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Abstract

For many products, platforms enable sellers to transact with buyers. We show

that the competitive conditions among sellers shape the market structure in plat-

form industries. If product market competition is tough, sellers avoid competitors

by joining different platforms. This allows platforms to sustain high fees and ex-

plains why, for example, in some online markets, several homogeneous platforms

segment the market. Instead, if product market competition is soft, agglomeration

on a single platform emerges, and platforms fight for the dominant position. These

insights give rise to novel predictions. For instance, market concentration and fees

are negatively correlated in platform industries, which inverts the standard logic of

competition.
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1 Introduction

In many industries, platforms offer intermediation services and play the essential role of

enabling transactions between buyers and sellers—more prominently so, with the migra-

tion of trade from physical venues to the Internet. For example, in the rental market, the

main bulk of matching landlords and tenants is done via Internet platforms such as Right-

move and Zoopla in the UK, or Immobilienscout24 and Immowelt in Germany. Other

examples include the used car market and markets for other used items or collectibles,

in which a large fraction of transactions is initiated via portals.

The market structure for intermediation services differs considerably across industries

and space. While, for example, Ebay dominates the second-hand market in many product

classes in several countries, the rental housing market is often segmented, and two (or

more) platforms have non-negligible market shares.1

In this paper, we provide a theoretical framework to examine these differences in plat-

form market structure. We find that the market structure is shaped by the competitive

conditions in the product market. These conditions are responsible for the fees set by

platforms and, thus, for platforms’ profits and for the number of active platforms.

As is well-known, platform markets may have the tendency to tip due to positive

cross-group external effects between buyers and sellers (i.e., each buyer benefits from

more sellers on the same portal and vice versa). This has been shown in the seminal

work by Caillaud and Jullien (2001, 2003) and rationalizes the phenomenon of market

agglomeration, in which all agents locate on a single platform. However, in several indus-

tries, two or more platforms have non-negligible market shares, and agents join different

platforms. The existing literature explains market segmentation with platforms offering

differentiated matching services (e.g., Rochet and Tirole, 2003; Armstrong, 2006).

In the above examples, and more broadly for many Internet platforms, there is little

room for service differentiation; that is, platforms offer services that often appear to be

quite the same. Therefore, it remains a puzzle how competing platforms share the market

and earn positive profits.

Our answer to this puzzle is that multiple homogeneous platforms can serve the role

of relaxing competition between sellers in the product market. In a nutshell, if sellers

decide to be active on different platforms, some buyers will not be informed about all

offers, which, in turn, relaxes competition between sellers. Platforms benefit from this

provision of endogenous segmentation by charging sellers larger fees. Thus, multiple

1Even within the same industry, differences between countries can be observed. For example, in the
daily deals market, in which platforms mediate transactions of discounted products and services through
coupons, Groupon has a dominant position with market shares of around 80% in several European
countries, whereas in the US the market is more segmented, with Groupon and LivingSocial being the
market leaders (Kim, Lee and Park, 2017).
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homogeneous platforms earn positive profits.

We identify the competitive conditions in the product market as the key driver of the

arising market structure. If product market competition is soft (e.g., because sellers offer

highly differentiated products), agglomeration forces dominate. Then, platforms follow

a strategy of “play hard and fight it out” to become the dominant platform, which leads

to low fees (at least in the short term, when the number of platforms is exogenous). If,

instead, product market competition is tough, multiple platforms segment the market to

relax seller competition. Platforms then “play soft” and charge high fees.

Dudey (1990) and Ellison and Fudenberg (2003) demonstrate that under tough prod-

uct market competition, sellers benefit from allocating at different marketplaces. In those

papers, however, marketplaces are not managed by platforms and do not charge fees to

sellers. Our analysis advances this literature by confirming that market segmentation can

arise even with fee-setting platforms. Yet, we find that fees are strictly positive under

market segmentation.

Overall, our paper provides testable predictions of how the competitive environment

faced by sellers drives the equilibrium market structure and the platforms’ equilibrium

choice of listing fees. Tough competition between sellers implies high platform fees and

profits. Therefore, the correlation between competition in the product market and com-

petition in the market for intermediation services is negative. In addition, a lower mar-

ket concentration in platform markets due to multiple active platforms go together with

higher listing fees. This implies that the relation between the Hirshman-Herfindahl Index

(HHI) and the markup is reversed in platform markets versus standard oligopoly markets.

To provide casual evidence for the existence of market segmentation in platform in-

dustries, we carried out searches on the German rental platforms Immobilienscout24 and

Immowelt. An example is the search for rental apartments in Frankfurt am Main, Ger-

many with the following search criteria: “at least 3 rooms”; “at least 100 m2”; and

“distance less than 1 kilometer to the centre.” The search on November 23, 2015 resulted

in 12 matches on each portal. We report the matches in Table 1 in ascending order of

rental price by stating the square meters of the apartment and the rental price in Euros.

Out of these 12 matches, only two could be found on both platforms.2 This appears to

be consistent with the idea of market segmentation by platforms.

Our theoretical framework applies also to industries beyond e-commerce. A case in

point are industry standards; for example, the modem standard for end-user Internet

access in the 1990s: Augereau, Greenstein, and Rysman (2006) find that two different,

but functionally equivalent modem standards were used by Internet Service Providers

(ISPs, which would be the sellers in our model) despite positive effects of standardization.

2Offer 11 on Immobilienscout24 is the same apartment as offer 9 on Immowelt, and offer 12 on
Immobilienscout24 is the same apartment as offer 11 on Immowelt.
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Immobilienscout24 Immowelt
1. m2:103.78; Rent:1.350 m2:111.00; Rent:1.285
2. m2:110.00; Rent:1.450 m2:104.00; Rent:1.290
3. m2:100.00; Rent:1.450 m2:117.00; Rent:1.350
4. m2:105.90; Rent:1.450 m2:103.56; Rent:1.490
5. m2:129.02; Rent:1.548 m2:114.00; Rent:1.550
6. m2:124.74; Rent:1.597 m2:145.00; Rent:1.650
7. m2:142.00; Rent:1.700 m2:100.00; Rent:1.800
8. m2:136.00; Rent:1.890 m2:140.00; Rent:1.970
9. m2:137.48; Rent:2.007 m2:140.00; Rent:2.450
10. m2:173.00; Rent:2.290 m2:160.00; Rent:2.800
11. m2:140.00; Rent:2.450 m2:152.00; Rent:2.830
12. m2:152.00; Rent:2.830 m2:200.00; Rent:3.200

Table 1: Apartment offers in ascending order of the rental price

This helped ISPs to reduce competition (by creating switching costs for consumers). As

a result, the two modem standards obtained similar market shares and, thus, segmented

the market.

In our baseline model, multiple platforms compete on listing fees charged to sellers.

Buyers prefer platforms with many sellers, and vice versa. Sellers offer a single prod-

uct that belongs to one out of many different product categories, and there are multiple

sellers within the product category competing with each other. To present the results

in the simplest way, we focus on the case with only two platforms and two sellers per

category. All of our results extend to a general number of platforms and sellers and

to per-transaction fees or two-part tariffs. After platforms set their listing fees, sellers

and buyers decide simultaneously which platform to join and, thus, play a coordination

game. We show that the selection criterion of coalition-proofness, in combination with

profit dominance of sellers, generates a clear-cut equilibrium prediction in this coordina-

tion game. This allows us to establish necessary and sufficient conditions when either

agglomeration or segmentation emerges.

A tipping equilibrium prevails if the degree of competition between sellers is low.

This is in line with the case of Ebay in the example above, as competition between sellers

of a particular second-hand product on Ebay is presumably relatively soft. Buyers are

then informed about all offers, implying that sellers are in competition with each other.

However, demand is also higher as all buyers are on the same platform. The effect of

increased demand dominates increased competition. Platforms compete fiercely to win

the market, which leads to a Bertrand-style competition between platforms, and their

listing fees are driven down to marginal cost.3

3Agglomeration, therefore, does not imply that a platform acts as a monopolist. Instead, another
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By contrast, if competition between sellers in a product category is sufficiently intense,

they prefer to be active on different platforms. Buyers will split on the two platforms

and do not become informed about all offers. Thus, platforms segment the market,

and competition between sellers is relaxed. This finding is in line with the examples of

Rightmove vs. Zoopla and Immobilienscout24 vs. Immowelt on the rental market, as

landlords and rental agencies often compete for the best tenants. Segmentation then

allows platforms to obtain strictly positive profits. If a platform were to deviate from

the associated equilibrium listing fees by charging a lower fee, sellers would not have an

incentive to switch to this platform, as this would intensify competition among them.

If the degree of competition between sellers is moderate, a mixed-strategy equilibrium

in listing fees occurs, in which platforms segment the market with positive probability.

Confirming the result described above, if the degree of competition between sellers gets

larger, the probability for segmentation increases, and so does the expected profit of

platforms, as they charge higher fees.

While our baseline model features single-homing of agents on both sides, we sub-

sequently allow for multi-homing buyers and sellers and show that our solution to the

puzzle that multiple platforms share the market carries over. We find that platforms

obtain lower profits with seller multi-homing as multi-homing makes agglomeration more

likely.

Existing literature with differentiated platforms has shown that seller multi-homing

allows competing platforms to exert monopoly power over sellers and to possibly in-

crease their profits. By contrast, we find that seller multi-homing may affect the market

structure and has, thereby, a different effect on platform profits: Due to multi-homing,

sellers may profitably deviate from segmentation by becoming active on both platforms

and, thus, making offers to all buyers. This might render segmentation unstable. Then,

agglomeration occurs, and platforms unambiguously receive lower profits.

From a welfare perspective, segmentation is inefficient. The reason is that matching

quality is lower, as buyers are not informed about all offers, and the deadweight loss is

higher than under agglomeration due to higher product market prices. As a consequence

for competition policy, restraints such as exclusive dealing contracts, which platforms may

impose on sellers, are anticompetitive, as they prevent seller multi-homing and, thus, are

likely to induce segmentation.

In the remainder of this section, we discuss the related literature. In Section 2, we

set out the baseline model and, in Section 3, characterize the equilibrium. In Section 4,

we analyze the effects of multi-homing by buyers and sellers. We present generalizations

of our baseline model, including the use of alternative platform pricing instruments, any

constraining platform is present, but this platform has only a small market share. In this respect, the
platform market is contestable. We discuss this in more detail in Section 7.
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number of platforms and sellers, and a different equilibrium selection in Section 5. In

Section 6, we discuss policy implications and empirical predictions. Section 7 concludes.

All proofs are relegated to the Appendix.

Related Literature Our paper contributes to the literature on competition in two-sided

markets, pioneered by Caillaud and Jullien (2001, 2003), Rochet and Tirole (2003, 2006),

and Armstrong (2006). Caillaud and Jullien (2001, 2003) analyze homogeneous platforms

and show that the market tips to one platform under relatively general conditions. Rochet

and Tirole (2003, 2006) and Armstrong (2006), by contrast, consider platforms that

are sufficiently differentiated so that no tipping occurs. The focus of these papers (and

generally in the two-sided market literature) is on cross-group externalities between agents

of both sides but not on competition between agents on the same side (as sellers do in

our model). Armstrong (2006) considers seller competition in an extension, and shows

that platforms may restrict seller competition to obtain higher profits. In contrast to our

paper, in his framework, all platforms are active due to exogenous differentiation.

A few papers in the two-sided markets literature analyze competition between sellers.

Nocke, Peitz and Stahl (2007), Galeotti and Moraga-González (2009), and Gomes (2014)

analyze platform ownership, search, and optimal auction design, respectively, but consider

a monopoly platform, whereas Belleflamme and Toulemonde (2009) study competition

between a for-profit and a not-for-profit platform. Dukes and Gal-Or (2003) and Hagiu

(2006) consider competition between for-profit platforms and analyze either exclusivity

contracts or price commitment by platforms.4 None of these papers analyzes how the

market structure depends on seller competition.5

Ellison, Fudenberg, and Möbius (2004) consider competition between two auction

sides. They derive conditions for sellers to be active on different platforms, as this lowers

the seller-buyer ratio on each platform and leads to higher prices. Ellison and Fudenberg

(2003) provide general conditions such that tipping does not occur in markets with cross-

group external effects. The key difference from our paper is that they do not consider

fee-setting by platforms (i.e., fees are zero in their setup).6

The literature on firms’ location decisions analyzes the benefits and costs of clustering

from a different angle. For example, Dudey (1990) shows that sellers prefer agglomeration

in one marketplace over fragmentation, as lower product prices are more than offset by

4In line with the previous literature, Hagiu (2006) shows that if commitment is not possible and
agents single-home, an agglomeration equilibrium with zero profits emerges.

5An exception is Halaburda, Piskorski and Yilidrim (2017) who consider a matching market with
heterogeneous agents. They show that agents with low outside options prefer a platform with restricted
choice which leads to market segmentation with platforms of different size. By contrast, in our paper
segmentation occurs with homogeneous agents on either side and leads to symmetric platforms.

6Ellison, Fudenberg, and Möbius (2004), in their Section 7, briefly analyze platform pricing. However,
since they do not make assumptions on equilibrium selection in the coordination game between sellers
and buyers, they do not provide a unique mapping from fees to market structure.
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increased demand. Stahl (1982) demonstrates that a similar effect arises if buyers are

attracted by a greater variety of goods. Church and Gandal (1992) analyze a related

model applied to the software market. In contrast to our paper, marketplaces are open

platforms in the sense that access is free. Instead, we are interested in markets with

fee-setting platforms and the resulting market structure.7

Our paper also contributes to the literature on price comparison websites. In the

seminal paper, Baye and Morgan (2001) show how homogeneous firms obtain positive

profits, even if a website informs buyers about all prices. The idea is that firms still

sell in their local market, where buyers are not informed about all prices. This leads

to price dispersion in equilibrium. This result has been tested empirically (e.g., Brown

and Goolsbee, 2002; Baye and Morgan, 2004) and the theoretical framework has been

extended (e.g., Ronayne, 2015). In contrast to these papers, we analyze competition

between websites in addition to competition between sellers.

2 The Setup

2.1 Baseline Model

We consider markets in which buyers and sellers trade via platforms. In what follows,

we describe the three types of agents—platforms, sellers, and buyers.

Platforms. Two homogeneous platforms A and B offer listing services to sellers. The

platforms enable transactions between sellers of products or services and their prospective

buyers. To be listed on platform i, a seller has to pay a listing fee fi, i ∈ {A,B}. Such

listing fees are prevalent in markets in which platforms cannot or do not monitor the sale

of a product—for example, in the housing or rental market. Buyers can access platforms

for free.8 For simplicity, we assume that all platform costs are zero.

Sellers. Sellers have to decide which, if any, platform to join. In the baseline model,

they cannot be active on both platforms (i.e., sellers single-home)—in Section 4.2, we

show that our results carry over to the case with multi-homing sellers.9 The product of

each seller belongs to a product category. There is a mass 1 of such categories, indexed

by k ∈ [0, 1].

7An exception is Gehrig (1998), who considers Hotelling competition between marketplaces and com-
petition on the circle (Salop, 1979) between sellers. He shows that agglomeration equilibria may emerge
(with positive platform profit), despite platform differentiation.

8We discuss the case of two-sided pricing in Section 5.4.
9In some industries, single-homing is a natural assumption. For example, in the market for private

accommodations, apartment owners have difficulties synchronizing the calendars when they are active
on more than one platform. This favors single-homing. Other examples are the daily deals market, in
which sellers cannot offer the same deal on more than one platform, or the modem market for Internet
access in which each ISP can use only one modem for technological reasons.
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For simplicity, we assume that there are two sellers in each product category.10 Sellers

are symmetric and obtain an equilibrium per-buyer profit πd in duopoly. If buyers can

buy from only one of the sellers because only this seller is listed on the platform that

buyers are patronizing, the seller makes a monopoly profit πm per buyer, with πm ≥ πd.

Our formulation implies that per-buyer profit in duopoly and monopoly is independent

of the number of buyers. At the end of this section, we provide several micro-foundations

that fulfill this property. However, we also demonstrate that our qualitative results hold

more generally. For the sake of concreteness, we assume that sellers engage in price

competition and set uniform prices to buyers. We denote the symmetric equilibrium

duopoly price by pd and the monopoly price by pm.

In the baseline model, there is no interdependence between categories.11 This rep-

resents the fact that, although platforms usually list many items (a continuum in our

model), there is competition between only a few of them. For example, a price compari-

son website often has thousands or even millions of listed products, but only a few items

match a buyer’s search and are displayed to the buyer. Similarly, housing platforms are

host to many houses and apartments, but a buyer seeking a house of a particular size in

her preferred city is not interested in listings in other categories.

Buyers. Each buyer single-homes—that is, she decides to be active on (up to) one

platform.12 She is interested in a single product category and derives a positive gross

utility only from products in this category—see, e.g., Burguet, Caminal, and Ellman

(2016) for a similar structure. There is mass 1 of buyers per product category. When

visiting a platform, a buyer becomes informed about her preferred product category and

the price of all products listed on the platform.13 If a platform lists sellers’ products from

a fraction α ∈ [0, 1] of all categories, a buyer expects to find a product from her preferred

category with probability α.

A buyer obtains a different (indirect) utility if one or two sellers are listed in her

preferred category. Prior to observing the idiosyncratic taste realization within this

category, the buyer obtains an expected utility of V d if she expects two sellers to be

listed in her preferred category. If she expects only one seller to be listed, her expected

utility is V m < V d. The reason for this inequality is twofold: First, if two sellers are listed,

they charge the duopoly price pd, which, in many instances, is less than pm. Second, if

10In Section 5.2, we show that all our results carry over to the situation with a general number of
sellers per category and a general number of platforms.

11We discuss several possible interactions between categories in Section 5.5.
12In Section 4.1, we provide the analysis with multi-homing buyers and demonstrate that our main

insights remain valid.
13The assumption that a buyer learns her preferred category only after deciding which platform to

visit is only made to simplify the analysis. All results would also hold if buyers knew their preferred
category already at the outset.
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sellers are differentiated, and buyers have a taste for variety, a buyer will find a product

closer to her preferences or may buy a positive amount of both products if two sellers are

listed instead of only one.

Timing. The timing is as follows:

1. Platforms A and B set listing fees fA and fB, respectively.

2. Sellers and buyers make a discrete choice between platforms A and B, and the

outside option (normalized to zero).

3. Sellers in each category set product prices.

4. Buyers observe all offers on the platform they are visiting and make their purchasing

decisions.

We make three observations regarding our setup. First, according to our timing,

sellers decide where to list before setting their prices on the product market. This is the

relevant timing in most applications because the choice of platform is typically longer-

term than the pricing decision. Therefore, sellers set prices after learning about the

number of competitors in the product market. In addition, listing fees are often paid on

a subscription basis, which makes them lumpy. By contrast, prices charged by the sellers

are flexible.

Second, listing fees do not enter the pricing decisions of sellers in the third stage

because they are “fixed” costs for sellers (which are, in addition, sunk when sellers set

prices). As we show in Section 5.1, our results still hold with per-transaction fees or

revenue shares, which affect sellers’ pricing decisions.

Third, we do not impose a particular model of buyer-seller interaction for the sub-

game starting at stage 3 and, instead, use a reduced-form approach with several micro-

foundations provided in Section 2.2.

Payoffs. The profit of platform i is the number of sellers active on platform imultiplied

by the listing fee fi. The profit of a seller who is listed on platform i is βiπ − fi, where

βi is the fraction of buyers in the seller’s category that are active on platform i, and π

is either πm if the rival seller is not listed on platform i or πd if the rival also lists on

platform i. As mentioned above, the utility of a buyer is V d or V m and, thus, depends

on the number of sellers listed in the buyer’s preferred category; the utility is 0 if none

of those sellers is listed on the platform.

Solution Concept. Our solution concept is subgame perfect Nash equilibrium. We

assume the following tie-breaking rule. If buyers expect one seller in each category to list

on platform A and the other seller on platform B, half of the buyers in each category

join platform A and the other half platform B. A natural interpretation is that each

buyer mixes with equal probability to be active on either platform A or B. Since there

is a continuum of buyers, both platforms will, in fact, be patronized by one half of the
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buyers.14 As we point out below, this assumption is not crucial for the results and can

be relaxed, allowing for unequal distributions of buyers in the case of indifference.

