
dACL: The Deep Constraint and Action

Language for Static and Dynamic

Semantic Definition in Melanee

Master Thesis

submitted: December 2016

by: Arne Lange

arlange@mail.uni-mannheim.de

Student ID Number: 1456883

Supervisor: Ralph Gerbig

University of Mannheim

Chair of Software Engineering

D – 68159 Mannheim

Phone: +49 621-181-3912, Fax: +49 621-181-3909

Internet: http://swt.informatik.uni-mannheim.de

http://swt.informatik.uni-mannheim.de

ii

Abstract

The Unified Modeling Language (UML) is the de facto standard for modeling

software. But due to some limitations of UML a new modeling paradigm was

born, called Multi-Level Modeling or Deep Modeling, allowing the user to model

across multiple ontological levels. The software engineering group at the Uni-

versity of Mannheim has developed a multi-level modeling tool which is called

“Melanee”. To attract more users to this modeling paradigm, Melanee needs

the same extensions as UML, such as a constraint language, an action language

or a transformation language in order to help its users create precise and useful

models.

There has been some effort to integrate a deep modeling constraint language

into Melanee, but the usability of this dialect turned out to be limited. This

thesis aims at raising the usability of the deep modeling constraint language

dialect by customizing the Object Constraint Language (OCL) standard language

definition, which is the constraint language extension for UML. Many of the

semantic navigation definitions are based on the work of Kantner[33].

iii

iv Abstract

Contents

Abstract . iii

List of Figures . ix

List of Tables . xi

List of Abbreviations . xii

1. Introduction . 1

2. Foundations . 3

2.1. Formal Languages . 3

2.1.1. Theory . 5

2.1.2. Lexical Analysis . 8

2.1.3. Syntax and Semantics . 9

2.1.4. Parsing Strategies . 12

2.1.5. ANTLR’s parsing technology 14

2.2. Model-Driven Development . 15

2.3. Multi-Level Modeling . 16

2.4. The Level-Agnostic Modeling Language 18

2.5. Object Constraint Language . 19

2.5.1. The OCL Meta-Model . 20

2.5.2. Collection and Loop Operations 21

3. DeepOCL Revisited . 27

3.1. OCL Modifications for Deep Models 27

3.2. Unambiguous Multi-Level Navigation 30

3.3. Deep (Re-)Classification Operations 30

3.4. Deep Constraints . 34

v

vi Contents

4. Constraint Definition Meta-Model 37

4.1. Constraint Meta-Model . 37

4.2. Saving Constraints . 39

5. Executing DeepOCL . 41

5.1. Data Flow . 41

5.2. Implicit/Explicit Causes of Triggering Constraint Evaluation . . . 42

5.3. Nested Collection Operations . 45

5.4. Constraint Search Algorithm . 45

6. Implementation . 49

6.1. ANTLR . 49

6.1.1. Grammar . 49

6.1.2. Rule Visitor . 53

6.2. Interpreting OCL Expressions . 54

6.2.1. Linguistic Context Operations 54

6.2.2. Ontological Context Operations 57

6.3. Extending the Functionality of the DeepOCL Dialect 58

7. Future Work . 61

7.1. Action Language . 61

7.2. Level Specific Constraints . 62

7.3. Constraints on Elements of the Linguistic Dimension 63

7.4. Rollback mechanism . 63

7.5. Unambiguous OCL . 64

7.6. Dynamically Extending DeepOCL Functionality 65

7.7. Editor . 66

7.8. The Transitive Closure Operation 66

7.9. Performance Optimization . 67

8. Related Work . 69

8.1. DeepOCL by Kantner . 69

8.2. metaDepth . 69

8.3. Nivel . 70

9. Conclusion . 73

Contents vii

Bibliography . 75

Appendix . 79

A. The ANTLR4 DeepOCL grammar 81

viii Contents

List of Figures

2.1. A compiler . 3

2.2. The processing steps of a compiler 4

2.3. Tree structure for a sentence in the English language[2] 9

2.4. Tree structure of an arithmetic expression[2] 10

2.5. Parse trees for position := initial + rate * 60 10

2.6. Example parse tree for non-, left- and right-recursion[13] 11

2.7. The position of a parser in the compiling process 12

2.8. An example of the four-layer meta-model hierarchy[28] 16

2.9. The ontological metamodeling view[10] 17

2.10. Abstract Syntax Kernel Metamodel for OCL Types as specified

in[27] . 21

2.11. The basic structure of the abstract syntax kernel meta-model for

expressions as specified in[27] . 22

3.1. An example for linguistic navigations 29

3.2. An example model for the oclIsKindOf() and oclIsTypeOf()

operations . 31

3.3. An example model for the oclIsKindOf() and oclIsTypeOf()

operations in a deep modeling environment as proposed by

Kantner[33] . 32

3.4. Classification checking methods on the example of Steve. 33

3.5. An example for ontological navigation where the definition and

execution context are not the same 35

4.1. PLM meta model with constraints 38

4.2. The constraint meta model . 39

4.3. The saving algorithm result with reference pointers to

identifiable elements . 40

ix

x List of Figures

5.1. An illustration of the data flow in the DeepOCL evaluation

application . 41

6.1. first example of a parsed OCL statement 50

6.2. Example of a parse tree with a combined logical expression . . . 52

7.1. The Person closure operation example 66

List of Tables

2.1. Collection type conformance to the MOF; adapted from the OCL

2.4 specification[27] . 21

2.2. Collection Operations and their semantics 23

2.3. Collection Operations for any collection type 23

2.4. Loop Operations and their semantics 24

xi

xii List of Tables

List of Abbreviations

Alf Action Language for fUML

ANTLR ANother Tool for Language Recognition

EMOF Essential MOF

EMP Eclipse Modeling Project

EOL Epsilon Object Language

GLL Generalized LL

GLR Generalized LR

LML Level-agnostic Modeling Language

MDA Model-driven Architecture

MDD Model-Driven Development

MOF Meta-Object Facility

OCA Orthogonal Classification Architecture

OCL Object Contraint Language

OMG Object Management Group

PLM Pan-level Model

UML Unified Modeling Language

WCRL Weight Constraint Rule Language

xiii

1. Introduction

Since the rise of object-oriented software developing methods there has been an ef-

fort to unify the object-oriented developing methods. The goal of that unification

effort was to create a general-purpose modeling language based on standardiza-

tion of the Object Management Group (OMG) and resulted in the adoption and

standardization of the UML in November 1997.[41] In the year 2000, the OMG

accepted new proposals for UML2. The UML2 was necessary due to the limited

capabilities of the first version of UML. The new version did not change the basic

concepts of UML – in fact they remained mostly the same – but it gave UML a

clearer design for users and toolmakers.[41] The UML core meta model was uni-

fied with modeling parts of the Meta-Object Facility (MOF) which “[permitted]

UML models to be handled by generic MOF tools and repositories”[41]. From

this Model-Driven Development (MDD) emerged a development paradigm in the

object-oriented software community. The goal or “motivation for MDD is to im-

prove productivity”[10]. As an alternative approach to model software, the chair

of software engineering of the University of Mannheim developed a Level-agnostic

Modeling Language (LML). This language allows the software modeler to model

multiple ontological levels.[23]

The tool that implements the LML is called Melanee[37, 23] and aims for the

same tool support as UML, therefore one of the main reasons to create a useful

constraint language dialect for deep modeling. To some extent this support is

already present in the current development of Melanee. There exists an imple-

mentation of the OCL in Melanee as of this date, but formulated constraints are

not saved in any form. This is the first and most obvious feature that has to

be implemented in either a totally new version of a deep modeling constraint

language or in an extension of the original code written by Kantner[33]. His

approach was to utilize the Eclipse OCL[19] implementation in terms of evalu-

ating the OCL statements. Kantner’s[33] main contribution was the navigation

specification in a deep model. This navigation will be presented in chapter 3.1.

1

2 1. Introduction

This thesis, however, will aim towards a new implementation of a deep modeling

OCL dialect. The goals are to seperate this OCL dialect from the EclipseOCL

implementation and to save the constraint statements on the respective models.

The deep modeling constraint language is realized with a tool called “ANother

Tool for Language Recognition (ANTLR)” which generates a parser and a lexer

from a grammar which defines and checks the syntactic structure of expressions

written in this dialect. The foundation of this particular technology will be in-

troduced in chapter 2. Chapter 3 will introduce the modifications made to the

OCL standard to fit the deep modeling properties; also the navigation semantics

from Kantner will be presented. Chapter 4 will show how the meta-model of the

Pan-Level Model (PLM) is extended with the constraint meta-model and how

constraints are saved in that structure. The next chapter explains how and when

defined constraints are evaluated and how the application, created in this thesis,

deals with certain borderline cases in the implementation. Chapter 6 will display

the tooling of ANTLR and how the generated software artifacts help to interpret

OCL expressions. Chapter 7 will describe what parts of the constraint language

are not yet supported and what features are still necessary to increase the usabil-

ity of the deep OCL dialect. Chapter 8 will introduce other implementations of

OCL in an deep modeling environment and will help to contextualize this thesis.

The final chapter will sum up the work done so far and will give a final assessment

of this thesis.

2. Foundations

This chapter will introduce the main concepts of Deep Modeling, OCL, formal

languages and the Eclipse Modeling Project (EMP). With regard to the Deep

Modeling topic. The modeling environment Melanee will be used to explain the

concept in detail.

2.1. Formal Languages

In order to create a new dialect of OCL which is aware of the deep modeling

environment, it is vital to understand how languages are constructed in regard to

computer science. Programming languages have to be understood by the user and

on the other hand from the computer which has to follow the written instructions

and act accordingly. Almost all of the work in the field of formal languages is

based on the work of Chomsky[14], who laid the theoretical linguistic foundation

for language and grammar classification and later parsing theory.

Computers are only able to understand machine code. Any other higher-level

language in which programmers write their programs in, such as JAVA[15], has

to be translated into machine code, which the computer can then process. This

translation is called compiling. Figure 2.1 shows the input and possible outputs

of a compiler. If the compiler does not produce a target program as the result of

source program compiler

error message

target program

Figure 2.1.: A compiler

the translation of the source program and instead is performing the operations

3

4 2. Foundations

that are implied by the source program, then the translation process is called

interpreting. The compiler itself is then called an interpreter.[1]

The whole compiling process is shown in figure 2.2. First the input is divided

after each symbol and serves as an input stream for the lexical analyzer. The

lexical analyzer takes each symbol and tries to classify each symbol or a set of

symbols into categories. These categories are also called tokens. This then serves

as an input for the syntax-directed translation process, which is, in this case,

a parser. A parser takes these categories and orders them hierarchically into a

data structure according to the defined rules of the language. The intermediate

representation can vary, but in most cases it is a tree-like structure.[43]

lexical

anayzer

character

stream

token

stream

synaxdirected

translator

intermediate

representation

Figure 2.2.: The processing steps of a compiler

According to Aho and Ullman[2], there are some properties that have to be

specified in order to create a higher-level programming language:

1. The set of symbols which can be used in valid programs

2. The set of valid programs

3. The meaning of each valid program

The first definition is relatively easy to achieve. For most modern high-level

programming languages the set of symbols is a mixture of the English alphabet

and arithmetic operation symbols. It is much more difficult to define the set of

valid programs.[2] When specifying a program language, grammatical rules can

be used to reduce the size of the set of valid programs. It may, however, evaluate

statements as valid like listing 2.1 shows.[2] This kind of statement will either

result in an endless loop or, if the meaning of that valid program is not defined,

in some kind of error due to the consequences of the third definition.

Listing 2.1: FORTRAN statement that might be considered valid

L GOTO L

The third and final property says that a programming language has to determine

the semantics of a valid program. With regard to third property listing 2.1 has

2.1. Formal Languages 5

to be either rejected because the meaning is ambiguous or the language accepts

this expression and the execution context will be in a state of an infinite loop.

Either way, the language specification has to be able to determine the semantics

of a valid expression. This definition is the most difficult to achieve and will be

part of the next chapters.[2]

The DeepOCL dialect translation has to fulfill these definitions, and every defi-

nition can be divided into different phases of translating a statement.

The words λ, 01110,01,00010,0,1 are words over the alphabet Σ = {0, 1}. The

set of all words over an alphabet is denoted by Σ∗ and by Σ+ for all non-empty

words. These two sets are infinite for any Σ, and they are the free monoids and

free semigroup generated by Σ.[42] If a language L is in fact infinite it is not

possible to enumerate all possible combinations of words in order to translate the

language into executable code. Thus another representation for the translation

must be sought. This specification of a language has to be of finite size, but the

language specified is not required to be finite.[2]

There are two well-known methods to achieve this requirement. The first method

is to define a generative system, which is called a grammar. The second method

is being presented with a finite string, which is part of the input, and answers

”yes” if the string is part of the language and ”no” if the string is not part of

the language. This procedure or algorithm is called recognizer.[2] The following

sections will explain the first method in detail – because a grammar was used to

generates the deep OCL dialect.

2.1.1. Theory

To fully understand the process of language engineering one has to understand

how an alphabet, words, languages and their grammars are defined with regard

to computer science languages or programming languages. This section defines

all the parts that are needed to create a programming language.

Definition 2.1 (Alphabet). An alphabet is a finite nonempty set. The elements

of an alphabet Σ are called letters or symbols [42]

Definition 2.2 (Word). Let Σ = {a, b, c, ...} be a set of symbols, or alphabet,

then a word w over Σ is a string where each character from w is from Σ. w =

a0, a1, a2, ..., an where aiεΣ. A special word is the empty word ε.

6 2. Foundations

Definition 2.3 (Length of a word). The length of a word is displayed by |w|
where w = a1a2a3...an,|w| = n and |ε| = 0.

The concatenation of two words is defined in the following.

Definition 2.4 (Concatenation). Let w1 = a0a1a2...an and w2 = b0b1b2...bn two

different words where aibiεΣ, then

w1 ◦ w2 = a0a1a2...anb0b1b2...bn

is the concatenation of w1 and w2.

Definition 2.5 (Language). Let Σ∗ be a set of words, then a language L is a

subset of Σ∗

L ⊆ Σ∗

Definition 2.6 (Grammar). A Grammar is a tuple G = (N,Σ, P, S) where

(1) N and Σ are alphabets, N ∩ Σ = ∅

(2) S ∈ N . The elements of N are called nonterminals and those of Σ terminals.

(3) S is called the start symbol.

(4) P is a finite subset of

(N ∪ Σ)∗N(N ∪ Σ)∗ × (N ∪ Σ)∗

Definition 2.7 (Regular grammar). A grammar is called regular if each produc-

tion is of the form uξv → uyv, where ξ is in N − Σ, u and v are in (N − Σ)∗,

and y is in N∗ − {ε}. The language generated by a regular grammar is called a

regular language.

A regular grammar or regular language is also called context-sensitive.[25] That

term refers to the fact of using a rule of the from uξv = uyv where ξ was rewritten

to y. The equivalent automaton that accepts regular grammars is called finite

automaton.[30]

Definition 2.8 (Context-free grammar). A grammar is called context-free G =

(N,Σ, P, S) in which each production in P is of the form ξ → n, where ξ is in

N −Σ and n is in N∗. L ⊆ Σ∗ is said to be a context-free language if and only if

L is generated by some context-free grammar.

2.1. Formal Languages 7

The term context-free is referring to the fact that rewriting the result of the

productions is done independently of the context which each variable appears

in.[25] Every context-free grammar is also context-sensitive, but the converse is

not true.[25]

Definition 2.9 (Pushdown automaton). A finite deterministic automaton can

be defined as a tuple M = (Q,Σ,Γ, δ, q0, Z0, F), where

• Q is a set of states

• Σ is an alphabet called input alphabet

• Γ is an alphabet called the stack alphabet

• q0 in Q is the initial state

• Z0 in Γ is a particular stack symbol called the start symbol

• F ⊆ Q is the set of final states

• δ is a mapping from Q× (Σ ∪ {ε})× Γ to finite subsets of Q× Γ∗

Like regular grammars the set of context-free grammars also have an equivalent

automaton which is called pushdown automaton. This automaton accepts all

context-free grammar definitions. A pushdown automaton is deterministic if the

following restrictions hold[30]

1. whenever δ(q, a,X) is nonempty for some a in Σ, then δ(q, ε,X) is empty

2. for each q in Q, a in Σ ∪ {ε} and X in Γ, δ(q, a,X) contains at most one

element.

