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Abstract

Data Mining and Knowledge Discovery in Databases (KDD) is a research field
concerned with deriving higher-level insights from data. The tasks performed
in that field are knowledge intensive and can often benefit from using additional
knowledge from various sources. Therefore, many approaches have been proposed
in this area that combine Semantic Web data with the data mining and knowledge
discovery process. Semantic Web knowledge graphs are a backbone of many in-
formation systems that require access to structured knowledge. Such knowledge
graphs contain factual knowledge about real word entities and the relations be-
tween them, which can be utilized in various natural language processing, infor-
mation retrieval, and any data mining applications. Following the principles of the
Semantic Web, Semantic Web knowledge graphs are publicly available as Linked
Open Data. Linked Open Data is an open, interlinked collection of datasets in
machine-interpretable form, covering most of the real world domains.

In this thesis, we investigate the hypothesis if Semantic Web knowledge graphs
can be exploited as background knowledge in different steps of the knowledge
discovery process, and different data mining tasks. More precisely, we aim to
show that Semantic Web knowledge graphs can be utilized for generating valuable
data mining features that can be used in various data mining tasks.

Identifying, collecting and integrating useful background knowledge for a given
data mining application can be a tedious and time consuming task. Furthermore,
most data mining tools require features in propositional form, i.e., binary, nominal
or numerical features associated with an instance, while Linked Open Data sources
are usually graphs by nature. Therefore, in Part I, we evaluate unsupervised fea-
ture generation strategies from types and relations in knowledge graphs, which are
used in different data mining tasks, i.e., classification, regression, and outlier de-
tection. As the number of generated features grows rapidly with the number of
instances in the dataset, we provide a strategy for feature selection in hierarchical
feature space, in order to select only the most informative and most representa-
tive features for a given dataset. Furthermore, we provide an end-to-end tool for
mining the Web of Linked Data, which provides functionalities for each step of the
knowledge discovery process, i.e., linking local data to a Semantic Web knowledge
graph, integrating features from multiple knowledge graphs, feature generation and
selection, and building machine learning models. However, we show that such fea-
ture generation strategies often lead to high dimensional feature vectors even after
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dimensionality reduction, and also, the reusability of such feature vectors across
different datasets is limited.

In Part II, we propose an approach that circumvents the shortcomings intro-
duced with the approaches in Part I. More precisely, we develop an approach that
is able to embed complete Semantic Web knowledge graphs in a low dimensional
feature space, where each entity and relation in the knowledge graph is represented
as a numerical vector. Projecting such latent representations of entities into a lower
dimensional feature space shows that semantically similar entities appear closer to
each other. We use several Semantic Web knowledge graphs to show that such
latent representation of entities have high relevance for different data mining tasks.
Furthermore, we show that such features can be easily reused for different datasets
and different tasks.

In Part III, we describe a list of applications that exploit Semantic Web knowl-
edge graphs, besides the standard data mining tasks, like classification and regres-
sion. We show that the approaches developed in Part I and Part II can be used
in applications in various domains. More precisely, we show that Semantic Web
graphs can be exploited for analyzing statistics, building recommender systems,
entity and document modeling, and taxonomy induction.



Zusammenfassung

Data Mining und Knowledge Discovery in Databases (KDD) ist ein Forschungs-
bereich, der sich mit dem Extrahieren von Informationen und Fakten aus Daten
beschäftigt. Aufgaben aus diesem Feld der Forschung benötigen viel Wissen und
profitieren oft von Wissen aus verschiedenen Quellen. Daher wurden in diesem
Bereich schon viele Ansätze vorgeschlagen, die Daten aus dem Semantic Web mit
Data Mining und Knowledge Discovery Prozessen kombinieren. Semantic Web
Knowledge Graphs sind dabei oft die Technologien, auf die viele Informationssys-
teme, welche Zugang zu strukturierten Daten benötigen, zurückgreifen. Solche
Knowledge Graphs beinhalten Informationen und Fakten über Entitäten aus der
realen Welt und ihre Beziehungen zueinander. Diese Informationen können von
verschiedenen Natural Language Processing, Information Retrieval und Data Min-
ing Applikationen genutzt werden. Nach dem Prinzip von Semantic Web, sind
auch Semantic Web Knowledge Graphs in Form von Linked Open Data öffentlich
verfügbar. Linked Open Data ist hierbei eine Sammlung von öffentlich verfüg-
baren Datensätzen aus verschiedenen Domänen, die miteinander verknüpft sind
und in maschinenlesbarer Form vorliegen.

In dieser Dissertation beschäftigen wir uns mit der Hypothese, ob Hintergrund-
informationen aus Semantic Web Knowledge Graphs sowohl in verschiedenen Schrit-
ten der Knowledge Discovery als auch in Bereichen des Data Mining genutzt wer-
den können. Hierbei wollen wir vor allem zeigen, dass markante Data Mining
Features aus Semantic Web Knowledge Graphs in einer Reihe von Data Mining
Aufgaben hilfreich sind.

Das Identifizieren, Sammeln und Integrieren von nützlichen Hintergrundinfor-
mationen für eine gegebene Data Mining Anwendung ist oftmals sehr aufwendig
und zeitintensiv. Zudem benötigen viele Data Mining Applikationen die Feature
in Aussagenform (z.B. binäre, nominale oder nummerische Feature die zu einer
Instanz gehören), wohingegen Linked Open Data Datensätze meist in Form eines
Graphen vorliegt. Daher evaluieren wir in Teil I verschiedene unüberwachte An-
sätze um Features aus Relationen im Knowledge Graphs zu extrahieren. Diese
werden für Aufgaben aus dem Data Mining wie Klassifizierung, Regression und
Erkennung von Ausreißern benutzt. Hierbei wächst die Anzahl der Feature stark
mit der Anzahl der Instanzen im Datensatz, weswegen wir einen Ansatz für die Se-
lektion von Features in einem hierarchischen Feature Space präsentieren, der die
informativsten und repräsentativsten Features aus einem gegebenen Datensatz aus-
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sucht. In diesem Zusammenhang stellen wir unsere End-to-end Anwendung, die
Data Mining auf dem Netz von Linked Data ermöglicht, zur Verfügung. Diese un-
terstützt sowohl alle Schritte der Knowledge Discovery (das Vernetzen von lokalen
Daten mit Daten aus dem Semantic Knowledge Graphs, die Integration von Fea-
tures aus verschiedenen Graphen und die Generierung und Selektion von Features),
als auch die Erzeugung von Modellen aus dem Machine Learning. Allerdings
zeigen wir auch, dass unser Ansatz selbst nach der Reduktion der Feature immer
noch eine sehr hohe Dimensionalität aufweist und zudem Feature Vektoren aus
einem solchen Modell sich schwer auf andere Datensätze anwenden lassen.

Im zweiten Teil stellen wir einen weiteren Ansatz vor, der die Probleme aus
dem Ansatz in Teil I umgeht. Wir haben eine Methode entwickelt, die es er-
möglicht ganze Semantic Web Knowledge Graphs in einen Feature Space mit
geringer Dimensionalität zu transformieren. Dabei wird jede Entität und Rela-
tion als numerischer Wert in einem Vektor repräsentiert. Nach der Projektion in
einen solchen Vektorraum ist zu sehen, dass Entitäten, die sich semantisch ähnlich
sind, auch nah beieinander im Vektorraum abgebildet werden. Hierbei haben wir
mehrere Semantic Web Knowledge Graphs getestet, um zu zeigen, dass eine solche
Darstellung der Entitäten vorteilhaft für verschiedene Data Mining Aufgaben ist.
Außerdem können wir zeigen, dass solche Features auch auf anderen Datensätzen
für andere Aufgaben genutzt werden können.

Im dritten Teil beschreiben wir eine Liste von Anwendungen, die Semantic
Web Knowledge Graphs benutzen und dabei über Standardaufgaben des Data Min-
ing wie Klassifizierung und Regression hinausgehen. Hierbei zeigen wir, dass
die Ansätze aus Teil I und II in Anwendungen aus verschiedenen Domänen be-
nutzt werden können. Speziell gehen wir dabei auf die Nutzung von Seman-
tic Web Knowledge Graphs in der Analyse von Statistiken, zum Entwickeln von
Empfehlungsdiensten, der Modellierung von Entitäten und Dokumenten und der
Induktion von Taxonomien.
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Chapter 1

Introduction

Data mining is defined as “a non-trivial process of identifying valid, novel, poten-
tially useful, and ultimately understandable patterns in data” [85], or “the analysis
of (often large) observational data sets to find unsuspected relationships and to
summarize the data in novel ways that are both understandable and useful to the
data owner” [108]. As such, data mining and knowledge discovery (KDD) are typ-
ically considered knowledge intensive tasks. Thus, knowledge plays a crucial role
here. Knowledge can be (a) in the primary data itself, from where it is discovered
using appropriate algorithms and tools, (b) in external data, which has to be in-
cluded with the problem first (such as background statistics or master file data not
yet linked to the primary data), or (c) in the data analyst’s mind only.

The latter two cases are interesting opportunities to enhance the value of the
knowledge discovery processes. Consider the following case: a dataset consists of
countries in Europe and some economic and social indicators. There are, for sure,
some interesting patterns that can be discovered in the data. However, an analyst
dealing with such data on a regular basis will know that some of the countries are
part of the European Union, while others are not. Thus, she may add an additional
variable EU_Member to the dataset, which may lead to new insights (e.g., certain
patterns holding for EU member states only).

In that example, knowledge has been added to the data from the analyst’s
mind, but it might equally well have been contained in some exterior source of
knowledge, such as Semantic Web knowledge graphs. Semantic Web knowledge
graphs are a backbone of many information systems that require access to struc-
tured knowledge. Those knowledge graphs contain factual knowledge about real
world entities and their relations and attributes in a fully machine-readable format.
Following the principles of the Semantic Web [13], such knowledge graphs are
publicly available as Linked Open Data [21]. Linked Open Data (LOD) is an open,
interlinked collection of datasets in machine-interpretable form, covering multiple
domains from life sciences to government data [267]. Some of the most used Se-
mantic Web knowledge bases are DBpedia [9], YAGO [291], and Wikidata [319].
In the last decade, a vast amount of approaches have been proposed that combine

1
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methods from data mining and knowledge discovery with Semantic Web knowl-
edge graphs. The goal of those approaches is to support different data mining
tasks, or to improve the Semantic Web itself.

In their seminal paper from 1996, Fayyad et al. [85] introduced a process model
for knowledge discovery processes. The model comprises five steps, which lead
from raw data to actionable knowledge and insights which are of immediate value
to the user, which comprises five steps: Selection, Preprocessing, Transformation,
Data Mining, and Evaluation and Interpretation. It has been shown that Semantic
Web knowledge graphs can support each step of the KDD pipeline. Given a set
of local data (such as a relational database), the first step is to link the data to the
corresponding knowledge graph concepts from the chosen LOD dataset. Once the
local data is linked to a LOD dataset, we can explore the existing links in the dataset
pointing to the related entities in other LOD datasets. In the next step, various tech-
niques for data consolidation, preprocessing and cleaning are applied, e.g., schema
matching, data fusion, value normalization, treatment of missing values and out-
liers. Next, some transformations on the collected data need to be performed in
order to represent the data in a way that it can be processed with any arbitrary data
analysis algorithms. Since most algorithms demand a propositional form of the
input data, this usually includes a transformation of the graph-based LOD data to a
canonical propositional form. After the data transformation is done, a suitable data
mining algorithm is selected and applied on the data. In the final step, the results of
the data mining process are presented to the user. Here, to ease the interpretation
and evaluation of the results of the data mining process, Semantic Web and LOD
can be used as well.

To clarify the process of exploiting Semantic Knowledge graphs, we introduce
a use case of exploiting Semantic Web knowledge graphs in recommneder sys-
tems. Recommender systems have changed the way people find and buy products
and services. As the Web has grown over time, and the number of products and ser-
vices within, recommender systems represent a powerful method for users to filter
that large information and product space. With the introduction of the Semantic
Web and Linked Open Data, recommender systems are emerging research area
that extensively use Semantic Web knowledge graphs as background knowledge
for extracting useful data mining features that could improve the recommendation
results. It has been shown that Linked Open Data can improve recommender sys-
tems towards a better understanding and representation of user preferences, item
features, and contextual signs they deal with. Knowledge graphs have been used
in content-based, collaborative, and hybrid techniques, in various recommendation
task, i.e., rating prediction, Top-N recommendations, cross-domain recommenda-
tion and diversity in content-based recommendations.

Consider we are given a dataset of books with a set of user ratings. The task
is to predict the rating for each book by each user. We have to note that some
books might not be rated by any users, and some users might not have rated any
books. This is also known as the cold start problem, for which standard collab-
orative filtering recommender systems cannot predict the ratings for such books
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Figure 1.1: An excerpt of the DBpedia graph for the books “The Lord of the Rings”
and “The Hobit”

and users, because there is no sufficient information in the dataset. In such cases,
content-based recommender systems have to be used. However, to be able to build
content-based recommenders, we have to extract content features for each of the
books. Semantic Web knolwedge graphs, like DBpedia, contain structured infor-
mation about books that can be automatically extracted and utilized. For example,
in DBpedia we can easily extract the author of the book (dbo:author), the lan-
guage of the book (dbo:language), the genre of the book (dbp:genre), and many
more properties that can be used to build a recommender system. By analyzing the
already rated books by a user, the recommender can identify some patterns in those
books and make useful recommendations for new books for that user, e.g., if a user
has already rated positively the book “The Lord of the Rings”, a recommender
system might recommend the book “The Hobit”. The system can then easily give
an explanation to why the book was recommended to the user by displaying the
most important shared relations for these two books, e.g., both books are “High
fantasy”, both books are written by the same author “J. R. R. Tolkien”, and both
books belong to the same category “British fantasy novels”. An excerpt of the
DBpedia graph for these two books is given in Figure 1.1.

To be able to make use of the structured knowledge in DBpedia for the given
task, we have to first link the dataset of books to the corresponding DBpedia en-
tities. To do so, we use the name of the books (and if there are any further infor-
mation, e.g., the author of the book), as given in the dataset, to match the books
to the corresponding entities in DBpedia. Once we have set the links to DBpedia,
we can automatically link the local dataset to other knowledge graphs simply by
following the owl:sameAs links in DBpedia, e.g., YAGO, Wikidata, or different
language versions of DBpedia.

In the next step, we extract useful features that would be used to describe the
books. This is the Transformation step, which has been shown to be the most
important step of the KDD pipeline, i.e., being able to select the most informa-
tive and representative features for a given dataset is the key step for building
high performance data mining models [75]. As most of the standard data min-
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ing algorithms and tools require propositional feature vector representation, for
making use of Semantic Web knowledge graphs in the data mining step trans-
formations have to be performed, which create propositional features from the
graphs, i.e., a process called propositionalization [154]. One approach would be
to ask a domain expert to manually select the features that can be used for the
given task, e.g., as we already mentioned, the author, the genre, the language
of the book might be good features for describing the book. However, this ap-
proach is time consuming and costly. Another approach is to automatically re-
trieve features from the knowledge base, e.g., as we propose in Part I of this the-
sis, we can use unsupervised propositinalization strategies from types and rela-
tions in knowledge graphs. Such strategies automatically transform the graph into
feature vectors, by flattening down the incoming and outgoing relations for each
book. For example, we can automatically extract all the types and categories for
the book “The Lord of the Rings”: “dbc:Adventure_novels”, “dbc:British_novels-
_adapted_into_films”, “dbc:British_adventure_novels”, etc. In Part I, we give an
overview of a set of propositionalization strategies that exploit the relations and the
structure of the graph to generate propositional feature vectors, in a complete unsu-
pervised manner, independently of the task and the dataset. However, such feature
strategies do not scale when the input dataset is large, i.e., the number of generated
features for all the books can quickly become unmanageable. Therefore, there is a
need for feature selection approaches. In Part I, we describe a feature selection ap-
proach that exploits the graph structure in order to select only the most informative
and most representative features, while significantly reducing the number of fea-
tures in the complete dataset. For example, in the previous example, the category
“dbc:Adventure_novels” subsumes the category “dbc:British_adventure_novels”,
therefore we can remove the latter one.

While this feature engineering approach follows the standard KDD pipeline,
there might be a more efficient approach for transforming the graph into proposi-
tional feature vectors. In Part II, we introduce more sophisticated propositinaliza-
tion strategies that embed the whole structure of the knowledge graph into a low
dimensional feature space, i.e., knowledge graph embeddings, where each entity
and relation in the knowledge graph is represented as a numerical vector. Such ap-
proaches leverage local information from graph sub-structures, harvested by graph
kernels and graph walks, to learn latent numerical representations of entities in
RDF graphs, i.e., the approach explicitly models the assumption that entities that
appear in similar graph sub-structures in the knowledge graph, are semantically
similar to each other. Projecting such latent representations of entities into a lower
dimensional feature space shows that semantically similar entities appear closer to
each other. For example, the books “The Lord of the Rings” and “The Hobit”,
would have very similar feature representation. Using such graph embedding tech-
niques, circumvents the need for manual feature engineering and applying feature
selection approaches. The generated feature vectors have the same size, indepen-
dently of the given task or dataset, i.e., the embeddings are generated once for the
whole knowledge graph and can be reused in different applications, as shown in



1.1. RESEARCH QUESTIONS 5

Part III of this thesis.
In the final step of our recommender system use case, we build the actual rec-

ommender system using the previously generated features. To do so, standard
recommender methods can be used, for building content-based, collaborative or
hybrid recommender systems.

In this thesis, we focus on the third step of knowledge discovery process, Trans-
formation, proposing multiple feature propositionalization strategies, which are
evaluated on a large set of datasets, and applied in real world applications.

1.1 Research Questions

The goal of this thesis is to answer How can Semantic Web knowledge graphs be
exploited as background knowledge in data mining?. To answer this question, we
articulated our research in a specific set of sub-questions, which are summarized
as:

• RQ1: Do existing Semantic Web knowledge graphs cover enough topics to be
used in different data mining tasks? Data mining tasks cover various topic do-
mains, e.g., entertainment, medicine, geography, science, etc. Therefore, to use
Semantic Web knowledge graphs in data mining, the graphs need to contain data
about various topic domains. This question is addressed in Chapter 4.

• RQ2: How can we automatically discover and integrate useful background in-
formation from Semantic Web knowledge graphs for data mining? After we have
shown that Semantic Web knowledge graphs contain valuable data for various
data mining tasks, we need to develop approaches for accessing this data. First,
we have to develop approaches for automatic discovery of useful data from Se-
mantic Web knowledge graphs for a given data mining task. Then, we have to
perform transformation of the graph data in order to be able to use it with the
standard data mining tools and algorithms. And lastly, we have to perform fea-
ture selection, in order to select the most informative and representative features
that will lead to better performance of the data mining algorithms. This question
is addressed throughout Part I of this thesis.

• RQ3: How can we efficiently and effectively reuse the knowledge from the Se-
mantic Web knowledge graphs independently of the data and the data mining
task? The existing Semantic Web knowledge graphs are rather big, therefore
approaches for efficient discovery and extraction of background knowledge are
needed. Such approaches, should be able to convert the graph into data mining
features that can be readily reused independently of the data mining task and
dataset. This question is addressed throughout Part II of this thesis.

• RQ4: What are the real-world data mining applications that benefit from adding
background knowledge from Semantic Web knowledge graphs? Once the ap-
proaches and the tools for accessing background knowledge from Semantic Web
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knowledge graphs have been developed, we have to identify what are the differ-
ent real-world data mining applications that can benefit from such knowledge.
Data mining is a broad area, covering many tasks and applications, starting from
the basic classification and regression tasks to recommender systems, which are
becoming more and more important in the research and business area. This
question is addressed throughout Part III of this thesis.

1.2 Contributions

The contribution of this thesis is broad and diverse, showing the potential of Se-
mantic Web knowledge graphs as background knowledge in data mining. In par-
ticular, this thesis makes the following contributions:

• In-depth overview and comparison of existing approaches for exploiting Seman-
tic Web knowledge graph in each step of the knowledge discovery pipeline, and
data mining in general - Chapter 3

• A collection of benchmark datasets for systematic evaluations of machine learn-
ing on the Semantic Web - Chapter 4

• Empirical evaluation of propositionalization strategies for generating features
from Semantic Web knowledge graphs - Chapter 5

• An approach for feature selection in hierarchical feature spaces - Chapter 6

• A tool for mining the web of Linked Data, which provides approaches for gen-
erating, selecting and integrating machine learning features from many LOD
sources - Chapter 7

• An approach for Semantic Web knowledge graphs embeddings, and their appli-
cations in data mining - Chapter 8 and Chapter 9

• A list of developed applications that exploit Semantic Web knoweldge grpahs,
i.e., a tool for analyzing statistics with background knowledge from Semantic
Web knowledge graphs - Chapter 10; Three approaches for exploiting Semantic
Web knowledge graphs for building recommender systems - Chapter 11; An
approach for entities and document modeling - Chapter 12; and an approach for
taxonomy induction - Chapter 13

1.3 Structure

In this section, the content of each following chapter is summarized:
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Chapter 2: Fundamentals After introducing and motivating the goal of the the-
sis, this chapter, presents an overview of the basics of the knowledge discovery
process, Semantic Web, Linked Open Data, Semantic Web knowledge graphs, and
commonly used Semantic Web knowledge graphs.

Chapter 3: Related Work This chapter gives a comprehensive overview of ex-
isting data mining approaches exploiting Semantic Web knowledge graphs in dif-
ferent stages of the knowledge discovery process.

Chapter 4: A Collection of Benchmark Datasets for Systematic Evaluations of
Machine Learning on the Semantic Web This chapter introduced a collection
of datasets for benchmarking machine learning approaches for the Semantic Web.
Such a collection of datasets can be used to conduct quantitative performance test-
ing and systematic comparisons of approaches. The collection of dataset is also
used for evaluating the approaches described in the following chapters.

Chapter 5: Propositionalization Strategies for Creating Features from Linked
Open Data This chapter describes a set of strategies for creating features from
types and relations in Semantic Web knowledge graphs. Furthermore, it conducts
an empirical evaluation of the propositionalization strategies on a number of dif-
ferent datasets and across different tasks, i.e., classification, regression, and outlier
detection.

Chapter 6: Feature Selection in Hierarchical Feature Spaces The experi-
ments conducted in the previous chapter showed that the number of generated fea-
tures from knowledge graphs can rapidly increase as the size of the input dataset
increases. Given that knowledge graphs are usually backed by hierarchical struc-
tures, this chapter describes an approach that exploits hierarchies for feature selec-
tion in combination with standard metrics.

Chapter 7: Mining the Web of Linked Data with RapidMiner This chapter
discusses how the Web of Linked Data can be mined using the full functionality of
RapidMiner. The chapter introduces an extension to RapidMiner, which allows for
bridging the gap between the Web of Data and data mining, and which can be used
for carrying out sophisticated analysis tasks on and with Linked Open Data.

Chapter 8: RDF2Vec: RDF Graph Embeddings for Data Mining The previ-
ous chapters of the thesis introduced several strategies for feature generation from
Semantic Web knowledge graphs. However, such feature strategies do not scale
when the input dataset is large, i.e., the number of generated features quickly be-
comes unmanageable and there is a need for feature selection. This chapter de-
scribes an approach for Semantic Web knowledge graphs embedding. The chapter
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shows that such embeddings can be used as feature vectors for machine learning
tasks, like classification and regression.

Chapter 9: Biased Graph Walks for RDF Graph Embeddings This chapter
extends the previous chapter, by examining methods to direct the random walks
in more meaningful ways, i.e., being able to capture more important information
about each entity in the graph. The chapter evaluates a dozen weighting schemes
which influence the walks and, thus, the resulting sequences.

Chapter 10: Analyzing Statistics with Background Knowledge from Semantic
Web Knowledge Graphs Statistical datasets are widely spread and published on
the Web, however the availability of tools for analyzing such data is limited. This
chapter presents the Web-based tool ViCoMap, which allows automatic correlation
analysis and visualizing statistical data on maps using Semantic Web knowledge
graphs.

Chapter 11: Semantic Web enabled Recommender Systems Since the Linked
Open Data has a coverage of a large number of domains, it is a suitable source
for building content-based recommender systems. This chapter presents three
approaches for exploiting Semantic Web knowledge graphs for building recom-
mender systems. The first approach is based on graph metrics, the second ap-
proach is based on a hybrid approach using flat features extracted from Semantic
Web knowledge graphs, and the third approach uses graph embeddings as features
to build a content-based recommender system.

Chapter 12: Entity and Document Modeling using Semantic Web Graph Em-
beddings This chapter shows that the graph embeddings, introduced in Chapter
8, can be used for the task of entity and document modeling, which are fundamental
problems in numerous tasks in information retrieval, natural language processing,
and Web-based knowledge extraction.

Chapter 13: Taxonomy Induction Using Knowledge Graph Embeddings As
shown in the previous chapters, it is crucial to define a high quality class hierarchy
for a knowledge base in order to allow effective access to the knowledge base from
various Natural Language Processing, Information Retrieval, and any Artificial In-
telligence systems and tools. Thus, this chapter presents an approach that makes
use of the graph embeddings introduced in Chapter 8 for automatic unsupervised
class subsumption axiom extraction from semi-structured knowledge bases.



Chapter 2

Fundamentals

This chapter introduces the basics of the Semantic Web, Linked Open Data, Se-
mantic Web knowledge graphs, the knowledge discovery process, and Semantic
Web enabled knowledge discovery process.

2.1 Semantic Web Knowledge Graphs

The Semantic Web provides a common framework that allows data to be shared
and reused across application, enterprise, and community boundaries. Semantic
Web technologies facilitate building a large-scale Web of machine-readable and
machine-understandable knowledge, and thus facilitate data reuse and integration.
Since the beginning, the Semantic Web has promoted a graph-based representation
of knowledge, e.g., using the Resource Description Framework (RDF)1. In general,
RDF is a framework which provides capabilities to describe information about re-
sources. As defined by the W3C recommendation for RDF2, the core structure
of RDF is a set of triples, each consisting of a subject, a predicate and an object,
e.g. db:Berlin dbo:capitalOf db:Germany represents a triple. A set of such triples
is called an RDF graph. In such a graph-based knowledge representation, enti-
ties, which are the nodes of the graph, are connected by relations, which are the
edges of the graph. Each entity is uniquely identified with a Internationalized Re-
source Identifier (IRI), and usually entities have types, denoted by is a relations,
e.g. db:Berlin rdf:type dbo:City.

We give a formal definition of an RDF graph in Definition 1.

Definition 1. An RDF graph is a labeled graph G = (V, E), where V is a set of
vertices, and E is a set of directed edges, where each vertex v ∈ V is identified by
a unique identifier, and each edge e ∈ E is labeled with a label from a finite set of
edge labels.

1https://www.w3.org/RDF/
2https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

9

https://www.w3.org/RDF/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
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Figure 2.1: The Linking Open Data cloud diagram 2017

Paulheim [223] provides a more loose definition of a Semantic Web knowledge
graph, where a knowledge graph:

• mainly describes real world entities and their interrelations, organized in a graph.

• defines possible classes and relations of entities in a schema.

• allows for potentially interrelating arbitrary entities with each other.

• covers various topical domains.

2.1.1 Linked Open Data

The basics of the Semantic Web were set by Sir Tim Berners-Lee in 2001 [13],
which later lead to the creation of the Linked Opend Data [21] 3. Linked Open Data
(LOD) is an open, interlinked collection of datasets in machine-interpretable form,
covering multiple domains from life sciences to government data [267]. Currently,
around 1,000 datasets are interlinked in the Linked Open Data cloud, with the
majority of links connecting identical entities in two datasets. The structure of the
Linked Open Data cloud is given in Figure 2.1.4

The three most commonly used large cross-domain knowledge graphs in the
LOD cloud are: DBpedia [9], YAGO [291], and Wikidata [319]. Also, these three
knowledge graphs are heavily used in this thesis.

3https://www.w3.org/DesignIssues/LinkedData.html
4Available at: http://lod-cloud.net/

https://www.w3.org/DesignIssues/LinkedData.html
http://lod-cloud.net/
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DBpedia: DBpedia is the central hub of the LOD cloud. DBpedia is a knowl-
edge graph which is extracted from structured data in Wikipedia, and makes this
information available on the Web in various machine-readable formats.5 The main
source for this extraction are Wikipedia infoboxes, which are the property summa-
rizing tables found on most of the Wikipedia pages. In a comunity based project,
types of the Wikipedia infoboxes are mapped to the DBpedia ontology, and the
keys used in those infoboxes are mapped to properties in the DBpedia ontology.
Based on those mappings, the DBpedia knowledge graph is extracted [162].

YAGO (Yet Another Great Ontology): Like DBpedia, YAGO is also extracted
from Wikipedia. The YAGO ontology is built from the category system in Wikipedia
and the lexical resource WordNet [180], with infobox properties manually mapped
to a fixed set of attributes.

Wikidata: Wikidata is a collaboratively edited knowledge graph, operated by the
Wikimedia foundation6 that many language editions of Wikipedia.

2.2 Data Mining and The Knowledge Discovery Process

Data mining is defined as “a non-trivial process of identifying valid, novel, poten-
tially useful, and ultimately understandable patterns in data” [85], or “the analysis
of (often large) observational data sets to find unsuspected relationships and to
summarize the data in novel ways that are both understandable and useful to the
data owner” [108]. On a more general level, the data mining field is concerned
with the development of methods and algorithms for discovering patterns in large
data sets for better understanding of the data.

In a seminal paper from 1996, Fayyad et al. [85] introduced a process model
for knowledge discovery processes. The model consists of five steps, which lead
from raw data to actionable knowledge and insights which are of immediate value
to the user. The whole process is shown in Figure 2.2. It comprises five steps:

1. Selection The first step is developing an understanding of the application
domain, capturing relevant prior knowledge, and identifying the data mining
goal from the end user’s perspective. Based on that understanding, the target
data used in the knowledge discovery process can be chosen, i.e., selecting
proper data samples and a relevant subset of variables.

2. Preprocessing In this step, the selected data is processed in a way that al-
lows for a subsequent analysis. Typical actions taken in this step include
the handling of missing values, the identification (and potentially correc-
tion) of noise and errors in the data, the elimination of duplicates, as well

5http://www.dbpedia.org
6http://wikimediafoundation.org/

http://www.dbpedia.org
http://wikimediafoundation.org/ 
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Figure 2.2: An Overview of the Steps That Compose the KDD Process

as the matching, fusion, and conflict resolution for data taken from different
sources.

3. Transformation The third step produces a projection of the data to a form
that data mining algorithms can work on – in most cases, this means turning
the data into a propositional form, where each instance is represented by
a feature vector. To improve the performance of subsequent data mining
algorithms, dimensionality reduction methods can also be applied in this
step to reduce the effective number of variables under consideration.

4. Data Mining Once the data is present in a useful format, the initial goal of
the process is matched to a particular method, such as classification, regres-
sion, or clustering. This step includes deciding which models and parameters
might be appropriate (for example, models for categorical data are differ-
ent than models for numerical data), and matching a particular data mining
method with the overall criteria of the KDD process (for example, the end
user might be more interested in an interpretable, but less accurate model
than a very accurate, but hard to interpret model). Once the data mining
method and algorithm are selected, the data mining takes place: searching
for patterns of interest in a particular representational form or a set of such
representations, such as rule sets or trees.

5. Evaluation and Interpretation In the last step, the patterns and models de-
rived by the data mining algorithm(s) are examined with respect to their va-
lidity. Furthermore, the user assesses the usefulness of the found knowledge
for the given application. This step can also involve visualization of the ex-
tracted patterns and models, or visualization of the data using the extracted
models.

The quality of the found patterns depends on the methods being employed in
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each of these steps, as well as their interdependencies. Thus, the process model
foresees the possibility to go back to each previous step and revise decisions taken
at that step, as depicted in Figure 2.2. This means that the overall process is usually
repeated after adjusting the parametrization or even exchanging the methods in any
of these steps until the quality of the results is sufficient.

2.3 Semantic Web Knowledge Graphs in Data Mining and
Knowledge Discovery

In the last decade, a vast amount of approaches have been proposed which combine
methods from data mining and knowledge discovery with Semantic Web knowl-
edge graphs. The goal of those approaches is to support different data mining
tasks, or to improve the Semantic Web itself. All those approaches can be divided
into three broader categories:

• Using Semantic Web based approaches, Semantic Web Technologies, and Linked
Open Data to support the process of knowledge discovery.

• Using data mining techniques to mine the Semantic Web, also called Semantic
Web Mining.

• Using machine learning techniques to create and improve Semantic Web data.

Stumme et al. [289] have provided an initial survey of all three categories, later
focusing more on the second category. Dating back to 2006, this survey does not
reflect recent research works and trends, such as the advent and growth of Linked
Open Data. More recent surveys on the second category, i.e., Semantic Web Min-
ing, have been published by Sridevi et al [285], Quoboa et al. [242], Sivakumar et
al. [280], and Dou et al. [73].

Tresp et al. [306] give an overview of the challenges and opportunities for
the third category, i.e., machine learning on the Semantic Web, and using machine
learning approaches to support the Semantic Web. The work has been extended in
[244].

In this thesis, we focus on the first category, i.e., the usage of Semantic Web
knowledge graphs and Linked Open Data to support and improve data mining and
knowledge discovery

Many approaches have been proposed in the recent past for using Semantic
Web knowledge graphs in data mining processes, for various purposes, such as the
creation of additional variables. Following the well-known data mining process
model proposed by Fayyad et al. [85], we discuss how semantic data is exploited
at the different stages of the data mining model. Furthermore, we analyze how
different characteristics of Linked Open Data, such as the presence of interlinks
between datasets and the usage of ontologies as schemas for the data, are exploited
by the different approaches.
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Figure 2.3: An Overview of the Steps of the Linked Open Data enabled KDD
pipeline.

As a means to express knowledge about a domain in the Semantic Web, on-
tologies have been introduced in the early 1990s as “explicit formal specifications
of the concepts and relations among them that can exist in a given domain” [102].
For the area of knowledge discovery and data mining, Nigoro et al. [199] divide
ontologies used in this area into three categories:

• Domain ontologies: Express background knowledge about the application do-
main, i.e., the domain of the data at hand on which KDD and data mining is
performed.

• Ontologies for data mining process: Define knowledge about the data mining
process, its steps and algorithms and their possible parameters.

• Metadata ontologies: Describe meta knowledge about the data at hand, such as
provenance information, e.g., the processes used to construct certain datasets.

It has been already shown that ontologies for the data mining process and metadata
ontologies can be used in each step of the KDD process. However, we want to
put a stronger focus on the usage of Linked Open Data (LOD) in the process of
knowledge discovery, which represents a publicly available interlinked collection
of datasets from various topical domains [21, 268].

Figure 2.3 gives an overview of the Linked Open Data enabled knowledge
discovery pipeline. Given a set of local data (such as a relational database), the
first step is to link the data to the corresponding LOD concepts from the chosen
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LOD dataset (cf. section 3.1)7. Once the local data is linked to a LOD dataset,
we can explore the existing links in the dataset pointing to the related entities in
other LOD datasets. In the next step, various techniques for data consolidation,
preprocessing and cleaning are applied, e.g., schema matching, data fusion, value
normalization, treatment of missing values and outliers, etc. (cf. section 3.2).
Next, some transformations on the collected data need to be performed in order to
represent the data in a way that it can be processed with any arbitrary data analysis
algorithms (cf. section 3.3). Since most algorithms demand a propositional form of
the input data, this usually includes a transformation of the graph-based LOD data
to a canonical propositional form. After the data transformation is done, a suitable
data mining algorithm is selected and applied on the data (cf. section 3.4). In the
final step, the results of the data mining process are presented to the user. Here,
ease the interpretation and evaluation of the results of the data mining process,
Semantic Web and LOD can be used as well (cf. section 3.5).

7We should note that the data can be linked to the LOD datasets in different stages of the KDD
process, for example, in some approaches only the results and the discovered patterns from the
data mining process are linked to a given LOD dataset in order to ease the interpretation of them.
For simplicity’s sake we describe the process of linking as the first step, which is also depicted in
Figure 2.3.



Chapter 3

Related Work

In this chapter, we give a comprehensive overview of existing data mining ap-
proaches exploiting Semantic Web knowledge graphs in different stages of the
knowledge discovery process, as discussed in Chapter 2.

For the overview of LOD enabled approaches, we have selected only approaches
that fulfill the following criteria:

1. They are designed and suitable for improving the KDD process in at least
one step

2. They make use of one or more datasets on the Semantic Web

Each of the approaches is assessed using a number of criteria:

1. Is the approach domain-independent or tailored to a specific domain?

2. Is the approach tailored towards a specific data mining technique (e.g., rule
induction)?

3. Does it use a complex ontology or only a weakly axiomatized one (such as
a hierarchy)?

4. Is any reasoning involved?

5. Are links to other datasets (a core ingredient of Linked Open Data) used?

6. Are the semantics of the data (i.e., the ontology) exploited?

Furthermore, we analyze which Semantic Web datasets are used in the papers, to
get a grasp of which are the most prominently used ones.

In the following sections, we introduce and discusse the individual approaches1.
A small box at the end of each section gives a brief summary, a coarse-grained
comparison, and some guidelines for data mining practitioners who want to use
the approaches in actual projects.

1We should note that some of the approaches might be applicable in several steps of the LOD-
enabled KDD pipeline. However, in almost all cases, there is one step which is particularly in the
focus of that work, and we categorize those works under that step.

16
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The work presented in this chapter has been published before as: “Petar Ris-
toski, Heiko Paulheim: Semantic Web in Data Mining and Knowledge Discov-
ery: A Comprehensive Survey. Web Semantics: Science, Services and Agents
on the World Wide Web, Vol 36, pages 1–22, 2016.” [255].

3.1 Selection

To develop a good understanding of the application domain, and the data mining
methods that are appropriate for the given data, a deeper understanding of the data
is needed. First, the user needs to understand what is the domain of the data, what
knowledge is captured in the data, and what is the possible additional knowledge
that could be extracted from the data. Then, the user can identify the data mining
goal more easily, and select a sample of the data that would be appropriate for
reaching that goal.

However, the step of understanding the data is often not trivial. In many cases,
the user needs to have domain specific knowledge in order to successfully un-
derstand the data. Furthermore, the data at hand is often represented in a rather
complex structure that contains hidden relations.

To overcome this problem, several approaches propose using Semantic Web
techniques for better representation and exploration of the data, by exploiting do-
main specific ontologies and Linked Open Data. This is the first step of the Seman-
tic Web enhanced KDD pipeline, called linking. In this step, a linkage, or mapping,
to existing ontologies, and LOD datasets is performed on the local data.

Once the linking is done, additional background knowledge for the local data
can be automatically extracted. That allows to formally structure the domain con-
cepts and information about the data, by setting formal types, and relations between
concepts. Using background knowledge in many cases the users can easily under-
stand the data domain, without the need for employing domain experts.

Furthermore, many tools for visualization and exploration of LOD data exist
that would allow an easier and deeper understanding of the data. An overview
of tools and approaches for visualization and exploration of LOD is given in the
survey by Dadzie et al. [49]. The authors first set the requirements or what is
expected of the tools for visualization or browsing the LOD: (i) the ability to gen-
erate an overview of the underlying data, (ii) support for filtering out less important
data in order to focus on selected regions of interest (ROI), and (iii) support for vi-
sualizing the detail in ROIs. Furthermore, all this tools should allow the user to
intuitively navigate through the data, explore entities and relations between them,
explore anomalies within the data, perform advanced querying, and data extraction
for reuse. They divided the analyzed browsers between those offering a text-based
presentation, like Disco2 and Sig.ma [308] and Piggy Bank [131], and those with

2http://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco

http://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco
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visualization options, like Fenfire [112], IsaViz 3, and RelFinder4. The analysis of
the approaches shows that most of the text-based browsers provide functionalists
to support the tech-users, while the visualization-based browser are mostly focused
on the non-tech users. Even though the authors conclude that there is only a limited
number of SW browsers available, we can still make use of them to understand the
data better and select the data that fits the data analyst’s needs. The categorization
of approaches in the survey by Dadzie et al. has been extended by by Peña et al.
[230], based on the data datatypes that are visualized and the functionality needed
by the analysts. The authors list some more recent approaches for advanced LOD
visualization and exploration, like CODE [191], LDVizWiz [8], LODVisualization
[32], and Payola [150].

The approaches for linking local data to LOD can be divided into three broader
categories, based on the initial structural representation of the local data:

3.1.1 Using LOD to interpret relational databases

Relational databases are considered as one of the most popular storage solutions
for various kinds of data, and are widely used. The data represented in relational
databases is usually backed by a schema, which formally defines the entities and re-
lations between them. In most of the cases, the schema is specific for each database,
which does not allow for automatic data integration from multiple databases. For
easier and automatic data integration and extension, a global shared schema defi-
nition should be used across databases.

To overcome this problem, many approaches for mapping relational databases
to global ontologies and LOD datasets have been proposed. In recent surveys
[310, 263, 284] the approaches have been categorized in several broader categories,
based on three criteria: existence of an ontology, domain of the generated ontology,
and application of database reverse engineering. Additionally, [284] provides a list
of the existing tools and frameworks for mapping relational databases to LOD,
from which the most popular and most used is the D2RQ tool [19]. D2RQ is a
declarative language to describe mappings between application-specific relational
database schemata and RDF-S/OWL ontologies. Using D2RQ, Semantic Web ap-
plications can query a non-RDF database using RDQL, publish the content of a
non-RDF database on the Semantic Web using the RDF Net API5, do RDFS and
OWL inferencing over the content of a non-RDF database using the Jena ontology
API6, and access information in a non-RDF database using the Jena model API7.
D2RQ is implemented as a Jena graph, the basic information representation object
within the Jena framework. A D2RQ graph wraps one or more local relational

3http://www.w3.org/2001/11/IsaViz/
4http://www.visualdataweb.org/relfinder.php
5http://wifo5-03.informatik.uni-mannheim.de/bizer/rdfapi/

tutorial/netapi.html
6https://jena.apache.org/documentation/ontology/
7https://jena.apache.org/tutorials/rdf_api.html

http://www.w3.org/2001/11/IsaViz/
http://www.visualdataweb.org/relfinder.php
http://wifo5-03.informatik.uni-mannheim.de/bizer/rdfapi/tutorial/netapi.html
http://wifo5-03.informatik.uni-mannheim.de/bizer/rdfapi/tutorial/netapi.html
https://jena.apache.org/documentation/ontology/
https://jena.apache.org/tutorials/rdf_api.html
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databases into a virtual, read-only RDF graph. D2RQ rewrites RDQL queries and
Jena API calls into application-datamodel-specific SQL queries. The result sets
of these SQL queries are transformed into RDF triples which are passed up to the
higher layers of the Jena framework.

3.1.2 Using LOD to interpret semi-structured data

In many cases, the data at hand is represented in a semi structured representation,
meaning that the data can be easily understand by humans, but it cannot be au-
tomatically processed by machines, because it is not backed by a schema or any
other formal representation. One of the most used semi-structure representations
of data is the tabular representation, found in documents, spreadsheets, on the Web
or databases. Such representation often follows a simple structure, and unlike rela-
tional databases, there is no explicit representation of a schema.

Evidence for the semantics of semi-structured data can be found, e.g., in its
column headers, cell values, implicit relations between columns, as well as caption
and surrounding text. However, general and domain-specific background knowl-
edge is needed to interpret the meaning of the table.

