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Abstract

The query optimizer plays an important role in a database management system
supporting a declarative query language, such as SQL. One of its central com-
ponents is the plan generator, which is responsible for determining the optimal
join order of a query. Plan generators based on dynamic programming have
been known for several decades. However, some significant progress in this field
has only been made recently. This includes the emergence of highly efficient
enumeration algorithms and the ability to optimize a wide range of queries by
supporting complex join predicates. This thesis builds upon the recent advance-
ments by providing a framework for extending the aforementioned algorithms.
To this end, a modular design is proposed that allows for the exchange of indi-
vidual parts of the plan generator, thus enabling the implementor to add new
features at will. This is demonstrated by taking the example of two previous-
ly unsolved problems, namely the correct and complete reordering of different
types of join operators as well as the efficient reordering of join operators and
grouping operators.





Zusammenfassung

Der Anfrageoptimierer spielt eine wichtige Rolle in Datenbanksystemen, die
deklarative Anfragesprachen wie SQL unterstützen. Eine der zentralen Kom-
ponenten des Anfrageoptimierers ist der Plangenerator, der für die Optimierung
der Join-Reihenfolge zuständig ist. Plangeneratoren, die auf dynamischer Pro-
grammierung basieren, gibt es bereits seit einigen Jahrzehnten. Einige entschei-
dende Durchbrüche auf diesem Gebiet wurden allerdings erst in den letzten
Jahren gemacht. Beispiele hierfür sind effiziente Aufzählungsalgorithmen für
Teilpläne und die Unterstützung von komplexen Join-Prädikaten. Aufbauend
auf diesen neuen Erkenntnissen beschreibt die vorliegende Dissertation einen
Ansatz zur Erweiterung derartiger Plangeneratoren. Dazu wird zunächst ein
modulares Design zum einfachen Austausch von Teilen des Plangenerators be-
schrieben, welches das Hinzufügen neuer Funktionen erleichtert. Dies wird
demonstriert am Beispiel zweier bisher ungelöster Probleme, nämlich der kor-
rekten und vollständigen Optimierung der Reihenfolge verschiedenartiger Join-
Operatoren und der Optimierung der Reihenfolge von Join- und Gruppierungs-
operatoren.
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1 Introduction

Query languages such as SQL are declarative. They are meant to describe
a certain query result desired by the user without specifying how it should
be obtained. Typically, there are many equivalent execution orders for the
operations necessary to answer a query. They all lead to the correct result, but
they differ largely in the resources they consume in doing so.

The task of query optimization is to find the best query evaluation plan for a
given query according to some metric. A query evaluation plan precisely defines
how a query should be processed by specifying the order in which the necessary
operations are executed and how. In other words, a query evaluation plan is an
operator tree with physical algebraic operators as nodes. Physical in the sense
that these operators are not only logical representations of algebraic operators,
but they comprise the information needed to apply them including a specific
implementation.

Query optimization has been a topic of research for many decades. However,
some significant progress in this field has only been made in the last decade.
This includes the development of highly efficient algorithms for solving one of
the most important and oldest problems in query optimization, namely the op-
timization of the join order [10, 11, 12, 13, 14, 30, 32]. This is the responsibility
of the so-called plan generator.

This thesis builds upon the recent advancements by providing a framework
for extending the aforementioned algorithms. To this end, a modular design is
proposed that allows for the exchange of individual parts of the plan generator,
thus enabling the implementor to add new features at will. This is demon-
strated by taking the example of two previously unsolved problems, namely the
correct and complete reordering of different types of join operators as well as
the efficient reordering of join operators and grouping operators.

The thesis is structured as follows: Chapter 2 contains some preliminaries
consisting of a brief overview of query optimization in general, the introduction
to the notation used throughout this work and the description of some basic data
structures such as query graphs and join trees. Chapter 3 presents the building
blocks of current plan generators. The modular architecture described in this
chapter is one of the contributions of this thesis. The problem of reordering
non-inner joins is covered in Chapter 4 by proposing a novel approach that
allows the enumeration of all valid and only valid query plans containing join
operators that are not freely reorderable. In Chapter 5 we turn our attention to
the problem of optimizing the execution order of join operators and grouping
operators. The proposed solution serves as an example of how the functionality
of the plan generator can be extended while keeping its complexity in check.
Some examples of similar problems and solution approaches can be found in
Chapter 6 along with a conclusive summary of this work.
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2 Preliminaries

This chapter summarizes the basics of query optimization, including common
data structures such as query graphs and join trees. We begin with a cursory
overview of query optimization in general.

2.1 Query Optimization in a Nutshell

Conceptually, query optimization is often split into two phases, namely a logical
and a physical phase. In the logical phase the optimal ordering of operators is
determined by exploiting certain algebraic equivalences. In the physical phase
the resulting operator tree is annotated with additional information such as
the implementations of the contained operators. While this separation helps
to better understand these two aspects of query optimization, it is typically
not applied in practice. That is because decisions on the logical and physical
level often influence each other. For example, the optimal join order of a query
might depend on the join implementations or indices available in the system.
But in theory, optimizing the join order would be attributed to logical query
optimization, while the questions whether or not a certain relation should be
accessed using an index and which join implementation to use for a certain
operator are clearly seen as part of physical optimization.

The first step of transforming a declarative query into an executable query
evaluation plan typically is to rewrite the query in some way. For example,
the rewrite can include unnesting of nested queries or pushing selections down.
Then, the rewritten query is translated into an internal representation, which is
passed to a plan generator. The plan generator finally turns it into an optimal
query evaluation plan.

There are two basic approaches to plan generation, namely the transformation-
based and the generative approach. The former transforms one plan into an-
other equivalent plan by applying certain transformation rules. These can be
derived from algebraic equivalences. The generative approach works by build-
ing query plans from smaller subplans, adding one algebraic operator after the
other until a complete plan is assembled. This means that an executable plan
is available only after all necessary operators have been added to the plan.

One disadvantage of transformation-based plan generators is that they typi-
cally produce duplicate plans because often the same plan can be derived from
other plans through different sequences of transformations. In general, the
generative approach is more efficient but also less extendable. Introducing
new transformation rules into a transformation-based plan generator is typi-
cally much easier than incorporating them in a generative plan generator. One
prominent example of a transformation-based plan generator is the EXODUS
optimizer [20]. A generative query optimizer was first described as part of the
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2 Preliminaries

System R research prototype at IBM [40]. We will take a more detailed look at
it in Chapter 3.

Generative plan generators can be further categorized into those based on
memoization and those based on dynamic programming (DP). A memoization-
based plan generator works recursively by partitioning every set S of relations
into subsets and considering all join trees between such a subset S1 and its
complement S2. The best tree for each set is stored in a solution table, because
the same subset can be contained in more than one relation set. In the end, an
optimal solution for the whole relation set can be looked up in the table.

Dynamic programming, on the other hand, works bottom-up by iteratively
constructing larger join trees from smaller join trees. Again, the best tree for
each subproblem is stored in a so-called DP table and looked up later to build
the overall solution. In this thesis the focus lies on DP-based plan generators.
The problems we will discuss subsequently are unique to generative plan gener-
ators, but they occur regardless of whether the plan generator works bottom-up
or top-down. Consequently, the solutions to these problems are mostly applica-
ble to both memoization-based and DP-based plan generators with only slight
adaptations.

Chapter 3 provides several examples of DP-based plan generators and de-
scribes the different components they typically consist of. What makes gener-
ative plan generators so efficient is the fact that the problem of optimizing the
join order falls into a category of problems that can be solved using Bellman’s
Principle of Optimality. It can be stated as follows:

Let T be an optimal join tree for relations R1, . . . , Rn. Then, every
subtree S of T must be an optimal join tree for the relations it
contains.

In other words, an optimal solution containing all relations R1, . . . , Rn can
be constructed by combining optimal solutions for the contained subsets of
relations, which is exactly what dynamic programming and memoization do.
As we will see in Section 2.4, Bellman’s Principle of Optimality no longer holds
when plan properties are taken into account.

2.2 Relational Algebra

Since SQL is declarative and therefore not suitable for describing a query eval-
uation plan, queries have to be translated into an imperative language before
they can be optimized. One such language is relational algebra. It consists of a
set of operators with relations as their input and output. These operators are
typically arranged in an operator tree, which indicates a distinct ordering of the
contained operators and thereby specifies an evaluation strategy for the corre-
sponding query. According to the set-based definition of relations, relational
algebra is generally defined with set semantics, i.e., input and output relations
are expected to be duplicate-free. We deviate from this convention and define
our algebraic operators on bags instead of sets, meaning that by our definition,
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2.2 Relational Algebra

relations can contain duplicates. With this, we follow SQL’s bag-oriented defi-
nition of relations. If necessary, we explicitly state whether a certain operator
produces duplicates in its output, or not.

2.2.1 Algebraic Operators

The first operator to consider is the selection operator σp(e). It returns all tuples
resulting from expression e that satisfy the selection predicate p. Formally, it
is defined as

σp(e) := {x|x ∈ e, p(x)}.

We continue with the duplicate-removing projection, which we denote by ΠD
A (e)

for a set of Attriutes A and an algebraic expression e. The resulting relation
only contains values for those attributes from e that are contained in A and no
duplicate values. Analogously, we denote the duplicate-preserving projection
by ΠA(e).

The map operator χ extends every input tuple by new attributes. The values
of the new attributes are determined by expressions of any type. For example,
this could be scalar functions. In the following definitions we denote tuple
concatenation by ◦:

χa1:e1,...,an:en(e) := {t ◦ [a1 : e1(t), . . . , an : en(t)]|t ∈ e}

We can now move on to the grouping operator Γ. It can be defined as

ΓθG;g:f (e) := {y ◦ [g : x] | y ∈ ΠD
G(e),

x = f({z|z ∈ e, z.G θ y.G})}

for a set of grouping attributes G, a single attribute g, an aggregate function f
and a comparison operator θ ∈ {=, 6=,≤,≥, <,>}.

The function f is applied to groups of tuples taken from ΠD
G(e). The groups

are determined by the comparison operator θ. Afterwards, a new tuple con-
sisting of the grouping attributes’ values and an attribute g holding the corre-
sponding value returned by the aggregate function f is constructed.

The grouping operator can also introduce more than one new attribute by
applying several aggregate functions. We define

ΓθG;b1:f1,...,bk:fk(e) := {y ◦ [b1 : x1, . . . , bk : xk] | y ∈ ΠG(e),

xi = fi({z|z ∈ e, z.G θ y.G})},

where the attribute values b1, . . . , bk are obtained by applying the aggrega-
tion vector F = (f1, . . . , fk), consisting of k aggregate functions, to the tuples
grouped according to θ. The grouping criterion may also be defined on several
attributes. If all θ equal ‘=’, we abbreviate Γ=G;g:f by ΓG;g:f .

Next, we go over the set of join operators consisting of (inner) join (B),
left semijoin (N), left antijoin (T), left outerjoin (E), full outerjoin (K), and
left groupjoin (Z). Subsequently, we will use the name LOP (short for “left
operators”) when referring to this operator set. Most of the operators are rather
standard. Nonetheless, their definitions are provided in Figure 2.1. There, ⊥A
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e1 A e2 := {r ◦ s|r ∈ e1, s ∈ e2} (2.1)

e1 Bp e2 := {r ◦ s|r ∈ e1, s ∈ e2, p(r, s)} (2.2)

e1 Np e2 := {r|r ∈ e1,∃s ∈ e2, p(r, s)} (2.3)

e1 Tp e2 := {r|r ∈ e1,@s ∈ e2, p(r, s)} (2.4)

e1 Ep e2 := (e1 Bp e2) ∪ ((e1 Tp e2) A {⊥A(e2)} (2.5)

e1 Kp e2 := (e1 Bp e2)

∪((e1 Tp e2) A {⊥A(e2)}
∪({⊥A(e1)}A (e2 Tp e1)) (2.6)

e1 Zp;g:f e2 := {r ◦ [g : G]|r ∈ e1, G = f({s|s ∈ e2, p(r, s)})} (2.7)

Figure 2.1: Join operators

denotes a tuple containing only null values in all attributes contained in the
attribute set A.

The last row defines the left groupjoin Z, which was introduced by von
Bültzingsloewen [43]. First, for a given tuple t1 ∈ e1, it determines the sets
of all join partners in e2 according to the join predicate p. Then, it applies
the aggregate function f to these tuples and extends t1 by a new attribute g
containing the result of this aggregation. Figure 2.2 provides examples for all
operators.

2.2.2 Predicates and Expressions

When dealing with predicates or other expressions such as aggregation vectors,
we use the following notation for accessing relations, attributes and operators
referenced therein.

We denote by A(e) the set of attributes or variables provided by some ex-
pression e and by F(e) the set of free attributes or variables in some expression
e. For example, for a join predicate p with p ≡ R.a + S.b = S.c + T.d we get
F(p) = {R.a, S.b, S.c, T.d}.

For a binary operator ◦, left(◦) denotes the left subtree of ◦ and right(◦)
denotes the right subtree of ◦.

For a set of attributes A, T (A) denotes the set of tables to which these
attributes belong. We abbreviate T (F(e)) by FT (e). For p defined as above
we get FT (e) = T (F(e)) = {R,S, T}.

Let ◦ be an operator in the initial operator tree. We denote by left(◦)
(right(◦)) its left (right) child. STO(◦) denotes the operators contained in
the operator subtree rooted at ◦. T (◦) denotes the set of tables contained in
the subtree rooted at ◦.

Two important properties of join predicates are null-rejection and degenera-
tion.

Definition 1. A predicate is null-rejecting for a set of attributes A if it eval-
uates to false or unknown on every tuple in which all attributes in A are null.
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R1

a b c

0 0 1
1 0 1
2 1 3
3 2 3

R2

d e f

0 0 1
1 1 1
2 2 1
3 4 2

R1 BR1.b=R2.d R2

a b c d e f

0 0 1 0 0 1
1 0 1 0 0 1
2 1 3 1 1 1
3 2 3 2 2 1

R1 TR1.a=R2.e R2

a b c

3 2 3

R1 NR1.b=R2.d R2

a b c

0 0 1
1 0 1
2 1 3
3 2 3

R1 ZR1.a=R2.f ;g:sum(R2.f) R2

a b c g

1 0 1 3
2 1 3 2

Figure 2.2: Examples of different join operators

For example, the predicate a = null is null-rejecting for {a}. The predicate
“a is null”, on the other hand, is not null-rejecting for {a}. Some common
synonyms for null-rejecting are null-intolerant, strong, and strict. Subsequently,
we denote by NR(p) the set of attributes p rejects nulls for.

Degenerate join predicates are those that do not reference tables from all join
arguments.

Definition 2. Let p be a predicate associated with a binary operator ◦ and
FT (p) the tables referenced by p. Then, p is called degenerate if T (left(◦)) ∩
FT (p) = ∅ ∨ T (right(◦)) ∩ FT (p) = ∅ holds.

For example, in Btrue the predicate true is degenerate. Moreover, the expres-
sion is equivalent to a cross product.

2.3 Query Graphs and Join Trees

The query graph is a convenient way of representing the structure of a query.
All plan generators we will discuss subsequently expect a query graph as their
input and produce an algebraic operator tree as their output. Before we can
define query graphs, we have to define hypergraphs:
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Definition 3. A hypergraph is a pair H = (V,E) such that

1. V is a non-empty set of nodes and

2. E is a set of hyperedges, where a hyperedge is an unordered pair (u,v) of
non-empty subsets of V (u ⊂ V and v ⊂ V ) with the additional condition
that u ∩ v = ∅.

A hyperedge (u, v) is simple if |u| = |v| = 1. A hypergraph is simple if all its
hyperedges are simple.

With this, a query graph is defined as follows:

Definition 4. The query graph for a query Q is a hypergraph H = (V,E), such
that

1. V represents the set R = {R1, . . . , Rn} of relations referenced in Q and

2. for every (u, v) ∈ E, u and v represent (sets of) relations referenced by a
join predicate in Q.

In other words, for every join predicate in Q, the query graph contains an edge
(u, v) with u/v representing the relations referenced on the left/right side of the
predicate. This definition makes clear why the query graph is a hypergraph in
general: in SQL a join predicate can reference more than two relations. For an
example, consider the following predicate referencing relations R0, R1 and R2:

R0.a+R1.b = R2.c

Queries can be classified by the shape of their query graph. Typically, at least
four different shapes are distinguished:

• chain queries, where the query graph is acyclic and every node has a link
to at most two other nodes,

• star queries, where all nodes are linked to one hub,

• cycle queries, where the query graph contains a cycle and

• clique queries, where every node is linked to every other node.

Figure 2.3 provides an example of each class. Hybrid forms of every type are
conceivable and often seen in practice.

The task of the plan generator is to find an optimal join tree for a given
query. In contrast to a query graph, a join tree represents an execution order
of joins. A join tree typically is a binary tree whose inner nodes represent the
join operators. In our case these can be any of the join operators introduced in
Section 2.2. The leaf nodes of a join tree represent the relations referenced in
the corresponding query.

Much like query graphs, join trees can be distinguished by their shape. Fig-
ure 2.4 provides some examples of different shapes. The output of the plan
generator is sometimes deliberately restricted to join trees of a certain shape
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R2

Cycle

R3

R0 R1

R2

Clique

R3

R0 R1

R0 R1

Chain

R2 R3

R2

Star

R3

R0 R1

R4

Figure 2.3: Different shapes of query graphs
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R0 R1

B

R2 R3

Bushy

Figure 2.4: Different shapes of join trees

to reduce the size of the search space the plan generator has to cover. Clearly,
this means that the optimal join tree will not be found if it is a bushy tree, but
the plan generator is only capable of producing left-deep trees. We will return
to this issue again in Section 3.1

For now, it is most important to notice that the number of possible join trees
for a query is closely related to the shape of the query graph if the plan generator
does not introduce cross products. This can easily be seen by considering that
the edges in the query graph determine which sets of relations can be joined
without applying a cross product. The more edges there are in the graph, the
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select ∗
from
R join S on r1 = s2

join T on s1 = t1 ;

Figure 2.5: Example query with simple predicates

Br1=s2

R Bs1=t1

S T

R S T

Figure 2.6: Join tree and query graph for query in Figure 2.5

more possible join trees there are for the respective query. Thus, for a given
number of relations, there are more possible join trees for clique queries than
for chain queries. This makes the problem of finding the optimal join tree more
complex for the former class of queries. If cross products are allowed, we can
join any pair of relations, effectively turning every query into a clique query.

For an example, Figure 2.5 shows a small SQL query joining the three rela-
tions R, S and T. Figure 2.6 shows the corresponding join tree and query graph.
In the example all attributes belong to the relation with the same letter, i.e.,
r1 belongs to R, s1 belongs to S and so on. The query graphs we have seen
so far are all examples of simple query graphs. As we said earlier, this can
be seen as a special case, since in general, the query graph is a hypergraph.
One possible source of hyperedges are complex predicates. Figure 2.7 shows a
slightly modified version of our example query. It contains a complex predicate
r1 + s2 = t1. Figure 2.8 shows the corresponding join tree and query graph
with one complex edge.

The presence of hyperedges reduces the number of connected components
in the query graph and thereby also reduces the number of valid join trees
for the given query. Thus, hyperedges shrink the search space of the plan
generator, facilitating the task of finding an optimal plan for the query. In
our example graph the pairs of relation sets ({R}, {T}) and ({S}, {T}) are not

select ∗
from
R join S on r2 = s1

join T on r1 + s2 = t1 ;

Figure 2.7: Example query with complex predicate
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Br1+s2=t1

T Br2=s1

R S

R

S T

Figure 2.8: Join tree and query graph for query in Figure 2.7

connected. The only edge connecting T to the rest of the graph is the complex
edge ({R,S}, {T}). In the figure this is symbolized by the ellipsis surrounding
R and S, from which an edge goes out to T . The join tree shown in the figure
illustrates the search space reduction resulting from the complex predicate:
clearly, we can no longer join S with T before joining the result with R, as was
the case in the previous example. This is because both R and S have to be
available before the complex predicate can be evaluated.

Several publications deal with the influence of the query graph shape on the
complexity of plan enumeration [32, 34]. The effect of hyperedges on the search
space size is thoroughly described in a paper by Moerkotte and Neumann [30].
There and in Chapter 4 of this work, it is shown how this effect can be exploited
to allow for an efficient reordering of non-inner joins.

When dealing with query graphs, one concept of particular interest is that of
connected-subgraph–complement-pairs, or csg-cmp-pairs. Before we can define
them, we need to define subgraphs and connectedness:

Definition 5. Let H = (V,E) be a hypergraph and V ′ ⊆ V a subset of nodes.
The node-induced subgraph H|V ′ of H is defined as H|V ′ = (V ′, E′) with E′ =
{(u, v)|(u, v) ∈ E, u ⊆ V ′, v ⊆ V ′}.

Definition 6. Let H = (V,E) be a hypergraph. H is connected if |V | = 1
or if there exists a partitioning V ′, V ′′ and a hyperedge (u, v) ∈ E such that
u ⊆ V ′, v ⊆ V ′′ and both H|V ′ and H|V ′′ are connected.

With this, we are ready to define csg-cmp-pairs as follows:

Definition 7. Let H = (V,E) be a hypergraph and S1, S2 two non-empty
subsets of V with S1 ∩ S2 = ∅. Then, the pair (S1, S2) is called a csg-cmp-pair
if the following conditions hold:

1. S1 and S2 induce a connected subgraph of H and

2. there exists a hyperedge (u, v) ∈ E such that u ⊆ S1 and v ⊆ S2.

The number of csg-cmp-pairs for a given query graph is equal to the number
of join (sub-)trees that have to be considered to find an optimal join tree for
the corresponding query. Thereby, it defines a lower bound for the complexity
of a plan generator that explores the complete search space. Subsequently, we
will often use the shorter term ccp for csg-cmp-pair.
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2.4 Plan Classes, Cost and Properties

A join tree, as defined in the previous section, is an incomplete logical repre-
sentation of a query evaluation plan. A complete plan typically contains more
information than a join tree. In essence, a query plan is an operator tree not
only containing join operators, but physical algebraic operators of all kinds as
nodes. However, as the join order is in many cases the determining factor for
the runtime of a query, a join tree describes an important part of the query
plan’s structure.

During plan generation, plans are grouped in plan classes. All plans in one
class are equivalent according to an equivalence relation. For example, all plans
producing the same result can be put in one class. As we will see in Chapter
5, other equivalence criteria are conceivable as well. Plan properties can be
distinguished into logical and physical properties, where logical properties are
those that are equal for all plans in the same plan class and physical properties
are those that can differ between plans in the same class. In the aforementioned
scenario, where plans are classified by their result, the result cardinality is a
logical plan property, whereas the tuple order produced by the plan is a physical
property. It can differ between plans in the same class depending on how the
contained relations are accessed. Ideally, we only store one plan per plan class
at any point in time, namely the cheapest plan in this class found so far. As
we will see in the following sections, this is not always possible.

Many “interesting” plan properties such as the tuple order produced by a
plan, or the functional dependencies holding in the plan’s result are conceiv-
able. However, taking plan properties into consideration tends to increase the
complexity of plan generation by violating Bellman’s Principle of Optimality.
Subsequently, we will see some examples of how interesting properties can be
identified and efficiently handled in a plan generator.

To compare different plans in the same plan class and decide which of them is
the best, some cost metric has to be available. The cost of a plan is determined
by a cost function. The cost function should ideally take into account all factors
that determine the work necessary to evaluate a certain plan in the respective
system. For example, a cost function applied in a disk-based database system
should model the cost of accessing the harddisk as precisely as possible. One
such cost model has been described by Haas et al. [21].

Subsequently, we will use a rather simple cost function. This allows for
comprehensible examples because the cost of a plan can easily be calculated
mentally. The cost function we use is called Cout and is recursively defined as
follows:

Cout(T ) =

{
0 if T is a single relation

|T |+ Cout(T1) + Cout(T2) if T = T1 ◦ T2

Here, |T | denotes the result cardinality of a plan or operator tree T and ◦ acts as
a placeholder for some join operator. Clearly, this function can only be applied
to operator trees containing only joins and base relations. If necessary, we will
extend it to take other algebraic operators into account as well. With Cout,
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the cost of a join tree is determined only by the cardinalities of the contained
relations and intermediate results. While other, more complex cost functions
typically depend on other factors as well, the cardinality of intermediate results
always is one of them. Since we cannot execute the query to determine the
cardinalities in order to find an optimal execution plan, we have to rely on
estimated values.

Because all decisions made during plan generation ultimately depend on these
cardinality estimates, it is of crucial importance to make them as precise as
possible. Cardinality estimation is an ongoing research topic in its own right
and has to this date not been solved satisfyingly. Most current approaches rely
on two rather unrealistic assumptions: (1) that the data is uniformly distributed
and (2) that predicates applied in the query are uncorrelated. Since most real
data sets and queries do not conform to these assumptions, optimizers typically
have to work with inaccurate estimates. This frequently leads to wrong decisions
that can negate the effort invested in optimizing a query [25].

In this thesis we will not take these limitations into account because we
consider the problem of cardinality estimation to be independent of that of
query optimization.
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3 Building Blocks of Current Plan
Generators

This chapter provides an overview of the architecture of generative plan gen-
erators. We start with the enumerator, which is responsible for enumerating
pairs of relation sets (ccps) that can be joined to build a (sub-)plan. The next
subsection deals with the conflict detector (first presented in [30]), which is
needed to correctly reorder different join operators and finally we take a look
at plan properties and how they can be used to extend the functionality of the
plan generator.

3.1 Enumeration

A plan generator based on dynamic programming was first presented by Selinger
et al. as part of the System R research prototype developed at IBM [40]. They
identified the ordering of join operators as a major influence factor on the
runtime of a query. Consequently, a plan generator capable of optimizing the
join order formed the core of their optimizer. In general, the problem of finding
an optimal join order for a given query is NP-hard [22]. Some trade-offs are
typically made to reduce the complexity by deliberately limiting the search
space of the plan generator at the risk of missing an optimal solution. For
example, in System R the search space was restricted to left-deep trees.

Without these limitations, the number of bushy join trees containing cross
products for a query with n relations can be calculated as follows: The number
of binary trees with n leaves is given by C(n− 1) where C denotes the Catalan
numbers: C(n) =

∑n−1
k=0 C(k)C(n−k− 1). The n relations can then be attached

to the leaves of each binary tree in any possible order. Thus, the total number
of bushy join trees with cross products for n relations is C(n− 1)n!.

Selinger et al. proposed to enumerate join trees in the order of increasing size.
For this, the DP table is first initialized with access paths to single relations
before combining them to build plans containing two relations. These plans are
then used to build plans of size three by adding one of the remaining relations
and so on. When choosing the next relation to be added to an existing plan,
cross products are deferred by always preferring relations that are connected
through a join predicate to one of the other relations already present in the
plan. Thereby, cross products are only considered if they are required by the
input query and they are applied as late as possible.

Hereafter, we adopt the naming scheme introduced by Moerkotte and Neu-
mann. They label a slightly modified version of the plan generator described
above DPsize [32]. This name reflects the abovementioned size-driven enumer-
ation order of plans. DPsize differs from the original System R optimizer in the
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DPsize

// Input: a connected simple query graph with relations
R = {R0, . . . , Rn−1}

// Output: an optimal bushy operator tree
1 for all Ri ∈ R
2 DPTable[{Ri}] = Ri
3 for all 1 < s ≤ n ascending // size of plan
4 for all 1 ≤ s1 < s // size of left subplan
5 s2 = s− s1 // size of right subplan
6 for all S1 ⊂ R : |S1| = s1

S2 ⊂ R : |S2| = s2

7 P1 = DPTable[S1]
8 P2 = DPTable[S2]
9 if P1 == NULL ∨ P2 == NULL

10 continue
11 if not (S1 connected to S2)
12 continue
13 BuildPlan(S1, S2,Bp)
14 return DPTable[R]

Figure 3.1: Plan generator DPsize

BuildPlan(S1, S2, ◦p)
1 OptimalCost = ∞
2 S = S1 ∪ S2

3 P1 = DPTable[S1 ]
4 P2 = DPTable[S2 ]
5 if DPTable[S] 6= NULL
6 OptimalCost = Cost(DPTable[S])
7 if Cost(P1 ◦p P2) < OptimalCost
8 DPTable[S] = (P1 ◦p P2)

Figure 3.2: Pseudo code for BuildPlan

sense that it enumerates not only left-deep but bushy join trees and it expects
a fully connected query graph. Thus, cross products are not supported. The
pseudo code for the algorithm is given in Figure 3.1.