The first restriction prevents the pushdown automaton to choose either the next

input or making an ε-move. The second restriction prevents a choice on the same

input.[30]

To sum up these definitions, first the alphabet of a language was defined, which

is a set of arbitrary symbols out of which words can be build. Also the definitions

provided a way to measure the length of a word and how two or more words

can be concatenated into a new word. Further grammars were defined and and

how they relate to languages. A subset of grammars are context-free grammars

that generate context-free languages and are accepted by a pushdown automa-

tons. “Context-free grammar are a generalization of regular grammars in that no

restrictions are placed on the right hand sides of rules.”[43]

8 2. Foundations

By definition every context-free language is generated by a context-free grammar.[36]

An element (α, β) in P will be written 〈α〉 → 〈β〉 and is called a production,

where α is the left-hand side and β the right-hand side of the production. In

other words, a grammar is context-free if the finite set of rules or productions

has only non-terminals on the left-hand side of a production and an arbitrary

number of combinations of terminals and non-terminals on the righ-hand side of

a production. The left hand side of a production is also called syntactic categories,

and every category itself represents a language.[30] The equivalent automaton for

context-free grammars is the pushdown automaton. The deterministic version

of this device accepts only a subset of all context-free grammars. This subset

includes the syntax of most programming languages.[30]

2.1.2. Lexical Analysis

In a compiler or interpreter the first step of processing an expression is the linear

analysis or lexical analysis. This step aims to categorize each token or a group of

tokens. Assume the input of the translation process is the following statement:

Listing 2.2: Input for the lexical analysis

p o s i t i o n := i n i t i a l + r a t e ∗ 60

The process of the lexical analysis would group the expression into the following

token categories:

1. The identifier position

2. The assignment symbol :=

3. The identifier initial

4. The plus sign

5. The identifier rate

6. The multiplication sign

7. The number 60

The blanks between each token are usually eliminated during the lexical analysis.[1]

If the result of the parsing process is fact a parse tree then every token or classi-

fication is a leaf in the hierarchical parse tree. The following sections will show

2.1. Formal Languages 9

how these rules can organized in such data structures. It will also show that every

leaf of the parse tree consist of a token.

2.1.3. Syntax and Semantics

Any language has some grammatical structure which consists of a set of rules

on how words form a sentence or how words in a sentence relate to each other.

For a natural language, e.g. English, every word of a sentence can be labeled or

classified into syntactic categories. The sentence

The pig is in the pen.

can represented as a labeled tree, as presented in in figure 2.3. This representation

〈sentence〉

〈verb phrase〉

〈phrase〉

〈phrase〉

〈noun〉

pen

〈adjective〉

the

〈preposition〉

in

〈verb〉

is

〈noun phrase〉

〈noun〉

pig

〈adjective〉

the

Figure 2.3.: Tree structure for a sentence in the English language[2]

helps understand the overall structure of the English language and how sentences

are composed properly. The same principle can be applied for a programming

language or any other language for that matter. For example, the arithmetic

expression

a+ b ∗ c (2.1)

can be also represented in a labeled tree, just like a sentence from a natural

language. The labels may differ, but the tree helps to understand the relation

of symbols in that particular language.[2] In figure 2.4, the labeled syntax tree is

shown for an arithmetic expression. This example shows a calculation order in

which the times calculation is computed before adding the left part of the tree

to the result. So in fact this syntax tree ensures the correct calculation of an

10 2. Foundations

arithmetic expression. That is because the right term, the times calculation, has

to be resolved before the result is added to a.

〈expression〉

〈term〉

〈factor〉

〈identifier〉

c

*〈term〉

〈factor〉

〈identifier〉

a

+〈expression〉

〈term〉

〈factor〉

〈identifier〉

a

Figure 2.4.: Tree structure of an arithmetic expression[2]

The two examples above show the process of parsing or syntax analysis. We have

seen that some rules or production have precedence over others and how these

rule can the represented in a hierarchical structure like a parse tree.

The example that was shown earlier in listing 2.2 can also be represented in

a parse tree, which is shown in figure 2.5. This example also shows that some

〈assignment− statement〉

〈identifier〉

position

:= 〈expression〉

〈expression〉

〈identifier〉

initial

+ 〈expression〉

〈expression〉

〈identifier〉

rate

* 〈expression〉

〈number〉

60

Figure 2.5.: Parse trees for position := initial + rate * 60

logical or arithmetic expressions have to be resolved before other expressions. The

phrase rate * 60 is a logical unit because arithmetic rules say that multiplication

2.1. Formal Languages 11

A

A

A B

B

(i)

A

B A

B A

(ii)

A

B C

A

B C

A D

D

(iii)

Figure 2.6.: Example parse tree for non-, left- and right-recursion[13]

is performed before addition. The rules that create that kind of hierarchical

structure might look as follows:

1. Any identifier is an expression

2. Any number is an expression

3. If expression1 and expression2 are expressions, then so are

expression1 + expression2

expression1 * expression2

(expression1)

The first two rules are non-recursive rules whereas the third rule defines a set of

two expressions with different operators applied to the two expressions.[1] Thus,

defined by the first rule, initial and rate are identifiers. The number 60 is

a an expression, which is defined by the second rule. The third rule matches first

rate * 60, which is an expression, and then to initial + rate * 60 which is

also an expression itself.

Figure 2.6 shows three parse trees that are non-recursive(i), left-recursive(ii) and

right-recursive(iii). ”We say that ϕ dominates ψ(ϕ→ ψ) if there is a derivation

σ1, ..., σn such that σ1 = ϕ and σn = ψ (i.e., if ψ is a step of a σ-derivation).”[13]

With that definition by Chomsky it can be shown that A in (i) is nonrecursive for

non-null ϕ, ψ, because A⇒ ϕAψ. A in (ii) is left-recursive if there is a non-null

ϕ such that A ⇒ Aϕ. And A in (iii) is right-recursive if there is a non-null ϕ

such that A⇒ ϕA.[13]

12 2. Foundations

In the past it was believed that top-down parser cannot process grammars with

left-recursion rules. Furthermore it was believed that the runtime complexity

was at least exponential. Recent research showed that top-down parsing algo-

rithms can accommodate grammars with left-recursion production in polynomial

time.[22] How ANTLR, the tool used in this thesis, approaches this problem is

discussed in chapter 2.1.5.

The separation of the two topics of lexical analysis and of syntactical analysis is to

some extent arbitrary[1], because it can vary how the parser comes to the result

of the intermediate representation of the expression. Most authors in the field of

parsing, like Aho, Ullman[2] and Sippu[43], have decided to divide the parsing

process into these two topics. In order show the difference between grouping to-

kens into lexical categories and reordering the whole expression into a hierarchical

system, like a parse tree, the separation helps give a better understanding of the

tasks involved in the parsing process.

2.1.4. Parsing Strategies

The parser obtains a stream of tokens from the lexical analyzer and checks if the

whole stream of tokens can be generated by the defined grammar for the source

language. The position in the compiling process is shown in figure 2.7. There are

Figure 2.7.: The position of a parser in the compiling process

two types of algorithms that can be used for the task of syntactic analysis: top-

down and bottom-up.[32] The top-down parser method builds parse trees from

the top (root) to the bottom (leaves). The bottom-up parser method begins with

the bottom (leaves) and works its way up to the top of the tree (root). The input

for both parser methods is the same, it is scanned from left to right and one

2.1. Formal Languages 13

symbol at a time is processed. These parsing strategies only accept subclasses of

grammars, such as LL and LR grammars.[1] The class of context-free grammars

that can be parsed deterministically in a top-down fashion is called LL(k), and the

class of context-free grammar that can be parsed deterministically in a bottom-up

fashion is called LR(k).[40]

Due to the fact that the generated parser by ANTLR is a top-down parser[39], this

thesis will concentrate on this parsing strategy and leave the further definitions for

bottom-up parser strategies aside. With the definition of a context-free grammar

(cf. definition 2.8) in mind a grammar with LL(k) properties can be defined as

follows.

Definition 2.10 (LL(k) grammar). A grammar G = (N,Σ, P, S) is said to be a

LL(k) grammar for some positive integer k if and only if given

1. a word w in N∗ such that |w| ≤ k

2. a non-terminal A in Σ

3. a word w1 in Σ∗

There is at most one production p in P such that for some w2 and w3 in N

4. S ⇒ w1Aw3

5. A⇒ w2

6. (w2w3)/k = w

With regards to the parsing process a ”LL(k) grammar is a context-free grammar,

such that for any words in its language, each production in its derivation can be

identified with certainty by inspecting the word from its beginning (left end) to

the k-th symbol beyond the beginning of the production. Thus when a non-

terminal is to be expanded during a top-down parse, the portion of the input

string which has been processed so far plus the next k input symbols determine

which production must be used for the non-terminal.”[40]

Any context-free language that is generated by a LL(k) grammar can be recog-

nized by a deterministic push-down automaton.[35] Every LL(k) grammar is also

an LR(k) grammar.[34]

14 2. Foundations

2.1.5. ANTLR’s parsing technology

In general, context-free grammar parsing can either be done in a top-down (LL-

style) or in a bottom-up (LR-style) fashion. In a time where resources in a

computer were scarce, programmers had to write their grammars to fit the de-

terministic parser generators. In modern days, programmers are able to use non-

deterministic parsing strategies due to the fact that the resources, available to a

computer, have grown.[39] These strategies are called Generalized LR (GLR) and

Generalized LL (GLL), and they are able to handle nondeterministic ambiguous

grammars. When a grammar is in fact ambiguous, they return multiple parse

trees (forests) – because these strategies were intentionally designed for natural

languages.[39]

ANTLR is using a top-down strategy called ALL(*).[39] This strategy can also

handle nondeterministic and ambiguous grammars, but does not return multiple

parse tree, like GLL or GLR. The LL parsing style suspends at each produc-

tion until the prediction mechanism has chosen the correct production to expand

the tree and is resuming the parsing process. The ALL(*) strategy parses the

whole expression dynamically. At each decision point in the grammar multiple

subparsers are launched. For every possible decision at this point in the gram-

mar one parser is created and tries to match the input. If the path a subparser

has been taking fails to match the input it dies off and is not considered a valid

production anymore.

Listing 2.3 shows a grammar that has rules that are left-recursive. The rule

expr is in that form. Because of that form that kind of rule is unacceptable for

ANTLR3. ANTLR 4 can handle these rules by automatically rewriting the gram-

mar into a non-left-recursive and unambiguous grammar. The second reason this

grammar cannot be accepted by ANTLR 3 is that the stat rule has alternative

productions that have a common prefix, i.e. expr. This rule is undecidable for

ANTLR 3 and for LL(*) style grammars.[39]

Listing 2.3: An example of a left-recursive grammar from Parr et al.[39]

grammar Ex ;

// a c t i o n d e f i n e s ExPar se r member : enum is keyword

@members { boo l ean enum is keyword = t r u e ;}
s t a t : exp r ’= ’ exp r ’ ; ’ // p r oduc t i o n 1

| exp r ’ ; ’ // p r oduc t i o n 2

2.2. Model-Driven Development 15

;

e xp r : exp r ’∗ ’ e xp r

| exp r ’+ ’ exp r

| exp r ’ (’ e xp r ’) ’ // f (x)

| i d

;

i d : ID | { ! enum is keyword }? ’ enum ’ ;

ID : [A−Za−z]+ ; // match i d wi th upper , l owe r c a s e

WS : [\ t \ r \n]+ −> s k i p ; // i g n o r e wh i t e space

Before ANTLR4 generates the parser it will rewrite all direct left-recursions rules.

In theory the ALL(*) parsing strategy has a runtime complexity of O(n4) and

the GLL parsing strategy has a runtime complexity of O(n3). Nevertheless when

using this strategy for expressions in common languages, Parr et al. showed that

the ALL(*) parsers exhibit a linear behavior and complete the parsing process

faster than implementations of the GLL parsing strategies.[39]

2.2. Model-Driven Development

“The underlying motivation for MDD is to improve productivity [...]”.[10] This

sentence sums up what MDD is all about. MDD intends to automate as many

routine programming tasks as possible and ease the workload of software devel-

opers. It should be clear that the main advantage of the MDD method is visual

modeling. That means that everybody who has an understanding of the problem

domain is able to model software. The most challenging difficulty in creating a

complex software artifact is bridging the gap between the problem domain and

the implementation domain.[21] MDD is just a developing method and needs a

proper infrastructure which is called Model-Driven Architecture (MDA). Figure

2.8 shows the four-layer meta-model hierarchy of the UML specification. This

infrastructure contains four model levels and “each (except the top) [is] charac-

terized as an instance of the level above”[10]. The bottom level is call “M0” and

contains the data object the software is meant to manipulate. The level above

is called “M1” and holds the user model, which is actually the model of the user

data instance. The next level is called “M2”, and it incorporates the UML. This

level contains the model of the user model and is called meta-model, because it

is a model of a model. The Attribute class is the meta-class of the attribute in

16 2. Foundations

Class

〈〈instanceOf〉〉

Attribute Class Instance

Video : Video

aVideo

〈〈instanceOf〉〉〈〈instanceOf〉〉

classifier

+ title: String title = ”2001: A Space Odyssey”

〈〈instanceOf〉〉
〈〈instanceOf〉〉 〈〈instanceOf〉〉 〈〈instanceOf〉〉

〈〈snapshot〉〉

〈〈instanceOf〉〉

M3 (MOF)

M2 (UML)

M1 (User Model)

M0 (Run-time instances)

Figure 2.8.: An example of the four-layer meta-model hierarchy[28]

the Video class. The same can be said for all the other classification relation-

ships from level M1 to M2, i.e. to their respective meta-classes. The last level is

called “M3” and it contains the MOF. The MOF is the model specification for

level M2 and all model on M2 are instances of the Class model that resides in

the MOF.[10] “This venerable four-layer architecture has the advantage of easily

accommodating new modeling standards (for example, the Common Warehouse

Metamodel) as MOF instances at the M2 level.”[10] This four-layer architecture

supports MDD and can be characterized as the framework for MDD.[21]

2.3. Multi-Level Modeling

As several authors have pointed out, the classic hierarchical four-layer infrastruc-

ture is subject to limitations with regard to meta modeling.[8, 16] The biggest

limitation is the existence of only two meta-levels and one kind of instantiation

relationship specification.[16] In the meta modeling process it sometime proves

useful to use more than two meta-levels, because two levels might able to cover the

2.3. Multi-Level Modeling 17

”linguistic case, where an object is an instance of exactly one class”[16]. Nonethe-

less it is not enough to capture any ontological instantiation relationships within

the problem domain.[16] If a problem would naturally span over more than two

levels, because the problem domain is of such nature, the modeler would be forced

to fit the solution of that problem into just two levels. This makes models of such

fashion overly complex and crowded.[16]

The concept of multi-level or deep modeling is one approach to overcome the lim-

itations of the four-layer modeling infrastructure. This thesis will use the term

deep modeling when referring to this concept. All solutions for this dilemma

have one idea in common, which is “[increasing] the flexibility of the meta-

modeling architecture by allowing an arbitrary number of meta-levels.”[16] An-

other principle the concept of deep modeling is based on is the principle of dual

instantiation.[9, 16] Figure 2.9 displays the principle of dual instantiation. On

Figure 2.9.: The ontological metamodeling view[10]

the right-hand side in the blue box the linguistic meta-model is depicted. On the

top resides the Metaclass entity, which is the ontological type of the Class en-

tity. The Object entity is an ontological instance of the Class entity. This whole

level is called L0. The L1 level displays the logical dimension of the problem

18 2. Foundations

domain and can have an arbitrary amount of ontological levels. In this example,

the model has three ontological levels, which are called O0, O1 and O2. The

first ontological level contains the Breed entity, which is a linguistic instance of

Metaclass. The second level accommodates the Collie entity, which is classified

by two types. Its ontological type is the Breed entity and the linguistic type is

the Class entity. The third level consists of the Lassie entity which is also typed

by two different entities. The ontological type of Lassie is the Collie, and the

linguistic type is Object. Every element on the L1 represents elements in the real

world. Breed represent the idea of the idea of Lassie or the idea of a classification

for dogs, which is called breed. The Collie element represents the concrete type

of breed. Lassie represents the concrete type of Collie.