Many approaches have been proposed for extracting the schema of the tables,
and mapping it to existing ontologies and LOD. Mulwad et al. have made sig-
nificant contribution for interpreting tabular data using LOD, coming from inde-
pendent domains [189, 188, 294, 185, 186, 187]. They have proposed several ap-
proaches that use background knowledge from the Linked Open Data cloud, like
Wikitology [87], DBpedia [9], YAGO [291], Freebase [26] and WordNet [180],
to infer the semantics of column headers, table cell values and relations between
columns and represent the inferred meaning as graph of RDF triples. A table’s
meaning is thus captured by mapping columns to classes in an appropriate ontol-
ogy, linking cell values to literal constants, implied measurements, or entities in
the LOD cloud and identifying relations between columns. Their methods range
from simple index lookup from a LOD source, to techniques grounded in graph-
ical models and probabilistic reasoning to infer meaning associated with a table
[187], which are applicable on different types of tables. i.e, relational tables, quasi-
relational (Web) tables and spreadsheets tables.

Liu et al. [168] propose a learning-based semantic search algorithm to sug-
gest appropriate Semantic Web terms and ontologies for the given data. The ap-
proach combines various measures for semantic similarity of documents to build a
weighted feature-based semantic search model, which is then able to find the most
suitable ontologies. The weights are learned from training data, using subgradient
descent method and logistic regression.

Limaye et al. [166] propose a new probabilistic graphical model for simultane-
ously choosing entities for cells, types for columns and relations for column pairs,
using YAGO as a background knowledge base. For building the graphical models,
several types of features were used, i.e., cell text and entity label, column type and
type label, column type and cell entity, relation and pair of column types, relation
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and entity pairs. The experiments showed that approaching the three sub-problems
collectively and in a unified graphical inference framework leads to higher accu-
racy compared to making local decisions.

Ventis et al. [317] associate multiple class labels (or concepts) with columns
in a table and identify relations between the “subject” column and the rest of the
columns in the table. Both the concept identification for columns and relation
identification are based on maximum likelihood hypothesis, i.e., the best class label
(or relation) is the one that maximizes the probability of the values given the class
label (or relation) for the column. The evidences for the relations and for the classes
are retrieved from a previously extracted isA database, describing the classes of the
entities, and relations database, which contains relations between the entities. The
experiments show that the approach can obtain meaningful labels for tables that
rarely exist in the tables themselves, an that considering the recovered semantics
leads to high precision search with little loss of recall of tables in comparison to
document based approaches.

Wang et al. [321] propose a multi-phase algorithm that using the universal
probabilistic taxonomy called Probase [328] is capable of understanding the en-
titles, attributes and values in many tables on the Web. The approach begins by
identifying a single “entity column” in a table and, based on its values and rest of
the column headers, associates a concept from the Probase knowledge base with
the table.

Zhang et al. [339, 338] propose an incremental, bootstrapping approach that
learns to label table columns using partial data in the column, and uses a generic
feature model able to use various types of table context in learning. The work
has been extended in [337], where the author shows that using sample selection
techniques, it is possible to semantically annotate Web tables in a more efficient
way.

Similarly, an approach for interpreting data from Web forms using LOD has
been proposed [204]. The approach starts by extracting the attribute-value pars of
the form, which is done using probing methods. Then, the data extracted from the
Web forms are represented as RDF triple, or complete RDF graph. To enrich the
graph with semantics, it is aligned with a large reference ontology, like YAGO,
using ontology alignment approaches.

A particular case are tables in Wikipedia, which follow a certain structure and,
with links to other Wikipedia pages, can be more easily linked to existing LOD
sources such as DBpedia. Therefore, several approaches for interpreting tables
from Wikipedia with LOD have been proposed. Munoz et al. [190, 184] pro-
pose methods for triplifying Wikipedia tables, called WikiTables, using existing
LOD knowledge bases, like DBpedia and YAGO. Following the idea of the pre-
vious approaches, this approach starts by extracting entities from the tables, and
then discovering existing relations between them. Similarly, a machine learning
approach has been proposed by Bhagavatula et al. [15], where no LOD knowledge
base is used, but only a meta data for the entities types and relations between them
is added.
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Similarly, approaches have been proposed for interpreting tabular data in spread-
sheets [107, 156], CSV [71], and XML [111].

3.1.3 Using LOD to interpret unstructured data

Text mining is the process of analyzing unstructured information, usually contained
in a natural language text, in order to discover new patterns. Most common text
mining tasks include text categorization, text clustering, sentiment analysis and
others. In most cases, text documents contain named entities that can be identi-
fied in real world, and further information can be extracted about them. Several
approaches and APIs have been proposed for extracting named entities from text
documents and linking them to LOD. One of the most used APIs is DBpedia Spot-
light [174, 50], which allows for automatically annotating text documents with
DBpedia URIs. This tool is used in several LOD enabled data mining approaches,
e.g., [55, 273, 118, 269]. Several APIs for extracting semantic richness from text
exist, like Alchemy API8, OpenCalais API9, Textwise SemanticHacker API10. All
this APIs are able to annotate named entities with concepts from several knowl-
edge bases, like DBpedia, YAGO, and Freebase. These tools and APIs have been
evaluated in the NERD framework, implemented by Rizzo et al. [260].

Furthermore, Linked Open Data is also heavily used for better understanding
of social media, which unlike authored news and other textual Web content, so-
cial media data pose a number of new challenges for semantic technologies, due
to their large-scale, noisy, irregular, and social nature. An overview of tools and
approaches for semantic representation of social media streams is given in [27].
This survey discusses five key research questions: (i) What ontologies and Web of
Data resources can be used to represent and reason about the semantics of social
media streams? For example, FOAF11 and GUMO ontology [114] for describing
people and social network, SIOC12 and DLPO ontology [264] for modeling and
interlinking social media, MOAT [217] ontology for modeling tag semantics (ii)
How can semantic annotation methods capture the rich semantics implicit in so-
cial media? For example, keyphrase extraction [282, 241], ontology-based entity
recognition, event detection [76] and sentiment detection citegangemi2014frame,
sentilo. (iii) How can we extract reliable information from these noisy, dynamic
content streams? (iv) How can we model users’ digital identity and social media ac-
tivities? For example, discovering user demographics [231], deriving user interests
[2] and capturing user behavior [39]. (v) What semantic-based information access
methods can help address the complex information seeking behavior in social me-
dia? For example, semantic search [1] and social media streams recommendation

8http://www.alchemyapi.com/api/
9http://www.opencalais.com/documentation/opencalais-

documentation
10http://textwise.com/api
11http://xmlns.com/foaf/spec/
12http://sioc-project.org/

http://www.alchemyapi.com/api/
http://www.opencalais.com/documentation/opencalais-documentation
http://www.opencalais.com/documentation/opencalais-documentation
http://textwise.com/api
http://xmlns.com/foaf/spec/
http://sioc-project.org/
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[41].

Once the user has developed a sufficient understanding of the domain, and the
data mining task is defined, they need to select an appropriate data sample. If the
data have already been mapped to appropriate domain specific ontologies or linked
to external Linked Open Data, the users can more easily select a representative
sample and/or meaningful subpopulation of the data for the given data mining task.
For example, for a collection of texts, the user may decide to select those which
mention a politician after the data has been linked to the semantic web, so that such
a selection becomes possible.

Table 3.1 gives an overview of the discussed approaches in this section.13 It
can be observed that at the selection step, links between datasets play only a minor
role, and reasoning is scarceley used. In most cases, general-purpose knowledge
bases, such as DBpedia or YAGO, are used as sources of knowledge.

The selection of relevant semantic web datasets is usually done by interlinking
a dataset at hand with data from Linked Open Data. There are strategies and
tools for different kinds of data: relational databases are typically mapped to
the semantic web using mapping rules and tools such as D2R. In those cases,
mapping rules are typically written manually, which is easily possible because
the schema of a relational database is usually explicitly defined.
Semi-structured data, such as Web tables, usually comes without explicit se-
mantics, and in large quantities. Here, different heuristics and machine learn-
ing approaches are often applied to link them to LOD sources. For that case,
it has been shown that combining approaches which perform schema and in-
stance matching in a holistic way typically outperform approaches that handle
both tasks in isolation.
For unstructured data, i.e., textual contents, the interlinking is typically done
by linking named entities in the text to LOD sources with tools such as DB-
pedia Spotlight.
Once the interlinking is done, data visualization and summarization techniques
can benefit from the additional knowledge contained in the interlinked datasets.

13The tables used for summarizing approaches at the end of each section are structured as follows:
The second column of the table states the problem domain on which the approach is applied. The
third column states the data mining task/domain that was used in the approach. The next two columns
capture the characteristics of the ontologies used in the approach, i.e., the complexity level of the
ontology, and if reasoning is applied on the ontology. Based on a prior categorization of ontologies
presented in [228], we distinguish two degrees of ontology complexity: ontologies of low complexity
that consist of class hierarchies and subclass relations (marked with L), and onotologies with high
complexity that also contain relations other than the subclass relations, and further constraints, rules
and so on (marked with H). The sixth column indicates if links (such as owl:sameAs) to other LOD
sources were followed to extract additional information. The next column states whether explicit
semantic information were used from a given LOD source. The final two columns list the used LOD
sources and shared ontologies, respectively. If a LOD source is used, the respective ontology is used
as well, without explicitly stating that in the table.
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3.2 Preprocessing

Once the data is mapped to domain specific knowledge, the constraints expressed
in the ontologies can be used to perform data validity checks and data cleaning. On-
tologies can be used for detecting outliers and noise, as well as for handling miss-
ing values and data range and constraint violations, and guiding the users through
custom preprocessing steps.

Ontologies are often used in many research approaches for the use of data
cleaning and data preprocessing. Namely, there are two applications of ontologies
in this stage: domain-independent ontologies used for data quality management,
and domain ontologies. The first category of ontologies usually contain specifica-
tions for performing cleaning and preprocessing operations. In these approaches,
the ontology is usually used to guide the user through the process of data clean-
ing and validation, by suggesting possible operations to be executed over the data.
The second category of ontologies provide domain specific knowledge needed to
validate and clean data, usually in an automatic manner.

3.2.1 Domain-independent Approaches

One of the first approaches that uses a data quality ontology is proposed by Wang
et al. [323]. They propose a framework called OntoClean14 for ontology-based
data cleaning. The core component of the framework is the data cleaning ontology
component, which is used when identifying the cleaning problem and the relevant
data. Within this component, the task ontology specifies the potential methods that
may be suitable for meeting the user’s goals, and the domain ontology includes all
classes, instances, and axioms in a specific domain, which provides domain knowl-
edge such as attribute constraints for checking invalid values during performing the
cleaning tasks.

A similar approach is proposed by Perez et al. [240] with the OntoDataClean
framework, which is able to guide the data cleaning process in a distributed envi-
ronment. The framework uses a preprocessing ontology to store the information
about the required transformations. First, the process of identifying and storing
the required preprocessing steps has to be carried by a domain expert. Then, these
transformations are needed to homogenize and integrate the records so they can be
correctly analyzed or unified with other sources. Finally, the required information
are stored in the preprocessing ontology, and the data transformations can be ac-
complished automatically. The approach has been tested on four databases in the
domain of bio-medicine, showing that using the ontology the data can be correctly
preprocessed and transformed according the needs.

14Not to be confused with the ontology engineering method by Guarino and Welty.
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3.2.2 Domain-specific Approaches

One of the first approaches to use a domain specific ontology is proposed by Philips
et al. [234]. The approach uses ontologies to organize and represent knowledge
about attributes and their constrains from relational databases. The approach is
able to automatically, or semi-automatically with an assist of the user, identify the
domains of the attributes, relations between the attributes, duplicate attributes and
duplicate entries in the database.

Kedad et al. [143] propose a method for dealing with semantic heterogeneity
during the process of data cleaning when integrating data from multiple sources,
which is differences in terminologies. The proposed solution is based on linguistic
knowledge provided by a domain is-a ontology. The main idea is to automatically
generate correspondence assertions between instances of objects based on the is-
a hierarchy, where the user can specify the level of accuracy expressed using the
domain ontology. Once the user has specified the level of accuracy, two concepts
will be considered the same if there is a subsumption relation between them, or
both belong to the same class. Using this approach the number of results might
be increased when querying the data, e.g., for the query “Do red cars have more
accidents than others?” the system will not only look for red cars, but also for cars
with color ruby, vermilion, and seville, which are subclasses of the red color.

Milano et al. introduce the OXC framework [179] that allows data cleaning on
XML documents based on a uniform representation of domain knowledge through
an ontology, which is gathered from domain analysis activities and from the DTDs
of the documents. The framework comprises a methodology for data quality as-
sessment and cleaning based on the reference ontology, and an architecture for
XML data cleaning based on such methodology. Given a domain ontology, a map-
ping relation between the DTD and the ontology is defined, which is used to define
quality dimensions (accuracy, completeness, consistency and currency), and per-
form data quality improvement by relying on the semantics encoded by the ontol-
ogy.

Brueggemann et al. [31] propose a combination of domain specific ontolo-
gies and data quality management ontologies, by annotating domain ontologies
with data quality management specific metadata. The authors have shown that
such hybrid approach is suitable for consistency checking, duplicate detection, and
metadata management. The approach has been extended in [30], where correction
suggestions are being generated for each detected inconsistency. The approach
uses the hierarchical structure of the ontology to offer the user semantically re-
lated context-aware correction suggestions. Moreover, the framework uses several
measurements of semantic distances in ontologies to find the most suitable correc-
tions for the identified inconsistencies. Based on those metrics the system can offer
several suggestions for value corrections, i.e., value of next-sibling, first-child and
parent. The approach has been applied on data from the cancer registry of Lower
Saxony15, showing that it can successfully support domain experts.

15http://www.krebsregister-niedersachsen.de

http://www.krebsregister-niedersachsen.de
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Wang et al. [324] present a density-based outlier detecting method using do-
main ontology, named ODSDDO (Outlier Detecting for Short Documents using
Domain Ontology). The algorithm is based on the local outlier factor algorithm,
and uses domain ontology to calculate the semantic distance between short doc-
uments which improves the outlier detecting precision. To calculate the semantic
similarity between two documents, first each word from each document is mapped
to the corresponding concept in the ontology. Then, using the ontology concept
tree, the similarity between each pair of concepts is calculated. The distance be-
tween two documents is then simply calculated as average of the sum of the max-
imum similarities between the pairs of concepts. The documents that have small
or zero semantic similarity to other documents in the dataset are considered to be
outliers.

Lukaszewski [172] propose an approach to admit and utilize noisy data by
enabling to model different levels of knowledge granularity both in training and
testing examples. The authors argue that erroneous or missing attribute values may
be introduced by users of a system that are required to provide very specific values,
but the level of their knowledge of the domain is too general to precisely describe
the observation by the appropriate value of an attribute. Therefore, they propose
knowledge representation that uses hierarchies of sets of attribute values, derived
from subsumption hierarchies of concepts from an ontology, which decreases the
level of attribute-noise in the data.

Füber and Hepp [90, 89, 91, 92] propose approaches for using Semantic Web
technologies and Linked Open Data to reduce the effort for data quality manage-
ment in relational databases. They show that using LOD reference data can help
identifying missing values, illegal values, and functional dependency violations. In
their first work [90], the authors describe how to identify and classify data quality
problems in relational databases, through the use of SPARQL Inferencing Nota-
tion (SPIN)16. SPIN is a Semantic Web vocabulary and processing framework that
facilitates the representation of rules based on the syntax of the SPARQL protocol
and RDF query language. To apply the approach on relational databases, the D2RQ
tool [19] is used to extract data from relational databases into an RDF representa-
tion. The framework allows domain experts to define data requirements for their
data based on forms as part of the data quality management process. The SPIN
framework then automatically identifies requirement violations in data instances,
i.e. syntactic errors, missing values, unique values violations, out or range values,
and functional dependency violations. This approach is extended in [91] to asses
the quality state of data in additional dimensions.

In a further work [89], instead of manually defining the data validation rules,
the authors propose using Linked Open Data as trusted knowledge base that already
contains information on the data dependencies. This approach have been shown to
significantly reduce the effort for data quality management, when reference data is
available in the LOD cloud. The approach was evaluated against a local knowledge

16http://spinrdf.org/

http://spinrdf.org/
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base that contained manually created address data. Using GeoNames as a reference
LOD dataset, the approach was able to identify invalid city entries, and invalid city-
country relations.

A similar approach using SPIN, has been developed by Moss et al. [183] for
assessing medical data. The system compromises a set of ontologies that support
reasoning in a medical domain, such as human psychology, medical domain, and
patient data. To perform the data cleaning, several rules for checking missing data
points and value checking were used. The approach is evaluated on data from the
Brain-IT network17, showing that it is able to identify invalid values in the data.
Ontologies are often used in the healthcare domain for data quality management
and data cleaning. Literature review of such papers is presented in [165].

In [163] we have developed an approach for filling missing values in a local ta-
ble using LOD, which is implemented in a system named Mannheim Search Joins
Engine18. The system relies on a large data corpus, crawled from over one mil-
lion different websites. Besides two large quasi-relational datasets, the data corpus
includes the Billion Triples Cahllenge 2014 Dataset19 [136], and the WebData-
Commons Microdata Dataset20 [175]. For a given local table, the engine searches
the data corpus for additional data for the attributes of the entities in the input ta-
ble. To perform the search, the engine uses the existing information in the table,
i.e. the entities’ labels, the attributes’ headers, and the attributes’ data types. The
discovered data is usually retrieved from multiple sources, therefore the new data
is first consolidated using schema matching and data fusion methods. Then, the
discovered data is used to fill the missing values in the local table. Also, the same
approach can be used for validating the existing data in the given table i.e. outlier
detection, noise detection and correction.

Table 3.2 gives an overview of the discussed approaches in this section. We can
observe that, while ontologies are frequently used for data cleaning, well-known
LOD datasets like DBpedia are scarcely exploited. Furthermore, many approaches
have been tailored to and evaluated in the medical domain, likely because quite a
few sophisticated ontologies exist in that domain.

Ontologies and Semantic Web data help with preprocessing the data, mostly for
increasing the data quality. There are various data quality dimensions that can
be addressed. Outliers and false values may be found by identifying data points
and values that violate constraints defined in those ontologies. Subsumption
hierarchies and semantic relations help unifying synonyms and detecting in-
terrelations between attributes. Finally, missing values can be inferred and/or
filled from LOD datasets.

17http://www.brain-it.eu/
18http://searchjoins.webdatacommons.org/
19http://km.aifb.kit.edu/projects/btc-2014/
20http://webdatacommons.org/structureddata/

http://www.brain-it.eu/
http://searchjoins.webdatacommons.org/
http://km.aifb.kit.edu/projects/btc-2014/
http://webdatacommons.org/structureddata/
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3.3 Transformation

At this stage, the generation of better data for the data mining process is pre-
pared. The transformation step includes dimensionality reduction, feature gen-
eration and feature selection, instance sampling, and attribute transformation, such
as discretization of numerical data, aggregation, functional transformations, etc. In
the context of Semantic Web enabled data mining, feature generation and feature
selection are particularly relevant.

3.3.1 Feature Generation

Linked Open Data has been recognized as a valuable source of background knowl-
edge in many data mining tasks. Augmenting a dataset with features taken from
Linked Open Data can, in many cases, improve the results of a data mining problem
at hand, while externalizing the cost of creating and maintaining that background
knowledge [221].

Most data mining algorithms work with a propositional feature vector rep-
resentation of the data, i.e., each instance is represented as a vector of features
〈f1, f2, ..., fn〉, where the features are either binary (i.e., fi ∈ {true, false}), nu-
merical (i.e., fi ∈ R), or nominal (i.e., fi ∈ S, where S is a finite set of symbols)
[211]. Linked Open Data, however, comes in the form of graphs, connecting re-
sources with types and relations, backed by a schema or ontology.

Thus, for accessing Linked Open Data with existing data mining tools, transfor-
mations have to be performed, which create propositional features from the graphs
in Linked Open Data, i.e., a process called propositionalization [154]. Usually,
binary features (e.g., true if a type or relation exists, false otherwise) or nu-
merical features (e.g., counting the number of relations of a certain type) are used.
Furthermore, elementary numerical or nominal features (such as the population of
a city or the production studio of a movie) can be added [225]. Other variants, e.g.,
computing the fraction of relations of a certain type, are possible, but rarely used.

In the recent past, a few approaches for propositionalizing Linked Open Data
for data mining purposes have been proposed. Many of those approaches are su-
pervised, i.e., they let the user formulate SPARQL queries, which means that they
leave the propositionalization strategy up to the user, and a fully automatic feature
generation is not possible. Usually, the resulting features are binary, or numerical
aggregates using SPARQL COUNT constructs.

LiDDM [140] is an integrated system for data mining on the Semantic Web.
The tool allows the users to declare SPARQL queries for retrieving features from
LOD that can be used in different machine learning techniques, such as clustering
and classification. Furthermore the tool offers operators for integrating data from
multiple sources, data filtering and data segmentation, which are carried manu-
ally by the user. The usefulness of the tool has been presented through two use
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cases, using DBpedia, World FactBook21 and LinkedMDB22, in the application of
correlations analysis and rule learning.

A similar approach has been used in the RapidMiner23 semweb plugin [145],
which preprocesses RDF data in a way that it can be further processed by a data
mining tool, RapidMiner in that case. Again, the user has to specify a SPARQL
query to select the data of interest, which is then converted into feature vectors. The
authors propose two methods for handling set-values data, by mapping them into
an N-dimensional vector space. The first one is FastMap, which embeds points in
an N-dimensional space based on a distance metric, much like Multidimensional
Scaling (MDS). The second one is Correspondence Analysis (CA), which maps
values to a new space based on their cooccurrence with values of other attributes.
The approaches were evaluated on IMDB data24, showing that the mapping func-
tions can improve the results over the baseline.

Cheng et al. [43] propose an approach for automated feature generation after
the user has specified the type of features. To do so, the users have to specify
the SPARQL query, which makes this approach supervised. The approach has
been evaluated in the domain of recommender systems (movies domain) and text
classification (tweets classification). The results show that using semantic features
can improve the results of the learning models compared to using only standard
features.

Mynarz et al. [192] have considered using user specified SPARQL queries in
combination with SPARQL aggregates, including COUNT, SUM, MIN, MAX.
Kauppinen et al. have developed the SPARQL package for R25 [141, 142], which
allows importing LOD data in the very well known environment for statistical com-
puting and graphics R. In their research they use the tool to perform statistical anal-
ysis and visualization of the linked Brazilian Amazon rainforest data. The same
tool has been used in [312] for statistical analysis in piracy attack reports data.
Moreover, they use the tool to import RDF data from multiple LOD sources in the
environment of R, which allows them to easier analyze, interpret and visualize the
discovered patterns in the data.

FeGeLOD [225] was the first fully automatic approach for enriching data with
features that are derived from LOD. In that work, the authors have proposed six
different feature generation strategies, allowing for both binary features and sim-
ple numerical aggregates. The first two strategies are only concerned with the in-
stances themselves, i.e., retrieving the data properties of each entity, and the types
of the entity. The four other strategies consider the relation of the instances to
other resources in the graph, i.e. incoming and outgoing relations, and qualified
relations, i.e., aggregates over the type of both the relation and the related entity.

The related work indicates that there is a gap between Semantic Web knowl-

21ttp://wifo5-03.informatik.uni-mannheim.de/factbook/
22http://www.linkedmdb.org/
23http://www.rapidminer.com/
24http://www.imdb.com/
25http://linkedscience.org/tools/sparql-package-for-r/

ttp://wifo5-03.informatik.uni-mannheim.de/factbook/
http://www.linkedmdb.org/
http://www.rapidminer.com/
http://www.imdb.com/
http://linkedscience.org/tools/sparql-package-for-r/
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edge graphs and existing data mining tools. More precisely, there is a lack of tools
and approaches for accessing background knowledge from Semantic Web knowl-
edge graphs for data minining. This leads to formulating the research question
RQ2 in Section 1.1. In Chapter 7 we present the RapidMiner Linked Open Data
extension, which addresses this question. Currently, the RapidMiner LOD exten-
sion supports the user in all steps of the LOD enabled knowledge discovery pro-
cess. i.e. linking, combining data from multiple LOD sources, preprocessing and
cleaning, transformation, data analysis, and interpretation of data mining findings.

A problem similar to feature generation is addressed by Kernel functions, which
compute the distance between two data instances. The similarity is calculated by
counting common substructures in the graphs of the instances, e.g., walks, paths
and threes. The graph kernels are used in kernel-based data mining and machine
learning algorithms, most commonly support vector machines (SVMs), but can
also be exploited for tasks such as clustering. In the past, many graph kernels have
been proposed that are tailored towards specific application [128, 127, 126], or to-
wards specific semantic representation [80, 81, 23, 16]. But only a few approaches
are general enough to be applied on any given RDF data, regardless of the data
mining task. Lösch et al. [169] introduces two general RDF graph kernels, based
on intersection graphs and intersection trees. First, they propose the use of walk
and path kernels, which count the number of walks and paths in the intersected
graphs. Then, they propose full subtree kernel, which counts the number of full
sub-trees of the intersection tree.

The intersection tree path kernel introduced by Lösch et al., has been modified
and simplified by Vries et al. [58, 57, 24, 59], which also allows for explicit calcu-
lation of the instances’ feature vectors, instead of pairwise similarities. Computing
the feature vectors significantly improves the computation time, and allows using
any arbitrary machine learning methods. They have developed two types of kernels
over RDF data, RDF walk count kernel and RDF WL sub tree kernel. The RDF
walk count kernel counts the different walks in the sub-graphs (up to the provided
graph depth) around the instances nodes. The RDF WL sub tree kernel counts the
different full sub-trees in the sub-graphs (up to the provided graph depth) around
the instances nodes, using the Weisfeiler-Lehman algorithm [277]. The approaches
developed by Lösch et al. and by Vries et al. have been evaluated on two common
relational learning tasks: entity classification and link prediction.

In Chapter 5 and Chapter 7, we describe several approaches for feature gener-
ation from Semantic Web knowledge graphs.

Another line of work for generating data mining features from Semantic Web
knowledge graphs, are graph embeddings. In Chapter 8 and Chapter 9, we describe
an approach for embedding complete Semantic Web knowledge graphs. Generally,
our work is closely related to the approaches DeepWalk [233] and Deep Graph
Kernels [329]. DeepWalk uses language modeling approaches to learn social rep-
resentations of vertices of graphs by modeling short random-walks on large social
graphs, like BlogCatalog, Flickr, and YouTube. The Deep Graph Kernel approach
extends the DeepWalk approach by modeling graph substructures, like graphlets,
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instead of random walks. Node2vec [101] is another approach very similar to
DeepWalk, which uses second order random walks to preserve the network neigh-
borhood of the nodes. The approach we propose in this chapter differs from these
approaches in several aspects. First, we adapt the language modeling approaches
on directed labeled RDF graphs, unlike the approaches mentioned above, which
work on undirected graphs. Second, we show that task-independent entity vectors
can be generated on large-scale knowledge graphs, which later can be reused on a
variety of machine learning tasks on different datasets.

Furthermore, multiple approaches for knowledge graph embeddings for the
task of link prediction have been proposed [196, 322], which could also be con-
sidered as approaches for generating propositional features from graphs. RESCAL
[198] is one of the earliest approaches, which is based on factorization of a three-
way tensor. The approach is later extended into Neural Tensor Networks (NTN)
[281] which can be used for the same purpose. One of the most successful ap-
proaches is the model based on translating embeddings, TransE [28]. This model
builds entity and relation embeddings by regarding a relation as translation from
head entity to tail entity. This approach assumes that some relationships between
words could be computed by their vector difference in the embedding space. How-
ever, this approach cannot deal with reflexive, one-to-many, many-to-one, and
many-to-many relations. This problem was resolved in the TransH model [325],
which models a relation as a hyperplane together with a translation operation on it.
More precisely, each relation is characterized by two vectors, the norm vector of
the hyperplane, and the translation vector on the hyperplane. While both TransE
and TransH, embed the relations and the entities in the same semantic space, the
TransR model [167] builds entity and relation embeddings in separate entity space
and multiple relation spaces. This approach is able to model entities that have
multiple aspects, and various relations that focus on different aspects of entities.
While such approaches have been used for the task of link prediction, they haven’t
been considered for data mining tasks. This leads to formulating research question
RQ3 in Section 1.1. We address this question in Chapter 8 and Chapter 9, where
we introduce an approach for embedding Semantic Web knowledge graphs, which
we show to outperform the related work regarding complexity and performance in
various data mining tasks.

3.3.2 Feature Selection

We have shown that there are several approaches that generate propositional fea-
ture vectors from Linked Open Data. Often, the resulting feature spaces can have
a very high dimensionality, which leads to problems both with respect to the per-
formance as well as the accuracy of learning algorithms. Thus, it is necessary to
apply some feature selection approaches to reduce the feature space. Additionally,
for datasets that already have a high dimensionality, background knowledge from
LOD or lingustic resources such as WordNet may help reducing the feature space
better than standard techniques which do not exploit such background knowledge.
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Feature selection is a very important and well studied problem in the literature.
The objective is to identify features that are correlated with or predictive of the class
label. Generally, all feature selection methods can be divided into two broader
categories: wrapper methods and filter methods (John et al. [134] and Blum et
al. [25]). The wrapper methods use the predictive accuracy of a predetermined
learning method to evaluate the relevance of the feature sub set. Because of their
large computational complexity, the wrapper methods are not suitable to be used
for large feature spaces. Filter methods are trying to select the most representative
sub-set of features based on a criterion used to score the relevance of the features.
In the literature several techniques for scoring the relevance of features exist, e.g.,
Information Gain, χ2 measure, Gini Index, and Odds Ratio.

However, standard feature selection methods tend to select the features that
have the highest relevance score without exploiting the hierarchical structure of the
feature space. Therefore, using such methods on hierarchical feature spaces, may
lead to the selection of redundant features, i.e., nodes that are closely connected in
the hierarchy and carry similar semantic information.

While there are a lot of state-of-the-art approaches for feature selection in stan-
dard feature space [182], only few approaches for feature selection in hierarchical
feature space are proposed in the literature.

In feature vectors generated from external knowledge we can often observe
relations between the features. In many cases those relations are hierarchical re-
lations, or we can say that the features subsume each other, and carry similar se-
mantic information. Those hierarchical relations can be easily retrieved from the
ontology or schema used for publishing the LOD, and can be used to perform better
feature selection.

Jeong et al. [133] propose the TSEL method using a semantic hierarchy of
features based on WordNet relations. The presented algorithm tries to find the most
representative and most effective features from the complete feature space. To do
so, they select one representative feature from each path in the tree, where path is
the set of nodes between each leaf node and the root, based on the lift measure, and
use χ2 to select the most effective features from the reduced feature space.

Wang et al. [320] propose a bottom-up hill climbing search algorithm to find
an optimal subset of concepts for document representation. For each feature in the
initial feature space, they use a kNN classifier to detect the k nearest neighbors of
each instance in the training dataset, and then use the purity of those instances to
assign scores to features.

Lu et al. [171] describe a greedy top-down search strategy for feature selection
in a hierarchical feature space. The algorithm starts with defining all possible paths
from each leaf node to the root node of the hierarchy. The nodes of each path are
sorted in descending order based on the nodes’ information gain ratio. Then, a
greedy-based strategy is used to prune the sorted lists. Specifically, it iteratively
removes the first element in the list and adds it to the list of selected features.
Then, removes all ascendants and descendants of this element in the sorted list.
Therefore, the selected features list can be interpreted as a mixture of concepts
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from different levels of the hierarchy.
In Chapter 6, we introduce an approach [253] that exploits hierarchies for fea-

ture selection in combination with standard metrics, such as information gain or
correlation

Furthemore, when creating features from multiple LOD sources, often a single
semantic feature can be found in multiple LOD source represented with different
properties. For example, the area of a country in DBpedia is represented with
db:areaTotal, and with yago:hasArea in YAGO. The problem of aligning proper-
ties, as well as instances and classes, in ontologies is addressed by ontology match-
ing techniques [79]. Even though there exist a vast amount of work in the area
of ontology matching, most of the approaches for generating features from Linked
Open Data are not explicitly addressing this problem. In Chapter 7, we describe
an approach that is able to match properties extracted from multiple LOD sources,
which are later fused into a single feature.

In pattern mining and association rule mining, domain ontologies are often
used to reduce the feature space in order to get more meaningful and interesting
patterns. In the approach proposed by Bellandi et al. [10] several domain-specific
and user-defined constraints are used, i.e., pruning constraints, used to filter unin-
teresting items, and abstraction constraints permitting the generalization of items
toward ontology concepts. The data is first preprocessed according to the con-
straints extracted from the ontology, and then, the data mining step takes place.
Applying the pruning constraints excludes the information that the user is not in-
terested in, before applying the data mining approach.

Onto4AR is a constraint-based algorithm for association mining proposed by
Antunes [6] and revised later in [7], where taxonomical and non-taxonomical con-
straints are defined over an item ontology. This approach is interesting in the way
that the ontology offers a high level of expression for the constraints, which allows
to perform the knowledge discovery at the optimal level of abstraction, without the
need for user input. Garcia et al. developed a technique called Knowledge Cohe-
sion [97, 17] to extract more meaningful association rules. The proposed metric is
based on semantic distance, which measures how close two items are semantically
based within the ontology, where each type of relation is weighted differently.

3.3.3 Other

Zeman et al. [334] present the Ferda DataMiner tool, which is focused on the data
transformation step. In this approach the ontologies are used for two purposes: con-
struction of adequate attribute categorization, and identification and exploitation of
semantically related attributes. The authors claim that ontologies can be efficiently
used for categorization of attributes as higher-level semantics could be assigned
to individual values. For example, for blood pressure there are predefined values
that divide the domain in a meaningful way: say, blood pressure above 140/90 mm
Hg is considered as hypertension. For the second purpose, ontologies are used to
discover the relatedness between the attributes, which can be exploited so as to
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meaningfully arrange the corresponding data attributes in the data transformation
phase.

Table 3.3 gives an overview of the discussed approaches in this section. It can
be observed that at this stage of the data mining process, many approaches also
exploit links between LOD datasets to identify more features. On the other hand,
the features are most often generated without regarding the schema of the data,
which is, in most cases, rather used for post processing of the features, e.g., for
feature selection. Likewise, reasoning is only scarcely used.

Most data mining algorithms and tools require a propositional representation,
i.e., feature vectors for instances. Typical approaches for propositionalization
are, e.g., adding all numerical datatype properties as numerical features, or
adding all direct types as binary features. There are unsupervised and super-
vised methods, where for the latter, the user specifies a query for features to
generate – those are useful if the user knows the LOD dataset at hand and/or has
an idea which features could be valuable. While such classic propositionaliza-
tion methods create human interpretable features and thus are also applicable
for descriptive data mining, kernel methods often deliver better predictive re-
sults, but at the price of losing the interpretability of those results.
A crucial problem when creating explicit features from Linked Open Data
is the scalability and the number of features generated. Since only few ap-
proaches focus on identifying high value features already at the generation
step, combining feature generation with feature subset selection is clearly ad-
vised.
The schema information for the LOD sources, such as type hierarchies, can
be exploited for feature space reduction. There are a few algorithms exploit-
ing the schema, which often provide a better trade-off between feature space
reduction and predictive performance than schema-agnostic approaches.

3.4 Data Mining

After the data is selected, preprocessed and transformed in the most suitable rep-
resentation, the next step is choosing the appropriate data mining task and data
mining algorithm. Depending on the KDD goals, and the previous steps of the
process, the users need to decide which type of data mining to use, i.e. classifi-
cation, regression, clustering, summarization, or outlier detection. Understanding
the domain will assist in determining what kind of information is needed from the
KDD process, which makes it easier for the users to make a decision. There are
two broader categories of goals in data mining: prediction and description. Predic-
tion is often referred to as supervised data mining, which attempts to forecast the
possible future or unknown values of data elements. On the other hand, descriptive
data mining is referred as unsupervised data mining, which seeks to discover in-
terpretable patterns in the data. After the strategy is selected, the most appropriate
data mining algorithm should be selected. This step includes selecting methods to
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search patterns in the data, and deciding on specific models and parameters of the
methods.

Once the data mining method and algorithm are selected, the data mining takes
place.

To the best of our knowledge, there are rarely any approaches in the litera-
ture that incorporates data published as Linked Open Data into the data mining
algorithms themselves. However, many approaches are using ontologies for the
data mining process, not to only support the user in the stage of selecting the data
mining methods, but to guide the users through the whole process of knowledge
discovery.

3.4.1 Domain-independent Approaches

While there is no universally established data mining ontology yet, there are sev-
eral data mining ontologies currently under development, such as the Knowledge
Discovery (KD) Ontology [332], the KDDONTO Ontology [69], the Data Min-
ing Workflow (DMWF) Ontology26[146], the Data Mining Optimization (DMOP)
Ontology27 by Hilario [119, 120], OntoDM28 [212, 213], and its sub ontology
modules OntoDT29, OntoDM-core30[215] and OntoDM-KDD31 [214].

An overview of existing intelligent assistants for data analysis that use ontolo-
gies is given in [276]. In this survey, all approaches are categorized by several
criteria. First, which types of support the intelligent assistants offer to the data
analyst. Second, it surveys the kinds of background knowledge that the IDAs rely
on in order to provide the support. Finally, performs thorough comparison of IDAs
in light of the defined dimensions and the identification of limitations and missing
features.

One of the earliest approaches, CAMLET, was proposed by Suyama et al.
[292], which uses two light-weight ontologies of machine learning entities to sup-
port the automatic composition of inductive learning systems.

Among the first prototypes is the Intelligent Discovery Assistant proposed by
Bernstein et al. [14], which provides users with systematic enumerations of valid
sequences of data mining operators. The tool is able to determine the characteris-
tics of the data and of the desired mining result, and uses an ontology to search for
and enumerate the KDD processes that are valid for producing the desired result
from the given data. Also, the tool assists the user in selecting the processes to
execute, by ranking the processes according to what is important to the user. A
light-weight ontology is used that contains only a hierarchy of data mining opera-
tors divided into three main classes: preprocessing operators, induction algorithms

26http://www.e-lico.eu/dmwf.html
27http://www.e-lico.eu/DMOP.html
28http://www.ontodm.com/doku.php
29http://www.ontodm.com/doku.php?id=ontodt
30http://www.ontodm.com/doku.php?id=ontodm-core
31http://www.ontodm.com/doku.php?id=ontodm-kdd

http://www.e-lico.eu/dmwf.html
http://www.e-lico.eu/DMOP.html
http://www.ontodm.com/doku.php
http://www.ontodm.com/doku.php?id=ontodt
http://www.ontodm.com/doku.php?id=ontodm-core
http://www.ontodm.com/doku.php?id=ontodm-kdd
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and post processing operators.
Many approaches are using Semantic Web technologies to assist the user in

building complex data mining workflows. Žáková et al. [331, 332] proposed an
approach for semiautomatic workflow generation that requires only the user input
and the user desired output to generate complete data mining workflows. To imple-
ment the approach, the authors have developed the knowledge discovery ontology,
which gives a formal representation of a knowledge types and data mining algo-
rithms. Second, a planning algorithm is implemented that assembles workflows
based on the planning task descriptions extracted from the knowledge discovery
ontology and the given user’s input-output task requirements. In such semiauto-
matic environment the user is not required to be aware of the numerous proper-
ties of the wide range of relevant data mining algorithms. In their later work, the
methodology is implemented in the Orange4WS environment for service-oriented
data mining [333, 238].

Diamantini et al. [68] introduce a semantic based, service-oriented framework
for tools sharing and reuse, giving advanced support for the semantic enrichment
through semantic annotation of KDD tools, deployment of the tools as web ser-
vices and discovery and use of such services. To support the system an ontology
named KDDONTO [69] is used, which represents a formal ontology describing
the domain of KDD algorithms. The ontology provides information required by
the KDD composer to assist them to choose the suitable algorithms for achieving
their goal starting from the data at hand, and to correctly compose the algorithms
for forming a valid process [70].

Kietz et al. [146, 148] presented a data mining ontology for workflow planning,
able to effectively organize hundreds of operators, which is the base for checking
the correctness of KDD workflows and an Hierarchical Task Network planning
component able to effectively enumerate useful KDD workflows. This includes
the objects manipulated by the system, the meta data needed, the operators used,
and a goal description. The workflow generator is tightly coupled with a meta-
miner whose role is to rank the workflows and is based on the DMOP ontology.
Furthermore, the authors introduced the eProPlan tool [147], which represents
ontology-based environment for planning KDD workflows. Later on, the tool is
used to semantically annotate all operators in the very well known data mining tool
RapidMiner. This allows the users to easily, and faster build more efficient KDD
workflows within RapidMiner [149]. Their evaluation showed that using Seman-
tic Web technologies can speed up the workflow design time up to 80%. This is
achieved by automatic suggestion for possible operations in all phases of the KDD
process.

Furthermore, Hilario et al. [119] present the data mining optimization ontol-
ogy, which provides a unified conceptual framework for analyzing data mining
tasks, algorithms, models, datasets, workflows and performance metrics, as well as
their relationships. One of the main goals of the ontology is to support meta-mining
of complete data mining experiments in order to extract workflow patterns [120].
In addition, the authors have developed a knowledge base by defining instances of



40 CHAPTER 3. RELATED WORK

the DMOP ontology. The DMOP ontology is not based on any upper-level ontol-
ogy and uses a large set of customized special-purpose relations.

Panov et al. [212, 213] propose an ontology of data mining OntoDM that
includes formal definitions of basic data mining entities, such as datatype and
dataset, data mining task and data mining algorithm, which is based on the pro-
posal for a general framework for data mining proposed by Džeroski [74]. The on-
tology is one of the first deep/heavy-weight ontology for data mining. To allow the
representation of mining structured data, the authors developed a separate ontol-
ogy module, named OntoDT, for representing the knowledge about datatypes. To
represent core data mining entities, and to be general enough to represent the min-
ing of structured data, the authors introduced the second ontology module called
OntoDM-core [215]. The third, and final, module of the ontology is the OntoDM-
KDD which is used for representing data mining investigations[214].

Gabriel et al. [94] propose the usage of semantic information about the at-
tributes contained in a dataset for learning classification rules that are potentially
better understandable. They use semantic coherence, i.e., the semantic proximity
of attributes used in a rule, as a target criterion to increase the understandability
of a rule. In their paper, they show that using WordNet as a source of knowledge,
and adapting a standard separate-and-conquer rule learning algorithm [93], they
can significantly increase the semantic coherence in a rule without a decrease in
classification accuracy.

3.4.2 Domain-specific Approaches

Santos et al. [235] describes a research of an ontological approach for leveraging
the semantic content of ontologies to improve knowledge discovery in databases.
The authors divide the KDD process in three main operation, and try to support
each of them using ontologies. First, in the data understanding and data preparation
phases, ontologies can facilitate the integration of heterogeneous data and guide the
selection of relevant data to be mined, regarding domain objectives. Second, during
the modeling phase, domain knowledge allows the specification of constraints for
guiding data mining algorithms by narrowing the search space. Finally, in the
interpretation and evaluation phase, domain knowledge helps experts to validate
and rank the extracted patterns.

Ding et al. [210, 209] introduce another ontology based framework for incor-
porating domain knowledge into data mining process. The framework is able to
support the data mining process in several steps of the pipeline: data exploration,
defining mining goals, data selection, data preprocessing and feature selection, data
transofmation, data mining algorithm parameter selection, and data mining results
evaluation.

Češpivová et al. [38] have shown how ontologies and background knowledge
can aid each step of the KDD process. They perform association mining using the
LISp-Miner tool, over the STULONG medical dataset. To support the data mining
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they use UMLS ontologies32 to map the data to semantic concepts. The mapping
helped the authors to better understand the domain. They were able to identify and
filter out redundant and unnecessary attributes, and group together semantically
related attributes, by analyzing the relationships inside the ontology. Furthermore,
they use ontologies to interpret and to give better explanation of the data mining
results.

