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Abstract—When factorizing binary matrices, we often have to
make a choice between using expensive combinatorial methods
that retain the discrete nature of the data and using continuous
methods that can be more efficient but destroy the discrete
structure. Alternatively, we can first compute a continuous
factorization and subsequently apply a rounding procedure to
obtain a discrete representation. But what will we gain by
rounding? Will this yield lower reconstruction errors? Is it easy
to find a low-rank matrix that rounds to a given binary matrix?
Does it matter which threshold we use for rounding? Does it
matter if we allow for only non-negative factorizations? In this
paper, we approach these and further questions by presenting
and studying the concept of rounding rank. We show that
rounding rank is related to linear classification, dimensionality
reduction, and nested matrices. We also report on an extensive
experimental study that compares different algorithms for finding
good factorizations under the rounding rank model.

I. INTRODUCTION

When facing data that can be expressed as a binary matrix,

the data analyst usually has two options: either she uses

combinatorial methods—such as frequent itemset mining or

various graph algorithms—that will retain the binary structure

of the data, or she applies some sort of continuous-valued matrix

factorization—such as SVD or NMF—that will represent the

binary structure with continuous approximations. The different

approaches come with different advantages and drawbacks.

Retaining the combinatorial structure is helpful for interpreting

the results and can preserve better other characteristics such

as sparsity. Continuous methods, on the other hand, are often

more efficient, yield better reconstruction errors, and may be

interpreted probabilistically.

A third alternative, often applied to get “the best of both

worlds,” is to perform a continuous factorization first and apply

some function to the elements of the reconstructed matrix to

make them binary afterwards. In probabilistic modelling, for

example, the logistic function is commonly used to map real

values into the unit range. We can obtain a binary reconstruction

by rounding, i.e. by setting all values less than 1/2 to 0
and the remaining values to 1. Alternatively, for {−1, 1}
matrices, we may take the sign of the values of a continuous

factorization to obtain a discrete representation. Even though

such methods are commonly used, relatively little is known
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about the consequences of this thresholding process. There

are few, if any, methods that aim at finding a matrix that

rounds exactly to the given binary data, or finding a low-rank

matrix that causes only little error when rounded (although

there are methods that have such a behavior as a by-product).

Almost nothing is known about the theoretical properties of

such decompositions.

In this paper, we give a comprehensive treatise of these

topics. We introduce the concept of rounding rank, which,

informally, is defined to be the least rank of a real matrix that

rounds to the given binary matrix. But does it matter how we

do the rounding? How will the results change if we constrain

ourselves to nonnegative factorizations? A solid theoretical

understanding of the properties of rounding rank will help data

miners and method developers to understand what happens

when they apply rounding. Some of our results are novel, while

others are based on results obtained from related topics such

as sign rank and dot product graphs.

Studying rounding rank is not only of theoretical interest. The

concept can provide new insight or points of view for existing

problems, and lead to interesting new approaches. In essence,

rounding rank provides another intrinsic dimensionality of the

data (see, e.g. [33]). Rounding rank can be used, for example,

to determine the minimum number of features linear classifiers

need for multi-label classification or the minimum number of

dimensions we need from a dimensionality reduction algorithm.

There is also a close relationship to nested matrices [23], a

particular type of binary matrices that occur, for example,

in ecology. We show that nested matrices are equivalent to

matrices with a non-negative rounding rank of 1 and use this

property to develop a new algorithm for the problem of finding

the closest nested matrix.

But just knowing about the properties of rounding rank

will not help if we cannot find good decompositions. As data

miners have encountered problems related to rounding rank

earlier, there are already existing algorithms for closely related

problems. In fact, any low-rank matrix factorization algorithm

could be used for estimating (or, more precisely, bounding) the

rounding rank, but not all of them would work equally well.

To that end, we survey a number of algorithms for estimating

the rounding rank and for finding the least-error fixed rounding

rank decomposition. We also present some novel methods. One

major contribution of this paper is an empirical evaluation of
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these algorithms. Our experiments aim to help the practitioners

in choosing the correct algorithm for the correct task: for

example, if one wants to estimate the rounding rank of a

binary matrix, simply rounding the truncated singular value

decomposition may not be a good idea.

II. DEFINITIONS, BACKGROUND, AND THEORY

In this section we formally define the rounding rank of a

binary matrix, discuss its properties, and compare it to other

well-known matrix-ranks. Throughout this paper, we use B to

denote a binary m× n matrix.

A. Definitions

The rounding function w.r.t. rounding threshold τ ∈ R is

roundτ (x) =

{
1, if x ≥ τ,

0, if x < τ.

We apply roundτ to matrices by rounding element-wise, i.e. if

A ∈ R
m×n is a real-valued matrix, then roundτ (A) denotes

an m× n binary matrix with [roundτ (A)]ij = roundτ (Aij).
Rounding rank. Given a rounding threshold τ ∈ R, the

rounding rank of B w.r.t. τ is given by

rrankτ (B) = min{rank(A) : A ∈ R
m×n, roundτ (A) = B}.

(1)

The rounding rank of B is thus the smallest rank of any real-

valued matrix that rounds to B. We often omit τ for brevity

and write round(A) and rrank(B) for τ = 1/2.

When B has rounding rank k, there exists matrices L ∈
R

m×k and R ∈ R
n×k with B = roundτ (LRT ). We refer to

L and R as a rounding rank decomposition of B.

Sign rank. The sign matrix of B, B± ∈ {−1,+1}m×n, is

obtained from B by replacing every 0 by −1. Given a sign

matrix, its sign rank is given by

srank(B±) = min{rank(A) : A ∈ R
m×n
�=0 , sign(A) = B},

(2)

where R �=0 = R \ {0}. The sign rank is thus the smallest rank

of any real-valued matrix A without 0-entries and with B±
ij =

sign(Aij) for all i, j. The sign rank is closely related to the

rounding rank as rrank0(B) ≤ srank(B±) ≤ rrank0(B)+1.
The first inequality holds because for any A ∈ R

m×n
�=0 and

with sign(A) = B±, round0(A)± = sign(A). The second

inequality holds because if round(A) = B and A contains

0-entries, we can add a constant 0 < ε < minaij<0|aij | to each

entry of A to obtain sign(A+ ε) = B± and rank(A+ ε) ≤
rank(A) + 1. Even when τ �= 0, the differences remain small

as suggested by Prop. 5.