2.4. The Level-Agnostic Modeling Language

In order to create a tool to support deep modeling, Atkinson, Kennel and Groß[7]

developed the LML. As stated by Atkinson et. al[7], the goals of the LML are to

resemble UML. Undeterred by the weaknesses of UML, it is the de facto standard

for modeling software in a graphical fashion and ”the LML was designed to adhere

to the concrete syntax and modeling conventions of the UML [to the greatest

extent possible].”[7] The second goal for the LML was to be level-agnostic and

to support the Orthogonal Classification Architecture (OCA) which builds the

framework for the deep modeling paradigm. The third goal of the LML is to

support as many mainstream modeling paradigms as possible. The last goal is

to provide support for a reasoning service, which UML lacks.

Figure 2.9 is an example to demonstrate the structure of the OCA. It consists

of two classification dimensions, the ontological and linguistic dimension, which

are orthogonal to each other. The instanceOf classification relationship can cross

level boundaries.[6] The LML resides at level L1 in the aforementioned figure

and every element or entity of that level is an instance of one of the entities

shown in level L0, without regard to the ontological classification. The L0 level

contains the PLM which is the linguistic meta-model for the LML. L2 is designed

to contain elements of the real world.

From an ontological standpoint, the element in level O1 contains an object that

is an instance of Bred which is simultaneously a type for the Lassie entity. Due

2.5. Object Constraint Language 19

to the fact that entities in deep modeling can both be an object, i.e., an instance

of something, and a type for other objects in the lower levels, theses entities are

called Clabject, a combination of Class and Object.[6]

2.5. Object Constraint Language

This chapter introduces the Object Constraint Language which is closely linked

to this thesis. The OCL is a vital part of the implementation of the application

presented in this thesis and it is important to grasp the basic ideas of what OCL

is.

Kleppe and Warmer[44] characterize OCL as follows:

• OCL is a modeling language which is an add-on to UML

• OCL is a query and a constraint language

• OCL is a declarative language

The consequences of these characteristics are that OCL can never be used as a

stand-alone modeling language. It has to be applied to a model of some kind.

In the context of this thesis, OCL statements are part of a deep model. Every

OCL expression is based on a class specification in a model.[44] A constraint,

with regard to Kleppe and Warmer[44], is a restriction on one or more values of

a model or part of a model. OCL is used to add information and preciseness to a

model, which UML diagrams may not always be able to express. Every constraint

defined on that model has to be evaluated to true, i.e., if the defined constraint

is not a def or body constraint.

Since UML2, the viewpoint of the OMG has been changing towards a combined

query and constraint language. With OCL it is also possible to query and ref-

erence models. Kanter[33] implemented a dialect which used the semantics of

OCL but only queried models instead of saving different types of constraints to

a model. Due to the nature of UML and the fact that these models cannot be

executed, OCL is reckoned a declarative language. It describes what has to be

done and not how.[44]. The modeler is able to express procedures of the model if

the model is eventually translated, implemented and then executed. The modeler

who writes OCL statements in a UML model just expresses rules in the model-

ing realm and declares these rules on an abstract level. Kleppe and Warmer[44]

20 2. Foundations

also state that using OCL has no side effects on the UML model. Again, due to

the fact that UML models do not possess the ability to be executed out of box,

this statement is true. How these properties can be transferred is subject to the

chapter 6.

2.5.1. The OCL Meta-Model

OCL is a typed language. Every expression is either typed explicitly or the type

is derived statically.[27] Figure 2.10 shows the OCL types specification. All the

instances of these meta-model classes are types themselves and are not instances

of the domain they represent.[27]

The OCL specification divides the whole functionality up into three packages.

The first package is called BasicOCL and is exposing a very limited amount of

functionality of OCL. The second package is called EssientialOCL and is exposing

the minimum required amount of functionality to work with EMOF. It is also

built using the BasicOCL package, and there is no structural difference between

those two. These combined packages are basically a subset of OCL.[27] The third

package is called CompleteOCL and represents the OCL standard library.

Figure 2.10 shows the type meta-model for the OCL 2.4 specification. The

types in the white boxes are imported from the Essential MOF (EMOF) pack-

age, and the yellow boxes represent the types that are specifically defined for

EssientialOCL.[27] The abstract syntax definition of OCL is itself divided into

several packages. The Types and the Expression package are described in the

following.

The Types packages describes the type system of OCL. It shows the predefined

OCL types and ”which types are deduced from the UML models.”[27] In OCL

there are four different collection types defined. These are OrderedSet, Set, Bag

and Sequence. Every collection type in OCL conforms to the MOF Collection

type as shown in table 2.1.

Figure 2.11 shows the core of the OCL expression package. This package de-

scribes the structure of OCL expressions. Every OclExpression has a type, hence

every element that inherits from OclExpression has a type. Every expression can

be statically determined by the application through analyzing the expression in

the given context.[27] The OclExpression is the abstract superclass for all other

2.5. Object Constraint Language 21

Classifier

VoidType Class AnyType MessageType

DataType TemplateParameterType

+ specification: String

InvalidType

CollectionType PrimitiveType TupleType

Signal

Operation

OrderedSetType SequenceType BagType SetType

+ referredSignal

*
0..1

*

0..1

+ referredOperation

*

+ elementType

1

Figure 2.10.: Abstract Syntax Kernel Metamodel for OCL Types as specified
in[27]

Type Conforms to Condition
Set(T1) Collection(T2) if T1 conforms to T2
Bag(T1) Collection(T2) if T1 conforms to T2
OrderedSet(T1) Collection(T2) if T1 conforms to T2
Sequence(T1) Collection(T2) if T1 conforms to T2

Table 2.1.: Collection type conformance to the MOF; adapted from the OCL 2.4
specification[27]

expression types in the meta-model. Every evaluation of an expression results in

a value. Expressions with a boolean result value can be used as constraints, and

expressions with any type can be used to formulate queries or to initialize and

derive attributes.[27]

2.5.2. Collection and Loop Operations

There are many operations that can be applied on collections. This part of the

thesis shows those operations and gives an introduction on their semantics. An X

implies that the operation at hand is defined for that particular collection type.

22 2. Foundations

Figure 2.11.: The basic structure of the abstract syntax kernel meta-model for
expressions as specified in[27]

Operation Set OrderedSet Bag Sequence

= X X X X

<> X X X X

- X X - -

append(object) - X - X

asBag() X X X X

asOrderedSet() X X X X

asSequence() X X X X

asSet() X X X X

at(index) - X - X

excluding(object) X X X X

including(object) X X X X

first() - X - X

flatten() X X X X

indexOf(object) - X - X

insertAt(index, object) - X - X

intersection(collection) X - X -

last() - X - X

prepend(object) - X - X

subOrderedSet(lower, upper) - X - -

2.5. Object Constraint Language 23

subSequence(lower, upper) - - - X

symmetricDifference(collection) X - - -

union(collection) X X X X

Table 2.2.: Collection Operations and their semantics

As shown in table 2.2, there are some operations that are defined for a certain type

of collection or for a set of collection types. There are, however, some operations

that are defined for any collection type. These operations are referenced in table

2.3.

Operation Description

count(object) How often does the object occur in the collection

excludes(object) True if the object occurs not an element in the collection

excludesAll(collection) True if no element of the passed collection occurs in the

actual collection

includes(object) True if the object occurs in the collection

includesAll(collection) True if every element of the passed collection occurs in

the actual collection

isEmpty() True if the collection does not contain any element

notEmpty() True if the collection contains at least one element

size() Amount of elements in the collection

sum() The sum of all elements of the collection. Each element

has to be from a type that supports addition (Real, In-

teger)

Table 2.3.: Collection Operations for any collection type

Loop operations in OCL are different from all the operations shown in 2.2 and

2.3. Such operations iterate over an entire collection and compare each element

24 2. Foundations

or the value of an attribute of each element with the given expression, and either

return a new collection, which is a subset of the source collection, or return a

boolean value. These operations are displayed in table 2.4.

Operation Description

any(expr) returns a random element of the source collection if for

any element the expression holds

collect(expr) returns a new collection of objects, which are usually

values of attributes of each element

collectNested(expr) returns a collection of collections which yield the evalu-

ation of the expression for each element

exists(expr) returns true if there exists at least one element in the

source collection for which the expression holds

forAll(expr) returns true if the expression holds for every element in

the source collection

isUnique(expr) returns true if the evaluated value of the expression is

different for each element in the source collection

iterate(...) iterated over every element in the source collection

one(expr) returns true if there is exactly one element in the source

collection for which the expression holds

reject(expr) returns a subset of the source collection without any

element for which the expression holds

select(expr) returns a subset of the source collection with any ele-

ment for which the expression holds

sortedBy(expr) returns a new collection where all elements of the source

collection are sorted by the expression

Table 2.4.: Loop Operations and their semantics

Every loop operation in OCL can be reduced or rewritten as an iterate operation.

An example of an iterate operation can be seen in listing 2.4. The element variable

is the iterator variable, i.e., it changes with every iteration. The result variable

is the variable which will accumulate the results of each iteration. The body of

2.5. Object Constraint Language 25

this operation can be found after the “|” symbol, which is the expression that

will produce the result of each iteration.

Listing 2.4: Iterate operation OCL expression

c o l l e c t i o n −> i t e r a t e (e l ement : Type1 ; r e s u l t : Type2 = <e x p r e s s i o n>

| <e x p r e s s i o n−with−e lement−p lus−r e s u l t >)

This is example shows the abstract syntax definition of an iterator operation.

Listing 2.5 shows the concrete application of an iterate statement.

Listing 2.5: Concrete example of the iterate operation

Set {1 ,2 ,3} −> i t e r a t e (i : Integer ; sum : Integer = 0 | sum + i)

This statement iterates over the set with three elements, which are from the type

Integer, and adds them up to a sum. The result of this operation is six. The

listing 2.5 can actually serve as the sum() implementation from table 2.3.

26 2. Foundations

3. DeepOCL Revisited

This chapter discusses the modifications made to the OCL grammar specification

in order to build a valid grammar that creates a lexer-parser pair which accepts

expressions made in the DeepOCL dialect. The complete grammar, written in

ANTLR4, can be found in appendix A.

The DeepOCL dialect is applied on deep models, hence the semantic definitions

of OCL have to be modified to fit the deep modeling context. But not only the

semantic definitions have to modified, but several syntactic specification have to

be altered to support the full functionality of a deep modeling environment.

3.1. OCL Modifications for Deep Models

As stated in chapter 2.3, the deep modeling environment provides a linguistic and

an ontological dimension. The consequence for a deep constraint language is that

constraints are definable for both dimension. For example, a user can define a

constraint that expresses the need for at least three levels in the deep model. The

default context for the constraint is the type of the context, i.e., if the context

is the Clabject meta class, the context lies in the linguistic dimension. If on the

other hand the context is an instance of the Clabject meta class, or any other

meta class for that matter, the context lies in the ontological dimension.

If, for some reason, a switch of the context dimension is needed, the user can

wrap the navigation expression in ‘#’ symbols. In the previous implementation

of DeepOCL, as provided by Kanter[33], the proposed way of switching the di-

mension context is displayed in listing 3.1.

Listing 3.1: Linguistic Navigation as proposed by Kantner

context Spor t sCa r

s e l f . l . g e t A l l A t t r i b u t e s ()−>any (name=”a c c e l e r a t i o n ”) . v a l u e

27

28 3. DeepOCL Revisited

This rather complicated way of escaping the keyword l with an underscore on

either side is due the fact that the implementation from Kantner was based on the

EclipseOCL implementation. This dependency and the fact that the grammar is

not changeable without knowing the exact ramifications of said change prohibited

Kantner from defining his own syntax definitions for a DeepOCL dialect. This

syntax construct was the only way to add the feature of linguistic navigation.

Although this syntax definition seems simple enough to prevent ambiguities, it

leaves some questions unanswered. Is it possible to combine two linguistic navi-

gations? If yes, how? And if we switch to the linguistic dimension by invoking l ,

is it possible to switch back to the ontological dimension in the same expression?

Examining listing 3.1 we find that two conceivable outcomes are possible. The

first one is that after one navigation in the linguistic context the context switches

back to the “normal” ontological context. The second one is that once the lin-

guistic navigation is triggered, the dimension stays the same until the end of the

OCL statement.

To resolve these possible ambiguities the following will propose a new syntax

definition for navigating the linguistic dimension in the deep model.

Listing 3.2: A new proposal for linguistic navigation in a deep model

context Spor t sCa r

s e l f .# g e t A l l A t t r i b u t e s ()# −> any (a | a.#getName ()# = ” a c c e l e r a t i o n ”) .#

getVa lue ()#

This thesis proposes another way of switching to the linguistic dimension of a

deep-model element. The ‘#’ symbols enclose the linguistic navigation statement.

As shown in listing 3.2, the user knows exactly where the linguistic navigation

begins and where it ends. When the collection iteration operation any is querying

for the name of each attribute, another switch into the linguistic dimension is

necessary. The listing 3.1 seems to stay in the linguistic dimension for the whole

OCL expression, because in front of name there is no explicit operator that would

perform the dimension switch.

The DeepOCL dialect displayed in this thesis performs just one dimension switch

at the time and immediately switches back to the ontological dimension after the

linguistic navigation has been resolved. That means if the user wants navigate

in the linguistic context twice each expression has to be enclosed by ‘#’. Listing

3.1. OCL Modifications for Deep Models 29

3.3 shows an example of such expressions. After the linguistic navigation ends

the user can navigate and perform collection operations again on the ontological

level. This syntax definition of a linguistic navigation is precise and leaves no

room for ambiguities.

Listing 3.3: A new proposal of linguistic navigation in a deep-model

context Manager

inv s a l a r y : s e l f .# ge tD i r e c t Sup e r t y p e ()#.#getSubtype s ()# −> r e j e c t (

s e l f) −> f o r A l l (m|m. s a l a r y < s e l f . s a l a r y)

Emloyee

Manager

Clerk

Receptionists

salary: Integer

salary = 80000

salary = 30000

salary = 25000

Consultant

salary = 90000

Figure 3.1.: An example for linguistic navigations

Figure 3.1 displays the model which the OCL expression from listing 3.3 is applied

on. The expression will not hold until the Manager is the highest-paid employee.

The context is Manager and the expression navigates to the direct super type of

itself, which is the abstract class Employee from which Manager inherits. After

the first navigation, the linguistic dimension context is left and the user can

decide to either continue navigating in the ontological dimension or add another

linguistic navigation.

The second navigation of listing 3.3 is also a linguistic one and yields a collection

of all sub-types of Employee, which include Manager, Clerk, Receptionist and

Consultant. This collection is the input for the reject operation with the pa-

rameter self, which means that every element of the collection is collected and

returned in a new collection except the Manager class. Then this collection is

the input for the forAll collection operation, which returns true if the Manager

is the highest-paid employee and false if any other Employee has the same or a

30 3. DeepOCL Revisited

higher salary value. If in fact the forAll operation returns false, then the in-

variant constraint evaluates to false and the model is, with regard to the defined

constraint in listing 3.3, not valid.

