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Abstract

Many inferential statistical tests require that the observed variables have a nor-

mal distribution. Monte Carlo simulations are used to investigate the effects of

non-normality by repeatedly applying these tests to samples from a non-normal dis-

tribution, for which the correct inference is known. A prerequisite of Monte Carlo

studies is an algorithm that generates such samples, thereby controlling three param-

eters: (1) the correlation among random variables, (2) the marginal distributions,

and (3) the multivariate distribution. Most previously used algorithms only allow

control over the correlations and the marginals, but recent results show that the

robustness of certain methods depends on the multivariate distribution as well.

In my thesis, I suggest a new method to generate samples from non-normal dis-

tributions that allows manipulations of all three parameters simultaneously. In the

first manuscript, I develop an algorithm that jointly controls the correlation matrix,

one central moment of the marginals, and the multivariate distribution. Addition-

ally, I also show that the multivariate distribution has a distinct impact on the

robustness of a structural equation model. In the second manuscript, the algorithm

is extended to allow control over multiple central moments of the marginals. The

third manuscript applies the algorithm to extraction criteria for exploratory factor

analysis. Parallel analysis, the extraction criterion with the highest accuracy, was

unaffected by the underlying distribution.

Overall, my thesis provides Monte Carlo studies with a powerful tool to reeval-

uate the robustness of various statistical tests under conditions of non-normality,

especially when the assumption of normality pertains to a multivariate distribution.

By considering a wider range of plausible data conditions, empirical research can

profit from a more accurate assessment of the validity of statistical tests.
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Manuscripts

This thesis is based on three manuscripts which have been published or have been

submitted for publication in peer-reviewed journals. The manuscripts are listed

below and appended to this thesis in the order in which they will be discussed.

1. Auerswald, M., & Moshagen, M. (2015). Generating correlated, non-normally

distributed data using a non-linear structural model. Psychometrika, 80, 920-

937.

2. Auerswald, M., & Moshagen, M. (2017). Sampling from arbitrary non-normal

distributions with given covariance and central moments. Manuscript submit-

ted for publication.

3. Auerswald, M., & Moshagen, M. (2017). How to determine the number of

factors to retain in exploratory factor analysis? A comparison of extraction

methods under realistic conditions. Manuscript submitted for publication.
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Introduction & Theoretical

Background

One might wonder if even one psychological data set existed, that allowed to test

research hypotheses while fulfilling all assumptions underlying the statistical test.

Depending on the test, these assumptions include, for example, that missing data

are not systematically missing, that the criterion can be expressed as a linear com-

bination of predictors, or that the residuals of the model are independent (e.g. Gel-

man & Hill, 2007; Tabachnick & Fidell, 2012). One prominent assumption that is

commonly violated in empirical data sets is multivariate normality (Blanca, Arnau,

López-Montiel, Bono, & Bendayan, 2013; Cain, Zhang, & Yuan, in press; Micceri,

1989). This violation is typically ignored in empirical analyses (Keselman et al.,

1998) because most statistical methods are considered to be fairly robust against

this violation (e.g. Gelman & Hill, 2007), which means that inferences are still more

or less correct even though the assumption of multivariate normality is violated.

The process of determining the robustness of a statistical method with regards to

non-normality involves the generation of random samples in which this assumption

is violated and the correct inference is known. For example, in a two-sample t-test,

a robustness study could consist of generating multiple random samples from two

non-normal distributions with the same population mean µ and repeatedly applying

t-tests that compare the sample means to each other. The two-sample t-test would

then be considered as robust if, for example, the empirical Type I error rate (the

proportion of significant results in the simulation) is comparable to the nominal α

error. The result of such a Monte Carlo simulation study obviously depends on the

choice of distributions. Distributions that are more similar to a normal distribution

yield empirical Type I error rates closer to the theoretical α (Harwell, Rubinstein,
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Hayes, & Olds, 1992). Since real data samples show a large variety of distributions

(Cain et al., in press), robustness studies should provide results for a wide range of

distributions, allowing practitioners to assess if the validity of their analysis is in

peril for a given data set and statistical method.

The main goal of this thesis is to provide a more flexible algorithm, called

NOTAMO (NOrmal To Arbitrary MOments), that generates non-normally dis-

tributed random variables for Monte Carlo robustness studies. Most previously

used algorithms only allowed the manipulation of marginal distributions, either di-

rectly (Cario & Nelson, 1997) or by specifying the univariate skewness and kurtosis

of the distributions (Vale & Maurelli, 1983). In contrast, NOTAMO allows for the

generation of different multivariate distributions with the same marginals, thereby

creating data conditions that would be treated as equivalent in other robustness

studies. Importantly, the results of robustness studies depend on variations of the

multivariate distribution, thus limiting the extent to which other simulation results

can be generalized to real data sets.

The introductory chapter is organized as follows: First, I give an overview of

measures that describe distributions, such as skewness and kurtosis. These measures

are often utilized in robustness studies to set up guidelines, i.e., that a specific

method is unaffected by non-normality as long as e.g. the kurtosis is within a certain

range. Second, I summarize results on the robustness of the general linear model

and structural equation models regarding non-normality. I will end the chapter by

outlining three methods that generate non-normal multivariate data. The second

chapter gives summaries of the articles this thesis is based on, including a discussion

of each article in relation to the central goal of the thesis. The concluding third

chapter presents a general discussion and an outlook to future research questions

related to robustness studies and multivariate normality.
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1.1 Assessing Non-normality

Univariate continuous distributions are usually expressed by their probability density

function (PDF ) f(x), where

Pr[a ≤ X ≤ b] =

∫ b

a

f(x)dx, (1.1)

for a random variable X. Thus, the PDF is used to obtain the probability that

X falls into a given interval [a, b]. Similarly, the cumulative density distribution

(CDF ) F (x) expresses the random variable X as

Pr[X ≤ x] = F (x), (1.2)

and obtains the probability that X is smaller or equal to a given value x. For

multivariate continuous distributions, the concept of a CDF can be extended to the

joint cumulative distribution function

Pr[X1 ≤ x1, ..., Xd ≤ xd] = F (x1, ..., xd), (1.3)

for d random variables X1, ..., Xd and gives the probability that each X1, ..., Xd is

smaller or equal to x1, ..., xd. While simulation studies can use PDFs and CDFs

to define a random variable, the underlying distribution of a random variable in an

observed sample is unknown and needs to be estimated. Instead, empirical samples

are typically described by their mean, (co)variance, skewness, and kurtosis (Blanca

et al., 2013). In this chapter, I give an overview of measures and tests used to

assess the distribution of an empirical sample. These measures are necessary for

simulation studies, as they provide guidelines for which distributions a statistical

method is robust and therefore connect simulation studies with empirical practice.

1.1.1 Univariate Measures

Univariate measures assess the characteristics of marginal distributions, which is

especially useful in cases where the assumption of normality is made for single ran-

dom variables such as the errors in a linear regression (e.g. Gelman & Hill, 2007).
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Skewness and kurtosis are the most commonly used indicators of non-normality, and

both are standardized central moments of the distribution.

Univariate Skewness

Population skewness is defined as

γ1 = E

[(
X − µ
σ

)3
]
, (1.4)

for a random variable X with mean µ, standard deviation σ, and E is the expected

value. Skewness is generally used as an indicator of asymmetry that can take values

from negative to positive infinity. Symmetric distributions (such as the normal

distribution) have skewness γ1 = 0 and non-zero values indicate that the distribution

is asymmetric. In particular, a positive skewness results if the distribution ’leans’

to the left, has longer right tails, and/or a higher density in the right tail, whereas

negative skewness is associated with a right-leaning distribution and longer or fatter

left tails. For example, reaction time data often have positive skewness, as responses

cannot fall below a threshold due to response times of the motor system and very

slow responses tend to occur less often (Palmer, Horowitz, Torralba, & Wolfe, 2011).

Accuracy data of simple cognitive tasks tend to be negatively skewed, because most

participants respond to most tasks correctly (Wang, Zhang, McArdle, & Salthouse,

2008). Figure 1.1 displays PDFs of (standardized) generalized normal distributions

(Log-Normal3, Asquith, 2017) with shape parameters κ = 0.71, κ = 0.44, and κ = 0,

resulting in skewness γ1 = 3, γ1 = 1.5, and a standard normal distribution with γ1 =

0. Skewness is not always easy to interpret because it depends on both characteristics

of the tails and center of the distribution. It is a common misconception to state

that a skewness of γ1 = 0 implies that a distribution is symmetric (e.g., Blanca et

al., 2013). Distributions can be left-leaning and have a longer left tail, resulting in

skewness γ1 = 0 and an asymmetric distribution (see e.g., Meijer, 2000).

Sample skewness is usually estimated by Fisher’s G1 estimate, defined as

G1 =

√
N(N − 1)

N − 2

m3

m
3/2
2

, (1.5)



Non-normal distributions 7

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

X

D
en

si
ty

γ1 = 0
γ1 = 1.5
γ1 = 3

Figure 1.1: Probability density functions of (standardized) generalized normal dis-

tributions (Log-Normal3) with shape parameters κ = 0, κ = 0.44, and κ = 0.71.

The resulting distributions have skewness γ1 = 0, γ1 = 1.5, and γ1 = 3, respectively.

where

mr =
1

N

N∑
i=1

(xi − x̄)r. (1.6)

In general, G1 is a consistent but not unbiased estimate of γ1 and can deviate from

the population skewness considerably even in samples with N = 100 (Joanes & Gill,

1998).

Cain et al. (in press) investigated the empirical skewness of 1,567 variables from

194 psychological studies and found that 66% exhibited skewnesses significantly

different from 0, which increased to 82% in studies with larger sample sizes (N >

106). The range of observed skewnesses was [−10.87, 25.54] with −1.17 and 2.77 as

the 5th and 95th percentile, indicating that the absolute skewness is typically smaller

than three. For studies with very small sample sizes (N ≤ 30), Blanca et al. (2013)

reported skewness estimates from 693 studies in the range [−2.49, 2.33], which is

considerably less extreme but potentially underestimates the population skewness

because G1 was used as an estimator (Joanes & Gill, 1998). Overall, skewness is

a property of distributions commonly encountered in samples of observed random

variables.
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Univariate Kurtosis

Kurtosis is defined as

γ2 = E

[(
X − µ
σ

)4
]
, (1.7)

and can vary between 1 and positive infinity, where normal distributions have

γ2 = 3.1 It is typically interpreted as the probability density of the peak and

tails of the distribution, relative to the shoulders (at µ ± σ). Values of kurtosis

γ2 < 3 are associated with platykurtic distributions that are less peaked, have flat-

ter tails, and higher density in the shoulders, whereas distributions with γ2 > 3 are

leptokurtic and have a higher peak and longer/fatter tails on both sides (DeCarlo,

1997). Figure 1.2 shows the PDFs of platykurtic (standardized) exponential power

distributions (Nadarajah, 2005) with kurtosis γ2 = 1.85, γ2 = 2.2, and a standard

normal distribution (γ2 = 3) on the left. The right panel of Figure 1.2 displays

leptokurtic Student t distributions with df = 4.1, df = 6, and df = ∞ resulting in

kurtosis γ2 = 60, γ2 = 6, and a standard normal distribution. Observed variables

with extreme outliers are often leptokurtic, such as reaction times (Palmer et al.,

2011) or income (Cain et al., in press). A typical example for a platykurtic distri-

bution is age, as there is in general a comparable number of individuals across the

age range (Cain et al., in press).

Sample kurtosis is often estimated by Fisher’s G2 estimate,

G2 =
N − 1

(N − 2)(N − 3)

[
(N + 1)

(
m4

m2

− 3

)
+ 6

]
+ 3, (1.8)

with m2 and m4 as in Equation 1.6. In general, G2 is consistent but not unbiased

and tends to underestimate the kurtosis in smaller samples (N ≤ 100), especially if

the population kurtosis is large (Joanes & Gill, 1998).

In empirical samples, Cain et al. (in press) reported a range from 1.80 to 1, 096.48

for kurtosis with 1.72 and 12.48 as the 5th and 95th percentiles, indicating that few

observed variables exhibit extreme values. However, the kurtosis of a majority of

distributions again deviated from the normal distribution (54%). In very small sam-

1Excess kurtosis is defined as γ2,ex = γ2 − 3 (so that normal distributions have γ2,ex = 0) and
is sometimes used as an alternative definition of kurtosis. To avoid confusion, I only use kurtosis
as defined in Equation 1.7.
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Figure 1.2: Probability density functions of distributions with varying kurtosis.

The left panel displays (standardized) exponential power distributions with shape

parameters β = 13.45, β = 3.93, and β = 2, resulting in distributions with kurtosis

γ2 = 1.85, γ2 = 2.2, and a standard normal distribution (γ2 = 3). The right panel

displays (standardized) t distributions with df = ∞, df = 6, and df = 4.1. The

corresponding distributions have kurtosis γ2 = 3, γ2 = 6, and γ2 = 60, respectively.

ples (N ≤ 30), the range of observed kurtosis values was [1.08, 10.41] and therefore

more narrow (Blanca et al., 2013), but this could be due to G2’s bias to underes-

timate the population kurtosis. In sum, most observed variables display kurtosises

different from γ2 = 3 and both leptokurtic as well as platykurtic distributions are

not uncommon.

Central Moments

Standardized central moments can be understood as the generalization of skewness

and kurtosis. The kth central moment of a distribution is defined as

µk = E
[
(X − µ)k

]
, (1.9)

where E is again the expected value and µ is the population mean. The central

moment can be standardized to obtain

µ̃k =
µk
σk
, (1.10)

with standard deviation σ. If k ∈ {3, 4}, this is equivalent to Equation 1.4 for

skewness and Equation 1.7 for kurtosis, respectively. The standardized moments
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with k > 4 can be used to describe a distribution further2 but they are virtually

never used in empirical practice, likely as a result of being difficult to interpret.

However, central moments draw attention to the fact that univariate distributions

can differ despite equal mean, variance, skewness, and kurtosis.

Figure 1.3 displays two random variables with skewness γ1 = 0 and kurtosis

γ2 = 3. The left panel shows the PDF

fmix(x) =
1

2
Γ(x, 2.30, 0.36) +

1

2
Γ(−x, 2.30, 0.36), (1.11)

which is a mixture distribution where Γ(x, k, θ) is a gamma distribution with shape

parameter k = 2.30 and scale parameter θ = 0.36. The shape and scale parameter

were chosen to obtain σ = 1 and γ2 = 3. The distribution is symmetric, so γ1 = 0.

The right panel displays a discrete probability mass function with three unique

values, m1, m2, and m3. These values with corresponding probabilities p1, p2, p3

were chosen to satisfy

p1m1 + p2m2 + p3m3 = 0

p1m
2
1 + p2m

2
2 + p3m

2
3 = 1

p1m
3
1 + p2m

3
2 + p3m

3
3 = 0

p1m
4
1 + p2m

4
2 + p3m

4
3 = 3

p1 + p2 + p3 = 1,

(1.12)

which guarantees the desired skewness and kurtosis. In the solution displayed in Fig-

ure 1.3, m1 = −3.43,m2 = −0.64,m3 = 1.28 with p1 = .014, p2 = .632, p3 = .354,

respectively. Both random variables are indistinguishable from a standard normal

distribution based on the first four moments but differ regarding moments of higher

order. The distributions are clearly not normal, thereby illustrating the shortcom-

ings of relying on a few moments to characterize a distribution appropriately.

2However, even an infinite sequence of all moments is in general insufficient to define a unique
distribution, which is known as the problem of moments (e.g. Joe, 1997).



Non-normal distributions 11

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Gamma Mixture PDF

X

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Probability Mass Function

X

P
ro

ba
bi

lit
y

Figure 1.3: Two random variables with skewness γ1 = 0 and kurtosis γ2 = 3, equal

to the skewness and kurtosis of a normal distribution. The left panel displays the

probability density function of a standardized mixture of gamma distributions with

shape parameter k = 2.30. The right panel shows the probability mass function of

a discrete distribution with values m1 = −3.43, m2 = −0.64, and m3 = 1.28.

1.1.2 Multivariate Measures

Multivariate measures are used to assess characteristics of the multivariate distri-

bution, which is necessary if the assumption of normality applies to the joint dis-

tribution of observed variables as in structural equation models (SEM, Bollen,

1989). Univariate measures are also regularly (and mistakenly) used to investigate

multivariate normality, despite the fact that a multivariate distribution can be non-

normal while exhibiting normal marginals (Dutta & Genton, 2014). Figure 1.4 shows

a bivariate distribution with normal marginals, in which the density of quadrant II

and IV is redistributed to quadrant I and III, according to the example of Dutta

and Genton (2014). If one would only check the marginals of distributions as in

Figure 1.4, the distribution would appear perfectly normal despite the obvious devi-

ation from multivariate normality. Consequently, distributional aspects of marginal

distributions may fall short to allow for conclusions regrading the underlying mul-

tivariate distribution. Instead, measures that attempt to capture properties of the

multivariate distribution itself are required.
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Figure 1.4: Heatmap of a bivariate sample (N = 100, 000) of a non-normal distri-

bution with normal marginals, according to Dutta and Genton (2014).

Multivariate Skewness and Kurtosis

Multivariate skewness and kurtosis are the multivariate extension of their respective

univariate counterpart (Mardia, 1970). They assess similar characteristics as uni-

variate skewness and kurtosis, but are based on the joint distribution and take the

covariance between random variables into account. Let X = (X1, ..., Xd) be a d× 1

vector of d random variables with biased sample covariance matrix S defined as

S =
1

N

N∑
i=1

(Xi − X̄)(Xi − X̄)′. (1.13)

Then, multivariate sample skewness is defined as

b1,d =
1

N2

N∑
i=1

N∑
j=1

[
(Xi − X̄)′S−1(Xj − X̄)

]3
. (1.14)

Multivariate normal distributions have a multivariate skewness of b1,d = 0 and higher

values indicate a stronger deviation from normality. In empirical samples, Cain et
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al. (in press) reported values in the range from 0 to 1, 263 with a median of 3.08

and mean 32.94. A majority of data sets demonstrated multivariate skewness that

significantly differed from zero (58%).

Multivariate sample kurtosis is defined as

b2,d =
1

N

N∑
i=1

[
(Xi − X̄)′S−1(Xi − X̄)

]2
, (1.15)

where S and X are as above. Normal distributions have a multivariate kurtosis of

d(d+2), smaller values indicate a platykurtic distribution, and larger values indicate

a leptokurtic distribution. Cain et al. (in press) observed empirical multivariate

kurtosis in the range from 1.99 to 1, 476 with median 18.90 and mean 78.70. Again,

57% of kurtosis values were significantly different from the corresponding value of

a normal distribution. Overall, either skewness or kurtosis deviated in 68% of all

cases and in 94% of cases with larger sample sizes (N > 106), indicating that only

a small portion of empirical data sets is normally distributed.

Tail Dependence

Tail dependence is a measure of dependence for bivariate distributions (Joe, 1997).

For a pair of random variables X1, X2, upper tail dependence is based on the con-

ditional probability that X1 exceeds its quantile q, given that X2 is larger than its

own quantile q. More specifically, upper tail dependence tdu is the limit of this

probability if q → 1, so

tdu = lim
q→1

P (X1 > F−11 [q] | X2 > F−12 [q]), (1.16)

where F−11 , F−12 are the inverse CDFs of X1, X2, respectively. Similarly, lower tail

dependence tdl is the limit of the conditional probability that X1 is smaller than

quantile q, given that X2 is below q, for q → 0:

tdl = lim
q→0

P (X1 < F−11 [q] | X2 < F−12 [q]). (1.17)

Tail dependence is a measure for random variables that cannot be applied to a

sample of a distribution, because it is defined on the limit of quantiles. In contrast
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to multivariate skewness and kurtosis, which are based on the entire density of

a distribution, tail dependence is only influenced by the most extreme outcomes.

Nevertheless, tail dependence plays an important role in economic models because

market prices are better modeled by distributions with tail dependence as extreme

prices for one good tend to result in extreme prices for another good (e.g. Hartmann,

Straetmans, & De Vries, 2004). Gaussian distributions, the distributions assumed

by most statistical tests, always have zero tail dependence unless they are perfectly

correlated (Joe, 1997). As I will summarize in Section 1.2.2, distributions with

non-zero tail dependence seem to have a stronger impact on the robustness of SEM

(Foldnes & Grønneberg, 2015).

1.1.3 Tests of normality

The assumption of a normal distribution can also be assessed by statistical tests.

For a univariate distribution, the Kolmogorov–Smirnov test (Kolmogorov, 1933;

Smirnov, 1948) compares the empirical CDF to the CDF of a completely specified

reference distribution, such as a normal distribution with mean µ and variance σ2.

The associated test statistic is based on the largest difference between the CDFs

and defined as

Dn = sup
x
|F (x)− Fn(x)|, (1.18)

where F is the CDF of the reference distribution, Fn is the CDF of the observed

random variable, and sup the supremum. Importantly, the test statistic is only

valid if the reference distribution does not contain parameters, such as mean and

variance, that are estimated from the sample (Lilliefors, 1967). The Shapiro–Wilk

test (Shapiro & Wilk, 1965) can be used to test the hypothesis that the sample was

drawn from any (univariate) normal distribution, i.e. when the mean and variance of

the distribution are unspecified. The test is useful when the assumption of normality

is made for a single random variable, such as for the errors in a linear regression or

the observed variables in each group of a t-test, but falls short when the assumption

pertains to a multivariate distribution.

Multivariate normality is often tested with Mardia’s tests for normality (Mardia,

1970), which are based on the multivariate skewness and kurtosis described in the
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previous section (for an overview of other tests of multivariate normality, see e.g.

Henze, 2002). The test statistic b∗1,d for multivariate skewness b1,d, as defined in

Equation 1.14, is

b∗1,d =
N

6
b1,d, (1.19)

and follows a χ2 distribution with df = d(d+1)(d+2)/6. The respective test statistic

b∗2,d for multivariate kurtosis b2,d (Equation 1.15) is

b∗2,d =
√
N
b2,d(N + 1)− d(d+ 2)(N − 1)

(N + 1)
√

8d(d+ 2)
(1.20)

and follows a standard normal distribution. One limitation of tests for normality

that are based on b1,d and b2,d is that a distribution can have zero multivariate

skewness and d(d+ 2) multivariate kurtosis but still have a non-normal distribution

(Horswell & Looney, 1992). Therefore, a non-significant result in Mardia’s tests

does not imply that the distribution is in fact normal.

All statistical tests of normality share the disadvantage that the power of these

tests to detect deviations from a normal distribution is greater for larger samples

(e.g. Razali & Wah, 2011), whereas the effect of non-normality is usually greater if

the sample size is small (e.g. Harwell et al., 1992). Especially in smaller samples,

a non-significant deviation from a normal distribution might therefore not indicate

that the inferential method is robust, which is why non-normality is often assessed

by the measures presented in this chapter and graphical examination (Tabachnick

& Fidell, 2012).

1.2 Effects of Non-Normality

The assumption of multivariate normality applies to different methods in different

ways. In linear regression models, the residuals of the analysis are required to be

normally distributed, whereas other popular methods that are based on the empirical

covariance matrix (e.g. structural equation models) incorporate the assumption that

the observed variables themselves have a multivariate normal distribution (Bollen,

1989; Gelman & Hill, 2007). In this section, I give an overview of the consequences

of non-normality for linear regressions, ANOVAs, t-tests, and SEM.
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1.2.1 Effects on the General Linear Model

ANOVAs and t-tests are based on the assumption that distributions in each group

are normal (Loveland, 2011), which can be investigated by varying the corresponding

univariate distribution. A number of Monte Carlo studies have investigated the

effect of non-normality (Bradley, 1973; Cain et al., in press; Clinch & Keselman,

1982; Glass, Peckham, & Sanders, 1972; Harwell, 2003; Harwell et al., 1992; Levine

& Dunlap, 1982; Schmider, Ziegler, Danay, Beyer, & Bühner, 2010; Yanagihara &

Yuan, 2005). For t-tests, the most relevant factors that influence robustness are

the number of observations, the skewness of observed variables, and whether the

test is one-tailed or two-tailed. For example, Cain et al. (in press) showed that

the empirical Type I error rate pemp of a one-sample, two-tailed t-test increases to

pemp = .177 for γ1 = 6.32 and N = 18 (for a nominal α = .05). If the test is

one-tailed and tests the ’shorter’ tail of the distribution (in this case the lower tail),

the error increases even further (pemp = .216), whereas a test for the ’longer’ tail

results in artificially small Type I errors (pemp = .005). Larger sample sizes lead

to higher robustness (pemp = .123, N = 48, two-tailed), but Type I errors are still

substantial even at large sample sizes if the distribution is very skewed (pemp = .090,

N = 105, γ1 = 6.32, two-tailed). As expected, distributions with lower skewness

also lead to smaller Type I errors (pemp = .064, N = 105, γ1 = 2.77, two-tailed).

Furthermore, robustness of t-tests is lower if a smaller nominal α is chosen, at least

relative to the nominal α (Bradley, 1973). That is, the ratio of pemp and α can be

very large even for high N (e.g. pemp = .006 for α = .001, γ1 = 3.18, and N = 1024;

Bradley, 1973). Most results for t-tests similarly hold for planned comparisons in

single factor ANOVAs, which are also based on the t distribution (Yanagihara &

Yuan, 2005)

In general, ANOVAs display higher robustness than t-tests for non-normality

with regards to the α error, at least if normality is the only assumption that is vio-

lated (Glass et al., 1972; Cain et al., in press). Clinch and Keselman (1982) showed

that in a single factor ANOVA with four groups, Type I error rates were slightly

decreased for a χ2
(2) distribution if the sample size and variances were equal across

groups (pemp = .038, overall N = 48, α = .05). However, non-normality has small

to moderate effects when combined with unequal variances, unequal group sizes, or
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both. In particular, if both group size and variance were unequal, Type I error rates

increased to pemp = .224, compared to pemp = .207 for a normal distribution. Impor-

tantly, alternatives to the ANOVA F test that do not assume equal variances like

the Welch test (Welch, 1951) or the procedure by Brown and Forsythe (1974) were

affected by non-normality when combined with unequal variances and group sizes

(Welch: pemp,χ2
(2)

= .127, compared to pemp,normal = .064, Brown: pemp,χ2
(2)

= .103,

compared to pemp,normal = .072). In addition to the effect of non-normality on Type

I errors, Levine and Dunlap (1982) demonstrated that the effect on Type II errors

is even more pronounced. For example, in a condition with four groups and overall

N = 64, the Type II error was β = .329 for log-normal distributions, compared to

the expected β = .081 for normal distributions. Again, larger sample sizes lead to

higher robustness, but the effect was still substantial for N = 128 (βlog−normal = .285,

compared to βnormal = .074 for normal).

Linear regressions have the assumption that the error terms in the model are

normally distributed (e.g. Gelman & Hill, 2007). Since ANOVAs and t-tests are

only special cases of a linear regression, the results presented so far apply to linear

regressions, too. However, in multilevel regression analyses, the random parts of the

model are also assumed to be multivariate normal (e.g. Hox, 2010). In contrast to

the corresponding assumption in simple linear regressions, this assumption pertains

to a multivariate distribution, which could have effects on the robustness beyond the

prespecified marginals. Additionally, the normality assumption could be especially

problematic for multilevel models because the number of observations at higher levels

is typically smaller than sample sizes in simple linear regressions (Browne & Draper,

2000). Maas and Hox (2004) investigated the effects of χ2
(1) distributed random parts

(γ1 = 2.83, γ2 = 15), as compared to normal random parts, for different group sizes

(5, 30, 50) and number of groups (30, 50, or 100). Full maximum likelihood (ML)

estimation underestimated the standard errors of both fixed and random effects.

