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ABSTRACT
Although the link prediction problem, where missing relation as-

sertions are predicted, has been widely researched, error detection

did not receive as much attention. In this paper, we investigate

the problem of error detection in relation assertions of knowledge

graphs, and we propose an error detection method which relies on

path and type features used by a classifier for every relation in the

graph exploiting local feature selection. We perform an extensive

evaluation on a variety of datasets, backed by a manual evaluation

on DBpedia and NELL, and we propose and evaluate heuristics for

the selection of relevant graph paths to be used as features in our

method.
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1 INTRODUCTION
Many of the knowledge graphs published as Linked Open Data

have been created from semi-structured or unstructured sources.

The magnitude of many of these knowledge graphs, e.g.: DBpedia,

NELL, Wikidata, YAGO, do not allow for manual curation, and, in-

stead, require the use of heuristics. Such heuristics, however, do not

guarantee that the resulting graphs are free from errors. Wikipedia,

which serves as source for DBpedia and YAGO, is estimated to have

2.8% of its statements wrong [36], which add up to the error caused

by the extraction heuristics. Therefore, automatic approaches to

automatically detect wrong statements are an important tool for

the improvement of knowledge graph quality.
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Incompleteness is another major problem of most knowledge

graphs. Automatic knowledge graph completion has been widely

researched [19], with a variety of methods proposed, including

embedding models. Although such methods can also be trivially

employed for error detection, their performance has not yet been

extensively evaluated on the task.

Many existing large-scale error detection methods rely exclu-

sively on the types of subject and object of a relation [7, 25, 26],

and try to spot violations of the underlying ontology and/or typical

usage patterns. While types can be a valuable feature, some knowl-

edge graphs lack this kind of information, have only incomplete

type information, or have types which are not very informative.

Moreover, some errors might contain wrong instances of correct

types. For example, if someone adds the fact playedFor(Ronaldo,
Manchester_United), which would be wrong because Ronaldo
refers to Ronaldo Nazário instead of Cristiano Ronaldo, such an

approach would not be able to detect the error.

In knowledge graph completion, paths in the graph have been

proven to be valuable features [8, 11]. For instance, in order to

predict whether a person a lives in a place b (livesIn(a,b)), one
important path feature is whether the person has a spouse who

lives in b (spouse(a,X ) → livesIn(X ,b)), or whether the person
has some child who was born in b (childOf(X ,a) → bornIn(X ,b)).
Generalizing it for any pair of entities in a given relation, we can

simply consider the previous example as path features spouse →

livesIn and childOf-1 → bornIn, with binary values indicating

if the entities pair can be connected through each of the paths. For

error detection, these features can complement the type features.

However, searching for interesting paths for all the relations in a

knowledge graph can be a challenging task, especially in datasets

with many relations.

In this paper, we propose a hybrid approach called PaTyBRED
(Paths and Types with Binary Relevance for Error Detection), a

method for the detection of relation assertion errors in knowledge

graphs, which incorporates type and path features into local relation

classifiers. Furthermore, we propose heuristic measures for the

exploration of the paths search space. We perform an extensive

comparison of our approach with state-of-the-art error detection

and knowledge completion methods, and we conduct a manual

evaluation of our approach on DBpedia and NELL.

2 PROBLEM DEFINITION
The problem addressed in this paper is the detection of erroneous

relation assertions in knowledge graphs. A dataset containing errors

is given, and the facts should be ranked by their likelihood of being

wrong.

It is important to note that we consider only features which can

be extracted from the links between entities (owl:ObjectProperty
relation assertions) and types (rdf:type assertions). To make the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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approach as versatile and applicable to as many knowledge graphs

as possible, we do not use any other information, such as textual

or numerical literals, or external knowledge sources. The problem

can be defined as relation assertions error detection on internal

features according to [23].

3 RELATEDWORK
The problem of relation assertion error detection in knowledge

graphs has been researched by the Semantic Web community. A

few methods have been proposed for cleansing large-scale LOD

knowledge graphs, such as DBpedia and NELL, which contain many

relation assertion errors that cannot be detected by reasoning meth-

ods [25]. Absence of domain and range restrictions of relations or

too general restrictions is one of the main causes of such problems.

SDValidate [25] exploits statistical distributions of types and

relations, and [7] applies outlier detection on type-based entity

similarity measures to detect erroneous relation assertions. These

methods can effectively detect errors on DBpedia, however they

require the existence of informative type assertions. Moreover, more

complex errors containing wrong entities with correct types cannot

be detected. A detailed survey including link prediction and error

detection methods for knowledge graphs can be found in [23].

Knowledge graph completion (KGC) is a problem highly related

to error detection. Despite being a different problem, KGC methods

can also be used on the problem addressed in this paper. This kind

of methods can be divided into graph-based, which relies on fea-

tures which can be directly observed in the graph, and embedding

methods, which learn latent features that represent entities and

relations in an embedding space.

The Path Ranking Algorithm (PRA) [11] has shown that a logis-

tic regression classifier using path features generated with random

walks can be used for learning and inference in KGs and outper-

forms N-FOIL horn-clause inference on NELL [13]. The approach

has been improved with Sub-graph Feature Extraction (SFE) [8],

which also simplifies aspects of PRA. For instance, while PRA uses

real-value features which correspond to the probabilities to reach o
from s with a given path, SFE simply uses binary features which

indicate if o can be reached from s or not. SFE not only reduces

runtime by an order of magnitude when compared with PRA, but

it also improves the qualitative performance.

In the recent years, knowledge graph embedding models, i.e.,

projections of knowledge graphs into lower-dimensional, dense

vector spaces, have received a lot of attention [34]. Several different

models have been developed for the knowledge graph completion

problem and have brought improvements in performance.

There is a plethora of different embeddings models for knowl-

edge graphs. One of the earliest embedding models is RESCAL [21],

which performs tensor factorization on the knowledge graph’s ad-

jacency tensor, with the resulting eigenvectors corresponding to

the entity embeddings and the core tensor the relations matrices.

TRESCAL [5] extends RESCAL by exploiting entity types as well

as domain and range restrictions of relations to improve the data

quality and speed up the tensor factorization process. Neural Tensor

Model (NTN) [30] represents each relation as a bilinear tensor op-

erator followed by a linear matrix operator. Other early embedding

models include Structure Embeddings (SE) [3], Semantic Matching

Energy (SME) [1] and Latent Factor Model (LFM) [9].

