurable sets in J ×Ω
is a σ-field and we call it the (F ′

t )t∈J -progressive σ-field. As before, if F ′
t = F for

all t ∈ J , then it is simply the product σ-field B(J) ⊗F . Furthermore, a process
X : J × Ω → S is (F ′

t )t∈J -progressively measurable if and only if it is measurable
with respect to this σ-field.

Let us also introduce the reconstructible σ-field as the σ-field generated by the
system of all sets F in J × Ω of the form F = Ju × A′ for some u ∈ J and some
A′ ∈ F ′

u. Correspondingly, a process X : J × Ω→ S is called reconstructible if it is
measurable with respect to the reconstructible σ-field.

A.39 Lemma. The (F ′
t )t∈J-progressive σ-field includes the reconstructible σ-field.

In particular, every reconstructible process X : J × Ω → S is (F ′
t )t∈J-progressively

measurable.

Proof. For the first claim, it suffices to show that Ju × A′ is (F ′
t )t∈J -progressively

measurable for all u ∈ J and each A′ ∈ F ′
u. We readily see that (Ju×A′)∩ (J ′t×Ω)

= [t, u] × A′, if t ≤ u, and (Ju × A′) ∩ (J ′t × Ω) = ∅, if t > u, for all t ∈ J . Hence,
(Ju × A′) ∩ (J ′t × Ω) ∈ B(J ′t)⊗F ′

t for all t ∈ J , as desired.
The check the second claim, let X : J ×Ω→ S be a reconstructible process. By

what we have shown, X must be measurable with respect to the (F ′
t )t∈J -progressive

σ-field. For this reason, the preceding discussion concludes the proof.

We also relate (F ′
t )t∈J -adapted and reconstructible processes.

A.40 Proposition. Suppose that ρ is some metric on S for which S is the Borel
σ-field of S with respect to ρ. Then every (F ′

t )t∈J-adapted right-continuous process
X : J × Ω→ S is reconstructible and (F ′

t )t∈J-progressively measurable.

Proof. Let (Tn)n∈N be a refining sequence of partitions of J . We set T := sup J ,
then for all t ∈ J with t < T and each n ∈ N there is a unique u ∈ Tn such
that t ∈ [u, u′). Thus, for each n ∈ N we may define a reconstructible process
X(n) : J × Ω → S by X

(n)
t (ω) := Xu′(ω), if t < T and with u ∈ Tn fulfilling

t ∈ [u, u′), and X(n)
t (ω) := XT (ω), if t = T . To justify that X(n) is reconstructible,

we let B ∈ S . For T /∈ J it holds that

{(t, ω) ∈ J × Ω |X(n)
t (ω) ∈ B} =

⋃
u∈Tn

[u, u′)× {Xu′ ∈ B},

because J = ⋃
u∈Tn [u, u′). Suppose instead that T ∈ J , then

{(t, ω) ∈ J × Ω |X(n)
t (ω) ∈ B} =

( ⋃
u∈Tn

[u, u′)× {Xu′ ∈ B}
)
∪ ({T} × {XT ∈ B}).

Since {Xu′ ∈ B} ∈ F ′
u, the set [u, u′) × {Xu′ ∈ B} belongs to the reconstructible

σ-field for each u ∈ Tn. If T ∈ J , then {T} × {XT ∈ B} is also a member of the
reconstructible σ-field. Hence, as Tn is countable, X(n) is reconstructible.
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Finally, we verify that (X(n))n∈N converges pointwise to X, which then estab-
lishes that X is reconstructible, by Lemma A.18. Once this is shown, Lemma A.39
completes the proof. Let (t, ω) ∈ J ×Ω and ε > 0. If t = T , then X(n)

T (ω) = XT (ω)
for all n ∈ N. Otherwise, the right-continuity of X(ω) gives δ > 0 such that

ρ(Xu(ω), Xt(ω)) < ε

for all u ∈ [t, t + δ) ∩ J . We choose n0 ∈ N satisfying |Tn| < δ for all n ∈ N with
n ≥ n0. Then ρ(X(n)

t (ω), Xt(ω)) < ε for every such n ∈ N, since X(n)
t (ω) = Xu′(ω)

and 0 < u′ − t ≤ |Tn| < δ with u ∈ Tn such that t ∈ [u, u′).