For example, the true value of the random slope variance was only covered in 64%

of all simulated samples by the 95% confidence interval. Maas and Hox (2004) also

employed robust Huber/White standard errors (Huber, 1967; White, 1982), which

performed considerably better but still underestimated the correct standard errors

(e.g. 95% confidence intervals covered the true random slope variance in 85% of all
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samples). However, the simulation study by Maas and Hox (2004) did not include

conditions that varied the multivariate distribution independently of the prespecified

marginals.

1.2.2 Effects on SEM

In contrast to most models discussed so far, the broad class of SEM with ML,

weighted least squares, or generalized least squares estimation requires that the

observed variables have a multivariate normal distribution (Bollen, 1989; Browne,

1974). Curran, West, and Finch (1996) investigated the effect of non-normality by

comparing marginal distributions with γ1 = 2, γ2 = 10 (moderately non-normal), as

well as γ1 = 3, γ2 = 24 (severly non-normal) to a multivariate normal distribution

using ML estimation. Both non-normality conditions severely increased the ratio at

which a correctly specified confirmatory factor model was rejected (moderately non-

normal: rejection rate rr = 23.5%, severely non-normal: rr = 38.5%, normal: rr =

5.6%). Importantly, this effect did not diminish in large sample sizes of N = 1, 000

(moderately non-normal: rrN=1,000 = 24%, normal: rrN=1,000 = 7%) and was even

more pronounced in the severely non-normal condition (rrN=1,000 = 48%). Curran et

al. (1996) also examined the asymptotic distribution free estimator (Browne, 1984),

which does not assume any particular distribution, as well as the Satorra-Bentler

χ2 (SB, Satorra & Bentler, 1994), which corrects for the observed multivariate kur-

tosis, as alternatives to ML. The asymptotic distribution free estimator did not

perform well in conditions with N ≤ 500 (moderately non-normal: rr = 21.6%,

severely non-normal: rr = 33.8%, normal: rr = 24.3%), indicating that larger

samples are required for this estimator. SB improved rejection rates when data

were non-normal (moderately non-normal: rrN≥200 = 7.5%, severely non-normal:

rrN≥200 = 7.8%, normal: rrN≥200 = 7%), but was still biased in smaller samples

(moderately non-normal: rrN=100 = 8.5%, severely non-normal: rrN=100 = 13%,

normal: rrN=100 = 7.5%). Foldnes and Olsson (2015) further examined the perfor-

mance of the SB correction for both correct and misspecified models. They found

that with increasing kurtosis, SB led to higher rejection rates for correct models

and lower rejection rates for misspecified models. Furthermore, SEM robustness is

similarly affected for non-normal Likert scales (Muthén & Kaplan, 1985, 1992) and
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symmetric distributions (Hu, Bentler, & Kano, 1992), indicating that kurtosis has

a more detrimental effect than skewness. For other popular estimation methods,

Olsson, Foss, Troye, and Howell (2000) demonstrated that generalized least squares

estimation led to comparable results as ML, whereas weighted least squares was

even less robust if the underlying marginal distributions were leptokurtic.

Only few Monte Carlo studies examined effects of the multivariate distribution

on SEM beyond the prespecified skewness and kurtosis of the marginal distribution

(Foldnes & Grønneberg, 2015; Mair, Satorra, & Bentler, 2012). Mair et al. (2012)

presented an approach to generate sample from multivariate non-normal distribu-

tions that can be used in SEM, but only applied it with the asymptotic distribu-

tion free estimator to validate their generation routine. Foldnes and Grønneberg

(2015) investigated the effects of two multivariate non-normal distributions with

different tail dependencies tdu1 = 0, tdu2 = 0.93 but equal multivariate kurtosis

β2,2 = 156.4 for a confirmatory factor model with two latent and four observed vari-

ables. Non-zero tail dependence led to parameter biases (bias of latent covariance

Φ̂tdu=0.93 = 0.043, Φ̂tdu=0 = −0.003, for N = 500 and Φ = 0) and inflated stan-

dard errors (SEtdu=0.93 = 0.171, SEtdu=0 = 0.088, for N = 500), compared to the

non-normal distribution with zero tail dependence. Furthermore, the kurtosis of the

marginal distributions was higher in the condition with zero tail dependence, so that

the effect of tail dependence might be even larger if univariate kurtosis was controlled

for. The model was only estimated using standard ML without the SB correction.

However, SB corrections are based on the multivariate kurtosis which was equal in

both conditions, so results would likely be similar for SB. Overall, SEM appear to

be less robust with regards to non-normality, as rejection rates are typically more

inflated compared to the general linear model for similar N . Furthermore, aspects

of the multivariate distribution that are not captured by the marginal distributions

seem to have a strong impact on the performance of ML estimation.

1.3 Methods that Generate Non-Normal Data

Sampling data from a univariate non-normal distribution is not particularly chal-

lenging since routines for various distributions are implemented in most software
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packages. These routines can be used to investigate robustness of linear regres-

sions and ANOVAs, as the assumption of normality pertains only to single random

variables. Similarly, sampling from a multivariate distribution in which all random

variables are independent from each other is also not challenging, because routines

for single random variables can be used separately for each random variable.

The multivariate case with prespecified dependence (e.g. covariance) among the

random variables is only straightforward in the case of a joint normal distribution.

In such cases, matrix decomposition can be used on the target covariance matrix

ΣX to obtain an upper triangular matrix U with ΣX = UTU, provided that ΣX is

not singular. The matrix U can be multiplied with a sample from an independent

joint normal distribution which guarantees to desired covariance. However, the task

of generating samples that both comply with certain non-normal distributions and

a prespecified covariance matrix is considerably more difficult. A number of studies

targeted this issue (e.g. Bradley & Fleisher, 1994; Cook & Johnson, 1981; Foldnes &

Olsson, 2016; Headrick, 2002; Headrick & Mugdadi, 2006; Headrick & Sawilowsky,

1999; Koran, Headrick, & Kuo, 2015; Mair et al., 2012; Mattson, 1997; Ruscio &

Kaczetow, 2008). In this section, I provide an overview of three popular approaches:

power constants (Fleishman, 1978; Vale & Maurelli, 1983), NORTA (NORmal To

Anything, Cario & Nelson, 1997), and copulas (Joe, 1997).

1.3.1 Power Constants and its Extensions

The power constants approach generates univariate non-normal variables X with

prespecified γ1 and γ2 as

X = a+ bZ + cZ2 + dZ3, (1.21)

where Z ∼ N (0, 1). The constants a, b, c, and d are obtained by solving four equa-

tions provided by Fleishman (1978) to guarantee that X has the desired skewness

and kurtosis. The Vale-Maurelli approach (VM, Vale & Maurelli, 1983) extends the

power constants to the multivariate case in three steps and generates samples from

a population that also comply with a prespecified covariance matrix ΣX . First, VM

uses the Fleishman equations for each random variable to obtain power constants
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associated with the desired skewness and kurtosis. If one were to simulate multi-

variate normal data according to ΣX and use Equation 1.21 to create non-normal

X = (X1, ..., Xd), the covariance of X would, in general, be different from ΣX . This

is due to the fact that the function associated with Equation 1.21 (the function that

maps Z to X) is non-linear if c 6= 0 or d 6= 0.3 In a second step, VM calculates an

intermediate correlation matrix ΣZ that counteracts the distortion caused by the

non-normality transformation. Third, samples from normal distributions are drawn

according to ΣZ and transformed by the Fleishman equations to have the desired

(univariate) skewness and kurtosis, as well as covariance.

VM is very popular especially in robustness studies (e.g. Curran et al., 1996;

Fouladi, 2000; Hu et al., 1992; Muthén & Kaplan, 1985, 1992; Savalei, 2010) and

implemented in most SEM software packages like Mplus (Muthén & Muthén, 2010),

lavaan (Rosseel, 2012), EQS (Bentler, 2006), and Lisrel (Jöreskog & Sorbom, 2006).

The ability to specify skewness and kurtosis in advance allows simulation studies to

investigate the range, in which statistical tests can be used for non-normal distri-

butions. However, as demonstrated in the previous sections, skewness and kurtosis

are insufficient to fully describe a distribution and some methods might be influ-

enced by other characteristics of the distribution. VM only generates a very specific

distribution for given γ1 and γ2, while other distributions with the same γ1 and γ2

could have a different impact on the robustness of a statistical test. For example, all

distributions generated by VM are based on the transformation of normal variables

and thus have tail dependence tdu = tdl = 0 (Foldnes & Grønneberg, 2015). Be-

cause tail dependence negatively impacts the robustness of SEM, simulation studies

that only use VM might draw overly optimistic conclusions concerning the valid-

ity of statistical tests in practice. Furthermore, VM is unable to generate certain

univariate distributions like the family of χ2 distributions and is also limited in the

degree of non-normality that can be generated. For example, kurtosis has the lower

bound γ2 = 1.85 for symmetric distributions (Headrick & Sawilowsky, 2000). If dis-

tributions are asymmetric, this lower bound increases further to e.g. γ2 = 4.11 for

γ1 = ±1.20. Headrick (2002) improved VM by generating non-normal X according

3However, if c = 0, d = 0, and Z ∼ N (0, 1), the resulting X would have normal distribution as
well with X ∼ N (a, b2).
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to

X = a+ bZ + cZ2 + dZ3 + eZ4 + fZ5, (1.22)

instead of Equation 1.21, thereby decreasing the lower bounds of kurtosis to γ2 =

1.61 for symmetric distributions and γ2 = 3.91 for γ1 = ±1.20. However, this

extension neither allows any control over the multivariate distribution.

1.3.2 NORTA

NORTA (Cario & Nelson, 1997) is an algorithm that allows full specification of

the marginal distribution as well as the correlation matrix4 of random variables.

Similarly to VM, NORTA is based on joint normal random variables that are trans-

formed by non-linear functions to comply with the desired marginal distributions.

However, instead of a function with power constants, NORTA is based on the inverse

CDF of the desired marginal distribution. For d non-normal random variables Xi

(1 ≤ i ≤ d) with desired CDF Fi,

Xi = F−1i (Φ(Zi)), (1.23)

where Zi ∼ N (0, 1) and Φ is the CDF of a standard normal distribution. Note that

Zi ∼ N (0, 1) implies that

Φ(Zi) ∼ U(0, 1), (1.24)

where U(0, 1) is a uniform distribution with support [0, 1]. Applying the inverse

CDF F−1i to the uniform random variable Φ(Zi) ensures that Xi is distributed

according to Fi. Similarly to VM, the non-normality transformation in Equation

1.23 again affects the covariance among Zi, so that ΣZ 6= ΣX (unless all target

distributions Fi are normal). The problem then is to select an intermediate cor-

relation matrix ΣZ that gives the desired covariance ΣX , after the non-normality

transformation is applied.

Each element of ΣX represents the desired correlation between two random vari-

ables Xi, Xj (1 ≤ i, j ≤ d, i 6= j) and is denoted as ρX(i, j). Importantly, ρX(i, j)

4Note that by specifying a correlation matrix and all marginal distributions, the target covari-
ance matrix is also predefined, because it only depends on the correlation matrix and the variances
of the random variables.
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only depends on the corresponding elements ρZ(i, j) in ΣZ , because

ρX(i, j) = Corr(Xi, Xj) = Corr(F−1i (Φ(Zi)), F
−1
j (Φ(Zj))). (1.25)

The correlation ρX(i, j) is defined as

ρX(i, j) =
E(XiXj)− E(Xi)E(Xj)√

Var(Xi)Var(Xj)
. (1.26)

NORTA can only adjust E(XiXj) because Var(Xi),Var(Xj) as well as E(Xi),E(Xj)

are already predefined by the corresponding distributions Fi, Fj. For bivariate nor-

mal density φρZ(i,j) with correlation ρZ(i, j), the expected value is

E[XiXj] =

∫ ∞
−∞

∫ ∞
−∞

F−1i (Φ(Zi))F
−1
j (Φ(Zj))φρZ(i,j)(Zi, Zj) dZi dZj. (1.27)

The goal of NORTA is to find ρZ(i, j) in the equation above, so that E[XiXj] has

the desired value. While there is in general no closed form expression of Equation

1.27, Cario and Nelson (1997) show that the function that maps ρZ(i, j) to E[XiXj]

is non-decreasing and continuous, thus enabling an efficient numerical search for

ρZ(i, j).

NORTA has the advantage that any inverse CDF can be used to generate non-

normal target distributions, thereby allowing full control over the marginals. If the

CDF has defined higher order central moments, NORTA generates samples that

also comply with moments beyond skewness and kurtosis, in contrast to VM. De-

spite this clear advantage and popularity in other fields (e.g. Clemen & Reilly, 1999;

Henderson, Chiera, & Cooke, 2000; Lurie & Goldberg, 1998), NORTA has to my

knowledge never been used in robustness studies of SEM. One reason for this could

be that robustness studies are usually not aimed at investigating a specific type of

distribution. Instead, the focus often is on a range of distributions that need to be

indicated by a set of measures for non-normality, as introduced in Chapter 1.1. For

example, the information that a t distribution with df = 5 leads to a robust statisti-

cal test is not as useful as claiming that the statistical test is robust for distributions

with kurtosis γ2 = 6. One could obviously choose a CDF that is associated with

the desired skewness and kurtosis, but the problem then is to vary the CDF in a
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way to obtain a continuous range for skewness, kurtosis, and (ideally) higher order

central moments. Furthermore, NORTA shares the same disadvantage as VM in its

lack of control over the multivariate distribution. For example, since the underlying

variables are joint normal, NORTA distributions also have zero tail dependence,

leading to distributions that - while being beneficial for the robustness of statistical

tests - are unrealistic in practice (Foldnes & Grønneberg, 2015). Finally, NORTA is

limited in the degree of dependence that can be generated in the correlation matrix

ΣX . Specifically, the matrix ΣZ obtained by the algorithm might not be positive

semi-definite (and therefore not a correlation matrix), even though a multivariate

distribution with the given correlation and marginals exists (Ghosh & Henderson,

2002). Ghosh and Henderson (2003) showed that this problem becomes more likely

as the number of random variables increases and suggested a modification of NORTA

that partially solves the issue.

1.3.3 Copulas

Copulas can be understood as a mathematical reformulation of a multivariate dis-

tribution (for an overview, see Joe, 1997). For CDFs F1, ..., Fd, the multivariate

CDF F can be written as

F (x1, ..., xd) = C(F1[x1], ..., Fd[xd]). (1.28)

That is, there exists a function C : [0, 1] × ... × [0, 1] → [0, 1], called copula, that

expresses the multivariate distribution in terms of the marginals and C is unique

if the marginals are continuous, which is known as Sklar’s theorem (Sklar, 1959).

Note that for any distribution, FX(X) ∼ U(0, 1) if X is distributed according to

FX .

There are different families of copulas that can be used to sample from multi-

variate distributions. One family consists of Gaussian copulas, which capture the

dependence among random variables in the same way as a multivariate normal dis-

tribution but can have arbitrary marginals (Clemen & Reilly, 1999). Specifically, a
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multivariate distributions has a Gaussian copula if

Z = (Φ−1(F1(X1), ...,Φ
−1(Fd(Xd))), (1.29)

has a multivariate normal distribution, where Φ−1 is the inverse of a standard normal

CDF . As can be seen by comparing Equations 1.23 and 1.29, the multivariate

distributions generated by NORTA always have Gaussian copulas. Similarly, Foldnes

and Grønneberg (2015) showed that VM also leads to Gaussian copulas.

In general, copulas do not correspond to a particular correlation matrix, because

correlations also depend on the marginals of the distribution. Instead, copulas

capture dependence among random variables by a set of parameters of the function

C. For example, the Clayton copula (Clayton, 1978) is defined as

C(U1, ..., Ud) = Ψ(Ψ−1(U1) + ...+ Ψ−1(Ud)) (1.30)

where Ui = F−1i (Xi), 1 ≤ i ≤ d, and

Ψ(t) = (1 + t)−
1
θ , (1.31)

with dependence parameter θ and θ > 0. Figure 1.5 shows the contour plots of

bivariate distributions based on a Clayton copula with θ = 1 or θ = 2.5 (Yan, 2007).

The marginal distributions were set to be either both standard normal or standard

normal for X1 and exponential with rate λ = 0.5 for X2. The resulting correlations

are displayed in Table 1.1 and vary depending on both θ and the selected marginal

distributions. Since robustness studies often need to prespecify a correlation matrix,

copulas are difficult to use. Mair et al. (2012) suggested to generate random variables

X = (X1, ..., Xd) with non-normal distribution according to

X = Y SY
− 1

2 ΣX

1
2 (1.32)

where Y = (Y1, ..., Yd) is a random variable based on a copula, ΣX is the desired

correlation matrix, and SY is the covariance matrix of Y. If Y is mean-centered
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and scaled, we have

1

N
X′X = ΣX

1
2 SY

− 1
2

(
1

N
Y′Y

)
SY
− 1

2 ΣX

1
2 (1.33)

so that
1

N
X′X = ΣX

1
2 SY

− 1
2 SY SY

− 1
2 ΣX

1
2

= ΣX

1
2 ΣX

1
2

= ΣX ,

(1.34)

and X has the desired covariance matrix. While the approach by Mair et al. (2012)

offers some control over the multivariate distribution, the transformation in Equation

1.32 changes the marginals of X depending on ΣX . Therefore, the approach does

not allow to specify univariate distributions (or at least skewness and kurtosis) of

X in advance.

Table 1.1: Correlation of two random variables
with Clayton copula and different marginal dis-
tributions

Marginals θ = 1 θ = 2.5

X1, X2 ∼ N (0, 1) .50 .74

X1 ∼ N (0, 1), X2 ∼ Exp(0.5) .36 .57

Note. θ = dependence parameter of the Clayton
copula. Exp(λ) = Exponential distribution with rate
λ.

The algorithm presented in the next sections of my thesis attempts to solve this

issue. Other algorithms offer no control over the multivariate distribution5 (VM and

NORTA), the marginal distribution (Mair et al., 2012), or the correlation matrix

(copulas). In contrast, my algorithm allows manipulations of all three parameters

simultaneously. The algorithm is developed and applied in three papers, which I

will summarize in the next section.

5That is, a given correlation matrix and either marginal distribution (NORTA) or skewness and
kurtosis (VM) fully determine the distribution generated by both NORTA and VM, despite the
fact that other distributions with the same properties exist.
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Figure 1.5: Contour plots of bivariate distributions with Clayton copula and depen-

dence parameter θ = 1.5 (left) or θ = 2.5 (right). The upper panels display Clayton

copulas when both marginals are standard normal. In the lower panels, X1 also has

standard normal distribution and X2 has exponential distribution with rate λ = 0.5
.



Non-normal distributions 28

Summary of Manuscripts

The following sections provide summaries of the three manuscripts on which this

thesis is based. For the sake of brevity, I will focus on the main results of each

manuscript, as a more technical description of the algorithms and simulation condi-

tions can be found in the original manuscripts appended to this dissertation. Fur-

thermore, I will discuss how each manuscript contributes to the central goal of this

dissertation: (1) to develop an algorithm that allows for a more flexible manipula-

tion of the underlying (multivariate) distribution of generated samples, and (2) to

clarify the impact of distributional characteristics beyond central moments on the

robustness of statistical methods.

2.1 A method for multivariate non-normality

Auerswald, M., & Moshagen, M. (2015). Generating correlated, non-normally dis-

tributed data using a non-linear structural model. Psychometrika, 80, 920-937.

In this article, we developed the linking functions algorithm that creates non-

normally distributed random variables with a prespecified covariance matrix. The

basic idea stems from a structural model with normally distributed latent factors

and errors. Users provide the algorithm with a latent covariance matrix and loadings

for each observed variable, which together define the target covariance matrix ΣT .

Additionally, a set of so-called linking functions needs to be specified. The algo-

rithm introduces non-normality in the observed variables by applying these linking

functions to the latent factors, the errors, or both. Specifically, an observed variable

M is defined as

M = b · g(L) + c · h(ξ), (2.1)
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where L ∼ N (0, 1) is a latent factor, ξ ∼ N (0, 1) is a unique error, g, h are linking

functions, and b, c are correction factors estimated by the algorithm. Similarly to

VM and NORTA, non-linear functions g and h lead to non-normal M but distort

the covariance matrix that would be expected based on the loadings and latent

covariance matrix.

This distortion is corrected in two steps. First, the algorithm applies the inverse

standard normal CDF to a large vector of quantiles (e.g. [10−7, 2 ·10−7, ..., 1−10−7])

to create a vector z. This vector contains values that would be expected when

drawing a very large sample from a standard normal distribution and is used to

estimate the effects of the non-normality transformation, i.e.

cor(z, g(z)) ≈ cor(L, g(L)), (2.2)

because L ∼ N (0, 1). The first correction estimates b and c from Equation 2.1 based

on the correlation cor(z, g(z)) and has the goal that the correlation between M and

L is equal to the prespecified (standardized) loading λ. If L, M , and g(L) were

standardized

λ = cor(M,L)

= cor(M, g(L)) · cor(g(L), L),
(2.3)

because ξ and L are independent. The algorithm requires that |cor(g(L), L)| ≥ |λ|

and cor(g(L), L) 6= 0, in which case

b∗ =
λ

cor(z, g(z))
, (2.4)

if g(L) is standardized. For unstandardized g(L), the standard deviation of g(L)

needs to be estimated and addressed as

b =
λ

cor(z, g(z))σ(g(z))
. (2.5)

At this point, the loadings for each observed variable are correctly specified. How-

ever, there is remaining deviation in the resulting covariance matrix because the

first correction only addresses dependencies between the observed variables and the

latent factors, but not among the observed variables themselves. This remaining
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deviation depends on the similarity between linking functions (and therefore the

resulting marginal distributions) of different observed variables. For example, if two

observed variables have the same linking functions g and h, the resulting distribu-

tions will also be similar. The first correction then erroneously increases the expected

correlation among observed variables with similar distributions beyond the desired

correlation specified in ΣT . The algorithm accounts for this deviation by correlating

the unique errors in Equation 2.1 accordingly.

One advantage of the linking functions approach as compared to VM is the

flexibility of transformation functions that can be used to create different marginal

distributions. While VM only uses power functions as in Equation 1.21, the linking

functions approach can use any function as long as |cor(g(L), L)| ≥ |λ| holds. How-

ever, it is often desirable in robustness studies to control the degree of non-normality

in the underlying distributions, which depends on the choice of functions. In gen-

eral, the degree of non-normality can be controlled by defining a linking function gα

as

gα = α · g + (1− α) · id, (2.6)

for α ∈ [0, 1], the identity function id, and a linking function g. The reason is that

only non-linear linking functions lead to non-normal distributions. If both g and h

in Equation 2.1 are linear functions (such as id), the resulting variable M would be

the sum of two normally distributed variables and also be normal. Therefore, the

function defined in Equation 2.6 (and applied to both the latent factor and unique

error) leads to normal distributions if α = 0, so that gα = id. Increasing α, up to

α = 1, would result in increasing non-normality in the marginal distribution because

gα is the weighted sum of id and g. The function gα can also be used to approximate

one prespecified central moment if an appropriate function g is chosen. For example,

if g results in kurtosis γ2 = 30, any value for kurtosis between 3 (the corresponding

value of a normal distribution and id) and 30 can be chosen. The algorithm applies

a bisection search to obtain a value for α that matches the desired moment.

The main contribution of this paper to NOTAMO is the ability to manipulate

the multivariate distribution, depending on whether non-normality is introduced

through non-linear functions for the unique errors, the latent factors, or both. Figure

2.1 shows the bivariate distribution for an exponential linking function, one factor
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with standardized loadings of λ = .7, and prespecified kurtosis γ2 = 15. If non-

normality is introduced by non-linear functions for the latent factors, while the

functions of the errors are linear, outliers for X1 are more likely to occur given that

X2 is also an outlier. In contrast, if only the functions of the unique errors are

non-linear, outliers for X1 are far less likely given that X2 is an outlier. If both

errors and latent factors are non-normal due to the non-linear exponential linking

function, outliers of X1 and X2 are more or less independent. Importantly, the

kurtosis of the resulting marginal distributions is 15 and the correlation of X1 and

X2 is .49 (= λ2) in all three cases. However, the multivariate distribution is different

depending on the way in which non-normality is introduced. Therefore, the linking

functions approach allows the manipulation of the multivariate distribution beyond

the prespecified central moment and correlation matrix. Note that the distributions

displayed in Figure 2.1 do not differ with regard to tail dependence. While tail

dependence is also associated with the probability that X1 is an outlier given that

X2 is an outlier, upper (lower) tail dependence is the limit of this probability for

quantile q → 1 (q → 0).
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Figure 2.1: Heatmap of samples from bivariate distributions generated with the

linking functions approach. The left panel shows the bivariate distribution given that

the linking functions of the latent factors are non-linear; the center panel displays

non-linear functions for the unique errors. In the right panel, both latent factors

and unqiue errors have non-linear linking functions. All distributions are specified

to have univariate kurtosis γ2 = 15 and a correlation of .49.

The article includes a robustness study to illustrate the relevance of the multi-

variate distribution, comparing non-normal latent factors, non-normal unique errors,

and samples generated with VM for a correctly specified confirmatory factor model.
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The marginal distributions had the same kurtosis γ2 = 15 in all three conditions.

The empirical rejection rates for ML estimation and the SB correction are displayed

in Table 2.1. As can be seen, the robustness of both test statistics varied depending

on the multivariate distribution. While non-normal unique errors barely increased

the empirical rejection rate beyond the nominal α, non-normal latent factors led to

inflated rejection rates for both TML and TSB. The VM algorithm seems to produce

conditions between non-normal errors and latent factors, but is in contrast to the

linking functions approach unable to control the multivariate distribution. These re-

sults also indicate that univariate kurtosis does not properly assess the non-normality

that is critical for the statistical test in SEM. This finding is especially relevant for

empirical practice, as some data conditions lead to severely inflated rejection rates,

whereas other conditions with the same kurtosis are more or less robust. In the

former case, this might lead to overly optimistic conclusion regarding the data set

at hand. In the latter case, practitioners might not be able to publish their results,

despite the fact that the violation of normality barely affected the validity of the

statistical test.

Table 2.1: Empirical rejection rates (in %) under
different conditions of non-normality.

Non-normality TML TSB

Non-normal errors 5.3 6.5

Non-normal latent factors 23.6 13.0

VM 13.9 7.4

Note. TML = Maximum likelihood estimation, TSB =
Satorra-Bentler correction, VM = Vale-Maurelli pro-
cedure. Nominal α = 5%.

In sum, the first manuscript presented an algorithm that allowed to prespecify

a correlation matrix and one central moment of the marginal distributions while

simultaneously manipulating the multivariate distribution. We show that the mul-

tivariate distribution needs to be considered in robustness studies, which is not

possible in other data generation algorithms. For both VM and NORTA, the multi-

variate distribution is a direct function of the prespecified univariate non-normality
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and correlation matrix. However, the linking function approach also has three draw-

backs. First, it only allows the specification of one central moment. Many robust-

ness studies aim at investigating (at least) skewness and kurtosis simultaneously,

which cannot be achieved with the linking functions approach. Second, the vector

z that is used to estimate distortions in the correlation matrix results in rather slow

processing times.1 Third, the algorithm is only implemented in MATLAB, which is

proprietary software and not openly available. All three disadvantages are addressed

in the next article.

