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Introduction

What portion of their total wealth should retirees hold in life annuities? Consumption based
models, from early examples to more recent models, typically suggest a very high portion or even
full annuitization. However empirical evidence shows that actual annuitization degrees are often
much lower than that. For example, voluntary annuitization beyond mandatory pension plans
seems to occur very rarely. Franco Modigliani, in his Nobel Price acceptation speech, stated that,

It is a well-known fact that annuity contracts, other than in the form of group insurance through
pension systems, are extremely rare. Why this should be so is a subject of considerable current
interest. It is still ill-understood.

In the face of aging societies and increasing life expectancy this is not merely a scientific cu-
riosity, but carries a high risk for people’s financial wellbeing. On the one hand it affects retirees
negatively as their pensions sink, because there are less active contributors to the pension funds,
on the other hand it burdens the rest of society because states might need to draw on tax money
to cover the gaps in subsistence spending for retirees. Because of the magnitude of the potential
problems and the ongoing inability of the scientific community to fully and satisfactorily explain
the perceived unattractiveness of annuity contracts, a broad variety of research on the topic has
been produced in the past two decades. In this context a range of potential explanations have
been identified and analyzed. In the realm of rational behavior, prominent examples of this are
unfair annuity pricing and the presence of bequest motives. While both of these factors can re-
duce the demand for life annuities in a rational model, the resulting annuity demand often still
exceeds the empirically observed purchasing rates. As a result of this, explanations beyond purely
rational factors have been suggested and various other potential obstacles in the annuity market
have been identified. These include among others framing, financial illiteracy, underestimated life
expectancies and loss aversion. In many cases these suggestions are qualitative in their nature.
That means they explain why there is less demand for annuities than predicted, but oftentimes do
not produce quantitative estimates on how the resulting annuity demand would look like under
their assumptions. This dissertation aims to develop behavioral decision models, that include be-
havioral within the framework of classical rational models. The goal is to achieve an understanding
of how, and to what exact extend, these phenomena affect the demand for life annuities and other
life insurance products. A potential justification for this hybrid approach is to assume that the
individual retirees at the center of our analysis act rationally in most ways, but are subject to some
behavioral bias or fallacy affecting their analysis of investment opportunities, insurance products
or their perception of future periods.

The purpose of an annuity and its main selling point is to enable a steady and lifelong stream of
consumption for the retiree. When reduced to its characteristics as a mere investment opportunity,
the big advantages of annuities regarding consumption are not sufficiently accounted for and as
a result, annuities fall behind other investment classes in terms of risk and return characteristics.
For this reason, the core of the models that are adopted or proposed in the following papers, is
the retiree’s utility from consumption over his uncertain remaining life span. However the payoffs
from annuities and other forms of insurance only have a direct effect on the insured’s wealth on
hand and not on his consumption. An evaluation of their effect on the retiree’s consumption, and
therefore their actual usefulness, can only be conducted when the retiree’s optimal consumption
policy is known. In addition to that, the wealth levels of the retiree are not only dependent on the
payoffs from his insurance contracts, but also from other types of assets the retiree may be invested
in. Therefore our analyses rely heavily on optimization and as a result do not only produce the
optimal insurance endowments, but also the resulting optimal consumption and investment plans
throughout retirement. Besides obtaining optimal insurance and annuity endowments, a minor
focus of this dissertation lies on the analysis of these resulting plans and a comparison with the
benchmark plans for a fully rational individual.
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Altogether this dissertation consists of four separate papers, which cover a total of three be-
havioral or non-classical phenomena which may affect an individual’s financial decision making.
The approach outlined above requires that the effects that are incorporated are quantifiable in
some way. Therefore we focus on three phenomena that fulfill this requirement. These are hyper-
bolic discounting, loss aversion in connection with narrow framing of investment decisions, and
reference-dependent utility. The way that these phenomena enter our analysis, is through the
retiree’s preferences described by an objective function. Depending on the phenomenon, their
implementation within the framework of a multi-period consumption utility model can be more
or less challenging. Furthermore empirical testing of our models is fairly difficult because very
detailled financial data for retrirees is needed to adequately calibrate the models. We go into
more detail on this point later. Because data with the required depth of detail is not readily
available, the papers in this dissertation focus solely on the demand side. This means we propose
a hypothetical model and obtain the optimal annuity demand within this model. Regarding pa-
rameter choices, we resort to the choices most encountered in the literature whenever possible. In
some cases, when our models venture into territory, for which there is no established consensus
on reasonable parameter values, we conduct our calculations for a variety of potential candidates
for these parameters. Our main contributions lie in the proposition of models and a thorough
optimization within these models. The central parts of these models are the objective functions,
describing the retirees preferences. The aim of this introduction is to give an outline of the simi-
larities and differences between the objective functions in the four papers. In addition to that, we
highlight the potential obstacles in their conception and how we overcome them.

Hyperbolic discounting is a special form of time inconsistency. A typical example of this
is when an individual, who faces the question whether to take a fixed amount of money or an
increased amount of money a week later, prefers a different alternative whether the first amount is
due now or in a year’s time. If we assume that the individual’s preferences remain consistent and
that he is able to correctly anticipate his preferences in a year, then he should choose the same
alternative regardless of when the first amount is due. In that sense hyperbolic discounting can
be seen as a form of irrational behavior. In most classical consumption based life cycle models the
typical assumption on time perception is time consistent discounting or exponential discounting.
With time consistent discounting, a subsequent period receives β times the weight of the previous
period for some β < 1. This means that the outcomes in t periods from now, or from time t = 0,
receive the total weight βt. In total, the classical consumption based multi-period model with
uncertain lifetime takes the following form. When p0,t are the probabilities that the individual
survives until time t, under the condition that he is alive at time 0, and u(Ct) is the utility from
annual consumption, then the individual’s objective function for the retirement phase is given by

E0

[ T∑
t=0

p0,tβ
tu(Ct)

]
.

Here we assume that the individual enters retirement at time t = 0 and may live up to T more
years. The annual consumption level is limited by the individual’s wealth on hand, which itself is a
result of the individual’s previous consumption and investment plans. When the individual invests
in risky assets, then the future wealth levels are random variables depending on the outcomes of
his investments. Additionally, a bequest motive can be incorporated into this framework by
introducing a second utility function v, which describes the retiree’s utility from bequest. If we
assume that the bequest is transferred immediately upon the death of the retiree, then the retiree
receives the additional utility v(Bt) at his time of death. The expanded objective function then
takes the form

E0

[ T∑
t=0

p0,tβ
t(u(Ct) + (1 − pt,t+1)βv(Bt+1))

]
.

If we assume hyperbolic instead of exponential discounting, then we further adjust the above
objective function by interchanging the exponential discount factors βt with hyperbolic discount
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factors DFt.

On the basis of this objective function, in the first paper we analyze how assuming hyperbolic
discounting instead of exponential discounting affects the optimal insurance endowment during
retirement. We assume that the retiree has access to a life annuity, which may contain periods
with guaranteed annuity payments, and a life insurance policy paying a fixed sum at the time of
death of the retiree. The analysis is conducted for various parametrizations of the bequest utility
function.

The two subsequent papers propose models that attempt to incorporate the effect of loss aver-
sion on a retiree’s demand for annuities. The approach we take is based on the evaluation function
from Kahneman and Tversky’s prospect theory, which describes an individual’s perception of the
potential outcomes of a risky gamble or a risky investment. In classical expected utility theory, it
is often not the monetary outcomes of individual investments which are evaluated, but the result-
ing consumption levels or, usually as an approximation for consumption, the agent’s total wealth.
And it is fluctuations in this consumption levels, or the total wealth levels, that the individual
is concerned about, and only indirectly the developments of his assets. In contrast to this, the
prospect theory evaluation function is not applied to dimensions that yield immediate utility in the
baseline consumption model, such as consumption, but to the immediate monetary outcomes of
an investment policy or an individual investment. A characteristic feature is, that the evaluation
function from prospect theory distinguishes between gains and losses. This distinction is achieved
through the introduction of a reference point. Outcomes that lie above the reference point are
counted as gains, outcomes below as losses. The losses are weighted heavier than the gains, which
makes them loom larger than potential chances. This uneven assessment of gains and losses mo-
tivates the term loss aversion. As a result, an objectively attractive investment opportunity may
be perceived as unattractive by a loss averse individual, because he overemphasizes the disadvan-
tageous outcomes. Another important property is that the scope of the investment evaluation is
usually not the total outcome of the investment strategy, i.e. the resulting wealth level or the
portfolio return, but is often limited to the outcomes of smaller groups of risky assets or even
to the outcomes of individual risky assets. This partial evaluation of the investor’s portfolio is
called narrow framing. Depending on how narrow the framing actually is, such an evaluation may
neglect diversification effects with other risky assets. This can make the assets appear more risky
than they actually are and therefore even more unattractive to the loss averse investor. Therefore
loss aversion may be a potent explanation for the reluctance to invest in risky assets such as stocks
or life annuities. The fact that Kahneman and Tversky’s cumulative prospect theory builds on
a strong empirical foundation underlies its relevance and its potential ability to explain investor
behavior.

However cumulative prospect theory was originally conceived as a theory for static decision
making under uncertainty. This means, that it is designed to explain preferences regarding risky
decisions where the uncertainty about the outcome is resolved immediately, or at least where there
are no further timing effects involved, such as accumulated interest or periodic withdrawals. Fur-
thermore for asset classes whose values are constantly fluctuating, such as stock prices, it is not
intuitively obvious which changes in value and especially over which time horizon constitute a gain
or a loss. Counting every downward movement in the price of a stock as a loss would make the in-
vestment appear utterly unattractive. Especially considering that in most continuous time models
such as the Black-Scholes-Model, there are infinitely many such downward movements in any time
interval. To only assess the outcome of an investment once it has been completely liquidated or
reaches maturity seems to be the more reasonable alternative. Unfortunately this approach runs
into another obstacle. The structure of the prospect theory evaluation function requires that an
investment can be represented in terms of an amount of capital invested and the random rate of
return by which this capital growths. But when there are partial withdrawals while the investment
is still running, then it is impossible to find a pair consisting of an amount of capital and a rate of
return that accurately describes the investment. This means that loss aversion in the strict sense
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of Kahneman and Tversky’s prospect theory is not a suitable tool to describe an individual’s eval-
uation of a life annuity which by definition contains annual or monthly withdrawals. Therefore, we
resort to a derivative concept which avoids the problem outlined above, the concept of myopic loss
aversion. Myopic loss aversion describes the phenomenon that an investor who makes a long term
investment is sensitive to the short term fluctuations of his assets. A typical simplified example
is the following. A single gamble with a positive expected outcome may reasonably be declined
by an individual, for example due to risk aversion. However, when the individual has the option
to repeat the gamble a sufficiently high number of times, then by the law of large numbers the
probability of an accumulated loss becomes small enough so that the gamble should eventually be
accepted. But when the individual is myopic loss averse, then he may still asses the outcome of
each gamble individually and therefore refuse to participate in the repeated gamble. In a similar
manner, a stock investment may be viewed as a sequence of gambles in which the price of the
stock either goes up or down. When these individual gambles have a positive expected return,
then in the long run the probability that the investor faces an accumulated loss should not be
prohibitively high. However when the investor is sensitive to short term losses, for example the
development of his asset over the course of a month or a single year, then the probability of a loss
within this shorter time interval is much higher. As a result, myopic loss averse investors perceive
such investments as riskier than they actually are and therefore may abstain from them. For this
reason, myopic loss aversion is a popular explanation for low participation rates on equity markets.
From a modelling perspective, myopic loss aversion has a particular advantage. When the evalua-
tion horizons and the periods between withdrawals coincide, then myopic loss aversion avoids the
problem of assessing investments with intertemporal withdrawals. Furthermore, in models with
annual selection of consumption level and investment strategy, it is somewhat reasonable to as-
sume that the evaluation horizon corresponds to the periods between portfolio adjustments1. This
makes it possible to construct a preference functional that contains annual consumption spending
and a loss averse investment evaluation and forms the basis for the model in the second and the
third paper.

With the addition of the investment evaluation, the retiree’s objective function now contains
three sources of utility. The first two, utility from consumption, uC , and utility from bequest, uB ,
are utility functions in the classical sense. The third source of subjective utility is the loss averse
investment evaluation function, v. We analyze two different specifications of the scope of the in-
vestment evaluation. The first specification, labeled narrow framing, assumes that the investment
prospects of each risky asset are assessed individually, the second, labeled broad framing, assumes
that the portfolio of all the retiree’s risky asset are evaluated at once. For an exogenous reference
return rR, the general form of the objective function for m risky assets with returns rj,t and asset
weights θj,t takes the form

E0

[ T∑
t=0

p0,tβ
t(uC(Ct) + (1 − pt,t+1)βuB(Bt+1)) + βtκ

m∑
j=1

v(θj,trj,t, rf)
]

in the model specification with narrow framing and

E0

[ T∑
t=0

p0,tβ
t(uC(Ct) + (1 − pt,t+1)βuB(Bt+1)) + βtκv(

m∑
j=1

θj,trj,t, rR)
]

in the model specification with broad framing.

Objective functions similar to the two above have been applied in empirical asset pricing models
and portfolio optimization models. In these cases the risky assets are usually assumed to be liquid
assets which can be traded annually. This is not the case for a life annuity, which is characterized

1Even though, as it is the case for the accumulation phase of an individual’s life cycle, there may be no with-
drawals but further investments in the risky asset.
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by payoffs over multiple periods and is usually an illiquid investment which cannot be traded. As
a result we cannot apply the above utility functions to a life annuity. To obtain an approximate
result on how loss aversion affects the demand for asset classes or types of insurance whose payoff
depends on the survival of the retiree, we resort to a simplified version of an annuity in the second
paper, the Arrow annuity. The Arrow annuity is a one period financial contract which pays a fixed
amount if the investor is still alive in the subsequent period, and nothing if he deceases during
the current period. At each time t = 0, 1, . . . , T , i.e. at the beginning of every year, the retiree
may purchase an Arrow annuity with an arbitrary payoff as long as its price is within the limits
of his budget restrictions. This simplified annuity has all the characteristics of a tradeable one
period investment. Therefore the objective functions presented above can be applied within this
simplified framework.

In general, loss aversion results in an unfavorable evaluation of the risky assets. That means
that in the absence of consumption or bequest utility, the loss averse retiree would refuse to invest
in any risky asset because the risky investment prospects result in subjective disutility. Hence,
the retiree in our model only invests in a risky asset when the expected gain in classical utility
outweighs the disutility associated with risk exposure. Therefore the parameter κ > 0 plays a
crucial role in the objective function. It governs the relative importance of classical and prospect
utility. For large values of κ the investor refuses to invest at all in risky assets, for small values
the prospect utility only plays a minor role in the investor’s assessment and the resulting de-
mand for risky assets stays near the benchmark demand in a model without prospect utility. We
conduct the optimization in the second paper for various values of the parameter κ to analyze its
effect on the demand for risky assets and the resulting optimal consumption and investment plans.

The analysis in the second paper is a reasonable approximation, because Arrow annuities con-
tain the important characteristics of a life annuity, which are dependency of their payoff on the
investor’s survival and, when they are priced following actuarial principles, the mortality credit,
i.e. the effect, that the survivors receive a return that is higher than the return of the underlying
asset, at the cost of the deceased who do not get their investment back. However there are still
qualitative and quantitative differences to a real life annuity with payoffs over multiple periods.
First, in contrast to the Arrow annuity, a regular life annuity is of a fixed size which cannot be
adjusted during the payoff phase. Second, the mortality credit is more pronounced and more
nuanced for a regular annuity than for the Arrow annuity. Therefore, to obtain a more accurate
analysis of the effect of loss aversion on the demand for annuities, in the third paper we propose
an adjustment to the model in the second paper that allows a loss averse investment evaluation of
a regular life annuity. Our approach builds on a decomposition of the life annuity into individual
Arrow annuities whoose payoffs are of the same size, one for each potential payoff date. Each of the
individual Arrow annuities can be regarded as an investment over multiple periods, which either
grows annually by a certain factor if the investor survives, or results in a total loss, i.e. grows by
the return −1, if the investor deceases. In this sense, we can find an annual return rate represent-
ing the development of each individual Arrow annuity. And because there are no intertemporal
withdrawals for an individual Arrow annuity, the respective investments can be evaluated by the
investment evaluation function in a similiar way as in the second paper. In addition to individual
Arrow annuities, we can then regard the portfolio of all Arrow annuities, which is equivalent to
the regular life annuity. At any point in time it contains all the Arrow annuities that have not
yet been paid out. Therefore its current value or rather the capital which is currently bound in
the annuity at time t is the sum of the initial endowments of all the Arrow annuities that are
still active multiplied by their respective growth factors for the previous t − 1 periods. In this
sense we can find an amount of capital for each period that describes the current investment in
the whole annuity. The annual portfolio return of the portfolio of Arrow annuities is the sum of
the individual annualized returns weighted by the relative sizes of their current endowments. As a
result we can find a pair of an amount of capital and an associated random return that describes
the annuity investment accurately during every period. This solves the initial problem regarding
the applicability of loss averse prospect utility to life annuities and allows us to apply the objective
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functions from the second paper to a regular life annuity. Again we distinguish between the two
model specifications with a narrow scope and a broad scope of framing in the investment evalua-
tion and also conduct the analyses for various values of the crucial parameter κ.

In the fourth paper we analyze the annuitization problem in the context of reference-dependent
preferences. More specificly we adapt a model by Köszegi und Rabin to the problem of volun-
tary annuitization. The resulting preference model is again based on a multi-period model with
uncertain lifetime and utility from consumption and bequest, but additionally assumes that the
retiree has an initial set of reference levels or beliefs about his future consumption and bequest.
We assume that these beliefs are rationally formed, for example on the basis of his annuitization
level prior to entering retirement. When the retiree is offered the chance to annuitize further parts
of his wealth upon entry to retirement, he measures the benefits of doing so against potential
non-beneficial deviations that come with choosing a higher degree of annuitization, for example
a lower bequest size if he deceases in an early period. The retiree’s objective function then takes
the form

E0

[ T∑
t=0

p0,tβ
t((uC(Ct) +mC(uC(Ct) − uC(CR,t)))

+ (1 − pt,t+1)β(uB(Bt+1) +mB(uB(Bt+1) − uB(BR,t+1)))
]

Here CR,t and BR,t are the reference levels regarding consumption and bequest and mC and mB

are piecewise linear functions which, similar to the concept of loss aversion, have a higher gradient
on the negative half axis than on the positive half axis. When the reference value and the actual
value are identical, then the reference utility terms cancel out and the preferences reduce to a
classical expected utility preference functional. The imbalance between positive deviations and
negative deviations results in a preference for the current reference level. As a result, a higher
annuitization level may be perceived as unfavorable even though it would lead to a higher classical
utility in the absence of the reference utility terms. Therefore the model can explain low annuiti-
zation rates by assuming reference dependency and low reference annuitization levels.

The four papers in this dissertation rely heavily on optimization. Because they all contain
stochastic optimization problems with multiple periods where the behavior in each period influ-
ences the potential scope of action in the subsequent periods, we resort to backwards induction
to find the optimal strategies and thus the optimal annuitization degrees in each model. However
this procedure requires a large number of computation steps and a variety of numerical meth-
ods to make the calculation as time efficient as possible. This is especially true in the fourth
paper, because the model there contains the additional dimensions of the reference values, which
are typically not constant but random variables themselves. To keep the computation feasible
we adopt an optimization method that builds on simulating potential reference levels, and then
solving the optimization problem along the simulated trajectories. Furthermore we employ some
recently proposed modifications to the regular backwards induction procedure to further decrease
the computation time. This dissertation contains a minor methodical contribution in that we
modify a method for smooth objective functions to allow an optimization of the non-smooth ob-
jective functions occurring in the fourth paper.

In contrast to models for empirical asset pricing, which contain models that are identical, or
very similar, to the models we adopt, our analysis only covers the demand side of annuitization.
This means we assume that the retiree has access to life annuities or other types of insurance
at a certain price and then calculate the optimal demand. However, as it is typical for models
for optimal annuity demand, we omit a comparison with empirical data because relevant data is
not easily available. To properly calibrate the models to actual data, the data set would have to
include very detailed data on retirees’ annual consumption, their investment policies, their annuity
and insurance endowments and their total wealth. The latter would have to include their whole
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estate, including possible property and other valuable assets. Without access to such data, models
like the ones we propose can only come to hypothetical explanations. However these models may
still help to understand how purchases of life insurance and life annuities are motivated and how
big the quantitative effects of potential influential factors are. As mentioned at the beginning of
this introduction, it is vital for the financial well-being of ageing societies in western countries but
also in newly industrialized countries like China, to achieve a high general annuitization degree
throughout their whole population. And when, in the face of demographic changes, unfunded
pension systems are no longer capable to supply this high annuitization demand, then it is even
more important to motivate people to privately annuitize parts of their wealth. But this is only
possible when we better understand, how the decision to annuitize is formed.
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Abstract

We study how assuming hyperbolic discounting instead of exponential discounting influ-
ences the demand for life annuities and bequest insurance for a life-cycle investor with a
bequest motive. We find that hyperbolic discounting leads to an increased annuitization degree
and a decrease in the demand for life insurance contracts. Nevertheless hyperbolic discounting
leads to higher bequests, mainly at the expense of consumption in the early retirement years.
In addition to that we find that bequest insurance is only optimal for strong bequest motives.
In this case the direct bequest insurance always dominates guarantee periods in our model.

1 Introduction

This paper explors the combined effect of hyperbolic discounting and a sufficiently strong bequest
motive on a life-cycle investor’s decision to annuitize his accumulated savings upon entry to re-
tirement. We propose a simple model in which the retiree has a one time only access to a life
annuity, which may contain a desired number of periods with a guaranteed payoff, and to a life
insurance contract which pays a fixed amount upon the death of the retiree. In our model guar-
antee periods, as well as life insurance contracts, exclusively serve to ensure a sufficient bequest
size. Albeit identical in purpose, both forms of bequest insurance function very differently. The
life insurance policy, which can be regarded as an inverse annuity comes with an inverse version of
the mortality credit. Because some policy holders may live very long, and thus their life insurance
payoff happens at a very late date, policy holders may enjoy a significant discount when ensuring
a sufficient bequest size in this way. Annuities with periods with a certain payoff work somewhat
differently towards a similiar goal. Typically a lifecycle investor whose wealth is fully annuitised
will save out of his annuity to accumulate a certain bequest size over time. In case of an early death
however, the amount saved will not be enough to reach the desired bequest size. With a number
of periods with guaranteed payoff, this problem may be avoided. Even though the accumulated
savings might not be sufficient, the continuing payoff of annuities for a few periods can cover the
resulting gap.

Which of both forms of insuring bequests, or wether a combination of both is optimal, may
depend partly on the retiree’s perception of time. The life policy combined with otherwise full
annuitization enables an agent to plan the exact amount that is bequeathed, as well as the exact
amount that he himself has at his disposal in each year, independent of his uncertain lifespan.
Of course the actual size of his bequest and his annual consumption levels still depend on wether
or not he chooses to save out of his annuity income. But if he does not, then he can in theory
determine his future financial policy with absolute certainty upon entry to retirement. The effect
of annuities with guaranteed payoff periods towards covering the bequest on the other hand is
completely dependent on the time of the agent’s death. For an agent with a sufficiently strong
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bequest motive, guarantee periods can only form a part of his strategy to insure his bequest. A
complement in the form of a suitable savings and investment policy will always be necessary. The
specific form of the retiree’s subjective time weighting may influence the relative attractivity of
the retiree’s various options when it comes to ensuring consumption and bequest. The aim of
this paper is to find how the optimal insurance endowment is affected by hyperbolic discounting
compared to exponential discounting.

Generally speaking, hyperbolic discounting leads to a strongly increased relative weighting of
later periods. This suggests the question, wether or not hyperbolic discounting will affect the
demand for longevity insurance, as running out of funds in old age may be more concerning to
the investor. On the other hand hyperbolic discounting leads to a lowering of the subjective im-
portance of earlier periods, which may reduce the demand for annuities with periods with certain
payoff.

We propose a dynamic model which covers the retirement phase of a life-cycle investor. At the
beginning, upon entering retirement, the agent chooses his insurance endowment which cannot be
readjusted later. He then subsequently chooses his annual consumption level and his investment
policy. At the time of his death, all of his remaining wealth and potential additional payoffs from
a life insurance policy, or from guarantee periods in the annuity contract, are transfered to a heir
in form of a bequest. In particular, we explicitly model how guaranteed payoffs in future peri-
ods affect the bequest utility at the time of death by calculating the certainty equivalent of the
outstanding payoffs. We assume that the agent’s survival probabilities coincide with the death
tables underlying the annuity premium calculation. The agent’s preferences follow a time additive
power utility specification regarding both consumption and bequest. More specificly we follow
De Nardi’s [15] specification of bequest utility, which includes the two parameters strength and
prevalence in the population of the bequest motive, in addition to the agent’s risk aversion. In a
first step, we find the optimal insurance endowments for various parametrizations of the bequest
utility by means of backwards induction following the principle of dynamic programming. This
analysis is conducted twice, once for an exponential discounting agent and once for a hyperbolic
discounting agent. In a second step, we simulate forward to obtain consumption and investment
paths associated with the optimal insurance endowments.

Our main results are, that hyperbolic discounting increases the annuitization degree, that
hyperbolic discounting decreases the demand for direct bequest insurance yet leads to higher
bequest sizes and that guarantee periods are never optimal in the cases considered in our analysis.
The difference between the optimal annuitization degrees lies between 2.40 and 3.80 percentage
points, depending on the parametrization of the bequest utility function. In the benchmark bequest
motive parametrization, there is no demand for bequest insurance in both models. However we
find that a slight decrease in the demand for the bequest leads to a positive demand for bequest
insurance. In the two cases in which there is a demand for bequest insurance, the hyperbolic
discounter invests 3.28% and 4.12% less in the life insurance than the exponential discounter, even
though we find that hyperbolic discounting leads to an increased sensitivity regarding bequest.
Therefore bequest sizes increase for the hyperbolic investor with a simultaneous reduction of their
standard deviation. These gains are achieved at the expense of consumption in the early periods.
The average consumption level lies slightly above the fully annuitized income for the exponential
discounter and, due to the decreased consumption in the early periods, slightly below for the
hyperbolic discounter.

1.1 Literature review

A majority of models for annuity demand suggest, that either full or at least fairly high partial
annuitization rates are optimal. Yet, as empirically observed, very few people actually annuitize
wealth beyond mandatory pension plans. This disparity is known as the annuity puzzle. Even in
the presence of a large loading factor in the annuity pricing, annuitization is still very desirable for
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the expected utility maximizer. Mitchell, Poterba and Warshawsky [40] find that in reasonably
calibrated models, a retiree may pay up to a quarter of his wealth just for access to the annuity
market, which is far more than the typical loadings on annuities.

In the recent decades, many potential influence factors on the demand for annuitites within
the framework of a rational investor have been identified. A good overview is given by Brown
[8]. Perceived poor empirical performance of many of these models has lead to a search for an-
swers outside of the domain of a rational investor. See for example Hu [25] or Brown [? ] for a
compendium of behavioral explanations in addition to the time inconsistent discounting that is
touched in this paper.

A prevalent argument on the side to recover the classical approach is to assume a bequest mo-
tive. This notion goes back to Yaari’s [49] early article on consumption under uncertain lifetime.
In Yaari’s article, and in most quantitative models, bequest motives are given exogenously in form
of a utility function over bequest sizes. Some approaches model bequest motives explicitly in the
form of their immediate effect on the welfare of the potential heirs. In the latter case, the form of
the heirs’ utility function for consumption will naturally carry over to an implicit bequest utility
function from the point of view of the bequeather. In a way this legitimizes the former approach
to model bequest utility directly through a utility function as done in this paper.

In general, bequests can be categorized by the receipient of the inheritage which leads to intra-
marital, intergenerational and charitable bequest motives. Modigliani [41] provides an overview
over these forms of bequest motives. Intergenerational bequests, that is parents bequeathing
to children, are sometimes further categorized in the classes incidental/accidental and altruis-
tic/strategic. Accidental intergenerational bequests result from a premature death while saving
for longevity. The accidental bequest is not intended and thus should have no effect on the decision
to annuitize. A parent with a strategic bequest motive uses his estate as a means to incentivise
his children or grandchildren whereas an altruistic agent will give for the sake of giving. Both
cases may hinder annuitization. However, the altruistic parent may always just leave his desired
bequest size immediately upon entry to retirement and annuitize the rest of his wealth. A similiar
argument can be made for the charitable bequest.

There is variety of papers exploring the effects of intergenerational bequest motives on saving
and consumption plans of the bequeather and the resulting bequest sizes. For example Gokhale,
Kotlikoff, Sefton and Weale [18] analyze the effect of intergenerational bequests on the develop-
ment of wealth and in particular wealth inequality over many generations. Instead of an exogenous
approach on bequest utility, they use a joint preference functional for bequeather and heirs. How-
ever they do not actually optimize due to the high number of state variables but apply behavioral
heuristics to simulate consumption and saving behaviour. In a more recent paper, Love [37] studies
a life-cycle model with random familiy shocks and the possibility to insure sufficient bequest sizes
through a life insurance policy. His approach however does not include access to annuity markets.
Bernheim, Shleifer and Summers [6] represent an examplary article that studies a non-altruistic
bequest motive. They propose a model for a strategic bequest motive in which parents use bequest
as an incentive for their heirs.

Furthermore there are many papers concerned with the particular form, and the effect on
consumption and saving plans, of intramarital bequest motives. Especially life insurance policies
as a means of bequest insurance are usually connected with this form of bequest. Auerbach and
Kotlikoff [3] argue, that life insurance policies can play an important role for bequests within a
marriage and find that empirically observed life insurance demand is too low for US households.
In a paper on the effects of the US social security system Hubener, Maurer and Mitchell [27] find
that life insurance for married couples is mainly purchased on the man’s lifes. In another paper
Hubener, Maurer and Rogalla [28] study the demand for annuities and life insurance for married
couples and find that, aside from joint annuities, life insurance may play an important role if
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there is a significant asymmetry in the annuitization degree of both partners. The latter situation
corresponds, in some way, to the strong bequest motive case in our framework.

Vidal-Melia and Lejarraga-Garci [48] study the annuitization decision with bequest motives
for a married couple with a joint utility function. Another look on intramarital bequest is given in
Brown and Poterba [11], who study the potential benefits of joint life annuities for married couples
with the result that utility gains for joint contracts are significantly lower than the utiltiy gains of
an annuity for individuals, which can explain the perceived under-annuitization of married couples.

There is also a variety of literature on the general relationship between the demand for life
insurance policies and bequest motives. For example Bernheim [5] was among the first to condunct
an empirical analysis on the role of life insurance as evidence for a bequest motive and its influence
on annuitization. Inkmann and Michaelides [30] follow a similiar approach in a more recent paper.

As it is the case in this paper, many articles study the effect of a general bequest motive
on annuitization without concerning themselves with the particular type of bequest. A recent
analysis concerning a similiar framework as in this paper is conducted by Lockwood [35]. In ac-
cordance with our results, he finds that sufficiently strong bequest motives can significantly lower
the demand for annuities. In a more recent paper [36] Lockwood finds that strong bequest mo-
tives may additionally increase saving and decrease long-term care insurance purchases. Inkmann,
Lopes and Michaelides [29] compare empirical determinants of voluntary annuity demand with
their effects in a suitable parameterized life-cycle modell and find that bequest motives can lower
the annuity demand and lead to predictions that are comparable to empirically observed values.
In accordance with our results they find that a reasonable risk premium in the stock market, in
combination with sufficiently strong bequest motives, can lead to less than full annuitization in the
optimum. Vidal-Melia and Lejarraga-Garci [47] study the impact of general bequest motives on
the annuitization decision under an implicit incorporation of bequest utility into the decumulation
phase of a lifecycle model and also find a decrease in annuity demand. Kotlikoff and Spivak [32]
find that, without access to annuities, people without a bequest motive may still leave bequests
of significant size by accident. This is mainly the result of a premature death while saving for
longevity.

Furthermore there is a great amount of literature concerning the general annuitization decision.
For example Davidoff, Brown and Diamond [14] find that in the absence of a bequest motive, full
annuitization is optimal in a complete market. In a similar perfect market setting with a bequest
motive, the agent should choose his desired bequest size upfront and then annuitize the remainder
of their wealth. Albeit they do not analyze the effect of access to equity markets, they conclude
that any annuitized asset dominates the non annuitized version in the absence of bequest motives.

In contrast to the once, and once only, annuitization paradigm followed here and in most of the
literature cited here, there is also a fair amount of literature concerned with timing effects of the
annuitization decision. Horneff, Maurer and Stamos [24] study the optimality of gradual annuitza-
tion. Milevsky and Young ([38] and [39]) focus on the optimal timing of the lump sum annuitization
decision. The general result is that annuitization should not occur too early. Milevsky and Young
find that self annuitization dominates the annuitization products available on the market at the
time of their research (2007) before the ages 65 to 70. Annuitization should also not occur too late.

Peijnenburg, Nijman and Werker [42] conduct a similiar analysis of the retirement phase of
a life-cycle with a bequest motive both absent and present. Their findings suggest, that even in
the presence of equity markets, full annuitization may still be optimal. In contrast to the Black-
Scholes equity prices underlying equity returns in our paper, they assume a more unfavorable
return specification, which leads to higher annuity demand in their model.