Non-negative rounding rank. We define the non-negative
rounding rank of B w.r.t. τ , denoted rrank+τ (B), as the small-

est k such that there exist non-negative matrices L ∈ R
m×k
≥0

and R ∈ R
n×k
≥0 with roundτ (LRT ) = B.

Minimum-error rounding rank problem. The rounding

rank is concerned with exact reconstructions of B. We relax this

by introducing the minimum-error rounding rank-k problem:

Find a binary matrix C ∈ {0, 1}m×n with rrank(C) ≤ k

which minimizes ‖B −C‖F , where ‖·‖F denotes the Frobe-

nius norm. Note that ‖B −C‖2F corresponds to the number

of entries in which B and C disagree. We denote the problem

by MINERRORRR-k.

B. Related Work

A number of concepts closely related to rounding rank (albeit

less general) have been studied in various communities.

There is a relationship between rounding rank and dot-

product graphs [15], [24], [31], which arise in social network

analysis [34]. Let G be a graph with n vertices and adjacency

matrix M . Then G is a dot-product graph of rank k if there

exists a matrix L ∈ R
m×k such that M = round1(LLT ).

The rank of a dot-product graph corresponds to the symmetric
rounding rank of its adjacency matrix. In this paper, we consider

asymmetric factorizations and allow for rectangular matrices.

Sign rank was studied in the communication complexity

community in order to characterize a certain communication

model. Consider two players, Alice and Bob. Alice and Bob

obtain private inputs x, y ∈ {0, 1}n, respectively, and their task

is to evaluate a function f : {0, 1}n × {0, 1}n → {0, 1} on

their inputs. The communication matrix Mf of f is the 2n×2n

binary matrix with [Mf ]xy = f(bin(x), bin(y)), where bin :
2n → {0, 1}n denotes the n-bit binary encoding of its input

number. The probabilistic communication complexity of f is the

smallest number of bits Alice and Bob have to communicate in

order to compute f(x, y) correctly with probability larger than
1
2 . It is known that the probabilistic communication complexity

of f and log(srank(Mf )) differ by at most one [2], [16], [30].

Sign rank was also studied in learning theory to understand the

limits of large margin classification [3], [4], [8], [17]; see Alon

et al. [4] for a summary of applications of sign rank. These

complexity results focus on achieving lower and upper bounds

on sign rank as well as the separation of complexity classes.

We review some of these results in subsequent sections and

present them in terms of rounding rank, thereby making them

accessible to the data mining community.

Ben-David et al. [8, Cor. 14] showed that only a very small

fraction of the n× n sign matrices can be well-approximated

(with “vanishing” error in at most n−O(1) entries) by matrices

of sign-rank at most k unless k = ω(n1−O(1)) is very large.

To the best of our knowledge, there are no known results for

fixed relative error (e.g., 5% of the matrix entries) or for the

MINERRORRR-k problem.

C. Characterization of Rounding Rank

Below we give a geometric interpretation of rounding

rank that helps to relate it to problems in data mining. A

similar theorem was presented in the context of communication

complexity [30, Th. 5]. Our presentation is in terms of matrix

ranks (instead of communication protocols) and gives a short

proof that provides insights into the relationship between

rounding rank and geometric embeddings.

Theorem 1. Let d ∈ N and τ ∈ R. The following statements
are equivalent:
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H1 = {x ∈ R
d : 〈x, c1〉 = 0}

H2 = {x ∈ R
d : 〈x, c2〉 = 0}

H3 = {x ∈ R
d : 〈x, c3〉 = 0}

Figure 1. Three hyperplanes in R
2 with the labels of the subspaces into

which they dissect the space. Any m× 3 binary matrix in which each row
corresponds to one of the six label vectors has rounding rank at most 2.

1) rrankτ (B) ≤ d.
2) There exist points x1, . . . ,xm ∈ R

d and affine hy-
perplanes H1, . . . , Hn in R

d with normal vectors
c1, . . . , cn ∈ R

d given by Hj = {x ∈ R
d : 〈x, cj〉 = τ}

such that roundτ (〈xi, cj〉) = Bij for all i, j.

Proof. 2 ⇒ 1: Consider points xi and hyperplanes Hj with

the property asserted in the theorem. Define an m×d matrix L
with the xi in its rows, and an n×d matrix R with the cj in its

rows. Then roundτ (LRT ) = B, and hence rrankτ (B) ≤ d.

1⇒ 2: Let B = roundτ (A) with rank(A) ≤ d. Pick any

two real matrices L and R with d columns s.t. LRT = A.

We can consider the rows Li of L as points in R
d (xi = Li)

and the rows Rj of R as the normal vectors (cj = Rj) of

affine hyperplanes Hj with offset τ . Since B = roundτ (A),
we also get Bij = roundτ (〈Li,Rj〉) for all i, j.

Fig. 1 illustrates Th. 1 in R
2 with n = 3 and τ = 0.

The three hyperplanes dissect the space into six convex,

open regions. Each point x ∈ R
2 can be labeled with a

binary vector according to whether it is “above” or “below”

each of the hyperplanes Hj by using the rounding function

roundτ (〈x, cj〉).
The second point of Th. 1 can be interpreted as follows:

Pick a binary matrix B and treat each of the n columns Bj as

the labels of a binary classification problem Pj on m points.