Let es return to the filtration (Ft)t∈J of F . We recall that an (Ft)t∈J -optional
time is a function τ : Ω → J ∪ {∞} such that {τ < t} ∈ Ft for all t ∈ J . If in
addition τ(Ω) ⊂ J , then τ is called finite. An (Ft)t∈J -stopping time is a function
τ : Ω→ J ∪ {∞} such that {τ ≤ t} ∈ Ft for all t ∈ J .

Let τ be an (Ft)t∈J -stopping time. Since {τ < t} = ⋃
n∈N{τ ≤ t − 1/n} ∈ Ft

for all t ∈ J , it is clear that τ must be an (Ft)t∈J -optional time. Moreover, with
τ we associate the system Fτ := {A ∈ F |A ∩ {τ ≤ t} ∈ Ft for all t ∈ J , which
constitutes a sub-σ-field of F . Of course, if τ = t for some t ∈ J , then Fτ = Ft.
Let X : J ×Ω→ S be a process, then the stopped process of X with respect to τ is
given by

Xτ : J × Ω→ S, Xτ
t (ω) := Xt∧τ(ω)(ω).

Suppose temporarily that τ is finite, then the map Xτ : Ω → S is defined via
Xτ (ω) := Xτ(ω)(ω). We notice that if X is B(J) ⊗ F -measurable, then Xτ is
F -measurable. Indeed, let Φ : Ω→ J × Ω be given by Φ(ω) := (τ(ω), ω), then

Xτ = X ◦ Φ and {Xτ ∈ B} = {Φ ∈ X−1(B)} ∈ F for all B ∈ S ,

because X−1(B) ∈ B(J)⊗F and Φ−1(Jt × A) = {τ ≤ t} ∩ A ∈ F for each t ∈ J
and every A ∈ F . We verify two basic facts on these concepts for stopping times
(cf. Exercise 1.5.12 in [33]).

A.41 Lemma. Let X : J × Ω → S be an (Ft)t∈J-progressively measurable process
and τ be an (Ft)t∈J-stopping time. Then the following two assertions hold:

(i) The stopped process Xτ is (Ft)t∈J-progressively measurable.

(ii) If τ is finite, then the map Xτ is Fτ -measurable.

Proof. (i) Let Φ : J × Ω → J × Ω be defined by Φ(t, ω) := (t ∧ τ(ω), ω). Then
Xτ = X ◦ Φ and it holds that

{(r, ω) ∈ Jt × Ω |Xτ
r (ω) ∈ B} = {(r, ω) ∈ Jt × Ω |Φ(r, ω) ∈ X−1(B)}

= {(r, ω) ∈ Jt × Ω |Φ(r, ω) ∈ X−1(B) ∩ (Jt × Ω)}

for all B ∈ S and each t ∈ J . Hence, if we can show that

{(r, ω) ∈ Jt × Ω |Φ(r, ω) ∈ C} ∈ B(Jt)⊗Ft



A.7. STOCHASTIC PROCESSES AND STOPPING TIMES 139

for each C ∈ B(Jt)⊗Ft, then the claim follows. According to the Monotone Class
Theorem A.28, we may assume that C is of the form C = Js × A for some s ∈ Jt
and some A ∈ Ft. In this case, we conclude that

{(r, ω) ∈ Jt × Ω |Φ(r, ω) ∈ C} = {(r, ω) ∈ Jt × A | r ∧ τ(ω) ≤ s}
= (Js × A) ∪ ((s, t]× (A ∩ {τ ≤ s})) ∈ B(Jt)⊗Ft.

(ii) We observe that, since Xτ is (Ft)t∈J -progressively measurable, it must be
B(J) ⊗F -measurable and (Ft)t∈J -adapted. In consequence, Xτ is F -measurable
and we obtain that {Xτ ∈ B} ∩ {τ ≤ t} = {Xτ

t ∈ B} ∩ {τ ≤ t} ∈ Ft for all t ∈ J
and each B ∈ S . This shows the lemma.