The potential gains from annuitized equity investments, in the form of variable annuities, have
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also been the subject of various recent studies. See for example the recent articles by Horneff,
Maurer, Mitchell and Stamos [21] and Horneff, Maurer, Mitchell and Rogalla [20]).

A comparison of the benefits of self-annuitization via equity markets and regular annuitization
is conducted by Albrecht and Maurer [2]. They find that self annuitization carries a high risk of
consumption shortfall, thus supporting the results in this paper, that while equity investments
lead to less than full annuitization in the optimum, they are far from fully replacing life annuities
as a protection against longevity risk.

This paper introduces the notion of hyperbolic discounting into to the general problem of the
optimal annuity and insurance endowment in the retirement phase of the life cycle. There are
already various studies of the effects of hyperbolic discounting in the lifecycle on consumption and
asset allocation. Laibson [33] finds that hyperbolic discounting can explain general overspending
and in particular undersaving for retirement. Diamond [16] studies the effect of quasi-hyperbolic
discounting on consumption paths and saving for retirement. Schreiber and Weber [? ] analyze
the effect that hyperbolic discounting has on the decision wether to take a lump sum or to annu-
itize accumulated saving upon entry to retirement, suggesting that time inconsistent discounting
may explain low annuitization rates.

The benchmark household in our paper is wealthy enough that claiming social security ben-
efits can be avoided altogether. However in a further analysis, we also study optimal insurance
and annuity endowments for poorer households. In that case there is strong interaction between
voluntary annuitization and government subsidies, which also perform the role of a longevity in-
surance. The potential effects of such subsidies are subject to a variety of articles. Hubbard [26]
for example, finds a significant impact of anticipated social security in form of a government sub-
sidy on the household portfolio allocation. Rust and Phelan [44] study the retirement behavior of
poorer households and find that their lack of access to fairly priced annuitites, as well as incentives
arising from social security, can explain under-annuitization among less wealthy households. In
a life-cycle analysis, Benitez-Silva [4] finds that the presence of social security can have a crucial
impact on private annuitization rates. Caliendo, Guo and Hosseini [12] study the question wether
social security is a substitute for anuity markets and find that social security may crowd out be-
quests.

2 The Model

2.1 The agent’s decision problem

We assume an exemplary agent who, at age 65 (time t = 0) enters retirement with savings of size
W > 0 at his disposal. The agent may reach a maximum age of 100 years (time T = 35) but may
also deceases at a prior time. Without a stream of labor income, the retiree depends entirely on
his accumulated savings W or returns generated from investing parts of it to finance his future
spendings. Aside from consumption by himself, the agent may also transfer parts of his wealth to
a heir in form of a bequest at the time of his death.

We assume that there are two general classes of assets available to finance his future con-
sumption. Initially, i.e. at time t = 0, the agent has access to the following types of insurance
products:

• An actuarially fair priced life annuity that pays a fixed amount A at the beginning of every
year under the condition that the agent is still alive at that time. Furthermore, the agent
has the option to fix a number NA of periods in which the annuity will be paid out regardless
of the survival state of the agent. Here we formally assume that the certainty equivalent
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of the outstanding annuities with certain payoff will be added to the bequest in case of a
premature death of the agent.

• An actuarially fair priced life insurance policy paying a fixed amount a at the time of death
of the agent. This amount will be added to the bequest left to the heir.

Both types of insurance are assumed to be illiquid1 and can only be purchased once at the
beginning of the planning horizon. We represent the agent’s insurance endowment by the triple
A = (A,NA, a). In a later section we relax the assumption that prices are fair and study the
demand for annuities and life insurance in the presence of a loading on the prices. For the re-
mainder of this section, we assume that a fixed endowment A has been chosen and outline the
dynamic consumption/investment problem the agent faces throughout his retirement under this
endowment. We then deduce the agent’s optimal behavior given A and thereby the value of the
endowment according to the preferences we specify below. Comparing the values for different
endowments then gives us the agent’s optimal longevity insurance investments. To simplify the
notation we omit indicating the fixed endowment A in the following.

In t = 0, after the insurance endowment has been selected and then subsequently, at the begin-
ning of every year (time t = 1, 2 . . . , T ), the investor chooses his annual consumption level Ct and
allocates the rest of his cash on hand between a riskless bond account, paying a fixed interest rate
Rf , and a stylized stock investment, paying a risky return Rt. We let 0 ≤ ct ≤ 1 denote the frac-
tion of cash on hand that is consumed at time t and 0 ≤ θt ≤ 1 the fraction of the remaining cash
that is invested in the stock account, implying that (1− θt) of the remaining cash will be invested
in the bond account. At no other point in time may the agent interfere with either consumption
or investment policy. Therefore his decision process, with the exception of the initial insurance
endowment A, is described by the pair γ0 = (ct, θt)t∈[0,T ]. The restriction to the unit intervals for
both policy parameters ensure firstly, that consumption may not exceed current wealth, i.e. that
Ct ≤ Wt holds, and secondly implies a no short selling as well as a no borrowing constraint. We
further assume that there is a base level of consumption C ≤ Ct that the agent needs to maintain
at any year. If his wealth on hand, and thus his consumption level, falls below this threshold, the
agent receives a government subsidy to bring his consumption up to the minimum level C. When
this happens the agent is forced to consume his whole wealth at once and is therefore reliant on
the subsidy for the rest of his life. To make an agent contribute to his cost of living to as much
an extent as possible, long term government subsidies usually demand liquidation of any of the
agent’s assets, even at very low prices. We thus assume that any pending life insurance payoff, as
well as any pending annuities with outstanding periods with certain payoff, have to be sold back
to the insurer when receiving the subsidy. While this may violate the nonliquidity of these assets,
we further assume that the general costs, and or legal regulations, prevent the agent from selling
off insurance contracts at any other times2.

The agent’s budget restriction, as implied by the above considerations, is therefore

WL
t+1 = max{Wt(1− ct)(θt(1 +Rt+1) + (1− θt)(1 +Rf )) +A,C} (1)

if the agent is alive at time t+ 1 and

WD
t+1 = Wt(1− ct)(θt(1 +Rt+1) + (1− θt)(1 +Rf )) + a (2)

if the agent deceases during period t+1, has not yet received a government subsidy in the previous
periods and there are no outstanding annuities from periods with a certain payoff. If there are

1Generally any insurance policy with a certain payoff, such as the life insurance above, may be subject to
repurchase. However this usually involves significant costs. We later weaken the illiquidity assumption under
specific circumstances, yet the agent will never be allowed to actively terminate the contract by himself.

2It should be noted that the effects of a government subsidy are only significant for an agent with a fairly low
initial wealth W . The agent in our benchmark case optimally chooses an annuity that is well above subsidy level.
This makes receiving a subsidy impossible for the agent as long as bankruptcy of the insurer is excluded. It does
however have significant effects on the annuitization decision of poorer households as we show later.
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such outstanding annuities, then his bequest size cannot be calculated as the wealth on hand at
time t + 1, since future cash flows and possible returns from investing parts of these chash flows
between the time of death and the last annuity payment have to be taken into account. Therefore
in that case we set

WD
t+1 = CENA−tA (3)

where CEsA denotes the certainty equivalent of the s outstanding annuities of size A in addition
to the current wealth at the time of death as given by equation (2). We give an exact specification
of CEsA after the utility functions for consumption and bequest have been specified.

If the agent has already received a government subsidy at time t, his total wealth will be zero
and any pending life insurance policy contracts cancelled. Thus there are no remaining assets to
bequeath, i.e.

WD
t+1 = 0. (4)

The inital value of the agent’s wealth process, WL
0 = W0, is determined by the agent’s wealth

after purchasing the insurance endowment A in t = 0. Specificly we have

W0 = W − PA,NA − Pa +A (5)

where PA,NA is the price of an annuity of size A with NA periods with certain payoff and Pa is
the price of a life insurance policy paying the amount a at the time of death of the agent.

Before we introduce the notion of hyperbolic discounting, we specify the benchmark model
with exponential discounting. In the most general form, time discount factors are written as

DFt = (1 + i)−α(t). (6)

where the function α describes the agent’s perception of time. Applying the identity function
α(t) = t results in the exponential discount factors DFt = (1 + i)−t = βt where β = 1

1+i . In this

case the discount factors DFt = βt are time consistent, i.e. the multiplicative property

DFs+t = DFs ·DFt (7)

holds for all s < t3.

Aside from the incorporation of hyperbolic discounting, which will be discussed in detail be-
low, our preference framework consists of a time-additive expected utility model. At any time
t = 0, 1, 2, . . . , T the retiree, provided that he is still alive at that time, receives utility from con-
sumption, u(Ct) = u(ctW

L
t ). At the time of his death he receives a final utility from bequest,

v(WD
t ). For an agent, who is alive at time t, we let pt denote the probability of surviviving the

period t + 1. Furthermore we let p0,t =
∏t
s=0 ps denote the unconditional4 probability that the

investor is alive at time t. Under the above assumptions the agent’s preferences in t = 0, under the
fixed annuity and insurance endowment A, are described by the functional Φ0 : [0,∞)× Γ0 7→ R

with

Φ0(W,γ0) = E0

[
T∑
t=0

p0,t−1β
t
(
ptu(ctW

L
t ) + (1− pt)v(WD

t )
) ]
. (8)

Analogously, we can consider the investor’s preferences (re-)started at any later time t > 0 for some
wealth level Wt. To this end we let γt = (cs, θs)s=t,t+1,...,T denote the agent’s decision process
started at t, with cs and θs following the constraints formulated above for all s = t, t + 1, . . . , T .

3Note that the functional equation f(t+s) = f(t)·f(s) with f 6= 0 is uniquely solved by the family of exponential
functions f(t) = eu·t.

4The probability is unconditional with respect to our model. In reality, p0,t is the probabilty that a male
individual who has reached age 65 will reache age 65 + t.
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The agent’s preference functional for the remaining time optimization problem at time t is then
given by5

Φt(Wt, γt) = Et

[
T∑
s=t

p0,s−1β
s−t (psu(csW

L
s ) + (1− ps)v(WD

s )
) ]
. (9)

An agent whose wealth once falls below the subsistence threshold Wt < C, is forced by the above
constraint to consume the base level subsidy consumption in each period, i.e. Ct = C and thus
ct = 1. In turn (1 − ct)θt = 0, which means the retiree looses control over both his consumption
and his investment policy6. As a consequence the retiree’s preferences are constant on Wt < C
which imposes the lower bound

Φt(Wt, γt) ≥ Φt(C) (10)

for all t = 0, 1, . . . , T and Wt ≥ 0 on the agent’s time t preferences.

Let Ut denote the set of time t decision policies γt, which are admissible according to the
previously established constraints. The investor’s value function is defined as

Vt(Wt) = sup
γt∈Ut

Φt(Wt, γt) (11)

For Wt > C, by lemma A.2 ii), the value function satisfies the Bellmann equation in the
following form

Vt(Wt) = sup
0≤c,θ≤1
cWt≥C

{
u(cWt) + ptβEt

[
Vt+1(WL

t+1)

]
+ (1− pt)βEt

[
v(WD

t+1)

]}
. (12)

In the subsidy case Wt ≤ C, the value function is equal to the lower bound from (10)

Vt(Wt) = Φt(C). (13)

The time t = T , due to pT = 0, marks the endpoint in the planning horizon and simultaneously
provides a terminal condition for the difference equation imposed in (12)

VT (WT ) = sup
0≤c,θ≤1
cWT≥C

{
u(cWT ) + βEt

[
v(WD

T+1)

]}
. (14)

With the benchmark model established we now turn to the specification with hyperbolic dis-
counting. The latter is a form of inconsistent subjective time evaluation. A consistent time
evaluation implies that the relative importance that is assigned to incidents at two points in time
only depends on the distance between those two points. Considering trade-offs between consump-
tion and saving between this year and the next, would result in the same preference as the trade-off
between consumption and saving twenty years and twenty-one years in the future. This is precisely
what equation (7) entails. As evidence by Thaler [46] suggests, some economic agent’s subjective
perception of the value of future payoffs may violate this principle. A famous example of such a
violation are probant’s answers to the hypothetical questions

• Choose between one apple today (A1) and two apples tomorrow (A2)

• Choose bewteen one apple in a year (B1) and two apples in a year and one day (B2).

5From a technical standpoint, the processes (WL
s )s≥t and (WD

s )s≥t occuring on the right side of equation (35)
are stochastic processes, that follow the dynamics described by the budget constraints (1), (2) and (4), started
at time t with the initial value Wt and controlled by the policy process γt. In the literature on control theory, a

superscript in the form of (W
(t,Wt,γt)
s )s≥t is often added as an indication. For simplicity we omit any such notation

throughout this paper.
6More precisely we then have Ut = {(1, 0)}, i.e. the set of feasible decision parameters collapses to a point.
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Here A1 is frequently preferred over A2, yet simultaneously B2 is preferred over B1. Since the
relative importance of future periods is a crucial factor in multi-period decision problems, the
question arises, if and to what extend, time inconsistent discounting influences the demand for
longevity and bequest insurance.

In this paper we adopt Harvey’s7 approach [19] on time inconsistent, or more specificly hyper-
bolic discounting, where

α(t) =
r

ln(1 + i)
ln(1 + t) (15)

which results in the discount factors

DFt = (1 + t)−r. (16)

A comparison of the weight assigned to the individual periods with exponential and hyperbolic
discounting is displayed in figure 1. The two most striking effects of hyperbolic discounting are
first, that earlier periods receive a lower weight while later periods, here starting at age 81, receive
a higher weight than in the exponential discounting counterpart. The second effect is the time
inconsistency itself. Whereas the relative importance of two succeeding periods always equals
β = .96 for the exponential discounter, the hyperbolic discounter’s relative weight of a succeeding
period compared to the previous period, from the point of view of t = 0, increases over time. In
our parametrization of hyperbolic discounting, the second period receives a relative importance of
.8581 compared to the first period, whereas the last period receives a relative importance of .9940
compared to the second to last period.
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Figure 1: Exponential versus Hyperbolic Discount Factors - agent’s age plotted versus subjective relative
time weighting of that period. For true comparability the values contained in the figure are not the discount
factors DFt applied in the model but the normalized versions DFt(

∑T+1
t=0 DFt)

−1. 100% on the y-axis
represents the value of the normalized weight of the first period for the exponential discounter.

To derive the Bellmann equation for the hyperbolic discounter, the retiree’s preference func-
tional Φ0(·, ·) must be decomposable in an analoguos manner as above. This requires a multiplica-

7It should be noted that there are various approaches to hyperbolic or more general forms of discounting.
However Abdellaoui, Attema and Bleichrodt [1] find that Harvey’s model yields the best fit to their data.
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tive property in the form of (7) to hold. Therefore we decompose the hyperbolic discount factors
DFt in the following way for s ≥ t

DFs = (1 + s)−r = (1 + t)−r ·

(
(1 + s)−r

(1 + t)−r

)
= (1 + t)−r ·

(
1 + s

1 + t

)−r
= DFt ·

(
1 + s

1 + t

)−r
. (17)

This leads us to the artificial intertemporal discount factors8 from time t to time s ≥ t

DFt,s =

(
1 + s

1 + t

)−r
(18)

which satisfy
DFs = DFt ·DFt,s. (19)

By Lemma A.2 i), as with the exponential discounting agent, we can now construct a difference
equation for the family Φt. The problem’s Bellmann equation for wealth levels Wt ≥ C then takes
the form

Vt(Wt) = sup
0≤c,θ≤1
cWt≥C

{
u(cWt) + ptDFt,t+1Et

[
Vt+1(WL

t+1)

]
+ (1− pt)DFt,t+1Et

[
v(WD

t+1)

]}
(20)

with the terminal condition

VT (WT ) = sup
0≤c,θ≤1

{
u(cWT ) +DFT,T+1Et

[
v(WD

T+1)

]}
. (21)

For Wt ≤ C, the problem once again reduces to

Vt(Wt) = Φt(C). (22)

2.2 Utility specifications

There are various utility specifications that could be applied to the general model presented above.
In this paper we follow the choices most encountered in the relevant literature.

Regarding the agent’s utility from consumption, we assume that it is given by the power utility
specification

u(x) =
1

1− γ
x1−γ . (23)

To model the agent’s utility from bequest we follow De Nardi’s approach [15] where a bequest
of size b yields the utility

v(b) =
ω

1− γ

(
ψ +

b

ω

)1−γ

. (24)

Here ω represents the individual’s desire to leave a bequest, the strength of the bequest motive,
and ψ can be referred to as the degree to which bequests are a luxury good9. For ψ > 0 the retiree
will only leave a bequest if his wealth allows a bequest of sufficient size in addition to his own
consumption. This has the consequence that a retiree in low wealth states shifts his priority away

8Note that these artificial factors are not the discount factors the investor would apply in time t ≥ 0.
9To illustrate the function of the two parameters in v it is best to regard the simpler problem with no time

weighting, a fixed wealth level W , a fixed lifetime of T years and no government subsidy. The optimal consumption
resulting from first order conditions is then C = (W +ωψ)/(ω+T ) and the optimal bequest is B = ω(C−ψ)+, i.e.
the bequest covers ω periods of spending the amount C − ψ or the amount the agent’s own consumption exceeds
ψ. If the agent cannot bequeathe an amount which exceeds ψ for ω years then the optimal bequest is zero.
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from bequest to his own consumption and is thus less risk-averse over bequests than consumption.

Because an agent who receives a subsidy is forced to consume all of his available wealth in
every period, welfare recipients invariably leave a bequest of size zero. Therefore they receive the
minimum bequest utility

v(0) =
ω

1− γ
ψ1−γ . (25)

If there are outstanding annuities with certain payoff, we set the bequest B to equal the
certainty equivalent of these outstanding payments in addition to the current wealth of the retiree
at the time of his death. Taking into account possible investment returns until the last annuity is
paid out, we define the certainty equivalent CEt,sA of s outstanding annuities of size A at time t
to be10

CEt,sA = v−1
(
DFt,t+s−1 sup

γ′s−1∈U ′s−1

E
[
v(Ws−1)

])
(26)

where Ws−1 denotes the resulting wealth from optimally investing the initial wealth according to
(2) at the time of death of the agent and then subsequently receiving and investing the pending
annuities. Here U ′s denotes the set of all admissible s-periods investment strategies γ′s following the
same constraints as the agent’s investment policies. In the case of only one outstanding annuity
payable at time t the formula reduces to

CEt,1A = WD
t +A (27)

where WD is the bequest size in the absence of outstanding periods given by equation (2). We
refer to appendix A.2 for a detailled treatment of the optimization problem contained in (26).

The lower bound on the agent’s preferences, given by equation (10) together with the specific
utility specification presented above, allows us to analytically compute a lower bound for the
agent’s value function. This proves useful in the numeric solution algorithm. For the problem
with exponential discounting it holds according to lemma A.1 that

Vt(W ) ≥ Vt(C) =

T∑
s=t

pt,s(1− ps)
(
βt−s+1 − 1

β − 1
u(C) + βt−s+1v(0)

)
(28)

for all t and W ≥ 0. A similiar bound without explicit solution exists for the problem with
hyperbolic discounting.

2.3 Insurance Pricing

We assume that the annuity as well as the life insurance policy are both actuarilly fair priced and
we omit a loading in the premium calculation, i.e. the prices are given by the expected discounted
payoffs of both financial contracts. Hence we have

PA,NA = A

(
NA−1∑
t=0

(1 +RA)−t +

T∑
t=NA

p0,t(1 +RA)−t

)
(29)

for an annuity of size A with NA periods with certain payoff and

Pa = a

T+1∑
t=1

p0,t(1− pt−1)(1 +RA)−t (30)

for a life insurance with payoff of size a at the time of death of the agent. We assume the calculatory
interest rate RA to be slightly higher than the riskfree interest rate RF . Throughout this paper

10v is strictly concave and thus invertible on [0,∞) with v−1(x) = ω

{(
x · 1−γ

ω

) 1
1−γ − ψ

}
.
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we let the agent’s individual survival probabilities coincide with those in the agent’s cohort, which
form the basis of the above pricing formulas. The issue of adverse selection in the annuity market
is therefore not captured in our model.

2.4 Return specifications and Parameter Choice

The parameter choices in this paper regarding the life cycle model underlying our approach reflect
the choices most encountered in the literature. We refer for example to Cocco and Gomes [13]
for a standard life cycle model. We assume that the returns Rt of the risky stock investment
are independently and identically lognormally distributed with parameters µ and σ such that the
expected return is E[Rt] = 8% with a standard deviation of σ(Rt) = 20%. This corresponds to a
standard Black-Scholes economy where asset prices are driven by the dynamics

dSt = µStdt+ σStdWt (31)

with the initial value S0 = 1. The riskfree interest rate Rf is set to 2%, implying a risk premium
of 6%.

As in Brown and Poterba [11] the agent enters retirement at age 65. The maximum age is set
to 100 years. The agent’s relative risk aversion parameter γ is set to 5. Our parametrization of the
two additional parameters in the bequest utility function is based on De Nardi [15]11. We follow
Peijnenburg, Nijman and Werker [42] and set the luxury parameter in relation to the retiree’s
fully annuitized income, the FAI, specified below. The resulting parameters are ω = 7.81 and
ψ = 0.67 ∗ FAI. The constant time discounting parameter in the exponential discounting is set
to β = 0.96. The hyperbolic discounting parameter is calibrated such that period 15 receives
the same weight as in the specification with time consistent discounting, following Schreiber and
Weber’s parametrization [45].

The survival probabilities used in the pricing of the insurance products as well as the agent’s
individual survival probabilities are both taken from german death tables12 and we assume a male
policyholder. The agent’s initial wealth is choosen such that full annuitization, i.e. investing
the complete initial wealth W in the annuity with zero periods with certain payoff and no life
insurance, results in a yearly annuity in advance of FAI = 25000.

3 Numerical Solution Technique

Given a fixed insurance endowment (A,N, a) we solve the agent’s optimal consumption and in-
vestment problem via backwards induction by means of the bellmann equations (12) and (20).
The terminal conditions in equations (44) and (21) allow us to compute VT . Given the value
function Vt at any time t, the Bellmann equations allow us to compute Vt−1 and subsequently
we obtain V0, as well as the optimal consumption and investment policies (ct, θt) along the time
horizon t = 0, . . . , T .

To calculate Vt in any time step we proceed as follows. We define a dynamic time dependant
grid {wl}l=0,...,Lt for the endogenous variable WL

t . Starting at time T we compute VT (wl), cT (wl)
and θT (wl) for all l = 1, . . . , LT by solving the terminal conditions (44) or (21). The affine nature
of the budget constraint and the bequest utility prevent the typical separation of consumption and
investment problem and we resort to a numerical solution technique to obtain the optimal policies.
In the subsequent steps t = T − 1, ..., 0 we use cubic spline interpolation on the grid (wl, Vt+1(wl))

11Note that De Nardi’s original formulation reads v(b) = ψ1

(
1 + b

ψ2

)1−σ
with ψ1 = −9.5 and ψ2 = 11.6. In

contrast to De Nardi where the relative risk aversion is set to σ = 1.5 we set γ = 5 to keep the risk aversion
parameter consistent with the utility from consumption.

12Source: Sterbetafel 2009/11 Deutschland männlich, Periodensterbetafeln für Deutschland 2009/2011, Statistis-
ches Bundesamt, Wiesbaden 2012.
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to calculate the value of Vt+1(w) for arbitrary w. A slight modification is necessary to capture the
piecewise constant nature of Vt+1 for wealth levels below the subsidiary threshold. Inherited from
the curvature of the utility functions u and v the value function Vt is, with an exception at the
right side of the interval [0, C] where it is constant, strictly concave with diminishing curvature for
higher wealth levels. As the approximation error for spline interpolation depends on the curvature
between sample points we choose an exponentially growing base wealth grid {wl}l=0,...,L0

with
w0 = C and L0 = 30. In addition to that we let the wealth grid grow linearly in each time step by
adding a new grid point wLt+1 = wLt + ∆w in every time step to prevent extrapolation for values
exceeding wLt while calculating Vt+1

13.

The conditional expectations, ocurring in each time step’s optimization problem, are calculated
using Gauss-Hermite-Quadrature (GH-Quadrature) with n = 32 sample points. To achieve an op-
timal efficency we follow Liu and Pierce [34] and apply a transformation of the standard weights
and sample points in GH-Quadrature which accounts for the specific parametrization (µ, σ) of the
lognormal returns in our model.

We conduct the above steps on a coarse grid of insurance endowments to obtain the location
of the optimal endowment. A search algorithm gives us the optimal value on the coarse grid and
thus a first estimator for the solution. In a second step we refine the insurance grid to the desired
precision around the estimator obtained in the first step. A second search within the solutions
on the fine grid gives us the optimal insurance endowment. Because the insurance endowment is
three dimensional, choosing a fine grid in the first step results in very high number of optimization
runs. The two step procedure avoids this curse of dimensionality.

The computational method applied here, to obtain the value function on the coarse grid, is a
typical numerical procedure in dynamic portfolio optimization. Further refinement of the number
of grid points in the various approximations does not change our results at the reported precision.
Similiar methods are applied by Horneff, Maurer and Stamos ([23] and [22]).

4 Results

4.1 Optimal insurance endowments

We present the optimal insurance endowments in table 1. The table contains the results for the
model specifications with exponential discounting, as well as hyperbolic discounting. Besides the
results in the benchmark bequest utiltiy specification, the table also contains the results for the
models in which the strength of the bequest motive and the luxury parameter are increased and
decreased by 50%, as well as a no bequest motive case.

The two main effects of hyperbolic discounting are: a) it increases the annuitization degree. In
the parameter constellations considered in our analysis the hyperbolic discounter’s annuitization
degree increases by between 2.40 and 3.80 percentage points. b) Hyperbolic discounting decreases
the demand for bequest insurance. In a constellation with the luxury parameter lowered by 50%,
we find that the hyperbolic discounter invests 3.28% less in direct bequest insurance. When the
strength parameter is increased by 50%, in addition to the decrease in the luxury parameter,
the hyperbolic discounter invests 4.12% less in the life insurance policy. All other parameter
constellations, especially the benchmark bequest motive specification, do not result in positive
demand for bequest insurance. Contrary to their popularity among retirees, guarantee periods are
never optimal in the cases considered here.

13Possible extrapolation on the left side of the wealth grid is not an issue since the value function is constant and
equal to Φt+1(C) for all Wt+1 < C.
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Optimal Insurance Endowment

Annuity
Size

Guarantee
Periods

Life Pay-
off

Total fraction of
wealth in insur-
ance

Exponential Discounting

ω = 7, 81, ψ = 0, 67 19800 (.7920) 1 0 (.0000) .7920
ω = 3, 91, ψ = 0, 67 21075 (.8430) 1 0 (.0000) .8430
ω = 11, 7, ψ = 0, 67 18900 (.7560) 1 0 (.0000) .7560
ω = 7, 81, ψ = 0, 34 18575 (.7430) 1 47235 (.0610) .8040
ω = 7, 81, ψ = 1.01 21000 (.8400) 1 0 (.0000) .8400
ω = 11, 7, ψ = 0, 34 16800 (.6720) 1 75111 (.0970) .7690
No bequest motive 22750 (.9100) 1 0 (.0000) .9100

Hyperbolic Discounting

ω = 7, 81, ψ = 0, 67 20750 (.8300) 1 0 (.0000) .8300
ω = 3, 91, ψ = 0, 67 21750 (.8700) 1 0 (.0000) .8700
ω = 11, 71, ψ = 0, 67 19750 (.7900) 1 0 (.0000) .7900
ω = 7, 81, ψ = 0, 34 19250 (.7700) 1 45686 (.0590) .8290
ω = 7, 81, ψ = 1.01 21550 (.8620) 1 0 (.0000) .8620
ω = 11, 7, ψ = 0, 34 17725 (.7090) 1 72013 (.0930) .8020
No bequest motive 23350 (.9340) 1 0 (.0000) .9340

Table 1: Optimal insurance endowments for varying bequest motive parameterizations. The numbers in
brackets indicate the fractions of the initial wealth invested in the annuity and the life insurance. The
fraction in the Annuitized Wealth Column does include the price adjustment for guarantee periods. The
poorer household starts with only 50% of the wealthier household’s initial wealth W0.

The strength parameter ω controls the relative importance of bequest with respect to annual
consumption. In the case of ψ = 0, and in the absence of time discounting, saving effects and
uncertainty, a retiree would bequeathe ω times his annual consumption. In the benchmark be-
quest motive specification, the difference in the optimal annuitization degrees for exponential and
hyperbolic discounting is 3.80%. This is the largest discrepancy between annuitization rates in
the cases considered in our analysis. When the strength of the bequest motive is reduced by
50%, the annuitization rates increase to 84.30% with exponential discounting, and to 87.00% with
hyperbolic discounting. This means the difference between annuitization rates decreases to 2.70%.
In the complete absence of a bequest motive, i.e. ω = 0 in our model, the annuity demand in
the optimum further increases to 91.00% with exponential discounting, and to 93.40% with hy-
perbolic discounting. This is a further decrease in the difference between the annuitization rates
to 2.40%. With neither a bequest motive nor other potential events that cause demand for liquid
wealth, such as medical expenses or other forms of background risk, the only factor that reduces
the demand for annuities is the relatively high equity risk premium and the lack of an annuitzed
equity investment in our model. This lack in the insurance menu in our model may be realistic as
it is in accordance with the finding in Milevsky and Young [38], that the little variety of annuity
forms that are actually available on the market can be a limiting factor in annuity demand. Even
in the presence of a bequest motive, the access to equity markets holds an incentive to annuitize
less. Figure 5 contains a comparison that shows the utility gains from annuitization for different
risk premia specifications in the benchmark parametrization with exponential discounting. Even
for the lower risk premium of 4%, which exceeds the calculatory interest rate rA by only 2%, the
optimal annuitization is less than 90%.

The luxury parameter ψ has a non-linear effect with respect to the retiree’s bequest utility.
In a simplified model, the retiree would bequeathe ω times the amount that his own annual con-
sumption exceeds the threshold ψ, if he can afford it, and nothing otherwise. A higher ψ implies
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that the degree to which bequest is a luxury good increases. When ψ is lowered by 50% the degree
to which bequest is a luxury good decreases. This implies that the demand for bequests increases
when the retiree’s wealth level remains constant. Furthermore the retiree’s risk aversion14 over
bequest increases which in turn results in a demand for direct bequest insurance. The exponential
discounter invests 6.10% of his initial wealth and the hyperbolic discounter 5.90% of his initial
wealth in the life insurance. The purchases of bequest insurance are offset by reduced degrees of
annuitization. As a result the overall insurance endowment sizes do not differ much between the
two time discounting specifications.

4.2 Optimal wealth, consumption, bequest and equity exposure

Figure 2 compares averaged optimal trajectories of the state and control variables wealth on hand,
consumption, bequest and equity exposure for the models with exponential and hyperbolic dis-
counting in the benchmark bequest motive parametrization. It shows that intertemporal variation
in consumption increases for the hyperbolic discounter. More precisely, consumption is lower in
the early periods than in the exponential discounting case and higher in the later periods. The
same relationships holds for bequests. An early death leads to smaller bequest whereas bequests
left in the late retirement years are bigger. This is a result of the relative underweighting of early
periods and relative overweighting of late periods15. In the presence of a sufficiently strong bequest
motive there is an incentive to preserve and even increase wealth on hand over parts of the retire-
ment phase. Togehter with the consumption behaviour this leads to a symmetrical hump shape
in the wealth trajectory of the exponential discounter. For the hyperbolic discounter this trajec-
tory is tilted to the left and negatively skewed. This relation exists with all the displayed processes.

The remainder of this section contains a brief outline of the main findings regarding the re-
tiree’s optimal behaviour followed by an in-depth analysis of the individual paths. Alongside the
benchmark bequest motive parametrization (ω = 7, 81, ψ = 0, 67) we also analzye the results
for the specification with a stronger bequest motive in form of a decreased luxury parameter
(ω = 7, 81, ψ = 0, 34) and for the no bequest motive case (ω = 0).

Our main finding is that, in the two cases with a bequest motive, hyperbolic discounting leads
to higher bequests at the expense of consumption, especially in the early retirement years. Even
though late life consumption is higher for the hyperbolic discounter, the disproportional decrease
in the early retirement periods leads to a decrease in total. This behaviour can be attributed to
the fact that, at the time of retirement the hyperbolic discounter assigns a relatively low weight
to the early periods, which results in lower actual consumption in those years. On the other hand
higher savings and disproportionally higher equity exposure in the later years lead to higher be-
quest sizes for the hyperbolic discounter. The trajectories in the absense of a bequest motive differ
significantly from the other two specifications. In this case consumption is generally higher at the
expenses of bequests. The average consumption paths remain stable on a high level compared with
the bequest motive cases in the first half of retirement, and then slowly decline in the second half
as the retirees’ funds run out. In contrast to the bequest motive cases, on average the hyperbolic
discounter has a lower intertemporal variation in consumption than the exponential discounter.

We turn back to the benchmark bequest motive and analyze the case of the exponential dis-
counter first. His average wealth on hand trajectory forms a hump shape. The maximum average
wealth level (10, 639) is reached at age 81. Disregarding the bequest motive, the annuity acts as a
riskless bond investment from the perspective of portfolio optimization. The relatively high annu-
itization degree means that the agent’s total asset allocation, that is wealth on hand and capital
bound in the annuity, is heavily focused on a riskless asset class. Wealth on hand is therefore

14The relative risk aversion over bequests is
−bv′′(b)
v′(b) = γ

ω
b

(ψ+ b
ω
)
.