We can find data points x1, . . . ,xm and affine hyperplanes

H1, . . . , Hn in R
d which solve all linear classification problems

Pj without error if and only if the rounding rank of B is at

most d. We then interpret the xi as data points and the cj as

feature weights. Rounding rank decompositions thus describe

the “best case” for multiple linear classification problems: if

the rounding rank of B is d, then we need at least d features to

achieve perfect classification. In other words, we need to collect

at least rrank(B) features (or attributes) to have a chance

to classify perfectly. Similarly, if we employ dimensionality

reduction, linear classification cannot be perfect if we reduce

to less than d dimensions.

Corollary 2 (informal). Rounding rank provides a natural
lower bound on how many features we need for linear
classification. This provides us with lower bounds on data
collection or dimensionality reduction.

D. Comparison of the Ranks

We compare rounding rank with several well-known ranks.

Many of the results in this subsection were obtained for sign

rank in the communication complexity community; we present

these results here in terms of rounding rank. To the best of our

knowledge, we are the first to make the role of the rounding

threshold explicit by introducing mixed matrices (see Prop. 5).

Boolean rank. For binary matrices L ∈ {0, 1}m×k and

R ∈ {0, 1}n×k, the Boolean matrix product L◦RT is given by

the m×n binary matrix with [L◦RT ]ij =
∨k

�=1(Lik∧Rjk) for

all entries i, j. The Boolean rank of a binary matrix B, denoted

brank(B), is the smallest k ∈ N s.t. there exist L ∈ {0, 1}m×k

and R ∈ {0, 1}n×k with B = L ◦ RT [27]. The rounding

rank is a lower bound on the Boolean rank.

Lemma 3. rrank(B) ≤ brank(B).

Proof. Let brank(B) = k. Then there exist matrices L ∈
{0, 1}m×k and R ∈ {0, 1}n×k s.t. B = L◦RT . If we use the

algebra of R, we get [LRT ]ij ≥ 1
2 iff Bij = 1. This implies

round(LRT ) = B and rrank(B) ≤ k = brank(B).

Real rank. Comparing rounding rank and real rank, we

observe that B = round(B) for all binary matrices B. Hence,

rrank(B) ≤ rank(B).

This is in contrast to the relationship between Boolean rank and

standard rank, which cannot be compared (i.e. neither serves

as a lower bound to the other) [28].

Note that the rounding rank can be much lower than both

real and Boolean rank. For example, the n× n “upper triangle

matrix” with 1’s on the main diagonal and above has real and

Boolean rank n, but rounding rank 1 (see Th. 11). As another

example, we show in the extended version of this paper [29]

that the n×n identity matrix has rounding rank 2 for all n ≥ 3.

In fact, while we know that a real-valued n × n matrix can

have rank up to n, the situation is different for rounding rank:

On the one hand, for large enough n, all n × n matrices B
have rrank(B) ≤ ( 12 +o(1))n [2, Cor. 1.2]. On the other hand,

for each n, there exist n × n matrices with rrank(B) ≥ n
32 ,

i.e., the rounding rank can indeed be linear in n [2, Cor. 1.2].

It is well-known that real-valued matrices with all entries

picked uniformly at random from some bounded proper interval

have full standard rank with probability 1. For rounding rank,

an n × n binary matrix sampled uniformly at random has

rounding rank Ω(n) with high probability (see the proof of

Cor. 1.2 in [2]). Hence, the rounding ranks of random binary

matrices are expected to be large. The real-world data matrices

in our experiments often had small rounding ranks, though.

A lower bound on the rounding rank of a binary matrix B
can be derived from the singular values of the sign matrix B±.

Proposition 4. Let r = rank(B±) and let σ1(B
±) ≥ · · · ≥

σr(B
±) > 0 be the non-zero singular values of B±. Then

(rrank0(B) + 1)

rrank0(B)∑
i=1

σ2
i (B

±) ≥ mn.

382



Prop. 4 is a slight modification of a result in [17, Th. 5] and

we give the proof in the extended version [29].

Role of rounding threshold. We compare the rounding

ranks of a fixed matrix for different rounding thresholds. We

call a binary matrix mixed, if it contains no all-zero and no

all-one columns (or rows).

Proposition 5. For any B and arbitrary τ �= τ ′ ∈ R,
rrankτ (B) and rrankτ ′(B) differ by at most 1. If additionally
τ, τ ′ �= 0, rrankτ (B) = rrankτ ′(B) if sign(τ) = sign(τ ′) or
if B is mixed.

To prove Prop. 5 we need Lem. 6 below. The lemma is

implied by the Hyperplane Separation Theorem [10, p. 46],

and we prove it in [29].

Lemma 6. Let A and B be two disjoint nonempty convex sets
in R

d, one of which is compact. Then for all nonzero c ∈ R,
there exists a nonzero vector v ∈ R

d, such that 〈x,v〉 > c
and 〈y,v〉 < c for all x ∈ A and y ∈ B.

Proof of Prop. 5. First claim: Let τ, τ ′ ∈ R be arbitrary

and pick k ∈ N, L ∈ R
m×k, R ∈ R

n×k such that

roundτ (LRT ) = B. Set c = τ ′ − τ , then

Bij = roundτ ([LRT ]ij) = roundτ ′([LRT ]ij + c).

Set L′ =
(
L c1

)
and R′ =

(
R 1

)
, where 1 denotes

the all-one vector. Then roundτ ′(L′R′T ) = B and thus

rrankτ ′(B) ≤ k + 1.

Second claim: Without loss of generality, assume that B
contains no all-zero and no all-one columns (otherwise tranpose

the matrix). Let τ, τ ′ �= 0 and let k and LRT be as before.

If sign(τ) = sign(τ ′), set c = τ ′/τ > 0 and R′ = cR.

Then roundτ (LR) = roundτ ′(LR′) by construction so that

rrankτ ′(B) ≤ k. By reversing the roles of τ and τ ′ in the

argument, we establish rrankτ (B) = rrankτ ′(B).