2.2 Combining moment- and distribution-based

methods

Auerswald, M., & Moshagen, M. (2017). Sampling from arbitrary non-normal dis-

tributions with given covariance and central moments. Manuscript submitted for

publication.

The second manuscript introduces the NOTAMO algorithm, which is an exten-

sion and combination of the linking functions approach and NORTA. In contrast

to NORTA, the algorithm allows the specification of standardized central moments

in advance. This has the advantage that simulation studies can vary the degree

of non-normality continuously, instead of relying on only one specific non-normal

distribution. Furthermore, NOTAMO also allows the manipulation of the multi-

variate distribution while keeping the marginal distributions and correlation matrix

constant. Compared to the linking functions approach, NOTAMO has the advan-

tage that more than one central moment can be prespecified. The algorithm is also

faster2 and implemented in the popular open source programming language R (R

Core Team, 2017).

The basic idea of NOTAMO is to select appropriate inverse CDFs for NORTA

that comply with the prespecified central moments. NORTA creates non-normal X

1The usage of a smaller vector z is also not advised, because it would cause a lower accuracy
with regards to the correlation matrix.

2For example, on an Intel Core i7-4790K, estimating the appropriate covariance matrix of 12
observed variables takes 47 min with the linking functions approach but only 18 s with NOTAMO.
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as

X = F−1(Φ(Z)), (2.7)

where Z ∼ N (0, 1) and F−1 is the inverse CDF of the desired marginal distribu-

tion. Instead of one inverse CDF , NOTAMO requires a set of m inverse CDFs

F−11 , ..., F−1m for each marginal distribution. NOTAMO attempts to find parameters

a1, ..., am such that the weighted sum

F−1 =
m∑
j=1

ajF
−1
j (2.8)

is an inverse CDF that matches the desired central moments when applied in Equa-

tion 2.7 and
m∑
j=1

aj = 1, aj ≥ 0. (2.9)

That is, NOTAMO implements a search for weights in a mixture of quantile distri-

butions, so that the resulting inverse CDF complies with the prespecified moments.

The central moments are estimated by a vector z that contains values that would

be expected when drawing a large sample from a normal distribution, similar to z in

the linking functions approach. For example, z = Φ−1([10−7, 2 · 10−7, ..., 1 − 10−7])

can be used to approximate the expected moments associated with F−1, because

F−1(Φ[z]) ≈ F−1(Φ[Z]), (2.10)

for Z ∼ N (0, 1). For a set of m inverse CDFs and k prespecified moments, this

results in a system of k + 1 non-linear equations (one for each moment and Equa-

tion 2.9) and m unknowns, the parameters a1, ..., am in Equation 2.8. NOTAMO

attempts to solve the system of non-linear equations using algorithms implemented

in the packages nloptr (Johnson, 2014) and rootsolve (Soetaert, 2009) in R. The

algorithm is not guaranteed to converge, in part because a solution might not exist

for a given set of moments and inverse CDFs. However, we conducted a simulation

study in the manuscript, demonstrating that NOTAMO is applicable to a wide range

of non-normality conditions and reproduces the target central moments with high

accuracy. Once the weight parameters in Equation 2.8 are determined, the resulting

inverse CDFs and desired correlation matrix are passed to the NORTA algorithm,
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which is also implemented in R (Su, 2014).

NOTAMO combines the advantages of algorithms that prespecify a set of mo-

ments, such as VM for skewness and kurtosis, and algorithms that prespecify a

particular distribution, such as NORTA. Specifying a set of central moments in ad-

vance allows robustness studies to continuously vary the degree of non-normality as

indicated by measures (e.g., skewness and kurtosis) that can also be applied to an

empirical sample. NORTA, on the other hand, allows to investigate different dis-

tributions with the same skewness and kurtosis. NOTAMO can prespecify central

moments and, at the same time, create different distributions with the same first

central moments, depending on the inverse CDFs that were provided to the algo-

rithm. For example, Figure 2.2 displays two (standardized) marginal distributions

with the same skewness γ1 = 0 and kurtosis γ2 = 2, but different quantile mixtures.

In the left panel, NOTAMO estimated the weights for the inverse CDF of a standard

normal distribution and a uniform distribution, the latter with support [0, 1]. The

right panel displays the quantile mixture based on a standard normal distribution,

as well as a binomial distribution with one trial and success probability p = .5. The

resulting marginal distributions clearly vary depending on the set of inverse CDFs

from which the weights of the distribution are estimated.

NOTAMO also allows manipulations of the multivariate distribution, indepen-

dently of prespecified central moments. Similarly to the linking functions approach,

the basic idea is to define each random variable of interest Xi (1 ≤ i ≤ d, for d

random variables) as the sum of two random variables Li and Ei, so that

Xi = Li + Ei, 1 ≤ i ≤ d. (2.11)

The random variables L1, ..., Ld are correlated, whereas E1, ..., Ed are independent

and thus uncorrelated. Furthermore, all Li are required to be independent from all

Ei (1 ≤ i ≤ d). The NOTAMO algorithm can be used to generate either non-normal

Li or Ei, whereas the other set of random variables is normally distributed. If the Li

are non-normal, the resulting multivariate distribution will be similar to a linking

functions distribution, in which only the latent factors have non-linear functions

(see Figure 2.3). Non-normal Ei lead to distributions similar to non-linear linking

functions for the unique errors, because the non-normal variables are independent.
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Figure 2.2: Histograms of two marginal distributions generated using NOTAMO

with sample size N = 100, 000. Both variables have the same mean, variance,

skewness, and kurtosis. The left panel shows the result of a quantile mixture of a

standard normal and a uniform distribution U(0, 1). In the right panel, the marginal

distribution is estimated based on a standard normal and a binomial distribution

with B(n = 1, p = .5)

One strength of the suggested procedure is that the resulting marginal distributions

will be exactly the same if either Li or Ei is generated with NOTAMO. For any

distribution D, this follows from the fact that

X1 = L1 + E1, where L1 ∼ D, E1 ∼ N (0, 1), (2.12)

and

X2 = L2 + E2, where L2 ∼ N (0, 1), E2 ∼ D, (2.13)

lead to the same distribution for X1 and X2 because E1, E2 and L1, L2 are indepen-

dent.

Overall, the second manuscript showed that the combination of the linking func-

tions approach and NORTA yields a powerful algorithm for robustness studies. NO-

TAMO can be applied in a variety of research contexts and is especially useful if

the assumption of normality pertains to more than one random variable. The next

manuscript investigates the effects of multivariate non-normality on factor extrac-

tion criteria in exploratory factor analysis (EFA).
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Figure 2.3: Heatmap of samples with N = 1, 000, 000 from bivariate distributions

generated with NOTAMO. In the left panel, the correlated random variables Li (see

Equation 2.11) are non-normal, the right panel displays non-normal Ei. The result-

ing distributions have a correlation of .45 in both cases. The marginal distributions

of X1 and X2 have prespecified skewness γ2 = 0.5 and kurtosis γ2 = 5.5.

2.3 Non-normality and exploratory factor analysis

Auerswald, M., & Moshagen, M. (2017). How to determine the number of factors

to retain in exploratory factor analysis? A comparison of extraction methods under

realistic conditions. Manuscript submitted for publication.

The first two manuscripts developed the NOTAMO algorithm that allows to perform

robustness studies in which the correlation matrix, univariate distributions, their

central moments, and the multivariate distribution can be specified in advance. The

third paper consists of an exemplary application of the linking functions algorithm

in the context of EFA.

EFA is a popular tool to investigate latent factors underlying a large number of

observed variables. The model assumes a number of potentially correlated common

factors that explain (co)variations among the observed variables, as well as one

unique error for each observed variable (Thurstone, 1947). The latent factors are

supposed to reflect the underlying psychological variables of interest, whereas the

unique errors are assumed to represent item-specific measurement error. A central
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problem in EFA is to decide how many factors need to be extracted, because both

under- and overextractions (extracting too few or too many factors, respectively) can

lead to considerable error, for example in the estimation of factor loadings (Wood,

Tataryn, & Gorsuch, 1996).

The decision on the number of factors is typically based on so-called extraction

criteria, which are decision heuristics based on the observed covariance matrix. The

most prominent are the Kaiser criterion (Kaiser, 1960), Cattel’s scree test (Cattell,

1966), and parallel analysis (Horn, 1965). Parallel analysis is often considered as

the method of choice, because it displays the highest ratio of correctly retrieved

factors (referred to as accuracy) in Monte Carlo studies (e.g. Peres-Neto, Jackson,

& Somers, 2005; Zwick & Velicer, 1986). However, four new extraction criteria

have been suggested recently that displayed a higher accuracy in some simulation

conditions: (1) the empirical Kaiser criterion (Braeken & van Assen, in press), (2)

revised parallel analysis (Green, Levy, Thompson, Lu, & Lo, 2012), (3) comparison

data (Ruscio & Roche, 2012), and (4) the Hull method (Lorenzo-Seva, Timmerman,

& Kiers, 2011). The purpose of the manuscript was to compare these new extraction

criteria to parallel analysis under conditions commonly encountered in empirical

research, including non-normally distributed observed variables.

Of the five criteria under investigation, only the empirical Kaiser criterion and

the Hull method explicitly assume multivariate normality in the observed variables,

while the other three criteria do not assume any particular distribution. However,

all criteria are based on the sample covariance matrix and sampling errors for co-

variances are larger in leptokurtic distributions (DeCarlo, 1997). Hence, the higher

sampling variations of (co)variances might lead to lower accuracy of all five criteria.

We assumed that this would in turn be due to a tendency to overextract, because ad-

ditional latent factors might account for the additional variability. Previous Monte

Carlo studies showed that the accuracy of parallel analysis is more or less indepen-

dent of the underlying distribution (Dinno, 2009; Garrido, Abad, & Ponsoda, 2013;

Glorfeld, 1995; Peres-Neto et al., 2005). However, these studies only manipulated

the marginal distributions and only considered traditional parallel analysis.

The simulation study involved six orthogonally manipulated independent vari-

ables to represent a wide range of plausible data conditions, one of which was the
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underlying distribution of the observed variables. We considered a multivariate

normal distribution and two types of non-normal distributions generated with the

linking functions approach. These non-normal distributions applied four non-linear

functions either to the latent factors or the unique errors, while the other functions

were linear (see Figure 2.1). We prespecified the kurtosis to be γ2 = 12 and used

the following linking functions:

• f1(x) = x5 + x3

• f2(x) = e2x

• f3(x) =


√
x, for x > 0

−x2, for x ≤ 0

• f4(x) =



−50, for x < −3

−1, for − 3 ≤ x < 0

1, for 0 ≤ x < 3

50, for x ≥ 3

Table 2.2 shows the results for accuracy and bias of all five extraction crite-

ria. Bias was calculated as the number of suggested factors minus the true number

of factors in the population. Thus, positive values indicate overextraction, nega-

tive values indicate underextraction, and zero indicates no bias. As can be seen,

non-normality did not lead to lower accuracy for any extraction criterion except

for comparison data. In line with previous simulation studies, traditional parallel

analysis was barely affected by the underlying distribution. The other three criteria

under consideration even displayed higher accuracy if the observed variables were

non-normal, especially if non-normality was introduced through the unique errors.

One explanation for this unexpected advantage in leptokurtotic conditions might be

that revised parallel analysis, the Hull method, and the empirical Kaiser criterion

generally underestimated the number of factors. However, non-normal distribution

increased the number of suggested factors on average, hence counteracting the gen-

eral tendency to underextract and increasing accuracy overall.
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Traditional parallel analysis displayed a high accuracy overall and identified the

correct number of factors most often for every distribution under consideration.

In the manuscript, we also explore the performance of so-called combination rules

that use the suggested number of factors of multiple criteria in conjunction with

each other and improve overall accuracy even further. However, parallel analysis is

the best single criterion and can be used if data are not normally distributed, at

least if the kurtosis of observed variables is not larger than γ2 = 12. The results

also underline that manipulations of the multivariate distribution do not necessarily

lead to implications that are different from studies that only considered the marginal

distribution. The accuracy of traditional parallel analysis was unaffected in both

cases (Dinno, 2009; Garrido et al., 2013; Glorfeld, 1995; Peres-Neto et al., 2005).

Table 2.2: Average accuracy and bias of extraction criteria under different distribu-
tional conditions

Average accuracy (in %)

Distribution PA-T PA-R Hull CD EKC

Normal 92 73 84 82 82

Lat-NN 91 77 85 74 84

Err-NN 94 82 89 78 88

Average bias (with standard deviation)

Distribution PA-T PA-R Hull CD EKC

Normal -0.10 (0.51) -0.49 (1.13) -0.50 (1.22) -0.12 (0.79) -0.37 (0.92)

Lat-NN -0.10 (0.53) -0.27 (0.96) -0.43 (1.15) 0.03 (0.80) -0.32 (0.85)

Err-NN -0.07 (0.42) -0.22 (0.87) -0.33 (1.03) 0.08 (0.67) -0.25 (0.76)

Note. Bias is calculated as the difference between extracted factors and underlying fac-
tors. PA-T = traditional parallel analysis, PA-R = revised parallel analysis, Hull = Hull
method, CD = comparison data, EKC = Empirical Kaiser Criterion, Lat-NN = non-normal
latent variables and normal errors, Err-NN = non-normal error variables and normal latent
variables.
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In sum, this last manuscript demonstrated that there is considerable variability

which methods become less accurate as the result of multivariate non-normality.

Most extraction criteria for EFA were not negatively affected by non-normality and

displayed comparable or even higher accuracy in non-normal conditions. If the deci-

sion on the number of factors should be based on a single criterion, we recommend

parallel analysis which displayed the highest accuracy overall and was unaffected by

non-normal distributions.
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General Discussion & Outlook

The goal of my thesis was the development of the NOTAMO algorithm that allows

sampling from multivariate non-normal distributions for robustness studies. The

algorithm can specify the univariate distribution, the associated central moments,

and the correlation matrix in advance, while simultaneously manipulating the multi-

variate distribution. The first manuscript introduced the linking functions approach

and, thereby, one idea on how a multivariate distribution can be manipulated. The

linking functions approach creates non-normal random variables by adding two other

random variables, conceptualized as latent factors and unique errors of a structural

model. The algorithm applies (potentially) non-linear functions to these random

variables and the resulting multivariate distribution varies, depending on which

functions are chosen as non-linear. We also demonstrated that this variation in the

multivariate distribution has a large effect on the robustness of model tests in SEM.

In the second manuscript, we combined the linking functions approach with

NORTA. The resulting algorithm, NOTAMO, is the main result of my thesis. It

allows the manipulation of the multivariate distribution, similar to the linking func-

tions approach, but can prespecify any number of central moments at the same time.

NOTAMO also has the advantage that the extent of non-normality can be varied

continuously, which is useful for Monte Carlo studies that aim to provide guidelines

for empirical research.

Finally, the third manuscript examined the effect of, among others, the multi-

variate distribution on factor extraction criteria in EFA. We investigated two types

of non-normal distributions that led to highly different results for SEM, but found

no comparable effect for the extraction criteria. Moreover, most extraction crite-

ria were not negatively affected by any type of non-normality that we investigated

and accuracies were comparable or even higher if the underlying distribution was
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not multivariate normal. Parallel analysis displayed the highest accuracy and is a

suitable extraction criterion even if observed variables are moderately leptokurtic.

Overall, the NOTAMO algorithm is primarily beneficial for Monte Carlo studies

that investigate the robustness of statistical tests. ANOVAs and t tests assume that

the observations in each group are normally distributed, whereas linear regressions

assume a normally distributed error (e.g. Tabachnick & Fidell, 2012). In these cases,

the assumption is made for a single random variable and routines from any modern

software package can be used to explore the effects of non-normality. However, NO-

TAMO can be advantageous when a distribution with specific standardized central

moments (e.g., skewness and kurtosis) is desired. The ability to continuously vary a

univariate distribution based on a mixture of quantile distributions might simplify

the search for an appropriate distribution that complies with given central moments.

Additionally, NOTAMO can be used to clarify whether skewness and kurtosis are

indeed crucial in assessing the degree to which a non-normal distribution affects

robustness. For example, a simulation study could employ NOTAMO to investigate

whether two non-normal distributions with the same skewness and kurtosis result

in the same robustness of basic methods such as widely used linear regressions or t

tests. This would in turn benefit empirical research that routinely has to consider

non-normality because a majority of observed variables is not normal (Cain et al.,

in press).

Other statistical tests and procedures incorporate a multivariate normality as-

sumption. For example, the observed variables in SEM are assumed to be normal

when ML, weighted least squares, or generalized least squares is used for estimation

(Bollen, 1989; Browne, 1974). Multilevel models assume that the random intercepts

and slopes of the model have a multivariate normal distribution (Hox, 2010). In

ANOVAs with repeated measures or MANOVAs, the assumption also pertains to

the observed variables (Tabachnick & Fidell, 2012). Additionally, the treatment of

missing data, for example with full information ML, assumes multivariate normality

(Tabachnick & Fidell, 2012). Robustness studies for all of these methods require

an algorithm that generates samples from non-normal multivariate distributions. In

these cases, at least three parameters become relevant: (1) the marginal distribu-

tions, (2) the multivariate distribution, and (3) the correlation matrix. In contrast
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to previously used algorithms, NOTAMO allows simultaneous manipulations of all

three parameters. NORTA (Cario & Nelson, 1997) and VM (Vale & Maurelli, 1983)

offer control over the marginal distributions and the correlation matrix. However,

these two parameters fully determine the resulting multivariate distribution of both

algorithms, even though other multivariate distributions that would also comply

with the prespecified univariate distribution and correlation matrix exist. More-

over, as demonstrated in the first manuscript, the multivariate distribution can

have different effects regarding robustness, despite similar marginals and the same

correlation matrix. Copulas allow to specify the marginals and the multivariate dis-

tribution in advance, the latter via dependence parameters of the copula. However,

the corresponding correlation matrix depends on both and thus cannot be prespec-

ified. The approach by Mair et al. (2012) allows manipulations of the multivariate

distribution and the correlation matrix, but the resulting marginals cannot be spec-

ified in advance. As I summarized in the introduction, the univariate distribution

with skewness and kurtosis is often of main interest in robustness studies. In con-

trast, NOTAMO manipulates the marginals, the multivariate distribution, and the

correlation matrix. This allows robustness studies to consider a wider range of data

conditions and thereby empirical research a more accurate assessment of the validity

of the statistical tests on which they rely.

3.1 Limitations

Despite the advantages presented so far, NOTAMO also has some limitations. First,

we could not define conditions under which the algorithm is guaranteed to converge.

If users prespecify a central moment that is more extreme than the corresponding

central moment in any of the distributions that constitute the quantile mixture, no

combination of said distributions can be expected to reproduce the desired central

moment. However, even if the desired central moments are within the range of

supplemented distributions, the non-linear root finding and non-linear optimization

algorithms implemented in NOTAMO might not find an appropriate combination of

inverse CDFs. Because of that, the choice of distributions that constitute a suitable

quantile mixture is not perfectly flexible. However, the second manuscript contains
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a number of inverse CDFs that could be used to generate distributions in a wide

range regarding skewness and kurtosis. Furthermore, the algorithm also checks the

accuracy of a solution and prints a warning if the desired moments could not be

reproduced.

Another disadvantage of NOTAMO as well as the other non-normality methods

presented in my thesis is that the algorithms use non-linear functions to create non-

normal distributions. For example, VM applies lower order polynomial functions to

normal random variables to obtain a non-normal distribution. Similarly, NOTAMO

and NORTA utilize inverse CDFs to create non-normality and those inverse CDFs

are also non-linear. Therefore, these algorithms cannot be applied to investigate the

robustness of non-linear models, for example in latent growth curve models (Duncan,

Duncan, & Strycker, 2006). The non-linear functions lead to a higher dependence

among the random variables for the non-normal as compared to normal distributions.

E.g., in the bivariate case with NORTA, two prespecified χ2 marginals with df = 1,

and correlation of rX = .70, the underlying normal variables need to be correlated

as rZ = .75 to counteract the decrease in correlation introduced by the non-linear

transformation. Therefore, the (non-linear) dependence between these two variables

would be higher and non-linear models would account for this dependence with non-

linear functions. The resulting conditions would not be comparable for non-linear

models, because they differ regarding both higher dependencies and non-normal

distributions. Despite the importance of non-linear models, NOTAMO can still be

used to explore the robustness of various linear models that assume normality.

Finally, NOTAMO lacks a measure of multivariate non-normality that specifies

the multivariate distribution, or some aspect of it, in advance. That is, NOTAMO

creates different distributions with the same marginals and underlying correlation

matrix, but does so by either having normal correlated variables and non-normal

uncorrelated variables, or vice versa. However, it would be beneficial to allow contin-

uous variations of the multivariate distribution as well, for example with prespecified

multivariate skewness and kurtosis.
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3.2 Future Research Questions

First and foremost, a number of Monte Carlo studies could more thoroughly inves-

tigate the robustness of statistical tests that incorporate a normality assumption.

For example, this includes widely used t tests, ANOVAs, and linear regressions, as

well as SEM, linear mixed models, MANOVAs, or the treatment of missing data via

full information ML (Bollen, 1989; Hox, 2010; Loveland, 2011; Tabachnick & Fidell,

2012). As I outlined in the introduction, this would be directly relevant for empirical

research, because most observed variables are not normally distributed (Cain et al.,

in press; Micceri, 1989). For example, Blanca et al. (2013) reported that out of 693

distributions of various psychological variables, 39.9% were considered as slightly

non-normal, 34.5% as moderately non-normal, 10.4% as highly non-normal, and a

further 9.6% as extremely non-normal.

In conjunction with these robustness studies, the most crucial step would be to

obtain a measure that can be applied to samples of a distribution and that captures

the effect of non-normality on robustness. For example, the first manuscript showed

that α errors in SEM were severely inflated when the non-normality was based on

the latent factors. In contrast, non-normality had only small or moderate effects on

empirical rejection rates if the multivariate distribution was manipulated by non-

normal unique errors. The goal would be to define a measure that can predict this

effect, based on a sample of the underlying distribution. Kurtosis was unable to

capture this difference, since kurtosis was equivalent across conditions.

One might wonder whether tail dependence could be this relevant measure of non-

normality. For example, Foldnes and Grønneberg (2015) also showed that standard

errors were inflated and model parameters of a SEM were biased when the non-

normal distribution had tail dependence, compared to a non-normal distribution

with similar multivariate kurtosis but no tail dependence. Indeed, the difference

between the two types of distributions we investigated seems insofar related, as

the non-normal latent factors also lead to a multivariate distribution in which the

probability of an outlier in one variable increases the probability of an outlier in a

second random variable. However, tail dependence seems unsuitable for two reasons.

First, it is only defined for bivariate distributions. Since most multivariate analyses
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that assume some sort of normality are usually used with more than two variables,

a measure that considers the multivariate distributions seems more appropriate.

Second, and more importantly, tail dependence is the limit of the probability of

an outlier, given an outlier in the second variable, and, therefore, not defined for

samples of a distribution. This is rather critical when the results of robustness

studies should be used in empirical research. Investigators working with data sets

as diverse as reaction times, income, neurological data, accuracies from cognitive

tests, and age all need to make a decision on how to treat non-normality (Cain et

al., in press; Palmer et al., 2011; Wang et al., 2008). If the measure of non-normality

can only be applied to a theoretical distribution but not be inferred from a sample,

these investigators would be unable to incorporate the information from Monte Carlo

studies in their empirical analysis. Only a measure of non-normality that is both

relevant for robustness and applicable for samples might be able to bridge the gap

between simulation studies and empirical research.
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Conclusion

In my thesis, I suggested a new algorithm called NOTAMO that samples from non-

normal distributions with prespecified central moments and correlation, while simul-

taneously manipulating the largely overlooked multivariate distribution. Through

Monte Carlo simulation studies, I have shown that the multivariate distribution can

have an impact on the robustness of statistical tests beyond the marginals and should

be considered when observed variables are non-normal. NOTAMO can be used to

further investigate the robustness of statistical tests commonly used in various fields

of empirical research. Similarly, NOTAMO could be the first step in obtaining a

measure based on the multivariate distribution that captures whether the degree of

non-normality is relevant in statistical applications.
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Smirnov, N. (1948). Table for estimating the goodness of fit of empirical distribu-

tions. The Annals of Mathematical Statistics , 19 , 279–281.

Soetaert, K. (2009). rootsolve: Nonlinear root finding, equilibrium and steady-state

analysis of ordinary differential equations [Computer software manual]. (R

package 1.6)

Su, P. (2014). NORTARA: Generation of multivariate data with

arbitrary marginals [Computer software manual]. Retrieved from

https://CRAN.R-project.org/package=NORTARA (R package version 1.0.0)

Tabachnick, B. G., & Fidell, L. S. (2012). Using multivariate statistics (6th ed.).

London: Pearson Education.



Non-normal distributions 57

Thurstone, L. L. (1947). Multiple factor analysis. Chicago: University of Chicago

Press.

Vale, C. D., & Maurelli, V. A. (1983). Simulating multivariate nonnormal distribu-

tions. Psychometrika, 48 , 465–471. doi: 10.1007/BF02293687

Wang, L., Zhang, Z., McArdle, J. J., & Salthouse, T. A. (2008). Investigating

ceiling effects in longitudinal data analysis. Multivariate Behavioral Research,

43 , 476–496. doi: 10.1080/00273170802285941

Welch, B. (1951). On the comparison of several mean values: An alternative ap-

proach. Biometrika, 38 , 330–336. doi: 10.2307/2332579

White, H. (1982). Maximum likelihood estimation of misspecified models. Econo-

metrica, 50 , 1–25. doi: 10.2307/1912526

Wood, J. M., Tataryn, D. J., & Gorsuch, R. L. (1996). Effects of under- and overex-

traction on principal axis factor analysis with varimax rotation. Psychological

Methods , 1 , 354–365. doi: 10.1037/1082-989X.1.4.354

Yan, J. (2007). Enjoy the joy of copulas: With a package copula. Journal of

Statistical Software, 21 , 1–21. doi: 10.1.1.610.7783

Yanagihara, H., & Yuan, K.-H. (2005). Four improved statistics for contrasting

means by correcting skewness and kurtosis. British Journal of Mathematical

and Statistical Psychology , 58 , 209–237. doi: 10.1348/000711005X64060

Zwick, W. R., & Velicer, W. F. (1986). Comparison of five rules for determining

the number of components to retain. Psychological Bulletin, 99 , 432-442. doi:

10.1037/0033-2909.99.3.432







psychometrika

doi: 10.1007/s11336-015-9468-7

GENERATING CORRELATED, NON-NORMALLY DISTRIBUTED DATA USING A
NON-LINEAR STRUCTURAL MODEL

Max Auerswald

UNIVERSITY OF MANNHEIM

UNIVERSITY OF KASSEL

Morten Moshagen

UNIVERSITY OF KASSEL

An approach to generate non-normality in multivariate data based on a structural model with normally
distributed latent variables is presented. The key idea is to create non-normality in the manifest variables
by applying non-linear linking functions to the latent part, the error part, or both. The algorithm corrects
the covariance matrix for the applied function by approximating the deviance using an approximated
normal variable. We show that the root mean square error (RMSE) for the covariance matrix converges to
zero as sample size increases and closely approximates the RMSE as obtained when generating normally
distributed variables. Our algorithm creates non-normality affecting every moment, is computationally
undemanding, easy to apply, and particularly useful for simulation studies in structural equation modeling.