In the second stage, buyers and sellers face a coordination game on which platform(s)

to be active, which may lead to a multiplicity of equilibria. To deal with this well-known

issue in two-sided markets, we impose the refinement of coalition-proofness (see e.g.,

Bernheim, Peleg, and Whinston, 1987a, 1987b). That is, we select only Nash equilibria

that are stable against deviations by coalitions of sellers and buyers; and, within the

coalition, no subset of sellers and buyers benefits from a further deviation.15 In addition,

when coalition-proofness is not sufficient to obtain equilibrium uniqueness, we select

equilibria that are profit-dominant for sellers. We will show that the joint application of

these refinements leads to a unique equilibrium outcome at stage 1.16

A justification of the refinement is that the outcome is equivalent to the outcome

of a sequential game in which sellers decide which platform to join before buyers do,

as considered, for example, by Hagiu (2006), and sellers play a coalition-proof Nash

equilibrium. In Section 5.3, we analyze the mirror case, in which the payoff-dominant

equilibrium for buyers is selected, and we demonstrate that the main insights of our

analysis will be unchanged.

Summary statistic. As will become clear in Section 3, the key summary statistic for

our equilibrium characterization is the ratio πd/πm, which is an inverse measure of the

degree of product market competition and takes values in [0, 1]. It is determined by the

buyer-seller interaction at stages 3 and 4.

2.2 Micro-Foundation of the Buyer-Seller Interaction

Buyers’ choices in stage 4 and sellers’ pricing decisions in stage 3 are straightforward: In

the fourth stage, a buyer buys one or both products in her preferred product category

according to her demand function, provided that there is at least one listed seller on the

platform where the buyer is active. In the third stage, sellers set pd in case they face a

14Another interpretation is that platforms are differentiated by different platform designs but that
this differentiation is negligibly small. For example, platforms are differentiated along a Hotelling line,
and the transport cost parameter t goes to zero. This means that buyers ex ante have lexicographic
preferences, in the sense that they prefer the platform with a larger number of sellers. Buyers decide
according to their preference for different platform designs only if they expect this number to be the
same across platforms.

15In our game, a coalition-proof Nash equilibrium is equivalent to a Strong Nash equilibrium (Aumann,
1959), which ignores deviations by subcoalitions. This is due to buyers within each category being
symmetric and sellers benefiting from the presence of more buyers.

16Our equilibrium concept differs from the one imposed by Caillaud and Jullien (2003) and Jullien
(2011), who consider favorable expectations for one platform (the incumbent) in case of a fee deviation
by the rival platform (the entrant). By contrast, in our model, agents form expectations after observing
platform prices, and expectations are symmetric.
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competitor in their product category on the platform and pm in case of monopoly.

In this subsection, we provide several micro-foundations of the buyer-seller interaction

at stages 3 and 4 and, thus, determine the equilibrium per-buyer profits πd and πm. The

first two examples are widely-used oligopoly models: a discrete product choice model

(Hotelling) and a representative consumer model (Bowley, 1924, or Singh and Vives,

1984). Both examples fulfill all our assumptions, and we use the example on Hotelling

competition as our lead example.17 The third example extends price competition to

a simple setting of thin markets in which there is only a small number of buyers and

capacity-constrained sellers (as in the housing market). In the fourth example, sellers do

not use prices as their strategic variable but quantities. The latter two examples do not

fulfill all assumptions set out above (as there is only a finite number of buyers in Example

3, and sellers compete in quantities in Example 4). However, because only πd and πm

are relevant for our results, we can restate the model so that it is in line with Example

3 or 4.18

Example 1: Price competition in the Hotelling model.

Consider Hotelling competition in each product category. Each seller is located at one

of the extreme points of the unit interval in a particular category—i.e., a seller j is

characterized by its category kj and its location lj on the unit interval, (kj, lj) ∈ [0, 1]×
{0, 1}. The buyers’ valuation of a product at the ideal location in the preferred category

equals v. If a buyer likes category k and is located at xk (with (k, xk) ∈ [0, 1]× [0, 1]), her

utility from buying one unit of seller j’s product in this product category is v−t|xk−lj|−plj
where t > 0 captures the degree of product differentiation. Her utility is zero for products

in all categories that are not equal to k. Price competition among Hotelling duopolists

leads to equilibrium prices c+t and equilibrium profits πd = t/2 per unit mass of buyers.19

A monopoly seller sets price pm = (v+ c)/2, and its profit is πm = (v− c)2/(4t) per unit

mass of buyers if the market is not fully covered. This is the case if t ≥ (v− c)/2. In this

parameter range, pm ≤ pd. For t < (v − c)/2, there is full coverage, and the monopolist

sets pm = v − t. Its profit is πm = v − t− c.
In the Hotelling model, the ratio πd/πm is given by

√
2t/(v − c) if (v − c)/2 ≤ t ≤

2(v − c)/3 and by t/[2(v − t − c)] if t < (v − c)/2. It follows that πd/πm ≥ 1/2 for

t ≥ (v− c)/2, and vice versa. That is, if products are sufficiently differentiated, twice the

duopoly profit is larger than the monopoly profit.

Example 2: Price competition with a representative consumer with linear demand and

17Other representative consumer models—for instance, with CES or logit demand—would work as
well.

18Another micro-foundation that we do not develop here but that also fits our assumptions are models
of sequential product search (e.g., Wolinsky, 1986, and Anderson and Renault, 1999).

19The upper bound on t is 2(v − c)/3, as the buyer who is indifferent between both sellers would not
obtain a positive utility otherwise.
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differentiated products.

Suppose that buyers with the same preferred category have an indirect utility function

of q1 + q2 − 1/2(q21 + q22) − γq1q2 − p1q1 − p2q2, with γ ∈ [0, 1] expressing the degree of

substitutability between products. This is a representative consumer setting in which each

buyer obtains utility from positive quantities of each product in her preferred category.

Maximizing this utility function with respect to q1 and q2, we obtain the indirect demand

functions pi = 1 − qi − γq−i, i = 1, 2. Inverting this demand system yields the direct

demand functions qi = (β − γ − pi + γp−i)/(1− γ2), for i = 1, 2.

Duopoly equilibrium profit per buyer is πd = [(1− γ)(1− c)2]/[(1 + γ)(2− γ)2]. For a

monopolist, the direct demand is qi = 1− pi and the per-buyer profit is πm = (1− c)2/4.

Thus, the ratio πd/πm is given by

4(1− γ)

(1 + γ)(2− γ)2
,

which is above 1/2 if γ is lower than approximately 0.62.

Example 3: Thin markets.

In this example, we consider capacity-constrained sellers that each can offer only one unit

of a product—the analysis can be extended to allow for sellers with a finite number of

products to sell. Real-world applications include the housing and rental market, and the

market for collectibles in which owners often have only one unit to sell.

Suppose that, in each category, there are two sellers and finitely many buyers MB > 1.

The example differs from the baseline model, as there is no continuum of buyers. To keep

the exposition simple, suppose that there are two buyer types with valuation R ∈ {R,R},
with 0 ≤ R < R. The ratio of R-types is ρ ∈ (0, 1). Sellers observe buyers’ valuations at

the price-setting stage.20

Consider, first, the case in which both sellers and all buyers are located on platform i.

If, for example, there are MB = 2 buyers on platform i, there are four pairs of willingness-

to-pay that the sellers can encounter: (R,R), (R,R), (R,R) and (R,R). For any pair with

fewer R-type buyers than sellers, the unique equilibrium is that sellers set p∗ = R because

of Bertrand competition. Only if there are at least as many R-type buyers as sellers—i.e

(R,R) realizes—there is the unique equilibrium that sellers set p∗ = R. The probability

of this event equals ρ2. The expected profit of each seller is then π(2, 2) = ρ2R+(1−ρ2)R.

More generally, denoting the probability that the number of high-type buyers is larger

20This simplifying assumption implies that sellers can observe whether or not they are located in a
market with sufficiently many R-type buyers when they set their prices. Yet, in general, it suffices for
our argument that prices are increasing in the number of buyers.
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than the number of sellers (i.e., Pr{]{Rl=R}
MB
l=1

≥ 2}), by Q(MB, 2), we obtain

Q(MB, 2) =

MB∑
k=2

(
MB

k

)
ρk(1− ρ)MB−k.

The expected profit can then be written as π(MB, 2) = Q(MB, 2)R + (1 − Q(MB, 2))R,

which corresponds to πd of the baseline model.

If, instead, one seller per category locates on platform A and the other on platform B,

and each buyer joins with probability 1/2 platform A and with probability 1/2 platform

B (which will happen in equilibrium), the expected profit of a seller on platform i is

π(l, 1) = Q(l, 1)R + (1 − Q(l, 1))R if l ∈ {1, ...,MB} buyers join platform i, as q(l, 1)

is the probability that there is at least one R-type buyer among the l buyers. The

probability that l ∈ {1, ...,MB} buyers locate on platform i is given by

P (l) =

(
MB

l

)(
1

2

)l(
1

2

)MB−l

.

Overall, the expected profit of a single seller located on a platform can then be written as∑MB

l=1 P (l)π(l, 1). This expression corresponds to πm/2—that is, the monopoly profit of

a seller when reaching each buyer with probability 1/2. Table 2 illustrates how the ratio

πd/πm depends on the number of buyers per category. (Note that πd and πm depend on

the number of buyers MB.)

MB 1 2 3 4 5 6 7 8 9 10
πd/πm 0 0.1333 0.2367 0.3162 0.3769 0.4228 0.4570 0.4821 0.5002 0.5129

The ratio πd/πm as a function of the number of buyers MB per category and parameter values ρ = 1/4,
R = 0 and R = 1.

Table 2: Thin Markets

Example 4: Linear Cournot competition with fixed costs per buyer.

Consider a Cournot model with linear inverse demand p(q1 + q2) = α − β(qi + q−i) and

constant marginal costs c > 0, with α > c, β > 0, and i = 1, 2. In addition to their

marginal cost, sellers incur a fixed cost F > 0 per buyer. The duopoly equilibrium profit

per buyer is πd = max{(α − c)2/(9β) − F, 0}. For a monopolist, the inverse demand is

p(qm) = α−βqm, and the monopoly profit per buyer is πm = max{(α− c)2/(4β)−F, 0}.
If both profits are strictly positive, the ratio πd/πm is

4 [(α− c)2 − 9βF ]

9 [(α− c)2 − 4βF ]
,

which is always less than 1/2.
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3 Segmentation versus Agglomeration

In this section, we characterize the equilibrium of the 4-stage game. In particular, we

provide conditions for segmentation or agglomeration to be an equilibrium outcome.

In Section 2.2, we analyzed stages 3 and 4. We now turn to the location decisions of

buyers and sellers in stage 2. Here, multiple Nash equilibria may exist, given the listing

fees set by platforms in the first stage. We first determine the set of Nash equilibria in

stage 2. We then explain how our equilibrium selection criteria ensure a unique prediction.

A detailed analysis is provided in Appendix A.

Suppose, for example, that listing fees fA and fB are close to zero. Then, it is a Nash

equilibrium that all sellers and all buyers are active on only one platform. In such an

agglomeration equilibrium on platform i, a seller’s profit is πd−fi and a buyer’s utility is

V d. In addition to two such agglomeration equilibria, there is also a segmentation equi-

librium, in which the sellers in each category locate on different platforms, and half of the

buyers are active on platform A and the other half on platform B. Under segmentation,

the profit of a seller joining platform i is πm/2− fi, whereas the utility of a buyer is V m.

If, instead, both platforms’ listing fees were higher than max{πd, πm/2}, sellers would

make losses in an agglomeration and a segmentation equilibrium. In this case, as long as

each platform charges a fee below πm, there exist two equilibria in which only one seller

is active in each category, either on platform A or on platform B, and all buyers use this

platform. We call an equilibrium of this type stand-alone equilibrium.
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Figure 1: Possible equilibrium configurations at stage 2 : πd/πm < 1/2 on the

left-hand side and πd/πm ≥ 1/2 on the right-hand side
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The set of Nash equilibria is visualized in Figure 1—we focus on the relevant case

{fA ≤ πm, fB ≤ πm} because a fee above πm leads to zero demand and, in equilibrium

of the full game, no platform will set such a fee. The left panel of the figure displays

the case πd/πm < 1/2, whereas the right panel displays the opposite case. In the figure,

the agglomeration equilibrium on platform i is denoted by AGGi (and by AGGAB if

an agglomeration equilibrium on either platform exists); the stand-alone equilibrium is

denoted by STAi; and the segmentation equilibrium is denoted by SEG. As can be seen

in the left panel, there are regions in which three equilibrium configurations coexist.

We turn to the equilibrium selection accomplished through our refinement, illustrated

in Figure 2. First, applying the concept of coalition-proofness eliminates the multiplicity

of agglomeration equilibria off the diagonal. The reason is that a coalition of sellers

and buyers will always choose to be active on the platform with the lower fee. The same

reasoning holds if there is a multiplicity of stand-alone equilibria, and if an agglomeration

and a stand-alone equilibrium co-exist.

-

6

-

6
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fA
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πm
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πd
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πd

STAB

STAA

AGGB
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SEG

πm

2
πd

πm

2

πd STAB

STAA

AGGB

AGGA

Figure 2: Selected equilibrium configurations at stage 2: πd/πm < 1/2 on the

left-hand side and πd/πm ≥ 1/2 on the right-hand side

Second, the joint use of coalition-proofness and profit-dominance of sellers also singles

out a unique equilibrium type for regions in which the segmentation equilibrium exists

together with another type of equilibrium.21 To understand this result, consider, again,

the case in which the listing fees of both platforms are close to zero. For πd/πm ≥ 1/2, the

segmentation equilibrium is then not stable to the deviation of a coalition of sellers and

buyers who are active on the platform with the higher fee. If this coalition switches to

the rival platform, buyers are better off because they observe the offers of all sellers, and

sellers are also (weakly) better off because they now serve all buyers instead of only half of

21In Appendix A, we show that the two refinements are never in conflict with each other.
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them. This is profitable because πd ≥ πm/2. Since no subcoalition can gain from further

deviation, all segmentation equilibria are eliminated when πd/πm ≥ 1/2, as can be seen

in the right panel of Figure 2. By contrast, if πd/πm < 1/2, the coalition-proof refinement

has no bite, as the deviation is no longer profitable for sellers. Using seller dominance,

however, now singles out a unique equilibrium. In particular, if fi < πm/2 − πd + f−i,

segmentation is more profitable than agglomeration for sellers. This is displayed in the

left panel of Figure 2, which shows that segmentation is the unique equilibrium if fi and

f−i are relatively close to each other (and lower than πm/2).

We turn to platform pricing in the first stage. Although platforms are homogeneous,

the Bertrand logic does not necessarily apply in our situation. The reason is that sellers

may benefit from segmentation, which implies that a platform does not necessarily attract

all sellers and buyers when undercutting the rival’s fee. The next four propositions

characterize the equilibrium listing fees for all parameter ranges and provide precise

conditions for platforms to sustain positive fees.

If the ratio of duopoly to monopoly profits is large (i.e., πd/πm ≥ 1/2), agglomera-

tion occurs—we do not select between the two payoff-equivalent agglomeration equilibria.

From a seller’s point of view, the effect that agglomeration reduces profits due to com-

petition is dominated by the demand expansion effect that all buyers (instead of only

half of them) observe the seller’s offer. Since each platform receives the entire demand by

setting a fee lower than its rival’s, platforms “play hard” and fight fiercely to become dom-

inant. Thus, in this region, the standard Bertrand argument applies, and homogeneous

platforms charge fees equal to marginal cost in equilibrium.

Proposition 1. Agglomeration. If πd/πm ≥ 1/2, in equilibrium, the listing fees are

f ?A = f ?B = 0, and platforms’ profits are Π?
A = Π?

B = 0.

By contrast, if the ratio of duopoly to monopoly profits is small (i.e., πd ≤ 1/4πm),

segmentation occurs. Sellers avoid competition by choosing to locate on different plat-

forms, which, in turn, is exploited by platforms. To see this, suppose that both platforms

charge a fee of zero. If πd is lower than πm/2, sellers choose to segment. But then a

platform can raise its fee slightly without reducing its demand. Thus, the platform with

the higher fee remains active and raises strictly positive profits.

Proposition 2. Segmentation. If πd/πm ≤ 1/4, in the unique equilibrium, the listing

fees are f ?A = f ?B = πm/2, and platform profits’ are Π?
A = Π?

B = πm/2.

The proposition shows that platforms not only obtain a strictly positive profit, but

even extract the entire surplus from sellers. The argument is as follows. If a platform

deviates from the equilibrium listing fee f ?i = πm/2 to a listing fee slightly below πd,

this induces sellers and buyers to agglomerate on the deviating platform. The deviant
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platform then obtains a profit of 2πd. Instead, the equilibrium profit is πm/2, which is

larger than 2πd if πd/πm ≤ 1/4. Hence, no platform has an incentive to deviate from the

listing fee πm/2—platforms “play soft” and do not fight for the dominant position. To

sum up, if competition between sellers is sufficiently intense, platforms obtain positive

profits by inducing sellers to segment the market. Interestingly, fierce competition among

sellers enables platforms to sustain high profits in equilibrium.

In the intermediate range 1/4 < πd/πm < 1/2, platforms randomize over listing fees.

The intuition for the non-existence of a pure-strategy equilibrium in this range is as

follows: For any fee set by platform i, platform −i’s best response is to either set a fee

that is lower by a discrete amount to induce agglomeration or to set a fee that is higher

by a discrete amount leading to segmentation. This creates a cycle in best responses.

Suppose that platform i sets a relatively high fee. Platform −i’s best response is then

to set a lower fee, so as to just induce agglomeration. The best response of platform i is

to lower its fee slightly and induce segmentation again. This sequence of best responses

continues until the fee of platform i reaches such a low level that platform −i, instead of

setting a lower fee, prefers to set a fee higher than that of platform i, so as to just induce

segmentation. In turn, platform i’s best response is to reduce its fee slightly to induce

agglomeration, and so on. Therefore, the sequence continues and does not converge.

The logic behind the mixed-strategy equilibrium in the range 1/4 < πd/πm < 1/2

is reminiscent of, but distinct from, Bertrand-Edgeworth cycles. In the latter, the best-

response dynamic involves a marginal undercutting of the rival’s fee, as long fees are

sufficiently high (see, for example, Edgeworth, 1925; Maskin and Tirole, 1988). By

contrast, in our model, for any fee charged by the rival, the best response is to set a fee

that is higher or lower by a discrete amount.22 In fact, the range of subscription fees

over which platforms mix can be divided into two intervals, a lower and an upper one. In

the lower interval, fees are set with the intention to induce agglomeration. In the upper

interval, fees are set with the intention to induce segmentation. This leads to mass points

in the mixing distribution and potentially disjoint mixing sets.

In the region of 3/8 ≤ πd/πm < 1/2, the upper bound of the lower interval in which

a platform aims to induce agglomeration coincides with the lower bound of the upper

interval in which a platform aims to induce segmentation. This implies that platforms

randomize over a convex set.

Proposition 3. Probabilistic segmentation and agglomeration with listing fees chosen

from a convex set. If 3/8 ≤ πd/πm < 1/2, there is a unique mixed-strategy equilibrium, in

which platforms set fees in the domain fi ∈ [πm−2πd, 2πm−4πd]. The mixing probability

22In this respect, our equilibrium also differs from those found in papers in the search literature, such
as Varian (1980) or Janssen and Moraga-González (2004).
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is characterized by the cumulative distribution function

G1(f) =

{
f−(πm−2πd)

f+1/2(πm−2πd)
, if f ∈ [πm − 2πd, 3/2πm − 3πd);

2f−5/2(πm−2πd)
f−1/2(πm−2πd)

, if f ∈ [3/2πm − 3πd, 2πm − 4πd],

with a mass point at f = 3/2πm−3πd, which is chosen with probability 1/4. The expected

profit is Π?
A = Π?

B = 3πm/2− 3πd.