3.2. Unambiguous Multi-Level Navigation

The ontological navigation is also different from the OCL standard. In the normal

OCL implementation there is no need to navigate on and to different levels,

because in the UML context the user models only in one level. Kantner[33] also

proposed a way to navigate on different ontological levels. At the moment it is

only possible to navigate to higher levels. If the context resides at the third level,

the navigation allows only to reach levels one and two. Listing 3.4 shows how

this type of navigation was realized in the previous DeepOCL implementation.

Listing 3.4: Ontological navigation as proposed by Kantner

context SUV

inv whee l s : s e l f . CarType . whee l s

Again the navigation target is decorated with underscores. Here there is no

misunderstanding where the ontological navigation begins and when it ends. Once

the navigation reached the model in the upper levels the user uses the navigation

from the upper levels, in this example the wheels navigation. The result of this

kind of navigation is a set that contains every entity which can be classified by

Wheel but is connected to SUV by the wheels connection.

Listing 3.5: A new proposal for ontological navigation

context SUV

inv SUVWheels : s e l f . $CarType$. whee l s

The new implementation uses ‘$’ symbols to enclose the ontological navigation.

3.3. Deep (Re-)Classification Operations

To check the classification relationship of models OCL, provides two operations,

oclIsKindOf(type) and oclIsTypeOf(type), and to retype or cast a model to

another type, OCL provides the oclAsType(type) operation. The operations

3.3. Deep (Re-)Classification Operations 31

can be invoked on a source object and is then checked against the type of the

passed argument. The oclIsTypeOf(type) operation evaluates to true only if

the source object’s type is identical to the argument. The oclIsKindOf(type)

operation evaluates to true if either the source object’s type is identical to the

argument’s type or identical to any of the subtypes of the argument.

To illustrate the semantics of these operations in a normal not-multi-level mod-

eling context, figure 3.2 shows a model in which two classes, Earning and Burn-

ing, inherit from the Transaction class.[44] Listing 3.6 shows valid invariant con-

Transaction

Earning Burning

Figure 3.2.: An example model for the oclIsKindOf() and oclIsTypeOf()

operations

straints. It be seen that the rules, that are described above, are holding. The first

invariant constraint evaluates to true because the Burning class inherits from the

Transaction class, i.e., Burning is identical to one of the subtypes of Transac-

tion. The second invariant constraint evaluates to false because Burning is not

identical to Transaction.

Listing 3.6: oclIsKindOf and oclIsTypeOf invariant constraints

context Burn ing

inv : s e l f . o c l I sK i n dO f (T ran s a c t i on) = t r u e

inv : s e l f . o c l I sTypeOf (T ran s a c t i on) = f a l s e

inv : s e l f . o c l I sTypeOf (Burn ing) = t r u e

inv : s e l f . o c l I sK i n dO f (Burn ing) = t r u e

inv : s e l f . o c l I sTypeOf (Ea rn ing) = f a l s e

inv : s e l f . o c l I sK i n dO f (Ea rn ing) = f a l s e

Now the DeepOCL dialect has to evaluate OCL constraints in the deep model-

ing environment and the dual facets of Clabjects, which are described in chapter

2.3, prevent the proper use of those operations. Kantner tried to fit the oper-

ations into the deep modeling environment and proposed a semantic definition

that allows these operations to work in a two-level window of the whole model.

Figure 3.3 shows a two-level window of a model which illustrates the usage of

32 3. DeepOCL Revisited

the oclIsKindOf and oclIsTypeOf operation. The red dotted arrows represent

an evaluation to false and the green arrows indicate an evaluation to true. This

CarType

SportsCar1: CarType SUV1: CarType

MyPorsche0: SportsCar

O0

O1
o
c
lI
sK

in
d
O
f

o
c
lI
sT

y
p
e
O
f

o
c
lI
sK

in
d
O
f

o
c
lI
sT

y
p
e
O
f

o
c
lI
sT

y
p
e
O
f

o
c
lI
sK

in
d
O
f

Figure 3.3.: An example model for the oclIsKindOf() and oclIsTypeOf() op-
erations in a deep modeling environment as proposed by Kantner[33]

thesis proposes a new way to handle both operations. Because the multi-level

modeling paradigm does not have the classical distinction between oclIsKindOf

and oclIsTypeOf, these operations have to be either redefined with regard to

their semantic definition or they have to be substituted with other operations

which provide a similar functionality. There are many linguistic operations that

can be used to query the relationship from one Clabject to another. The approach

of this thesis is to limit the scope of the arguments to the elements of the lin-

guistic dimension. Thus the arguments have to be of type Clabject, DeepModel,

Feature or their respective subtypes.

To substitute the missing functionality, the following operations and their seman-

tic definitions are available which are displayed in the table on the right-hand side

of figure 3.4. The aforementioned table is supplemented by an example model (a)

to illustrate the semantic definitions (b) of the depicted operations.[24] In a deep

modeling environment the classification relationship of Clabjects can be to some

extent translated to the oclIsKindOf operation. The operation that corresponds

to the oclIsKindOf operation is the isDeepInstanceOf operation that iterates

over the whole classification hierarchy and checks if the source object’s type is

identical with one the iteration elements. The instanceOf operation just checks

the direct type, i.e., Steve is of type ManagementEmployee.

To recap this section, oclIsKindOf and oclIsTypeOf are only allowed to accept

arguments from the linguistic meta types of the meta-model, i.e., Clabject, Deep-

3.3. Deep (Re-)Classification Operations 33

O1

O0

O2

Steve0

name0=Steve
expertise0=Management
salary0=120k

EmployeeType0

name2

expertise2

salary2

ManagementEmployeeType2

ManagementEmployee1

name1=Management Employee
expertise1=Management
salary1=95k

context Steve isInstanceOf(...)
ManagementEmployee true
ManagementEmployeeType false
EmployeeType false

context Steve isDeepInstanceOf(...)
ManagementEmployee true
ManagementEmployeeType true
EmployeeType true

context Steve isDirectInstanceOf(...)
ManagementEmployee true
ManagementEmployeeType false
EmployeeType false

context Steve isDeepDirectInstanceOf(...)
ManagementEmployee true
ManagementEmployeeType true
EmployeeType false

context Steve isIndirectInstanceOf(...)
ManagementEmployee false
ManagementEmployeeType false
EmployeeType false

context Steve isDeepIndirectInstanceOf(...)
ManagementEmployee false
ManagementEmployeeType false
EmployeeType true

(a) (b)

Figure 3.4.: Classification checking methods on the example of Steve.

Model, Level and Feature and their subtypes. Kantner redefined the semantics of

both OCL operations. This thesis also changed the semantic definitions of both

operations, but instead of attempting to fit them into the multi-level modeling

paradigm they are limited in their functionality. To substitute these operations

the framework provides a precise set of operations for comparing types in a deep

modeling environment.

The oclAsType(type) operation is also only valid for types from the linguistic

dimension. When using this operation in the ontological dimension, it means

that source element has to be cast to an element of a classification relationship

from an upper level. For this scenario the level cast operation was defined and is

indicated by ‘$’ symbols.

The OCL specification defines a allInstances() operation that is executable on

every element of a model and returns a set of all instances of the element and all

its subtypes. In order to apply this operation to a deep-modeling environment the

34 3. DeepOCL Revisited

scope of this operation might not be sufficient. In a deep model the classification

of instances can be stretched over multiple levels. The operation that returns all

deep instances of a deep model is called allDeepInstances() and returns the whole

classification tree of the element, that can extend over multiple levels. It is also

possible to execute the allInstances() operation but it returns only the direct

ontological instances of the element.

3.4. Deep Constraints

When navigating ontologically, the user of the DeepOCL dialect has to be aware

that when the definition and the execution context of the constraint is not the

same, then the lower bound cardinality of the connection ends function as a value

of instances for the respective Clabject. Figure 3.5 shows the model which the

following OCL expressions are applied on.

Listing 3.7: ontological navigation example

context JoesCar

inv whee l s : s e l f . Car . whee l −> i n c l u d e s A l l (Bag{ f r o n t L e f t , f r o n tR i gh t

, r e a r L e f t , r e a rR i g h t })

Listing 3.7 shows the normal ontological navigation which elevates the execution

context of the constraint to the level where Car is located. Due to the fact that

all cardinalities of the connections from JoesCar to each wheel on the level O2

have the value 1, the wheel navigation yields all the instances of Wheel which are

connected to JoesCar at level O2. The includesAll collection operation checks

if all instances of Wheel that are connected to the Car instance are actually the

result of said navigation.

Anther example is shown in listing 3.8 and shows the same principle of navigation

but serves to clarify the consequences of the ontological navigation in combination

with cardinality definitions on connections in the model.

Listing 3.8: Ontological navigation with a higher cardinality higher than one

context Drag s t e r

inv t e s t : s e l f . Car . whee l −> i n c l u d e s A l l (Bag{SmallWheel , SmallWheel

, BroadWheel , BroadWheel })

3.4. Deep Constraints 35

Car Wheel QualityInfo

quality: Integer

1 1 14

wheel qualityO0

O1

Dragster: Car

BroadWheel: Wheel

SmallWheel: Wheel

rear

2

2

front

SmallInfo: QualityInfo
smallInfo

1
BroadInfo: QualityInfo

1 broadInfo

O2

JoesCar: Dragster

frontLeft: SmallWheel frontRight: SmallWheel

rearRight: BroadWheelrearLeft: BroadWheel

frontLeft frontRight

rearLeft rearRight

1 1

1 1

x: SmallInfo

quality = 30

Figure 3.5.: An example for ontological navigation where the definition and exe-
cution context are not the same

Instead of returning a Bag that just contains two elements, one SmallWheel and

one BroadWheel, the navigation returns a Bag with four items, which is displayed

in the includesAll collection operation of listing 3.8. Due to the fact that the lower

bound of the cardinality is two for the connection from Dragster to SmallWheel

and to BroadWheel, the cardinality of said connections behaves like an indicator of

how many instances are concealed in it. The model is correct if every instance of

Dragster has exactly two SmallWheel instances and two instances ofBroadWheel

connected to it.

If navigating in a ontological level above the context-level, the rule is that the

navigation returns a Bag with as many elements in it as high as the lower bound

of the cardinality of the navigation.

If navigating at the same level as the definition context of the constraint, without

36 3. DeepOCL Revisited

using the ontological cast navigation, and if the lower bound of the cardinality of

that navigation is 1, then one atomic element is returned.

Listing 3.9: Ontological navigation with cardinality equal to one

context JoesCar

s e l f . f r o n t L e f t −− f r o n t L e f t

Listing 3.9 serves to display the result of the navigation from JoesCar to frontLeft.

The cardinality of the displayed navigation in listing 3.9 takes the value 1, and

as the result of this navigation the frontLeft entity is returned without being

enclosed in a collection.

4. Constraint Definition Meta-Model

To support constraints in a deep modeling workbench they either have to be part

of the meta-model definition or they have to be stored and loaded in another

format beside the models. This thesis opted to use the first option. By extending

the PLM meta-model with constraints, storing them is done automatically by

the application if they are put properly in the containing list of their respective

element. This chapter will show how the constraints are supported in Melanee

and how the application will save constraints in a partly change agnostic fashion.

4.1. Constraint Meta-Model

The first and most obvious change to Kantner’s[33] implementation is the per-

sistence of constraints in the model. In his implementation constraints were not

saved in any form.

Figure 4.1 shows the extension point in the PLM meta-model to support con-

straints. The abstract class AbstractConstraint has a name attribute as every

constraint has to have a name for the purpose of identification. The class is

connected to the abstract class Element in a composition relationship, i.e., every

element of type AbstractConstraints and its subtypes are contained in that rela-

tionship. The Element class is the most generic class in this meta-model and all

relevant classes, like Clabject, DeepModel, Level, Attribute and Method, inherit

ultimately from that class. That means every instance of any of those classes, as

displayed in the diagram, can contain an arbitrary number constraints.

In figure 4.2 the constraint meta-model is displayed in detail. This is the meta-

model that extends the PLM meta-model with constraint definition. A constraint

contains zero or one Level class, where the startLevel and endLevel are defined

as integer values. Some constraint types do not need a level specification, like

definition, body, pre and post constraints, because a method is only executed once

37

38 4. Constraint Definition Meta-Model

Figure 4.1.: PLM meta model with constraints

in the current navigation context. If the constraint definition is not equal to the

current navigation context, the search algorithm searches for next most concrete

constraint definition for that method. Every other constraint has to specify a

level range for which they are to be evaluated. A constraint also contains an

arbitrary amount of expressions, which is split up into Text classes and Pointer

classes. The Expression class is abstract, i.e., the class cannot be instantiated,

only the subclasses, Text and Pointer are instantiatable. The classes that inherit

from Constraint reflect the fact that there are seven different constraint types in

the OCL specification. The user can define a severity and a message with every

constraint. If a constraint evaluates to false or is not valid, this information will

be displayed to the user. The Severity enumeration is the type for the severity

attribute, and the message attribute is from type EString.

4.2. Saving Constraints 39

Figure 4.2.: The constraint meta model

4.2. Saving Constraints

Figure 4.3 shows the result of the algorithm that is responsible for saving a

constraint. On the top right side the OCL expression that is to be saved is shown.

Under that expression the Person model is displayed, which is the context the

constraint is defined on. This model contains an Attribute with the name “age”.

This attribute is referenced in the OCL expression after the self expression. The

algorithm splits up the expression string after every dot (“.”) because it indicates

an object navigation. The result of that split operation is an array of substrings

of that OCL expression. Then the algorithm iterates over every substring and

checks for every substring if it is contained in the defined connections, attributes,

methods or is a reference to another Clabject that is contained in the deep model.

If in fact the algorithm finds a substring that can be matched to any of these

aforementioned types, the algorithm creates an instance of the Pointer class. The

only attribute of this class is called pointer and is of type PLM::Element which

allows this class to save the reference to the found element in that attribute. If the

algorithm cannot identify the current substring as a reference pointer it creates

a Text class and saves the substring as a normal string. The advantage of this

saving algorithm is that the user, to stick with this example, can rename the age

attribute without having to rename the reference in the OCL expression as well.

After renaming the attribute the reference is correctly resolved by the pointer

attribute, which has an operation getName() available to retrieve the current

40 4. Constraint Definition Meta-Model

Figure 4.3.: The saving algorithm result with reference pointers to identifiable
elements

name of the aforementioned types. This saves the user time when refactoring. It

also ensures a higher probability of the OCL expression being correct, because

if it is identified as a Pointer it ensures that this element is in navigable. Once

identified as a pointer reference it reacts to every name change.

5. Executing DeepOCL

This chapter explains what the data flow looks like when an OCL expression is

evaluated. Besides it explains when a constraint evaluation is triggered for the

particular constraint types.

5.1. Data Flow

In order for any OCL expression to be evaluated, the expression has to be parsed

and then interpreted. Figure 5.1 shows a high-level overview of the data flow

in the part of the application that is responsible for parsing and interpreting

these expressions. The process begins by retrieving the constraint and resolving

Figure 5.1.: An illustration of the data flow in the DeepOCL evaluation
application

the expression from the constraint. The arrow labeled “1” indicates this first

step, and the constraint string serves as an input for the OCL2Service, which im-

plements the IConstraintLanguageService interface. When interpreting invariant

41

42 5. Executing DeepOCL

constraints, the method takes the whole deep model as a parameter and iter-

ates over the whole content of each level to find constraints from type invariant.

The step, indicated by the arrow labeled “2”, prepares the statement for parsing.