First, the DP table is initialized with the access paths to single relations.
Next, plans of increasing size are enumerated, after which the table entries for
the two sets are retrieved. If for one of the two no entry is found, the loop
continues without building a plan. That is because a new plan joining S1 and
S2 can only be built if plans for the two sets have already been enumerated.
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If, for example, no plan for S1 is available at this point, this means that S1

does not induce a connected subgraph of the query graph. Otherwise, a plan
would be available since |S1| < |S| and plans are enumerated in the order of
increasing size. The second if-statement ensures that there is a join predicate
between S1 and S2. In summary these tests ensure that (S1, S2) is a ccp, as
defined in Definition 7.

If all tests succeed, the subroutine BuildPlan is called. It is given in Figure
3.2 and is a common building block of all DP-based plan generators. The
routine expects S1 and S2 and a join operator ◦ with an associated predicate
p as arguments. Inside the routine the plans already stored for S1 and S2

are retrieved from the DP table. Then, the cost of joining these two plans is
determined by calling a cost function. If the new plan is cheaper than an existing
plan for S1 ∪ S2, or there is none, it is inserted into the DP table. Otherwise,
the plan is discarded and the routine returns. In the end DPsize returns the
table entry for the relation set R which contains all relations referenced in the
input query.

In order to remove the limitations imposed by Selinger et al., Vance and Maier
proposed a DP-based plan generator capable of enumerating bushy trees with
cross products [41]. They tried to cope with the vast search space by choosing
a different enumeration strategy. Instead of building plans of a certain size,
they came up with an efficient way of enumerating subsets of a given relation
set by representing relation sets as bitvectors. First, each relation is mapped
to a number. Then, an integer is used as a bitvector encoding a set of relations
by representing the relation associated with a certain number i with the bit at
position i in the bitvector.

To enumerate all subsets of a given set in an order suited for dynamic pro-
gramming, the integer is continuously incremented and the resulting numbers
are interpreted as bitvectors, each representing a relation set. Again, we adopt
the name Moerkotte and Neumann assigned to this algorithm. They chose the
name DPsub to reflect the subset-driven enumeration order implemented by
the plan generator [32]. Figure 3.3 provides the pseudo code. Aside from the
different enumeration approach, the algorithm works identically to DPsize.

While the two algorithms described so far use different enumeration strate-
gies, none of them is optimal in the sense that it reaches the theoretical lower
complexity bound for the problem it solves. As Moerkotte and Neumann point-
ed out, the complexity of the join ordering problem is determined by the shape
of the query graph [32]. Therefore, they proposed a different approach with
their DP-based plan generator DPccp. The key idea is to consider joining only
those sets of relations that are connected in themselves and to each other by
join predicates. This means that the tests for connectedness we have seen in the
loops in Figures 3.1 and 3.3 can be avoided. Instead, connectedness is ensured
by traversing the query graph and efficiently enumerating ccps (see Definin-
tion 7). Expecting a connected query graph as input and only considering the
connected components of the latter, DPccp is not suited for queries containing
cross products, or for the introduction of cross products for the sake of plan
optimality. However, the plan generator is capable of producing all kinds of
join trees, including bushy trees.

29



3 Building Blocks of Current Plan Generators

DPsub

// Input: a connected simple query graph with relations
R = {R0, . . . , Rn−1}

// Output: an optimal bushy operator tree
1 for all Ri ∈ R
2 DPTable[{Ri}] = Ri
3 for 1 ≤ i < 2n − 1 ascending
4 S = {Rj ∈ R|(bi/2ic mod 2) = 1
5 if not (S induces a csg)
6 continue
7 for all S1 ⊂ S, S1 6= ∅
8 S2 = S \ S1

9 P1 = DPTable[S1]
10 P2 = DPTable[S2]
11 if P1 == NULL ∨ P2 == NULL
12 continue
13 if not (S1 connected to S2)
14 continue
15 BuildPlan(S1, S2,Bp)
16 return DPTable[R]

Figure 3.3: Plan generator DPsub

DPccp

// Input: a connected simple query graph with relations
R = {R0, . . . , Rn−1}

// Output: an optimal bushy operator tree
1 for all Ri ∈ R
2 DPTable[{Ri}] = Ri
3 for all ccps (S1, S2)
4 BuildPlan(S1, S2,Bp)
5 BuildPlan(S2, S1,Bp)
6 return DPTable[R]

Figure 3.4: Plan generator DPccp

Since the details of the graph traversal are not of particular interest for this
work, it is merely treated as a black-box in the pseudo code for DPccp given in
Figure 3.4. One important detail is that ccps are symmetric, i.e., only one of
the pairs (S1, S2) and (S2, S1) is enumerated. Therefore, commutativity has to
be handled explicitly by calling BuildPlan twice for each ccp.

Besides the specification of a DP-based plan generator that meets the lower
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DPhyp

// Input: a connected query graph with relations R = {R0, . . . , Rn−1}
// Output: an optimal bushy operator tree

1 for all Ri ∈ R
2 DPTable[{Ri}] = Ri
3 for all ccps (S1, S2)
4 BuildPlan(S1, S2,Bp)
5 BuildPlan(S2, S1,Bp)
6 return DPTable[R]

Figure 3.5: Plan generator DPhyp

complexity bound for an arbitrarily shaped query, the authors also analyzed
the strengths and weaknesses of the other two algorithms. They came to the
conclusion that DPsize is superior to DPsub for chain and cycle queries and
vice versa for star and clique queries. As expected, DPccp is superior to both
alternatives in the sense that it performs better or equally as good for all kinds
of query shapes.

However, all of the plan generators discussed so far, including DPccp, lack
the ability to handle hypergraph queries. In Section 2.3 we have already seen
how non-binary predicates result in a query hypergraph and as we will see in
Chapter 4, hypergraphs also play a crucial role when it comes to optimizing the
join order in the presence of outerjoins. Therefore, Moerkotte and Neumann
went one step further and extended DPccp in such a way that it would be
able to work with hypergraphs. The resulting algorithm is called DPhyp [30].
For the sake of completeness, its pseudo code is given in Figure 3.5. Since
the only difference to DPccp lies in the way the ccps are enumerated and we
do not go into detail on this aspect of the plan generator, the only difference
between Figures 3.4 and 3.5 is that the algorithm shown in the latter accepts a
hypergraph as its input.

When comparing the different algorithms presented in this section, we notice
that they consist of two independent modules. The first one is an enumerator
for pairs of relation sets. The enumerator is the distinguishing part of the
plan generator and ultimately determines its efficiency. Since a highly efficient
hypergraph-aware enumerator exists in DPhyp, we consider this problem solved.
The second part is the plan builder that is responsible for creating a plan
joining the two sets provided by the enumerator and inserting the newly built
plan into the DP table. This part of the plan generator is equal in all the
variants presented above. In Chapter 5 we modify it to incorporate the optimal
placement of grouping operators.

The modular design allows for an easy replacement of certain parts of the plan
generator and we follow it throughout the rest of this work by encapsulating all
extensions we propose in a similar fashion. Thus, they can be incorporated in
any of the plan generators described above or possible future approaches. The
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d id name

0 Sales

1 R&D

(a) Departments

e id name d id

0 Doe 0

1 Smith 1

(b) Employees

c id e id

0 0

(c) Cars

Figure 3.6: Example Relations

next section deals with a third component of a state-of-the-art plan generator,
namely the conflict detector.

3.2 Conflict Detection

The plan generators discussed so far are all designed under the assumption that
the join operators contained in the input query are freely reorderable. What
this means is that changing their order does not change the result of the query.
The only constraint these algorithms put on the join order is implied by the
fact that they only allow for plans without cross products.

In general, only cross products provide full reorderability. Their ordering
only affects the cost of the resulting plan but not its result. Inner joins are a
bit more restrictive because of the syntactic constraints imposed by their join
predicate. The relations referenced in the predicate have to be available to
make the join applicable. In the plan generators we have seen so far, this is
implicitly guaranteed by ensuring that there is a join predicate between two sets
of relations that are considered as a join pair. As long as these constraints are
fulfilled, any ordering of inner joins is possible without affecting the correctness
of the query result. Clearly, all join operators with attached predicates are
subject to such syntactic constraints.

However, all other join operators introduced in Section 2.2 are more limited
in their reorderability. For example, changing the relative order of an inner join
and a left outerjoin can change the result of the underlying query. In order to
support queries containing non-inner joins, a plan generator needs to take these
so-called reordering conflicts into account to avoid incorrect join orders.

As an example, consider the relations shown in Figure 3.6 that contain infor-
mation about departments, employees and company cars used by the employees.
Figure 3.7 shows an SQL query against this schema that returns an overview of
the departments and the employees using a company car in each department.
In order to list all departments in the result, including those that do not have
employees with a company car, a left outerjoin is used. The table below the
query displays the query result. There, a dash denotes a null value.

As can be seen in Figure 3.8, changing the join order such that the left outer-
join is applied before the inner join changes the result of the query. Therefore,
this reordering is invalid and has to be avoided during plan generation.

Since the plan generators from the previous section have no means for pre-
venting such invalid reorderings, they are only suited for optimizing queries
containing inner joins. To remove this limitation, some form of conflict detec-
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select d . name , e . name , c . c i d
from
departments d l e f t outer join

( employees e join ca r s c on c . e i d = e . e i d )
on e . d id = d . d id ;

d.name e.name c.c id

Sales Doe 0

R&D - -

Figure 3.7: Query containing left outerjoin and query result

select d . name , e . name , c . c i d
from
( departments d l e f t outer join employees e
on e . d id = d . d id )

join ca r s c on c . e i d = e . e i d ;

d.name e.name c.c id

Sales Doe 0

Figure 3.8: Query containing left outerjoin and query result

tion preventing incorrect join orders has to be implemented. Figure 3.9 shows
a version of DPhyp with conflict detection.

As input the plan generator still expects a query graph and, in addition to
this, the set of join operators contained in the query. This additional infor-
mation is necessary, since possible reordering conflicts depend on the type of
an operator used to join a ccp. When the enumerator emits a ccp (S1, S2),
we iterate through the operator set and for each operator ◦ with attached join
predicate p call the new subroutine Applicable, passing the ccp and ◦p as
arguments. The routine returns true if ◦p is suitable for joining S1 and S2,
taking the syntactic constraints imposed by p and possible reordering conflicts
present in the new plan candidate into account. Before building a plan joining
S1 and S2 in reversed order, we need to make sure that ◦ is commutative.

Since the conflict detector is encapsulated in a separate routine and thereby
independent of the other parts of the plan generator, namely the enumerator
and the plan builder, it fits nicely in our modular design approach. Conflict
detection can therefore be incorporated in all of the plan generators discussed in
Section 3.1. However, we can make it more efficient by representing reordering
conflicts by hyperedges in the query graph. This gives DPhyp a clear advantage
over the other algorithms, since it is the only plan generator that can handle
hypergraphs.

In Chapter 4 we will evaluate several possible implementations of Appli-
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DPhyp

// Input: a set of relations R = {R0, . . . , Rn−1},
a set of operators O with associated predicates,
a query graph H

// Output: an optimal bushy operator tree
1 for all Ri ∈ R
2 DPTable[{Ri}] = Ri // initial access paths
3 for all ccps (S1, S2) of H
4 for all ◦p ∈ O
5 if Applicable(S1, S2, ◦p)
6 BuildPlan(S1, S2, ◦p)
7 if ◦p is commutative
8 BuildPlan(S2, S1, ◦p)
9 return DPTable[R]

Figure 3.9: Plan generator DPhyp with conflict detection

cable and demonstrate how reordering conflicts can be encoded in the query
graph. There, we also systematize the different reordering transformations by
defining what we call the core search space.

3.3 Exploiting Plan Properties

The concept of logical and physical plan properties has first been introduced in
Section 2.4. Until this point, we have only considered the cost of a (sub-)plan to
decide whether it should be stored in the DP table, or not. However, it can be
beneficial to take other plan properties into account. Selinger et al. illustrated
this by introducing the concept of interesting orders [40]. Interesting orders
can be identified in two ways: they are either explicitly specified in an order by
or group by clause in the input query, or they are derived from the predicates
in the query in order to facilitate the application of merge joins. Since plans
in the same class can produce different tuple orders depending on the way the
base relations are accessed, the sort order is a physical plan property.

If a certain subplan p produces tuples in an interesting order (e.g., by applying
an index scan instead of a full table scan), it can be beneficial to use this subplan
as part of the overall solution, even if it is more expensive than another plan
p′ in the same plan class. That is because the tuple ordering provided by p
can save sort operations that would otherwise be necessary further up in the
operator tree to achieve an order or grouping specified in the input query. If
no specific order or grouping is desired, using p as part of the final plan can
enable the application of merge joins without the need to sort one of the join
arguments beforehand, again leading to possible cost savings.

The downside of this approach is that subplans for the same relation set
can become essentially incomparable. If, in the scenario described above, p is
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struct Plan {

Plan* next; // pointer to next plan for this plan class

Plan* left; // pointer to left or only argument

Plan* right; // pointer to right argument

Properties properties; // struct storing plan properties

}

Figure 3.10: Plan node with pointer to next plan

more expensive than p′, but on the other hand produces tuples in an intersting
order, it is not immediately clear which of the two plans is better because the
cost savings enabled by p’s tuple order only manifest themselves further up
in the tree. Since plans are built bottom-up, both plans have to be kept in
the DP table. One way of doing this is to store in each plan a pointer to the
next plan of the same plan class, thus effectively storing a linked list of plans.
Such a plan structure is illustrated in Figure 3.10. Clearly, it is the task of
the implementor of a plan generator to identify useful properties. Their choice
strongly depends on the capabilities of the system and the plan generator. For
example, maintaining the tuple order of every plan only makes sense if the
system implements sort-based operators that can take advantage of this. The
properties can be stored in a separate data structure that is associated with
every plan, as proposed in Figure 3.10.

Storing all plans with different physical properties in the solution table leads
to a massive increase of the search space size. Therefore, criteria for pruning
down the search space while still guaranteeing an optimal solution are required.
In the abovementioned situation we could safely discard p if p′ did not only
provide an interesting order, but was also cheaper than p. In this case we call
p dominated by p′.

The example of interesting orders gives a first impression of how exploiting
plan properties can lead to better query plans at the price of increasing the
complexity of the plan generator. In Chapter 5 we will see more examples of
interesting plan properties and how they can be used to extend the functionality
of a plan generator. Identifying effective optimality-preserving pruning criteria
is a central problem investigated in this chapter.

3.4 Summary

To summarize this section, Figure 3.11 provides an overview of the different
elements of a state-of-the-art generative plan generator and how they are re-
lated. Although the focus of this work lies on DP-based plan generators, the
shown design approach applies to memoization-based plan generators as well,
since the two only differ in how the enumerator works.

If a hypergraph-aware enumerator such as DPhyp is in place and the join
operators specified in the input query are not freely reorderable, a suitable
conflict detector turns the query graph into a hypergraph. Thereby, reordering
conflicts are encoded in the query graph as far as possible. However, this step
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Conflict Detector (CD)

Enumerator

CDapp

Plan Builder

DP Table

Query Graph

Query Hypergraph

CCPs

CCP
+

Operator

(Sub-)Plan

Query Plan

for each ccp

Plan Generator

Dominance
Pruning

Figure 3.11: Components of a DP-based plan generator

is not necessary, because conflicts can also be detected later on by conducting
an applicability test every time a new plan is built. The resulting hypergraph
is passed to the plan generator.

The first step of the actual plan generation is the enumeration of ccps. For
each ccp produced by the enumerator, the conflict detector is needed again
to check if a suitable join operator can be found. That is because not all
reordering conflicts can be represented by hyperedges in the query graph. If the
applicability test is successful, the ccp with its associated join operator is passed
to the plan builder, which builds the plan and inserts it into the DP table, if it is
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3.4 Summary

the best plan for this relation set found so far. If plan properties compromising
Bellman’s Principle of Optimality are taken into account, dominance pruning
can be applied at this point. Otherwise, the best plan is determined solely
based on the plan cost.

Once all ccps have been considered, an optimal query plan can be retrieved
from the DP table and is passed on to the next step of query compilation, which
can either be a second rewrite phase or code generation.
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4 Reordering Non-Inner Joins

This chapter covers the problem of reordering join operators that are not freely
reorderable in a generative plan generator. First, we formalize the notion of
reordering conflicts and introduce the so-called core search space in Section
4.2. In Section 4.3 we analyze existing approaches for dealing with reorder-
ing conflicts and show that they produce invalid plans. Therefore, three new
approaches are described that are all correct, meaning that they all produce
only valid plans. They can be found in Section 4.4. While they all guarantee
correctness, there are significant differences between the three when it comes
to their completeness. By completeness we mean the ability to only prevent
invalid plans and no valid plans. Only one of the three is both complete and
correct. An experimental evaluation of the different approaches can be found
in Section 4.6. The content of this chapter was published in [31].

4.1 Introduction

In Section 3.2 the conflict detector is introduced as one of the basic components
of a plan generator. In our design it serves two purposes: the encoding of re-
ordering conflicts in the query graph in the form of hyperedges and, since this is
not always possible for all conflicts occurring in a query, an explicit applicability
test that is used to detect all remaining conflicts. Clearly, encoding conflicts
in the query graph requires a hypergraph-aware enumeration algorithm. If the
plan generator cannot handle hypergraphs, all conflicts have to be detected by
an applicability test, meaning that invalid ccps are enumerated and then reject-
ed. On the other hand, encoding conflicts in the hypergraph enables the plan
generator to avoid the enumeration of invalid pairs altogether. See Figures 3.9
and 3.11 again for an idea of the conflict detector’s role in our design.

In the literature we find two ways of preventing invalid plans in a DP-based
plan generator. The first approach (NEL/EEL) is by Rao et al. Their conflict
detector can deal with joins, left outerjoins and antijoins [36, 37]. The second
approach (SES/TES) is by Moerkotte and Neumann and handles all operators
in LOP [30]. As we will show in Sections 4.3 and 4.6, both approaches generate
invalid plans. This means that their application in a real system is out of the
question.

While correctness is the minimal requirement for a usable conflict detector,
we also strive for completeness. What this means is that ideally, the conflict
detector should reject only invalid plans. This enables the plan generator to
generate all valid plans and choose the best among them. Other desirable
properties are the flexibility to support a wide range of join predicates and the
extensibility to allow for an easy addition of new operators with corresponding
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4 Reordering Non-Inner Joins

reordering properties. The conflict detector CD-C, which is discussed in Section
4.4, fulfills all these requirements.

4.2 The Core Search Space

In this section the core search space is introduced. It is defined by a set of
transformation rules exploring all valid alternatives to a given initial plan. Sec-
tion 4.2.1 introduces these transformation rules and Section 4.2.2 defines the
core search space.

4.2.1 Reorderability

Traditional join ordering approaches are intended to reorder inner joins and no
other binary operators. Since the inner join is commutative and associative,
all plans are valid and there is no danger of generating invalid plans. But in
general, plan generators must reorder other join operators as well (e.g., N, T,
E, K, Z). Hence, we need to carry over the notions of commutativity and
associativity to (pairs of) these operators. It is easy to see that some of the
aforementioned operators are commutative, while others are not (see Table 4.1).
If a binary operator ◦ is commutative, we denote this by comm(◦). If comm(◦)
holds, the corresponding cell in the table contains a plus sign. Otherwise, it
contains a minus sign.

◦ A B N T E K Z

comm(◦) + + - - - + -

Table 4.1: The comm(◦)-property

Associativity is a little more complex. We say that two not necessarily distinct
operators ◦a and ◦b are associative if the following equivalence holds:

(e1 ◦a12 e2) ◦b23 e3 ≡ e1 ◦a12 (e2 ◦b23 e3). (4.1)

Here, we adhere to the following convention. If an operator has a predicate, then
the subscript ij indicates that it references attributes (and, thus, relations) from
at most ei and ej . Hence, for 1 ≤ i, j ≤ 3, i 6= j this also indicates that F(eij)∩
F(ek) = ∅ for 1 ≤ k ≤ 3 and k 6∈ {i, j}. This ensures that the equivalence is
correctly typed on both sides of the equivalence sign. For example, the predicate
of ◦a12 accesses tables from e1 and e2, but not e3. Note that ◦a12 may carry a
complex predicate referencing more than two tables from e1 and e2. We will see
an example in the next subsection. If some ◦a123 referenced tables in all three
expressions e1, e2 and e3, the expression on the left-hand side of Equivalence
4.1 would be invalid and the right-hand side would be valid, but could not
be transformed into the left-hand side. For the purpose of conflict detection,
complex predicates accessing more than two relations are no challenge. They
just enlarge the set of tables that must be present before the complex predicate
can be evaluated. The real challenge with complex predicates lies in the efficient

40



4.2 The Core Search Space

enumeration of the now more restricted search space (more on this in Section
4.5.1).

If Equivalence 4.1 holds for two operators ◦a and ◦b, we denote this by
assoc(◦a, ◦b). It is important to note that assoc is not symmetric. This means
that the order of the operators (i.e., (◦a, ◦b) vs. (◦b, ◦a)) is important. We tie
the order in assoc to the syntactic pattern of Equivalence 4.1. It has to be
the same order as on the left-hand side of the equivalence. This means that
the left association has to be on the left-hand side and, consequently, the right
association on the right-hand side of the equivalence.

If comm(◦a) and comm(◦b) hold, then assoc(◦a, ◦b) implies assoc(◦b, ◦a) and
vice versa, as can be seen from

(e1 ◦a12 e2) ◦b23 e3 ≡ e1 ◦a12 (e2 ◦b23 e3) assoc(◦a, ◦b)
≡ (e2 ◦b23 e3) ◦a12 e1 comm(◦a)
≡ (e3 ◦b23 e2) ◦a12 e1 comm(◦b)
≡ e3 ◦b23 (e2 ◦a12 e1) assoc(◦b, ◦a)
≡ (e2 ◦a12 e1) ◦b23 e3 comm(◦b)
≡ (e1 ◦a12 e2) ◦b23 e3 comm(◦a).

Table 4.2 summarizes the associativity properties. Since assoc is not symmetric,
◦a must be looked up within a row and ◦b within a column. For some operators
assoc(◦a, ◦b) only holds if one or both of the predicates associated with ◦a and ◦b
reject nulls (see Definition 1). For more details, see the corresponding footnotes
at the bottom of the table.

◦a ◦b
A B N T E K Z

A + + + + + - +
B + + + + + - +
N - - - - - - -
T - - - - - - -
E - - - - +1 - -
K - - - - +1 +2 -
Z - - - - - - -
1 if p23 rejects nulls on A(e2) (Eqv. 4.1)
2 if p12 and p23 reject nulls on A(e2) (Eqv. 4.1)

Table 4.2: The assoc(◦a, ◦b)-property

The following equivalence for the semijoin shows that commutativity and
associativity do not cover all valid transformations:

(e1 N12 e2) N13 e3 ≡ (e1 N13 e3) N12 e2.

Clearly, we cannot derive the join order on the right-hand side from the one on
the left-hand side using associativity and commutativity because neither of the
two holds for the semijoin. Instead, we need a third property which we call the
left asscom property (l-asscom for short). It is defined as follows:

(e1 ◦a12 e2) ◦b13 e3 ≡ (e1 ◦b13 e3) ◦a12 e2. (4.2)
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We denote by l-asscom(◦a, ◦b) the fact that Equivalence 4.2 holds for ◦a and ◦b.
Analogously, we can define a right asscom property (r-asscom):

e1 ◦a13 (e2 ◦b23 e3) ≡ e2 ◦b23 (e1 ◦a13 e3). (4.3)

First, note that l-asscom and r-asscom are symmetric properties, i.e.,

l-asscom(◦a, ◦b) ⇔ l-asscom(◦b, ◦a),
r-asscom(◦a, ◦b) ⇔ r-asscom(◦b, ◦a).

The following reasoning

(e1 ◦a12 e2) ◦b23 e3 ≡ (e2 ◦a12 e1) ◦b23 e3 if comm(◦a12)
≡ (e2 ◦b23 e3) ◦a12 e1 if l-asscom(◦a12, ◦b23)
≡ e1 ◦a12 (e2 ◦b23 e3) if comm(◦a12)
≡ (e1 ◦a12 e2) ◦b23 e3 if assoc(◦a12, ◦b23)

implies that

comm(◦a12), assoc(◦a12, ◦b23) ⇒ l-asscom(◦a12, ◦b23),

comm(◦a12), l-asscom(◦a12, ◦b23) ⇒ assoc(◦a12, ◦b23).

Thus, the l-asscom property is implied by associativity and commutativity,
which explains its name. Quite similarly, the implications

comm(◦b23), assoc(◦a12, ◦b23) ⇒ r-asscom(◦a12, ◦b23),

comm(◦b23), r-asscom(◦a12, ◦b23) ⇒ assoc(◦a12, ◦b23)

can be deduced.
Table 4.3 summarizes the l-/r-asscom properties. Again, entries with a foot-

note require that some predicates reject nulls. We assume that calls to assoc
and l/r-asscom take care of this.

◦ A B N T E K Z

A +/+ +/+ +/- +/- +/- -/- +/-
B +/+ +/+ +/- +/- +/- -/- +/-
N +/- +/- +/- +/- +/- -/- +/-
T +/- +/- +/- +/- +/- -/- +/-
E +/- +/- +/- +/- +/- +1/- +/-
K -/- -/- -/- -/- +2/- +3/+4 -/-
Z +/- +/- +/- +/- +/- -/- +/-
1 if p12 rejects nulls on A(e1) (Eqv. 4.2)
2 if p13 rejects nulls on A(e3) (Eqv. 4.2)
3 if p12 and p13 rejects nulls on A(e1) (Eqv. 4.2)
4 if p13 and p23 reject nulls on A(e3) (Eqv. 4.3)

Table 4.3: The l-/r-asscom(◦a, ◦b) property

If an entry in one of the Tables 4.1 to 4.3 is marked with − or its condition in
the footnote is violated, we say that there is a conflict regarding this property.
A conflict means that the application of the corresponding transformation rule
results in an invalid plan.
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assoc(◦a, ◦b)
F(pa) ∩ A(e3) = ∅
F(pb) ∩ A(e1) = ∅

◦bpb

◦apa

e1 e2

e3 ≡

◦apa

e1 ◦bpb

e2 e3

l-asscom(◦a, ◦b)
F(pa) ∩ A(e3) = ∅
F(pb) ∩ A(e2) = ∅

◦bpb

◦apa

e1 e2

e3 ≡

◦apa

◦bpb

e1 e3

e2

r-asscom(◦a, ◦b)
F(pa) ∩ A(e2) = ∅
F(pb) ∩ A(e1) = ∅

◦apa

e1 ◦bpb

e2 e3

≡

◦bpb

e2 ◦apa

e1 e3

Figure 4.1: Transformation rules for assoc, l-asscom, and r-asscom

◦bpb

◦apa

◦1p1

R0 R1

◦2p2

R2 R3

◦3p3

R4 R5

Figure 4.2: Example operator tree

4.2.2 Definition of the Core Search Space

Figure 4.1 shows an overview of the basic transformations that result from the
reordering properties discussed so far, except for commutativity. All equiva-
lences can be applied from left to right and from right to left. We define the
core search space for a given initial plan to be the set of plans generated by
exhaustively applying these four transformations to an initial plan.