Table 3.4 gives an overview of the discussed approaches in this section. It
shows that, while Linked Open Data based datasets play a minor role in this step,
heavy-weight ontologies and reasoning are quite frequently used. Moreover, most
of the ontologies are domain-independent, while domain-specific developments at
this step are rather rare.

Ontologies are often used for supporting the user in creating a proper data
mining process. They can be used to represent data sources, algorithms etc. in
data mining processes, and assist the user in building reasonable data mining
processes, e.g., by ensuring that a chosen algorithm is capable of handling the
given data.
For example, the platform RapidMiner internally uses semantic descriptions
of operators to assist the user in avoiding errors, e.g., when combining data
preprocessing and machine learning operators. Here, reasoning does not only
check the validity of a process, but also proposes solutions to fix an invalid
process.
Approaches that use semantic information directly in an algorithm to influ-
ence the outcome of that algorithm are rather rare. There are some directions
of using semantic background knowledge in data mining algorithms, e.g., for
finding patterns that are easier to consume by an end user.

3.5 Interpretation

After the data mining step has been applied, we expect to discover some hidden
patterns from the data. To be interpreted and understood, these patterns often re-
quire the use of some background knowledge, which is not always straightforward
to find. In most real world contexts, providing the background knowledge is com-
mitted to the experts, whose work is to analyze the results of a data mining process,
give them a meaning and refine them. The interpretation turns out to be an inten-
sive and time-consuming process, where part of knowledge can remain unrevealed
or unexplained.

Explain-a-LOD [219] is one of the first approaches in the literature for automat-
ically generating hypothesis for explaining statistics by using LOD. The tool uses
FeGeLOD (described in Section 3.3.1) for enhancing statistical datasets with back-
ground information from DBpedia, and uses correlation analysis and rule learining
for producing hypothesis which are presented to the user. The tool has been later
used to find and explain hypothesis for quality of living in cities across the world

32http://www.nlm.nih.gov/research/umls/.

http://www.nlm.nih.gov/research/umls/.
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[220], and unemployment rates in France [251], among others. For example, in
[220] the tool was able to automatically discover hypothesis like “Cities where
many things take place have a high quality of living.” and “European capitals of
culture have a high quality of living.”. While in [251] where data from DBpedia,
Eurostat and LinkedGeoData has been used, the tool discovered hypothesis like
“Regions in France that have high energy consumption have low unemployment
rate.” and “French regions that are out of Europe, French African Islands, and
French Islands in the Indian Ocean have high unemployment rate.”. Furthermore,
the approach is extended in [250], which allows automatic correlation analysis and
visualizing statistical data on maps using Linked Open Data. The tool allows the
users to import any statistical data from local spreadsheets or RDF datacubes, per-
form correlation analysis and automatically visualize the findings on a map.

Linked Open Data cannot only add categorical information which allows for
an easier exploration of results, but also additional visual clues. In [251, 250],
we have shown that polygon data for geographic entities published as LOD, like
GADM33 can be exploited for creating a map-based visualization of data mining
results. Moreover, GADM offers shape data of geographical entities on differ-
ent administrative levels, which can be accessed through DBpedia by following
owl:sameAs links.

d’Aquin et al. [51] have proposed a method that exploits external informa-
tion available as LOD to support the interpretation of data mining results, through
automatically building a navigation-exploration structure in the results of a partic-
ular type of data mining, in this case sequential pattern mining, tool based on data
dimensions chosen by the analyst. To do so, the authors first represent the data
mining results into a way compatible with a LOD representation, and link them
to existing LOD sources. Then, the analyst can easily explore the mined results
with additional dimension. Furthermore, to organize the enriched results into a hi-
erarchy,the authors use formal concept analysis to build a concept lattice. This can
allow the analyst to drill down into the details of a sub-set of the patterns, and see
how it relates to the original data.

A similar approach is used in [132] for interpreting sequential patterns in pa-
tient data. Linked Data is used to support the interpretation of patterns mined from
patient care trajectories. Linked data exposed through the BioPortal system is used
to create a navigation structure within the patterns obtained form sequential pattern
mining. The approach provides a flexible way to explore data about trajectories of
diagnoses and treatments according to different medical classifications.

Tiddi [298] proposes a three step approach for interpreting data mining results,
i.e. clustering, association rules and sequence patterns. In the first step additional
information for the patterns results are extracted from the LOD cloud. Using in-
ductive logic programming, new hypotheses are generated from the pattern mining
results and the knowledge extracted from LOD. In the last step the hypotheses are
evaluated using ranking strategies, like Weighted Relative Accuracy, and Informa-

33http://gadm.geovocab.org/

http://gadm.geovocab.org/
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tion Retrieval F-measure. The same approach has been used in [299] to explain
why groups of book, obtained from a clustering process, have been borrowed by
the same students. The analysis were done on the Huddersfield’s books usage
dataset34, using the British National Bibliography35 and Library of Congress36

as LOD datasets. The experiments lead to interesting hypothesis to explain the
clusters, e.g., “books borrowed by students of Music Technologies are clustered
together because they talk about music”.

The work has been continued in [300, 302], introducing Dedalo, framework
that dynamically traverses Linked Data to find commonalities that form explana-
tions for items of a cluster. Dedalo uses iterative approach for traversing LOD
graphs, where the roots are the items of the clusters. The underlying assumption is
that items that belong to one cluster share more common paths in the LOD graph,
than the items outside the cluster. The authors were able to extract interesting and
representative explanation for the clusters, however, the number of resulting atomic
rules is rather large, and need to be aggregated in a post-processing step. The typi-
cal strategy to overcome those problems is providing the patterns to human experts,
whose role consists in analysing the results, discovering the interesting ones while
explaining, pruning or refining the unclear ones. To cope with such a strenuous
and time consuming process, the authors in their next work [301] have proposed
an approach that is using Neural Network model to predict whether two rules, if
combined, can lead to the creation of a new, improved rule (i.e., a new rule, with a
better F-measure). The approach has been applied in the domain of education and
publications.

Lavrač et al. have made a notable research work in the field of semantic sub-
group discovery. The task of subgroup discovery is defined as follows: “Given
a population of individuals and a property of those individuals that we are inter-
ested in, find population subgroups that are statistically most interesting, for exam-
ple, are as large as possible and have the most unusual statistical (distributional)
characteristics with respect to the property of interest” [151]. The authors define
semantic subgroup discovery as part of semantic data mining, which is defined
as: “Given a set of domain ontologies, and empirical data annotated by domain
ontology terms, one can find a hypothesis (a predictive model or a set of descrip-
tive patterns), expressed by domain ontology terms, explaining the given empirical
data”. The semantic subgroup discovery was first implemented in the SEGS sys-
tem [305]. SEGS uses as background knowledge data from three publicly avail-
able, semantically annotated biological data repositories. Based on the background
knowledge, it automatically formulates biological hypotheses: rules which define
groups of differentially expressed genes. Finally, it estimates the relevance (or sig-
nificance) of the automatically formulated hypotheses on experimental microarray
data. The system was extended in the SegMine system, which allows exploratory

34http://library.hud.ac.uk/data/usagedata/readme.html
35http://bnb.data.bl.uk/
36http://id.loc.gov/

http://library.hud.ac.uk/data/usagedata/ readme.html
http://bnb.data.bl.uk/
http://id.loc.gov/
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analysis of microarray data, performed through semantic subgroup discovery by
SEGS [237], followed by link discovery and visualization by Biomine [78], an
integrated annotated bioinformatics information resource of interlinked data. The
SEGS system was later extended to two general semantic subgroup discovery sys-
tems, SDM-SEGS and SDM-Aleph [201, 159, 313]. Finally, the authors introduced
the Hedwig system [314], which overcomes some of the limitations of the previous
systems. The findings of this series of work has been concluded in [158, 315].

Many approaches are using ontologies for patterns post-mining, and interpre-
tation of the results. The domain knowledge and metadata specification stored in
the ontology are used in the interpretation stage to prune and filter out discovered
patterns. Ontologies are commonly used to filter out redundant patterns, and too
specific patterns without losing semantic information. One of the first approaches
that uses domain ontologies for that purpose is the work by Srikant [286], who
introduced the concept of generalized association rules. Similarly, Zhou et al.
[340] introduce the concept of raising. Raising is the operation of generalizing
data mining rules in order to increase the support while keeping the confidence
high enough. This is done with generalizing the entities by raising them to a spec-
ified level in the ontology. The authors use an ontology that consist of two tax-
onomies, one of which describes different customer classifications, while the other
one contains a large hierarchy, based on Yahoo, which contains interests. In the
experiments, the support values of rule sets were greatly increased, up to 40 times.
GART is a very similar approach [72], which uses several taxonomies over at-
tributes to iteratively generalize rules, and then, prune redundant rules at each step.
The experiments were performed using a sale database of a Brazilian supermar-
ket. The experiments show reduction rates of the sets of association rules varying
from 14,61% to 50,11%. Marninica et al. [173] presents an interactive postpro-
cessing framework, called ARIPSO (Association Rule Interactive post-Processing
using Schemas and Ontologies). The framework assists the user throughout the
analyzing task to prune and filter discovered rules. The system allows formaliz-
ing user knowledge and goals, which are latter used in applying iteratively a set
of filters over extracted rules in order to extract interesting rules: minimum im-
provement constraint filter, item-relatedness filter, rule schema filters/pruning. The
experiments were performed on the Nantes Habitat data37, dealing with customers
satisfaction concerning accommodation, for which a corresponding ontology was
developed by the authors. The results showed that the number of rules can be
significantly reduced when using the schema, resulting in more descriptive rules.

Huang et al. [129] use LOD to interpret the results of text mining. The ap-
proach starts with extracting entities and semantic relations between them from text
documents, resulting into semantic graphs. Then, a frequent sub-graph discovery
algorithm is applied on the text graphs to find frequent patterns. To interpret the
discovered subgraphs, an algorithm is proposed to traverse Linked Data graphs for
relations that are used to annotate the vertices and the edges of the frequent sub-

37http://www.nantes-habitat.fr/

http://www.nantes-habitat.fr/
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graphs. The approach is applied on a military dataset, where DBpedia is used as a
LOD dataset.

Another approach that uses ontologies in rule mining is the 4ft-Miner tool
[293]. The tool is used in four stages of the KDD process: data understanding,
data mining, result interpretation and result dissemination. In the data understand-
ing step, a data-to-ontology mapping was performed, which resulted in discovery
of redundant attributes. In the data mining stage of the KDD process, the ontol-
ogy was used to decompose the data mining task into more specific tasks, which
can be run faster, resulting in more homogeneous results, and thus easily inter-
pretable. In the interpretation stage, the data-to-ontology mappings are used to
match some of the discovered associations to the corresponding semantic relations
or their more complex chains from the ontology, which can be considered as poten-
tial explanation of the discovered associations. The approach was used to interpret
associations in medical and social climate applications. In the medical domain,
the STULONG dataset38 is used, which contains cardiovascular risk data. As an
ontology is used the UMLS ontology. Using the approach, the authors were able to
discover hypothesis like “Patients who are not physically active within the job nor
after the job (Antecedent) will more often have higher blood pressure (Succedent)”
and ““Increase of smoking leads to increase of cardio-vascular diseases”.

Table 3.5 gives an overview of the discussed approaches in this section. We
observe that in this step, reasoning plays no crucial role. The datasets exploited
are rather mixed, general purpose datasets such as DBpedia are often used, but
also highly specific datasets can be exploited. Roughly half of the approaches also
make use of the interlinks between those datasets.

Semantic Web data can help in the interpretation of patterns found, in particular
for descriptive tasks. Those typically encompass subgroups or clusters found,
or rule models that are used to describe a dataset.
The information used from LOD datasets and/or ontologies can help further
analyzing those findings, e.g., by explicating typical features of instances in
a subgroup or cluster, thus, they may explain the grouping chosen by a data
mining algorithm. Furthermore, rules can be further refined and/or generalized,
which improves their interpretability.

3.6 Discussion

Given the amount of research works discussed in this chapter, it is evident that,
especially with the advent and growth of Linked Open Data, information from the
Semantic Web can be used beneficially in the data mining and knowledge discovery
process. Looking at the results from a larger distance, however, we can make a few
interesting observations:

• DBpedia is used in the vast majority of the research papers discussed in this
survey, with other LOD sources being used only scarcely, and the majority of
38http://euromise.vse.cz/stulong-en/

http:// euromise.vse.cz/stulong-en/
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the hundreds of LOD datasets not being used at all. There may be different
reasons for that; ranging from DBpedia’s relatively simple data model and its
wide coverage to the availability of sophisticated tools such as DBpedia Lookup
and DBpedia Spotlight.
While this underlines the utility of such general purpose knowledge sources on
the Semantic Web, it can also be problematic to tailor and evaluate approaches
only to single datasets, since it limits the insights on the general applicability of
the approaches.

• Many papers use custom ontologies and datasets instead of reusing open datasets
from the web of data. This is particularly often observed in the life sciences and
medical domain, which, at the same time, is one of the largest most prominently
represented domains within the Linked Open Data cloud. It is subject to future
research to find out the reasons for this discrepancy, which may have different
reasons, such as a limited awareness of open datasets, or an inferior fitness for
use of those datasets.

• Links between datasets, which are one of the core ingredients to Linked Open
Data, are used by relatively few approaches. This may also imply that many of
the approaches stay below what is possible with Linked Open Data, leveraging
only information from one dataset instead of using the full amount of knowledge
captured in the Semantic Web. One reason may be that even in the presence
of machine-interpretable schemas, developing schema-agnostic applications is
a non-trivial task. Furthermore, building approaches that autonomously follow
links and are ultimately capable of exploiting the whole Web of Linked Data as
background knowledge would also lead to new scalability challenges.

• Expressive schemas/ontologies and reasoning on those, which has been a core
selling point of the Semantic Web for years, are rarely combined with data min-
ing and knowledge discovery. Again, it is subject to future research to find out
whether this is due to a limited availability of suitable ontologies, limited aware-
ness, or imperfect fitness to the problems found in practice.

• In most cases, knowledge from the Semantic Web is about the domain of the
processed data, not the data mining domain. However, given endpoints such as
myExperiment.org39, which provides lots of scientific workflows (including data
mining workflows), would allow for solutions providing advice to data analysts
building such workflows, such as the recently announced “Wisdom of Crowds
Operator Recommendations” by RapidMiner40, based on open data.

These observations show that, although a remarkable amount of work in the area
exists, data mining and knowledge discovery is still not tapping the full potential

39http://www.myexperiment.org
40https://rapidminer.com/news-posts/rapidminer-makes-snap-move-

predictive-analytics-data-mining-machine-learning-cloud/

http://www.myexperiment.org
https://rapidminer.com/news-posts/rapidminer-makes-snap-move-predictive-analytics-data-mining-machine-learning-cloud/
https://rapidminer.com/news-posts/rapidminer-makes-snap-move-predictive-analytics-data-mining-machine-learning-cloud/
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that is provided by the Semantic Web. Data mining workflows automatically lever-
aging information from different datasets by following links beyond single datasets
such as DBpedia are still an interesting and promising area of research.

3.7 Conclusion and Outlook

In this chapter, we have given an overview of the usage of Semantic Web data,
most prominently Linked Open Data, for data mining and knowledge discovery.
Following Fayyad’s classic workflow pipeline, we have shown examples for the
usage of Semantic Web data at every stage of the pipeline, as well as approaches
supporting the full pipeline.

Analyzing the findings, the first observation is that there are plenty of works of
research in the area, and applications exist in many domains. A frequent applica-
tion domain is biomedicine and life science, but the approaches are also transferred
to quite a few other domains. Furthermore, some sophisticated applications and
tool stacks exist, that go beyond mere research prototypes.

Furthermore, we see that there are still some uncharted territories in the re-
search landscape of Semantic Web enabled data mining. This shows that, although
impressive results can be achieved already today, the full potential of Semantic
Web enabled data mining and KDD still remains to be unlocked.
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Chapter 4

A Collection of Benchmark
Datasets for Systematic
Evaluations of Machine Learning
on the Semantic Web

In the previous chapter, we showed that in the recent years, applying machine learn-
ing to Semantic Web data has drawn a lot of attention. Many approaches have been
proposed for different tasks at hand, ranging from reformulating machine learn-
ing problems on the Semantic Web as traditional, propositional machine learning
tasks to developing entirely novel algorithms. However, systematic comparative
evaluations of different approaches are scarce; approaches are rather evaluated on
a handful of often project-specific datasets, and compared to a baseline and/or one
or two other systems.

In contrast, evaluations in the machine learning area are often more rigorous.
Approaches are usually compared using a larger number of standard datasets, most
often from the UCI repository1. With a larger set of datasets used in the evaluation,
statements about statistical significance are possible as well [60].

At the same time, collections of benchmark datasets have become quite well
accepted in other areas of Semantic Web research. Notable examples include
the Ontology Alignment Evaluation Initiative (OAEI) for ontology matching2, the
Berlin SPARQL Benchmark3 for triple store performance, the Lehigh University
Benchmark (LUBM)4 for reasoning, or the Question Answering over Linked Data
(QALD) dataset5 for natural language query systems.

1http://archive.ics.uci.edu/ml/
2http://oaei.ontologymatching.org/
3http://wifo5-03.informatik.uni-mannheim.de/bizer/

berlinsparqlbenchmark/
4http://swat.cse.lehigh.edu/projects/lubm/
5http://greententacle.techfak.uni-bielefeld.de/~cunger/qald/
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Furthermore, there are some challenges, like the Linked Data Mining Chal-
lenge [256] or the Semantic-Web enabled Recommender Systems Challenge [63],
which usually focus on only a few datasets and a very specific problem setting. A
quantitative comparison of machine learning approaches on a larger set of datasets
that allow for statistically significant conclusions, has not been proposed so far. To
the best of our knowledge, there is no publicly accessible collection of datasets that
allow for such a comparison.

In this chapter, we introduce a collection of datasets for benchmarking machine
learning approaches for the Semantic Web. Those datasets are either existing RDF
datasets, or external classification or regression problems, for which the instances
have been enriched with links to the Linked Open Data cloud [267]. Furthermore,
by varying the number of instances for a dataset, scalability evaluations are also
made possible.

The work presented in this chapter has been published before as: “Petar Ris-
toski, Gerben Klaas Dirk de Vries, Heiko Paulheim: A Collection of Bench-
mark Datasets for Systematic Evaluations of Machine Learning on the Semantic
Web. Proceedings of the 15th International Semantic Web Conference, Kobe,
Japan, October, 2016.” [247].

4.1 Datasets

Our dataset collection has three categories: (i) existing datasets that are commonly
used in machine learning experiments, (ii) datasets that were generated from offi-
cial observations, and (iii) datasets generated from existing RDF datasets. Each of
the datasets in the first two categories are initially linked to DBpedia6. This has
two main reasons, (1) DBpedia being a cross-domain knowledge base usable in
datasets from very different topical domains, and (2) tools like DBpedia Lookup
and DBpedia Spotlight making it easy to link external datasets to DBpedia. How-
ever, DBpedia can be seen as an entry point to the Web of Linked Data, with many
datasets linking to and from DBpedia. In fact, we use the RapidMiner Linked Open
Data extension [246], to retrieve external links for each entity to YAGO7 and Wiki-
data8. Such links could be exploited for systematic evaluation of the relevance of
the data of different LOD dataset in different learning tasks.

In the dataset collection, there are four datasets that are commonly used for
machine learning. For these datasets, we first enrich the instances with links to
LOD datasets, and reuse the already defined target variable to perform machine
learning experiments:

6http://dbpedia.org
7http://yago-knowledge.org/
8http://www.wikidata.org

http://dbpedia.org
http://yago-knowledge.org/
http://www.wikidata.org
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• The Auto MPG dataset9 captures different characteristics of cars, and the target
is to predict the fuel consumption (MPG) as a regression task.

• The AAUP (American Association of University Professors) dataset contains
a list of universities, including eight target variables describing the salary of
different staff at the universities10. We use the average salary as a target variable
both for regression and classification, discretizing the target variable into “high”,
“medium” and “low”, using equal frequency binning.

• The Auto 93 dataset11 captures different characteristics of cars, and the target is
to predict the price of the vehicles as a regression task.

• The Zoo dataset captures different characteristics of animals, and the target is to
predict the type of the animals as a classification task.

For those datasets, cars, universities, and animals are linked to DBpedia based on
their name.

The second category of datasets contains a list of datasets where the target
variable is an observation from different real-world domains, as captured by official
sources. Again, the instances were enriched with links to LOD datasets. There are
thirteen datasets in this category:

• The Forbes dataset contains a list of companies including several features of
the companies, which was generated from the Forbes list of leading companies
201512. The target is to predict the company’s market value as a classification
and regression task. To use it for the task of classification we discretize the target
variable into “high”, “medium”, and “low”, using equal frequency binning.

• The Cities dataset contains a list of cities and their quality of living, as captured
by Mercer [219]. We use the dataset both for regression and classification.

• The Endangered Species dataset classifies animals into endangered species13.

• The Facebook Movies dataset contains a list of movies and the number of Face-
book likes for each movie14. We first selected 10, 000 movies from DBpedia,
which were then linked to the corresponding Facebook page, based on the movie’s
name and the director. The final dataset contains 1, 600 movies, which was cre-
ated by first ordering the list of movies based on the number of Facebook likes,
and then selecting the top 800 movies and the bottom 800 movies. We use the
dataset for regression and classification.

9http://archive.ics.uci.edu/ml/datasets/Auto+MPG
10http://www.amstat.org/publications/jse/jse_data_archive.htm
11http://www.amstat.org/publications/jse/v1n1/datasets.lock.html
12http://www.forbes.com/global2000/list/
13http://a-z-animals.com/
14We use the Facebook Graph API: https://developers.facebook.com/docs/

graph-api

http://archive.ics.uci.edu/ml/datasets/Auto+MPG
http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.amstat.org/publications/jse/v1n1/datasets.lock.html
http://www.forbes.com/global2000/list/
http://a-z-animals.com/
https://developers.facebook.com/docs/graph-api
https://developers.facebook.com/docs/graph-api
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• Similarly, the Facebook Books dataset contains a list of books and the number
of Facebook likes. Each book was linked to the corresponding Facebook page
using the book’s title and the book’s author. Again, we selected the top 800
books and the bottom 800 books, based on the number of Facebook likes.

• The Metacritic Movies dataset is retrieved from Metacritic.com15, which con-
tains an average rating of all time reviews for a list of movies [256]. The initial
dataset contained around 10, 000 movies, from which we selected 1, 000 movies
from the top of the list, and 1, 000 movies from the bottom of the list. We use
the dataset both for regression and classification.

• Similarly, the Metacritic Albums dataset is retrieved from Metacritic.com16, which
contains an average rating of all time reviews for a list of albums [257].

• The HIV Deaths Country dataset contains a list of countries with the number of
deaths caused by HIV, as captured by the World Health Organization17. We use
the dataset both for regression and classification.

• Similarly, the Traffic Accidents Deaths Country dataset contains a list of coun-
tries with the number of deaths caused by traffic accidents18.

• The Energy Savings Country dataset contains a list of countries with the total
amount of energy savings of primary energy in 201019, which was downloaded
from WorldBank20. We use the dataset both for regression and classification.

• Similarly, the Inflation Country dataset contains a list of countries with the in-
flation rate for 201121.

• The Scientific Journals Country dataset contains a list of countries with a number
of scientific and technical journal articles published in 201122.

• The Unemployment French Region dataset contains a list of regions in France
with the unemployment rate, used in the SemStats 2013 challenge [251].

Again, for those datasets, the instances (cities, countries, etc.) are linked to DB-
pedia. For datasets which are used for classification and regression, the regression
target was discretized using equal frequency binning, usually into a high and a low
class.

The third, and final, category contains datasets that were generated from exist-
ing RDF datasets, where the value of a certain property is used as a classification
target. There are five datasets in this category:

15http://www.metacritic.com/browse/movies/score/metascore/all
16http://www.metacritic.com/browse/albums/score/metascore/all
17http://apps.who.int/gho/data/view.main.HIV1510
18http://apps.who.int/gho/data/view.main.51310
19http://data.worldbank.org/indicator/10.1_ENERGY.SAVINGS
20http://www.worldbank.org/
21http://data.worldbank.org/indicator/NY.GDP.DEFL.KD.ZG
22http://data.worldbank.org/indicator/IP.JRN.ARTC.SC

http://www.metacritic.com/browse/movies/score/metascore/all
http://www.metacritic.com/browse/albums/score/metascore/all
http://apps.who.int/gho/data/view.main.HIV1510
http://apps.who.int/gho/data/view.main.51310
http://data.worldbank.org/indicator/10.1_ENERGY.SAVINGS
http://www.worldbank.org/
http://data.worldbank.org/indicator/NY.GDP.DEFL.KD.ZG
http://data.worldbank.org/indicator/IP.JRN.ARTC.SC
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• The Drug-Food Interaction dataset contains a list of drug-recipe pairs and their
interaction, i.e., “negative” and “neutral” [135]. The dataset was retrieved from
FinkiLOD23. Furthermore, each drug is linked to DrugBank24. We drew a strati-
fied random sample of 2, 000 instances from the complete dataset. When gener-
ating the features, we ignore the foodInteraction property in DrugBank,
since it highly correlates with the target variable.

• The AIFB dataset describes the AIFB research institute in terms of its staff, re-
search group, and publications. In [23] the dataset was first used to predict the
affiliation (i.e., research group) for people in the dataset. The dataset contains
178 members of a research group, however the smallest group contains only 4
people, which is removed from the dataset, leaving 4 classes. Also, we remove
the employs relation, which is the inverse of the affiliation relation.

• The AM dataset contains information about artifacts in the Amsterdam Mu-
seum [53]. Each artifact in the dataset is linked to other artifacts and details
about its production, material, and content. It also has an artifact category, which
serves as a prediction target. We have drawn a stratified random sample of 1, 000
instances from the complete dataset. We also removed the material relation,
since it highly correlates with the artifact category.

• The MUTAG dataset is distributed as an example dataset for the DL-Learner
toolkit25. It contains information about complex molecules that are potentially
carcinogenic, which is given by the isMutagenic property.

• The BGS dataset was created by the British Geological Survey and describes
geological measurements in Great Britain26. It was used in [57] to predict the
lithogenesis property of named rock units. The dataset contains 146 named rock
units with a lithogenesis, from which we use the two largest classes.

An overview of the datasets is given in Tables 4.1, 4.2, and 4.3. For each
dataset, we depict the number of instances, the machine learning tasks in which
the dataset is used (C stands for classification and R stands for regression), the
source of the dataset, and the LOD datasets to which the dataset is linked. For
each dataset, we depict basic statistics of the properties of the LOD datasets, i.e.,
average, median, maximum and minimum number of types, categories, outgoing
relations (rel out), incoming relations (rel in), outgoing relations including values
(rel-vals out) and incoming relations including values (rel-vals in). The datasets, as
well as a detailed description, a link quality evaluation, and licensing information,
can be found online27.

23http://linkeddata.finki.ukim.mk/
24http://wifo5-03.informatik.uni-mannheim.de/drugbank/
25http://dl-learner.org
26http://data.bgs.ac.uk/
27http://w3id.org/sw4ml-datasets

http://linkeddata.finki.ukim.mk/
http://wifo5-03.informatik.uni-mannheim.de/drugbank/
http://dl-learner.org
http://data.bgs.ac.uk/
http://w3id.org/sw4ml-datasets
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From the given statistics, we can infer the following observations: (i) DBpedia
contains significantly less owl:sameAs links to YAGO, compared to Wikidata; (ii)
DBpedia provides the highest number of types and categories on average per en-
tity; (iii) Wikidata contains the highest number of outgoing and incoming relations
for most of the datasets; (iv) YAGO contains the highest number of outgoing and
incoming relations values for most of the datasets.

4.2 Experiments

To demonstrate how the dataset collection can be used for systematic evaluations,
we set up an experiment as follows: we compare different propositional machine
learning approaches both for classification and regression, each combined with var-
ious strategies for converting the LOD instances to a propositional feature vector.
With this setup, we demonstrate how a systematic comparison between different
propositionalization strategies can be carried out.

It is important to note that this section is not meant to be an ultimate comparison
of machine learning techniques for the Semantic Web, but rather as an example
on how to create structured evaluations with the benchmark collection at hand.
However, we will be able to draw some conclusions about the performance of
different feature generation strategies and classifiers at the end of the section.

4.2.1 Feature Generation Strategies

For generating the data mining features, we use three strategies that take into ac-
count the direct relations to other resources in the graph [225, 252], and two strate-
gies for features derived from graph sub-structures [58, 59]:

• Features derived from specific relations. In the experiments we use the relations
rdf:type (types), and dcterms:subject (categories) for datasets linked to DBpedia.

• Features derived from generic relations, i.e., we generate a feature for each in-
coming (rel in) or outgoing relation (rel out) of an entity, ignoring the value of
the relation.

• Features derived from generic relations-values, i.e, we generate feature for each
incoming (rel-vals in) or outgoing relation (rel-vals out) of an entity including
the value of the relation.

• Kernels that count substructures in the RDF graph around the instance node.
These substructures are explicitly generated and represented as sparse feature
vectors.

– The Weisfeiler-Lehman (WL) graph kernel for RDF [57] counts full subtrees
in the subgraph around the instance node. This kernel has two parameters, the
subgraph depth d and the number of iterations h (which determines the depth
of the subtrees). We use two pairs of settings, d = 1, h = 2 and d = 2, h = 3.
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– The Intersection Tree Path kernel for RDF [58] counts the walks in the subtree
that spans from the instance node. Only the walks that go through the instance
node are considered. We will therefore refer to it as the root Walk Count (WC)
kernel. In terms of performance this kernel is very similar to Intersection
SubTree kernels in [170], but it allows for a feature vector representation.
The root WC kernel has one parameter: the length of the paths l, for which
we test 2 and 3.

4.2.2 Experiment Setup

To generate features for each dataset we used the latest version of the corresponding
LOD dataset to which the dataset is linked. For the datasets that are linked to
DBpedia, the features were generated using a local dump of DBpedia 2014 that
contains only properties from the dbpedia-owl namespace.

We perform two learning tasks, i.e., classification and regression. For classifi-
cation tasks, we use Naïve Bayes, k-Nearest Neighbors (k=3), C4.5 decision tree,
and Support Vector Machines. For the SVM classifier we optimize the parameter
C in the range {10−3, 10−2, 0.1, 1, 10, 102, 103}. For regression, we use Linear
Regression, M5Rules, and k-Nearest Neighbors (k=3). We measure accuracy for
classification tasks, and root relative squared error (RRSE) for regression tasks.

The strategies for creating propositional features from Linked Open Data are
implemented in the RapidMiner LOD extension28 [229, 246]. The experiments, in-
cluding the feature generation and the evaluation, were performed using the Rapid-
Miner data analytics platform29. The RapidMiner processes and the complete re-
sults can be found online30. The experiments were run using a Linux machine with
20GB RAM and 4 Intel Xeon 2.60GHz CPUs.

Performance comparison of the strategies:

For both classification and regression, we report the qualitative performance and
the runtime for each of the feature generation strategies combined with each learn-
ing method. The performances are calculated using stratified 10-fold cross valida-
tion. The runtime measures reflect the total time in seconds needed for performing
10-fold cross validation.

One of the most commonly used metrics for comparing the performances of
different approaches on a list of dataset is averaging the performances over all
datasets. However, if the different datasets are not comparable, as in our case,
those averages are only of limited value. Similarly, the use of a paired t-test is not

28http://dws.informatik.uni-mannheim.de/en/research/rapidminer-
lod-extension

29https://rapidminer.com/
30http://data.dws.informatik.uni-mannheim.de/rmlod/LOD_ML_

Datasets/

http://dws.informatik.uni-mannheim.de/en/research/rapidminer-lod-extension
http://dws.informatik.uni-mannheim.de/en/research/rapidminer-lod-extension
https://rapidminer.com/
http://data.dws.informatik.uni-mannheim.de/rmlod/LOD_ML_Datasets/
http://data.dws.informatik.uni-mannheim.de/rmlod/LOD_ML_Datasets/
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advised if the datasets come from different domains and the number of datasets is
not too large, as in our case. [60].

Thus, for comparing the approaches, we follow the approach introduced by
Demšar [60]. The approach foresees to first rank the strategies for each dataset
in isolation, and computing a significance level for the difference of ranks using
a Friedman test. Since we have missing values (i.e., not all of the compared ap-
proaches were able to process each dataset), we use a variant of the Friedman test,
i.e., the Skillings-Mack test [40], which can cope with that problem.

While the Skillings-Mack test only computes whether there is a significant
difference between any of the compared approaches, pairwise significance levels
are computed with a post-hoc Nemenyi test [194]. The results of the post-hoc test
allows for concluding if one approach significantly outperforms another one.

In this evaluation we perform the Skillings–Mack with the post-hoc Nemnyi
test both on the performances results and the runtimes. We concentrate on ana-
lyzing significant differences for each feature propositionalization strategy for the
learning methods in isolation. However, with the same methodology, other com-
parisons (such as comparing the learning methods) would also be possible.

4.2.3 Results

Table 4.4 shows the results for the classification tasks, for each strategy and each
classification method. The first column for each classification method (#c) shows
the number of datasets on which the task was completed, i.e., all the experiments
that did not finish in less than ten days, or have run out of memory, were excluded
from the final results. The second column shows the macro-average accuracy over
all datasets. The third column shows the average accuracy rank, as calculated by
the Skillings–Mack test on the accuracy results, where a smaller rank means better
performances. The fourth column shows the average runtime over all datasets,
and the fifth column shows the average runtime rank, again as calculated by the
Skillings-Mack test.

Following [60], to perform the Skillings–Mack test, as we have a total of
N = 19 datasets and k = 12 approaches to compare, we select a significance
level of α = 0.10, resulting in a critical value F (11, 198) ≈ 1.84. We carried
out the test on each learning method separately. The null hypothesis was rejected
for the performances of the strategies when using Naïve Bayes and C4.5, meaning
there is a significant performance difference between the strategies. The null hy-
pothesis was rejected for the runtimes of all learning methods, meaning that there
is a significant difference in runtimes between the strategies on each method.

For the cases where the null hypothesis was rejected, to detect the pairs of
strategies that are significantly different, we performed the post-hoc Nemenyi test,
using critical values q = 0.05 and q = 0.10. The calculated Nemenyi critical
difference values are CD ≈ 3.82 for q = 0.05, and CD ≈ 3.54 for q = 0.10.
In the table, we show only the comparison of the best strategy to the rest of the
strategies (the values marked with ∗∗ mean that are significantly worse than the
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best strategy at significance level q = 0.05, and ∗ for significance level q = 0.10).
The complete pairwise results can be found online.

From the results, we can observe that only for Naïve Bayes, there are signif-
icant differences w.r.t. accuracy based on the Nemenyi post-hoc test. Although
we rejected the null hypothesis for C4.5 based on the Skillings–Mack test, the Ne-
menyi post-hoc test is not powerful enough to detect any significant differences
between the strategies, on the significance levels we chose. Furthermore, for the
SVM experiments, we can observe that there is a disagreement for the best strategy
based on the best average accuracy and the average rank. These findings show that
only comparing average accuracies is not enough for making significant statements
about differences of approaches.

Table 4.5 shows the results for the regression tasks, for each strategy and each
regression method. Like for classification, the first column for each regression
method (#c) shows the number of datasets on which the task was completed. The
second column shows the average root relative squared error (RRSE) over all
datasets. The third column shows the average RRSE rank, as calculated by the
Skillings–Mack test on the RRSE results, where smaller rank means better perfor-
mances. The fourth column shows the average runtime over all datasets, and the
fifth column shows the average runtime rank.

Again following [60], as we have N = 15 datasets and k = 12 approaches
to compare, we select the significance level α = 0.10, resulting in a critical value
F (11, 154) ≈ 1.85. We carried out the test on each learning method separately.
The null hypothesis was rejected for the performances of the strategies when using
Linear Regression and k-NN methods, meaning there is a significant performance
difference between the strategies. The null hypothesis was rejected for the runtimes
of all learning methods, meaning that there are significant differences in runtimes
between the strategies on each learning method.

For the cases where the null hypothesis was rejected, to detect the pairs of
strategies that are significantly different, we performed the post-hoc Nemenyi test.
The calculated Nemenyi critical difference values are CD ≈ 4.3 for q = 0.05, and
CD ≈ 3.99 for q = 0.10.Although we rejected the null hypothesis for the RRSE
results for all learning methods, the Nemenyi test is not powerful enough to detect
any significant differences between the strategies.

Like for classification, we can observe that there is a disagreement for the best
strategy based on the best average RRSE, and the average rank for the perfor-
mances and the runtimes for all learning models.

4.2.4 Number of Generated Features

In this section, we compare the number of features generated by the different fea-
ture generation strategies, since that number has a direct influence on performance
and memory consumption of the learning step. Like for performance and runtime,
we use the Skillings–Mack test.

To perform the Skillings–Mack test, we have N = 21 datasets and k = 12
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Table 4.5: Regression results, average RRSE, RRSE rank, average runtime (sec-
onds), and runtime rank, for each feature generation strategy, using Linear Regres-
sion (LR), M5Rules (M5), and k-Nearest Neighbors(k-NN, with k=3) as regression
methods. The best ranked results for each method are marked in bold. The learning
models for which the strategies were shown to have significant difference based on
the Skillings-Mack test with α< 0.05 are marked with *. The single values marked
with ∗∗mean that are significantly worse than the best strategy at significance level
q = 0.05, and ∗ for significance level q = 0.10.

Strategy/Method
LR

#c Avg. RRSE *RRSE Rank Avg. t *t Rank
types 15 1.331 6.53 21.32 2.13
categories 15 0.919 4.13 170.36 3.53
rel in 15 0.706 4.77 3.90 2.40
rel out 15 0.800 4.83 1.94 2.67
rel in & out 15 0.732 5.20 15.07 4.40
rel-vals in 2 0.295 3.97 2,497.38 5.40
rel-vals out 9 0.575 3.97 589.97 5.93
rel-vals in & out 2 0.287 3.97 1,253.62 5.27
WL_1_2 9 0.631 4.17 1,591.99 *6.17
WL_2_2 3 0.383 3.84 2,092.63 5.27
WC_2 10 0.570 4.40 1,046.98 5.27
WC_3 9 0.631 3.83 2,221.45 *6.77

Strategy/Method
k-NN

#c Avg. RRSE *RRSE Rank Avg. t *t Rank
types 15 0.967 7.40 3.25 2.27
categories 15 0.751 5.87 10.57 3.73
rel in 15 1.005 6.57 0.64 2.43
rel out 15 0.756 5.77 0.94 2.60
rel in & out 15 0.728 5.07 11.29 4.63
rel-vals in 9 1.533 8.07 30.20 *6.27
rel-vals out 15 0.713 5.27 81.70 **7.53
rel-vals in & out 9 0.791 5.53 180.90 **8.27
WL_1_2 15 0.721 5.23 172.37 **8.57
WL_2_2 9 0.611 5.27 22.72 **8.20
WC_2 15 0.743 4.37 45.80 **6.67
WC_3 15 0.956 6.40 335.10 **9.63

Strategy/Method
M5

#c Avg. RRSE *RRSE Rank Avg. t *t Rank
types 15 0.671 5.77 21.23 2.47
categories 15 0.668 4.83 39.14 3.33
rel in 15 0.699 6.30 10.13 2.53
rel out 15 0.715 7.37 18.33 2.93
rel in & out 15 0.754 7.23 90.60 5.07
rel-vals in 9 0.676 6.97 194.59 6.20
rel-vals out 15 0.671 5.60 419.69 **6.87
rel-vals in & out 9 0.598 6.00 1,688.85 **8.07
WL_1_2 15 0.658 6.00 1,912.98 **8.33
WL_2_2 9 0.607 4.60 262.98 **7.93
WC_2 15 0.666 6.10 588.32 **7.37
WC_3 15 0.618 4.03 3,352.31 **9.70
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Table 4.6: Number of generated features

Strategy #c Avg. *Rank
types 16 1258.13 3.12
categories 16 2407.31 4.12
rel in 20 615.43 2.12
rel out 21 646.65 2.50
rel in & out 20 1224.19 3.83
rel-vals in 20 180903.80 **7.81
rel-vals out 21 17099.25 **6.83
rel-vals in & out 20 181781.52 **9.48
WL_1_2 21 29642.19 **8.43
WL_2_2 21 166769.33 **10.67
WC_2 21 11116.90 **6.21
WC_3 21 53248.29 **9.45

approaches, we select significance level α = 0.10, resulting in a critical value
F (11, 220) ≈ 1.83. The observed value is FF ≈ 12.4 is higher than the critical
value, so the null hypothesis is rejected at a 10% significance level. Furhtermore,
we performed the post-hoc Nemenyi test, using critical value q = 0.05 and q =
0.10, to make pairwise comparisons. The calculated Nemenyi critical difference
values are CD ≈ 3.63 for q = 0.05, and CD ≈ 3.37 for q = 0.10.

Table 4.6 shows only the comparison of the best strategy to the rest of the
strategies (the values marked with ∗∗ mean that are significantly worse than the
best strategy at significance level q = 0.05, and ∗ for significance level q = 0.10).
The first column shows the number of datasets for which the feature set was gener-
ated. The second column shows the average of generated features over all datasets,
and the third column is the average ranked calculated using the Skillings–Mack
approach.

The results show that the strategy rel in generates the lowest number of features
for each dataset, and that the strategies based on values, as well as the kernels,
create significantly more features.

4.2.5 Features Increase Rate

Finally, we conduct a scalability experiment, where we examine how the number
of instances affects the number of generated features by each feature generation
strategy. For this purpose we use the Metacritic Movies dataset. We start with a
random sample of 100 instances, and in each next step we add 200 (or 300) unused
instances, until the complete dataset is used, i.e., 2, 000 instances. The number
of generated features for each sub-sample of the dataset using each of the feature
generation strategies is shown in Figure 8.3. We can observe that in the beginning
the curves for all strategies sharply increase. After the sub-sample reaches the
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Figure 4.1: Features increase rate per strategy (log scale).

half of the complete sample, the strategies based on generic relations stabilize, as
only a few new relations are discovered when adding new instances. The curves
for the strategies based on generic relation-values, and the specific relations, are
steadily increasing as new instances are added. On the other side, the curves for
the strategies based on graph substructures increase more rapidly than the rest of
the strategies, without a sign of convergence. From the chart, we can also observe
that the strategies based on graph substructures generate feature sets three orders
of magnitude large than the strategies based on generic relations, and two orders of
magnitude larger than the strategies based on specific relations.

4.3 Conclusion and Outlook

In this chapter, we have introduced a collection of 22 benchmark datasets for ma-
chine learning on the Semantic Web. We have shown how they can be used to set
up experiments which allow for making statistically significant comparisons be-
tween different learning approaches. So far, we have concentrated on classification
and regression tasks. There are methods to derive clustering and outlier detection
benchmarks from classification and regression datasets [77, 84], so that extending
the dataset collection for such unsupervised tasks is possible as well. Further-
more, as many datasets on the Semantic Web use extensive hierarchies in the form
of ontologies, building benchmark datasets for tasks like hierarchical multi-label
classification [279] would also be an interesting extension.

At the moment, the dataset collection has a certain bias towards datasets linked
to DBpedia. This has two main reasons, (1) DBpedia being a cross-domain knowl-
edge base usable in datasets from very different topical domains, and (2) tools like
DBpedia Lookup and DBpedia Spotlight making it easy to link external datasets to
DBpedia. However, DBpedia can be seen as an entry point to the Web of Linked
Data, with many datasets linking to and from DBpedia. In fact, some Semantic
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Web mining tools, such as the RapidMiner Linked Open Data extension, are capa-
ble of exploiting such links automatically and combining information from various
Linked Data sets [246].