Translation-based embeddings represent relations as transla-

tions between subject and object entities. TransE [2] was the first

translation-based model and entities and relations share the same

embeddings space. In TransH [35] and TransR [15] the translations

are performed in the relations space, which is different from the

entities space, and require projection matrices to map the entities

onto the relations space. TransG [37] and CTransR [15] incorporate

multiple relation semantics, where a relation may have multiple

meanings determined by the entities pair associated with the rela-

tion. PTransE [14] extends TransE by considering relation paths as

regular relations, which makes the number of relations considered

grow exponentially.

Other approaches include DistMult [38], which uses dot product

instead of translations to compute the triple scores. HolE [20] used

circular correlation as an operator to combine the subject and object

embeddings, Complex Embeddings [32] represents a triple score

as the hermitian dot product of the relation, subject and object

embeddings, which consist of real and imaginary vector compo-

nents. ProjE [29] formulates the knowledge graph completion as a

ranking problem, and it optimizes the ranking of candidate entities

collectively. It is reportedly the best performing KGCmethod. Some

embedding models, such as RDF2Vec [28] and Global RDF vectors

[18], are not conceived for the KGC task and cannot generate triple

scores. Thus they cannot be directly used for error detection in the

same way the other models mentioned earlier can.

Recently some works have raised doubts about the performance

of newKGC embeddingsmodels. Most of the experiments rely exclu-

sively on two datasets (WN18 and FB15k), which contain many in-

verse relations citeobserved-versus-latent-features-for-knowledge-

base-and-text-inference. Therefore some of the models may exploit

this characteristic and not necessarily perform as well on other

KGs. It has also been shown that the presence of relations between

candidate pairs can be an extremely strong signal in some cases

[31]. Moreover, recent works showed that a hyperparameter tuning

has been overlooked and that a simple method, such as DistMult,

can achieve state-of-the-art performance when well tuned [10].

4 APPROACH
Our proposed approach is inspired by the Path Ranking Algorithm

(PRA) [11] and SDValidate [25]. It consists of a binary classifier for

every relation which predicts the existence of a given pair of subject

and object in the given relation. The set of classifiers can be thought

of as a single multilabel classifier with binary relevance (i.e., each

relation that can hold between a pair of instances is a label), where

one binary classifier is learned for each class separately, and local

feature selection [16], with different classifiers being able to work

on different sets of specialized features.

We use two kinds of features. The first one are the types of

subject and objects. This kind of information has been success-

fully used for error detection in SDValidate [25]. By analyzing

the types of subject and object in one given relation, one can eas-

ily spot a very common kind of error without relying on the do-

main and range restrictions, which are often inexistent or too gen-

eral. For example, in DBpedia the triple recordedIn(I’m_a_Loser,
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Abbey_Road) is wrong. I’m_a_Loser is a song by The Beatles from
the album Abbey_Road and the relation recordedIn has domain

MusicalWork and range PopulatedPlace. A song being recorded

in an Album is a clearly wrong fact. At the same time, if the object

were Abbey_Road_Studio of the type Recording_Studio, which
is not a subclass of PopulatedPlace, the fact would also be wrong
according to a method relying solely on types. If there are many

facts where songs are recorded in recording studios, statistical

methods such as SDValidate would be able to identify that such

a pattern is common, and therefore unlikely to be wrong, despite

the violation of range restriction, while a song recorded in album

is uncommon, therefore likely to be an error. Hence, statistical

approaches such as SDValidate respect the actual usage of the on-

tology, rather than its axiomatic design. Recent works have been

proposed that pinpoint such mismatches automatically [22]. More-

over, type assertions might be absent or too general, resulting in

no relevant information.

The main problem with this kind of approach is that it solely

relies on type features. That means such approaches do not work

on knowledge graphs with no type assertions, and may have poor

performance on datasets with a shallow type hierarchy, with non

informative types, or with incomplete type assertions. Moreover,

solely using type features, it is impossible to detect wrong facts

with wrong entities of correct types, for instance, when a person

instance is confused with another of same or similar name.

Alternatively we can use path features similar to those of PRA.

However, solely relying on path features also has its problems. One

of them is that correct facts may be labeled as error because of

incompleteness. For instance, if river instances have the properties

country (i.e., the countries a river passes through, typically multi-

valued), and mouthCountry (i.e., the country where the river’s

mouth is, typically single-valued), then the feature country will be
relevant for the relation mouthCountry since the confidence of the

rule mouthCountry(X ,Y ) ⇒ country(X ,Y ) is close to 1. However,

some rivers do not have any assertions for country because of

incompleteness, thus their correct mouthCountry assertion is pre-

dicted to be wrong. That can lead to propagation of incompleteness.

Another problem is that since country is a more relevant feature

to mouthCountry than vice versa, since the latter is far less com-

mon than the former. Hence, if an error occurs in the assertion of

country for a river, it might happen that a correct mouthCountry
assertion ends up being more likely to be detected as an error than

the wrong country assertion. In order to make our approach more

robust, we combine both type and path features.

Finding the relevant paths for each relation can be a challeng-

ing task. Since several paths may be relevant to different relations,

we compute all possible paths up to a given length, and for every

relation’s local classifier we perform local feature selection. The

number of possible paths grows exponentially with the number of

relations, therefore an exhaustive search can easily become unfea-

sible. It is then crucial to have heuristics to efficiently navigate the

search space. In the following subsection we propose and discuss

such heuristic measures.

4.1 Extracted Features
Our method includes the following parameters that define the path

selection: maximum path length, maximum number of paths per

level, and path selection heuristics. Following the approach de-

scribed in [12], we use the domain and range restrictions of relations

for pruning uninteresting paths, and we do not allow a relation to

be immediately followed by its inverse. If the number of possible

paths of a certain length exceeds the maximum number of paths

per level, we apply our path selection heuristics to prune the least

interesting paths and comply with the specified paths upper limit.

We define a knowledge graphK = (T ,A), where T is the T-box

and A is the A-box containing relations assertions AR and type

assertions AC . We define NC as the set of concepts (types), NR as

the set of relations and NI as the set of individuals (entities which

occur as subject or object in relations). The set of relation assertions

is defined as AR = {r (s,o)|r ∈ NR ∧ s,o ∈ NI } and the set of type

assertion as AC = {C(s)|C ∈ NC ∧ s ∈ NI }.