The application retrieves the text from the constraint and passes it on to a new

instance of the DeepOCL2Lexer. The lexer creates a token stream which is the de-

sired input format for a new instance of the DeepOCL2Parser. This parser creates

a hierarchical data structure that can be transformed into the typical parse tree

for this dialect. The fourth step is to instantiate the DeepOCL2RuleVisitor. As a

parameter this class takes the element that is to be evaluated with the constraint

for an input. With the method visit the interpretation part of the process starts

and as an argument this method takes the parse tree as an argument. It then vis-

its every rule from top to bottom and with help of the DeepOCL2ClabjectWrapper

the application performs navigation, query and comparing operations, which is

indicated by the number 5. The last step in this process is that the RuleVisitor

returns the result of the constraint expression that was applied to the current

element. When an invariant constraint was evaluated to false or something went

wrong during the evaluation process the OCL2Service creates resource marker

to call attention to the user that the model is not valid in terms of the defined

constraints.

5.2. Implicit/Explicit Causes of Triggering Constraint

Evaluation

There are seven different constraint types. These types are invariant, derive, init,

body, definition, pre and post constraints. Each type has a different scope in

regard to the evaluation context. The following shows how and when each type

has to be evaluated.

Invariant Constraint An invariant can only be defined for Clabjects and not

for attributes or methods. It has to be a valid Boolean expression which has

to be evaluated to true. In the DeepOCL dialect invariant constraint must also

hold for all instances that exist in the level range specification. This type of

constraint is not evaluated every time the model changes. The user has to trigger

the evaluation, by pressing a button, of every invariant constraint that is defined

5.2. Implicit/Explicit Causes of Triggering Constraint Evaluation 43

in the deep model. If an invariant constraint evaluates to false the respective

Clabject is marked and the user will notice the violated constraint. It is also

possible to define constraints for the Deep Model and the containing Levels.

It is possible to define an arbitrary amount of invariant constraints on one Clab-

ject.

Init Constraint The init constraint can only be defined on Attributes of a

Clabject. When a new instance of a Clabject on which an init constraint is defined,

is created in the deep model the DeepOCL application will be noticed by the

underlying framwork to evaluate the defined constraint and initialize the attribute

with the result of the computation. The execution is implicitly triggered by the

user who is creating a new instance of an entity on which a init constraint is

defined.

It is only possible to define one init constraint on one Attribute.

Pre/Post Constraint Both pre- and post-constraints are only applicable to

methods that are defined on a Clabject. The pre-type constraint checks the state

of the model before the method is executed. It has to be evaluated to true before

the method can be executed. If this type of constraint is evaluated to false, the

execution of said method is canceled.

The post-constraint type checks the state of the model after the method execution

and has to be evaluated to true for a successful method execution. If it evaluates

to false, the changes the execution has caused have to be rolled back. This feature

has not been implemented yet but a implementation proposal will be discussed

in chapter 7.

Both constraint types are also implicitly executed by an OCL expression which

calls a defined method on a Clabject for which either a pre- or post-constraint

exists.

For these constraint types it is possible to define an arbitrary amount on one

Method entity.

Derive Constraint The derive type constraint is only applicable to Attributes.

One Attribute can contain only one derive constraint. The evaluation of a derive

44 5. Executing DeepOCL

constraints is triggered if the model changes in any way. Even totally unrelated

changes with regard to the computation result of this constraint type will trigger

an evaluation. When the application receives the notice that the model changes in

some way the whole deep-model is searches for this constraint type. This obvious

performance issues will be discussed in chapter 7.

The user triggers the evaluation implicitly by changing something in the deep-

model.

Definition Constraint The definition type constraint defines a whole opera-

tion on a Clabject. Compared to the body constraint type, it also defines the

signature of the method, i.e., how many and what kind of parameters are passed

on and what the return type of the operation is. This constraint type is evaluated

when the Method is called by any other OCL expression evaluation.

There must be only one definition of a Method, but the definition constraint type

is defined on the Clabject itself. The user can define multiple operations on a

Clabject. Hence an arbitrary amount of definition constraints can be defined.

Body Constraint The last constraint type defines the body of a Method. Like

the previous constraint type this type is also evaluated when the operation is

called by another part of an OCL expression.

For one Method only one such constraint ought to be used on it.

All but one DeepOCL constraints are implicitly evaluated,the only exception is

the invariant constraint. When a new Clabject is instantiated the derive and init

constraints are triggered to compute their respective results. Pre-, post-, body-

and definition constraints are trigger when other OCL expression accessing a

Method on which those constraint types are defined. This functionality had to be

integrated into the Melanee application. The aforementioned only exception, the

invariant constraint type, can only be triggered by the user. When we consider

that the only plug-in that can trigger any operation execution in a Deep-Model is

the DeepOCL dialect then the invariant constraint triggers every other constraint

execution, with the exception of the init and derive constraint. The user is only

able to explicitly trigger the execution of invariant constraints which can contain

a reference to a body or definition constraint that is then triggered and evaluated.

5.3. Nested Collection Operations 45

5.3. Nested Collection Operations

In OCL it is possible to write nested collection operation expressions, like the

expression shown in listing 5.1. This expression iterates over a collection and then

performs a navigation, which results in another collection, which is then iterated

over. In other words, this statement is an iteration over another iteration.

Every collection iteration operation creates a new instance of the DeepOCLClab-

jectWrapper is created for every element of the collection that is iterated over.

This class needs an argument for the constructor which defines the current con-

text, which is the current iteration element.

In the first select expression, the algorithm creates a new instance for every cus-

tomer entity in the model. In every new instance, the navigation operation to

every connected transaction is performed. Afterwards the second select expres-

sion creates new instances for every Transaction entity in order to perform the

comparing operation.

Listing 5.1: Nested collection operation

context Company

inv VIPCustomer : s e l f . customer −> s e l e c t (c | c . t r a n s a c t i o n −> s e l e c t (

v a l u e > 100)) −> s i z e ()>2

5.4. Constraint Search Algorithm

The algorithm that finds the constraints that are actually applicable to a model

element is based on the aspect aware visualizer search algorithm by Gerbig[24].

Listing 5.2 shows the core functionality of the algorithm.

Listing 5.2: Constraint Search Algorithm

pr i va te L i s t<Abs t r a c tCon s t r a i n t> s e a r c h (C l a b j e c t c , A t t r i b u t e a ,

L i s t<Clas s> c on s t r a i n tTyp e s) {
L i s t<Abs t r a c tCon s t r a i n t> c o n s t r a i n t s = new Ar r a yL i s t <>() ;

L i n k edL i s t<C l ab j e c t> superTypesToSearch = new L i n k edL i s t<

C l ab j e c t >() ;

L i n k edL i s t<C l ab j e c t> typesToSearch = new L i n k edL i s t<C l ab j e c t

>() ;

typesToSearch . add (c) ;

46 5. Executing DeepOCL

C l a b j e c t c u r r e n t C l a b j e c t = nu l l ;

C l a b j e c t cu r r en tType = nu l l ;

// Go through the type h i e r a r c h y

whi le ((cu r r en tType = typesToSearch . p o l l ()) != nu l l) {
// We need to have the type o f the c u r r e n t type at

the b eg i nn i n g

typesToSearch . addA l l (cu r r en tType . g e tD i r e c tType s ()) ;

superTypesToSearch = new L i n k edL i s t<C l ab j e c t >(

cu r r en tType . g e tD i r e c t S up e r t y p e s ()) ;

superTypesToSearch . add (0 , cu r r en tType) ;

// Go through the i n h e r i t a n c e h i e r a r c h y

whi le ((c u r r e n t C l a b j e c t = superTypesToSearch . p o l l ())

!= nu l l) {
i f (a == nu l l) {

c o n s t r a i n t s . addA l l (

ge tCons t ra in tF romElement (

c u r r e n tC l a b j e c t , c ,

c o n s t r a i n tTyp e s)) ;

} e l s e {
c o n s t r a i n t s . addA l l (

ge tCons t ra in tF romElement (

c u r r e n tC l a b j e c t , a ,

c o n s t r a i n tTyp e s)) ;

}
superTypesToSearch . addA l l (c u r r e n t C l a b j e c t .

g e tD i r e c t S up e r t y p e s ()) ;

typesToSearch . addA l l (c u r r e n t C l a b j e c t .

g e tD i r e c tType s ()) ;

}
}
return c o n s t r a i n t s ;

}

The search method has three parameters defined. The first parameter is the

Clabject for which the constraints are searched for. The second parameter is an

Attribute, which can be null if the constraint is not contained in an Attribute.

The third parameter is a list with types of constraints that have to be found for

the current attribute or entity. If the application evaluates invariant constraints,

the list consists of one element that is InvarianConstraintImpl.class. The al-

gorithm then retrieves the classification hierarchy and iterates over this hierarchy

to find the next concrete applicable constraint. The algorithm adds all valid and

5.4. Constraint Search Algorithm 47

applicable constraints to the list and returns the list at the end. If no constraints

are found the empty list is returned. This algorithm provides a clear structure

to find relevant constraints in the classification hierarchy and and adds to the

maintainability of the source code in the rest of the DeepOCL application.

48 5. Executing DeepOCL

6. Implementation

This chapter presents the way to implement an OCL dialect for a Deep Model

infrastructure. The first part deals with the grammar of this dialect and how

it differs from the OCL specification. The second part handles the implementa-

tion of the DeepOCLRuleVisitor class, which is the core of the application and

responsible for the correct interpretation of any OCL statement. The next part

will introduce the new Meta Model for Constraints, which is now a part of the

PLM Meta Model for Melanee. Then the navigation semantics and examples of

interpreted OCL statements will be explained in detail. As will be how and what

proposals from Atkinson, Kühne and Gerbig[4] are implemented.

6.1. ANTLR

This section aims to introduce the implementation of the grammar and the rule

visitor. In chapter 2.1 the theoretical foundation was laid for the principles used

in the implementation of those parts. “ANTLR is an exceptionally powerful and

flexible tool for parsing formal languages.”[38] This tooling is used to define the

DeepOCL dialect grammar and to generate the pair of lexer and parser.

6.1.1. Grammar

In order to create a new dialect that can untie the dependency between a Deep-

OCL implementation and EclipseOCL implementation, it is necessary to define

a grammar that can generate a DeepOCL language (cf. chapter 2.1). Most parts

of the grammar are adopted from the OCL specification.[19] Some parts, like the

linguistic or ontological navigation specification, differ. This chapter presents the

main differences to the EclipseOCL specification, which is the de facto implemen-

tation of the OCL standard.

49

50 6. Implementation

In order to give a better idea on how the grammar processes OCL statements, a

few example will be displayed in the following. The subsequent step, the inter-

pretation of OCL statements, will be presented in section 6.1.2

Listing 6.1: Simple OCL expression

context Customer

inv ofAge : age >= 18

Listing 6.1 can represented in a labeled parse tree as shown in figure 6.1. The

〈contextDeclCS〉

〈classsifierContextCS〉

〈invCS〉

〈specificationCS〉

〈infixedExpCS〉

〈infixedExpCS〉

〈prefixedExpCS〉

〈primaryExpCS〉

〈primativeLiteralExpCS〉

18

>=〈infixedExpCS〉

〈prefixedExpCS〉

〈primaryExp〉

〈navigationsExpCS〉

〈indexExpCS〉

〈nameEcpCS〉

age

:ofAgeinv

Customercontext

Figure 6.1.: first example of a parsed OCL statement

6.1. ANTLR 51

process of parsing the OCL expression with the help of the generated code that

was derived from the grammar specification prepared the expression for interpre-

tation. Note that the comparing operator >= has a left-hand and a right-hand

side. First the navigation on the left side has to be resolved. The result of that

navigation is the value of the age attribute. It is then compared to the value 18.

The whole expression holds if the all instances of Customer are over the age of

18.

The next example showcases how the grammar handles logical expression, because

some logical operators have precedence over other operators.

Listing 6.2: Logical expression showcase

context Person

inv l o g i c : a and b imp l i e s c and d

Listing 6.2 shows how logical operators can be combined in an OCL expression.

In this particular statement the and operator has precedence over the implies

operator. The figure 6.2 shows how the grammar reorders this OCL expression

hierarchically after the defined rules. If one had to evaluate this statement only

reading it from left to right the result would be false. The implies operator would

compare the result of the first and expression and the value of c. Then this result

and the value of c would be the input for implies operator witch would then pass

the result to the second and operator.

This precedence order for these operators conforms to the OCL 2.4 specifications.[27]

52 6. Implementation

〈contextDeclCS〉

〈classsifierContextCS〉

context Person 〈invCS〉

inv logic : 〈specificationCS〉

〈infixedExpCS〉

〈infixedExpCS〉

〈infixedExpCS〉

〈prefixedExpCS〉

〈primaryExpCS〉

〈navigatingExpCS〉

〈indexExpCS〉

〈nameExpCS〉

a

and 〈infixedExpCS〉

〈prefixedExpCS〉

〈primaryExpCS〉

〈navigatingExpCS〉

〈indexExpCS〉

〈nameExpCS〉

b

implies 〈infixedExpCS〉

〈infixedExpCS〉

〈prefixedExpCS〉

〈primaryExpCS〉

〈navigatingExpCS〉

〈indexExpCS〉

〈nameExpCS〉

c

and 〈infixedExpCS〉

〈prefixedExpCS〉

〈primaryExpCS〉

〈navigatingExpCS〉

〈indexExpCS〉

〈nameExpCS〉

d

Figure 6.2.: Example of a parse tree with a combined logical expression

Listing 6.3: The infixedExpCS rule as defined in the ANTLR grammar

i n f i x edExpCS

:

p re f i x edExpCS

| i t e r a t o rBa rExpCS

| l e f t = in f i x edExpCS op =

(

’/ ’

| ’∗ ’
) r i g h t = in f i x edExpCS

| l e f t = in f i x edExpCS op =

(

’+ ’

| ’− ’

) r i g h t = in f i x edExpCS

6.1. ANTLR 53

| l e f t = in f i x edExpCS op =

(

’<=’

| ’>=’

| ’<>’

| ’< ’

| ’> ’

| ’= ’

) r i g h t = in f i x edExpCS

| l e f t = in f i x edExpCS op = ’ˆ ’ r i g h t = in f i x edExpCS

| l e f t = in f i x edExpCS op =

(

’ and ’

| ’ or ’

| ’ xor ’

) r i g h t = in f i x edExpCS

| l e f t = in f i x edExpCS op = ’ imp l i e s ’ r i g h t = in f i x edExpCS

;

Listing 6.3 shows how the logical operation rules have to be arranged to give

precedence to the and operator over the implies. The operation that has prece-

dence over other rules has to be defined at the top of the grammar rule. That

means that rules that precedence over other rules are located relatively below

in the parse tree to the rules they have precedence over. The ANTLR tooling

reacts implicitly to the order of the rule definition. The structure of each possible

matching of this rule is the same. There is always a left- and right-hand side of

the production and the operator. The left- and right-hand side of the production

have to take the form that they can also match the infixedExCS rule, which can

be another logical expression, a navigation in the model or a primitive literal.

These few examples show that the grammar is a very important step in the

parsing process. First it identifies the necessary tokens in the lexical analysis and

then the grammar orders the expressions according to the defined productions or

rules. This reordering prepares DeepOCL expressions for interpretation.

6.1.2. Rule Visitor

As stated in section 6.1.1, the OCL expressions are first parsed with the help of the

generated lexer and parser. The expressions are then prepared for interpretation

54 6. Implementation

by splitting up the statement and matching these parts against rules that are

defined in the grammar. Then these parts can be represented in a labeled tree,

as it was shown in section 6.1.1. In the case of the second example, which is

displayed in figure 6.2, the tree visitor, which functions as the core element of the

interpretation process, visits every rule that can be found in the labeled tree.

The rule visitor visits every rule that can be identified in the OCL expression. Ev-

ery instance of the rule visitor crates an instance of a DeepOCLClabjectWrapper.

Every operation is then delegated to this class.

6.2. Interpreting OCL Expressions

This section will give a better understanding on the semantics of the DeepOCL

dialect. The primary focus is both the navigation semantics of said dialect and

the execution mechanisms of the different constraint types.