Summarizing, this presents the first attempt of creating a universal benchmark
collection for Semantic Web mining, an area in which much research is conducted,
but an accepted benchmark set is missing. By successively extending this bench-
mark set, we believe that it will provide a useful cornerstone for research at the
crossroads of Semantic Web and machine learning.



Chapter 5

Propositionalization Strategies
for Creating Features from
Linked Open Data

As shown in chapter 2, Semantic Web knowledge graphs have been recognized as a
valuable source of background knowledge in many data mining tasks. Augmenting
a dataset with features taken from Semantic Web knowledge graphs can, in many
cases, improve the results of a data mining problem at hand, while externalizing
the cost of maintaining that background knowledge [221].

Most data mining algorithms work with a propositional feature vector rep-
resentation of the data, i.e., each instance is represented as a vector of features
〈f1, f2, ..., fn〉, where the features are either binary (i.e., fi ∈ {true, false}), nu-
merical (i.e., fi ∈ R), or nominal (i.e., fi ∈ S, where S is a finite set of symbols).
Linked Open Data, however, comes in the form of graphs, connecting resources
with types and relations, backed by a schema or ontology.

Thus, for accessing Semantic Web knowledge graphs with existing data mining
tools, transformations have to be performed, which create propositional features
from the graphs in Linked Open Data, i.e., a process called propositionalization
[154]. Usually, binary features (e.g., true if a type or relation exists, false
otherwise) or numerical features (e.g., counting the number of relations of a certain
type) are used [225]. Other variants, e.g., computing the fraction of relations of a
certain type, are possible, but rarely used.

Our hypothesis is that the strategy of creating propositional features from Linked
Open Data may have an influence on the data mining result. For example, promiximity-
based algorithms like k-NN will behave differently depending on the strategy used
to create numerical features, as that strategy has a direct influence on most distance
functions.

In this chapter, we compare a set of different strategies for creating features
from types and relations in Linked Open Data. We compare those strategies on a
number of different datasets and across different tasks, i.e., classification, regres-

68
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sion, and outlier detection.

The work presented in this chapter has been published before as: “Petar Ris-
toski, Heiko Paulheim: Feature selection in hierarchical feature spaces. Pro-
ceedings of the 17th International Conference on Discovery Science, Bled,
Slovenia, October, 2014.” [253].

5.1 Strategies

When creating features for a resource, we take into account the relation to other
resources. We distinguish strategies that use the object of specific relations, and
strategies that only take into account the presence of relations as such.

5.1.1 Strategies for Features Derived from Specific Relations

Some relations in Linked Open Data sources play a specific role. One example
are rdf:type relations assigning a direct type to a resource. A statement r
rdf:type C is typically translated into description logics asC(r), i.e., rdf:type
is treated differently from any other predicate. For some datasets, similar relations
exist, e.g., the dcterms:subject relations in DBpedia [162] which contain a
link to the category of the original Wikipedia article a DBpedia resource is derived
from.

For such relations, we propose three strategies:

• Creating a binary feature indicating presence or absence of the relation’s object.

• Creating a relative count feature indicating the relative count of the relation’s
object. For a resource that has a relation to n objects, each feature value is 1

n .

• Creating a TF-IDF feature, whose value is 1
n · log

N
|{r|C(r)}| , where N is the

total number of resources in the dataset, and |{r|C(r)}| denotes the number of
resources that have the respective relation r to C.

The rationale for using relative counts is that if there are only a few relations
of a particular kind, each individual related object may be more important. For
example, for a general book which has a hundred topics, each of those topics is
less characteristic for the book than a specific book with only a few topics. Thus,
that strategy takes into account both the existence and the importance of a certain
relation.

The rationale for using TF-IDF is to further reduce the influence of too gen-
eral features, in particular when using a distance-based mining algorithm. Table 5.1
shows the features generated for the example depicted in Fig.5.1. It can be observed
that using TF-IDF implicitly gives a higher weight to more specific features, which
can be important in distance-based mining algorithms (i.e., it increases the simi-
larity of two objects more if they share a more specific type than a more abstract
one).
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dbpedia:Trent_Reznor

dbpedia:MusicArtist

rdf:type

dbpedia:Artist

dbpedia:Person

dbpedia:Artist

owl:Thing

dbpedia:Guitar

owl:Thing

dbpedia:Piano

+19 more

dbpedia-owl:instrument

dbpedia:New_Wave_music

dbpedia:Industrial_rock

+7 more

dbpedia-owl:genre

+64 other relations rdfs:subclassOf

rdfs:subclassOf

rdfs:subclassOf

rdfs:subclassOf

Figure 5.1: Example DBpedia resource (dbpedia:Trent_Reznor) and an ex-
cerpt of its types and relations

Table 5.1: Features for rdf:type and relations as such, generated for the exam-
ple shown in Fig. 5.1. For TF-IDF, we assume that there are 1,000 instances in the
dataset, all of which are persons, 500 of which are artists, and 100 of which are
music artists with genres and instruments.

Specific relation: rdf:type Relations as such
Strategy MusicArtist Artist Person Agent Thing genre instrument
Binary true true true true true true true
Count – – – – – 9 21
Relative Count 0.2 0.2 0.2 0.2 0.2 0.091 0.212
TF-IDF 0.461 0.139 0 0 0 0.209 0.488

5.1.2 Strategies for Features Derived from Relations as Such

Generic relations describe how resources are related to other resources. For ex-
ample, a writer is connected to her birthplace, her alma mater, and the books she
has written. Such relations between a resource r and a resource r′ are expressed in
description logics as p(r, r′) (for an outgoing relation) or p(r′, r) (for an incoming
relation), where p can be any relation.

In general, we treat incoming (rel in) and outgoing (rel out) relations. For such
generic relations, we propose four strategies:

• Creating a binary feature for each relation.

• Creating a count feature for each relation, specifying the number of resources
connected by this relation.

• Creating a relative count feature for each relation, specifying the fraction of
resources connected by this relation. For a resource that has total number of P
outgoing relations, the relative count value for a relation p(r, r′) is defined as np

P ,
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where np is the number of outgoing relations of type p. The feature is defined
accordingly for incoming relations

• Creating a TF-IDF feature for each relation, whose value is np

P ·log
N

|{r|∃r′:p(r,r′)}| ,
where N is the overall number of resources, and |{r|∃r′ : p(r, r′)}| denotes the
number of resources for which the relation p(r, r′) exists. The feature is defined
accordingly for incoming relations.

The rationale of using relative counts is that resources may have multiple types
of connections to other entities, but not all of them are equally important. For
example, a person who is mainly a musician may also have written one book, but
recorded many records, so that the relations get different weights. In that case, he
will be more similar to other musicians than to other authors – which is not the
case if binary features are used.

The rationale of using TF-IDF again is to reduce the influence of too general
relations. For example, two persons will be more similar if both of them have
recorded records, rather than if both have a last name. The IDF factor accounts
for that weighting. Table 5.1 shows the features generated from the example in
Fig. 5.1.

5.2 Evaluation

We evaluated the strategies outlined above on six different datasets, two for each
task of classification, regression, and outlier detection.

5.2.1 Tasks and Datasets

The following datasets were used in the evaluation:

• The Auto MPG data set1, a dataset that captures different characteristics of cars
(such as cyclinders, transmission horsepower), and the target is to predict the
fuel consumption in Miles per Gallon (MPG) as a regression task [243]. Each
car in the dataset was linked to the corresponding resource in DBpedia.

• The Cities dataset contains a list of cities and their quality of living (as a numer-
ical score), as captured by Mercer [219]. The cities are mapped to DBpedia. We
use the dataset both for regression as well as for classification, discretizing the
target variable into high, medium, and low.

• The Sports Tweets dataset consists of a number of tweets, with the target class
being whether the tweet is related to sports or not.2 The dataset was mapped to
DBpedia using DBpedia Spotlight [174].
1http://archive.ics.uci.edu/ml/datasets/Auto+MPG
2https://github.com/vinaykola/twitter-topic-classifier/blob/

master/training.txt

http://archive.ics.uci.edu/ml/datasets/Auto+MPG
https://github.com/vinaykola/twitter-topic-classifier/blob/master/training.txt
https://github.com/vinaykola/twitter-topic-classifier/blob/master/training.txt
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Table 5.2: Datasets used in the evaluation. Tasks: C=Classification, R=Regression,
O=Outlier Detection

Dataset Task # instances # types # categories # rel in # rel out # rel in & out
Auto MPG R 391 264 308 227 370 597
Cities C/R 212 721 999 1,304 1,081 2,385
Sports Tweets C 5,054 7,814 14,025 3,574 5,334 8,908
DBpedia-Peel O 2,083 39 - 586 322 908
DBpedia-DBTropes O 4,228 128 - 912 2,155 3,067

• The DBpedia-Peel dataset is a dataset where each instance is a link between
the DBpedia and the Peel Sessions LOD datasets. Outlier detection is used to
identify links whose characteristics deviate from the majority of links, which are
then regarded to be wrong. A partial gold standard of 100 links exists, which
were manually annotated as right or wrong [222].

• The DBpedia-DBTropes dataset is a similar dataset with links between DBpedia
and DBTropes.

For the classification and regression tasks, we use direct types (i.e., rdf:type)
and DBpedia categories (i.e., dcterms:subject), as well as all strategies for
generic relations. For the outlier detection tasks, we only use direct types and
generic relations, since categories do not exist in the other LOD sources involved.
An overview of the datasets, as well as the size of each feature set, is given in
Table 5.2.

For classification tasks, we use Naïve Bayes, k-Nearest Neighbors (with k=3),
and C4.5 decision tree. For regression, we use Linear Regression, M5Rules, and
k-Nearest Neighbors (with k=3). For outlier detection, we use Global Anomaly
Score (GAS, with k=25), Local Outlier Factor (LOF), and Local Outlier Probabil-
ities (LoOP, with k=25). We measure accuracy for classification tasks, root-mean-
square error (RMSE) for regression tasks, and area under the ROC curve (AUC)
for outlier detection tasks.

The evaluations are performed in RapidMiner, using the Linked Open Data ex-
tension [229]. For classification, regression, and outlier detection, we use the im-
plementation in RapidMiner where available, otherwise, the corresponding imple-
mentations from the Weka3 and Anomaly Detection [100] extension in RapidMiner
were used. The RapidMiner processes and datasets used for the evaluation can be
found online.4 The strategies for creating propositional features from Linked Open
Data are implemented in the RapidMiner Linked Open Data extension5 [229].

3https://marketplace.rapid-i.com/UpdateServer/faces/product_
details.xhtml?productId=rmx_weka

4http://data.dws.informatik.uni-mannheim.de/
propositionalization_strategies/

5http://dws.informatik.uni-mannheim.de/en/research/rapidminer-
lod-extension

https://marketplace.rapid-i.com/UpdateServer/faces/product_details.xhtml?productId=rmx_weka
https://marketplace.rapid-i.com/UpdateServer/faces/product_details.xhtml?productId=rmx_weka
http://data.dws.informatik.uni-mannheim.de/propositionalization_strategies/
http://data.dws.informatik.uni-mannheim.de/propositionalization_strategies/
http://dws.informatik.uni-mannheim.de/en/research/rapidminer-lod-extension
http://dws.informatik.uni-mannheim.de/en/research/rapidminer-lod-extension
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Table 5.3: Classification accuracy results for the Cities and Sports Tweets datasets, using Naïve Bayes(NB), k-
Nearest Neighbors (k-NN, with k=3), and C4.5 decision tree (C4.5) as classification algorithms, on five different
feature sets, generated using three propositionalization strategies, for types and categories feature sets, and four
propositionalization strategies for the incoming and outgoing relations feature sets. The best result for each
feature set, for each classification algorithm is marked in bold.

Datasets Cities Sports Tweets
Features Representation NB k-NN C4.5 Avg. NB k-NN C4.5 Avg.

types
Binary .557 .561 .590 .569 .8100 .829 .829 .822
Relative Count .571 .496 .552 .539 .809 .814 .818 .814
TF-IDF .571 .487 .547 .535 .821 .824 .826 .824

categories
Binary .557 .499 .561 .539 .822 .765 .719 .769
Relative Count .595 .443 .589 .542 .907 .840 .808 .852
TF-IDF .557 .499 .570 .542 .896 .819 .816 .844

rel in

Binary .604 .584 .603 .597 .831 .836 .846 .838
Count .566 .311 .593 .490 .832 .851 .854 .845
Relative Count .491 .382 .585 .486 .695 .846 .851 .7977
TF-IDF .349 .382 .542 .424 .726 .846 .849 .8077

rel out

Binary .476 .600 .567 .547 .806 .823 .844 .824
Count .499 .552 .585 .546 .799 .833 .850 .827
Relative Count .480 .584 .566 .543 .621 .842 .835 .766
TF-IDF .401 .547 .585 .511 .699 .844 .841 .7949

rel in & out

Binary .594 .585 .564 .581 .861 .851 .864 .859
Count .561 .542 .608 .570 .860 .860 .871 .864
Relative Count .576 .471 .565 .537 .700 .845 .872 .8058
TF-IDF .401 .462 .584 .482 .751 .848 .861 .820

5.2.2 Results

For each of the three tasks we report the results for each of the feature sets, gener-
ated using different propositionalization strategies. The classification and regres-
sion results are calculated using stratified 10-fold cross validation, while for the
outlier detection the evaluations were made on the partial gold standard of 100
links for each of the datasets.6

Table 5.3 shows the classification accuracy for the Cities and Sports Tweets
datasets. We can observe that the results are not consistent, but the best results for
each classifier and for each feature set are achieved using different representation
strategy. Only for the incoming relations feature set, the best results for the Cities
dataset for each classifier are achieved when using the Binary strategy, while for the
Sports Tweets dataset the best results are achieved when using Count strategy. We
can observe that for most of the generic relation feature sets using TF-IDF strategy
leads to poor results. That can be explained with the fact that TF-IDF tends to give
higher weights to relations that appear rarely in the dataset, which also might be
a result of erroneous data. Also, on the Cities dataset it can be noticed that when
using k-NN on the incoming relations feature set, the difference in the results using
different strategies is rather high.

Table 5.4 shows the results of the regression task for the Auto MPG and Cities

6Note that we measure the capability of finding errors by outlier detection, not of outlier detection
as such, i.e., natural outliers may be counted as false positives.
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datasets. For the Auto MPG dataset, for M5Rules and k-NN classifiers the best re-
sults are achieved when using Relative Count and TF-IDF for all feature sets, while
the results for LR are mixed. For the Cities dataset we can observe that the results
are mixed for the types and categories feature set, but for the generic relations fea-
ture sets, the best results are achieved when using Binary representation. Also, it
can be noticed that when using linear regression, there is a drastic difference in the
results between the strategies.

Table 5.5 shows the results of the outlier detection task for the DBpedia-Peel
and DBpedia-DBTropes datasets. In this task we can observe much higher dif-
ference in performances when using different propositionalization strategies. We
can observe that the best results are achieved when using relative count features.
The explanation is that in this task, we look at the implicit types of entities linked
when searching for errors (e.g., a book linked to a movie of the same name), and
those types are best characterized by the distribution of relations, as also reported
in [224]. On the other hand, TF-IDF again has the tendency to assign high weights
to rare features, which may also be an effect of noise.

By analyzing the results on each task, we can conclude that the chosen propo-
sitionalization strategy has major impact on the overall results. Also, in some cases
there is a drastic performance differences between the strategies that are used.
Therefore, in order to achieve the best performances, it is important to choose
the most suitable propositionalization strategy, which mainly depends on the given
dataset, the given data mining task, and the data mining algorithm to be used.

When looking at aggregated results, we can see that for the classification and
regression tasks, binary and count features work best in most cases. Furthermore,
we can observe that algorithms that rely on the concept of distance, such as k-NN,
linear regression, and most outlier detection methods, show a stronger variation of
the results across the different strategies than algorithms that do not use distances
(such as decision trees).

5.3 Conclusion and Outlook

Until now, the problem of finding the most suitable propositionalization strategy
for creating features from Semantic Web knowledge graphs has not been tackled,
as previous researches focused only on binary, or in some cases numerical repre-
sentation of features. In this chapter, we have compared different strategies for
creating propositional features from types and relations in Linked Open Data. We
have implemented three propositionalization strategies for specific relations, like
rdf:type and dcterms:subject, and four strategies for generic relations.
We conducted experiments on six different datasets, across three different data
mining tasks, i.e. classification, regression and outlier detection. The experiments
show that the chosen propositionalization strategy might have a major impact on
the overall results. However, it is difficult to come up with a general recommenda-
tion for a strategy, as it depends on the given data mining task, the given dataset,
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Table 5.4: Root-mean-square error (RMSE) results for the Auto MPG and
Cities datasets, using Linear Regression (LR), M5Rules (M5), and k-Nearest
Neighbors(k-NN, with k=3) as regression algorithms, on five different feature sets,
generated using three propositionalization strategies, for types and categories fea-
ture sets, and four propositionalization strategies for the incoming and outgoing
relations feature sets. The best result for each feature set, for each regression algo-
rithm is marked in bold.

Datasets Auto MPG Cities
Features Representation LR M5 k-NN Avg. LR M5 k-NN Avg.

types
Binary 3.95 3.05 3.63 3.54 24.30 18.79 22.16 21.75
Relative Count 3.84 2.95 3.57 3.45 18.04 19.69 33.56 23.77
TF-IDF 3.86 2.96 3.57 3.46 17.85 18.77 22.39 19.67

categories
Binary 3.69 2.90 3.61 3.40 18.88 22.32 22.67 21.29
Relative Count 3.74 2.97 3.57 3.43 18.95 19.98 34.48 24.47
TF-IDF 3.78 2.90 3.56 3.41 19.02 22.32 23.18 21.51

rel in

Binary 3.84 2.86 3.61 3.44 49.86 19.20 18.53 29.20
Count 3.89 2.96 4.61 3.82 138.04 19.91 19.2 59.075
Relative Count 3.97 2.91 3.57 3.48 122.36 22.33 18.87 54.52
TF-IDF 4.10 2.84 3.57 3.50 122.92 21.94 18.56 54.47

rel out

Binary 3.79 3.08 3.59 3.49 20.00 19.36 20.91 20.09
Count 4.07 2.98 4.14 3.73 36.31 19.45 23.99 26.59
Relative Count 4.09 2.94 3.57 3.53 43.20 21.96 21.47 28.88
TF-IDF 4.13 3.00 3.57 3.57 28.84 20.85 22.21 23.97

rel in & out

Binary 3.99 3.05 3.67 3.57 40.80 18.80 18.21 25.93
Count 3.99 3.07 4.54 3.87 107.25 19.52 18.90 48.56
Relative Count 3.92 2.98 3.57 3.49 103.10 22.09 19.60 48.26
TF-IDF 3.98 3.01 3.57 3.52 115.37 20.62 19.70 51.89

and the data mining algorithm to be used.
For future work, additional experiments can be performed on more feature sets.

For example, a feature sets of qualified incoming and outgoing relation can be gen-
erated, where qualified relations attributes beside the type of the relation take the
type of the related resource into account. The evaluation can be extended on more
datasets, using and combining attributes from multiple Linked Open Data sources.
Also, it may be interesting to examine the impact of the propositionalization strate-
gies on even more data mining tasks, such as clustering and recommender systems.

So far, we have considered only statistical measures for feature representation
without exploiting the semantics of the data. More sophisticated strategies that
combine statistical measures with the semantics of the data can be developed. For
example, we can represent the connection between different resources in the graph
by using some of the standard properties of the graph, such as the depth of the
hierarchy level of the resources, the fan-in and fan-out values of the resources, etc.

The problem of propositionalization and feature weighting has been exten-
sively studied in the area of text categorization [61, 155]. Many approaches have
been proposed, which can be adapted and applied on Linked Open Data datasets.
For example, adapting supervised weighting approaches, such as [98, 283], might
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Table 5.5: Area under the ROC curve (AUC) results for the DBpedia-Peel and
Dbpedia-DBTropes datasets, using Global Anomaly Score (GAS, with k=25), Lo-
cal Outlier Factor (LOF), and Local Outlier Probabilities (LoOP, with k=25) as
outlier detection algorithms, on four different feature sets, generated using three
propositionalization strategies, for types feature set, and four propositionalization
strategies for the incoming and outgoing relations feature sets. The best result for
each feature set, for each outlier detection algorithm is marked in bold.

Datasets DBpedia-Peel DBpedia-DBTropes
Features Representation GAS LOF LoOP Avg. GAS LOF LoOP Avg.

types

Binary 0.386 0.486 0.554 0.476 0.503 0.627 0.605 0.578
Relative Count 0.385 0.398 0.595 0.459 0.503 0.385 0.314 0.401
TF-IDF 0.386 0.504 0.602 0.497 0.503 0.672 0.417 0.531

rel in

Binary 0.169 0.367 0.288 0.275 0.425 0.520 0.450 0.465
Count 0.200 0.285 0.290 0.258 0.503 0.590 0.602 0.565
Relative Count 0.293 0.496 0.452 0.414 0.589 0.555 0.493 0.546
TF-IDF 0.140 0.353 0.317 0.270 0.509 0.519 0.568 0.532

rel out

Binary 0.250 0.195 0.207 0.217 0.325 0.438 0.432 0.398
Count 0.539 0.455 0.391 0.462 0.547 0.577 0.522 0.549
Relative Count 0.542 0.544 0.391 0.492 0.618 0.601 0.513 0.577
TF-IDF 0.116 0.396 0.240 0.251 0.322 0.629 0.471 0.474

rel in & out

Binary 0.324 0.430 0.510 0.422 0.351 0.439 0.396 0.396
Count 0.527 0.367 0.454 0.450 0.565 0.563 0.527 0.553
Relative Count 0.603 0.744 0.616 0.654 0.667 0.672 0.657 0.665
TF-IDF 0.202 0.667 0.483 0.451 0.481 0.462 0.500 0.481

resolve the problem with the erroneous data when using TF-IDF strategy.
Furthermore, some of the statistical measures can be used as feature selection

metrics when extracting data mining features from Linked Open Data. For exam-
ple, considering the semantics of the resources, the IDF value can be computed
upfront for all feature candidates, and can be used for selecting the most valuable
features before the costly feature generation. Thus, intertwining propositionaliza-
tion and feature selection strategies for Semantic Web knowledge graphs [253] will
be an interesting line of future work.

In summary, this chapter has revealed some insights in a problem largely over-
looked so far, i.e., choosing different propositionalization for mining Semantic Web
knowledge graphs.



Chapter 6

Feature Selection in Hierarchical
Feature Spaces

As introduced in the previous chapter, in machine learning and data mining, data is
usually described as a vector of features or attributes, such as the age, income, and
gender of a person. Based on this representation, predictive or descriptive models
are built.

For many practical applications, the set of features can be very large, which
leads to problems both with respect to the performance as well as the accuracy
of learning algorithms. Thus, it may be useful to reduce the set of features in a
preprocessing step, i.e., perform a feature selection [52, 182]. Usually, the goal is
to compress the feature space as good as possible without a loss (or even with a
gain) in the accuracy of the model learned on the data.

In some cases, external knowledge about attributes exist, in particular about
their hierarchies. For example, a product may belong to different categories, which
form a hierarchy (such as Headphones < Accessories < Consumer Electronics).
Likewise, hyponym and hyperonym relations can be exploited when using bag-of-
words features for text classification [133], or hierarchies defined by ontologies
when generating features from Semantic Web knowledge graphs[225] in our case.

In this chapter, we introduce an approach that exploits hierarchies for feature
selection in combination with standard metrics, such as information gain or cor-
relation. With an evaluation on a number of synthetic and real world datasets,
we show that using a combined approach works better than approaches not using
the hierarchy, and also outperforms existing approaches for feature selection that
exploit the hierarchy.

The work presented in this chapter has been published before as: “Petar Ris-
toski, Heiko Paulheim: A Comparison of Propositionalization Strategies for
Creating Features from Linked Open Data. Proceedings of the 1st Workshop on
Linked Data for Knowledge Discovery co-located with European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery

77
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in Databases (ECML PKDD 2014), Nancy, France, September 19th, 2014.”
[252].

6.1 Problem Statement

We describe each instance as an n-dimensional binary feature vector 〈v1, v2, ..., vn〉,
with vi ∈ {0, 1} for all 1 ≤ i ≤ n. We call V = {v1, v2, ..., vn} the feature space.

Furthermore, we denote a hierarchic relation between two features vi and vj
as vi < vj , i.e., vi is more specific than vj . For hierarchic features, the following
implication holds:

vi < vj → (vi = 1→ vj = 1) , (6.1)

i.e., if a feature vi is set, then vj is also set. Using the example of product cat-
egories, this means that a product belonging to a category also belongs to that
product’s super categories. Note that the implication is not symmetric, i.e., even if
vi = 1 → vj = 1 holds for two features vi and vj , they do not necessarily have
to be in a hierarchic relation. We furthermore assume transitivity of the hierarchy,
i.e.,

vi < vj ∧ vj < vk → vi < vk (6.2)

The problem of feature selection can be defined as finding a projection of V to V ′,
where V ′ ⊆ V . Ideally, V ′ is much smaller than V .

Feature selection is usually regarded with respect to a certain problem, where
a solution S using a subset V ′ of the features yields a certain performance p(V ′),
i.e., p is a function

p : P(V )→ [0, 1], (6.3)

which is normalized to [0, 1] without loss of generality. For example, for a classi-
fication problem, the accuracy achieved by a certain classifier on a feature subset
can be used as the performance function p. Besides the quality, another interesting
measure is the feature space compression, which we define as

c(V ′) := 1− |V
′|
|V |

(6.4)

Since there is a trade-off between the feature set and the performance, an overall
target function is, e.g., the harmonic mean of p and c.

For most problems, we expect the optimal features to be somewhere in the
middle of the hierarchy, while the most general features are often too general for
predictive models, and the most specific ones are too specific. The hierarchy level
of the most valuable features depends on the task at hand. Fig. 6.1 shows a small
part of the hierarchical feature space extracted for dataset Sports Tweets T (see
section 6.3.1). If the task is to classify tweets into sports and non sports related, the
optimal features are those in the upper rectangle, if the task is to classify them by
different kinds of sports, then the features in the lower rectangle are more valuable.
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Figure 6.1: An example hierarchy of binary features

6.2 Approach

Following the implication shown in Eq. 6.1, we can assume that if two features sub-
sume each other, they are usually highly correlated to each other and have similar
relevance for building the model. Following the definition for "relevance” by Blum
et al. [25], two features vi and vj have similar relevance if 1− |R(vi)−R(vj)| ≥
t, t→ [0, 1], where t is a user specified threshold.

The core idea of our SHSEL approach is to identify features with similar rele-
vance, and select the most valuable abstract features, i.e. features from as high as
possible levels of the hierarchy, without losing predictive power. In our approach,
to measure the similarity of relevance between two nodes, we use the standard cor-
relation and information gain measure. The approach is implemented in two steps,
i.e, initial selection and pruning. In the first step, we try to identify, and filter out
the ranges of nodes with similar relevance in each branch of the hierarchy. In the
second step we try to select only the most valuable features from the previously
reduced set.

The initial selection algorithm is shown in Algorithm 1. The algorithm takes
as input the feature hierarchy H , the initial feature set F , a relevance similarity
threshold t, and the relevance similarity measure s to be used by the algorithm.
The relevance similarity threshold is used to decide whether two features would
be similar enough, thus it controls how many nodes from different levels in the
hierarchy will be merged. The algorithm starts with identifying the leaf nodes
of the feature hierarchy. Then, starting from each leaf node l, it calculates the
relevance similarity value between the current node and its direct ascendants d.
The relevance similarity value is calculated using the selected relevance measure
s. If the relevance similarity value is greater or equal to the similarity threshold
t, then the node from the lower level of the hierarchy is removed from the feature
space F . Also, the node is removed from the feature hierarchy H , and the paths in
the hierarchy are updated accordingly. For the next iteration, the direct ascendants
of the current node are added in the list L.

The algorithm for pruning is shown in Algorithm 2. The algorithm takes as
input the feature hierarchy H and the previously reduced feature set F . The al-
gorithm starts with identifying all paths P from all leaf nodes to the root node of
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Algorithm 1 Algorithm for initial hierarchy selection strategy.
Data: H: Feature hierarchy, F : Feature set, t: Importance similarity threshold, s:=

Importance similarity measurement {"Information Gain", "Correlation"}
Result: F : Feature set

1 L := leaf nodes from hierarchy H
foreach leaf l ∈ L do

2 D := direct ascendants of node l
foreach node d ∈ D do

3 similarity = 0
if s == "Information Gain" then

4 similarity = 1-ABS(IGweight(d)-IGweight(l))

5 else
6 similarity =Correlation(d,l)

7 end
8 if similarity ≥ threshold then
9 remove l from F

remove l from H
break

10 end
11 end
12 add direct ascendants of l to L

13 end

the hierarchy. Then, for each path p it calculates the average information gain of
all features on the path p. All features that have lower information gain than the
average information gain on the path, are removed from the feature space F , and
from the feature hierarchy H . In cases where a feature is located on more than
one path, it is sufficient that the feature has greater information gain than the aver-
age information gain on at least one of the paths. This way, we prevent removing
relevant features. Practically, the paths from the leafs to the root node, as well as
the average information gain per path, can already be precomputed in the initial
selection algorithm. The loop in the lines 3 − 6 is only added for illustrating the
algorithm.

Fig. 6.2a shows an example hierarchical feature set, with the information gain
value of each feature. Applying the initial selection algorithm on that input hier-
archical feature set, using information gain as a relevance similarity measurement,
would reduce the feature set as shown in Fig. 6.2b. We can see that all feature
pairs that have high relevance similarity value, are replaced with only one feature.
However, the feature set still contains features that have a rather small relevance
value. In Fig. 6.2c we can see that running the pruning algorithm, removes the
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Algorithm 2 Algorithm for pruning strategy.
Data: H: Feature hierarchy, F : Feature set
Result: F : Feature set

14 L := leaf nodes from hierarchy H
P := ∅
foreach leaf l ∈ L do

15 p = paths from l to root of H
add p to P

16 end
17 foreach path p ∈ P do
18 avg = Information gain average of path p

foreach node n ∈ path p do
19 if IGweight(n) < avg then
20 remove n from F

remove n from H

21 end
22 end
23 end

unnecessary features.
For n features and m instances, iterating over the features, and computing the

correlation or information gain with each feature’s ancestor takes O(am), given
that a feature has an average of a ancestors.1 Thus, the overall computational
complexity isO(amn). It is, however, noteworthy that the selection of the features
in both algorithms can be executed in parallel.

6.3 Evaluation

We perform an evaluation, both on real and on synthetic datasets, and compare dif-
ferent configurations of our approach to standard approaches for feature selection,
as well as the approaches described in Section 13.2.

6.3.1 Datasets

In our evaluation, we used five real-world datasets and six synthetically generated
datasets. The real-world datasets cover different domains, and are used for different
classification tasks. Initially, the datasets contained only the instances with a given
class label, which afterwards were extended with hierarchical features.

For generating the hierarchical features, we used the RapidMiner Linked Open
Data extension [229], which is able to identify Linked Open Data resources inside

1a is 1 in the absence of multiple inheritance, and close to 1 in most practical cases.
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Figure 6.2: Illustration of the two steps of the proposed hierarchical selection strat-
egy

the given datasets, and extract different types of features from any Linked Open
Data source. In particular, we used DBpedia Spotlight [174], which annotates a
text with concepts in DBpedia, a structured data version of Wikipedia [162]. From
those, we can extract further features, such as the types of the concepts found in a
text. For example, when the concept Kobe Bryant is found in a text, we can extract
a hierarchy of types (such as Basketball Player < Athlete < Person), as well as
a hierarchy of categories (such as Shooting Guards < Basketball < Sports). The
generation of the features is independent from the class labels of the instances (i.e.,
the classification task), and it is completely unbiased towards any of the feature
selection approaches.

The following datasets were used in the evaluation (see Table 6.1):

• Sports Tweets T dataset was used for existing Twitter topic classifier2, where the
classification task is to identify sports related tweets. The hierarchical features
were generated by extracting all types of the discovered DBpedia concepts in
each tweet.

• Sports Tweets C is the same dataset as the previous one, but using categories
instead of types.

• The Cities dataset was compiled from the Mercer ranking list of the most and
the least livable cities, as described in [219]. The classification task is to classify
each city into high, medium, and low livability. The hierarchical features were
generated by extracting the types for each city.

• The NY Daily dataset is a set of crawled news texts, which are augmented with
sentiment scores3. Again, the hierarchical features were generated by extracting
types.

• The StumbleUpon dataset is the training dataset used for the StumbleUpon Ever-
green Classification Challenge4. To generate the hierarchical features, we used
2https://github.com/vinaykola/twitter-topic-classifier/blob/master/training.txt
3http://dws.informatik.uni-mannheim.de/en/research/identifying-disputed-topics-in-the-news
4https://www.kaggle.com/c/stumbleupon
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Table 6.1: Evaluation Datasets.

Name Features # Instances Class Labels # Features
Sports Tweets T DBpedia Direct Types 1,179 positive(523); negative(656) 4,082
Sports Tweets C DBpedia Categories 1,179 positive(523); negative(656) 10,883

Cities DBpedia Direct Types 212 high(67); medium(106); low(39) 727
NY Daily Headings DBpedia Direct Types 1,016 positive(580); negative(436) 5,145

StumbleUpon DMOZ Categories 3,020 positive(1,370); negative(1,650) 3,976

the Open Directory Project5 to extract categories for each URL in the dataset.

To generate the synthetic datasets, we start with generating features in a flat
hierarchy, i.e. all features are on the same level. The initial features were generated
using a polynomial function, and then discretizing each attribute into a binary one.
These features represent the middle layer of the hierarchy, which are then used to
build the hierarchy upwards and downwards. The hierarchical feature implication
(6.1) and the transitivity rule (6.2) hold for all generated features in the hierarchy.
By merging the predecessors of two or more neighboring nodes from the middle
layer, we are able to create more complex branches inside the hierarchy. We control
the depth and the branching factor of the hierarchy with two parameters D and B,
respectively. Each of the datasets that we use for the evaluation contains 1000
instances, and contains 300 features in the middle layer. The datasets are shown in
Table 6.2.

6.3.2 Experiment Setup

In order to demonstrate the effectiveness of our proposed feature selection in hi-
erarchical feature space, we compare the proposed approach with the following
methods:

• CompleteFS: the complete feature set, without any filtering.

• SIG: standard feature selection based on information gain value.

• SC: Standard feature selection based on feature correlation.

• TSEL Lift: tree selection approach proposed in [133], which selects the most
representative features from each hierarchical branch based on the lift value.

• TSEL IG: this approach follows the same algorithm as TSEL Lift, but uses infor-
mation gain instead of lift.

• HillClimbing: bottom-up hill-climbing approach proposed in [320].We use k =
10 for the kNN classifier used for scoring.

• GreedyTopDown: greedy based top-down approach described in [171], which
tries to select the most valuable features from different levels of the hierarchy.
5http://www.dmoz.org/
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Table 6.2: Synthetic Evaluation Datasets.

Name Feature Generation Strategy # Instances Classes # Features
S-D2-B2 D=2; B=2 1,000 positive(500); negative(500) 1,201
S-D2-B5 D=2; B=5 1,000 positive(500); negative(500) 1,021
S-D2-B10 D=2; B=10 1,000 positive(500); negative(500) 961
S-D4-B2 D=4; B=2 1,000 positive(500); negative(500) 2,101
S-D4-B5 D=4; B=5 1,000 positive(500); negative(500) 1,741
S-D4-B10 D=4; B=10 1,000 positive(500); negative(500) 1,621

• initialSHSEL IG and initialSHSEL C: our proposed initial selection approach
shown with Algorithm 1, using information gain and correlation as relevance
similarity measurement, respectively.

• pruneSHSEL IG and pruneSHSEL C: our proposed pruning selection approach
shown with Algorithm 2, applied on previously reduced feature set, using ini-
tialSHSEL IG and initialSHSEL C, respectively.

For all algorithms involving a threshold (i.e., SIG, SC, and the variants of SHSEL),
we use thresholds between 0 and 1 with a step width of 0.01.

For conducting the experiments, we used the RapidMiner machine learning
platform and the RapidMiner development library. For SIG and SC, we used the
built-in RapidMiner operators. The proposed approach for feature selection, as
well as all other related approaches, were implemented in a separate operator as
part of the RapidMiner Linked Open Data extension. All experiments were run us-
ing standard laptop computer with 8GB of RAM and Intel Core i7-3540M 3.0GHz
CPU. The RapidMiner processes and datasets used for the evaluation can be found
online6.

6.3.3 Results

To evaluate how well the feature selection approaches perform, we use three classi-
fiers for each approach on all datasets, i.e., Naïve Bayes, k-Nearest Neighbors (with
k = 3), and Support Vector Machine. For the latter, we use Platt’s sequential min-
imal optimization algorithm and a polynomial kernel function [236]. For each of
the classifiers we were using the default parameters values in RapidMiner, and no
further parameter tuning was undertaken. The classification results are calculated
using stratified 10-fold cross validation, where the feature selection is performed
separately for each cross-validation fold. For each approach, we report accuracy,
feature space compression (6.4), and their harmonic mean.

6http://dws.informatik.uni-mannheim.de/en/research/feature-selection-in-hierarchical-feature-
spaces



6.3. EVALUATION 85

Ta
bl

e
6.

3:
R

es
ul

ts
on

re
al

w
or

ld
da

ta
se

ts

Sp
or

ts
Tw

ee
ts

T
Sp

or
ts

Tw
ee

ts
C

St
um

bl
eU

po
n

C
iti

es
N

Y
D

ai
ly

H
ea

di
ng

s
N

B
K

N
N

SV
M

N
B

K
N

N
SV

M
N

B
K

N
N

SV
M

N
B

K
N

N
SV

M
N

B
K

N
N

SV
M

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

C
om

pl
et

eF
S

.6
55

.7
59

.7
97

.9
43

.9
20

.9
46

.5
82

.6
99

.7
30

.6
25

.5
62

.6
84

.5
34

.5
86

.5
77

in
iti

al
SH

SE
L

IG
.8

36
.7

68
.8

24
.9

74
.7

68
.9

53
.6

61
.7

09
.7

33
.6

71
.6

09
.6

74
.6

88
.6

29
.6

35
in

iti
al

SH
SE

L
C

.8
19

.7
65

.8
11

.9
46

.9
37

.9
53

.6
89

.7
23

.7
32

.6
40

.6
71

.6
83

.5
47

.5
80

.5
96

pr
un

eS
H

SE
L

IG
.7

91
.7

93
.7

73
.9

09
.9

09
.9

46
.7

17
.6

95
.7

37
.6

87
.6

69
.6

89
.6

88
.6

59
.6

71
pr

un
eS

H
SE

L
C

.7
86

.7
91

.7
72

.9
46

.9
18

.9
35

.7
11

.7
07

.7
32

.6
56

.6
87

.6
46

.6
65

.6
59

.6
61

SI
G

.8
19

.7
88

.8
14

.9
66

.9
36

.9
40

.6
81

.7
07

.7
29

.6
56

.6
40

.6
71

.6
75

.6
52

.6
68

SC
.8

16
.7

65
.8

13
.9

37
.9

18
.9

32
.5

87
.7

11
.7

26
.6

25
.6

56
.6

77
.5

34
.5

83
.6

06
T

SE
L

L
if

t
.6

41
.7

40
.7

87
.8

36
.8

55
.8

93
.5

70
.6

13
.6

90
0

0
0

.4
98

.5
44

.5
65

T
SE

L
IG

.6
32

.7
34

.7
82

.9
23

.9
09

.9
35

.5
79

.6
61

.7
24

.6
40

.5
80

.5
80

.5
21

.5
60

.6
10

H
ill

C
lim

bi
ng

.5
28

.6
47

.7
42

.8
23

.8
36

.8
76

.5
48

.6
53

.6
83

.6
22

.5
62

.5
51

.5
73

.5
83

.5
30

G
re

ed
yT

op
D

ow
n

.6
58

.7
88

.8
00

.9
43

.9
29

.9
44

.5
82

.6
98

.7
27

.6
25

.5
62

.6
79

.5
34

.5
70

.5
95

Fe
at

ur
e

Sp
ac

e
C

om
pr

es
si

on
in

iti
al

SH
SE

L
IG

.4
56

.2
07

.2
22

.3
18

.7
08

.2
88

.6
72

.8
43

.6
42

.7
81

.9
02

.7
79

.8
58

.3
22

.6
31

in
iti

al
SH

SE
L

C
.2

31
.1

73
.2

90
.3

21
.2

64
.2

28
.9

93
.4

45
.6

44
.1

84
.1

21
.1

16
.2

85
.5

72
.7

90
pr

un
eS

H
SE

L
IG

.9
85

.9
86

.9
69

.8
95

.9
07

.9
16

.9
76

.9
57

.9
75

.8
23

.4
66

.4
52

.9
12

.8
17

.8
17

pr
un

eS
H

SE
L

C
.9

71
.9

65
.9

65
.8

97
.8

57
.8

61
.9

66
.9

68
.9

59
.3

05
.2

65
.3

08
.5

19
.5

86
.5

66
SI

G
.3

60
.7

41
.0

38
.3

80
.8

47
.5

74
.9

40
.6

15
.6

04
.7

74
.7

75
04

.2
40

.2
89

.5
65

SC
.6

67
.7

12
.6

35
.8

87
.7

10
.7

92
.5

85
.8

21
.7

12
.6

31
.7

04
.5

98
.6

32
.9

27
.6

20
T

SE
L

L
if

t
.2

47
.2

47
.2

47
.5

11
.5

11
.5

11
.4

12
.4

12
.4

12
0

0
0

.9
56

.9
56

.9
56

T
SE

L
IG

.9
20

.9
20

.9
20

.5
22

.5
22

.5
22

.4
71

.4
71

.4
71

.1
26

.1
26

.1
26

.9
26

.9
26

.9
26

H
ill

C
lim

bi
ng

.7
70

.7
70

.7
70

.7
48

.7
48

.7
48

.7
56

.7
56

.7
56

.8
17

.8
17

.8
17

.7
13

.7
13

.7
13

G
re

ed
yT

op
D

ow
n

.1
36

.1
36

.1
36

.0
30

0.
03

0
.0

30
.2

85
.2

85
.2

85
.0

48
.0

48
.0

48
.1

35
.1

35
.1

35
H

ar
m

on
ic

M
ea

n
of

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

an
d

Fe
at

ur
e

Sp
ac

e
C

om
pr

es
si

on
in

iti
al

SH
SE

L
IG

.5
90

.3
26

.3
50

.4
80

.7
37

.4
42

.6
66

.7
70

.6
84

.7
22

.7
27

.7
23

.7
64

.4
26

.6
33

in
iti

al
SH

SE
L

C
.3

60
.2

82
.4

27
.4

79
.4

12
.3

68
.8

14
.5

51
.6

86
.2

86
.2

05
.1

99
.3

75
.5

76
.6

79
pr

un
eS

H
SE

L
IG

.8
77

.8
79

.8
60

.9
02

.9
08

.9
31

.8
27

.8
05

.8
40

.7
49

.5
49

.5
46

.7
84

.7
29

.7
37

pr
un

eS
H

SE
L

C
.8

69
.8

69
.8

58
.9

21
.8

86
.8

96
.8

20
.8

17
.8

30
.4

16
.3

83
.4

17
.5

83
.6

20
.6

10
SI

G
.5

00
.7

64
.0

73
.5

45
.8

89
.7

13
.7

89
.6

58
.6

60
.7

10
.7

01
08

.3
54

.4
01

.6
12

SC
.7

34
.7

38
.7

13
.9

11
.8

01
.8

56
.5

86
.7

62
.7

19
.6

28
.6

79
.6

35
.5

79
.7

16
.6

13
T

SE
L

L
if

t
.3

56
.3

70
.3

76
.6

34
.6

40
.6

50
.4

79
.4

93
.5

16
0

0
0

.6
55

.6
93

.7
11

T
SE

L
IG

.7
49

.8
17

.8
46

.6
67

.6
63

.6
70

.5
20

.5
50

.5
71

.2
11

.2
07

.2
07

.6
67

.6
98

.7
35

H
ill

C
lim

bi
ng

.6
26

.7
03

.7
56

.7
84

.7
90

.8
07

.6
36

.7
01

.7
18

.7
06

.6
66

.6
58

.6
35

.6
41

.6
08

G
re

ed
yT

op
D

ow
n

.2
25

.2
32

.2
32

0.
05

8
.0

58
.0

58
.3

83
.4

05
.4

09
.0

89
.0

88
.0

89
.2

16
.2

19
.2

21



86 CHAPTER 6. FEATURE SELECTION

1

10

100

1000

10000

Sports Tweets T Sports Tweets C StumbleUpon Cities NY Daily Headings

initialSHSEL IG

initialSHSEL C

pruneSHSEL IG

pruneSHSEL C

SIG

SC

TSEL Lift

TSEL IG

HillClimbing

GreedyTopDown

1000

10000

Figure 6.3: Runtime (seconds) - Real World Datasets

Results on Real World Datasets

Table 6.3 shows the results of all approaches. Because of the space constrains, for
the SIG and SC approaches, as well as for our proposed approaches, we show only
the best achieved results. The best results for each classification model are marked
in bold. As we can observe from the table, our proposed approach outperforms
all other approaches in all five datasets for both classifiers in terms of accuracy.
Furthermore, we can conclude that our proposed approach delivers the best feature
space compression for four out of five datasets. When looking at the harmonic
mean, our approach also outperforms all other approaches, most often with a large
gap. From the results for the harmonic mean we can conclude that the pruneSHSEL
IG approach, in most of the cases, delivers the best results

Additionally, we report the runtime of all approaches on different datasets in
Fig. 6.3. The runtime of our approaches is comparable to the standard feature selec-
tion approach, SIG, runtime. The HillClimbing approach has the longest runtime
due to the repetitive calculation of the kNN for each instance. Also, the standard
feature selection approach SC shows a long runtime, which is due to the computa-
tion of correlation between all pairs of features in the feature set.