Figure 4.2 shows a larger operator tree. Let us consider several possibilities
for the predicate of the top-most operator ◦b. If pb ≡ R0.a + R1.a + R2.a +
R3.a = R4.a∗R5.a, then no reordering is possible, since all tables are referenced.
If pb ≡ R2.a + R3.a = R4.a ∗ R5.a, then applying associativity is possible
from a syntactic point of view, since in our example FT (pb) ∩ T (e1) becomes
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{R2, R3, R4, R5} ∩ {R0, R1} = ∅. In fact, although the predicate is complex, it
references only tables below ◦2 and ◦3, whose subtrees correspond to e2 and e3

in Figure 4.1. Clearly, a binary predicate, e.g., pb ≡ R0.a = R5.a, generates
the largest search space and, thus, the most opportunities for generating invalid
plans and missing valid plans.

Taking a closer look at the syntactic constraints shown in Figure 4.1, we
observe that for non-degenerate predicates (see Definition 2) the following holds:

Observation 1. The syntactic constraints for non-degenerate predicates imply
that (1) either associativity or l-asscom can be applied for left nesting, but not
both and (2) either associativity or r-asscom can be applied for right-nesting,
but not both.

Thus, non-degenerate predicates simplify the handling of conflicts, since we
have to take care of either associativity or l/r-asscom and never both at the
same time.

Figure 4.3 shows an example of the core search space for the expression
(e1 ◦a12 e2) ◦b13 e3. We observe that any expression in the core search space
can be reached by a sequence of at most two applications of commutativity, at
most one application of associativity, l-asscom, or r-asscom, finally followed by
at most two applications of commutativity. The total number of applications
of commutativity can be restricted to 2. More specifically, one application of
commutativity to each operator in the plan suffices.

4.3 Existing Approaches

If an input query involves binary operators other than B and A, not all transfor-
mations as discussed in Section 4.2.2 are valid. Thus, any plan generator must
be modified in such a way that it restricts its search to valid transformations
only. Otherwise, the generated plan may not be equivalent to the input query
and therefore the result may be wrong.

Several approaches to restrict the search space are described in existing work.
First, the problem of outerjoin simplification and reordering was extensive-
ly studied by Galindo-Legaria and Rosenthal [16, 17, 38]. They identified a
subclass of join and outerjoin queries where the query graph unambiguously
determines the semantics of a query. For this type of queries, they proposed a
procedure that analyzes paths in the query graph to detect conflicting reorder-
ings. They enhanced a conventional dynamic programming algorithm to deal
with these conflicts. Although very useful, their approach is restricted to joins
and outerjoins and the query graph must exhibit some specific properties.

In order to handle complex predicates, Bhargava et al. extended this ap-
proach and presented a conflict detector, which analyzes paths in hypergraphs
[1]. Their approach is also limited to joins and outerjoins. Rao et al. presented a
method that is not restricted to joins and outerjoins. They additionally consid-
ered antijoins and proposed to use the initial operator tree instead of the query
graph in order to maintain the semantics of the input query [36, 37]. Their idea
is to calculate a set of relations associated with every predicate. This set of
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Figure 4.3: Core search space example

relations (called EEL, for extended eligibility list) must be available before the
predicate can be evaluated.

To calculate the EEL(◦) for an operator ◦, they first determined the opera-
tor’s so-called normal eligibility list (NEL(◦)), which contains all relations that
must be present before ◦ can be applied. That is, a plan of the form S1 ◦ S2 is
valid only if SES(◦) ⊆ S1 ∪ S2 holds. In general, the NEL is equal to the set
of relations referenced in the operator’s predicate. In the next subsection we
discuss how the NEL is extended to become the EEL which can then be used
to restrict the plan generator’s search space to valid join orders.

Moerkotte and Neumann adopted the idea of NEL and EEL and called them
SES and TES, respectively [30]. SES stands for syntactic eligibility set and TES
stands for total eligibility set. Other than that, the two sets basically have the
same function as before. However, they are calculated differently and support
all join operators in LOP (see Section 2.2). Neither the approach by Rao et
al., nor the one by Moerkotte and Neumann is correct. Both generate invalid
plans. Subsequently, we will present examples demonstrating how they work
and why they fail. We will also fix the algorithm by Rao et al.

45



4 Reordering Non-Inner Joins

4.3.1 Reordering Outerjoins and Antijoins with EELs

First, we explain the approach by Rao et al. in short [36, 37]. Then, we give
a counter-example that shows the incorrectness of their method. After that we
show how it can be repaired.

In their paper Rao et al. propose an algorithm called CalcEEL to compute
the EEL for each predicate carried by a join operator ◦ ∈ {B,E, T} [36]. The
pseudo code of CalcEEL is shown in Figure 4.4. CalcEEL computes the EELs
in a single bottom-up traversal (Lines 4-20) of the initial operator tree. During
the traversal, it maintains for each relation R an outerjoin set outerR and an
antijoin set antiR. Initially, both sets contain only the corresponding relations
themselves (Lines 2 and 3). Thereby, outerR stores all relations that are linked
through either inner- or antijoin predicates (Lines 13-16) and antiR keeps track
of all relations R ∈ T (left(◦)) ∩ NEL(◦) that are linked through E (Lines
17-20). Essentially, this means that R has to be on the preserving side of a
one-sided outerjoin predicate. As the name implies, outerR is used to compute
the EEL for an outerjoin predicate (Lines 6-8). Similarly, antiR is used to
compute the EEL for an antijoin predicate (Lines 9-12). The test executed in
Applicable(S1, S2, ◦p) is EEL(◦p) ⊆ S1 ∪ S2.

CalcEEL

// Input: T (◦), NEL(◦) where ◦ ∈ {B,E, T}
// Output: EEL(◦)

1 for each R ∈ T (topmost ◦)
2 outerR = {R}
3 antiR = {R}
4 for each operator ◦ during bottom-up traversal
5 EEL(◦) = NEL(◦)
6 if ◦ ∈ {E}
7 W =

⋃
R∈T (right(◦))∩NEL(◦) outerR

8 EEL(◦) = EEL(◦) ∪W
9 elseif ◦ ∈ {T}

10 V =
⋃
R∈T (left(◦))∩NEL(◦) antiR

11 U = {R|R ∈ T (right(◦)) ∩NEL(◦)}
12 EEL(◦) = EEL(◦) ∪ V ∪ U
13 if ◦ ∈ {B, T}
14 W =

⋃
R∈NEL(◦) outerR

15 for each R ∈W
16 outerR = W
17 elseif ◦ ∈ {E}
18 V =

⋃
R∈T (left(◦))∩NEL(◦) antiR

19 for each R ∈ T (right(◦)) ∩NEL(◦)
20 antiR = antiR ∪ V

Figure 4.4: Pseudo code for CalcEEL
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E0,1

R0 T2,3

E1,2

R1 R2

R3

T2,3

E0,1

R0 E1,2

R1 R2

R3

initial plan not prevented plan

Figure 4.5: Example showing the incorrectness of CalcEEL

Figure 4.5 shows an example in which EELs resulting from CalcEEL do not
prevent the generation of invalid plans. The initial plan is given on the left.
The plan on the right can only be derived by applying assoc(E0,1, T2,3). A look
at Table 4.2 reveals that assoc(E0,1, T2,3) is not valid. Thus, the two plans are
not equivalent. We can verify this by using the relations in Table 4.4 as input
for both plans. The result of the initial plan is given in Table 4.5. Clearly, it
differs from the result of the invalid plan shown in Table 4.6.

Table 4.7 shows antiR and outerR after executing CalcEEL. Table 4.8 dis-
plays the results of CalcEEL. According to EEL(E0,1) and EEL(T2,3), the anti-
join T2,3 can be applied on top of the outerjoin E0,1, which is wrong. EEL(E0,1)
should contain {R0, R1, R2, R3} in order to be correct because ¬assoc(E0,1, T2,3)
holds.

R0

A

1

R1

A B

1 1

R2

B C

1 1

R3

C

1

Table 4.4: Example relations

R0 ER0.A=R1.A ((R1 ER1.B=R2.B R2)TR2.C=R3.C)

R0.A R1.A R1.B R2.B R2.C R3.C

1 - - - - -

Table 4.5: Result of initial plan (Fig. 4.5)

We can easily fix CalcEEL as follows: we only have to eliminate the inter-
section with NEL(◦) in Lines 7 and 18 as in

7 W =
⋃
R∈T (right(◦)) outerR

. . .
18 V =

⋃
R∈T (left(◦)) antiR

With this fix CalcEEL prevents reordering conflicts, but is not complete any
more. Hence, we traded in correctness for incompleteness, which still is a ma-
jor improvement. The incompleteness of the fixed algorithm can be verified by
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4 Reordering Non-Inner Joins

(R0 ER0.A=R1.A (R1 ER1.B=R2.B R2))TR2.C=R3.C

R0.A R1.A R1.B R2.B R2.C R3.C

∅

Table 4.6: Result of invalid plan (Fig. 4.5)

R outerR antiR
R0 {R0} {R0}
R1 {R1} {R0, R1}
R2 {R2, R3} {R1, R2}
R3 {R2, R3} {R3}

Table 4.7: antiR and outerR after executing CalcEEL

using R0E0,1 (R1E1,2R2) as input plan. The modified CalcEEL procedure re-
turns EEL(E0,1) = {R0, R1, R2}, which prevents (R0E0,1R1)E1,2R2, although
the latter is a valid plan because assoc(E0,1, E1,2) holds. Thus, EEL(E0,1)
should contain {R0, R1} only.

4.3.2 Reordering Joins with TESs

Before a join operator ◦p can be applied, the plan generator needs to ensure that
the producer/consumer constraints implied by p are met. The conventional test
is to check if FT (p) is a subset of T (◦). Moerkotte and Neumann extended this
test to detect reordering conflicts [30]. Therefore, they introduced the notion of
the TES. The TES is defined to be a set of relations that is attached to every
binary operator ◦p in the query and is a superset of the SES, which captures the
syntactic constraints imposed by the join predicate p. Before ◦p can be applied
to join a ccp (S1, S2), it is ensured that all elements of TES(◦p) are contained
in S1 ∪ S2.

Moerkotte and Neumann proposed an algorithm called CalcTES, which can
be found in their paper [30]. It calculates the TES for every join operator
in LOP. As it turns out, their approach is neither correct nor complete: it
generates wrong plans and misses correct ones.

Figure 4.6 contains an example showing the incorrectness of the TES ap-
proach: the plan on the right is not equivalent to the initial plan on the left.
Applying assoc(B1,2, T2,3) as a first step and assoc(E0,1, T2,3) thereafter trans-
forms the initial plan into the plan on the right. To see that the plan on the
right is invalid, consider the different results in Tables 4.9 and 4.10, which are

◦ NEL EEL

E1,2 {R1, R2} {R1, R2}
T2,3 {R2, R3} {R1, R2, R3}
E0,1 {R0, R1} {R0, R1}

Table 4.8: NEL and EEL after executing CalcEEL
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E0,1

R0 B1,2

R1 T2,3

R2 R3

T2,3

E0,1

R0 B1,2

R1 R2

R3

initial plan invalid plan

Figure 4.6: Example showing the incorrectness of CalcTES

R0 ER0.A=R1.A (R1 BR1.B=R2.B (R2 TR2.C=R3.C R3))

R0.A R1.A R1.B R2.B R2.C

1 null null null null

Table 4.9: Result of initial plan (Fig. 4.6)

based on the same input relations as before (Table 4.4).

Table 4.11 shows the result of applying CalcTES to the initial plan. Due
to the values of TES(E0,1) and TES(T2,3), the test TES(E0,1) ⊆ {R0, R1, R2}
succeeds, allowing the antijoin T2,3 to move on top of E0,1, which is invalid,
since ¬assoc(E0,1, T2,3) holds. In order to prevent the reordering, TES(E0,1)
should contain {R0, R1, R2, R3}.

4.4 Conflict Detection

In this section we propose three new conflict detection algorithms named CD-
A, CD-B and CD-C. All of them are correct and CD-C is also complete. We
adopt the naming conventions proposed in previous work, meaning that our
approaches all make use of two relation sets named SES and TES [30]. In
addition to this, CD-B and CD-C also require a set of so-called conflict rules.

(R0 ER0.A=R1.A (R1 BR1.B=R2.B R2)) TR2.C=R3.C R3

R0.A R1.A R1.B R2.B R2.C

∅

Table 4.10: Result of invalid plan (Fig. 4.6)

◦ SES TES

T2,3 {R2, R3} {R2, R3}
B1,2 {R1, R2} {R1, R2}
E0,1 {R0, R1} {R0, R1, R2}

Table 4.11: SES and TES after executing CalcTES
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4 Reordering Non-Inner Joins

CalcSES(◦p)
// Input: binary operator ◦ ∈ LOP carrying predicate p

1 if ◦p ∈ {B,K,E, T,N}
2 return

⋃
R∈FT (p){R} ∩ T (◦p)

3 elseif ◦p;a1:e1,...,an:en ∈ {Z}
4 return

⋃
R∈FT (p)∪FT (ei)

{R} ∩ T (◦p)
5 else // cross product A

6 return ∅

Figure 4.7: Pseudo code for CalcSES

4.4.1 Outline

In order to open our conflict detectors to new algebraic operators, we use a table-
driven approach. We use four tables containing the information from Tables
4.1, 4.2 and 4.3 (the latter includes two tables). Extending our approach only
requires to extend these tables.

We develop our final approach in three steps. In each step we introduce one
of our conflict detectors CD-A, CD-B, and CD-C. For each of these conflict
detectors, we present a complete bundle consisting of three components:

1. a conflict representation,

2. an algorithm, which detects the conflicts in the initial operator tree and
produces a conflict representation for each operator contained in it and

3. the implementation of Applicable, which uses the conflict representa-
tion for an operator and then determines whether the operator can be
applied in a given context.

Each of the bundles we will discuss subsequently is correct, but only the last
one is complete.

The main idea in the following (the same as in previous work [30, 36, 37])
is to extend the producer/consumer constraints modeled through the SES by
adding more tables to it. This is meant to restrict the explored search space
to valid plans only, which is possible, since the SES is used to express syntac-
tic constraints: all referenced attributes and tables must be present before an
expression can be evaluated. Therefore, the explored search space will become
smaller if we add more tables.

Let us now define the SES. First of all, the SES contains the tables referenced
by a predicate. If some operator such as the groupjoin Z introduces new
attributes, they will be treated as if they belong to a new table. This new table
is present in the set of accessible tables after the groupjoin has been applied. Let
R be a table and let ◦p be any of our binary operators other than a groupjoin.
The pseudo code for the SES calculation is shown in Figure 4.7. In the case of
non-degenerate predicates, CalcSES(◦p) = FT (p).
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4.4 Conflict Detection

We always initialize TES with SES. Furthermore, we assume that our conflict
representation has two accessors L-TES and R-TES, that are defined as follows:

L-TES(◦) := TES(◦) ∩ T (left(◦)) and

R-TES(◦) := TES(◦) ∩ T (right(◦)).

This distinction is necessary, because we want to consider commutativity explic-
itly and in those cases where commutativity does not hold, we want to prevent
operators which occurred on the left-hand side of an operator from moving to
its right-hand side, or vice versa.

For a ccp (S1, S2) all our implementations of Applicable include the fol-
lowing test:

L-TES ⊆ S1 ∧ R-TES ⊆ S2.

4.4.2 Approach CD-A

Let us first consider a simple operator tree with only two operators. Take a
look at the upper half of Figure 4.8. There, the application of associativity and
l-asscom to a plan is illustrated. In case associativity does not hold, we add
T (e1) to TES(◦b). This prevents the plan on the right-hand side of the arrow
marked with assoc. It does not, however, prevent the plan on the right-hand
side of the arrow marked with l-asscom. Similarly, adding T (e2) to TES(◦b)
does prevent the plan resulting from l-asscom, but not the plan resulting from
applying associativity. The lower part of Figure 4.8 shows the actions needed
if an operator is nested in the right argument. Again, we can precisely prevent
the invalid plans.

Only one problem remains to be solved. It occurs if a conflicting operator
◦a is not a direct child of ◦b, but instead a descendant situated deeper in the
operator tree. This is possible since in general, the ei are trees themselves.
Some reordering could possibly move a conflicting operator ◦a up to the top of
an argument subtree.

Thus, we have to calculate the TESs bottom-up by applying CD-A to every
operator ◦b in the operator tree. The pseudo code for CD-A is shown in Figure
4.9. The conflict representation comprises the TES for every operator. The
pseudo code for Applicable is:

ApplicableA(S1, S2, ◦)
// Input: binary operator ◦, sets of tables S1, S2

1 return L-TES(◦) ⊆ S1 ∧ R-TES(◦) ⊆ S2

Let us now verify that ApplicableA is correct. We have to show that it
prevents the generation of invalid plans. Take the ¬assoc case with nesting on
the left. Let the original operator tree contain (e1◦a12 e2)◦b23 e3. Define the set of
tables R2 := FT (◦b23) ∩ T (left(◦b23)) and R3 := FT (◦b23) ∩ T (right(◦b23)). Then,
SES(◦b23) = R2 ∪R3. Further, since ¬assoc(◦a12, ◦b23), we have

TES(◦b23) ⊇ SES(◦b23) ∪ T (e1).
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◦b

◦a

e1 e2

e3 assoc
=⇒

◦a

e1 ◦b

e2 e3

if ¬assoc(◦a, ◦b) then TES(◦b) ∪= T (e1)

l-asscom
=⇒

◦a

◦b

e1 e3

e2

if ¬l-asscom(◦a, ◦b) then TES(◦b) ∪= T (e2)

◦b

e3 ◦a

e1 e2

assoc
=⇒

◦a

◦b

e3 e1

e2

if ¬assoc(◦b, ◦a) then TES(◦b) ∪= T (e2)

r-asscom
=⇒

◦a

e1 ◦b

e3 e2

if ¬r-asscom(◦b, ◦a) then TES(◦b) ∪= T (e1)

Figure 4.8: Calculating TES according to CD-A

Note that we used ⊇ and not equality, since TES(◦b) could be larger due to
other conflicts. Next, we observe that

L-TES(◦b23) ⊇ (SES(◦b23) ∪ T (e1)) ∩ T (left(◦b23))

⊇ (SES(◦b23) ∩ T (left(◦b23))) ∪
(T (e1) ∩ T (left(◦b23)))

⊇ ((R2 ∪R3) ∩ T (left(◦b23))) ∪ (T (e1))

⊇ R2 ∪ T (e1)

and

R-TES(◦b23) ⊇ (SES(◦b23) ∪ T (e1)) ∩ T (right(◦b23))

⊇ SES(◦b23) ∩ T (right(◦b23))

⊇ R3.
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4.4 Conflict Detection

CD-A(◦b)
// Input: operator ◦b

1 TES(◦b) = CalcSES(◦b)
2 for ∀ ◦a ∈ STO(left(◦b))
3 if ¬assoc(◦a, ◦b)
4 TES(◦b) = TES(◦b) ∪ T (left(◦a))
5 if ¬l-asscom(◦a, ◦b)
6 TES(◦b) = TES(◦b) ∪ T (right(◦a))
7 for ∀ ◦a ∈ STO(right(◦b))
8 if ¬assoc(◦b, ◦a)
9 TES(◦b) = TES(◦b) ∪ T (right(◦a))

10 if ¬r-asscom(◦b, ◦a)
11 TES(◦b) = TES(◦b) ∪ T (left(◦a))

Figure 4.9: Pseudo code for CD-A

E2,3

B0,2

N0,1

R0 R1

R2

R3

B0,2

N0,1

R0 R1

E2,3

R2 R3

N0,1

B0,2

R0 E2,3

R2 R3

R1

initial plan Plan 1 Plan 2

Figure 4.10: Example illustrating incompleteness of CD-A

Let (S1, S2) be a ccp generated by our plan generator with conflict detection.
Then, the call Applicable(S1,S2,◦b) checks

L-TES(◦b23) ⊆ S1 and

R-TES(◦b23) ⊆ S2.

This fails if S1 6⊇ T (e1). Hence, neither e2 ◦b23 e3, nor e3 ◦b23 e2 will be generated
and, consequently, e1 ◦a12 (e2 ◦b23 e3) will not be generated either. Similarly,
if ¬l-asscom(◦a, ◦b), L-TES(◦b) will contain T (e2) and the test prevents the
generation of e1 ◦b e3. The remaining two cases can be verified analogously.

From this discussion it follows that our plan generator generates only valid
plans. However, it does not generate all valid plans. It is incomplete, as
we can see from the example shown in Figure 4.10. Since ¬assoc(N0,1,E2,3),
TES(E2,3) contains R0 (line 4 of CD-A(E2,3)) . Thus, neither the valid plans
Plan 1 and Plan 2, nor any plan that can be derived from the two by applying
join commutativity will be generated.
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4.4.3 Approach CD-B

In order to reduce the number of valid plans missed by our plan generator, we
introduce the more flexible mechanism of conflict rules. A conflict rule (CR) is a
pair of table sets denoted by T1 → T2. With every operator in the operator tree
we associate a set of conflict rules, so our conflict representation now consists
of a TES and a set of conflict rules for every operator.

Before we describe the construction of conflict rules, let us illustrate their
role in Applicable(S1, S2, ◦). To this end, we define rule obedience as follows:

Definition 8. A conflict rule T1 → T2 is obeyed for relation sets S1 and S2 if
with S = S1 ∪ S2 the following condition holds:

T1 ∩ S 6= ∅ =⇒ T2 ⊆ S.

Thus, if T1 contains a single table from S, S must contain all tables in T2.
Keeping this in mind, it is easy to see that invalid plans are indeed prevented
by obeying the rules shown in Figure 4.11. As we will see, the TES is restricted
to the SES in CD-B. Compared to the TES, conflict rules allow for more flexi-
bility: while the TES containment test is unconditional, conflict rules represent
a conditional containment test.

The pseudo code for the new conflict detector is given in Figure 4.12 with
CD-B. As before, we apply CD-B bottom-up to every operator ◦b in the tree.

With the conflict rules we need a new test for applicability. Now, the test
given in Figure 4.13 with ApplicableB/C(S1, S2, ◦) checks for two conditions:

1. L-TES ⊆ S1 ∧ R-TES ⊆ S2 must hold (Line 1) and

2. all rules in the rule set of ◦ must be obeyed (Lines 2-6).

With CD-B all plans in Figure 4.10 can be generated.
Again, this implementation of Applicable is correct, but not complete, as

the example in Figure 4.14 shows. Since assoc(B0,1,N1,3), assoc(B1,2,N1,3)
and l-asscom(B1,2,N1,3), the only conflict occurs due to ¬r-asscom(B0,1,N1,3).
Consequently, CR(B0,1) contains the following rule:

T ({R3})→ T ({R1, R2})

This rule prevents the plan on the right-hand side of Figure 4.14, which is overly
careful, since R2 6∈ FT (N1,3). In fact, r-asscom would never be applied in this
example, since B0,1 accesses table R1, meaning that applying r-asscom would
destroy the producer/consumer relationship (FT (B0,1)∩{R1, R2} 6= ∅) already
covered by SES(B0,1).

4.4.4 Approach CD-C

The approach CD-C differs from CD-B only in the way the conflict rules are
calculated. The conflict representation and the procedure Applicable remain
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◦b

◦a

e1 e2

e3 assoc
=⇒

◦a

e1 ◦b

e2 e3

if ¬assoc(◦a, ◦b) then CR(◦b) + = T (e2)→ T (e1)

l-asscom
=⇒

◦a

◦b

e1 e3

e2

if ¬l-asscom(◦a, ◦b) then CR(◦b) + = T (e1)→ T (e2)

◦b

e3 ◦a

e1 e2

assoc
=⇒

◦a

◦b

e3 e1

e2

¬assoc(◦b, ◦a) then CR(◦b) + = T (e1)→ T (e2)

r-asscom
=⇒

◦a

e1 ◦b

e3 e2

if ¬r-asscom(◦b, ◦a) then CR(◦b) + = T (e2)→ T (e1)

Figure 4.11: Calculating conflict rules according to CD-B

the same. The idea is to learn from the above example and include only those
tables under operator ◦a, which occur in its predicate. However, we have to
be careful to include special cases for degenerate predicates and cross products.
The pseudo code is given in Figure 4.15. Let us revisit the example from Section
4.4.3. Since in the example the only conflict occurs due to ¬r-asscom(B0,1,N1,3),
the rule set CR(B0,1) contains T ({R3}) → T ({R1}) (Line 21 of CD-C). As a
consequence, the plan on the right-hand side of Figure 4.14 will not be prevented
anymore.

We show that ApplicableB/C for the ¬assoc case with nesting on the left is
correct. The remaining cases can be proven similarly. Let the original operator
tree contain (e1 ◦a12 e2) ◦b23 e3. Since ¬assoc(◦a, ◦b), one of the following (Line 5
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CD-B(◦b)
// Input: operator ◦b

1 TES(◦b) = CalcSES(◦b)
2 for ∀ ◦a ∈ STO(left(◦b))
3 if ¬assoc(◦a, ◦b)
4 CR(◦b) + = T (right(◦a))→ T (left(◦a))
5 if ¬l-asscom(◦a, ◦b)
6 CR(◦b) + = T (left(◦a))→ T (right(◦a))
7 for ∀ ◦a ∈ STO(right(◦b))
8 if ¬assoc(◦b, ◦a)
9 CR(◦b) + = T (left(◦a))→ T (right(◦a))

10 if ¬r-asscom(◦b, ◦a)
11 CR(◦b) + = T (right(◦a))→ T (left(◦a))

Figure 4.12: Pseudo code for CD-B

ApplicableB/C(S1, S2, ◦)
// Input: binary operator ◦, sets of tables S1, S2

1 if L-TES(◦) ⊆ S1 ∧ R-TES(◦) ⊆ S2

2 for all (T1 → T2) ∈ CR(◦)
3 if T1 ∩ (S1 ∪ S2) 6= ∅
4 if T2 6⊆ (S1 ∪ S2)
5 return false
6 return true
7 else
8 return false

Figure 4.13: Pseudo code for ApplicableB/C

or Line 7) holds:

CR(◦b) + = T (e2)→ T (e1) or

+ = T (e2)→ T (e′1) with e′1 ⊂ e1 ∧ e′1 6= ∅.

The second case subsumes the first case. Thus, it suffices to show the sec-
ond case. To construct e1 ◦a12 (e2 ◦b23 e3) (right-hand side of Equivalence 4.1),
the subtree (e2 ◦b23 e3) must be constructed first. We show that the routine
ApplicableB/C(S1, S2, ◦b) returns false with either (A) T (e2) ⊆ S1 ∧ T (e3) ⊆
S2 or (B) T (e3) ⊆ S1 ∧ T (e2) ⊆ S2. If the test in Line 1 fails, false is returned
and we are done. Otherwise, L-TES(◦) ⊆ S1 holds. Note that, since we are
trying to construct (e2 ◦b23 e3), T (e1) ∩ (S1 ∪ S2) = ∅ must hold. On the other
hand, the conflict rule T1 → T2 with T1 = T (e2) and T2 ⊇ T (e′1) is contained in
CR(◦b). Thus, for this rule T1 → T2: T1∩ (S1∪S2) 6= ∅ and T2 6⊆ (S1∪S2) hold
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B0,1

R0 N1,3

B1,2

R1 R2

R3

B1,2

B0,1

R0 N1,3

R1 R3

R2

initial plan prevented valid plan

Figure 4.14: Example illustrating incompleteness of CD-B

in both cases (A) and (B). Accordingly, false is returned by ApplicableB/C .
Hence, CD-C and, consequently, CD-B are correct.

4.4.5 Rule Simplification

Reducing the number of conflict rules slightly decreases plan generation time,
because fewer tests for rule obedience have to be carried out. Thus, laws like

R1 → R2, R1 → R3 ≡ R1 → R2 ∪R3

R1 → R2, R3 → R2 ≡ R1 ∪R3 → R2

should be used to rearrange the rule set for efficient evaluation.
However, we are much more interested in eliminating rules altogether by

adding their right-hand side to the TES. This is due to the following argument:
in Section 2.3 we stated that a higher number of hyperedges in the query graph
leads to a smaller search space by reducing the number of ccps the plan gen-
erator needs to consider. Since the hyperedges are constructed from the TES
(more on this in the following section), eliminating conflict rules and in turn
adding some relations to one or more TESs has a positive impact on the run-
time of hypergraph-aware plan generators like DPhyp or its memoization-based
equivalent TDMcCHyp [12].