6.2.1. Linguistic Context Operations

The syntax of linguistic navigations was discussed in section 3.1, and two seman-

tic definitions were clarified with the help of the Manager example. This section

will give a complete overview of the capabilities and semantics of linguistic navi-

gations.

For the meta model entities Clabject, DeepModel, Level and Connection there are

methods defined that can be invoked by using the linguistic context navigation.

But not only methods can be used to navigate in the linguistic context; references

that contain other meta-model instances can be navigated, too. These references

point to containments of other instances of EObject that are defined in the PLM

meta-model of Melanee.

For the DeepModel meta model the following methods and references are defined:

• getContent() – returns all containing elements; in this case all levels that

are defined within the DeepModel instance

• enumeration – returns all the defined enumerations

• getLevelAtIndex(int level) – returns the level that is identified by the

parameter

6.2. Interpreting OCL Expressions 55

• getPrimitiveDatatypes() – returns all primitive data types

• getAllDatatypes() – returns all primitive data types and enumerations

The reference navigation can be identified by the missing parentheses at the end.

For the Level meta model the following operations and reference navigations are

defined:

• getContent() – returns all containing elements of the Level instance.

• getAllInheritances() – returns all the generalizations that are present

at the level

• getClabjects() –returns all elements that are of the type Clabject of the

Level

• getEntities – returns all entities which are a subset of all Clabjects of the

Level

• getConnections() – returns all Connections that are present at this Level

• getClassifications() – returns all classifications if the instance is present

at this Level

• getDeepModel – returns the DeepModel that contains this Level

• isRootLevel() – returns true if the Level is the topmost level in the Deep-

Model, else false

• isLeafLevel() – returns true if the Level is the bottom level in the Deep-

Model, else false

Here the content navigation as well is referring to references of the meta-model.

The next list will display a selection of Connection operations and reference nav-

igations, which are supposed to be useful for writing statements in the DeepOCL

dialect efficiently.

• getDomain() – returns all destinations of the navigable connection ends of

this Connection

• getNotDomain() –returns all Clabjects that participate in this Connection

but are not navigable

• getHumanReadableName() – returns a human readable name of this Con-

nection

56 6. Implementation

• getParticipants() – returns all participants, i.e. destinations of the con-

nection ends, of this Connection

• getMoniker() – returns the moniker for this Connection

• getMonikerForParticipant(Clabject) – returns the moniker of this Con-

nection for the parameter Clabject if it is reachable through this Connection

• getOrder() – returns the number of connection ends in the Connection

• getParticipantForMoniker(String) – returns the Clabject reachable through

the Connection via the parameter moniker

• getAllConnectionEnd – returns the connection ends that the connection

inherits from its supertypes

The operation getAllConnectionEnd() could also be replaced by the connectionEnd

reference navigation.

Even though the Clabject meta-model contains many methods and references

that can be invoked by any OCL statement, the following will only display a few

operations and references which have a higher chance of being used when writing

DeepOCL expressions.

• getPotency() – returns the potency of the Clabject

• getContent() – returns all the elements that are contained by the Clabject

• getAllFeatures() – returns all attached Feature entities, which could be

from type Attribute or Method

• getTypes() – returns a collection of all Clabjects that are of the type of

the source Clabject

• getInstances – returns all the Clabjects that are an instance of the source

Clabject based on classification elements.

• getAllAttributes() – returns all Attributes of the source Clabject

• getAllMethods() – returns all the methods that are contained by the

source Clabject

• getDefinedNavigations() – returns all defined navigation of the source

Clabject

• getDirectTypes() – returns the direct types of the source Clabject

6.2. Interpreting OCL Expressions 57

• getDefinedInstances() – returns the instances and their subtypes of the

Clabject only

• getSubtypes() – returns all entities that inherit from the source Clabject

• getSupertypes() – returns the Clabjects this Clabject inherits properties

from

• getConnections() – returns all connections from the source Clabject

• getLevelIndex() – returns the level index the source Clabject is located

on

• detDeepModel() – returns the DeepModel the Clabject is contained in

• isTypeOf(Clabject) – returns true if the Clabject is in the classification

tree of the Clabject that was passed in the parameter

These linguistic navigations are a vital part of navigating the deep model and

keeping the model valid with respect to the constraints. Combined with the

ontological navigation it shows the capabilities of the DeepOCL dialect.

6.2.2. Ontological Context Operations

Due to the nature of deep modeling, Methods can be executed without being

translated into a executable source program, with the help of the DeepOCL di-

alect. If another OCL expression is invoking an operation, which is defined by

either a body or definition constraint, the execution of the current OCL expression

is paused and the constraint which defines the method is evaluated.

If in addition to a body or definition constraint pre- and/or post-constraints are

defined, the evaluation of the method is extended by these constraints. If the pre-

constraint is evaluated to false, the method is not invoked and the entity that

contains the OCL statement the invocation originated from is marked with an

error marker by the application. If the post-constraint is evaluated to false, the

method has been already executed. At this point in time the application is not

able to restore the model to the state before the execution if the operation is able

to change something in the model. But the entity the OCL statement originated

from is marked faulty to indicate that something went wrong in the evaluation of

the original statement. A conceivable implementation of a mechanism to rollback

the ramifications of the operation execution will be discussed in chapter 7.4.

58 6. Implementation

6.3. Extending the Functionality of the DeepOCL Dialect

Currently it is not possible to extend the DeepOCL dialect dynamically, i.e.,

writing DeepOCL expressions that extend the functionality scope of the applica-

tion. Chapter 7.6 discusses that functionality in detail. To add a function to the

application first the class DeepOCLRuleVisitor has to gain a new section in the

visitNavigatingExpCS function. If the new operation is executable on a source

collection by the "->" identifier, the new section has to be placed inside the if

block that checks if the Boolean value of collectionOperation is true. If not,

the new function has to be placed just outside of that block. Then the new func-

tion name has to be added to the list of functions the DeepOCLClabjectWrapper

class is maintaining in the loadOperations method. Then the else-if-block of the

invoke method has to be extended with that name, too. From there the newly

implemented method is ultimately called.

Listing 6.4 shows an example of the last method definition. First the algorithm

checks for the name of the operation. The second if block checks whether the

tempCollection, which is an attribute that is used in nested collection expres-

sions, is not null nor empty. If this if block evaluates to true the last element

is selected and returned. In the case the tempCollection is null or empty, the

collection that is currently on top of the navigation stack, which is controlled by

the DeepOCLClabjectWrapper, is retrieved and the last element of that collection

is returned for a result. Before the return statement returns the actual result, the

algorithm places the result on top of the navigationStack, because this element

could be used in a another navigation.

Listing 6.4: The example function last to show the structure of a method defi-

nition in the DeepOCLRuleVisitor

// l a s t

e l s e i f (c t x . opName . getText () . e q u a l s (” l a s t ”)) {
i f (t h i s . t empCo l l e c t i o n != nu l l && t h i s . t empCo l l e c t i o n . s i z e

() > 0) {
Element e = (Element) t empCo l l e c t i o n . t oAr ray () [

t empCo l l e c t i o n . s i z e () − 1] ;

t empCo l l e c t i o n = nu l l ;

t h i s . wrapper . g e tNav i g a t i o nS t a ck () . add (new Tuple<

St r i ng , C o l l e c t i o n<Element>>(” l a s t ” , A r r ay s .

a s L i s t (e))) ;

6.3. Extending the Functionality of the DeepOCL Dialect 59

return e ;

} e l s e {
i n t s i z e = t h i s . wrapper . g e tNav i g a t i o nS t a ck () . peek () .

getSecond () . s i z e () ;

Element e = (Element) t h i s . wrapper .

g e tNav i g a t i o nS t a ck () . peek () . getSecond () . t oAr ray ()

[s i z e − 1] ;

t h i s . wrapper . g e tNav i g a t i o nS t a ck () . add (new Tuple<

St r i ng , C o l l e c t i o n<Element>>(” l a s t ” , A r r ay s .

a s L i s t (e))) ;

return e ;

}
}

In some cases it is not necessary to add the returned result to the navigation stack,

like operations that return a Boolean or an integer type value. The result of those

operations cannot be navigated on and are compared immediately afterwards in

the DeepOCLRuleVisitor class.

60 6. Implementation

7. Future Work

This chapter discusses the possible directions the new DeepOCL can take in the

future and what features need to be added to the constraint language to reach

the highest conformity to the OCL specifications as possible. This is important,

because the user who is already familiar with OCL expects a dialect of that same

language to behave in a very similar way. To use the DeepOCL dialect the users

should not learn a new language in terms of the functionality scope and syntax,

if they are already familiar with OCL.

First the missing action language for the deep modeling context is discussed,

and which already defined action languages can serve as a blueprint for an action

language in deep modeling. Then a series of topics will discuss how the DeepOCL

dialect can advance to be more user friendly and facilitate the full potential of

a constraint language in the deep modeling context. Above all, sections 7.4 and

7.6 deserve a mentioning beforehand, because they have the potential to elevate

the level of functionality dramatically.

7.1. Action Language

A deep modeling action language could be based on the syntax of the Epsilon

Object Language (EOL) or the Action Language for fUML (Alf).[20, 26]

Although there is no exact specification of a deep modeling action language yet,

this thesis showed a way to create a language extensions inside a deep modeling

environment. Any other language that needs to the added to the scope of func-

tionality of a deep modeling environment, like Melanee, can be implemented in

the same way. First the grammar has to be developed, then the ANTLR tool-

ing creates the parser and lexer pair and finally the semantic definitions of said

language are implemented.

An action language has to support CRUD operations in the deep modeling con-

text, which are to create, to read, to update and to delete entities, attributes,

61

62 7. Future Work

methods, deep models, levels or clabjects. The language also has to be able to

call methods that are defined on clabjects and evaluate the results. It also has

to have to support loop expressions, like for or while loops, and variable assign-

ments. OCL is only able to create variables in a let expression context, which is

rather inconvenient compared to the other programming languages. A better ex-

ample to to declare variables and assign values to them can be found in languages

like Python[18] or Javascript[31].

A lot of the semantic definitions of the action language can be reused from the

DeepOCL implementation. All the collection operation implementations, that

were worked on in the context of this thesis, have the same semantics. Also

the navigation specification, i.e., how to navigate in a deep model with multiple

levels, that originated from Kantner[33] are also basically the same.

EOL and ALF are partly based on OCL and combine the features of an imperative

language, like Javascript, and OCL collection query expressions. Hence, these two

language are candidates to serve as the syntactical basis for any action language

that will be implemented in a deep modeling environment. With regards to the

semantics of the OCL part of these languages the new action language can borrow

the semantic definitions of this work as much as possible.

7.2. Level Specific Constraints

For now it is only possible to specify constraints for a level range, i.e., for the

first level below the context Clabject, from where the constraint originated, and

to the last level. It is not possible to skip a level in that range. Instead of defining

two parameters, which are the bounds of the level range the constraint will be

evaluated for, the user should be able to choose whether he passes a list of levels

or defines a level range. This functionality has to be added to the editor which

then delegates the evaluation of defined constraints. The default mechanism will

always be to define a level range. This is a more advanced feature for a more

experienced user of deep modeling and OCL.

7.3. Constraints on Elements of the Linguistic Dimension 63

7.3. Constraints on Elements of the Linguistic Dimension

Right now the default and only dimension to define constraints in, is the onto-

logical dimension. To define constraints on the elements of the PLM, additional

functionality in the source code is needed. It is on the other hand possible to

define a constraint on a specific instance of a Level or a DeepModel. The user can

define constraints that would be similar to those the user would define in the lin-

guistic dimension. If a constraint would be defined on the Clabject meta-model,

the constraint would apply to all Clabjects in this model and not only a specific

instance of an element. Due to the fact, that the most common structure of a

deep model has only one instance of the DeepModel meta-class the constraint

would look essentially the same. Nevertheless it is a necessary feature that has to

be implemented in the next steps to utilize the full potential of a deep constraint

language.

7.4. Rollback mechanism

OCL is per definition a language that is side effect free, with regard to the model

on which constraint expressions are applied on. Nonetheless when constraints

are combined with statements from an action language or when the whole model

is translated into executable code the constraints are applied on a system that

changes. It is even possible to execute a deep model.[5]

If a model is extended with both the DeepOCL and the possibility to execute

this model, then there is a need to control constraints in a more restrictive way.

Let us assume a Clabject is extended with a definition constraint, which defines

a Method. Further assume that this Method needs a pre- and post-constraint to

function properly. To enforce the pre-constraint is rather straight forward. If the

pre-constraint does not hold, the Method is not executed at all. Dealing with a

failing post-constraint is more difficult for obvious reasons. If the post-constraint

fails, the Method has been already executed and that is why in the future the

DeepOCL dialect needs a rollback mechanism to reverse the effect of said Method

and restore the old state of the system. Hence Melanee needs to enforce the

ACID[29] principles on the model in order to keep the model consistent with

regard to the defined constraints.

64 7. Future Work

A practicable way to deal with that problem would be to register every change

this Method execution makes. If now a post-condition fails after the execution

the system can be restored to a previous state. This logging data would only be

stored temporary and is only needed until the post-condition is checked.

The Eclipse Modeling Framework, which is used to create Melanee, has already

the capabilities to serve as a transaction system with which the rollback mech-

anism can be realized.[11] It is called the EMF.Edit[11] framework and resides

inside the EMF project. This framework is already used throughout the Mela-

nee workbench. In this way the model can be stored in its old state and if the

post-condition does not hold, the old model can be restored without any further

calculation. If any further research is necessary in this matter I propose to ex-

amine the applicability of integrating said framework into the method execution

of deep-models.

7.5. Unambiguous OCL

There is at least one instance where the OCL grammar is ambiguous. The listing

7.1 shows that if a Let variable is created the “=” operator is used to assign

a value to the variable. The listing 7.2 is selecting every customer that has a

transaction volume that equals “100” at least once. These two listings show that

the same operator is used for two different operations. The first operation used

the operator to assign a value to a variable and the second operation used the

operator to compare two values with each other. This an ambiguity that can

easily be fixed due to the fact that the grammar of the DeepOCL dialect is part

of this thesis and a contribution to Melanee.

Listing 7.1: Assignment OCL statement

context A

inv c o r r e c tDa t e : l e t c o r r e c tDa t e : Boolean = f a l s e i n

i f s e l f . n o tVa l i d then c o r r e c tDa t e = f a l s e e l s e c o r r e c tDa t e =

t r u e end i f

Listing 7.2: Comparing OCL statement

context Company

inv VIPCustomer : customer −> s e l e c t (c | c . t r a n s a c t i o n −>
s e l e c t (volume = 100))−>s i z e ()=1

7.6. Dynamically Extending DeepOCL Functionality 65

The only time the “=” operator is assigning a value to an attribute is the let

expression. If an action language is derived from the DeepOCL grammar this

ambiguity is much harder to control, because the context for assigning values

is not just the let expression anymore. The obvious proposal is to change the

operator for comparing to “==”. So that there is special terminal, like in JAVA,

for assigning a value to a variable and one for comparing values.

7.6. Dynamically Extending DeepOCL Functionality

For now there is only one way to extend the functionality scope of the DeepOCL

dialect. One has to implement the new functionality in the DeepOCLRuleVisitor

class and the ClabjectWrapper class which are located in the service plug-in of

the application. For the purpose of rapid prototyping it would be much more

convenient to just add a new functionality in the DeepOCL dialect. The dimen-

sion context for adding functionality to the dialect can be both the linguistic and

ontological dimension.

Assume that a new functionality for all Clabjects is needed and the programmer

can express this new function in the DeepOCL dialect. The description of this

process is only referring to operation definitions like body or def constraints.

These are the only constraints for which a need of such rapid prototyping could be

identified. All other constraints do not have the properties of defining functional

instructions and therefore are not included in the process description. The process

for adding those constraints or methods could look like the following.