Results on Synthetic Datasets

Table 6.4 shows the results for the different synthetic datasets. Our approaches
achieve the best results, or same results as the standard feature selection approach
SIG. The results for the feature space compression are rather mixed, while again,
our approach outperforms all other approaches in terms of the harmonic mean of
accuracy and feature space compression. The runtimes for the synthetic datasets,
which we omit here, show the same characteristics as for the real-world datasets.

Overall, pruneSHSEL IG delivers the best results on average, with an impor-
tance similarity threshold t in the interval [0.99; 0.9999]. When using correlation,
the results show that t should be chosen greater than 0.6. However, the selection of
the approach and the parameters’ values highly depends on the given dataset, the
given data mining task, and the data mining algorithm to be used.
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6.4 Conclusion and Outlook

In this chapter, we have proposed a feature selection method exploiting hierarchic
relations between features. It runs in two steps: it first removes redundant features
along the hierarchy’s paths, and then prunes the remaining set based on the fea-
tures’ predictive power. Our evaluation has shown that the approach outperforms
standard feature selection techniques as well as with recent approaches which use
hierarchies.

So far, we have only considered classification problems. A generalizing of the
pruning step to tasks other than classification would be an interesting extension.
While a variant for regression tasks seems to be rather straight forward, other prob-
lems, like association rule mining, clustering, or outlier detection, would probably
require entirely different pruning strategies.

Furthermore, we have only regarded simple hierarchies so far. When features
are organized in a complex ontology, there are other relations as well, which may
be exploited for feature selection. Generalizing the approach to arbitrary relations
between features is also a relevant direction of future work.



Chapter 7

Mining the Web of Linked Data
with RapidMiner

As shown in chapter 2, the Web of Linked Data contains a collection of ma-
chine processable, interlinked datasets from various domains, ranging from general
cross-domain knowledge sources to government, library and media data, which to-
day comprises roughly a thousand datasets [21, 267]. While many domain-specific
applications use Linked Open Data, general-purpose applications rarely go beyond
displaying the mere data, and provide little means of deriving additional knowledge
from the data.

At the same time, sophisticated data mining platforms exist, which support
the user with finding patterns in data, providing meaningful visualizations, etc.
What is missing is a bridge between the vast amount of data on the one hand, and
intelligent data analysis tools on the other hand. Given a data analysis problem,
a data analyst should be able to automatically find suitable data from different
relevant data sources, which will then be combined and cleansed, and served to the
user for further analysis. This data collection, preparation, and fusion process is
an essential part of the data analysis workflow [85], however, it is also one of the
most time consuming parts, constituting roughly half of the costs in data analytics
projects [35]. Furthermore, since the step is time consuming, a data analyst most
often makes a heuristic selection of data sources based on his a priori assumptions,
and hence is subject to the selection bias. Despite these issues, automation at that
stage of the data processing step is still rarely achieved.

In this chapter, we discuss how the Web of Linked Data can be mined using
the full functionality of the state of the art data mining environment RapidMiner1

[122]. We introduce an extension to RapidMiner, which allows for bridging the
gap between the Web of Data and data mining, and which can be used for carrying
out sophisticated analysis tasks on and with Linked Open Data. The extension
provides means to automatically connect local data to background knowledge from
Linked Open Data, or load data from the desired Linked Open Data source into the

1http://www.rapidminer.com/
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RapidMiner platform, which itself provides more than 400 operators for analyzing
data, including classification, clustering, and association analysis.

RapidMiner is a programming-free data analysis platform, which allows the
user to design data analysis processes in a plug-and-play fashion by wiring oper-
ators. Furthermore, functionality can be added to RapidMiner by developing ex-
tensions, which are made available on the RapidMiner Marketplace2. The Rapid-
Miner Linked Open Data extension adds operators for loading data from datasets
within Linked Open Data, as well as autonomously following RDF links to other
datasets and gathering additional data from there. Furthermore, the extension sup-
ports schema matching for data gathered from different datasets.

As the operators from that extension can be combined with all RapidMiner
built-in operators, as well as those from other extensions (e.g., for time series anal-
ysis), complex data analysis processes on Linked Open Data can be built. Such
processes can automatically combine and integrate data from different datasets and
support the user in making sense of the integrated data.

The work presented in this chapter has been published before as: “Petar Ris-
toski, Christian Bizer, Heiko Paulheim: Mining the web of linked data with
rapidminer. Web Semantics: Science, Services and Agents on the World Wide
Web, Vol 35, pages 142–151, 2015.” [246].

7.1 Description

RapidMiner is a data mining platform, in which data mining and analysis processes
are designed from elementary building blocks, so called operators. Each operator
performs a specific action on data, e.g., loading and storing data, transforming
data, or inferring a model on data. The user can compose a process from operators
by placing them on a canvas and wiring their input and output ports, as shown in
Fig. 7.2.

The RapidMiner Linked Open Data extension adds a set of operators to Rapid-
Miner, which can be used in data mining processes and combined with Rapid-
Miner built-in operators, as well as other operators. The operators in the extension
fall into different categories: data import, data linking, feature generation, schema
matching, and feature subset selection.

7.1.1 Data Import

RapidMiner itself provides import operators for different data formats (e.g., Excel,
CSV, XML). The Linked Open Data extension adds two import operators:

• A SPARQL Importer lets the user specify a SPARQL endpoint or a local RDF
model, and a SPARQL query, and loads the query results table into RapidMiner.

2https://marketplace.rapidminer.com/

https://marketplace.rapidminer.com/
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For local RDF models, SPARQL queries can also be executed with RDFS and
different flavors of OWL inference [124].

• A Data Cube Importer can be used for datasets published using the RDF Data
Cube vocabulary3. Following the Linked Data Cube Explorer (LDCX) prototype
described in [139], the importer provides a wizard which lets the user select the
dimensions to use, and creates a pivot table with the selected data.

7.1.2 Data Linking

In order to combine a local, potentially non-RDF dataset (e.g., data in a CSV file
or a database) with data from the LOD cloud, links from the local dataset to remote
LOD cloud datasets have to be established first. For that purpose, different linking
operators are implemented in the extension:

• The Pattern-based linker creates URIs based on a string pattern. If the pattern a
dataset uses for constructing its URIs is known, this is the fastest and most ac-
curate way to construct URIs. For example, the RDF Book Mashup [20] dataset
uses a URI pattern for books which is based on the ISBN.4

• The Label-based linker searches for resources whose label is similar to an at-
tribute in the local dataset, e.g., the product name. It can only be used on datasets
providing a SPARQL interface and is slower than the pattern-based linker, but
can also be applied if the link patterns are not known, or cannot be constructed
automatically.

• The Lookup linker uses a specific search interface5 for the DBpedia dataset
[162]. It also finds resources by alternative names (e.g., NYC or NY City for
New York City). For DBpedia, it usually provides the best accuracy.

• For processing text, a linker using DBpedia Spotlight6 [174] has also been in-
cluded, which identifies multiple DBpedia entities in a textual attribute.

• The SameAs linker can be used to follow links from one dataset to another. Since
many datasets link to DBpedia, a typical setup to link to an arbitrary LOD dataset
is a two-step approach: the Lookup linker first establishes links to DBpedia
at high accuracy. Then, owl:sameAs links between DBpedia and the target
dataset are exploited to set the links to the latter.

3http://www.w3.org/TR/vocab-data-cube/
4In cases where additional processing is required, such as removing dashes in an ISBN, the op-

erator may be combined with the built-in Generate Attributes operator, which can perform such
operations.

5http://lookup.dbpedia.org/
6http://spotlight.dbpedia.org/

http://www.w3.org/TR/vocab-data-cube/
http://lookup.dbpedia.org/
http://spotlight.dbpedia.org/
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7.1.3 Feature Generation

For creating new data mining features from Linked Open Data sources, different
strategies are implemented in the extension’s operators (some already described in
Chapter 5):

• The Direct Types generator extracts all types (i.e., objects of rdf:type) for a
linked resource. For datasets such as YAGO7, those types are often very infor-
mative, for example, products may have concise types such as Smartphone or
AndroidDevice.

• The Datatype Properties generator extracts all datatype properties, i.e., numeri-
cal and date information (such as the price and release date of products).

• The Relations generator creates a binary or a numeric attribute for each property
that connects a resource to other resource. For example, if a dataset contains
awards won by products, an award attribute would be generated, either as a
binary feature stating whether the product won an award or not, or a numerical
one stating the number of awards.

• The Qualified Relations generator also generates binary or numeric attributes for
properties, but takes the type of the related resource into account. For example,
for a product linked to a manufacturer of type GermanCompany, a feature stating
whether the product has been manufactured by a German company or not would
be created.

• The Specific Relations generator creates features for a user-specified relation,
such as Wikipedia categories included in DBpedia. It also allows for following
property chains spanned by a user-defined property, e.g., following the skos:broader
relation for Wikipedia categories in DBpedia in order to extract features for
super-categories as well.

• In addition to those automatic generators, it is also possible to control the at-
tribute generation process in a more fine-grained manner by issuing specific
SPARQL queries using the Custom SPARQL generator.

Kernel functions are distance functions that hold between two data instances in
some arbitrary space. They are commonly used in Support Vector Machines (SVMs),
in which they allow training a classifier without explicitly transforming the data
into a feature vector representation [48]. However, kernel functions can be used
to transform, e.g., RDF data into a propositional feature vector. The Linked Open
Data Extension integrates such operators for two types of kernels from the Data2Semantics
Mustard library8:

7http://yago-knowledge.org
8https://github.com/Data2Semantics/mustard

http://yago-knowledge.org
https://github.com/Data2Semantics/mustard
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• RDF Walk Count Kernel counts the different walks in the subgraphs (up to the
provided graph depth) around the instances nodes. The maximum length of the
walks can be specified as a parameter. For this kernel, there are four different
variants:

– Fast: This is a fast approximation of counting all the walks in the subgraph,
which is done with the Full setting.

– Root: Only considers walks that start with the instance node (i.e. the root)
[58].

– Tree: Counts all the walks in the subtree that is rooted in the instance node.
This is faster than the Full subgraph version, since a tree does not contain
cycles.

– Full: Counts all the walks in the subgraph.

• RDF WL Sub Tree Kernel counts the different full subtrees in the subgraphs (up
to the provided graph depth) around the instances nodes, using the Weisfeiler-
Lehman algorithm [277]. The maximum size of the subtrees is controlled by the
number of iterations, which can be specified parameter. Like for the RDF Walk
Count Kernel, there are four different variants of this kernel:

– Fast: This is a fast approximation of counting all the subtrees in the subgraph,
which is done with the Full setting [57].

– Root: Only considers subtrees that start with the instance node (i.e. the root).

– Tree: Counts all the subtrees in the subtree that is rooted in the instance node.
This is faster than the Full subgraph version, since a tree does not contain
cycles.

– Full: Counts all the subtrees in the subgraph.

All of those feature generation operators can work in three different modes:

1. using a predefined SPARQL endpoint,

2. dereferencing URIs and processing the RDF returned from an HTTP request,
or

3. using a local RDF model.

While the SPARQL-based variant is usually faster, the dereferencing URIs variant
is more versatile, as it can also work be applied to datasets not offering a SPARQL
endpoint.

Furthermore, all mentioned generators are able to retrieve the hierarchical rela-
tions between the features, e.g., the direct types generator examines the rdfs:subClassOf
property. Such hierarchies may be exploited for feature selection (see below). The
extension also offers a graphical visualization of such hierarchies that might be use-
ful for a better understanding of the data. For example, an excerpt of the retrieved
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Figure 7.1: Hierarchical relations (excerpt) between the features retrieved from the
YAGO ontology in DBpedia for instances of type Country, visualized in Rapid-
Miner.

hierarchy from the YAGO ontology in DBpedia for instances of type Country is
depicted in Figure 7.1.

When generating data mining features from graph based data, different propo-
sitionalization strategies can be applied. For example, the standard binary or nu-
meric (i.e., counting) representation can be used, or more sophisticated representa-
tion strategies that use some graph characteristics might be introduced. The strat-
egy of creating features has an influence on the data mining result. For example,
proximity-based algorithms like k-NN will behave differently depending on the
strategy used to create numerical features, as the strategy has a direct influence on
most distance functions.

So far, the extension supports four strategies for generating a feature for prop-
erties connected with a resource:

• Creating a binary feature for each relation.

• Creating a count feature for each relation, specifying the number of resources
connected by this relation.

• Creating a relative count feature for each relation, specifying the fraction of
resources connected by this relation. For a resource that has total number of P
relations, the relative count value for a relation p is defined as np

P , where np is
the number of relations of type p.

• Creating a TF-IDF feature for each relation, whose value is np

P ·log
N

|{r|∃r′:p(r,r′)}| ,
where N is the overall number of resources, and |{r|∃r′ : p(r, r′)}| denotes the
number of resources for which the relation p exists.
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In [252], we have shown that the propositionalization strategy has an influence on
the result quality of a data mining process (see also section 7.3.2).

7.1.4 Feature Subset Selection

All standard methods for feature subset selection can be used in conjunction with
the RapidMiner Linked Open Data extension, as well as specialized operators from
the Feature Subset Selection extension9. Furthermore, the Linked Open Data ex-
tension provides the Simple Hierarchy Filter, which exploits the schema informa-
tion of a Linked Open Data source, and often achieves a better compression of the
feature set than standard, non-hierarchical operators, without losing valuable fea-
tures. The operator implements different hierarchical feature selection strategies
[133, 253, 320]. As shown in [253] and Chapter 5, those algorithms often lead to a
better compression of the feature space and a reduction of overfitting by avoiding
the selection of too specific features (see also section 7.3.3).

7.1.5 Exploring Links

The feature generation algorithms above so far use only one input URI, and obtain
features from that URI. This means that they are usually restricted to one dataset.
For making use of the entire LOD cloud, the extension provides the Link Explorer
meta operator, which follows links of a given type (by default: owl:sameAs) to
a specified depth, and applies a set of operators to each resource discovered by that
(see Fig. 7.2). A typical configuration is to use the link explorer in combination
with the datatype properties generator, which results in following links from one
starting point, and collect all the datatype properties for all linked resources.

Since the datasets that are used by that meta operator are not known a priori,
and there is no reliable way of discovering a SPARQL endpoint given a resource
URI [226], the link explorer only works by derefencing URIs, but not by means of
SPARQL queries.

7.1.6 Data Integration

When combining data from different LOD sources, those usually use different
schemas. For example, the population of a country can be contained in differ-
ent datasets, using a different datatype property to denote the information. In order
to use that data more effectively, such attributes can be merged into one by apply-
ing schema matching. The extension provides the PARIS LOD Matcher, which is
an adaptation of the PARIS framework [290], and is able to perform alignment of
instances, relations and classes. The matching operator outputs all discovered cor-
respondences. Those can then be passed to the Data Fusion operator, which offers
various conflict resolution strategies [22], e.g., majority voting, average, median,
etc.

9http://sourceforge.net/projects/rm-featselext/

http://sourceforge.net/projects/rm-featselext/
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3a 3b

1 2 3 4 5

Figure 7.2: Overview of the process used in the running example, including the
nested subprocess in the link explorer operator

7.2 Example Use Case

In our example use case, we use an RDF data cube with World Bank economic
indicators data10 as a starting point. The data cube contains time-indexed data for
more than 1,000 indicators in over 200 countries. As shown in Figure 7.2, the
process starts with importing data from that data cube (1). To that end, a wizard is
used, which lets the user select the indicator(s) of interest. The complete data cube
import wizard is shown in Figure 7.3. In our example, in the first step we select
the indicator “Scientific and technical journal articles”, which reports the number
of such articles per country and year. In the second step, we select the dimensions
and the measures.

As a row dimension, we select the countries, and as column dimensions, we
select the time-indexed values for the number of scientific and technical journal
articles. In the final step of the import wizard, we are able to select the values
for the previously selected dimensions. After completing the wizard, the resulting
table is generated. The indicator is present for 165 countries, so our resulting
data table contains 165 rows, with columns per year, depicting the target value
from 1960 to 2011. We are interested in understanding which factors drive a large
increase in that indicator.

In the next step, we set links of the data imported from the RDF cube to other
datasets (2). In our example, we use the label-based linker to find countries in
DBpedia which have the same name as the country in the imported slice of the data
cube.

The subsequent step is identifying more relevant datasets by following RDF
links, and getting the data from there. This is carried out by the link explorer
operator (3). Starting from DBpedia, we follow all owl:sameAs links to a depth
of 2. Inside the link explorer, we collect datatype properties (3a) and also perform

10http://worldbank.270a.info

http://worldbank.270a.info


7.2. EXAMPLE USE CASE 97

Figure 7.3: Data cube import wizard

the matching (3b). We end up with data from ten different datasets, i.e., DBpedia11,
LinkedGeoData12, Eurostat13, Geonames14, WHO’s Global Health Observatory15,
Linked Energy Data16, OpenCyc17, World Factbook18, and YAGO19.

The initial set of datatype properties extracted has 1, 329 attributes, which,
after processing by schema matching and conflict resolution, are fused to 1, 090
attributes. For example, we find six different sources stating the population of
countries by following RDF links between datasets, five of which are merged into
one single attribute. A detailed evaluation of the feature consolidation process is
given in Section 7.3.4

Once all the attributes have been extracted and matched, the actual analysis
starts. First, the Generate Aggregate operator (4), which is a RapidMiner built-in
operator, computes the increase in scientific publications from the individual per-

11http://dbpedia.org
12http://linkedgeodata.org
13http://eurostat.linked-statistics.org/ and http://wifo5-

03.informatik.uni-mannheim.de/eurostat/
14http://sws.geonames.org/
15http://gho.aksw.org/
16http://en.openei.org/lod/
17http://sw.opencyc.org/
18http://wifo5-03.informatik.uni-mannheim.de/factbook/
19http://yago-knowledge.org

http://dbpedia.org
http://linkedgeodata.org
http://eurostat.linked-statistics.org/
http://wifo5-03.informatik.uni-mannheim.de/eurostat/
http://wifo5-03.informatik.uni-mannheim.de/eurostat/
http://sws.geonames.org/
http://gho.aksw.org/
http://en.openei.org/lod/
http://sw.opencyc.org/
http://wifo5-03.informatik.uni-mannheim.de/factbook/
http://yago-knowledge.org
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year values. Then, a correlation matrix is computed (5), again with a RapidMiner
built-in operator, to find interesting factors that explain an increase in scientific
publications.

From all the additional attributes we found by following links to different
datasets in the Web of Data, we are now able to identify various attributes that
explain a strong increase in scientific publications:

• The fragile state index (FSI) and the Human Development Index (HDI) are ag-
gregate measures comprised of different social, political and health indicators,
and both are good indicators for the growth of scientific publications.

• The GDP per capita is also strongly correlated with the increase in scientific
publications. This hints at wealthier countries being able to invest more federal
money into science funding.

• For European countries, the number of EU seats shows a significant correlation
with the increase in scientific publications. As larger countries have more seats
(e.g,. Germany, France, UK), this may hint at an increasing fraction of EU
funding for science going being attributed to those countries [34].

• Additionally, many climate indicators show a strong correlation with the in-
crease in scientific publications: precipitation has a negative correlation with
the increase, while hours of sun and temperature averages are positively corre-
lated. This can be explained by an unequal distribution of wealth across different
climate zones [262], with the wealthier nations often located in more moderate
climate zones.20

So far, these results have concentrated on one specific world bank indicator,
while, as stated above, there are more than a thousand. We have conducted similar
experiments with other indicators as well, revealing different findings. For exam-
ple, we looked into the savings of energy consumption over the last years. Here, we
can observe, e.g., a correlation with the GDP, showing that wealthier countries can
afford putting more efforts into saving energy, and also have the economic means
to replace old, energy inefficient infrastructure with new, more energy efficient fa-
cilities21

In summary, the experiment shows that

• we can enrich a dataset at hand with external knowledge from the LOD cloud,

• we can follow RDF links between datasets, and, by that, gather and combine
data from different sources to solve a task at hand, and

• we can use analysis methods that identify relevant answers to a question.
20A more tongue-in-cheek interpretation may be that if the weather is bad, scientists spend more

time in the lab writing journal articles.
21See., e.g., http://www.forbes.com/2008/07/03/energy-efficiency-

japan-biz-energy_cx_jz_0707efficiency_countries.html

http://www.forbes.com/2008/07/03/energy-efficiency-japan-biz-energy_cx_jz_0707efficiency_countries.html
http://www.forbes.com/2008/07/03/energy-efficiency-japan-biz-energy_cx_jz_0707efficiency_countries.html
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7.3 Evaluation

Many of the algorithms implemented by the RapidMiner LOD extension have been
evaluated in different settings. In this section, we point out the key evaluations for
the most important features of the extension, and introduce additional evaluations
of specific aspects of the extension.

7.3.1 Feature Generation

The feature generation strategies have been evaluated in a prior publication. In
[229] we used the Auto MPG dataset22, a dataset that captures different charac-
teristics of cars (such as cyclinders, transmission, horsepower), and the target is
to predict the fuel consumption in Miles per Gallon (MPG). The original dataset
contains 398 cars, each having a name, seven data attributes, and the MPG target
attribute. The goal is to predict the fuel consumption from the characteristics of
the car, i.e., a regression model has to be learned. Using our extension, we added
different new attributes from the DBpedia dataset, i.e., direct types and categories.

For the prediction of the MPG attribute, we showed that when using the M5Rules
algorithm [123], the relative error of the prediction is only half as large as the error
on the original, non-enriched data.

The new attributes also provide insights that are not possible from the original
dataset alone. For example, UK cars have a lower consumption than others (while
the origin attribute contained in the original dataset only differentiates between
America, Europe, and Asia). Front-wheel-drive cars have a lower consumption
than rear-wheel-drive ones (the corresponding category being positively negatively
with MPG at a level of 0.411), mostly due to the fact that they are lighter. Further-
more, a correlation with the car’s design can be observed (e.g., hatchbacks having
a lower consumption than station wagons). All those car characteristics are not
included in the original dataset, but added from DBpedia.

7.3.2 Propositionalization Strategies

In [252] we performed an evaluation on different propositionalization strategies on
three different data-mining tasks, i.e., classification, regression, and outlier detec-
tion, using three different data mining algorithms for each task. The evaluation was
performed for the binary, numerical, relative count, and TF-IDF vector representa-
tion on five different feature sets. The evaluation showed that although the selected
propositionalization strategy has a major impact on the data mining results, it is
difficult to come up with a general recommendation for one strategy, as it depends
on the given data mining task, the dataset at hand, and the data mining algorithm
to be used.

22http://archive.ics.uci.edu/ml/datasets/Auto+MPG

http://archive.ics.uci.edu/ml/datasets/Auto+MPG
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Table 7.1: Feature Consolidation Results

property type #sources #fused sources coverage precision
population numeric 6 5 100.0% 91.07%

area numeric 4 3 97.47% 97.40%
currency string 2 2 96.86% 97.40%

country code string 5 5 95.73% 90.25%

7.3.3 Feature Selection

In [253] we have performed an evaluation of the feature selection approach in
hierarchical feature spaces, on six synthetic and five real world datasets, using three
classification algorithms. Using our hierarchical feature selection approach, we
were able to achieve a feature space compression of up to 95%, without decreasing
the model performance, or in some cases even increasing it. The evaluation has
shown that the approach outperforms standard feature selection techniques as well
as recent hierarchy-aware approaches.

7.3.4 Data Integration

As discussed in our example in Section 7.2, our dataset contained 1, 329 attributes
collected from ten different LOD sources. On that dataset, we first applied the
PARIS LOD Matcher to detect the matching attributes in the dataset, which were
later resolved using the Data Fusion operator.23 After applying the operator, 858
correspondences were discovered. The correspondences were resolved using the
data fusion operator, using majority voting for strings and median for numeric val-
ues as resolution strategy. The fused dataset contained 1, 090 attributes.

We have evaluated both the matching and the fusion approach on four manually
selected properties. First, for each of the properties, we manually counted the
number of LOD sources that provide a value for at least one instance in the dataset.
Then, we counted how many of those properties were matched and fused. The
results are shown in Table 7.1, e.g., for the property population there are six LOD
sources providing the values, but only five were matched and fused.

From the results, we can observe that the matching operator based on the
PARIS approach is able to detect the matching properties with high accuracy. It
only failed to detect one match for the population and area properties, which is
the property from Eurostat. The reason for not detecting the matching property
is that PARIS combines instance and schema level evidence. Since Eurostat pro-
vides mainly data for European countries, but the dataset at hand contains countries
from all the world, there is not enough evidence that the property from the Eurostat
should be matched to the properties from the other sources.

Furthermore, we evaluate the quality of the values of the fused features. For
each instance, we manually retrieved the reference values for each property from

23For the PARIS LOD Matcher, we used the following parameters: literal similarity distance =
levenshtein, number of iteration = 10, alignment acceptance threshold = 0.2, post literal distance
threshold = 0.58 and literal normalization = true.
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Wikipedia. This is a common practice for such a task [36, 335], as there is no gold
standard that can be used. The measures we use for our evaluation are precision
and coverage. Coverage is the percentage of rows from the query table for which a
value is provided. Precision is the percentage of correct values. We treat a numeric
value as a correct match if it does not deviate more than 10% from the reference
value. Table 7.1 shows the resulting precision and coverage values.

The reason for a low precision for the property country code is that for some
of the instances the values of the property differ across different sources, and the
property has high sparsity in some of the sources, like DBpedia. Therefore, the
majority voting strategy for such cases falls back to selecting the first non-null
value provided from some of the sources, as there are no more than one occurrence
of a value for the observed instance.

7.3.5 Time Performances

In this section we perform runtime evalution of the feature generation approaches,
and the runtime for performing data analysis on the generated feature sets. All
experiments were run using standard laptop computer with 4GB of RAM and Intel
Core i7-3540M 3.0GHz CPU.

Scientific and technical journal articles

We measure the time for feature generation when using the complete LOD cloud,
this includes discovering the owl:sameAs links and generating the data, the data
integration, and the time for data analysis, i.e., correlation analysis. We do the
same evaluation when using only DBpedia as a source. To measure the runtime for
feature generation, we repeated the process three times, and report the average.

The results are depicted in Fig. 7.4. It can be observed that the largest portion
of time is consumed by the feature generation step, which, in turn, is dominated by
network access. Here, factors beyond the control of the user play an import role:
reachability and responsiveness of the LOD endpoints used, network latencies, and
intentional delays between requests to respect with access policies, which may
impose maximum request rates.

All factors not influenced by factors originating in online data access, such
as local performance of data analysis, can be addressed by design in RapidMiner,
since there, e.g., are cloud computing services24 as well as the Radoop extension25

for data analysis with Hadoop, which allow for scaling the analytics operations.

Metacritic Movies

To further analyze the critical part, i.e., the feature generation, we have conducted a
controlled scalability experiment, where we examine how the number of instances

24https://rapidminer.com/products/cloud/
25https://rapidminer.com/products/radoop/

https://rapidminer.com/products/cloud/
https://rapidminer.com/products/radoop/
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Figure 7.4: Runtime performances for feature generation, data integration and data
analysis.

Figure 7.5: Features increase rate per strategy (log scale).
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Figure 7.6: Feature generation runtime per strategy (log scale).

Figure 7.7: Naïve Bayes learning runtime (log scale).
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Figure 7.8: k-Nearest Neighbors learning runtime (log scale).

Figure 7.9: Support Vector Machines learning runtime (log scale).
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affects the number of generated features by using types, Wikipedia categories, rela-
tions, and qualified relations as features (cf. section 7.1.3). We measure the time for
generating the feature sets, and the time for learning three different classification
methods, i.e., Naïve Bayes, k-Nearest Neighbors (with k=3), and Support Vector
Machines. Since we are only interested in runtime measurements, not qualitative
results of the data mining process, we do not perform parameter optimization. The
runtime measures reflect the total time in seconds needed for performing 10-fold
cross validation.

For the purpose of the evaluation, we use the Metacritic Movies dataset26. The
Metacritic Movies dataset is retrieved from Metacritic.com27, which contains an
average rating of all time reviews for a list of movies. Each movie is linked to
DBpedia using the movie’s title and the movie’s director. The initial dataset con-
tained around 10, 000 movies, from which we selected 1, 000 movies from the top
of the list, and 1, 000 movies from the bottom of the list. To use the dataset for
classification, we discretize the target variable into “good” and “bad”, using equal
frequency binning. We perform the evaluation on five stratified sub-samples of the
complete dataset with different sizes, i.e., 100, 500, 1, 000, 1, 500 and 2, 000.

In the results, we can see that there are three groups of generators, which show
a different behavior. The smallest number of features are created by relations, a
medium number by types and categories, and the largest number by qualified re-
lations. However, as shown in Fig. 7.5, the number of features do not increase
disproportionally as the number of instances is increased; and there is even a con-
vergence to a stable state for most generators. The runtimes for feature generation
also follow a linear increase, as shown in Fig. 7.6. Figures 7.7, 7.8, and 7.9 show
that the runtimes for data analysis are likewise influenced by the number of features
(and hence the number of instances), however, their contribution to the overall run-
time is low, as discussed above.

7.4 Related Work

The use of Linked Open Data in data mining has been proposed before, and imple-
mentations as RapidMiner extensions as well as proprietary toolkits exist.

The direct predecessor of the RapidMiner LOD extension is the FeGeLOD
toolkit [225], a data preprocessing toolkit based on the Weka platform [106], which
contains basic versions of some of the operators offered by the LOD extension.

Different means to mine data in Linked Open Data sets have been proposed,
e.g., an extension for RapidMiner [200], as well as standalone systems like LiDDM
[140]. In those systems, data can be imported from public SPARQL endpoints us-
ing custom queries, but no means to join that data with local data are given. Cheng
et al. [43] proposes an approach for automated feature generation after the user has

26http://data.dws.informatik.uni-mannheim.de/rmlod/LOD_ML_
Datasets/data/datasets/MetacriticMovies/

27http://www.metacritic.com/browse/movies/score/metascore/all

http://data.dws.informatik.uni-mannheim.de/rmlod/LOD_ML_Datasets/data/datasets/MetacriticMovies/
http://data.dws.informatik.uni-mannheim.de/rmlod/LOD_ML_Datasets/data/datasets/MetacriticMovies/
http://www.metacritic.com/browse/movies/score/metascore/all
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specified the type of features. To do so, similar like the previous approaches, the
users have to specify the SPARQL query, which makes this approach supervised
rather than unsupervised. Mynarz et al. [192] have considered using user specified
SPARQL queries in combination with SPARQL aggregates.

Similarly, the RapidMiner SemWeb Extension [145] is an extension for import-
ing RDF from local files into RapidMiner, using custom SPARQL queries. As
discussed above, RDF is a general graph format, which leads to the problem of
set-valued features when transforming the data into the relational form used in
RapidMiner. To cope with that issue, the extension provides different operators to
transform the set-valued data into a lower-dimensional projection, which can be
processed by standard RapidMiner operators.

Linked Open Data may also be loaded with the RMOnto [239] extension, which
is similar to the SemWeb extension, but comes with a set of tailored relational
learning algorithms and kernel functions. Together, these form a powerful package
of operators, but it is difficult to combine them with built-in RapidMiner operators,
as well as operators from other extensions.

Kauppinen et al. have developed the SPARQL package for R28 [142], which al-
lows importing LOD data in the well known environment for statistical computing
R.

Kernel functions compute the distance between two data instances, by counting
common substructures in the graphs of the instances, i.e. walks, paths and threes.
Graph kernels are used in kernel-based data mining algorithms, e.g., support vector
machines. In the past, many graph kernels have been proposed that are tailored to-
wards specific application [128], or towards specific semantic representation [80].
Only few approaches are general enough to be applied on any given RDF data,
regardless of the data mining task. Lösch et al. [169] introduce two general RDF
graph kernels, based on intersection graphs and intersection trees. Later, the inter-
section tree path kernel was simplified by Vries et al. [58]. In another work, Vries
et al. [57] introduce an approximation of the state-of-the-art Weisfeiler-Lehman
graph kernel algorithm aimed at improving the computation time of the kernel
when applied to RDF. Furthermore, the kernel implementation allows for explicit
calculation of the instances’ feature vectors, instead of pairwise similarities. Two
variants of such kernel-based feature vectors are implemented in the Linked Open
Data extension.

Tiddi et al. [300] introduced the Dedalo framework that traverses LOD to find
commonalities that form explanations for items of a cluster. Given a supervised
data mining task, such an approach could be easily adapted and used as feature
generation approach.

All of those approaches miss a functionality to link local data to remote Linked
Open Data, as in the use case discussed in section 7.2. Furthermore, they often re-
quire expert knowledge on Semantic Web technology, e.g., for formulating custom
SPARQL queries, which is not necessary for our extension. Furthermore, auto-

28http://linkedscience.org/tools/sparql-package-for-r/

http://linkedscience.org/tools/sparql-package-for-r/
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matic fusion of data from different sources is only scarcely supported.
The main use case for application discussed in this chapter, i.e., extending

a given table with data from the web in a data analysis environment, has also
been discussed for other web data than LOD. In RapidMiner, the Finance and
Economics Extension29 offers live access to stock market tickers and other data
sources. For their Excel and BI products, Microsoft offers the Power Query exten-
sion, which also allows extending tables with tables from the web, and also offers
means for data consolidation [326]. A publicly available prototype which provides
for extending local tables with pre-crawled data from HTML tables and Microdata
annotations in web pages as well as Linked Data is the Mannheim Search Join
Engine [163].

7.5 Conclusion and Outlook

In this chapter, we have introduced the RapidMiner Linked Open Data extension.
It provides a set of operators for augmenting existing datasets with additional at-
tributes from open data sources, which often leads to better predictive and descrip-
tive models. The RapidMiner Linked Open Data extension provides operators that
allow for adding such attributes in an automatic, unsupervised manner.

There are different directions of research that are currently pursued in order to
improve the extension. Besides developing new algorithms for the functionality
already included (e.g., for linking and feature selection), there are also some new
functionalities currently being investigated.

The current implementation is rather strict in its sequential process, i.e., it gen-
erates attributes first and filters and reconciles them later. Depending on the gen-
eration strategy used, this can lead to a large number of features being generated
only to be discarded in the subsequent step. To avoid that overhead and improve the
performance, we are working on mechanisms that decide on or estimate the utility
of attribute already during creation and are capable of stopping the generation of
attributes earlier if they seem to be useless.

Furthermore, more sophisticated propositionalization strategies might be de-
veloped. For example, the target variable from the local dataset can be used for
developing supervised weighting approaches, as used for text mining in [98]. Fur-
thermore, we can use the graph properties for calculating feature weights, e.g., the
fan-in and fan-out values of the graph nodes can give a better representation of
the popularity of the resources included in the features. Such a popularity score
might be a good indicator of the feature’s relevance for the data mining task. More
sophisticated popularity scores can be calculated using some of the standard graph
ranking algorithms, e.g., PageRank and HITS.

For feature selection, we have only regarded simple hierarchies so far. If fea-
tures are organized in a complex ontology, there are other relations as well, which

29https://marketplace.rapid-i.com/UpdateServer/faces/product_
details.xhtml?productId=rmx_quantx1

https://marketplace.rapid-i.com/UpdateServer/faces/product_details.xhtml?productId=rmx_quantx1
https://marketplace.rapid-i.com/UpdateServer/faces/product_details.xhtml?productId=rmx_quantx1
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may be exploited for feature selection. Generalizing the approach to arbitrary rela-
tions between features is also a relevant direction of future work.

With respect to data integration, we have only used an off-the-shelf ontol-
ogy matching approach to identify identical features across multiple LOD sources.
In the future, more sophisticated matching approaches can be developed. Those
should be able to handle data types beyond strings and numericals, i.e., dates, co-
ordinates, and various units of measurement. Furthermore, the data source prove-
nance information could be used in the fusion process to give more weight to data
with higher quality and data that is up to date.

More information about the RapidMiner LOD extension, detailed user manual,
and example processes can be found on the extension website30. The extension is
available for free download from the RapidMiner marketplace31 under the AGPL
license32.

30http://dws.informatik.uni-mannheim.de/en/research/rapidminer-
lod-extension/

31https://marketplace.rapid-i.com/UpdateServer/faces/product_
details.xhtml?productId=rmx_lod

32https://www.gnu.org/licenses/agpl-3.0.html

http://dws.informatik.uni-mannheim.de/en/research/rapidminer-lod-extension/
http://dws.informatik.uni-mannheim.de/en/research/rapidminer-lod-extension/
https://marketplace.rapid-i.com/UpdateServer/faces/product_details.xhtml?productId=rmx_lod
https://marketplace.rapid-i.com/UpdateServer/faces/product_details.xhtml?productId=rmx_lod
https://www.gnu.org/licenses/agpl-3.0.html
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Chapter 8

RDF2Vec: RDF Graph
Embeddings for Data Mining

In the previous chapters of the thesis, we introduced several strategies for feature
generation from Semantic Web knowledge graphs that can be used as background
knowledge in various data mining tasks. However, we also saw that such feature
strategies do not scale when the input dataset is large, i.e., the number of generated
features quickly becomes unmanageable.

In this chapter, we introduce an approach for Semantic Web knowledge graphs
embedding. In language modeling, vector space word embeddings have been pro-
posed in 2013 by Mikolov et al. [177, 178]. They train neural networks for cre-
ating a low-dimensional, dense representation of words, which show two essential
properties: (a) similar words are close in the vector space, and (b) relations be-
tween pairs of words can be represented as vectors as well, allowing for arithmetic
operations in the vector space. In this work, we adapt those language modeling
approaches for creating a latent representation of entities in RDF graphs. Since
language modeling techniques work on sentences, we first convert the graph into
a set of sequences of entities using two different approaches, i.e., graph walks and
Weisfeiler-Lehman Subtree RDF graph kernels. In the second step, we use those
sequences to train a neural language model, which estimates the likelihood of a
sequence of entities appearing in a graph. Once the training is finished, each entity
in the graph is represented as a vector of latent numerical features. We show that
the properties of word embeddings also hold for RDF entity embeddings, and that
they can be exploited for various tasks.

We use several RDF graphs to show that such latent representation of entities
have high relevance for different data mining tasks. The generation of the enti-
ties’ vectors is task and dataset independent, i.e., we show that once the vectors
are generated, they can be used for machine learning tasks, like classification and
regression. Furthermore, since all entities are represented in a low dimensional fea-
ture space, building the learning models and algorithms becomes more efficient.

110
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The work presented in this chapter has been published before as:“ Petar Ris-
toski, Heiko Paulheim: Rdf2Vec: RFG Graph Embeddings for Data Mining.
Proceedings of the 15th International Semantic Web Conference, Kobe, Japan,
October, 2016."’ [254], “Petar Ristoski, Jessica Rosati, Tommaso Di Noia, Re-
nato de Leone, Heiko Paulheim: RDF2Vec: RDF Graph Embeddings and Their
Applications. The Semantic Web Journal.” [258]

8.1 Approach

In our approach, we adapt neural language models for RDF graph embeddings.
Such approaches take advantage of the word order in text documents, explicitly
modeling the assumption that closer words in a sequence are statistically more
dependent. In the case of RDF graphs, we consider entities and relations between
entities instead of word sequences. Thus, in order to apply such approaches on
RDF graph data, we first have to transform the graph data into sequences of entities,
which can be considered as sentences. Using those sentences, we can train the same
neural language models to represent each entity in the RDF graph as a vector of
numerical values in a latent feature space.

8.1.1 RDF Graph Sub-Structures Extraction

We propose two general approaches for converting graphs into a set of sequences
of entities, i.e, graph walks and Weisfeiler-Lehman Subtree RDF Graph Kernels.
Following Definition 1, the objective of the conversion functions is for each vertex
v ∈ V to generate a set of sequences Sv, where the first token of each sequence
s ∈ Sv is the vertex v followed by a sequence of tokens, which might be edge
labels, vertex identifiers, or any substructure extracted from the RDF graph, in an
order that reflects the relations between the vertex v and the rest of the tokens, as
well as among those tokens.