We now provide a standard result on hitting times, which generalizes Problems
2.6 and 2.7 in [25]. Note that the proof of the fourth assertion is mainly concluded
from the solution in this book. For convenience, we set r0 := inf J and T := sup J .

A.42 Proposition. Suppose that r0 ∈ J and ρ is a metric on S for which S is the
Borel σ-field of S with respect to ρ. Let X : J × Ω→ S be an (Ft)t∈J-progressively
measurable process, B ∈ S , and τ := inf{t ∈ J |Xt ∈ B}. Then the following four
assertions hold:

(i) Xs /∈ B on {τ > s} for all s ∈ J , and Xτ ∈ B on {τ = T} provided T ∈ J .

(ii) Let X be right-continuous, then Xτ ∈ B on {τ < ∞}. Assume in addition
that X is left-continuous, then Xτ ∈ ∂B on {r0 < τ <∞}.

(iii) If B is open and X is right-continuous, then τ is an (Ft)t∈J-optional time.

(iv) If B is closed and X is continuous, then τ is an (Ft)t∈J-stopping time.

Proof. (i) If we had Xs(ω) ∈ B for some (s, ω) ∈ J × Ω with τ(ω) > s, then we
would get that s ≥ inf{t ∈ J |Xt(ω) ∈ B} = τ(ω), a contradiction. Let T ∈ J and
suppose that ω ∈ {τ = T} fulfills Xτ (ω) /∈ B. Then, by what we have just shown,
{t ∈ J |Xt(ω) ∈ B} = ∅. Hence, τ(ω) =∞, which is impossible.

(ii) If T ∈ J and ω ∈ {τ = T}, then (i) already gives Xτ (ω) ∈ B. Thus, let
us suppose that ω ∈ {τ < T} satisfies Xτ (ω) /∈ B. Then, as (B)c is open, there is
ε > 0 with Bε(Xτ (ω)) ⊂ (B)c. By the right-continuity of X(ω), there is δ > 0 such
that

Xs(ω) ∈ Bε(Xτ (ω)) for all s ∈ [τ(ω), τ(ω) + δ) ∩ J .

However, the definition of τ(ω) yields s ∈ [τ(ω), τ(ω) + δ) ∩ J with Xs(ω) ∈ B, a
contradiction. Now, let X be left-continuous. We suppose that ω ∈ {r0 < τ < ∞}
fulfills Xτ (ω) /∈ ∂B. Since Xτ (ω) ∈ (B)c cannot occur, we must have Xτ (ω) ∈ B◦.
As B◦ is open, there is ε > 0 with Bε(Xτ (ω)) ⊂ B◦. Left-continuity of X(ω) gives
δ ∈ (0, τ(ω)− r0) such that

Xs(ω) ∈ Bε(Xτ (ω)) for each s ∈ (τ(ω)− δ, τ(ω)].
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Thus, we obtain the contradiction that τ(ω) − δ/2 ∈ {t ∈ J |Xt(ω) ∈ B} while
τ(ω)− δ/2 < τ(ω) = inf{t ∈ J |Xt(ω) ∈ B}.

(iii) Let t ∈ J , then for each ω ∈ {τ < t} there exists s ∈ J with Xs(ω) ∈ B
and τ(ω) ≤ s < t. If instead ω ∈ {Xs ∈ B} for some s ∈ J with s < t, then
s ≥ inf{t ∈ J |Xt(ω) ∈ B} = τ(ω). Hence, {τ < t} = ⋃

s∈J : s<t{Xs ∈ B}. If we can
show that ⋂

s∈J :s<t
{Xs ∈ Bc} =

⋂
s∈J∩Q: s<t

{Xs ∈ Bc},

then, as the rational numbers Q are countable, we get that {τ ≥ t} ∈ Ft, which
proves the claim. Let ω ∈ ⋂s∈J∩Q: s<t{Xs ∈ Bc} and s ∈ J with s < t. Since [s, t)∩Q
is dense in [s, t), there is a sequence (sn)n∈N in [s, t)∩Q such that limn↑∞ sn = s. As
Xsn(ω) ∈ Bc for all n ∈ N and Bc is closed, we conclude from the right-continuity
of X(ω) that Xs(ω) = limn↑∞Xsn(ω) ∈ Bc.