We define a path P as a sequence of relations r1 → ...→ ri →
... → rn . The sequence of relations is connected by a chain of

variables, with P(s,o) meaning s and o can be connected by a path

P(s,o) ⇐⇒ r1(s,x1) ∧ ... ∧ ri (xi−1,xi ) ∧ ... ∧ rn (xn−1,o). The
inverse of a relation r is denoted as r−1 where r−1(s,o) = r (o, s) can
also be part of paths. A path of length one P = (r ) is equivalent to
the relation itself P(s,o) ≡ r (s,o). The length of a path is denoted

as |P |. We define the set of subjects of P as sP = {s |P(s,o)} and set

of objects as oP = {o |P(s,o)}.
Relations and paths can be represented as adjacency matrices of

size |NI | × |NI |.The adjacency matrix of P can be computed by the

dot product of its relations. However, computing the dot product

of adjacency matrices can be an expensive operation, especially in

large-scale knowledge graphs with millions of entities and high

number of relations. Therefore, we need heuristic measures to

explore the search space and compute the dot product only for the

most relevant paths.

Let A and B be adjacency matrices – which can refer to a single

relation or a path – which we want to concatenate in order to form

a new path A · B. We want a heuristic measure which can estimate

the relevance of the path A · B without having to perform a po-

tentially expensive matrix multiplication to compute its adjacency

matrix. Since the paths computed are to be used by all relations, the

proposed heuristic measures should not be computed with respect

to a target relation, but only consider the matrices A and B.
Paths with empty adjacency matrices (|A · B | = 0) are useless

and should be pruned. A simple way to safely prune them is to

calculate oA ∩ sB . The set of objects oA contains the columns of A
which have non-zero elements, and the set of subjects sB contains

the rows of B which have non-zero elements. If the intersection

is empty, then we know that |A · B | = 0. Note that |sB | ≤ |B | and
|oA | ≤ |A|, and the intersection is cheaper to compute than dot

product, therefore the runtime for computing oA ∩ sB is shorter.

For our proposed heuristic measures, we assume that paths with

denser adjacency matrices are more likely to be more relevant

features. Since the size of the intersection oA ∩ sB can be a good

indicator of the number of nonzero elements in A · B, we use it

to define three measures for estimating the relevance of a path
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A× B: We employ that characteristic into three proposed relevance

measures inter ,m1 andm2 (c.f Equations 1, 2 and 3).

inter (A,B) = |oA ∩ sB | (1)

m1(A,B) =
|oA ∩ sB |

|sA ∩ oB | + 1
(2)

m2(A,B) = |oA ∩ sB | × |sA ∪ oB | (3)

By early pruning irrelevant paths, time is saved not only by com-

puting fewer adjacency matrices, but also the number of features

to be considered is reduced (fewer columns in the features table to

be populated and less features to have the relevance computed).

Once the relevant paths have been selected, we compute their

adjacency matrices and use them to populate the features used to

train the relation classifiers. One of the problems of computing the

whole adjacency matrix of paths is that some can be very dense

and require a lot of memory. For example, the path birthPlace→
locatedIn-1 on DBpedia, which represents everything which is

located in a place where someone was born in. Its adjacency matrix

contains around 100million non-zero elements and consumes more

than 1GB of memory. As it is unlikely that all the entries in the

matrix will be used, it would be desirable to handle such cases in a

more efficient manner in order to restrict the memory consumption

and speed up the paths adjacency matrices computation process.

It is worth pointing that the rdf:type relation is not considered

in the paths. They are treated separately and are used to generate

the type features, which consist of the set of asserted and subsumed

types of an instance (we materialize the subsumed types into the

assertions and ignore the subsumption relations). Integrating types

into the paths can be problematic. Firstly it would significantly

increase the search space. Secondly, a path which begins with the

rdf:type, can only continue with rdf:type-1 because types can
only be objects in this relation (if we do not consider OWL class ax-

ioms in paths), and as mentioned earlier, we do not allow a relation

to be immediately followed by its inverse.

4.2 Learning the Model
Once the paths have been selected, and their adjacency matrices

have been computed, we can use them together with types as fea-

tures to predict the existence of an entity pair (s,o) in a relation.

The first step is to build a training dataset containing all extracted

features for each relation r . We use as positive examples the en-

tity pairs Dpos = {(s,o)|r (s,o)}, i.e. all the non-zero cells in the

relation’s adjacency matrix. Following [2], we generate negative

instances Dneg = {γ (s,o)|(s,o) ∈ Dpos ∧ γ (s,o) < Dpos} for super-

vised training by corrupting entity pairs with γ , which substitute

the subject or the object for a random entity instance and ensur-

ing the new pair is not positive. In a preliminary experiment, we

compared this approach with that of [12], which is more expensive,

and no significant difference in performance was observed.

As labels we use information from r indicating the existence of
(s,o) in the relation. We extract path features from AR and type

features from AC . The path features are boolean values indicating

whether a path connects s to o (P(s,o)|∀P ∈ P − (r )). The type

features consist of the types of s and o (including subsumed types),

i.e. {C |C(s)} and {C |C(o)}. Other possible path feature is the exis-

tence of a path starting or ending in s and p (P(s,X ), P(X , s), P(o,X ),

P(X ,o)) as proposed in SFE [8], however the authors found out that

this kind of feature does not improve performance. Our experimen-

tal results confirmed their results, therefore we do not consider this

kind of feature in our approach.

Before we learn the local classifiers, we evaluate the relevance of

the features. Since different features might be relevant for different

relations, we perform feature selection separately for every relation.

This allows the relation classifiers to work on a small set of locally

relevant features, and, at the same time, removes irrelevant features

which might act as noise and reduce the classifier’s performance

[16]. We use the filter method, which simply select the top-k most

relevant features, with χ2 as relevance measure.

When comparing PaTyBRED with PRA and SFE, our approach

has the following advantages. We try different popular classifiers

to learn the relations, and we found that logistic regression, which

is used in PRA and SFE, is not the best performer. We introduce a

local feature selection step prior to training the relation classifiers.