Consider a conflict rule R1 → R2 for an operator ◦. If R1 ∩ TES(◦) 6= ∅, we
can add R2 to TES due to the existential quantifier on the left-hand side of a
rule in the definition of obey (see Definition 8). Moreover, if R2 ⊆ TES(◦), we
can safely eliminate the rule. Applying these rearrangements is often possible,
since both (T (left(◦a))∩FT (◦)) and (T (right(◦a))∩FT (◦)) will be non-empty.

4.5 Minor Issues

In this section we investigate some smaller issues that have not been covered so
far. One of them is how the TES can be used to add hyperedges to the query
graph, thereby allowing the plan generator to avoid invalid reorderings without
the need for an explicit applicability test. The second topic of this section is
how crossproducts or, in general, degenerate predicates can be handled by the
conflict detector.
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CD-C(◦b)
// Input: operator ◦b

1 TES(◦b) = CalcSES(◦b)
2 for ∀ ◦a ∈ STO(left(◦b))
3 if ¬assoc(◦a, ◦b)
4 if T (left(◦a)) ∩ FT (◦a) 6= ∅
5 CR(◦b) + = T (right(◦a))→ T (left(◦a)) ∩ FT (◦a)
6 else
7 CR(◦b) + = T (right(◦a))→ T (left(◦a))
8 if ¬l-asscom(◦a, ◦b)
9 if T (right(◦a)) ∩ FT (◦a) 6= ∅

10 CR(◦b) + = T (left(◦a))→ T (right(◦a)) ∩ FT (◦a)
11 else
12 CR(◦b) + = T (left(◦a))→ T (right(◦a))
13 for ∀ ◦a ∈ STO(right(◦b))
14 if ¬assoc(◦b, ◦a)
15 if T (right(◦a)) ∩ FT (◦a) 6= ∅
16 CR(◦b) + = T (left(◦a))→ T (right(◦a)) ∩ FT (◦a)
17 else
18 CR(◦b) + = T (left(◦a))→ T (right(◦a))
19 if ¬r-asscom(◦b, ◦a)
20 if T (left(◦a)) ∩ FT (◦a) 6= ∅
21 CR(◦b) + = T (right(◦a))→ T (left(◦a)) ∩ FT (◦a)
22 else
23 CR(◦b) + = T (right(◦a))→ T (left(◦a))

Figure 4.15: Pseudo code for CD-C

4.5.1 Larger TES, Faster Plan Generation

Simple plan generators like DPsub (Figure 3.3), DPsize (Figure 3.1), and Mem-
oizationBasic [10] generate various pairs of relation sets (S1, S2) and then possi-
bly reject some of them later on if they turn out to be invalid. This can be due
to one of two reasons: either the pair is not a ccp, i.e., one of the connection
tests applied by these algorithms fail, or a conflict detector is in place and there
is a reordering conflict that prohibits joining (S1, S2), i.e., Applicable fails.
In both situations the effort for enumerating the join pair and conducting the
tests that lead to its rejection is wasted. In Section 3.1 we have already stated
that the connection tests can be avoided by using the query graph to enumer-
ate only valid ccps. This is the approach followed by DPccp (Figure 3.4) and
DPhyp (Figure 3.5) and the reason for their superior efficiency.

With a hypergraph-aware plan generator like DPhyp, we can oftentimes also
avoid the second issue stated above, i.e., failing the applicability test. This can
be achieved by using the TES (which are contained in CD-A and CD-C, where
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they are possibly enlarged by rule elimination) to generate hyperedges instead of
using them only within Applicable. Hence, the hyperedges can directly cover
most of the possible conflicts, if not all (see Section 4.6 for precise numbers).
The construction of the hyperedges proceeds as follows.

For every operator ◦, we construct a hyperedge (l, r) such that r = TES(◦)∩
T (right(◦)) = R-TES(◦) and l = TES(◦) \ r = L-TES(◦). Together with the
nodes given by the relations in the input query, these hyperedges define the
query graph that is the input to DPhyp. Two things are important to observe.
First, in case of non-empty rule sets, the applicability test must still be executed.
Second, since SES ⊆ TES, no other hyperedges have to be constructed.

Let us now come to the question why larger TESs result in higher efficiency.
The efficiency of an advanced plan generator is directly correlated to the number
of ccps. Obviously, larger TESs result in larger hypernodes in the hyperedges
(l, r). Potentially, a hyperedge (l, r) gives rise to a ccp (l, r) if both l and r
induce connected subgraphs. Further, every (S1, S2) with S1 ⊇ l, S2 ⊇ r,
S1 ∩ S2 = ∅ is a potential ccp. Thus, enlarging (l, r) decreases the number of
ccps.

4.5.2 Cross Products and Degenerate Predicates

Cross products and degenerate predicates require some special attention. Con-
sider the example (R1 A R2) B1,3 (R3 N3,4 R4). So far, nothing prevents our
plan generator from producing invalid plans such as R1B1,3 (R3N3,4 (R2AR4)).
Note that in order to prevent this plan, we would have to detect conflicts on
the “other side” of the plan. Since cross products and degenerate predicates
should be rare in real queries, it suffices to produce correct plans. We have no
ambition to explore the complete search space. Thus, we just want to make
sure that in these abnormal cases, the plan generator still produces a correct
plan. This can be achieved by conjunctively adding the check

T (left(◦)) ∩ S1 6= ∅ ∧ T (right(◦)) ∩ S2 6= ∅

to the test for Applicable(S1, S2, ◦).
In the example given above, the test will fail when trying to apply the

crossproduct joining R2 and R4, since

T (left(A)) ∩ S1 = {R1} ∩ {R2} = ∅.

The additional condition prevents invalid plans, but a significant portion of
the valid search space will not be explored if cross products are present in
the initial operator tree. However, if the initial plan does not contain cross
products or degenerate predicates, this test will always succeed, so in this case
the core search space will still be explored completely. Moreover, the portion
of the core search space explored by this approach is still larger than with Rao
et al.’s approach, which consists of performing two separate runs of the plan
generator for each of the arguments of a cross product [36, 37]. This hinders
any reordering of cross products with other operators. The approach proposed
by Moerkotte and Neumann cannot handle cross products at all [30].
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There is a second issue concerning cross products. In some rare cases it
might be beneficial to introduce cross products, even if the initial plan does not
demand them. In these cases, we can proceed as proposed by Rao et al. [36, 37]:
for each relation R, a companion set is calculated, which contains all relations
that are connected to R only by inner join predicates. Within a companion set
all join orders are valid, including those that require crossproducts.

4.6 Evaluation

When comparing the various conflict detectors discussed in the previous sec-
tions, the two properties that are of particular interest are correctness and com-
pleteness. We have already sketched out correctness proofs for all approaches,
but we have also observed that not all of them are complete. This section
provides some experimental results that serve to measure the number of valid
plans missed by each conflict detector, if any. Aside from that, we also show
experimentally that none of them produces incorrect plans.

In order to do so, we implemented a transformation-based plan generator.
It exhaustively applies the transformation rules defined in Section 4.2 until no
new plan can be generated. Additionally, we implemented all known conflict
detectors and used them within DPsub (see Figure 3.3). To this end, we simply
added a call to Applicable in Line 15 of the algorithm.

Moreover, we modified DPsub such that it does not prune dominated plans
but instead keeps all generated plans. This set of plans is then compared to the
set of plans generated by the transformation-based plan generator. This way,
we found (1) invalid plans and (2) valid plans not generated by our DP-based
plan generator equipped with a specific conflict detector. Since NEL/EEL only
handles joins, antijoins and left outerjoins, but our conflict detectors allow for
more operators, we ran our experiments for two distinct operator sets ({B, T,E}
and {B,N, T,E,K}).

For any given set of operators, we generated all possible initial plans for
a given number of relations (varied between 3 and 7). For each initial plan
the different plan generators were executed. The generation of all initial plans
for n relations proceeded in three steps. In a first step all integers from 1 to
C(n− 1) are unranked. C denotes the Catalan numbers. For the unranking we
used the method proposed by Liebehenschel, which returns raw binary trees
[26]. In a second step an operator from the respective operator set is attached
to every inner node, making sure that every combination is generated exactly
once. Finally, binary predicates are generated by exploring all possibilities to
reference one relation from the operator’s left subtree and one from its right
subtree. We did not generate complex predicates, since they only simplify the
enumeration of the core search space (see Section 4.2.2).

Tables 4.12 and 4.13 show the results. The columns contain the number of
relations (n), the number of distinct queries (initial operator trees), the number
of plans the transformation-based plan generator generates for these queries,
and for each conflict detector the number of invalid plans (I) and the number
of missing valid plans (M). The conflict detector EEL-F is the fixed version of
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n #Queries #Plans EEL EEL-F TES
I M I M I M

3 26 88 0 0 % 0 1.14 % 0 0 %
4 344 4059 2 0 % 0 2.02 % 23 2.24 %
5 5834 301898 296 0 % 0 2.51 % 3964 6.47 %
6 117604 32175460 41108 0 % 0 2.70 % 605914 12.23 %
7 2708892 4598129499 6349126 0 % 0 2.71 % 99179293 19.05 %

n #Queries #Plans CD-A CD-B CD-C
I M I M I M

3 26 88 0 0 % 0 0 % 0 0 %
4 344 4059 0 3.30 % 0 2.02 % 0 0 %
5 5834 301898 0 8.54 % 0 5.38 % 0 0 %
6 117604 32175460 0 14.66 % 0 9.77 % 0 0 %
7 2708892 4598129499 0 21.06 % 0 15.04 % 0 0 %

Table 4.12: Small operator set: join, left outerjoin, antijoin

the original NEL/EEL approach. Additionally, Table 4.13 contains for CD-C
the number of rule sets which are empty after applying rule simplifications as
well as the number of non-empty rule sets.

From Table 4.12 we see that both the EEL/NEL approach and the SES/TES
approach produce invalid plans. From Table 4.13 we see that CD-A and CD-B
lose large fractions of the valid search space, but CD-C does not. We also see
that about 70% of all rule sets are empty if rule simplification is applied. This
means that most reordering conflicts can be covered with the TESs alone and we
can encode these conflicts in the query graph to avoid the call to Applicable
with a hypergraph-aware enumerator.
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#Queries #Plans CD-A
n I M
3 62 203 0 0
4 1114 11148 0 473 (4.24 %)
5 25056 934229 0 102019 (10.92 %)
6 661811 108294798 0 20113801 (18.57 %)
7 19846278 16448441514 0 4329578881 (26.32 %)

#Queries #Plans CD-B
n I M
3 62 203 0 0
4 1114 11148 0 246 (2.21 %)
5 25056 934229 0 55725 (5.96 %)
6 661811 108294798 0 11868102 (10.96 %)
7 19846278 16448441514 0 2793701760 (16.98 %)

#Queries #Plans CD-C Rule Sets
n I M ∅ ¬∅
3 62 203 0 0 107 17
4 1114 11148 0 0 2725 617
5 25056 934229 0 0 77484 22740
6 661811 108294798 0 0 2432717 876338
7 19846278 16448441514 0 0 83560096 35517572

Table 4.13: Large operator set: join, left/full outerjoin, semijoin, antijoin
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The findings from the previous chapter constitute all the tools necessary to
build a plan generator that is capable of correctly reordering join operators of
any type. With efficient enumeration algorithms like DPhyp already existing,
we consider the classic join ordering problem solved. This allows us to look into
other aspects of plan generation. One of them is optimizing the placement of
grouping operators. Instead of applying a single grouping after all joins have
been applied, grouping operators can be pushed down in the operator tree to
apply them before a join. This transformation can have a significant impact
on the runtime of a large class of queries, namely analytical queries as they are
often seen in the context of data warehouses. These queries usually contain a
number of joins and a grouping in order to produce an aggregated result.

This chapter covers the problem of reordering join and grouping by first pro-
viding the necessary algebraic equivalences. Subsequently, different approaches
for exploiting these equivalences in a DP-based plan generator are presented.
They can be classified into heuristic approaches that do not guarantee an opti-
mal solution, but add only little overhead to the plan generator and approaches
that guarantee an optimal solution, but require sophisticated pruning strate-
gies to keep the plan generator’s runtime in check. Both approaches have in
common that they can easily be added to any plan generator adhering to the
component-based architecture described in Chapter 3.

Moreover, the pruning approaches described in Section 5.7 serve as a repre-
sentative example of how plan properties can be used to extend the functionality
of a DP-based plan generator.

5.1 Motivation

For a motivating example, consider the query against the TPC-H schema [5]
shown in Figure 5.1. It counts the customers and suppliers of each nation.
Since nations that have no suppliers or customers should also be included, a
full outerjoin is applied. Figure 5.2 shows the corresponding operator tree.

Manually rewriting the query to apply the grouping before the full outerjoin
yields the query shown in Figure 5.3 and the corresponding operator tree in
Figure 5.4

In HyPer [23] the execution time of the first query is 12,700 ms, whereas the
second query takes only 14.5 ms. Similar results were obtained on a commercial
disk-based system: 68,237 ms vs. 62 ms. All numbers were obtained with a
TPC-H instance of scale factor 1 on commodity hardware. None of the two
systems were optimized for benchmarking purposes.

The effect of this rewrite comes as no surprise, since pushing down groupings
is a well-established query optimization technique. The main point here is that
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select ns . n name , nc . n name ,
count ( distinct c cus tkey ) , count ( distinct s suppkey )
from

( nat ion ns inner join s u p p l i e r s
on ( ns . n nat ionkey = s . s nat i onkey ) )

f u l l outer join
( nat ion nc inner join customer c

on ( nc . n nat ionkey = c . c nat ionkey ) )
on ( ns . n nat ionkey = nc . n nat ionkey )
group by ns . n name , nc . n name
order by ns . n name , nc . n name

Figure 5.1: Query containing full outerjoin and group-by

ΓG;F

Kns.n nationkey=nc.n nationkey

Bn nationkey=s nationkey

nation ns supplier

Bn nationkey=c nationkey

nation nc customer

with

G = {ns.n name, nc.n name},
F = (count(distinct c custkey), count(distinct s suppkey))

Figure 5.2: Operator tree for query in Figure 5.1

only reorderings between grouping and inner join are known [2, 44, 45, 46, 47,
48]. Thus, the outerjoin typically constitutes a barrier to any reordering with
grouping. Since in general, reordering grouping and outerjoins is not a correct
rewrite, eliminating the barrier requires generalizing the definition of outerjoins.
Section 5.3 provides all the details.

A quick complexity analysis shows that the free placement of grouping ex-
tends the search space of a plan generator substantially: a binary operator tree
with n relations contains 2n − 2 edges, and we can attach a grouping to each
of these edges and on top of the root, resulting in 2n − 1 possible positions
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select ns . n name , nc . n name , scnt as s u p p l i e r s ,
ccnt as customers

from
( nat ion ns inner join

( select s nat ionkey , count ( distinct s suppkey ) as scnt
from s u p p l i e r group by s nat i onkey ) as x

on ( ns . n nat ionkey = x . s nat i onkey ) )
f u l l outer join
( nat ion nc inner join

( select c nat ionkey , count ( distinct c cus tkey ) as ccnt
from customer group by c nat ionkey ) as y

on ( nc . n nat ionkey = y . c nat ionkey ) )
on ns . n nat ionkey = nc . n nat ionkey
order by ns . n name , nc . n name

Figure 5.3: Rewritten query with pushed-down group-by

for a grouping. If one considers all valid combinations of these positions for
every tree, the additional overhead caused by the optimal placement of group-
ing operators is a factor of O(22n−1). On the other hand, if one can infer at
a certain position in the operator tree that the grouping attributes constitute
a superkey, then a grouping at this position does not need to be considered
because grouping by a key has no effect.

One possible strategy for dealing with the large search space is to abandon
optimality and work with heuristics. Alternatively, one can derive optimality-
preserving pruning criteria that allow for reducing the search space size and at
the same time guarantee an optimal solution. In this chapter we examine both
options. We also extend the plan generator further by incorporating another
powerful transformation. It consists of replacing a sequence of join and grouping
by a single groupjoin [33].

5.2 Properties of Aggregate Functions

Aggregate functions are applied to a group of tuples to aggregate their values
in one common attribute to a single value. Some standard aggregate functions
supported by SQL are sum, count, min, max and avg. Additionally, it is possi-
ble to specify how duplicates are treated by these functions using the distinct
keyword as in sum(distinct), count(distinct) and so on. Since several aggregate
functions are allowed in the select clause of a SQL query, we deal with vectors
of aggregate functions, such as F = (b1 : sum(a), b2 : count(∗)). Here, a denotes
an attribute which is aggregated via sum and b1, b2 are attribute names for the
aggregation results. If F1 and F2 are two vectors of aggregate functions, we
denote their concatenation by F1 ◦ F2.

The set of attributes provided by an expression e (e.g., a base relation) is
denoted by A(e) and the set of attributes that occur freely in a predicate p or
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ΠA

Kns.n nationkey=nc.n nationkey

Bn nationkey=s nationkey

nation ns ΓGs;Fs

supplier

Bn nationkey=c nationkey

nation nc ΓGc;Fc

customer

with

A = {ns.n name, nc.n name, ccnt, scnt},
Gc = {c nationkey},
Fc = (ccnt : count(distinct c custkey)),

Gs = {s nationkey},
Fs = (scnt : count(distinct s suppkey))

Figure 5.4: Operator tree for query in Figure 5.3

aggregation vector F is denoted by F(p) or F(F ), respectively. We introduce
some properties of aggregate functions below.

5.2.1 Splittability

The following definition captures the intuition that we can split a vector of
aggregate functions into two parts if each aggregate function accesses only at-
tributes from one of two given alternative expressions.

Definition 9. An aggregation vector F is splittable into F1 and F2 with respect
to expressions e1 and e2 if

1. F = F1 ◦ F2,

2. F(F1) ∩ A(e2) = ∅ and

3. F(F2) ∩ A(e1) = ∅.
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In this case we can evaluate F1 on e1 and F2 on e2. A special case occurs for
count(*), which accesses no attributes and can thus be added to both F1 and
F2.

5.2.2 Decomposability

We define decomposability of an aggregate function as follows [3]:

Definition 10. An aggregate function agg is decomposable if there exist aggre-
gate functions agg1 and agg2 such that agg(Z) = agg2(agg1(X), agg1(Y )) for
bags of values X, Y and Z where Z = X ∪ Y .

In other words, if agg is decomposable, agg(Z) can be computed indepen-
dently on arbitrary subbags of Z and the partial results can be aggregated to
yield the correct total result. For some aggregate functions, decomposability
can easily be seen:

min(X ∪ Y ) = min(min(X),min(Y ))

max(X ∪ Y ) = max(max(X),max(Y ))

count(X ∪ Y ) = sum(count(X), count(Y ))

sum(X ∪ Y ) = sum(sum(X), sum(Y ))

In contrast to the functions above, sum(distinct) and count(distinct) are not
decomposable.

The treatment of avg is only slightly more complicated. If there are no null
values present, SQL’s avg is equivalent to avg(X) = sum(X)/count(X). Since
both sum and count are decomposable, we can decompose avg as follows:

avg(X ∪ Y ) =
sum(sum(X), sum(Y ))

sum(count(X), count(Y ))
.

If there exist null values, we need a slightly modified version of count that only
counts tuples in which the aggregated attribute is not null. We denote this
function by countNN and use it to decompose avg as follows:

avg(X ∪ Y ) =
sum(sum(X), sum(Y ))

sum(countNN(X), countNN(Y ))
.

5.2.3 Treatment of Duplicates

We have already seen that duplicates play a central role in correct aggregate
processing. Thus, we define the following. An aggregate function f is called
duplicate-agnostic if its result does not depend on whether there are duplicates
in its argument, or not. Otherwise, it is called duplicate-sensitive. Yan and
Larson use the terms Class C for duplicate-sensitive functions and Class D for
duplicate-agnostic functions [44].

For SQL’s aggregate functions, we have that

• min, max, sum(distinct), count(distinct),
avg(distinct) are duplicate-agnostic and
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• sum, count, avg are duplicate-sensitive.

If we want to decompose an aggregate function that is duplicate-sensitive, some
care has to be taken. We express this through an operator prime (′) as follows.
Let F = (b1 : agg1(a1), . . . , bm : aggm(am)) be an aggregation vector. Further,
let c be some other attribute. In our case, c is an attribute holding the result
of count(∗). Then, we define F ⊗ c as

F ⊗ c := (b1 : agg′1(e1), . . . , bm : agg′m(em))

with

agg′i(ei) =


aggi(ei) if aggi is duplicate-agnostic
aggi(ei ∗ c) if aggi is sum
sum(c) if aggi(ei) = count(∗)

and if aggi(ei) is count(ei), then agg′i(ei) := sum(ei = null ? 0 : c).

5.3 Equivalences for Join and Grouping

This section is organized into two parts. The first part shows how to push down
or pull up a grouping operator, whereas the second part shows how to eliminate
an unnecessary top grouping operator. These findings have been published in
[7]. The equivalences presented in this section are generally valid and form the
basis for reordering join and grouping operators in any type of plan generator.
In Section 5.5 we are going to see how they can be implemented in a DP-based
plan generator.

5.3.1 The Outerjoin with Default Values

In general, pushing a grouping past a full or left outerjoin is not a valid trans-
formation. This is why we generalize both operators in such a way that for
tuples not finding a join partner, default values can be provided instead of null
padding. More specifically, let Di = di1 : ci1, . . . , d

i
k : cik, for i = (1, 2) be two

vectors assigning constants cj to attributes dij . With this, the left outerjoin
with defaults is defined as follows:

e1 E
D2

p e2 := (e1 Bp e2) ∪ ((e1 Tp e2) A {⊥A(e2)\A(D2) ◦ [D2]} (5.1)

The full outerjoin with defaults is defined analogously:

e1 K
D1;D2

p e2 := (e1 Bp e2)

∪ ((e1 Tp e2) A {⊥A(e2)\A(D2) ◦ [D2]}
∪ ({⊥A(e1)\A(D1) ◦ [D1]}A (e2 Tp e1)) (5.2)

As before, we denote tuple concatenation by ◦ and the tuple containing null in
all attributes from attribute set A by ⊥A. Implementing these operators in a
system that already supports outerjoins is straightforward. Figure 5.5 provides
examples for both operators, where the value 7 is used as the default value for
attributes b and e.
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R1

a b c

0 0 1
1 0 1
2 1 3
3 2 3

R2

d e f

0 0 1
1 1 1
2 2 1
3 4 2

R1 E
e:7
R1.a=R2.e

R2

a b c d e f

0 0 1 0 0 1
1 0 1 1 1 1
2 1 3 2 2 1
3 2 3 - 7 -

R1 K
b:7;e:7
R1.a=R2.e

R2

a b c d e f

0 0 1 0 0 1
1 0 1 1 1 1
2 1 3 2 2 1
3 2 3 - 7 -
- 7 - 3 4 2

Figure 5.5: Example for the left and full outerjoin with default values

5.3.2 Pushing Group-By

Since the work by Yan and Larson [44, 45, 46, 47, 48] is the most general, we take
it as the basis for our work. In doing so, we also adopt their naming conventions:
we use the term eager aggregation for pushing down a grouping operator in the
operator tree and lazy aggregation for the inverse transformation.

Figures 5.6, 5.7 and 5.8 show all known and new equivalences. The nine
equivalences already known from Yan and Larson can be recognized by the
inner join on their left-hand sides. The different section headings within the
figures were also proposed by Yan and Larson (except for Others). A special
case of Equivalence 5.13 is already known from previous work [15].

Within the equivalences a couple of simple abbreviations as well as some
conventions occur. We introduce them in this short paragraph. By G we
denote the set of grouping attributes, by F a vector of aggregate functions,
and by p a join predicate. The grouping attributes coming from expression ei
are denoted by Gi, i.e., Gi = A(ei) ∩ G. The join attributes from expression
ei are denoted by Ji, i.e., Ji =

⋃
pF(p) ∩ A(ei), with p being a join predicate

contained in the input query. The union of the grouping and join attributes
from ei is denoted by G+

i = Gi ∪ Ji. If F1 and F2 occur in an equivalence, then
the equivalence is based on the assumption that F is splittable into F1 and F2.
If F1 or F2 does not occur in an equivalence, it is assumed to be empty. If for
some i ∈ {1, 2}, F 1

i and F 2
i occur in some equivalence, the equivalence requires

that Fi is decomposable into F 1
i and F 2

i . Last but not least, ⊥ abbreviates a
special tuple that returns the null value for every attribute.

Example 1: Join

Figure 5.9 shows two relations e1 and e2, which will be used to illustrate Equiv-
alence 5.3 as well as Equivalence 5.5.
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5 Reordering Join and Grouping

Eager and Lazy Groupby-Count

ΓG;F (e1 Bp e2) ≡ ΓG;(F2⊗c1)◦F2
1

(Γ
G+

1 ;F1
1 ◦(c1:count(∗))

(e1) Bp e2) (5.3)

ΓG;F (e1 Ep e2) ≡ ΓG;(F2⊗c1)◦F2
1

(Γ
G+

1 ;F1
1 ◦(c1:count(∗))

(e1) Ep e2) (5.4)

ΓG;F (e1 Kp e2) ≡ ΓG;(F2⊗c1)◦F2
1

(Γ
G+

1 ;F1
1 ◦(c1:count(∗))

(e1) K
F1
1 ({⊥}),c1:1;−
q e2) (5.5)

ΓG;F (e1 Bp e2) ≡ ΓG;(F1⊗c2)◦F2
2

(e1 Bp Γ
G+

2 ;F1
2 ◦(c2:count(∗))

(e2)) (5.6)

ΓG;F (e1 Ep e2) ≡ ΓG;(F1⊗c2)◦F2
2

(e1 E
F1
2 ({⊥}),c2:1
p Γ

G+
2 ;F1

2 ◦(c2:count(∗))
(e2)) (5.7)

ΓG;F (e1 Kp e2) ≡ ΓG;(F1⊗c2)◦F2
2

(e1 K
−;F1

2 ({⊥}),c2:1
q Γ

G+
2 ;F1

2 ◦(c2:count(∗))
(e2)) (5.8)

Eager and Lazy Group-by

ΓG;F (e1 Bp e2) ≡ ΓG;F2
1

(Γ
G+

1 ;F1
1

(e1) Bp e2) (5.9)

ΓG;F (e1 Ep e2) ≡ ΓG;F2
1

(Γ
G+

1 ;F1
1

(e1) Ep e2) (5.10)

ΓG;F (e1 Kp e2) ≡ ΓG;F2
1

(Γ
G+

1 ;F1
1

(e1) K
F1
1 ({⊥});−
q e2) (5.11)

ΓG;F (e1 Bp e2) ≡ ΓG;F2
2

(e1 Bp Γ
G+

2 ;F1
2

(e2)) (5.12)

ΓG;F (e1 Ep e2) ≡ ΓG;F2
2

(e1 E
F1
2 ({⊥})
p Γ

G+
2 ;F1

2
(e2)) (5.13)

ΓG;F (e1 Kp e2) ≡ ΓG;F2
2

(e1 K
−;F1

2 ({⊥})
q Γ

G+
2 ;F1

2
(e2)) (5.14)

Eager and Lazy Count

ΓG;F (e1 Bp e2) ≡ ΓG;(F2⊗c1)(ΓG+
1 ;c1:count(∗)

(e1) Bp e2) (5.15)

ΓG;F (e1 Ep e2) ≡ ΓG;(F2⊗c1)(ΓG+
1 ;(c1:count(∗))

(e1) Ep e2) (5.16)

ΓG;F (e1 Kp e2) ≡ ΓG;(F2⊗c1)(ΓG+
1 ;(c1:count(∗))

(e1) Kc1:1;−
q e2) (5.17)

ΓG;F (e1 Bp e2) ≡ ΓG;(F1⊗c2)(e1 Bp Γ
G+

2 ;c2:count(∗)
(e2)) (5.18)

ΓG;F (e1 Ep e2) ≡ ΓG;(F1⊗c2)(e1 E
c2:1
p Γ

G+
2 ;c2:count(∗)

(e2)) (5.19)

ΓG;F (e1 Kp e2) ≡ ΓG;(F1⊗c2)(e1 K
−;c2:1
q Γ

G+
2 ;(c2:count(∗))

(e2)) (5.20)

Figure 5.6: Equivalences for join and grouping (1/3)

Let us start with Equivalence 5.3. For now, we only look at the top equiva-
lences above each relation and ignore the tuples below the separating horizontal
line. Relations e1 and e2 at the top of Figure 5.9 serve as input. The calculation
of the result of the left-hand side of Equivalence 5.3 is rather straightforward.
Relation e3 gives the result of the join e1 Bj1=j2 e2. The result is then grouped
by Γg1,g2;F (e3) for the aggregation vector F = k : count(∗), b1 : sum(a1), b2 :
sum(a2). The result is given as e4. In our join example it consists of a sin-
gle tuple. We have intentionally chosen an example with a single group, since
multiple groups make the example longer but do not give more insights.