The cumulative distribution function G1(f) is illustrated in Figure 3. The mass point

is at the fee that separates the two intervals. Therefore, setting such a fee induces

segmentation with probability (almost) 1. Since the event that both platforms choose

this fee occurs with strictly positive probability, the expected equilibrium profit in this

regime must equal 3/2πm − 3πd.

1.0 1.2 1.4 1.6 1.8 2.0
f

0.2

0.4

0.6

0.8

1.0

G1(f)

Figure 3: First mixed-strategy equilibrium: Cumulative distribution
function with parameters πm = 5 and πd = 2.

The highest fee that platforms can charge to obtain positive demand is πm/2. If

πd/πm is at the lower bound of the mixing region of Proposition 3 (i.e., πd/πm = 3/8),

the highest fee in the mixing range, 2πm−4πd, reaches this level. It follows that if πd/πm

is lower, the equilibrium will be different. In particular, as a fee of πm/2 must be the

upper bound, probability mass will be shifted to this point, and the distribution will

entail a mass point at the highest fee. In addition, the best response to this highest fee

(i.e., the largest fee in the lower interval) no longer coincides with the fee that induces

segmentation with probability (almost) 1. The latter fee is the lowest one in the upper

interval, which implies that the support of the mixing region becomes non-convex. This

is shown in Proposition 4.

Proposition 4. Probabilistic segmentation and agglomeration with listing fees chosen

from a non-convex set. If 1/4 < πd/πm < 3/8, there is a unique mixed-strategy equilib-
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rium, in which platforms set fees in the domain fi ∈ [πm/4, πd) ∪ [3πm/4 − πd, πm/2].

The mixing probability is characterized by the cumulative distribution function

G2(f) =


f−1/4πm

f+1/2(πm−2πd)
, if f ∈ [πm/4, πd);

2f−1/4πm−3/2(πm−2πd)
f−1/2(πm−2πd)

, if f ∈ [3πm/4− πd, πm/2);

1, if f = πm/2;

with two mass points, one at the highest fee in the support f = πm/2, which is chosen

with probability (2πd−1/2πm)/πm, and the other at the lower bound of the upper interval

f = 3πm/4− πd, which is chosen with probability (3/4πm − 2πd)/πd. The expected profit

is Π?
A = Π?

B = 3πm/4− πd.

Figure 4 illustratesG2(f) in the second mixing regime. The support of the distribution

is [5/4, 7/4) ∪ [2, 5/2]. The intuition for the lower mass point (at f = 3πm/4 − πd) is

the same as the one given in the first mixed regime. The intuition for the mass point at

f = πm/2 is, as explained above, that πm/2 is an upper bound in any mixing equilibrium.

1.4 1.6 1.8 2.0 2.2 2.4
f
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Figure 4: Second mixed-strategy equilibrium: Cumulative distribution
function with parameters πm = 5 and πd = 7/4.

As can be seen from Proposition 4, the gap between the two intervals widens as

πd falls. In the limit, as πd → πm/4, all probability mass is on πm/2. Therefore, the

equilibrium is continuous. As πd falls, expected fees rise continuously, as do platforms’

profits. The expected equilibrium platform profit is a continuous function but has three

kinks at the boundary points of the regions (see Figure 5).

From the analysis, it is easy to see that the assumption of buyers splitting evenly on

platforms when being indifferent is not crucial for the results. If this split is more in favor

of platform i, the pure-strategy segmentation equilibrium exists for a smaller range: as

this equilibrium is less attractive for platform −i, the platform has a stronger deviation
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Figure 5: Expected platform profit Π?
j as a function of πd.

incentive. However, if πd is sufficiently small, deviation is not profitable for platform −i
because the platform can obtain only a low profit with agglomeration. Therefore, an

asymmetric segmentation equilibrium still occurs.

Evaluating the different equilibrium regions from a welfare perspective includes buy-

ers’ utilities. There are two reasons that the segmentation equilibrium is less efficient

than an agglomeration equilibrium. First, because buyers are not informed about all of-

fers, they may buy products with a greater mismatch cost than when they are informed

about all offers. Second, if pm > pd, the inefficiency in the product market due to market

power of sellers is higher, implying that the quantities bought by buyers in a segmenta-

tion equilibrium are lower than in an agglomeration equilibrium. By contrast, platforms

enjoy profits when they induce segmentation with positive probability, and the resulting

market structure is inefficient. In Section 6, we discuss some policy implications that

arise from our analysis.

Examples. We express the equilibrium regions in terms of the underlying parameters

describing seller competition in the examples laid out in the previous section. In Example

1, which features price competition and Hotelling demand, a larger degree of product

differentiation t increases the sufficient statistic πd/πm. We obtain that the agglomeration

region applies for 2(v − c)/3 ≥ t ≥ (v − c)/2, the first mixing region if (v − c)/2 > t ≥
3(v− c)/7, the second mixing region if 3(v− c)/7 > t > (v− c)/3, and the segmentation

region if t ≤ (v − c)/3.

In Example 2, which features price competition and a representative consumer, the

boundaries of the regions are affected by γ ∈ [0, β), with a higher γ implying less differ-

entiation and fiercer competition. The agglomeration region applies approximately for

γ ≤ 0.62β, the first mixing region for 0.62β < γ ≤ 0.74β, the second mixing region for
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0.74β < γ < 0.85β, and the segmentation region for γ ≥ 0.85β.

In Example 3, which features thin markets, the number of buyers and the probability

for a buyer being of high valuation are the drivers for the platform market structure.

With two buyers and R = 0, agglomeration occurs if the probability of high-type buyers

is ρ ≥ 4/5, whereas segmentation occurs if ρ ≤ 4/9. A larger probability for the high type

reduces competition, as it is more likely that both sellers face a high-type buyer, which

leads to an increase in πd. Regarding the number of buyers, in our numerical example

with ρ = 1/4 and R = 0, agglomeration occurs when there are more than eight buyers (cf.

Table 2), whereas segmentation occurs for three or less buyers. The first mixing region

prevails for five to eight buyers and the second mixing region for four buyers. When the

probability of the high type decreases, the boundaries for all regions shift upward, which

implies that segmentation becomes more likely.

In Example 4, which features Cournot competition and fixed costs per buyer F , a

higher F favors segmentation, as a seller serves a smaller mass of buyers in this config-

uration. Accordingly, we obtain that the segmentation region applies if (a − c)2/(4b) >
F ≥ 7(a − c)2/(108b)—that is, if fixed costs are sufficiently high (but lower than πm).

The second mixing region applies for (a − c)2/(36b) < F < 7(a − c)2/(108b), the first

mixing region for 0 ≤ F ≤ (a − c)2/(36b), and the agglomeration region does not exist

(due to the fact that πd/πm < 1/2).

Finally, we note that, as has been demonstrated in the example with thin markets,

our results do not rely on a constant per-buyer profit. If this profit was not constant, the

equilibrium characterization would be more involved, as the boundaries of the regions

then depend on the mass of buyers on each platform in addition to the profit per buyer.

However, under standard regularity assumptions on demand, the qualitative results are

the same as in our analysis.

4 Multi-Homing

In the baseline model, we focus on the case in which both buyers and sellers are single-

homing. In this section, we consider multi-homing of either buyers or sellers. We will

show that in both cases, our qualitative results remain.

4.1 Multi-Homing of Buyers

Assume that a fraction α ∈ [0, 1] of buyers joins both platforms. A natural reason is that

buyers incur time cost to be active on a second platform, and they are heterogeneous

with respect to these time costs. Therefore, only buyers with sufficiently low time costs

are active on both platforms. A higher α can then be interpreted as a reduction in time
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costs.23

Multi-homing of buyers affects the sellers’ profits. In fact, a seller will never obtain

the monopoly profit because a fraction α of buyers is informed about both offers. In a

segmentation equilibrium, half of the single-homing buyers are active on platform A and

the other half on platform B. Because there is a mass 1−α of single-homing buyers, each

platform has a total buyer mass of (1 + α)/2, out of which (1 − α)/2 are single-homers

and α are multi-homers. As sellers do not know which buyer single-homes and which

one multi-homes, they set a single price in the product market. The equilibrium price

will depend on α because multi-homers’ demand may differ from single-homers’ demand.

Therefore, we can write the expected profit that a seller obtains from a buyer as π(α).

In particular, π(0) = πm and π(1) = πd. Naturally, π′(α) ≤ 0, which implies that for

all α ∈ [0, 1], π(α) ∈ [πd, πm].24 Below, we will show how a change in α plays out in

Example 1. The equilibrium with multi-homing buyers is characterized by the following

proposition.

Proposition 5. All results of Propositions 1 through 4 carry over to the case of buyer

multi-homing, after replacing πm/2 by

π(α)
1 + α

2
.

The proposition shows that the qualitative results of the previous section remain valid

if buyers can multi-home. Although segmentation does not give sellers monopoly power,

it nevertheless lowers the competitive pressure because some buyers are still informed

only about one seller’s offer, and platforms will exploit this.

The question arises: Do platforms benefit from buyer multi-homing? If we are in

the range of the agglomeration equilibrium, nothing changes compared to buyer single-

homing because platforms are engaged in Bertrand competition. However, this is not true

for the regions in which the segmentation equilibrium occurs with positive probability.

There are two countervailing forces. First, platforms have more buyers, which leads to a

larger demand per seller. In fact, instead of serving a buyer mass of 1/2 (as with single-

homing), platforms now have a mass of (1 + α)/2 of buyers. This allows platforms to

charge higher listing fees. However, the countervailing force is that sellers make smaller

profits in the product market because some buyers are informed about both offers. The

per-buyer profit is then π(α) < πm. It follows that platforms are hurt by the possibility

of buyer multi-homing if the competition effect dominates the demand-enhancing effect.

23For example, if a distribution of time costs among buyers first-order stochastically dominates another
one, the latter distribution leads to a higher fraction α of multi-homing buyers.

24In an agglomeration equilibrium, a seller’s profit is unchanged since all buyers see both offers. This
leads to a profit of πd for each seller.
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We illustrate this result with the help of Example 1. With Hotelling demand, we

obtain

π(α)
1 + α

2
=


(αt+(v−c)(1−α))2

2t(2−α)2 if t ≥ v−c
2

v−c−t
2

if α(v−c)
1+α

≤ t < v−c
2

t
2α

if t < α(v−c)
1+α

Comparing π(α)(1 + α)/2 with πm/2, the former is larger than the latter for high t,

but the reverse holds true for low t. In particular, for t ≥ (v−c)/2, the demand-enhancing

effect of multi-homing prevails, as product market competition is not particularly fierce.

However, in this region, πd is larger than π(α)(1 + α)/2, which implies that platforms

in equilibrium still set fees equal to zero and an agglomeration equilibrium emerges.

Therefore, although the effect of increased demand dominates, this does not affect the

outcome. If, instead, t is small (i.e., t < α(v − c)/(1 + α)), multi-homing lowers sellers’

segmentation profit, as competition is fierce, and, therefore, lowers the listing fees that

platforms charge in equilibrium. This effect is also dominant in the intermediate region,

implying that platforms obtain weakly lower profits with buyer multi-homing.

Finally, we observe that in a segmentation equilibrium multi-homing consumers exert

a positive externality on single-homing ones. As product prices are lower with more

multi-homing consumers, single-homers benefit as well. This implies that devices which

foster multi-homing, such as metasearch engines, also benefit consumers who do not use

them.

4.2 Multi-Homing of Sellers

In this section, we consider the effects of multi-homing of sellers. We focus on a situation

with uniform pricing, that is, a multi-homing seller sets the same price on both platforms.

Towards the end of the section, we show that the analysis with price discrimination is a

special case of that with uniform pricing and our main insight is robust.

In contrast to buyers, sellers need to pay for being active on a platform. Therefore,

even without any exogenous costs for using a second platform, sellers do not necessarily

find it profitable to multi-home.25 We are particularly interested to understand the

conditions under which seller multi-homing affects the platform market structure and

whether platforms benefit. This focus is different from the literature on two-sided pricing

in two-sided markets, which has investigated the effect of seller multi-homing on the price

structure, pointing out that that platforms exert monopoly power on the multi-homing

side (see, e.g., Armstrong, 2006, or Hagiu, 2006). In that literature, the platform market

structure is given.

25Introducing such listing costs would not change the main result.
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With multi-homing sellers, new potential equilibrium configurations in the second

stage may occur. First, both sellers in a category may multi-home. In that case, all

buyers are exposed to both offers, implying that each seller receives the duopoly profit

πd per buyer. But the profit per buyer is then equivalent to the profit when both sell-

ers agglomerate on one platform. In the latter case, however, sellers have to pay only

one listing fee. Therefore, the configuration in which both sellers multi-home is never

coalition-proof and will not occur in equilibrium under our refinement.

Second, a configuration is possible in which one seller in a category single-homes and

the other one multi-homes—a situation we refer to as partial multi-homing. If in one

half of the categories, the single-homing seller is on platform A and in the other half on

platform B, buyers are indifferent between both platforms, as the same number of sellers

are active on either platform. Buyers are, therefore, willing to split evenly between the

platforms. In this situation, competition in the product market is asymmetric. Half of

buyers are active on the platform in which only the multi-homing seller is present and

observe only the offer of this seller. The other half observes the offers of both sellers.

Let us denote the per-buyer profit of the multi-homing seller by πMH and that of the

single-homing seller by πSH . As the multi-homing seller can act as a monopolist to one

half of the buyers but faces competition for the other half, its price pMH will be between

pm and pd. The same holds for the price of the single-homing seller pSH , as this seller

faces competition from a rival who has some ’captive’ buyers and will, therefore, price

higher than in duopoly competition. For the sellers’ profits, we assume that

πd ≤ πSH ≤ πMH ≤ πm,

which follows from the sellers’ pricing decisions. These relations are compatible with our

specific examples.

We can now establish the equilibrium with multi-homing sellers.

Proposition 6. • For πd/πm ≥ 1/2 and πd/πm ≤ 1/4, the equilibrium is the same

as the one characterized in Propositions 1 and 2, respectively.

• For 3/8 ≤ πd/πm < 1/2, the equilibrium is the same as the one characterized in

Proposition 3 if πMH ≤ 3/2πm − 2πd.

Similarly, for 1/4 < πd/πm < 3/8, the equilibrium is the same as the one charac-

terized in Proposition 4 if πMH ≤ 3/4πm.

• Instead, for (i) 3/8 ≤ πd/πm < 1/2 and πMH > 3/2πm − 2πd and for (ii) 1/4 <

πd/πm < 3/8 and πMH > 3/4πm, respectively, in equilibrium, platforms set fees of

f ?A = f ?B = 0, and sellers play an agglomeration equilibrium if πd > πSH/2 and a

partial multi-homing equilibrium if πd ≤ πSH/2.
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The proposition shows that for some parameter constellations, the equilibrium derived

in Propositions 1 to 4 remains unchanged. Foremost, if competition between sellers is

relatively fierce, the segmentation equilibrium still exists. Although sellers can multi-

home, doing so would reduce their profits by too large an amount; hence, they prefer

segmentation. Platforms exploit this by extracting the entire seller surplus. Therefore,

our insight that segmentation leads to high platform profits, even though platforms are

homogeneous, is robust to seller multi-homing.

The proposition also shows that the mixed-strategy equilibrium, which involves seg-

mentation with some probability and features positive platform profits, emerges for a

smaller parameter range than in the case of single-homing sellers. It is replaced by an

equilibrium in which platforms charge zero listing fees. Thus, we obtain the unambiguous

result that platforms set (weakly) lower fees to sellers and earn (weakly) lower profits

if the latter can multi-home instead of single-home. This contrasts with the results of

the existing literature on two-sided markets, which finds that platforms exert monopoly

power on the seller side and, in equilibrium, may set higher fees to sellers and earn higher

profits under seller multi-homing.

The intuition behind our result is as follows: If sellers can multi-home, segmentation

may break down because sellers have an additional deviation possibility from the seg-

mentation equilibrium. Instead of being active only on the other platform, they can now

join both platforms. This deviation is particularly profitable if πMH is large. In fact, as

can be seen in the proposition, segmentation is more likely to break down if πMH is high.

As a result, platforms can no longer charge high fees and exploit the possibility that they

grant monopoly power to sellers. The homogeneity of the platforms then drives fees and

profits down to zero.

Interestingly, this also implies that agglomeration is more likely if sellers can multi-

home. The general notion in the antitrust economics of platform markets is that multi-

homing reduces the risk of market tipping because it is more likely that multiple platforms

will obtain positive demand (see, e.g., Evans and Schmalensee, 2007).26 In our model,

a different mechanism is at work—that is, the possibility of multi-homing can break the

segmentation equilibrium in which multiple platforms are active.

In addition, (partial) multi-homing occurs in equilibrium under some conditions.27

In particular, if πSH and πMH are relatively large, neither the single-homing nor the

multi-homing seller has an incentive to deviate to an agglomeration or a segmentation

equilibrium. The partial multi-homing equilibrium is in between pure agglomeration and

26The German Federal Cartel Office used a similar argument in the clearing of a merger in the housing
platform market (Bundeskartellamt, 2016).

27Partial multi-homing of sellers can often be observed on price comparison websites. Whereas some
sellers list their offers on several platforms at the same time, others use only one.
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pure segmentation and consists of elements of both equilibria. While buyers segment,

half of them are still informed about both offers due to the multi-homing of one seller in

each category. In contrast to the pure segmentation equilibrium, platforms cannot exploit

this in equilibrium. As stated in the proposition, the partial multi-homing equilibrium

leads to zero fees for platforms. The intuition is similar to the one developed for the

agglomeration equilibrium: When slightly undercutting the listing fee of the rival, a

platform can get the single-homing seller in each category (and not only in one half of

the categories). This leads to an agglomeration equilibrium on the platform with the

lower fee, which gives this platform an upward jump in demand, and is, therefore, always

profitable. Hence, the standard Bertrand logic applies and drives fees to marginal cost.

We illustrate the result with Example 1. For Hotelling demand, πMH and πSH are

πMH =
(t+ v − c)(8t− (v − c))

8t
and πSH =

(v − c)2

8t

in the relevant region. Determining the critical value of the transportation costs so

that condition (i) of the third part of Proposition 6 is fulfilled, we obtain that this

holds if (v − c)/2 ≥ t > (3 +
√

57)(v − c)/24 ≈ 0.44(v − c). Condition (ii) is never

fulfilled. As a result, we find that with single-homing of sellers, the mixing region was

valid for (v − c)/2 ≥ t > (v − c)/3, whereas with multi-homing, it shrinks to the range

0.44(v − c) ≥ t > (v − c)/3. In addition, the condition πd < πSH/2 is not satisfied

with Hotelling demand in the relevant range. This implies that a partial multi-homing

equilibrium does not exist. If fees are zero, an agglomeration equilibrium will always

emerge.28

We assumed that a multi-homing seller sets the same price on each platform. If price

discrimination were possible, the seller would set pd on the platform where the rival is

also present and pm on the platform where the seller is in a monopoly position. Using

the notation above, this implies that πMH = 1/2(πd + πm) and πSH = πd. Therefore,

the situation with price discrimination can be analyzed as a special case of the situation

analyzed above. It is easy to see that the qualitative results of Proposition 6 still hold.

Finally, we note that although we analyzed multi-homing of buyers and sellers sepa-

rately, a combination of the two will lead to similar insights. In particular, if competition

between sellers is fierce, there is always the incentive to segment the market. This will

drive sellers away from agglomeration to full or partial segmentation.

28The non-existence of the partial multi-homing equilibrium is an artifact of the Hotelling model.
With general demand and in some of our other examples, such an equilibrium exists.
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5 Generalizations and Robustness

To convey the main results and the intuitions in the clearest way, in the baseline model,

we made some simplifying assumptions about, for example, the platforms’ pricing instru-

ments and the number of platforms and sellers. In this section, we generalize the baseline

model by considering alternative pricing instruments on the seller side (Section 5.1) and

a general number of platforms and sellers (Section 5.2). We show that our results are

robust to these extensions. In addition, we also briefly discuss the alternative selection

criterion of the buyer-preferred equilibrium (Section 5.3), the case of two-sided pricing

(Section 5.4), and some further extensions (Section 5.5).