We propose heuristic measures to explore the paths search space.

Moreover, negative evidence features, i.e. paths which connect neg-

ative but no positive entity pairs of a relation, are also considered.

Since our approach is supervised and includes negative examples

in the training data, this kind of features are extremely important

to identify wrong facts.

5 EXPERIMENTS
In our experiments, we evaluate the impact of different parameter

settings in our approach, and compare it with SDValidate and state-

of-the-art knowledge graph completion methods. We use ProjE
1

as well as the TransE and HolE implementations of scikit-kge
2
.

The implementation of PaTyBRED is available on Github
3
. We do

not directly compare our method with SFE, but we evaluate our

approach with path features only (PaBRED), which perform at least

as well as SFE.

The reported results from the embedding methods were obtained

by not considering the type assertions. We tried adding the type

assertions as an extra relation, however, this did not improve the

results. The embedding methods suffer from the problem that the

distribution of scores over different relations is not uniform. Often

some relations have average triple scores lower than others, and

this can result in a bias when detecting errors.

In order to reduce this problem, we run isolation forest to detect

score outliers of each relation separately, and we use the outlier

confidence values instead of the triple scores to rank the facts. Since

unusually high scores are also outliers and we are interested only

in the outliers of low scores, we do not consider as outlier any fact

with score greater than the relation’s average.

5.1 Datasets
In our experiments we use a variety of knowledge graphs, some of

which are clean, and others noisy. In the first part of our experiments

we automatically evaluate the performance of the error detection

1
https://github.com/nddsg/ProjE

2
https://github.com/mnick/scikit-kge

3
https://github.com/aolimelo/kged

https://github.com/nddsg/ProjE
https://github.com/mnick/scikit-kge
https://github.com/aolimelo/kged
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algorithms. In order to make the evaluation automatic, we use a

variety of datasets to which we add synthesized wrong facts. We

generate the erroneous facts by corrupting the subject or object of

true facts, i.e., replacing the original entity with a randomly selected

which results in a fact which does not exist in the original data. For

our generation process, we add 1% of noise, and we generate two

kinds of errors. In the first, we corrupt the triple by selecting any of

the entities from the knowledge graph (independent of type), and

in the second, we select only triples which have the same types as

the original entity. That means the errors of the second kind are, in

principle, more difficult to be detected than those of the first kind,

since the new entity is more likely to have characteristics similar

to those of the original one.

The datasets used are the following: As input knowledge graphs,

we use DBpedia (2015-10), and NELL (08m-690). We use the follow-

ing smaller domain specific datasets: Semantic Bible
4
AIFB portal

5

and Nobel Prize
6
. We also select four of the largest conference

datasets from the Semantic Web dog food corpus
7
, i.e., LREC2008,

WWW2012, ISWC2013, and ESWC2015. WN18 and FB15k (Word-

Net 1.8 and a subset of Freebase with 15 000 entities), which have

been widely used on link prediction experiments, are also used.

The Semantic Web dog food datasets are known to be correct

and locally complete, i.e. no errors or missing relations between
contained entities, therefore, the generated errors can be used as

gold standard. We could not find any evaluation the of quality of

AIFB, Semantic Bible or Nobel Prize. Since we cannot guarantee

the quality of the data, the synthesized errors can be considered a

silver standard. Because of incompleteness, some of the generated

errors might actually be correct facts, meaning there can be false

positives in the silver standard, and because of noise, there can also

be false negatives in the silver standard.

The number of false positives is likely to be low even for highly

incomplete datasets, since in general, the number of missing facts is

significantly smaller than the number of possible facts (|NR | |NI |
2 −

|AR |) from which the generated wrong facts are drawn.

In the second part of the experiments we use DBpedia and NELL

as large-scale real-world use cases. These datasets are known to be

noisy and incomplete, with type assertion completeness estimated

to be at most 63.7% on DBpedia [25]. We do not synthesize any

erroneous facts, and rank all the facts by their confidence values.

Since we do not know the noisy facts or even the number of errors

which exist in DBpedia, we manually evaluate the top-100 results.

5.2 Evaluation Measures
In our defined problem we use ranking measures to evaluate the

performance of the error detection algorithms, since we compute

scores for every triple in the graph and generate a ranking. Similar

to link prediction papers we use the mean rank (µR), mean recipro-

cal rank (MRR), as well as their filtered variations fµR and fMRR

(c.f. Equations 4 and 5), which filters out correctly higher ranked

predictions.

4
http://www.semanticbible.com/

5
http://www.aifb.kit.edu/web/Web_Science_und_Wissensmanagement/Portal

6
http://www.nobelprize.org/nobel_organizations/nobelmedia/nobelprize_org/

developer/manual-linkeddata/terms.html

7
http://data.semanticweb.org/dumps/conferences/

Figure 1: Critical distance diagram comparing path selection
heuristics

f MRR =
1

|E |

|E |∑
i=1

1

ranki − i + 1
(4)

f µR =
1

|E |

|E |∑
i=1

ranki − i + 1 (5)

We define E as the set of erroneous facts ordered by their rank

in ascending order. Subtracting i − 1 from the rank ensures that

better ranked true positives are filtered out. For instance, if E =
(1, 2, 3, 5, 8) its filtered sequence of ranks would be (1, 1, 1, 2, , 5).

5.3 Parameter Settings
First, we evaluate how the different PaTyBRED parameters affect

its performance. The evaluated parameters are the maximum path

length (mpl), the maximum number of paths per level (mppl), the
path selection heuristic measure (pshm), the number of locally se-

lected features (k), and the local classifier (cl f ).
As far as the maximum path length (mpl ) is concerned, the best

results were achieved withmpl = 2, that is direct links and triangu-

lar patterns. Equivalent, inverse, and subproperty relations, as well

as other kinds of associations can be exploited with direct links,

while more complex associations with composed relations can be

exploited with the triangular patterns. In none of the datasets used

in our experiments, ampl > 2 achieved better results. It seems that

paths longer than two do not bring any information gain, while it

significantly increase the search space and slows runtime.