Key words: Non-normal multivariate data, Structural equation modeling, Simulation.

Monte Carlo simulations are an important tool in determining the robustness and the validity
of statistical methods. A crucial step in Monte Carlo studies is the creation of data that violate
certain assumptions of the statistical test; the most prominent one being the assumption of nor-
mally distributed data. In the univariate case, creating data following a specific distribution is
straightforward. The multivariate case is more challenging since the generated data are usually
required to follow a prespecified covariance matrix. Any non-normalization process potentially
distorts the covariation and needs to be counteracted.

A number of approaches directed towards this issue have been proposed (e.g., Bradley &
Fleisher, 1994; Burr, 1942; Cario & Nelson, 1998; Cook & Johnson, 1981; Headrick, 2002;
Headrick & Mugdadi, 2006; Johnson, 1949; Mair, Satorra, & Bentler, 2012; Mattson, 1997;
Nagahara, 2004; Ramberg & Schmeiser, 1974; Ruscio & Kaczetow, 2008; Tadikamalla, 1980)
with the power constant approach using polynomial transformations being the most popular one
(Vale & Maurelli, 1983). This approach relies on a technique suggested by Fleishman (1978),
which determines a non-normally distributed variable X by

X = a + bZ + cZ2 + dZ3, (1)

where Z is a standard normally distributed random variable and the power constants a, b, c, and d
are obtained by solving a system of four equations provided by Fleishman (1978) for the first four
moments. Vale and Maurelli (1983) extended this approach for multivariate data using matrix
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decomposition. Their procedure comprises two main steps: First, an intermediate correlation
matrix anticipating the effect of non-normalization is calculated. Second, normally distributed
variables are generated through matrix decomposition according to the intermediate correlation
matrix and are finally non-normalized. The non-normally distributed variables have the desired
covariances in the population distribution. The algorithm was further extended by the fifth-order
polynomial allowing for the specification of the first six moments (Headrick, 2002; Headrick &
Sawilowsky, 1999) and using other distributions instead of normally distributed variable Z , e.g.,
uniform or triangular distributions (Hodis, Headrick, & Sheng, 2012).

The power constants approach contributed significantly to the field and is still very popular.
However, it also has some drawbacks. Defining any finite number of central moments is not
sufficient to define a distribution (Ruscio & Kaczetow, 2008). Changes in higher moments lead
to an infinite number of distributions with the same finite amount of first moments, and even
infinite moments may not result in a unique probability distribution (Devroye, 1986, p. 684). As
the power constants approach only allows for specifying the first four moments (or six using
recent extensions), it is not possible to generate certain distribution families, such as the χ2 or
the lognormal distribution. Moreover, the power constants approach has an additional boundary
condition if it is desired to specify a valid probability density function (PDF) or cumulative density
function (CDF) for the generated data (Headrick & Kowalchuk, 2007). For μ = 0, σ = 1, and
normally distributed variable Z , the boundary for the fourth moment is then 3 < μ4 < 46.2
for symmetric distributions. With increasing asymmetry in the distribution, the boundary of the
fourth moment becomes gradually narrower as

μ2
3

μ4 − 3
<

9

14
(2)

needs to hold (Headrick & Kowalchuk, 2007). Both boundaries can be extended using higher
order polynomials (Headrick, 2002), but it is still not possible to generate arbitrary marginal
distributions. In addition, higher order polynomials may also lead to non-unique solutions, such
that more than one set of power constants fits to a single set of first six moments (Headrick &
Kowalchuk, 2007). This is related to the so-called ‘classical problem of moments’, i.e., finding a
unique distribution given a set of moments (Devroye, 1986; Headrick, 2010, p. 26). Note that for
fourth-order polynomials, the choice of power constants within the class of distributions following
Equation 2 will always be unique, if it exists (Devroye, 1986, p. 685).

The problem of generating different distributions becomes more severe when considering the
obtained multivariate distribution. Foldnes and Grønneberg (in press) examined the tail depen-
dence of a generalizedVale andMaurelli method. Briefly, tail dependence is ameasure of bivariate
dependency based on the probability of drawing an extreme value from one distribution, con-
ditional on having an extreme value in the other (Joe, 1997). They showed that the Vale and
Maurelli procedure (based on normally distributed variables) has no tail dependence, a property
the transformed variables share with the multivariate normal distribution. Furthermore, choosing
a distribution with non-zero tail dependence led to higher bias and standard errors in the esti-
mation of a population covariance in a simple confirmatory factor model, compared to samples
simulated with the Vale and Maurelli procedure. Foldnes and Grønneberg (in press) concluded
“that the truly multivariate aspects of data generation using the VM [Vale and Maurelli] approach
is exactly equal to the Normal model” (Conclusion section, para. 2).

As an alternative approach, Yuan and Bentler (1999) suggested to generate correlated, non-
normal variables as the product of two random variables with prespecified skewness and kurtosis.
Let � be the desired covariance matrix of dimension p and Ip the p-dimensional identity matrix.
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For a non-negative random variable r and Z ∼ N (0, Ip), independent of r ,

X = r�
1
2 Z , (3)

defines an elliptical distribution (Fang, Kotz, & Ng, 1990). Yuan and Bentler extended this pro-
cedure to

X = r AZ , (4)

with AA′ = �, allowing for non-symmetrical distribution Z and unrestricted distributions of r ,
which in general results in non-elliptical distribution X . If the resulting marginal distributions
have the same kurtosis, the obtained distributions are said to be pseudo-elliptical. If the kurtosis is
equal to that of a normal distribution, distributions are called pseudo-normal. While those types
of distributions are defined by this specific generation scheme, Yuan and Bentler could examine
asymptotic robustness properties of various test statistics used in structural equation modeling
(SEM). However, it is unclear whether observed data usually fall into this family of distributions,
albeit larger than the family of elliptical distribution.

A third approach not relying on moments and without univariate distributional constraints
was proposed by Ruscio andKaczetow (2008). This procedure starts generating correlated normal
data following a given covariance matrix and uncorrelated non-normal data following a given
distribution. The normally distributed data are then replaced by the latter while sorting both
distributions by each variable. Consequently, the rank order for all individuals and each variable
stays the same, thereby ensuring a correlation in the simulated data. In an iterative process, the
covariance matrix for the normally distributed variables is modified to minimize the difference
between the target and simulated covariance matrix. The approach allows for a high flexibility
in marginal distributions not limited to the first four or six moments and therefore addresses one
of the main objections raised against the power constants method. However, the minimization
idea has two consequences: First, the sampling fluctuation is too small for small sample sizes,
as achieving the minimum difference in sample and target covariance is unrealistic for a natural
sampling procedure. For example, if two normally distributed variables correlate to ρ = .2 in
the population, it is unlikely to obtain a correlation very close to .2 in every random sample with
n = 50. Second, for a given set of distributions, the algorithm only converges to the minimum
difference and not necessarily to zero. Moreover, the algorithm is computationally demanding
for larger sample sizes due to the sorting embedded in a trial-and-error process that needs to be
performed for every generated data set.

The purpose of the present article is to introduce an algorithm mainly relying on functions
instead of moments, which allows for high flexibility in the data generation process as well as
specifying gradual deviations from a normal distribution. In addition, by avoiding a trial-and-
error process, the algorithm is computationally undemanding, which is important for robustness
studies involving large sample sizes. The algorithm is based on a latent structural model, so that
the distribution of a manifest variable is determined by the sum of two random variables (latent
and error distributions), in turn making the algorithm especially suited for robustness studies in
SEM.

1. Algorithm Description

The goal is to simulate correlated non-normally distributed manifest variables potentially
deviating in more than the first six moments from a normal distribution. The basic idea is to apply
arbitrary (non-linear) linking functions to normally distributed latent and/or error variables and
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to correct for the discrepancy in the covariance matrix caused by the transformation. The discrep-
ancy is assessed using estimates of a normally distributed variable and the covariance matrix of
every linking function applied to this variable. Given a desired covariance matrix (expressed as a
structural equationmodel) and a set of linking functions, the algorithm first estimates the deviation
due to the non-normality transformation using the estimate of a normal variable. The loadings
in the model are then corrected for this deviation in both variance and covariance. Finally, the
remaining deviance among the manifest variables is estimated and the error terms are correlated
to counteract this deviance. We first describe the data generating process using a priori specified
linking function. Thereafter, we show how to control for the degree of non-normality (for example
in terms of a specific moment) by systematically varying the linking functions.

1.1. Data Generation Using Prespecified Linking Functions

The starting point of the algorithm is to define the desired correlation matrix among the to-be
generated variables using a structural equation model with latent and manifest variables as well
as error terms. The desired manifest covariance matrix, �T , is thus a function of the number of
manifest and latent variables, the (standardized) factor loadings of the manifest variables, and the
correlations among the latent variables and the error terms. Let L = (L1, . . . , Lm) be the set of
latent variables with covariance matrix �L and M = (M1, . . . , Mn) the manifest variables with
ξ = (ξ1, . . . , ξn) normally distributed error terms, correlated according to�ξ . The error terms are
later used to correct for remaining deviances due to the non-normalization process which changes
the underlying error covariance matrix to �E . Note that this correction only addresses the effects
of non-normalization, but retains the effects of the correlations among the errors on the manifest
variables. The loading of the j-th manifest variable on the i-th latent variable is denoted as k j . For
simplicity, we require that any manifest variable only loads on a single latent variable (later in this
article we show how to implement more complex loading structures). Generation of Li given �L

proceeds by any suitable matrix decomposition such as Cholesky decomposition. Without loss of
generality, we assume μ(Mj ) = 0 and σ(Mj ) = 1. The manifest variable Mj is then given by

Mj = b j g j (Li ) + c j h j (ξ j ), (5)

where g j and h j are arbitrary linking functions for the latent and error variables, respectively. The
distribution of Mj thus depends on the applied linking functions. Mj is normally distributed when
both g j and h j are linear, while non-linear functions g j or h j result in a non-normal distribution
for Mj . The scalars b j and c j are required to correct for this transformation. Every b j needs to
be determined such that

r(Li , Mj ) = k j (6)

holds, where r is the Pearson product-moment correlation.
To calculate b j , the procedure applies the inverse standard normal cumulative distribution

function to an accuracy vector of p values to create a variable Z . This accuracy vector P contains
values starting at 10−a up to (1 − 10−a) in steps of 10−a for every component of the vector
and a ∈ N . With increasing a, Z more closely approximates the characteristics of a standard
normal distribution due to a more refined vector of p values. Z serves as an estimate of a normally
distributed variable, so

r(Z , g(Z)) = r̂(Li , g(Li )) (7)

and
σ(g(Z)) = σ̂ (g(Li )). (8)

The algorithm requires that
|r(Z , g(Z))| ≥ |k j |. (9)
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If a transformation function reduces the correlation of Z and g(Z) below the desired loading,
|r(Li , Mj )| would also be reduced below |k j |. Given the standardized loadings, Equation 9 and
k j = r(g(Li ), Mj ) ensure that |b j | is smaller than one. For monotone functions and typically
used loadings, the restriction holds, as demonstrated in the first simulation study below. Every b j

is calculated as a correction factor for the deviation in the standard deviation and the loadings as

b j = k j
r(Z , g j (Z))

1

σ(g j (Z))
. (10)

The same logic applies for c j , which is calculated as

c j =
(
1 − k2j

r(Z , g j (Z))2

)1/2
1

σ(h j (Z))
. (11)

The CDF of the manifest variables, F(Mj ), follows the distribution of the sums of two
random variables, the transformed latent variable, and the transformed error. For the latent part
(the CDF of b j g j (Li )), the support A j of Li is partitioned into disjunctive, convex subsets
A j = A j1 ∪ · · · ∪ A jp ∪ A j (p+1) ∪ · · · ∪ A jq , where the function g j is strictly monotone on
A j1, . . . , A jp, and subsets A j (p+1), . . . , A jq , where g j is constant.Using the distribution function
method, the CDF of the latent part is

Fy(y) = P(b j · g j (Li ) ≤ y)

=
p∑

k=1

FLi

(
g−1
j |A jk

(
y

b j

))
− FLi (inf(A jk))|

(
y

b j
∈ g j |A jk (A jk)

)

+
p∑

k=1

(
FLi (sup(A jk)) − FLi (inf(A jk))

) |
(

y

b j
≥ g j |A jk (sup(A jk))

)

+
q∑

l=p+1

(
FLi (sup(A jl)) − FLi (inf(A jl))

) |
(

y

b j
≥ g j |A jl (Li )

)
, (12)

where Li is distributed standard normal. The error part is the CDF of c j h j (ξ j ). Following the
same logic, the support Bj of ξ j is split into subsets Bj1, . . . , Bjr , where h j is strictly monotone
on every subset and subsets Bj (r+1), . . . , Bjs , where h j is constant. The CDF for the error part
is

Fy(y) = P(c j · h j (ξ j ) ≤ y)

=
r∑

k=1

Fξ j

(
h−1
j |Bjk

(
y

c j

))
− Fξ j (inf(Bjk))|

(
y

c j
∈ h j |Bjk (Bjk)

)

+
r∑

k=1

(
Fξ j (sup(Bjk)) − Fξ j (inf(Bjk))

) |
(

y

c j
≥ h j |Bjk (sup(Bjk))

)

+
s∑

l=r+1

(
Fξ j (sup(Bjl)) − Fξ j (inf(Bjl))

) |
(

y

c j
≥ h j |Bjl (ξ j )

)
(13)
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At this point, the latent model is correctly specified. However, the covariance matrix of the
manifest variables still deviates from the desired covariance matrix, since the adjustments by b j

and c j only correct the correlation to the latent variables. The remaining deviance depends on the
similarity of the distributions for twomanifest variables. The covariance among themmay either be
too low for dissimilar distributions or too high for similar distributions due to the correction process
for b j and c j . For example, if two variables share the same linking function, the correlation among
them exceeds the correlation given by �T , because both loadings increase due to the correction
process. In order to counteract this deviation, the error terms are correlated accordingly.

The algorithm uses the covariance of the variables b j g j (Z) to estimate the correlations
between different functions. Let D be the deviation matrix with entries d j1 j2 for different manifest
variables Mj1, Mj2 and corresponding latent variables Li1 , Li2 . For ease of notation, we define

M ′
j := b j g j (Z) (14)

as the vector of the estimated transformed variables. Then, M ′
j (k) is the k-th element of the vector

and P(k) is the k-th element of the vector of p values. The estimated deviation is

d j1 j2 = (�T ) j1 j2 −
{
cov(M ′

j1
, M ′

j2
) if i1 = i2

covadj(M ′
j1
, M ′

j2
) if i1 �= i2.

(15)

The case i1 = i2 applies if both functions refer to manifest variables with loadings on the same
latent variable. Otherwise, the covariance is adjusted for the correlation of the latent variables
(denoted as rL ) by

covadj(M
′
j1, M

′
j2) =

10a−2∑
k=1

10a−2∑
k′=1

M ′
j1(k)M

′
j2(k

′)
P(k+1)∫
P(k)

P(k′+1)∫
P(k′)

φrL (v,w) dv dw. (16)

The estimation uses the bivariate density φi1,i2 of two normal variables correlated according to
the prespecified correlation of Li1 and Li2 (Cario & Nelson, 1998). In this case, every pair of
characteristic elements in M ′

j1
, M ′

j2
is weighted by the corresponding probability of φ, multiplied,

and summed. If error correlations are prespecified, the deviance d j1 j2 is adjusted by the respective
value of

(
�ξ

)
j1 j2

. In order to improve the performance of the algorithm, a smaller accuracy vector
is typically used for this estimation.

The diagonal of D contains the variances of the transformed corrected errors. However, since
the errors are also transformed by a linking function, correlating the errors according to the off-
diagonal elements of D would still result in an incorrect covariance matrix. The discrepancy due
to the error functions is estimated using the covariance of c j h j (Z). In line with the notation for
M ′, we define E ′

j = c j h j (Z) and rE as the required correlation of error variables. Then, the
correlation of two error variables needs be set such that

− d j1 j2 =
10a−2∑
k=1

10a−2∑
k′=1

E ′
j1(k)E

′
j2(k

′)
P(k+1)∫
P(k)

P(k′+1)∫
P(k′)

φrE (v,w) dv dw. (17)

In this case, the correlation of the bivariate normal variables rE is unknown. However, the resulting
error correlation matrix �E needs to be positive definite, so −1 < rE < 1 holds. Any preim-
plemented general equation solving routine can be employed and the solution is approximated
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computationally fast. Most importantly, the estimation time is independent of desired sample size
or number of samples.

Finally, the error variables are generated according to �E by matrix decomposition. The
correction requires the existence of a positive definite, symmetric matrix �E . Certain (rather
extreme) conditions involving the combination of (1) a large number of manifest variables with
high loadings on a single latent variable, (2) severe deviations from normality, and (3) highly
different distributions ofmanifest variables loading on the same latent variablemay result in a non-
positive definite matrix �E . However, as can be seen in the simulation example presented below,
under conditions typically encountered in SEM, �E is positive definite and can be decomposed.

In summary, the algorithm consists of the following seven steps:

1. Apply the inverse standard normal cumulative distribution function to the accuracy
vector of p values to obtain an estimate of a standard normal distribution Z .

2. Apply the linking functions to the approximation of a normal distribution to estimate
the deviation of covariance between manifest and latent variables.

3. Change the loadings and links to error variables by the estimated values in step (2). At
this point, the correlations to the latent model and the variances are correctly specified.
However, there is remaining deviance due to the degree of similarity of the distributions
of the manifest variables that needs to be counteracted using the covariance of the error
variables.

4. Use the variable from step (1) and the correction factors from step (2) to estimate the
residual covariance among the manifest variables.

5. Estimate the error covariance �E that counteracts the deviation given their decrease in
correlation due to h j and the prespecified error covariance �ξ .

6. Generate standard normal variables according to�L and standard normal errors accord-
ing to �E .

7. Apply the respective linking functions to the generated variables in step (6) and add
them, weighted by the correction factors in step (2).

1.2. Determining Linking Functions to Control the Degree of Non-normality

An important requirement for simulation algorithms in the context of robustness studies is
the ability to control the degree of non-normality. Only if a wide range of normality violations is
covered, reliable conclusions regarding the intervals in which a statistical method is robust can
be drawn. In the algorithm description above, the linking functions that control the degree of
non-normality have been treated as input arguments of the algorithm. In this section, a method to
choose and systematically vary the linking functions is introduced.

The general idea of this continuous variation stems from the notion that (a) any non-linear
function results in non-normally distributed data and (b) any linear function results in normally
distributed data. Assume g is a non-linear linking function. Let idx be the identity function and
α ∈ [0, 1]. Then

gα := αg + (1 − α)idx , (18)

is the weighted sum of the non-linear function g and the (linear) identity function. If α = 0,
gα is linear. By increasing the value for α, gα becomes increasingly non-linear, up to the point
where α = 1, such that gα = g. This general process is useful for the transition of any non-normal
distribution to a normal distribution (as demonstrated in the second simulation study below). Since
many robustness studies rely on moments as a proxy for the degree of non-normality, a linking
function search that matches a prespecified moment can also be employed. This problem can be
solved either analytically or numerically. To obtain an analytic solution, the moment generating
function (MGF) of themanifest variableMj can be solved for a parameter (e.g.,α) in the respective
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linking functions. Since the MGF of the sum of two random variables is the sum of the MGFs
of the respective variables, the MGF of the manifest variable is determined by the known CDFs
of the latent and error part. The resulting MGF’s k-th derivative yields the solution for the k-th
moment and α. However, as of now, no closed form solution exists for general functions g.

Alternatively, α can be estimated numerically, provided that the desired k-th moment is on an
interval with boundaries of the k-th moment of a normal distribution and the k-th moment of the
resulting variable generated by the linking functions approachwith linking function g. Let the k-th
moment of the desired random variable M be μk(M), N a normally distributed random variable,
and G the resulting random variable using the algorithm and linking function g, estimated by
g(Z). Provided that

μk(M) ∈ [min(μk(N ), μk(G)),max(μk(N ), μk(G))] (19)

holds, an implementation of the bisectionmethod can find the parameter α for gα by bisecting
the [0, 1] interval and iterating over the interval that still contains the corresponding k-th moment.

In every iteration, the algorithm determines the moment of the resulting variable, which
is the sum of transformed latent and error variables, by calculating the sum of the involved
cumulants and transforming the result back to moments. Note that this statement also holds for
different linking functions for latent and error variables. As long as the desired moment is on
the interval for α ∈ [0, 1], the algorithm can determine α such that the resulting variable has the
desired moment. As illustrated below, depending on the chosen linking function and depending
on whether it transforms the latent or the error part, the algorithm creates different distributions,
all incorporating the same moment.

2. Simulation Studies

We conducted two simulation studies to evaluate the performance of the proposed linking
functions approach. In the first simulation study, we comparatively evaluated the root mean square
error (RMSE) of various approaches of generating non-normal data. In the second simulation
study, we examined how well the proposed linking functions approach approximates prespecified
central moments of the distributions. In addition, we also investigated the performance of test
statistics in SEM using non-normal data generated by either the linking functions approach or the
Vale–Maurelli approach.

2.1. Simulation Study 1

The aims of the first study were to determine the RMSE of the correlation matrices and to
obtain an impression of the generated univariate and bivariate distributions. The structural model
used in this study comprised four latent variables measured by three manifest indicators each (see
Figure 1). All standardized loadings were .7 and the covariance matrix among the latent variables
was

�L =

⎛
⎜⎜⎝

1
0.3 1
0.4 0.1 1

−0.2 −0.1 0.2 1

⎞
⎟⎟⎠ .

This setup thus implied a desired target correlation matrix �T among the manifest variables
of
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Figure 1.
Structural model used in simulation study 1. Mj are non-normally distributed manifest variables. Li are normally distrib-
uted latent variables, correlated according to �L . ξi are normally distributed errors. g j and h j are the linking functions
(in the simulation example g j = h j ) and b j and c j are scalars as defined in Equations 10–11.

�T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
.49 1
.49 .49 1
.15 .15 .15 1
.15 .15 .15 .49 1
.15 .15 .15 .49 .49 1
.20 .20 .20 .05 .05 .05 1
.20 .20 .20 .05 .05 .05 .49 1
.20 .20 .20 .05 .05 .05 .49 .49 1

−.10 −.10 −.10 −.05 −.05 −.05 .10 .10 .10 1
−.10 −.10 −.10 −.05 −.05 −.05 .10 .10 .10 .49 1
−.10 −.10 −.10 −.05 −.05 −.05 .10 .10 .10 .49 .49 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

To modify the distribution of Mj , we applied the following linking functions (see Figures 2,
3):

G1 g1(x) = g7(x) = x (20)

G2 g2(x) = g8(x) = exp(x) − exp(−x)

exp(x) + exp(−x)
(21)

G3 g3(x) = g9(x) =

⎧⎪⎨
⎪⎩
tanh−1

( 2
3 (1 − 10−6)

)
if x ≥ 1 − 10−6

tanh−1
( 2
3 x

)
if 1 − 10−6 > x > 10−6 − 1

tanh−1
( 2
3 (10

−6 − 1)
)

if x ≤ 10−6 − 1

(22)

G4 g4(x) = g10(x) = x3 (23)

G5 g5(x) = g11(x) =
{
4 − (x − 2)2 if x < 0
5x
1+x if x ≥ 0

(24)

G6 g6(x) = g12(x) =

⎧⎪⎨
⎪⎩
tanh(x) if x ≤ 0

tanh−1
( 2
3 x

)
if 0 < x < 1 − 10−6

tanh−1
( 2
3 (10

−6 − 1)
)

if x ≥ 1 − 10−6

(25)
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Figure 2.
The left panels show the linking functions g1 , g2 , g3 (Equations 20–22), the right panels show the histograms of the
manifest variables using the function on the left to transform both latent and error variables.

Note that the linear function g1 yields normally distributedMj , whereas the remaining linking
functions are associated with different degrees of non-normality. Every linking function was used
twice for the 12 loadings and twice for the respective errors (see Figure 1), so in this case g j = h j

(an additional simulation study not reported here with linking functions g j �= h j yielded similar
results with regard to the RMSE). We used an accuracy value of a = 7 for estimating the loading
and variance correction factors, as this captures the extreme values of a normal distribution while
still being computed comparatively fast. The convergence behavior of the algorithm was checked
with eight independent sample sizes of n = (50; 100; 250; 500; 1000; 10,000; 100,000). We
used 2000 replications. The algorithm was implemented in the MATLAB computing language.
The scripts, along with a detailed simulation example, are provided in the supplementary online
material.

We compared the convergence behavior of the algorithm with two other approaches to gen-
erate non-normal data. In the product-based approach by Yuan and Bentler (1999), non-normal
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Figure 3.
The left panels show the linking functions g4 , g5 , g6 (Equations 23–25), the right panels show the histograms of the
manifest variables using the function on the left to transform both latent and error variables.

variables are specified as the product of two random variables. The distributions generated by the
linking functions, however, are always the sum of two random variables, emulating a structural
equation model. Except for special cases, the distributions therefore differ by design. In Equation
3, we chose a standardized central χ2 distribution with d f = 1 for both Z and r . Using the trans-
pose of the Cholesky decomposition of �T , the setup results in a pseudo-elliptical distribution
with covariance matrix �T as specified above. Unlike the product-based approach, the procedure
by Ruscio and Kaczetow (2008) allows to specify exactly the same distributions g1–g6 as used for
our algorithm. However, the method by Ruscio and Kaczetow did not converge for 12 variables
and 4 latent variables. We generated data only for 3 variables, corresponding to g1 , g2 , and g3 , to
give a comparison in the cases where the method converges.

Figure 4 shows the RMSE of the correlation matrices as a function of sample size for the
considered approaches. For comparison purposes, the RMSE resulting from the generation of
normally distributed data (according to �T ) by means of Cholesky decomposition is also shown.
Ideally, the RMSE should converge to zero for a method while having sampling errors comparable
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Figure 4.
Root mean square errors of the manifest correlation matrices as a function of sample size. The solid line depicts the RMSE
using normally distributed variables and Cholesky decomposition. The dashed line depicts the RMSE using the linking
function approach with functions g1–g6 (Equations 20–25). The dotted line depicts the method by Ruscio and Kaczetow
(2008) using the distributions resulting from g1 , g2 , and g3 . The dash-dotted line depicts a pseudo-elliptical distribution
using the method by Yuan and Bentler (1999).

to normal distribution sampling. The RMSE indicates convergence of the simulated correlation
matrix to the target correlation matrix for all three algorithms. However, the sampling errors for
the linking functions approach match the ones of the normal distribution sampling best. While the
method by Ruscio and Kaczetow has sampling errors close to zero regardless of sample size, the
method by Yuan and Bentler suffers comparatively large sampling errors. In contrast, the linking
functions approach is able to reproduce a target correlation matrix with an appropriately high
degree of accuracy even with small sample sizes.