Suppose τ, τ ′ �= 0 (not necessarily of same sign) and let B
be mixed. We now treat the rows of L as points L1, . . . ,Lm

in R
k and show that there exists an n×k matrix R′ consisting

of normal vectors of affine hyperplanes in R
k in its rows

such that the hyperplanes separate the points with rounding

threshold τ ′, thereby establishing rrankτ ′(B) ≤ rrankτ (B).
Again, by reversing the roles of τ and τ ′, we obtain equality.

To construct the j’th row of R′, let Cj = {Li : Bij = 1} and

C̄j = {Li : Bij = 0}. Notice that since B is mixed, both Cj

and C̄j are non-empty. We observe that the convex hulls of Cj

and C̄j are separated by the affine hyperplane with the j’th

row of R as its normal vector and offset from the origin τ .

Thus, we apply Lem. 6 to obtain a vector r′j s.t. 〈r′j , c〉 > τ ′

for all c ∈ Cj and 〈r′j , c̄〉 < τ ′ for all c̄ ∈ C̄. We set r′j to be

the j’th row of R′. To obtain R′, we repeating this procedure

for each of its n rows.

The above proof can be adopted to show that if B is mixed,

even using a different (non-zero) rounding threshold for each

row (or column) does not affect the rounding rank.

Non-negative rounding rank. While the gap between rank

and non-negative rank can be arbitrarily large [6], for rounding

rank and non-negative rounding rank this is not the case.

Proposition 7. rrank+τ (B) ≤ rrankτ (B) + 2.

This can be shown using ideas similar to the ones in [30]

by a simple but lengthy computation. We give a proof in [29].

E. Computational Complexity

The following proposition asserts that rounding rank is NP-

hard to compute regardless of the rounding threshold.

Proposition 8. It is NP-hard to decide if rrank0(B) ≤ k for
all k > 2. For τ �= 0, it is NP-hard to decide if rrankτ (B) ≤ k
for all k > 1.

For sign rank (i.e. τ = 0), this was proven in [9, Th. 1.2],

[5, Sec. 3]. Moreover, Alon et al. [4] argue that computing the

sign rank is equivalent to the existential theory of the reals.

For τ �= 0, NP-hardness was proven in [24, Th. 10].

It is an open problem whether sign rank or rounding rank

computation is in NP. Assume we store a matrix A that

achieves the rounding rank of B by representing all entries

with rational numbers. The following proposition asserts that

in general, the space needed to store a A can be exponential

in the size of B. Hence, the proposition rules out proving that

computing rounding rank is in NP by nondeterministically

guessing a matrix A of small rank and rounding it.

Proposition 9. For all sufficiently large n, there exist n× n
binary matrices B with rrank(B) = 3 s.t. for each matrix A
with rank(A) = 3 and round(A) = B, it takes Θ(exp(n))
bits to store the entries of A using rational numbers.

Prop. 9 can be derived from the proof of [24, Th. 4].

Lemma 10. The MINERRORRR-k problem is NP-hard to
solve exactly. It is also NP-hard to approximate within any
polynomial-time computable factor.

Proof. Both claims follow from Prop. 8. If in polynomial time

we could solve the MINERRORRR-k problem exactly or within

any factor, then we could also decide if rrank(B) ≤ k by

checking if the result for MINERRORRR-k is zero.

III. COMPUTING THE ROUNDING RANK

In this section, we provide algorithms approximating

rrank(B) and for approximately solving the MINERRORRR-

k problem. The algorithms are based on some of the most

common paradigms for algorithm design in data mining. The

ProjLP algorithm makes use of randomized projections,

R-SVD uses truncated SVD, L-PCA uses logistic PCA, and

Asso is a Boolean matrix factorization algorithm. For each

algorithm, we first discuss how to obtain an approximation to

rrank(B) (in the form of an upper bound) and then discuss

extensions to solve MINERRORRR-k.

Projection-based algorithm (ProjLP). We first describe

a Monte Carlo algorithm to decide whether rrank(B) ≤ d for

a given matrix B and d ∈ N. The algorithm can output YES
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or UNKNOWN. If the algorithm outputs YES, it also produces

a rounding rank decomposition. We use this algorithm for

different values of d to approximate rrank(B).

The decision algorithm is inspired by a simple observation:

Considering an m × n binary matrix B, we have B =
round(BI), where I denotes the n× n identity matrix. We

interpret each row Bi of B as a point in R
n and each column

Ij of I as the normal vector of a hyperplane in R
n. The

hyperplane given by Ij separates the points Bi into the classes

Cj = {Bi : Bij = 1} and C̄j = {Bi : Bij = 0} by the

j’th column of B, since Bij = round(〈Bi, Ij〉). The idea

of ProjLP is to take the points Bi (the rows of B) and

to project them into lower-dimensional space R
d, d  n,

to obtain vectors L1, . . . ,Lm ∈ R
d. We use a randomized

projection that approximately preserves the distances of the

Bi and—if B has rounding rank at most d—try (or hope) to

maintain the separability of the points by hyperplanes by doing

so. Given the projected vectors in R
d, we check separability by

affine hyperplanes and find the corresponding normal vectors

R1, . . . ,Rn using a linear program. If the Li turn out to be

separable, we have Bij = round(〈Li,Rj〉) for all i, j and

thus B = round(LRT ), where L and R have the Li’s and

Rj’s in their rows, respectively. We conclude rrank(B) ≤ d
and output YES. If the Li are not separable, no conclusions

can be drawn and the algorithm outputs UNKNOWN.

The Johnson–Lindenstrauss Lemma [22] asserts that there

exists a linear mapping A that projects points from a high-

dimensional space into a lower-dimensional space while

approximately preserving the distances. We use the projections

proposed by Achlioptas [1] to obtain A. We set Li = BiA.

The linear program (LP) to compute the normal vector Rj is

find Rj ∈ R
d

subject to

d∑
k=1

LikRjk ≥ τ + ε if Bij = 1,

d∑
k=1

LikRjk ≤ τ − ε if Bij = 0.