In our experiments, we evaluate three different classifiers (cl f ):
random forests (RF) [4], support vector machines (SVM) [6] and

logistic regression (LR).We also try two different number of selected

features k , i.e., k = 10 and k = 25. These numbers are low because

we observed that only a small number of path and type features

are relevant to the local relation classifiers. Table 1 show how the

different settings of PaTyBRED
svm

25
on various datasets. The results

show that RF and SVM achieved the best results, while LR – which

is used in PRA and SFE – lagged behind.

The heuristic measures used for selecting relevant adjacency

matrices are those proposed in Section 4.1, i.e., inter ,m1 andm2.

As a baseline, we use the random selection of paths. In order to

better evaluate the quality of the paths selected we exclude the type

features and consider exclusively the selected paths. We compared

the heuristic measures on all the datasets presented in Section 5.1,

ranked the measures and averaged them. In order to find out the

significance of the results we perform Nemenyi Test with α = 0.05.

Since the number of datasets is rather small, the difference between

inter andm2 is not significant, however, they are significantly better

than the random approach (c.f. Figure 1).

http://www.semanticbible.com/
http://www.aifb.kit.edu/web/Web_Science_und_Wissensmanagement/Portal
http://www.nobelprize.org/nobel_organizations/nobelmedia/nobelprize_org/developer/manual-linkeddata/terms.html
http://www.nobelprize.org/nobel_organizations/nobelmedia/nobelprize_org/developer/manual-linkeddata/terms.html
http://data.semanticweb.org/dumps/conferences/
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f MRR f µR

sembib eswc iswc www lrec nobel aifb wn18 fb15k sembib eswc iswc www lrec nobel aifb wn18 fb15k

PaTyBRED
lr

10
0.800 0.835 0.811 0.212 0.754 0.690 0.014 0.584 0.618 0.008 0.020 0.006 0.0023 0.011 0.076 0.041 0.00352 0.015

PaTyBRED
rf

10
0.840 0.927 0.933 0.559 0.747 0.680 0.120 0.860 0.770 0.009 0.009 0.010 0.0003 0.006 0.080 0.031 0.00003 0.018

PaTyBRED
svm

10
0.838 0.906 0.980 0.414 0.844 0.673 0.070 0.820 0.713 0.011 0.012 0.008 0.0007 0.004 0.103 0.041 0.00003 0.014

PaTyBRED
lr

25
0.745 0.907 0.862 0.707 0.786 0.788 0.068 0.584 0.524 0.005 0.022 0.003 0.0012 0.011 0.051 0.035 0.00349 0.014

PaTyBRED
rf

25
0.881 0.928 0.964 0.795 0.653 0.782 0.213 0.795 0.545 0.003 0.028 0.010 0.0001 0.006 0.051 0.028 0.00004 0.020

PaTyBRED
svm

25
0.848 0.860 0.980 0.537 0.822 0.788 0.045 0.570 0.765 0.007 0.015 0.006 0.0003 0.005 0.063 0.028 0.00006 0.014

Table 1: Comparison of local classifiers and number of selected features on generated errors of kind 1

5.4 Comparison
Tables 2 and 3 report a comparison between PaTyBRED and the

other state-of-the-art models. Table 3 refers to the datasets with

errors with wrong entities of correct types and Table 2 refers to

errors with wrong entities of any types. Table 3 does not contain

results for WN18 and FB15k because the original datasets do not

contain entity types, which prevents errors of kind 2 to be generated.

For the same reason the results of SDValidate and TyBRED in Table 2

are not reported for WN18 and FB15k. We report values for f MRR
and f µR (f µR values divided by the total number of facts in the

KB in order to make the values more comparable).

It is noticeable that the results for AIFB are significantly worse

than other datasets. One of the reasons is the fact that it has no

inverse relations, which can be extremely helpful on the error

detection. Another reason is the fact that in AIFB the author is

defined by 27 author_n relations, with n indicating the position in

the authors list. That means it is necessary to not only model the

author relation, but also all the nth-author relations.
PaTyBRED, TyBRED and PaBRED were run with 6 different con-

figuration: cl f ∈ {LR,RF,SVM} and k ∈ {10, 25}. For each dataset

the results of the best performing configuration are reported. The

maximum number of paths per level is set to 1000 andm2 is used as

heuristic measure when the number of possible paths exceeds 1000,

and the maximum path length is set to 2. The values reported for the

embeddings methods were the best amongst number dimensions

d ∈ {5, 15, 50, 100, 200} and with the outlier detection, as explained

earlier.

It is worth mentioning that the outlier detection helped improve

the performance of embeddings’ f µR performance on average on

15%. The best results for the embedding methods were obtained

withd = 15 ord = 50 depending on the dataset. The results reported

for the knowledge graph completion in the original paper for ProjE

on FB15k were with d = 200. On error detection with the same

dataset the best performance was with d = 50, cutting the f µR
in half. Additionally, d = 5 and d15 also had better performance

than d = 200. This indicates that when using embeddings for error

detection, the dimensionality should be lower than for KGC. Since

the dataset contains wrong triples, which shouldn’t be fit by the

model, overfitting can severely affect the performance (more than

underfitting).

Our proposed method outperforms all the other methods, with

the embedding methods having a surprisingly low performance.

PaTyBRED performs best when combining types and paths, with

TyBRED (with types only) and PaBRED (with paths only) being gen-

erally worse. To further understand the importance of combining

path type features, we analyze what kind of features are selected

on the local classifiers and report the proportion of types and paths.

Table 4 shows the average proportion of selected features over all

relation classifiers with k = 10. Overall more type features are

selected, but both kinds of features are relevant on the evaluated

datasets. WN18 and FB15k are absent because they do not have

type assertions, and therefore have only path features.

Table 3, where the erroneous facts contain wrong instances of

correct types, shows how the performance of methods which rely

on types exclusively (SDValidate and TyBRED) is similar to that of

random ranking with f µR around 0.5. It also shows how detecting

errors of kind 2 is more difficult than those of kind 1, and it reveals

the importance of using path features for detecting facts with wrong

instances of correct types. We can also observe that PaBRED has

performance similar to PaTyBRED and even better on some datasets

for kind 2 errors, since type features are useless to detect those

errors, and not considering type features ensures that these cannot

potentially replace more useful path features. The only exceptions

are on LREC and AIFBportal, where PaTyBRED has better f MRR
than PaBRED. However, on the same datasets PaBRED performs

better in terms of f µR, meaning that it has better average rank but

less highly ranked instances.