15Compare figure 1 which contains a comparison of the discount factors in both models.
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Figure 2: Averaged trajectories for wealth, bequest, consumption and stock investment calculated from
N = 10000 forward simulations in the benchmark bequest parametrization for both time discounting spec-
ifications. The optimal annuity endowment is 79.20% of the initial wealth for the exponential discounter
and 83.00% for the hyperbolic discounter. Both agents abstain from both forms of bequest insurance.

unusually reliant on risky equity investments to compensate for this deviation from the optimal
portfolio composition. On average, the retiree invests 69.05% of his liquid wealth in equity mar-
kets. This leads to high standard deviations for the wealth on hand. Disregarding the first period
where wealth levels are fixed, the mean standard deviation in any later period is equal to 49.08%
of the average wealth level at that period. However due to the high degree of annuitization, the
consumption paths are less volatile. Ignoring premature death and again excluding the first pe-
riod, the mean standard deviation of annual consumption amounts to only 17.51% of the average
consumption level C̄. The latter is equal to C̄ = 25, 535 which exceeds the fully annuitized income
by 2, 14%. Average consumption is slightly lower than the fully annuitized income in the first 9
years of retirement, however these deviations do not execeed a shortfall of 3%. Furthermore the
average consumption level that is actually experienced by the retiree, i.e.

T∑
τ=0

p0,t(1− pt+1)E

[
1

τ

τ∑
t=0

Ct

]
(32)

is equal to 25, 113 and thus below C̄ but still above the fully annuitized income. The consump-
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tion smoothing effect of the annuity is noticeable in the low intertemporal variation in average
consumption. The standard deviation within the average consumption levels in all periods is only
2.61% (665.29).

On average the retiree dies at age 85 and leaves a bequest which amounts to 3.31 times the
average experienced consumption, or 83, 102 in total. In the simulation bequest sizes range from
11.52% (8, 310) to 593.32% (493, 060) of the average bequest size. The sample standard deviation
is 68, 18% (56, 660) of the average bequest size.
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Figure 3: Probability mass function (pmf) of time of death in our model. The spike at time T results
from cutting of the tail of the actual distribution.

The hyperbolic discounter chooses a slightly lower average consumption level in the first 16
periods. Noticeable is the immediate drop in the optimal consumption levels after the first period.
This is a result of the sharp drop in the relative importance the hyperbolic discounter assigns to
early periods, which is steepest in the first period. The average consumption level assuming no
premature death, C̄, is 25, 883 which is an increase of 1.01% compared with the exponential dis-
counter. This increase stems from a disproportional increase in consumption in the late retirement
years. But because the retiree’s survival until those late years is uncertain, the actually experi-
enced average consumption is only 24, 859 and thus lower than the exponential discounter’s and
the fully annuitized income. The intertemporal variation in consumption is 5.83% or 2.23 times
that of the exponential discounter. A similiar imbalance is observable in the exposure to equity
markets. Again average wealth on hand along to whole timeline is higher by 4.88%, even though
the initial wealth on hand is lower. In turn, the average bequest size along to whole timeline also
exceeds that of the exponential discounter by 5.93%. However in this case, the resulting average
bequest size surpasses that of the exponential discounter by 9.43%. On average, the hyperbolic
discounter leaves a bequest of 3.66 times his average experienced consumption. This is a relative
increase of 10.57% compared to the model with time-consistent discounting. The standard devia-
tion in total bequest size is very close to that of the exponential discounter. In relative terms the
standard deviation decreases by 4.52 percentage points to 63.66% of the average bequest size.

The relationship between the two models remains qualitatively similiar when the luxury pa-
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rameter is lowered and thus the demand for bequest is increased. In an exemplary parameter
specification where the parameter ψ is lowered by 50%, both retirees decrease their annuitization
degree and purchase direct bequest insurance16. In both cases the decrease in capital invested in
the annuity offsets the capital invested in bequest insurance so that the total insurance endowment
is very close to the benchmark endowment. There is no noticeable increase in equity exposure
and cash on hand compared with the benchmark model. Because annuity payments are lower, the
average consumption along the whole timeline is thus lower with C̄ = 23, 910 for the exponential
discounter and C̄ = 24, 330 for the hyperbolic discounter, which results in an actually experienced
average consumption of 23, 408 in the former and 23, 270 in the latter case. The relative difference
between the two models in experienced average consumption is almost identical to the benchmark
bequest motive. The intertemporal variation in consumption increases absolutely and relatively
in both cases to 3.03% for the exponential discounter and 6.27% for the hyperbolic discounter.
The second consequence of the higher demand for bequest is an increase in bequest sizes. The ex-
ponential discounter now bequeathes on average 5.67 times his average experienced consumption,
in total 132, 780. Again the hyperbolic discounter leaves larger bequests on a proportional and
absolute basis with an average bequest size of 6.12 times the average experienced consumption
or 142, 070 in total. The gains in average bequest sizes compared with the benchmark bequest
motive are almost entirely covered by the bequest insurance. As noted above there is no significant
change in saving and investing behaviour so that bequest insurance is mainly financed by reducing
consumption. On average the retirees now leave their benchmark bequest plus the amount covered
by bequest insurance. Because the latter is fixed the relative standard deviation of bequest sizes
reduces to 40.41% for the exponential and 41.00% for the hyperbolic discounter.

The absence of a bequest motive has a strong impact on the retirees’ optimal behaviour. The
optimal annuitization degrees are 91.00% for the exponential discounter and 93.40% for the hy-
perbolic discounter, constituting an increase of 11.8 percentage points in the former and 10.4
percentage points in the latter case compared with the results for the benchmark bequest motive.
Now consumption is the only source of utility in the model. Under a sufficient degree of annu-
itization there is thus no need to keep wealth on hand above certain levels. On the contrary the
retirees aim to consume all their wealth during their retirement. On average, this leads to higher
consumption in the early periods. Therefore, in contrast to the two previous cases with a bequest
motive present, late life consumption is decreasing. In parts this is also due to the fact that equity
exposure decreases with decreasing wealth and thus the retirees miss out on the equity returns
that retirees with a bequest motive receive as a result of their savings behaviour. Despite these
factors, overall consumption is obviously higher in the no bequest motive case. The experienced
average consumption level is 25, 343 for the exponential discounter and 25, 303 for the hyperbolic
discounter. These are increases of 0.91% and 1.70% compared with the benchmark model. In
comparison with the bequest motive cases the intertemporal variation in consumption increases
absolutely and relatively to 4.75% for the exponential discounter. In contrast to this the hyper-
bolic discounter experiences the lowest intertemporal variation in consumption of all considered
cases, with a standard deviation of 3.53%. Unlike in the previous cases this value is smaller than
the exponential discounter’ counterpart.

Any bequests left in the no bequest motive case are purely accidental and do not yield utility.
Bequest sizes are significantly lowered compared with the previous case. On average, bequests
amount to 9, 757 for the exponential discounter and 10, 615 for the hyperbolic discounter, in other
terms 38.50% and 41.95% of the average experienced consumption. The standard variations in
bequest sizes are 1.44 and 1.24 times the average bequest sizes, also considerably lower than in
the previous cases.

16We refer to appendix 4, figure 6 for an illustration of the average trajectories in this case.
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4.3 Who needs bequest insurance?

The figure 4 displays the minimum value for the strength of the bequest motive, the parameter
ω, for which at least 1% of the initial wealth is invested in the life insurance policy for a range of
values for the luxury parameter ψ. For ψ > 0.6 ·FAI, none of the ω-values considered in our anal-
ysis, 0 ≤ ω ≤ 10, generate positive demand for bequest insurance. We note that the benchmark
bequest motive specification, ω = 7, 81, ψ = 0, 67, lies just outside the critical parameter range.
This implies that even small deviations towards a higher demand for bequest, e.g. a lowering of
ψ alone or coupled with an increase in ω, may result in positive demand for life insurance.
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Figure 4: Minimum strength of bequest motive parameter value ω which results in a postive demand for
bequest insurance plotted versus degree of luxury good parameter ψ. Missing values imply that there is no
demand for bequest insurance up to the highest value for ω in our model. All parameter combinations
above the graph specify a model that generates a positive life insurance demand.

The figure 4 shows that hyperbolic discounting slightly reduces the demand for bequest insur-
ance. This may seem counterintuitive because the periods in which the agent’s probability of death
is comparatively high fall within the range of periods which are overweighted by the hyperbolic
discounter compared to the exponential discounter17. However as discussed in the two previous
sections the hyperbolic discounter chooses a higher degree of annuitization combined with higher
savings which directly translate into higher wealth levels and therefore higher bequest sizes in the
later periods. Thus bequest sizes are, at least in the parameter constellations explicitly considered
in the two last sections, the smallest in the early periods. Because these periods are underweighted
by the hyperbolic discounter compared with the exponential discounter, hyperbolic discounting
reduces the demand for bequest insurance. Nevertheless as we analyzed in the previous section,
the hyperbolic discounter’s higher savings in the second half of retirement lead to bigger bequest
sizes.
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Figure 5: Utility gains from annuitization with varying risk premia for the hyperbolic discounter in the
benchmark bequest motive parametrization.

4.4 The equity risk premium and the annuitization decision

The decision to purchase a financial asset cannot be made without the consideration of alternative
assets. In a model without a bequest motive and in which all potential assets are also available in
an annuitized form, the annuitized assets will dominate their non-annuitized counterparts under a
broad set of assumptions including unfair pricing (Davidoff, [14]). However Milevsky and Young
([38]) point out that the assumption that an equivalent annuitized version of any potential asset
exists is far from realistic. In their model self-annuitization via equity markets dominates the
actually available annuity products on the market upto retirement ages between 65 and 70. In the
presence of a bequest motive equity markets play a second role besides increasing consumption,
which is ensuring a sufficient bequest size. The optimal degree of annuitization therefore depends
on the trade-off between the longevity insurance provided by the annuity and the attractive return
potential of equity investments. This holds especially true when annuitized equity is not available.

Figure 5 shows the utility gains from various degrees of annuitization for three different risk
premia specifications. In any case full annuitization is not optimal. In the Black-Scholes framework
assumed in this paper, even the small risk premium of 4% (2% compared to the calculatory interest
rate), leads to annuitization rates that are below 90%. It should be noted that these results not
only depend on the size of the risk premium but also the general return specification. In a very
similiar setting which assumes normal returns, Peijnenburg [42] finds full annuitization to be
optimal for all the bequest utility parametrizations discussed in this paper at an identical risk
premium.

4.5 Initial savings and crowding out effect of government subsidy

In the parameter constellations considered so far, the access to a subsidy has no effect on the
retiree’s optimal strategy. With lower initial wealth levels this is no longer true. When the lux-
ury parameter ψ is proportionally adjusted, i.e. calibrated against the adjusted fully annuitized

17Compare figures 1 and 3.
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income FAI, than it holds that V0(pW |A) = p1−γV0(W |A) for A ≥ C for both time weighting
specifications. This is the case because both types of utility functions are positive homogeneous
of degree 1 − γ18 and the sufficient annuity size prevents the retiree from ever being eligible for
a subsidy. This means that optimal insurance endowments and behaviour variables such as con-
sumption and equity exposure can be calculated from the benchmark intial wealth case by scaling
them accordingly. However for sufficiently small p the access to a subsidy does have an effect on
the retiree. When the initial wealth is not high enough to ensure a steady consumption Ct ≥ C
and an eventual bequest through partial annuitization with a sufficiently high probability, then
the retiree may be tempted to either overconsume in the early retirement years and then resort
to the subsidy as his funds run out or try to increase his wealth through an aggressive equity
investment strategy. Both cases lead to a severe decrease in annuitization levels.

Optimal Insurance Endowment

100%W0 20%W0 19%W0

Exponential Discounting

ω = 7, 81, ψ = 0, 67 80%/0% 6%/0% 0%/0%

Hyperbolic Discounting

ω = 7, 81, ψ = 0, 67 83%/0% 9%/0% 0%/0%

Table 2: The effect of low initial wealth levels on the optimal insurance endowments in the benchmark
bequest motive parameterization. The first number indicates the fraction of the initial wealth that is annu-
itized, the second number indicates the fraction of the initial wealth that is invested in the life insurance.
In all cases, the optimal endowments do not contain additional guarantee periods.

Table 2 contains the optimal insurance endowments for two households with low initial wealth
levels in addition to the optimal endowment in the benchmark initial wealth for the benchmark
bequest motive specification. When the household has only 20% of the benchmark initial wealth
available, which means that the full annuitized income is equal to government subsidy FAI =
C = 5000, then there is still a little demand for annuities in our model. However for lower initial
wealth levels such as 19% this demand vanishes and both retirees abstain from annuitization.

18Let AF denote the annuity factor according to equation 29 with zero guarantee periods. The fully annuitized
income FAI must satisfy FAI = W/AF in the benchmark case and FAIp = Wp/AF for a household with only
100p% of the benchmark inital wealth W . Let ψ = FAI · ψ̄ and ψp = FAIp · ψ̄ denote the respective luxury
parameters. Then we have for the bequest utility vp with luxury parameter ψp that

vp(pB) =
ω

1− γ

(
ψp +

pB

ω

)1−γ

=
ω

1− γ

(
FAIpψ̄ +

pB

ω

)1−γ

=
ω

1− γ

(
Wp

AF
ψ̄ +

pB

ω

)1−γ

= p1−γ
ω

1− γ

(
W

AF
ψ̄ +

B

ω

)1−γ

= p1−γ
ω

1− γ

(
ψ +

B

ω

)1−γ

= p1−γv(B)

.
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4.6 Pricing effects

In order to compensate the insurer for administration costs and general expenses, the actual price
P offered for an annuity is typically higher than the actuarial fair price. This section analyzes
the effects of such deviations from the fair price on the demand for annuities and life insurance.
A way to measure the degree to which an annuity or a life insurance is priced unfairly is the
Money’s Worth of an annuity. It is defined as the quotient of the expected net present value of
the annuity payments, i.e. the actuarial fair price, and the actual price offered for the annuity.
Empirical studies have found that the Money’s Worth of an annuity depends on several factors.
There are differences between different countries and wether or not the annuitiy payments are
inflation protected or nominal. Furthermore the Money’s Worth can be different for compulsatory
annuity markets and for voluntary annuity markets. Brown, Mitchell and Poterba [10] report a
Money’s Worth of 85% for real annuities on the compulsatory market in the UK and James and
Vittas [31] measure a Money’s Worth of 80% for real annuities on the vountary market in the
UK. For nominal annuities in the UK, Finkelstein and Poterba [17] report a Money’s Worth of
87% for voluntary annuities and 90% for compulsatory annuities. In the US market, Poterba and
Warshawski [43] measure a Money’s Worth of 85% for nominal and 70% for real annuities.

In our analysis we consider the exemplary cases of a Money’s Worth of 85% and 70% for a
variety of bequest motive specifications in the models with exponential discounting and hyperbolic
discounting. We keep the assumption that the agent’s initial wealth is such that full annuitization
assuming fair pricing results in an annuity of size 25000. However due to unfair pricing, the
full annuitized income FAI is lower in the cases considered in this section. To keep the results
comparable to the previous results we assume that the degree to which bequests are luxury goods,
captured in the parameter ψ which is calibrated relative to the FAI, is still calibrated relative to
the full annuitized income in the case of fair pricing. The resulting optimal insurance endowments
are displayed in table 3. As it is the case with actuarilly fair priced annuities, guarantee periods
are never optimal in the cases considered here.

Optimal Insurance Endowment

Actuarilly
Fair MW 85% MW 70%

Exponential Discounting

ω = 7, 81, ψ = 0, 67 .7920/.0000 .7080/.0000 .6420/.0000
ω = 3, 91, ψ = 0, 67 .8430/.0000 .7540/.0000 .6740/.0000
ω = 7, 81, ψ = 0, 67 .7430/.0610 .6650/.0320 .4950/.0000
No bequest motive .9100/.0000 .8170/.0000 .6890/.0000

Hyperbolic Discounting

ω = 7, 81, ψ = 0, 67 .8300/.0000 .7390/.0000 .6620/.0000
ω = 3, 91, ψ = 0, 67 .8700/.0000 .7810/.0000 .6790/.0000
ω = 7, 81, ψ = 0, 67 .7700/.0590 .6780/.0200 .5520/.0000
No bequest motive .9340/.0000 .8330/.0000 .7240/.0000

Table 3: Pricing effects on the optimal insurance endowments for varying bequest motive parameteriza-
tions. The first number indicates the fraction of the initial wealth that is annuitized, the second number
indicates the fraction of the initial wealth that is invested in the life insurance. In all cases, the optimal
endowments do not contain additional guarantee periods.

In all model and bequest motive specififcations considered in this section, unfair pricing has
a strong effect on the optimal insurance endowment. One of the reasons for this is the access
to the equity market. When the return of the annuity investment decreases due to higher prices
the relative attractiveness of equity investments increases. However even in the case of a Money’s
Worth of only 70% the retiree still invests a substantial amount in annuities. With the exception of
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the model specification with the strongest demand for bequest, the model with the lowered luxury
parameter, the optimal annuitization degree is always above 60%. In the benchmark bequest
motive specification, unfair pricing has a stronger effect on the hyperbolic discounter than on the
exponential discounter. For the former, annuity demand reduces by 10.96% when the Money’s
Worth is 85% and by 20.24% when the Money’s Worth is 70%. For the latter annuity demand
reduces by 10.61% and 18.94% respectively. In turn, unfair pricing reduces the differences between
the exponential and the hyperbolic discounter. The difference between the optimal annuity demand
reduces from 4.80% in the model with fair pricing to 3.12% in the model with a Money’s Worth
of 70%. The situation is fairly similiar for the bequest motive parameterization with a lowered
strength parameter. In the model parameterization with a lowered luxury parameter the demand
for annuities is affected in a similiar magnitude than in the two previous cases when the Money’s
Worth is lowered to 85%. The demand for bequest insurance is affected more drastically. In the
model with exponential discounting the retiree invests 47.54% less in the life insurance than he
would with fair pricing. In the model with hyperbolic discounting he invests 66.10% less. When the
Money’s Worth is only 70%, the demand for bequest insurance vanishes completely in both model
specifications. Furthermore the retirees now decrease their annuitization degrees much stronger
than in the previous cases. The exponential discounter by 33.38% and the hyperbolic discounter
by 28.31% compared to the model with fair pricing. To finance their demand for bequests the
retirees now rely much heavier on equity investments than on life insurance products. Finally,
in the model without a bequest motive, the changes in annuity demand are again quantitatively
similiar to the first two cases. The exponential discounter reduces his annuity investment by
10.22% when the Money’s Worth reduces to 85% and by 24.29% when the Money’s Worth reduces
to 70%. The hyperbolic discounter reduces his annuity demand by 10.81% and 22.48%.

5 Conclusion

We find that hyperbolic discounting increases the demand for life annuities because it shifts the
retiree’s priorities towards the later periods of the retirement phase. Furthermore the hyperbolic
discounter invests less in life insurance contracts. Because death, and therefore the timing of the
bequest, is more likely to occur in the second half of the retirement phase, and because these
periods receive a higher subjective weight by the hyperbolic discounter, it is bequest sizes in these
periods that he is particularly concerned about. His strategy to achieve high bequest sizes in these
periods is to consume less while receiving higher annuity payments than the exponential discounter
and so to save for bequest out of his income. Furthermore we find that guarantee periods are never
optimal in the cases considered in this paper.

30



References

[1] Mohammed Abdellaoui, Arthur E Attema, and Han Bleichrodt. Intertemporal tradeoffs for
gains and losses: An experimental measurement of discounted utility*. The Economic Journal,
120(545):845–866, 2010.

[2] Peter Albrecht and Raimond Maurer. Self-annuitization, consumption shortfall in retirement
and asset allocation: The annuity benchmark. Journal Of Pensions Economics & Finance,
1(03):269–288, 2002.

[3] Alan J Auerbach and Laurence J Kotlikoff. The adequacy of life insurance purchases. Journal
of Financial Intermediation, 1(3):215–241, 1991.

[4] Hugo Beńıtez-Silva. The annuity puzzle revisited. Michigan Retirement Research Center
Working Paper, 2003.

[5] B Douglas Bernheim. How strong are bequest motives? evidence based on estimates of the
demand for life insurance and annuities. Technical report, National Bureau of Economic
Research, 1992.

[6] B Douglas Bernheim, Andrei Shleifer, and Lawrence H Summers. The strategic bequest
motive. The Journal of Political Economy, pages 1045–1076, 1985.

[7] Dimitri P Bertsekas and Steven E Shreve. Stochastic optimal control: The discrete time case.
Academic Press New York, 1978.

[8] Jeffrey R Brown. Rational and behavioral perspectives on the role of annuities in retirement
planning. Technical report, National Bureau of Economic Research, 2007.

[9] Jeffrey R Brown, Jeffrey R Kling, Sendhil Mullainathan, and Marian V Wrobel. Why don’t
people insure late life consumption: A framing explanation of the under-annuitization puzzle.
Technical report, National Bureau of Economic Research, 2008.

[10] Jeffrey R Brown, Olivia S Mitchell, and James M Poterba. Mortality risk, inflation risk, and
annuity products. Technical report, National bureau of economic research, 2000.

[11] Jeffrey R Brown and James M Poterba. Joint life annuities and annuity demand by married
couples. Technical report, National Bureau of Economic Research, 1999.

[12] Frank N Caliendo, Nick L Guo, and Roozbeh Hosseini. Social security is not a substitute for
annuity markets. Review of Economic Dynamics, 17(4):739–755, 2014.

[13] Joao F Cocco, Francisco J Gomes, and Pascal J Maenhout. Consumption and portfolio choice
over the life cycle. Review of financial Studies, 18(2):491–533, 2005.

[14] Thomas Davidoff, Jeffrey R Brown, and Peter A Diamond. Annuities and individual welfare.
The American economic review, 95(5):1573–1590, 2005.

[15] Mariacristina De Nardi. Wealth inequality and intergenerational links. The Review of Eco-
nomic Studies, 71(3):743–768, 2004.
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Appendix

A1

Lemma 1 (A.1). Assuming a subsidy consumption level of size C and a bequest utility of the form
(24), the value function for the exponential discounting agent satisfies

Vt(w) ≥
T∑
s=t

pt,s(1− ps)
(
βt−s+1 − 1

β − 1
u(C) + βt−s+1v(0)

)
(33)

for all t ∈ [0, T ].

Proof. Using that
∑s−1
k=0 β

k = βs−1
β−1 , a quick calculation yields

s∑
k=t

βk−t =
βs+1−t − 1

β − 1
. (34)

Let pt,s∗ = pt,s(1−ps) denote the probability that the individual deceases in period t+1. Because
the subsistence consumption level must be maintained at all times, we must have Ct = ctWt ≥ C
for all t ∈ [0, T ]. Using this and the definition of the value function Vt (11), the definition of the
preference functional Φ (35), the Law of Total Expectation and (34) we find that for all wealth
levels w ≥ 0 and strategies γt ∈ Γt

Vt(w) ≥ Φt(w, γt)

= Et

[
T∑
s=t

p0,s−1β
s−t (psu(csW

L
s ) + (1− ps)v(WD

s )
) ]

≥ Et

[
T∑
s=t

p0,s−1β
s−t (psu(C) + (1− ps)v(0))

]

=

T∑
s=t

pt,s∗

[(
s∑
k=t

βk−tu(C)

)
+ βs+1−tv(0)

]

=

T∑
s=t

pt,s(1− ps)
(
βt−s+1 − 1

β − 1
u(C) + βt−s+1v(0)

)

Lemma 2 (A.2 Bellmann Equation). i) The value function for the hyperbolic discounting agent
satisfies the Bellmann equation (20) with the terminal condition (21).

ii) The value function for the exponential discounting agent satisfies the Bellmann equation (12)
with the terminal condition (44).

Proof. i)
Given the current wealth level Wt and a feasable (remaining time) strategy γt we can now for-

mulate the investor’s preferences assuming an initial annuity endowment (A,NA, a) when starting
at a fixed time t. Here we assume that the investor is still alive at time t and hence set pt,r = 1 for
all r ≤ t and pt = 1 . Using the multiplicative properties of the cumulative survial probabilities,
the decomposed discount factors and the law of iterated expectations we obtain
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Φ0(W0, γ0) =E0

[
T∑
s=0

p0,s−1DFs
(
psu(csW

L
s ) + (1− ps)v(WD

s )
) ]

=E0

[
t−1∑
s=0

p0,s−1DFs
(
psu(csW

L
s ) + (1− ps)v(WD

s )
) ]

+ E0

[
T∑
s=t

p0,s−1DFs
(
psu(csW

L
s ) + (1− ps)v(WD

s )
) ]

=E0

[
t−1∑
s=0

p0,s−1DFs
(
psu(csW

L
s ) + (1− ps)v(WD

s )
) ]

+DFt · p0,t · E0

[
Et

[
T∑
s=t

pt,s−1DFt,s
(
psu(csW

L
s ) + (1− ps)v(WD

s )
) ]]

=E0

[
t−1∑
s=0

p0,s−1DFs
(
psu(csW

L
s ) + (1− ps)v(WD

s )
) ]

+DFt · p0,t · E0

[
Φt(Wt, γt)

]

where

Φt(Wt, γt) = Et

[
T∑
s=t

pt,s−1DFt,s
(
psu(csW

L
s ) + (1− ps)v(WD

s )
)]

(35)

denotes the investor’s time t preference functional.

From the definition of Φt we can obtain the following difference equation for the family
(Φt)t∈[0,T ] by again invoking the tower property of the conditional expectation and the multi-
plicative properties of the survival probabilities and the intertemporal discount factors

Φt(Wt, γt) = Et

[
T∑
s=t

pt,s−1DFt,s
(
ps−1u(csWs) + (1− ps−1)v(WD

s )
)]

(36)

= DFt,tu(ctWt) + Et

[
T∑

s=t+1

pt,s−1DFt,s
(
ps−1u(csWs) + (1− ps−1)v(WD

s )
)]

(37)

= u(ctWt) + Et

[
T∑

s=t+1

pt,s−1DFt,s
(
ps−1u(csW

L
s ) + (1− ps−1)v(WD

s )
)]

(38)

= u(ctWt) +DFt,t+1ptEt

[
Et+1

[
T∑

s=t+1

pt+1,s−1DFt+1,s

(
ps−1u(csW

L
s ) + (1− ps−1)u(WL

s −A)
)]]

(39)

+DFt,t+1(1− pt)Et

[
v(WD

t )

]
(40)

= u(ctWt) +DFt,t+1Et

[
ptΦt+1(WL

t+1, γt+1) + (1− pt)u(WD
t )

]
. (41)

The preference functional Φt, the wealth dynamics described in (1),(2) and (4), the control set
Ut and the underlying probability space containing the stock returns satisfy the general conditions
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as given in Bertsekas [7] to allow for a dynamic programming approach19. Thus by taking the
supremum at both sides of

Φt(Wt, γt) = u(ctWt) +DFt,t+1ptEt

[
Φt+1(WL

t+1, γt+1) + (1− pt)v(WD
t ))

]
(42)

we obtain the Bellmann equation for the investor’s optimization problem

Vt(W ) = sup
0≤c,θ≤1
cWT≥C

{
u(cW ) +DFt,t+1ptEt

[
Vt+1(WL

t+1)

]
+DFt,t+1(1− pt)Et

[
v(WD

t )

]}
(43)

with the terminal condition

VT (W ) = sup
0≤c,θ≤1
cWT≥C

{
u(cWT ) +DFT,T+1ET

[
v(WD

T+1)

]}
. (44)

ii) Follows from i) by setting DFt,t+1 = β.

19These are mainly measureability conditions regarding the functions contained in the dynamics of the budget
constraints WL

t+1 = f1(WL
t , ct, θt, Rt+1) and WD

t+1 = f2(WL
t , ct, θt, Rt+1) as well as in the objective function

Φt(Wt, γt) = Et
[∑T

s=t f3(s,WL
s ,W

D
s , cs, θs)

]
and the stochastic process (Rt)t=1,T+1. The measurability of f1,

f2 and f3 follows from their continuity. The random returns are adapted to the filtration by definition because
Ft = σ(Rt).
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A2 - Certainty equivalent of outstanding annuities

The dynamic portfolio optimization problem contained in the definition of the certainty equivalent
CEt,sA in (26)

CEt,sA = v−1
(
DFt,t+s−1 sup

γ′s−1∈U ′s−1

E
[
v(Ws−1)

])
can be formulated as follows:

maximize
γ′s−1=(θt,...,θt+s−2)

E
[
v(Ws−1)

]
subject to Wr+1 = Wr(θt(1 +Rr+1) + (1− θr)(1 +Rf )) +A, r = t, . . . , t+ s− 2,

Wt = WD
t +A,

0 ≤ θr ≤ 1, r = t, . . . , t+ s− 2,

(45)

where WD
t is time t wealth in the death case defined by (2). Once again we resort to dynamic

programming to solve this problem. The Bellmann equation for this problem is

Vr(w) = sup
θ∈[0,1]

E

[
Vr+1

(
w(θ(1 +Rr+1) + (1− θ)(1 +Rf )) +A

)]
(46)

with the terminal condition

Vs−2(w) = sup
θ∈[0,1]

E

[
v

(
w(θ(1 +Rt+s−1) + (1− θ)(1 +Rf )) +A

)]
. (47)

In both cases we optimize a contiuous function over the compact domain [0, 1] which implies that
the suprema are attained and thus the existence of the maximum in the optimization problem
(45). We refer to Remark 1 in Appendix A1 for details about the extistence of the integerals in
(46) and (47).

We solve the problem via backwards induction. We define an exponentially placed and dynam-
ically growing grid {wl}l=1,...,Lt with L0 = 30 and w0 = A for the wealth process Wt, . . . ,Wt+r−2
and interpolate the value function from the pairs (wl, Vt(wl)) by Piecewise Cubic Hermite Inter-
polation. Conditional expectations are calculated via Gauss-Hermite-Quadrature with n = 32
sample points transformed to best suit the lognormal return specification of our model.

37



A3 - Wealth, consumption, bequest and equity exposure trajectories
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Figure 6: Averaged trajectories for wealth, bequest, consumption and equity exposure calculated from
N = 10000 forward simulations in the bequest motive parametrization with low luxury parameter ψ = 0.34
for both time discounting specifications. The optimal annuity endowments are A = 18, 575 (74.30%) and
a = 47, 235 (6.10%) [80.40% total] for the exponential discounter and A = 19, 250 (77.00%) and a = 45, 686
(5.90%) [82.90% total] for the hyperbolic discounter. The numbers in brackets indicate the fraction of the
initial wealth that is invested in the respective insurance class.
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Figure 7: Averaged trajectories for wealth, bequest, consumption and equity exposure calculated from
N = 10000 forward simulations in the no bequest motive parametrization (ω = 0) for both time discounting
specifications. The optimal annuity endowments are A = 22, 750 (91.00%) for the exponential discounter
and 23350 (93.40%) for the hyperbolic discounter. The numbers in brackets indicate the fraction of the
initial wealth that is invested in the respective insurance class.
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Abstract

We study the demand for Arrow annuities, a stylized form of one-period annuities, in
a dynamic preference model that combines expected utility theory and loss averse investment
evaluation. A particular focus of this paper lies on the parametrization of the relative im-
portance of the investment evaluation. We find that the optimal demand for Arrow annuities
reacts less sensitive to an increase of the relative importance of the investment evaluation than
the demand for stocks. While loss aversion always reduces the total exposure to risky assets,
we find that it can, in some cases, increase the demand for Arrow annuities compared to a
benchmark model without loss aversion.

1 Introduction

A recurring finding in the recent literature on annuity demand, is that the empirically observed
lack of voluntary annuitization may be attributed to the particular form the annuitization decision
is displayed to the decision maker. This form may or may not conincide with the economic models
aiming to derive the optimal demand for annuities. The typical life-cycle models only focus on
the retiree’s utility from consumption. And when these models also include bequest motives in
the form of utility from bequest, it is usually an approximation for the heirs’ additional utility
from consumption that the bequest grants them. Therefore these models fall into the category
of a consumption frame for the annuitization decision. But experimental evidence, for example
by Brown, Kling, Mullainathan and Wrobel [12] suggests, that indivduals actually choose an-
nuity levels as predicted by those models, when their optimization problem is framed in terms
of consumption smoothing and longevity insurance. It is only when the decision is approached
from an investment perspective, which means comparing the risk and return profile of an annu-
ity with other asset classes, that individuals refrain from voluntary annuitization. The literature
concerning the annuity puzzle, the forementioned gap between suggested and observed voluntary
annuitization, has so far, at least to the best of our knowledge, not produced a dynamic model for
the annuitization decision that adds an investment evaluation to the classical consumption frame.
There are dynamic models, such as Hu and Scott [23], that can be classified as investment frames
for the annuitization decision. However these models do not incorporate utility from consumption
at all, and thus neglect the huge potential of annuities as an insurance against longevity risk.
The aim of this paper is to propose a simple dynamic model that incorporates the effects that
are present in both frames, the benefits of life annuities when it comes to insuring a stable con-
sumption throughout the whole retirement phase and the possibly disadvantageous evaluation of
the return characteristics of an annuity. A general problem that occurs when comparing annuity
returns with the returns of other asset classes is their unknown number of payment periods. Any
liquid asset, such as a stock investment, can be represented by its annual return characteristics.
From the return characteristics and the amount of cash invested in the stock we can calculate an
annual investment evaluation in the sense of Benartzi and Thaler [7]. They introduce the concept
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of myopic loss aversion which applies a loss averse investment evaluation to the development of
a short term stock investment. However this concept cannot be easily applied to life annuities
because they contain annual payments over multiple periods. Because there is no natural way to
break down an annuity investment into individual one period returns and an associated amount
of capital invested per period, there is no straightforward way to implement loss aversion over
annuities in a dynamic model with annual consumption and investments in other asset classes. To
avoid this problem we reduce our analysis to a stylized form of a life annuity. Instead of annuities
with payoffs over multiple periods for the rest of the purchaser’s lifetime, we focus on one-period
annuities whoose payoff is conditional on the purchaser surviving the subsequent period and which
may be purchased annually, starting upon entry to retirement.