5.1 Platform Pricing Instruments

In the main model, we consider the case in which platforms charge listing fees to sellers.

This pricing instrument is the only feasible one if platforms cannot monitor the transac-

tion between buyers and sellers, as is often the case, e.g., in housing markets. However,

in other markets, such as the hotel booking industry, monitoring is possible at relatively

low costs. As a consequence, booking services or marketplaces, such as Amazon market-

place, often charge per-transaction fees or a percentage of the price charged by sellers

(revenue-sharing). In this section, we consider these two pricing instruments, as well as

the combination of listing fee and per-transaction fee.

5.1.1 Per-transaction fees

Suppose that the game is the same as the one laid out in Section 2 but that platforms

instead of charging listing fees demand a fee per transaction, denoted by φi, i = A,B.

That is, every time a consumer buys a product from a seller, the seller needs to pay φi

to the platform. A listing fee constitutes a fixed cost for the seller and, therefore, does

not affect the pricing choice in the product market. By contrast, a per-transaction fee

increases the marginal cost of each seller, and will affect the price that the seller charges.

We denote the resulting duopoly equilibrium price in the product market by pd(φi),

with ∂pd(φi)/∂φi > 0, and the associated demand by Dd(φi). The resulting duopoly

profit (assuming a constant marginal cost of c) is πd(φi) = Dd(φi)(p
d(φi)− φi − c), with

∂πd(φi)/∂φi ≤ 0.29 Similarly, in the monopoly case, the resulting price is pm(φi), with

∂pm(φi)/∂φi ≤ 0,30 the demand is Dm(φi), and the profit is πm(φi) = Dm(φi)(p
m(φi) −

29The inequality in ∂πd(φi)/∂φi is only weak because in covered markets (as, for example, in the
Hotelling model), an increase in φi leads to an increase in the product price by the same amount without
affecting equilibrium demand, implying that profits are unchanged.

30The weak inequality here is due to the fact that in markets with rectangular demand, the monopoly
price is independent of cost.
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φi − c), with ∂πm(φi)/∂φi ≤ 0. We maintain the assumption from the main model that

πd(φi)/π
m(φi) ≤ 1 for all i.

In addition, we assume that an increase in the per-transaction fee reduces the monopoly

profit by more than the duopoly profit, and the same holds true for the monopoly demand

compared to duopoly demand; that is,

∂πm(φi)

∂φi
≤ ∂πd(φi)

∂φi
≤ 0 and

∂Dm(φi)

∂φi
≤ ∂Dd(φi)

∂φi
≤ 0.

These properties hold in standard oligopoly models, including those in our examples.

We can then solve the model as in the case with listing fees. The details are provided

in the proof of Proposition 7 in the Appendix. As we demonstrate there, also with per-

transaction fees, our selection criterion singles out a unique type of equilibrium in stage

2. Turning to the full game, with per-transaction fees, platforms cannot extract the full

profit from sellers. However, we can formulate the analogue to a listing fee of πm/2,

which is the highest profit a platform can make in a segmentation equilibrium. With

per-transaction fees, we denote by φm ≡ arg maxφi φiD
m(φi)/2. We obtain the following

result:

Proposition 7. If πd(0)/πm(0) ≥ 1/2, in equilibrium, both platforms set φ?A = φ?B = 0,

and buyers and sellers agglomerate on either platform A or platform B. If πd(0)/πm(0) <

1/2 and
φ′Dd(φ′)

φmDm(φm)
≤ 1

4
,

where φ′ is defined by πd(φ′) = πm(φm)/2, in the unique equilibrium, both platforms set

φ?A = φ?B = φm, and buyers and sellers segment. If πd(0)/πm(0) < 1/2 and

φ′Dd(φ′)

φmDm(φm)
>

1

4
,

there is a unique mixed-strategy equilibrium with similar properties as those in case of

listing fees, and agglomeration and segmentation occur with positive probability.

The mixed-strategy equilibrium is fully characterized in the proof of Proposition 7 in

the Appendix. As is evident from the proposition, the outcome with per-transaction fees

resembles the one with listing fees. First, if competition between sellers is weak (that is,

the ratio of duopoly to monopoly profit is relatively high), a pure-strategy agglomeration

equilibrium results with either type of fees, and platforms compete each other down to fees

equal to marginal cost. We note that the conditions for the agglomeration equilibrium to

occur coincide in Propositions 1 and 7: with listing fees, the condition is πd/πm ≥ 1/2,

which is the same as that with per-transaction fees, πd(0)/πm(0) ≥ 1/2.
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Second, if competition between sellers is fierce, a pure-strategy segmentation equi-

librium occurs. Here, platforms set the fee equal to φm to obtain the largest per-buyer

profit—similar to the case of listing fees. The conditions also have a similar interpretation.

With listing fees, the condition for the segmentation equilibrium to exist is πd/πm ≤ 1/4,

as a platform should have no incentive to attract both sellers and all buyers in each

category instead of only one seller and half of the buyers. With per-transaction fees,

the condition is [φ′Dd(φ′)]/[φmDm(φm)] ≤ 1/4, which rests on the same idea: given the

rival’s fee φm, in any category, a platform would attract both sellers and all buyers with

a fee of φ′. The condition precludes that such a deviation is profitable.

Finally, in the remaining region, a unique mixed-strategy equilibrium exists. As we

show in the proof of Proposition 7, this mixed-strategy equilibrium has properties similar

to those with listing fees, involving mixing either on a convex or on a non-convex set.

We illustrate the result obtained with Example 1. For t ≥ (v − c)/2, the condition

πd(0)/πm(0) ≥ 1/2 is fulfilled, and a pure-strategy agglomeration equilibrium occurs with

fees equal to 0. By contrast, for t < (v− c)/4, the above segmentation equilibrium is the

unique equilibrium. In the intermediate range, the mixed-strategy equilibrium occurs.

Therefore, mixing occurs for a larger range of parameters than with listing fees—in the

latter case, a mixed-strategy equilibrium emerges only for (v − c)/3 ≤ t < (v − c)/2.

5.1.2 Revenue Sharing

Another pricing instrument that platforms often use is a percentage fee on the revenue

made by sellers. For example, application platforms such as the Appstore or Google Play

usually charge a percentage fee of 30% on the seller’s revenue.

Such revenue sharing can also be incorporated into our model. Suppose, again, that

the game proceeds as laid out above but that each platform i = A,B extracts a revenue

share ri ∈ [0, 1] on each transaction it enables. The seller’s profit is then

πd(ri) =
[
(1− ri)pd(ri)− c

]
Dd(ri)

in duopoly, and

πm(ri) = [(1− ri)pm(ri)− c]Dm(pm(ri))

in monopoly, where Dm(ri) (respectively, Dd(ri)) is the demand in the seller’s monopoly

solution (respectively, the sellers’ duopoly solution) if platform i demands a revenue share

of ri. Applying the Implicit Function Theorem, it is easy to show that under standard

assumptions on demand, pd(ri) and pm(ri) are increasing in ri, as long as costs are strictly

positive; if c = 0, prices are independent of ri. In addition, both profits and demands are

decreasing in ri.
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We again impose the reasonable assumption that

∂πm(ri)

∂ri
≤ ∂πd(ri)

∂ri
≤ 0 and

∂Dm(ri)

∂ri
≤ ∂Dd(ri)

∂ri
≤ 0,

which is fulfilled in the examples given in Section 2. The model with revenue sharing

can be analyzed in the same way as the one with per-transaction fees. Although the

exact conditions for the boundaries of the equilibrium regions are slightly different, we

can show that the results closely resemble those with per-transaction fees.31 Also, under

revenue sharing, platforms do not extract the entire profits of sellers in the segmentation

equilibrium: platforms set r = rm, with rm = arg maxri rip
m(ri)D

m(pm(ri))/2. Thus,

platforms obtain the highest profit that is compatible with segmentation in stage 2. Thus,

our main insight carries over to the setting with revenue sharing between platforms and

sellers.

5.1.3 Two-Part Tariffs

So far, we have considered listing fees and per-transaction fees separately. However,

platforms could also charge two-part tariffs that combine the two fees (or combine listing

fees and revenue shares). Although we do not present this analysis, the results obtained

in the separate study of the two cases suggest that they also hold with two-part tariffs. In

particular, if the ratio πd/πm is small, a segmentation equilibrium will also occur under

two-part tariffs, as sellers will avoid competition, and platforms can charge positive fees.

Similarly, if an agglomeration equilibrium emerges (i.e., if πd/πm is sufficiently large),

both fees within the two-part tariff are driven down to zero, implying that we obtain the

same result as in the analysis of the two separate cases.

In addition, the listing fee avoids distortions of the sellers’ product market prices and

is, therefore, the more efficient instrument in the two-part tariff. It follows, for example,

that in the pure-strategy segmentation equilibrium, both platforms will set a listing fee

of πm/2 and a per-transaction fee of zero, as this guarantees the highest profit. As a

consequence, even if we allowed for two-part tariffs, the results would be similar to those

obtained in the model with pure listing fees.

The superiority of the listing fee compared to the transaction fee (or revenue share)

follows from the homogeneity of categories and sellers. Suppose, instead, that categories

were heterogeneous. This implies that sellers in different categories are also heteroge-

neous. For example, each category has a different likelihood of being the product category

that buyers prefer. Thus, there are more-popular and less-popular categories. Sellers in

less-popular categories then obtain a lower expected revenue. As product market prices

31We omit the proof of this result as is it follows that of Proposition 7.
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do not react to listing fees but to transaction fees (and revenue shares), a platform can

optimally ensure sellers’ participation in less-popular categories with a mixture of both

fees. Thus, with heterogeneous product categories, in a segmentation equilibrium, a plat-

form does not necessarily charge only listing fees. In the extreme, as the likelihood that

some product categories will be the preferred ones becomes negligible, a platform may

not want to rely on listing fees, as this would imply the unavailability of some product

categories. Platforms will then exclusively use transaction fees or revenue shares.

5.2 General Number of Sellers and Platforms

In this subsection, we extend our model to a finite number of platforms and sellers

per category. Suppose that there are M sellers (per category) and N platforms, with

M,N > 1. We denote the per-buyer profit of a seller competing with m− 1 others sellers

by π(m), with π(m) ≥ π(m+ 1) ≥ 0 ∀m = 1, ...,M − 1—in terms of the notation of the

baseline model, π(1) = πm and π(2) = πd. All other assumptions and the equilibrium

refinement in the second stage are the same as in main model.

In addition, we also impose an equilibrium selection criterion in the first stage. With a

general number of platforms and sellers, the equilibrium in the fee-setting game between

platforms may not be unique. Then, as a refinement, we assume that platforms choose

the profit-dominant equilibrium.

The main differences from our baseline model are twofold: First, with a general

number of sellers and platforms, the number of sellers is no longer necessarily a multiple

of the number of platforms. The question is, therefore, how sellers, in order to make

buyers indifferent, allocate if multiple platforms carry a positive volume of trade. Second,

it may be optimal for platforms in the first stage to exclude sellers via the choice of their

listing fees. As we will demonstrate below, this may occur in a segmentation equilibrium.

Following the same structure as with different pricing instruments, we characterize in

the next proposition the regions in which the different types of equilibria exist, thereby

pointing out the analogy to the simpler baseline model. To write the proposition in the

most concise form, we define k as the largest integer, such that M ≥ kN . For example,

if M = 11 and N = 4, then k = 2.

Proposition 8. Consider the case in which M ≥ N :

If
π(k + 1)

π(k)
≥ 1

N
, (1)

in equilibrium f ?i = 0, ∀i = 1, ..., N , platform profits are 0, and there is positive trade

only on a subset of platforms.
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If for some l ∈ {1, ..., k}
m̂π(m̂)

lπ(l)
≤ 1

N
, (2)

with m̂ ∈ arg maxl<m≤M mπ(m), in the unique profit-dominant equilibrium f ?i = π(l?)/N ,

with l? ∈ arg maxl lπ(l) for all l ∈ {1, ..., k} that satisfy (2), platform profits are Π?
i =

l?π(l?)/N ∀i = 1, ..., N , and all platforms carry a positive volume of trade.

If neither (1) nor (2) is satisfied, there is a unique profit-dominant mixed-strategy

equilibrium, in which platforms make positive profits.

Consider the case in which M < N : In equilibrium, f ?i = 0 ∀i = 1, ..., N , and platform

profits are 0.

If there are at least as many sellers (in each category) as platforms, the proposition

demonstrates that the qualitative features of the equilibrium are similar to those in the

baseline model. If competition between sellers is relatively moderate, a seller’s profit when

one additional seller joins the platform falls only by a small amount (i.e., π(k+1)/π(k) is

relatively large), which implies that condition (1) is satisfied. Thus, equilibrium platform

fees are zero.

In analogy to the baseline model, this equilibrium prevails if sellers prefer to be active

only on a subset of platforms, given that all platforms charge zero fees. To relate this

to condition (1), note that k is the largest number of sellers, so that all platforms have

positive trade volume, and each one hosts k sellers (so that buyers are willing to split

between platforms). Condition (1) states that such a configuration will not emerge in

the second stage, as sellers have an incentive to deviate.32 With trade occurring only on

a subset of platforms, no platform can charge a strictly positive fee as it loses its buyers

and sellers to a competitor with zero fee.

In contrast to the baseline model, such an equilibrium does not necessarily lead to

full agglomeration, as it may be optimal for some sellers to locate on one platform and

other sellers on another. Nevertheless, only a subset of platforms carry a positive volume

of trade, which implies at least partial agglomeration, and equilibrium fees of zero. This

must also be the equilibrium outcome if the number of platforms exceeds the number

of sellers in a category, as it implies that at least one platform will not have a positive

volume of trade.

By contrast, in a pure-strategy segmentation equilibrium, all platforms carry a pos-

itive volume of trade. In analogy to the baseline model, this equilibrium occurs if com-

petition between sellers is intense. From condition (2), the equilibrium exists if, in each

category, every platform hosts l sellers, and no platform can obtain a higher profit by

attracting a larger number of sellers (where attracting a number m̂ is the most profitable

32In the baseline model, we have k = 1, and, thus, condition (1) is equivalent to πd/πm ≥ 1/2.
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one among these deviations). The condition for a segmentation equilibrium to exist in

the model with a general number of platforms and sellers resembles that of the baseline

model. In the baseline model, we have l = 1 and m̂ = 2, and, thus, condition (2) is

equivalent to πd/πm ≤ 1/4.

The key difference from the baseline model is that the segmentation equilibrium may

lead to the exclusion of some sellers—that is, the equilibrium number of sellers on a

platform, l?, may be less than k. If M > kN , this must be the case, as a segmentation

equilibrium involves at least M−kN inactive sellers. However, even if M = kN , it can be

optimal for platforms to charge such a high fee that some sellers prefer to stay inactive.

The reason is that becoming active increases competition and, therefore, would not allow

the seller to recover the fee. In addition, with a general number of sellers, a segmentation

equilibrium may involve more than one seller in each category on a platform if this allows

platforms to obtain a higher profit. As in the baseline model, platforms extract the entire

profit from all active sellers.

Finally, in the region in which neither condition (1) nor condition (2) holds, a mixed-

strategy equilibrium occurs. The intuition and the properties are the same as in the

baseline model.

In our analysis, we consider the situation with a given number of sellers M with

positive profit (gross of the listing fee). Instead, if sellers incurred a fixed entry cost F ,

π(m) − F would become negative for m sufficiently large, as more intense competition

drives down margins. Then, even if platforms charge zero fees, no platform would be host

to an unlimited number of sellers. Yet, considering a game with free entry yields similar

results to those of Proposition 8. The conditions for the equilibrium regions differ, but

the qualitative results that buyers and sellers may segment and that platforms obtain

positive profits continue to hold. If there is a finite m′ as the solution to π(m′)/N−F > 0

and π(m′+1)/N−F < 0, the region in which the agglomeration equilibrium exists shrinks

and eventually vanishes as the number of available sellers M becomes sufficiently large.

The reason for this result is that with zero fees, each platform would host m′ sellers. A

seller’s profit is then strictly positive, which gives each platform an incentive to increase

its fee. To sum up, with entry, pure agglomeration cannot occur when the number of

sellers that may enter is large and, thus, segmentation becomes more likely.

5.3 Buyer-Preferred Equilibrium

In this subsection, we demonstrate how our equilibrium would change if we used the con-

cept of payoff-dominance of buyers (instead of sellers) in the second stage, in addition to

coalition-proofness. Because V d > V m, buyers prefer an agglomeration equilibrium over

a segmentation or stand-alone equilibrium. This implies that whenever the refinement



Segmentation versus Agglomeration 33

of coalition-proofness alone does not suffice to select a unique equilibrium, it is payoff-

dominant for buyers to choose an agglomeration equilibrium whenever it exists—as above,

the two refinements are never in conflict with each other.

Figure 6 shows the different equilibrium regions with this selection rule. As long as

at least one platform sets a fee below πd, an agglomeration equilibrium exists and will be

selected. However, if both fees are larger than πd, an agglomeration equilibrium does not

exist, as sellers would obtain negative profits. The selected equilibrium is then the same

as in Section 3 because buyers are indifferent between the segmentation and a stand-alone

equilibrium: if both exist, only the segmentation equilibrium is coalition-proof.
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Figure 6: Selected equilibrium configurations with payoff-dominance

of buyers

Turning to the first stage, there is now always an equilibrium in which platform fees

are equal to 0. Given that platform i sets fi = 0, an agglomeration equilibrium exists

and will be selected. Hence, platform −i cannot do better than to also set f−i = 0.

However, this equilibrium is not the only one if πd/πm ≤ 1/4. By the same logic as in

Section 3, if each platform charges a fee of πm/2, no platform has a profitable deviation.

Therefore, a segmentation equilibrium in which platforms extract the entire profits from

sellers also exists and is profit-dominant for platforms. Invoking profit-dominance, the

same segmentation equilibrium as in Section 3 emerges. Therefore, our result does not

hinge on the selection criterion in stage 2.

If a buyer-preferred equilibrium is selected, no mixed-strategy equilibrium exists. The

reason is as follows: If πd/πm > 1/4, a platform has an incentive to deviate from the

equilibrium candidate fA = fB = πm/2 and to set a fee below πd to induce agglomeration.

The best response of the rival platform is then to undercut this fee slightly, as it cannot

induce segmentation with a higher fee (in contrast to the case with a seller-preferred
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equilibrium in stage 2). Then, the standard Bertrand argument applies, leading to zero

fees in equilibrium. Therefore, if the buyer-preferred equilibrium is chosen, we obtain

f ?A = f ?B = 0 if πd/πm > /4 and f ?A = f ?B = πm/2 if πd/πm ≤ 1/4.

5.4 Two-Sided Pricing

In the baseline model, we considered the situation in which platforms can set fees only to

sellers. This is a common practice among most trading platforms. A main reason is that

buyers are often uncertain about whether or not they want to buy a product, and they

first inform themselves on the platform about available offers and product characteristics.

Thus, charging a subscription fee will deter many buyers. In addition, some buyers often

obtain only a small surplus, and so platforms can charge only a very small fee to keep

these buyers on board. With small transaction costs from each payment (e.g., due to

fraud), it is more effective to charge sellers who are usually fewer in numbers.

Apart from these justifications for not charging buyers, which are outside the model,

we can demonstrate that the segmentation equilibrium derived in the baseline model is

robust to two-sided pricing (that is, platforms set a subscription fee to buyers, fb, on top

of the listing fee to sellers, fs), provided that negative fees are not possible.33

We focus on the situation πd/πm ≤ 1/4, in which the pure-strategy segmentation equi-

librium exists with one-sided pricing. Platforms then set a seller fee fs = πm/2 and ex-

tract the full seller surplus. With two-sided pricing, a fee combination of {fs = πm/2, fb = 0}
for both platforms is no longer an equilibrium under the refinement of coalition-proofness

and seller-dominant equilibrium. To see this, suppose that platform −i sets {fs =

πm/2, fb = 0}. Platform i can then set fees equal to
{
fs = πd − ε, fb = V d − V m

}
and

attract all sellers and buyers because sellers obtain a profit of ε > 0 on platform i instead

of 0 on platform −i. Therefore, the coalition of all sellers and buyers on platform −i is

better off by moving to platform i, as buyers are indifferent and obtain a payoff of V m on

both platforms (it can be shown that setting fees equal to
{
fS = πd − ε, fB = V d − V m

}
is, indeed, the most profitable coalition-proof deviation). The profit of platform i is then

(almost) equal to 2πd + V d − V m. Although we are in the region with πd/πm ≤ 1/4, the

profit from deviating is larger than πm/2, as 4πd + 2(V d − V m) > πm due to the fact

V d + πd > V m + πm.