Before we start the calculation of the right-hand side of Equivalence 5.3, we
take apart the grouping attributes and the aggregation vector F . Among the
grouping attributes G = {g1, g2}, only g1 occurs in e1. The only join attribute in
the join predicate j1 = j2 from e1 is j1. Thus, G+

1 = {g1, j1}. The aggregation
vector F can be split into F1, which references only attributes in e1, and F2,
which references only attributes in e2. This results in F1 = (k : count(∗), b1 :
sum(a1)) and it does not matter whether we add k to F1 or F2, since it does
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5.3 Equivalences for Join and Grouping

Double Eager and Double Lazy

ΓG;F (e1 Bp e2) ≡ ΓG;(F2
1⊗c2)

(Γ
G+

1 ;F1
1

(e1) Bp Γ
G+

2 ;c2:count(∗)
(e2)) (5.21)

ΓG;F (e1 Ep e2) ≡ ΓG;(F2
1⊗c2)

(Γ
G+

1 ;F1
1

(e1) Ec2:1
p Γ

G+
2 ;c2:count(∗)

(e2)) (5.22)

ΓG;F (e1 Kp e2) ≡ ΓG;(F2
1⊗c2)

(Γ
G+

1 ;F1
1

(e1) K
F1
1 ({⊥});c2:1
q Γ

G+
2 ;(c2:count(∗))

(e2)) (5.23)

ΓG;F (e1 Bp e2) ≡ ΓG;(F2
2⊗c1)

(Γ
G+

1 ;c1:count(∗)
(e1) Bp Γ

G+
2 ;F1

2
(e2)) (5.24)

ΓG;F (e1 Ep e2) ≡ ΓG;(F2
2⊗c1)

(Γ
G+

1 ;c1:count(∗)
(e1) E

F1
2 ({⊥})
p Γ

G+
2 ;F1

2
(e2)) (5.25)

ΓG;F (e1 Kp e2) ≡ ΓG;(F2
2⊗c1)

(Γ
G+

1 ;(c1:count(∗))
(e1) K

c1:1;F
1
2 ({⊥})

q Γ
G+

2 ;F1
2

(e2)) (5.26)

Eager and Lazy Split (with Γ2 := ΓG;(F2
1⊗c2)◦(F

2
2⊗c1)

):

ΓG;F (e1 Bp e2) ≡ ΓG;(F2
1⊗c2)◦(F

2
2⊗c1)

(Γ
G+

1 ;F1
1 ◦(c1:count(∗))

(e1)

Bp Γ
G+

2 ;F1
2 ◦(c2:count(∗))

(e2)) (5.27)

ΓG;F (e1 Ep e2) ≡ ΓG;(F2
1⊗c2)◦(F

2
2⊗c1)

(Γ
G+

1 ;F1
1 ◦(c1:count(∗))

(e1)

E
F1
2 ({⊥}),c2:1
p Γ

G+
2 ;F1

2 ◦(c2:count(∗))
(e2)) (5.28)

ΓG;F (e1 Kp e2) ≡ Γ2(Γ
G+

1 ;F
1,1
1 ◦(c1:count(∗))

(e1)

K
F

1,1
1 ({⊥}),c1:1;F

1,1
2 ({⊥}),c2:1

q Γ
G+

2 ;F
1,1
2 ◦(c2:count(∗))

(e2)) (5.29)

Figure 5.7: Equivalences for join and grouping (2/3)

Others

ΓG;F (e1 Np e2) ≡ ΓG;F (e1) Np e2 (F(q) ∩ A(e1)) ⊆ G (5.30)

ΓG;F (e1 Tp e2) ≡ ΓG;F (e1) Tp e2 (F(q) ∩ A(e1)) ⊆ G (5.31)

ΓG;F (e1 ZJ1θJ2;F
e2) ≡ ΓG;(F2⊗c1)◦F2

1
(Γ
G+

1 ;F1
1 ◦(c1:count(∗))

(e1) ZJ1θJ2;F
e2)) (5.32)

ΓG;F (e1 ZJ1θJ2;F
e2) ≡ ΓG;F2

1
(Γ
G+

1 ;F1
1

(e1) ZJ1θJ2;F
e2)) (5.33)

ΓG;F (e1 ZJ1θJ2;F
e2) ≡ ΓG;(F2⊗c1)(ΓG+

1 ;(c1:count(∗))
(e1) ZJ1θJ2;F

e2)) (5.34)

Figure 5.8: Equivalences for join and grouping (3/3)

not reference any attributes. Next, we need to decompose F1 into F 1
1 and F 2

1

according to the insights of Section 5.2. This results in F 1
1 = (k′ : count(∗), b′1 :

sum(a1)) and F 2
1 = (k : sum(k′), b1 : sum(b′1)). The inner grouping operator

of Equivalence 5.3 requires us to add an attribute c1 : count(∗) to F 1
1 , which

we abbreviate by FX . Since there already exists one count(∗), the result of
which is stored in k′, we keep only one of them in Figure 5.9 and call the
corresponding attribute k′/c1. This finishes our preprocessing on the aggregate
functions of the inner grouping operator. Its result, consisting of two tuples, is
given as relation e5 in Figure 5.9. The next step consists of calculating the join
e5 Bj1=j2 e2. As this is rather straightforward, we just give the result (relation
e6). The final step is again a little more complex. Equivalence 5.3 requires us
to calculate F2 ⊗ c1. Looking back at the end of Section 5.2, we see that sum
is duplicate sensitive and that F2 ⊗ c1 = b2 : sum(c1 ∗ a2). Concatenating this
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5 Reordering Join and Grouping

aggregation vector with F 2
1 , as demanded by Equivalence 5.3, gives us FY as

specified in Figure 5.9. The final result of the right-hand side of Equivalence
5.3, calculated as e7 = Γg1,g2;FY (e6), is given in Figure 5.9. Note that it is equal
to the result of the left-hand side (e4).

Example 2: Full Outerjoin

The second example reuses the relations e1 and e2 given in Figure 5.9. But
this time we calculate the full outerjoin instead of the inner join and we apply
Equivalence 5.5. The corresponding expressions are given in the lower header
line of each relation. Now all tuples in each ei are relevant, including those
below the separating horizontal line. The result of e1 Kj1=j2 e2 is given in e′3,
whereby we denote null by ‘-’. We can reuse all the different aggregation vectors
derived in the previous example. The only new calculation that needs to be
done is the one for the default values for the full outerjoin on the right-hand
side of Equivalence 5.5. The equivalence defines default values in case a tuple
t from e2 does not find a join partner from the other side. All c1 values of
orphaned e2 tuples become 1. Further, F 1

1 ({⊥}) evaluates to 1 for k (count(*)
on a relation with a single element), and null for a2, since SQL’s sum returns
null for sets which contain only null values. Thus prepared, we can calculate
the right-hand side of Equivalence 5.5 via e5 and e′6. For the latter we use a
full outerjoin with default. Finally, e′7 is calculated by grouping e′6, leading to
the same result as e′4.

Remarks

The main equivalences are those under the heading Eager and Lazy Group-by–
Count. They fall into two classes depending on whether the grouping is pushed
into the left or the right argument of the join. For commutative operators such
as inner join and full outerjoin, deriving one from the other is simple. For
non-commutative operators such as the left outerjoin, we can combine both
equivalences to push the grouping into both arguments. The resulting equiv-
alences are given under the heading Eager and Lazy Split. The equivalences
between these two blocks are specializations in case an aggregation vector F
accesses attributes from only one input. In this case either F1 or F2 is empty
and the equivalences can be simplified. These simplifications are shown in the
blocks Eager and Lazy Group-By, Eager and Lazy Count and Double Eager and
Double Lazy. The block termed Others shows how to push the grouping oper-
ator into the left semijoin, left antijoin and the groupjoin. The latter requires
another aggregation vector F . They all have in common that after they have
been applied, only the attributes from their left input are accessible. Thus, the
grouping operator can only be pushed into their left argument.

5.3.3 Eliminating the Top Grouping

We wish to eliminate a top grouping from an expression of the form ΓG,F (e)
with an aggregation vector F = (b1 : agg1(a1), . . . , bk : aggk(ak)). Clearly, this
is only possible if G is a superkey for e and e is duplicate-free, since in this case,
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e1

g1 j1 a1

1 1 2
1 2 4
1 2 8

1 3 7

e2

g2 j2 a2

1 1 2
1 1 4
1 2 8

1 4 9

e3 := e1 1j1=j2 e2

e′3 := e1 Kj1=j2 e2

g1 j1 a1 g2 j2 a2

1 1 2 1 1 2
1 1 2 1 1 4
1 2 4 1 2 8
1 2 8 1 2 8

1 3 7 - - -
- - - 1 4 9

e4 := Γg1,g2;F (e3)

e′4 := Γg1,g2;F (e′3)

g1 g2 k b1 b2

1 1 4 16 22

1 - 1 7 -
- 1 1 - 9

e5 := Γg1,j1;FX (e1)

g1 j1 k′/c1 b′1
1 1 1 2
1 2 2 12

1 3 1 7

e7 := Γg1,g2;FY (e6)

e′7 := Γg1,g2;FY (e′6)

g1 g2 k b1 b2

1 1 4 16 22

1 - 1 7 -
- 1 1 - 9

e6 := e5 1j1=j2 e2

e′6 := e5 K
F 1
1 ({⊥}),c1:1;−
j1=j2

e2

g1 j1 k′/c1 b′1 g2 j2 a2

1 1 1 2 1 1 2
1 1 1 2 1 1 4
1 2 2 12 1 2 8

1 3 1 7 - - -
- - 1∗ - 1 4 9

F = k : count(∗), b1 : sum(a1), b2 : sum(a2),

F1 = k : count(∗), b1 : sum(a1),

F2 = b2 : sum(a2),

F 1
1 = k′ : count(∗), b′1 : sum(a1),

F 2
1 = k : sum(k′), b1 : sum(b′1),

FX = F 1
1 ◦ (c1 : count(∗)),

FY = (F2 ⊗ c1) ◦ F 2
1

= b2 : sum(c1 ∗ a2), k : sum(k′), b1 : sum(b′1),

G = {g1, g2},
G+

1 = {g1, j1}.

Figure 5.9: Example for Equivalences 5.3 and 5.5
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5 Reordering Join and Grouping

there exists exactly one tuple in e for each group. The only detail left is the
application of the aggregation vector F . This can be done via a map operator
as in

ΓG;F (e) ≡ ΠC(χF̂ (e)), (5.35)

with C = G ∪ {b1, . . . , bk} and F̂ defined as an aggregation vector meant to
calculate the results of some aggregate functions applied to single values:

F̂ := (b1 : agg1({a1}), . . . , bk : aggk({ak})).

Remark. In general, K is a superkey for relation R if K → A(R) holds. In
SQL, a declaration of a primary key or a uniqueness constraint implies not only
a superkey but also that the relation is duplicate-free.

5.4 Equivalences for the Groupjoin

This section covers the algebraic equivalences necessary to replace a sequence
of left outerjoin and grouping or inner join and grouping by a groupjoin. The
corresponding equivalences have already been thoroughly described in previous
work [33]. However, each of these equivalences comes with a number of precon-
ditions that are expressed with the help of functional dependencies. We aim to
simplify these preconditions by reformulating them in terms of keys, which are
easier to maintain during plan generation.

5.4.1 Replacing Group-By and Left Outerjoin by Groupjoin

We can replace a sequence of left outerjoin and grouping by a single groupjoin
[33]:

ΓG;F (e1 EA1=A2 e2) ≡ ΠC(e1 ZA1=A2;F e2) (5.36)

if

1. G→ G+
2 holds in e1 EA1=A2 e2,

2. G1, G
+
2 → TID(e1) holds in e1 EA1=A2 e2,

3. A2 → G+
2 holds in e2,

4. F(F ) ⊆ A(e2) and

5. F (∅) = F ({⊥}).

We denote by TID(e) the tuple identifier for e. All these requirements are
mandatory [33].

The preconditions for Equivalence 5.36 refer to functional dependencies hold-
ing in the join result. As we are going to see subsequently, we may choose to
avoid the complexity of computing functional dependencies and maintain only
information about superkeys instead. Therefore, we provide a simplified set of
requirements expressed in terms of superkeys and prove that they imply the
requirements for Equivalence 5.36. Note that the two sets of requirements are
not equivalent [9].
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Theorem 1.

ΓG;F (e1 EA1=A2 e2) ≡ ΠC(e1 ZA1=A2;F e2) (5.37)

if

1. (A2 ⊆ G) ∨ (A1 ⊆ G ∧G2 = ∅),

2. ∃K ∈ κ(e1),K ⊆ G,

3. (∃K ∈ κ(e2),K ⊆ A2) ∨ (G2 = ∅),

4. F(F ) ⊆ A(e2) and

5. F (∅) = F ({⊥}).

We denote by κ(e) the set of superkeys for a relation defined by expression e.

Proof. Since the last two constraints for Equivalences 5.36 and 5.37 are equal,
we only have to prove that the first three constraints from Equivalence 5.37
imply the first three from Equivalence 5.36. We refer to the different require-
ments by the number of the respective equivalence followed by the number of
the requirement. For example, 5.37::1 refers to the first requirement listed under
Equivalence 5.37. We prove each implication in a separate paragraph.

5.37::1 ⇒ 5.36::1 This requirement can be fulfilled in two ways. The first
case is if A2 ⊆ G holds, which follows from the argumentation below:

A2 ⊆ G2

⇒ G2 → A2

⇒ G1, G2 → A2

⇔ G1, G2 → G2, A2

⇔ G→ G+
2 .

The second case is if G2 = ∅ and A1 ⊆ G. Then, G → G+
2 becomes G → A2.

Since A1 = A2 or A2 = ⊥A(A2) after applying the join, this is fulfilled if A1 ⊆ G
holds. We thereby assume that two attributes are equal if they agree in value
or they are both null, as suggested by Paulley [35].

5.37::2 ⇒ 5.36::2 The second requirement can be strengthened to G →
TID(e1). In other words, G has to be a superkey for e1. Again, we express
this in terms of superkeys: ∃K ∈ κ(e1), K ⊆ G.

5.37::3 ⇒ 5.36::3 If G2 = ∅, then G+
2 = A2 and the third requirement is

clearly fulfilled. If G2 6= ∅, the third requirement is fulfilled if in addition
A2 is a superkey for e2, i.e., A2 → A(e2). This can be expressed as follows:
K ∈ κ(e2),K ⊆ A2.
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5 Reordering Join and Grouping

5.4.2 Replacing Group-By and Inner Join by Groupjoin

We can replace a sequence of inner join and grouping by a single groupjoin [33]:

ΓG;F (e1 BA1=A2 e2) ≡ ΠC(σc2>0(e1 ZA1=A2;F◦(c2:count(∗)) e2)) (5.38)

if

1. G→ G+
2 holds in e1 BA1=A2 e2,

2. G1, G
+
2 → TID(e1) holds in e1 BA1=A2 e2,

3. A2 → G+
2 holds in e2 and

4. F(F ) ⊆ A(e2).

Again, we aim to simplify these requirements such that only information about
superkeys is necessary to check them during plan generation [9].

Theorem 2.

ΓG;F (e1 BA1=A2 e2) ≡ ΠC(σc2>0(e1 ZA1=A2;F◦(c2:count(∗)) e2)) (5.39)

if

1. (A2 ⊆ G) ∨ (A1 ⊆ G ∧G2 = ∅),

2. ∃K ∈ κ(e1),K ⊆ G,

3. (∃K ∈ κ(e2),K ⊆ A2) ∨ (G2 = ∅),

4. F(F ) ⊆ A(e2).

The proof is identical to the one for Theorem 1.

Corollary 1.

ΓG;F (e1 BA1=A2 e2) ≡ ΠC(e1 ZA1=A2;F◦(c2:count(∗)) e2) (5.40)

if

1. (A2 ⊆ G) ∨ (A1 ⊆ G ∧G2 = ∅),

2. ∃K ∈ κ(e1),K ⊆ G,

3. (∃K ∈ κ(e2),K ⊆ A2) ∨ (G2 = ∅),

4. (e1 NA1=A2 e2) = e1 and

5. F(F ) ⊆ A(e2).

Proof. The only difference between Theorem 2 and Corollary 1 is that the
selection after the groupjoin is omitted in the latter. In Equivalence 5.39 the
selection is needed to remove those tuples from the groupjoin result that result
from a tuple from e1 not having a join partner in e2. These tuples are contained
in the result of the groupjoin (see Definition 2.7), but not in the result of
a join followed by a grouping. If the fourth condition stated above holds, i.e.,
(e1NA1=A2 e2) = e1, all tuples from e1 find a join partner in e2 and the selection
can be omitted. This is the case if there is a foreign key constraint where A1

references A2 and no selection was applied to e2 before the join.
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5.5 Implementation in a Plan Generator

Some Remarks Concerning the Groupjoin

Information on how to implement the groupjoin can be found in previous work
[33]. There, a straightforward implementation combining join and grouping is
proposed. One system that currently supports the groupjoin is HyPer [23].

In general, the groupjoin is most effective if the result of the join is large com-
pared to the result of the following grouping operator. In this case combining
the two operators saves the construction of a large intermediate result.

5.5 Implementation in a Plan Generator

In this section we put the theoretical findings from the previous sections into
practice by describing a DP-based plan generator that is capable of reorder-
ing join and grouping operators and introducing groupjoins. First, we take a
look at two heuristic approaches that do not guarantee an optimal solution.
Subsequently, we will see how optimality can be guaranteed and how the expo-
nential overhead coming along with this can be mitigated. The algorithms in
this chapter have been published in [7, 8].

5.5.1 Enumerating Join Trees with Pushed-Down Grouping

We begin by introducing the routine OpTrees (Fig. 5.10). Its arguments are
two join trees T1 and T2 as well as a join operator ◦p. The result consists of a
set of at most four trees, which join T1 and T2 taking all possible variants of
eager aggregation into account.

The relation sets S1 and S2 are obtained from T1 and T2, respectively, by
extracting their leaf nodes. This is denoted by T (T ) for a tree T . The first tree
is the one joining T1 and T2 using ◦p without any grouping.

Line 7 is only executed if the current relation set contains all relations in the
input query. In this case we have to add another grouping on top of ◦p if and
only if the grouping attributes do not comprise a key (see Section 5.3.3). This
is checked by calling NeedsGrouping, which is listed in Figure 5.11.

The next tree is the one that groups the left argument before the join. In
order to do so, we have to make sure that the corresponding transformation
is valid. This is accomplished by calling the subroutine Valid, which imple-
ments the equivalences from Section 5.3. According to the equivalences, a
grouping can be pushed into the left and/or right argument of almost all join
operators. However, the correct calculation of the aggregate functions has to be
ensured by adequately decomposing and splitting the aggregation vector. Thus,
Valid needs to take the aggregate functions’ properties into consideration. If
an aggregate function is not decomposable, but this is required for the respec-
tive transformation, or the aggregation vector is not splittable as required, the
transformation is not applied.

Additionally, we have to avoid the case in which the grouping attributes G+
i

form a key for the set Si, with i ∈ {1, 2}, because then the grouping has no
effect. And again, if necessary, we have to add a grouping on top. Once the
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OpTrees(T1 ,T2 , ◦p)
1 S1 = T (T1 )
2 S2 = T (T2 )
3 S = S1 ∪ S2

4 Trees = ∅
5 NewTree = (T1 ◦p T2 )
6 if S == R ∧NeedsGrouping(G ,NewTree)
7 NewTree = (ΓG(NewTree))
8 Trees.Insert(NewTree)
9 NewTree = ΓG+

1
(T1 ) ◦p T2

10 if Valid(NewTree) ∧NeedsGrouping(G+
1 ,NewTree)

11 if S == R ∧NeedsGrouping(G ,NewTree)
12 NewTree = (ΓG(NewTree))
13 Trees.Insert(NewTree)
14 NewTree = T1 ◦p ΓG+

2
(T2 )

15 if Valid(NewTree) ∧NeedsGrouping(G+
2 ,NewTree)

16 if S == R ∧NeedsGrouping(G ,NewTree)
17 NewTree = (ΓG(NewTree))
18 Trees.insert(NewTree)
19 NewTree = ΓG+

1
(T1 ) ◦p ΓG+

2
(T2 )

20 if Valid(NewTree)
∧NeedsGrouping(G+

1 ,NewTree)
∧NeedsGrouping(G+

2 ,NewTree))
21 if S == R ∧NeedsGrouping(G ,NewTree)
22 NewTree = (ΓG(NewTree))
23 Trees.insert(NewTree)
24 return Trees

Figure 5.10: Pseudo code for OpTrees

routine terminates, the set Trees contains up to four different join trees, which
are depicted in Figure 5.12.

5.5.2 A First Heuristic

Incorporating the routine OpTrees from the previous section into the plan
builder of our plan generator enables the latte to not only build a pure join tree
for a given ccp, but also all join trees for this pair with pushed-down group-
ings. According to the common DP-based plan generation scheme described in
Chapter 3, we can then compare the costs of the different trees and insert the
cheapest one into the DP table. Unfortunately, we are not guaranteed to find
the optimal solution with this approach, because Bellman’s Principle of Opti-
mality does no longer hold once the placement of grouping operators is taken
into account.
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5.5 Implementation in a Plan Generator

NeedsGrouping(G,T )

1 if G→ A(T ) ∧ the result of T is duplicate-free
2 return False
3 else
4 return True

Figure 5.11: Pseudo code for NeedsGrouping

◦S1,S2

S1 S2

(a)

◦S1,S2

ΓG+
1

S1

S2

(b)

◦S1,S2

S1 ΓG+
2

S2

(c)

◦S1,S2

ΓG+
1

S1

ΓG+
2

S2

(d)

Figure 5.12: Operator trees for ccp (S1, S2)

Pushing a grouping operator into one or both arguments of a join operator
can influence two properties of the respective subtree: the cardinality of the
tree’s result may be reduced and the functional dependencies and keys holding
in the result may be altered. A reduced cardinality can reduce the cost of
subsequent operations and thereby (more than) compensate the higher cost of
a suboptimal tree. The functional dependencies, on the other hand, determine
whether or not we need a final grouping on top to fix the query result. This
final grouping causes an additional cost that can destroy the optimality of the
plan. Consequently, we have to keep the more expensive subplans for each
intermediate result because they might turn out to be a part of the optimal
solution.

When optimizing the join order, plan classes are always defined through the
result of the contained plans. That is, plans that are in the same class all
produce the same result. This is no longer true in our case. Instead, we use
the following equivalence relation for the definition of the plan classes: all plans
in one class produce the same result if a grouping is added on top of each
plan. The set of grouping attributes G+ is unambiguously defined for each plan
class. Following our definition of logical and physical plan properties, we thus
consider the cardinality of a plan a physical property, since it can differ between
plans belonging to the same class. The same is true for the key properties and
functional dependencies holding in the result of a plan.

But there is still no need to calculate the cardinalities anew for every single
plan. Since all plans belonging to one plan class produce the same result if they
are grouped by G+, the cardinality of this result can be calculated once for the
corresponding plan class. This information can later be reused when joining
any plan from the respective class with a grouping placed on top.

Figure 5.13 shows a modified version of the well-known routine BuildPlan
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5 Reordering Join and Grouping

BuildPlanH1(S1 ,S2 , ◦p)
1 for each T ∈ OpTrees(DPTable[S1 ],DPTable[S2 ], ◦p)
2 if Cost(T ) < Cost(DPTable[S1 ∪ S2 ])
3 DPTable[S1 ∪ S2 ] = T

Figure 5.13: Pseudo code for BuildPlanH1

implementing the naive approach described above. We refer to the resulting
plan generator as our first heuristic or H1. The modified routine is called
BuildPlanH1. It serves to demonstrate the problems that arise from the
violation of Bellman’s Principle of Optimality. The only difference to the basic
version of BuildPlan as presented in Chapter 3 is that the new routine calls
OpTrees to find all possible trees for the current ccp. For each of them the cost
function is called to compute the combined cost of the join and the groupings
contained in the tree, if any. If the cost is lower than that of an existing plan
or this is the first plan for the current set of relations, the plan is added to the
DP table. In summary, H1 records only the single cheapest plan for every plan
class.

To clarify why this approach can lead to problems, Figure 5.14 provides an
example. At the top of the figure there are two equivalent operator trees. Both
of them involve a grouping operation. In the tree on the left there are no
pushed-down groupings, so there is only one grouping at the top of the tree.
In the tree on the right-hand side, a grouping operator has been pushed down
into the left argument of BR1.d,R2.e. Note how the aggregation vector of the
original grouping operator at the top of the tree is adjusted according to our
observations from Section 5.2. That is, we now have to sum up the values
created by the other grouping operator to get the originally intended count(∗).
Below the two operator trees there are instances of the three relations R0, R1

and R2 as well as the intermediate results of both operator trees.

Cout(R0) = Cout(R1) = Cout(R2) = 0

Cout(R1,2) = 4 Cout(R
′
1) = 3

Cout(R0,1,2) = 8 Cout(R
′
1,2) = 5

Cout(Γ(R0,1,2)) = 10 Cout(R
′
0,1,2) = 7

Cout(Γ(R′0,1,2) = 9

Table 5.1: Costs of intermediate results

Table 5.1 lists the costs of all subexpressions contained in both operator trees.
For simplicity, we use a slightly extended version of the cost function Cout from
Section 2.4 that is suitable for determining the cost of a grouping operation:

Cout(T ) =


0 if T is single relation

|T |+ Cout(T1) + Cout(T2) if T = T1 ◦ T2

|T |+ Cout(T1) if T = Γ(T1)
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ΓR1.d;d′:count(∗)

BR0.a,R2.f

R0 BR1.d,R2.e

R1 R2

ΓR1.d;d′′:sum(d′)

BR0.a,R2.f

R0 BR1.d,R2.e

ΓR1.d;d′:count(∗)

R1

R2

R0

a b

0 0
1 0
2 1
3 1

R1

c d

0 1
1 0
2 1
3 1
4 4

R2

e f

0 0
1 1
2 3
3 4

R1,2 := R1 BR1.a,R2.e R2

c d e f

0 1 1 1
1 0 0 0
2 1 1 1
3 1 1 1

R′1 := Γd;d′:count(∗)(R1)

d d′

0 1
1 3
4 1

R0,1,2 := R0 BR0.a,R2.f R1,2

a b c d e f

0 0 1 0 0 0
1 0 0 1 1 1
1 0 2 1 1 1
1 0 3 1 1 1

R′1,2 := R′1 1R1.d,R2.e R2

d d′ e f

0 1 0 0
1 3 1 1

Γ1.d;d′:count(R1.d)(R0,1,2)

d d′

1 3
0 1

R′0,1,2 := R0 BR0.a,R2.f R
′
1,2

a b d d′ e f

1 0 1 3 1 1
0 0 0 1 0 0

Γ1.d;d′′:sum(d′)(R
′
0,1,2)

d d′′

1 3
0 1

Figure 5.14: Intermediate results of two equivalent operator trees
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According to this cost function, scanning the base relations causes no cost at
all, which is reflected in the first line of Table 5.1. Beginning in the second line,
the left (right) column contains the cost of the intermediate results of the left
(right) plan shown in Figure 5.14.