We assume our agent has preferences similiar to the models proposed by Barberis and Huang
([3] and [4]). Their approach combines consumption evaluation according to expected utility
theory and a loss averse investment evaluation based on Kahnemann and Tversky’s Cumulative
Prospect Theory [30]. Our model focuses on the retirement phase of the life-cycle with an un-
certain life time. The agent’s task is to find the optimal consumption and investment plan for
his accumulated savings. To finance his future consumption and a potential bequest, the agent
may divivde his wealth on hand among three different asset classes. One of which are Arrow
annuities, which are a form of Arrow-Debreu-securities that pay a fixed amount if the investor is
still alive in the subsequent period and nothing if the investor deceases. We start our analysis
with a simple model in which it is possible to partially derive an analytical solution. In a second
step we expand our model to allow for a more sophisticated and realistic treatment of the retiree’s
bequest motive following De Nardi’s [18] specification of bequest utility. Within this framework we
derive a benchmark consumption and investment strategy using a numerical dynamic program-
ming approach. In the third and final step we incorporate the concept of narrow framing into
the investor’s preferences. This concept assumes that an investor may evaluate the outcome of
an investment independent from the overall effect on his investment goal. A simple example is
that an investor would be subject to a form of negative utility if he faced a loosing stock in an
otherwise winning portfolio. In our model, the evaluation of the individual assets, which may be
applied to bundles of assets or to the single assets individually, follows the s-shaped evaluation
function from Kahneman and Tversky’s cumulative prospect theory (CPT), which distinguishes
between losses and gains by means of a reference point. A central aspect of CPT is loss aversion.
This means that losses will be weighted more heavily than potential gains.

The preferences in our model are time-additive and additive with respect to the different
sources of utility. The latter means that the agent annually receives the sum of the utility from
consumtpion or bequest depending on his survival status and the subjective utility from the loss
averse investment evaluation. Combining these utility functions with different curvatures runs
into the problem of finding a normalization parameter that harmonizes the effects of both utility
function. Therefore we pay particular attention to the choice of the relative weighting parameter
of standard utility versus CPT-utility in our model. It is this parameter that determines the
degree to which our preference functional represents more of an investment frame or more of a
consumption frame.

We find that, depending on its relative importance within the preference functional, the loss
averse investment evaluation can lead to a broad range of effects, ranging from only minor de-
viations from the optimal strategy in a benchmark model without loss aversion, to complete
abstinence from annuity and equity markets. We further find that whether risky assets are framed
individually or as a group does have a strong effect on the optimal investment policies. When all
risky assets are framed and evaluated as a whole, the agent can form portfolios that are particu-
lary well-suited to the loss averse evaluation in the sense that they cause significantly less losses
than the individual assets. This effect goes beyond classical diversification effects, due to the
non-smoothness of the CPT evaluation function and the heavier weighting of losses. Therefore,
exposure to risky assets does increase noticeably compared to the situation in which assets are
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framed individually. In one parametrization in our analysis, the broader framing even results in a
higher annuitization degree than the benchmark model without loss aversion. Although the total
exposure to risky assets remains lower than in the benchmark model, this shows that a loss averse
investment evaluation in the sense of our approach does not necessarily decrease the demand for
annuities.

Literature review

The notion that voluntary annuitzation rates are too low compared to their potential benefits for
a retiree dates back to Yaaris’s influential article on portfolio choice facing an uncertain lifetime
[32]. This is the core of the term annuity puzzle. A detailed discussion of this puzzle is given by
Benartzi, Previtero and Thaler [6].

Throughout the last decades, various rational explanations have been sought out to explain
the observed under-annuitization. Some see under-annuitization as evidence for a bequest motive.
Precautionary savings and unfair annuity pricing are other popular explanations. Recently other
factors have been examined, that arise from non-rational or at least only partly rational behaviour
of the individual retiree. See for example Brown [11] for a thorough compendium on potential
rational and psychological determinants of annuity demand. An analysis of how behavioural ap-
proaches may effect more general types of insurance is given by Richter, Schiller and Harris [28].
Empirical testing of several of the rational, as well as the behvioural hypotheses, is conducted
by Goedde-Menke, Lehmensiek-Starke and Nolte [21], who find framing, distrust, bequest, and
self-selection to be the strongest obstacles in the annuity market. A further psychological look
on how annuities are evaluated is given by Duxbury, Summers, Hudson and Keasey [20]. General
empirical determinants of annuity demand are found to be wealth, gender, financial literacy and
framing for example by Cappelletti, Guazzarotti and Tommasino [14] or Agnew and Szykman [2].

The framing of the annuitization decision, which is also a main part of this paper, is also the
focus of other literature on the demand for annuities. The basic notion is that while annuities may
seem unbeatable when it comes to ensuring late life consumption, the may not seem so attractiv on
other scales and thus compare unfavourably to other investment opportunities. Indeed, annuities
are a bad investment conditional on an early death of the retiree and generally include a high
risk without the associated high returns. Brown et al. [12] conduct an experiment in which the
annuitization decision is formulated to probants in two different ways. One way focuses on lifelong
consumption smoothing and one way focuses on the risk return characteristics of the annuity.
They find that many prefer the annuity when presented with the ”consumption frame” but that
the preference rate for the annuity decreases from 72% to 21% under the ”investment frame”.
Agnew, Anderson, Gerlach and Szykman [1] take a look at how framing in terms of marketing
annuities may effect customers and in turn their demand for annuities.

We propose a preference model which takes into acount both utility from consumption as well
as subjective utility from the investment decision. The latter relies on a variant of the evaluation
function in Kahnemann and Tverky’s [30] Cumulative Prospect Theory (CPT). Building on the
CPT framework, Benartzi and Thaler [7] introduce the concept of myopic loss aversion, that is a
loss averse investor who evaluates the development of his portfolio in short intervals even though
he may have long-term investment goals. Their aim is to provide a possible explanation for a
problem which is possibly related to the annuity puzzle, the equity premium puzzle. Shefrin and
Statman’s paper [29] represents another early approach that incorporates aspects of CPT into the
problem of optimal portfolio choice.

We follow Barberis and Huang in our model proposition who study general optimal portfolio
and asset pricing problems with a particular focus on the equity premium puzzle (see for example
[3],[5] and [4]). Their results fortify the importance of narrow framing in the investment decision,
that is the separated evaluation of individual asset types independent of the total outcome of the
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portfolio. Several degrees are possible, in which investment outcomes may be bundled by assets or
actually evaluated individually. In a similiar way we implement a form of narrow framing which
combines equity and annuity investments and one with a separate evaluation. Another similar
behavioural optimal portfolio approach is conducted by De Giorgi and Legg [17]. In contrast to
the previous papers they also include CPT’s aspect of probability weighting into their preference
fucntional.

Hand in hand with investment evalution under narrow framing typically goes the concept of
loss aversion, i.e. a heavier weighting of adverse market outcomes. Other optimal portfolio stud-
ies that follow these principles are conducted by Berkelaar, Kouwenberg and Post [8] and Magi
[26]. A special implementation of loss aversion in a household portfolio situation can be found
in Dimmock and Kouwenberg [19]. A continous-time behavioural portfolio problem is solved by
Rsonyi and Rodrigues [27]. Van Bilsen, Laeven and Nijman [31] study a dynamic investment and
consumption problem with endogenous updating of the investor’s reference point, a key concept
in loss aversion that distinguishes investment gains from losses. Blake, Wright and Zhang [10]
study the optimal investment plans under loss aversion in the accumulation phase of a life-cycle.
As is typical for loss averse investors, they find that the optimal policy characteristic is depen-
dant on the current wealth level of the agent. More specificly, the agent is more risk seeking for
low wealth levels and switches to portfolio insurance once he reaches sufficiently high wealth levels.

In a setting similiar to this paper, Gottlieb and Mitchell [22] analyze the effect that combining
standard expected utility and CPT evaluation has on the demand for long-term care insurance.
In contrast to a combined preference functional, Chen, Hentschel and Klein [15] study the effects
of guarantees in life insurance on expected utility and CPT investors.

In a non-dynamic framework, Hu and Scott [23] model the annuitization decision for a loss
averse investor using the CPT evaluation function. They find that loss aversion leads to low
annuitization rates and furthermore increases the demand for guarantee periods for the few people
that purchase annuities. In contrast to our paper, their model does not include the beneficial effects
of an annuity on the retiree’s lifelong consumption and does therefore classify as a pure investment
frame.

2 The model

We regard an exemplary agent who enters retirement at age 65 (time t = 0) with the accumulated
savings W > 0 at his disposal. We assume that the agent has no further assets such as pre-
annuitized wealth or future labour income. To finance future consumption and a possible bequest,
the agent has access to a menu of three investment types. At the beginning of every year, the
agent chooses his annual consumption level Ct, starting in t = 0 and then allocates the rest of his
wealth on hand Wt − Ct among the three asset classes. We assume that the agent may survive
every year with a positive probability until he reaches a maximum age of 100 years (time T = 35).
At t = T , he chooses his final consumption level and investment strategy, the result of which
becomes his bequest at time T + 1. When the agent deceases during some earlier period t, the
remaining assets, if their payoff is not conditional on the agent’s survival, will also be transfered
to an heir in form of a bequest at time t.

The first asset available to the agent is a riskfree bond, paying a fixed interest rate Rf . The
second asset is a stylized stock investment whose underlying price process follows a geometric
Brownian Motion, i.e. pays a lognormally distributed return 1 + Rt

1. The third asset is a one
period Arrow annuity, a financial contract that pays a fixed amount A > 0 if the investor survives
the subsequent period and nothing if the investor deceases. Let p denote the probability that an

1Throughout this paper we will assume that all probabilities and conditional and unconditional expectations
are taken with respect to the canonical probability space generated by the sequence of returns (Rt)t∈[1,T+1]
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investor survives the subsequent period. The expected present value of the Arrow annuity payout
is then given by

PA =
1

1 +Rf

(
p ·A+ (1− p) · 0

)
=

pA

1 +Rf
. (1)

Assuming that the calculatory interest rate is equal to Rf and a loading of size zero, PA is the
actuarially fair price of an Arrow annuity. Under this assumptions the investor’s return in case of
survival is

RA =
A

PA
− 1 = A · 1 +Rf

pA
− 1 =

1 +Rf
p

− 1 (2)

and a total loss RA = −1 otherwise. As survival probabilities vary with the investor’s age we let

RA,t =
1 +Rf
pt

− 1 (3)

denote the respective annuity return in period t and QA,t = 1 +RA,t the respective growth factor.
We assume that all assets can be purchased without any transaction costs.

For all t = 0, 1, 2, . . . , T we let 0 ≤ ct ≤ 1 denote the fraction of wealth on hand Wt that is
consumed in the following period and θSt ≥ 0 and θAt ≥ 0 define the respective fractions of the
investor’s wealth after consumption which are invested in the risky asset and the Arrow annuity. To
allow neither borrowing nor short selling either of the asset types, we require that 0 ≤ θSt , θAt ≤ 1
and θSt + θAt ≤ 1 for all t = 0, 1, . . . , T . The remaining fraction 1 − θSt − θAt is assumed to be
invested in the riskless asset. In the following we let U denote the set of feasible decision policies
γ0 = (ct, θ

S
t , θ

A
t )t∈[0,T ] abiding the constraints above. Since the payoff of an Arrow annuity is

conditional on the agent’s survival, the agent’s wealth process depends on his survival state. If
the agent is alive at time t+ 1, his wealth on hand is given by

WL
t+1 = Wt(1− ct)(θSt (1 +Rt+1) + θAt (1 +RA,t+1) + (1− θSt − θAt )(1 +Rf )). (4)

If the investor deceases during period t+ 1, his wealth on hand at time t+ 1, and thus the size of
a possible bequest is

WD
t+1 = Wt(1− ct)(θSt (1 +Rt+1) + (1− θSt − θAt )(1 +Rf )). (5)

The agent’s wealth at all subsequent times after his death is zero.

An economic agent in a developed country is usually protected from falling beneath some
subsistence level in terms of his consumption. Typically this form of protection from extreme
poverty comes in form of social security, which is basically a conditional annuity that the agent
may draw on. This implies that independent of the agent’s initial wealth and economic decision,
he will still be able to maintain a certain base level of consumption C ≥ 0 through a form of
government subsidy. Obviously, such a subsidy serves as a form of longevity insurance and may
thus lead to a crowding out effect regarding private longevity insurance in form of voluntary
annuitization. Access to a social security subsidy leads to the modified budget equation in case of
survival

WL
t+1 = max

(
Wt(1− ct)(θSt (1 +Rt+1) + θAt (1 +RA,t+1) + (1− θSt − θAt )(1 +Rf )), C

)
. (6)

To simplify matters on a numerical level2 we constrain the agent’s decision set Ut to force him
to maintain the base level consumption C in all periods by requiring the additional condition
Ct ≥ C at all times t = 0, . . . , T . This implies that an agent who has already received a subsidy
in previous periods, and thus by the above constraint has consumed his whole wealth in those

2Since our agent’s optimal consumption will typically lie way above C, forcing a minimum consumptin does not
have a significant impact on the agent’s policy.
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previous periods, will leave a bequest of size 0 at the time of his death.

We assume that the investor has preferences similiar to the time-additive model by Barberis
and Huang [3] which aggregates expected utility from consumption and prospect theory investment
evaluation. Because we also include utility from bequest into our model our investor is, in total,
subject to three sources of utility. At the beginning of every year t = 0, 1, . . . , T , if the agent is still
alive, he receives utility from consumption u(Ct) = u(ctW

L
t ). At the time of his death he receives

an additional utility from bequest v(WD
t ), depending on the strength of his bequest motive ω ≥ 0.

The concrete specifications for u and v are discussed below. In addition to the first two classical
sources of utility, the agent also experiences a subjective utility from the potential prospects of his
risky investments. We borrow from Kahneman and Tversky’s Cumulative Prospect theory (CPT)
for the specification of this third form of utility. They originally proposed the evaluation function3

uCPT (x) =

{
xα for x ≥ 0

−λ(−x)α for x < 0
(7)

for parameters α ∈ (0, 1) and λ > 1 4. The parameter restriction for λ implies that the investor
is loss averse in the assessment of his investment opportunities. This means that he will assign
a higher weight to the subjective disutility derived from adverse developments compared to the
positive subjective utility derived from beneficial developments. Contrary to expected utility
theory this function is not applied to a consumption or a wealth level, but to gains and losses.
This differentiation is achieved through the introduction of a reference rate of return r0. The
investor assesses the success of an investment of size W by comparing its return Wr to the
benchmark return Wr0. If Wr −Wr0 ≥ 0, it is considered a gain and a loss otherwise. We set
r0 to be equal to the riskless rate of return for the remainder this paper. In analogy to expected
utility theory we assume that the subjective utility associated with a risky investment is given by
the expected value of the evaluation function uCPT . Probability distortion, another main feauture
of Kahnemann and Tversky’s CPT, is not included in our model. In total the CPT evaluation
functional for an investment of size W with the random return r is thus

E [uCPT (Wr −Wr0)] = WαE [uCPT (r − r0)] . (8)

Since the term E [uCPT (r − r0)] in the above equation (10) is independent of the fraction of
wealth invested, we define

K(r, rF ) := E
[
uCPT (r − rf )

]
(9)

and the investment evaluation function for an individual asset with return r reduces to the power
function

E [uCPT (Wr −Wr0)] = K(r, rF )Wα. (10)

In most applications, the concept of risk aversion is typically applied to outcomes that are
related to the resulting total wealth level of a risky course of action. For example the annual
consumption level, which, according to the life-cycle hypothesis, is choosen in dependance of the
current wealth level of an agent. The current wealth level in turn results from the overall invest-
ment and saving strategy of the agent. In contrast to this, the concept of loss aversion is usually
understood as an aversion towards adverse outcomes of specific parts of an agent’s investment
strategy. Therefore the subjective evaluation function (10) in our model is not applied to the total
portfolio outcome but to either individual risky assets or groups of risky assets. In this paper we
differentiate between two model specifications regarding the scope of the investment evaluation.
This differentiation follows Barberis and Huang’s [3] approach. The first form is narrow framing
(NF), which assumes that the prospects of each risky asset are assessed individually. This increases

3We use the term evaluation function to distinguish Kahnemann and Tversky’s approach from a classical
Bernoulli utility function

4The original evaluation function proposed by Kahnemann and Tversky allows for a different curvature parameter
α ∈ (0, 1) for gains and losses. However their proposed parameterisation results in identical values of α = 0.88
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the subjective riskiness of the individual asstes because diversification effects are ignored. The
second form is broad framing (BF), which assumes that the assessed outcome variable is the return
of the portfolio of both risky assets, the stylized stock and the Arrow annuity. The remainder
of this section introduces the resulting preference functionals in the two model specifications and
their associated value functions.

We let pt denote the conditional probability that an agent who is alive at time t survives until
time t + 1. Then the product p0,t =

∏t
s=0 ps gives the unconditional probability that an agent

who has reached age 65 survives until time t. Combining the expected utility framework with
the subjective evaluation function in an additive way yields the time-additiv preference functional
Φ: (0,∞)× U 7→ R describing the agent’s optimization problem at time t = 0 given by

Φ0(W,γ0) =E0

[
T∑
t=0

p0,t−1β
t
(
ptu(ctW

L
t ) + (1− pt)ωv(WD

t ) (11)

+ κ
∑

i∈{S,A}

(WL
t θ

i
t)
αE[uCPT (Rit+1 −R0)]

)]
. (12)

for the narrow framing agent and

Φ0(W,γ0) =E0

[
T∑
t=0

p0,t−1β
t
(
ptu(ctW

L
t ) + (1− pt)ωv(WD

t ) (13)

+ κ
(
WL
t

( ∑
i∈{S,A}

θit

))α
E

[
uCPT

((
RP,t+1

)
−R0

)])]
(14)

for the broad framing agent. Here

RP,t+1 =
∑

i∈{S,A}

θit
θSt + θAt

Rit+1

denotes the return of the portfolio of the framed assets and κ describes the relative weighting of
subjective investment evaluation and utility from annual consumption and bequest. In other words
the degree to which the agent’s optimization problem can be characterized as an investment frame
or a consumption/ bequest frame. In both specifications, with narrow framing and broad framing,
the utilities from the subjective evaluation functions are assumed to effect the agent at the time a
risky investment is placed and not when it is resolved. Because in the subjective evaluation, the
agent assesses the investment solely on its individual characteristics and independent of its effect
on his future financial well-being, the subjective evaluation utility is not discounted by the agent’s
survival probability and the time-weighting factor β.

In addition to the time t = 0 preferences above, we can define the investor’s preference func-
tional Φt, describing the problem (re-)started at a later time t = 1, . . . , T . The problem’s value
function Vt is then defined as the optimized remaining time preference functional formulated as a
function of the endogenous state varibale wealth at time t, i.e.

Vt(Wt) = sup
γt∈Ut

Φt(Wt, γt). (15)

In both problem formulations, the value function satisfies the Bellmann equation5. In the model

5We refer to Bertsekas and Shreve’s compendium ”Stochastic optimal control: The discrete time case” [9] for a
thorough discussion of technical conditions under which the Bellmann equation is satisfied.
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with narrow framing the problem’s Bellmann equation is

Vt
(
Wt

)
= sup

(c,θS ,θA)∈[0,1]3

θS+θA≤1

{
u(cWt) + βptEt

[
Vt+1

(
WL
t+1)

)]
+ β(1− pt)ωEt

[
v(WD

t+1

]

+ κ(Wtθ
S)αK(RS,t+1, Rf ) + κ(Wtθ

A)αK(RA,t+1, Rf )

}
. (16)

with the terminal condition

VT
(
WT

)
= sup

(c,θS)∈[0,1]2

{
u(cWT ) + βωET

[
v(WD

T+1)

]

+ κ(WT θ
S)αK(RS,T+1, Rf ) + κ(WT θ

A)αK(RA,T+1, Rf )

}
. (17)

In the model with broad framing the Bellmann equation is

Vt
(
Wt

)
= sup

(c,θS ,θA)∈[0,1]3

θS+θA≤1

{
u(cWt) + βptEt

[
Vt+1

(
WL
t+1)

)]
+ β(1− pt)ωEt

[
v(WD

t+1)

]

+ κ
(
Wt(θ

S + θA
)α
K(RP,t+1, Rf )

}
. (18)

with the respective terminal condition

VT
(
WT

)
= sup

(c,θS)∈[0,1]2

{
u(cWT ) + βωET

[
v(WD

T+1)

]

+ κ
(
WT (θS + θA)

)α
K(RP,T+1, Rf )

}
(19)

where RP,t+1 again denotes the return of the framed component of the portfolio.

The general model above allows for a variety of specifications regarding the choice of the utility
functions. The specific choices in this paper are made under consideration of analytical tractability
and prevalence in the literature. Throughout this paper we assume that utility from consumption
follows a power utility specification where

u(x) =
1

1− γ
x1−γ (20)

with a constant coefficient of relative risk averison γ > 1. This specification reflects the choice
most encountered in the literature.

A simple specification for the bequest utility results from setting v = u. This assumption,
while simplified, is not entirely unjustified. Assuming altruistic bequest motives, the retiree is
concerned about the utility from consumption of his potential heir and assuming that the heir also
receives power utility u(C) from his consumption, the form of the utility function for consumption
carries over, to some extend, to the form of the bequest utility. While setting C = 0, κ = 0 and
v = u throws out many crucial features of the general model above, it is still a useful benchmark
specification because it allows a degree of analytical tractability that is lost in more sophisticated
models. In the following we refer to this specification as the simple model.
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The simple model however has some obvious shortcomings which can lead to unrealistic predic-
tions and unwise normative implications. Consider for example an agent with a low initial wealth.
To eliminate the risk of running out of funds in late years, the longevity risk, the agent will reduce
his consumption to fairly low levels right from the start in t = 0. Furthermore the specification
of the agent’s bequest utility implies that the agent will always save up a proportional part of
his wealth to retain a bequest of reasonable size in the next period, even if it means reducing his
own consumption to unsustainably low levels, at least if ω > 0. These two effects can lead to an
unrealistically low consumption under certain circumstances.

A more sophisticated take on bequest utility is given by De Nardi’s [18] approach. While the
parameter ω in the model above is able to control the relative importance of bequest with respect
to annual consumption, there is a lack of flexibility regarding this ratio when it comes to different
wealth states of the investor. As hinted at above, an investor who is low on funds may shift his
priorities away from bequest to his own subsistence. This shortcoming is resolved in De Nardi’s
specification where a bequest of size B yields the utility

v(B) =
1

1− γ

(
ψ +

B

ω

)1−γ

. (21)

The additional parameter ψ contained in this formulation can be interpreted as the prevalence
of a bequest motive in the population or, more in line with the above reasoning, the degree to
which bequests are a luxury good6. Among other effects, this ensures that the agent’s relative
importance assigned to bequest is in accordance with his ability to bequeathe a part of his wealth
while still maintaining reasonable consumption levels himself.

The advanced bequest specification and the assumption of a non-zero government subsidy have
some implications for the numerical properties of the problem. An agent with access to a subsidy
can rely on receiving at least the base consumption utility u(C) in every year. Hence the agent’s
time t value function is bounded from below by

Vt(Wt) ≥ Φt(C) (22)

for all Wt ≥ 0 and t = 0, . . . , T . Furthermore the requirement Ct ≥ C implies that ct = 1 for
Wt ≤ C, i.e. the agent’s decision set collapses to the point (1, 0). In turn this implies that the
agent’s value function equals

Vt(w) = V t := Φt(C) (23)

for w ≤ C. Lemma 2 in the appendix provides the exact expression for this boundary

V t =

T∑
s=t

pt,s(1− ps)
(
βt−s+1 − 1

β − 1
u(C) + βt−s+1v(0)

)
. (24)

For all Wt ≥ C the value function still satisfies the respective Bellman equations given by equations
(16) and (18).

3 Parameter choice

A summary of the model calibration is given by table 1. We assume that the underlying price
process of the stylized stock investment follows a geometric Brownian Motion with the dynamics

dSt = µStdt+ σStdWt (25)

6To achieve a better understanding of the parameters in v it helps to regard the simpler problem with no time
weighting, a fixed wealth level W , a fixed lifetime of T years, no investment opportunities and no government
subsidy. The optimal consumption resulting from first order conditions is then C = (W + ωψ)/(ω + T ) and the
optimal bequest is B = ω(C −ψ), i.e. the bequest covers ω periods of spending the amount C −ψ, i.e. the amount
the agent’s own consumption exceeds ψ. If the agent cannot bequeathe an amount which exceeds ψ for ω years
then the optimal bequest is zero.
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which implies that equity returns are i.i.d lognormally distributed. The parameters µ and σ are
chosen such that the expected return in the benchmark case is E[Rt] = 6% with a standard devia-
tion of σ(Rt) = 20%. The risk free rate is set to Rf = 2% which implies a risk premium E[Rt]−Rf
of 4%. This is a standard calibration in life cycle models as for example in Cocco and Gomes [16].
The calculatory interest rate RA is set to equal the risk free rate RF .

Model parameters

Expected utility framework

W0 400000
T 35
age in t = 0 65
age in t = T 100
γ 5
rf 2%
rA 2%
E[rt] 6%
σ[rt] 20%
β 0.96

Bequest motive

ω Simple Model w/o Bequest Motive 0
ω Simple Model w/ Bequest Motive 131.61
ω Advanced Model 7.81
ψ 0.67·FAAC
FAAC 20513

Loss averison

λ 2
α 0.88

Table 1: Model parameters

The time weighting parameter and the risk aversion parameter follow standard life cycle as-
sumption and are set to β = 0.96 and γ = 5 which are also standard assumptions as in Cocco and
Gomes [16]. Entry to retirement is assumed to be at age 65 as for example in [13] and we allow a
maximum age of 100 years which implies a time horizon of T = 35 years.

In the non-simple bequest utility specification the benchmark parameters are set to ω = 7.81
and ψ = 0.67∗FAAC. Here FAAC, the fully annuitized average consumption, denotes the average
experienced optimized consumption level FAAC = E[

∑τ
t=0 Ct] = 14674 under full annuitization7,

i.e. θAt = 1 for all t ∈ [0, T ]. τ ∈ [0, T ] denotes the time of death of the retiree, i.e. the last time the
agent is alive. This is in line with the original parametrizaion in De Nardi [18], with the exception
that the risk aversion is adjusted to be identical to the risk aversion concerning consumption in
our model.

The strength of the bequest motive in the simple model is choosen such that the average

7In order to obtain the FAAC, we solve the agent’s original optimization problem under the assumption that
ω = 0, i.e. in the absence of a bequest motive, and θAt = 1 for all t ∈ [0, T ]. Aside from the two modifications, the
optimization technique is identical to the one applied for the original problem. The FAAC itself is computed from
the optimal consumption values by forward simulation.
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bequest size in the benchmark model yields the same bequest utility as in the advanced model.
Hence

ωsimple = ω

(
ψ + B̄

ω

B̄

)1−γ

, (26)

where B̄ is defined as the average bequest size in the benchmark model with κ = 0. In either be-
quest utility specification, the no bequest motive case is represented by the parameter choice ω = 0.

The survival probabilities used in the pricing of the insurance products as well as the agent’s
individual survival probabilities are both taken from german death tables8 and we assume a male
policyholder in both cases. Furthermore we omit a loading on the premium calculation.

The calibration of the subjective evaluation function for the loss averse investor follows Kah-
nemann und Tversky’s specification [30] whith α = 0.88 and λ = 2.

4 Solution technique

4.1 Optimal consumption and investment policy in the simple model

Before we solve the general problem we focus on the simple model for which, at leats in parts,
an analytical solution can be obtained. The starting point is the problem’s Bellmann equation9

which allows us to to solve the optimization problem by backwards induction. By lemma 1 in the
appendix, Vt in this simple case is positively homogeneous with degree 1− γ, i.e.

Vt(w) = w1−γVt(1) (27)

for all t = 0, 1, . . . , T . An important consequence of this result is that the optimisation can be
conducted independent of the current wealth level. To simplify notation we define

Γ
(1)
t = Et

[
(θQt + αQA,t + (1− θ − α)Qf )1−γ

]
(28)

and

Γ
(2)
t = Et

[(
θQt + (1− θ − α)Qf

)1−γ]
. (29)

Invoking (27), (28) and (29) we can rewrite the Bellmann equation for t = 0, 1, . . . , T − 1 as

Vt(w)

=w1−γ · sup
(c,θ,α)∈[0,1]3

{
c1−γ

1− γ
+ βpt(1− c)1−γVt+1(1)Γ

(1)
t + β(1− pt)ω

(1− c)1−γ

1− γ
Γ

(2)
t

}
(30)

=w1−γ · sup
(c,θ,α)∈[0,1]3

{
c1−γ

1− γ
+

(1− c)1−γ

1− γ
β
(
ptVt+1(1)Γ

(1)
t + (1− pt)ωΓ

(2)
t

)}
(31)

=w1−γ · max
c∈[0,1]

{
c1−γ

1− γ
+

(1− c)1−γ

1− γ
· min

(θ,α)∈[0,1]2
β
(
pt(1− γ)Vt+1(1)Γ

(1)
t + (1− pt)ωΓ

(2)
t

)}
(32)

8Source: Sterbetafel 2009/11 Deutschland männlich, Periodensterbetafeln für Deutschland 2009/2011, Statistis-
ches Bundesamt, Wiesbaden 2012.

9In the simple model the Bellmann equation is defined by equations (16) and (17) with κ = 0.
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where separation of the problems concerning consumption and asset allocation is justified by the
fact that for any fixed c ∈ [0, 1] the function

g : [0,+∞)→ (−∞, 0), g(x|c) =
c1−γ

1− γ
+

(1− c)1−γ

1− γ
· x

is strictly decreasing in x > 0. Furthermore a realistically (γ > 1) calibrated CRRA-utility function
is negative and strictly increasing. This implies that Vt < 0 for all t and therefore (1−γ)·Vt(1) > 0.

Because Γ
(1)
t ,Γ

(2)
t > 0 holds for all t by definition we conclude that

Γt := β
(
pt(1− γ)Vt+1(1)Γ

(1)
t + (1− pt)ωΓ

(2)
t

)
> 0 (33)

for all t. Independent of the choice of c, a smaller value of x will yield a higher function value
g(x|c). Therefore a smaller value of Γt will yield a higher function value g(Γt|c) and thus separa-
tion of the optimization problems is justified. Both suprema in equation (32) are attained because
they are taken over the compact sets [0, 1] and [0, 1]2.

At each time t = 0, 1, . . . , T − 1 we can solve (32) given Vt+1(1) in two steps:

• Step 1: We find the optimal asset allocation by calculating

Γ̂t = min
(θ,α)∈[0,1]2

β
(
pt(1− γ)Vt+1(1)Γ

(1)
t + (1− pt)ωΓ

(2)
t

)
.

• Step 2: Given Γ̂t we can calculate Vt(1) = maxc∈[0,1] g(Γ̂t|c).

It is not possible to derive an analytic expression for the optimum in step 1. Hence numerical
calculation of the optimal asset allocation is neccesary. However given Γ̂t, the maximum in step 2
can be calculated from first order conditions. For any x > 0 we have

d

dc
g(x|c) = c−γ − (1− γ)(1− c)−γx = 0 (34)

which is solved by

ĉ =
x

1
−γ

1 + x
1

−γ
∈ (0, 1). (35)

The strict concavity of g further implies that ĉ is the unique maximum ĉ = argmaxc∈[0,1]g(Γ̂t|c).

On the basis of these results we can now set out to compute the value function Vt and the
associated optimal consumption and asset allocation strategies (ĉt, θ̂

S
t , θ̂

A
t ) by means of backward

induction starting in time T where

VT (w) = w1−γ · sup
(c,θ)∈[0,1]2

{
c1−γ

1− γ
+

(1− c)1−γ

1− γ
βΓ

(2)
T

}
. (36)

After the optimized value Γ̂T = minθ∈(0,1) ΓT has been determined, we can invoke (35) to find the
optimal consumption parameter ĉT given by

ĉT =
Γ̂

1
−γ
T

1 + Γ̂
1

−γ
T

. (37)

Using this in (36) yields

VT (w) =
w1−γ

1− γ

[(
Γ̂

1
−γ
T

1 + Γ̂
1

−γ
T

)1−γ

+ βΓ̂T

(
1

1 + Γ̂
1

−γ
T

)1−γ]
(38)
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and especially

VT (1) =
1

1− γ

[(
Γ̂

1
−γ
T

1 + Γ̂
1

−γ
T

)1−γ

+ βΓ̂T

(
1

1 + Γ̂
1

−γ
T

)1−γ]
(39)

Plugging this into (33) with t = T −1 now allows us to find the optimal time T −1 asset allocation
(θT−1, αT−1) together with ΓT−1. As in t = T this yields the optimal consumption using (35) and
the time T − 1 value function VT−1 as in (38). Repeating this procedure until t = 0 produces the

optimal strategies (ĉ, θ̂, α̂) where

ĉt =
Γ̂

1
−γ
t

1 + Γ̂
1

−γ
t

. (40)

and the value function V with

Vt(w) =
w1−γ

1− γ

[(
Γ̂

1
−γ
t

1 + Γ̂
1

−γ
t

)1−γ

+ βΓ̂t

(
1

1 + Γ̂
1

−γ
t

)1−γ]
. (41)

4.2 Solution technique in the advanced model

In principle, the advanced model can also be solved by backwards induction following the same
logic as above. However the introduction of a subjective investment evaluation, as well as social
security and the affine nature of the bequest utility given by equation (21), result in optimal
strategies that are no longer independent of the investor’s current wealth level. Separation of
the consumption and the investment problem is then no longer possible and we fully resort to
numerical optimization methods in each step of the backwards induction.