We enforce strict separability by introducing an offset ε > 0. In

practice, we set ε to the smallest positive number representable

by the floating-point hardware. Notice that the LP only aims at

finding a feasible solution; it has m constraints and d variables.

To approximate the rounding rank, we repeatedly run the

above algorithm with increasing values of d until it outputs

YES; i.e., d = 1, 2, . . .. Alternatively, we could use some form

of binary search to find a suitable value of d. In practice,

however, solving the LP for large values of d slows down the

binary search too much.

To solve MINERRORRR-k, we modify the LP of ProjLP to

output an approximate solution. For this purpose, we introduce

non-negative slack-variables ci as in soft-margin SVMs to

allow for errors, and an objective function that minimizes the

L1 norm of the slack variables. We obtain the following LP:

min
c∈Rm

≥0

Rj∈Rd

m∑
i=1

ci

subject to

d∑
k=1

LikRjk + ci ≥ τ + ε, if Bij = 1,

d∑
k=1

LikRjk − ci ≤ τ − ε, if Bij = 0.

Rounded SVD algorithm (R-SVD). We use rounded SVD

to approximate rrank(B). The algorithm is greedy and similar

to the one in [14]. Given a binary matrix B, the algorithm sets

k = 1. Then it computes the rank-k truncated SVD of B and

rounds it. If the rounded matrix and B are equal, it returns

k, otherwise, it sets k = k + 1 and repeats. The underlying

reasoning is that the rank-k SVD is the real-valued rank k
matrix minimizing the distance to B w.r.t. the Frobenius norm.

Hence, also its rounded version should be “close” to B.

To approximately solve MINERRORRR-k, we compute the

truncated rank-�-SVD of B for all � = 1, . . . , k and return the

rounded matrix with the smallest error.

Logistic Principal Component Analysis (L-PCA). The

logistic function f(x) = (1 + e−x)
−1

is a differentiable

surrogate of the rounding function and it can be used to obtain

a smooth approximation of the rounding.

L-PCA [32] models each Bij as a Bernoulli random variable

with success probability f(〈Li,Rj〉), where L ∈ R
m×k and

R ∈ R
n×k are unknown parameters. Given B and k ∈ N

as input, L-PCA obtains (approximate) maximum-likelihood

estimates of L and R. If each f(〈Li,Rj〉) is a good estimate

of Bij = 1, then ‖B − round(LRT )‖F should be small.

To approximate the rrank(B), we run L-PCA on B for

k = 1 and check if round(LRT ) = B. If this is the case, we

return k, otherwise, we set k = k + 1 and repeat.

To use L-PCA to compute an approximation of MIN-

ERRORRR-k, we simply run L-PCA and apply rounding.

Permutation algorithm (Permutation). The only known

algorithm to approximate the sign rank of a n× n matrix in

polynomial time was given in [4]; it guarantees an upper bound

within an approximation ratio of O(n/ log n). By Prop. 5, we

can use this method to approximate the rounding rank. The

algorithm permutes the rows of the input matrix B s.t. the

maximum number of bit flips over all columns is approximately

minimized. It then algebraically approximates rrank(B) by

evaluating a certain polynomial based on the occurring bit flips.

The algorithm cannot solve the MINERRORRR-k problem.

Nuclear norm algorithm (Nuclear). The nuclear norm

‖X‖∗ of a matrix X is the sum of the singular values of

X and is a convex and differentiable surrogate of the rank

function of matrix. A common relaxation for minimum-rank

matrix factorization is to minimize ‖X‖∗ instead of rank(X).
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In our setting, we obtain the following minimization problem:

X∗ = argmin
X∈Rm×n

‖X‖∗
subject to Xij ≥ τ if Bij = 1,

Xij < τ if Bij = 0.

This method has some caveats: While X∗ must have small

singular values, it may still have many. Additionally, by Prop. 9,

some entries of a matrix A achieving the rounding rank might

be extremely large. In such a case, some of the singular values

of A must also be large, and consequently the nuclear norm

of the matrix is large. Thus, X∗ might have a too large rank.

This algorithm cannot be extended to solve MINERRORRR-k.

IV. NESTED MATRICES

A binary matrix is nested if we can reorder its columns

such that after the reordering, the one-entries in each row

form a contiguous segment starting from the first column [25].

Intuitively, nested matrices model subset/superset relationships

between the rows and columns of a matrix. Such structures

are, for example, found in presence/absence data of locations

and species [25].

We show that nested matrices are exactly the matrices with

non-negative rounding rank 1. Formally, a binary matrix B
is directly nested if for each one-entry Bij = 1, we have

Bi′j′ = 1 for all i′ ∈ {1, . . . , i− 1} and j′ ∈ {1, . . . , j − 1}.
A binary matrix B is nested if there exist permutation matrices

P 1 and P 2, such that P 1BP 2 is directly nested.

Theorem 11. Let 0 �= B ∈ {0, 1}m×n. Then B is nested if
and only if rrank+(B) = 1.

Proof. ⇒: We reorder the rows and columns of B by the

number of 1s they contain in descending order. This gives us

permutation matrices P 1 and P 2 s.t. B′ = P 1BP 2 is directly

nested. Set p = B′1, i.e., p is the vector containing the row

sums of B′. Then for l′ and r′ with l′i = 2pi−1 and r′j = 2−j ,

B′ = round(l′ · (r′)T ). Setting l = P T
1 l
′ and r = P 2r

′, we

get B = round(l · rT ). Hence, we have rrank(B) = 1.

⇐: Let l ≥ 0 and r ≥ 0 be s.t. B = round(lrT ). Then there

exist permutation matrices P 1 and P 2 s.t. for l′ = P 1l we

have l′1 ≥ · · · ≥ l′m and for r′ = P T
2 r we have r′1 ≥ · · · ≥ r′n.

Set B′ = round(l′(r′)T ) and observe l′ir
′
j ≥ l′i+1r

′
j for all

i, j. Therefore, for each entry of B′, B′
ij = round(l′ir

′
j) ≥

round(l′i+1r
′
j) = B′

(i+1)j . Similarly, B′
ij = round(l′ir

′
j) ≥

round(l′ir
′
j+1) = B′

i(j+1). Therefore, B′ is directly nested.