5.5 Manual Evaluation
In this sectionwe perform amanual evaluation of PaTyBRED on two

large-scale noisy datasets: DBpedia and NELL. We have a deeper

look at the top-100 results and classify the triples as correct, wrong

and other errors, i.e., correct triples with related errors, e.g. wrong

or missing types of subject or object.

The results are shown in Figure 2 with PaTyBRED
RF

10
and PaTy-

BRED
RF

25
on DBpedia (dbp10, dbp25) and NELL (nell10, nell25).

PaTyBRED seems to perform better on DBpedia with less local

features (10) and more on NELL (25). Most of the other error cases

occurred because of type assertion incompleteness, with the subject

or object often having no types at all. Deleting these triples would

lead to propagation of incompleteness. These cases could be auto-

matically detected, and some of them fixed if the type completion

methods [17, 24] are combined with error detection. The quality of

predicted types can be asserted by the improvement of the scores

of triples containing the entities with predicted types.

Some of the errors come from mistakes when linking Wikipedia

pages with very similar names. One example of such problem is the
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f MRR f µR

sembib eswc iswc www lrec nobel aifb wn18 fb15k sembib eswc iswc www lrec nobel aifb wn18 fb15k

PaTyBRED 0.848 0.928 0.980 0.795 0.844 0.788 0.213 0.860 0.770 0.003 0.009 0.003 0.0001 0.004 0.051 0.028 0.00003 0.014

TyBRED 0.463 0.782 0.315 0.744 0.693 0.758 0.205 — — 0.121 0.083 0.102 0.0740 0.113 0.084 0.085 — —

PaBRED 0.800 0.831 0.980 0.503 0.778 0.200 0.173 0.860 0.770 0.009 0.010 0.005 0.0008 0.004 0.227 0.056 0.00003 0.014

SDValidate 0.265 0.140 0.218 0.109 0.307 0.464 0.022 — — 0.355 0.397 0.326 0.3768 0.339 0.286 0.293 — —

ProjE 0.102 0.175 0.047 0.098 0.138 0.187 0.048 0.004 0.014 0.149 0.197 0.201 0.1796 0.179 0.177 0.252 0.18714 0.125

HolE 0.011 0.018 0.025 0.018 0.065 0.026 0.001 0.002 0.006 0.204 0.258 0.108 0.1170 0.108 0.213 0.235 0.17304 0.083

TransE 0.058 0.001 0.000 0.001 0.039 0.051 0.005 0.001 0.000 0.226 0.302 0.280 0.2381 0.163 0.320 0.329 0.26174 0.190

Table 2: Comparison of FMRR on generated errors of kind 1

f MRR f µR

sembib eswc iswc www lrec nobel aifb sembib eswc iswc www lrec nobel aifb

PaTyBRED 0.482 0.553 0.941 0.609 0.532 0.022 0.272 0.082 0.124 0.023 0.035 0.027 0.250 0.080

TyBRED 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.597 0.503 0.512 0.495 0.551 0.526 0.496

PaBRED 0.579 0.567 0.941 0.625 0.486 0.250 0.205 0.086 0.099 0.017 0.023 0.011 0.212 0.065

SDValidate 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.570 0.457 0.467 0.506 0.495 0.495 0.475

ProjE 0.064 0.026 0.015 0.026 0.007 0.067 0.018 0.215 0.362 0.223 0.245 0.254 0.274 0.269

HolE 0.022 0.015 0.043 0.049 0.059 0.053 0.004 0.240 0.324 0.192 0.190 0.192 0.294 0.246

TransE 0.092 0.004 0.012 0.000 0.012 0.001 0.003 0.247 0.308 0.239 0.337 0.148 0.413 0.339

Table 3: Comparison of FMRR on generated errors of kind 2

sembib eswc iswc www lrec nobel aifb nell dbpedia

Paths 0.432 0.412 0.415 0.358 0.479 0.222 0.182 0.032 0.060

Types 0.568 0.588 0.585 0.642 0.521 0.778 0.818 0.968 0.940

Table 4: Proportion of path and type features selected

dbp10 dbp25 nell10 nell25

0

50

100

100 100 100 100

11

20

55

14

1
4

6 5

correct other errors wrong facts

Figure 2: Manual evaluation on DBpedia and NELL

fact formerTeam(Alan_Ricard, Buffalo_Bill), where the correct
entity should be theNFL team Buffalo_Bills instead of the charac-
ter Buffalo_Bill. An automatic approach which makes use of dis-

ambiguation links (in DBpedia the dbo:wikiPageDisambiguates
relation) and string distance could in principle correct these errors.

By replacing subject or object with their respective candidates and

computing the triple scores, we can substitute the wrong triple with

the best scoring candidate (a similar idea has been used for correct-

ing links in Wikipedia [33]). In the manual evaluation, five of the

DBpedia errors could potentially be fixed with such an approach.

Entities in DBpedia are described in much more detail than in

NELL [27]. Around 20% of NELL’s instances are untyped, while

in DBpedia only 1% of them have no types other than owl:Thing.
Furthermore, in NELL, reasoning is already used in the construction

process for error detection, which means that very obvious errors

and violations of the underlying ontology are already removed.

This may explain why NELL performs better with more locally

selected features, as opposed to DBpedia. By increasing the number

of features the number of correct facts with untyped subject or

object in the top-100 was reduced from 48 to 9, and the number of

actual errors increased from 45 to 86.

Amongst the five correct facts fromDBpediawhichwerewrongly

predicted to be errors, two were from the relation seeAlso. That is
understandable since the relation has very wide semantics, and any

pair of vaguely related entities can be correct. Modelling such a

complex relation can be a difficult task. Another error detected was

location(Alan_Turing_Institute, British_Library), which is

a correct fact, but the unique case of an organization which is lo-

cated in a library. The last case is with the foundedBy relation, with
two cases of newspapers found by political parties, not persons.

6 CONCLUSION
We have shown that although the error detection problem is similar

to knowledge completion, methods which perform well in knowl-

edge completion might not necessarily be appropriate for error

detection. We propose PaTyBRED, a robust supervised error detec-

tion method which relies on type and path features, and compare it

with state-of-the-art error detection and knowledge graph comple-

tion methods. We demonstrate the importance of combining those

path and type features together, and we also perform a manual

evaluation of our approach on DBpedia and NELL.
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In the future, we plan to investigate the automatic correction of

erroneous relation assertions by exploiting disambiguation links

and entities string similarities in combination with error detection

methods.