The starting point is again the terminal condition for Vt imposed by the time T Bellmann
equation. For any fixed wealth levels wl we can find VT (wl) and the respective optimal strategies
(cT (wl), θ

S
T (wl), θ

A
t (wl)) by numerically solving the static optimization problem10

VT (wl) = max
0≤c,θ,α≤1
θ+α≤1

{
u(cwl) + βET

[
v((wl(1− c)(θ(1 +RT ) + (1− θ − α)(1 +Rf ))

]}
. (42)

We repeat this procedure to compute pairs (wl, VT (wl)) on a grid of wealth levels wl. The smooth-
ness of VT allows us to construct an interpolant V̂T for VT from these pairs. Given V̂T , the time
T −1 optimization problem given by (16) or (18) depending on the scope of the framing reduces to
a static optimization problem for any fixed wealth level wl and we can compute VT−1 for a grid of
wealth levels as well as the optimal policies (cT−1(wl), θT−1(wl), αT−1(wl)). We repeat this step
until we obtain the time t = 0 value function V0.

In the procedure described above, we use a dynamic time dependant grid {wl}l=0,...,Lt where
we add an additional grid point wLt+1

= wLt + ∆w in each time step to prevent extrapolation
when calculating the value function11. The L0 = 30 grid points in the base grid are exponentially
placed to increase the efficieny in the interpolation of Vt, which has a much higher curvature for
lower wealth levels and is asymptotically linear for high wealth levels. The base grid spans from
w0 = C to w30 = W0 where W0 denotes the initial wealth of the agent.

10The equation below gives the time T optimization problem in the advanced model without loss averse
investment evaluation. In the model with loss averse investment evaluation appears the additional term
κ(wl(θ

S + θA)))αK(RP,T+1(θS , θA), Rf ) in the model with broad framing and κ(wlθ
S))αK(RS,T+1, Rf ) +

κ(wl(θ
A)))αK(RA,T+1, Rf ) in the model with narrow framing on the right hand side of the equation.

11Extrapolation on the left side of the wealth grid is not an issue because the value function is constant and equal
to Φt+1(C) for all Wt+1 < C.
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To interpolate V in each time step we use cubic spline interpolation with a modification to be
constant to Φt+1(C) on the left side of the wealth grid. The conditional expectations ocurring
in each time step’s optimization problem are calculated using Gauss-Hermite-Quadrature (GH-
Quadrature) with n = 32 sample points. To achieve an optimal approximation, we follow Liu
and Pierce [25] and apply a transformation of the standard weights and sample points in GH-
Quadrature to account for the specific parametrization (µ, σ) of the lognormal returns in our
model.

5 Results

5.1 Optimal Arrow annuity demand

-inf-22-21-20-19-18
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

log κ

A
ve

ra
ge

P
or

tf
ol

io
C

om
p

os
it

io
n

-
N

F

-inf-22-21-20-19-18
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

log κ

A
ve

ra
ge

P
or

tf
ol

io
C

om
p

os
it

io
n

-
B

F

mean rel. Arrow annuity
mean rel. equity
mean rel. riskfree

Figure 1: Average portfolio composition for the narrow framing agennt (NF) and the broad framing agent

(BF) plotted versus log(κ). Results are calculated as the sample mean of N = 10000 simulated values

obtained by forward simulation for the relative annual annuitization level 1
τ

∑τ
t=1 at, relative equity level

1
τ

∑τ
t=1 θ

S
t and relative risk-free level 1

τ

∑τ
t=1(1−at− θ

S
t ) where τ denotes the time of death of the retiree.

We examine the results in the advanced model specification first, with a focus on the effect
of loss aversion. Afterwards we analyze the validity of the simple model in the case without in-
vestment evaluation. In the former case, the optimal annual annuitization level depends on the
age as well as the current wealth of the investor. A visualization of the exemplary effect of loss
aversion for the narrow framing investor on the optimal portfolio composition is given in figure
1. It contains the averaged shares of the investor’s portfolio held in Arrow annuities, equity and
riskfree bonds. The values are calculated by averaging the mean portfolio shares, calculated as
1
τ

∑τ
t=1(1 − ct)at for Arrow annuities, over N = 10000 simulated trajectories. The mean death

age is 86.09 with a standard deviation of 7.88 years. A more detailed overview of the results for
both model specifications (NF and BF) is given in table 2. We refer to the table caption for a
detailed description on how the individual values are calculated.

Effective parametrizations for κ lie between 10−23, for which the optimal portfolio composition
is very close to the benchmark consumption frame, with an average annuity level of 67%, and
10−18, which results in complete abstinence from annuity and equity markets. This parameter
range is close to the parametrization in the similiar model by Barberis and Huang [3]. In an
equilibrium model with a time-additive expected utility specification they estimate the relative
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strength of the investment evaluation to be 0.45C̄1−γ where C̄ denotes the part of the agent’s
income which is not narrowly framed, e.g. labour income. Assuming an annual labour income
of 50000 and no dividends this results in a relative strength of the investment frame of 10−20.
In a similiar time-additive model specification, where health insurance is the only framed asset,
Hwang [24] finds that for values between 10−9 and 10−13, depending on the agent’s risk aversion,
purchase of actuarilly fair health insurance is rejected.

Abstinence from annuity markets means that the investor’s total estate is subject to bequest.
Therefore the relative strength of the investment evaluation captured in the parameter κ has a
strong impact on the bequest size. Because the overly large bequest sizes are not motivated by
the desire to leave a bequest but by the reluctance to annuitize, loss averse investors involuntarily
leave too large bequests. Such effects are to be expected when loss aversion is implemented in
broader problems like retirement portfolios because unlike risk aversion, the impact of loss aversion
is independent from the intended goals of the investment strategy.

Mean rel.
annuitiza-

tion

Intertemp.
variation
annuitiza-

tion

Mean rel.
equity

exposure

Intertemp.
variation
equity

exposure

Mean
bequest
size

Std.
bequest
size

Consumption Frame

κ = 0 .7411 .1353 .2361 .1208 .0940 .7140

Investment Frame (NF)

log κ = −23 .7383 .1354 .2348 .1273 .0945 .7179
log κ = −22 .7076 .1378 .2294 .1171 .1056 .7243
log κ = −21 .0688 .2878 .1798 .1503 .2950 .8759
log κ = −20 .0067 .2866 .0060 .0868 .3547 .6781
log κ = −19 .0000 .0000 .0000 .0000 .3768 .6142

Investment Frame (BF)

log κ = −23 .7415 .1355 .2347 .1190 .0938 .7154
log κ = −22 .7475 .1391 .2206 .1215 .0911 .7173
log κ = −21 .7668 .1599 .1248 .1668 .0788 .7690
log κ = −20 .0557 .3700 .0240 .1227 .2949 .8686
log κ = −19 .0011 .1100 .0016 .1138 .3764 .6164

Table 2: Mean and standard deviations for the portfolio composition and bequest size for various model
specifications. The values are calculated from N = 10000 individual values derived by forward simulation.
The respective formulae for the individual values from which the means are calculated are 1

τ

∑τ
t=1(1−ct)at

for the mean relative annuitization and 1
τ

∑τ
t=1(1 − ct)θ

S
t for the mean relative equity. Here τ denotes

the (random) time of death of the retiree. The intertemporal variations are calculated as the standard
deviations of the average per period portfolio shares over the whole time horizon. The values regarding
bequest sizes are the sample mean and sample standard deviation over all N bequest sizes.

A comparison of the average portfolio compositions in both model specifications shows that the
scope of the framing can have a strong effect on the agent’s investment strategy. Because diversifi-
cation effects are ignored in the narrow framing agent’s investment evaluation, the risky assets are
perceived as riskier than in the broad framing agent’s evaluation. Furthermore the broad framing
agent has the ability to exercise some control over the return distribution that is evaluated com-
pared to the narrow framing agent. Therefore the narrow framing agent’s risk exposure, in total,
is smaller than that of the broad framing agent in all cases considered here. This is not true for
the individual asset classes. For log κ = −21, the narrow framing agent’s equity exposure exceeds
that of the broad framing agent. However in the same model specification, the broad framing
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agent invests a much bigger share of his available wealth in Arrow annuities. In fact, this share
is slightly larger than the benchmark agent’s mean annuitization degree. Because of the reduced
equity exposure, the total risk exposure is still below the benchmark agent. Therefore in the case
log κ = −21, loss aversion leads to a reduced risk exposure for the broad framing agent, but to
a higher annuitization degree. This shows that in the broad framing model, loss aversion cannot
explain the annuity puzzle in all cases but may even provide further evidence for it. Nevertheless,
loss aversion can explain lower annuity and equity demand in most model specifications considered
here. In the model with narrow framing, loss aversion leads to a reduction in annuity and equity
demand in all the parameterizations considered here.

The respective values regarding the mean relative annuitization and the mean relative equity
exposure are given further below where we discuss the adequacy of the simple model when it comes
to being an approximation of the advanced model.

5.2 Optimal wealth, consumption, bequest and equity exposure

This section contains an analysis of the optimal wealth, consumption and asset allocation tra-
jectories for selected model specifications. As in the previous section, all the values below are
calculated by forward simulation (N = 10000) using the respective optimal strategies and then
averaging the resulting trajectories for the state and control variables. At first we analyze the
advanced model without loss aversion to obtain a benchmark to compare the models with loss
aversion to. In the way it is applied in this paper, loss aversion acts mainly as a restriction on the
agent’s willingness to invest in risky assets. This leads to negative wealth effects which translate
mainly in a decline in consumption. Even though wealth levels are lower in most cases for the
loss averse investor, abstinence from annuity markets can often lead to larger bequest sizes. See
figure 2 for an overview of the average portfolio composition through time in the cases considered
in this section.

We begin our analysis with the benchmark model with no prospect utility, i.e. κ = 0. Because
of the lack of an investment evaluation, the agent’s investment strategy does not directly enter
his preferences but only indirectly via the resulting distribution of consumption and bequests. In
contrast to bequest sizes, which can strongly depend on the age of death, the consumption levels
can be controlled by the agent to a much higher degree. For this reason we begin our analysis
with the optimal consumption paths. The average consumption level on the whole time horizon is
17450, which is 4.36% of the agent’s initial wealth. The intertemporal variation of consumption,
measured by the standard deviation of the mean per period consumption, is 6236 or 35.74% of
the average consumption level on the whole time horizon. Because the probability that the agent
actually experiences the planned consumption levels decreases over time the agent has reason to
prioritize consumption in the early periods. As a result of this, his consumption is highest (24059
or 6.01% of the agent’s initial wealth) in the first period and lowest (5234 or 1.30% of the agent’s
initial wealth) in the last period. Furthermore the average consumption level that is actually ex-
perienced by the agent12 is given by 21459 (5.36% of his initial wealth) which is a 22.97% increase
compared to the average consumption level along the whole time horizon.

Besides consumption, the agent also exercises immediate control over his investment strategy.
As mentioned in the previous section the agent holds on average 74.11% of his wealth after con-
sumption in Arrow annuities, 23.61% in equity and 2.29% in riskless bonds. As in the previous
sections these values give the actually experienced asset allocation and not the averages along the
whole time horizon. For individual periods, the optimal asset allocation depends on the current

12The average experienced consumption level is given by

T∑
τ=0

p0,t(1− pt+1)E

[
1

τ

τ∑
t=0

Ct

]
. (43)
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Figure 2: Average Portfolio Compositions in each year of retirement for the model specifications considered
in this section.

wealth level which is generally decreasing over time and the survival probability of the agent.
Therefore there is a high intertemporal variation within the investment trajectories.

The agent’s average portfolio share of Arrow annuity is 81% in the first period and then conti-
nouosly decreases to 68.27% in period 20. In the remaining retirement years the average portfolio
share of Arrow annuities increases again to 83.57% in period 31 after which it decreases to 55.91%
in the second to last period. The agent’s average equity exposure forms a mirrored image of his
annuity exposure. In the first period, his portfolio share of equity is 15%. Afterwards his aver-
age portfolio share of equity increases continuously to 29.10% in period 21, followed by a steady
decrease to 15.04% in period 31, followed by an increase to 39.21% in the second to last period.
Excluding the last period, the agent holds at the most 4.87% of his wealth after consumption in
bonds, at the least riskless bonds make up 0.66% of the agent’s portfolio. The last period invest-
ment strategy differs from the previous periods since the agent faces certain death and is thus no
longer concerned with consumption in the future. This leads to riskier investment strategies again
because the agent is less risk averse over bequests than over consumption in the advanced model.
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On average, his final period portfolio consists of 88.97% equity and 11.03% riskless bonds.
The development of wealth on hand over time is a result of the agent’s consumption and invest-
ment strategy. In the absence of a bequest motive the agent would aim to consume all of his
wealth within his remaining lifespan. Although the presence of a bequest motive introduces an
incentive to keep wealth levels on a certain level throughout the whole time horizon, the agent’s
optimal wealth trajectories still result in wealth levels which are close to zero in the final period.
Because survival until the late periods is not that likely the agent prioritizes consumption in the
early and middle periods over high bequests in the late periods. Furthermore in contrast to the
riskless bond, which is always dominated by the Arrow annuity for an agent without a bequest
motive, wealth on hand may be invested in equity mainly because of the attractive risk premium
and not to preserve wealth for bequests in the case of death. for this reason, funds that are
invested in equity also lead to larger bequests even though that is not the main intention of the
investment. The bequests that result from these investments are accidental bequests. Because the
agent’s wealth and the absolute size of the agent’s equity investments decrease over time, the size
of accidental bequests also decreases. In total, these effects lead to a high degree of assymetry
between early bequests and late bequests. While death within the first 20 periods results in a
bequest size between 10.45% of the agent’s initial wealth and 21.86% of the agent’s initial wealth,
death in the later years of retirement leads to bequest sizes between 9.18% of the agent’s initial
wealth and .06% of the agent’s initial wealth. The average realized bequest size 37590 or 9.40%
of the agent’s initial wealth. The standard deviation of bequest sizes is 71.40% of the average
bequest size.

In the following we turn to the advanced model with prospect utility. We analyze the cases
log κ = −20 and log κ = −21 in the model specification with narrow framing and broad fram-
ing. The introduction of the loss inverse investment evaluation means that the agent now has
to balance his desire for sufficient consumption and bequest levels with his reluctance to make
risky investments. For higher values of κ, the agent becomes more reluctant to accept possible
losses, which eventually leads to complete abstinence from annuities and equity investments. From
the point of view of a classical expected utility optimizer, this behaviour is irrational as it leads
to lower expected utility from consumption and bequest and to some extend to generally lower
consumption and bequest levels. After a discussion of the optimal trajectories for the loss averse
agent, we analyze the size of these decreases in utility which are the price for abstaining from
possible losses.

At first we look at the parameter choice log κ = −20. In the model specification with narrow
framing, where diversification effects are ignored when the investment prospects of the two risky
asset classes are evaluated, the introduction of the loss averse investment evaluation has a crucial
effect on the agent’s investment behaviour. On average along the whole timeline, the narrow
framing agent only holds 10.70% of his wealth after consumption in Arrow annuities. Because of
the relatively high survival probabilities in the earlier periods, the mortality credit of the Arrow
annuities in those periods is fairly low. Especially in earlier periods this makes Arrow annuities a
low-return/high-risk investment because they result in a total loss in the case of death. For the
expected utility from consumption, the total loss in the death case is negligible because there is no
more demand for consumption in the death case. In contrast to this, the loss averse prospect utility
framework evaluates the investment in Arrow annuities solely by its inherent return characteris-
tics and is thus sensitive to the total loss in the death case. Furthermore the relative importance
of prospect utility within the preference functional depends on the size of an investment. Since
the agent’s wealth process is typically decreasing over time, the relative strength of the prospect
utility is higher in the early periods when the agent has a lot of cash to invest. For this reason
Arrow annuities appear particularly unattractive in earlier periods. In this case this leads to a
complete reluctance to invest in Arrow annuities in the first 29 years of retirement13 In the re-

13It should be noted that the agent could theoretically adjust the size of his investments until the negative effects
of loss aversion on the willingness to invest are balanced with the positive effects on future consumption and bequest
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maining years of the retirement phase the decreasing wealth levels result in a weakening of the
effect of loss aversion relative to consumption and bequest utility and therefore the agent becomes
more willing to invest in Arrow annuities. Between period 30 and 35 the agent’s average portfolio
share of Arrow annuities is 64.23%. In total, because Arrow annuity investments are only at-
tractive in the final years of retirement, the actually experienced average portfolio share of Arrow
annuitites is only 0.67% and therefore significantly lower than the average along the whole timeline.

The effect of loss aversion on the agent’s willingness to invest in equity is similiar to the effect
on Arrow annuities. Again, in the early periods, the relatively high wealth on hand leads to a
strong effect of loss aversion which results in a reluctance to invest. For log κ = −20, the agent
abstains from equity markets until period 26 where he has on average 16.51% of his initial wealth
remaining. In the remaining years of retirement, the agent first increases his equity portfolio share
to an average maximum of 34.74% in period 30 and then reduces it to an average of 0.32% in the
second to last period. In this case the agent actually consumes all of his wealth in his final period.
The average portfolio share of equity is 0.60%. In this case the agent actually consumes all of his
wealth in his final year of retirement. Therefore there is no investment strategy for the final period.

The overall reluctance to invest in risky assets comes with a price regarding the agent’s con-
sumption. Abstinence from equity and annuity markets results in lower investment returns and
therefore lower wealth levels. Now the average consumption level along the whole timeline is 14895
and the average consumption level that is actually experienced is 17352. This is a 14.64% reduc-
tion of the average along the whole timeline and a 19.14% reduction of the actually experienced
consumption compared with the benchmark agent who is not loss averse. From the perspective
of bequests, loss aversion has two contrary effects. Abstinence from equity markets means the
agent misses out on the high risk premia which leads to lower wealth levels in most cases and
therefore to lower bequests. Abstinence from annuity markets means the agent’s whole estate is
subject to bequest which leads to higher bequest levels. For the parameter choice log κ = −20, the
second effect dominates strongly. Average bequest levels are 142948 which is a 280.28% increase
compared to the benchmark model. The standard deviation of the bequest size is 67.80% of the
mean bequest size. This is the case because the agent now leaves very high accidental bequests if
he dies in the early retirement periods, because of his abstinence from annuity markets, followed
by relatively low bequests in the late periods of his retirement because of his lower wealth levels
compared to the benchmark agent.

The reluctance to invest in risky assets is not as strong for the broad framing agent. In addi-
tion to the consideration of diversification effects in the investment evaluation, the broad framing
agent also has some control over the return distribution that is evaluated. The narrow framing
agent always evaluates the return characteristics of the individual assets independent of the actual
portfolio composition. It is only the weighting of the resulting return evaluations that is affected
by the agent’s portfolio choice. In contrast to this, the broad framing agent can design a portfolio
whose return distribution is particularly well adjusted to the form of the loss averse investment
evaluation. As a result, the average portfolio share of Arrow annuities, as well as equity, increases
compared to the narrow framing agent. The former to 5.57% (compared to 0.67%) and the latter
to 2.40% (compared to 0.60%). Even though the broad framing agent does also abstain from
annuity and equity markets in most of the early periods, he does not abstain in all periods and
furthermore starts to invest larger amounts much earlier than the narrow framing agent. Between
period 22 and the second to last period, the agent’s average portfolio share of Arrow annuities
is 67.41%. His average portfolio share of equity during that time span is 17.45%. The resulting
wealth effects of the more balanced portfolio translate into a slight increase in consumption. The
average consumption that is actually experienced is 18082 which is a 4.04% increase compared
to the narrow framing agent but still a 15.74% decrease compared to the benchmark agent. The

utility. However for technical reason we employ the not unplausible restriction that the minimal portfolio share
must be at least 1% of the agent’s wealth on hand.
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average bequest size reduces by 17.48% compared to the narrow framing agent to 117961. In rel-
ative terms, bequests are more volatile for the broad framer with a standard deviation of 86.86%
of the mean bequest size.

In the case log κ = −21, both the narrow framing and the broad framing agent increase their
risk exposure significantly but still remain below the benchmark levels in terms of total risk ex-
posure. However there are now distinct differences between the optimal portfolio structure of
the narrow framing agent and the broad framing agent. We begin our analysis with the narrow
framing agent. Because diversification effects are ignored in the subjective investment evaluation,
a decrease in κ leads to a decrease in the reluctance to invest in the individual risky assets and
thus the portfolio shares of both risky assets increase. Arrow annuities are still perceived as less
attractive from a pure investment point of view because of the total loss in the death case. For this
reason the increase in the equity portfolio share is larger in size and the resulting portfolio share
much closer to the benchmark portfolio share than the Arrow annuity portfolio share. The mean
Arrow annuity portfolio share is now 6.88%, which is only 9.28% of the benchmark annuitization
degree, and the mean equity portfolio share is now 17.98%, which is 76.15% of the benchmark
equity exposure. The higher risk exposure, compared to the previous case, results in higher wealth
levels which lead to an increase in consumption. In this case the narrow framing agent experiences
an average consumption level of 19325. The average along the whole time horizon is 16142. These
are increases of 11.37% and 8.37% compared to the case log κ = −20 but still 9.94% and 7.50%
below the values for the benchmark agent who is not loss averse. Average bequest sizes decrease
for the narrow framing agent compared to the previous case. Albeit the higher risk exposure leads
to higher wealth levels in many cases, the relatively strong increase in the degree of annuitization
means that a smaller part of the agent’s wealth is subject to bequest. In this case, the average
bequest size decreases by 16.83% compared to the narrow framing agent in the previous case.
Compared to the benchmark agent this is still an increase of 213.83%. In relative terms the stan-
dard deviation of bequest sizes increases to 87.59% of the mean bequest size compared to 67.81%
of the mean bequest size for the narrow framing agent in the previous case and 71.40% of the
mean bequest size in the benchmark case.
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Figure 3: Comparison of N = 1000 simulated returns of the risky component of the optimal portfolio and
of the individual assets in the first period. The risky component of the agent’s portfolio contains 94.32%
Arrow annuities and 5.68% equity.

The broad framing agent’s investment strategy differs drastically from the narrow framing
agent’s portfolio choice. The lower relative weight of the loss averse investment evaluation com-
pared to the case log κ = −20 allow the broad framing agent to construct a portfolio with a
relatively high risk exposure for which the negative effect of the loss averse investment evaluation
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does not dominate the beneficial effects of increased consumption and bequest utility. See figure
3 for a comparison of the individual asset returns and the return of the optimal portfolio in the
first period. This leads to a strong increase in the agent’s annuitization degree to an average
of 76.68%, which slightly surpasses that of the benchmark agent. However, equity exposure is
reduced compared to the narrow framing agent with an average of 12.48%. In total the average
portfolio share of the risky assets is 89.16% which is 8.56 percentage points below that of the
benchmark agent. Compared to the narrow framing agent, the average experienced consumption
level of the broad framing agent increases by 7.08% to 20694 which is 3.56% below the level of the
benchmark agent. Due to high annuitzation degree the mean bequest sizes decreases drastically
compared with the narrow framing agent. Due to the relatively low equity exposure compared
to the benchmark agent the broad framing agent reaches lower wealth levels in most cases and
thus leaves smaller bequests than the benchmark agent. The mean bequest size is 31526 which
is 16.17% below the benchmark level. The standard deviation of bequest sizes is 76.90% of the
mean bequest size.

5.3 Comparison of the simple and the advanced model

Mean rel.
annuitiza-

tion

Intertemp.
variation
annuitiza-

tion

Mean rel.
equity

exposure

Intertemp.
variation
equity

exposure

Mean
bequest
size

Std.
bequest
size

Advanced Model

.7411 .1353 .2361 .1208 .0940 .7140

Simple Model

.7405 .1967 .2018 .0061 .1100 .3810

Table 3: Comparison of the mean and the standard deviations of the portfolio compositions and be-
quest sizes for the benchmark investor in the simple model and the advanced model without loss aversion.
The values for the advanced model are calculated from N = 10000 individual values derived by forward
simulation. The respective formulae for the individual values from which the means are calculated are
1
τ

∑τ
t=1(1 − ct)at for the mean relative annuitization and 1

τ

∑τ
t=1(1 − ct)θ

S
t for the mean relative equity.

Here τ denotes the (random) time of death of the retiree. The intertemporal variations are calculated as
the standard deviations of the average per period portfolio shares over the whole time horizon. The values
regarding bequest sizes are the sample mean and sample standard deviation over all N bequest sizes.

This section analyzes the differences between the agent’s optimal behaviour and its effects on
consumption paths and bequest sizes. A comparison of some key results in both models is given in
table 3. A visualization of the agent’s optimal portfolio composition through time is given in figure
4. We note that in the simple model, the optimal portfolio composition is independent of agent’s
wealth level and only dependent on the time. Thus the values given in figure 4 are exact values
and not averages. The results in the simple model are comparatively similiar to the results in the
advanced model without loss aversion. Excluding the loss averse investment evaluation, the differ-
ences between the two models are the different bequest utility specifications and the presence of a
governement subsidy. In the simple model, utility from bequest is calculated using the same utility
function as for consumption, albeit weighted differently than annual consumption. This means
that the agent is as risk averse about bequests as he is about consumption. This and the fact that
bequest utility typically receives a higher relative weighting than consumption utility means that
agents with low wealth levels sometimes choose unrealistically low consumption levels in order to
have enough chash left for sufficient bequest sizes. The affine formulation of bequest utility in the
advanced bequest motive specification prevents this behaviour. Because in this formulation, be-
quests are essentially luxury goods who are only demanded when the agent can afford a sufficiently
high bequest size relative to his own consumption. This difference between the two models does
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have observable effects on the agent’s behaviour especially in the second half of the retirement
phase. To ensure that his available funds always allow a bequest of sufficient size, the agent in the
simple model reduces his portfolio fraction of Arrow annuities much earlier than the agent in the
advanced model who is less risk averse about bequests, especially about low wealth level bequests.
In earlier periods however, when the agent’s wealth on hand is relatively high and thus the demand
for bequest in the advanced model is stronger, the agent in the advanced model invests a smaller
fraction in Arrow annuitites than the agent in the simple model. Because the agent is more likely
to be alive in earlier periods than in later periods, the average portfolio share of Arrow annuities
in the simple model is almost equal to that in the advanced model. In the simple model the agent
holds on average 74.05% of his wealth after consumption in Arrow annuities, in the advanced
model without loss aversion the agent holds on average 74.11% of his wealth after consumption
in Arrow annuities. This behaviour has an effect on the agent’s consumption paths. The high
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Figure 4: Optimal Portfolio composition in the simple model. The values above are the exact portfolio
weights which are only dependent on the time and not on the wealth level of the agent.

annuitization degree in the earlier periods leads to high wealth levels in the case of survival, which
in turn leads to high annual consumption in these periods. In contrast to the simple model, the
agent in the advanced model does invest in riskless bonds in the early periods which means that
he misses out on the mortality credit in the case of survival. This results in lower wealth levels
and thus lower consumption levels in the early periods in the advanced model. However this effect
diminishes over time. With the passing of time the agent’s survival probabilities decrease and
thus death becomes more likely compared to the earlier periods. Therefore the agents are more
concerned about a sufficient bequest size in the later periods. In the simple model this leads to
a quick reduction of the share of Arrow annuities in the agent’s portfolio. This effect is not as
strong in the advanced model because the agent is generally not as risk averse about bequests and
especially not as concerned with very low bequest sizes. Therefore the portfolio share of Arrow
annuities remains more stable than in the simple model. The standard deviation of the average per
period portfolio share is 13.53% in the advanced model and 19.67% in the simple model. Together
with a lower relative demand for bequest in the second half of retirement, this leads to slightly
higher consumption levels for the agent in the advanced model in the second half of the retirement
phase. Conversely, wealth after consumption, and therefore bequest sizes, are higher in the simple
model in the second half of the retirement phase. In the first half of the retirement phase, the av-
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erage wealth after consumption levels of both agents are very similiar. Overall this leads to higher
bequest sizes in the simple model. The average bequest size in the simple model exceeds the av-
erage bequest size in the advanced model by 17.02%. Furthermore bequests are far less volatile in
the simple model with a standard deviation of 38.10% compared to 71.40% in the advanced model.

As already mentioned above, the higher relative concern for bequest in the simple model leads
to generally smaller average consumption levels in the simple model. In all but five periods,
which are all within the first 12 years of retirement, the average consumption level is higher in
the advanced model. In the final 14 years of the retirement phase the average consumption level
in the advanced model is between 10% and 22% higher than in the simple model. In total the
average experienced annual consumption level is 21026, which is a 2.02% decrease compared to
the advanced model.

The second difference between the two models, the presence of a government subsidy, does not
substantially effect the results. This is the case because we assume an initial wealth of sufficient
size, that leads to an optimal behaviour in which the agent is very rarely forced to actually access
the subsidy. The situation would change however for lower initial wealth levels.

To summarize, the simple model slightly shifts priorities to bequest sizes at the expense of
annual consumption in the second half of the retirement phase. This leads to slightly higher
average bequest sizes and a slightly lower average annual consumption. Assuming that De Nardi’s
bequest motive specification used in the advanced model is the more accurate representation
of an individual’s actual desire to leave a bequest, it can be concluded that the simple model
overemphasizes bequests and that normative conclusions should rather be drawn on the basis of
the advanced model. Furthermore as long as the agent’s initial wealth level is sufficiently high,
the access to a government subisdy does not lead to significant changes in the results.

6 Conclusion

This paper proposes a way to introduce loss averse investment evaluation into a dynamic frame-
work which also includes utility from consumption and bequest. To overcome the difficulties in
representing an annuity investment in terms of its return characteristics we resort to a stylized
form of an annuity. Within this framework we find that a sufficient degree of loss aversion can
explain the empirically observed under-annuitization. It remains to be shown in future research,
wether or not a similiar concept can be applied to actual multi-period life annuities. Furthermore,
an important factor in our model is the relative strength of the loss averse investment evaluation
with respect to the classical utility. Because this factor heavily depends on the size of the invest-
ment and the annual consumption levels, a constant factor as proposed in our model cannot be
adequat in all cases. Therefore further analysis can concern itself with a suitable dynamic factor
that results in a harmonic and stable interaction of loss averse investment evaluation and classical
utility.

62



References

[1] Julie R Agnew, Lisa R Anderson, Jeffrey R Gerlach, and Lisa R Szykman. The annuity puzzle
and negative framing. Issue in Brief, pages 8–10, 2008.

[2] Julie R Agnew and Lisa Szykman. Annuities, financial literacy and information overload.
Pension Research Council WP, 33, 2010.

[3] Nicholas Barberis and Ming Huang. Mental accounting, loss aversion, and individual stock
returns. Technical report, National Bureau of Economic Research, 2001.

[4] Nicholas Barberis and Ming Huang. The loss aversion/narrow framing approach to the equity
premium puzzle. Technical report, National Bureau of Economic Research, 2006.

[5] Nicholas Barberis and Ming Huang. Preferences with frames: a new utility specification that
allows for the framing of risks. Journal of Economic Dynamics and Control, 33(8):1555–1576,
2009.

[6] Shlomo Benartzi, Alessandro Previtero, and Richard H Thaler. Annuitization puzzles. The
Journal of Economic Perspectives, pages 143–164, 2011.

[7] Shlomo Benartzi and Richard H Thaler. Myopic loss aversion and the equity premium puzzle.
Technical report, National Bureau of Economic Research, 1993.

[8] Arjan B Berkelaar, Roy Kouwenberg, and Thierry Post. Optimal portfolio choice under loss
aversion. Review of Economics and Statistics, 86(4):973–987, 2004.

[9] Dimitri P Bertsekas and Steven E Shreve. Stochastic optimal control: The discrete time case.
Academic Press New York, 1978.

[10] David Blake, Douglas Wright, and Yumeng Zhang. Target-driven investing: Optimal in-
vestment strategies in defined contribution pension plans under loss aversion. Journal of
Economic Dynamics and Control, 37(1):195–209, 2013.

[11] Jeffrey R Brown. Rational and behavioral perspectives on the role of annuities in retirement
planning. Technical report, National Bureau of Economic Research, 2007.

[12] Jeffrey R Brown, Jeffrey R Kling, Sendhil Mullainathan, and Marian V Wrobel. Why don’t
people insure late life consumption: A framing explanation of the under-annuitization puzzle.
Technical report, National Bureau of Economic Research, 2008.

[13] Jeffrey R Brown and James M Poterba. Joint life annuities and annuity demand by married
couples. Technical report, National Bureau of Economic Research, 1999.

[14] Giuseppe Cappelletti, Giovanni Guazzarotti, and Pietro Tommasino. What determines an-
nuity demand at retirement? The Geneva Papers on Risk and Insurance Issues and Practice,
38(4):777–802, 2013.

[15] An Chen, Felix Hentschel, and Jakob K Klein. A utility-and cpt-based comparison of life
insurance contracts with guarantees. Journal of Banking & Finance, 61:327–339, 2015.