We also ran a simulation with n = 5,000,000 to get a clearer picture of the generated
distributions and their central moments. The six histograms for the different functions are depicted
in the right panels of Figures 2 and 3. The first eight central moments of these six distributions
are presented in Table 1. The moments show that the applied linking functions lead to high
distributional diversity. Also note that the function g6 yields a distribution exceeding the boundary
conditions of the Vale and Maurelli procedure for normally distributed variable Z (Headrick &
Sawilowsky, 1999). Function g2 can be generated by the Vale and Maurelli procedure (Headrick
& Kowalchuk, 2007), but has an unknown PDF (see Equation 2).

2.2. Simulation Study 2

The first goal of the second simulation study was to examine the performance of the linking
functions approach regarding the approximation of prespecified central moments of the univariate
distributions. Given the thereby generated data exhibiting a prespecified level of the forthmoment,
the second purpose was to examine the behavior of test statistics in SEM under such conditions.

This simulation was based on a structural model with two latent variables, correlated with
r = .3. Each latent variablewasmeasured by fivemanifest indicatorswith loadings .7, .6, .5, .4,
and .3. We specified the fourth moment for all univariate distributions as μ4 = 15 and used the
following linking functions as a starting point for the algorithm:
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Table 1.
Central moments of the six functions from the first simulation example.

Central moment g1 g2 g3 g4 g5 g6

μ1 0.00 0.00 0.00 0.00 0.00 0.00
μ2 1.00 1.00 1.00 1.00 1.00 1.00
μ3 0.00 0.00 0.00 0.02 −1.07 1.30
μ4 3.00 2.31 5.06 33.11 4.48 3.67
μ5 −0.01 0.00 −0.03 −1.77 −13.18 8.81
μ6 15.07 6.86 37.84 5033.70 53.61 24.22
μ7 −0.08 0.02 −0.36 −6298.23 −230.82 67.89
μ8 105.26 22.97 379.87 1,694,352.40 1120.82 197.17

μn = n-th central moment of the resulting manifest variable, applying the functions g j and h j for latent
and error variable (see Equations 20–25). In the first simulation example, g j = h j .

Table 2.
Average fourth central moment of every distribution in the second simulation example.

Design h1 h2 h3 h4 h5

Non-normal latent 14.19 14.39 14.45 13.72 15.07
Non-normal error 14.84 16.24 15.89 16.45 15.13

Fourth central moment of the resulting manifest variables in the second simulation example, applying the
functions from Equations 26 to 30 either as latent linking functions with linear error functions (non-normal
latent) or vice versa (non-normal error).

H1 h1(x) = h6(x) = x5 (26)

H2 h2(x) = h7(x) = exp(x) (27)

H3 h3(x) = h8(x) =
{

−x4 if x < 0

x
1
2 if x ≥ 0

(28)

H4 h4(x) = h9(x) = x5 + 10sin(x) (29)

H5 h5(x) = h10(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−50 if x ≤ −3

−1 if − 3 < x ≤ 0

1 if 0 < x ≤ 3

50 if x > 3

(30)

All functions meet the required assumption of being able to create more extreme values for
the fourthmoment than desired (Equation 19), as can easily be shown by applying the algorithm to
the functions without prespecified fourth moments. The functions were used in two designs. One
design implemented the non-linear functions h1–h5 as latent linking functions and used linear
functions for the error terms, while the second design used linear latent linking functions and
non-linear linking functions h1–h5 for the errors. The simulation used 10,000 samples of sample
size n = 500 for each design and an accuracy of a = 7.

Table 2 shows the average resulting fourth central moments of the five distributions. The
central moments approximate the desired μ4 = 15 for all variables and in both designs. Note,
however, that the resulting marginal distributions differ depending on the choice of linking func-
tions. Figure 5 exemplarily shows the histograms related to functions h1 and h5, generated from
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Figure 5.
Samples created with the functions h1 and h5 as the error transformation functions, estimated to create distributions with
identical fourth moments μ4 = 15.
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Figure 6.
Heat map of distributions h1 and h5. The left panel shows the bivariate distribution given that the latent variables are
transformed; the right panel shows transformed errors. Both distributions are specified to have μ4 = 15 and a Pearson
correlation of .21.

a sample size N = 500,000 for the non-normal error distributions. Both distributions are sym-
metrical (and therefore equivalent on every odd central moment) and by design equivalent on
the fourth moment. With the power constants approach (Vale & Maurelli, 1983), we could not
differentiate between these two distributions.

Figure 6 shows a heat map of the bivariate distribution related to functions h1 and h5 for both
designs. Compared to non-normal error terms, using the same non-normality transformation on
the latent variables creates a different dependency pattern, which in turn could lead to different
robustness behavior. The algorithm is thus able to generate different multivariate distributions
sharing the same (say, fourth) moment, allowing stricter assessments of robustness.
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Table 3.
Kolmogorov–Smirnov distances and empirical rejection rates under different conditions of non-normality.

Design TML TSB

KS-distance RR (%) KS-distance RR (%)

Non-normal error .03 5.3 .05 6.5
Non-normal latent .29 23.6 .14 13.0
Vale–Maurelli .15 13.9 .08 7.4

Kolmogorov–Smirnov (KS) distances and empirical rejection rates (RR) of the normal theory likelihood-
ratio test statistic (TML) and themean-scaled test statistic (TSB) under data generated by the linking functions
approach using non-normal latent linking functions with linear error functions (non-normal latent) or linear
latent functions with non-linear error functions (non-normal error), or data generated via the approach by
Vale and Maurelli.

To illustrate the relevance of being able to generate different multivariate distributions based
on univariate distributions sharing the samevalue for a certainmoment,we estimated the (correctly
specified) confirmatory factormodel described above in each of the first 1000 generated samples of
the non-normal latent and the non-normal error condition, respectively. For comparison purposes,
we also generated 1000 data sets using the Vale–Maurelli approach with the first four moments
specified to be equal to the ones generated by the linking functions approach (i.e., the fourth
moment was 15 for all indicator variables, while the third moment ranged from −1.39 to 1.51
depending on the indicator variable). The factor model was estimated with MPlus (version 7.11)
using normal theory maximum likelihood. We considered both the likelihood-ratio test statistic
TML and the Satorra–Bentler mean-scaled test statistic TSB (Satorra & Bentler, 2012).

Table 3 shows the Kolmogorov–Smirnov distances to the asymptotic χ2(34) distribution as
well as the empirical rejection rates using a nominal α-error level of .05. It is evident that the
behavior of both test statistics varied as a function of the data generating approach, despite the fact
that univariate kurtosis was always the same. In particular, TML closely followed the theoretical
χ2 distribution in the non-normal error condition, showed a moderate bias in the Vale–Maurelli
condition,1 and exhibited a substantial bias in the non-normal latent condition. TSB followed
a similar pattern, but performed generally somewhat better compared to TML. This study thus
indicates that the behavior of test statistics in SEM is not well described by considering univariate
kurtosis in isolation, but depends on characteristics of the underlying multivariate distribution,
which can be successfully manipulated using the proposed linking functions approach.

3. Discussion and Conclusion

In the present paper, we presented a method to generate correlated, non-normally distributed
multivariate data. Themethod is basedon a structuralmodel involvingmanifest and latent variables
as well as error terms. Non-normality is introduced by specifying arbitrary linking functions to
the latent part, the error part, or both. We further showed how to determine the linking functions
such that the degree of non-normality can be systematically varied (for example in terms of a
specificmoment). Althoughwe exemplified the proposed procedure drawing onmonotone linking
functions, the algorithmdoes not requiremonotony. However, usingmonotone linking functions is
recommended, as this is associated with larger correlations between latent and transformed latent

1Note that the empirical rejection rate of TML for the Vale–Maurelli data sets appears only moderately inflated
when compared to those observed in similar simulation studies (e.g., Curran, West, & Finch, 1996; Savalei, 2010). This
discrepancy is due to the use of lower loadings and lower factor intercorrelations in the present study.
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variables, therebymeeting the restriction inEquation 9 even for high absolute loadings.Depending
on the applied linking functions, the algorithm generates distributions varying considerably in
any central moment and is associated with reasonably small sampling errors, while not using a
computationally demanding trial-and-error process. The simulation examples demonstrated the
flexibility and good convergence behavior.

Using the proposed algorithm depends on expressing the target covariance matrix by specify-
ing a congeneric structural model. Cross-loadings are an important specification in SEM research,
for example by allowing to evaluate the effects of misspecified factor loadings compared to mis-
specified factor covariances (Hu & Bentler, 1998; see also Moshagen, 2012). In the present
algorithm, it is not advisable to incorporate cross-loadings by simply introducing an additional
loading parameter, because this would be associated with overly strict boundary conditions of
the estimation routine. However, cross-loadings can be modeled by adding additional latent vari-
ables that capture cross-loadings to the structural model. Suppose that a manifest variable M1 is
needed to depend on both L1 and L2 with loadings k1 and k2. An additional latent variable Lm+1
with loading k′ can be introduced, where the correlations r(L1, Lm+1) and r(L2, Lm+1) are set
such that k′r(L1, Lm+1) = k1 and k′r(L2, Lm+1) = k2 holds. More generally, note that any
desired manifest covariance matrix can be represented by a suitable saturated structural equation
model. Although the data generation routine builds upon a certain structural model, it is ultimately
agnostic to its particular structural assumptions, as the resulting data will be compatible with any
equivalent model.

Simulation methods involving the weighted addition of distributions have the consequence
that the resulting distributions depend on the predefined loadings (Headrick& Sawilowsky, 1999).
Identical linking functions result in different distributions in the manifest variables for different
loading structures, which may be undesired in some situations. However, this issue can be cir-
cumvented by correlating the errors accordingly. For simplicity, suppose that two standardized
loadings k1 > k2 > 0 are assumed for two manifest variables Mi1 , Mi2 and the goal is to repli-
cate the distribution generated for k1 on both variables in the case of k2. Then, the errors for both
manifest variables need to be adjusted to

(
�ξ

)
i1,i2

= k22 − k21
1 − k21

(31)

The generated non-normal variables will have the same distribution.
A modification of the algorithm can be used for simulation studies of methods for dimen-

sionality reduction such as factor analysis or principal component analysis. The purpose of these
methods is to reduce manifest variables to fewer latent variables. Therefore, the specific intercor-
relations among the manifest variables that are not due to the latent variables seem less important.
We suggest correcting only for the covariance change to latent variables and error terms, which
would provide a stricter test for dimensionality reduction methods.

In a more general case, it is often desirable to have a non-normal distribution in the manifest
variables following a givenmultivariate density function. The procedure presented herein relies on
linking functions to determine the distribution of the manifest variables. An alternative approach
would be to parameterize the applied functions and tomodify these in an iterative fashion such that
the resulting distribution matches a given multivariate target distribution. Consider a set of linking
functions depending on one or more parameter. Given Equations 11–12, the estimated correction
parameters b j and c j , and the correlation of the corresponding latent variables, the difference
between the target distribution and the distribution for a pair of functions with given parameters
can be estimated. By minimizing this difference for the set of functions by means of a suitable
optimization algorithm, the parameters of the functions can be iteratively adjusted to increase
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the match between actual and target distribution. However, the parameterized functions need to
be highly flexible and of sufficient generality in order to capture a wide range of desired target
distributions. Moreover, a number of problems might occur during the minimization process that
warrant special attention. Nonetheless, this approach provides an interesting avenue for further
research.

In summary, the paper presented an algorithm to generate correlated non-normal data using
linking functions to transform normal distributions. The algorithm counteracts the deviance in
variance, correlation to the latent variables, and covariance among the manifest variables. The
linking functions can be estimated to obtain distributions with any single prespecified central
moment. The sampling error for the manifest covariance matrix converges to zero for a wide
range of different distributions and increasing sample size. The procedure is computationally
undemanding and produces a wide range of different distributions valuable for stricter robustness
studies concerning non-normality.
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Abstract

The article develops an algorithm to generate multivariate samples with prespecified

central moments from a population with a non-normal distribution and given correlation

matrix. The algorithm extends the NORTA approach, a method that generates random

vectors with arbitrary marginal distributions, by determining an appropriate inverse

cumulative distribution function (CDF ). The inverse CDF is estimated as a quantile

mixture of prespecified distributions to comply with the desired central moments. A Monte

Carlo simulation demonstrates the range of distributions and central moments for which

the algorithm is feasible. The algorithm is easy to apply, fast, and implemented in the

widely used and open-source R environment.

Keywords: Non-normal multivariate data; Simulation; Skewness and kurtosis
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Sampling from arbitrary non-normal distributions with given covariance and central

moments

Many statistical methods require the assumption of multivariate normality. By

applying the statistical test to simulated samples of a population with known covariance,

Monte Carlo studies can provide boundaries in which the validity of these methods is not

compromised. The samples are generated to violate the normality assumption to a certain

degree, while systematically varying the population covariance. Although it is

straightforward to generate either normally distributed data with known covariance or

non-normally distributed variables with zero or unknown covariance, jointly meeting both

requirements is challenging. Distorting a multivariate normal distribution (e.g. by

transformation functions) influences the covariance structure. Vice versa, creating

covariance by adding non-normally distributed variables results in distributions converging

to a normal distribution with increasing number of variables due to the central limit

theorem.

A number of strategies have been proposed to simulate samples from a population

with non-normal distribution and a prespecified covariance matrix (e.g. Bradley &

Fleisher, 1994; Cook & Johnson, 1981; Foldnes & Olsson, 2016; Headrick & Mugdadi, 2006;

Koran, Headrick, & Kuo, 2015; Mair, Satorra, & Bentler, 2012; Ruscio & Kaczetow, 2008).

Vale and Maurelli (1983) proposed a three-step multivariate power constants approach

(MPC) extending the power constants approach (Fleishman, 1978), which is perhaps the

most popular approach. First, a system of equations is solved to obtain polynomial

transformation functions which result in prespecified first four moments of a distribution.

More precisely, for Z ∼ N (0,1), the method solves

X = a + bZ + cZ2 + dZ3, (1)

for parameters a, b, c, d, to achieve the desired skewness γ3 and kurtosis γ4 in X.1 Second,

the distorting effect of the transformation on the covariance matrix is determined and

1Skewness and kurtosis are defined as the standardized third and fourth central moment. Unlike central
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counteracted, resulting in an intermediate covariance matrix. Third, normally distributed

random variables are sampled according to the intermediate covariance matrix and

non-normalized using the polynomial transformation functions. The resulting variables are

non-normal according to the prespecified skewness and kurtosis, and comply with the

prespecified covariance matrix. The method was further extended to incorporate higher

order polynomials (Headrick, 2002; Headrick & Sawilowsky, 1999) and different sampling

distributions, e.g. uniform distributions (Hodis, Headrick, & Sheng, 2012).

The ability of MPC to create samples with given skewness and kurtosis is

advantageous in the context of Monte Carlo simulations. The possibility to vary

continuously both measures allows determining a range for skewness and kurtosis, in which

a specific test is robust against violations of distributional assumptions. For any data set

and statistical test, skewness and kurtosis can then be assessed with regards to these

boundaries. However, MPC also suffers some drawbacks. First, the procedure relies on

finding a polynomial transformation function. Certain families of probability distributions,

e.g. the χ2 or lognormal distributions, cannot be generated relying on polynomials only

(Ruscio & Kaczetow, 2008). Second, although different probability distributions can share

the same (first) central moments, MPC always generates samples from the one particular

distribution (associated with a given skewness and kurtosis). However, the robustness of a

statistical test under given first central moments may vary with higher order moments, in

turn leading to invalid conclusions for the boundaries of skewness and kurtosis (Astivia &

Zumbo, 2014). Third, recent results suggest that the robustness of many statistical tests

primarily depends on the underlying multivariate distribution, even if the marginal

distributions are similar (Auerswald & Moshagen, 2015; Foldnes & Grønneberg, 2015).

moments, skewness and kurtosis take the variance of the random variable into account. However, in the

context of sampling correlated, non-normally distributed variables, any manipulation of the standardized

moments also affects the (unstandardized) central moments and vice versa. Both manipulations are equiv-

alent because they only differ due to the variance of the random variable, which is easily manipulated by

multiplying a constant to said random variable. We therefore use both terms interchangeably.
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Foldnes and Grønneberg (2015) investigated the effect of (upper) tail dependence between

two random variables Xi,Xj, a measure of multivariate non-normality. Upper tail

dependence is defined as the probability that Xi exceeds its p-th quantile, conditional on Xj

exceeding its p-th quantile. Foldnes and Grønneberg (2015) evaluated a structural equation

model with data that were either generated using MPC or a copula based approach, while

the latter allowed for higher tail dependence. Maximum likelihood estimation performed

less favorable with regards to bias and standard error for the copula based samples,

compared to Vale and Maurelli samples, while kurtosis was similar in both cases.

The NORTA (NORmal To Anything) method is an alternative approach that

partially addresses the disadvantages of the Vale and Maurelli procedure (Cario & Nelson,

1997). NORTA generates samples of a random vector with given target correlation matrix

and marginal distribution. In contrast to MPC, NORTA allows the specification of any

marginal distribution, including χ2, lognormal, and also discrete distributions. The

specification as a probability distribution also determines the central moments of the

resulting random variable. Despite this increased flexibility, the reliance on probability

distributions can be disadvantageous when the goal is to find boundaries for measures of

non-normality, such as skewness and kurtosis, in which a statistical test is robust.

Furthermore, NORTA shares the limitation with MCP of considering the marginal

distributions only.

In the present article, an algorithm is introduced that combines the advantages of

MPC with those of the NORTA approach and also allows the manipulation of the

multivariate distribution independently of univariate skewness and kurtosis. To this end,

the NORTA approach is extended to allow for the specification of skewness, kurtosis, and

central moments of the desired distribution continuously, while preserving the

distributional flexibility of NORTA. The algorithm is computationally undemanding and

has been implemented in the NOTAMO (NOrmal To Arbitrary MOments) package (see

Appendix) for the open-source statistical computing language R (R Core Team, 2016).
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Algorithm description

The purpose of the algorithm is to create multivariate samples from a population that

is distributed according to a set of moments (or related distributional measures such as

skewness and kurtosis), a set of inverse cumulative distribution functions (CDFs), and

correlation matrix ΣT . First, the algorithm determines parameters for a linear combination

of inverse CDFs to comply with the prespecified set of moments. Second, the NORTA

approach is used to estimate an intermediate correlation matrix ΣN that counters the

distortion in correlations introduced in the first step. Finally, the algorithm samples

normally distributed random variables according to ΣN and transforms them to comply

with the prespecified moments. The resulting variables are distributed according to the

desired correlation matrix ΣT .

The extension of the NORTA method requires a set of inverse CDFs for every

random variable. We denote the possible inverse CDFs for the k-th random variable as

F −1
k(1), ..., F

−1
k(m)

. If only a single inverse CDF were to be specified, all moments would be

determined by the associated distribution (as is the case with traditional NORTA).

Instead, the set of inverse CDFs allows to estimate a linear combination of inverse CDFs

that complies with the prespecified moments. Let n be the number of random variables

and ΣT the target correlation matrix. The algorithm needs to find parameters

ak(1), ..., ak(m) such that

F −1
k =

m

∑
j=1
ak(j)F

−1
k(j), (2)

where F −1
k is the inverse CDF associated with the prespecified central moments, 1 ≤ k ≤ n,

and
m

∑
j=1
ak(j) = 1, ak(j) ≥ 0. (3)

Inverse CDFs as in Equation 2 are known as quantile mixtures, in analogy to mixtures of

probability density functions (Karvanen, 2006). Note that it is necessary that

min
k=1..m

µF−1
k

≤ µ ≤ max
k=1..m

µF−1
k

(4)
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holds, for the desired moment µ. The algorithm cannot find a quantile mixture that

complies with moment µ if µ exceeds the associated moment of every distribution in the

set. However, as can be seen in the simulation example, only a small number of inverse

CDFs is typically sufficient to achieve high distributional flexibility.

The algorithm estimates the parameters ak(1), ..., ak(m) in Equation 2 using a vector

of p-values, similarly to the technique used by Auerswald and Moshagen (2015). The vector

of p-values needs to be equally spaced, e.g. starting at 10−b, increasing in steps of 10−b up

to 1 − 10−b, for b ∈ N. For any inverse CDF F −1 and uniformly distributed random variable

U , U ∼ U[0,1], the random variable F −1(U) is distributed according to F , so F −1(U) ∼ F

(e.g. Embrechts & Hofert, 2013). As the vector of p-values, denoted as pb, captures the

characteristics of a uniform distribution, F −1
k (pb) can be used to estimate (among other

aspects) the skewness and kurtosis of Fk, as will be demonstrated in the simulation

example below. The prespecified inverse CDFs F −1
k(j)

and the resulting parameters ak(j)

then constitute the desired inverse CDF F −1
k for latent variable k.

The NORTA method is then used to estimate an intermediate correlation matrix ΣN ,

that counteracts the distortion introduced by F −1
k . The NORTA approach generates

random samples with given univariate distributions and correlation matrix. Instead of

MPC’s polynomial transformation functions, NORTA generates non-normal random

variables Xk with 1 ≤ k ≤ n as

Xk = F −1
k (Φ(Zk)), (5)

where Φ(.) denotes the CDF of the standard normal distribution, F −1
k the inverse CDF of

the distribution associated with Fk, and standard normally distributed variables Zk. Note

that the transformation function F −1
k (Φ(.)) ensures that Xk is distributed according to Fk.

Similarly to MPC, the crucial part of the algorithm is to determine an intermediate

correlation matrix ΣN that anticipates and counteracts the distortion in correlation,

introduced by the non-normality transformation in Equation 5. The correlation of two

random variables Xk1 and Xk2 is directly determined by the respective correlation of Zk1
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and Zk2 , since

Corr(Xk1 ,Xk2) = Corr(F −1
k1

(Φ(Zk1)), F −1
k2

(Φ(Zk2))). (6)

Furthermore, the algorithm only needs to consider E[Xk1Xk2], the expected value of

Xk1Xk2 , because the mean and standard deviation of both random variables is fixed by

their respective CDFs and

Corr(Xk1 ,Xk2) =
E[Xk1Xk2] −E[Xk1]E[Xk2]

(Var(Xk1)Var(Xk1))−
1
2

. (7)

The expected value is

E[Xk1Xk2] = ∫
∞

−∞

∫
∞

−∞

F −1
Xk1

(Φ(zi))F −1
Xk2

(Φ(zj))φρ(i,j)(zi, zj)dzi dzj, (8)

where φρ(i,j) is the bivariate standard normal probability density function given correlation

ρ(i, j) (Cario & Nelson, 1997). A closed form expression of Equation 8 is only available for

special cases, but numerical approximations provided by Cario and Nelson (1997) converge

under mild conditions.

The algorithm can be summarized as follows. First, a quantile mixture is estimated

for every variable. The parameters of the quantile mixture are set according to the

prespecified central moments. Then, the NORTA approach is used to estimate an

intermediate correlation matrix ΣN . Finally, standard normal variables are sampled

according to ΣN and transformed by the function F −1
k (Φ(.)). The resulting variables

comply with both the prespecified correlation matrix and the central moments for each

variable. The next section addresses a further extension of the algorithm that also allows to

alter the multivariate distribution directly.

Manipulating the multivariate distribution

The algorithm can also be used to vary the multivariate distribution, independently of

target skewness and kurtosis. Without loss of generality, assume that the random variables

Xk generated with the described algorithm have unit variance. Skewness and kurtosis are
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defined as the standardized third and fourth central moment respectively, so in this case

γ3 =
µ3

σ3 = µ3, (9)

for the third central moment µ3, and

γ4 =
µ4

σ4 = µ4, (10)

for the fourth central moment µ4. The central moments µ3, µ4 can be used to calculate the

corresponding cumulants κ3, κ4 as

κ3 = µ3, (11)

and

κ4 = µ4 − 3µ2
2 = µ4 − 3. (12)

Cumulants have the property of additivity, so

κn(X1 +X2) = κn(X1) + κn(X2) (13)

holds for any cumulant and independent random variables X1,X2. We define

Xk = Lk +Ek (14)

with random variables Lk and independent random variables Ek. We also require that Lk is

independent from any variable Ek. Instead of generating the target random variables Xk

directly, the algorithm can be used to generate either Lk or Ek, while the other is normally

distributed. For example, if Ek is normal, γ3E
= 0 and γ4E

= 3. The algorithm can be used

to adjust the target correlation, skewness and kurtosis of Lk according to Equations 9-14,

to obtain the desired γ3, γ4 in Xk. Correspondingly, if Lk is normal, the algorithm adjusts

skewness and kurtosis of Ek.

The effect on a bivariate distribution with normal Lk and non-normal Ek (and vice

versa) is illustrated in Figure 1. The target skewnesses for the non-normal variables were 2
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and 5, target kurtoses were 20 and 70, and all variables had unit variance.2 The target

moments and set of inverse CDFs together determine the resulting marginal distribution

of the generated non-normal variables. Due to the same prespecification, the marginal

distribution of the non-normal L1 is identical to the marginal distribution of the

non-normal E1. As a consequence, X1 is in both cases the sum of a normally distributed

variable and a non-normally distributed variable specified by the associated quantile

mixture. X1 has the same marginal distribution independent of L1 or E1 being the cause

for the non-normality, because E1 and L1 are independent by definition (see Figure 2). The

algorithm is therefore able to manipulate the multivariate distribution while keeping the

marginal distributions identical. In this example, the correlation of L1 and L2 was r = .8 in

both cases, resulting in a correlation of r = .4 for X1 and X2. Note that the assumption of

unit variance for Lk and Ek would lead to a restricted range of possible correlations among

the Xk as all Ek are uncorrelated by definition. We therefore only required unit variance in

Xk, allowing for a wider range of possible correlations.

2The algorithm used the same set of inverse CDFs as for the first and second variable in the simulation

example.
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Figure 1. Heatmap of bivariate distributions. The left panel shows the bivariate

distribution according to Equation 14 if the dependent Lk are generated with the proposed

algorithm and normal (independent) Ek. The right panel shows the reversed case.

Importantly, the correlation coefficients (r = .40) are identical in both cases.
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Figure 2. Marginal distributions. The left panels show the marginal distributions of

X1, the right panels show the marginal distributions for X2. In the top panels, dependent

variables Lk were generated with the proposed algorithm while Ek was normally

distributed. The bottom panels show the reversed case. Independently of Lk or Ek being

non-normally distributed, the resulting marginal distributions are identical.
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Simulation example

The proposed algorithm relies on numeric approximation in two parts: (1) the

estimation of the appropriate inverse CDFs; (2) the estimation of an intermediate

correlation matrix Σ that anticipates the effect of the non-normality transformation on the

correlation. To evaluate the performance of the algorithm, we conducted a simulation

study based on six variables with target correlation matrix

ΣT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

.49 1

.49 .49 1

.15 .15 .15 1

.15 .15 .15 .49 1

.15 .15 .15 .49 .49 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(15)

which corresponds to a congeneric two-factor model with loadings of λ = .7 and factors

correlated to r = .3.

In defining the distributions for the six variables, we attempted to cover a wide range

of distributions, skewnesses, and kurtoses:

� A quantile mixture of a standard normal distribution, a cubic standard normal, and a

χ2 distribution with df = 1, with target γ3 = 2 and γ4 = 20.