We conclude that B = lrT is nested since B = round(lrT ) =
P T

1 round(P 1(lr
T )P 2)P

T
2 = P T

1 B
′P T

2 .

Binary matrices with rounding rank 1 are also closely related

to nested matrices.

Proposition 12. Let 0 �= B ∈ {0, 1}m×n. The following
statements are equivalent:

1) rrank(B) = 1.

2) there exist permutation matrices P 1 and P 2 and nested
matrices B1 and B2, such that

B = P 1

(
B1 0
0 B2

)
P 2.

The proof is in the extended version [29].

Algorithms. Mannila and Terzi [25] introduced the Bidirec-
tional Minimum Nestedness Augmentation (BMNA) problem:

Given a binary matrix B, find the nested matrix A which

minimizes ‖B −A‖F . We will discuss three algorithms to

approximately solve this problem.

[25] gave an algorithm, MT, which approximates a solution

for the BMNA problem by iteratively eliminating parts of the

matrix that violate the nestedness.

Next, we propose a alternating minimization algorithm,

NNRR1, which exploits Th. 11. NNRR1 maintains two vectors

l ∈ R
m
≥0 and r ∈ R

n
≥0 and iteratively minimizes the error

‖B− round(l ·rT )‖F . It starts by fixing r and updates l, such

that the error is minimized. Then l is fixed and r is updated.

This procedure is repeated until the error stops reducing or we

have reached a certain number of iterations.

We describe an update of l for fixed r; updating r for given

l is symmetric. Observe that changing entry li only alters the

i’th row of A = l · rT , and consequently Ai is not affected

by any lk with k �= i. Hence, we only describe the procedure

for updating li. Define the set Vi = {rj : Bij = 1} of all

values of r where Bi is non-zero. We make the following

observations: If we set li <
1

2max(r) , then Ai only contains

zeros after the update. If 1
2max(r) < li <

1
2max(Vi)

, then after

the update all non-zeros of Ai will be in entries where Bi has

a zero. If l > 1
2min(Vi)

, we add too many 1s to Ai. Thus, all

values that we need to consider for updating li are 1
2max(r) and

the values in { 1
2v : v ∈ Vi}. The algorithm tries all possible

values for li exhaustively and computes the error at each step.

We can also use the results of MT as initialization for NNRR1:

We run MT and obtain a nested matrix B. Now we use the

construction from step 1 of the proof of Th. 11 to obtain l and

r with B = round(lrT ), and try to improve using NNRR1.

Finally, we can use R-SVD to solve the BMNA problem

approximately. By the Perron–Frobenius Theorem [21, Ch. 8.4],

the principal left and right singular vectors of a non-negative

matrix are also non-negative. Hence we may use the R-SVD
algorithm to obtain the rank-1 truncated SVD and round. By

Th. 11, the result must be nested.

V. EXPERIMENTS

We conducted an experimental study on synthetic and real-

world datasets to evaluate the relative performance of each algo-

rithm for estimating the rounding rank or for MINERRORRR-k.

A. Implementation Details

For L-PCA, we used the implementation by the authors of

[32]. We implemented MT and Permutation in C and all

other algorithms in Matlab. For Nuclear, we used the CVX

package with the SeDuMi solver [20]. For solving the linear

programs in ProjLP, we used Gurobi.
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Due to numerical instabilities, Nuclear often returned a

matrix with only positive singular values (i.e. of full rank). We

countered this by zeroing the smallest singular values of the

returned matrix that did not affect to the result of the rounding.

All experiments were conducted on a computer with eight

Intel Xeon E5530 processors running at 2.4 GHz and 48 GB

of main memory. All our algorithms and the synthetic data

generators are available online.1

B. Results With Synthetic Data

We start by studying the behavior of the algorithms under

controlled synthetic datasets.

1) Data generation: We generated synthetic data by sam-

pling two matrices L ∈ R
m×k and R ∈ R

n×k and then

rounding their product to obtain B = roundτ (LRT ) with

rounding rank at most k. The actual rounding rank of B can

be lower, however, because there may be matrices L′ ∈ R
m×k′

and R′ ∈ R
n×k′

with k′ < k and roundτ (L
′R′T ) = B. (In

fact, we sometimes found such matrices.) In some experiments,

we additionally applied noise by flipping elements selected

uniformly at random. We report as noise level p the ratio of

the number of flipped elements to the number of non-zeros in

the original noise-free matrix.

We sampled every element of L and R i.i.d. using two

families of distributions: uniform and normal distribution. For

both distributions, we first pick a desired expected value μ =
E[(LRT )ij ] of each entry in LRT . We then parameterize the

distributions such that the expected value for an element of

L or R is q =
√

μ/k. For the normal distribution, we set the

variance to 1, and for the uniform distribution, we sampled

from range [q − 1/2, q + 1/2].
We generated two sets of matrices. In the first set, the

matrices were very small, and it was used to understand

the behavior of the slower algorithms. In the second set, the

matrices were medium-sized, to give us more realistic-sized

data, but we could use only some of the methods with these data.

When generating the data, we varied four different parameters:

number of rows m, the planted rank k, the expected value μ,

and the level of noise p. In all experiments, we varied one of

these parameters, while keeping the others fixed. We generated

all datasets with rounding threshold τ = 1/2. For the small

data, we used n = 100 columns and the number of rows varied

from 60 to 220 with steps of 40 with the default value being

n = 100. The rank k in the small matrices varied from 5 to

30 with steps of 5, default being k = 10; the expected value μ
varied from 0.1 to 0.7 with 0.1 steps (default was μ = 0.5); the

noise level p varied from 0.05 to 0.5 with steps of 0.05, and by

default we did not apply any noise. We generated ten random

matrices with each parameter setting to test the variation of

the results.