33With negative fees, a divide-and-conquer strategy can destabilize the segmentation equilibrium.
Under divide-and-conquer, a deviating platform sets a sufficiently low fee on one side to ensure that
this side participates for sure. It can then use the fee on the other side to extract surplus on that side.
In particular, a platform deviating from the segmentation equilibrium can attract sellers with negative
fees and extract the full surplus generated on the buyer side. However, such negative fees are usually
not feasible, as they generate losses for platforms from otherwise uninterested participants who inflate
participation levels without generating any transaction opportunities.
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Determining the equilibrium for the range πd/πm ≤ 1/4, we obtain (following ar-

guments similar to those in the baseline model) that the unique equilibrium under our

refinement is {f ?s = 0, f ?b = V m} and segmentation occurs. With these fees, no platform

can attract more sellers since this would lead to competition between them and, therefore,

to a reduction in sellers’ profits. Instead of extracting the sellers’ profits, platforms do not

leave surplus to buyers. Importantly, though, despite this difference in fees between one-

sided and two-sided pricing, the main intuition for the segmentation equilibrium to occur

is the same: sellers avoid competition by being active on both platforms, and platforms

exploit this role of segmenting the market by charging strictly positive fees.

If in stage 2 buyers and sellers play the equilibrium that buyers prefer (in addition to

coalition-proofness), the equilibrium fees would be the same as in the case of one-sided

pricing—that is, {f ?s = πm/2, f ?b = 0}. Setting a strictly positive fee to buyers can never

be profitable for a platform, as then all buyers prefer the rival platform. Given this, the

same arguments as in Section 5.3 apply. Although buyers prefer agglomeration, platforms

avoid this in equilibrium by setting listing fees to sellers above πd.

5.5 Further extensions

In our preceding analysis, we have shown the robustness of the tradeoffs involved between

segmentation and agglomeration in a number of settings. However, we maintained the

independence between categories and the homogeneity of buyer behavior. In this section,

we discuss what happens in richer settings that allow for these features.

5.5.1 Interdependence between Categories

Competition across categories

In our analysis, we assumed that each buyer is interested in exactly one product

category. Suppose, instead, that a buyer receives a positive gross utility from buying a

product in a category other that her preferred one (which, by construction, is less than

from products in her preferred category). Then, products in different categories are sub-

stitutes. As a consequence, the demand for a product in the preferred category may be

lower if prices in different categories are lower. Sellers will take this into account in their

pricing decisions, implying that products from different categories may impose competi-

tive constraints. As a consequence, prices will be weakly lower than in our model. This

leads to lower values of πm and, possibly, of πd. Hence, in the segmentation equilibrium,

platforms’ fees will be weakly lower, and, depending on the profit ratio πd/πm, the re-

gions for the segmentation and agglomeration equilibrium will be affected by competition

across platforms. However, the main effects driving the results are still present, and our

main insights are robust.
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We can restate our main conclusions in a different setting, in which there is only one

product (and, thus, one seller) per product category. With this simplification, since sellers

do not compete, the market necessarily features agglomeration. Introducing competition

between categories, the equilibrium switches to segmentation if segmentation sufficiently

reduces seller competition. In such a segmentation equilibrium, half of the categories are

listed on platform A and the other half on platform B. This result is in the same spirit

as our findings in the baseline model.

Platforms with diseconomies

Another source of interdependence between categories could be platform diseconomies

in the number of categories. Platforms experience such diseconomies if the number of

product categories on a platform has a direct and negative effect on buyer utility. Such

congestion externalities can be present because, for instance, it becomes more costly for

a buyer to find the preferred product category as the number of categories increases.

This implies that a buyer experiences a utility loss if the number of listed categories

is large. If platforms can endogenously choose this number, then, to avoid repelling

buyers, they may not list some categories in equilibrium. This implies that even in an

agglomeration equilibrium, listing fees may be positive, as lowering the fee to zero induces

the participation of sellers in all categories, which is not attractive to buyers.34

Alternatively, the number of product categories may affect buyer utility indirectly.

This happens if the optimal presentation of products on a platform depends on the prod-

uct category. Suppose that a platform has to commit to a unique format for presenting

products (e.g., to avoid confusing buyers). Then, if very different product categories are

listed, the presentation format is not optimal for some products, and, thus, the utility

of buyers who prefer these products is reduced. As above, a consequence is that some

products will be delisted.35

5.5.2 Heterogeneous Buyer Behavior

In our model, buyers are ex ante identical. In particular, they do not prefer one platform

over the other. Although this assumption ensures that platforms are fully homogeneous

ex ante and, therefore, strengthens our theoretical contribution, it may not be in line with

the consumer behavior observed in some markets. For example, a fraction of buyers may

be loyal to a platform. Similarly, some buyers may decide very quickly on which platform

34One could also imagine that product categories differ by the probability of being the preferred
category. Then, popular categories will be listed, but less popular categories will be delisted.

35An example in which a platform did not cater well to buyer tastes with its presentation of particular
product categories is the market for handmade and vintage items on Ebay. Newer platforms, such as Etsy
and Dawanda, offered sellers the opportunity to offer more information, and this led to a quick migration
of buyers and sellers to these new platforms. This suggests that Ebay was subject to diseconomies in
the number of listed product categories and lost out to newcomers.
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to be active and, therefore, assign themselves randomly to a platform. Suppose that each

platform has a fraction β/2 of loyal buyers and that all other buyers are shoppers—i.e.,

they join the platform that offers the highest expected utility as in our baseline model.

To reach loyal buyers, sellers have to list on both platforms (as, for example, in hotel

booking or food delivery services). Thus, if sellers can multi-home, in an equilibrium

that corresponds to an agglomeration equilibrium, both platforms set a positive listing

fee equal to the duopoly profit that a seller earns from loyal buyers so as to induce

seller multi-homing. By contrast, in an equilibrium that corresponds to a segmentation

equilibrium—i.e., each platform attracts half of the shoppers—sellers single-home along

the equilibrium path because the insights from Section 4.2 still hold.

6 Policy Implications and Predictions

6.1 Policy Implications

Our paper has several normative implications that can guide policy makers in regulating

platform markets. These implications rest on the insight that market segmentation has

undesirable welfare properties: segmentation leads lower total welfare and consumer wel-

fare than agglomeration due to less choice for buyers and higher product prices. However,

platforms benefit from segmenting the market, as this allows them to extract rents from

sellers. This conflict between what is in the interest of platforms and what is in the

interest of society may justify policy intervention.

It is important for policy makers to distinguish between segmentation due to multiple

active platforms enabling sellers to reduce competition, and segmentation resulting from

inherent differentiation between platforms. In the former case, as just pointed out, seg-

mentation is welfare-decreasing, whereas in the latter case, platforms cater to different

buyer (and perhaps seller) tastes, which, all else equal, is welfare-increasing. It seems

possible to find out the cause of segmentation, as the degree of product differentiation

can be measured by appropriate tests (e.g., SNIPP test).36

Beyond this general observation, our framework generates a number of specific impli-

cations for antitrust, regulation, and merger control.

Exclusive contracts. A widely-discussed issue in platform markets is the use of ex-

clusive contracts.37 Such contracts restrict sellers to offering their products exclusively

on one platform (in exchange for a favorable deal on the fee charged by the platform).

36See Affeldt, Filistrucchi and Klein (2013) for an application of the SNIPP test to platform markets.
37For example, in the video game industry, console platforms often impose console exclusivity, which

prevents game developers from selling a similar game on rival consoles (see Lee, 2013, for an in-depth
analysis). As another example, trading platforms sometimes require ‘special’ offers by sellers to be
exclusive on them.
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Therefore, these exclusive contracts rule out seller multi-homing. As we showed in Sec-

tion 4.2, if sellers can multi-home, an agglomeration equilibrium is more likely to arise,

implying that a restriction to single-homing is anti-competitive. In this respect, our pa-

per provides a new rationale for why exclusive contracts are welfare-decreasing: they help

sellers to commit to a single platform, thereby sustaining market segmentation.

Price caps on listing fees. A policy instrument to curb firms’ market power in general

is to set price caps. At first glance, this might also look attractive in our framework as a

way to tame the market power of platforms vis-a-vis sellers (i.e., platforms charge strictly

positive listing fees only in a segmentation equilibrium). Therefore, one may think that

regulating fees via caps can lead to agglomeration. However, the fundamental problem is

that even with low fees, sellers choose segmentation by themselves if they obtain higher

profits with this configuration. Therefore, caps on listing fees are not helpful to achieve

agglomeration and are merely a rent-shifting device.

Merger control. Suppose that sellers in some product categories consider merging.38

Such mergers generally reduce competition in the particular product category and, as

a consequence, favor agglomeration. Thus, our theory predicts that market tipping is

more likely in industries following mergers between sellers. If there is segmentation

prior to the merger, but agglomeration afterwards, a merger may increase total welfare,

and even consumer welfare, as buyers find, in expectation, a better match. On the

downside, they pay the prices set by a two-product instead of a single-product monopolist,

which are higher if products are substitutes. Overall, we have identified an efficiency

defense for mergers among sellers in a platform market: if the merging sellers operate on

different platforms prior to the merger, the merger may make the market tip, which can

be beneficial to buyers, as it improves the match quality.39

6.2 Predictions

Our theory leads to novel predictions that are empirically testable.

Correlation between market concentration and fee levels in the platform market. Our

theory predicts a negative correlation between market concentration and the level of the

listing fee in platform markets. More precisely, for a given number of available platforms,

our theory predicts that the relation between market concentration, in terms of market

share, and the level of the (average) listing fee is negative. In markets that feature

agglomeration, platform fees are lower than in markets in which platforms have a more

38Such mergers occurred in several intermediated industries in recent years. For example, in the
housing market, big real estate agencies acquired many smaller companies. Similarly, in the video game
industry, several software-developing companies have recently merged.

39If, prior to the merger, the market is characterized by agglomeration, the merger leads to multi-
product monopoly instead of duopoly prices. Thus, it necessarily decreases consumer welfare.
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equal market share. This reverses the prediction of standard theory. Our prediction

is testable, for example, by analyzing cross-industry or cross-country variation in the

data. To make a meaningful comparison, one would need to condition on the market

characteristics and then consider the correlation between the Hirshman-Herfindahl Index

(HHI) of active firms and the level of the listing fee. There would be support for our

theory if platform fees were larger in markets with a smaller HHI.

Correlation between market characteristics in the product market and concentration

in the platform market. Our theory provides a prediction concerning the relation between

the prevailing conditions in the intermediated product market and the market outcome

in the platform market. Specifically, if competition in the intermediated product market

is weak, the platform market will be more concentrated (measured by the HHI). Possi-

ble sources for different degrees of competitiveness in the product market are manifold.

They could be due to differences in the degree of product differentiation or differences of

the ratio between sellers and buyers in thin markets. The prediction can be tested, for

example, by looking at different regional markets within the same industry and country

or by considering different broadly defined product categories. As platforms usually op-

erate country-wide and across broad product categories, the same number of platforms

may well be present, but concentration may vary between different regions or product

categories. If a product market has characteristics that are unfavorable to strong compe-

tition between sellers—i.e., profits are relatively high even if sellers compete—our theory

predicts agglomeration. Thus, reduced competition among sellers tends to lead to market

tipping.

As an example, consider price comparison websites. Suppose that buyers consider a

purchase within a broad product category and do not yet know which specific product

they like. In broad product categories in which there is little room for differentiation

between sellers’ offers, competition between sellers is intense, and, thus, it is likely that

sellers segment. The opposite holds in the broad product categories in which product

differentiation between sellers is pronounced.

7 Conclusion

In this paper, we have proposed a theory of competing platforms that enable trade

between buyers and sellers. Platforms are homogeneous and charge fees to sellers, and

sellers compete in the product market. We have analyzed how the competitive conditions

in the seller market affect platform market structure.

Can multiple platforms exist and earn positive profits even if there is no differentia-

tion between them? We show that the function of multiple platforms as an endogenous
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segmentation device for competing sellers can explain such an outcome. Sellers choose

to be active on different platforms to avoid fierce competition. Platforms exploit this by

setting positive fees, and obtain strictly positive profits. Thus, multiple homogeneous

platforms have a positive market share. Such a segmentation equilibrium exists if com-

petition between sellers is sufficiently strong. If, by contrast, there is little competition

between sellers, the standard intuition is confirmed: the equilibrium features agglomera-

tion, and platform fees are low. As a consequence of these results, the relation between

market concentration and fees is negative. Platform fees are low in concentrated markets

but high if market shares are similar.

Our main insights are robust to several different model formulations—i.e., they do

not depend on the platform pricing instrument, the possibility of buyer and seller multi-

homing, and the number of platforms and sellers. In addition, the framework generates

several policy implications and predictions that are empirically testable.

In our model, we did not consider endogenous entry of platforms. Although a domi-

nant platform emerges in our agglomeration equilibrium, fees are driven down to marginal

costs, and the market is contestable with the presence of competitors. By contrast, if

platforms incurred fixed costs from entry, only one platform would enter whenever the

equilibrium is characterized by agglomeration. This single platform would then act as a

monopolist and charge a high fee. While such monopoly positions may occur, in reality,

we observe that in several platform markets, there is a dominant platform together with

some competitors who only have negligible market shares. These competing platforms

may, however, have larger market shares in related markets and incur little cost to serve

buyers and sellers also in markets in which they are currently negligible. For example, in

the second-hand good market, Ebay can be considered as a dominant platform for many

broadly defined product segments. However, Ebay’s market power is restrained by other

platforms, small (e.g., Ebid and Bonanza) or large (Amazon), elsewhere.40

We placed our analysis in a static context and focused on platform pricing and subse-

quent subscription decisions of buyers and sellers. We leave extensions such as dynamic

competition between platforms and the platforms’ innovation incentives for future re-

search.

40In some product segments, the dominant platform may alternatively be a specialized one with a
smaller selection of products. A case in point is Etsy, which tends to specialize in handcrafted products
and may be considered dominant in the United States. While Ebay essentially lost this market segment
to Etsy, it remains a potential competitor.
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Appendix A: Equilibrium Selection in Stage 2

In the first step, we determine all Nash equilibria in stage 2, given fees (fi, f−i). In a

second step, we show how the refinement of coalition-proofness plus profit dominance of

sellers singles out an essentially unique equilibrium. The qualification to the uniqueness

is that if fi = f−i, under some conditions two payoff-equivalent equilibria exist. As will

become evident below, these equilibria are agglomeration either on platform A or B, or

stand-alone either on platform A or B, dependent on the level of fi. However, as the

equilibria are payoff-equivalent, selecting among them is not necessary.

Suppose that the mass of sellers is unequal on both platforms, i.e., αi sellers are on

platform i and α−i < αi sellers are on platform −i. Then all buyers will join platform

i. This implies that sellers on platform −i have a profitable deviation to either go the

platform i or be inactive for any f−i > 0. It follows that in equilibrium either one platform

has no sellers and no buyers, or αi = α−i, which makes buyers indifferent and induces

them to split equally between the two platforms under our tie-breaking rule.

We start with the situation, in which there is trade on only one platform. As sellers

are homogeneous across categories, there cannot be an equilibrium in which sellers in

different categories follow different strategies. The reason is that if it is profitable for

one or both sellers in some categories to list on the platform with a positive volume of

trade, this must also be true for sellers in the remaining categories. There can be two

equilibrium configurations in which only one platform carries a positive volume of trade.

The first configuration is an agglomeration equilibrium, in which all sellers and all

buyers agglomerate on one platform. A seller’s profit is then πd. Hence, an equilibrium

with agglomeration on platform i exists if fi ≤ πd, independent of f−i. The second

equilibrium configuration is a stand-alone equilibrium, in which in each category only

one seller is active on platform i and all buyers go to platform i. This configuration

occurs if πm ≥ fi > πd, independent of f−i. This equilibrium cannot occur with fi < πd,

as in this case both sellers in each category prefer to be active on platform i.

We now turn to the equilibrium configuration, in which αi = α−i. The following three

types of seller compositions give rise to αi = α−i.

(i) In each category, one seller lists on platform i and one seller lists on platform −i.

(ii) In 1/2 of the categories, both sellers list on platform i and in the other half both

sellers list on platform −i.

(iii) In 1/2 of the categories, one seller lists on platform i and in the other half one seller

lists on platform −i.

In addition, any convex combination of these three seller compositions (i.e., mixing be-

tween the three types) leads to αi = α−i. Note that it can never be an equilibrium that
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in fewer than 1/2 of the categories both or one seller list on platform i and platform −i.
The reason is that non-active sellers have a profitable deviation to become active. This is

because platform fees must be such that the resulting profits are higher than the listing

fees as otherwise there can be no categories in which sellers are willing to list.

We now show that types (ii) and (iii) can never occur in equilibrium. Consider case

(ii). Since in 1/2 of the categories, both sellers are active on platform i, we must have

fi ≤ πd/2. If a seller active on platform −i then deviates to platform i, its profit changes

from πd/2− f−i to πm/2− fi. By a similar argument, if a seller deviates from platform i

to platform −i, its profit changes from πd/2−fi to πm/2−f−i. This implies that case (ii)

can only be an equilibrium if πd/2− f−i ≥ πm/2− fi and πd/2− fi ≥ πm/2− f−i. Since

πd/πm < 1, both conditions cannot jointly hold, implying that there must be a profitable

deviation. Similarly, in case (iii) platform fees must be smaller than πm/2, which implies

that non-active sellers have a profitable deviation to list on the platform in which the

competitor is not active. Since those two types cannot be an equilibrium configuration,

mixing among the three types can also be excluded by the same arguments.

As a consequence, the configuration in which both platforms are active can only be

such that each platform is host to one seller in each category. This equilibrium can only

occur if platform fees are below πm/2, and no seller has an incentive to deviate and

become active on the other platform. The latter condition implies

πm

2
− fi ≥

πd

2
− f−i

Rewriting this condition, we obtain that a segmentation equilibrium exists if and only if

fi ≤ min

{
πm − πd

2
+ f−i,

πm

2

}
. (3)

As illustrated in Figure 1, for any combination of listing fees (fi, f−i) with fi ≤ πm and

f−i ≤ πm, multiple equilibria exist in stage 2.

Finally, we note that for all (fi, f−i) a no-trade Nash equilibrium exists in which nei-

ther buyers nor sellers participate on either platform. However, this no-trade equilibrium

is not coalition-proof whenever some other equilibrium exists. We therefore disregard it

in the following discussion.

In the second step, we demonstrate how our selection rule singles out a unique equi-

librium (unique subject to the qualification above). We start with the cases in which only

a single equilibrium configuration exists (i.e., agglomeration or stand-alone) but multiple

equilibria occur because agents can coordinate on either platform. First, consider the

case in which there are the two equilibria, where all sellers (and buyers) agglomerate on

platform A or platform B. If both platforms charge a fee below πd and fi 6= f−i, coalition-
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proofness implies that all sellers and buyers coordinate on the platform with the lower

fee, that is, they agglomerate on platform i if fi ≤ f−i.
41 Within this coalition, there is

also no subcoalition that can improve by being active on platform −i. Similarly, if both

platforms charge a fee larger than πd and the two equilibria in which only half of the

sellers are active on platform A or on platform B exist (i.e., the stand-alone equilibria),

then sellers choose platform i if and only if fi < f−i.