(iv) We set Bn := {x ∈ S | dist(x,B) < 1/n} and τn := inf{t ∈ J |Xt ∈ Bn} for
all n ∈ N, where we use the notation dist(x,C) = infy∈C ρ(x, y) for all x ∈ S and
each C ⊂ S. Then Bn is the (1/n)-neighborhood of B, as introduced in Section A.3,
and for this reason, it is open. Hence, (iii) implies that τn is an (Ft)t∈J -optional
time. From B ⊂ Bn+1 ⊂ Bn we infer that

τn ≤ τn+1 ≤ τ for all n ∈ N.

As B is closed, B = ⋂
n∈NBn. In fact, if x ∈ S satisfies dist(x,B) < 1/n for all

n ∈ N, then dist(x,B) = 0, which is equivalent to x ∈ B, by Lemma A.13. The
next step of the proof is to show the following two conditions:

(a) τn = r0 for each n ∈ N on {τ = r0} and τn > r0 for almost all n ∈ N on {τ > r0}.

(b) r0 < τn < τn+1 < τ for almost each n ∈ N on {r0 < τ <∞}.

Clearly, from τn ≤ τ we obtain that τn = r0 on {τ = r0} for every n ∈ N. We let
ω ∈ {τ > r0} and suppose that τn(ω) = r0 for infinitely many n ∈ N. Then there
exists a strictly increasing sequence (νn)n∈N in N and a sequence (tn)n∈N in J with
dist(Xtn(ω), B) < 1/νn for each n ∈ N and limn↑∞ tn = r0. Lemma A.13 and the
right-continuity of X(ω) yield that

dist(Xr0(ω), B) = lim
n↑∞

dist(Xtn(ω), B) = 0.

Hence, Xr0(ω) ∈ B, which gives the contradiction τ(ω) = r0. This verifies (a). Next,
let ω ∈ {r0 < τ <∞} and assume that r0 < τn(ω) = τn+1(ω) for some n ∈ N. Then
(ii) implies that Xτn(ω) ∈ ∂Bn ∩ ∂Bn+1, which is impossible, as ∂Bn ∩ ∂Bn+1 = ∅.
Simlarly, if τn(ω) = τ(ω) for some n ∈ N, then Xτn(ω) ∈ ∂Bn∩∂B, which is another
contradiction, since ∂Bn ∩ ∂B = ∅. So, (b) holds.

We now check that σ := supn∈N τn agrees with τ on {τ < ∞}. Since σ ≤ τ ,
we merely have to prove that σ ≥ τ on {σ < ∞} ∩ {r0 < τ < ∞}. Let us
choose ω ∈ {σ < ∞} ∩ {r0 < τ < ∞}. From (b) and (ii) we get n0 ∈ N such
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dist(Xτn(ω), B) = 1/n for all n ∈ N with n ≥ n0, since Lemma A.13 entails that
∂Bn = {x ∈ S | dist(x,B) = 1/n}. Hence, left-continuity of X(ω) implies that

dist(Xσ(ω), B) = lim
n↑∞

dist(Xτn(ω), B) = 0,

which shows that Xσ(ω) ∈ B. Thus, σ(ω) ≥ inf{t ∈ J |Xt(ω) ∈ B} = τ(ω). So,
supn∈N τn = τ on {τ < ∞}. Finally, (b) entails that {τ ≤ t} = ⋂

n∈N{τn < t} ∈ Ft

for all t ∈ J with t > r0. Since {τ = r0} = {Xr0 ∈ B} ∈ Fr0 , the proposition is
established.

We are interested in a certain construction of stopping times taking finitely many
values. As before, we use partitions and let r0 = inf J .