[16] Joao F Cocco, Francisco J Gomes, and Pascal J Maenhout. Consumption and portfolio choice
over the life cycle. Review of financial Studies, 18(2):491–533, 2005.

[17] Enrico G De Giorgi and Shane Legg. Dynamic portfolio choice and asset pricing with narrow
framing and probability weighting. Journal of Economic Dynamics and Control, 36(7):951–
972, 2012.

[18] Mariacristina De Nardi. Wealth inequality and intergenerational links. The Review of Eco-
nomic Studies, 71(3):743–768, 2004.

63



[19] Stephen G Dimmock and Roy Kouwenberg. Loss-aversion and household portfolio choice.
Journal of Empirical Finance, 17(3):441–459, 2010.

[20] Darren Duxbury, Barbara Summers, Robert Hudson, and Kevin Keasey. How people evaluate
defined contribution, annuity-based pension arrangements: A behavioral exploration. Journal
of Economic Psychology, 34:256–269, 2013.

[21] Michael Goedde-Menke, Moritz Lehmensiek-Starke, and Sven Nolte. An empirical test of
competing hypotheses for the annuity puzzle. Journal of Economic Psychology, 43:75–91,
2014.

[22] Daniel Gottlieb and Olivia S Mitchell. Narrow framing and long-term care insurance. Tech-
nical report, National Bureau of Economic Research, 2015.

[23] Wei-Yin Hu and Jason S Scott. Behavioral obstacles in the annuity market. Financial Analysts
Journal, 63(6):71–82, 2007.

[24] In Do Hwang. Prospect theory and insurance demand. Available at SSRN 2586360, 2015.

[25] Qing Liu and Donald A Pierce. A note on gausshermite quadrature. Biometrika, 81(3):624–
629, 1994.

[26] Alessandro Magi. Portfolio choice, behavioral preferences and equity home bias. The Quarterly
Review of Economics and Finance, 49(2):501–520, 2009.
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Appendix I

Lemma 1. The value function defined by equations (16) and (18) is positively homogeneuous with
degree 1− γ.

Proof.

VT
(
w
)

= sup
(c,θ)∈[0,1]2

{
(wc)1−γ

1− γ
+ βET

[(
(1− c)w(θQT + (1− θ)Qf )

)1−γ
1− γ

]}
(44)

= w1−γ · sup
(c,θ)∈[0,1]2

{
(c)1−γ

1− γ
+ βET

[(
(1− c)(θQT + (1− θ)Qf )

)1−γ
1− γ

]}
(45)

= w1−γ · VT
(
1
)

(46)

Using this we obtain for VT−1 that

VT−1

(
w
)

= sup
(c,θ,α)∈[0,1]3

{
(wc)1−γ

1− γ

+ βpT−1ET−1

[
VT

(
(1− c)w(θQT−1 + αQA,T−1 + (1− θ − α)Qf )

)]
(47)

+ β(1− pT−1)ET−1

[(
(1− c)w(θQT−1 + (1− θ − α)Qf )

)1−γ
1− γ

]}

= sup
(c,θ,α)∈[0,1]3

{
w1−γ (c)1−γ

1− γ

+ βpT−1(1− c)1−γw1−γVT (1)ET−1

[
(θQT−1 + αQA,T−1 + (1− θ − α)Qf )1−γ

]
(48)

+ β(1− pT−1)(1− c)1−γw1−γET−1

[(
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{
(c)1−γ
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+ βpT−1(1− c)1−γVT (1)ET−1
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(θQT−1 + αQA,T−1 + (1− θ − α)Qf )1−γ

]
(49)

+ β(1− pT−1)(1− c)1−γET−1

[(
θQT−1 + (1− θ − α)Qf

)1−γ
1− γ

]}
= w1−γ · VT−1(1). (50)

It then follows by induction that
Vt(w) = w1−γ · Vt(1) (51)

for all t ∈ [0, T ].

Lemma 2. Assuming a subsidy consumption level of size C and a bequest utility function of the
form (21), the value function defined by equations (16) and (18) satisfies

Vt(w) ≥
T∑
s=t

pt,s(1− ps)
(
βt−s+1 − 1

β − 1
u(C) + βt−s+1v(0)

)
(52)

65



for all t ∈ [0, T ].

Proof. Using that
∑s−1
k=0 β

k = βs−1
β−1 , a quick calculation yields

s∑
k=t

βk−t =
βs+1−t − 1

β − 1
. (53)

Let pt,s∗ = pt,s(1−ps) denote the probability that the individual deceases in period t+1. Because
we enforce a minimum subsistence consumption level we have Ct = ctWt ≥ C for all t ∈ [0, T ].
Using this and the definition of the value function Vt (15), the definiton of the preference functional
Φ (11) and (13), the Law of Total Expectation and (53) we find that for all wealth levels w ≥ 0
and strategies γt ∈ Γt

Vt(w) ≥ Φt(w, γt)

= Et

[
T∑
s=t

p0,s−1β
s−t (psu(csW

L
s ) + (1− ps)v(WD

s )
) ]

≥ Et

[
T∑
s=t

p0,s−1β
s−t (psu(C) + (1− ps)v(0))

]

=

T∑
s=t

pt,s∗
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s∑
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βk−tu(C)

)
+ βs+1−tv(0)

]

=

T∑
s=t

pt,s(1− ps)
(
βt−s+1 − 1

β − 1
u(C) + βt−s+1v(0)

)
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Abstract

We propose a model that allows a loss averse evaluation of a life annuity to enter into
the retirement phase of a life-cycle model. Our approach consists of a workaround using the
concept of myopic loss aversion and a representation for an annuity investment consisting of
annual returns and the capital bound in the annuity. We explore the portfolio effects of our
model in two cases, distinguished by the degree to which the investor frames his asset develop-
ments narrowly. Optimization within the two models is conducted for various parametrizations
of the relative strength of the investment evaluation.

1 Introduction

In theory life annuities are the prime tool to ensure a steady consumption throughout retirement
and a powerful insurance against longevity risk. However, observed voluntary annuitization rates
beyond the mandatory rates are fairly low. Using data from a survey on 401(k)plans in the United
States, Schaus [29] reports that only 6% opted for annuitization when it was available. This dis-
crepancy, known as the annuity puzzle, has been at the center of a large variety of research in the
recent decades. Attemps to explain this phenomen range from minor adjustments to the classical
theory to behavioral models assuming either bounded rationality or a complete lack of rationality
on the side of the investor. A popular explanation that falls somewhere in the middle of these
categories is the concept of loss aversion. Originally made famous as a central characteristic of
Kahneman and Tversky’s prospect theory, loss aversion has been applied to a broad range of
financial decision problems. Unlike risk aversion, which usually describes the sensitivity to fluc-
tuations in the investor’s consumption or total wealth level, loss aversion represents a sensitivity
to adverse outcomes of his risky investments. Thus the notion of loss aversion generally implies
that some form of narrow framing occurs. This means that the investor is sensitve to fluctuations
of individual assets or asset classes isolated from the fluctuations of his whole portfolio or other
sources of income. When the concept of loss aversion is applied to a dynamic framework, it is not
immediately clear which fluctuations in assets constitute fluctuations the investor should be sensi-
tive about. Losses or gains in an asset could be registered by the investor at their time of maturity
or when the assets are sold. On the other hand the investor could also care about intertemporal
fluctuations of the value of his assets. Assuming the latter is the general assumption of myopic
loss aversion, a concept first introduced by Benartzi and Thaler [5]. Models assuming myopic
loss aversion have been applied to a problem similiar to the annuity puzzle, the equity premium
puzzle. For volatile assets such as stocks, a short-term loss averse evaluation of the investment
development can make a long-term investment seem much less attractive than it may seem from a
classical expected utility framework. Equilibrium models including myopic loss aversion therefore
generate risk premia closer to the observed values than classical models. Empirical evidence, as for
example given in Benartzi and Thaler [6], and theoretical arguments aside, myopic loss aversion
has the additional benefit from a modelling perspective that it allows a very canonical implemen-
tation in dynamic frameworks, such as multi-period consumption/investment problems. In such
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applications of myopic loss aversion, the evaluation horizon for narrowly framed assets usually
coincides with the timing of the consumption and investment decision. In such frameworks, loss
aversion can be incorporated in the investor’s preferences as an additional source of utility or
rather, because loss aversion usually results in an unfavourable evaluation from an investment
perspective, disutility.

While loss aversion itself has been included in models of annuity demand before, these mod-
els are generally static and therefore necessarily separate the consumption and the investment
problem. This is the approach taken for example by Hu and Scott [22]. The downside to these
approaches is, that they ignore the huge potential of annuities when it comes to consumption
smoothing and ensuring late life consumption. But to include loss aversion in a reasonable dy-
namic model, the loss averse investment evaluation of the annuity and other risky assets has to be
embedded within a multi-period consumption/investment problem. This however, is not without
difficulties. There is no straight forward generalization of models including loss aversion about
stocks to include annuites. In this paper, we propose a workaround to this problem building on
myopic loss aversion applied to all risky assets, including the life annuity. The general assumption
is that the investor narrowly frames the annual development of the capital bound in the annuity
and therefore displays sensitivity to the short term development of this asset. Because the life
annuity payments are conditional on the investor’s survival, the capital bound in the annuity is
constantly exposed to the risk of a total loss. For an investor who frequently assesses his invest-
ment prospects, this looming risk may render the annuity unattractive. Since the annuity is an
illiquid investment, hence cannot be traded after the purchase, our model allows two interpreta-
tions when myopic loss aversion enters the investor’s preferences. The investor may either actually
conduct an annual loss averse evalution of the risky component of his portfolio, in our case stocks
and the annuity, as is the case with stocks in the myopic loss averse models by Baberis and Huang
([2] or [4]). Or another interpretation is that the whole evaluation of the annuity investment is
conducted at the time of its purchase. That is the investor anticpiates the development prospects
for all future periods and evaluates them at once. Because it is not when uncertainty is resolved
that loss aversion effects the investor but the expected value1 of this effect, that drives the in-
vestor, the actual timing is irrelevant to the results. However in both cases myopic loss aversion
demands that assets are represented in terms of bounded capital and annual returns, which is
typically not the form a life annuity is presented. We offer a solution to this problem and thus a
way to implement myopic loss aversion over a life annuity. We call our approach a workaround,
because wether or not the investor is actually myopic concerning the annuity is not central to our
model. We can always interpret the sum of all future periodwise investment evaluations as the loss
averse investment evaluation at the time the annuity is purchased. To counter potential criticism
regarding the complexity of our approach, a workaround like this is needed because, as we will
explicate below, a static loss averse evaluation of an annuity is not possible while still properly
representing the properties of the annuity.

Our approach builds on a decomposition of the life annuity into individual Arrow-Debreu-
Securities, in the following refered to as Arrow annuities, representing the individual annual pay-
offs. The price of the whole annuity naturally decomposes into the sum of the prices of the
individual Arrow annuities. Given the price of an individual Arrow annuity and its payoff, we can
caluculate the total and the annualized return on investment in the case that the agent survives
until maturity. For a single Arrow-Annuity this means, broken down into a single period, that
the endowment invested into this particular annuity will grow by its respective annual return with
the probability that the agent survives the current period, or will be lost completely with the
probability that the agent deceases during the current period. Applied to the original life annuity,
we can form the portfolio of all the Arrow annuities representing the outstanding annuity payoffs

1It should be noted here that general applications of loss aversion do not neccessarily contain expected values
but assume probability distortion and thus result in a more general evaluation functional. However wether these
evaluations affect the investor annually or through anticipation all at once is not affected by the particular choice
of the functional.
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and calculate their ”portfolio” return as a weighted sum of the individual annual returns. Again,
broken down into a single period, this means that the current annuity endowment will grow by
this average annual return with the probaility that the agent survives the current period and by
the factor zero with the probability that the agent deceases during the current period. This line
of reasoning yields a framework for myopic loss aversion to apply. Given an appropriate reference
rate of return, the myopic loss averse agent annually receives prospect utility regarding the capital
bound in the annuity investment, by comparing the prospects ”growth with the annual average
return” and ”total loss in case of death” with the reference return.

Our general model combines a classical expected utility framework with investment evaluation
charaterized by myopic loss aversion. The model spans the entire retirement phase of a life-cycle
agent. We assume that the agent has a one time access to the annuity market upon entry to
retirement. He may further annually invest his remaining wealth after consumption in two liquid
asset classes, representing a riskfree bond investment and a stylized stock investment. At the
beginning of each year he receives utility from consumption. In addition to that he may receive
utility from bequest at the time of his death. Following the concept of myopic loss aversion, the
agent also evalutes the short-term development prospects of his investments on an annual basis.
This evaluation results in a third form of utility, which we refer to as prospective utility, which
is assumed to be characterized by loss aversion. In this context, loss averison entails an uneven
assessment of losses and gains, i.e. adverse or advantageous deviations from a given reference
point, in the sense of Kahneman and Tversky’s prospect theory. Within our model we further
differentiate between narrow and broad framing. Narrow framing describes the notion that an
asset’s prospects are evaluated individually and independently of the performance of the whole
portfolio. Broad framing describes an agent whose investment evaluation relies on the aggregated
return of the risky component of his total portfolio and not on the individual assets. For a typical
investment, a higher degree of narrow framing leads to a less favourable subjective investment
evaluation because diversification effects vanish and individual assets are perceived as far riskier
than they actually are.

Obviously this paper comes with that caveat that our results are entirely hypothetical. In con-
trast to applications of myopic loss aversion in the context of tradeable assets, there is no intuitive
reason that an investor would perform an analysis such as ours when deciding wether to annuitize
or not. However as myopic loss aversion has become a popular tool in descriptive analysis of house-
hold and professional portfolio decisions, the question arises what portfolio effects we can expect
when the concept is applied to illiquid assets. As mentioned above the only difference between an
annuity and an equity investment from a mere investment perspective is the liquidity of the an-
nuity. Hence there is no a priori reason why myopic loss aversion should not apply to life annuities.

As it is to be expected, we find that a sufficiently strong relative weighting of the loss averse
investment evaluation leads to a reluctance to invest in risky assets. Therefore, a gradual increase
of the strength of the relative weighting results in a decrease in both annuitization degree and
average equity exposure, which eventually leads to complete abstinence from both annuity and
equity markets. This decrease in exposure to risky assets depends in parts on the scope of the
framing the investor exhibits. When the two risky assets in our model are evaluated together, the
broad framing case, the reluctance to make risky investments is not as strong as when they are
evaluated individually, the narrow framing case. However this effect is either non-existing or fairly
small for the annuity as a risky asset but very noticeable for the investor’s equity exposure. As we
discuss in detail below this is a result of the broad framing investor’s ability to construct certain
portfolios that result in a much less unfavourable evaluation than the individual assets. Because
the evaluation function is not a smooth function due to the property of loss aversion, this effect
goes beyond typical diversification effects.
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Literature review

The concept of loss aversion, or in our context more precisely the evaluation of risky investments
according to the principles of Kahneman and Tversky’s cumulative prospect theory (CPT) [33],
has been applied to problems involving optimal choice in numerous ways in the past decades.
An early approach which is more related to classical static portfolio choice problems than to the
dynamic framework analyzed in this paper is given by Shefrin and Statman’s behavioral portfolio
theory [31].

Dynamic models assuming loss aversion usually resort to the concept of myopic loss aversion for
the reasons discussed above. The concept of myopic loss aversion was first introduced by Benartzi
and Thaler [5] as a way to explain the equity premium puzzle. Since then various dynamic optimal
portfolio or consumption/investment models have been proposed that build on the idea of a loss
averse evaluation of the short term development of a risky asset. Recent examples include among
others Dimmock and Kouwenberg [18] who study the effect of loss aversion in a classical household
portfolio framework, De Giorgi and Legg [16] who include probability weighting in their analysis,
a feature of CPT that is often ignored in other models, Rsonyi and Rodrigues [27] and Jin and
Zhou [23] who solve optimal portfolio selection problems under loss aversion in continous time
models, Van Bilsen, Laeven and Nijman [34] who study a dynamic investment and consumption
problem in which the investor’s reference point, the threshold that distinguishes investment losses
from investment gains, is not constant but dependant on the investor’s current state and his past
investments. Other portfolio selection models that include the concepts outlined above are studied
by Berkelaar, Kouwenberg, and Post [7] and Magi [25]. Our approach on myopic loss aversion
follows the models by Barberis and Huang (see for example [2],[4] and [3]) who in particular, as it
is the case in this paper, place emphasis on the scope of the investor’s framing.

In a setting related to this paper, Blake, Wright and Zhang [8] conduct a loss averse evaluation
of investment plans in the accumulation phase of a life-cycle. They find that the optimal invest-
ment depends on the wealth level of the investor. For low wealth levels the investor is more risk
seeking and switches to portfolio insurance strategies once he reaches higher wealth levels. In our
paper which focuses on the decumulation phase of the life cycle we find that this effect reverses
itself, as the retiree’s wealth level is decreasing over time. In the beginning of the retirement phase,
when wealth levels are the highest, the investor is reluctant to invest in risky assets but gradually
increases equity exposure as his total funds decrease.

Empirical evidence for myopic loss aversion is given for example by Thaler, Tversky, Kahneman
and Schwartz [32]. Haigh and List [21] provide experimental evidence that loss aversion is not only
displayed by individual investors who may lack financial literacy but also by professional traders.
Contrary to intuition they report stronger degrees of myopic loss aversion for the professionals
than for students in their experiment.

Besides the subject of optimal portfolio choice under loss aversion, this paper contributes to
the theory on the demand for life annuities and more specificly on the annuity puzzle. A branch of
research that goes back to an article by Yaari on portfolio choice facing an uncertain lifetime [35].
Yaari finds that under certain conditions full annuitization is optimal. A more recent study which
represents a more sophisticated, yet conceptually similiar approach, is conducted by Davidoff,
Brown and Diamond [15]. They find that depending on the circumstances, full or at least high
annuitization degrees are optimal. The inability of the classical rational models to explain the low
observed voluntary annuitization rates has jolted many approaches that seek an explanation for
low annuity demand outside of the realm of rational models. A broad compendium containing
rational and psychological factors of annuity demand is given by Brown [9]. Richter, Schiller and
Schlesinger [28] study how behavioral obstacles may effect demand for general insurance products.
Hu and Scott [22] put a particular focus on how behavioral effects may hinder the purchase of
annuities. They also propose a model which applies loss aversion to a life annuity. However they
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only focus on the investment evaluation without considering the beneficial effects of a life annuity
regarding longevity risk. Furthermore there is a variety of literature that is concerned with empiri-
cal testing of the various rational and psychological effects proposed in the aforementioned articles
and beyond. Among others, examples include Goedde-Menke, Lehmensiek-Starke and Nolte [19],
Cappelletti, Guazzarotti and Tommasino [12] or Agnew and Szykman [1]. General findings are
that wealth, gender, financial literacy, framing, distrust, bequest and self-selection are important
determinants of annuity demand.

Especially the concept of framing is an important part in this paper. The dynamic models
proposed by Yaari [35] and Davidoff, Brown and Diamond [15] typically only consider utility from
consumption and sometimes utiltiy from bequest. Therefore they fall into the category of a con-
sumption frame for the annuitization decision. However Brown, Kling, Mullainathan and Wrobel
[10] find experimental evidence that individuals actually choose annuitization levels as proposed
by those models when the annuitization decision is framed in terms of consumption and longevity
risk. But when the annuity investment is instead portrayed in terms of its return characteristics,
then the preference rates for annuities fall from 72% to 21%. The myopic loss averse models
listed above can be considered a hybrid frame which combines consumption and investment con-
siderations. This is a suitable approach for life annuities because mere investment frame models
ignore the huge potential of annuities when it comes to ensuring a stable consumption throughout
retirement and thus result in a too unfavourable evaluation of the life annuity.

The idea to use behavioral effects to explain the demand for insurance is adopted in other
recent papers. For example Gottlieb and Mitchell [20] analyze the effect a combined utility and
investment evaluation has on the demand for long-term care insurance. Chen, Hentschel and Klein
[13] analyze how guarantees in life insurance products are evaluated by CPT investors in contrast
to expected utility investors. An analysis of the demand for annuities under loss aversion using a
stylized form of one period annuities, which avoids most of the difficulties in applying loss aversion
to annuities, is conducted by Schneider [30].

2 The model

Our model spans the retirement phase of the life-cycle. At age 65, at time t = 0, our exemplary
agent enters retirement with the accumulated savings W > 0. He can live up to maximum age of
100 years (time T = 35), but may also decease during any prior year. We assume that the agent
has no additional assets such as pre-annuitized wealth or future labour income. To finance his
future consumption and a potential bequest the agent has access to a menu of three investment
classes. Two of them are liquid assets who can be rebalanced on an annual basis. The third is an
illiquid life annuity, which cannot be traded after the purchase. At the beginning of every year,
starting in t = 0, the agent chooses his annual consumption level Ct and then allocates the rest of
his wealth on hand Wt − Ct among the two liquid asset classes.

The two liquid assets available to the agent consist of a riskfree bond paying a fixed interest rate
Rf and a stylized stock investment whose underlying price process follows a geometric Brownian
Motion, i.e. pays a lognormally distributed return 1+Rt

2. We assume that there are no transaction
costs and furthermore that the annuity is priced fairly. That means the price of an annuity in
advance of size A is given by

PA = A

T∑
t=0

p0,t(1 +RA)−t (1)

2Throughout this paper we will assume that all probabilities and conditional and unconditional expectations
are taken with respect to the canonical probability space generated by the sequence of returns (Rt)t∈[1,T+1]
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where p0,t are the assumed survival probabilities from the agent’s cohort. Throughout this pa-
per we assume that these probabilities coincide with the agent’s individual survival probabilities.
RA ≥ Rf is the assumed interest rate.

For all t = 0, 1, 2, . . . , T we let 0 ≤ ct ≤ 1 denote the fraction of wealth on hand Wt that is
consumed in the subsequent period and θt ≥ 0 denote the fraction of wealth after consumption
which is invested in the stock market. The remaining fraction 1−θt is invested in the riskless asset.
To allow neither borrowing nor short selling either of the asset types we require that 0 ≤ θt ≤ 1
for all t = 0, 1, . . . , T . Since the payoff of the annuity is conditional on the agent’s survival, the
agent’s wealth process (or more formally - the agent’s budget constraint) depends on his survival
state. There are three possible states. If the agent is alive at time t + 1 his wealth on hand is
given by

WL
t+1 = Wt(1− ct)(θt(1 +Rt) + (1− θt)(1 +Rf )) +A. (2)

If the investor deceases during period t + 1, his wealth at time t + 1 is subject to bequest. The
time t+ 1 annuity however, will not be paid out. The wealth on hand at that time t+ 1, and thus
the size of his bequest is therefore

WD
t+1 = Wt(1− ct)(θt(1 +Rt) + (1− θt)(1 +Rf )). (3)

The agent’s wealth on hand at all later times after his bequest is zero.

The concept of myopic loss aversion suggests that the agent narrowly frames a part of the
risky component of his wealth process. In a typical model this would concern the stock investment
Wt(1− ct)θt. Annual fluctuations in this asset class would then, in addition to their intermediate
effect on consumption and bequest, immediately effect the agent via some form of ”gain-loss-
utility”. This investment evaluation is usually characterized by loss aversion, which means that
the agent is more sensitive to potential losses than to potential gains. Wether or not an annual
return is considered a gain or a loss is determined by comparison with some reference return,
such as zero or the risk-free rate. Yet in our framework, stocks are not the only risky asset the
agent holds. There is also the annuity. Although the annual payoff A itself is fixed, the actual
return on investment of the annuity may vary to a great extend (see figure 1). So albeit not trade-
able, the annuity contains all the features a myopic loss averse investor may be sensitive about.
But the general model framework sketched above demands that the annuity investment must be
represented in the form of an annual variable rate of return to allow a myopic loss averse evaluation.

To obtain such a representation we decompose the whole annuity into individual Arrow-Debreu-
Securities At, t = 0, . . . , T . Each At is a finacial contract made at time t = 0, paying the amount
A to the agent if he is alive at time t and 0 if he is not. The price Pt of At is

Pt = Ap0,t(1 +RA)−t. (4)

Obviously the purchase of all T + 1 Arrow annuities is identical to the purchase of the life annuity
and the following identity holds for the respective prices

P =

T∑
t=0

Pt. (5)

Each Arrow-Debreu-Security At, which will be denoted Arrow-Annuity in the following, has a
total return of

1 +RA,0,t = 1 +RLA,0,t =
A

Pt
=

(1 +RA)t

p0,t
(6)

if the agent survives until time t and a return RA,0,t = RDA,0,t = −1 if the agent dies prior to its
maturity. The respective annualized returns are

1 +RA,t = (1 +RLA,0,t)
1/t =

(1 +RA)

p
1/t
0,t

(7)
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in case of survival and RA,t = −1 otherwise. Suppose the agent holds one arbitrary Arrow-Annuity
At at time s < t. The current ”endowment”3 of this asset is Pt(1 +RA,t)

s. If the investor survives
one more period until time s+1 this value will grow by the factor 1+RA,t. If the investor deceases
during the current period, the invested capital will be lost, i.e. grow by the factor 0. We let

Ets =

{
Pt(1 +RA,t)

s, t > s

0, t ≤ s
(8)

denote the current endowment in the single Arrow-Annuity At at time s. Now suppose the agent
holds all T + 1 Arrow annuities of the same size A, i.e. the agent holds the life annuity. At time s,
the current annuity endowment is the sum of the endowments of the individual Arrow annuities
which have not yet matured

Es :=

T∑
t>s

Ets =

T∑
t>s

Pt(1 +RA,t)
s. (9)

If the agent survives the following period, the endowments will grow by their respective annual
rates 1 + RA,t, and thus the whole portfolio of the Arrow annuities will grow by the ”portfolio”
return

1 +RPA,s =

T∑
t>s

Ets
Es

(1 +RA,t) (10)

if the agent survives the current period and RPA,s = −1 if the agent deceases in the current period.

This investment representation of the life annuity permits comparison with annual investments
such as stock holdings or general annual reference returns. Each year, the annuity exposure Et,
which can be thought of as the capital invested in the annuity at time t, grows by the risky return
RA,t. In a similiar manner as the stock exposure Wt(1− ct)θt grows by the risky return Rt. The
remaining difference between the two assets is their liquidity. To account for this, the appropriate
reference return has to be set higher than the reference return for liquid investments. Further-
more our investment representation is consistent with the actual payoff of the annuity and only
regards funds that are actually invested in the annuity and thus avoids potentially problematic
reinvestment assumptions.

We assume a combined preference functional similiar to the models proposed by Barberis
and Huang ([2],[4] or [3]), who also build on the assumption of myopic loss aversion. These
models typically contain two types of sources of utility. In our framework these are the classical
forms of utility from consumption and bequest and a prospective utility from myopic investment
evaluation. We further assume, as in [2], that utility is additive in time as well as in type4. The
specific timing when the utilities effect the agent, i.e. when they are felt by the agent, is as follows.
At the beginning of every year t = 0, 1, . . . , T , if the agent is still alive, he receives utility from
consumption u(Ct) = u(ctW

L
t ). If he deceases during period t he receives utility from bequest

v(WD
t ) at time t, weighted by the strength of his bequest motive ω ≥ 0. Subjective investment

evaluation occurs annually beginning at time t = 0. Since we assume a myopic investor, only
fluctuations within the short time horizon of one year are considered. Thus at time t the investor
experiences loss averse prospect utility m over the potential investment outcomes within period

3This does not represent an objective evaluation of the asset itself. Rather it describes the growth of the
investment Ks = Pt(1 +RA,t)

s from the initial endowment Pt to the final, but conditional, payoff A.
4The more recent models proposed in [4] and [3] assume recursive instead of additive utility. The recursive

specification has the advantage that it allows tractability in the equilibrium and thus to derive statements about
the equity risk premium and stock demand in the optimum. Because for now our model concerns only with
the effects on the demand side, i.e. the relative attractiveness of annuities, we stick to the additive formulation
which allows a greater degree of intuitive traceability concerning the preferences themselves. Another noteworthy
advantage of recursive utility models is that they avoid that the rate of intertemporal substitution is directly linked
to the risk aversion parameter.
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Figure 1: The figure displays the annual per period returns RPA,s if the investor survives and their

expected values and standard deviations. After 13 periods the risk premia of the annuity E[RPA,s] − RA

become negative.

t + 1, i.e. over the risky returns Rt and RPA,t. Contrary to classical expected utility theory this
function is not applied to a consumption or a wealth level but to gains and losses. Differentiation
between gains and losses is achieved by comparison with a reference return Rr. The investor
assesses the success of an investment of size W by comparing its return WR to the benchmark
return WRr. If WR −WRR ≥ 0, it is considered a gain and a loss otherwise. Our specification
of the function m, which is discussed below, is positively homogeneous with degree α > 0. The
prospective investment evaluation, defined as the expected prospective utlity, can therefore be
written in the form

E[m(WR−WRr)] = WαE[m(R−Rr)].

The appropriate reference return depends on the type of asset or the composition of the portfolio
that is narrowly framed. In the following, we will assume that the agent’s reference return is the
risk-free rate Rf for liquid investments and the assumed interest rate RA for the illiquid annuity
investment. We distinguish between two model specifications regarding the scope of the agent’s
framing. The narrow framing (NF) specification assumes that the agent frames and thus evaluates
both risky assets, stock and annuity, individually. The broad framing (BF) specification assumes
that the whole risky component of the agent’s portfolio is framed and evaluated at once. In the
latter case the total size of the risky component is

EBFt = Et +Wt(1− ct)θt. (11)

The respective portfolio return RP,t is defined as the sum of the individual returns Rt and RPA,t
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weighted with the relative size of their current endowment, i.e.

RP,t =
W (1− ct)θt

Et +Wt(1− ct)θt
Rt +

Et
Et +W (1− ct)θt

RPA,t. (12)

Because the portfolio is compounded of liquid and illiquid assets the appropriate reference return
is the weighted sum of the two respective reference returns, i.e

RR,t =
Wt(1− ct)θt

Et +Wt(1− ct)θt
Rf +

Et
Et +Wt(1− ct)θt

RA. (13)

In the following we use the short notation pt = pt,t+1 to denote the conditional periodwise
survival probabilities. For any feasible consumption/ investment plan γ0, the time t = 0 preference
specification (NF) with individual framing of the risky assets takes the form

ΦNF0 (W,γ0) =E0

[
T∑
t=0

p0,t−1β
t

(
ptu
(
ctW

L
t

)
+ (1− pt)ωv

(
WD
t

)
+ κ(Et)

αm
(
RPA,t −RA

)
(14)

+ κ(Wt(1− ct)θt)αm
(
Rt+1 −Rf

))]
.

The preference specification (BF) with broad framing is given by

ΦBF0 (W,γ0) =E0

[
T∑
t=0

p0,t−1β
t

(
ptu
(
ctW

L
t

)
+ (1− pt)ωv

(
WD
t

)
+ κ
(
Et +Wt(1− ct)θt

)α
m
(
RP,t+1 −RR,P

))]
. (15)

The model parameter κ describes the relative impact of prospective utility with respect to classical
utility from annual consumption and bequest.

Let U := U0, resp. Ut, denote the set of feasible investment/consumption plans starting
at time 0, resp. time t, that abide the constraints formulated above. Analogous to the time

t = 0 preferences we can formulate the respective preferences Φ
NF/BF
t (W,γt) for the problem

(re-)started at any later time t = 1, 2, . . . , T . The problem’s value function V
NF/BF
t is defined as

the optimized preference functional Φ
NF/BF
t

V
NF/BF
t (Wt) = sup

γt∈Ut

Φ
NF/BF
t

(
Wt, γt

)
. (16)

In both model specifications the value functions satisfy the Bellmann equation, which states that

V NFt

(
Wt

)
= sup

(c,θ)∈[0,1]2

{
u
(
cWt

)
+ βptEt

[
Vt+1

(
WL
t+1)

)]
+ β(1− pt)ωEt

[
v
(
WD
t+1

)]

+ κ(Et)
αEt

[
m
(
RPA,t −RA

)]
+ (Wt(1− c)θ)αEt

[
m
(
Rt −Rf

)]}
. (17)

holds with with the terminal condition

V NFT

(
WT

)
= sup

(c,θ)∈[0,1]2

{
u
(
cWT

)
+ βωET

[
v
(
WD
T+1

)]
+ (WT (1− c)θ)αET

[
m(RT −Rf )

]}
.

(18)
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and that

V BFt

(
Wt

)
= sup

(c,θ)∈[0,1]2

{
u
(
cWt

)
+ βptEt

[
Vt+1

(
WL
t+1)

)]
+ β(1− pt)ωEt

[
v
(
WD
t+1

)]

+ κ(Et +Wt(1− c)θ)αEt

[
m
(
RP,t −RR,t

)]}
. (19)

holds with the terminal condition

V BFT

(
WT

)
= sup

(c,θS)∈[0,1]2

{
u
(
cWT

)
+ βωET

[
v
(
WD
T+1

)]
+ κ(WT (1− c)θ)αET

[
m
(
RT −Rf

)]}
.

(20)

Because there are no outstanding annuities in the final period, the terminal conditions for both
model specifications are identical.