Now we turn to cases, in which multiple equilibrium configurations exist. First,

consider the case in which agglomeration and stand-alone equilibria exist. From the

arguments above, this occurs if one platform, say platform −i, charges a fee below πd

whereas the other one charges a fee above πd. However, the stand-alone equilibrium is

then not coalition-proof because a coalition consisting of all buyers and all inactive sellers

has a profitable deviation. If all these agents choose to be active on platform −i, then

buyers are indifferent (as the same number of sellers is then active on each platform) but

the profits of the formerly inactive sellers strictly increase from 0 to πm − fi > 0. In

addition, no subcoalition can deviate and be strictly better off. By the same argument, if

stand-alone and segmentation equilibria exist, a stand-alone equilibrium is not coalition-

proof, whereas a segmentation equilibrium is. To see this, note that for these equilibrium

configurations to co-exist, we must have that πd/πm < 1/2 and that both fees are between

πd and πm/2. Thus, no coalition of sellers has the incentive to deviate from a segmentation

equilibrium.42

Finally, we turn to the region, in which segmentation and agglomeration equilibria

exist. The profit of each seller in an agglomeration equilibrium on platform i is πd − fi.
By contrast, in a segmentation equilibrium, the profit of a sellers is either πm/2 − fi or

πm/2− f−i dependent on which platform the seller is active. Let us first look at the case

πd/πm ≥ 1/2. It is evident that a coalition of all sellers active on the platform with the

higher fee, say platform i (i.e., fi ≥ f−i), and all buyers on this platform have a profitable

deviation to switch to platform −i. After such a deviation, the sellers are (weakly) better

off because πd − f−i ≥ πm/2 − fi due to the fact that πd/πm ≥ 1/2 and f−i ≤ fi, and

buyers are better off because they observe the offers of both sellers and not only one. It

follows that for πd/πm ≥ 1/2, the segmentation equilibrium is eliminated.43

We now turn to the case πd/πm < 1/2. We first show that a similar mechanism as

the one in the previous paragraph does only partly work then. In particular, sellers on

platform i (i.e., the platform with the higher fee) prefer agglomeration on platform −i

41This is also the profit-dominant equilibrium for sellers.
42In these regions, profit-dominance of sellers either selects the same equilibrium as coalition-proofness,

or profit-dominance has no bite as some sellers prefer stand-alone over agglomeration (or segmentation)
whereas others have the opposite preference. Hence, coalition-proofness and profit-dominance are not in
conflict with each other.

43Again, profit-dominance of sellers also eliminates the segmentation equilibrium.
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over segmentation if and only if πd − f−i ≥ πm/2− fi or

fi ≥
πm

2
− πd + f−i.

If this inequality holds, the segmentation equilibrium is not coalition-proof because sellers

and buyers on platform i can profitably deviate and agglomerate on platform −i. This

shrinks the range for the segmentation equilibrium. In particular, for fees below πd, the

equilibrium exists for fi ≤ (πm − πd)/2 + f−i, whereas it survives the refinement only if

fi < πm/2 − πd + f−i.
44 If fi < πm/2 − πd + f−i, the refinement of coalition-proofness

has no bite. However, the refinement of profit-dominance for sellers then selects the

segmentation equilibrium as the unique equilibrium. In particular, the inequality ensures

that sellers on platform i are better off in the segmentation equilibrium than in the

agglomeration equilibrium, and the condition πd/πm < 1/2 guarantees that also sellers

on platform −i prefer segmentation over agglomeration because πm/2− f−i > πd − f−i.
Therefore, our equilibrium refinement selects the following equilibrium, given any

(fi, f−i) with fi ≤ πm and f−i ≤ πm:

(i) If πd/πm ≥ 1/2, then

– for fi, f−i ≥ πd, the equilibrium is STAi if fi ≤ f−i;

– for all other values, the equilibrium is AGGi if fi ≤ f−i.

(ii) If πd/πm < 1/2, then

– for fi, f−i ≤ πd, the equilibrium is SEG if f−i < πm/2− πd + fi, and AGGi if

f−i ≥ πm/2− πd + fi.

– for fi ≤ πd and f−i > πd, the equilibrium is AGGi.

– for fi, f−i ∈ (πd, πm/2], the equilibrium is SEG if f−i ≤ (πm − πd)/2− fi and

STAi if f−i > (πm − πd)/2− fi.

– for fi > πd and f−i > πm/2, the equilibrium is STAi if fi ≤ f−i.

Appendix B: Proof of Propositions

Proof of Proposition 1. We first consider the case πd/πm ≥ 1/2. From Appendix A, we

know that an agglomeration equilibrium on platform i exits only if fi ≤ πd and fi ≤ f−i.

The latter condition occurs because, in the second stage, sellers and buyers will coordinate

on the equilibrium in which they all join the platform with the lower fee. This implies

44If both fees are above πd there is no restriction because the agglomeration equilibrium does not exist
then.
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that, in the first stage, for all f−i ≤ πd, platform i gains from undercutting the competing

platform. This induces agglomeration on platform i. The standard Bertrand logic then

applies and platforms set f ?A = f ?B = 0 in equilibrium.

Now we turn to the case πd/πm < 1/2. It is evident from Appendix A that a seg-

mentation equilibrium is played if fees are symmetric. As a consequence, in a candidate

agglomeration equilibrium, the inactive platform must set a strictly positive fee. But

this platform then has the incentive to lower its fee (but still keep it strictly positive)

and induce segmentation. By doing so, it obtains a strictly positive profit, as half of the

sellers join the platform. This argument holds for any fA-fB-combination, which induces

agglomeration in the second stage. It follows that no agglomeration equilibrium exists

for πd/πm < 1/2.

Proof of Proposition 2. Consider the region of πd/πm < 1/2. In a segmentation equilib-

rium, a seller active on platform i obtains a profit of πm/2 − fi. Therefore, the highest

possible fee that a platform can charge equals πm/2, leaving sellers with zero profits. We

first determine the conditions under which an equilibrium with listing fees πm/2 exists.

If both platforms charge fi = πm/2, the only possible configuration in the second stage is

the segmentation equilibrium. This follows because the profit that a seller obtains with

agglomeration equals πd, which is below the listing fee.

Suppose that platform i deviates to induce an agglomeration equilibrium in the second

stage. To do so, it has to charge fdevi = πd−ε, where ε > 0 can be arbitrarily small. Since

all buyers will agglomerate on platform i if all sellers do, sellers earn then a small positive

profit when agglomerating on platform i but zero in the segmentation equilibrium. The

deviation profit of platform i is then (letting ε→ 0) Πdev
i = 2πd since it obtains πd from

each seller. Therefore, a deviation is not profitable if πm/2 ≥ 2πd or πd/πm ≤ 1/4.

It follows that in this region, a segmentation equilibrium with listing fees (f ?A, f
?
B) =

(πm/2, πm/2) is the unique equilibrium. Platforms’ equilibrium profits are πm/2.

There cannot exist a segmentation equilibrium in which platforms charge fees less

than πm/2. The reason is that, given the equilibrium played in stage 2, a platform could

then increase its fee slightly, still induce segmentation at stage 2, and obtain a higher

profit.

Proof of Proposition 3. We first show the non-existence of a pure-strategy equilibrium.

Consider the region of 1/4 < πd/πm < 1/2. From Appendix A, we know that in this

region a segmentation equilibrium will be played in the second stage if both platforms

charge the same listing fees (conditional on these fees being lower than πm/2, which will

always be fulfilled in equilibrium). From Proposition 2 it follows that platforms cannot

extract the full profits from sellers because this would give each platform an incentive to

deviate to a lower fee and induce agglomeration. We proceed by first determining the
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highest fee that platforms could charge to make such a downward deviation unprofitable.

Suppose that both platforms charge a fee of πm/2 − x. Each platform’s profit is then

πm/2−x, and a seller’s profit is x. If platform i deviates in order to attract all sellers and

buyers in the second stage, it must set a fee such that πd−fdevi > x. The highest possible

deviation fee is therefore fdevi = πd−x− ε, leading to a deviation profit of (letting ε→ 0)

2πd − 2x. Such a deviation is unprofitable if πm/2 − x ≥ 2πd − 2x or x ≥ 2πd − πm/2.

Hence, with an x equal to 2πd − πm/2, platforms prevent such a downward deviation.

The resulting listing fee is then fi = πm/2 − x = πm − 2πd, and the platform’s profit is

also πm − 2πd.

To determine if listing fees fi = fj = πm−2πd can constitute an equilibrium, we need

to check if a platform has an incentive to deviate by charging a higher listing fee (upward

deviation). Suppose that platform i charges fi = πm − 2πd and platform j charges a

deviation fee fdevj > fi such that segmentation is still the continuation equilibrium. To

induce a segmentation equilibrium, we must have πm/2− fdevj > πd− fi = 3πd−πm (i.e.,

a seller’s profit with segmentation must be higher than with agglomeration). Thus, the

highest possible listing fee is fdevj = 3πm/2 − 3πd − ε = 3(πm/2 − πd) − ε, which yields

a larger platform profit than fi = 2(πm/2− πd). As a consequence, a profitable upward

deviation exists.

It follows that there is no equilibrium in pure strategies in the range of 1/4 < πd/πm <

1/2. The candidate equilibrium, which prevents downward deviations was fi = fj =

πm − 2πd; but then an upward deviation is profitable. In turn, for all listing fees above

πm − 2πd, a downward deviation is profitable.

Randomization domain. From the analysis above, we know that in the range 1/4 <

πd/πm < 1/2 for each fj, platform i has two best-response candidates: an upper best-

response candidate, denoted by f br
+

i , which is higher than fj by a discrete amount and

induces segmentation, and a lower best-response candidate, denoted by f br
−

i , which is

lower than fj by a discrete amount and induces agglomeration. We will now show that

there is a unique fj so that platform i obtains the same profit with either best-response

candidate. In addition, both candidates are increasing in fj. Due to platform symmetry,

this allows us to derive the randomization domain.

Suppose that platform j sets a fee fj. We now derive the best response of platform

i 6= j. The upper best response f br
+

i induces segmentation with the highest possible

fee. At this fee, sellers weakly prefer segmentation to agglomeration on j, which implies

that the inequality πm/2 − f br+i ≥ πd − fj is binding.45 This leads to a profit of f br
+

i =

πm/2 − πd + fj. Instead, the optimal lower best response f br
−

i is the largest fee which

induces agglomeration on platform i. Thus, we must have πd − f br−i > πm/2 − fj. The

45We assume that if sellers are indifferent between segmentation and agglomeration, they choose
segmentation. As we will show below, this is consistent with equilibrium behavior.
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lowest upper bound of platform i’s profit is then 2f br
−

i = 2(πd − πm/2 + fj).

The two profits reported above are equal at fj = 3/2πm−3πd. Thus, there is a unique

fj such that platform i just prefers the upper to the lower best-response candidate.

Platform i’s best response to fj ≤ 3/2πm − 3πd is to induce segmentation at f br
+

i =

πm/2− πd + fj = 2πm− 4πd, which is increasing in fj. Vice versa, for fj > 3/2πm− 3πd,

platform i’s profit from the lower best-response candidate is larger than that from the

upper best-response candidate because 2(πd−πm/2+fj) > πm/2−πd+fj for πd < πm/2.

This implies that its best response to fj > 3/2πm−3πd is f br
−

i = πd−πm/2+fj, which is

increasing in fj. Hence, along platform i’s best response, its maximal profit is reached at

fj = 3/2πm−3πd and is given by f br
+

i = 2πm−4πd. By symmetry, this leads to an upper

interval of the randomization domain equal to fj ∈ [3/2πm−3πd, 2πm−4πd]. Analogously,

the minimum of platform i’s best response to fj is reached at fj = 3/2πm − 3πd and is

given by f br
−

i = πm − 2πd. This leads to a lower interval of the randomization domain

equal to fj ∈ [πm − 2πd, 3/2πm − 3πd).

As a consequence, there is mixed-strategy equilibrium in which fi, fj ∈ [πm−2πd, 2πm−
4πd]. The expected profit in this equilibrium is 3πm/2−3πd. This is because when charg-

ing this fee, a platform induces segmentation with a probability of (almost) 1.

In this mixed-strategy equilibrium, the highest listing fee is 2πm−4πd. To ensure par-

ticipation of sellers, the highest fee a platform can charge (in a segmentation equilibrium)

is πm/2. Therefore, the equilibrium determined above is only valid if 2πm − 4πd ≤ πm/2

or πd/πm ≥ 3/8.

Mixing probabilities. In the range 3/8 ≤ πd/πm < 1/2, platforms set fees fi, fj ∈
[πm − 2πd, 2πm − 4πd], and the expected profit is Π?

A = Π?
B = 3πm/2− 3πd.

Let δ ≡ πm/2 − πd and ε > 0 but infinitesimally small. Denote f ≡ 2δ, f̃ ≡ 3δ, and

f ≡ 4δ. Thus, the domain over which platforms mix is [f, f ] = [2δ, 4δ]. For i, j ∈ {A,B}
and i 6= j, the platforms’ best response functions are given by46

f̂i(fj) =

{
fj + δ, if fj ∈ [f, f̃ ];

fj − δ − ε, if fj ∈ (f̃ , f ].

We know that all fees in the mixing domain must give an expected profit of 3δ, as

otherwise platforms would not be indifferent between these fees. We need to distinguish

between two intervals, a lower and an upper one. The lower interval consists of fees

fi ∈ [2δ, 3δ) and the upper interval consist of fee fi ∈ [3δ, 4δ]. The reason for this

46As sellers choose segmentation in the second stage when being indifferent between segmentation and
agglomeration, the best response to fj marginally above f̃ is f , and the best response to fj = f̃ is f .
Therefore, all boundaries of the mixing region are well defined. By contrast, if sellers chose agglomeration
when indifferent, the upper bound would not be well defined, as f is never a best response (only f − ε
is). Therefore, sellers choosing segmentation as a continuation equilibrium when indifferent is consistent
with equilibrium play of the full game.
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distinction is that in the lower interval, sellers may agglomerate on platform i (i.e., this

happens if fj > fi + δ) but will never agglomerate on platform j. That is, if fi is in

this lower interval, platform i will always obtain a positive profit. By contrast, if fi is an

element of the upper interval, with some probability sellers will choose to agglomerate

on platform j—this occurs if platform j charges fj < fi − δ—and platform i obtains no

profit. Platform i’s profit can then be written as

Πi(fi, fj) =


0, if fi ∈ (fj + δ, 4δ] ∧ fj ∈ [2δ, 3δ);

fi, if fi ∈ [max{2δ, fj − δ},min{fj + δ, 4δ}] ∧ fj ∈ [2δ, 4δ];

2fi, if fi ∈ [2δ, fj − δ) ∧ fj ∈ (3δ, 4δ].

Let us start with the case in which platform i charges a fee in the lower interval—that

is, fi ∈ [2δ, 3δ). Denote the cumulative density function with which platform j mixes by

G1(fj). Platform i’s profit with a fee in this lower interval is then given by (replacing fi

by f)

G1(f + δ)f + (1−G1(f + δ)) 2f.

In equilibrium, this expression must be equal to 3δ, yielding

G1(f + δ)f + (1−G1(f + δ)) 2f = 3δ. (4)

This equation determines the mixing probabilities of platform j in its upper interval.

This is because only if platform j sets a fee above f + δ (which happens with probability

1−G1(f + δ)), sellers will agglomerate on platform i. Such a fee must necessarily be in

the upper interval.

If platform i charges a fee in the upper interval—that is, fi ∈ [3δ, 4δ]—its profit is

G1(f − δ)0 + (1−G1(f − δ)) f = 3δ. (5)

This equation determines the mixing probability in the lower interval.

Let us first look at (4). We can substitute h ≡ f + δ to get

G1(h) (h− δ) + (1−G1(h)) 2 (h− δ) = 3δ. (6)

Recall that (4) was relevant for f in the lower range and, since h = f + δ, these are

exactly the fees in the upper interval. Solving (6) for G1(h) gives

G1(h) =
2h− 5δ

h− δ
. (7)

It is easy to check that G1(4δ) = 1.
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Now we turn to (5). Here, we can substitute h ≡ f − δ representing that h is now in

the lower interval. We obtain

(1−G1(h)) (h+ δ) = 3δ. (8)

Solving (8) for G1(h) gives

G1(h) =
h− 2δ

h+ δ
. (9)

It is easy to check that G1(2δ) = 0. Using (7) and (9), we obtain lim
h↘3δ

= 1/2 and

lim
h↗3δ

= 1/4. This implies the existence of a mass point with mass 1/4 at a fee equal to

3δ.47

The resulting mixing probability is characterized by the cumulative distribution func-

tion

G1(f) =

{
f−2δ
f+δ

, if f ∈ [2δ, 3δ);
2f−5δ
f−δ , if f ∈ [3δ, 4δ].

Because the distribution is not absolutely continuous with respect to the Lebesgue mea-

sure, it fails to have a density. Nevertheless, we define a generalized density, which is

a generalized function (since it will be comprised of a dirac delta function) such that

integration against this generalized function yields the correct desired probabilities. The

corresponding probability density function is given by

g1(f) = G′1(f) +
1

4
δD(f − 3δ),

where

G′1(f) =

{
3δ

(f+δ)2
, if f ∈ [2δ, 3δ);

3δ
(f−δ)2 , if f ∈ [3δ, 4δ],

and δD(f − f0) denotes Dirac’s delta function which is 0 everywhere except for f0 where

it is ∞. Furthermore,
∫
δD(f − f0)df = 1. Inserting δ = πm/2 − πd yields the result

stated in the proposition.

Proof of Proposition 4. As shown in the proof of the previous proposition, a pure-strategy

equilibrium in the region 1/4 < πd/πm < 1/2 does not exist. Furthermore, for 3/8 ≤
πd/πm < 1/2, there exists a mixed-strategy equilibrium which has an upper bound of the

randomization domain equal to 2πm − 4πd. This equilibrium cannot exist in the range

47Intuitively, equation (5) requires a sufficiently high probability of f − δ being close to 3δ since, as
otherwise setting f close to 4δ would lead to zero profit “too often”.
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1/4 < πd/πm < 3/8 because 2πm− 4πd would then be larger than πm/2. We next derive

the randomization domain of the mixed-strategy equilibrium with an upper bound of

πm/2.

Randomization domain. Suppose that platform j sets fj = πm/2. The best response

of platform i is then to set fi to induce agglomeration in the second stage. To do so, it

needs to set fi = πd− ε. The best response of platform j is to marginally reduce its fee to

πm/2−ε and induce a segmentation again, and so on. This goes on until platform i sets the

lowest fee in the randomization domain, denoted by f l. This is the fee at which platform

i is better off by raising its fee to the highest fee πm/2 and induce segmentation instead

of marginally reducing it to induce agglomeration. Its segmentation profit is then πm/2.

Hence, the lowest fee f l is given by 2f l = πm/2 or, equivalently, f l = πm/4. This fee

makes sellers exactly indifferent between agglomeration on platform i and segmentation

if platform j charges a fee such that πd−f l = πm/2−fj or, equivalently, fj = 3πm/4−πd.
Finally, note that a fee πd − ε (i.e., the fee that induces agglomeration if the rival

platform charges the highest fee) is strictly lower than 3πm/4− πd (i.e., the fee at which

the rival stops lowering its fee and instead raises the fee to the highest one) since we are

in the range πd/πm < 3/8. Therefore, the upper bound of the lower interval is below the

lower bound of the upper interval. It follows that there are two disjoint sets of mixing

intervals. The upper one [3πm/4−πd, πm/2], in which each fee is a best response to a fee

in the lower interval [πm/4, πd). In turn, each fee in the lower interval is a best response

to a fee in the upper interval.

To summarize the above analysis, in the range 1/4 < πd/πm < 3/8, there is a mixed-

strategy equilibrium with fees fi ∈ [πm/4, πd) ∪ [3πm/4− πd, πm/2]. For any chosen fee,

the expected profit in this range must be 3πm/4− πd. As above, this is because setting

a fee equal to 3πm/4− πd induces segmentation with a probability of (almost) 1.