As per our heuristic, we decide against placing a grouping directly on top of
relation R1, because the combined cost of the grouping and the following join
operation is higher than the cost of joining without prior grouping. Taking a
closer look at the following lines in our table, we see that the cost of joining
R1,2 with R0 amounts to 8, whereas the right column states a cost value of 7
for the join between R′1,2 and R0. For the total cost of the query, we notice the
same difference: the total cost of the left tree amounts to 10, whereas the cost
of the right one adds up to only 9. This means that in this case, our naive plan
generator discards one tree in favor of a more expensive one.

The reason for this behavior is found in Figure 5.14. The early grouping of
relation R1 causes an additional cost of 3, but it also reduces the cardinalities of
the following expressions R′1,2 and R′0,1,2 when compared to R1,2 and R0,1,2. The
additional cost caused by the first grouping operation is therefore compensated
by the reduced cardinalities and costs of the following expressions. Considering
only the cost of expression R′1,2, this is not obvious because it becomes visible
only further up in the tree.

In the example above, the influence of an early grouping on the cardinal-
ities of subsequent expressions is already enough to make eager aggregation
beneficial. But there is also a second aspect to it that allows for even bigger
cost savings: the introduction of new grouping operators also influences the
functional dependencies holding in the intermediate results.

Looking back at the values for R′0,1,2 in Figure 5.14, we can see that the final
grouping is not necessary in order to produce the same result as the left join
tree. Instead, a projection on the attribute set {R1.d, d

′} suffices because the
functional dependency R1.d→ A(R′0,1,2) holds, i.e., R1.d is a key for R′0,1,2 and
the attribute d′ already contains the correct value for the original aggregate
function count(∗). We can therefore leave out the final grouping and replace
it by a much cheaper duplicate-preserving projection ΠR1.d,d′ . Since our cost
function does not take the projection cost into account, we end up with a cost
value of 7 for the tree applying eager aggregation, in contrast to a value of 10
for the other tree.

These findings lead to the conclusion that it is not sufficient to “locally” assess
the profitability of pushing down a grouping if an optimal plan is desired. Still,
this approach can be used as a simple heuristic producing only a moderate
overhead on top of join ordering and at the same time often producing better
plans, as we will see in Section 5.8. Moreover, H1 never produces a plan that
is worse than that without eager aggregation.

5.5.3 Improving the Heuristic

As we have seen in the example in the previous section, there are cases in which
H1 discards a subplan that is required for the optimal overall plan. This is due
to the conservative approach it follows by only pushing a grouping down if the
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BuildPlanH2(S1 ,S2 , ◦p)
1 for each T ∈ OpTrees(DPTable[S1 ],DPTable[S2 ], ◦p)
2 if CompareAdjustedCost(T,DPTable[S1 ∪ S2 ])
3 DPTable[S1 ∪ S2 ] = T

CompareAdjustedCost(T1, T2)

1 if T is top-level plan ∨ Eagerness(T1) == Eagerness(T2)
2 return Cost(T1) < Cost(T2)
3 if (Eagerness(T1) < Eagerness(T2))
4 return (F ×Cost(T1)) < Cost(T2)
5 if (Eagerness(T1) > Eagerness(T2))
6 return Cost(T1) < (F ×Cost(T2))

Figure 5.15: Pseudo code for BuildPlanH2 and CompareAdjustedCost

combined cost caused by the grouping and the following join is lower than the
cost of the join alone. This way, the resulting plan can never be worse than the
plan without eager aggregation.

One possible approach for improving H1 is to allow it to sometimes push a
grouping even though the accumulated cost of the grouping and the subsequent
join is higher than the join cost alone. Clearly, this bears the risk of making the
resulting plan more expensive than the equivalent plan without any pushed-
down groupings.

Inspired by the descriptive naming scheme established by Yan and Larson,
we define the eagerness of a join tree T as the number of grouping operators
that are direct children of the topmost join operator:

eagerness(T ) =


0 if T = T1 ◦ T2

1 if T = Γ(T1) ◦ T2 or T = T1 ◦ Γ(T2)

2 if T = Γ(T1) ◦ Γ(T2)

Figure 5.15 shows the pseudo code for the routine BuildPlanH2, which favors
more eager trees over less eager trees when deciding which tree to insert into
the DP table.

The main difference to BuildPlanH1 is the new subroutine CompareAd-
justedCost. It is called from Line 2. It takes two join trees and compares
the costs of the two, whereby it adjusts the cost of the less eager tree using a
constant factor F . The value of F determines the degree to which more eager
plans are preferred when compared to less eager plans. If the eagerness of the
two join trees passed to CompareAdjustedCost is equal, or the trees form
a plan for the whole query, no cost adjustment will be made. In Section 5.8 we
experiment with different values for F .
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BuildAllPlans(S1 ,S2 , ◦p)
1 S = S1 ∪ S2

2 for each T1 ∈ DPTable[S1 ]
3 for each T2 ∈ DPTable[S2 ]
4 for each T ∈ OpTrees(T1 ,T2 , ◦p)
5 if S == R
6 InsertTopLevelPlan(S ,T )
7 else
8 DPTable[S1 ∪ S2 ].Insert(T )

InsertTopLevelPlan(S, T)

1 if DPTable[S] == ∅ ∨Cost(T ) < Cost(DPTable[S])
2 DPTable[S] = {T}

Figure 5.16: Pseudo code for BuildAllPlans

5.5.4 Finding an Optimal Solution

According to the observations made in Section 5.5.2, we will have to keep all
plans of a certain class enumerated by our plan generator in the DP table if the
goal is to find the best possible query plan.

Figure 5.16 shows the routine BuildAllPlans, which resembles the well-
known BuildPlan (see Figure 3.2). In contrast to the latter, it assumes a
DP table storing a set of plans for each plan class. In Section 2.4 we proposed
to store plans of the same plan class in the form of a linked list with pointers
from each plan to the next one. This is a convenient way of implementing a
DP table with more than one plan per plan class. We do not really need set
semantics because no duplicate plans are enumerated and the ordering implied
by the linked list is simply ignored.

As before, we enumerate all pairs of subsets (S1, S2) with S = S1∪S2 to find
possible join trees for S. We then combine every tree for S1 with every tree for
S2 using two loops. OpTrees is called for each pair of join trees, which results
in up to four different trees for every combination. The newly created trees are
added to the set for S.

Eventually, we face the situation where S = R holds and we need to build
a tree containing all input relations. At this point another subroutine named
InsertTopLevelPlan is called. Inside this routine the join trees for S are
compared to find the one with minimal cost, because there are no subsequent
join operators that need to be taken into account. Before this, we have to decide
whether or not a top-level grouping is needed by calling NeedsGrouping,
which is shown in Figure 5.11. In contrast to the other relation sets, no set of
trees has to be stored for R, but only the best tree found so far.

In summary, this algorithm enumerates and stores all possible plans for the
input query, except for those in which a grouping would group by a key and
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PruneDominatedPlans(S, T )

1 for Told ∈ DPTable[S ]
2 if Told dominates T
3 return
4 if T dominates Told

5 DPTable[S].Remove(Told)
6 DPTable[S].Insert(T )

Figure 5.17: Pseudo code for PruneDominatedPlans

finally chooses the cheapest one among them. Clearly, this inefficient approach
defeats the purpose of dynamic programming by negating its single largest ad-
vantage, namely that it allows for dividing a problem into smaller subproblems
to solve them independently.

5.5.5 Pruning

Keeping all possible trees in the solution table guarantees an optimal solution,
but causes such a big overhead that it is impractical for most queries. This
leads us to the question whether we can find a way to reduce the number of DP
table entries while preserving the optimality of the resulting solution. In other
words, we are looking for an optimality-preserving pruning criterion.

To this end, we introduce the notion of dominance. Intuitively, if a tree is
dominated by another tree, it will definitely not be contained in the optimal
solution and can be discarded. The dominating tree, on the other hand, may
be contained in the optimal solution, so we have to keep it.

Figure 5.17 shows the routine PruneDominatedPlans, which discards all
trees that are dominated by another tree already stored in the respective tree
set. The routine expects as arguments a set of relations S and a join tree T for
this set. It is called from inside BuildAllPlans. To this end, we replace line
8 in BuildAllPlans with the following:

8 PruneDominatedPlans(S ,T )

The loop in PruneDominatedPlans runs through the existing join trees for
S taken from the DP table and compares each of them with the new tree T . If
there is an existing tree Told, which dominates the new tree T , then the latter
is discarded. Therefore, the routine returns without adding T to the tree set
for S.

If T dominates an existing tree Told, we can safely delete the latter from
the DP table. In this case, we continue to loop through the remaining trees,
because more dominated trees may exist. Eventually, the loop ends and T is
added to the set for S.

As long as Bellman’s Principle of Optimality holds, dominance can be de-
fined solely based on plan cost, as it was implicitly done in all the basic plan
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GroupjoinTrees(S ,Trees)

1 GroupjoinTrees = ∅
// Final grouping ΓG is optional:

2 for all T = (ΓG(T1 ◦p T2)) in Trees
3 if S == R ∧ IsGrouped(T ) ∧GroupjoinApplicable(T )
4 GroupjoinTrees.Insert(σps(T1 Zp T2 ))
5 if IsGrouped(T1 ) ∧GroupjoinApplicable(T1)
6 GroupjoinTrees.Insert((σps1(T1 ,1 Zp1 T1 ,2 )) ◦p T2 )
7 if S == R ∧ IsGrouped(T )

∧ GroupjoinApplicable((σps1(T1 ,1 Zp1 T1 ,2 )) ◦p T2 )
8 GroupjoinTrees.Insert(σps((σps1(T1 ,1 Zp1 T1 ,2 )) Zp T2 ))
9 if IsGrouped(T2 ) ∧GroupjoinApplicable(T2)

10 . . . // Build tree with groupjoin in the right subtree
11 if IsGrouped(T1 ) ∧ IsGrouped(T2 ) ∧GroupjoinApplicable(T1)

∧ GroupjoinApplicable(T2)
12 . . . // Build tree with groupjoins in both subtrees
13 return Trees ∪GroupjoinTrees

Figure 5.18: Pseudo code for GroupjoinTrees

generators described in Chapter 3. Clearly, defining dominance on the basis of
only one plan property ensures that only one plan per plan class is stored in the
DP table. That is because in this case it is impossible for a plan to dominate
a plan in one aspect and be dominated in another. In Section 5.7 we discuss
several possible notions of dominance based on different plan properties.

5.5.6 Introducing Groupjoins

The equivalences from Section 5.4 allow us to replace a sequence of grouping and
join by a single groupjoin. Implementing this in a plan generator only requires
changes to the subroutine OpTrees. Since the latter already produces all join
trees with a grouping on top of one or both of the join arguments, we can
simply extend it in such a way that it also produces all trees where a single
groupjoin is applied instead. To this end, we introduce the new subroutine
GroupjoinTrees shown in Figure 5.18 [9]. It is called in the last line of
OpTrees and the resulting tree set is returned:

24 return GroupjoinTrees(S , Trees)

Clearly, the two subroutines could be combined into one.

Since GroupjoinTrees works by transforming join trees with pushed-down
grouping, we pass as argument the set of join trees produced by OpTrees,
which at this point contains up to four different join trees for S. The pseudo
code for GroupjoinTrees is given in Figure 5.18. The four trees emitted
by OpTrees are shown on the left-hand side of Figure 5.12. For each tree
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OpTrees GroupjoinTrees
◦p

T1 T2

◦p

Γ
G+

1

T1

T2 ⇔

◦p

Zp1

T1,1 T1,2

T2

◦p

T1 Γ
G+

2

T2

⇔

◦p

T1 Zp2

T2,1 T2,2

◦p

Γ
G+

1

T1

Γ
G+

2

T2

⇔

◦p

Zp1

T1,1 T1,2

Γ
G+

2

T2

⇔

◦p

Γ
G+

1

T1

Zp2

T2,1 T2,2

⇔

◦p

Zp1

T1,1 T1,2

Zp2

T2,1 T2,2

Figure 5.19: Trees enumerated by OpTrees and GroupjoinTrees

contained in the set, we consider introducing a groupjoin instead of a sequence
of (left outer-) join and grouping. The existing trees can be top-level trees
joining subtrees T1 and T2, possibly with a final grouping on top, or lower-level
trees consisting only of a join between T1 and T2. For each tree we check if
the left, right or both arguments of the join are grouped, i.e., if a grouping has
been pushed down through the join. If this is the case, we check whether we
can replace the join followed by a grouping by a groupjoin. That is, we test the
requirements for Equivalences 5.36/5.38 or 5.37/5.39, depending on whether
we have full information about functional dependencies or only keys available.
This is achieved by a call to IsGroupjoinApplicable. If the routine returns
true, we add the resulting tree to the set GroupjoinTrees.

In the pseudo code we include all selections that may be necessary according
to the equivalences for the groupjoin. We refer to the left/right subtree of T1

by T1,1/T1,2, respectively. T2’s subtrees are named accordingly. For each newly
produced groupjoin tree, we also have to check if it is a top-level tree with a
grouping on top. If this is the case, we might be able to replace the final join
and grouping by a groupjoin. Again, we have to check the requirements before
doing so. Finally, we return the union of Trees and GroupjoinTrees, i.e., the
set of all possible trees including the ones with groupjoins.

The right-hand side of Figure 5.19 shows the five additional groupjoin trees
that can be derived from the three original operator trees with pushed-down
grouping operators. Together with the pure join tree without eager aggregation,
we end up with a total number of nine possible operator trees for joining T1 and
T2. We omit possibly necessary selection operators in the figure. The figure also
does not show the special case where T1 and T2 contain all relations contained
in the query. In that case, there may be even more trees in the set returned
by GroupjoinTrees, because a grouping on top of the join may be necessary
for some or all of the depicted trees. We may then be able to apply a top-level
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groupjoin (see Figure 5.18).

The addition of GroupjoinTrees is the only modification necessary to en-
able the introduction of groupjoins in all plan generators discussed in this chap-
ter. All other parts of the plan generator remain untouched. In Section 5.8 we
will see that the runtime overhead caused by this extension is negligible. On
the other hand, the introduction of groupjoins can significantly increase the
quality of the resulting plans.

5.5.7 Summary

To summarize this section, Figure 5.20 provides an overview of the possi-
ble configurations of our plan generator. Every path in the tree leads to a
valid plan generator with certain capabilities, such as reordering grouping and
join (marked by Γ), introduction of groupjoins (marked byZ) and dominance-
pruning. For example, if we wish to implement a plan generator that is capa-
ble of reordering join and grouping and then apply some sort of optimality-
preserving pruning without introducing groupjoins, we have to plug Buil-
dAllPlans into the enumerator. The former always calls OpTrees to ob-
tain operator trees with pushed-down groupings, but in our case we omit the
call to GroupjoinTrees. For the trees returned by OpTrees we then call
PruneDominatedPlans.

DPxxx (Figs. 3.1, 3.3 - 3.5, 3.9)

BuildPlan (Fig. 3.2)

BuildPlanHx (Figs. 5.13, 5.15) BuildAllPlans (Fig. 5.16)

OpTrees (Fig. 5.10)

GroupjoinTrees (Fig. 5.18)

PruneDominatedPlans (Fig. 5.17)

no Γ
Γ optimalΓ heuristic

always

Z

dominance-
pruning

Figure 5.20: Configuration options for the plan generator
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5.6 Interesting Plan Properties and their Derivation

This section provides rules for computing properties of query plans that we use
to determine dominance. These properties need to be maintained for every plan,
which can be done in the form of a data structure properties that is associated
with every plan, as proposed in Figure 3.10. The following rules have first been
presented in [8].

5.6.1 Interesting Properties

Keys: We denote by κ(e) the set of keys for a relation defined by an expression
e. Note that a single key is a set of attributes. Therefore, κ is a set of sets.
Subsequently, we will use the term key for what is actually a superkey and only
distinguish the two where it matters. The keys resulting from the full and left
outerjoin contain null values. We therefore assume that null values are treated
as suggested by Paulley, i.e., two attributes are equal if they agree in value
or they are both null [35]. This reflects the semantics of SQL’s group by. We
assume that we know the keys of the base relations from the database schema.

Functional Dependencies: We denote by FD(e) the set of functional depen-
dencies (FDs) holding in expression e. Again, we adopt Paulley’s definition of
functional dependency, where two attributes with value null are treated as equal
[35]. Initially, FDs for a base relation are deduced from the keys declared in the
database schema. Hereinafter, we frequently use the closure of a given set of
FDs, denoted by FD+. By closure we mean the set of all dependencies derivable
from a given set of dependencies, as the term is commonly understood.

Equality Constraints: We denote by EC(e) the set of equality constraints
holding in expression e. Equality constraints are captured in equivalence classes.
An equivalence class is a set of attributes {a1, a2, . . . , an} where the attributes
a1 through an are known to have equal values. Note that this definition makes
EC a set of sets. Below, we define a set of operations for accessing and modifying
a given set of equality constraints.

We denote by EC[a] the equivalence class containing attribute a:

EC[a] = {c|c ∈ EC, a ∈ c}.

We denote by EC ← (a = b) the insertion of the equality constraint a = b
into EC, with a and b being two attributes:

EC← (a = b) ≡ EC \ {EC[a],EC[b]} ∪ {EC[a] ∪ EC[b]}.

Initially, EC contains a singleton for each available attribute a1 to an across
relations:

EC = {{a1}, {a2}, . . . , {an}}.
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Definite Attributes: We denote by NN(e) the set of definite attributes in an
expression e. Definite attributes are attributes that do not contain the value
null. If e is a base relation, NN(e) contains the attributes that are declared as
“not null” in the database schema.

5.6.2 Deriving Interesting Properties

We provide rules for computing the four sets bottom-up in an operator tree
possibly containing all algebraic operators contained in LOP, as defined in
Section 2.2. The rules concerning EC and FD are taken from Paulley [35]. For
simplicity, we make some restrictions on the join predicates we consider. We
assume (possibly) conjunctive predicates with each conjunct referencing exactly
two relations. We do not claim that the presented rules are complete. A bigger
set of rules may result in bigger property sets and thereby in more pruning
opportunities. On the other hand, evaluating more rules leads to a higher
overhead for computing the property sets. The rules presented here merely
serve as examples and can easily be extended if necessary, for example to take
additional operators into account.

Inner Join

Consider the join of two expressions e1 and e2 with join predicate p: e1 Bp e2.

Keys: We have to distinguish three cases [7]:

• In case {a1} is a key of e1 and {a2} is a key of e2, we have

κ(e1 Ba1=a2 e2) = κ(e1) ∪ κ(e2).

That is, each key from one of the input expressions is again a key for the
join result.

• In case {a1} is a key but {a2} is not, we have

κ(e1 Ba1=a2 e2) = κ(e2).

The case where {a2} is a key and {a1} is not is handled analogously.

• Without any assumption on the ai or the join predicate, we have

κ(e1 Bp e2) =
⋃

K1∈κ(e1),K2∈κ(e2)

K1 ∪K2.

In other words, every pair of keys from e1 and e2 forms a key for the join
result.

Functional Dependencies: In the join result all FDs from the two input ex-
pressions still hold, resulting in the following equation:

FD(e1 Bp e2) = FD+(e1) ∪ FD+(e2).
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Equality Constraints: If p is an equality predicate of the form a1 = a2, with
a1 belonging to e1 and a2 belonging to e2, we know that after the join a1 and
a2 are equal.

We capture this information by defining an equivalence class containing the
two attributes. The existing equality constraints holding in the join arguments
remain valid after the join, i.e., the following equation holds for an equijoin:

EC(e1 Ba1=a2 e2) = (EC(e1) ∪ EC(e2))← (a1 = a2).

For all predicates other than equality conditions, we can state the following
equation:

EC(e1 Bp e2) = EC(e1) ∪ EC(e2).

Definite Attributes: All attributes that are known to be definite in the join
arguments still have this property after the join. Additionally, all attributes
that p rejects nulls on are definite after the join:

NN(e1 Bp e2) = NN(e1) ∪NN(e2) ∪NR(p).

Left Outerjoin

Consider the left outerjoin of expressions e1 and e2: e1 Ep e2. Since the left
outerjoin can introduce null values, we have to be careful when determining the
dependencies and constraints holding in its result.

Keys: Here, we have only two possible cases. If {a2} is a key of e2, then

κ(e1 Ea1=a2 e2) = κ(e1).

Otherwise, we have to combine two keys from e1 and e2 to form a key:

κ(e1 Ep e2) =
⋃

K1∈κ(e1),K2∈κ(e2)

K1 ∪K2,

where p is an arbitrary predicate.

Functional Dependencies: All FDs holding in e1, the preserved side of the
outerjoin, continue to hold in the join result. Dependencies from e2, the null-
supplying side of the outerjoin, only continue to hold if the left-hand side of the
dependency contains an attribute that p rejects nulls on or a definite attribute.
This gives rise to the following equation, where p is an arbitrary predicate:

FD(e1 Ep e2) = FD+(e1)

∪ {(α→ β) ∈ FD+(e2) | (α ∩ (NN(e2) ∪NR(p)) 6= ∅)}.

In the case of an equality predicate, we do not get a new equivalence class, as it
was the case for the inner join. Instead, we get a new FD with the join attribute
from the preserved join argument on the left-hand side and the one from the
null-supplying argument on the right-hand side. Consider the following left
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outerjoin of expressions e1 and e2, where a1 belongs to e1 and a2 belongs to e2:
e1 Ea1=a2 e2. In this case the following equation holds:

FD(e1 Ea1=a2 e2) = FD+(e1)

∪ {(α→ β) ∈ FD+(e2) | (α ∩ (NN(e2) ∪NR(p)) 6= ∅)}
∪ {a1 → a2}.

Equality Constraints: Equality constraints from both join arguments continue
to hold in the join result, resulting in the following equation:

EC(e1 Ep e2) = EC(e1) ∪ EC(e2).

Definite Attributes: Since the left outerjoin can introduce null values in all
attributes from the null-supplying relation (e2 in our case), no attribute from
e2 is definite in the join result. The only definite attributes remaining are the
ones from e1, the preserved relation:

NN(e1 Ep e2) = NN(e1).

Full Outerjoin

Consider the full outerjoin of expressions e1 and e2: e1 Kp e2.

Keys: Regardless of the join predicate, we have to combine two keys from e1

and e2 to form a key for the join expression:

κ(e1 Kp e2) =
⋃

K1∈κ(e1),K2∈κ(e2)

K1 ∪K2,

where p is an arbitrary join predicate.

Functional Dependencies: Since in the full outerjoin both input relations are
null-supplying, we have to apply the same rules to both join arguments that we
used for the null-supplying argument of the left outerjoin. In other words, FDs
from either e1 or e2 only continue to hold if the left-hand side of the dependency
contains an attribute p rejects nulls on, or a definite attribute:

FD(e1 Ka1=a2 e2) = {(α→ β) ∈ FD+(e1) |
(α ∩ NN(e1) 6= ∅) ∨ (p is null-rejecting in F(p) ∩ A(e1))}

∪ {(α→ β) ∈ FD+(e2) | (α ∩NN(e2) 6= ∅)
∨ (p is null-rejecting in F(p) ∩ A(e2))}.

Equality Constraints: As was the case for the left outerjoin, equality con-
straints from both join arguments remain valid in the result of a full outerjoin:

EC(e1 Kp e2) = EC(e1) ∪ EC(e2).
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Definite Attributes: The full outerjoin can introduce null values in all at-
tributes contained in the join result. This means that there are no definite
attributes after the join:

NN(e1 Kp e2) = ∅.

Left Semijoin/Left Antijoin/Left Groupjoin

Consider a left semijoin (e1 Np e2), left antijoin (e1 Tp e2) or left groupjoin
(e1 Zp e2) of expressions e1 and e2. According to our definitions from Section
2.2, none of these operators add new tuples to their result and none of them
return tuples from the right argument. Therefore, the properties from the left
argument generally remain valid in the join result and those from the right
argument do not. Some exceptions occur in the case of the groupjoin.

Keys:

κ(e1 ◦ e2) = κ(e1), for ◦ ∈ {N, T, ZG;A:F }.

Functional Dependencies:

FD(e1 ◦p e2) = FD+(e1), for ◦ ∈ {N, T}.

In the left groupjoin, the attributes in G determine the ones in A:

FD(e1 Zp;G;A:F e2) = FD+(e1) ∪ {G→ A}.

Equality Constraints:

EC(e1 ◦p e2) = EC(e1), for ◦ ∈ {N, T, Z}.

Definite Attributes:

NN(e1 ◦p e2) = NN(e1), for ◦ ∈ {N, T}.

In the left groupjoin, an attribute a ∈ A is definite if the aggregate function it
results from does not return null. This depends on whether or not the argument
of the aggregate function is definite and on the characteristics of the aggregate
function. For example, count(*) never returns null, whereas min returns null if
all input values are null.

If the former is the case for all f ∈ F , we can state the following equation:

NN(e1 Zp;G;A:F e2) = NN(e1) ∪A.

Grouping

The result of a grouping applied to an expression e consists of the attribute
set A containing the aggregation results and those attributes from e that are
contained in the grouping attributes G.
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Keys: We assume a grouping applied to expression e: ΓG;A:F (e). The grouping
attributes G can be a key of the grouping’s argument e. In this case, all keys
contained in G remain keys after applying the grouping:

κ(ΓG;A:F (e)) = {K ∈ κ(e)|K ⊂ G}.

Otherwise, the only key of the resulting relation consists of the grouping at-
tributes G:

κ(ΓG;A:F (e)) = {G}.

Functional Dependencies: In the result of the grouping all FDs referring only
to the grouping attributes or to a subset thereof remain valid. That is, we keep
those dependencies where both sides are contained in the grouping attributes.
Additionally, the grouping attributes determine the aggregation attributes:

FD(ΓG;A:F (e)) = {f : α→ β | f ∈ FD+(e) ∧ α, β ⊆ G} ∪ {G→ A}.

Equality Constraints: Equality constraints referring only to the grouping at-
tributes or a subset thereof still hold in the result of a grouping:

EC(ΓG(e)) = {c ∩G | c ∈ EC(e), c ∩G 6= ∅}.

Definite Attributes: A grouping does not introduce new null values. The
aggregation results in attribute set A may be definite under the same conditions
as for the groupjoin. If this is the case for all attributes in A, the following holds:

NN(ΓG;A:F (e)) = (NN(e) ∩G) ∪A.

5.6.3 Computing the Attribute Closure

During plan generation we need to compute the attribute closure of a set of
attributes α, which we denote by AC(α). Since in the case of equijoins we
do not store any FDs between the join attributes, but instead put them in an
equivalence class, we have to make use of the equivalence classes to compute
the attribute closure. For each FD α → β, we add all attributes to the result
set that are in the same equivalence class as some attribute B ∈ β. Next, we
have to go through the existing FDs and see if there is a dependency β′ → γ
with β′ ⊆ result, which gives the transitive dependency α → γ. In this case,
we add γ to the result and repeat the whole process until there are no more
changes.

The pseudo code for AttributeClosure is given in Figure 5.21. As argu-
ments, the procedure expects the set of functional dependencies FD, the set of
equivalence classes EC and the attribute set α for which the attribute closure
is computed.

94



5.7 Optimality-Preserving Pruning

AttributeClosure(FD ,EC , α)

1 result = α
2 repeat
3 hasChanged = false
4 for all e ∈ EC
5 if (e ∩ result) 6= ∅
6 result = result ∪ e
7 for all FDs β → γ in FD
8 if β ⊆ result
9 result = result ∪ γ

10 hasChanged = true
11 until hasChanged = false
12 return result

Figure 5.21: Pseudo code for AttributeClosure

5.6.4 Implementation Details

Computing and storing the aforementioned plan properties during plan gener-
ation causes some overhead, which can be mitigated by carefully choosing the
data structures and algorithms used to represent and compute them. In our
implementation we use bitvectors for all attribute sets, such as NN and equiva-
lence classes in EC, making frequently needed set operations, such as inclusion
tests, very fast. EC itself can be stored in a union-find data structure [4]. It
is optimized for a fast lookup of equivalence classes with a single array access.
This way, inserting new equivalence classes becomes more expensive, but we
only need to compute equality constraints once for every plan class, whereas
the lookup needs to be done much more often, namely whenever two plans are
compared.