Loss aversion impacts the investor as a force on behavior caused by the prospect of a potential
loss of invested funds. In the model specification with broad framing (BF), the impact at time
t depends not only on the annuity exposure but also on the current wealth level Wt and the
investment strategy θt of the investor. The magnitude of the impact is therefore a random variable
which is not known prior to time t. On the contrary the (NF)-investor, who frames his individual
assets narrowly, knows his annuity exposure at all later times at the moment the annuity is
purchased. Therefore the (NF)-investor can anticipiate the total impact of all future investment
evaluations regarding the annuity. This allows an alternative interpretation of the model in which
loss aversion regarding the annuity does not cause a recurring annual impact but a one time only
evaluation at the time of purchase. Formally we can rewrite the preference functional (NF) in the
form

ΦNF0 (W,γ0) =E0

[
T∑
t=0

p0,t−1β
t

(
ptu
(
ctW

L
t

)
+ (1− pt)ωv

(
WD
t

)
+ κ(Wt(1− ct)θt)αE

[
m
(
Rt+1 −Rf

)])]
+ κµ(A) (21)

where µ(A) denotes the total sum of investment evaluations regarding the annuity, i.e.

µ(A) =

T∑
t=0

βtp0,t(Et)
αE

[
m
(
RPA,t −RA

)]
. (22)

This component µ(A) can be interpreted as the investment evaluation of the annuity at the time
of purchase in the classical sense of a static loss averse investment evaluation. However the
workaround using myopic loss aversion to obtain this component is still necessary, because it
makes sure the bounded capital and the return on that capital are measured exactly. Without the
breakdown into individual periods, there is no proper way to calculate an a priori return/bounded
capital pair for any potential remaining life time because the annuity is characterized by intertem-
poral payoffs. In particular there is no random variable R′ with a suitable reference return R for
which

µ′(A) = PαAE0[m(R′ −R)] (23)

constitutes an appropriate representation of the annuity investment. This underlines the useful-
ness of the myopic loss aversion approach on annuities.

In the remainder of this section we specify the three utility functions. We note that the model
generally allows for a broad class of specifications for all three sources of utility. Our selection
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reflects the choices most encountered in the relevant literature. This choice is not as clear with
the prospect utility specification as there seems to be much less consensus on the function itself
and wether or not probability weighting should be applied.

Throughout this paper we assume that the utility derived from consumption is given by the
power utility where

u(x) =
1

1− γ
x1−γ (24)

with the constant coefficient of relative risk averison γ > 1.

Regarding bequest utility we follow De Nardi’s ([17]) approach, where a bequest of size B
yields the utility

v(B) =
1

1− γ

(
ψ +

B

ω

)1−γ

. (25)

Here the parameter ω controls the relative strength of the bequest motive with respect to other
forms of utility. The second parameter ψ can be interpreted as the prevalence of a bequest motive
in the population or the degree to which bequests are a luxury good. The affine formulation
ensures that, in the optimum, the agent is only willing to leave a bequest at the expense of his
own consumption, if his wealth allows for a sufficiently high bequest size without unreasonably
reducing his own annual consumption5.

We borrow the prospective investment utility function from Kahneman and Tversky’s prospect
theory [33]. They originally suggested the evaluation function

m(x) =

{
xα for x ≥ 0

−λ(−x)α for x < 0
(26)

with a Loss Aversion parameter λ > 1 and a curvature parameter α ∈ (0, 1) 6.

3 Parameter choice

A summary of the parameter choices in this paper is displayed in table 1. Regarding the expected
utility framework the parameter values reflect the choices most encountered in the literature. As
in Cocco and Gomes [14], the time disocunt factor is set to β = 0.96, the risk aversion parameter
of the CRRA utiltiy function is set to γ = 5 and the risk premium is set to E[Rt]−Rf = 4%. We
assume a standard Black-Scholes economy where asset prices follow a geometric Brownian Motion
which implies that the periodwise equity returns are i.i.d lognormally distributed. The parame-
ters of the geomteric Brownian Motion are chosen such that the expected return is E[Rt] = 6%
and the standard deviation of equity returns is σ(Rt) = 20%. The interest rate on riskfree bond
investments is set to Rf = 2%. The calculatory interest rate in the pricing of the annuity is set
to RA = 4%.

The parametrization of the bequest utility function is based on De Nardis [17] original specifi-
cation. We follow Peijnenburg, Nijman and Werker [26] and adjust the luxury parameter according
to the retiree’s absoulte wealth level by multiplying it with the fully annuitized income, the FAI.
This results in the parametrization ω = 7.81 and ψ = 0.67 ∗ FAI. In contrast to De Nardi we set

5To achieve a better understanding of the parameters in v it helps to regard the simplified problem with no time
weighting, a fixed wealth level W , a fixed lifetime of T years and no government subsidy. The optimal consumption
resulting from first order conditions is then C = (W + ωψ)/(ω + T ) and the optimal bequest is B = ω(C − ψ), i.e.
the bequest covers ω periods of spending the amount C −ψ, i.e. the amount the agent’s own consumption exceeds
ψ. If the agent cannot bequeathe an amount which exceeds ψ for ω years then the optimal bequest is zero.

6Although the original evaluation function proposed by Kahnemann and Tversky allows different curvature
parameters for gains and losses, their proposed parameterisation results in an identical value α = 0.88
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Model parameters

Expected utility framework

T 35
age in t = 0 65
age in t = T 100
γ 5
rf 2%
rA 4%
E[rt] 6%
σ[rt] 20%
β 0.96

Annuity pricing

FAI 25000
W FAI ∗ PA(1)−1

Bequest motive

ω w/ Bequest Motive 7.81
ψ 0.67·FAI

Loss averison

λ 2
α 0.88

Table 1: Model parameters

the risk aversion parameter of bequest utiltiy to γ = 5 to be in accordance with the consumption
utility specification in our paper. The loss averse evaluation function is calibrated in accordance
with Kahnemann und Tversky [33], who set α = 0.88 and λ = 2.

The survival probabilities occuring in the retiree’s preferences and the annuity pricing calcula-
tion are taken from german death tables7 We assume that annuity pricing is actuarilly fair and we
chose an inital wealth that results in a fully annuitized income of FAI = 25000. As in Brown and
Poterba [11] we assume that the retiree enters retirement at age 65 and may reach a maximum
age of 100 years.

4 Solution Technique

In contrast to standard consumption and investment problems a separation of the consumption
and the investment problem and thus an analytical solution is not possible in our setting. This is
due to the affine form of the bequest utility function and the investor’s wealth process. Therefore
we resort to a numerical method based on a backwards recursion. We fix an annuity level A and
regard the respective Bellmann equations given by (17) and (19). To indicate the current annuity
size we write Vt(|A) for the value function at time t, assuming an annuity of size A. The recursion
starts at the terminal conditions (18) and (20). For any wealth level wl these terminal conditions
give a static one period optimization problem which can be solved numerically to obtain the value
of the value function itself VT (wl|A) and the associated optimal control values (cT (wl), θT (wl)).

7Source: Sterbetafel 2009/11 Deutschland männlich, Periodensterbetafeln für Deutschland 2009/2011, Statistis-
ches Bundesamt, Wiesbaden 2012. We assume a male policy holder.
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In the model with narrow framing the respective optimization problem is given by

V NFT (wl|A) = max
0≤c,θ,α≤1
θ+α≤1

{
u(cwl) + βET

[
v((wl(1− c)(θ(1 +RT ) + (1− θ)(1 +Rf ))

]

+ κ(wl(1− c)θ)αET

[
m
(
RT −Rf

)]}
. (27)

Because the domain of the consumption and the investment control parameters are compact
sets, there is always a solution for which the supremum and therefore the maximum is attained.
This optimization step is repeated for a fixed grid of wealth levels wl which produces the pairs
(wl, VT (wl|A)). Because the problem’s value function is a smooth function, we can use cubic spline
interpolation to obtain the values of VT (w|A) for arbitrary values of w within the boundarys of
the wealth grid. This allows us to formulate the time T − 1 optimization problem as one period
optimization problem using the time T −1 Bellmann equation. In the exemplary case of the model
with narrow framing, the respective optimization problem assuming a fixed wealth level wl is given
by

V NFT−1(wl|A) = max
0≤c,θ,α≤1
θ+α≤1

{
u
(
cwl
)

+ βpT−1ET−1

[
VT (WL

T |A)

]
+ β(1− pT−1)ωEt

[
v
(
WD
T

)]

+ κ(ET−1)αET−1

[
m
(
RPA,T−1 −RA

)]
+ (wl(1− c)θ)αET−1

[
m
(
RT−1 −Rf

)]}
(28)

where Vt+1(WL
t+1)|A) is computed by cubic spline interpolation as discussed above. We then re-

peat the steps above until we reach the time t = 0 value function. This procedure is conducted for
annuitization levels ranging from 0% to 100% in steps of 10%. The annuitization degree for which
the value function at time t = 0, evaluated at the appropriate initial value, i.e. V0(W0−PA+A|A),
has the highest value is the optimal annuitization degree.

We use a time dependant wealth grid with {wl}l=0,...,Lt
with a base grid at time t = 0 with

L0 = 30 grid points spanning from w0 = epsilon to w30 = W where ε < 1 is a sufficiently
small level that is never reached in the optimal strategies. Because it is never reached we as-
sume that the value function is constant for wealth levels below ε. Because wealth levels may
increase during any period which could make extrapolation necessary we add an additional grid
point wLt+1

= wLt
+ ∆w in each time step. Furthermore because the value function has a higher

curvature for low wealth levels we use exponentially placed grid points in the base grid to increase
the efficiency of our algorithm.

All conditional expectations, which are essentially expected values of a function of a lognormally
distriuted random variable, are calculated using Gauss-Hermite-Quadrature with n = 32 sample
points. We apply Liu and Pierce’s [24] correction formula for the sample points and the weights
in the quadrature which increases the accuracy of the approximation. Changing the number of
sample points in the quadrature or the number of points in the wealth grid does not affect our
results at the reported precision.

5 Results

5.1 Main Results - Annuity Demand

The main focus of this paper lies on the effect of a myopic loss averse evaluation of an annuity
investment on the demand for life annuities. The strength of the effect of loss aversion on the

79



investor is primarily driven by the parameter κ, which controls the relative weighting of loss averse
investment evaluation with respect to the utility from consumption and bequest. We find that
effective parametrizations of our model lie between κ = 10−19 and κ = 10−22 for both model
specifications. For values on the lower bound of theses ranges, loss averse investment evaluation
has no effect on the annuity demand, i.e. the demand is identical to the benchmark model with
κ = 0. For values on the upper bound of that range, loss aversion leads to complete abstinence
from annuity and equity markets. The extremely low numerical values of the parameter κ result
from the different curvature of the CRRA utilty function and Kahneman and Tversky’s evaluation
function. For representational purposes it can make sense to rescale the parameter κ to achieve
a better understanding of the relative importance of both effects on the retiree. To this end we
define the adjusted versions of the parameter κrel = κ · A−(1−γ), where A = 25000 is the full an-
nuitized income (FAI)8. After rescaling, the effective parametrizations lie between κrel = 0.000391
and κrel = 0.0391.
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Figure 2: Optimal annuity demand as a fraction of the retiree’s initial wealth.

Figure 2 displays the annuity demand in the optimum for both model specification for various
values of the parameter κ. In the benchmark model without investment evaluation, i.e. κ = 0,
and actuarilly fair annuity pricing, the retiree has 90% of his wealth annuitized upon entry to
retirement. In the presence of loss aversion, an increase of the parameter κ results in a decline of
the perceived attractiveness of life annuities and therefore a decline in the optimal annuitization
degree. This effect is of similar strength in both model specifications, narrow framing and broad
framing. For log κ = −21.5, or equivalently κrel = 0.0001235, or values lower than that, the neg-
ative effect of loss aversion is not strong enough to result in a different annuity demand than the
benchmark model. When the parameter κ increases the annuity demand gradually decreases. For
log κ = −19.5 or equivalently κrel = 0.01235, or values higher than that, loss aversion completely
prevents the retiree from purchasing life annuities. For all but one value of κ considered in our
analysis, the optimal annuity demand is equal in both model specifications. For log κ = −20.5

8In general the scaling factor should not be a constant, because the relative impact of loss aversion depends
heavily on the size of the annual consumption in relation to the invested capital. This problem is neglectable here
because we regard a very specific situation in which the size of these factors is within a constant range. In more
general models a dynamic scaling factor such as non-framed income is used.
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or equivalently κrel = 0.00123, the model with broad framing results in an optimal annuitzation
degree of 50% while the model narrow framing results in an optimal annuitization degree of 40%.

In the model with narrow framing, each asset is evaluated individually. This means that di-
versification effects between the two risky asset classes, which are uncorrelated, are ignored by the
retiree. In other words, a loss in one asset that is offset by a gain in the other asset would still
be interpreted as a loss. This is no longer true for the broad framing investor, who evaluates the
risky component of his portfolio as a whole. Therefore broad framing generally leads to a more
favourable evaluation of risky assets and thus to a higher willingness to invest in risky assets.
This effect is considerably more pronounced for the investor’s willingness to invest in equity mar-
kets than for his willingness to annuitize. Figure 3 displays the average portfolio share of equity
E[τ−1)

∑τ
t=0 θt] for the different parametrizations of κ for both model specifications.
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Figure 3: Average portfolio share of equity for different values of the parameter κ. The values are calculated

as N−1∑N
i=1

(∑T
t=1 P (τ = t)

(
t−1∑t−1

s=0 θt,i
))

where τ denotes the time of death and the θt,i, i = 1, . . . , N

are obtained by forward simulation using the optimal strategies according to the model specifications with

N = 10000.

In contrast to the optimal annuity demand the average portfolio share of equity does differ
between the two model specifications for all values of κ considered in our analysis, except for the
boundary values log κ = −22 and log κ = −19. In these cases the average portfolio share of equity
coincides with the benchmark model in the former case and is zero in the latter case. For values
in between, the narrow framing investor consistently invests a smaller fraction of his available
wealth in equity. This is not only true on average across the whole time horizon, as the figure
shows, but also in each period as we see in the next section. Overall loss aversion with narrow
framing effects the willingness to invest in equity much stronger than broad framing does. This
leads to especially high differences in the average portfolio share of equity for the parameter values
log κ = −21 and log κ = −20.5. For log κ = −21 the broad framing investor’s portfolio share of
equity is almost ten times as big as that of the broad framing investor. We note that in this case
the annuitization degree is equal for both investors, so that wealth on hand is of comparable size.
As we discuss below, consumption behavior is fairly similiar in both model specifications. There-
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fore, due to the higher portfolio share of equity the broad framing investor ends up with higher
wealth levels in many cases which means that there is often an even higher discrepancy between
the absolute equity exposure of both investors. For log κ = −20.5 the absolute difference in the
average portfolio shares of equity between both models is smaller with 30.41 percentage points,
but larger in relative terms. In this case the broad framing investor’s average portfolio share of
equity is over 16 times as large as that of the narrow framing investor. Even though in this case
the annuitization degree is higher for the broad framer, which means that he starts off with less
wealth on hand, the higher income from the more effective investment strategy eventually results
in higher wealth levels than the narrow framing investor. The difference in the average absolute
equity exposures is therefore even higher in relative terms than the difference in average portfolio
shares. In this case the broad framer has an average equity exposure which is slightly below 20000
which is more than 160 times the average equity exposure of the narrow framing investor. For
the previous value log κ = −21 the average equity exposure of the broad framer is merely slightly
more than 14 times bigger for the broad framing investor than for the narrow framing investor.
For higher values of κ both investors have a high reluctance to invest in equity and only have
average portfolio shares of equity below 5% and less.

As we discuss below in more detail, the broad framing investor has the advantage that he
himself can choose the portfolio that is subject to the loss averse investment evaluation. The
narrow framing investor for example always evaluates the equity investment in the same way and
it is only the size of his investment that he can control. The broad framing investor on the other
hand can build portfolios that are evaluated in a more favourable way than the individual assets.
For example if he adds a very small share of equity to a portfolio that otherwise only consists
of annuities, then losses in equity themselves very rarely result in the total return being below
the reference point when there is no loss in the annuity investment. Therefore the broad fram-
ing investor can often add a little equity to his portfolio without increasing the probability of a
perceived loss and therefore benefit from the equity risk premium for ”free”. So in addition to
ignoring diversification effects, the narrow framing investor has another disadvantage compared
to the broad framing investor which results in even less participation in equity markets.

Naturally, the more cautious investment strategies of the loss averse investors come at the price
of missing out on welfare gains in many cases. On average this leads to less income over the whole
time horizon which results in lower consumption levels. The expected average consumption levels
E[τ−1)

∑τ
t=0 Ct] for the different parametrizations of κ for both model specifications are displayed

in figure 4. With an increasing strength of the effect of loss aversion, the gradual withdrawal from
annuity and equity markets leads to a severe decline of the average annual consumption levels.
Eventually, for large enough κ, the total reluctance to invest in risky assets leads to a 38.54%
reduction in the average annual consumption level compared with the benchmark investor who
is not loss averse. Due to his more effective investment strategies, the broad framer has slightly
higher annual consumption levels on average. However as the differences in the investment strate-
gies between the two models are mostly limited to equity investments, the differences in income
are moderate in size and therefore the differences in annual consumption are also not that big.
The difference between both model specifications is highest in our analysis for log κ = −20.5. In
this case the narrow framing investor consumes on average 5.12% less than the broad framing
investor.

In the final part of this section we analyze the effect of myopic loss aversion on bequest sizes.
Figure 5 contains the means and the standard deviations of bequest sizes in the two model spec-
ifications for different values of the parameter κ. In the benchmark case without myopic loss
aversion the retiree’s annuitization degree of 90% is almost high enough to finance the retiree’s
total annual consumption. All of the retiree’s liquid wealth that is not consumed is invested in
equity, at least in the early years of retirement. However not all of the annnual income from
this investment is needed to finance the remaining part of the retiree’s annual consumption so
that the wealth on hand is actually increasing throughout the retirement phase. This means that
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Figure 4: Average experienced consumption levels for different values of the parameter κ. The values

are calculated as N−1∑N
i=1

(∑T
t=1 P (τ = t)

(
t−1∑t−1

s=0 Ct,i

))
where τ denotes the time of death and the

Ct,i = ct,iW
L
t,i, i = 1, . . . , N are annual consumtpion levels obtained by forward simulation using the

optimal strategies according to the model specifications with N = 10000.

benchmark retiree’s bequest is larger when he deceases during a later period. This is not the case
for the myopic loss averse investor. In both model specifications and for all the parameter values
of κ which are sufficiently high to have a noticeable effect on the investor, the wealth on hand
and therefore the bequest size is decreasing throughout the retirement phase. Especially for high
values of κ the reluctance to annuitize leads to very high initial wealth levels. However due to the
little income from annuities, or even the complete lack thereof, and furthermore the reluctance to
invest the liquid wealth in equity, the total income of the retiree is very low. Because the drain
of funds through annual consumption is not compensated by a sufficient stream of income, the
retiree has to choose significantly lower consumption levels to prevent himself from running out
of funds during his remaining lifespan. This means that his wealth on hand is decreasing slowly.
Only in the last ten years of the retirement phase does his wealth on hand fall below the wealth
level in the benchmark model. Hence bequest are bigger in the models with myopic loss aversion
throughout most of the retirement phase. Especially a death in the early retirement years leads
to very high bequests for the loss averse investors with high κ values because almost their whole
initial wealth is subject to bequest. However these high bequests are not intentional but merely a
result from the lack of annuitization. Such bequests, which are due to a premature death and do
not represent the desired bequest size, are often called accidental bequests in the literature. In the
benchmark model there are no accidental bequests. Roughly put, the retiree chooses how much he
wants to bequeathe and annuitizes the remainder of his wealth. In contrast to this, the loss averse
investors with high κ values either leave too large bequests, or accidental bequests, when they die
early and too small bequests when they die very late. This means that the standard deviations of
the bequest size are very low for the benchmark model and models with lower κ parameters and
very high for very loss averse investors.

The investors which are not too loss averse to participate in equity and annuity markets leave
bequests with sizes between 10% and 14% of their initial wealth. As mentioned, there is very little
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Figure 5: Mean bequest sizes and standard deviations as a fraction of the retiree’s initial wealth for different

values of the parameter κ. The values are the sample means and sample standard deviations calculated

from N = 10000 sample paths obtained by forward simulation using the optimal strategies according to the

model specifications.

variation in bequest sizes in the models with lower κ parameters. In the models with higher κ
values, mean bequest sizes range between 30% and 40% of the retiree’s initial wealth with standard
deviations between 20% and 25% of the initial wealth level. For the parameter values log κ = −21.5
and log κ = −21, the mean bequest sizes in the model with broad framing are slightly bigger than
in the model with narrow framing. In all other cases there are no big differences between the
average bequest sizes and their standard deviations for the two model specifications.

5.2 Optimal Wealth, Consumption and Investment Paths

In this section we analyze the average trajectories of the various state and control variables of
the two model specifications under various parametrizations for κ. Figure 6 displays the average
wealth, consumption and portfolio share of equity paths for the parameter values log κ = −21,
log κ = −20, log κ = −19 in the model with narrow framing and the benchmark model without
loss aversion. The respective paths for the model with broad framing are displayed in figure 7. The
values for wealth on hand are the available funds before consumption. Subtracting the size of the
annuity from wealth on hand gives the bequest if the retiree dies in the previous period. This illus-
trates the strong effect of loss aversion on the bequest size that is discussed in the previous section.

The two retirees contained in both figures who are most hindered by loss aversion, i.e. the
models with log κ = −20 and log κ = −19, have annuitization degrees of 10% and 0%. This
means that they end up with a very high initial wealth levels. On average they choose their
consumption levels such that their wealth decreases at a constant speed throughout the whole
retirement phase. Their income, which stems mostly from risk free bond investments, decreases
when the size of the funds invested decreases, i.e. their wealth on hand. This means the annual
consumption levels have to be lowered to prevent the wealth levels from falling at an ever faster
speed. As a result the annual consumption levels, which are already around 20% lower than in the
benchmark model, are steadily decreasing even further. In the model with narrow framing and
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Figure 6: Average trajectories in the model with narrow framing (NF). The values displayed are aver-

ages X̄t =
∑N

i=1

Xt,i

N
over N = 10000 sample paths Xt,i obtained through forward simulation using the

optimal strategy according to the model specification. Wealth on hand denotes the retiree’s wealth before

consumption. The values at each point in time are conditional on the investor’s survival until that period.

log κ = −19, the annual consumption decreases by almost 300 per year on average. If the retiree
survives until the final years of the time horizon in the model, this steady decline results in annual
consumption levels that have dropped by almost 60% compared to consumption in the first period.

A similar yet drastically less pronounced effect is observable in the models with log κ = −21.
In contrast to the previous two cases, the retirees in both model specifications choose a fairly
high annuitization degree of 80%. On the one hand this means that they start off with initial
wealth levels of similiar low size as the benchmark investor. On the other hand this also means
that they have annual income through the annuity which finances a great part of their annual
consumption. However there is a higher financing gap than in the benchmark model due to the
slightly lower annuitization degree. Furthermore the investors are not as willing to invest in equity
as the benchmark investor, even though they do invest in equity, but especially in the early years
much more cautiously. This results in a further reduction of their annual income which is overall
not enough to completely finance their annual consumption. Hence their wealth on hand levels
are decreasing in contrast to the wealth of the benchmark investor. As in the previous two cases
their wealth on hand decreases somewhat steadily. Because their income also decreases due to
their wealth decreasing, they too have to adjust their annual consumption over time. But because
they have a steady non-decreasing source of income, the annuity, they only need to slightly lower
their consumption each year. In total, if they survive until the end of the time horizon in our
model, their annual consumption drops by 12.35% compared to the first period in the model with
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Figure 7: Average trajectories in the model with broad framing (BF). The values displayed are averages

X̄t =
∑N

i=1

Xt,i

N
over N = 10000 sample paths Xt,i obtained through forward simulation using the optimal

strategy according to the model specification. The values at each point in time are conditional on the

investor’s survival until that period.

narrow framing and by 9.75% compared to the first period in the model with broad framing. In
addition to reducing his consumption more slowly than the narrow framer, the broad framer also
starts with 3.28% higher consumption in the first period. As seen in the previous section, the
broad framer also leaves larger and less risky bequests than the narrow framer for the parameter
log κ = −21. The overall higher income levels of the broad framer, which manifest themselves
in noticeable differences in consumption levels and bequest sizes, are a result of the significantly
higher equity exposure of the broad framing investor which can be seen by comparing figures 6 and
7 and also in figure 3. While the broad framer’s investment strategy is still more cautious than the
benchmark investor’s investment strategy, he has on average 60% of his wealth on hand invested
in equity. Because the capital bound in the annuity decreases over time, the negative effect of loss
aversion on the willingness to invest, which depends on the size of the investment, decreases over
time. Therefore the broad framing investor can increase his relative equity exposure throughout
the retirement years. In the last 15 years of retirement, he even invests higher fractions of his
wealth in equity than the benchmark investor. As the decrease in capital bound in the annuity
has no effect on the narrow framer’s investment evaluation of the equity investment, this effect
is not present in the model with narrow framing. However the decrease in wealth on hand over
time also leads to smaller investment sizes and therefore the narrow framer too can increase the
relative size of his equity exposure over time.
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5.3 Optimal Portfolios under broad framing
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Figure 8: N = 600 simulated returns for the risky component of an exemplary optimal portfolio and of

the stationary equity investment. The portfolio represents the average equity exposure of the broad framing

investor with log κ = −21 in period 30. The portfolio consists of 69% annuities and 31% equity. The

horizontal lines represent the respective reference points.

As already mentioned above, there is another difference in the investment evaluation between
the models with broad framing and narrow framing that goes beyond the classical notion of
diversification. In the model with narrow framing, equity investments of equal size result in the
same evaluation in each period and independant of the annuity investment. In other words the
probability of a loss in the equity investment is always the same due to the assumed stationarity
of the equity return distribution. This is not the case for the model with broad framing. Here
the probability of a loss depends on the composition of the portfolio. Figure 8 displays N = 600
simulated returns of the risky component of an exemplary portfolio of the broad framing investor
and of the equity investment alone. The risky component consists of 69% annuities and 31% equity.
Due to the individual return characteristics of both assets, a loss in the annuity almost always
results in a loss in the portfolio with respect to the appropriate reference point formed according
to equation 13. A loss in the equity investment on the other hand almost never results in a loss in
the portfolio with respect to the appropriate reference point, when there is not simultaneously a
loss in the annuity. This can be seen from the fact that there are very few losses of the portfolio
which are only slightly below the reference point. These are the losses that are due to equity
losses even though the annuity investment did not result in a loss. In the particular example in
the figure 46% of the equity investments and 21% of the annuity investments result in a loss. The
return of the particular portfolio in the example is counted as a loss in 27% of the cases. So when
the narrow framer evaluates an equity investment he has to accept an individually evaluated asset
with a 46% chance of a loss. When the broad framer evaluates the same investment he only has
to accept that the chance of a loss in his portfolio increases from 21% to 27%. This shows that
the broad framer can invest in a substantial share of equity, such as 31% of his total investment
in the example, and benefit from the equity risk premium, while still perceiving the possibility of
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a portfolio loss much less likely than if the equity investment is evaluated individually. Because
losses are weighted more heavily than gains in the investment evaluation, a lower chance of a loss
leads to a more favourable evaluation of an investment and therefore to a higher willingness to
invest. Besides the regular benefits of diversification, this effect is a reason why the broad framing
investor has so much higher equity portfolio shares than the narrow framing investor for some
values of κ.

6 Conclusion

We propose a model that applies the concept of myopic loss aversion to an annuity investment
within the framework of a life cycle model. For a sufficiently high strength of the loss averse
investment evaluation, we find that loss aversion can explain low annuitization rates up to complete
abstinence from annuity markets. We further find that the the scope of the framing, that is wether
or not the investor evaluates individual assets alone or together, can have a strong effect on the
equity exposure but has none or only small effects on the investor’s annuitization degree. When
an annuity is represented in the form that we propose in this paper, the only difference from an
investment point of view between an annuity investment and an equity investment is the liquidity.
This begs the empirical question wether individuals also exhibit myopic loss aversion over illiquid
investments or not. It remains to be seen wether loss aversion can be applied to a life annuity in
a hybrid consumption/investment frame in a more natural form as in our model. As we explained
above, a straight forward implication of loss aversion with respect to an annuity is not possible,
because there is no pair of an amount of capital and a random return that adequatly represents
an annuity investment.
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Abstract

We apply a dynamic reference-dependent preference model to the problem of voluntary
annuitization. We find that in most cases, a retiree with preexisting beliefs about how much he
wants to annuitize will not choose higher annuitization levels when offered the possibility to do
so. In particular a retiree who only has his mandatory annuitization rate, will not voluntarily
annuitize further parts of his wealth if he had not previously planned to do so. Therefore
reference-dependence in the preferences and low reference annuitization rates are a possible
explanation for the low voluntary annuitization rates.

1 Introduction

We propose a model that applies Köszegi und Rabin’s [19]12 dynamic preference functional with
reference-dependency to the problem of voluntary annuitization upon entry to retirement. Their
model consists in parts of a standard dynamic expected utility framework. An extra input factor
in addition to the investment and consumption plan in their model is a set of beliefs or reference
points about future consumption. In addition to absolute utility from consumption, and in our
case also bequest, the agent also receives relative utility arising from potential deviations from
his reference points. The relative utility is characterized by loss aversion, which means that ad-
verse deviations from the reference points have a stronger effect on the agent than advantageous
deviations from the reference points. Köszegi und Rabin propose a weak and a strong solution
concept to their problem. In the weak form, a plan is optimal if, under the current set of beliefs
(or the reference points generated by the plan), any deviation from it results in a decrease in total
utility. A plan is a solution in the strong sense, if it is a solution in the weak sense, and its total
utility is greater than or equal to the total utility of all other plans that are a solution in the weak
sense. A strong solution is called a preferred personal equilibrium (PPE). Köszegi und Rabin’s
model generally allows for a variety of ways in which beliefs or reference points are formed. Our
approach is outlined in the following. In this paper we assume that the crucial decision variable
is the degree of annuitization. Given a fixed degree of annuitization, we assume that the reference
points are the optimal and possibly random consumption plans and associated bequest sizes that
arise from standard expected utility optimization under the fixed annuitization degree. This is
consistent with the theory because following the plan means that there are no deviations from
the original plan, and thus for this strategy, Köszegi und Rabin’s model actually reduces to an
expected utility optimization. When the agent considers other degrees of annuitization, then his
consumption plan may not coincide with the reference points and thus in addition to maximizing
utility from consumption, the agent will also try to minimize deviations from reference levels. So
in this case the optimization is not identical to expected utility optimization. Depending on the

1Especially relevant to our model is section IV. Wealth and Consumption in intertemoporal choice, p. 924-929.
2See also Köszegi und Rabin [17], which contains a non dynamic version of the model.
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solution concept, this approach allows us to approach the problem of how much to annuitize upon
entry to retirement from two angles:

1.) Does an investor who had previously not planned to annuitize his wealth, and thus have
respective reference points associated with non-annuitization, change his mind and annuitize, or
is non-annuitization a weak solution in the above sense?

This question may be adjusted to include situations in which the investor’s or the retiree’s
wealth is already annuitized to some degree, due to mandatory annuitization, and he is offered the
possibility to voluntarily annuitize further parts of his wealth. Then his reference points are based
on his previous annuitization degree and the question becomes wether or not does the investor
voluntarily annuitize additional parts of his wealth. When low levels of preannuitized wealth are
weak solutions, then reference-dependent models could explain the low observed voluntary annu-
itization levels of retirees. The second question regards the strong solution concept.

2.) Which annuitization degree is a preferred personal equilibrium?

When there are weak solutions which are not a strong solution, then this means that there may
be retirees in our model who choose a plan that they would otherwise reject in a classical expected
utility framework. This means that they follow a plan that yields less classical utility from con-
sumption and bequest than the optimal plan in the classical sense. Therefore from a rational point
of view, it is best to choose the plan as a reference level that is the preferred personal equilibrium.
In our case this plan coincides with the optimal plan in the classical expected utility framework.
This means that picking the optimal reference annuitization degree in a rational way, i.e. by
expected utility maximization, yields the highest total utility in our model. The more interesting
case in our analysis is therefore which annuitization levels, which are not optimal in the classi-
cal sense, are still weak solutions to the reference-dependent consumption and investment problem.

We find that in our application of Köszegi und Rabin’s model, all annuitization rates besides
full annuitization and no annuitization are weak solutions. This means that most retirees would
not opt for voluntary annuitization beyond their reference annuitization rate in our model. As-
suming that many retirees do not plan to voluntarily annuitize beyond mandatory rates in the
first place, reference-dependent preferences may be a possible explanation for the low empirically
observed actual voluntary annuitization rates.

In addition to a contribution to the literature on voluntary annuitization, this paper con-
tains a minor methodical contribution by extending the numerical solution method based on a
semi-simulation approach applied by Koijen, Nijman and Werker [16] to a non-smooth objective
function.

2 Literature review

We build in parts on the literature on reference-dependent preferences. Mainly we adopt the gen-
eral dynamic model of Köszegi und Rabin’s [19] which builds on models such as Matthey [20] and
Koszegi and Rabin ([18],[17]). We apply a special case of their model to the problem of voluntary
annuitization.

There is a large variety of research on what optimal annuitization rates should be and why
observed annuitization rates are often much lower than that. For example Schaus [22] reports
from a survey on 401(k) plans, that only 6% of the retirees who were able to choose voluntary
annuitization did actually do so. This reluctance to annuitize leads to much lower annuitization
rates than are found to be optimal from a rational point of view. For example Davidoff, Brown
and Diamond [10] find that high annuitization rates or even full annuitization is optimal under a
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broad set of circumstances including unfair annuity pricing. Peijnenburg, Nijman and Werker [21]
obatin similar high annuitization levels. To explain the differences between the theoretical results
and the empirical observations, a variety of explanations beyond rational models has been sought
out. A good overview over a broad set of potential determinants of annuity demand, both rational
and irrational, is given by [5]. Empirical testing of some of those hypothesisis is conducted in var-
ious publications, for example Goedde-Menke, Lehmensiek-Starke and Nolte [13] and Cappelletti,
Guazzarotti and Tommasino [6]. They find that among others wealth, finacial literacy, bequest
motives and framing are determining factors of annuity demand.