Mixing Probabilities. Let η ≡ πd−πm/4, δ ≡ πm/2−πd and ε > 0 but infinitesimally

small. Denote f l ≡ πm/4, f
l ≡ πd, fu ≡ 3πm/4 − πd, and f

p ≡ πm/2 such that the

domain of interest can be expressed as fi ∈ [f l, f
l
) ∪ [fu, f

u
]. Using η and δ, the mixing

domain can be written as fi ∈ [η + δ, 2η + δ) ∪ [η + 2δ, 2η + 2δ]. For i, j ∈ {A,B} and

i 6= j, the corresponding best response function is given by

ˆ̂
fi(fj) =


fj + δ, if fj ∈ [f l, f

l
);

fj + η, if fj = fu;

fj − δ − ε, if fj ∈ (fu, f
u
].

We know that all fees in the mixing domain must give an expected profit of fu =

(3/4)πm − πd = η + 2δ.

We now proceed analogously to the proof of Proposition 3. If platform i charges a
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fee in the lower interval—that is, fi ∈ [f l, f
l
)—we obtain an equation analogous to (4),

given by

G2(f + δ)f + (1−G2(f + δ)) 2f = η + 2δ. (10)

This equation determines the mixing probabilities in the upper range.

In case platform i charges a fee in the upper range, that is, fi ∈ [fu, f
u
], the equation

is

G2(f − δ)0 + (1−G2(f − δ)) f = η + 2δ. (11)

This equation determines the mixing probability in the lower range.

Let us first look at (10). Substituting h ≡ f + δ and solving for G2(h) gives

G2(h) =
2h− 4δ − d

h− δ
. (12)

It is easy to check that lim
f↘fu

G2(f) = lim
f↘η+2δ

G2(f) = δ/(η + δ). Moreover, lim
f↗fu

G2(f) =

lim
f↗2δ+2η

G2(f) = 3δ/(2δ + η) < 1. The latter implies the existence of a mass point with

mass 1− 3δ/(2δ + η) = (δ − η)/(2η + δ) at a fee equal to f
u

= 2(η + δ).48

Consider (11). We substitute h ≡ f − δ. Thus, h is now in the lower range. Solving

for G2(h) gives

G2(h) =
h− η − δ
h+ δ

. (13)

It is easy to check that G2(f) = G2(η + δ) = 0, whereas lim
f↗f l

G2(f) = lim
f↗2η+δ

G2(f) =

δ/(2(η+δ)). Note that lim
f↗f l

G2(f) = δ/(2(η+δ)) < δ/(η+δ) = lim
f↘fu

G2(f), which implies

the existence of a second mass point with mass δ/(2(η+ δ)) at a fee equal to fu = η+ 2δ.

The resulting mixing probability is characterized by a cumulative distribution function

of

G2(f) =


f−η−δ
f+δ

, if f ∈ [η + δ, 2η + δ);
2f−η−4δ
f−δ , if f ∈ [η + 2δ, 2(η + δ));

1, if f = 2(η + δ).

The corresponding generalized density is given by

g2(f) = G′2(f) +
η

2(η + δ)
δD(f − (η + 2δ)) +

δ − η
(2η + δ)

δD(f − (2(η + δ))),

48Intuitively, in order to satisfy (10), there must be a positive probability of inducing an agglomeration

equilibrium and receiving 2f in the lower range even for f = f
l
. This is achieved by a mass point at

h = f
u
.
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where

G′2(f) =

{
η+2δ

(f+δ)2
, if f ∈ [η + δ, 2η + δ);

η+2δ

(f−δ)2 , if f ∈ [η + 2δ, 2(η + δ)),

and δD(f − f0) denotes Dirac’s delta function. Replacing η and δ by their respective

definitions yields the result stated in the proposition.

Proof of Proposition 5. In stage 4, both multi-homing and single-homing buyers make

their optimal buying decisions, given the prices charged by sellers in the third stage. In

the third stage, the pricing equilibrium in the product market may be different than with

single-homing buyers. If both sellers in a category are on the same platform, they will still

charge a price of pd in equilibrium and obtain a profit of πd per buyer. Similarly, if only

one seller is active, this seller sets its price equal to πm and earns πm per buyer. However,

if sellers segment and one is active on platform A and the other one on platform B, sellers

no longer charge pm. The reason is that a fraction α of buyers (i.e., the multi-homers)

is informed about both offers. Therefore, the price charged by a seller depends on how

many buyers are informed about both offers. We denote the price charged by a seller

in this situation by p(α), with p(α) ∈ [min{pd, pm},max{pd, pm}], and the respective

per-buyer profit by π(α), with πd/πm ≤ π(α)/πm ≤ 1.

Turning to the second stage, we know that profits in an agglomeration and a stand-

alone equilibrium are unchanged. This is not true for the segmentation equilibrium. If

sellers segment, the total number of buyers for each seller is (1 + α)/2, as explained in

the main text. The profit of a seller active on platform i is then π(α)(1+α)/2−fi. If the

seller deviates and becomes active on platform −i, it obtains a profit of πd(1+α)/2−f−i.
It follows that there is no deviation incentive if

fi ≤ min

{(
π(α)− πd

) (1 + α)

2
+ f−i, π(α)

(1 + α)

2

}
.

In contrast to the case with single-homing buyers where the relevant condition was given

by (3), the buyer mass 1/2 is now replaced by (1 + α)/2 and the monopoly profit πm

is replaced by π(α). Proceeding in the same way as in Appendix A, we obtain that in

the second stage there is unique equilibrium and the conditions for the agglomeration,

the segmentation, and stand-alone equilibrium to occur are still the same as given there,

with πm/2 replaced by π(α)(1 + α)/2.

We can now move to the first-stage. Following the same argument as in the proof of

Proposition 1, we obtain that in the range πd ≥ π(α)(1 +α)/2 an agglomeration equilib-

rium with fees fi = f−i = 0 is the unique equilibrium. Similarly, if both platforms charge

a fee of π(α)(1+α)/2, the only equilibrium is that sellers segment, and a platform’s profit
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equals π(α)(1 + α)/4. A platform has no incentive to deviate from this fee combination,

if

πd ≤ π(α)
1 + α

4
.

Hence, in this range, the unique equilibrium involves fi = f−i = π(α)(1 + α)/2 and a

segmentation equilibrium occurs.

It is evident that the regions are the same as in case where α = 0 with the difference

that πm/2 is replaced by π(α)(1 + α)/2. The same logic applies for the region

π(α)
1 + α

2
> πd > π(α)

1 + α

4
.

By following the same steps as in the proofs of Propositions 1 through 4, we obtain the

same results as in those propositions.

Proof of Proposition 6. Stage 4 works in the same way as without multi-homing: given

sellers’ prices, buyers make their optimal purchasing decisions. In stage 3, due to the

possibility of multi-homing, new competition situations can occur. As mentioned in the

main text, these are that, in a category, either both sellers multi-home or that only

one seller multi-homes whereas the other single-homes on platform i. In the former

situation, regardless of the distribution of buyers, all buyers are informed about both

sellers’ offers. It follows that sellers in the third stage will set a price of pd, leading

to a profit of πd − fA − fB for both sellers. In the latter situation, sellers compete in

an asymmetric way, as the multi-homing seller reaches all buyers, whereas the single-

homing seller reaches only buyers on platform i. If platform i is host to x ∈ (0, 1) buyers,

we denote the prices set by the sellers in the third-stage equilibrium by pSH(x) for the

single-homing seller and by pMH(x) for the multi-homing seller. The respective per-buyer

profits are πSH(x) and πMH(x), respectively, which implies that the profits of the two

sellers are xπSH(x)− fi and πMH(x)− fA − fB.49

We turn to the second stage. We first determine the conditions under which the

different equilibrium configurations determined in the game with single-homing are still

Nash equilibria with multi-homing. First, as before, agglomeration on platform i is an

equilibrium if fi ≤ πd. As there is no buyer on the other platform, the possibility to

multi-home does not change the outcome. The same holds true for the stand-alone

equilibrium on platform i, which is a Nash equilibrium whenever πd < fi ≤ πm. Turning

to the segmentation equilibrium, in addition to the deviations considered in Appendix

A, a seller can now also choose to multi-home. This is not profitable if and only if

49The per-buyer profit of the multi-homing seller, πMH(x), is a weighted average of the profit obtained
from buyers on platform i who are informed about both offers and the profit from buyers on platform
−i who only observe the multi-homing seller’s offer.
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πm/2 − fi ≥ πMH − fi − f−i, where πMH ≡ πMH(1/2). Therefore, the conditions under

which a segmentation equilibrium exists are more demanding than in the case of single-

homing; they are given by

fi ≤ min

{
πm − πd

2
+ f−i,

πm

2

}
and f−i ≥ πMH − πm

2
. (14)

In addition to these equilibria which involve single-homing of sellers, there can also

be equilbria which involve multi-homing along the equilibrium path. One is a full multi-

homing equilibrium in which both sellers multi-home and buyers split evenly on platforms.

This is a Nash equilibrium if no seller has an incentive to deviate to single-homing—that

is, πd − fi − f−i ≥ πSH/2− fi and, thus, in equilibrium, f−i ≤ πd − πSH/2.

In addition, there can be a partial multi-homing equilibrium with the following struc-

ture: In each category, one seller multi-homes and the other one single-homes. A single-

homing seller is active on platform A in half of the categories and on platform B in the

other half of the categories. Buyers are indifferent, as each platform has, in expectation,

the same number of sellers in the buyers’ preferred category and, therefore, buyers will

split evenly. A multi-homing seller’s profit is πMH − fA − fB and the profit of a seller

single-homing on platform i is πSH/2− fi.
We determine the conditions under which this configuration is a Nash equilibrium.

First, any single-homing seller must earn non-negative profits—that is, πSH/2− fi ≥ 0.

Second, it must be optimal for any such sellers to single-home on platform i instead of

single-homing on platform −i—that is, πSH/2− fi ≥ πSH/2− f−i. Third, single-homing

must be better than multi-homing for this seller—that is, πSH/2− fi ≥ πMH − fi − f−i.
Moreover, the multi-homing seller must be better off with multi-homing than with single-

homing on platform i or −i. These conditions are satisfied if πMH − fi− f−i ≥ πd/2− fi
and πMH − fi − f−i ≥ πm/2− f−i.

The same conditions must also hold with fi and f−i interchanged because, in the

partial multi-homing equilibrium, one half of the single-homing sellers are on platform A

and the other half on platform B. Importantly, this implies that πSH/2−f−i ≥ πSH/2−fi.
Taken together with the condition πSH/2 − fi ≥ πSH/2 − f−i (which has been derived

above), this shows that a partial multi-homing equilibrium can only exist if fi = f−i.
50

Using fi = f−i together with all other conditions derived above, we obtain partial multi-

homing is a Nash equilibrium if and only if

fi = f−i, fi ≤
πSH

2
, and πd − πSH

2
≤ fi ≤ πMH − πm

2
. (15)

50Therefore, in the fA-fB-diagram presented in Figure 1, the partial multi-homing equilibrium can
only exist on the 45-degree line.
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As follows from (14) and (15), the partial multi-homing equilibrium and the segmentation

equilibrium co-exist if and only if fi = f−i = πMH − πm/2.

Next, we apply our refinement. First, it is easy to see that the full multi-homing

equilibrium is never coalition-proof. Take the coalition of all sellers and all buyers on

platform i, and consider a deviation in which all buyers go to platform −i and sellers

single-home on platform −i. Then buyers get the same utility as with full multi-homing

but sellers are better off as they receive a profit of πd − f−i > πd − fi − f−i. Therefore,

full multi-homing never survives our refinement.

Turning to the partial multi-homing equilibrium, we determine the conditions for

coalition-proofness of this equilibrium. First, single-homing sellers on platform i can

form a coalition with buyers on platform i and deviate to be active only on platform −i.
Buyers are then better off, as they are informed about all offers on platform −i and sellers

compete in all categories whereas sellers are only better off if πd − f−i > πSH/2 − fi.

As the partial multi-homing Nash equilibrium only exists for fi = f−i, we obtain that

such a deviation is not profitable if πSH/2 ≥ πd. Second, multi-homing sellers can form

a coalition with all buyers on the platform where the sellers are monopolists (platform

i, say) and single-home on platform −i. Buyers are better off, as sellers compete on

platform −i, whereas the originally multi-homing sellers are better off if and only if

πd − f−i > πMH − fi − f−i. Therefore, this deviation is not profitable if fi ≤ πMH − πd.
(The other deviations by sellers do not involve coalitions and, therefore, are already

captured by the conditions for the Nash equilibrium to exist.) We now combine these

conditions with the ones derived in (15). Since coalition-proofness requires πSH/2 ≥ πd,

the lower bound on fi derived in (15) would be weakly negative and, thus, can be replaced

by zero. In addition, the condition πSH/2 ≥ πd also implies πd/πm ≤ 1/2 and, therefore,

πMH − πm/2 ≤ πMH − πd. Hence, the upper bound on fi is min{πSH/2, πMH − πm/2}.
To sum up, the partial multi-homing equilibrium is coalition-proof only if

fi = f−i,
πSH

2
≥ πd, and fi ≤ min

{
πSH

2
, πMH − πm

2

}
. (16)

Next, we determine whether the partial multi-homing equilibrium is in fact selected

in the second stage, given that other equilibrium configurations are coalition-proof as

well. From above, we know that it exists together with the segmentation equilibrium

if and only if fi = f−i = πMH − πm/2. The segmentation equilibrium is then also

coalition-proof and preferred by sellers over the agglomeration equilibrium if πm/2 > πd

(see Appendix A). The profit of a seller in the segmentation equilibrium is πm/2− fi =

πm−πMH . Instead, in the partial multi-homing equilibrium, a single-homing seller’s profit

is πSH/2−fi = (πSH +πm)/2−πMH , which is strictly below the one in the segmentation

equilibrium. A multi-homing seller’s profit is πMH − 2fi = πm− πMH and, therefore, the
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same as in the segmentation equilibrium. It follows that the segmentation equilibrium

profit-dominates the partial multi-homing equilibrium. Hence, if πm/2 > πd, the partial-

multi-homing equilibrium is selected in stage 2 if (16) holds, with the strengthening of

the last condition to fi ≤ πSH/2 and fi < πMH − πm/2.

If instead πm/2 ≤ πd, the partial-multi-homing equilibrium may co-exist with the

agglomeration equilibrium. Because the partial multi-homing equilibrium exists only if

πSH/2 ≥ πd and both fees are the same, the single-homing seller is better off in the

partial multi-homing equilibrium. Since πMH ≥ πSH , the multi-homing seller is better

off as well. Hence, if πm/2 ≤ πd, the partial multi-homing equilibrium will be chosen in

the second stage whenever (16) is fulfilled.

If the partial multi-homing equilibrium does not exist, for fi, f−i ≥ πMH − πm/2,

the same analysis to select an equilibrium as in Appendix A applies, as in this case the

same equilibria exist as without multi-homing. If instead one or both fees are lower

than πMH − πm/2, it follows from (14) that a segmentation equilibrium does not exist.

However, we know from the analysis in Appendix A (see also Figure 1) that in this region

either an agglomeration or a stand-alone equilibrium prevails, depending on parameters.

It follows that, off the diagonal, there is a unique equilibrium in the second stage even

with seller multi-homing, given our selection criterion.

We turn to the first stage. Let us first consider the case πd/πm ≥ 1/2. This implies

that πd > πSH/2, as πm > πSH . Therefore, the partial multi-homing equilibrium does

not exist in this case. It follows that the analysis of the proof of Proposition 1 applies,

leading to fA = fB = 0 in equilibrium, and buyers and sellers play an agglomeration

equilibrium in the second stage.

Second, consider the case πd/πm ≤ 1/4. In the pure-strategy segmentation equilib-

rium of Proposition 2, platforms set fA = fB = πm/2. As πm/2 > πMH − πm/2, due

to the fact that πm > πMH , the segmentation equilibrium exists in this case. From the

analysis of the second stage, it follows that the partial multi-homing equilibrium does

not exist then, and from the proof of Proposition 2 it follows that the pure-strategy seg-

mentation equilibrium is the unique equilibrium in this case. This establishes the first

part of the proposition.

Turning to the range 1/2 > πd/πm > 1/4, we first consider the situation in which

πd > πSH/2, that is, the partial multi-homing equilibrium does not exist. We know

from above that for πMH ≤ πm/2, the segmentation equilibrium exists, which implies

that the equilibrium is the same mixed-strategy equilibrium as the one characterized in

Propositions 3 and 4. By contrast, for πMH > πm/2, a segmentation equilibrium does

not exist. We will now check under which conditions the possibility to multi-home breaks

the mixed-strategy equilibrium of Propositions 3 and 4. This equilibrium exists if the

circle of best responses described in the proofs of these propositions works in the same
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way if sellers can multi-home. However, this circle does no longer exist if one of the fees

in the mixing range is below πMH − πm/2. The reason is as follows: Suppose platform

i sets a fee below πMH − πm/2. Platform −i’s best response in case of single-homing

sellers was to set a higher fee to induce segmentation. However, inducing segmentation

is no longer possible with multi-homing sellers. As a consequence, the best response of

platform −i to a listing fee of fi below πMH − πm/2 is to undercut this fee slightly to

induce an agglomeration equilibrium on platform −i in the second stage. The lowering

of fees then leads to the agglomeration equilibrium with fA = fB = 0.

It remains to be checked under which conditions the lowest fee in the mixing range

is below πMH − πm/2. Starting with the first mixing region we obtain that this holds if

πMH − πm/2 > πm − 2πd or, equivalently,

πMH >
3πm

2
− 2πd.

If this inequality holds, then πMH is also larger than πm/2, implying that any equilibrium

features fA = fB = 0 and agglomeration prevails at the second stage. Instead, if πMH ≤
3πm/2−2πd, the unique equilibrium is the mixed-strategy one, as reported in Proposition

3.

Proceeding in the same way for the second mixing region, we obtain that for

πMH >
3πm

4

any equilibrium features fA = fB = 0 and agglomeration, whereas for πMH ≤ 3πm/4, the

unique equilibrium is the mixed-strategy one, as reported in Proposition 4.

Second, we consider the situation πd ≤ πSH/2. The partial multi-homing equilibrium

then exists for fees fA = fB, with fi ≤ πSH/2 and fi < πMH − πm/2, i = A,B. The

profit of each platform is 3/2fi. However, each platform then has an incentive to lower its

fee slightly. This induces agglomeration (as the segmentation equilibrium does not exist

for fi < πMH − πm/2). The resulting profit of the platform with the lower fee (platform

i, say) is then 2fi. Hence, undercutting is profitable. As a consequence, if a partial

multi-homing equilibrium exists in the full game, it can only occur with fA = fB = 0.

But, then, the same mechanism as described for the case πd > πSH/2 occurs. The mixed-

strategy equilibrium is the unique equilibrium in the first stage for the same region as in

case πd > πSH/2. In the other region, in equilibrium, platforms set their fees equal to

zero. However, in contrast to the case above, for πd ≤ πSH/2, buyers and sellers in the

second stage play the partial multi-homing equilibrium.

Proof of Proposition 7. The third and fourth stage play out similarly as in the case with

listing fees. In the fourth stage, buyers buy according to their demand functions, that
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is, a buyer active on platform i either faces a seller price of pm(φi) or pd(φi), depending

on the number on sellers on platform i, and then buys the respective number of goods

Dm(φi) or Dd(φi). In stage 3, a seller on platform i sets pm(φi) or pd(φi), depending on

the number of rival sellers (either 0 or 1) active on the platform in the seller’s product

category.

We turn to the second stage. Following the same arguments as in case of listing fees,

there potentially exist three types of equilibria with per-transaction fees: agglomeration

equilibria, segmentation equilibria, and stand-alone equilibria. In an agglomeration equi-

librium on platform i, a seller’s profit is πd(φi), whereas in a segmentation equilibrium,

the seller’s profit is πm(φi)/2. In a stand-alone equilibrium on platform i, the profit of

an active seller is πm(φi) and the one of an inactive seller is 0. However, since platforms

charge per-transaction fees, if φi is such that Dm(φi) > 0 and thereby also πm(φi) > 0,

also the inactive seller in each category could make a positive profit by becoming active

on platform i. The reason is that for Dm(φi) to be positive, φi must be below the in-

tercept of the demand curve. This implies that also in duopoly sellers will charge prices

such that Dd(φi) > 0, leading to πd(φi) > 0. Since platforms in the first stage will never

optimally charge a fee which leads to zero demand for sellers, as this implies zero profits

also for platforms, we can restrict attention to those subgames in the second stage in

which fees satisfy Dd(φi) > 0.51 For such fees, a stand-alone equilibrium does not exist in

the second stage and, thus, will never occur along the equilibrium path of the full game.