Every constraint that adds new constraints or methods for any element in the

deep model has to be bootstrapped and stored either inside the model or outside

in an extra file. If the constraint is of type def the method name has to be added

to the list of all valid functions. If the constraint is of type body the name of

the method does not have to be added to the list, this name should already be

there. Assume further the newly defined functionality is called, let us say the

constraint is of type def, then the expression has to be parsed by grammar and

on the exact spot where the method is called the method the syntax tree has to

be substituted with the parsed definition of the method. Then the parse tree,

with the substituted bit that adds the new functionality, is parsed again and

interpreted.

66 7. Future Work

ANTLR does not support substituting nodes or subtrees with other nodes or

subtrees. This topic needs further investigation into the inner works of ANTLR.

Specifically into the syntax tree generation or extending the functionality of the

ParseTree class of ANTLR, so that the support for those operations are included.

7.7. Editor

In order to improve the user experience the editor has to support code com-

pletion proposals and syntax highlighting. Due to the time constraints of this

thesis all features that could elevate the user experience and help the user to pro-

duce a correct and valid OCL expression were prioritized very low. The syntax

highlighting mechanism is already implemented in the DeepOCL implementation

of Kanter[33]. The code completion proposals can be derived from the parser

class. A parser instance that was generated from the ANTRL tooling contains a

method by the name of getExpectedTokens().[38] When parsing an unfinished

and partly faulty OCL expression it is possible to react to parsing errors and

retrieve the expected tokens from said method.

7.8. The Transitive Closure Operation

Since the version 2.3.1 of OCL, which was published in January 2012, a new

iteration operation on collections was defined, the “closure” operation. With this

operation it is possible to navigate over transitive relationships of models. The

closure operation “supports returning results from the elements of a collection,

the elements of the elements of a collection, the elements of the elements of the

elements of a collection, and so forth.”[27] Consider the model displayed in figure

Person children

parent 0..2
0..*

Figure 7.1.: The Person closure operation example

7.1, a person has zero or at maximum two parents and zero to an arbitrary amount

of children. With an OCL expression the following listings shows how to query for

7.9. Performance Optimization 67

a collection of all children and the second body constraint queries for all parents.

The syntax definition is the same like the reject and select operations.

Listing 7.3: Closure operation on the person model

context Person : : a l lD e s c e nd an t s () : Set (Person)

body : s e l f . p a r e n t s −> c l o s u r e (c h i l d r e n)

context Person : : a l l A n c h e s t o r s () : Set (Person)

body : s e l f −> OrderedSet () −> c l o s u r e (p a r e n t s)

As the closure operation differs from the regular implementation schema of the

other collection iteration operation, the closure is not yet supported in the Deep-

OCL dialect. The problem is to find an efficient implementation for the semantic

definition of this operation, because the algorithm has to determine weather or

not the transitive relationship is a circular one or not. If the relationship is in

fact a circular one, then this circle is returned as a Set().

So in this regard the DeepOCl dialect does not conform to the OCL 2.4 specifi-

cation, which is the newest available version of OCL.

7.9. Performance Optimization

The implementation of the DeepOCL dialect in this thesis is a research prototype.

There are several conceivable bottlenecks where performance, when working with

a model that contains a lot of entities with several constraint definitions, could

be an issue with regard to the user experience.

The evaluation of all constraints happens in an implicit fashion, except invariant

constraints. Consider the evaluation of init constraints, every time a new Clabject

is created, the algorithm has to search for a possible init constraint in the type

classification hierarchy over all levels the hierarchy spreads over. Because at the

time the new Clabject is created the application has no knowledge of whether there

is a defined init constraint in the classification hierarchy or not. The operation is

triggered by an event that passes an Attribute from where the search for a valid

constraint starts. With the implementation of the action language in Melanee,

the user should be able to create many new entities in a bulk, which could need

a lot of time to complete. If the new entities have attributes defined, it does not

68 7. Future Work

matter whether an init constraint is defined in the hierarchy or not, the algorithm

starts the search every time a new Attribute is contained in the newly created

Clabject.

Another conceivable performance bottleneck is the evaluation of derive constraints.

The performance reducing impact is possibly higher than the evaluation of the

init constraint. The evaluation of derive constraints is triggered every time any-

thing changes within the model. Because derive constraints can have also an

arbitrary complexity and the expression can navigate the whole model, they have

to be evaluated as soon as a change in the model is detected.

The fact that the OCL expression are saved in a more or less parsed fashion

could help to avoid the performance bottlenecks. Every reference to a Attribute,

Method or Clabject is stored as such and not as plain text. The expression should

register to these reference somehow and if something changes, the subscribers

to the change event are notified. If the receiver of such notification is a derive

constraint it can be reevaluated without searching for every derive constraint in

the model and reevaluate all of them.

8. Related Work

This chapter gives an introduction into other realizations of OCL in the deep

modeling context. As the master thesis of Kantner is the basic point of reference

throughout this thesis, his contribution to this topic, deep constraint languages,

will be briefly summed up. Other deep modeling tools that provide the possibility

to define constraints on deep models will also be introduced in this chapter.

8.1. DeepOCL by Kantner

The most similar implementation to this work, is the master thesis of Kantner[33].

The basis for his implementation was the EclipseOCL[19] implementation of OCL.

That is why his implementation is conforming, syntactically speaking, to OCL

standard, with the exception of two changes in the syntax definition. The only

syntactic changes from Kantner was the dimension switch operation, which was

indicated by l and the level cast operation in the upper hierarchy levels of the

source object.

With regard to the semantic definitions of his dialect, he worked out a useful way

on how to navigate in a deep model.

His work lacked the flexibility to change syntactic structures in the DeepOCL

dialect due the restrictions the EclipseOCL enforced on the well-formedness of

OCL expression.

8.2. metaDepth

MetaDepth, which was introduced by de Lara and Guerra[16], is a deep-modeling

tool that supports textual modeling over an arbitrary amount of ontological levels

and dual instantiation of Clabjects.[16] The tool utilizes EOL, which extends in

part OCL, to define constraints. EOL is part constraint language and part action

69

70 8. Related Work

language. Chapter 7.1 indicated that EOL could be the basis for the deep action

language dialect for Melanee.

In order to make EOL aware of the deep-modeling environment the authors ad-

justed the standard OCL in two aspects.[17]

The first change to the specification of OCL was to be able to assign a potency

with the constraint definition. The potency shows the level where the constraint

is evaluated on. If the potency is 1 then the constraint is evaluated one level

below the level where the constraint is defined on. The second adjustment is

that the constraints can use methods and attributes of the linguistic dimension.

Properties of the linguistic dimensions are accessed like properties from the onto-

logical dimension. If there is a name collision of attributes or methods from the

linguistic and ontological dimension and the user wants to access the property

from the linguistic dimension the prefix ”ˆ” can be used to indicate the dimension

switch.[17]

This thesis described a similar dimension switch into the linguistic dimension,

but the user has to indicate that switch explicitly in contrast to the meta-depth

method, which is implicitly accessing the properties of the linguistic dimension.

The idea to define potencies on the constraints to indicate the level the constraint

is evaluated on, is to some extent consistent with the idea of potency in general

in the deep-modeling context. Normally it would indicate a level span on which

the constraint is valid and has to be evaluated on, because the potency defined

on a Clabject indicate on how many level below the Clabject can the instantiated

the las time. This thesis lets the user define a level span, that marks the range

of the evaluation of the constraint.

8.3. Nivel

Nivel is another deep modeling framework which was created by Asikainen and

Männistö[3]. Nivel uses the Weight Constraint Rule Language (WCRL), which

is a general-purpose knowledge representation language, to create models and

constraints.[3] The framework enables the user to define cardinality constraints,

which are constraints that affect instances of associations holding values for the

cardinality and potency.

8.3. Nivel 71

Aiskainen and Männistö state that “Nivel defines no constraint language of its

own”[3] and the construct of cardinality constraints is the only possibility to define

constraints for the model or elements of the model. According to the authors,

adopting WCRL for Nivel would cause a number of problems and is not desired

by them. They claim that any user that is familiar with Nivel would assumed to

be familiar with the WCRL and be able to write constraint in it.[3]

In this thesis Melanee was used to create models in a graphical fashion. Compared

to UML, Melanee has also a similar look and feel with regard to the modeling.

Hence, the user of Melanee is most probably familiar with OCL and other mod-

eling tools that the Eclipse modeling project provides.

72 8. Related Work

9. Conclusion

Out of the limitation of UML, the LML was conceived and in order to attract users

to the new modeling paradigm, deep-modeling, a certain tool support is necessary.

One vital tool to create exact and valid models is OCL. Kantner did the initial

work of defining the navigation semantics in a deep modeling environment and

implemented a console to query models in the deep model.

The implementation of the new deep OCL dialect of this thesis elevated the

usability of said dialect in Melanee. I was able to evolve the dialect from a console

to an integral part of modeling in Melanee. The user is able to save constraints

inside the LML, which is possible due to the extension of the PLM, and evaluate

different kinds of constraints. This new dialect is also united from the EclipseOCL

implementation and can evolve further in any desired direction without having to

adapt to changes in the EclipseOCL application interfaces. New developments can

introduce new syntactical or semantic constructs to customize the deep constraint

dialect to meet occurring requirements.

Storing constraints is done in a homogeneous format for models and their con-

straints, which avoids inconsistencies in the combination of constraints and models.[12]

When using OCL in most tools, the constraints can be stored in various formats

(txt, annotations in Ecore) and the “MOF and OCL parts are not always stored

in the same format, both parts of the metamodel tend to be inconsistent.”[12]

As a next step the software has to be extensively tested in order to ensure a

certain level of functionality. Since this project is operated by an university,

students should be able to work on further scientific research in this field. Tests

help to give anybody an idea of the workings of the DeepOCL dialect. There are

already a number of tests that cover some cases, but the software has to deal with

real modeling cases and constraint definitions to make sure, that the semantic

definitions of the DeepOCL dialect behave the way they are specified. All the

statements displayed in this thesis are covered by test and deliver the correct

result. In total there are 74 tests that range from rather simple tests, like parsing

73

74 9. Conclusion

test to show that certain OCL expression can be parsed by the defined grammar,

to very complex tests that navigate deep model over multiple levels and nested

collection operation tests.

This work provides a very useful DeepOCL dialect that will hopefully further

advance the popularity of deep-modeling. The dialect is very close to the OCL

standard specification and users that are switching from UML to LML, i.e., from

the 4-layer modeling architecture to OCA, will have no difficulties to adapt to

the new dialect that is presented in this thesis.

Bibliography

[1] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers : principles,

techniques, and tools. Addison-Wesley series in computer science. Addison-

Wesley, Reading, Mass. [u.a.], 38 edition, 2002.

[2] Alfred V Aho and Jeffrey D Ullman. The theory of parsing, translation, and

compiling. 1, Parsing. Prentice-Hall, Englewood Cliffs, NJ, 1972.

[3] Timo Asikainen and Tomi Männistö. Nivel: a metamodelling language with

a formal semantics. Software & Systems Modeling, 8(4):521–549, 2009.

[4] Colin Atkinson, Ralph Gerbig, and Thomas Kühne. Opportunities and chal-

lenges for deep constraint languages. In Achim D. Brucker, Marina Egea,

Martin Gogolla, and Frèdèric Tuong, editors, Proceedings of the 15th In-

ternational Workshop on OCL and Textual Modeling, volume 1512 of OCL

2015, pages 3–18. CEUR Workshop Proceedings, 2015.

[5] Colin Atkinson, Ralph Gerbig, and Noah Metzger. On the execution of deep

models. In Tanja Mayerhofer, Philip Langer, Ed Seidewitz, and Jeff Gray,

editors, Proceedings of the 1st International Workshop on Executable Model-

ing, volume 1560 of EXE 2015, pages 28–33. CEUR Workshop Proceedings,

2015.

[6] Colin Atkinson, Matthias Gutheil, and Bastian Kennel. A flexible infras-

tructure for multilevel language engineering. IEEE Transactions on Software

Engineering, 35(6):742–755, 2009.

[7] Colin Atkinson, Bastian Kennel, and Björn Goß. The Level-Agnostic Mod-

eling Language, pages 266–275. Springer Berlin Heidelberg, 2011.

[8] Colin Atkinson and Thomas Kühne. The essence of multilevel metamodeling.

In International Conference on the Unified Modeling Language, pages 19–33.

Springer, 2001.

[9] Colin Atkinson and Thomas Kühne. Rearchitecting the uml infrastructure.

ACM Trans. Model. Comput. Simul., 12(4):290–321, October 2002.

75

76 Bibliography

[10] Colin Atkinson and Thomas Kühne. Model-driven development: a meta-

modeling foundation. IEEE Software, 20(5):36–41, Sept 2003.

[11] Frank Budinsky. Eclipse modeling framework : a developer’s guide. The

eclipse series. Addison-Wesley, Boston, Mass. ; Munich [u.a.], 2004.

[12] Juan Cadavid, Benoit Baudry, and Benoit Combemale. Empirical evaluation

of the conjunct use of MOF and OCL. In Michel Chaudron, Marcela Genero,

Parastoo Mohagheghi, and Lars Pareto, editors, Experiences and Empirical

Studies in Software Modelling (EESSMod 2011), Wellington, New Zealand,

October 2011. CEUR.

[13] Noam Chomsky. On the notion ‘rule of grammar’. In Proceedings of the

Twelfth Symposium in Applied Mathematics, volume 12, pages 6–24. Amer-

ican Mathematical Society, 1961.

[14] Noam Chomsky. Syntactic structures. Ianua linguarum / Series minor 4,8 4

(DE-576)015598004. Mouton, The Hague [u.a.], 8 edition, 1969.

[15] Oracle Corporation. Java, 2016.

[16] Juan de Lara and Esther Guerra. Deep meta-modelling with metadepth. In

International Conference on Modelling Techniques and Tools for Computer

Performance Evaluation, pages 1–20. Springer, 2010.

[17] Juan de Lara, Esther Guerra, and Jesús Sánchez Cuadrado. Model-driven

engineering with domain-specific meta-modelling languages. Software & Sys-

tems Modeling, 14(1):429–459, 2015.

[18] Python Software Foundation. Python, 2016.

[19] The Eclipse Foundation. Eclipse ocl project, 2016.

[20] The Epsilon Foundation. Epsilon object language, 2016.

[21] R. France and B. Rumpe. Model-driven development of complex software:

A research roadmap. In Future of Software Engineering, 2007. FOSE ’07,

pages 37–54, May 2007.

[22] Richard A. Frost and Rahmatullah Hafiz. A new top-down parsing algorithm

to accommodate ambiguity and left recursion in polynomial time. SIGPLAN

Not., 41(5):46–54, May 2006.

[23] Ralph Gerbig. The level-agnostic modeling language: Language specification

and tool implementation. 2011.

Bibliography 77

[24] Ralph Gerbig. Deep, Seamless, Multi-format, Multi-notation Definition and

Use of Domain-specific Languages. PhD thesis, University of Mannheim, to

be published 2017.

[25] Seymour Ginsburg. The mathematical theory of context free languages.

McGraw-Hill, New York [u.a.], 1966.

[26] Object Management Group. ALF Action Language for Foundational UML,

2005.

[27] Object Management Group. Object management group ocl specification 2.4,

2016.

[28] Object Management Group. Object management group uml specification

2.5, 2016.

[29] Theo Haerder and Andreas Reuter. Principles of transaction-oriented

database recovery. ACM Comput. Surv., 15(4):287–317, December 1983.

[30] John E Hopcroft and Jeffrey D Ullman. Introduction to automata theory,

languages, and computation. Addison-Wesley series in computer science.

Addison-Wesley, Reading, Mass. [u.a.], 1979.

[31] Ecma International. Ecmascript, 2016.

[32] Stanislaw Jarzabek and Tomasz Krawczyk. Ll-regular grammars. Informa-

tion Processing Letters, 4(2):31–37, 1975.

[33] Dominik Kantner. Specification and implementation of a deep ocl dialect.