A.43 Lemma. Let r0 ∈ J and τ be an (Ft)t∈J-stopping time. Then for each t ∈ J
and every partition T of [r0, t], the function τt,T : Ω→ (r0, t] defined by

τt,T(ω) :=
∑
s∈T

s′1{s≤τ<s′}(ω) + t1{τ≥t}(ω)

is an (Ft)t∈J-stopping time that takes finitely many values such that 0 < τt,T−τ ≤ |T|
on {τ < t} and τt,T = τ on {τ = t}.

Proof. From τt,T(Ω) = T\{r0} we see that τt,T(Ω) is finite. For s ∈ T with s′ < t it
holds that {τt,T = s′} = {s ≤ τ < s′} = {τ < s′} ∩ {τ < s}c ∈ Fs′ . In addition,

{τt,T = t} = {s ≤ τ < t} ∪ {τ ≥ t} = {τ ≥ s} ∈ Ft

with the unique s ∈ T\{t} satisfying s′ = t. Consequently, τt,T is an (F )t∈J -stopping
time. We choose ω ∈ {τ ≤ t}. If τ(ω) = t, then τt,T(ω) = t. Otherwise, there is a
unique s ∈ T with s ≤ τ(ω) < s′. In this case, τt,T(ω) = s′ and τt,T(ω)− τ(ω) ≤ |T|.
This verifies the lemma.

We conclude with the pointwise approximation of a stopping time by a decreasing
sequence of stopping times that take only finitely many values.

A.44 Proposition. Let r0 ∈ J and τ be an (Ft)t∈J-stopping time τ . Then there
is a decreasing sequence (τn)n∈N of (Ft)t∈J-stopping times, each taking only finitely
many values, that converges pointwise to τ . Moreover, if τ ≤ t for some t ∈ J , then
(τn)n∈N can be chosen such that the convergence is uniform and supn∈N τn ≤ t.

Proof. First, let r, t ∈ J with r ≤ t, S be a partition of [r0, r], and T be a partition
of [r0, t] that refines S. Using the notation of the preceding lemma, we seek to show
that

τr,S ≥ τt,T on {τ < r}. (A.5)

Let ω ∈ {τ < r}, then there is a unique q ∈ S such that q ≤ τ(ω) < q′. Here, q′
denotes the successor of q with respect to S, that is, q′ = min{s ∈ S | s > q}. Since T
refines S, there are n ∈ N and s1, . . . , sn ∈ T with n ≥ 2 and q = s1 < · · · < sn = q′.
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We choose the unique i ∈ {1, . . . , n − 1} with si ≤ τ(ω) < si+1, then we draw the
conclusion that τr,S(ω) = q′ ≥ si+1 = τt,T(ω). Thus, (A.5) holds.

Now we can justify the first assertion. Let initially T ∈ J , then J = [r0, T ] and
{τ <∞} = {τ ≤ T}. We choose a refining sequence (Tn)n∈N of partitions of [r0, T ]
and for each n ∈ N we define τn : Ω→ [r0, T ] ∪ {∞} by

τn(ω) := τT,Tn(ω) for ω ∈ {τ <∞} and τn(ω) :=∞ for ω ∈ {τ =∞}.

Then τn is an (Ft)t∈[r0,T ]-stopping time taking finitely many values such that τn ≥ τ ,
as τT,Tn ≥ τ on {τ < ∞} and {τn ≤ t} = {τT,Tn ≤ t} ∩ {τ ≤ t} for all t ∈ [r0, T ].
From (A.5) and the fact that τT,Tn = T on {τ = T} for all n ∈ N we infer that
(τn)n∈N is decreasing. If ω ∈ {τ =∞}, then τn(ω) = τ(ω) for each n ∈ N. Suppose
instead that ω ∈ {τ <∞}, then 0 ≤ τn(ω)− τ(ω) ≤ |Tn| for all n ∈ N, which gives
limn↑∞ τn(ω) = τ(ω), as claimed.