The reference-dependent preference model by Köszegi und Rabin builds in parts on a loss averse
evaluation of gains and losses in classical utility. Their loss averse evaluation function is based
on Kahneman and Tversky’s cumulative prospect theory [26]. There are various examples in the
literature that base models for annuity and equity demand on this evaluation function. How a loss
averse investment evaluation can affect the optimal demand for annuities in a theoretical setting is
analyzed for example by Hu and Scott [15]. Examples of how loss aversion can be included in life
cycle models to explain equity demand are given by Benartzi and Thaler [3], De Giorgi and Legg
[11] and Barberis and Huang ([1],[2]). Applications which are similiar in nature, yet applied to
the demand for general insurance products, can be found in Gottlieb and Mitchell [14] and Chen,
Hentschel and Klein [8]. Specific applications of loss aversion within a life cycle model to explain
annuity demand can be found in Schneider ([23], [25]).

3 The model

Central to our analysis is a retiree’s decision, how much of his total wealth W to annuitze upon
entry to retirement (t = 0). The retiree may already have a fraction of his initial wealth Wpa ≤W
preannuitized, providing him with an annuity in advance of size Apa. We further assume that the
retiree has a one time only access to the annuity market at the time he enters retirement. We
let 0 ≤ pR ≤ 1 denote the total percentage of his initial wealth W the retiree plans to annuitize
acording to his preexisting beliefs, i.e. pR is the reference annuitization degree. A key component
of our model is that even though the retiree has preexisting beliefs about voluntary annuitization,
he may still consider choosing a differing annuitization degree3. We let Wva ≤ W −Wpa denote
the amount of wealth the retiree voluntarily annuitizes in addition to the preanuitized wealth in
the new plan and Ava the resulting annuity in advance. The resulting total annuitization degree
with respect to the initial wealth on hand W in the new plan is denoted by pA = (Wva+Wpa)/W .
In a similiar manner as above we let WR

va = pRW −Wpa denote the total amount of wealth the
retiree had planned to voluntarily annuitize according to his reference plan and ARva the corre-
sponding annuity in advance. Furthermore we let A = Apa + Ava denote the total annuity the
retiree receives in the new plan and AR = Apa +ARva the total annuity according to the reference
plan.

The retiree may live up to another T years or decease during any prior period. For s ≤ t
we let ps,t denote the probability of surviving until time t, conditional on being alive at time
s. For two successive years we use the short notation pt = pt,t+1. We assume that annuities are
priced fairly and that the survival probabilities in the pricing calculation coincide with the retiree’s
actual survival probabilities. This means that voluntarily annuitizing the amount Wva yields the
additional voluntary annuity in advance of size

Ava = Wva

( T∑
t=0

p0,t(1 +RA)−t
)−1

.

3Assuming that a retiree has preannuitized wealth from his employer’s pension plan, this may correspond to the
situation that the retiree had never considered the possibility of voluntary annuitization prior to his retirement,
but is informed about this possibility by an investment consultant or receives an offer by an insurance company
upon entry to retirement.
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We let WL
t denote the retiree’s wealth on hand at time t under the condition that he is still

alive and immediately after receiving the annuity A. At the beginning of each period, starting at
t = 0, the retiree chooses his annual consumption level Ct ≤ WL

t . The remainder of his wealth
Wt − Ct may be invested at a fixed risk-free interest rate Rf or at a risky return Rt, where
R1, . . . , RT is a process of i.i.d. random variables. We let 0 ≤ θt ≤ 1 denote the fraction of wealth
after consumption that is invested in the risky asset. The remaining fraction of the retiree’s liquid
wealth 1− θt is invested at the riskless rate. This leads to the budget equation

WL
t+1 = (Wt − Ct)(θtRt + (1− θt)Rf ) +A (1)

which describes the retiree’s wealth on hand if he survives until time t and

WD
t+1 = WL

t+1 −A (2)

if he deceases during period t+ 1. Initially the retiree starts with wealth on hand

WL
0 = W −Wva +A. (3)

When the retiree dies during period t+ 1 the amount WD
t+1 is transfered to an heir in the form

of a bequest Bt+1 = WD
t+1. The agent’s wealth in all later periods after his death is zero.

We let U(pA) denote the set of pairs of (random) consumption and investment plans (C0,θ0)
withC0 = (C0, C1, . . . , CT ) and θ0 = (θ0, θ1, . . . , θT ) which are feasible in the sense that 0 ≤ θt ≤ 1
for all t = 0, 1, . . . , T and that Ct ≤WL

t for all t = 0, 1, . . . , T where WL
t is the time t wealth level

resulting from the dynamics described by equations (1) and (3), by applying the consumption plan
C0 and the investment plan θ0 under the voluntary annuitization degree pA. Furthermore we let
B0(C0, θ0) denote the associated process of bequest sizes which are determined by equation (2).

Derived from the preexisting belief about his voluntary annuitization degree the retiree starts
with a set of beliefs or reference points

F0 = {(Ct,R, Bt,R)}s=0,...,T (4)

about present and future consumption and bequest. Because the retiree’s wealth process is non-
deterministic due to the risky asset, the reference levels Ct,R and Bt,R, denoting the planned
consumption level Ct,R at time t, assuming survival until time t, and the corresponding bequest
size assuming death during period t, are random variables, depending on the wealth on hand at
time t and thus the outcome of the previous asset returns. We assume that the reference plans are
feasible, i.e. that C0,R = (C0,R, . . . , CT,R) ∈ C(pR) and B0,R = B0(C0,R, θ0,R) for a feasible
investment plan θ0

4.

In total, the retiree is subject to four sources of utility. Two of which are ”classical” sources
of utility and two are ”gain-loss utilities” derived from deviations in classical utility from prior
beliefs. Specificly we have

1. utility from consumption mC(Ct), if the retiree is alive at time t,

2. utility from bequest mB(Bt), if the retiree has deceased during period t,

3. gain-loss utility v(mC(Ct)−mC(Ct,R)) regarding consumption, if the retiree is alive at time
t and

4. gain-loss utility v(mB(Bt)−mB(Bt,R)) regarding bequest, if the retiree has deceased during
period t.

4In the same manner as a pair of a feasible consumption and investment plan defines a unique process of bequest
sizes, a feasible combination of a reference consumption plan and a process of reference bequest sizes defines a
unique reference investment plan θ0,R.
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Here mC and mB are standard utility specification for consumption and bequest and v is an eval-
uation function which is characterized by some degree of loss aversion. The specific choices for
the utility functions mC , mB and v are discussed below.

To shorten notation we let

m̃C(Ct, Ct,R) = mC(Ct) + v(mC(Ct)−mC(CT,R)) (5)

and
m̃B(Bt, Bt,R) = mB(Bt) + v(mB(Bt)−mB(BT,R)) (6)

denote the combined utiltiy functions for consumption and bequest.

The retiree’s objective function Φ0 at time t = 0 is the sum of all sources of utility whereas
utilty from future periods is discounted by the time discount factor β. For any feasible consumption
and investment plan, C0 and θ0, and a set of reference levels F0, the retiree’s time t = 0 objective
function is given by5

Φ0(C0,B0(C0, θ0),F0) = E0

[
T∑
t=0

p0,tβ
t
(
m̃C(Ct, Ct,R) + (1− pt)m̃B(Bt, Bt,R)

)]
(7)

where pT = 0. In the trivial case that C0 = C0,R and θ0 = θ0,R, the gain-loss terms cancel out
and the objective function reduces to a classical expected utility framework.

As in Köszegi und Rabin’s model [19], we propose a weak and a strong solution concept for
the retiree’s decision problem. The weak solution concept answers the question, wether a retiree
with an existing reference plan keeps or abolishes that plan, if he makes his decision according
to the preferences defined by equation (7). It requires that the reference annuitization degree
pR allows a feasible consumption and investment plan that yields a higher objective value with
its own consumption and bequest levels as reference points, than all feasible plans for all other
annuitization degrees under the same reference points.

Definition 1. An annuitization degree pR is a personal equilibrium (PE), if there exists a feasible
reference consumption and investment plan (C0,R, θ0,R) ∈ U(pR) with reference points F0 =
(C0,R,B0(C0,R, θ0,R)), such that for all annuitization levels p ∈ [0, 1]

Φ0(C0,R,B0(C0,R, θ0,R),F0) ≥ sup
(C′

0,θ
′
0)∈C(p)

Φ0(C′
0,B0(C′

0, θ
′
0),F0). (8)

If the retiree’s annuitization degree pR is a PE, then a retiree who makes his decision according
to the preference functional (7) sticks with his planned annuitization level. If this is not the case
then he chooses the annuitization level that allows the plan with the highest objective value under
the old reference points. However there might be multiple PE. The strong solution concept requires
that the reference level pR is the PE that results in the highest objective value under its best plan
among all PEs.

Definition 2. An annuitization degree pR is a preferred personal equilibrium (PPE), if it is a
PE and there exists a feasible reference consumption and investment plan (C0,R, θ0,R) ∈ U(pR)

5As mentioned earlier this is a special application of Köszegi und Rabin’s [19] preferences which contains bequest
utility in addition to utility from consumption depending on the survival state of the retiree. In our model the
only source of uncertainty is the development of the risky asset. Whenever uncertainty is resolved, i.e. after any
investment period, the retiree knows his current wealth level and therefore his potential bequest and consumption
levels. These levels are compared to the retiree’s reference levels which results in gain-loss utility in the current
period. In Köszegi und Rabin’s general model it is possible that resolved uncertainty also yields expected gain-loss
utility about consumption in all future periods. This multiple counting of the effect of one investment can have
implications on the preferences for the timing of information. More specificly in their model gain-loss utiltiy from
period s in period t is assigned the weight γt,s ≥ 0 with γt,t = 1. Out model corresponds to case γt,t = 1 and
γt,s = 0 for all s > t, which omits future period gain-loss utility entering the model.
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with reference points F0 = (C0,R,B0(C0,R, θ0,R)), such that for all other PE pR′ with con-
sumption and investment plans (C′

0,R′ , θ0,R′) ∈ U(p′R) and associated reference points F ′
0 =

(C′
0,R,B0(C′

0,R′))

U0(C0,R,B0(C0,R, θ0,R),F0) ≥ U0(C′
0,R′ ,B0(C′

0,R′),F
′
0). (9)

4 Utility specifications

There are various utility specifications that could be applied to the general model presented above.
In this paper we follow the choices most encountered in the relevant literature.

We assume that the retiree receives CRRA-utility from his annual consumption, i.e. a con-
sumption level of size C yields the utility

mC(C) =
1

1− γ
C1−γ (10)

with constant relative risk aversion γ.

We further assume that the retiree receives utility from bequest according to De Nardi’s [12]
definition of bequest utilty, i.e. the utility of a bequest of size B is defined as

mB(B) =
ω

1− γ

(
ψ +

B

ω

)1−γ

. (11)

The two additional parameters ω and ψ describe the strength of the bequest motive and the degree
to which bequest is a luxury good. The affine formulation ensures that the retiree only leaves a
bequest if his funds simultaneously allow for sufficiently high consumption levels for himself and a
sufficiently high bequest size6. If this is not the case then the retiree does plan to leave an inten-
tional bequest of size zero. However such a retiree typically still leaves an accidental bequest, if not
all of his wealth is annuitized and he does not survive until the end of the time horizon of our model.

The gain-loss utility function is a special case of the loss-averse evaluation function proposed
in Kahnemann and Tversky’s prospect theory [26].

v(x) =

{
x for x ≥ 0

λx for x < 0
(12)

with a Loss Aversion parameter λ > 17.

5 Parametrization

We adopt some often encountered settings in life cycle models with a time discount factor of
β = 0.96 and a parameter of risk aversion γ = 5 as for example in Cocco and Gomes [9]. The
bequest utility parameters used in our model are based on De Nardi’s original specification [12].
As in Peijnenburg, Nijman and Werker [21] we adjust the luxury parameter to the retiree’s fully
annuitized income FAI which results in the parameters ω = 7.81 and ψ = 0.67 ∗ FAI. The loss

6A simple example helps to illustrate the effect of De Nardi’s bequest utility specification. In a model with
deterministic age of death after T years and no investment opportunities and no time discounting the retiree splits
his initial wealth W in T annual consumption levels of size (W +ωψ)/(ω+T ) and a bequest of size B = ω(C−ψ)+.
That means the retiree bequeathes ω times the amount his annual consumption surpasses the luxury threshold ψ
if his available funds are of sufficent size and nothing otherwise.

7As in Köszegi und Rabin [19] we assume a piecewise linear function instead of Kahnemann and Tversky’s
original formulation.
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aversion parameter in the gain-loss utiltiy is set to λ = 2.

Furthermore we assume a Black Scholes economy in which equity returns are lognormally dis-
tributed with an expected return of E[Rt] = 8% and standard deviation of σ(Rt) = 20%. We
further assume that the risk free rate is Rf = 2% and the calculatory interest rate used in the
pricing of the annuity is RA = 4%. In addition to that we assume that the annuity is priced fairly.

The retiree in our model enters retirement at age 65 and the retirement phase may span up
to T = 35 periods. The survival probabilities in the model and in the annuity pricing calculation
are the male survival probabilities taken from german death tables8. The retiree’s initial wealth
is choosen such that full annuitization results in the fully annuitized income FAI = 25000.

6 Solution method

Before we conduct the main optimization, we need to optimize the classical preference functional
without gain-loss terms under the reference annuitization degree. This gives us the optimal ref-
erence consumption and investment plan on a fixed grid of wealth levels at each point in time.
The optimization algorithm used to obtain these reference values is a simplified version of the
algorithm used in the main optimization which is described in detail below.

We then simulate forward using these optimal reference consumption and investment plans to
obtain N = 1000 trajectories for consumption and asset allocation. For wealth levels outside of
the wealth grid we use linear interpolation to determine the optimal consumption level and the
optimal fraction of the retiree’s wealth on hand that is invested in the risky asset. This gives
us N trajectories of reference values Xt(i) = (Ct,R(i),Θt,R(i),ΘC

t,R(i)), where Ct,R(i) denotes the

realized consumption level and Θt,R(i) and ΘC
t,R(i) denote the funds allocated to the risky asset

and the funds allocated to the riskless asset at time t on trajectory i = 1, . . . , N .

In the next step, we calculate the value function at time t = 0 for a grid of annuitization
levels (A1, . . . , AK) ranging from no annuitization to full annuitization with a stepsize of 10% of
the agent’s initial wealth. For each annuitization level Ai we find the value function using the
the backwards recursion outlined below. In the final step we compare the highest total utility
represented by the time t = 0 value functions evaluated at the respective inital wealth level after
the annuity purchase, i.e.

argmax
A1,...,AK

V0(W −Wva +A|A) (13)

to the total utility in the reference case.

For each annuitization level, we apply a backwards recursion that builds on the solution method
applied by Koijen, Nijman and Werker [16], which consists of a combination of methods. These
are the simulation approach applied by Brandt, Goyal, Santa-Clara and Stroud [4], which enables
optimization in the presence of a high number of state varibles, and Carrol’s [7] method of con-
structing the grid for the endogenous state variable wealth on hand within the recursion from a
post-consumption grid. The latter simplifies the optimization in each time step and in particular
makes it possible to find the optimal consumption analytically.

However the approach in Koijen, Nijman and Werker [16] demands that all the functions arising
in the optimization problem are continuously differentiable. Because of the kink in the gain-loss
utility function this is not the case in our problem. We overcome this problem by applying the
following procedure. At first we approximate the gain-loss utility function in a sufficently small

8Source: Sterbetafel 2009/11 Deutschland männlich, Periodensterbetafeln für Deutschland 2009/2011, Statistis-
ches Bundesamt, Wiesbaden 2012.
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enviroment around the kink, with a continuously differentiable function in such a way, that the
resulting approximated gain-loss utility function is continuously differentiable everywhere. This
allows us to formulate an Euler equation for optimal consumption. Then we regard three separate
cases. At first we look for a local maximum on the two outside intervals, left and right of the
approximated section, which do not contain the kink. Because of the strict concavity on these
intervals, any local maximum on either of the intervals must be a global maximum on its respec-
tive interval. Furthermore from the specific form of the solution to the first order conditions on
both intervals, it follows that there can not be a local maximum on both intervals simultaneously.
Furthermore if we find a local maximum on one such interval, then there can also be no further
local maximum on the boundaries of the interval. This is again the case, because of the strict
concavity on both intervals. This means that any local maximum on either interval is the global
solution to the Euler equation. If there is no local maximum on either interval, then there must
be a local maximum in the approximated interval. This is the case because, as we explicate below
in more detail, the optimized function cannot be asymptotically increasing. The intuitive reason
for this is that, for very low consumption levels, the total utility must be increasing at some point,
and for very high consumption values it must be decreasing again at some other point. Therefore
the preference functional must have a local maximum at some point. Thus, if there is no local
maximum in either outside interval, then there must be a local maximum in the approximated
interval which contains the kink. In this case we set the optimal consumption to be equal to the
value at which the kink the lies, which is the reference consumption level. Because we can always
approximate the preference functional in this way with arbitrary precision, and especially make
the approximated interval arbitrary small, this means that the actual optimal consumption value
must actually lie on the kink. Therefore the optimal consumption derived in the above way is not
an approximation, but the true maximum of the original function.

However there is also another problem in implementing the method of Koijen, Nijman and
Werker [16]. The kink in the gain-loss utility function, wether smoothened by approximation or
not, leads to Euler equations that can no longer be approximated using a regression on the state
variables. Therefore we can no longer find the optimal asset allocation by computing the roots
of a fitted polynom, as in the method of Koijen et al. [16], but have to resort to a grid search
instead. However this is not too problematic, because for our purposes, restriction to a coarse grid
of potential asset allocation parameters does not change the optimal annuitization degrees. Fur-
thermore we have to perform a case-by-case analysis when we compute the optimal consumption,
because in our problem the Euler equation takes different forms for values above and below the
reference consumption level.

The remainder of this section contains a detailled desrciption and validation of our optimiza-
tion procedure.

In order to apply variational calculus we smoothen the gain-loss utility function v in a suffi-
ciently small enviroment around zero, i.e. define vε by

vε(x) =

{
v(x) for |x| > ε

hε(x) for |x| ≤ ε
(14)

where h is a differentiable and strictly increasing function with h(−ε) = −2ε and h(ε) = ε as well
as h′(−ε) = 2 and h′(ε) = 19. The resulting function vε is differentiable everywhere. We let

m̃C,ε(Ct, Ct,R) = mC(Ct) + vε(mC(Ct)−mC(Ct,R)) (15)

and
m̃B,ε(Bt, Bt,R) = mB(Bt) + vε(mB(Bt)−mB(Bt,R)) (16)

9Such a function can be constructed as the limit of a sequence of piecewise defined increasing affine functions with
the break points xi,n, i = 1, . . . , n and hn(x) = 2x for −ε ≥ x ≥ x1,n and hn(x) = x+ hn(xn,n) for xn,n < x ≥ ε.
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denote the resulting modified composite utility functions and Vε(WT , XT , T ) denote the value
function of the optimization problem with the modified utility functions. Because the approxi-
mation error in the individual utility functions is bounded above by 3ε, the total approximation
error of the value function at any time point is bounded above by 6(T + 1)ε. Hence we can always
find a sufficiently small ε that results in an arbitrary small total approximation error. To simplify
notation we omit the ε subscript in the following. If not otherwise stated, any references to the
value function and the utility functions refer to their modified version.

We solve the optimization problem using backward recursion on each of the N trajectories.
At each point in time we start by finding the optimal asset allocation on a grid of M = 30 expo-
nentially placed post-consumption wealth levels at = Wt − Ct. Using the modified value function
then allows us to solve for the optimal consumption analytically. In the following we outline the
general steps of the backwards recursion.

Time T: The time T value function is given by

V (WT , XT , T ) = max
0≤CT≤WT
0≤θT≤1

{
m̃C(CT , CT,R) + ET

[
βm̃B(BT+1, BT+1,R)

]}
. (17)

We start by optimizing over the asset allocation for each post-consumption grid level aT (j), j =
1, . . . , N and each trajectory XT (i), i = 1, . . . ,M ,

θ̂T = argmax
θT

ET

[
βm̃B(BT+1, BT+1,R)|aT = aT (j), XT = XT (i)

]
. (18)

To this end, we calculate the conditional expectations on the right hand side of the above equation
on a grid of potential portfolio shares of equity from 0% to 100% in step sizes of 5%, and apply grid
search to find the optimal value. Choosing a finer grid results in significantly longer computation
time without changing the optimal annuity endowment at the reported precision.

In a second step, due to the smoothness of the modified value function, the optimal consumption
can be derived using the first order condition

∂

∂CT
m̃C(CT , CT,R) = ET

[
β

∂

∂BT+1
m̃B(BT+1, BT+1,R)RPT |aT = aT (j), XT = XT (i)

]
(19)

where RPT deontes the return of the optimal portfolio. To calculate the optimal consumption from
this equation, we approximate the derivatives of the modified functions m̃B and m̃C with the left
derivatives of the original functions, i.e. by setting the derivative of the gain-loss utility function
to be

∂

∂x
v(x, y) =

{
1 for x ≥ y
2 for x < y

(20)

and thus
∂

∂x
mC(x, y) =

{
2 d
dxm(x, y) for x ≥ y

3 d
dxm(x, y) for x < y

. (21)

The modified function ∂
∂xmC,ε(x, y) is continuous with limx→0

∂
∂xmC,ε(x, y) =∞ and

limx→∞
∂
∂xmC,ε(x, y) = 0. Because ∂

∂xm̃B(x, y) > 0 for all x, y ≥ 0 we also have

ET

[
β

∂

∂BT+1
m̃B(BT+1, BT+1,R)RPT |aT = aT (j), XT = XT (i)

]
> 0. (22)

Therefore equation (19) must have at least one solution. Hence we first check if there is a solution
ĈT (i, j) to (19) on the intervals (0, CT,R) and (CT,R,∞) by approximating the derivative of mC,ε

as described above. If this is the case, then ĈT (i, j) is a local maximum on its respective interval
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because mC is strictly concave on each of the two intervals. But because mC is continouos and
strictly concave on both intervals, any local maximum in the open intervals must also be a global
maximum in the semi-closed intervals (0, CT,R] or [CT,R,∞). If there is no local optimum in one
of the intervals, then the supremum must lie at the border of that interval. Furthermore because
both semi-closed intervals share the common point CT,R, and the optimal consumption can neither
be zero nor unbounded10, any local maximum in either interval must also be the global maximum.
If however there is no solution in either open interval, then the solution to (19) must lie in the
interval [CT,R − ε, CT,R + ε], in which case we set ĈT (i, j) = CT,R.

After the optimal consumption level and asset allocation is determined, we construct the pre-
consumption wealth grid on each trajectory by setting

wT (i, j) = ĈT (i, j) + a(j). (23)

We then calculate the value function for all points on the wealth grid and all trajectories by
plugging the optimal strategies into (17). All conditional expectations in the optimization are
calculated using Gauss-Hermite quadrature.

Time t: The time t value function is given by

V (Wt, Xt, t) = max
0≤Ct≤Wt
0≤θt≤1

{
m̃C(Ct, Ct,R) + ptEt

[
βV (Wt+1, Xt+1, t+ 1)

]
+ (1− pt)Et

[
βm̃B(Bt+1, Bt+1,R)

]}
. (24)

Again we start by optimizing over the asset allocation for each point on the pre-consumption grid
a(j) and each trajectory Xt(i)

θ̂t = argmax
θt

Et

[
ptβV (Wt+1, Xt+1, t+ 1) + (1− pt)βm̃B(Bt+1, Bt+1,R)|at = at(j), Xt = Xt(i)

]
(25)

Again we compute the conditional expectations in (25) by using the Gauss-Hermite quadrature
formula. To compute the time t + 1 value function in the expression above, we employ a two
step interpolation. For any sample return ri from the quadrature method, we can calculate the
resulting t+ 1 reference wealth level Wt+1,R(ri). We then employ nearest neighbour interpolation
and find the trajectory i′ whose time t + 1 wealth level lies closest to Wt+1,R(ri). In the previ-
ous time step we calculated the values V (wt+1(i′, j), Xt+1(i′), t+ 1) for all grid points wt+1(i′, j),
j = 1, . . . ,M on trajectory i′. Using these points we employ cubic spline interpolation to find the
value of V for wealth levels outside of the grid11.

The first order condition for optimal consumption Ĉt is then given by

∂

∂Ct
m̃C(Ĉt, Ct,R) = ptEt

[
β

∂

∂Wt+1
V (Wt+1, Xt+1, t+ 1)RPt |at = at(j), Xt = Xt(i)

]
+(1− pt)Et

[
β

∂

∂Bt+1
m̃B(Bt+1, Bt+1,R)RPt |at = at(j), Xt = Xt(i)

]
(26)

10The first statement stems from the fact that limc→0mC(0) = −∞. The second statement results from the
diminishing marginal utility of consumption. There must always be some point c0 at which increasing the size
of funds invested in the risky asset by one unit results in a higher expected utility from bequest than increasing
consumption by one unit. Therefore if the size of funds invested in the risky asset is bounded (aT (j) = a < ∞)
then the optimal consumption must also be bounded.

11It would be possible to perform an actual two dimensional interpolation to better approximate the value
function. However we find that this is not necessary for sufficiently high N as switching to nearest neigbour
interpolation does not change our results at the reported precision.
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where RPt again denotes the return of the optimal portfolio. Taking the total derivative of (24)
with respect to Wt yields

∂

∂Wt
V (Wt, Xt, t) = ptEt

[
β

∂

∂Wt+1
V (Wt+1, Xt+1, t+ 1)RPt |at = at(j), Xt = Xt(i)

]
+(1− pt)Et

[
β

∂

∂Bt+1
m̃B(Bt+1, Bt+1,R)RPt |at = aT−1(j), Xt = Xt(i)

]
. (27)

From (26) and (27) we conclude that

∂

∂Ct
m̃C(Ĉt, Ct,R) =

∂

∂Wt
V (Wt, Xt, t). (28)

Therefore the first order condition (26) can be written in the form

∂

∂Ct
m̃C(Ĉt, Ct,R) = ptEt

[
β

∂

∂Ct+1
m̃C(Ĉt+1, Ct+1,R)RPt |at = at(j), Xt = Xt(i)

]
+(1− pt)Et

[
β

∂

∂Bt+1
m̃B(Bt+1, Bt+1,R)RPt |at = at(j), Xt = Xt(i)

]
(29)

This allows us to compute the expression on the right hand side of (29) using the known values for
the optimal time t+1 consumption without having to resort to a numerical evaluation of the value
function’s partial derivative. Specificly, to calculate Ĉt+1 for wealth levels outside of the grid, we
again resort to a two-step interpolation procedure. For any sample return r in the quadrature
formula, we can calculate the resulting t + 1 wealth level in the current and the reference case.
Interpolating from the optimal reference consumption grid then gives us the reference consumption
C ′t+1,R for the return r. It is not as easy to obtain the associated optimal t+ 1 consumption level,
because it depends on the reference consumption level. Furthermore we only have grids of optimal
consumption levels for a limited number of reference consumption levels. Therefore, in order to
obtain the optimal t + 1 consumption level by interpolation, we first have to construct a grid of
wealth levels and associated optimal consumption values for each reference consumption value that
we calculate in the first step. To this end, we find the trajectories i′ and i′′, containing the closest
reference consumption values that are larger and smaller than C ′t+1,R. For these trajectories, we
linearly interpolate the t + 1 post-consumption wealth grids and the +1 optimal consumption
values to obtain a grid of optimal consumption values for the particular reference consumption
level C ′t+1,R. From this grid, we can then compute the optimal time t + 1 consumption by using
linear interpolation. While this is a slightly more involved calculation than for the optimal asset
allocation, we note that these calculations only have to be performed once for each trajectory and
post-consumption grid point. Once the conditional expectations are calculated we solve equation
(29) to obtain Ĉt(i, j) in the same way as at time T .

In the last step we finally construct the pre-consumption wealth grid

wt(i, j) = Ĉt(i, j) + a(j) (30)

and calculate the time t value function according to (24) using the optimal strategies and nearest
neighbour interpolation of the time t+ 1 value function.

We repeat the above step until we reach time t = 0. This gives us the time t = 0 value function
for the fixed annuitization level A. We then follow the principles outlined above to find the optimal
annuitization level and the check wether this is higher than the reference case or not.

We conducted a variety of robustness tests for the above algorithm regarding the number of
grid points and trajectories. Both numbers are similiar to the choices in Koijen et al. [16]. We find
that increasing the number of grid points and simulated trajectories in the optimization procedure
does not change the optimal annuity endowments at the reported precision.
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7 Results

We find that all annuitization levels in our analysis, except no annuitization and full annuitization,
are personal equilibriums or weak solutions of the retiree’s optimization problem. That means that
any retiree with a reference annuitization level between 10% and 90% of his initial wealth will not
change and especially not increase his annuitization degree if he makes his decision according to
the reference-dependent preference functional given by equation (7). This result is independent of
how much wealth the retiree has preannuitized, it is only his reference annuity level that affects
the result. However this means that when reference annuity levels are based on the preannuitized
wealth, in other words the retiree does not intend to or did never consider to voluntarily annuitize,
then they will not do so in our model.

As we discuss below, the two cases in which the retiree does deviate from his original reference
plan include rather extreme strategies to beat the reference values. In the case of no annuitization
as the reference point, the retiree switches to an annuitization degree of 40%. A retiree with full
annuitization as the reference point, will decrease his annuitization degree to 90%. If we assume
that people’s preexisting annuitization degrees are based on mandatory annuitization and that
these annuitization degrees form their reference values, then people will not opt for voluntary
annuitization in our model. In this way our model can explain the low levels of observed voluntary
annuitization rates.

The strong solution in our model, or the preferred personal equilibrium, is an annuitization
degree of 80%. This is also the optimal annuitization degree when the retiree chooses his annu-
itization level according to standard expected utility theory. Naturally this must be the case in
our model, because the preference functional from equation (7) reduces to a classical expected
utility objective function when the strategy that is evaluated coincides with the reference level.
As this is true for all weak solutions, the optimal solution in the classical problem must be the
strong solution in our problem, if and only if it is a weak solution. The retiree’s behaviour in
the PPE consists of high consumption levels mixed with an aggressive equity investment strategy.
His consumption is increasing on average and slightly below the FAI in the early periods and
slightly above in the second half of the retirement. His wealth process, and therefore his process
of bequest sizes, forms a hump shape. For a thorough analysis of the retiree’s optimal behaviour
in the PPE, we refer to Schneider [24].

In the remainder of this section we focus on the wealth and consumption trajectories in the
cases when the retiree switches annuitization levels. i.e. in the cases with no annuitization and
full annuitization. As we will see, this exposes some unrealistic properties of our model. Because
adverse deviations in the consumption and bequest levels are punished more heavily than gains
of similiar size, a main concern of the retirees in our model is to reduce the number of adverse
deviations. The optimal strategy to achieve this is to accept a few deviations in the early periods
by consuming less than the reference level and thus reach higher wealth levels than in the reference
plan. Once wealth levels are sufficiently high, the retiree can enjoy higher consumption and bequest
levels in all the remaining periods and therefore receive the additional positive utility from the
gains in consumption and bequest utility. However this leads to a high intertemporal variation
in consumption with average consumption ranging between 3500 in the first period and 60000 in
the final period in the exemplary case of full annuitization as the reference level. In contrast to
this the reference consumption plan in this case, is fairly stabble with consumption levels ranging
between 20000 and 30000. A visualization of these average trajectories is contained in figure
1. The situation is similar under no annuitization as the reference point. With this in mind,
the extreme cases in which the retiree actually switches annutization degrees may be regarded
more as numerical oddities than realistic consumption and investment plans. This is especially
true because they violate a general principle of the life-cycle hypothesis which underlies our model,
that economic agents seek to smoothen their consumption across their whole lifetime. The opposite
is the case in the two outlier cases no annuitization and full annuitization.
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Figure 1: Average annual consumption in the reference case with full annuitization and the optimal
annuitization degree under that reference level. The values are calculated as the periodwise average values
from N = 1000 trajectories obtained by forward simulation using the optimal strategy.

8 Conclusion

We find that all annuitization degrees besides no and full annuitization are weak solutions to
the retiree’s optimization problem. This especially implies that retirees who had previously not
planned to voluntarily annuitize parts of their wealth do not do so when offered the possibility,
when they actually evaluate the outcome of the decision according to the preference functional in
this paper. Therefore, reference-dependence may be a possible explanation for the almost non-
existent voluntary annuitization rates. However we also find that reference-dependent preferences
may also result in extreme behaviour when gain-loss utility is weighted as heavily as it is in this
paper. Better results may be achieved by either reducing the weight of the effect of gain-loss
utility in the preference functional or using a different form for the gain-loss utility function. For
example the original prospect theory evaluation function proposed by Kahneman and Tversky
[26] would lead to lower additional positive utility for large positive deviations from the reference
values. This may prevent the extreme strategies we obtain in the cases with no annuitization and
full annuitization from being optimal and may lead to more reasonable and realistic behavior.
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