Graph Walks

In this approach, given a graph G = (V,E), for each vertex v ∈ V , we generate
all graph walks Pv of depth d rooted in vertex v. To generate the walks, we use
the breadth-first algorithm. In the first iteration, the algorithm generates paths by
exploring the direct outgoing edges of the root node vr. The paths generated after
the first iteration will have the following pattern vr → ei, where ei ∈ Evr , and Evr

is the set of all outgoing edges from the root node vr. In the second iteration, for
each of the previously explored edges the algorithm visits the connected vertices.
The paths generated after the second iteration will follow the following pattern vr
→ ei → vi. The algorithm continues until d iterations are reached. The final set
of sequences for the given graph G is the union of the sequences of all the vertices
PG =

⋃
v∈V Pv. The algorithm is shown in Algorithm 1.
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Algorithm 1: Algorithm for generating RDF graph walks
Data: G = (V,E): RDF Graph, d: walk depth
Result: PG: Set of sequences

1 PG = ∅
2 foreach vertex v ∈ V do
3 Q = initialize queue
4 w = initialize walk
5 add v to w
6 add Entry(v, w) to Q
7 while Q is nonempty do
8 entry = deq(Q)
9 currentV ertex = entry.key

10 currentWalk = entry.value
11 if currentWalk.length == d then
12 add currentWalk to PG

13 continue
14 end
15 Ec = currentV ertex.outEdges()
16 foreach vertex e ∈ Ec do
17 w = currentWalk
18 add e to w
19 if w.length == d then
20 add w to PG

21 continue
22 end
23 ve = e.endV ertex()
24 add ve to w
25 add Entry(ve, w) to Q
26 end
27 end
28 end



8.1. APPROACH 113

In the case of large RDF graphs, generating all possible walks for all vertices
results in a large number of walks, which makes the training of the neural language
model highly inefficient. To avoid this problem, we suggest for each vertex in the
graph to generate only a subset, with size n, of all possible walks. To generate
the walks, the outgoing edge to follow from the currently observed vertex vc is
selected based on the edge weight, i.e., the probability for selecting an edge ei is
Pr[ei] = weight(ei)∑|Evc|

j=1 weight(ej)
, where ei ∈ Evc , andEvc is the set of all outgoing edges

from the current node vc. While there are many possibilities to set the weight of
the edges, in this work we only consider equal weights, i.e., random selection of
outgoing edges where an edge ei is selected with probability Pr[ei] = 1

|E(vc)| ,
where ei ∈ Evc , and Evc is the set of all outgoing edges from the current node
vc. The algorithm is shown in Algorithm 2. Other weighting strategies can be
integrated into the algorithm by exchanging the function selectEdge in line 11,
e.g., weighting the edge based on the frequency, based on the frequency of the
edge’s end node, or based on global weighting metrics, like PageRank [29].

Weisfeiler-Lehman Subtree RDF Graph Kernels

In this approach, we use the subtree RDF adaptation of the Weisfeiler-Lehman
algorithm presented in [57, 59]. The Weisfeiler-Lehman Subtree graph kernel is
a state-of-the-art, efficient kernel for graph comparison [277]. The kernel com-
putes the number of sub-trees shared between two (or more) graphs by using the
Weisfeiler-Lehman test of graph isomorphism. This algorithm creates labels rep-
resenting subtrees in h iterations. The rewriting procedure of Weisfeiler-Lehman
goes as follows: (i) the algorithm creates a multiset label for each vertex based on
the labels of the neighbors of that vertex; (ii) this multiset is sorted and together
with the original label concatenated into a string, which is the new label; (iii) for
each unique string a new (shorter) label replaces the original vertex label; (iv) at
the end of each iteration, each label represents a unique full subtree.

There are two main modifications of the original Weisfeiler-Lehman graph ker-
nel algorithm in order to be applicable on RDF graphs [57, 59]. First, the RDF
graphs have directed edges, which is reflected in the fact that the neighborhood
of a vertex v contains only the vertices reachable via outgoing edges. Second, as
mentioned in the original algorithm, labels from two iterations can potentially be
different while still representing the same subtree. To make sure that this does not
happen, the authors in [57, 59] have added tracking of the neighboring labels in
the previous iteration, via the multiset of the previous iteration. If the multiset of
the current iteration is identical to that of the previous iteration, the label of the
previous iteration is reused.

The Weisfeiler-Lehman relabeling algorithm for an RDF graph is given in Al-
gorithm 3, which is the same relabeling algorithm proposed in [57]. The algorithm
takes as input the RDF graph G = (V,E), a labeling function l, which returns
a label of a vertex or edge in the graph based on an index, the subraph depth d
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Algorithm 2: Algorithm for generating weighted RDF graph walks
Data: G = (V,E): RDF Graph, d: walk depth, n: number of walks
Result: PG: Set of sequences

1 PG := ∅
2 foreach vertex v ∈ V do
3 nv = n
4 while nv > 0 do
5 w = initialize walk
6 add v to w
7 currentV ertex = v
8 dv = d
9 while dv > 0 do

10 Ec = currentV ertex.outEdges()
11 e = selectEdge(Ec)
12 dv = dv - 1
13 add e to w
14 if dv > 0 then
15 ve = e.endV ertex()
16 add ve to w
17 currentV ertex = ve
18 dv = dv - 1
19 end
20 end
21 add w to PG

22 nv = nv - 1
23 end
24 end
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and the number of iterations h. The algorithm returns the labeling functions for
each iteration l0 to lh, and a label dictionary f . Furthermore, the neighborhood
N(v) = (v′, v) ∈ E of a vertex is the set of edges going to the vertex v and the
neighborhood N((v, v′)) = v of an edge is the vertex that the edge comes from.

The procedure of converting the RDF graph to a set of sequences of tokens
goes as follows: (i) for a given graphG = (V,E), we define the Weisfeiler-Lehman
algorithm parameters, i.e., the number of iterations h and the vertex subgraph depth
d, which defines the subgraph in which the subtrees will be counted for the given
vertex; (ii) after each iteration, for each vertex v ∈ V of the original graph G,
we extract all the paths of depth d within the subgraph of the vertex v on the
relabeled graph using Algorithm 1. We set the original label of the vertex v as
the starting token of each path, which is then considered as a sequence of tokens.
The sequences after each iteration will have the following pattern vr→ ln(ei, j)→
ln(vi, j), where ln returns the label of the edges and the vertices in the nth iteration.
The sequecens could also be seen as vr → T1 → T1 ... Td, where Td is a subtree
that appears on depth d in the vertex’s subgraph; (iii) we repeat step (ii) until the
maximum iterations h are reached. (iv) The final set of sequences is the union of
the sequences of all the vertices in each iteration PG =

⋃h
i=1

⋃
v∈V Pv.

8.1.2 Neural Language Models – word2vec

Neural language models have been developed in the NLP field as an alternative
to represent texts as a bag of words, and hence, a binary feature vector, where
each vector index represents one word. While such approaches are simple and
robust, they suffer from several drawbacks, e.g., high dimensionality and severe
data sparsity, which limits their performance. To overcome such limitations, neu-
ral language models have been proposed, inducing low-dimensional, distributed
embeddings of words by means of neural networks. The goal of such approaches
is to estimate the likelihood of a specific sequence of words appearing in a cor-
pus, explicitly modeling the assumption that closer words in the word sequence are
statistically more dependent.

While some of the initially proposed approaches suffered from inefficient train-
ing of the neural network models, like Feedforward Neural Net Language Model
(NNLM) [12, 47, 309], with the recent advances in the field several efficient ap-
proaches have been proposed. One of the most popular and widely used approaches
is the word2vec neural language model [177, 178]. Word2vec is a particularly
computationally-efficient two-layer neural net model for learning word embed-
dings from raw text. There are two different algorithms, the Continuous Bag-
of-Words model (CBOW) and the Skip-gram model. The efficiency of the models
comes as a result from the simplicity of the models by avoiding dense matrix mul-
tiplication, i.e., the non-linear hidden layer is removed from the neural network
and the projection layer is shared for all words. Furthermore, the Skip-gram model
has been extended to make the training even more efficient, i.e., (i) sub-sampling
of frequent words, which significantly improves the model training efficiency, and
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Algorithm 3: Weisfeiler-Lehman Relabeling for RDF
Data: G = (V,E): RDF Graph, l: labeling function for G = (V, E), d:

subgraph depth, h: number of iterations
Result: l0 to lh: label functions, f label dictionary

1 for n = 0; n < h; i++ do
2 # 1. Multiset-label determination
3 foreach v ∈ V and e ∈ E and j = 0 to d do
4 if n = 0 and l(v, j) is defined then
5 set Mn(v, j) = l0(v, j) = l(v, j)
6 end
7 if n = 0 and l(e, j) is defined then
8 set Mn(e, j) = l0(e, j) = l(e, j)
9 end

10 if n > 0 and l(v, j) is defined then
11 set Mn(v, j) = {ln−1(u, j)|u ∈ N(v)}
12 end
13 if n > 0 and l(e, j) is defined then
14 set Mn(e, j) = {ln−1(u, j + 1)|u ∈ N(e)}
15 end
16 end
17 # 2. Sorting each multiset
18 foreach Mn(v, j) and Mn(e, j) do
19 sort the elements in Mn(v, j), resp. Mn(e, j), in ascending order

and concatenate them into a string sn(v, j), resp. sn(e, j)
20 end
21 foreach sn(v, j) and sn(e, j) do
22 if n > 0 then
23 add ln−1(v, j), resp. ln−1(e, j), as a prefix to sn(v, j), resp.

sn(e, j)
24 end
25 end
26 # 3. Label compression
27 foreach sn(v, j) and sn(e, j) do
28 map sn(v, j), resp. sn(e, j), to a new compressed label, using a

function f :
∑∗ →∑

, such that f(sn(v, j)) = f(sn(v′, j)) iff
sn(v, j) = sn(v′, j), resp. f(sn(e, j)) = f(sn(e′, j)) iff
sn(e, j) = sn(e′, j)

29 end
30 # 4. Relabeling
31 foreach sn(v, j) and sn(e, j) do
32 set ln(v, j) = f(sn(v, j)) and ln(e, j) = f(sn(e, j))
33 end
34 end
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improves the vector quality of the less frequent words; (ii) using simplified variant
of Noise Contrastive Estimation [105], called negative sampling.

Continuous Bag-of-Words Model

The CBOW model predicts target words from context words within a given win-
dow. The model architecture is shown in Fig. 8.1a. The input layer is comprised
of all the surrounding words for which the input vectors are retrieved from the in-
put weight matrix, averaged, and projected in the projection layer. Then, using the
weights from the output weight matrix, a score for each word in the vocabulary
is computed, which is the probability of the word being a target word. Formally,
given a sequence of training words w1, w2, w3, ..., wT , and a context window c, the
objective of the CBOW model is to maximize the average log probability:

1

T

T∑
t=1

log p(wt|wt−c...wt+c), (8.1)

where the probability p(wt|wt−c...wt+c) is calculated using the softmax function:

p(wt|wt−c...wt+c) =
exp(v̄T v′wt

)∑V
w=1 exp(v̄

T v′w)
, (8.2)

where v′w is the output vector of the word w, V is the complete vocabulary of
words, and v̄ is the averaged input vector of all the context words:

v̄ =
1

2c

∑
−c≤j≤c,j 6=0

vwt+j (8.3)

Skip-Gram Model

The skip-gram model does the inverse of the CBOW model and tries to predict the
context words from the target words (Fig. 8.1b). More formally, given a sequence
of training words w1, w2, w3, ..., wT , and a context window of size c, the objective
of the skip-gram model is to maximize the following average log probability:

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt), (8.4)

where the probability p(wt+j |wt) is calculated using the softmax function:

p(wt+c|wt) =
exp(v′Twt+c

vwt)∑V
v=1 exp(v

′T
wv
vwt)

, (8.5)

where vw and v′w are the input and the output vector of the word w, and V is the
complete vocabulary of words.
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(a) CBOW architecture (b) Skip-gram architecture

Figure 8.1: Architecture of the CBOW and Skip-gram model.

In both cases, calculating the softmax function is computationally inefficient,
as the cost for computing is proportional to the size of the vocabulary. Therefore,
two optimization techniques have been proposed, i.e., hierarchical softmax and
negative sampling [178]. The empirical studies in the original paper [178] have
shown that in most cases negative sampling leads to a better performance than
hierarchical softmax, which depends on the selected negative samples, but it has
higher runtime.

Once the training is finished, all words (or, in our case, entities) are projected
into a lower-dimensional feature space, and semantically similar words (or entities)
are positioned close to each other.

8.2 Evaluation

We evaluate our approach on two standard machine-learning tasks, i.e., classifica-
tion and regression. Linking entities in a machine learning task to those in the LOD
cloud helps generating additional features, which may help improving the overall
learning outcome. For example, when learning a predictive model for the success
of a movie, adding knowledge from the LOD cloud (such as the movie’s budget,
director, genre, Oscars won by the starring actors, etc.) can lead to a more accurate
model.

We utilize two of the most prominent RDF knowledge graphs [223], i.e., DB-
pedia [162] and Wikidata [319]. DBpedia is a knowledge graph which is extracted
from structured data in Wikipedia. The main source for this extraction are the
key-value pairs in the Wikipedia infoboxes. Wikidata is a collaboratively edited
knowledge graph, operated by the Wikimedia foundation1 that also hosts various
language editions of Wikipedia.

We use the English version of the 2015-10 DBpedia dataset, which contains
4, 641, 890 instances and 1, 369 mapping-based object properties2. In our evalua-

1http://wikimediafoundation.org/
2http://wiki.dbpedia.org/services-resources/datasets/dbpedia-

datasets

http://wikimediafoundation.org/
http://wiki.dbpedia.org/services-resources/datasets/dbpedia-datasets
http://wiki.dbpedia.org/services-resources/datasets/dbpedia-datasets
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tion, we only consider object properties, and ignore datatype properties and literals.
For the Wikidata dataset, we use the simplified and derived RDF dumps from

2016-03-283. The dataset contains 17, 340, 659 entities in total. As for the DB-
pedia dataset, we only consider object properties, and ignore the data properties
and literals.

The first step of our approach is to convert the RDF graphs into a set of se-
quences. As the number of generated walks increases exponentially [59] with the
graph traversal depth, calculating Weisfeiler-Lehman subtrees RDF kernels, or all
graph walks with a given depth d for all of the entities in the large RDF graph
quickly becomes unmanageable. Therefore, to extract the entities embeddings for
the large RDF datasets, we use only random graph walks entity sequences, gener-
ated using Algorithm 2. For both DBpedia and Wikidata, we first experiment with
200 random walks per entity with depth of 4, and 200 dimensions for the entities’
vectors. Additionally, for DBpedia we experiment with 500 random walks per en-
tity with depth of 4 and 8, with 200 and 500 dimensions for the entities’ vectors.
For Wikidata, we were unable to build models with more than 200 walks per entity,
because of memory constrains, therefore we only experiment with the dimensions
of the entities’ vectors, i.e., 200 and 500.

We use the corpora of sequences to build both CBOW and Skip-Gram models
with the following parameters: window size = 5; number of iterations = 5; nega-
tive sampling for optimization; negative samples = 25; with average input vector
for CBOW. The parameter values are selected based on recommendations from
the literature [177]. To prevent sharing the context between entities in different
sequences, each sequence is considered as a separate input in the model, i.e., the
sliding window restarts for each new sequence. We used the gensim implemen-
tation4 for training the models. All the models, as well as the code, are publicly
available.5

In the evaluation section we use the following notation for the models: KB2Vec
model #walks #dimensions depth, e.g. DB2vec SG 200w 200v 4d, refers to a model
built on DBpedia using the skip-gram model, with 200 walks per entity, 200 di-
mensional vectors and all the walks are of depth 4.

8.3 Experimental Setup

For evaluating the performance of our RDF embeddings in machine learning tasks,
we perform an evaluation on a set of benchmark datasets. The dataset contains
three smaller-scale RDF datasets (i.e., AIFB, MUTAG, and BGS), where the clas-
sification target is the value of a selected property within the dataset, and five larger
datasets linked to DBpedia and Wikidata, where the target is an external variable

3http://tools.wmflabs.org/wikidata-exports/rdf/index.php?
content=dump_download.php&dump=20160328

4https://radimrehurek.com/gensim/
5http://data.dws.informatik.uni-mannheim.de/rdf2vec/

http://tools.wmflabs.org/wikidata-exports/rdf/index.php?content=dump_download.php&dump=20160328
http://tools.wmflabs.org/wikidata-exports/rdf/index.php?content=dump_download.php&dump=20160328
https://radimrehurek.com/gensim/
http://data.dws.informatik.uni-mannheim.de/rdf2vec/
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Table 8.1: Datasets overview. For each dataset, we depict the number of instances,
the machine learning tasks in which the dataset is used (C stands for classification,
and R stands for regression) and the source of the dataset. In case of classification,
c indicates the number of classes.

Dataset #Instances ML Task Original Source
Cities 212 R/C (c=3) Mercer

Metacritic Albums 1600 R/C (c=2) Metacritic
Metacritic Movies 2000 R/C (c=2) Metacritic

AAUP 960 R/C (c=3) JSE
Forbes 1585 R/C (c=3) Forbes
AIFB 176 C (c=4) AIFB

MUTAG 340 C (c=2) MUTAG
BGS 146 C (c=2) BGS

(e.g., the metacritic score of an album or a movie). The latter datasets are used both
for classification and regression. Details on the datasets can be found in [247].

For each of the small RDF datasets, we first build two corpora of sequences,
i.e., the set of sequences generated from graph walks with depth 8 (marked as
W2V), and set of sequences generated from Weisfeiler-Lehman subtree kernels
(marked as K2V). For the Weisfeiler-Lehman algorithm, we use 3 iterations and
depth of 4, and after each iteration we extract all walks for each entity with the
same depth. We use the corpora of sequences to build both CBOW and Skip-Gram
models with the following parameters: window size = 5; number of iterations =
10; negative sampling for optimization; negative samples = 25; with average input
vector for CBOW. We experiment with 200 and 500 dimensions for the entities’
vectors.

We use the RDF embeddings of DBpedia and Wikidata (see Section 9.2) on
the five larger datasets, which provide classification/regression targets for DBpedi-
a/Wikidata entities (see Table 11.1).

We compare our approach to several baselines. For generating the data mining
features, we use three strategies that take into account the direct relations to other
resources in the graph [225, 252], and two strategies for features derived from
graph sub-structures [59]:

• Features derived from specific relations. In the experiments we use the relations
rdf:type (types), and dcterms:subject (categories) for datasets linked to DBpedia.

• Features derived from generic relations, i.e., we generate a feature for each in-
coming (rel in) or outgoing relation (rel out) of an entity, ignoring the value
or target entity of the relation. Furthermore, we combine both incoming and
outgoing relations (rel in & out).

• Features derived from generic relations-values, i.e., we generate a feature for
each incoming (rel-vals in) or outgoing relation (rel-vals out) of an entity in-
cluding the value of the relation. Furthermore, we combine both incoming and
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outgoing relations with the values (rel-vals in & out).

• Kernels that count substructures in the RDF graph around the instance node.
These substructures are explicitly generated and represented as sparse feature
vectors.

– The Weisfeiler-Lehman (WL) graph kernel for RDF [59] counts full subtrees
in the subgraph around the instance node. This kernel has two parameters, the
subgraph depth d and the number of iterations h (which determines the depth
of the subtrees). We use two pairs of settings, d = 2, h = 2 (WL_2_2) and
d = 4, h = 3 (WL_4_3).

– The Intersection Tree Path kernel for RDF [59] counts the walks in the subtree
that spans from the instance node. Only the walks that go through the instance
node are considered. We will therefore refer to it as the root Walk Count (WC)
kernel. The root WC kernel has one parameter: the length of the paths l, for
which we test 4 (WC_4) and 6 (WC_6).

Furthermore, we compare the results to the state-of-the art graph embeddings ap-
proaches: TransE, TransH and TransR. These approaches have shown comparable
results with the rest of the graph embeddings approaches on the task of link predic-
tions. But most importantly, while there are many graph embeddings approaches,
like RESCAL [198], Neural Tensor Networks (NTN) [281], ComplEx [307], HolE
[197] and others, the approaches based on translating embeddings approaches scale
to large knowledge-graphs as DBpedia.6 We use an existing implementation and
build models on the small RDF datasets and the whole DBpedia data with the de-
fault parameters.7 For all the models we train 1, 000 epochs and build vectors with
size 100. We have to note that the primary goal of such embeddings is the link
prediction task, not standard machine learning tasks.

For all the experiments we don’t perform any feature selection, i.e., we use all
the features generated with the given feature generation strategy. For the baseline
feature generation strategies, we use binary feature vectors, i.e., 1 if the feature
exists for the instance, 0 otherwise.

We perform two learning tasks, i.e., classification and regression. For classifi-
cation tasks, we use Naive Bayes, k-Nearest Neighbors (k=3), C4.5 decision tree,
and Support Vector Machines (SVMs). For the SVM classifier we optimize the
complexity constant C8 in the range {10−3, 10−2, 0.1, 1, 10, 102, 103}. For regres-
sion, we use Linear Regression, M5Rules, and k-Nearest Neighbors (k=3). We
measure accuracy for classification tasks, and root mean squared error (RMSE) for
regression tasks. The results are calculated using stratified 10-fold cross validation.

6Because of high processing requirements we were not able to build the models for the Wikidata
dataset.

7https://github.com/thunlp/KB2E/
8The complexity constant sets the tolerance for misclassification, where higher C values allow

for “softer” boundaries and lower values create “harder” boundaries.

https://github.com/thunlp/KB2E/
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The strategies for creating propositional features from Linked Open Data are
implemented in the RapidMiner LOD extension9 [229, 246]. The experiments, in-
cluding the feature generation and the evaluation, were performed using the Rapid-
Miner data analytics platform.10 The RapidMiner processes and the complete re-
sults can be found online.11. The experiments were run using a Linux machine
with 20GB RAM and 4 Intel Xeon 2.60GHz CPUs.

8.4 Results

The results for the task of classification on the small RDF datasets are shown in
Table 8.2.12 Experiments marked with “\” did not finish within ten days, or have
run out of memory. The reason for that is the high number of generated features
for some of the strategies, as explained in Section 8.6. From the results we can
observe that the K2V approach outperforms all the other approaches. More pre-
cisely, using the skip-gram feature vectors of size 500 in an SVM model provides
the best results on all three datasets. The W2V approach on all three datasets per-
forms closely to the standard graph substructure feature generation strategies, but
it does not outperform them. K2V outperforms W2V because it is able to capture
more complex substructures in the graph, like sub-trees, while W2V focuses only
on graph paths. Furthermore, the related approaches, perform rather well on the
AIFB dataset, and achieve comparable results to the K2V approach, however, on
the other two dataset K2V significantly outperforms all three of them.

The results for the task of classification on the five datasets using the DBpedia
and Wikidata entities’ vectors are shown in Table 8.3, and the results for the task
of regression on the five datasets using the DBpedia and Wikidata entities’ vectors
are given in Table 8.4. We can observe that the latent vectors extracted from DB-
pedia and Wikidata outperform all of the standard feature generation approaches.
Furthermore, the RDF2vec approaches built on the DBpedia dataset continuously
outperform the related approaches, i.e., TransE, TransH, and TransR, on both tasks
for all the datasets, except on the Forbes dataset for the task of classification. In this
case, all the related approaches outperform the baseline approaches as well as the
RDF2vec approach. The difference is most significant when using the C4.5 classi-
fier. In general, the DBpedia vectors work better than the Wikidata vectors, where
the skip-gram vectors with size 200 or 500 built on graph walks of depth 8 on most
of the datasets lead to the best performances. An exception is the AAUP dataset,
where the Wikidata skip-gram 500 vectors outperform the other approaches. The
reason for this could be that Wikidata contains more information about universities.

9http://dws.informatik.uni-mannheim.de/en/research/rapidminer-
lod-extension

10https://rapidminer.com/
11http://data.dws.informatik.uni-mannheim.de/rmlod/LOD_ML_

Datasets/
12We do not consider the strategies for features derived from specific relations, i.e., types and

categories, because the datasets do not contain categories, and all the instances are of the same type

http://dws.informatik.uni-mannheim.de/en/research/rapidminer-lod-extension
http://dws.informatik.uni-mannheim.de/en/research/rapidminer-lod-extension
https://rapidminer.com/
http://data.dws.informatik.uni-mannheim.de/rmlod/LOD_ML_Datasets/
http://data.dws.informatik.uni-mannheim.de/rmlod/LOD_ML_Datasets/
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(a) DBpedia vectors (b) Wikidata vectors

Figure 8.2: Two-dimensional PCA projection of the 500-dimensional Skip-gram
vectors of countries and their capital cities.

On both tasks, we can observe that the skip-gram vectors perform better than
the CBOW vectors. Furthermore, the vectors with higher dimensionality and longer
walks lead to a better representation of the entities and better performance on most
of the datasets. However, for the variety of tasks at hand, there is no universal ap-
proach, i.e., a combination of an embedding model and a machine learning method,
that consistently outperforms the others.

8.5 Semantics of Vector Representations

To analyze the semantics of the vector representations, we employ Principal Com-
ponent Analysis (PCA) to project the entities’ feature vectors into a two dimen-
sional feature space. We selected seven countries and their capital cities, and vi-
sualized their vectors as points in a two-dimensional space. Figure 8.2a shows the
corresponding DBpedia vectors, and Figure 8.2b shows the corresponding Wiki-
data vectors. The figure illustrates the ability of the model to automatically or-
ganize entities of different types, and preserve the relationships between different
entities. For example, we can see that there is a clear separation between the coun-
tries and the cities, and the relation “capital” between each pair of country and the
corresponding capital city is preserved. Furthermore, we can observe that more
similar entities are positioned closer to each other, e.g., we can see that the coun-
tries that are part of the EU are closer to each other, and the same applies for the
Asian countries.
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Figure 8.3: Features increase rate per strategy (log scale).

8.6 Features Increase Rate

Finally, we conduct a scalability experiment, where we examine how the number
of instances affects the number of generated features by each feature generation
strategy. For this purpose we use the Metacritic Movies dataset. We start with a
random sample of 100 instances, and in each next step we add 200 (or 300) unused
instances, until the complete dataset is used, i.e., 2, 000 instances. The number
of generated features for each sub-sample of the dataset using each of the feature
generation strategies is shown in Figure 8.3.

From the chart, we can observe that the number of generated features sharply
increases when adding more samples in the datasets, especially for the strategies
based on graph substructures.

In contrast, the number of features remains the same when using the RDF2Vec
approach, as it is fixed to 200 or 500, respectively, independently of the number of
samples in the data. Thus, by design, it scales to larger datasets without increasing
the dimensionality of the dataset.

8.7 Conclusion and Outlook

In this chapter, we have presented RDF2Vec, an approach for learning latent nu-
merical representations of entities in RDF graphs. In this approach, we first con-
vert the RDF graphs in a set of sequences using two strategies, Weisfeiler-Lehman
Subtree RDF Graph Kernels and graph walks, which are then used to build neural
language models. The evaluation shows that such entity representations could be
used in three different tasks. In each of those tasks, they were capable of outper-
forming standard feature generation approaches, i.e., approaches that turn (subsets
of) RDF graphs into propositional models.

We have explored different variants of building embedding models. While
there is no universally best performing approach, we can observe some trends.
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With respect to the first step of the transformation, i.e., the construction of se-
quences, kernel transformations lead to better results than (random) walks. How-
ever, they do not scale well to large-scale knowledge graphs, such as DBpedia
or Wikidata. With respect to the second step, i.e., the actual computation of the
embeddings, we have observed that Skip-Gram (SG) models in most cases outper-
form Continuous-Bag-of-Words (CBOW) models. The other characteristics of the
models (e.g., the dimensionality of the embedding space) show less clear trends
towards an optimal setting.

While constructing a vector space embedding for a large-scale knowledge graph,
such as DBpedia or Wikidata, can be computationally expensive, we have shown
that this step has to be taken only once, as the embeddings can be reused on vari-
ous tasks. This is particularly interesting for such cross-domain knowledge graphs,
which can be used in a variety of scenarios and applications.

For the moment, we have defined some constraints for the construction of the
embeddings. We do not use literal values, and we do not particularly distinguish
between the schema and the data level of a graph. The former constraint has some
limitations, e.g., when it comes to the tasks of determining entity similarity: for
example, the similarity of two movies in terms of release date and budget or the
similarity of two cities in terms of area and population is currently not captured by
the models. Schema level and data level similarity are currently implicitly interwo-
ven, but in particular for knowledge graphs with richer schemas (e.g., YAGO with
its type hierarchy of several hundred thousand types), distinguishing embeddings
of the schema and data level might become beneficial.

Apart from using vector space embeddings when exploiting LOD data sources,
they may also become an interesting technique for improving those sources as such,
for example knowledge base completion [167]. Among others, the proposed ap-
proach could also be used for link prediction, entity typing, or error detection in
knowledge graphs [223], as shown in [181, 195]. Similarly to the entity and doc-
ument modeling, the approach can be extended for entity summarization, which
is also an important task when consuming and visualizing large quantities of data
[42].

Summarizing, we have shown that it is possible to adapt the technique of word
embeddings to RDF graphs, and that those embeddings lead to compact vector
representations of entities. We have shown that those vector representations help
building approaches which outperform many state of the art tools. Furthermore,
the proposed vector space representations are universal in the sense that they are
not task specific, i.e., a vector space embedding for a general graph like DBpedia
or Wikidata can be built once and reused for several tasks.



Chapter 9

Biased Graph Walks for RDF
Graph Embeddings

In the previous chapter, we introduced RDF2Vec, a generic method for embedding
entities in knowledge graphs into lower-dimensional vector spaces. The approach
adapts neural language modeling techniques, specifically word2vec, which takes
sequences of words to embed words into vector spaces [178, 177]. We have shown
that it is possible to compute and reuse such embeddings for large-scale knowledge
graphs.

For adapting word2vec for knowledge graphs, the first step is to extract mean-
ingful sequences of entities from a knowledge graph, which capture the surround-
ing knowledge of each entity. Our results have shown that random walks are a
feasible and, in contrast to other techniques such as kernels, also a well scalable
approach for extracting sequences.

In this chapter, we examine methods to direct the random walks in more mean-
ingful ways, i.e., being able to capture more important information about each
entity in the graph. We test a dozen weighting schemes which influence the walks
and, thus, the resulting sequences. The experiments show that the choice of weights
has a crucial influence on the utility of the resulting embeddings.

The work presented in this chapter has been published before as: “Michael
Cochez, Petar Ristoski, Simone Paolo Ponzetto, Heiko Paulheim: Biased Graph
Walks for RDF Graph Embeddings. Proceedings of the 7th International Con-
ference on Web Intelligence, Mining and Semantics, Amantea, Italy, June,
2017.” [44].
The implementation of the biased walks was carried by Michael Cochez, from
the Fraunhofer Institute for Applied Information Technology FIT, 53754 Sankt
Augustin, Germany.
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9.1 Approach

In our approach, we adapt neural language models for RDF graph embeddings.
Such approaches take advantage of the word order in text documents, explicitly
modeling the assumption that closer words in the word sequences are statistically
more dependent. In the case of RDF graphs, we consider entities and relations be-
tween entities instead of word sequences. Thus, in order to apply such approaches
on RDF graph data, we first have to transform the graph data into sequences of en-
tities, which can be considered as sentences. Using those sequences, we can train
the same neural language models to represent each entity in the RDF graph as a
vector of numerical values in a latent feature space.

We use graph walks for converting graphs into a set of sequences of entities. An
example of an entity sequence extracted using graph walks from DBpedia would
be: dbr : Trent_Reznor→ dbo : associatedBand→ dbr : Nine_Inch_Nails
→ dbo : genre → dbr : Industrial_Rock. To perform these walks on RDF
graphs, we represent the graph as a set of vertices (the entities in the RDF graph)
and a set of directed edges (the relations between the entities).

The objective of the walk functions is for each vertex v ∈ V to generate a set
of sequences Sv, where the first token of each sequence s ∈ Sv is the vertex v
followed by a sequence of tokens, which might be the labels of edges, vertices,
or any substructure extracted from the RDF graph, in an order that reflects the
relations between the vertex v and the rest of the tokens, as well as among those
tokens.

What we want to achieve is a biasing of these walks to make them more mean-
ingful, i.e., being able to capture the most important information about the ob-
served entities. Therefore, we augment the edges to not only have a label, but also
a weight. We apply twelve different strategies for assigning these weights to the
edges of the graph. These weights will then in turn bias the random walks on the
graph. In particular, when a walk arrives in a vertex v with out edges vo1, . . . vod,
then the walk will follow edge vol with a probability computed by

Pr[follow edge vol] =
weight(vol)∑d
i=1weight(voi)

In other words, the normalized edge weights are directly interpreted as the proba-
bility to follow a particular edge.

To obtain these edge weights, we make use of different statistics computed on
the RDF data. The statistics computed are the following:

Predicate Frequency for each predicate in the dataset, we count the number of
times the predicate occurs (only occurrences as a predicate are counted).

Object Frequency for each resource in the dataset, we count the number of times
it occurs as the object of a triple.



9.1. APPROACH 131

Predicate-Object frequency for each pair of a predicate and an object in the
dataset, we count the number of times there is a statement with this pred-
icate and object.

Besides these statistics, we also use PageRank [29] computed for the entities in
the knowledge graph [296]. This PageRank is computed based on links between the
Wikipedia articles representing the respective entities. When using the PageRank
computed for DBpedia, not each node has a value assigned, as only entities which
have a corresponding Wikipedia page are accounted for in the PageRank compu-
tation. Examples of nodes which do not have a PageRank include DBpedia types
or categories, like http://dbpedia.org/ontology/Place and http:
//dbpedia.org/resource/Category:Central_Europe. Therefore,
we assigned a fixed PageRank to all nodes which are not entities. We chose a
value of 0.2, which is roughly the median PageRank [311], in the non-normalized
page rank values we used.

Note that there are essentially two types of metrics, those assigned to nodes,
and those assigned to edges. The predicate frequency and predicate-object fre-
quency, as well as the inverses of these, can be directly used as weights for edges.
Therefore, we call these weighting methods edge-centric. In the case of predicate
frequency each predicate edge with that label is assigned the weight in question. In
the case of predicate-object frequency, each predicate edge which ends in a given
object gets assigned the predicate-object frequency. When computing the inverse
metrics, not the absolute frequency is assigned, but its multiplicative inverse.

In contrast, the object frequency, and also the used PageRank metric, assign a
numeric score to each node in the graph. Therefore, we call weighting approaches
based on them node-centric. To obtain a weight for the edges, we either push the
number down or split the number down to all in edges. By pushing down, we
mean that the number assigned to a node is used as the weight of all in edges. By
splitting down, we mean that the weight is divided by the number of in edges and
then assigned to all edges. Then, these weights can be normalized as described
above. If split is not mentioned explicitly in node centric weighting strategies, then
it is a push down strategy.

In total, we inspected twelve different approaches for weighting edges using
the metrics defined above.

Note that uniform weights are equivalent to using object frequency with split-
ting the weights. To see why this holds true, we have to follow the steps which will
be taken. First, each node gets assigned the amount of times it is used as an object.
This number is equal to the number of in edges to the node. Then, this number
is split over the in edges, i.e., each in edge gets assigned the number 1. Finally,
this weight is normalized, assigning to each out link a uniform weight. Hence, this
strategy would result in the same walks as using unbiased random walks over the
graph.

So, even if we add unbiased random walks to the list of weighting strategies,
we retain 12 unique ones, each with their own characteristics. These strategies are:

 http://dbpedia.org/ontology/Place
http://dbpedia.org/resource/Category:Central_Europe
http://dbpedia.org/resource/Category:Central_Europe
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Uniform approach:

1. Uniform Weight = Object Frequency Split Weight – This is the most straight
forward approach, also taken by the standard RDF2Vec models. At first
glance, it also looks like the most neutral strategy. However, the input graph
does not have a regular structure in the sense that some entities have a (much)
higher in degree as others and hence they are more likely to be visited. Thus,
more strongly connected entities will have a higher influence on the resulting
embeddings.

Edge-centric approaches:

2. Predicate Frequency Weight – With this strategy, edges with predicates which
are commonly used in the dataset are more often followed. The effect of this
is that many uncommon predicates are never followed in our experiments
and, as a result of that, many entities are also never visited in the walks. On
the other hand, there are a few entities which have a very high in degree, and
which thus attract a lot of walks towards them.

3. Inverse Predicate Frequency Weight – This strategy has at first sight a similar
effect as the previous, but for other nodes. Those predicates which are rare
will be followed often. However, predicates follow a long-tail distribution,
and there are more predicates which are rare than common, thus, the diversity
of predicates occurring in the walks is higher. Moreover, despite having a
low probability, also edges with a common predicate are followed once in a
while as they occur so often in the dataset.

4. Predicate-Object Frequency Weight – This is similar to the Predicate Fre-
quency Weight, but differentiates between the objects as well. If we have for
example an outgoing link with label rdf:type with object owl:Thing,
then this link will be followed more often than, e.g., the same predicate with
object dbpedia:AdministrativeRegion.

5. Inverse Predicate-Object Frequency Weight – The inverse of the previous,
with similar features to Inverse Predicate Frequency Weight.

Node-centric object freq. approaches (See also strategy 1):

6. Object Frequency Weight – This weighting does essentially ignore the pred-
icate altogether and just ensures that entities which have a high in degree get
visited even more often.

7. Inverse Object Frequency Weight – This approach also ignores the predicate,
but makes the probability for nodes to be visited more equally distributed.

8. Inverse Object Frequency Split Weight – The general statistics for these
walks look surprisingly similar to the non inverted strategy.
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Node-centric PageRank approaches:

9. PageRank Weight – Similar to Object Frequency Weight, this strategy makes
some nodes more important and hence there will be resources which are
more frequent in the walks as others.

10. Inverse PageRank Weight – One would expect that this approach would have
a similar effect as Inverse Object Frequency Weight, however, our measure-
ments show that the inversion does not cause more uniform occurrence of
entities as strongly as that strategy.

11. PageRank Split Weight – Both this approach and the next one are somewhat
difficult to predict as they do not only depend on the structure on the graph.
Our analysis of the walks show that nodes are fairly uniformly used in these
walks.

12. Inverse PageRank Split Weight – The generated walks have similar statistics
as PageRank Split Weight. The expectation is, however, that in this metric
tends to include more unimportant nodes in the walks.

For each set of the twelve sets of sequences created using those metrics, we
build one CBOW and one skip-gram model. Hence, we compare a total of 24
different embeddings models.

9.2 Evaluation

Similarly as in Chapter 8, we evaluate the different weighting strategies on a num-
ber of classification and regression tasks, comparing the results of different feature
extraction strategies combined with different learning algorithms.

To build the neural language models, we generate 250 walks per entity with
depths of 2,4,6, and 8 for each of the twelve edge weighting strategies. A depth of
eight means four hops in the graph, as each hop adds two elements to the sequence
(i.e., the predicate and the object). Since, the entity which is the source of the walk
is also include in the path, the corresponding path lengths are 3,5,7, and 9. When
the walk reaches a “dead end”, i.e., a node without any outgoing edges, the walk
ends in that node, even if the maximum depth is not reached.

We use the corpora of sequences to build both CBOW and Skip-Gram models
with the following parameters: window size = 5; number of iterations = 5; negative
sampling for optimization; negative samples = 25; dimensions = 200; with average
input vector for CBOW. The parameters are selected based on recommendations
from the literature. All the models, as well as the code, are publicly available1.

1http://data.dws.informatik.uni-mannheim.de/rdf2vec/

http://data.dws.informatik.uni-mannheim.de/rdf2vec/


134 CHAPTER 9. BIASED GRAPH WALKS

9.2.1 Datasets

We evaluate our approach on DBpedia [162]. We use the English version of the
2016-04 DBpedia dataset, which contains 4, 678, 230 instances and 1, 379 mapping-
based properties. In our evaluation we only consider object properties, and ignore
datatype properties and literals.

We use the entity embeddings on five different datasets from different do-
mains, for the tasks of classification and regression [247], used in Chapter 8. Those
five datasets are used to provide classification/regression targets for the large RDF
datasets (see Table 11.1).

• The Cities dataset contains a list of cities and their quality of living, as captured
by Mercer2. We use the dataset both for regression and classification.

• The Metacritic Movies dataset is retrieved from Metacritic.com3, which contains
an average rating of all time reviews for a list of movies [256]. The initial dataset
contained around 10, 000 movies, from which we selected 1, 000 movies from
the top of the list, and 1, 000 movies from the bottom of the list. We use the
dataset both for regression and classification.

• Similarly, the Metacritic Albums dataset is retrieved from Metacritic.com4, which
contains an average rating of all time reviews for a list of albums [257].

• The AAUP (American Association of University Professors) dataset contains
a list of universities, including eight target variables describing the salary of
different staff at the universities5. We use the average salary as a target variable
both for regression and classification, discretizing the target variable into “high”,
“medium” and “low”, using equal frequency binning.

• The Forbes dataset contains a list of companies including several features of
the companies, which was generated from the Forbes list of leading companies
20156. The target is to predict the company’s market value as a regression task.
To use it for the task of classification we discretize the target variable into “high”,
“medium”, and “low”, using equal frequency binning.

9.2.2 Experimental Setup

As in Chapter 8, we compare our approach to several baselines. For generating the
data mining features, we use three strategies that take into account the direct rela-
tions to other resources in the graph [225], and two strategies for features derived
from graph sub-structures [59]:

2https://www.imercer.com/content/mobility/quality-of-living-
city-rankings.html

3http://www.metacritic.com/browse/movies/score/metascore/all
4http://www.metacritic.com/browse/albums/score/metascore/all
5http://www.amstat.org/publications/jse/jse_data_archive.htm
6http://www.forbes.com/global2000/list/

https://www.imercer.com/content/mobility/quality-of-living-city-rankings.html
https://www.imercer.com/content/mobility/quality-of-living-city-rankings.html
http://www.metacritic.com/browse/movies/score/metascore/all
http://www.metacritic.com/browse/albums/score/metascore/all
http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.forbes.com/global2000/list/
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Table 9.1: Classification and regression datasets overview. For each dataset, we
depict the number of instances, the machine learning tasks in which the dataset is
used (C stands for classification, and R stands for regression) and the source of the
dataset.

Dataset #Instances ML Task Original Source
Cities 212 R/C (c=3) Mercer

Metacritic Albums 1600 R/C (c=2) Metacritic
Metacritic Movies 2000 R/C (c=2) Metacritic

AAUP 960 R/C (c=3) JSE
Forbes 1585 R/C (c=3) Forbes

• Features derived from specific relations. In the experiments we use the relations
rdf:type (types), and dcterms:subject (categories).

• Features derived from generic relations, i.e., we generate a feature for each in-
coming (rel in) or outgoing relation (rel out) of an entity, ignoring the value or
target entity of the relation.

• Features derived from generic relations-values, i.e, we generate feature for each
incoming (rel-vals in) or outgoing relation (rel-vals out) of an entity including
the value of the relation.

• Kernels that count substructures in the RDF graph around the instance node.
These substructures are explicitly generated and represented as sparse feature
vectors.

– The Weisfeiler-Lehman (WL) graph kernel for RDF [59] counts full subtrees
in the subgraph around the instance node. This kernel has two parameters, the
subgraph depth d and the number of iterations h (which determines the depth
of the subtrees). We use two pairs of settings, d = 1, h = 2 and d = 2, h = 3.

– The Intersection Tree Path kernel for RDF [59] counts the walks in the subtree
that spans from the instance node. Only the walks that go through the instance
node are considered. We will therefore refer to it as the root Walk Count (WC)
kernel. The root WC kernel has one parameter: the length of the paths l, for
which we test 2 and 3.