� A quantile mixture of a standard normal distribution, a cubic standard normal, and a

lognormal distribution with target γ3 = 5 and γ4 = 70

� A quantile mixture of a standard normal distribution, a cubic standard normal, and

an exponential distribution with target γ3 = 1 and γ4 = 10

� A quantile mixture of a standard normal distribution and a uniform distribution on

the interval [0,1] with target γ4 = 2



GENERATING NON-NORMALLY DISTRIBUTED SAMPLES 13

� A quantile mixture of an exponential distribution with rate λ = 1, a uniform

distribution on the interval [0,1], and a standard normal distribution with target

γ3 = 1 and γ4 = 4.5

� A quantile mixture of a Poisson distribution with λ = 1, a binomial distribution

B(n = 30, p = .50), and a binomial distribution B(n = 30, p = .99) with target γ3 = −.2

and γ4 = 3

The resulting probability density functions (or probability mass function, in case of

the discrete variable) corresponding to these quantile mixtures are illustrated in Figure 3.

In all distributions, we restricted at least one higher moment to illustrate the extended

algorithm (note that restrictions on γ are not required). We used an accuracy value of

b = 7, which appears to be a good trade-off between speed and accuracy. Six sample sizes

were used: N = (50; 100; 300; 1,000; 10,000; 100,000), with 5,000 replications each.

Simulation and estimation was obtained using the R package NOTAMO which in turn

incorporates the packages moments (Komsta & Novomestky, 2015), multiroot (Soetaert,

2009), nloptr (Johnson, 2014), and NORTARA (Su, 2014).
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Figure 3. Distributions generated in the simulation example. For continuous variables

X1 −X5, the panel depicts the probability density function of the generated random

variables. For the discrete variable X6, the panel shows the probability mass function.

Table 1 shows the resulting and target skewness and kurtosis of the generated

random variables and sample size 100,000. It is evident that the observed values for

skewness and kurtosis closely match the respective target for all random variables. Note

that the estimation of the parameters in Equation 2 is independent of sample size.

However, using larger sample sizes allows for a more accurate assessment of the resulting

skewness and kurtosis in the generated samples.
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Table 1

Mean empirical skewness and kurtosis of the six random

variables generated in the simulation example with prespecified

targets

X1 X2 X3 X4 X5 X6

Empirical skewness 2.00 5.01 1.00 0.00 1.00 -.20

Target skewness 2.00 5.00 1.00 0.00 1.00 -.20

Empirical kurtosis 20.05 72.28 10.02 2.00 4.50 3.00

Target kurtosis 20.00 70.00 10.00 2.00 4.50 3.00

Note. Observed and prespecified skewness and kurtosis for the

variables in the simulation example. The algorithm estimated a

quantile mixture distribution to approximate the prespecified target

values. The simulation incorporated 5,000 repetitions of sample size

100,000.

The second numeric approximation used in the proposed algorithm refers to the

correction of the correlation matrix and is based on the NORTA approach. We calculated

the average root mean square error (RMSE) between each sample and target correlation

matrix, displayed in Table 2. The sampling error decreases with increasing sample size,

indicating convergence. For comparison purposes, Table 2 also illustrates the RMSE for

standard normal random variables with the same target correlation matrix ΣT . It can be

seen that the RMSE of the proposed algorithm is only slightly higher compared to that of

standard normal random variables.
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Table 2

Root mean square error of the difference of simulated and target

correlation matrices

N 50 100 300 1,000 10,000 100,000

Algorithm .120 .086 .051 .029 .011 .006

Standard normal .116 .081 .047 .026 .008 .003

Note. Average root mean square error of the difference of the

observed and target correlation matrix for variables generated with

the proposed algorithm or standard normal variables. Each cell

contains 5,000 repetitions.

Discussion and conclusion

A common goal in studies investigating the robustness of statistical methods is to

generate samples that violate the normality assumption to a specific degree, but maintain a

certain covariance structure. Herein, we proposed an algorithm for generating multivariate

non-normal random variables based on an extension of the NORTA method that also

allows the prespecification of any (combination of) central moments. The key idea is to

define the inverse CDF of the non-normal random variables as a quantile mixture

distribution. The algorithm estimates the parameters of the quantile mixture distribution

to determine a distribution complying with the prespecified central moments. As the

simulation example demonstrates, the algorithm can reproduce a wide range of skewness

and kurtosis with high accuracy for both continuous and discrete distributions.

Furthermore, the RMSE of the difference of empirical and target correlation matrices

approximates the RMSE obtained when generating normally distributed random

variables. The algorithm is computationally undemanding, easy to apply, and implemented

in the open-source statistical computing language R.
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The main advantage of the proposed algorithm to the NORTA method is that central

moments can be specified. The ability to vary skewness, kurtosis, and other distributional

measures continuously allows for a more systematic investigation of the effect of

non-normality and increases the comparability to previous robustness studies. The

algorithm can be used in Monte Carlo simulations that attempt to determine a range for

skewness and kurtosis (or other standardized central moments) in which a statistical test is

robust. However, the algorithm also allows for determining if the common practice of

reducing the effect of non-normality to skewness and kurtosis is adequate. Different

marginal distributions might have a different effect on the validity of a statistical test even

if skewness and kurtosis are similar. The algorithm allows the variation of the marginal

distributions while specifying the same target central moments by choosing a different

quantile mixture. Furthermore, recent simulation studies emphasized the compromising

effect of multivariate non-normality on the robustness of statistical tests (Auerswald &

Moshagen, 2015; Foldnes & Grønneberg, 2015). Our algorithm can vary key characteristics

of the multivariate distribution independently of marginal distributions and prespecified

correlation matrix. The invariance in marginal distributions also implies the same

skewness, kurtosis, and any central moment of the marginal distributions. Overall, our

algorithm offers researchers conducting Monte Carlo simulations a high flexibility in

simulating samples from non-normal distributions and may be useful for assessing the

robustness of a wide range of statistical tests and data conditions.
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Appendix

The algorithm is available in the NOTAMO R package, which can be downloaded at

https://github.com/NOTAMOr/NOTAMO. The function NORTA function is used to

estimate a quantile mixture for a univariate distribution, given a set of inverse CDFs and

prespecified central moments. A user can additionally specify alternative values for the

accuracy vector, starting values, the maximum number of iterations, and the algorithm

used to approximate the central moments. The function prep NORTA converts the results

to inverse CDFs, which are then used in the NORTA algorithm to generate samples from a

multivariate distribution with prespecified correlation matrix (see the NOTAMO reference

manual for additional information).

The following code example illustrates the generation of a sample from a bivariate

distribution with r = .40 using NOTAMO. Both univariate distributions have prespecified

central moments as γ3 = 1 and γ4 = 10 (see distribution 3 in the simulation example). For

the first univariate distribution, the quantile mixture consists of a standard normal

distribution, an exponential distribution with rate λ = 1, and a cubic standard normal. For

the second distribution, an additional exponential distribution with rate λ = 2 is considered.

The algorithm finds a distribution that is different from the first univariate distribution,
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despite having the same skewness and kurtosis.

> ### Univariate distributions

>

> # Define set of three inverse CDFs (distribution 1):

> icdf_list <- list(

+ list(qexp),

+ list(qnormcube <- function(p) {return(qnorm(p)^3)}),

+ list(qnorm)

+ )

> # Define target moments:

> moms <- matrix(0,nrow=2,ncol=2)

> moms[1,] <- c(3,1) #desired skewness is 1

> moms[2,] <- c(4,10) #desired kurtosis is 10

> # Estimate parameters:

> res1 <- NORTA_function(icdf_list,moms)

> # Define set of four inverse CDFs (distribution 2):

> icdf_list2 <- list(

+ list(qexp),

+ list(qnormcube <- function(p) {return(qnorm(p)^3)}),

+ list(qexp,rate=2),

+ list(qnorm)

+ )

> # Estimate parameters:

> res2 <- NORTA_function(icdf_list2,moms)

> # The resulting distribution is different from the first example, despite

> # having the same skewness and kurtosis.

>
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> ### Multivariate distribution

>

> # Define correlation matrix:

> target_cor <- matrix(0,nrow=2,ncol=2)

> target_cor[1,] <- c(1,0.4)

> target_cor[2,] <- c(0.4,1)

> # Define functions for NORTARA:

> f1 <- function(x) {

+ return(prep_NORTA(res1,x))

+ }

> f2 <- function(x) {

+ return(prep_NORTA(res2,x))

+ }

> # Generate bivariate distribution with prespecified correlation matrix,

> # skewness, kurtosis, and N=100:

> genNORTARA(100,target_cor,invcdfnames = c('f1','f2'),defaultindex=c(1,2))
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Abstract

Exploratory factor analyses are commonly used to determine the underlying factors of

multiple observed variables. Many criteria have been suggested to inform the decision on

the number of factors to retain. In this study, we present an extensive Monte Carlo

simulation, varying the number of latent factors, the correlation among the factors, the

number of items per factor, the magnitude of loadings, the underlying distribution, and the

number of observations. We compared traditional parallel analysis (PA) with four recently

suggested methods: revised PA, comparison data (CD), the Hull method, and the

Empirical Kaiser Criterion (EKC). Whereas traditional PA displayed the highest hit rate

(92%) overall, every other method was superior under at least some data conditions. The

Hull method and the EKC outperformed traditional PA for unidimensional or orthogonal

factor models with a high number of indicators per factor, especially for small sample sizes.

In correlated factor designs, CD performed better than PA if the number of indicators was

small, whereas revised PA performed better for a higher number of indicators per factor.

Given that overall accuracy increases to 98% when traditional PA and either Hull or EKC

indicate the same number of factors to retain, we suggest that investigators first apply

these methods to determine the number of factors. In the remaining cases where the results

of this combination rule are inconclusive, CD or traditional PA achieved the highest overall

accuracy. However, disagreement also suggests that factors are in general harder to detect,

increasing sample size requirements to N = 500.

Keywords: factor analysis, number of factors, Monte Carlo simulation
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How to determine the number of factors to retain in exploratory factor analysis? A

comparison of extraction methods under realistic conditions.

Exploratory factor analysis (EFA) is a widely used statistical method to study the

underlying latent structure of a large number of observed variables, especially if there is no

strong a priori justification for a particular theoretical model. EFA determines the

underlying structure in a data-driven approach assuming a common factor model

(Thurstone, 1947). In this model, each observed variable is conceptualized as the weighted

sum of a set of (potentially correlated) factor variables and a single unique factor.1 The

common factors account for covariances among the observed variables and thus are the

factors of theoretical interest. Unique factors, on the other hand, exclusively account for

the variances of single observed variables, which is considered to reflect measurement error

with regard to the common factors.

One of the key questions in EFA is to decide how many latent factors need to be

extracted to account for covariations among the observed variables. Both under- and

overestimating the number of factors (referred to as under- and overextraction,

respectively) have detrimental effects on the quality of EFA (Comrey, 1978).

Underextraction results in substantial error on all factor loadings, irrespective of their

weight in a correctly specified model (Wood, Tataryn, & Gorsuch, 1996) and deteriorates

the factor scores compared to factor scores in a correctly specified model (Fava & Velicer,

1996). In contrast, overextraction typically results in lower biases in factor scores and

loadings (Fava & Velicer, 1992; Wood et al., 1996). However, overextraction can lead to

factor splitting, such that manifest variables with loadings on one factor are split on

multiple factors after the rotation, which drastically increases biases for loadings (Wood et

1Principal component analysis (PCA) is also often used as a substitute for EFA. However, in contrast to

EFA, PCA is primarily a data reduction technique. If the goal of the analysis is to uncover a latent structure

that addresses the covariances among observed variables measured with some random error, which is a more

realistic case in psychological research, EFA is usually preferred (e.g. Bentler & Kano, 1990; de Winter &

Dodou, 2016). In this article, we therefore focus on EFA.
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al., 1996). Overextraction also results in less parsimonious models that include constructs

with little to no explanatory value and increase the likelihood of Heywood cases, such as

negative variance estimates (de Winter & Dodou, 2012). Several methods are available to

determine the number of factors in EFA, such as the widely known Kaiser criterion (Kaiser,

1960), Cattell’s scree test (Cattell, 1966), and parallel analysis (PA, Horn, 1965), with the

latter generally being considered the state-of-the-art technique (Fabrigar, Wegener,

MacCallum, & Strahan, 1999). Recently, a number of new methods were suggested

(Braeken & van Assen, in press; Green, Levy, Thompson, Lu, & Lo, 2012; Lorenzo-Seva,

Timmerman, & Kiers, 2011; Ruscio & Roche, 2012), each outperforming PA in at least

some conditions. However, the performance of these methods has not yet been assessed in

comparison with each other. The objective of this study is to fill this gap and compare four

modern techniques and PA over a wide range of conditions designed to mimic typical data

structures obtained in psychological research. The next section describes the common

factor model and introduces the concept of eigenvalues, on which most decision criteria

rely. We then present a more detailed review of popular methods and modern techniques

for determining the number of factors in EFA.

The Common Factor model

The common factor model (for an overview, see e.g. Jöreskog, 2007) assumes a set of

m latent factors ξ1, ..., ξm that explain variations in the p observed (and mean-centered)

random variables x1, ..., xp. A single observed variable xi is assumed to be a linear

combination of ξ1, ..., ξm and one unique error εi, similar to a linear regression:

xi = λi1ξ1 + λi2ξ2 + ... + λimξm + εi, 1 ≤ i ≤ p, (1)

where εi is uncorrelated with all ξ1, ..., ξm and all εi′ for which i ≠ i′, and λij is the loading

of the i-th item on factor j. The goal is thus to find latent factors, fewer in number than

the number of observed variables, that account for the covariances among the observed
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variables x1, ..., xp such that x1, ..., xp would be uncorrelated conditional on the latent

factors ξ1, ..., ξm.

Figure 1 shows a common factor model for two latent factors and seven observed

variables. In this case, every observed variable xi is assumed to depend on two latent

factors ξ1, ξ2 and the unique error εi for 1 ≤ i ≤ 7. The latent factors that are supposed to

represent the underlying psychological variables of interest can be correlated. The unique

errors measure item-specific variance and are thus assumed to be independent from both

the latent factors and other item-specific errors. The loadings are estimated in conjunction

with the variances of the unique variables and the (co-)variances of the latent factors. For

continuous variables, the estimation is most often based on maximum likelihood or

unweighted least squares.

𝑥1 𝑥2

𝜉1

𝜙1,1

𝑥6 𝑥7

𝜉2

𝜙2,2

𝜙1,2

𝑥3

𝜀3

𝑥4 𝑥5

𝜀2𝜀1 𝜀4 𝜀5 𝜀6 𝜀7

Figure 1 . A common factor model with two latent factors and seven observed variables.

The latent factors can be correlated whereas the unique errors are independent from other

unique errors and the latent factors. The arrows from the latent factors to the observed

variables indicate the loadings λ1i, λ2i for 1 ≤ i ≤ 7 (see Equation 1).
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The common factor model can also be denoted in matrix notation. For

X = (x1, ..., xp)T , ξ = (ξ1, ..., ξm)T , ε = (ε1, ..., εp)T , and a p×m matrix of loadings Λ,

X = Λ ξ + ε (2)

is an equivalent expression of Equation 1. We can express the covariance matrix of the

observed variables X as

Σ = E(XXT ), (3)

where E is the expected value, because the observed variables are mean-centered. From

Equation 2 follows

XXT = (Λ ξ + ε)(Λ ξ + ε)T (4)

= Λ ξ ξTΛT
+Λ ξ εT + ε ξTΛT

+ εεT . (5)

We denote the covariance matrix of ξ as Φ (= E(ξξT )) and the covariance matrix of ε as ∆

(= E(εεT )). Since ξ and ε are independent, the model expresses the covariance matrix as

Σ̂ = ΛΦΛT
+∆. (6)

The common factor model thus becomes a statement about the covariance matrix, where

the matrices Λ and Φ are only determined up to a rotation (for details, see e.g. Browne,

2001).

The matrix ∆ in Equation 6 is a diagonal matrix, because the common factor model

assumes that all unique errors εi, εi′ ,1 ≤ i, i′ ≤ p, are independent for i ≠ i′. The entries δi of

∆ are called uniqueness and represent the part of variance of the observed variable xi that

is independent of the latent factors. The communalities are their counterpart, the part of

the variance of xi that can be explained by the latent factors.2 If we consider the correlation

2The problem of communalities refers to the difficulty of simultaneously estimating the proportion of

variance that can be explained by common factors and the common factor model itself. The common factor

model approximates a correlation matrix with communalities on the diagonal, but the communalities are

only known after the model is estimated (see e.g. Harman, 1976).
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matrix R of the observed variables, the common factor model estimates Λ such that

R̂C ≈ ΛΛT , (7)

where R̂C is the correlation matrix with communalities on the diagonal. One least squares

solution to Equation 7 estimates the loadings in Λ proportional to the so called

eigenvectors of R̂C (Jöreskog, 2007).3 In general, eigenvectors are vectors v for which

Av = lv, v ≠ 0 (8)

holds for an arbitrary square matrix A of size p × p, v a vector of length p, and l a scalar,

the corresponding eigenvalue. Symmetric, positive semidefinite matrices like covariance

matrices or RC always have p (not necessarily distinct) non-negative eigenvalues. Most

importantly, the j-th largest eigenvalue of RC corresponds to the explained variance of the

j-th factor in a common factor model (see the Appendix for a more technical explanation

of this fact).

Methods to Decide on the Number of Factors to Retain

As an exploratory technique, EFA is typically used whenever there is no strong

theoretical reason to expect a particular number of latent factors underlying the observed

variables. In this section, we briefly revisit conventional methods and introduce modern

techniques that attempt to inform the decision on the number of factors to retain in EFA.

Kaiser criterion

One of the most prominent heuristics to decide on the number of factors to retain is

the Kaiser criterion (Kaiser, 1960), which extracts all factors with corresponding

eigenvalues greater than 1. The rationale behind this rule is that a factor should at least

explain as much variance as a single item. However, because sampling error leads to

eigenvalues that exceed 1 even in the absence of any factor, the Kaiser criterion severely

3The solution in fact minimizes tr(R̂C −ΛΛT
)

2
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overextracts the number of factors (e.g. Cattell & Vogelmann, 1977; Hakstian, Rogers, &

Cattell, 1982; Lance, Butts, & Michels, 2006; Zwick & Velicer, 1986). For example, in a

simulation study conducted by Ruscio and Roche (2012), the suggested number of factors

for the Kaiser criterion was biased by more than seven factors across all conditions. Despite

this substantial tendency to overestimate the number of factors, the Kaiser criterion is

commonly used (Henson & Roberts, 2006) and the default in several statistics programs

such as SPSS (IBM Corp., 2015).

Cattell’s scree test

Cattell’s (1966) scree test is a graphical method based on the plot of the successive

eigenvalues in descending order (the so-called scree plot). The test is performed by

searching for an elbow, a point at which the eigenvalues decrease abruptly. The method

suggests to extract all factors up to the factor corresponding to the eigenvalue preceding

the sharpest decline. Being a graphical approach, the method is obviously subjective and

therefore rarely evaluated systematically. Furthermore, scree plots can be ambiguous,

either lacking any clear elbow or showing multiple elbows in the same scree plot (Ruscio &

Roche, 2012). Râıche, Riopel, and Blais (2006) suggested the optimal coordinate and

acceleration factor criteria, which are non-graphical solutions for Cattell’s scree test that

rely on the change in slope of adjacent eigenvalues. Both methods clearly outperformed the

Kaiser criterion, but tended to underestimate the number of factors and were thus still

inferior to other approaches, such as PA (Râıche, Walls, Magis, Riopel, & Blais, 2013;

Ruscio & Roche, 2012).

Traditional and revised parallel analysis

PA (Horn, 1965) compares the empirical eigenvalues to the mean of eigenvalues

obtained from random samples based on uncorrelated variables. The random samples have

the same number of observations and variables as the empirical data, so that the

eigenvalues of the random samples take sampling error into account. PA extracts all factors
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with eigenvalues that exceed the average corresponding eigenvalue of the random samples

(see Figure 2 for an example showing the eigenvalues of random independent data and a

simulated sample with five underlying factors).
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Figure 2 . Parallel analysis on a simulated sample with N = 100, 40 manifest variables, and

5 underlying factors. The filled dots represent the sorted eigenvalues of the sample

correlation matrix. The empty dots represent the average eigenvalues of correlation

matrices from 100 independent random samples. The solid line depicts the threshold for

the Kaiser criterion. Parallel analysis correctly identifies the number of factors as five,

while the scree test suggests either one or three. The Kaiser criterion suggests 14 factors

and thus overestimates the number of factors severely.

The eigenvalues in PA are typically based on the correlation matrix of observed and

random samples (e.g. Finch & West, 1997; Steger, 2006), similarly to a principal

component analysis (PA-PCA), but can also be based on the correlation matrix with

communalities on the diagonal, reflecting a common factor model (Humphreys & Ilgen,

1969). However, Garrido, Abad, and Ponsoda (2013) argued that the common factor model
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is inappropriate for PA, because the random samples have uncorrelated variables with

communalities of h2 = 0 in the population, while the common factor model assumes a

common cause behind the observed variables. In their simulation study, Garrido et al.

(2013) also found higher hit rates for PA-PCA compared to PA with minimum rank factor

analysis. Furthermore, the performance of PA is also affected by the method of estimating

the communalities. Crawford et al. (2010) found a higher hit rate for PA-PCA unless

factors were moderately or highly correlated, compared to PA where communalities are

estimated as sample multiple R2 between the variables and all remaining variables.

Overall, PA based on PCA seems to produce better results than PA based on a common

factor model. Despite the differences between PCA and EFA (e.g. Fabrigar et al., 1999),

the number of common factors directly influences the distribution of eigenvalues of the

correlation matrix (Braeken & van Assen, in press). Therefore, PA-PCA can also be used

as a criterion for the number of factors, even if an EFA is performed.

PA is supported by strong evidence from simulation studies (Hubbard & Allen, 1987;

Humphreys & Montanelli, 1975; Peres-Neto, Jackson, & Somers, 2005; Velicer, Eaton, &

Fava, 2000; Zwick & Velicer, 1986) and is generally considered to be the method of choice

(e.g. Fabrigar et al., 1999). However, there are two weaknesses associated with PA as

suggested by Horn (1965). The first weakness stems from the fact that sampling error can

lead to eigenvalues above the average eigenvalue of random samples. For example, if all

manifest variables are uncorrelated in the population, the first empirical eigenvalue would

exceed the first average eigenvalue from random samples in approximately 50% of all

samples, which would in turn lead to a tendency to overestimate the number of factors for

PA. One possible solution is to use the 95th percentile of the eigenvalues obtained from

random samples as a threshold instead of the mean as in traditional PA (Glorfeld, 1995).

The second weakness of PA involves the choice of the reference eigenvalues for the

second and following factors (Turner, 1998). Assume that the empirical data set has one

underlying factor that explains a large portion of the item covariances. Any remaining
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factor can only explain a fraction of the yet unexplained covariances. However, the items in

the random samples that constitute the comparison threshold are uncorrelated, leading to a

higher portion of unexplained covariance for the random samples, compared to the

empirical sample. This biased comparison due to differing portions of unexplained

covariance might leave a second factor undetected. Cho, Li, and Bandalos (2009) showed

that both weaknesses tend to partially counteract each other, as PA was more accurate if

the average eigenvalues were used as a criterion, compared to the 95th percentile. However,

there is no guarantee that these deficiencies have effects to the same extent but in opposing

directions. As a remedy, Turner (1998) suggested that the random eigenvalues should be

calculated from samples that also have underlying factors equivalent to the factors already

extracted in the empirical data. Green et al. (2012) implemented this idea and

demonstrated that this revised PA outperforms traditional PA with the 95th percentile as a

criterion for highly correlated factors and large loadings (see also Green, Thompson, Levy,

& Lo, 2015).

Comparison data

Ruscio and Roche (2012) suggested the comparison data (CD) approach that, similar

to revised PA, also takes previous factors into account by generating comparison data of

known factorial structure. The CD method finds the number of factors by determining the

solution that reproduces the pattern of eigenvalues best. Although both CD and revised

PA iteratively compare factor solutions with j − 1 and j factors, CD differs from revised PA

as suggested by Green et al. (2012) in three respects. First, revised PA only compares the

eigenvalue of the jth factor with the jth eigenvalue of the sampled data, whereas CD

always takes all eigenvalues into account. Specifically, CD compares the root mean square

error of the difference of all empirical eigenvalues to the eigenvalues of sampled data with

underlying factors and tests if the difference becomes significantly smaller when another

factor is included. If too many factors are extracted, the eigenvalues for all subsequent
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eigenvalues will be lower in the sample data compared to the empirical data, leading to

higher misfit in the overall pattern of eigenvalues. The second difference between CD and

revised PA concerns the chosen reference value for the sample eigenvalues. CD relies on the

average of the sample eigenvalues, which usually lies below the 95th percentile of the

eigenvalues as used in revised PA. These two differences of CD and revised PA have

different implications for the tendency to under- or overextract factors. The different

number of eigenvalues taken into account should lead to less overextractions of CD

compared to both traditional and revised PA. However, the lower reference value used in

CD should lead to more overextractions compared to revised PA. The third difference

between CD and revised PA pertains to the used sampling procedure. Revised PA

generates random normally distributed samples with the underlying factor structure. The

CD approach, however, reproduces the marginal distributions observed in the empirical

data set using an algorithm suggested by Ruscio and Kaczetow (2008). Therefore, CD

should be more accurate when data are not normally distributed.

Ruscio and Roche (2012) compared the performance of CD to traditional PA and

other methods such as the Kaiser criterion. The loadings in this simulation were set to

create challenging conditions for traditional PA, which led to exceptionally low loadings for

single factor models (λ̄ = 0.225) and models with uncorrelated factors (.275 ≤ λ̄ ≤ .425).

Overall, CD identified the number of factors more accurately than traditional PA, unless

the number of factors was high.

Hull method

The Hull method (Lorenzo-Seva et al., 2011) is an approach based on the Hull

heuristic, used in other areas of model selection (e.g. Ceulemans & Kiers, 2006). Similar to

non-graphical variants of Cattell’s scree plot, the Hull method attempts to find an elbow as

justification for the number of common factors. However, instead of using the eigenvalues

relative to the number of factors, the Hull method relies on goodness-of-fit indices relative
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to the model degrees of freedom of the proposed model. More specifically, the method finds

the number of factors in four steps:

1. The method calculates a goodness-of-fit index GOFj and model degrees of freedom

dfj of various models with an increasing number of factors j up to a prespecified

maximum J (0 ≤ j ≤ J).

2. A solution sj is considered to be unviable if a less complex model (indicating a lower

number of factors) with a higher (better) fit index exists. The j-th solution is thus

unviable if there is a solution sj′ with j′ < j and GOFj′ > GOFj.

3. The remaining solutions are further identified as unviable if GOFj is below the line

connecting the adjacent viable solutions in a plot of fit indices and model degrees of

freedom. This step is repeated until no remaining solutions can be identified as

unviable.

4. The Hull method then suggests the number of factors where

(GOFj −GOFj−1)/(dfj − dfj−1)

(GOFj+1 −GOFj)/(dfj+1 − dfj)
(9)

obtains its maximum and j is a viable solution.4

The elbow is identified as the value where, relative to the change in the model df , model fit

increases considerably compared to a lower number of factors (j − 1) but increases barely

compared to a higher number of factors (j + 1). This criterion value is based on every

viable fit value relative to both its preceding and subsequent fit values (see Figure 3 for an

example). Note that the suggested factor solution therefore cannot be the first or last

factor in the range for which the model fit is estimated (unless all other solutions are

unviable). This range typically includes a zero factor model as a minimum. In order to

avoid overextractions, the suggestion for the maximum is the number of factors extracted

based on traditional PA plus one (Lorenzo-Seva et al., 2011).