Now assume that T /∈ J , then J = [r0, T ). Let (tn)n∈N be an increasing sequence
in [r0, T ) such that limn↑∞ tn = T and (Tn)n∈N be a refining sequence of partitions
of ([r0, tn])n∈N. For each n ∈ N we let τn : Ω→ [r0, T ) ∪ {∞} be defined by

τn(ω) := τtn,Tn(ω) for ω ∈ {τ < tn} and τn(ω) :=∞ for ω ∈ {τ ≥ tn}.

Then once again τn is an (Ft)t∈[r0,T )-stopping time taking finitely many values such
that τn ≥ τ , since τtn,Tn > τ on {τ < tn} and {τn ≤ t} = {τtn,Tn ≤ t} ∩ {τ < t}
for all t ∈ [r0, tn]. Next, we pick n ∈ N. For ω ∈ {τ < tn} we infer from (A.5) and
{τ < tn} ⊂ {τ < tn+1} that

τn(ω) = τtn,Tn(ω) ≥ τtn+1,Tn+1(ω) = τn+1(ω).

For ω ∈ {τ ≥ tn} we have that τn(ω) = ∞ ≥ τn+1(ω). Thus, (τn)n∈N is decreasing.
Suppose that ω ∈ {τ < T}, then τn(ω)− τ(ω) = τtn,Tn(ω)− τ(ω) ≤ |Tn| for almost
all n ∈ N. Hence, limn↑∞ τn(ω) = τ(ω). Since {τ ≥ T} = {τ = ∞}, we get that
τn(ω) = τ(ω) = ∞ on {τ ≥ T} for every n ∈ N. This completes the verification of
the first claim.

To prove the second assertion, let t ∈ J be such that τ(ω) ≤ t for all ω ∈ Ω. We
choose a refining sequence (Tn)n∈N of partitions of [r0, t] and set τn := τt,Tn for each
n ∈ N. Then (τn)n∈N is decreasing and τn(Ω) ⊂ [r0, t] as well as 0 ≤ τn − τ ≤ |Tn|
for all n ∈ N, since {τ ≤ t} = Ω. This concludes the proof.
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List of Symbols

Here, the main symbols used in the thesis are described. We choose d, k ∈ N, a
metric space D, and a pseudometric space S. Moreover, F is a non-empty set in
some Banach space E, and (Ω,F ), (Ω′,F ′) are two measurable spaces.

Sets and elements

N set of all natural numbers

Q field of all rational numbers

1A indicator function of a set A ∈ F

R real line

R+ semiring of all non-negative real numbers

C complex plane

Rd d-dimensional Euclidean space

Rk×d linear space of all real k × d matrices

Id identity matrix in Rd×d

Sd linear space of all symmetric matrices in Rd×d

Sd+ linear space of all positive definite matrices in Sd

Bδ(x) open ball in S with center x ∈ S and radius δ > 0

Number operations

x ∧ y minimum of two real numbers x and y

x ∨ y maximum of x and y

x+ positive part of x

x− negative part of x

|x| absolute value of x
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Vector and matrix operations

〈x, y〉 dot product of two vectors x and y in Rd

|x| Euclidean norm of x

At transpose of a matrix A ∈ Rd×k

tr(B) trace of a matrix B ∈ Rd×d

|B| Frobenius norm of B

σ(B) set of all complex eigenvalues of B

B−1 inverse of B provided B is invertible

Map spaces

B(S,D) set of all D-valued Borel measurable maps on S and B(S) := B(S,R)

Bb(S, F ) set of all bounded maps in B(S, F ) and Bb(S) := B(S,R)

C(S,D) set of all D-valued continuous maps on S and C(S) := C(S,R)

Cb(S, F ) set of all bounded maps in C(S, F ) and Cb(S) := Cb(S,R)

System of sets operations

σ(C ) σ-field generated by a system of sets C in Ω

σ(X) σ-field generated by a F -F ′-measurable map X : Ω→ Ω′

B(S) Borel σ-field of S

Topological set operations

D◦ interior of D

∂D boundary of D

D closure of D

diam(D) diameter of D
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