Furthermore, we compare the results to the state-of-the art graph embeddings
approaches: TransE, TransH and TransR. We use an existing implementation and
build models on the DBpedia data with the default parameters.7

We perform two learning tasks, i.e., classification and regression. For classifi-
cation tasks, we use Naive Bayes, k-Nearest Neighbors (k=3), C4.5 decision tree,
and Support Vector Machines. For the SVM classifier we optimize the parameter
C in the range {10−3, 10−2, 0.1, 1, 10, 102, 103}. For regression, we use Linear

7https://github.com/thunlp/KB2E/

https://github.com/thunlp/KB2E/
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Table 9.2: Classification average rank results. The best ranked results for each
method are marked in bold. The learning models for which the strategies were
shown to have significant difference based on the Friedman test with α < 0.05 are
marked with *. The single values marked with ∗ mean that are significantly worse
than the best strategy at significance level q = 0.05

Method NB* KNN* SVM C4.5

Uniform Weight
CBOW 14.4 9.7 12.8 9.4
SG 6.4 3.3 10.0 6.6

Edge-centric approaches

Predicate Frequency Weight
CBOW 14.0 11.3 12.6 14.0
SG 11.6 11.1 10.4 12.8

Inverse Predicate Frequency Weight
CBOW 24.6* 25.6* 22.5 19.8
SG 23.0 19.4 15.8 18.2

Predicate Object Frequency Weight
CBOW 20.5 20.9 17.9 20.8
SG 20.4 20.3 16.7 20.6

Inverse Predicate Object Frequency Weight
CBOW 19.0 16.8 15.3 15.4
SG 17.2 15.6 10.6 12.2

Node-centric object freq. approaches

Object Frequency Weight
CBOW 19.1 20.2 17.9 21.0
SG 17.8 14.6 14.0 15.8

Inverse Object Frequency Weight
CBOW 7.0 10.6 10.2 7.6
SG 19.6 19.4 15.7 21.0

Inverse Object Frequency Split Weight
CBOW 18.8 16.7 16.0 13.4
SG 7.4 10.9 13.1 14.2

Node-centric PageRank approaches

PageRank Weight
CBOW 25.2* 22.6 20.9 19.0
SG 14.2 9.8 9.8 13.0

Inverse PageRank Weight
CBOW 8.2 14.8 12.4 10.6
SG 4.8 10.0 9.8 9.0

PageRank Split Weight
CBOW 23.4 10.9 17.0 15.2
SG 4.4 4.7 6.7 8.4

Inverse PageRank Split Weight
CBOW 13.4 11.3 17.9 15.6
SG 7.4 8.9 11.6 10.6

Baseline and related approaches
Best Baseline 12.0 15.0 19.0 7.8

TransE 10.0 16.7 16.8 16.6
TransH 9.8 15.8 16.3 17.2
TransR 12.4 19.1 16.3 20.2
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Table 9.3: Regression average rank results. The best ranked results for each method
are marked in bold. The learning models for which the strategies were shown to
have significant difference based on the Friedman test with α < 0.05 are marked
with *. The single values marked with ∗ mean that are significantly worse than the
best strategy at significance level q = 0.05

Method LR* KNN M5

Uniform Weight
CBOW 8.0 7.4 9.0
SG 4.4 7.6 8.8

Edge-centric approaches

Predicate Frequency Weight
CBOW 10.8 13.4 10.8
SG 15.0 11.6 16.4

Inverse Predicate Frequency Weight
CBOW 22.0 16.8 21.6
SG 13.0 15.4 17.2

Predicate Object Frequency Weight
CBOW 24.6* 22.4 24.2
SG 24.8* 23.6 24.8

Inverse Predicate Object Frequency Weight
CBOW 12.6 14.0 13.4
SG 6.2 10.6 8.2

Node-centric object freq. approaches

Object Frequency Weight
CBOW 22.8 22.2 21.6
SG 10.8 15.0 14.6

Inverse Object Frequency Weight
CBOW 6.8 10.0 9.4
SG 26.0* 22.8 23.8

Inverse Object Frequency Split Weight
CBOW 21.0 20.2 19.0
SG 13.2 15.6 13.2

Node-centric PageRank approaches

PageRank Weight
CBOW 25.8* 18.0 25.6
SG 7.0 15.4 7.8

Inverse PageRank Weight
CBOW 11.4 8.8 13.0
SG 7.4 6.8 6.2

PageRank Split Weight
CBOW 17.6 12.2 17.8
SG 8.6 10.2 8.4

Inverse PageRank Split Weight
CBOW 17.6 18.2 17.8
SG 9.4 11.2 7.2

Baseline and related approaches
Best Baseline 17.4 9.6 9.6

TransE 12.8 16.7 13.0
TransH 12.8 14.1 12.4
TransR 16.2 16.2 11.2
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Regression, M5Rules, and k-Nearest Neighbors (k=3). The results are calculated
using stratified 10-fold cross validation.

The strategies for creating propositional features from Linked Open Data are
implemented in the RapidMiner LOD extension8 [229, 246]. The experiments, in-
cluding the feature generation and the evaluation, were performed using the Rapid-
Miner data analytics platform.9 The RapidMiner processes and the complete re-
sults can be found online.10

For comparing the approaches, we follow the approach introduced by Demšar
[60]. The approach proposes to first rank the strategies for each dataset in isolation,
and then to compute a significance level for the difference of ranks using a Fried-
man test. While the Friedman test only determines whether there is a significant
difference between any of the compared approaches, pairwise significance levels
are computed with a post-hoc Nemenyi test [194]. The results of the post-hoc test
allows for concluding if one approach significantly outperforms another one. For
the Friedman test we select a significance level of α = 0.10, and for the post-
hoc Nemenyi test we use critical values q = 0.05. We carry out the test on each
learning method separately.

9.2.3 Results

The results for the task of classification on the five different datasets using four
different learning methods are given in Table 9.2. For each of the datasets and for
each learning method, we select the best performing results of all the baselines,
and report it under Best baseline. Using the Friedman test, the null hypothesis was
rejected for the performances of the strategies when using Naive Bayes and KNN,
meaning there is a significant performance difference between the strategies.

The results for the task of regression on the five different datasets using four
different learning methods are given in Table 9.3. Using the Friedman test, the
null hypothesis was rejected for the performances of the strategies when using
Linear Regression, meaning there is a significant performance difference between
the strategies.

From the results for both tasks we can conclude that the RDF2Vec approach
outperforms the baseline approaches and also outperforms the state-of-the art graph
embeddings models. Furthermore, Inverse PageRank Weight and PageRank Split
Weight strategies perform well for different learning methods. Overall, the skip-
gram models outperform the corresponding CBOW models for most of the strate-
gies. Unexpectedly, the Uniform Weight strategy also yields competitive results.

However, for the variety of tasks at hand, there is no universal approach, i.e.,
embedding model and a machine learning method, that consistently outperforms

8http://dws.informatik.uni-mannheim.de/en/research/rapidminer-
lod-extension

9https://rapidminer.com/
10http://data.dws.informatik.uni-mannheim.de/rmlod/LOD_ML_

Datasets/

http://dws.informatik.uni-mannheim.de/en/research/rapidminer-lod-extension
http://dws.informatik.uni-mannheim.de/en/research/rapidminer-lod-extension
https://rapidminer.com/
http://data.dws.informatik.uni-mannheim.de/rmlod/LOD_ML_Datasets/
http://data.dws.informatik.uni-mannheim.de/rmlod/LOD_ML_Datasets/
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the others.

9.3 Conclusion and Outlook

Vector space embeddings for RDF graphs have been proven a high utility and pow-
erful approach for transforming RDF data and knowledge graphs to propositional
forms. The RDF2Vec approach, first introduced in [254], leverages random walks
for transforming RDF graphs to token sequences, which is a necessary approach
to be able to apply standard vector space embeddings techniques like CBOW and
Skip-Gram.

In this chapter, we have examined the influence of edge weights and transition
probabilities to guide the walks, i.e., to make them less uniformly random. We have
shown that introducing biases to the walks can lead to significant improvements.
In particular, the PageRank split and the inverse PageRank weighting schemes pro-
vide good results.

So far, we have based our evaluations on machine learning tasks. For future
work, we will also study the effect on other tasks in which knowledge graph em-
beddings have been applied successfully, such as content-based recommender sys-
tems [66], as well as link prediction, type prediction, or graph completion and error
detection in knowledge graphs [223], as discussed in [181, 196].

In our experiments, we have also experienced that there is not a one-size-fits-
all solution for the weighting schemes. Although there are some trends that can
be observed, the performance of the weighting schemes is hard to predict in indi-
vidual cases. Among others, we assume that one crucial factor is the popularity of
entities: for example, for very popular entities, the PageRank heuristic is assumed
to work well, because it extracts more sequences containing popular entities, while
for tail entities, the inverse PageRank heuristic will lead to better results. Future
evaluations should examine those effects more deeply.

This work has been continued in [45], where we present an approach that ex-
ploits global patterns for creating vector space embeddings, inspired by the Global
Vectors (GloVe) [232] approach for learning vector space embeddings for words
from a text corpus. We show that using the GloVe approach on the same data as the
older RDF2Vec approach does not improve the created embeddings. However, this
approach is able to incorporate larger portions of the graph, without substantially
increasing the computational time, leading to comparable results.



Part III

Applications of Semantic Web
Knowledge Graphs
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Chapter 10

Analyzing Statistics with
Background Knowledge from
Semantic Web Knowledge
Graphs

Statistical datasets are widely spread and published on the Web. However, many
users’ information need is not the mere consumption of statistical data as such,
but the search for patterns and explanations. As shown in the previous chapter,
information from the Linked Open Data cloud can serve as background knowledge
for interpreting statistical data, as it covers various domains, ranging from general
purpose datasets to government and life science data [267].

In this chapter, we present the Web-based tool ViCoMap1, which allows auto-
matic correlation analysis and visualizing statistical data on maps using Semantic
Web knowledge graphs. The tool automatically enriches statistical datasets, im-
ported from Semantic Web knowledge graphs, RDF datacubes, or local datasets,
with information from Semantic Web knowledge graphs, and uses that background
knowledge as a means to create possible interpretations as well as advanced map
visualization of the statistical datasets. To visualize geospatial entities on a map,
we use GADM2, a LOD database of polygon shapes of the world’s administrative
areas.

So far, many tools for visualization of LOD and statistical data have been devel-
oped [230]. In particular, for RDF data cubes3 exposing statistical data, different
browsers have been developed, such as CubeViz4 or Payola5 [150]. The CODE

1The tool is available at http://vicomap.informatik.uni-mannheim.de/
2http://gadm.geovocab.org/
3http://www.w3.org/TR/vocab-data-cube/
4http://aksw.org/Projects/CubeViz.html
5http://live.payola.cz/
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Visualisation Wizard6 [191] also features different chart and map based visualiza-
tions. Tialhun et al. [303] have developed a LOD-based visualization system for
healthcare data. The system visualizes different healthcare indicators per country
on a map, and is able to perform correlation analysis between selected indicators,
which can later be visualized as a chart.

The direct predecessor of ViCoMap is Explain-a-LOD [219], which is one of
the first approaches for automatically generating hypothesis for explaining statis-
tics using LOD. The tool enhances statistical datasets with background information
from DBpedia7, and uses correlation analysis and rule learning for producing hy-
pothesis which are presented to the user.

ViCoMap combines map-based visualizations on the one hand side, and mining
for correlations using background knowledge from LOD on the other. As such, it
opens new ways of interpreting statistical data.

The work presented in this chapter has been published before as: “Petar
Ristoski, Heiko Paulheim: Visual Analysis of Statistical Data on Maps Using
Linked Open Data. Revised Selected Papers of the 12th European Semantic
Web Conference, Portoroz, Slovenia, May 2015 ” [250].

10.1 The ViCoMap Tool

The architecture of the ViCoMap tool consists of three main components, as shown
in Fig. 10.1. The base component of the tool is the RapidMiner Linked Open
Data extension [246]. The extension hooks into the powerful data mining platform
RapidMiner8, and offers operators for accessing LOD in RapidMiner, allowing
for using it in sophisticated data analysis workflows using data from LOD. The
extension allows for autonomously exploring the Web of Data by following links,
thereby discovering relevant datasets on the fly, as well as for integrating redundant
data found in different datasets, and wraps additional services such as DBpedia
Lookup9 and DBpedia Spotlight10.

All processes built within the RapidMiner platform can be exposed as Web
services through the RapidMiner Server, which can be consumed in a user Web
application. We use such a setup to integrate the functionalities of the RapidMiner
LOD extension, as well as the functionalities of RapidMiner built-in operators, in
the ViCoMap Web application. The ViCoMap Web application offers three main
functionalities to the end-user: Data Import, Correlation Analysis, and Visualiza-
tion on Maps.

6http://code.know-center.tugraz.at/search
7http://dbpedia.org/
8http://www.rapidminer.com
9http://lookup.dbpedia.org

10http://lookup.dbpedia.org

http://code.know-center.tugraz.at/search
http://dbpedia.org/
http://www.rapidminer.com
http://lookup.dbpedia.org
http://lookup.dbpedia.org
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Figure 10.1: ViCoMap Architecture

10.1.1 Data Import

There are three options to import data, i.e.,import a dataset published using the
RDF Data Cube vocabulary, import data from a SPARQL endpoint, and import
data from a local file.

Import RDF Data Cubes: To import a dataset published using the RDF Data
Cube vocabulary, the user first needs to select the data publisher source, and a
dataset that will be explored. Currently, we provide a static list of most used RDF
Data Cube publishers, like WorldBank11. After selecting a data cube and the di-
mensions to be analyzed, the dataset is loaded into RapidMiner by the LOD exten-
sion.

SPARQL Data Import: To import data from a SPARQL endpoint, the user first
needs to select a SPARQL endpoint and to provide a SPARQL query. The tool
offers a SPARQL query builder assistant, which helps the user formulate queries
such as Select the number of universities per federal state in Germany, by selecting
a set of spatial entities (states in Germany) and a subject entity (universities).

Local Dataset Import: The user can import data from a local CSV file.

10.1.2 Correlation Analysis

Once the data is loaded, the user can select a column that will be used for correla-
tion analysis. The user can choose the LOD sources that will be explored to find
interesting factors that correlate with the target value at hand. To link the data at

11http://worldbank.270a.info

http://worldbank.270a.info
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hand to remote LOD datasets, the tool exploits existing owl:sameAs links, and
it automatically creates additional links, e.g., via DBpedia Lookup for non-linked
datasets, such as CSV files. From the data retrieved from the additional LOD
sources, a simple correlation analysis is performed to find simple correlations of
the generated features and the target value under examination. The discovered cor-
relations are sorted by confidence and presented to the user.

Visualization on Maps

After the correlation analysis is completed, the user can visualize any correlation
on a map, using the Google Maps API12 and displaying two maps for the corre-
lated values side by side. The shape data of the geographical entities is retrieved
from GADM. DBpedia provides external links to the GADM dataset, which were
created using different heuristics based on the label and coordinates of geographi-
cal entities [251]. DBpedia 2014 contains 65, 616 links to the GADM dataset, for
entities on different administration level, e.g., municipalities, regions, states, de-
partments, countries, etc. Such links allow us to visualize spatial entities on any
administrative level.

10.2 Use Case: Number of Universities per State in Ger-
many

In this use case, we analyze which factors correlate with the number of universities
per state in Germany13. To import the initial data we use the query builder assistant
from the SPARQL data import tab (Figure 10.2a). After executing the query, the
data is presented in a table with two columns, i.e., the DBpedia URI for each state,
and the number of universities per state (Figure 10.2b). By pressing the button Find
Correlations, we can select the LOD sources that will be included in the correlation
analysis (Figure 10.2c). Next, the discovered correlations are presented in a new
table with two columns, i.e., a column with the factor label, and the a column with
the correlation confidence (Figure 10.2d).

We can see that in this case, as shown in Fig. 10.3, the highest positive cor-
relation is the RnD expenses of the states (+0.84), which is retrieved from Euro-
stat. The highest negative correlation is the latitude of the states (-0.73), which
is retrieved from GeoNames, which reflects the north-south gradient of the wealth
distribution in Germany.14

12https://developers.google.com/maps/
13States of Germany: http://en.wikipedia.org/wiki/States_of_Germany
14http://www.bundesbank.de/Redaktion/EN/Topics/2013/2013_07_10_

to_save_or_not_to_save_private_wealth_in_germany.html

https://developers.google.com/maps/
http://en.wikipedia.org/wiki/States_of_Germany
http://www.bundesbank.de/Redaktion/EN/Topics/2013/2013_07_10_to_save_or_not_to_save_private_wealth_in_germany.html
http://www.bundesbank.de/Redaktion/EN/Topics/2013/2013_07_10_to_save_or_not_to_save_private_wealth_in_germany.html
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Figure 10.2: German States Use Case Workflow

(a) Positive correlation between #univer-
sities (left) and RnD expenses (right) per
state

(b) Negative correlation between #uni-
versities (left) and latitude (right) per
state

Figure 10.3: Correlations visualized on a map using GADM geographical shape
data

10.3 Conclusion and Outlook

In this chapter, we have introduced the web-based ViCoMap tool, which allows
the users to analyze statistical data, and visualize it on maps using external knowl-
edge from Semantic Web knowledge graphs. While at the moment, we use only
literal data properties and types for finding correlations, we aim at a more intel-
ligent exploration of the feature space, e.g., by automatically finding meaningful
aggregations of different measures.



Chapter 11

Semantic Web enabled
Recommender Systems

Recommender systems are systems that provide a suggestion of items to a user,
based on the user’s profile and/or previous behavior. They are used, e.g., for music
recommendation in streaming services, in online shopping sites, or on news portals
and aggregators. The two major types of recommender systems are collaborative
filtering and content-based recommender systems. The former exploit similarity
among users, i.e., they recommend items that have been consumed and/or ranked
high by users that have similar interests as the user for which the recommendation
is made. The latter exploit similarities among items, e.g., recommending music
of the same genre or news articles on the same topic. Combinations of those ap-
proaches, known as hybrid approaches, have also been widely studied [33].

In particular for content-based recommender systems, Semantic Web knowl-
edge graphs have been shown to be a valuable source of background knowledge.
Despite data from various domains being published as Linked Open Data [267],
particularly cross-domain sources such as DBpedia [162] are primarily used in
recommender systems. Given that the items to be recommended are linked to a
LOD dataset, information from LOD can be exploited to determine which items
are considered to be similar to the ones that the user has consumed in the past. For
example, DBpedia holds information about genres of books and music recordings,
which can be exploited in recommendation systems [116]. Most often, selected
data is extracted from DBpedia and transformed into a propositional form, i.e.,
each graph node is represented by a flat vector of binary and/or numeric features.
However, DBpedia contains more information than expressed in those proposi-
tional forms. In particular, semantic paths between entities are a good candidate
for building cross-domain recommender systems.

In this chapter, we present three approaches for exploiting Semantic Web knowl-
edge graphs for building recommender systems. The first approach is based on
graph metrics, the second approach is based on a hybrid approach using flat fea-
tures extracted from Semantic Web knowledge graphs, and the third approch is
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based on Semantic Web knowledge graph embeddings.

The work presented in this chapter has been published before as: “Petar Ris-
toski, Michael Schuhmacher, Heiko Paulheim: Using Graph Metrics for Linked
Open Data Enabled Recommender Systems. Proceedings of the 16th Interna-
tional Conference on Electronic Commerce and Web Technologies, Valencia,
Spain, September, 2015.” [259], “Petar Ristoski, Eneldo Loza Mencía, Heiko
Paulheim: A hybrid multi-strategy recommender system using linked open data.
Semantic Web Evaluation Challenge, Crete, Greece, May, 2014” [249], “Jes-
sica Rosati, Petar Ristoski, Tommaso Di Noia, Renato de Leone, Heiko Paul-
heim: RDF graph embeddings for content-based recommender systems. Pro-
ceedings of the 3rd Workshop on New Trends in Content-based Recommender
Systems, in conjunction with the 10th ACM Conference on Recommender Sys-
tems Boston, MA, USA, September 16, 2016."’ [261], “Petar Ristoski, Jessica
Rosati, Tommaso Di Noia, Renato de Leone, Heiko Paulheim: RDF2Vec: RDF
Graph Embeddings and Their Applications. The Semantic Web Journal.” [258]

The evaluation of the recommender system presented in section 11.4, was car-
ried by Jessica Rosati, from the Polytechnic University of Bari – Via Orabona,
4 – 70125 Bari, Italy.

11.1 Related Work

It has been shown that LOD can improve recommender systems towards a better
understanding and representation of user preferences, item features, and contex-
tual signs they deal with. LOD has been used in content-based, collaborative, and
hybrid techniques, in various recommendation tasks, i.e., rating prediction, Top-N
recommendations and diversity in content-based recommendations. An overview
of cross-domain recommender systems is given in [37].

Among the earliest such efforts is dbrec [216], which uses DBpedia as knowl-
edge base to build a content-based music recommender system. The recommenda-
tions are based on measure (named Linked Data Semantic Distance) which com-
putes the distance between two items in the DBpedia graph, using only the object
properties. Heitmann et al. [116] propose an open recommender system which
utilizes Linked Data to mitigate the new-user, new-item and sparsity problems of
collaborative recommender systems. They first publish an existing music artists
database as LOD using the FOAF ontology1. Then, they link the data to DBpedia
and DBtune MySpace. Using the new connections between the users, artists and
items, the authors are able to build a collaborative recommender system.

Di Noia et al. [64] propose a model-based recommender system that relies on
LOD, and can use any arbitrary classifier to perform the recommendations. First,

1http://xmlns.com/foaf/spec/

http://xmlns.com/foaf/spec/
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they map the items from the local dataset to DBpedia, and then extract the di-
rect property-value pairs. The resulting data is converted to feature vectors, where
each property-value pair represents a feature. The work is extended in [65] where
the similarities between the items are calculated using a vector space model. In
this approach, for each item the direct property-value pairs are extracted from DB-
pedia, Freebase and LinkedMDB2, which are represented as a 3-dimensional ma-
trix where each slice refers to an ontology property and represents its adjacency
matrix. In [206], the authors present SPrank, a hybrid recommendation algorithm
for computing top-N item recommendations from implicit feedback exploiting the
information available as LOD. In the approach, the authors try to extract features
able to characterize the interactions between users, items and entities capturing the
complex relationships between them. To do so, they extract all the paths that con-
nect the user to an item in order to have a relevance score for that item, which are
then used as features in the recommender algorithm. In more recent work [207],
the authors propose a content-based recommender based on a neighborhood-based
graph kernel, which computes semantic item similarities by matching their local
neighborhood graphs.

Another approach by Schmachtenberg et al. [268] uses background knowledge
from LinkedGeoData, to enhance a location-based recommendation system. The
features for the recommendation system were generated using the FeGeLOD tool
[225], the predecessor of the RapidMiner LOD extension.

Furthermore, several cross-domain recommender systems based on LOD data
have been proposed in the literature. Fernández-Tobías et al. [86] proposed an
approach that uses DBpedia as a cross-domain knowledge source for building a
semantic network that links concepts from several domains. On such a semantic
network, which has the form of a directed acyclic graph, a weight spreading acti-
vation algorithm [46] retrieves concepts in a target domain (music) that are highly
related to other input concepts in a source domain (points of interest). The work
is extended in [137, 138] by finding richer semantic relations between architecture
and music concepts in DBpedia.

A similar LOD-enhanced graph-based approach is presented in [115, 117]. The
approach is based on an enhanced spreading activation model that exploits intrinsic
links between entities across a number of data sources.

11.2 Graph-based Methods for Recommender Systems

We consider three graph-based recommendation approaches. To perform the calcu-
lations, we first build an undirected weighted graph, where each item is represented
as a node. For our implementation, we use the JUNG java library3, which also of-
fers implementations of different algorithms from graph theory. Since the domains
for the three tasks differ, we use the same set of graph algorithms, but a different

2http://www.linkedmdb.org/
3http://jung.sourceforge.net/

http://www.linkedmdb.org/
http://jung.sourceforge.net/
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graph of items with different edge weights for each of the tasks. The different graph
algorithms are described in this section, while the dataset-specific construction of
the respective graphs is described in the corresponding parts of Section 13.4.

Shortest Path

To recommend relevant items for each user, we try to find the items in the graph
that are closest to those items that were liked by the user, i.e., we assume that
proximity in the graph is a proxy for similarity.

For implementing that approach, let R be the set of items a user liked. Then,
for each item t in the test set (i.e., the items from which a recommendation is to
be made), we compute the negated sum of shortest path lengths (given the edge
weights) for all items in R to t as a ranking score:

I(t|R) = −
|R|∑
i=1

sp(Ri, t), (11.1)

where sp(Ri, t) is the shortest path from Ri to t, where Ri ∈ R. Then, for each
user the test items are sorted based on the relevance I in descending order, and the
top-N items are recommended to the user.

K-Step Markov Approach

The PageRank algorithm is frequently used to compute importance for nodes in a
graph. The PageRank score of a node can be seen as the probability of visiting that
node with a random walk on the graph [208]. The K-Step Markov approach repre-
sents an algorithm variant of the PageRank algorithm with priors and computes the
importance of any node in a given graph based on a given root set of nodes [327].
More precisely, the approach computes the relative probability that the system will
spend time at any particular node in the graph, given that it starts in a root set of
nodes R and ends after K steps.

The result is an estimate of the transient distribution of states in the Markov
chain, starting from R: as K gets larger it will converge to the steady-state distri-
bution used by PageRank, i.e. the standard version of PageRank without priors.
Thus, the value of K controls the relative tradeoff between a distribution “biased”
towards the root set of nodes R and the steady-state distribution which is indepen-
dent of where the Markov process started. The relative importance of a node t
given a root set R can be calculated using the equation:

I(t|R) =
[
APR

+A2
PR

+ . . .+AK
PR

]
(11.2)

where A is the transition probability matrix of size n×n, and PR is an n×1 vector
of initial probabilities for the root set R.

In order to create recommendations, we again start with the set of items R
which a user likes, and then use the K-Step Markov approach to find the top-N
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nodes that have the highest stationary probability. For the transition probability we
use the edge weights after turning them into proper probabilities.

WeightedNIPaths

For predicting the relevance of an item node for a given user within the graph, we
also make use of the WeightedNIPath algorithm [327]. Building upon the Shortest
Path approach from Section 11.2, the idea is here to consider not only the single
shortest path, but to take into account all distinct paths and add a decay factor
λ to penalize longer paths. Therefore, we compute the number of distinct paths
between the source nodes, i.e. all nodes/items that have been rated r ∈ R by the
user, and each other node t, i.e. all unrated and potentially to be recommended
nodes. Our intuition is that items which are frequently (indirectly) connected to
positively rated items, have some content-based connection and should thus get a
higher recommendation score by this method.

Formally, for a set of items R liked by a user, and a candidate item t, we
compute the importance score as

I(t|R) =
∑
r∈R

|P (r,t)|∑
i=1

λ−|pi| (11.3)

where P (r, t) is a set of maximum-sized node-disjoint paths from node r to node
t, pi is the ith path in P (r, t), and λ is the path decay coefficient. As before, the
top-N items are recommended.

With this approach, movies that e.g. share the same actors and director will
be closer related than two movies that have only the director in common. While
being similar to the shortest path approach described above, WeightedNIPath takes
into account all paths and discounts each edge of a path by a factor, thus penalizing
longer paths (we use a discount factor of 3). The rationale here is that the longer a
path, the less closely related are the items this path connects. In addition, based on
initial experiments, we limit the path length to 2, which is also common practice
when working with DBpedia as a semantic network [270].

11.2.1 Evaluation

We evaluate the item recommendation performance of the three graph algorithms
with benchmark data from the Linked Open Data-enabled Recommender Systems
Challenge 2015.4 For this challenge, three training datasets from different do-
mains, i.e., movies, books, and music, are provided. Those datasets were generated
by collecting data from Facebook profiles about personal preferences (“likes”) for
the items. After a process of user anonymization, the items available in the dataset
have been mapped to their corresponding DBpedia URIs. An overview of the size
of the datasets is given in Table 11.1.

4http://sisinflab.poliba.it/events/lod-recsys-challenge-2015/

http://sisinflab.poliba.it/events/lod-recsys-challenge-2015/
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Table 11.1: Datasets Overview

Dataset #Items #Ratings Task
movies 5,389 638,268 1 & 3
music 6,372 854,016 2
books 3,225 11,600 3

For all three tasks, each approach was evaluated on an unseen gold standard
using an online evaluation system provided by the challenge, and compared to
standard collaborative filtering as a baseline.

Task 1: Top-N Recommendations from Unary User Feedback

In this task, top-N recommendations for the movie domain are to be made. The
input is unary feedback (i.e., whether a user likes an item) under open world se-
mantics, i.e., no negative examples (dislikes) are provided. The evaluation is made
based on recall, precision, and F-measure for the top 10 recommendations.

Graph Extraction

The graph we construct consists of some direct relations of the movies, as well as
their actors, genres, and characters. To generate the graph, we used the RapidMiner
Linked Open Data extension [229, 246]. We extracted the following relations:

• movie: rdf:type, dcterms:subject, dbpedia-owl:starring, dbpedia-owl:director,
dbpedia-owl:distributor, dbpedia-owl:producer, dbpedia-owl:musicComposer,
dbpedia-owl:writer, and dbpprop:genre

• movie_actor: rdf:type, dcterms:subject, and is dbpedia-owl:starring of

• movie_genre: rdf:type and dcterms:subject

• movie_character: rdf:type, dcterms:subject, dbpedia-owl:creator, and dbpedia-
owl:series

Each DBpedia entity is represented as a node in the graph, where the relations
between the entities are represented as undirected edges between the nodes in the
graph. We use inverse document frequency (IDF) to weight the edges. For exam-
ple, if an actor plays in five movies, then the IDF for each of those five relations is
log 1

5 .5

In order to make the approach work also for rather weakly interlinked re-
sources, we introduce additional edges in the graph based on the abstracts in DB-
pedia. To that end, we preprocess the abstract, i.e., we convert the abstract to lower

5To compute edge weights from IDF, we first normalize the IDF scores to [0; 1], and then assign
1 − IDFnormalized as a weight to the edges, so that edges with a larger IDF value have a lower
weight
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case, perform tokenization, stemming, and stop words removal. Then, each token
is represented as a node in the graph. Eventually, we use the resulting graph of
abstract tokens and genre relations to find paths between entities from the movie
domain and entities from the books domain. The relations between the entities and
tokens are, as before, represented as undirected edges between the nodes in the
graph and edges are also again IDF-weighted as for task 1.

In addition to the graph, we extracted the following global (i.e., not user-
related) popularity scores:

• Number of Facebook likes6

• Metacritic score7

• Rotten Tomatoes score8

• DBpedia Global PageRank [295]

• Local Graph PageRank: Computed using the JUNG java library on the previ-
ously generated graph

• Aggregated Popularity: Using Borda’s rank aggregation [54], we aggregated all
those popularity scores into one.

we use a stacking approach [304] for combining all the recommendations, i.e.,
collaborative, content-based, and global.

Results

The results are depicted in Table 11.2. It can be observed that the collaborative
filtering based approaches clearly outperform the content-based ones. From the
graph-based approaches, the shortest paths are the best performing approach.

The global ranking scores, aggregated with Borda’s rank aggregation, are a
strong competitor to content-based approaches. On the other hand, the stacking ap-
proach combining multiple recommendation approaches does not work well. This
is in particular due to the fact that only positive evidence is given, which makes it
hard to train a regression algorithm.

Due to its bad performance, we have not considered the stacking solution for
the subsequent tasks.

Task 2: Diversity within Recommended Item Sets

The second task is to make recommendations in the music domain. Here, the focus
is on diverse recommendations, i.e., entities from different genres. The evaluation
is made based on the average of F-measure and intra-list diversity (ILD) for the top
20 recommendations.

6https://www.facebook.com/
7http://www.metacritic.com/
8http://www.rottentomatoes.com/

https://www.facebook.com/
http://www.metacritic.com/
http://www.rottentomatoes.com/
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Table 11.2: Results for top-N recommendations from unary user feedback (the best
results are marked in bold).

Approach P@10 R@10 F1@10
User-Based KNN (k=20) 0.0954 0.1382 0.1129
User-Based KNN (k=50) 0.1025 0.1485 0.1213
User-Based KNN (k=80) 0.1032 0.1493 0.122

Shortest Path 0.0597 0.0859 0.0704
K-Step Markov Approach (K=4) 0.0496 0.0703 0.0581

WeightedNIPaths (H=2) 0.0151 0.0217 0.0178
Shortest Path (w abstract) 0.0525 0.0746 0.0616

K-Step Markov Approach (K=4) (w abstract) 0.0562 0.0804 0.0662
WeightedNIPaths (H=2) (w abstract) 0.0216 0.0309 0.0254

Borda’s rank aggregation 0.0572 0.0824 0.0676
Stacking with polynomial regression 0.0099 0.0137 0.0115

Graph Extraction

To generate the graph, we extracted the following relations:

• music_artist: rdf:type, dcterms:subject, dbpedia-owl:genre, dbpedia-owl:
associatedBand, dbpedia-owl:associatedMusicalArtist, dbpedia-owl:genre, and
dbpedia-owl:occupation

• music_band: rdf:type, dcterms:subject, dbpedia-owl:associatedBand, dbpedia-
owl:associatedMusicalArtist, dbpedia-owl:genre, and dbpedia-owl:bandMember

• music_album: rdf:type, dcterms:subject, dbpedia-owl:artist, and dbpedia-owl:
genre

• music_composition: rdf:type, dcterms:subject, dbpedia-owl:musicalArtist, dbpedia-
owl:musicalBand, and dbpedia-owl:genre

• music_genre: rdf:type and dcterms:subject

• abstract: dbpedia-owl:abstract

As for the previous task, each DBpedia entity is represented as a node in the graph,
where the relations between the entities are represented as undirected edges be-
tween the nodes in the graph. Like for the previous task, we use IDF to weight the
edges.

For making the predictions, with user-based k-NN, we simply predict the top
20 items, as we already observe a high ILD with this approach. For shortest paths
and the k-step Markov approach: We first generate ranked lists. From those lists,
we then pick the top 10 items, and then iteratively fill them up with the next 10
items in the list that do not share a genre with those that are already in the list.
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Table 11.3: Results for diversity within recommended item sets (the best results
are marked in bold).

Approach P@20 R@20 F1@20 ILD@20
User-Based KNN (k=20) 0.09 0.2477 0.1321 0.9039
User-Based KNN (k=50) 0.0963 0.2649 0.1412 0.9028
User-Based KNN (k=80) 0.0973 0.2677 0.1427 0.9032

Shortest Path 0.0343 0.0948 0.0504 0.8964
K-Step Markov Approach (K=4) 0.0312 0.0863 0.0458 0.9077

WeightedNIPaths (H=2) 0.0343 0.0933 0.0502 0.8588
Shortest Path (w abstract) 0.0077 0.0203 0.0112 0.9717

K-Step Markov Approach (K=4) (w abstract) 0.0217 0.0585 0.0317 0.9699
WeightedNIPaths (H=2) (w abstract) 0.0358 0.0975 0.0523 0.8785

Borda’s rank aggregation 0.0356 0.0977 0.0522 0.922

Results

The results for task 2 are depicted in Table 11.3. Again, we can see that on av-
erage, the collaborative filtering approaches produce the better results in terms of
F-measure, with the ILD being comparable. It is furthermore remarkable that the
ILD is that high for the collaborative filtering approaches, which were not specif-
ically altered for producing diverse recommendations. The highest ILD score is
achieved with the Shortest Path (with abstract), however at the cost of a very low
recall, precision, and F1 score.

Task 3: Cross-domain Recommendation

The third task poses a different setting, as it asks for using feedback (user ratings)
from one domain, here movies, to provide recommendations for another domain,
namely books. Like for the first task, recall, precision, and F-measure for the top
10 recommendations are used as evaluation metrics.

Graph Extraction

To generate the graph, we extract the same features as for the top-N recommenda-
tion tasks on movies (see Section 11.2.1), but including in addition the dbpedia-
owl:abstract for each item. For the book domain, we extract the following rela-
tions:

• book: rdf:type, dcterms:subject, dbpedia-owl:genre, dbpedia-owl:author, and
dbpedia-owl:subsequentWork

• book_writer: rdf:type and dcterms:subject

• book_character: rdf:type and dcterms:subject
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Table 11.4: Results for cross-domain recommendation (the best results are marked
in bold).

Approach P@10 R@10 F1@10
User-Based KNN (k=20) 0.0162 0.026 0.0199
User-Based KNN (k=50) 0.022 0.0353 0.0271
User-Based KNN (k=80) 0.0258 0.0416 0.0318

Shortest Path 0.0326 0.0539 0.0407
K-Step Markov Approach (K=4) 0.0659 0.1077 0.0818

WeightedNIPaths (H=2) 0.0358 0.0299 0.0227
Shortest Path (w abstract) 0.0627 0.1026 0.0778

K-Step Markov Approach (K=4) (w abstract) 0.078 0.1276 0.0968
WeightedNIPaths (H=2) (w abstract) 0.0195 0.0314 0.024

Borda’s rank aggregation 0.0301 0.0493 0.0374

• book_genre: rdf:type and dcterms:subject

• abstract: dbpedia-owl:abstract

Results

The results for task 3 are depicted in Table 11.4. Here, in contrast to task 1 and 2,
we find that the graph-based approaches clearly outperform the collaborative fil-
tering (CF) ones. We also observe that User-based KNN is comparably low, which
leads us to the suspicion that the cross-domain nature of this task poses a serious
challenge to regular CF approaches – which obviously need to operate on already
observed items. In an extreme cross-domain scenario, there would be no histor-
ical user preference information available on the items to be ranked and any CF
approach would fail. In contrast, the graph-based approaches can apparently find
reasonable relations in the graph between books and movies (e.g., common gen-
res, or mentioning of similar terms in the abstract) and leverage those for creating
meaningful predictions.

11.2.2 Conclusion and Outlook

In this section, we have proposed to derive weighted graphs from DBpedia, and
apply graph algorithms on it to retrieve item-based recommendations. We studied
the usage of three different graph algorithms working on different subgraphs of
the DBpedia graph. Our approaches rely on (a) shortest paths, (b) a variant of
PageRank with priors (K-Step Markov), and (c) the sum of all distinct, connecting
paths (WeightedNIPaths).

We find that in situations where the complete user feedback is available, col-
laborative filtering outperforms all studied graph-based approaches. In contrast,
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in situations where user feedback is scarce – here: for making cross-domain pre-
dictions – graph-based approaches are a reasonable way to build recommender
systems. This observation makes the approaches proposed in this section an inter-
esting candidate for various settings. For example, in cold start situations, where
no ratings for new products exist (yet), they should be included in recommenda-
tions. Second, when trying to open new market segments for an existing customer
base, such methods can be helpful.

So far, we have considered only DBpedia as LOD source. In future work we
can explore the existing owl:sameAs links in DBpedia to build richer and denser
graphs from domain specific LOD sources, e.g., LinkedMDB9 for movies, Mu-
sicBrainz10 for music, the British National Bibliography11 for books, etc. The in-
formation retrieved from the domain specific LOD sources should be more accurate
and extensive, which should lead to better performance of the recommender sys-
tems. Furthermore, when building the graphs only specific relations were included,
which we believed were the most relevant for the task. However, the graphs may
be built in unsupervised manner, i.e., including all properties for all of the entities,
and expanding the graph to several hops. The proposed approaches should still
be able to make good recommendations on such graphs, because we use IDF to
weight the edges, i.e., the most relevant edges will have a higher weight. This way,
we would be able to apply the approaches on data from any domain/s without the
need for manual feature engineering.

11.3 A Hybrid Multi-Strategy Recommender System Us-
ing Semantic Web Knowledge Graphs

As a second recommender system, we propose a hybrid, multi-strategy approach
that combines the results of different base recommenders and generic recommenders
into a final recommendation. A base recommender is an individual collaborative
or content based recommender system, whereas a generic recommender makes a
recommendation solely on some global popularity score, which is the same for all
users. The approach has been evaluated on the three tasks of the LOD-enabled Rec-
ommender Systems Challenge 2014 from the domain of book recommendations.12

For base recommenders, we use two collaborative filtering strategies (item and user
based), as well as different content-based strategies exploiting various feature sets
created from DBpedia.

9http://www.linkedmdb.org/
10https://wiki.musicbrainz.org/LinkedBrainz
11http://bnb.data.bl.uk/
12 75,559 numeric ratings on 6,166 books (from 0-5, Task 1) and 72,372 binary ratings on 6733

books (Tasks 2 and 3), resp., from 6,181 users for training, and evaluation on 65,560 and 67,990 un-
known ratings, resp. See http://challenges.2014.eswc-conferences.org/index.
php/RecSys for details.

http://www.linkedmdb.org/
https://wiki.musicbrainz.org/LinkedBrainz
http://bnb.data.bl.uk/
http://challenges.2014.eswc-conferences.org/index.php/RecSys
http://challenges.2014.eswc-conferences.org/index.php/RecSys
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Generic Recommenders

We use different generic recommenders in our approach. First, the RDF Book
Mashup dataset13 provides the average score assigned to a book on Amazon. Fur-
thermore, DBpedia provides the number of ingoing links to the Wikipedia article
corresponding to a DBpedia instance, and the number of links to other datasets
(e.g., other language editions of DBpedia), which we also use as global popularity
measures. Finally, SubjectiveEye3D delivers a subjective importance score com-
puted from Wikipedia usage information.14

Features for Content-based Recommendation

The features for content-based recommendation were extracted from DBpedia us-
ing the RapidMiner Linked Open Data extension [229]. We use the following
feature sets for describing a book:

• All direct types, i.e., rdf:type, of a book15

• All categories of a book

• All categories of a book including broader categories16

• All categories of a book’s author(s)

• All categories of a book’s author(s) and of all other books by the book’s authors

• All genres of a book and of all other books by the book’s authors

• All authors that influenced or were influenced by the book’s authors

• A bag of words created from the abstract of the book in DBpedia. That bag
of words is preprocessed by tokenization, stemming, removing tokens with less
than three characters, and removing all tokens less frequent than 3% or more
frequent than 80%.

Furthermore, we created a combined book’s feature set, comprising direct types,
qualified relations, genres and categories of the book itself, its previous and subse-
quent work and the author’s notable work, the language and publisher, and the bag
of words from the abstract. Table 11.5 depicts the number of features in each set.

Besides DBpedia, we made an effort to retrieve additional features from two
additional LOD sources: British Library Bibliography and DBTropes17. Using the

13http://wifo5-03.informatik.uni-mannheim.de/bizer/bookmashup/
14https://github.com/paulhoule/telepath/wiki/SubjectiveEye3D
15This includes types in the YAGO ontology, which can be quite specific (e.g., American Thriller

Novels)
16The reason for not including broader categories by default is that the category graph is not a

cycle-free tree, with some subsumptions being rather questionable.
17http://bnb.data.bl.uk/ and http://skipforward.opendfki.de/wiki/

DBTropes

http://wifo5-03.informatik.uni-mannheim.de/bizer/bookmashup/
https://github.com/paulhoule/telepath/wiki/SubjectiveEye3D
http://bnb.data.bl.uk/
http://skipforward.opendfki.de/wiki/DBTropes
http://skipforward.opendfki.de/wiki/DBTropes
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RapidMiner LOD extension, we were able to link more than 90% of the books to
BLB entities, but only 15% to DBTropes entities. However, the generated features
from BLB were redundant with the features retrieved from DBpedia, and the cov-
erage of DBTropes was too low to derive meaningful features. Hence, we did not
pursue those sources further.

Recommender Strategies

For implementing the collaborative and content-based recommendation systems,
we used the RapidMiner Recommendation Extension [176], which uses k-NN clas-
sification. We use k = 80 and cosine similarity for the base recommenders. The
rationale of using cosine similarity is that, unlike, e.g., Euclidean distance, only
common features influence the similarity, but not common absence of features
(e.g., two books not being American Thriller Novels).

Furthermore, we train an additional recommender on the joint feature set, us-
ing Random Decision Trees (RDTs) [336].18 RDTs generate k1 decision trees with
maximal depth k2 and random attribute tests at the inner nodes. Each tree collects
a distribution over the target variables at each of its leaf nodes by seeing the train-
ing data. E.g. for multilabel data, RDT’s leaves collect the label distribution so
that each RDT predicts for each test instance a distribution over the labels. These
predictions are subsequently averaged over all trees in order to produce one single
prediction. The predictions of several of such trees are then combined into a final
prediction. RDTs provide a good tradeoff between scalability for large example
sets and prediction accuracy (often outperforming SVMs).