Next, we determine the equilibrium that is played in the second stage, given our

selection criterion. First, consider the case πd(0)/πm(0) ≥ 1/2. Due to the assump-

tion ∂πm(φi)/∂φi ≤ ∂πd(φi)/∂φi ≤ 0, the condition πd(0)/πm(0) ≥ 1/2 implies that

πd(φi)/π
m(φi) ≥ 1/2 ∀φi. In this case, a segmentation equilibrium cannot exist in the

second stage. The reason is that a coalition of all sellers and buyers on the platform

with the higher fee have the incentive to deviate to the rival platform. It follows that for

πd(0)/πm(0) ≥ 1/2 only an agglomeration equilibrium exists.

Second, suppose that πd(0)/πm(0) < 1/2. Then, for φi, φ−i > 0 but small enough,

we have πd(φ−i) < 1/2πm(φi). In this case, the segmentation equilibrium is the unique

equilibrium selected by our refinement. To see this, note that in a segmentation equi-

librium, sellers on platform i obtain a profit of 1/2πm(φi) and those on platform −i
a profit of 1/2πm(φ−i). A seller active on the platform with the larger fee—for in-

stance, platform i so that φi ≥ φ−i—has no profitable deviation from this configuration

if 1/2πm(φi) ≥ 1/2πd(φ−i). This implies that for πm(φi) ≥ πd(φ−i), segmentation is a

Nash equilibrium. In addition, agglomeration is a Nash equilibrium for all fees φi such

that Dd(φi) > 0. Therefore, multiple Nash equilibria exist in this range. Applying

51If the demand is unbounded (as, for example, with CES demand), implying that there is no demand
intercept, this argument holds true independent of the level of the fee.
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coalition-proofness, it is evident from the same arguments as in the previous paragraph

that the segmentation equilibrium is eliminated if πd(φ−i) ≥ 1/2πm(φi). Thus, if fees

are such that πd(φ−i) ≥ 1/2πm(φi), the unique equilibrium selected by our refinement is

the agglomeration equilibrium on platform i because the segmentation equilibrium is not

coalition-proof.52

For πd(φ−i) < 1/2πm(φi), coalition-proofness does not destroy the segmentation equi-

librium. Applying, in addition, profit dominance of sellers, selects the segmentation

equilibrium as the unique equilibrium. The reason is that a seller’s profit in a segmenta-

tion equilibrium is at least 1/2πm(φi), which is larger than the one in the agglomeration

equilibrium, where a seller obtains only πd(φ−i). Since the condition πd(φ−i) < 1/2πm(φi)

is stronger than πd(φ−i) ≤ πm(φi) (i.e., the condition for a segmentation equilibrium to

exist), the segmentation equilibrium is selected by our refinement, whenever the condition

holds.

Given our refinement, the equilibrium in the second stage is summarized as follows:

Suppose that φi ≥ φ−i. If πd(0)/πm(0) ≥ 1/2, agglomeration equilibrium on platform −i
occurs. If, by contrast, πd(0)/πm(0) < 1/2, the segmentation equilibrium is played for

1/2πm(φi) > πd(φ−i) and agglomeration on platform −i occurs for 1/2πm(φi) ≤ πd(φ−i).

We turn to the first stage. Following the same arguments as in the proof of Proposition

1, it is evident that for πd(0)/πm(0) ≥ 1/2, the unique equilibrium implies (φ?A, φ
?
B) =

(0, 0), as sellers will coordinate on the platform with the lower per-transaction fee. This

establishes the first part of the proposition.

For πd(0)/πm(0) < 1/2, we establish next the constraints under which a pure-strategy

segmentation equilibrium exists. The highest platform profits that can be obtained in

a segmentation equilibrium is reached with fees φA = φB = φm. Then, platform i can

induce agglomeration only by setting a fee φi such that πd(φi) ≥ πm(φm)/2. Denoting the

largest such fee by φ′ (as in the proposition), such a deviation to φi = φ′ is not profitable

if φmDm(φm)/2 ≥ 2φ′Dd(φ′). This establishes the second part of the proposition, which

reports equilibrium transaction fees (φ?A, φ
?
B) = (φm, φm).

Finally, by the same arguments as in Section 3, there is no pure-strategy equilibrium

in the range such that πd(0)/πm(0) < 1/2 and φmDm(φm) < 4φ′Dd(φ′). In this case,

the mixed-strategy equilibrium can be obtained in a similar way as in the proofs of

Propositions 3 and 4. In particular, there will again be two regions, one in which mixing

occurs on a convex set and the other in which mixing occurs on a non-convex set. Let us

characterize the mixed-strategy equilibrium in each of those two regions.

In the region in which mixing occurs on a convex set, we denote the upper and the

52Note that because ∂πm(φi)/∂φi ≤ ∂πd(φi)/∂φi ≤ 0, we can have πd(0)/πm(0) < 1/2 but πd(φ−i) ≥
1/2πm(φi) if fees are sufficiently high. Then, a segmentation equilibrium is played if fees are close to
zero but an agglomeration one for high fees.
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lower bound of the range by φ̄ and φ, respectively. A platform must be indifferent between

setting φ̄ and φ, which leads to

2Dd(φ)φ =
Dm(φ̄)φ̄

2
. (17)

In addition, following the same steps as in the proof of Proposition 3, there exists a fee,

denoted by φ̃, in the interior of the randomization domain, which induces segmentation

with probability (almost) 1. At this fee, sellers are indifferent between agglomeration and

segmentation if one platform charges φ̃ and the other φ, which yields

πd(φ) =
πm(φ̃)

2
. (18)

The same holds if one platform charges φ̃ and the other φ̄, which yields

πm(φ̄)

2
= πd(φ̃). (19)

The three equations (17), (18), and (19) determine the three fees φ̃, φ̄, and φ and, thus,

the mixing range. By our assumption that πm falls to a larger extent than πd with an

increase in the per-transaction fee and that the same relation holds true for Dm and Dd,

the three fees φ̃, φ̄, and φ are uniquely determined.

The best-response function φi(φj) is implicitly defined by

πm(φi)

2
= πd(φj) for φj = [φ, φ̃],

and

πd(φi) =
πm(φj)

2
for φj = (φ̃, φ̄].

Using these best responses and determining expected profits, we derive the mixing prob-

abilities. We obtain that, in equilibrium,

G(φ) =
ξ(φ)Dm(ξ(φ))− φ̃Dm(φ̃)

ξ(φ)Dm(ξ(φ))
if φ = [φ, φ̃], (20)

with ξ(φ) ≡ (πm)−1 (2πd(φ)), and

G(φ) =
4ψ(φ)Dd(ψ(φ))− φ̃Dm(φ̃)

4ψ(φ)Dd(ψ(φ))− ψ(φ)Dm(ψ(φ))
if φ = (φ̃, φ̄], (21)

with ψ(φ) ≡
(
πd
)−1

(πm(φ)/2). The mixing probabilities given by (20) and (21), together

with the equations determining φ̃, φ̄, and φ characterize the mixed-strategy equilibrium,
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which exists if φ̄ ≤ φm.

To see that G(φ) = 0, note that, from (18), we can write ξ(φ) = φ̃. Inserting this into

(20) yields G(φ) = 0. Similarly, from (19), we can deduce that ψ(φ̄) = φ̃. Inserting this

into (21) yields G(φ̄) = 1. To show that there is a mass point at φ = φ̃, we can use (20)

and (21) to get

lim
φ↗φ̃

G(φ) =
φ̄Dm(φ̄)− φ̃Dm(φ̃)

φ̄Dm(φ̄)
(22)

and

lim
φ↘φ̃

G(φ) =
4φDd(φ)− φ̃Dm(φ̃)

4φDd(φ)− φDm(φ)
(23)

Using (17), which implies that φ̄Dm(φ̄) = 4φDd(φ), it is evident that the numerator of the

right-hand side of the previous two equations is the same. Comparing the denominators,

we obtain φ̄Dm(φ̄) = 4φDd(φ) > 4φDd(φ) − φ̃Dm(φ̃). Therefore, the denominator of

lim
φ↗φ̃

G(φ) is larger than the one lim
φ↘φ̃

G(φ), which yields lim
φ↗φ̃

G(φ) < lim
φ↘φ̃

G(φ). Hence,

there is a mass point at φ = φ̃.

If φ̄ > φm, this equilibrium cannot exist, as a platform will never find it optimal to set

a higher per-transaction fee than φm. In this region, we obtain an equilibrium with a non-

convex randomization domain. Following the proof of Proposition 4, the lower interval

is given by [φ′, φ′], where φ′ is implicitly defined by 2Dd(φ′)φ′ = Dm(φm)φm/2, and φ′

is defined as in the proposition. The upper interval is [φ′′, φm], where φ′′ is implicitly

defined by πd(φ′) = πm(φ′′)/2.53

The existence of mass points at φ = φ′′ and φ = φm can be shown as above. The

mixing probabilities can be derived in the same way as in the case with a convex set.

They are given by

G̃(φ) =
ξ(φ)Dm(ξ(φ))− φ′′Dm(φ′′)

ξ(φ)Dm(ξ(φ))
if φ = [φ′, φ′),

G̃(φ) =
4ψ(φ)Dd(ψ(φ))− φ′′Dm(φ′′)

4ψ(φ)Dd(ψ(φ))− ψ(φ)Dm(ψ(φ))
if φ = [φ′′, φm),

and

G̃(φ) = 1 if φ = φm.

Proof of Proposition 8. The third and the fourth stage play out in a similar way as in

the baseline model. In the fourth stage, buyers make their buying decisions to maximize

utility, and in the third stage, sellers set their product prices, conditional on the number

53Due to our assumptions on the shape of the profit and demand functions, all boundaries are unique.



Segmentation versus Agglomeration 62

of sellers in their product category on the platform.

In the first part of the proof, we determine the conditions under which fi = 0, ∀i =

1, ..., N , is an equilibrium of the full game. Note that, given fi = 0, ∀i = 1, ..., N , as

long as in the equilibrium of the second stage at least one platform does not carry any

trade, then no platform can profitably deviate by increasing its fee in the first stage. The

reason is that, if a platform carried a positive volume of trade in the equilibrium with

zero fees, then, after the deviation, sellers and buyers active on this platform would form

a coalition and move to one of the platforms with a fee of zero. If the deviating platform

carries no trade, a higher fee cannot make this platform better off since it will not attract

any buyers and sellers.

To determine the condition under which a platform could profitably deviate from

fi = 0, given that all other platforms charge a fee of zero, we distinguish between the

cases M = kN and M 6= kN . Recall that k is the largest integer such that M ≥ kN .

First, we analyze the case M = kN . We know from above that, given zero fees, a

platform only has an incentive to deviate to a strictly positive fee if all platforms carry

a positive volume of trade. The latter can only occur if each platform hosts k = M/N

sellers. This leads to a profit per seller of π(k)/N ≥ 0. The most profitable deviation by

a coalition in the second stage is then that one seller moves to another platform together

with all buyers (as those benefit from the additional seller). The seller’s profit is then

π(k + 1). It follows that for

π(k + 1) <
π(k)

N
, (24)

the deviation is not profitable for the seller, and an equilibrium exists in which all N

platforms carry a positive volume of trade. To the contrary, if the condition is not

fulfilled—i.e., π(k+1) ≥ π(k)/N as in condition (1)—no equilibrium candidate in stage 2

withN platforms carrying positive volumes of trade exists. Then, for fi = 0, ∀i = 1, ..., N ,

only a subset of platforms will carry a positive volume of trade, which implies that

no platform can profitable deviate from these fees. This proofs the first part of the

proposition for M = kN .

Second, consider the case M 6= kN . We start by demonstrating that there can never

be a coalition-proof equilibrium in which sellers in different categories split differently

on the platforms. To see this, consider the case in which all sellers and all platforms

are active. Buyers are then only indifferent between platforms if each one is on average

host to M/N sellers. To achieve this, we can split the mass of categories in N segments,

each with a mass 1/N . In each segment, a platform has either k or k + 1 sellers in

the respective categories, according to the following two rules. First, in each segment, a

number N(k + 1 −M/N) of platforms is host to k sellers and a number N(M/N − k)

is host to k + 1 sellers. Then, in each segment of categories, all M sellers are active.
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Second, we allocate to each platform k sellers in N(k+ 1)−M segments and k+ 1 sellers

in M − N(k) segments. Then, summing up over the categories, the average number of

sellers on each platform is M/N .54

However, such a distribution is not coalition-proof. Take one segment of categories

and consider all sellers who are active on a platform with k+ 1 sellers in their categories.

Take as a coalition one seller in each category within the segment together with all buyers

on the seller’s platform. This coalition has an incentive to go to a platform with only k

sellers. Per category, the deviating seller then obtains a profit (excluding the listing fee)

of 2π(k+1)/N , whereas without the deviation the profit is only π(k+1)/N . In addition,

also the buyers benefit as they now expect more sellers on the platform than before (i.e.,

the expected number of sellers is k + 1 instead of M/N). It follows that there exists a

profitable deviation from such an asymmetric equilibrium.

The same argument holds if only a subset of sellers is active. Therefore, if listing fees

are symmetric on all platforms, the equilibrium in the second stage must be symmetric

across all categories.

We now determine for the case M 6= kN , under which conditions fi = 0, ∀i = 1, ..., N ,

is an equilibrium in the first stage. Suppose first that only a subset of platforms has a

positive volume of trade. In this situation, sellers and buyers in the second stage choose

either agglomeration (that is, all buyers and all active sellers are on one platform) or an-

other distribution in which all platforms with positive market share host the same number

of sellers in all categories. The selected equilibrium depends on the profits that sellers

obtain and the numbers M and N .55 In this situation, following the same arguments as

in the case M = kN , no platform can profitably increase its fee.

Instead, suppose that all platforms carry a positive volume of trade. Proceeding

analogously to the case M = kN , we obtain inequality (24) also for the case M 6= kN .

We now show that if (24) holds, an equilibrium with zero fees will not be selected

by profit-dominance in the first stage. Suppose that (24) holds and all platforms charge

strictly positive fees. Then, slightly lowering the fee is not profitable for a platform, as

sellers and buyers will still play a segmentation equilibrium in the second stage, in which

all platforms have a positive market share and are host to k sellers. As a consequence,

an equilibrium with strictly positive fees exists. However, as M 6= kN , an equilibrium

54For example, if M = 11 and N = 4, we split the categories in 4 segments, each one with mass 1/4.
In the first one of these segments, platform 1 is host to 2 sellers in all categories in the segment, whereas
platforms 2, 3, and 4, are host to 3 sellers. In the second segment, platform 2 is host to 2 sellers and
all others platforms are host to 3 sellers, whereas in the third (fourth) segment, platform 3 (4) is host
to 2 sellers and the other platforms are host to 3 sellers. Then, each platform has on average 11/4 and
sellers and buyers are indifferent.

55Suppose, for example, that there are 10 sellers per category, 3 platforms, and π(10) > 0. Then, in
the first equilibrium type, one platform is host to 10 sellers, whereas in the second equilibrium type, two
platforms host 5 sellers each.
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in which fi = 0, ∀i = 1, ..., N always exists since at least one platform will not carry

a positive trade volume. Yet, the latter is profit-dominated. Therefore, the equilibrium

with strictly positive fees will be selected in the first stage, whenever the two equilibria

co-exist. To sum up the analysis so far, in case M ≥ N , a pure-strategy equilibrium in

the first stage with fi = 0, ∀i = 1, ..., N exists and is selected if and only if condition (1)

is satisfied.

From the preceding arguments, it also follows that for M < N , the unique equilibrium

involves fi = 0, ∀i = 1, ..., N , as in any equilibrium in the second stage, only a subset of

platforms can carry a positive amount of trade.

In the second part of the proof, we turn to the segmentation equilibrium with positive

fees. From above, we know that for an equilibrium with positive fees to exist, all platforms

must carry a positive volume of trade. This implies that each platform will have a mass

of 1/N buyers. Suppose that in a segmentation equilibrium candidate, each platform

hosts l ∈ {1, ..., k} sellers. Then, a platform i can charge at most fi = π(l)/N , leading

to a platform profit of Πi = lπ(l)/N and zero profits to sellers. Consider a coalition of

one seller on a platform j 6= i together with all buyers (i.e., not only those on platform

j but the whole buyer mass of 1). If this coalition deviates to platform i, all buyers

benefit as they now face l + 1 sellers instead of only l. The seller instead benefits only if

π(l+ 1) > π(l)/N . In addition, it is easy to check that this coalition leads to the tightest

condition for a segmentation equilibrium to exist in the second stage, as a deviation

involving more than one seller (per category) leads to lower seller profits. It follows that

segmentation is an equilibrium in the second stage if and only if π(l)/N ≥ π(l + 1).

We turn to the first stage and check if a platform has a profitable deviation from the

equilibrium candidate fi = π(l)/N . Consider the deviation in which platform i sets a fee

slightly below π(l+ 1). It then attracts l+ 1 sellers and, thereby, also all buyers. Hence,

the deviating platform’s profit is (l+1)π(l+1). Therefore, this deviation is not profitable

if lπ(l)/N ≥ (l+ 1)π(l+ 1). This condition is (weakly) stronger than π(l)/N ≥ π(l+ 1),

which was derived for the candidate segmentation equilibrium to exist in the second

stage. Thus, we can focus on the first stage.

By the same logic as in the previous paragraph, a platform can also deviate to any

fee slightly below π(m), with l < m ≤ M . The most profitable deviation is therefore

to set a fee of π(m̂), with m̂ ∈ arg maxl<m≤M mπ(m). It follows that if there exists

some l ∈ {1, ..., k} such that (2) holds, a pure-strategy segmentation equilibrium exists

in which platforms charge fi = π(l)/N . Applying profit-dominance in the first stage,

platforms choose fi = π(l?)/N , such that l? ∈ arg maxl∈{1,...,k} lπ(l) subject to condition

(2).

In the third part of the proof, we show that if (1) is not satisfied, this does not imply

that (2) holds (i.e., there can be a region in which neither condition is satisfied). To
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see this, note that for π(k)/N > π(k + 1), condition (1) is not satisfied. We now turn

to condition (2). Suppose first that l = k. Then, (2) holds if kπ(k)/N ≥ m̂π(m̂) or

π(k)/N ≥ m̂π(m̂)/k. We know that m̂ > k, which implies that m̂ must be at least k+ 1.

Inserting m̂ = k + 1 into π(k)/N ≥ m̂π(m̂)/k yields π(k)/N ≥ (k + 1)π(k + 1)/k. It is

easy to see that for

π(k + 1) <
π(k)

N
<

(k + 1)π(k + 1)

k

neither (1) nor (2) is satisfied. Since the right-hand side of (2) is at least as high as

(k + 1)π(k + 1) (due to the fact that m̂ is chosen to maximize mπ(m) with respect to

m), this also holds if m̂ 6= k + 1.

A similar argument obtains for the case in which l 6= k. Rewriting (2), we obtain

π(l)/N ≥ m̂π(m̂)/l. The left-hand side of the previous inequality is larger than the right-

hand side of (1). However, π(k)/N > π(k + 1) does not rule out that there exists an m̂,

such that π(l)/N < m̂π(m̂)/l holds. In this case, again neither (1) nor (2) is satisfied.

Showing that there is a unique mixed-strategy equilibrium in this case follows from the

same arguments as in the proofs of Propositions 3 and 4. Platform profits in the mixed-

strategy equilibrium are strictly positive. This follows because, if π(k + 1) ≥ π(k)/N

is violated, each platform sets a strictly positive fee even if all other platforms charge

a fee of zero. Therefore, setting a fee equal to zero is not part of the mixing domain.

As a consequence, the mixed-strategy equilibrium profit-dominates the pure-strategy

equilibrium with f ?i = 0, ∀i = 1, ..., N , which exists for the case M 6= kN . Therefore, the

mixed-strategy equilibrium is always selected in the first stage.
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