Master’s thesis, Department of Business Informatics and Mathematics Chair

of Software Engineering - Prof. Dr. Colin Atkinson, University of Mannheim,

2014.

[34] Donald E. Knuth. On the translation of languages from left to right. Infor-

mation and Control, 8(6):607 – 639, 1965.

[35] P. M. Lewis, II and R. E. Stearns. Syntax-directed transduction. J. ACM,

15(3):465–488, July 1968.

[36] Anton Nijholt. Context-free grammars : covers, normal forms, and parsing.

Lecture notes in computer science 93 (DE-576)014492687. Springer, Berlin ;

Heidelberg [u.a.], 1980.

[37] University of Mannheim Software Engineering Group. Melanee, 2016.

78 Bibliography

[38] Terence Parr. The definitive ANTLR 4 reference. The pragmatic program-

mers. Pragmatic Bookshelf, Dallas, Tex. [u.a.], 2012.

[39] Terence Parr, Sam Harwell, and Kathleen Fisher. Adaptive ll(*) parsing:

The power of dynamic analysis. In Proceedings of the 2014 ACM Inter-

national Conference on Object Oriented Programming Systems Languages

& Applications, OOPSLA ’14, pages 579–598, New York, NY, USA, 2014.

ACM.

[40] D. J. Rosenkrantz and R. E. Stearns. Properties of deterministic top down

grammars. In Proceedings of the First Annual ACM Symposium on Theory

of Computing, STOC ’69, pages 165–180, New York, NY, USA, 1969. ACM.

[41] James Rumbaugh, Grady Booch, and Ivar Jacobson. The unified modeling

language reference manual. Addison-Wesley, Boston, 2nd edition, 2004.

[42] Arto Salomaa. Jewels of formal language theory. Computer Science Pr.,

Rockville, Md., 1981.

[43] Seppo Sippu and Eljas Soisalon-Soininen. Parsing theory. 1, Languages

and parsing. European Association for Theoretical Computer Science

EATCS monographs on theoretical computer science 15 (DE-576)009692398.

Springer, Berlin ; Heidelberg, 1988.

[44] Jos Warmer and Anneke G Kleppe. Object constraint language 2.0 : [die

neuen Sprachkonstrukte der OCL 2.0; so werden Ihre Modelle MDA-tauglich

...]. Software-Entwicklung. mitp-Verl., Bonn, 1 edition, 2004.

Appendix

79

A. The ANTLR4 DeepOCL grammar

/∗∗∗

∗ Copy r i gh t (c) 2012 , 2013 U n i v e r s i t y o f Mannheim : Cha i r f o r

So f tware Eng i n e e r i n g

∗ A l l r i g h t s r e s e r v e d . Th i s program and the accompanying ma t e r i a l s

∗ a r e made a v a i l a b l e under the terms o f the E c l i p s e Pub l i c L i c e n s e

v1 . 0

∗ which accompanies t h i s d i s t r i b u t i o n , and i s a v a i l a b l e at

∗ ht tp : //www. e c l i p s e . o rg / l e g a l / ep l−v10 . html

∗
∗ Con t r i b u t o r s :

∗ Ralph Gerb ig − i n i t i a l API and imp l ementa t i on and i n i t i a l

documentat ion

∗ Arne Lange − o c l 2 imp l ementa t i on

∗∗∗/

grammar DeepOcl ;

contextDec lCS

:

(

p rope r tyContex tDec lCS

| c l a s s i f i e r C o n t e x t C S

| ope ra t i onContex tCS

)+

;

ope ra t i onContex tCS

:

CONTEXT l e v e l S p e c i f i c a t i o n C S ?

(

ID ’ : ’

) ?

(

ID ’ : : ’

81

82 A. The ANTLR4 DeepOCL grammar

(

ID ’ : : ’

) ∗ ID

| ID

) ’ (’

(

parameterCS

(

’ , ’ parameterCS

) ∗
) ? ’) ’

(

’ : ’ typeExpCS

) ?

(

preCS

| postCS

| bodyCS

) ∗
;

l e v e l S p e c i f i c a t i o n C S

:

’ (’ NumberLi tera lExpCS

(

’ , ’

(

’ ’

| NumberLi tera lExpCS

)

) ? ’) ’

;

CONTEXT

:

’ contex t ’

;

bodyCS

:

’ body ’ ID? ’ : ’ s p e c i f i c a t i o n C S

;

83

postCS

:

’ post ’ ID? ’ : ’ s p e c i f i c a t i o n C S

;

preCS

:

’ pre ’ ID? ’ : ’ s p e c i f i c a t i o n C S

;

defCS

:

’ def ’ ID? ’ : ’ ID

(

(

’ (’ parameterCS ?

(

’ , ’ parameterCS

) ∗ ’) ’

) ? ’ : ’ typeExpCS? ’= ’ s p e c i f i c a t i o n C S

)

;

typeExpCS

:

typeNameExpCS

| t y p e L i t e r a l CS

;

t y p e L i t e r a l CS

:

p r im i t i v eTypeCS

| co l l e c t i o nTypeCS

| tupleTypeCS

;

tupleTypeCS

:

’ Tuple ’

(

’ (’ tup l ePar tCS

84 A. The ANTLR4 DeepOCL grammar

(

’ , ’ tup l ePar tCS

) ∗ ’) ’

| ’< ’ t up l ePar tCS

(

’ , ’ tup l ePar tCS

) ∗ ’> ’

) ?

;

tup l ePar tCS

:

ID ’ : ’ typeExpCS

;

c o l l e c t i o nTypeCS

:

c o l l e c t i o n T y p e I D e n t i f i e r

(

’ (’ typeExpCS ’) ’

| ’< ’ typeExpCS ’> ’

) ?

;

c o l l e c t i o n T y p e I D e n t i f i e r

:

’ C o l l e c t i o n ’

| ’Bag ’

| ’ OrderedSet ’

| ’ Sequence ’

| ’ Set ’

;

p r im i t i v eTypeCS

:

’ Boolean ’

| ’ I n t e g e r ’

| ’ Real ’

| ’ ID ’

| ’ Un l im i t edNa tu r a l ’

| ’ OclAny ’

| ’ Oc l I n va l ID ’

85

| ’ OclVoID ’

;

typeNameExpCS

:

ID ’ : : ’

(

ID ’ : : ’

) ∗ ID

| ID

;

s p e c i f i c a t i o n C S

:

i n f i x edExpCS ∗
;

expCS

:

i n f i x edExpCS

;

i n f i x edExpCS

:

p re f i x edExpCS # p r e f i x e dExp

| i t e r a t o rBa rExpCS # i t e r a t o r B a r

| l e f t = in f i x edExpCS op = ’ˆ ’ r i g h t = in f i x edExpCS #

Message

| l e f t = in f i x edExpCS op = ’ imp l i e s ’ r i g h t = in f i x edExpCS #

imp l i e s

| l e f t = in f i x edExpCS op =

(

’ xor ’

| ’ or ’

| ’ and ’

) r i g h t = in f i x edExpCS # andOrXor

| l e f t = in f i x edExpCS op =

(

’= ’

| ’<>’

| ’<=’

| ’>=’

86 A. The ANTLR4 DeepOCL grammar

| ’< ’

| ’> ’

) r i g h t = in f i x edExpCS # equa lOpe r a t i o n s

| l e f t = in f i x edExpCS op =

(

’+ ’

| ’− ’

) r i g h t = in f i x edExpCS # plusMinus

| l e f t = in f i x edExpCS op =

(

’∗ ’
| ’ / ’

) r i g h t = in f i x edExpCS # t ime sD i v i d e

;

i t e r a t o rBa rExpCS

:

’ | ’
;

n av i ga t i onOpe ra to rCS

:

’ . ’ # dot

| ’−>’ # arrow

;

p re f i x edExpCS

:

UnaryOperatorCS+ primaryExpCS

| primaryExpCS

(

nav i ga t i onOpe ra to rCS primaryExpCS

) ∗
| primaryExpCS

;

UnaryOperatorCS

:

’− ’

| ’ not ’

;

87

primaryExpCS

:

letExpCS

| i fExpCS

| nav igat ingExpCS

| s e l fExpCS

| p r im i t i v e L i t e r a l E x pCS

| t u p l e L i t e r a l E x pCS

| c o l l e c t i o n L i t e r a l E x pCS

| t y p eL i t e r a l E xpCS

| nestedExpCS

;

nestedExpCS

:

’ (’ expCS+ ’) ’

;

i fExpCS

:

’ i f ’ i f e x p = expCS+ ’ then ’ thenexp = expCS+ ’ e l s e ’ e l s e e x p =

expCS+ ’ end i f ’

;

l e tExpCS

:

’ l e t ’ l e tV a r i a b l eCS

(

’ , ’ l e t V a r i a b l eCS

) ∗ ’ in ’ i n = expCS+

;

l e tV a r i a b l eCS

:

name = ID ’ : ’ t ype = typeExpCS ’= ’ exp = expCS+

;

t yp eL i t e r a l E xpCS

:

t y p e L i t e r a l CS

;

88 A. The ANTLR4 DeepOCL grammar

c o l l e c t i o n L i t e r a l E x pCS

:

c o l l e c t i o nTypeCS ’{ ’
(

c o l l e c t i o n L i t e r a l P a r t C S

(

’ , ’ c o l l e c t i o n L i t e r a l P a r t C S

) ∗
) ? ’} ’

;

c o l l e c t i o n L i t e r a l P a r t C S

:

expCS

(

’ . . ’ expCS

) ?

;

t u p l e L i t e r a l E x pCS

:

’ Tuple ’ ’{ ’ t u p l e L i t e r a l P a r t C S

(

’ , ’ t u p l e L i t e r a l P a r t C S

) ∗ ’} ’
;

t u p l e L i t e r a l P a r t C S

:

ID

(

’ : ’ typeExpCS

) ? ’= ’ expCS

;

se l fExpCS

:

’ s e l f ’

;

p r im i t i v e L i t e r a l E x pCS

:

89

NumberLi tera lExpCS # number

| STRING # s t r i n g

| Boo l eanL i t e r a lExpCS # boo l ean

| I n v a l IDL i t e r a l E x pCS # i n v a l i d

| Nu l l L i t e r a l E xpCS # n u l l

;

I n v a l IDL i t e r a l E x pCS

:

’ i n v a l i d ’

;

NumberLi tera lExpCS

:

INT

(

’ . ’ INT

) ?

(

(

’ e ’

| ’E ’

)

(

’+ ’

| ’− ’

) ? INT

) ?

;

f ragment

DIGIT

:

[0−9]
;

INT

:

DIGIT+

;

Boo l eanL i t e r a lExpCS

90 A. The ANTLR4 DeepOCL grammar

:

’ t rue ’

| ’ f a l s e ’

;

Nu l l L i t e r a l E xpCS

:

’ n u l l ’

;

nav igat ingExpCS

:

opName = indexExpCS

(

’@’ ’ pre ’

) ?

(

’ (’ ’ ” ’ ? onespace ? arg = nav iga t ingArgCS ∗ commaArg =

navigatingCommaArgCS∗
barArg = nav iga t i ngBarAgr sCS ∗ semiArg =

nav iga t ingSemiAgr sCS ∗ ’ ” ’ ? ’) ’

) ∗
;

nav iga t ingSemiAgr sCS

:

’ ; ’ nav igat ingArgExpCS

(

’ : ’ typeExpCS

) ?

(

’= ’ expCS+

) ?

;

navigatingCommaArgCS

:

’ , ’ nav igat ingArgExpCS

(

’ : ’ typeExpCS

) ?

(

91

’= ’ expCS+

) ?

;

nav igat ingArgExpCS

:

i t e r a t o r V a r i a b l e = in f i x edExpCS i t e r a to rBa rExpCS nameExpCS

nav i ga t i onOpe ra to rCS body = in f i x edExpCS ∗
| i n f i x edExpCS+

;

nav iga t ingBarAgr sCS

:

’ | ’ nav igat ingArgExpCS

(

’ : ’ typeExpCS

) ?

(

’= ’ expCS+

) ?

;

nav iga t ingArgCS

:

nav igat ingArgExpCS

(

’ : ’ typeExpCS

) ?

(

’= ’ expCS+

) ?

;

indexExpCS

:

nameExpCS

(

’ [’ expCS

(

’ , ’ expCS

) ∗ ’] ’

) ?

92 A. The ANTLR4 DeepOCL grammar

;

nameExpCS

:

(

(

ID ’ : : ’

(

ID ’ : : ’

) ∗ ID

)

| ID

| STRING

) # name

| ’ $ ’ c l a b = ID ’ $ ’ # onto log i ca lName

| ’# ’ a sp e c t = ID

(

’ (’

(

NumberLi tera lExpCS

| ID

) ?

(

’ , ’

(

NumberLi tera lExpCS

| ID

)

) ∗ ’) ’

) ? ’# ’ # l i n g u i s t i c a l N ame

;

parameterCS

:

(

ID ’ : ’

) ? typeExpCS

;

invCS

:

’ inv ’

93

(

ID

(

’ (’ s p e c i f i c a t i o n C S ’) ’

) ?

) ? ’ : ’ s p e c i f i c a t i o n C S

;

c l a s s i f i e r C o n t e x t C S

:

CONTEXT l e v e l S p e c i f i c a t i o n C S ?

(

ID ’ : ’

) ?

(

(

ID ’ : : ’

(

ID ’ : : ’

) ∗ ID

)

| ID

)

(

invCS

| defCS

) ∗
;

p rope r tyContex tDec lCS

:

CONTEXT l e v e l S p e c i f i c a t i o n C S ?

(

(

ID ’ : : ’

(

ID ’ : : ’

) ∗ ID

)

| ID

) ’ : ’ typeExpCS

(

94 A. The ANTLR4 DeepOCL grammar

(

i n i t CS derCS?

) ?

| derCS i n i t CS ?

)

;

derCS

:

’ d e r i v e ’ ’ : ’ s p e c i f i c a t i o n C S

;

i n i t CS

:

’ i n i t ’ ’ : ’ s p e c i f i c a t i o n C S

;

ID

:

[a−zA−Z] [a−zA−Z0−9]∗
;

WS

:

[\ t \n\ r]+ −> s k i p

;

onespace

:

ONESPACE

;

ONESPACE

:

’ ’

;

STRING

:

’” ’

(

˜ [\ r \n ”]

95

| ’ ”” ’

) ∗ ’ ” ’

;

COMMENT

:

’−−’ .∗? ’\n ’ −> s k i p

;

	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Foundations
	Formal Languages
	Theory
	Lexical Analysis
	Syntax and Semantics
	Parsing Strategies
	ANTLR's parsing technology

	Model-Driven Development
	Multi-Level Modeling
	The Level-Agnostic Modeling Language
	Object Constraint Language
	The OCL Meta-Model
	Collection and Loop Operations

	DeepOCL Revisited
	OCL Modifications for Deep Models
	Unambiguous Multi-Level Navigation
	Deep (Re-)Classification Operations
	Deep Constraints

	Constraint Definition Meta-Model
	Constraint Meta-Model
	Saving Constraints

	Executing DeepOCL
	Data Flow
	Implicit/Explicit Causes of Triggering Constraint Evaluation
	Nested Collection Operations
	Constraint Search Algorithm

	Implementation
	ANTLR
	Grammar
	Rule Visitor

	Interpreting OCL Expressions
	Linguistic Context Operations
	Ontological Context Operations

	Extending the Functionality of the DeepOCL Dialect

	Future Work
	Action Language
	Level Specific Constraints
	Constraints on Elements of the Linguistic Dimension
	Rollback mechanism
	Unambiguous OCL
	Dynamically Extending DeepOCL Functionality
	Editor
	The Transitive Closure Operation
	Performance Optimization

	Related Work
	DeepOCL by Kantner
	metaDepth
	Nivel

	Conclusion
	Bibliography
	Appendix
	The ANTLR4 DeepOCL grammar