ACKNOWLEDGMENTS
The work presented in this paper has been partly supported by the

Ministry of Science, Research and the Arts Baden-Württemberg in

the project SyKo
2
W

2
(Synthesis of Completion and Correction of

Knowledge Graphs on the Web).

REFERENCES
[1] Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. 2012. Joint

Learning ofWords andMeaning Representations for Open-Text Semantic Parsing.

In Proceedings of the Fifteenth International Conference on Artificial Intelligence
and Statistics, AISTATS 2012, La Palma, Canary Islands, April 21-23, 2012. 127–135.
http://jmlr.csail.mit.edu/proceedings/papers/v22/bordes12.html

[2] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-

sana Yakhnenko. [n. d.]. Translating Embeddings for Modeling Multi-relational

Data. In Advances in Neural Information Processing Systems 26.
[3] Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua Bengio. 2011. Learn-

ing Structured Embeddings of Knowledge Bases. In Proceedings of the Twenty-Fifth
AAAI Conference on Artificial Intelligence, AAAI 2011, San Francisco, California,
USA, August 7-11, 2011. http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/

view/3659

[4] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (01 Oct 2001), 5–32.

https://doi.org/10.1023/A:1010933404324

[5] Kai-Wei Chang, Scott Wen-tau Yih, Bishan Yang, and Chris Meek. 2014.

Typed Tensor Decomposition of Knowledge Bases for Relation Extraction,

In Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing. https://www.microsoft.com/en-us/research/publication/

typed-tensor-decomposition-of-knowledge-bases-for-relation-extraction/

[6] Corinna Cortes and Vladimir Vapnik. 1995. Support-Vector Networks. Mach.
Learn. 20, 3 (Sept. 1995), 273–297. https://doi.org/10.1023/A:1022627411411

[7] Jeremy Debattista, Christoph Lange, and Sören Auer. 2016. A Preliminary In-

vestigation Towards Improving Linked Data Quality Using Distance-Based Out-

lier Detection. In Semantic Technology - 6th Joint International Conference, JIST
2016, Singapore, Singapore, November 2-4, 2016, Revised Selected Papers. 116–124.
https://doi.org/10.1007/978-3-319-50112-3_9

[8] Matt Gardner and Tom M. Mitchell. 2015. Efficient and Expressive Knowledge

Base Completion Using Subgraph Feature Extraction. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, EMNLP 2015,
Lisbon, Portugal, September 17-21, 2015. 1488–1498. http://aclweb.org/anthology/
D/D15/D15-1173.pdf

[9] Rodolphe Jenatton, Nicolas L. Roux, Antoine Bordes, and Guillaume R Obozinski.

[n. d.]. A latent factor model for highly multi-relational data. In Advances in
Neural Information Processing Systems 25.

[10] Rudolf Kadlec, Ondrej Bajgar, and Jan Kleindienst. 2017. Knowledge Base Com-

pletion: Baselines Strike Back. CoRR abs/1705.10744 (2017). http://arxiv.org/abs/

1705.10744

[11] Ni Lao and William W. Cohen. 2010. Relational Retrieval Using a Combination

of Path-constrained Random Walks. Mach. Learn. 81, 1 (Oct. 2010), 53–67. https:
//doi.org/10.1007/s10994-010-5205-8

[12] Ni Lao and William W. Cohen. 2010. Relational retrieval using a combination of

path-constrained random walks. Machine Learning 81, 1 (01 Oct 2010), 53–67.

https://doi.org/10.1007/s10994-010-5205-8

[13] Ni Lao, Tom Mitchell, and William W. Cohen. 2011. Random Walk Inference and

Learning in a Large Scale Knowledge Base. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP ’11). Association for

Computational Linguistics, Stroudsburg, PA, USA, 529–539. http://dl.acm.org/

citation.cfm?id=2145432.2145494

[14] Yankai Lin, Zhiyuan Liu, and Maosong Sun. 2015. Modeling Relation Paths

for Representation Learning of Knowledge Bases. CoRR abs/1506.00379 (2015).

http://arxiv.org/abs/1506.00379

[15] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning

Entity and Relation Embeddings for Knowledge Graph Completion. In Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI’15). AAAI
Press, 2181–2187. http://dl.acm.org/citation.cfm?id=2886521.2886624

[16] André Melo and Heiko Paulheim. 2017. Local and global feature selection for

multilabel classification with binary relevance. Artificial Intelligence Review
(2017), 1–28. https://doi.org/10.1007/s10462-017-9556-4

[17] André Melo, Heiko Paulheim, and Johanna Völker. 2016. Type Prediction in RDF

Knowledge Bases Using Hierarchical Multilabel Classification. In Proceedings of

the 6th International Conference on Web Intelligence, Mining and Semantics (WIMS
’16). ACM, New York, NY, USA, Article 14, 10 pages. https://doi.org/10.1145/

2912845.2912861

[18] Simone Paolo Ponzetto Heiko Paulheim Michael Cochez, Petar Ristoski. 2017.

Global RDF Vector Space Embeddings. In International Semantic Web Conference.
to appear.

[19] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. 2016.

A Review of Relational Machine Learning for Knowledge Graphs. Proc. IEEE 104,

1 (2016), 11–33. https://doi.org/10.1109/JPROC.2015.2483592

[20] Maximilian Nickel, Lorenzo Rosasco, and Tomaso A. Poggio. 2015. Holographic

Embeddings of Knowledge Graphs. CoRR abs/1510.04935 (2015). http://arxiv.org/

abs/1510.04935

[21] Maximilian Nickel, Volker Tresp, and Hans peter Kriegel. 2011. A Three-Way

Model for Collective Learning on Multi-Relational Data. In Proceedings of the
28th International Conference on Machine Learning (ICML-11). ACM. http://www.

icml-2011.org/papers/438_icmlpaper.pdf

[22] Heiko Paulheim. 2017. Data-driven joint debugging of the DBpedia mappings

and ontology. In European Semantic Web Conference. Springer, 404–418.
[23] Heiko Paulheim. 2017. Knowledge graph refinement: A survey of approaches

and evaluation methods. Semantic Web 8, 3 (2017), 489–508. https://doi.org/10.
3233/SW-160218

[24] Heiko Paulheim and Christian Bizer. [n. d.]. .