4Note that j − 1 and j + 1 are not required to be viable solutions.
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Figure 3 . The Hull method with the comparative fit index (CFI) as a criterion on a

simulated sample with five true underlying factors. In this case, the Hull method considers

solutions in the range from zero to seven factors. The empty dots are unviable solutions

that lie below the line connecting adjacent viable solutions. The filled dots represent viable

solutions. The Hull method correctly identifies five factors.

Lorenzo-Seva et al. (2011) compared the Hull method with various goodness-of-fit

indices to other selection criteria. The design of the simulation study incorporated both

major and minor factors, where major factors constituted the factors of interest. Minor

factors were associated with (random) loadings that accounted for 15% of the variance on

average and thus represent a comparatively small, systematic error that factor extraction

criteria should disregard. While no method consistently outperformed the other approaches

across all conditions, the Hull method based on the comparative fit index (CFI, Bentler,

1990) improved upon other methods, including traditional PA, in data conditions where
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the number of observed variables or the sample size was large. However, the method has

not yet been compared to other variants of PA (Green et al., 2012) or the CD approach

(Ruscio & Roche, 2012). Compared to other approaches, the Hull method seems especially

suited if the goal is to extract comparatively strong, unambiguous factors, because it

successfully ignores small, systematic errors. We therefore expect that the Hull method is

particularly useful in the case of single factor models or models with uncorrelated factors,

but may fall short, by design, when factors are highly correlated or when some factors

account for a small proportion of the variance only.

Empirical Kaiser criterion

The Empirical Kaiser Criterion (EKC, Braeken & van Assen, in press) is an

approach that incorporates random sample variations of the eigenvalues in Kaiser’s

criterion. On a population level, the criterion is equivalent to Kaiser’s criterion and

extracts all factors with associated eigenvalues of the correlation matrix greater than one.

However, on a sample level, the criterion takes the distribution of eigenvalues for normally

distributed data into account. Under the null model, the distribution of eigenvalues

asymptotically follows a Marčenko-Pastur distribution (Marčenko & Pastur, 1967). The

resulting upper bound of this distribution (the highest value with non-zero density) is the

reference value for the first eigenvalue l, so

l1,ref = (1 +
√

p

N
)

2

, (10)

for N observations and p items. Subsequent eigenvalues are corrected by the explained

variance, expressed as the eigenvalues of previous factors. The j-th reference eigenvalue is

lj,ref = max(
p −∑

j−1
i=0 lj

p − j + 1 [1 +
√

p

N
]

2

,1), (11)

such that higher previous eigenvalues lower the reference eigenvalue since the proportion of

unexplained variance will be lower. In accordance with the original Kaiser criterion, the

reference eigenvalue cannot become smaller than one.
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Braeken and van Assen (in press) derived theoretical conditions for scale reliability,

number of observations, number of factors, and factor correlation, under which the EKC is

expected to correctly identify the number of factors. For example, for orthogonal factors,

EKC is expected to work if

pj
pj − (pj − 1)αj

> (1 +
√
pjm

N
)

2

, (12)

for all 1 ≤ j ≤m and m (overall) underlying factors, αj Cronbach’s alpha in the population,

pj the number of items of the respective factor j, and N observations. Thus, EKC is

especially suited for shorter scales with high reliability. For correlated factors, the

conditions that guarantee a high performance for EKC are more complex, but are also

more likely to be fulfilled if α and N are high, scales are shorter, and factor correlations are

low. Corroborating these assumptions, Braeken and van Assen (in press) found that the

EKC exhibited a very high hit rate if these conditions were met (.97), but a low hit rate if

they were not (.17). In particular, Braeken and van Assen (in press) found that the EKC

outperforms traditional PA when factors are correlated and are only measured by few items

with very high loadings, yielded comparable results to improved PA and CD in a

simulation study with a high number of factors and few observed variables, but that no

method outperformed all other methods under all conditions. However, EKC has not yet

been compared to improved PA or CD in a more general simulation study that also

included the Hull method. In addition, the theoretical conditions guaranteeing a high

performance of the EKC require information that is not available to researchers prior to

conducting an EFA, so that researchers cannot know in advance whether the EKC can be

expected to perform well in their particular analysis scenario.

The Present Study

The goal of the present study is to evaluate the performance of modern techniques for

determining the number of factors to retain in EFA. We incorporated a wide range of data

conditions that are challenging but realistic in psychological research (Fabrigar et al.,
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1999). This allows for assessing the overall performance of factor extraction criteria under

conditions relevant in practice. Given that previous simulation studies found that no single

method was superior to all other methods under all conditions (Braeken & van Assen, in

press; Green et al., 2012; Lorenzo-Seva et al., 2011; Ruscio & Roche, 2012), we (1) focus on

identifying conditions under which a particular method performs well and (2) attempt to

suggest a combination rule based on information that is available to researchers, in turn

allowing for utilizing the strengths of different methods.

Method

Extraction Criteria

We considered five methods for determining the number of factors to retain. These

include traditional PA as the most often recommended approach and four more recently

proposed methods that have been demonstrated to improve upon traditional PA under at

least some conditions. We do not consider approaches that have been consistently shown to

perform worse than traditional PA (such as the Kaiser criterion or the non-graphical scree

plot criteria by Râıche et al., 2013).

Traditional parallel analysis (PA). Traditional PA (Horn, 1965) extracts all

factors with eigenvalues above the eigenvalues calculated from 100 random samples.

Following the suggestions of previous simulation studies, we used the average eigenvalues

(Cho et al., 2009) calculated by eigenvalue decomposition of the respective correlation

matrix (Garrido et al., 2013) as a criterion.5 The random samples are generated by

(non-parametrically) resampling the input data.

Revised PA. Revised PA (Green et al., 2012) sequentially compares the jth

eigenvalue to the 95th percentile of eigenvalues calculated from random samples with j − 1
5We also calculated the results for traditional PA using the 95th percentile of random eigenvalues and

eigenvalues of a common factor model as criteria. The results indicated lower hit rates for both the 95th

percentile and PA based on a common factor model. Due to the similarities in methods, we only report the

results for PA-PCA based on the average eigenvalue.
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underlying factors. As recommended by Green et al. (2012), we used the eigenvalues

obtained from an EFA and set the number of random samples to 100.

Hull method. The Hull method (Lorenzo-Seva et al., 2011) was implemented using

the CFI (Bentler, 1990) to assess the fit of each factor solution. The CFI-based Hull

method was superior to every other implementation of the Hull method in the initial

simulation study by Lorenzo-Seva et al. (2011).

Comparison Data (CD). CD (Ruscio & Roche, 2012) was implemented using an

alpha level of .30 and 500 resamples, in line with the recommendations of Ruscio and

Roche (2012).

Empirical Kaiser Criterion (EKC). The EKC (Braeken & van Assen, in press)

was implemented using the eigenvalues of the input correlation matrix.

Experimental conditions

In realizing the conditions for the simulation study, we attempted to cover a wide

range of data conditions plausibly occurring in empirical factor analysis studies.

Accordingly, we orthogonally manipulated six independent variables, viz. the number of

observations, the number of latent factors, the latent factor correlation, the number of items

per factor, the average loading magnitude, and the underlying factor and error distribution.

Number of observations. The number of observations was set to 100, 200, 500,

or 1,000, thereby covering the sample sizes used in most empirical studies (DiStefano &

Hess, 2005; Fabrigar et al., 1999; Jackson, Gillaspy, & Purc-Stephenson, 2009; Worthington

& Whittaker, 2006). The condition involving N = 1,000 was included to allow for drawing

conclusions about the large sample performance of the approaches under scrutiny.

Number of latent factors. Manifest variables were generated with 1, 3, or 5

underlying factors, representing the dimensionality of scales most common in psychometric

measurement (DiStefano & Hess, 2005; Jackson et al., 2009).

Factor intercorrelation. The intercorrelation among latent factors was set to 0,

.25, or .50. Note that we did not include a condition with very high latent correlations,
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because extraction decisions in this case primarily depend on theoretical reasoning rather

than statistical analysis.

Items per latent factor. We examined 4, 8, or 12 items per latent factor. While

the majority of scales in psychological assessment comprise 4 to 8 items (DiStefano & Hess,

2005; Fabrigar et al., 1999; Jackson et al., 2009), factor extraction criteria are especially

important in the initial development of a measurement instrument. The process of

constructing a scale typically involves the elimination of items, so a condition involving 12

items per factor was realized to represent a scale before the elimination process. In

conjunction with the manipulated number of latent factors, the total number of items thus

ranged from 4 (4 items per latent factor with 1 latent factor) to 60 (12 items per latent

factor with 5 latent factors).

Loading magnitude. The standardized loadings of the observed variables on the

latent factors was set to either (.65, .55, .45, .35) or (.8, .7, .6, .5) for each set of 4 variables

(i.e., every loading was assigned three times when a factor was measured by 12 items). The

resulting average loadings therefore were .50 or .65, which is typical for psychological

research (DiStefano & Hess, 2005). The resulting Cronbach’s α estimates of internal

consistency are presented in Table 1. In empirical research, Cronbach’s α is typically

between .70 and .89 for published scales (Fabrigar et al., 1999) and thus slightly higher than

in this simulation study. Since factor extraction criteria are again often used before item

elimination, Cronbach’s α is likely smaller in the development stage when EFA is applied.

Table 1

Population Cronbach’s α used in the simulation study

Number of items per factor

Average Loading 4 8 12

.5 .57 .73 .80

.65 .75 .85 .90



DETERMINING THE NUMBER OF FACTORS 20

Underlying distribution. Three types of distributions were realized (normal,

non-normal based on non-normal errors, non-normal based on non-normal latent factors).

Normally distributed data were generated using Cholesky decomposition. Non-normal

distributions were generated from a structural model creating non-normality according to

the linking functions approach by Auerswald and Moshagen (2015). The linking functions

approach generates observed non-normal data by applying non-linear linking functions to

the latent part or to the error part (or both). In the present study, we either incorporated

non-normal latent factors and normal errors, or vice versa. These types of non-normal

distributions were realized in light of evidence indicating that the performance of

factor-based models may vary depending on whether non-normality in the observed

variables arises from non-normal factors or from non-normal errors (Auerswald &

Moshagen, 2015; Foldnes & Grønneberg, 2015; Mair, Satorra, & Bentler, 2012). We used

the following linking functions:

� f1(x) = x5 + x3

� f2(x) = e2x

� f3(x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

√
x, for x > 0

−x2, for x ≤ 0

� f4(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−50, for x < −3

−1, for − 3 ≤ x < 0

1, for 0 ≤ x < 3

50, for x ≥ 3

When a factor was indicated by 8 or 12 items, each linking function was assigned two or

three times (as was done for loading magnitudes, see above). This set of linking functions

resulted in non-normal distributions exhibiting an average skewness of

γ3,f1 = 0 (SDγ3,f1 = 0.93), γ3,f2 = 0.14 (SDγ3,f2 = 0.59), γ3,f3 = −0.77 (SDγ3,f3 = 0.81),
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γ3,f4 = 0 (SDγ3,f4 = 0.84) in both non-normality conditions. Kurtosis was estimated to be

approximately γ4 = 12 for all linking functions and non-normality conditions

(SDγ4,f1 = 11.49, SDγ4,f2 = 10.97, SDγ4,f3 = 9.24, SDγ4,f4 = 4.65). The realized levels of

skewness and kurtosis are well within in the boundaries commonly occurring in

psychological assessment, without being overly extreme. For example, Cain, Zhang, and

Yuan (in press) reported the 95th percentiles across 194 real data samples of empirical

skewness and kurtosis to be 2.77 and 12.48, respectively. Other studies report ranges from

1.3 to 40.37 for kurtosis (Micceri, 1989) or −2.49 to 2.33 for skewness and 1.08 to 10.41 for

kurtosis, for empirical studies with small sample sizes (Blanca, Arnau, López-Montiel,

Bono, & Bendayan, 2013).

Data generation and Analysis

In total, the design involved 4 (number of observations) x 3 (number of latent factors)

x 3 (factor correlation) x 3 (number of indicators per factor) x 2 (loading magnitude) x 3

(underlying distribution) = 648 conditions. For every condition, 500 independent random

samples were generated, leading to a total of 324,000 data sets. The data sets were

analyzed by all five extraction methods under scrutiny.

Analyses were performed in the statistical computing language R (R Core Team,

2016) using the parallel package to take advantage of multicore processing. All EFA

methods used maximum likelihood estimation based on the package psych (Revelle, 2015).

For the Hull method, we calculated the CFI using the χ2 provided by the psych package.

We used R code provided by Ruscio and Roche (2012) for the CD approach and a custom

implementation of traditional PA and the EKC.

We recorded the suggested number of factors for each simulated data set and each

method as well as their bias to over- or underextract. Bias was defined as the number of

suggested factors minus the actual number of factors in the population. Thus, negative

values indicate underextraction, positive values indicate overextraction, and zero indicates
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no bias.

Results

We first present the results for the overall performance across conditions as indicated

by the percentage of correctly identified factors and over- or underextraction bias. We then

evaluate the performance for designs with only one underlying factor, multiple orthogonal

factors, and multiple correlated factors. We report estimates of saturated logistic

regressions predicting whether the respective method suggested the correct number of

factors to quantify the effects. In these logistic regressions, all applicable conditions were

effect-coded with the following reference categories: traditional PA, N = 500, 3 latent

variables, orthogonal factors, 8 indicators per factor, average loadings of .5, and normal

distribution. Thus, an Odds-Ratio (eβ, OR) of 2 would indicate that the odds of

identifying the correct number of factors in this specific condition are twice as high than

the grand mean and all else being equal. Furthermore, we computed a linear regression

model predicting the extraction biases. We report all main effects and simple interactions

with ∣β∣ > .40 (OR < 0.67 or OR > 1.49) in the general logistic regression and with ∣β∣ > .2 in

the linear regression.

Finally, we assessed the performance of combination rules as we assumed that no

method would outperform every other method in all conditions. In doing so, we relied on

parameters known to investigators (i.e., the sample size, the average correlation among the

observed variables, and the number of observed variables) to improve overall performance.

Overall performance

Table 2 shows the percentage of successfully identified number of factors as a function

of condition and extraction method used. As can be seen, all methods had a moderate to

high overall success rate. With an overall hit rate of 92%, traditional PA performed best

across all conditions. Hull and EKC performed above average (ORHull = 1.95,

OREKC = 2.21), whereas revised PA and CD performed below average (ORCD = 0.22,
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ORPA−R = 0.29). Averaged across all other conditions, all methods were well-behaved in

the sense that an increase in the number of observations increased performance

(ORN=100 = 0.22, ORN=200 = 0.82, ORN=1000 = 2.66). This effect was more pronounced for

EKC (interaction terms were ORN=100,EKC = 0.49, ORN=1000,EKC = 1.60) and less

pronounced for revised PA (interaction terms were ORN=100,PA−R = 2.92,

ORN=1000,PA−R = 0.49). In contrast to our expectations, all methods were unaffected by the

underlying distribution for both non-normal latent (ORLat−NN = 0.74) and non-normal

error variables (ORErr−NN = 1.45; ∣β∣ < 0.28 for all interactions).

In general, performance of all methods increased with the number of indicators per

factor (OR#x=4 = 0.22, OR#x=12 = 2.54), especially for improved PA (OR#x=4,PA−R = 0.37),

and with the magnitude of loadings (ORλ̄=.65 = 1.58; ∣β∣ < 0.27 for all interactions),

reflecting that factor recovery improves with factor determination. In contrast, the overall

performance decreased considerably when the number of underlying factors increased

(OR#ξ=1 = 4.39, OR#ξ=5 = 0.28). Except for CD (OR#ξ=1,CD = 0.25), all methods showed

their highest performance for unidimensional factor models (OR#ξ=1,Hull = 1.72,

OR#ξ=1,PA−R = 2.86). CD was the only method to improve with 5 factors, compared to the

grand mean (OR#ξ=5,CD = 1.66). Expectably, the difficulties to correctly identify multiple

factor models increased with the factor correlation. Performance of all methods was worse

when the factor correlation was high (ORρ=.5 = 0.36), but improved when factor correlations

were small (ORρ=.25 = 1.43), compared to the grand mean. Concerning differences between

extraction methods, CD was most reliable when factor correlations increased

(ORρ=.50,CD = 2.30), whereas Hull and EKC performed worse under this condition

(ORρ=.50,Hull = 0.53, ORρ=.50,EKC = 0.50), which is in line with our expectations.

Finally, Table 2 also shows the performance of all methods in conditions for which

EKC is predicted to perform well, based on theoretical expectations (Braeken & van Assen,

in press). EKC indeed performed considerably better when these conditions were met, but

other methods improved as well, albeit to a lesser extent. Notably, traditional PA still
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outperformed EKC even under these conditions.

Table 3 displays the average bias for each method, calculated as the number of

extracted factors minus the number of correct factors. Except for CD, which was virtually

unbiased on average (biasCD = 0.00), all methods showed an underextraction bias

(biasPA−T = −0.09, biasPA−R = −0.32, biasHull = −0.42, biasEKC = −0.31). This

underextraction bias was larger for all methods when the sample size was small

(βN=100 = −0.26, βN=200 = −0.04, βN=1000 = 0.18; all interactions with ∣β∣ < 0.17). The

underlying distribution only had a small effect, slightly increasing the number of extracted

factors overall (βLat−NN = 0.01, βErr−NN = 0.07, all interactions with ∣β∣ < 0.05). Given that

the distributional properties affected neither the accuracy nor the bias to a substantial

degree, we excluded this factor in the following regressions.

As in the case for overall accuracy, lower loadings increased underextraction biases for

all methods (βλ̄=.65 = 0.10, all interactions with ∣β∣ < 0.17), as did a smaller number of

indicators per factor (β#x=4 = −0.29, β#x=12 = 0.18), especially for revised PA

(β#x=4,PA−R = −0.43, β#x=12,PA−R = 0.22). Only CD was again unbiased when the number of

indicators per factor was small (β#x=4,CD = 0.27). Extraction biases were strongly affected

by the true number of underlying factors, with unidimensional factor models being

associated with a slight overextraction bias (β#ξ=1 = 0.27) and models with a large number

of factors leading to underextraction (β#ξ=5 = −0.32), especially when analyzed with the

Hull method (β#ξ=5,Hull = −0.25). Underextraction biases further increased with the

correlation between the factors (βρ=.50 = −0.31), particularly for the Hull method

(βρ=.50,Hull = −0.25), whereas small factor correlations again only had a small effect

(βρ=.25 = 0.09).
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Table 2

Percentage of correctly identified number of factors

Condition Level PA-T PA-R Hull CD EKC

Number of latent variables 1 99 92 100 81 100

3 93 71 85 85 84

5 85 68 73 68 70

Number of observations 100 81 71 71 61 67

200 92 76 83 77 82

500 97 80 93 86 93

1,000 99 82 97 87 97

Items per latent variable 4 85 50 76 64 71

8 95 91 89 82 89

12 97 91 93 88 94

Underlying distribution Normal 92 73 84 82 82

Lat-NN 91 77 85 74 84

Err-NN 94 82 89 78 88

Intercorrelation 0 97 78 95 79 93

.25 95 70 88 80 84

.5 75 60 55 71 54

Average Loading .50 90 70 82 75 81

.65 95 84 90 80 89

EKC guarantee yes 98 84 94 84 94

no 52 26 28 36 17

Overall 92 77 86 78 85

Note. PA-T = traditional parallel analysis, PA-R = revised parallel analysis,

Hull = Hull method, CD = comparison data, EKC = Empirical Kaiser

Criterion. For the underlying distribution, Lat-NN = non-normal latent

variables and normal errors, Err-NN = non-normal error variables and normal

latent variables.
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Table 3

Average bias (and standard deviation) of the number of identified factors

Condition Level PA-T PA-R Hull CD EKC

Number of factors 1 0.01 (0.09) -0.07 (0.27) 0.00 (0.04) 0.24 (0.52) 0.00 (0.04)

3 -0.05 (0.32) -0.32 (0.84) -0.27 (0.67) 0.00 (0.46) -0.23 (0.56)

5 -0.23 (0.76) -0.58 (1.44) -1.00 (1.70) -0.25 (1.07) -0.71 (1.26)

Number of obs. 100 -0.22 (0.77) -0.42 (1.04) -0.82 (1.44) -0.32 (1.14) -0.70 (1.17)

200 -0.11 (0.52) -0.35 (1.00) -0.52 (1.25) 0.02 (0.71) -0.36 (0.90)

500 -0.03 (0.25) -0.28 (0.97) -0.24 (0.91) 0.13 (0.43) -0.13 (0.58)

1,000 0.00 (0.10) -0.24 (0.96) -0.10 (0.62) 0.16 (0.46) -0.05 (0.34)

Items per factor 4 -0.21 (0.72) -1.04 (1.38) -0.68 (1.35) -0.02 (1.03) -0.65 (1.17)

8 -0.05 (0.35) 0.00 (0.43) -0.34 (1.06) 0.00 (0.66) -0.20 (0.66)

12 -0.02 (0.21) 0.08 (0.34) -0.24 (0.91) 0.01 (0.50) -0.09 (0.42)

Distribution Normal -0.10 (0.51) -0.49 (1.13) -0.50 (1.22) -0.12 (0.79) -0.37 (0.92)

Lat-NN -0.10 (0.53) -0.27 (0.96) -0.43 (1.15) 0.03 (0.80) -0.32 (0.85)

Err-NN -0.07 (0.42) -0.22 (0.87) -0.33 (1.03) 0.08 (0.67) -0.25 (0.76)

Factor correlation 0 0.02 (0.20) -0.16 (0.81) -0.09 (0.45) 0.12 (0.55) -0.10 (0.45)

.25 -0.03 (0.29) -0.44 (1.18) -0.34 (1.01) -0.03 (0.66) -0.28 (0.75)

.5 -0.42 (0.89) -0.75 (1.41) -1.47 (1.76) -0.46 (1.08) -1.02 (1.34)

Average Loading .50 -0.11 (0.56) -0.50 (1.15) -0.54 (1.26) -0.09 (0.85) -0.40 (0.95)

.65 -0.07 (0.40) -0.15 (0.78) -0.30 (0.98) 0.08 (0.65) -0.23 (0.73)

Overall -0.09 (0.49) -0.32 (1.00) -0.42 (1.14) 0.00 (0.76) -0.31 (0.85)

Note. Bias is calculated as the difference between extracted factors and underlying factors. Positive

values indicate overextraction, negative values indicate underextraction, and 0 indicates no bias. PA-T =

traditional parallel analysis, PA-R = revised parallel analysis, Hull = Hull method, CD = comparison

data, EKC = Empirical Kaiser Criterion. For the underlying distribution, Lat-NN = non-normal latent

variables and normal errors, Err-NN = non-normal error variables and normal latent variables.
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Unidimensional factor models. Figure 4 shows the average accuracies for

unidimensional factor models. The performance of the Hull method and the EKC was very

high across all conditions (all accHull > 98%, ORHull = 5.73, all accEKC > 96%,

OREKC = 5.24). Traditional PA also accurately retrieved the number of factors and was

only slightly inferior in conditions with few indicators, low loadings, and N = 100 (where

acc#x≤8,λ̄=.50,N=100,PA−T = 95%, all other accPA−T > 97%). The accuracy of revised PA

strongly depended on the number of indicators per factor (OR#x=4,PA−R = 0.13). The

performance was very high for all conditions with at least eight indicators (all

accPA−R,#x≥8 > 99%), but only moderate in conditions with shorter scales

(acc#x=4,PA−R = 77%), where revised PA frequently underestimated the number of factors

(bias#x=4,PA−R = −0.21). The accuracy of CD was comparatively low (accCD = 81%,

ORCD = 0.03) due to frequent overextractions (biasCD = 0.24), especially when the number

of indicators was small (acc#x=4,CD = 58%, OR#x=12,CD = 1.66, bias#x=4,CD = 0.51). In

addition, in contrast to all other methods, the performance of CD decreased with

increasing sample size (ORN=100,CD = 2.99, accN=100,CD = 89%, biasN=100,CD = 0.13;

compared to ORN=1,000,CD = 0.55, accN=1,000,CD = 71%, biasN=1,000,CD = 0.37).

Multiple orthogonal factors. The average accuracies for orthogonal factor

models are displayed in Figure 5. Generally, the performance of all methods increased with

sample size and the number of indicators per factor. In factor models with at least eight

indicators per factor, the Hull method and the EKC exhibited the best performance of all

methods when N ≥ 200 (accN≥200,#x≥8,Hull > 99%, accN≥200,#x≥8,EKC > 99%, for all

conditions) and still performed on par with other approaches for smaller samples

(accN=100,#x≥8,Hull = 96%, accN=100,#x≥8,EKC = 94%). In conditions with four indicatiors, Hull

and EKC displayed lower hit rates (OR#x=4,Hull = 0.34, acc#x=4,Hull = 87%,

OR#x=4,EKC = 0.80, acc#x=4,EKC = 83%) and underestimated the number of factors

(bias#x=4,Hull = −0.23, bias#x=4,EKC = −0.28). Traditional PA was slightly inferior to the

Hull method and the EKC in the conditions involving at least eight indicators
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Figure 4 . Accuracy of factor extraction criteria for unidimensional factor models depending

on the number of indicators per factor and sample size. PA-T - traditional Parallel

analysis, CD - Comparison Data, Hull - Hull method, PA-R - revised Parallel analysis,

EKC - Empirical Kaiser Criterion.

(acc#x≥8,PA−T = 98%), but outperformed all other methods in conditions with four

indicators (acc#x=4,PA−T = 94%). However, the average accuracy of traditional PA was only

moderate when sample sizes were small (accN=100,#x=4,PA−T = 81%), in part due to a slight

tendency to overestimate the number of factors (biasN=100,#x=4,PA−T = 0.08). Revised PA

and CD performed only moderately in all conditions with orthogonal factors

(accPA−R = 78%, accCD = 79%), where revised PA underestimated the number of factors

(biasPA−R = −0.16), whereas CD extracted too many factors on average (biasCD = 0.12).

Multiple correlated factors. Figure 6 summarizes the results for conditions with

correlated factors. As was to be expected, all methods exhibited a weaker performance

compared to orthogonal factor models, especially when the number of observations or the

number of indicators per factor was small (ORN=100 = 0.10, OR#x=4 = 0.13). When factor

correlations were low, traditional PA retrieved the number of factors with very high

accuracy when the sample size was large (accρ=.25,N≥500,PA−T > 99%, for all conditions).

Although the accuracy of traditional PA varied depending on the number of indicators per
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Figure 5 . Accuracy of factor extraction criteria for orthogonal factor models depending on

number of indicators per factor and sample size. PA-T - traditional Parallel analysis, CD -

Comparison Data, Hull - Hull method, PA-R - revised Parallel analysis, EKC - Empirical

Kaiser Criterion.

factor for smaller sample sizes (accρ=.25,N≤200,#x=4,PA−T = 77%,

accρ=.25,N≤200,#x=12,PA−T = 98%), no other method outperformed traditional PA under these

conditions. In line with our expectations, most of these errors were underextractions

(biasρ=.25,N≤200,#x=4,PA−T = −0.18).