For the medium-sized matrices, we used n = 300 columns

and the number of rows varied from 400 to 600 with steps

of 50 the default being m = 500; the planted rank k varied

1http://dws.informatik.uni-mannheim.de/en/resources/software/
rounding-rank/

from 40 to 100 with default value k = 60; the expected value

and the noise were as with the small data. We generated five

random matrices with each parameter setting.

2) Rounding rank: In our first set of experiments, we studied

the performance of the different algorithms for estimating the

rounding rank. The results for the small synthetic datasets are

summarized in Fig. 2. The results are given for the uniformly

distributed factor matrices; the results with normally distributed

factors were largely similar and are postponed to [29].

We used ProjLP, Nuclear, R-SVD, and L-PCA. We also

used Permutation in all experiments except when we varied

the number of rows (Permutation only works with square

matrices). We also computed a lower bound Spectral LB on

rrank0 using Prop. 4. Finally, in experiments with no noise,

we also plot the planted rank (inner dimension of the factor

matrices), which acts as an upper bound of the actual rounding

rank.

As can be seen from Fig. 2, the estimated lower bound

is almost always less than 3, even when the data contains

significant amounts of noise. It seems reasonable to assume

that the true rounding rank of the data is therefore closer to

the upper bound of our planted rank than the estimated lower

bound given by Spectral LB.

Of the algorithms tested here, ProjLP, and Permutation
are the only ones that aim directly to find the rounding rank,

with Permutation being the only one with approximation

guarantees (albeit weak ones). Our experiments show that

Permutation is not competitive to most other methods;

good theoretical properties do not ensure a good practical

behavior. ProjLP performs much better, being typically the

second-best method. R-SVD is commonly employed in the

literature, but our experiments show clearly that for computing

the rounding rank, it is not recommended.

L-PCA consistently produced the smallest (i.e. best) rank

estimate but it was also the second-slowest method. ProjLP,

the second-best method for estimating the rank, was much

faster. R-SVD often produced the worst estimates, but it is also

the fastest method. The running times are broadly as expected:

Nuclear has to solve a semidefinite programming prob-

lem, L-PCA solves iteratively dense least-squares problems,

ProjLP only needs to solve linear equations, and R-SVD
computes a series of orthogonal projections.

Varying the different parameters yielded mostly expected

results with the most interesting result being how little the

rank and noise had effect to the results. We assume that this

is (at least partially) due to the robustness of the rounding

rank: increasing the noise, say, might not have increased the

rounding rank of the matrix. This is clearly observed when

the rank is varied (Fig. 2(b)), where L-PCA actually obtains

smaller rounding rank than the planted one.

3) Minimum-error decomposition: We now study the algo-

rithms’ capability to return low-error fixed-rank decompositions.

We leave out Permutation and Nuclear as they only

approximate rounding rank. Instead, we add a method to

compare against: T-SVD. It computes the standard truncated

SVD, that is, we do not apply any rounding. T-SVD is used
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Figure 2. Estimated rounding ranks and running times on small synthetic data varying different parameters. The top row gives estimated rank for uniformly
distributed factor matrices and the bottom row shows running times. Permutation can only run on square matrices and was excluded from the “vary m”
experiments. All data points are averages over 10 random matrices and the width of the error bars is twice the standard deviation.

for providing a baseline: in principle, the methods that apply

rounding should give better results as they utilize the added

information that the final matrix must be binary. At the same

time, however, the rounding procedure may emphasize small

errors (e.g., incorrectly representing a 1 with 0.49 contributes

≈ 0.26 to the sum of squares; after rounding, the contribution

is 1). We also tested the Asso [27] algorithm for Boolean

matrix factorization (BMF). Like any BMF algorithm, Asso
returns a rounding rank decomposition restricted to binary

factor matrices. The performance of Asso’s approximations

was so much worse than the performance of the other methods

that we decided to omit it from the results.

To compare the algorithms, we use the relative reconstruction

error, that is, the squared Frobenius norm of the distance

between the data and its representation relative to the squared

norm of the data. For all method except T-SVD, the relative

reconstruction error agrees with the absolute number of errors

divided by the number of non-zeros in the data.

The results for these experiments are presented in Fig. 3.

We only report the reconstruction with uniformly distributed

factors: the running times were as with the above experiments,

and the results with normally distributed factors were generally

similar to the reported ones. The other results are in [29].

As in the above experiments, L-PCA is the best method, and

the slowest as well, taking sometimes an order of magnitude

longer than ProjLP. The best all-rounder here, though, is the

R-SVD method: it provided reasonable results and was by far

the fastest method.

C. Results with Real-World Data

We now turn our attention to real-world datasets. For these

experiments we used only ProjLP, L-PCA, and R-SVD to

estimate the rounding rank, and added T-SVD and Asso for

the minimum-error decompositions.
Datasets. The basic properties of the datasets are listed

in Tab. I. The ABSTRACTS data set2 is a collection of

project abstracts that were submitted to the National Science

Foundation of the USA in applications for funding. The data is

documents-by-terms matrix giving the appearance of terms in

documents. The DBLP data3 is an authors-by-conferences

matrix containing information who published where. The

PALEO data set4 contains information about the locations at

which fossils of certain species were found. It was fetched

by [18] and preprocessed according to [19]. The DIALECT

data [11], [12] contains information about which linguistic

features appear in the dialect spoken in various parts of Finland.

The APJ dataset is a binary matrix containing access control

rules from Hewlett-Packard [13].
Rounding rank. First we computed the upper bounds for

the rounding ranks with the different methods. The results

and running times are shown in Tab. I. As with the synthetic

experiments, L-PCA is again giving the best results, followed

by ProjLP and R-SVD, the latter of which returns often

significantly worse results than the other two. In the running

times the order is reversed, L-PCA taking orders of magnitude

longer than ProjLP, which is still slower than R-SVD.
Note that the estimated rounding ranks in Tab. I are

significantly less than the respective normal or Boolean ranks.