[25] Heiko Paulheim and Christian Bizer. 2014. Improving the Quality of Linked Data

Using Statistical Distributions. Int. J. Semant. Web Inf. Syst. 10, 2 (April 2014),
63–86. https://doi.org/10.4018/ijswis.2014040104

[26] Heiko Paulheim and Aldo Gangemi. 2015. Serving DBpedia with DOLCE–more

than just adding a cherry on top. In International Semantic Web Conference.
Springer, 180–196.

[27] Daniel Ringler and Heiko Paulheim. 2017. One Knowledge Graph to Rule them

All? Analyzing the Differences between DBpedia, YAGO, Wikidata & co.. In 40th
German Conference on Artificial Intelligence. to appear.

[28] Petar Ristoski and Heiko Paulheim. [n. d.]. .

[29] Baoxu Shi and Tim Weninger. 2017. ProjE: Embedding Projection for Knowledge

Graph Completion. (2017). https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/

view/14279

[30] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew

Ng. 2013. Reasoning With Neural Tensor Networks for Knowledge

Base Completion. In Advances in Neural Information Processing Sys-
tems 26. Curran Associates, Inc., 926–934. http://papers.nips.cc/paper/

5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.

pdf

[31] Kristina Toutanova and Danqi Chen. 2015. Observed Versus La-

tent Features for Knowledge Base and Text Inference, In 3rd Work-

shop on Continuous Vector Space Models and Their Composi-

tionality. https://www.microsoft.com/en-us/research/publication/

observed-versus-latent-features-for-knowledge-base-and-text-inference/

[32] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume

Bouchard. 2016. Complex Embeddings for Simple Link Prediction. CoRR
abs/1606.06357 (2016). http://arxiv.org/abs/1606.06357

[33] Chengyu Wang, Rong Zhang, Xiaofeng He, and Aoying Zhou. 2016. Error

Link Detection and Correction in Wikipedia. In Proceedings of the 25th ACM
International on Conference on Information and Knowledge Management (CIKM
’16). ACM, New York, NY, USA, 307–316. https://doi.org/10.1145/2983323.2983705

[34] Q. Wang, Z. Mao, B. Wang, and L. Guo. 2017. Knowledge Graph Embedding: A

Survey of Approaches and Applications. IEEE Transactions on Knowledge and
Data Engineering PP, 99 (2017), 1–1. https://doi.org/10.1109/TKDE.2017.2754499

[35] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. [n. d.]. In AAAI.
[36] Gabriel Weaver, Barbara Strickland, and Gregory Crane. 2006. Quantifying the

accuracy of relational statements in Wikipedia: a methodology. 2006 IEEE/ACM
6th Joint Conference on Digital Libraries 00 (2006), 358. https://doi.org/doi.

ieeecomputersociety.org/10.1145/1141753.1141853

[37] Han Xiao, Minlie Huang, Yu Hao, and Xiaoyan Zhu. 2015. TransG : A Generative

Mixture Model for Knowledge Graph Embedding. CoRR abs/1509.05488 (2015).

http://arxiv.org/abs/1509.05488

[38] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2014.

Learning Multi-Relational Semantics Using Neural-Embedding Models. CoRR
abs/1411.4072 (2014). http://arxiv.org/abs/1411.4072

http://jmlr.csail.mit.edu/proceedings/papers/v22/bordes12.html
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3659
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3659
https://doi.org/10.1023/A:1010933404324
https://www.microsoft.com/en-us/research/publication/typed-tensor-decomposition-of-knowledge-bases-for-relation-extraction/
https://www.microsoft.com/en-us/research/publication/typed-tensor-decomposition-of-knowledge-bases-for-relation-extraction/
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1007/978-3-319-50112-3_9
http://aclweb.org/anthology/D/D15/D15-1173.pdf
http://aclweb.org/anthology/D/D15/D15-1173.pdf
http://arxiv.org/abs/1705.10744
http://arxiv.org/abs/1705.10744
https://doi.org/10.1007/s10994-010-5205-8
https://doi.org/10.1007/s10994-010-5205-8
https://doi.org/10.1007/s10994-010-5205-8
http://dl.acm.org/citation.cfm?id=2145432.2145494
http://dl.acm.org/citation.cfm?id=2145432.2145494
http://arxiv.org/abs/1506.00379
http://dl.acm.org/citation.cfm?id=2886521.2886624
https://doi.org/10.1007/s10462-017-9556-4
https://doi.org/10.1145/2912845.2912861
https://doi.org/10.1145/2912845.2912861
https://doi.org/10.1109/JPROC.2015.2483592
http://arxiv.org/abs/1510.04935
http://arxiv.org/abs/1510.04935
http://www.icml-2011.org/papers/438_icmlpaper.pdf
http://www.icml-2011.org/papers/438_icmlpaper.pdf
https://doi.org/10.3233/SW-160218
https://doi.org/10.3233/SW-160218
https://doi.org/10.4018/ijswis.2014040104
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14279
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14279
http://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.pdf
http://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.pdf
http://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.pdf
https://www.microsoft.com/en-us/research/publication/observed-versus-latent-features-for-knowledge-base-and-text-inference/
https://www.microsoft.com/en-us/research/publication/observed-versus-latent-features-for-knowledge-base-and-text-inference/
http://arxiv.org/abs/1606.06357
https://doi.org/10.1145/2983323.2983705
https://doi.org/10.1109/TKDE.2017.2754499
https://doi.org/doi.ieeecomputersociety.org/10.1145/1141753.1141853
https://doi.org/doi.ieeecomputersociety.org/10.1145/1141753.1141853
http://arxiv.org/abs/1509.05488
http://arxiv.org/abs/1411.4072

	Abstract
	1 Introduction
	2 Problem Definition
	3 Related Work
	4 Approach
	4.1 Extracted Features
	4.2 Learning the Model

	5 Experiments
	5.1 Datasets
	5.2 Evaluation Measures
	5.3 Parameter Settings
	5.4 Comparison
	5.5 Manual Evaluation

	6 Conclusion
	Acknowledgments
	References