We also store in each plan the attribute closure for each attribute occurring
on the left-hand side of some dependency. This way, we only need to update
the closure when it changes instead of computing it from scratch, which can be
done with a single iteration of the algorithm in Figure 5.21.

5.7 Optimality-Preserving Pruning

In Section 5.5.5, the concept of dominance was introduced without any specific
information on how dominance can be determined. In this section five concrete
notions of dominance are presented. All of them are based on the plan properties
described in the previous section. They have been published in [7, 8].

5.7.1 Pruning with FDs

First, we define f-dominance [7]:
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Definition 11. A join tree T1 f-dominates another join tree T2 for the same
set of relations if all of the following conditions hold:

1. Cost(T1) ≤ Cost(T2)

2. |T1| ≤ |T2|

3. FD+(T1) ⊇ FD+(T2).

We denote by |T | the cardinality of operator tree T ’s result. It is important
to note that the compared trees do not necessarily produce the same result due
to the contained grouping operators. As discussed in Section 5.3, a grouping
on top of the final join may be necessary to compensate this.

Theorem 3. Let T2 be any operator tree containing a subtree T sub2 . Further,
let T sub1 be a tree f-dominating T sub2 . Then, the following holds:

∃T1 : T1 ≡ T2 ∧ Cost(T1) ≤ Cost(T2),

where T sub1 is a subtree of T1.

By T1 ≡ T2 we mean the equivalence of T1 and T2 with respect to their result
when evaluated as an algebraic expression.

Proof. Definition 11 implies that T (T sub1 ) = T (T sub2 ). In this case, we can
replace T sub2 in T2 by T sub1 and the resulting tree T1 cannot be more expensive
than T2 due to the monotonicity of the cost function and the second condition
of Definition 11. However, the two trees may not be equivalent, i.e., one or
both of them may require an additional grouping on top to achieve the correct
query result.

If T2 requires an additional grouping, the monotonicity of the cost function
guarantees that Cost(T1) ≤ Cost(T2) holds, regardless of whether or not T1

requires an additional grouping as well. Assume that only T1 requires an ad-
ditional grouping, leading to Cost(T2) < Cost(T1). Thus, the following must
hold:

∃f2 : G→ A(T2) ∈ FD+(T2) ∧ @f1 : G→ A(T1) ∈ FD+(T1).

Let O(T ) be the set of operators contained in a tree T . Since FD+(T sub1 ) ⊇
FD+(T sub2 ) holds, the functional dependency f2 must arise in one of the oper-
ators contained in O(T2) \ O(T sub2 ). But since both trees are identical above
T sub1 /T sub2 , respectively, the same functional dependency must arise in T1.

In order to avoid the overhead associated with computing FD+, which is
needed for f-dominance, one can use the key set κ to define a different form of
dominance called k-dominance [7]:

Definition 12. A join tree T1 k-dominates another join tree T2 for the same
set of relations if all of the following conditions hold:

1. Cost(T1) ≤ Cost(T2)
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2. |T1| ≤ |T2|

3. κ(T1) ⊇ κ(T2).

Theorem 4. Let T2 be any operator tree containing a subtree T sub2 . Further,
let T sub1 be a tree k-dominating T sub2 . Then, the following holds:

∃T1 : T1 ≡ T2 ∧ Cost(T1) ≤ Cost(T2),

where T sub1 is a subtree of T1.

Proof. Definition 12 implies that T (T sub1 ) = T (T sub2 ).

In this case, we can replace T sub2 in T2 by T sub1 , and the resulting tree T1

cannot be more expensive than T2 due to the monotonicity of the cost function
and the second condition of Definition 12. However, the two trees may not be
equivalent, i.e., one or both of them may require an additional grouping on top
to achieve the correct query result.

If T2 requires an additional grouping, the monotonicity of the cost function
guarantees that Cost(T1) ≤ Cost(T2) holds, regardless of whether or not T1

requires an additional grouping as well. Assume that only T1 requires an ad-
ditional grouping, leading to Cost(T2) < Cost(T1). Thus, the following must
hold:

∃k2 ∈ κ(T2) : G ⊆ k2 ∧ @k1 :∈ κ(T1) : G ⊆ k1.

Since κ(T sub1 ) ⊇ κ(T sub2 ) holds, the key k2 must arise in one of the operators
contained inO(T2)\O(T sub2 ). But since both trees are identical above T sub1 /T sub2 ,
respectively, the same key must arise in T1.

With the following example, we show that there are cases where one tree
f-dominates another tree, but does not k-dominate it. In such cases it can be
beneficial to use FDs instead of keys for the pruning. Figure 5.22 shows two
operator trees for the same query on relations R0, . . . , R3. We assume that each
relation Ri has two attributes: one key attribute ki and one non-key attribute
ni, with i ∈ (0, . . . , 3). In addition to the operators, the trees shown in Figure
5.22 contain special nodes displaying the keys valid at the respective point in
the tree according to the key computation rules from Section 5.6. We assign
numbers to the operators to make them easier to identify.

Assume that during plan generation we compare the subtrees for the relation
set {R0, R1, R2} to decide if one of them can be discarded. To this end, we
have to check if one of the trees dominates the other according to our definition
of k-dominance (Def. 12). Assume further that the tree on the right has
lower cost than the one on the left and equal cardinality. Therefore, the only
condition for k-dominance remaining to be checked is the third one, i.e, we have
to check if κ(B2a) ⊆ κ(B2b) holds. Here and in the following examples we write
κ(◦)/FD+(◦) instead of κ(T )/FD+(T ), respectively, where ◦ is the operator
at the root of T . Obviously, the requirement from above is not met and we
decide to keep the more expensive subtree. We will now use f-dominance as the
pruning criterion.
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Γ{n0}

κ = {{n0}, {k1}}

B3a
n2=k3

κ = {{n0}, {k1}}
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Γ2b
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R0 R1

R2

R3

(b)

Figure 5.22: Two operator trees with keys

Table 5.2: Functional dependencies for Figure 5.22
Figure 5.22a Figure 5.22b

AC+ EC AC+ EC

R0 {k0} → {k0, n0} ∅ {k0} → {k0, n0} ∅
R1 {k1} → {k1, n1} ∅ {k1} → {k1, n1} ∅
R2 {k2} → {k2, n2} ∅ {k2} → {k2, n2} ∅
R3 {k3} → {k3, n3} ∅ {k3} → {k3, n3} ∅
Γ1 {n0} → {n0} ∅ - ∅
B1 {{n0, k1}} → {{n0, k1}, n1} {n0, k1} {{n0, k1}} → {{n0, k1}, n1} {n0, k1}

Γ2 - {n0, k1}
{n0, n1} → {n0, n1}
{n0} → {n0, n1}

∅

B2
{{n0, k1}} → {{n0, k1}, {n1, k2}, n2}
{{n1, k2}} → {{n1, k2}, n2}

{n0, k1}
{n1, k2}

{n0} → {n0, {n1, k2}, n2}
{n0, n1} → {n0, {n1, k2}, n2}
{{n1, k2}} → {{n1, k2}, n2}

{n1, k2}

Table 5.2 shows the FDs and equivalence classes for each intermediate result
of the join trees depicted in Figure 5.22. For each operator, the table gives
the set of non-empty attribute closures AC+ holding in the operator’s result,
computed according to the algorithm described in Section 5.6. We use AC+ in-
stead of FD+, since the former is much smaller and provides all the information
needed for our purposes.

For base relations, the only dependencies we have are given by the key con-
straints from the relations’ schemas. Once the grouping on top of R0 is applied
in Figure 5.22a, we lose the key constraint of R0 because the key is not part of
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the grouping attributes. Instead, we get a new dependency from the grouping
attribute n0 to all other attributes in the result, namely the grouping attributes
and the attributes containing the aggregation results. We omit the latter be-
cause they are of no importance for our observations.

The evaluation of the first join predicate results in an equivalence class con-
taining the join attributes n0 and k1. Since the two attributes are equivalent,
we can replace one by the other in all our FDs. We denote this by replac-
ing all occurrences of an attribute by its equivalence class. This way, the FD
{{n0, k1}} → {{n0, k1}, n1} subsumes the following dependencies:

{n0} → {n0, k1, n1},
{k1} → {n0, k1, n1}.

Applying the closure computation algorithm from Section 5.6 and replacing
attributes by their equivalence classes yields the dependencies and equivalence
classes shown in the table.

We can now return to our original question: can we discard the more expen-
sive tree from Figure 5.22a in favor of the one in Figure 5.22b by considering
the FDs holding in both trees instead of the keys? That is, we need to check if
the following relationship holds:

FD+(B2a) ⊆ FD+(B2b). (5.41)

Instead of computing the closure for both trees, we can go through all FDs in
AC+(B2a) and check if they hold in the right tree as well. This is where the
equivalence classes come in handy. Consider the following dependency from the
left join tree:

{{n0, k1}} → {{n0, k1}, {n1, k2}, n2}.

We do not have to find an exact match for this dependency in the right tree.
Instead, we have to find one in which at least one member of each equivalence
class contained in the above dependency occurs on the same side of the matching
dependency. The following dependency from the right side of the table meets
these requirements:

{n0} → {n0, {n1, k2}, n2}.

In our example we find a match for every dependency from the left side of
the table, leading us to the conclusion that Equivalence 5.41 holds. We can
therefore safely discard the more expensive tree.

Taking a closer look at Table 5.2, we also see that κ(B2b) = {{n0}}, since all
attributes that are present in the tree are determined by n0. The key resulting
from the key computation shown in Figure 5.22 is therefore not minimal, i.e.,
it is a superkey only.

This example represents the situation where using f-dominance does allow the
elimination of a subtree, while k-dominance does not. However, there are also
cases where the opposite holds, especially in the presence of non-inner joins.
We present an example in Figure 5.23.

We assume the same relation schemas as in the previous example, and we
are again interested in discarding the tree in Figure 5.23a because it is more
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Figure 5.23: Two operator trees with keys

expensive with equal cardinality as the one in Figure 5.23b. Comparing the
key sets of B2a and B2b, we see that they are equal, i.e., the tree on the left-
hand side can be discarded according to Definition 12. On the other hand,
the requirements for f-dominance are not fulfilled, as can be seen in Table 5.3,
which contains the FDs and equality constraints up to B2, the root of the two
subtrees we are comparing.

The dependency {{k0, n1}} → {n3}, which is contained in AC+(B2a), is
not contained in AC+(B2b). This is because attribute n3 is not available in
the latter, since it is removed by Γ3. To see that this is caused by the left
outerjoin E1, we replace it by an inner join. This results in an equivalence
class {n1, n3}, which is later extended to {k0, n1, n3}, turning the problematic
dependency from above into {{k0, n1, n3}} → {{k0, n1, n3}}. Since we only need
to find one attribute from each equivalence class on the correct side of another
dependency, the conditions for f-dominance are satisfied by the dependency
{{k0, n1}} → {{k0, n1}} holding in B2b.
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Table 5.3: Functional dependencies for Figure 5.23
Figure 5.23a Figure 5.23b

AC+ EC AC+ EC

R0 {k0} → {k0, n0} ∅ {k0} → {k0, n0} ∅
R1 {k1} → {k1, n1} ∅ {k1} → {k1, n1} ∅
R3 {k3} → {k3, n3} ∅ {k3} → {k3, n3} ∅
Γ1 {n1} → {n1} ∅ {n1} → {n1} ∅
Γ2 {n3} → {n3} ∅ - ∅

E1
{n1} → {n1, n3}
{n3} → {n3}

∅ {n1} → {n1, n3}
{k3} → {k3, n3}

∅

Γ3 - ∅ {n1} → {n1} ∅

B2
{{k0, n1}} → {{k0, n1}, n0, n3}
{n3} → {n3}

{k0, n1} {{k0, n1}} → {{k0, n1}, n0} {k0, n1}

5.7.2 Pruning with Restricted Keys

In this section we propose a third pruning approach that makes use of keys
and at the same time allows for a more effective pruning than k-dominance.
Thereby, we combine the convenience of computing keys instead of functional
dependencies with more opportunities for pruning. Again, we provide an exam-
ple consisting of two alternative join trees for the same query. They are shown
in Figure 5.24.

Γ{k2}

κ = {{k0}, {n1}, {k2}}

B3a
n2=k3

κ = {{k0}, {n1}, {k2}}

B2a
n1=k2

κ = {{k0}, {n1}}

B1a
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R0 κ = {{n1}}

Γ1a
{n1}
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R2

R3

(a)

Γ{k2}

κ = {{n1}, {k2}}

B3b
n2=k3

κ = {{n1}, {k2}}

B2b
n1=k2

κ = {{n1}}

Γ2b
{n1}

κ = {{k1}}

B1b
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R0 R1

R2

R3

(b)

Figure 5.24: Two operator trees with keys

As before, we are comparing the subtrees for relation set {R0, R1, R2} and
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we are interested in discarding the subtree in Figure 5.24a, assuming that it is
more expensive than its counterpart on the right side and that both have equal
cardinality. Using the key set as the pruning criterion, we notice that the tree
on the left has a set containing three keys, whereas the one on the right only
has two keys. Therefore, we decide to keep both trees since the third criterion
for k-dominance is not met.

Going one level higher in the tree, we see that there is in fact no reason to
keep the more expensive tree. In both trees the final grouping on {k2} has no
effect because {k2} is a key of the tree rooted at B3. Since the left tree contains
a subtree that is more expensive than that contained in the tree on the right,
the complete plan on the left can only be cheaper than the one on the right
if it can omit the final grouping while the right plan cannot. This is not the
case and, therefore, we could have removed the red subtree on the left, but
k-dominance does not allow this.

We claim that the attribute set {k0} contained in κ(B2a) but not in κ(B2b),
which inhibits the pruning, can be ignored since it is not referenced in any
predicate further up in the tree or in the grouping attributes associated with
the grouping at the top of the tree. Therefore, it does not influence the key
constraints that hold in the following intermediate results, which in turn deter-
mine the necessity of the final grouping. The same argument implies that we
can also ignore {n1}. Removing these attributes from both κ(B2a) and κ(B2b),
we see that the only remaining key in both sets is {k2}. The sets are therefore
equal and the third criterion for k-dominance is fulfilled, meaning that we can
discard the more expensive subtree. This leads to a third notion of dominance.
Before we define it, we define the restricted key set κ− as follows:

κ−(T ) = {K|K ∈ κ(T ) ∧K ⊆ G+(T )}.

Thus, the restricted key set of T contains only those keys of T that are subsets
of G+(T ). As stated in Section 5.3, the latter set contains all attributes that are
referenced in a predicate or as part of a set of grouping attributes not belonging
to T . We can now define rk-dominance:

Definition 13. A join tree T1 rk-dominates another join tree T2 for the same
set of relations if all of the following conditions hold:

1. Cost(T1) ≤ Cost(T2)

2. |T1| ≤ |T2|

3. κ−(T1) ⊇ κ−(T2).

Theorem 5. Let T2 be an arbitrary operator tree containing a subtree T sub2 .
Further, let T sub1 be a tree rk-dominating T sub2 . Then, the following must hold:

∃T1 : T1 ≡ T2 ∧ Cost(T1) ≤ Cost(T2),

where T sub1 is a subtree of T1.
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Lemma 1. Let Tsub be a subtree rooted at an inner node of a (sub)tree T. Then
G+(Tsub) ⊇ G+(T ) ∩ A(Tsub) follows.

Proof. Let O′(Tsub) be the set of operators between the root of Tsub and the
root of T :

O′(Tsub) = O(T ) \O(Tsub).

Further, let P ′(Tsub) be the set of predicates associated with the operators in
O′(Tsub):

P ′(Tsub) =
⋃

◦p∈O′(Tsub)

p.

Let J(Tsub) be the set of attributes provided by Tsub referenced in these predi-
cates:

J(Tsub) = {j|j ∈ (
⋃

p∈P ′(Tsub)

F(p) ∩ A(Tsub))}.

Then, the claim follows directly from

G+(T ) ∩ A(Tsub) = G+(Tsub) \ (J(Tsub) \G).

We prove the correctness of Theorem 5 by showing that substituting the con-
dition κ(T1) ⊇ κ(T2) from Definition 12 and the corresponding Theorem 4 with
κ−(T1) ⊇ κ−(T2) does not affect the optimality of the produced plan.

Proof of Theorem 5. The only modification we have made compared to Defini-
tion 12 is the additional condition K ⊆ G+(T ) in the definition of κ−(T ). Let
Tsub be a subtree of T .

Our claim is that for any Ksub ∈ κ(Tsub) with Ksub * G+(Tsub) the key Ksub

can be disregarded. We need to show that this has no negative effect on κ(T )
in its ability to prevent unnecessary grouping operations.

Let κ′(Tsub) = {K|K ∈ κ(Tsub)∧K * G+(Tsub)}. Further, let κ′(T ) be the set
of keys that cannot prevent unnecessary grouping operations on top of T with
κ′(T ) = {K|K ∈ κ(T ) ∧K * G+(T )}. We show that through key propagation
K ′ ∈ κ′(Tsub) can only have an impact on κ′(T ) but not on κ(T ) \ κ′(T ). That
is, all keys contained in κ′(Tsub) would have, according to our key propagation
rules, ended up in κ′(T ), the set of “useless” keys in T .

Keys can be

1. extended(×,B,E,K),

2. eliminated (E,B, T,N, Z),

3. left untouched (E,B, T,N, Z) and

4. newly introduced (Γ).
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Note that in none of these cases an existing key is made smaller. Let O′ be the
set of operators that are applied on the path in T between the root of Tsub and
the root of T . If for one operator ◦ ∈ O′ cases (2) or (4) apply to κ(Tsub), the
proof is trivial since no key in κ(Tsub) propagates.

In general, G+(Tsub) ⊇ G+(T )∩A(Tsub) holds according to Lemma 1. Thus,
we can deduce for every K ′sub ∈ κ′(Tsub) that K ′sub * G+(T ) ∩ A(Tsub) follows
because of K ′sub * G+(Tsub). Further, we know the relationship K ′sub ⊆ A(Tsub)
holds by definition. Hence, K ′sub * G+(T ) follows.

5.7.3 Pruning with Restricted FDs

So far, we have observed that we can often prune more subplans with FDs than
with keys, but restricting the key set increases the effectiveness of key-based
pruning. Applying the same principle to FDs by using a restricted set of FDs
promises to further improve the pruning capabilities of our plan generator.

Again, we start by giving an example, consisting of two operator trees as
shown in Figure 5.25, where we assume that the red subtree in Figure 5.25a is
more expensive than the one in Figure 5.25b. Table 5.4 contains the FDs and

Γ{k1}

B3a
K1=n2

B2a
K0=n2

B1a
K0=n3

R0 R3

Γ2a
{n2}

R2

R1

(a)

Γ{k1}

B3b
K1=n2

B2b
K0=n2

B1b
K0=n3

R0 Γ1b
{n3}

R3

R2

R1

(b)

Figure 5.25: Two operator trees

equality constraints holding in each intermediate result up to the root nodes
of the two subtrees. The FDs contained in AC+(B2a) are not contained in
AC+(B2b), nor is AC+(B2b) a subset of AC+(B2a). Thus, we cannot discard
either of the two trees based on f-dominance. More precisely, there are two
dependencies that hinder the pruning: {k3} → {k3, {k0, n2, n3}, n0}, which
only holds in the left tree and {k2} → {k2, {k0, n2, n3}, n0}, which only holds
in the right tree.

The attributes k2 and k3 are not referenced in any of the join predicates
above B2, the root node of the two subtrees of interest. They are also not
part of the grouping attributes at the topmost grouping operator. The only
attribute from this subtree that is “still needed” further up in the tree is n2.
If we only consider those dependencies where the left-hand side contains n2 for
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Table 5.4: Functional dependencies for Figure 5.25
Figure 5.25a Figure 5.25b Figure 5.25

AC+ AC+ EC

R0 {k0} → {k0, n0} {k0} → {k0, n0} ∅
R2 {k2} → {k2, n2} {k2} → {k2, n2} ∅
R3 {k3} → {k3, n3} {k3} → {k3, n3} ∅
Γ1 - {n3} → {n3} ∅

B1
{{k0, n3}} → {{k0, n3}, n0}
{k3} → {k3, {k0, n3}}

{{k0, n3}} → {{k0, n3}, n0} {k0, n3}

Γ2 {n2} → {n2} - ∅

B2
{{k0, n2, n3}} → {{k0, n2, n3}, n0}
{k3} → {k3, {k0, n2, n3}, n0}

{{k0, n2, n3}} → {{k0, n2, n3}, n0}
{k2} → {k2, {k0, n2, n3}, n0}

{k0, n2, n3}

the comparison of the two trees, we can discard the subtree in Figure 5.25a. In
analogy to the restricted key set κ−, we define the restricted FD set FD− as

FD−(T ) = {f : α→ β | f ∈ FD+(T ) ∧ α ⊆ G+(T )}.

This leads to the definition of rf-dominance:

Definition 14. A join tree T1 rf-dominates another join tree T2 for the same
set of relations if all of the following conditions hold:

1. Cost(T1) ≤ Cost(T2)

2. |T1| ≤ |T2|

3. FD−(T1) ⊇ FD−(T2).

Theorem 6. Let T2 be an arbitrary operator tree containing a subtree T sub2 .
Further, let T sub1 be a tree rf-dominating T sub2 . Then, the following must hold:

∃T1 : T1 ≡ T2 ∧ Cost(T1) ≤ Cost(T2),

where T sub1 is a subtree of T1.

Proof. The only modification we have made compared to Definition 11 is the
additional condition α ⊆ G+(T ) in the definition of FD−(T ). Let Tsub be a
subtree of T .

Our assumption is that for any dependency fsub : α → β ∈ FD+(Tsub) with
α * G+(Tsub) the dependency fsub can be disregarded. We need to show that
this has no negative effect on FD+(T ) in its ability to prevent unnecessary
grouping operations.

Let FD′(Tsub) = {f : α → β|f ∈ FD+(Tsub) ∧ α * G+(Tsub)}. Further, let
FD′(T ) be the set of dependencies that cannot prevent unnecessary grouping
operations on top of T with FD′(T ) = {f : α → β|f ∈ FD(T ) ∧ α * G+(T )}.
We show that, according to the rules for deriving functional dependencies, f ′ ∈
FD′(Tsub) can only have an impact on FD′(T ), but not on FD(T ) \ FD′(T ).
That is, all dependencies contained in FD′(Tsub) would have, according to the
rules from Section 5.6, ended up in FD′(T ), the set of “useless” dependencies
in T . Dependencies can be
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5 Reordering Join and Grouping

1. eliminated (E,K, T,N, Z),

2. left untouched (B,E,K, Z) and

3. newly introduced/extended (B,E,K, Z,Γ).

Note that in none of these variants the left side of a dependency is made smaller
and that we compute the closures before considering to discard a dependency.
This is important because we might discard a dependency fsub that forms the
transitive link between some attribute set γ ⊆ G+(Tsub) and another depen-
dency that arises further up in the tree.

Let O′ be a set of operators that are applied on the path in T between the
root of Tsub and the root of T . If for one operator ◦ ∈ O′ case (1) applies to
some fsub ∈ FD(Tsub), the proof is trivial since then fsub does not propagate.

In general, G+(Tsub) ⊇ G+(T )∩A(Tsub) holds according to Lemma 1. Thus,
we can deduce for every f ′sub : α → β ∈ FD′(Tsub) that α * G+(T ) ∩ A(Tsub)
follows because of α * G+(Tsub). Further, we know the relationship α ⊆
A(Tsub) holds by definition.

5.7.4 Pruning with Restricted Keys and Restricted FDs

Our observations from the previous sections suggest that we can benefit from
using (r)f-dominance as the pruning criterion instead of (r)k-dominance, since
it allows for the pruning of more subplans. On the other hand, there is also
a cost associated with this approach, which lies in the higher complexity of
computing and comparing the (restricted) closure instead of the (restricted) key
set. This is why we propose a combination of rk-dominance and rf-dominance
that maximizes the pruning capabilities of the plan generator and at the same
time minimizes the overhead for evaluating the pruning criterion.

The idea is to always test rk-dominance first and only compute and com-
pare the restricted closures of both plans if this test fails. Since in many cas-
es rk-dominance is sufficient to discard a suboptimal plan, we only need to
compute the closure for a fraction of all considered plans. We use the term
rkrf-dominance when referring to this combined approach, even though it does
not define a new form of dominance in the sense that it utilizes a new set of
properties.

5.7.5 Summary

In this section five notions of dominance were presented. They can be distin-
guished along two dimensions, as shown in Table 5.5. On the one hand, we have
those based on keys and on the other hand, the ones based on functional depen-
dencies. Only rkrf-dominance makes use of both properties. Furthermore, the
different pruning criteria can be categorized into those based on an unrestricted
property set and those based on a restricted property set.

At this point it is impossible to make a sound statement on which of the differ-
ent criteria is the best, because they all have their pros and cons. According to
the observations from above, the restricted versions are likely to be superior to
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Table 5.5: Different forms of dominance

Non-Restricted Restricted

Keys K-Dominance RK-Dominance, RKRF-Dominance

FDs F-Dominance RF-Dominance, RKRF-Dominance

their unrestricted counterparts. However, when it comes to the three restricted
approaches, a tradeoff has to be made between their effectiveness as a pruning
criterion and the overhead caused by maintaining the required property sets.

While keys are relatively cheap to compute and compare, the information they
provide is incomplete and tends to leave some opportunities for pruning unused.
Functional dependencies, on the other hand, are more expensive to maintain
during plan generation, but promise to allow for more effective pruning.

In order to eliminate these uncertainties, a thorough experimental evaluation
of the different approaches is provided in the next section.

5.8 Evaluation

Our evaluation consists of five major parts. We first measure the general impact
of eager aggregation on the plan quality in terms of plan cost. The second part
deals with the heuristics from Sections 5.5.2 and 5.5.3. There, we are mainly
interested in how close to an optimal solution the heuristics come. After this,
we turn our attention to the algorithms producing optimal plans by quantifying
the impact of pruning. To this end, we measure the number of DP table entries
with and without pruning. Having thus highlighted the importance of pruning,
we then compare the numerous pruning approaches described in Section 5.7.
Finally, we add groupjoins to the mix and examine their effect on the costs of
the resulting plans. The results presented in this section have previously been
published in [7, 8, 9].

5.8.1 Workload and Experimental Setup

All algorithms described in this chapter were implemented as an extension of
the plan generator DPhyp (Figure 3.5). If not otherwise noted, the workload
consists of randomly generated operator trees. Therefore, 10,000 trees are gen-
erated each for a certain parameter value, e.g., the number of relations contained
in the tree. Duplicates are avoided by using the unranking procedure proposed
by Liebehenschel to enumerate binary trees [27]. A grouping operator with a
randomly chosen set of grouping attributes is placed at the top of the tree. For
each input tree, a new subset of relations is randomly chosen from a set of 20
base relations, each with one key attribute and two non-key attributes. The
relations differ in their cardinalities and attribute values, which are represented
by randomly generated logical profiles [29]. Join operators are attached to the
inner nodes of the tree. Either all join operators are inner joins, or the operator
types are chosen randomly from the set {B,E,K}. A randomly generated
binary equality predicate is attached to every join operator.
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Figure 5.26: Relative plan costs DPhyp vs. optimum with inner joins

In most cases, the results are provided in the form of average values over
the 10,000 input trees for a certain parameter value. We do not classify the
workload by the shape of the query graph, as it is usually done when evaluating
plan generators for pure join reordering. Instead, we are more interested in the
complexity added by the extensions discussed in this chapter, which is strongly
influenced by other factors, such as the number of foreign-key–key predicates.

Every run of the plan generator includes all of the steps shown in Figure
3.11. That is, the operator tree is first turned into a query hypergraph. The
hyperedges are constructed as described in Section 4.5.1. Only then is the
query graph passed to the plan generator. Moreover, cardinality estimation is
conducted for every input tree by computing the profiles of all intermediate
results during plan generation [29]. Costs are determined by the cost function
Cout, as defined in Section 5.5.2.