For example, for the APJ data, the normal rank is 455, the

Boolean rank is 453, but L-PCA shows that the rounding rank

is at most 9. Similarly, the normal and Boolean ranks for DBLP

2http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html
3http://dblp.uni-trier.de/db/
4http://www.helsinki.fi/science/now/
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Figure 3. Relative reconstruction errors on medium-sized synthetic data with uniformly distributed factors. The results of Asso are omitted as they were
significantly worse than the other results. All data points are averages over 10 random matrices and the width of the error bars is twice the standard deviation.

Table I
UPPER BOUNDS FOR ROUNDING RANK WITH τ = 0.5 FOR THE

REAL-WORLD DATA. KNOWN BOOLEAN RANKS FROM [7]. L-PCA DID NOT

FINISH ON THE ABSTRACTS DATA IN REASONABLE TIME.

Dataset properties Upper bounds on rrank

Dataset m n rank brank ProjLP L-PCA R-SVD

ABSTRACTS 12841 4894 4893 – 449 – 4421
(437h) – (9h)

APJ 2044 1164 455 453 29 9 443
(151s) (109min) (35s)

DBLP 19 6980 19 19 12 11 19
(46s) (77min) (2s)

DIALECT 1334 506 506 – 91 78 445
(527s) (54h) (17s)

PALEO 124 139 123 – 26 13 68
(10s) (271s) (1s)

are 19, while the rounding rank is no more than 11. In most

cases, the rounding rank is about an order of magnitude smaller

than the real rank. This shows that the expressive power of

the methods significantly increases by applying the rounding.

Minimum-error decompositions. The relative reconstruc-

tion errors for the real-world datasets together with running

times are presented in Tab. II. Again, L-PCA is often—but not

always—the best method, especially with higher ranks. Again,

the running time was high though. An exception to this is the

ABSTRACTS data, where L-PCA is in fact faster than ProjLP
(although it is still extremely slow). Again, ProjLP is often

the second-best, and more consistently so with higher ranks.

D. Nestedness

Here we studied the possibility to use the non-negative

rounding rank-1 decomposition to solve the BMNA problem.

For these purposes, we generated nested matrices, perturbed

them with noise, and tried to find the closest nested matrix

using MT, NNRR1, their combination MT+NNR1, and R-SVD.

All nested matrices were 200-by-300 and we varied the density

of the data (from 0.1 to 0.7 with steps of 0.1) and the noise

level (from 0.05 to 0.5 with steps of 0.05). A default density

of μ = 0.5 was used when the noise was varied, and noise

level p = 0.15 was used when the density was varied.

Our results are shown in Fig. 4. MT and NNRR1 produced

similar results, with MT being slightly better. The combined

MT+NNR1 is no better than MT, and R-SVD is significantly

worse. In the running times, though, we see that MT takes

much more time than the other approaches.

VI. CONCLUSIONS

Rounding rank is a natural way to characterize the commonly-

applied rounding procedure. Rounding rank has some signifi-

cant differences to real rank: for example, restricting the factor

matrices to be non-negative has almost no consequences to

rounding rank. Rounding rank provides a robust definition of an

intrinsic dimension of a data, and as we saw in the experiments,

real-world data sets can have surprisingly small rounding

ranks. At the same time, rounding rank-related problems appear

naturally in various different fields of data analysis; for example,

the connection to nested matrices is somewhat surprising, and

allowed us to develop new algorithms for the BMNA problem.

Unfortunately, computing the rounding rank, and the related

minimum-error decomposition, is computationally very hard.

We have studied a number of algorithms—based on common

algorithm design paradigms in data mining—in order to

understand how well they behave in our problems. None of

the tested algorithms emerges as a clear winner, though.

The most obvious future research direction is to find

better algorithms that aim directly for good rounding rank

decompositions and scale to larger data sizes. Another question

is if the factors obtained by a rounding rank decomposition

reveal interpretable insights into the data. The connections of

rounding rank to other problems also propose natural follow-up

questions. For example, communities in graphs are often nested

(sub-)matrices [26]. Could rounding rank decompositions be

used to find non-clique-like communities?
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Table II
RECONSTRUCTION ERRORS RELATIVE TO THE NUMBER OF NON-ZEROS AND RUNNING TIMES IN REAL-WORLD DATA.

ABSTRACTS APJ DBLP DIALECT PALEO

k = 10 50 100 5 10 15 5 10 15 10 30 50 5 10 20

Relative reconstruction error
ProjLP 1.152 1.091 0.842 0.626 0.302 0.099 0.408 0.060 0.003 0.378 0.130 0.036 0.701 0.360 0.037
L-PCA 0.993 0.863 0.459 0.631 0.194 0.034 0.150 0.003 0.000 0.200 0.031 0.002 0.552 0.089 0.000
R-SVD 0.995 0.937 0.843 0.641 0.611 0.573 0.488 0.225 0.058 0.258 0.137 0.094 0.697 0.516 0.260
T-SVD 0.917 0.838 0.766 0.640 0.596 0.559 0.382 0.198 0.064 0.212 0.120 0.089 0.515 0.410 0.283
Asso 0.988 0.971 0.960 0.663 0.637 0.603 0.531 0.347 0.187 0.442 0.358 0.333 0.793 0.706 0.602

Running time (seconds)
ProjLP 9627 27201 72956 54 64 63 12 13 12 26 83 169 2 2 2
L-PCA 675 17849 39954 39 235 297 98 114 109 96 166 218 11 12 17
R-SVD 3 6 13 1 1 1 1 1 1 1 1 1 1 1 1
T-SVD 2 6 13 1 1 1 1 1 1 1 1 1 1 1 1
Asso 2366 11701 23023 8 17 23 29 52 75 49 145 238 1 1 1
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Figure 4. Relative reconstruction errors and running times on nested data. The running times for MT+NNR1 exclude the running time of the MT algorithm. All
data points are averages over 10 random matrices and the width of the error bars is twice the standard deviation.
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