Performance was lower overall in conditions with highly correlated factors, especially

when only four indicators per factor were used (ORρ=.50 = 0.37, ORρ=.50,#x=4 = 0.65). In

addition, all methods underestimated the number of factors (biasρ=.50,PA−T = −0.42,

biasρ=.50,CD = −0.46, biasρ=.50,Hull = −1.47, biasρ=.50,PA−R = −0.75, biasρ=.50,EKC = −1.02),

again reflecting lower factor determinacy and thus greater difficulties to correctly identify

the number of factors. With only four indicators per factor – in contrast to all other

conditions considered thus far – CD exhibited the best performance of all methods under

scrutiny (OR#x=4,CD = 2.92). For large sample sizes, CD displayed moderate to high

accuracies (acc#x=4,N≥500,ρ=.50,CD = 86%), even when loadings were low

(acc#x=4,N≥500,ρ=.50,λ̄=.50,CD = 71%), and virtually no underextraction bias
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(bias#x=4,N≥500,ρ=.50,CD = −0.01).
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Figure 6 . Accuracy of factor extraction criteria for correlated factor models depending on

number of indicators per factor, factor correlation, and sample size. The top panels display

the accuracy for low factor correlations (ρ = .25), the bottom panels for high factor

correlations (ρ = .50). PA-T - traditional Parallel analysis, CD - Comparison Data, Hull -

Hull method, PA-R - revised Parallel analysis, EKC - Empirical Kaiser Criterion.

Performance generally improved with the number of indicators per factor

(OR#x=12 = 3.46), particularly when applying traditional or revised PA

(OR#x=4,PA−R = 0.42). With large sample sizes, traditional PA consistently retrieved the

correct number of factors (accρ=.50,#x≥8,N≥500,PA−T > 99% for all conditions). With smaller
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sample sizes, traditional and revised PA performed best, but still obtained only moderate

hit rates (accρ=.50,#x≥8,N≤200,PA−T = 75%, accρ=.50,#x≥8,N≤200,PA−R = 72%), due to the expected

underextraction bias (biasρ=.50,#x≥8,N≤200,PA−T = −0.35, biasρ=.50,#x≥8,N≤200,PA−R = −0.20).

The EKC showed a higher performance in those conditions where traditional PA performed

well, but exhibited less robust results with small sample sizes or short scales

(OR#x=4,EKC = 0.51, ORN=100,EKC = 0.29). As predicted, the hit rate of the Hull method

decreased overall if factor correlation was high (ORρ=.50,Hull = 0.54). Compared to the other

methods in this study, both EKC and Hull frequently underestimated the number of

factors and did not perform well under these conditions (accHull = 71%, biasHull = −0.90,

accEKC = 69%, biasEKC = −0.65), unless the sample size was very large (accN≥500,Hull = 89%,

biasN≥500,Hull = −0.39, accN≥500,EKC = 89%, biasN≥500,EKC = −0.21).

Combination rules

The results presented thus far indicate that traditional PA displayed the highest

average accuracy across conditions. However, every other method considered outperformed

PA in at least some conditions: EKC and Hull provided very high hit rates for

unidimensional or orthogonal factor models even when the sample size was small. Revised

PA and CD were more suitable when factors were highly correlated. As such, the question

arises whether extraction methods can be beneficially used in conjunction with each other

to inform on the number of factors to retain. However, a complication is that investigators

obviously have no access to information regarding the true number of factors, the

correlation between the factors, or the average loading magnitude before applying EFA and

deciding how many factors to extract. In this section, we thus attempt to determine

combination rules only considering information that are available to researchers prior to

conducting EFA, namely the number of observations, the number of observed variables, the

average correlation among the observed variables in the sample, and, of course, the results

of all factor extraction criteria.
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In principle, the results of various extraction criteria can be combined according to

very different schemes. In what follows, we consider a combination rule based on the idea

that evidence to extract a particular number of factors is strongest when two criteria agree

with respect to the suggested number of factors to retain.6

Table 4 shows the conditional hit rates of all pairs of extraction criteria, given that

both methods suggest to extract the same number of factors. For instance, in the N = 100

condition, traditional PA and CD agreed regarding the number of factors to retain in 66%

of cases (coverage rate). The hit rate of this particular combination, given that they agreed

on the suggested number of factors, was 88%. As can be seen from Table 4, all combination

rules exhibited a very high accuracy, often close to 100% when N ≥ 500, thereby illustrating

the utility of combining the information provided by various criteria to increase overall

accuracy. Across conditions, combinations of traditional PA with either the Hull method or

the EKC were associated with an overall accuracy of 98%, which substantially improves

over traditional PA alone (overall accuracy of 92%). At the same time, combining

traditional PA with either the Hull method or the EKC covered 87% and 86%, respectively,

of all simulated samples. Only the combination of Hull and EKC provided a slightly larger

coverage (88%), however, this was accompanied by a lower accuracy (94%). Taken together,

combining traditional PA and either the Hull method or the EKC provided excellent hit

rates given that they agree on the number of factors and cover a wide range of conditions.

6We also compared all triplets of factor extraction criteria where the resulting number of retrieved factors

was equal to the median of the suggested number of each triplet. The resulting overall accuracies never

exceeded 91%, which is less accurate than traditional PA alone (92%).
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While concurrence between traditional PA and Hull or EKC reliably indicated that

the suggested number of factors is correct, we also examined the conditions in which these

methods disagreed to evaluate whether there is an optimal strategy in situations where the

proposed combination rule provides conflicting results. In conditions where PA and Hull

disagreed (Table 5), the hit rates of all methods decreased considerably and

underextractions occurred frequently. The Hull method displayed very low hit rates,

especially for large sample sizes (accN≥500,Hull = 1%), and consistently underestimated the

number of factors (biasHull = −2.96). The hit rate of EKC was also low (accEKC = 20%) and

only slightly improved with larger sample sizes (accN≥500,EKC = 37%). Traditional PA

retrieved the correct number of factors in 54% of all cases and obtained acceptable

accuracy if the sample size was large (accN≥500,PA−T = 72%). Revised PA was superior to

other methods when the number of items was large (acc#items>25,PA−R = 65%), but only

showed low hit rates overall (accPA−R = 35%). The performance of CD strongly depended

on sample size with comparatively high hit rates when the sample size was large

(accN≥500,CD = 81%), but low hit rates for smaller samples (accN≤200,CD = 34%). The overall

pattern of results given that traditional PA and the EKC disagreed on the number of

factors was highly similar to the results presented in Table 5 (accPA−T = 60%, accCD = 44%,

accPA−R = 33%), with two exceptions. The Hull method obtained higher hit rates

(accHull = 28%), whereas the EKC rarely identified the correct number of factors when it

deviated from traditional PA (accEKC = 5%).

In 65% (69%) of all considered cases where traditional PA and the Hull method

(traditional PA and the EKC) disagreed on the number of factors, at least one of CD or

traditional PA suggested the correct number of factors. No other pair of methods obtained

a higher overall hit rate (all acc < 63% for traditional PA and Hull, all acc < 65% for

traditional PA and EKC). For sample sizes of at least 500, either traditional PA or CD

identified the number of factors correctly in 88% of both conditions, also superior to every

other pair of methods (all accN≥500 < 86%). Thus, in cases where the combination of
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traditional PA and Hull or EKC provides inconclusive results, considering traditional PA or

CD yielded the highest hit rate. Clearly, however, determining the number of factors to

retain is difficult under these conditions, in particular when the sample is small.

Table 5

Percentage of correctly identified number of factors (and average bias) given that traditional

PA and Hull provide different solutions

Condition Level PA-T CD Hull PA-R EKC

Number of observations 100 45 (-0.50) 26 (-1.30) 8 (-2.75) 36 (-1.08) 13 (-1.96)

200 57 (-0.52) 47 (-0.64) 4 (-3.10) 39 (-1.32) 20 (-1.76)

≥ 500 72 (-0.35) 82 (-0.03) 1 (-3.32) 28 (-2.03) 37 (-1.40)

Number of Items ≤ 25 49 (-0.54) 45 (-0.75) 6 (-2.65) 18 (-2.07) 15 (-1.98)

> 25 62 (-0.38) 40 (-1.01) 4 (-3.49) 65 (-0.14) 27 (-1.47)

Sample ∣r∣ ≤ .20 56 (-0.43) 41 (-0.95) 5 (-2.94) 33 (-1.48) 21 (-1.77)

> .20 42 (-0.74) 55 (-0.27) 4 (-3.08) 52 (-0.57) 14 (-1.88)

Overall 54 (-0.48) 43 (-0.85) 5 (-2.96) 35 (-1.34) 20 (-1.79)

Note. PA-T = traditional parallel analysis, CD = comparison data, Hull = Hull method, PA-R =

revised parallel analysis, EKC = Empirical Kaiser Criterion. Sample ∣r∣ = average absolute sample

correlation.

Discussion

In psychological research, it is often of key interest to determine the number of latent

factors underlying multiple observed variables. To this end, EFA is often employed. An

important issue in this context pertains to the number of latent factors required to

adequately describe the covariance structure among the observed data. A large number of

criteria that attempt to inform the decision of how many factors to extract have been

suggested in the last decades. Early (but still prominent) criteria, such as Kaiser’s criterion

or the scree test, have been shown to yield severely biased solutions and, consequently, have
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been superseded by other approaches, in particular PA. While the latter approach is often

considered the method of choice, a number of new techniques informing factor extraction

have been put forward more recently. Each of these methods has been shown to improve

upon PA under at least some conditions; however, a thorough comparative evaluation

among alternative criteria under a wide range of conditions was still lacking.

Correspondingly, the present study subjected these approaches to a critical test by realizing

data conditions that are often encountered in psychological research, systematically varying

the number of factors, the factor correlations, the number of indicators, the magnitude of

loadings, and the underlying distributions.

Across all conditions, traditional PA (based on the sample correlation matrix and

mean eigenvalues) provided the highest hit rate, followed by the Hull method and the

EKC. Since traditional PA was superior over all other approaches considered, traditional

PA should be chosen to inform factor extraction, if the decision on the number of factors to

retain should be based on a single criterion. However, every other method considered

outperformed PA in at least one condition. For a sufficient number of indicators per factor,

the Hull method and the EKC performed well in unidimensional or orthogonal factor

designs. For small sample sizes, revised PA also improved upon traditional PA when the

number of indicators per factor was large and factors were correlated. Unlike all other

approaches, CD worked comparatively well in conditions with short, highly correlated

scales.

Given that each approach has merits under at least one condition, we investigated

whether overall performance can be maximized by jointly considering the outcomes of

different extraction criteria. Indeed, overall performance increased considerably when

multiple factor extraction criteria were used simultaneously. When traditional PA and

either the Hull method or the EKC agree (which occurred in 87% and 86% of all simulated

data sets, respectively), the number of factors is almost always correctly identified (hit rate

of 98%). In the remaining data sets where both methods disagreed, confident judgements
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could only be made when sample sizes were large (N ≥ 500). In these cases, traditional PA

or CD correctly identified the number of factors with a probability of 88%. While all

approaches exhibited a rather poor performance under these conditions with smaller

sample sizes, traditional PA still displayed the highest accuracy. Clearly, the cases in which

the combination of traditional PA and Hull or EKC provide conflicting results represent

conditions where factor recovery is generally more difficult. This mirrors the fact that

sample size requirements for EFA mostly depend on the signal-to-noise ratio in the data

(Fabrigar et al., 1999). Whereas conditions with single factors, high loadings, and 12

indicators were easily identified even if N = 100, correlated factors with low loadings and 4

indicators each were much harder to detect.

The present study also showed that all of the extraction criteria under scrutiny were

highly robust under commonly observed values of skewness and kurtosis in the manifest

variables, thereby replicating and extending previous results (Dinno, 2009; Garrido et al.,

2013; Glorfeld, 1995; Peres-Neto et al., 2005). Note that previous studies investigating

non-normality only evaluated traditional PA and only varied the marginal distributions,

but neither considered other extraction criteria nor manipulated the multivariate

distribution itself. Evidence from studies performed in a confirmatory factor model

framework indicates that similar marginal distributions may arise from highly different

multivariate distributions, with a differential effect of the latter on the model parameters

and goodness-of-fit (e.g. Auerswald & Moshagen, 2015; Foldnes & Grønneberg, 2015; Mair

et al., 2012). Consequently, the present study more comprehensively evaluated the

performance of a wider array of extraction criteria under non-normal data by considering

the multivariate distribution itself. Nevertheless, all criteria were virtually unaffected by

non-normality. Whereas non-normal latent variables led to a small overall decrease in

accuracy, the average accuracy for non-normal errors was even slightly higher compared to

normal distributions, possibly due to the extraction of an additional factor that in part

counteracted the observed underextraction bias. Interestingly, although both the Hull
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method and the EKC explicitly assume a normal distribution, either by using the CFI

which is based on the χ2 value of the corresponding structural equation model

(Lorenzo-Seva et al., 2011) or as a prerequisite of the Marčenko-Pastur distribution

(Braeken & van Assen, in press), their performance was not negatively affected by the

non-normality conditions implemented in this study. Consequently, the results of the

present study indicate that the investigated extraction criteria can be applied safely under

a wide range of distributional properties of the observed data.

Issues in Implementing PA

When PA is employed to inform the extraction of the number of factors, two choices

need to be made. The first choice pertains to how to summarize the random reference

eigenvalues to which the empirical eigenvalues are compared. Previous studies reported

mixed results regarding the tendency to over- or underextract of traditional PA based on

the average of random eigenvalues (Buja & Eyuboglu, 1992; Cho et al., 2009; Garrido et al.,

2013; Glorfeld, 1995; Peres-Neto et al., 2005; Ruscio & Roche, 2012; Weng & Cheng, 2005).

Especially the results of Glorfeld (1995) speak against the use of the average eigenvalue

criterion, instead suggesting the 95th percentile to avoid the reported overextraction bias.

In contrast, Garrido et al. (2013) as well as the results of our study indicated an

underextraction bias. As Peres-Neto et al. (2005) demonstrated, the tendency of PA to

overextract mainly occurs in the presence of (at least some) uncorrelated variables. In the

rather unrealistic case of a population model with zero factors and uncorrelated observed

variables, an average-based PA would overextract at least one factor with a probability of

50%. In these cases, Bartlett’s test can be used to determine whether the first eigenvalue is

significantly different from the remaining eigenvalues (Bartlett, 1954), but this solution is

only available if all observed variables are uncorrelated in the population. While

investigators obviously cannot know if there are few systematically uncorrelated items in

the data set, the resulting bias of overextractions would likely be less severe, unless an
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orthogonal rotation is used (Wood et al., 1996). Overextractions would typically lead to

one or more additional factor(s) with overall weak loadings and one high loading for the

otherwise uncorrelated item. Such factors and items would likely be excluded, reducing the

number of factors to the correct number. Underextractions however lead to substantially

stronger biases and are harder to detect (Wood et al., 1996). We therefore recommend the

average random eigenvalue instead of using the 95th percentile rule.

The second choice investigators have to make when using PA pertains to the matrix

from which the empirical and sampled eigenvalues are derived. The eigenvalues can be

obtained either from the correlation matrix, corresponding to a PCA, or from a matrix in

which the diagonal of the correlation matrix is replaced with the item communalities

estimated by a common factor model. Since the primary purpose of empirical studies often

is to uncover a set of latent variables that explain covariations among observed variables,

the common factor model is usually recommended over PCA (e.g. Fabrigar et al., 1999;

McArdle, 1990; Widaman, 1993). Traditional PA, on the other hand, typically uses the

eigenvalues of the correlation matrix as a criterion, which could be considered inconsistent,

because the suggested number of components to retain is then used to inform factor

extraction in an EFA (Ford, MacCallum, & Tait, 1986; Humphreys & Montanelli, 1975).

However, any specification of a common factor model likewise determines the eigenvalues of

both matrices under consideration. Indeed, Braeken and van Assen (in press) derived the

distribution of eigenvalues of the correlation matrix for normally distributed observed

variables from a common factor model. In contrast, the eigenvalues of a common factor

model additionally depend on the method that estimates the communalities. Given that

both variants of PA seem theoretically appropriate, the hit rates from Monte Carlo

simulations should inform the decision which reference eigenvalue should be chosen. As

such, the results of our study are in line with Garrido et al. (2013) in suggesting that PA

based on a common factor model performs on average worse than PA-PCA.

The inferiority of a common factor PA may also explain why revised PA exhibited
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lower accuracies than traditional PA in our study. Following the recommendations of Green

et al. (2012), we implemented revised PA based on the common factor model, but

implemented traditional PA based on PCA (in line with previous simulation results). This

difference likely resulted in the relatively low overall performance of revised PA despite its

theoretical advantages. A second downside of revised PA (compared to traditional PA) is

that the theoretical maximum hit rate is bound by 95%. Suppose that the correct number

of factors was already extracted. Revised PA then proceeds by comparing the next factor

to the random sample based eigenvalues (while accounting for previously explained

variance). Given that the previous number of factors was already correct, the next

eigenvalues of both empirical and random samples should, to the same extent, depend on

random error. The empirical eigenvalue will then lie above the 95th percentile of sampled

eigenvalues in 5% of cases, thereby leading to the extraction of an additional factor.

However, as this behavior should lead to overextractions, this issue arguably played a

minor role in our simulation, where revised PA on average underestimated the number of

factors. Third, unlike in the study by Green et al. (2012), our design did not incorporate

conditions with very high factor intercorrelations (like ρ = .80). Under these conditions,

revised PA displayed a clear advantage over traditional PA in Green et al. (2012). Thus,

when investigators expect such high factor correlations, revised PA based on principal axis

factoring and the 95th percentile of sampled eigenvalues could still be a viable alternative.

However, we would argue that the expectation of strongly correlated factors requires

hypotheses concerning the number and nature of the factors, so that confirmatory factor

models are more suited in this context.

Limitations

The results of Monte Carlo studies should only be interpreted within the bounds of

the realized conditions. One limitation of our study is that we only considered continuous

response variables, because we were also interested in the effect of non-normality in the
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observed variables. Changes in the distribution of the latent variables translate to changes

in the distribution of the observed variables in a non-trivial way. More specifically, the

same values of skewness and kurtosis in the observed ordinal variables can result from

different skewness and kurtosis in the underlying continuous variables depending on the

thresholds chosen to obtain the ordinal variables. Prespecifying skewness and kurtosis for

the underlying continuous variables might therefore not provide valid guidelines for

practice, since investigators can only compute skewness and kurtosis of the observed

variables. For ordinal variables, Garrido et al. (2013) compared normal and skewed

variables and found that traditional PA is also robust against skewness in ordinal variables,

if PA is based on the polychoric correlation matrix. Nevertheless, future studies should also

examine the performance of other factor extraction criteria for ordinal or dichotomous

observed variables.

A second limitation pertains to the selection of the examined extraction criteria.

While we included a number of modern techniques that have not yet been thoroughly

investigated, we did not consider methods that have been shown to be inferior to

traditional PA in previous simulation studies (Peres-Neto et al., 2005; Râıche et al., 2013;

Ruscio & Roche, 2012; Zwick & Velicer, 1986). These include indices that incorporate the

fit of different structural equation models or test the model fit directly (e.g. Ruscio &

Roche, 2012), the minimum average partial method (Velicer, 1976), or several

non-graphical solutions for Cattel’s Scree test (e.g. Râıche et al., 2013). Overall, there are

more than 40 criteria to assess the dimensionality of observed variables (Peres-Neto et al.,

2005; Râıche et al., 2013; Ruscio & Roche, 2012) and our selection was based on their

relevance for factor analysis in psychology and performance in previous simulation studies.

However, it might be possible that a criterion not considered here may improve overall hit

rates when used in conjunction with another criterion. Future studies might consider this

issue. Finally, it should be noted that we applied a rather rigid criterion to determine the

accuracy of the extraction methods. The data were generated using a predefined number of
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factors and a method was considered to provide valid results if it successfully recovered this

number. This approach assumes that each factually existent latent factor should be

recovered, regardless of whether it represents a large or a small proportion of the common

variance. Likewise, we also excluded conditions with very high factor correlations in which

the explanatory value of additional factors is rather low. We pursued this particular

approach based on the rationale that the decision whether an additional correlated factor is

to be considered as small, but meaningful or as minor and insignificant mainly depends on

theoretical considerations. For example, one condition in the simulation by Green et al.

(2012) realized a common factor model with two factors, loadings of λ = .40 each, the same

number of indicators per factor, and a factor correlation of ρ = .80. In this condition, the

(unrotated) second factor only explains 1.6% of the common variance. By comparison, the

minor factors that methods were supposed to ignore in the study conducted by

Lorenzo-Seva et al. (2011) on average accounted for 15% of the common variance. Clearly,

we cannot expect one statistical method to appropriately differentiate between these

conditions, because the decision of which result is to be considered the correct one would

also depend on the interpretation of the extracted factor solution. Thus, we included

neither highly correlated nor minor factors. Nevertheless, our approach may have led to an

overly critical assessment of the accuracy of extraction methods that specifically aim to

extract major factors only, even in the presence of minor factors (e.g., the Hull method;

Lorenzo-Seva et al., 2011). At the same time, the results obtained herein should not be

readily transferred to situations in which the goal is to uncover factors with very high

intercorrelations (e.g. Green et al., 2012).

Conclusion

We investigated the performance of various criteria to decide on the number of factors

to retain in EFA. Our results indicate that the highest accuracy can be obtained when

considering the outcomes of several criteria simultaneously. In particular, within the
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bounds of this simulation study, we recommend a decision heuristic viable over a wide

range of data conditions. First, investigators should compare the results of traditional PA

and the Hull method or the EKC. If both methods suggest the same number of factors, this

most likely reflects the correct number of underlying factors. If both methods disagree,

both traditional PA and CD are viable extraction criteria when the sample is large,

whereas traditional PA should be chosen when the sample is small. However, the latter

conditions are generally associated with greater difficulties to identify the number of factors

for all approaches we investigated. Thus, under these conditions, confident decisions

require larger sample sizes. In the suggested decision rule, disagreement between

traditional PA and the Hull method or the EKC can thus serve as an indicator that the

latent structure is more difficult to uncover.

Finally, we want to stress that decisions on the number of factors should also involve

theoretical considerations. While the suggested strategy is a helpful tool in assessing the

number of factors and the confidence investigators should have in this number, it should

not be interpreted as a strict and rigid rule. The interpretability of the resulting loading

patterns, theoretical considerations concerning the relevance of an item for a scale, and the

resulting scale reliabilities are all equally important and should all be taken into account

when deciding how many factors to retain in EFA.
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Appendix

The goal of this section is to explain the correspondence between explained variance

of the common factor model and the eigenvalues of the matrix of correlations RC with

communalities on the diagonal, assuming that the (hypothetical) data fit the common

factor model perfectly. Note that the explained variance in a PCA can be similarly derived

if we used the correlation matrix R instead of RC. Suppose we have standardized observed

variables XC = (xC1, ..., xCm)T from which we partialled out the uniqueness, such that

RC = E(XCXC
T ) (13)

is the covariance matrix of XC. We denote the observations as xCk, 1 ≤ k ≤ N for N

observations and try to find factors that linearly explain variations in XC. This is

equivalent to finding lines on which we project each observation xCk such that the variance

of the length of projections is maximal (and the variance of the distances to the line is

minimal). A line is a set of points that satisfy

x = αv, (14)

where v is a vector of length p and α ∈ R. The length of the projection of xCk on this line is

⟨xCk, v⟩

∣∣v∣∣
. (15)

Note that the length of v does not change the line in Equation 14, so that we can set

∣∣v∣∣ = 1 without loss of generality. The length of projections then is ⟨xCk, v⟩. In order to

maximize the variance of ⟨xCk, v⟩, we first obtain the average of the projections. The vector

v is part of an orthonormal basis of our space, which we denote as

{v, v′2, ..., v
′

p}. (16)

We can rewrite every observation as

xCk = α1kv + α2kv
′

2 + ... + αpkv
′

p, (17)
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so that

xCk = α1kv +
p

∑
i=2
αikv

′

i (18)

⇒ vTxCk = v
Tα1kv + v

T
p

∑
i=2
αikv

′

i (19)

⇒ vTxCk = α1kv
Tv +

p

∑
i=2
αikv

Tv′i (20)

⇒ vTxCk = α1k. (21)

In the last step, we used that v�v′i, 2 ≤ i ≤ p and vTv = ∣∣v∣∣ = 1. The mean of projections

therefore is

N

∑
k=1
α1kv =

N

∑
k=1
vTxCkv (22)

= vT(
N

∑
k=1

xCk)v (23)

= 0 (24)

because xCk is standardized. We can therefore obtain the variance of the length of

projections of xCk as

1
N − 1

N

∑
k=1

⟨xCk, v⟩
2 =

1
N − 1

N

∑
k=1

(xCk ⋅ v)
2 (25)

=
1

N − 1
N

∑
k=1

vTxTCkxCkv (26)

=
1

N − 1v
T(

N

∑
k=1
xTCkxCk)v (27)

= vT RC v. (28)

The variance of the length of projections is vT ⋅RC ⋅ v, we try to obtain the maximum.

We denote the eigenvectors of RC as e1, ..., ep and the corresponding eigenvalues as

l1, ..., lp such that l1 ≥ l2 ≥ ... ≥ lp. If we choose v = e1, the variance is

eT1 RC e1 = e
T
1 (l1e1) = l1. (29)
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The first eigenvalue corresponds to the explained variance if we choose the eigenvector e1 as

a projection line. Suppose we choose any other vector as a projection line. The

eigenvectors e1, ..., ep form an orthonormal basis of our space. We can therefore rewrite v as

v = ⟨e1, v⟩e1 + ⟨e2, v⟩e2 + ... + ⟨ep, v⟩ep =
p

∑
i=1

⟨ei, v⟩ei. (30)

The variance of the length of projections for v then is

(

p

∑
i=1

⟨ei, v⟩ei)
T

RC(

p

∑
i=1

⟨ei, v⟩ei) = (

p

∑
i=1

⟨ei, v⟩ei)
T

(

p

∑
i=1

⟨ei, v⟩RCei) (31)

= (

p

∑
i=1

⟨ei, v⟩ei)
T

(

p

∑
i=1

⟨ei, v⟩liei) (32)

=

p

∑
i=1

⟨ei, v⟩
2li∣∣ei∣∣

2 (33)

In the last step, we used that ei � ei′ for 1 ≤ i, i′ ≤ p and i ≠ i′. Note that the eigenvectors are

standardized, so that ∣∣ei∣∣ = 1. Further note that ⟨ei, v⟩2 ≥ 0 and

p

∑
i=1

⟨ei, v⟩
2 = 1 (34)

because ∣∣v∣∣ = 1. Therefore, the variance of the length of projections for v is a weighted sum

of eigenvalues where the weights are all non-negative and sum to one, such that

vTRCv =
p

∑
i=1

⟨ei, v⟩
2li ≤ l1. (35)

Hence, v = e1 obtains a maximum of explained variance. If we choose a second factor, we

choose a line orthogonal to e1 and, by analogy, arrive at the conclusion that v = e2 with

corresponding explained variance l2. For m extracted factors, the explained variance is

m

∑
j=1
lj. (36)
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