Instead of the randomized workload, one experiment was carried out with
selected queries from the TPC-H benchmark [5]. All experiments were run on
an Intel Xeon E5-2690 V2 @ 3.00 GHz.

5.8.2 The Impact of Eager Aggregation

We are going to quantify the gain in plan quality enabled by eager aggregation.
Figure 5.26 shows the average ratio between the plan cost achieved by the
original DPhyp, which optimizes the join order and schedules a single grouping
as the final step of query evaluation and the optimum that is achievable with
eager aggregation.

The figure shows that the effect of applying eager aggregation on the costs of
the resulting plans increases with increasing query size. The plans produced by
DPhyp for queries with five relations are more than twice as expensive as the
ones achievable with eager aggregation. For larger queries with ten relations,
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the former are almost ten times as expensive as the latter. This trend continues,
leading to a factor of 33 for queries with 15 relations.

Table 5.6 shows a comparison between DPhyp, our optimality-preserving
plan generator applying k-dominance pruning, and the heuristics. We used a
tolerance factor of 1.05 for H2. In this case, the workload is not randomly
generated, but consists of the example query from Figure 5.1 (labeled “Ex”)
and three selected TPC-H queries (Q3, Q5, Q10) [5]. Query statistics are taken
from a scale factor 1 instance of TPC-H.

The table contains the runtimes of the different plan generators and the
resulting plan costs. Among the listed queries, Ex benefits most from eager
aggregation, which is also reflected by the execution times we observed on
different existing systems (see Section 5.1). Out of the shown queries, TPCH-
Q5 profits least from eager aggregation.

Table 5.6: Optimization times and plan costs for TPC-H queries

Ex Q3 Q5 Q10

Time k-dominance [ms] 0.184 0.163 2.4 0.31
Time H1 [ms] 0.15 0.13 0.333 0.183
Time H2 [ms] 0.122 0.151 0.413 0.323
Time DPhyp [ms] 0.097 0.115 0.327 0.158

Rel. time k-dominance/DPhyp 1.9 1.42 7.34 1.96
Rel. time H1/DPhyp 1.55 1.13 1.02 1.16
Rel. time H2/DPhyp 1.26 1.31 1.26 2.04

Rel. cost k-dominance/DPhyp 6.1×10−4 0.65 0.9 0.58
Rel. cost H1/DPhyp 6.1×10−4 0.92 0.9 0.58
Rel. cost H2/DPhyp 6.1×10−4 0.65 0.9 0.58

5.8.3 The Heuristics

Since the heuristics discussed in this chapter do not necessarily produce an op-
timal plan, we are first and foremost interested in how much the plans produced
by the heuristics deviate from the optimum.

Figure 5.27 shows the plan cost achieved by H1 and H2 in relation to the
optimal cost achievable with eager aggregation. For H2, four runs were made,
each with a different tolerance factor F.

None of the heuristic plan generators produces optimal costs for every query,
but all of them are significantly closer to optimality than DPhyp. H1 on average
produces more expensive plans than H2 for all query sizes, regardless of the
tolerance factor. Its average deviation from the optimum always lies between
6 and 14 percent. Note that H1 never produces a worse plan than the one
without eager aggregation.

This is not the case with H2. Since it favors “more eager” subplans to a
certain extent, even if they are more expensive than an equivalent subplan, the
resulting plans can in theory be worse than those resulting from DPhyp. In our
experiments, all of H2’s plans were better or equally as good as those produced
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Figure 5.27: Relative plan costs with inner joins

by DPhyp. That is because the potential gain for pushing a grouping is larger
than the potential harm caused by wrongfully pushing a grouping. That way,
bad decisions at one point were always outweighed by cost savings at another
point. Clearly, this is not generally the case since it strongly depends on the
cost model and the characteristics of the query.

Compared to H1, there were cases where H2 performed worse. However,
the plan resulting from H2 was never more than twice as expensive as the plan
generated by H1 for the same query. On the other hand, there were cases where
H2’s plan caused only one third of the cost of H1’s plan. Fittingly, the figure
shows that on average the more aggressive strategy pays off in the sense that
the plans generated by H2 are slightly cheaper than those produced by H1.

Clearly, the addition of eager aggregation to the plan generator causes some
overhead, even if it is done in the form of heuristics. Figures 5.28 and 5.29 show
the average runtimes for DPhyp and the two heuristics, either with inner joins
only or with randomly selected operators from {B,E,K}. Since the runtimes
of the heuristics are virtually identical, they are combined into a single bar.

Compared to DPhyp, the heuristics are slower by a factor of 8 to 15 for queries
with inner joins. The slowdown factor slightly increases with increasing query
size. With outerjoins, the heuristics are slower by an almost constant factor
of five. In the latter case, the runtimes of the plan generators are significantly
faster than with inner joins only, which is due to the reduced search space size
that results from the limited reorderability of outerjoins.

5.8.4 The Impact of Dominance Pruning

The following experimental results highlight the importance of pruning when
the goal is to generate an optimal plan with eager aggregation. Figures 5.30
and 5.31 show the average runtime of the plan generator without pruning de-
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Figure 5.28: Runtimes with inner joins
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Figure 5.29: Runtimes with inner joins and outerjoins

scribed in Section 5.5.4 and the version implementing rk-dominance pruning
compared to that of DPhyp. Again, runtimes were measured once for input
queries containing only inner joins and once for queries containing outerjoins
as well.

The figures show the impact of pruning on the runtime of the plan generator.
While the plan generator without pruning takes 82 seconds for a query with
eight relations and only inner joins, the one implementing rk-dominance pruning
takes only 5 milliseconds. As expected, DPhyp is even faster and only takes
0.3 milliseconds for queries of this size. With outerjoins, the numbers for the

111



5 Reordering Join and Grouping

1e-05

0.0001

0.001

0.01

0.1

1

10

100

5 6 7 8 9 10 11 12 13 14 15

R
u
n
ti

m
e
 [

s]

Relations

no pruning
rk-dominance

DPhyp

Figure 5.30: Runtimes with inner joins
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Figure 5.31: Runtimes with inner joins and outerjoins

same query size are again smaller: without pruning, query optimization takes
0.9 seconds on average and with rk-dominance pruning it takes 0.5 milliseconds.
DPhyp takes 0.07 milliseconds on average to produce a plan with eight relations.

The reason for the excessive runtimes without pruning lies in the large number
of subplans stored in the DP table. Figures 5.32 and 5.33 illustrate this by
showing the number of entries stored in the DP table after successful plan
generation for both algorithms. Without pruning, almost four million plans
on average are stored in the DP table if the input query contains only inner
joins. Pruning with rk-dominance reduces this number to 91. DPhyp and the
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Figure 5.32: Number of table entries with inner joins
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Figure 5.33: Number of table entries with inner joins and outerjoins

heuristics need to store only 51 plans on average. Adding outerjoins to the mix,
these numbers amount to 2.7 million, 37 and 23, respectively.

5.8.5 Comparing the Pruning Approaches

We implemented the five pruning criteria presented in Section 5.7 in our extend-
ed version of DPhyp. We refer to the resulting plan generators by the name of
the pruning criterion they implement. That is, the plan generator implement-
ing f-dominance is labeled f, the one implementing rk-dominance is labeled rk
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Figure 5.34: Runtimes with inner joins

and so on.

Runtime

Figures 5.34 and 5.35 show the runtimes of the five plan generators without
groupjoins. The runtimes shown in Figure 5.34 result from queries containing
only inner joins, while Figure 5.35 depicts queries containing inner, left outer
and full outerjoins. Since the runtimes of k and f are so high, we did not run
them for queries with more than eight or twelve relations, respectively.

In both cases we fix the proportion of foreign-key–key join predicates to
eighty percent. The proportion of foreign-key–key joins has an impact on the
runtime of the plan generators, especially the ones dealing with unrestricted
property sets, since these predicates tend to keep the sets of keys and FDs
small, making the comparison of said sets faster and increasing the chance of
one plan dominating another. We consider eighty percent a rather cautious
assumption and assume this number to be higher in most real queries.

Both figures confirm that a more effective pruning criterion generally results
in faster plan generation. While the difference is marginal for small queries,
it grows with an increasing number of relations. For queries with 15 relations
and different join operators, k needs 1.4 seconds on average, while rkrf requires
only 0.0015 seconds, making it almost three orders of magnitude faster. We can
also see that the three algorithms working with restricted property sets have
almost equal runtimes. However, rk and rkrf are faster than rf, which can be
explained by the higher overhead for computing and comparing the closure, as
demanded by rf-dominance.

To give an impression of how big this overhead is, we divided the runtimes
of the different plan generators by the number of plan comparisons performed
during plan generation. For queries with 15 relations containing inner joins and
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Figure 5.35: Runtimes with inner joins and outerjoins

outer joins, we measured the following numbers for “time per plan comparison”:
23 / 306 / 2,073 / 3,705 / 3,077 nanoseconds for k- / f- / rk- / rf- / rkrf-
dominance, respectively. Note that these numbers are based on the assumption
that the plan comparisons are the dominating influence on the plan generator’s
runtime, which may not be true, especially for k-dominance.

When considering queries containing only inner joins, we observe the follow-
ing trend for larger queries (see Figure 5.34): since the search space is so large
for these queries, the search space restriction achieved by the pruning criterion
becomes more critical, causing rk-dominance to become less and less efficient
when compared to rf-dominance and rkrf-dominance.

As stated above, the proportion of foreign-key–key join predicates has a sig-
nificant impact on the runtime of the different plan generators. Figures 5.36
and 5.37 show the runtimes for queries with ten relations and an increasing
percentage of foreign-key–key joins from 0 to 100 with 10,000 input trees each.

Memory Usage

The reason for the runtime difference between k and the rest becomes obvious
when we look at the number of DP table entries produced by the different algo-
rithms, as depicted in Figures 5.38 and 5.39. As suggested by our observations
in the previous sections, the least effective pruning criterion is k-dominance and
the most effective is rf-dominance. Combining the latter with rk-dominance re-
sults in the same number of table entries, since they are equivalent in their
pruning capability and differ only in the way they achieve it. With outerjoins,
the average number of table entries is 22,300 / 146 for k / rkrf for 15 relations.
Queries limited to inner joins have a much bigger search space, resulting in
more table entries, which is reflected in the results of our experiments: here,
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Figure 5.36: Runtimes for 10 relations with inner joins
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Figure 5.37: Runtimes for 10 relations with inner joins and outerjoins

we have 7,800 / 223 table entries on average for the same two plan generators
and queries with ten relations.

5.8.6 The Impact of Groupjoins

This section deals with the plan generators applying eager aggregation and
introducing groupjoins. We use the same labels for the different algorithms
as above and add the prefix gj if the respective plan generator introduces
groupjoins.
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Figure 5.38: Number of table entries with inner joins
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Figure 5.39: Number of table entries with inner joins and outerjoins

Plan Quality

Once we enable the introduction of groupjoins, we are sometimes able to achieve
better plans than with “pure” eager aggregation. In this case, we also observe
differences between the plans resulting from a key-based algorithm and the ones
produced by an algorithm based on functional dependencies. This is because,
as explained in Section 5.4, the requirements for applying a groupjoin cannot be
precisely checked if only keys are known. Thus, the plan generator may fail to
introduce a groupjoin if only keys are known, even though it would be possible.
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Figure 5.40: Pct. of optimal plans containing groupjoins with inner joins
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Figure 5.41: Pct. of optimal plans containing groupjoins with inner- and out-
erjoins

Figures 5.40 and 5.41 illustrate this by showing the percentage of optimal plans
containing a groupjoin resulting from either of the two algorithms. For example,
out of the 10,000 input queries with only inner joins and ten relations, 38 percent
of the plans produced by gjrf contain at least one groupjoin. For gjrk this
number amounts to 21 percent.

Table 5.7 contains the costs achieved by gjrk and gjrf in relation to the
costs achieved without groupjoins for 2 to 15 relations. We only provide the
minimum value, i.e., the best relative cost achieved over all 10,000 queries
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Table 5.7: Relative plan costs groupjoins/no groupjoins

inner joins inner/outerjoins

Relations gjrk gjrf gjrk gjrf

2 0.58 0.58 0.58 0.58

3 0.74 0.69 0.74 0.69

4 0.75 0.72 0.78 0.73

5 0.75 0.62 0.8 0.69

6 0.68 0.67 0.77 0.68

7 0.72 0.45 0.79 0.74

8 0.67 0.63 0.81 0.81

9 0.7 0.58 0.86 0.75

10 0.72 0.53 0.83 0.83

11 0.74 0.55 0.88 0.8

12 0.71 0.63 0.91 0.78

13 0.65 0.58 0.89 0.84

14 0.73 0.58 0.89 0.81

15 0.75 0.53 0.90 0.7

of one size. That is because groupjoins can only be applied in a fraction of
the considered queries and the cost saving achieved by introducing groupjoins
fluctuates considerably depending on the characteristics of the query. But as
we are going to see subsequently, groupjoins do not add much complexity on
top of eager aggregation, so there is no real downside of introducing them.
Therefore, the values shown in the table give an impression of the potential
that is wasted by doing without them. As the values indicate, groupjoins can
sometimes reduce the plan cost to less than 50 percent. The differences between
gjrk and gjrf reveal that we may no longer be able to find the optimal plan
by relying on keys instead of functional dependencies as soon as groupjoins are
taken into consideration.

Due to the random nature of our workload, the grouping attributes are not
necessarily equal to the attributes referenced in the join predicates contained in
the query. In real queries, the grouping attributes and the join attributes often
overlap, which enables the application of the groupjoin. Thus, the groupjoin
can only replace a fraction of the joins in our input queries and its benefits
are sometimes outweighed by the costs of the remaining joins. As can be seen
in the table, this effect is most pronounced when the key-based plan gener-
ator is applied to queries containing outerjoins, because in this scenario few
groupjoins can be applied. In previous work a speedup factor of more than
three was reported for TPC-H query 13 after introducing groupjoins. The com-
plete benchmark was sped up by a factor of 1.5 [33].

Runtime

Figures 5.42 and 5.43 show the runtimes of the two plan generators with
groupjoins and their counterparts without groupjoins. The figures show that
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Figure 5.42: Runtime with groupjoins and inner joins
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Figure 5.43: Runtime with groupjoins, inner- and outerjoins

the differences in runtime between the respective variants are marginal. This
proves that the overhead caused by the introduction of groupjoins is negligi-
ble and outweighed by the potential cost savings demonstrated in the previous
subsection, even if they only occur in a fraction of the tested queries. This can
be explained by the fact that the main overhead caused by the new extension
lies in checking the requirements for introducing a groupjoin. However, the
dominating influence factor on the runtimes of our algorithms is the number
of plans in the plan table. As we are going to see in the next subsection, this
number is little affected by the introduction of groupjoins.
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Figure 5.44: Number of table entries with groupjoins and inner joins

Memory Usage

Figures 5.44 and 5.45 show the number of table entries stored in the DP-Table
after plan generation for the algorithms with groupjoins and their counterparts
without. The numbers are almost equal, which can be explained as follows:
when a groupjoin is applied to replace a sequence of grouping and left outerjoin
or inner join, the resulting subplan has the same properties (cardinality, keys
and functional dependencies) as the original one. The only difference lies in
the plan cost. Thus, in many cases, the groupjoin plan just replaces the cor-
responding plan with pushed-down grouping. But there are also cases where a
plan containing a grouping and a join is dominated by another plan and would
not have been inserted into the plan table in the first place, whereas the cor-
responding groupjoin plan is inserted because of its lower cost. In these cases,
the introduction of groupjoins increases the number of plans stored in the DP
table.
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6 Conclusion and Outlook

The conclusion consists of two parts. The first part summarizes the previous
chapters. The second part contains an outlook on some outstanding query
optimization problems and possible solutions based on the tools presented in
this thesis.

6.1 Summary

The first contribution of this thesis is the description of a modular architecture
for generative plan generators. While the focus of this work lies on DP-based
plan generators, only few modifications are necessary to apply the same con-
cepts to memoization-based plan generators, since the two only differ in the way
their enumerators work. Decomposing the plan generator into several indepen-
dent modules, that can be exchanged individually, results in an extensible plan
generation framework. It allows for the combination of any desired enumera-
tor with an optional conflict detector and a custom plan builder. Exchanging
the plan builder to make it capable of exploiting plan properties offers great
potential for extending the overall functionality of the plan generator.

Building on this, two open problems connected to generative plan generators
were solved. The first one is the correct and complete reordering of join opera-
tors with different reordering properties. We showed that the existing solutions
for this problem are faulty, since they allow the generation of invalid plans.
With our approach we do not only achieve correctness, but also completeness,
i.e., one of our conflict detectors allows for the complete and correct enumera-
tion of the core search space. Moreover, our solution is easier to extend than
the existing ones, making the addition of new operators as simple as adding
their reordering properties to a set of tables [31].

The second problem we tackled is the efficient reordering of grouping oper-
ators and join operators. The solution to this problem consists of two major
parts: the deduction of algebraic equivalences for reordering grouping and non-
inner joins and the description of an efficient plan generator implementing this
transformation. The key to the first part is the proposition of a slightly modi-
fied version of the outerjoin that pads non-matching tuples with freely choosable
default values instead of null values. The implementation in a plan generator
strongly depends on the availability of effective pruning measures to reduce the
size of the plan generator’s search space. Our experiments show that this is pos-
sible with a fairly small overhead, more precisely by maintaining information
about key properties during plan generation [6, 8].

The aforementioned approach exposes a pattern that can be applied to solve
a wide range of problems. It consists of the identification of interesting plan
properties and the deduction of pruning criteria based on these properties. To
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demonstrate the wide applicability of this approach, we provide an outlook on
possible solutions for a few selected query optimization problems in the following
section.

6.2 Outlook

This section provides an overview of some open issues in the context of gener-
ative plan generators that can be solved with the help of plan properties. We
do not describe the resulting algorithms in great detail, but rather sketch out
a possible solution and leave the rest to the reader.

6.2.1 Hash Teams

If several successive join operators in a query plan are implemented as hash
joins hashing on the same attributes, they can share a hash table. This way,
multiple join operators can be applied with a single build phase.

For an example, consider the operator tree in Figure 6.1. Both join predicates
associated with the join operators inside the red box reference attribute r.
Hence, we can use R as the build input for the first hash join and probe the
hash table first with tuples from S and then from T to compute the result of
both joins using a single hash table. The same general idea applies if more than
two successive join operators share a common join attribute.

Gräfe et al. introduced the term hash team for such a group of hash join op-
erators. Their paper provides some information on the implementation of hash
teams in a query execution engine [19]. However, it leaves open the question
how to efficiently generate query plans taking the introduction of hash teams
into account. To fill this gap we once more aim to find a solution that can be
integrated in any of the basic DP-based plan generators presented in Chapter
3.

In addition to optimizing the join order, we now have to decide for each join
operator whether or not we want to combine it with its predecessor to form a
hash team, if possible. This, in turn, depends on which join argument is chosen
as the build input for each hash join. Without the option of sharing hash tables,
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Figure 6.2: Alternative join trees with hash team

the smaller input is typically used as the build input. This is usually the best
choice for one join operator alone. However, it may be beneficial to choose the
bigger input if this enables the application of a hash team in which the same
hash table can be shared between two or more join operators.

Figure 6.2 shows two exemplary operator trees for joining four relations
{R,S, T, U}. The main difference between the two is the subtree joining the
relation set {R,S, T}. While the tree on the left-hand side first joins relations
R and S and then joins the result with T , the tree on the right-hand side first
joins R and T and finally adds U . Moreover, the two join operators at the top
of the right tree both hash on s, which is indicated by the underlining of s.
This way, the tree on the right-hand side can combine the two joins contained
in the red box in a hash team. Since this might be cheaper than executing the
join operators independently, the tree on the right-hand side may be cheaper
than its counterpart on the left-hand side. This may apply even if its join order
would otherwise not be optimal.

Thus, choosing the cheapest join order for {R,S, T} and discarding the tree
applying a more expensive join order, as we would do in a traditional bottom-
up plan generator, may hinder the subsequent introduction of a hash team and
thereby destroy the optimality of the final solution. In other words, a subopti-
mal subsolution may be part of the optimal overall solution, which contradicts
Bellman’s Principle of Optimality. Consequently, we have to keep more than
one plan for every plan class instead of discarding suboptimal plans solely based
on their estimated cost. Thus, the modifications we need to make to our plan
generator closely resemble the ones described in great detail in Section 5.5.
More precisely, the plan generator’s plan builder has to be extended in such a
way that it builds all possible plans for joining a given ccp (S1, S2) and inserts
them all into the DP table. Later on, these plans are used for building plans
for the ccp containing relation set S with S = S1 ∪ S2.

Figure 6.3 shows three equivalent operator trees that have to be considered for
the ccp ({R,S}, {T}) when hash teams are taken into account. Note, however,
that only the cheaper tree out of the first two trees has to be kept in the DP
table. That is because in both these trees the top-most join operator hashes on
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r. However, this is true only under the assumption that implementing a hash
team is always cheaper than consecutively building two or more identical hash
tables.

By now, we have learned that storing all possible plans severely limits the
applicability of the plan generator because only very small queries can be op-
timized with this approach. Following our tried and tested approach, we aim
to identify an optimality-preserving pruning criterion that allows to reduce the
number of plans stored in the DP table without jeopardizing the optimality of
the resulting plans. To this end, we define the set of hash attributes h(T ) of
an operator tree T . It contains the attributes for which a hash table is built
at the top-most operator in T . There are two possible plans for joining {R,S}
and {T}, as shown in Figure 6.2a: one where h(T ) = {r1} and one where
h(T ) = {t}. On the other hand, the corresponding subtree in Figure 6.2b can
have the values h(T ) = {r2} or h(T ) = {s}

To decide whether a certain plan T1 dominates another plan T2 in this context,
we have to compare the cost and the hash attributes of the respective plans.
This leads to the following definition of hash-dominance:

Definition 15. A join tree T1 hash-dominates another join tree T2 for the same
set of relations if all of the following conditions hold:

1. Cost(T1) ≤ Cost(T2)

2. h(T1) = h(T2).

Since not all attributes referenced in a join predicate are again used in a sub-
sequent predicate, we are only interested in those attributes that are contained
in a set J+(T ). It contains all attributes provided by the relations contained in
the join tree T that are referenced in a join predicate outside of T . With this,
we define the restricted set of hash attributes h− as follows:

h−(T ) = h(T ) ∩ J+(T ).

We can now define rh-dominance as follows:

Definition 16. A join tree T1 rh-dominates another join tree T2 for the same
set of relations if all of the following conditions hold:

1. Cost(T1) ≤ Cost(T2)

2. h−(T1) = h−(T2).
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Figure 6.4: N-way join vs. sequence of binary joins

6.2.2 N-Way Joins

Somewhat similar to hash teams are n-way joins. While hash teams consti-
tute a specialized optimization for multiple hash joins, n-way joins allow the
combination of several binary joins into a single operator. This concept is not
necessarily limited to hash-based algorithms, since many different n-way join
implementations exist [24, 39, 42].

Applying an n-way join instead of a sequence of binary joins can have several
advantages. Firstly, it reduces the number of intermediate results. Secondly, the
operator can adapt to the sizes of the join arguments during processing, making
it more resilient to bad cardinality estimates. Moreover, some implementations
can already emit a prefix of the result before any of the inputs is completely
processed. This is impossible with a sequence of hash joins, because there the
respective build inputs have to be processed completely before any result tuples
can be produced.

For the plan generator, however, the availability of n-way joins poses the
challenge of deciding when to apply an n-way join instead of a sequence of
“regular” binary join operators. If an n-way join is always cheaper than the
equivalent combination of binary joins, there is no real problem. In this case,
we can check if an n-way join is applicable and, if so, always prefer the plan
with the n-way join. Whether or not an n-way join can be applied, strongly
depends on the implementation of the n-way join and the characteristics of the
joins it is supposed to replace. For example, outerjoins may not be support-
ed, meaning that a sequence of binary joins including an outerjoin cannot be
replaced by an n-way join. We are not going into more detail on how meeting
these requirements can be ensured, since representing the respective properties
with adequate data structures is merely an implementation detail.

What is more interesting at this point is the scenario where an n-way join
joining a small number of relations is more expensive than the equivalent se-
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quence of binary operators, but as soon as more relations are added, the n-way
join becomes the cheaper alternative. Figure 6.4 shows an example. In the ex-
ample, the n-way join joining {R,S, T} is more expensive than two binary joins
achieving the same result. Once U is added, applying the n-way join instead
of multiple binary joins becomes the better alternative. This could be due to
some overhead linked to the implementation of the n-way join that pays off
only with a larger number of relations. Thus, the plan generator should not
discard the n-way plan for {R,S, T}, even though it is more expensive than the
alternative plan, since another join might later be included in the n-way join.
So again, none of the two plans can be discarded because Bellman’s Principle
of Optimality is compromised in this case.

As before, our goal is to reduce the number of plans stored in the DP table by
an appropriate definition of dominance. The simple solution in this case is to
add a single property to each plan that equates to true if the topmost operator
in the plan is an n-way join, and false otherwise. We denote this property by
n-way(T) for an operator tree T and define n-way-dominance as follows:

Definition 17. A join tree T1 n-way-dominates another join tree T2 for the
same set of relations if all of the following conditions hold:

1. Cost(T1) ≤ Cost(T2)

2. n-way(T1) = n-way(T2).

In other words, two plans are comparable only if both of them contain an
n-way join as their topmost operator. In this case we only have to store the
cheaper of the two in the DP table.

6.2.3 Distribution

In a distributed setting the cost of an execution plan strongly depends on the
associated communication cost. Oftentimes, the most significant cost that oc-
curs when two relations residing on two different sites in the distributed system
are joined, is the cost of shipping one or both relations to one common site.
The shipping cost depends on the amount of data that needs to be transferred
and which sites are involved in the join. The amount of data, in turn, depends
on the join algorithm. Numerous approaches for implementing distributed joins
exist and many of them are designed to minimize the communication cost.

In this setting the cost of a plan alone is not enough to determine if it is better
than another plan. Instead, one has to take into account the site on which the
result of the plan is produced. Consider Figure 6.5 for a simple example.

In the example the distributed system consists of two sites: site A and site B.
Copies of relations R and S are kept on both sites, whereas T resides exclusively
on site A and U resides exclusively on site B. Two possible plans for the plan
class defined by {R,S, T} are shown in the figure. The tree on the left represents
the plan where the three relations are joined locally on site A, causing no
communication cost. In the plan on the right S is shipped to site B to be joined
with R, before T is added to the plan. Since this causes some communication
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cost, the plan on the right is more expensive than the one on the left and is
not kept in the DP table. Next, relation U needs to be joined with T . Since
U resides on site B and the result of the left plan resides on site A, one of the
two has to be shipped to the other. If both these options are more expensive
than shipping S from site A to site B, the previously discarded plan actually
was better than all the remaining options.

Once more, this can be solved by adding a physical plan property that indi-
cates the site on which the result of a plan resides. We denote this by site(T )
for an operator tree T . Two plans are comparable only if they produce their
respective result at the same site. This is captured by our definition of site-
dominance:

Definition 18. A join tree T1 site-dominates another join tree T2 for the same
set of relations if all of the following conditions hold:

1. Cost(T1) ≤ Cost(T2)

2. site(T1) = site(T2).

With this, the plan on the right will never be dominated by the plan on the
left. However, one case is conceivable where this would be desirable: if the
combined cost of computing the result of the left tree and shipping it to site
B is smaller than the cost of the right plan, there is no need to keep the right
plan.

Operators that are introduced into the query plan to ensure a certain value
of a plan property are known as enforcers [18] or glue operators [28]. We denote
by ship(T ) the application of a shipping enforcer to T . It moves the result of
T to the site of the tree that T is compared with. With this, we can rewrite
site-dominance as follows:

Definition 19. A join tree T1 site-dominates another join tree T2 for the same
set of relations if all of the following conditions hold:

1. Cost(ship(T1)) ≤ Cost(T2)

This way the search space of the plan generator can be further reduced.
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