For applying RDTs to the collaborative filtering data, we transformed the prob-
lem into a multilabel task: For each user we generated n different labels indicating
each of the possible user ratings, i.e. n = 5 for task 1 and n = 2 for task 2. Dur-
ing training RDTs learn – for each known book/user combination – the mapping
between the feature set of each book and the generated labels. Given an unknown
book/user combination x, y, we are now able to estimate a distribution P (i| x, y)
over the different ratings i. The final predicted rating r is obtained by weighting the
ratings r =

∑5
i=0 i · P (i| x, y) (task 1) or by computing the probability difference

P (1| x, y)− P (0| x, y) (task 2).
RDTs do not suffer from high dimensionality and sparseness as much as k-NN

does, thus we have built k1 = 10 trees with depth k2 = 10 on the combined book’s
properties feature set, instead of individual RDTs on each feature set.19

18We used the implementation available at http://www.dice4dm.com/
19In general, it holds that the higher k1 and k2 the better, since this increases the number of

covered feature dimensions and the diversity of the ensemble. However, comparably small values of
k1 and k2, around 10 or 20 and maximally 100, are sufficient according to experiments by Zhang
et al. [336] and Kong and Yu [152]. In our experiments, we tried to find a good balance between
computational costs and predictive quality, and we report the combination which we used for our
final recommendations.

http://www.dice4dm.com/
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Table 11.5: Performances of the base and generic recommenders, the number of
features used for each base recommender, and the performance of the combined
recommenders

Task 1 Task 2
Recommender #Features RMSE LR β F-Score

Item-based collaborative filtering – 0.8843 +0.269 0.5621
User-based collaborative filtering – 0.9475 +0.145 0.5483

Book’s direct types 534 0.8895 -0.230 0.5583
Author’s categories 2,270 0.9183 +0.098 0.5576

Book’s (and author’s other books’) genres 582 0.9198 +0.082 0.5567
Combined book’s properties 4,372 0.9421 +0.0196 0.5557

Author and influenced/influencedBy authors 1,878 0.9294 +0.122 0.5534
Books’ categories and broader categories 1,987 0.939 +0.012 0.5509

Abstract bag of words 227 0.8893 +0.124 0.5609
RDT recommender on combined book’s properties 4,372 0.9223 +0.128 0.5119

Amazon rating – 1.037 +0.155 0.5442
Ingoing Wikipedia links – 3.9629 +0.001 0.5377
SubjectiveEye3D score – 3.7088 +0.001 0.5369
Links to other datasets – 3.3211 +0.001 0.5321

Average of all individual recommenders 14 0.8824 – –
Stacking with linear regression 14 0.8636 – 0.4645

Stacking with RDT 14 0.8632 – 0.4966
Borda rank aggregation 14 – – 0.5715

11.3.1 Predicting Ratings and Top k Lists

For predicting ratings (task 1 in the challenge), we use all the recommendation
algorithms discussed above for training a regression model in the range of [0; 5].
The results for the base and generic recommenders are shown in Fig. 11.5.

In order to create a more sophisticated combination of those recommenders,
we trained a stacking model as described in [304]: We trained the base recom-
menders in 10 rounds in a cross validation like setting, collected their predictions,
and learned a stacking model on the predictions. The results in Table 11.5 show
that the stacked prediction outperforms the base and generic recommenders, with
the RDT based stacking (with k1 = 500 and k2 = 20) slightly ahead of linear
regression, and both stacking approaches outperforming the baseline approach of
averaging all recommenders’ ratings.

To further analyze the contribution of each feature, we also report the β pa-
rameters found by linear regression. It can be observed that apart from the direct
types, all base and generic recommenders contribute to the linear regression. A
possible reason for that anomaly is that direct types and categories are rather re-
dundant. Furthermore, we can see the benefit of using stacking approaches as the
three generic recommenders with high RMSE are filtered out by the LR model.

For creating top k lists from binary ratings (task 2 in the challenge), we again
trained regression models like for rating prediction, using a range of [0; 1]. The
top k lists were then obtained by ranking by the predicted rating. As shown in
Table 11.5, the base recommenders worked quite well, but the combination with
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Figure 11.1: Trade-off between F-measure and diversity

linear regression delivered non-satisfying results. The reason is that the outcome
of the base recommenders is not scaled equally for each user, but strongly depends
on the user’s total number of positive and negative ratings. This made it impossible
to learn a suitable regression function.

However, we observed that despite being incompatible in scale, the base and
generic recommenders delivered good rankings for each user. Thus, we performed
an aggregation of the rankings produced by the different recommenders, using
Borda’s rank aggregation algorithm, which outperforms all the individual recom-
menders, as well as the stacking regression.

11.3.2 Creating Diverse Predictions

The final task in the challenge was to address diversity of predictions, i.e., trade off
the accuracy of predictions, measured in F1 score, and their diversity, measured in
intra-list diversity (ILD), both on a top k list. To address that trade-off, we followed
a greedy top down approach which creates a ranking as for top k lists. First, we
select the top m items from that list. Then, we process the list from position m+ 1
on, adding each book that does not share author and categories with any of the
books already on the list, until the list has k items.

The results are depicted in Fig. 11.1 for k=20, selecting items from a list of the
top 100 predictions. It can be observed that the F1 score gradually rises when using
higher values of m, while the ILD drops. Although the harmonic mean is optimal
for using simply the top 20 predictions (given the different orders of magnitude of
F1 and ILD), we decided to submit the solution with m = 4 to the challenge.20

11.3.3 Conclusion and Outlook

In this section, we have laied out a hybrid multi-strategy approach for linked data
enabled recommender systems. We have shown that combining the predictions of

20The reason is that the challenge uses the average rank w.r.t. F1 and ILD as a scoring func-
tion, which makes the selection of an optimal parameter strongly depend on the other participants’
solutions. It turned out that m = 4 optimized our scoring.
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different base recommenders is a feasible strategy, and that generic (i.e., non user
specific) recommenders can be a useful ingredient.

In particular, our approach allows for the addition of new feature groups with-
out interaction effects, and for the combination of different recommender strate-
gies. By exploiting stacking regression, an optimal combination of different rec-
ommenders can be found automatically, however, for ranking-based problems, rank
aggregation turned out to be the more promising strategy.

11.4 A Content-Based Recommender System Using Se-
mantic Web Knowledge Graph Embeddings

One of the main limitations of traditional content-based recommendation approaches
is that the information on which they rely is generally insufficient to elicit user’s
interests and characterize all the aspects of their interaction with the system. This
is the main drawback of the approaches built on textual and keyword-based repre-
sentations, which cannot capture complex relations among objects since they lack
the semantics associated to their attributes. A process of “knowledge infusion”
[275] and semantic analysis has been proposed to face this issue, and numerous ap-
proaches that incorporate ontological knowledge have been proposed, giving rise to
the newly defined class of semantics-aware content-based recommender systems
[56].

11.4.1 Approach

In this approach we use the RDF2vec graph embeddings technique for feature gen-
eration in the context of content-based RS, and relies on a relatively simple recom-
mendation algorithm, i.e., the item-based K-Nearest Neighbor approach [245] with
cosine similarity. Formally, this method evaluates the closeness of items through
cosine similarity between the corresponding features vectors and then selects a sub-
set of those – the neighbors – for each item, that will be used to estimate the rating
of user u for a new item i as follows:

r∗(u, i) =

∑
j∈ratedItems(u) cosineSim(j, i) · ru,j∑

j∈ratedItems(u) |cosineSim(j, i)|
(11.4)

where ratedItems(u) is the set of items already evaluated by user u, ru,j indicates
the rating for item j by user u and cosineSim(j, i) is the cosine similarity score
between items j and i. In our experiments, the size of the considered neighbour-
hood is limited to 5.

11.4.2 Experiments

We evaluate different variants of our approach on three datasets, and compare them
to common approaches for creating content-based item representations from LOD,
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Table 11.6: Statistics about the three datasets

Movielens LibraryThing Last.fm
Number of users 4,186 7,149 1,875
Number of items 3,196 4,541 2,432
Number of ratings 822,597 352,123 44,981
Data sparsity 93.85% 98.90% 99.01%

as well as to state of the art collaborative and hybrid approaches. Furthermore, we
investigate the use of two different knowledge graphs, i.e., DBpedia and Wikidata.

Datasets In order to test the effectiveness of vector space embeddings for the
recommendation task, we have performed an extensive evaluation in terms of rank-
ing accuracy on three datasets belonging to different domains, i.e., Movielens21

for movies, LibraryThing22 for books, and Last.fm23 for music. The first
dataset, Movielens 1M, contains 1 million 1-5 stars ratings from 6,040 users on
3,952 movies. The dataset LibraryThing contains more than 2 millions ratings
from 7,279 users on 37,232 books. As in the dataset there are many duplicated rat-
ings, when a user has rated the same item more than once, her last rating is selected.
The unique ratings are 749,401, in the range from 1 to 10. Both Movielens and
LibraryThing datasets contain explicit ratings, and to test the approach also
on implicit feedbacks, a third dataset built on the top of the Last.fm music sys-
tem is considered. Last.fm contains 92,834 interactions between 1,892 users
and 17,632 musical artists. Each interaction is annotated with the corresponding
listening count.

The original datasets are enriched with background information using the item
mapping and linking to DBpedia technique described in [205], whose dump is
available at https://github.com/sisinflab/
LODrecsys-datasets. Since not all the items have a corresponding resource
in DBpedia, after the mapping, the versions of Movielens, LibraryThing
and Last.fm datasets contain 3,883 movies, 11,695 books, and 11,180 musical
artists, respectively.

The datasets are finally preprocessed to guarantee a fair comparison with the
state of the art approaches described in [62]. Here, the authors propose to (i) re-
move popularity biases from the evaluation not considering the top 1% most pop-
ular items, (ii) reduce the sparsity of Movielens dataset in order to have at least
a sparser test dataset and (iii) remove from LibraryThing and Last.fm users
with less than five ratings and items rated less than five times. The final statistics
on the three datasets are reported in Table 11.6.

21http://grouplens.org/datasets/movielens/
22https://www.librarything.com/
23http://www.lastfm.com

https://github.com/sisinflab/
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Table 11.7: Results of the ItemKNN approach on Movielens dataset with refer-
ence to different computation of features.

Strategy Precision Recall F1 nDCG
types 0.00313 0.00145 0.00198 0.28864

categories 0.0305 0.02093 0.02482 0.30444
rel in 0.01122 0.00589 0.0077 0.29183
rel out 0.02844 0.01607 0.02053 0.30274

rel in & out 0.02852 0.01566 0.02021 0.3006
rel-vals in 0.03883 0.02293 0.02882 0.29411
rel-vals out 0.01279 0.00971 0.011 0.29378

rel-vals in & out 0.01174 0.00913 0.01027 0.29333
WC_4 0.00684 0.00343 0.0045 0.29032

WL_2_2 0.00601 0.00288 0.00389 0.28977
DB_TransE 0.03047 0.01411 0.01928 0.30385
DB_TransH 0.02649 0.01187 0.01639 0.30016
DB_TransR 0.00941 0.0043 0.0059 0.29216

DB2vec SG 200w 200v 4d 0.05423 0.02693 0.03598 0.31676
DB2vec CBOW 200w 200v 4d 0.03475 0.01637 0.02225 0.30426
DB2vec CBOW 500w 200v 4d 0.03893 0.02167 0.02784 0.30782
DB2vec CBOW 500w 500v 4d 0.03663 0.02088 0.02659 0.30557

DB2vec SG 500w 200v 4d 0.05681 0.03119 0.04027 0.31828
DB2vec SG 500w 500v 4d 0.05786 0.0304 0.03985 0.31726

DB2vec CBOW 500w 200v 8d 0.01064 0.00548 0.00723 0.29245
DB2vec CBOW 500w 500v 8d 0.01137 0.00567 0.00756 0.29289

DB2vec SG 500w 200v 8d 0.04424 0.02693 0.03347 0.30997
DB2vec SG 500w 500v 8d 0.02191 0.01478 0.01765 0.29863

WD2vec CBOW 200w 200v 4d 0.01217 0.00596 0.00800 0.29362
WD2vec CBOW 200w 500v 4d 0.01027 0.00427 0.0060 0.29211

WD2vec SG 200w 200v 4d 0.02902 0.01479 0.01959 0.30189
WD2vec SG 200w 500v 4d 0.02644 0.01246 0.01693 0.29967

Evaluation Protocol

The ranking setting for the recommendation task consists of producing a ranked
list of items to suggest to the user and in practical situations turns into the so-
called top-N recommendation task, where just a cut-off of the ranked list of size
N is provided to the user. This setting has recently replaced the rating prediction,
because of the increasing awareness that the user is not interested in an accurate
prediction of the item rating, but is looking for a (limited) list of items extracted
from the pool of available ones.

As evaluation ranking protocol for our comparison, we adopted the all unrated
items methodology presented in [288] and already used in [62]. Such methodology
asks to predict a score for each item not rated by a user, irrespective of the existence
of an actual rating, and to compare the recommendation list with the test set.
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Table 11.8: Results of the ItemKNN approach on LibraryThing dataset with
reference to different computation of features.

Strategy Precision Recall F1 nDCG
types 0.01854 0.04535 0.02631 0.16064

categories 0.06662 0.15258 0.09274 0.23733
rel in 0.04577 0.10219 0.06322 0.20196

rel out 0.04118 0.09055 0.05661 0.19449
rel in & out 0.04531 0.10165 0.06268 0.20115
rel-vals in 0.06176 0.14101 0.08589 0.22574

rel-vals out 0.06163 0.13763 0.08513 0.22826
rel-vals in & out 0.06087 0.13662 0.08421 0.22615

WC_4 0.00159 0.00306 0.00209 0.12858
WL_2_2 0.00155 0.00389 0.00221 0.12937

DB_TransE 0.01819 0.04705 0.02623 0.1585
DB_TransH 0.01466 0.03997 0.02145 0.15331
DB_TransR 0.00162 0.00341 0.00219 0.12947

DB2vec SG 200w 200v 4d 0.00442 0.00942 0.00601 0.13502
DB2vec CBOW 200w 200v 4d 0.00466 0.00933 0.00621 0.13595
DB2vec CBOW 500w 200v 4d 0.05127 0.11777 0.07143 0.21244
DB2vec CBOW 500w 500v 4d 0.05065 0.11557 0.07043 0.21039

DB2vec SG 500w 200v 4d 0.05719 0.12763 0.07898 0.2205
DB2vec SG 500w 500v 4d 0.05811 0.12864 0.08005 0.22116

DB2vec CBOW 500w 200v 8d 0.00836 0.02334 0.01231 0.14147
DB2vec CBOW 500w 500v 8d 0.00813 0.02335 0.01206 0.14257

DB2vec SG 500w 200v 8d 0.07681 0.17769 0.10725 0.25234
DB2vec SG 500w 500v 8d 0.07446 0.1743 0.10434 0.24809

WD2vec CBOW 200w 200v 4d 0.00537 0.01084 0.00718 0.13524
WD2vec CBOW 200w 500v 4d 0.00444 0.00984 0.00611 0.13428

WD2vec SG 200w 200v 4d 0.06416 0.14565 0.08907 0.23309
WD2vec SG 200w 500v 4d 0.06031 0.14194 0.08465 0.22752

The metrics involved in the experimental comparison are three well-known
ranking measures for recommendation accuracy, i.e., precision, recall, F-score (F1)
and nDCG.

• precision@N [245] represents the fraction of relevant items in the top-N recom-
mendations.

• recall@N [245] indicates the fraction of relevant items, in the user test set, oc-
curring in the top-N list. As relevance threshold, we set 4 for Movielens and
8 for LibraryThing, as previously done in [62].

• The F1 score [245], i.e., the harmonic mean of precision and recall, is also
pointed out to be thorough. Although precision and recall are good indicators to
evaluate the accuracy of a recommendation engine, they are not rank-sensitive.
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Table 11.9: Results of the ItemKNN approach on Last.fm with reference to
different computation of features.

Strategy Precision Recall F1 nDCG
types 0.00525 0.03256 0.009 0.01826

categories 0.01762 0.09889 0.02991 0.06023
rel in 0.00625 0.03625 0.01066 0.02042
rel out 0.00519 0.02757 0.00873 0.01733

rel in & out 0.00718 0.04205 0.01226 0.02567
rel-vals in 0.0185 0.10502 0.03145 0.06733
rel-vals out 0.00805 0.04585 0.01369 0.0248

rel-vals in & out 0.00339 0.01774 0.00569 0.00982
WC_4 0.00086 0.00401 0.00141 0.00241

WL_2_2 0.00086 0.00344 0.00137 0.00215
DB_TransE 0.01117 0.06078 0.01887 0.03953
DB_TransH 0.01409 0.07928 0.02392 0.04881
DB_TransR 0.0011 0.00523 0.00181 0.00381

DB2vec SG 200w 200v 4d 0.01 0.05498 0.01692 0.02911
DB2vec CBOW 200w 200v 4d 0.00929 0.05227 0.01577 0.03288
DB2vec CBOW 500w 200v 4d 0.01749 0.09915 0.02973 0.06435
DB2vec CBOW 500w 500v 4d 0.01769 0.10016 0.03006 0.06404

DB2vec SG 500w 200v 4d 0.02015 0.11109 0.03411 0.07232
DB2vec SG 500w 500v 4d 0.02001 0.10978 0.03385 0.07448

DB2vec CBOW 500w 200v 8d 0.00944 0.05349 0.01604 0.03311
DB2vec CBOW 500w 500v 8d 0.00964 0.0563 0.01646 0.03166

DB2vec SG 500w 200v 8d 0.0234 0.1359 0.03992 0.08719
DB2vec SG 500w 500v 8d 0.02088 0.12248 0.03567 0.07789

WD2vec CBOW 200w 200v 4d 0.00133 0.00785 0.00227 0.00382
WD2vec CBOW 200w 500v 4d 0.001 0.00532 0.00168 0.00408

WD2vec SG 200w 200v 4d 0.00612 0.03388 0.01036 0.02157
WD2vec SG 200w 500v 4d 0.00658 0.03932 0.01127 0.02382

• The normalized Discounted Cumulative Gain nDCG@N [11] instead takes into
account also the position in the recommendation list, being defined as

nDCG@N =
1

iDCG
·

N∑
i=1

2rel(u,i) − 1

log2(1 + i)
(11.5)

where rel(u, i) is a boolean function representing the relevance of item i for user
u and iDCG is a normalization factor that sets nDCG@N value to 1 when an
ideal ranking is returned [11].

As suggested in [288] and set up in [62], in the computation of nDCG@N we fixed
a default “neutral” value for those items with no ratings, i.e., 3 for Movielens
and 5 for LibraryThing.
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Table 11.10: Examples of K-Nearest Neighbor sets on Movielens.

Query Movie K Nearest Neighbours
Batman Batman Forever, Bat-

man Returns, Batman &
Robin, Superman IV: The
Quest for Peace, Dick
Tracy

Bambi Cinderella, Dumbo, 101
Dalmatians , Pinocchio,
Lady and the Tramp

Star Trek: Generations Star Trek VI: The Undis-
covered Country, Star
Trek: Insurrection, Star
Trek III: The Search for
Spock, Star Trek V: The
Final Frontier, Star Trek:
First Contact

All the results have been computed @10, that is considering the top-10 list
recommended to each user and then averaging across all users.

To evaluate the approach we use the RDF2vec graph embeddings (described in
Chapter 8), built on the DBpedia and Wikidata knowledge graph. We compare our
approach to the same baselines used in the evaluation section of Chapter 8.

Results

We present the results by a purely content-based RS using RDF2Vec.
Tables 11.7, 11.8 and 11.9 contain the values of precision, recall, F-score (F1)

and nDCG, respectively for Movielens, LibraryThing and Last.fm. The
computation of recommendations has been done with the publicly available library
RankSys.24

The first conclusion that can be drawn from Tables 11.7, 11.8 and 11.9 is that
the best approach for all datasets is retrieved with a skip-gram model, 500 walks
per entity and with a size of 200 for vectors built upon DBpedia. Altough on
Movielens, the highest value of precision is achived using vector size of 500,
the size 200 is prevalent according to the F1 measure. A substantial difference
concerns the exploratory depth of the random walks, since for Movielens the
results related to a depth of 4 outperform those computed with a depth of 8, while
the tendency is reversed for both LibraryThing and Last.fm. Secondly, the
advantage of the Skip-Gram model over CBOW is a constant both on DBpedia
and Wikidata and is particularly evident when the model involves longer random

24http://ranksys.org/
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Figure 11.2: Two-dimensional PCA projection of the 200-dimensional Skip-Gram
vectors of movies in Table 11.10.

walks, i.e., with depth 8. Comparing the LOD datasets, it clearly emerges that DB-
pedia lets to gain higher values than Wikidata for each metric involved, but it turns
out that Wikidata is quite effective on LibraryThing, where the skip-gram vec-
tors with depth of 4 exceed the corresponding DBpedia vectors. Moving to the
features extracted from direct relations, the contribution of the “categories” stands
clearly out, together with relations-values “rel-vals”, especially when just incom-
ing relations are considered: these features allow to achieve better results than
the approaches based on translating embeddings, i.e., DB_TransE, DB_TransH
and DB_TransR. The use of methods based on kernels for features extraction, i.e.,
WC_4 and WL_2_2 approaches, seems not to provide significant advantages to the
recommendation algorithm.

To point out that the latent features built upon RDF graph are able to capture its
structure, placing closely semantically similar items, some examples of the neigh-
bouring sets retrieved using the graph embeddings technique are provided. These
sets are directly exploited by the ItemKNN algorithm to produce recommenda-
tions. Table 11.10 is related to movies and to the strategy “DB2vec SG 500w 200v
4d”, and displays that neighboring items are highly relevant and close to the query
item, i.e., the item for which neighbors are searched for. Figure 11.2 depicts the
2D PCA projection of the movies in that table, showing that similar movies are
actually projected closely to each other.

11.4.3 Conclusion

In this section we have shown that a content-based RS relying on the similarity
between items computed according to our latent features vectors, outperform the
same type of system using explicit features (e.g. types, categories,...) or features
generated with the use of kernels, or related knoledge graph embedding systems,
from both perspectives of accuracy and aggregate diversity.

This work has been continued in [258], where we developed a hybrid approach
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based on factorization machines, using the RDF2vec embeddings as features. The
results show that our approach not only outperforms state-of-the-art content-based
approaches, but also state-of-the-art collaborative and hybrid recommender sys-
tems.



Chapter 12

Entity and Document Modeling
using Semantic Web Graph
Embeddings

Calculating entity relatedness and similarity are fundamental problems in numer-
ous tasks in information retrieval, natural language processing, and Web-based
knowledge extraction. While similarity only considers subsumption relations to
assess how two objects are alike, relatedness takes into account a broader range
of relations, i.e., the notion of relatedness is wider than that of similarity. For ex-
ample, “Facebook” and “Google” are both entities of the class company, and they
have high similarity and relatedness score. On the other hand, “Facebook” and
“Mark Zuckerberg” are not similar at all, but are highly related, while “Google”
and “Mark Zuckerberg” are not similar at all, and have somehow lower relatedness
value.

12.1 Related Work

Both for entity and document ranking, as well as for the subtask of computing the
similarity or relatedness of entities and documents, different methods using LOD
have been proposed.

12.1.1 Entity Relatedness

Semantic relatedness of entities has been heavily researched over the past couple
of decades. There are two main direction of studies. The first are approaches
based on word distributions, which model entities as multi-dimensional vectors
that are computed based on distributional semantics techniques [3, 95, 121]. The
second are graph-based approaches relying on a graph structured knowledge base,
or knowledge graph, which are the focus of this chapter.

169
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Schuhmacher et al. [270] proposed one of the first approaches for entity rank-
ing using the DBpedia knowledge graph. They use several path and graph based
approaches for weighting the relations between entities, which are later used to
calculate the entity relatedness. A similar approach is developed by Hulpus et al.
[130], which uses local graph measures, targeted to the specific pair, while the
previous approach uses global measures. More precisely, the authors propose the
exclusivity-based relatedness measure that gives higher weights to relations that
are less used in the graph. In [67] the authors propose a hybrid approach that ex-
ploits both textual and RDF data to rank resources in DBpedia related to the IT
domain.

12.1.2 Entity and Document Similarity

As for the entity relatedness approaches, there are two main directions of research
in the field of semantic document similarity, i.e., approaches based on word distri-
butions, and graph-based approaches. Some of the earliest approaches of the first
category make use of standard techniques like bag-of-words models, but also more
sophisticated approaches. Explicit Semantic Analysis (ESA) [95] represents text
as a vector of relevant concepts. Each concept corresponds to a Wikipedia article
mapped into a vector space using the TF-IDF measure on the article’s text. Sim-
ilarly, Salient Semantic Analysis (SSA) [110] uses hyperlinks within Wikipedia
articles to other articles as vector features, instead of using the full body of text.

Nunes et al. [202] present a DBpedia based document similarity approach, in
which they compute a document connectivity score based on document annota-
tions, using measures from social network theory. Thiagarajan et al. [297] present
a general framework showing how spreading activation can be used on seman-
tic networks to determine similarity of groups of entities. They experiment with
Wordnet and the Wikipedia Ontology as knowledge bases and determine similarity
of generated user profiles based on a 1-1 annotation matching.

Schumacher et al. [270] use the same measure used for entity ranking (see
above) to calculate semantic document similarity. Similarly, Paul et al. [218]
present an approach for efficient semantic similarity computation that exploits hi-
erarchical and transverse relations in the graph.

One approach that does not belong to these two main directions of research is
the machine-learning approach by Huang et al. [125]. The approach proposes a
measure that assesses similarity at both the lexical and semantic levels, and learns
from human judgments how to combine them by using machine-learning tech-
niques.

Our work is, to the best of our knowledge, the first to exploit the graph structure
using neural language modeling for the purpose of entity relatedness and similarity.
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12.2 Approach

In this section, we introduce several approaches for entity and document modeling
based on the previously built RDF2vec latent feature vectors for entities, presented
in Chapter 8.

12.2.1 Entity Similarity

As previously mentioned, in the RDF2vec feature embedding space (see Section
13.3), semantically similar entities appear close to each other in the feature space.
Therefore, the problem of calculating the similarity between two instances is a
matter of calculating the distance between two instances in the given feature space.
To do so, we use the standard cosine similarity measure, which is applied on the
vectors of the entities. Formally, the similarity between two entities e1 and e2, with
vectors V1 and V2, is calculated as the cosine similarity between the vectors V1 and
V2:

sim(e1, e2) =
V1 · V2

||V1|| · ||V2||
(12.1)

12.2.2 Document Similarity

We use those entity similarity scores in the task of calculating semantic document
similarity. We follow a similar approach as the one presented in [218], where
two documents are considered to be similar if many entities of the one document
are similar to at least one entity in the other document. More precisely, we try to
identify the most similar pairs of entities in both documents, ignoring the similarity
of all other pairs.

Given two documents d1 and d2, the similarity between the documents sim(d1, d2)
is calculated as follows:

1. Extract the sets of entities E1 and E2 in the documents d1 and d2.

2. Calculate the similarity score sim(e1i, e2j) for each pair of entities in docu-
ment d1 and d2, where e1i ∈ E1 and e2j ∈ E2

3. For each entity e1i in d1 identify the maximum similarity to an entity in d2
max_sim(e1i, e2j ∈ E2), and vice versa.

4. Calculate the similarity score between the documents d1 and d2 as:

sim(d1, d2) =
∑|E1|

i=1 max_sim(e1i,e2j∈E2)+
∑|E2|

j=1 max_sim(e2j ,e1i∈E1)

|E1|+|E2| (12.2)

12.2.3 Entity Relatedness

In this approach we assume that two entities are related if they often appear in the
same context. For example, “Facebook” and “Mark Zuckerberg”, which are highly
related, are often used in the same context in many sentences. To calculate the
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Table 12.1: Similarity-based relatedness Spearman’s rank correlation results

Model IT companies Hollywood
Celebrities

Television
Series

Video
Games

Chuck
Norris

All 21
entities

DB2vec SG 200w 200v 4d 0.525 0.505 0.532 0.571 0.439 0.529
DB2vec CBOW 200w 200v 0.330 0.294 0.462 0.399 0.179 0.362
DB2vec CBOW 500w 200v 4d 0.538 0.560 0.572 0.596 0.500 0.564
DB2vec CBOW 500w 500v 4d 0.546 0.544 0.564 0.606 0.496 0.562
DB2vec SG 500w 200v 4d 0.508 0.546 0.497 0.634 0.570 0.547
DB2vec SG 500w 500v 4d 0.507 0.538 0.505 0.611 0.588 0.542
DB2vec CBOW 500w 200v 8d 0.611 0.495 0.315 0.443 0.365 0.461
DB2vec CBOW 500w 500v 8w 0.486 0.507 0.285 0.440 0.470 0.432
DB2vec SG 500w 200v 8w 0.739 0.723 0.526 0.659 0.625 0.660
DB2vec SG 500w 500v 8w 0.743 0.734 0.635 0.669 0.628 0.692
WD2vec CBOW 200w 200v 4d 0.246 0.418 0.156 0.374 0.409 0.304
WD2vec CBOW 200w 500v 4d 0.190 0.403 0.103 0.106 0.150 0.198
WD2vec SG 200w 200v 4d 0.502 0.604 0.405 0.578 0.279 0.510
WD2vec SG 200w 500v 4d 0.464 0.562 0.313 0.465 0.168 0.437
Wiki2vec 0.613 0.544 0.334 0.618 0.436 0.523

probability of two entities being in the same context, we make use of the RDF2Vec
models and the set of sequences of entities generated as described in Section 13.3.
Given a RDF2vec model and a set of sequences of entities, we calculate the relat-
edness between two entities e1 and e2, as the probability p(e1|e2) calculated using
the softmax function. In the case of a CBOW model, the probability is calculated
as:

p(e1|e2) =
exp(vTe2v

′
e1)∑V

e=1 exp(v
T
e2v
′
e)
, (12.3)

where v′e is the output vector of the entity e, and V is the complete vocabulary of
entities.

In the case of a skip-gram model, the probability is calculated as:

p(e1|e2) =
exp(v′Te1 ve2)∑V
e=1 exp(v

′T
e ve2)

, (12.4)

where ve and v′e are the input and the output vector of the entity e, and V is the
complete vocabulary of entities.

12.3 Evaluation

For both tasks of determining entity relatedness and document similarity, bench-
mark datasets exist. We use those datasets to compare the use of RDF2Vec models
against state of the art approaches.
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Table 12.2: Context-based relatedness Spearman’s rank correlation results

Model IT companies Hollywood
Celebrities

Television
Series

Video
Games

Chuck
Norris

All 21
entities

DB2vec SG 200w 200v 4d 0.643 0.547 0.583 0.428 0.591 0.552
DB2vec CBOW 200w 200v 0.361 0.326 0.467 0.426 0.208 0.386
DB2vec CBOW 500w 200v 4d 0.671 0.566 0.591 0.434 0.609 0.568
DB2vec CBOW 500w 500v 4d 0.672 0.622 0.578 0.440 0.581 0.578
DB2vec SG 500w 200v 4d 0.666 0.449 0.611 0.360 0.630 0.526
DB2vec SG 500w 500v 4d 0.667 0.444 0.609 0.389 0.668 0.534
DB2vec CBOW 500w 200v 8d 0.579 0.484 0.368 0.460 0.412 0.470
DB2vec CBOW 500w 500v 8d 0.552 0.522 0.302 0.487 0.665 0.475
DB2vec SG 500w 200v 8d 0.811 0.778 0.711 0.658 0.670 0.736
DB2vec SG 500w 500v 8d 0.748 0.729 0.689 0.537 0.625 0.673
WD2vec CBOW 200w 200v 4d 0.287 0.241 -0.025 0.311 0.226 0.205
WD2vec CBOW 200w 500v 4d 0.166 0.215 0.233 0.335 0.344 0.243
WD2vec SG 200w 200v 4d 0.574 0.671 0.504 0.410 0.079 0.518
WD2vec SG 200w 500v 4d 0.661 0.639 0.537 0.395 0.474 0.554
Wiki2vec 0.291 0.296 0.406 0.353 0.175 0.329

12.3.1 Entity Relatedness

For evaluating the entity relatedness approach, we use the KORE dataset [121].
The dataset consists of 21 main entities, whose relatedness to the other 20 entities
each has been manually assessed, leading to 420 rated entity pairs. We use the
Spearman’s rank correlation as an evaluation metric.

We use two approaches for calculating the relatedness rank between the enti-
ties, i.e. (i) the entity similarity approach described in section 12.2.1; (ii) the entity
relatedness approach described in section 12.2.3.

We evaluate each of the RDF2Vec models separately. Furthermore, we also
compare to the Wiki2vec model1, which is built on the complete Wikipedia corpus,
and provides vectors for each DBpedia entity.

Table 12.1 shows the Spearman’s rank correlation results when using the entity
similarity approach. Table 12.2 shows the results for the relatedness approach. The
results show that the DBpedia models outperform the Wikidata models. Increasing
the number of walks per entity improves the results. Also, the skip-gram models
outperform the CBOW models continuously. We can observe that the relatedness
approach outperforms the similarity approach.

Furthermore, we compare our approaches to several state-of-the-art graph-
based entity relatedness approaches:

• baseline: computes entity relatedness as a function of distance between the enti-
ties in the network, as described in [270].

• KORE: calculates keyphrase overlap relatedness, as described in the original
KORE paper [121].

1https://github.com/idio/wiki2vec

https://github.com/idio/wiki2vec
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Table 12.3: Spearman’s rank correlation results comparison to related work

Approach
IT
companies

Hollywood
Celebrities

Television
Series

Video
Games

Chuck
Norris

All 21
entities

baseline 0.559 0.639 0.529 0.451 0.458 0.541
KORE 0.759 0.715 0.599 0.760 0.498 0.698
CombIC 0.644 0.690 0.643 0.532 0.558 0.624
ER 0.727 0.643 0.633 0.519 0.477 0.630
DB_TransE -0.023 0.120 -0.084 0.353 -0.347 0.070
DB_TransH -0.134 0.185 -0.097 0.204 -0.044 0.035
DB_TransR -0.217 0.062 0.002 -0.126 0.166 0.058
DB2Vec Similarity 0.743 0.734 0.635 0.669 0.628 0.692
DB2Vec Relatedness 0.811 0.778 0.711 0.658 0.670 0.736

• CombIC: semantic similarity using a Graph Edit Distance based measure [270].

• ER: Exclusivity-based relatedness [130].

The comparison shows that our entity relatedness approach outperforms all
the rest for each category of entities. Interestingly enough, the entity similarity
approach, although addressing a different task, also outperforms the majority of
state of the art approaches.

12.3.2 Document Similarity

To evaluate the document similarity approach, we use the LP50 dataset [160],
namely a collection of 50 news articles from the Australian Broadcasting Corpora-
tion (ABC), which were pairwise annotated with similarity rating on a Likert scale
from 1 (very different) to 5 (very similar) by 8 to 12 different human annotators. To
obtain the final similarity judgments, the scores of all annotators are averaged. As
a evaluation metrics we use Pearson’s linear correlation coefficient and Spearman’s
rank correlation plus their harmonic mean.

Again, we first evaluate each of the RDF2Vec models separately. Table 12.4
shows document similarity results. As for the entity relatedness, the results show
that the skip-gram models built on DBpedia with 8 hops lead to the best perfor-
mances.

Furthermore, we compare our approach to several state-of-the-art graph-based
document similarity approaches:

• TF-IDF: Distributional baseline algorithm.

• AnnOv: Similarity score based on annotation overlap that corresponds to traver-
sal entity similarity with radius 0, as described in [218].

• Explicit Semantic Analysis (ESA) [95].

• GED: semantic similarity using a Graph Edit Distance based measure [270].
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Table 12.4: Document similarity results - Pearson’s linear correlation coefficient
(r), Spearman’s rank correlation (ρ) and their harmonic mean µ

Model r ρ µ

DB2vec SG 200w 200v 4d 0.608 0.448 0.516
DB2vec CBOW 200w 200v 4d 0.562 0.480 0.518
DB2vec CBOW 500w 200v 4d 0.681 0.535 0.599
DB2vec CBOW 500w 500v 4d 0.677 0.530 0.594
DB2vec SG 500w 200v 4d 0.639 0.520 0.573
DB2vec SG 500w 500v 4d 0.641 0.516 0.572
DB2vec CBOW 500w 200v 8d 0.658 0.491 0.562
DB2vec CBOW 500w 500v 8d 0.683 0.512 0.586
DB2vec SG 500w 200v 8d 0.708 0.556 0.623
DB2vec SG 500w 500v 8d 0.686 0.527 0.596
WD2vec CBOW 200w 200v 4d 0.568 0.383 0.458
WD2vec CBOW 200w 500v 4d 0.593 0.386 0.467
WD2vec SG 200w 200v 4d 0.606 0.385 0.471
WD2vec SG 200w 500v 4d 0.613 0.343 0.440
Wiki2vec 0.662 0.513 0.578
DB_TransE 0.565 0.432 0.490
DB_TransH 0.570 0.452 0.504
DB_TransR 0.578 0.461 0.513

Table 12.5: Comparison of the document similarity approach to the related work

Approach r ρ µ

TF-IDF 0.398 0.224 0.287
AnnOv 0.590 0.460 0.517
LSA 0.696 0.463 0.556
SSA 0.684 0.488 0.570
GED 0.630 \ \
ESA 0.656 0.510 0.574
GBSS 0.704 0.519 0.598
DB2Vec 0.708 0.556 0.623
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• Salient Semantic Analysis (SSA), Latent Semantic Analysis (LSA) [110].

• Graph-based Semantic Similarity (GBSS) [218].

The results for the related approaches were copied from the respective papers,
except for ESA, which was copied from [218], where it is calculated via public
ESA REST endpoint2. The results show that our document similarity approach
outperforms all of the related approaches for both Pearson’s linear correlation co-
efficient and Spearman’s rank correlation, as well as their harmonic mean.

We do not compare our approach to the machine-learning approach proposed
by Huang et al. [125], because that approach is a supervised one, which is tai-
lored towards the dataset, whereas ours (as well as the others we compare to) are
unsupervised.

2http://vmdeb20.deri.ie:8890/esaservice

http://vmdeb20.deri.ie:8890/esaservice


Chapter 13

Taxonomy Induction Using
Knowledge Graph Embeddings

As shown in chapter 3, semantic ontologies and hierarchies are established tools
to represent domain-specific knowledge with dozens of scientific, industrial and
social applications [99] and, in knowledge bases, the natural way to structure the
knowledge. A basic building block of an ontology is a class, where the classes are
organized with “is-a” relations, or class subsumption axioms (e.g., each city is a
place). It is crucial to define a high quality class hierarchy for a knowledge base
in order to allow effective access to the knowledge base from various Natural Lan-
guage Processing, Information Retrieval, and any Artificial Intelligence systems
and tools.

However, manually curating a class hierarchy for a given knowledge graph
is time consuming and requires a high cost. For example the DBpedia Ontology
[162], which is a central hub for many applications in the Semantic Web domain
[267], has been manually created based on the most commonly used infoboxes
within Wikipedia.

The work presented in this chapter has been published before as: “Petar Ris-
toski, Stefano Faralli, Simone Paolo Ponzetto, Heiko Paulheim: Large-scale
taxonomy induction using entity and word embeddings. Proceedings of the In-
ternational Conference on Web Intelligence, pages 81–87, 2017” [248]

13.1 Introduction

Many recent studies propose automatic extraction of class hierarchies [104, 153,
316]. The importance of automatic approaches for the induction class hierarchy be-
comes more apparent when we deal with large scale automatically acquired knowl-
edge bases such as the WebIsA database (WebIsADb) [274].

The WebIsADb is a large collection of more than 400 million hypernymy re-

177
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lations. Relations are extracted from the CommonCrawl,1 by means of Hearst-like
patterns [113]. Being extracted from raw text from the very diverse Web sources,
and using heuristics of varying reliability, the WebIsaDB provides a good coverage,
but rather low precision, and cannot be applied as a taxonomy as is.

In recent years, word embedding models have been used heavily in many NLP
applications. Such approaches take advantage of the word order in text documents,
explicitly modeling the assumption that closer words in the word sequence are
statistically more dependent. In the resulting semantic vector space, similar words
appear close to each other, and simple arithmetic operations can be executed on
the resulting vectors. One of the widely used approach is the word2vec neural
language model [177, 178]. Word2vec is a particularly computationally-efficient
two-layer neural net model for learning word embeddings from raw text. Another
widely used approach is GloVe [232], which in comparison to word2vec is not a
predictive model, but a count-based model, which learns word vectors by doing
dimensionality reduction on a co-occurrence counts matrix. The studies suggest
that both models show comparable performances on many NLP tasks [164].

In this chapter, we present the TIEmb approach for automatic unsupervised
class subsumption axiom extraction from knowledge bases using entity and text
embeddings. More precisely, we use the RDF2vec embeddings, presented in chap-
ter 8. The underlying assumptions behind our approach are: (i) the majority of
all instances of the same class are positioned close to each other in the embed-
ded space; (ii) each class in the knowledge base can be represented as a cluster
of the instances in the embedded space, defined with a centroid and an average
radius; (iii) clusters that completely or partially subsume each other, indicate class
subsumption axiom.

Figure 13.1 shows an example of three class clusters projected into a two di-
mensional feature space. Each of the classes is represented with the class instances,
centroid and a radius. As we can observe, the centroids of the “Football Player”
and “Basketball Player” classes are within the radius of the “Athlete” class, which
indicates that the “Football Player” and “Basketball Player” are subclasses of the
“Athlete” class.

The contributions of this chapter are the following ones:

• We present a novel unsupervised approach to induce class subsumption axioms
using entity and word embeddings.

• We show that such approach can be applied on large knowledge bases, like DB-
pedia and the WebIsADb.

• Finally, we provide the resulting class subsumption axioms in the Person and
Place domains extracted from the WebIsADb. This goes in the direction of
semantifying the WebIsADb, and the CommonCrawl in general.

1http://commoncrawl.org/

http://commoncrawl.org/
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Figure 13.1: Example of three classes in two-dimensional feature space

13.2 Related Work

The backbone of ontologies typically consist of hierarchy of hypernymy relations,
namely “IsA” relations, typically pairs of the kind (t, h) where t is a concept/term
and h one of its generalizations. Hence, in the construction of knowledge bases,
the induction of taxonomies represents an intermediate fundamental step. How-
ever, manually constructing taxonomies is a very demanding task, requiring a large
amount of time and effort. A quite recent challenge, referred to as ontology learn-
ing, consists of automatically or semi-automatically creating a lexicalized ontology
using textual data from corpora or the Web (see [18, 287] for a survey on the task).
As a result, the heavy requirements of manual ontology construction are drastically
reduced.

The task of lexicalized taxonomy induction can be started with the extraction
of domain specific hypernymy relations from texts. To this end, [153] use Hearst-
like patterns [113] to bootstrap the extraction of terminological sisters terms and
hypernyms. Instead, in [316] the extraction of hypernymy relations is performed
with a classifier, which is trained on a set of manually annotated definitions from
Wikipedia, being able to detect definitional sentences and to extract the definien-
dum and the hypernym. In the above mentioned systems, the harvested hypernymy
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relations are then arranged into a taxonomy structure.
In general, all such lexical-based approaches suffer from the limitation of not

being sense-aware, which results in spurious taxonomic structures. To cope with
such limitations, in [82] the authors adopt a corpus-based unsupervised distribu-
tional semantics method to harvest fully disambiguated sense inventories, as well
as a new approach to clean distributional semantics-based acquired knowledge
graphs [83].

In all the above web-based approaches, a problem arises when the systems
open to the Web. In fact, in the last year the majority of the Web search engines do
not allow to programmatically query the Web. The WebIsADb [274] addresses the
“unavailability” of the Web indices, providing a large database (more than 400M
tuples) of hypernymy relations extracted from the CommonCrawl web corpus.2

Another group of approaches - instead of inducing a taxonomy from scratch -
involve statistical evidence to induce structured hierarchies on existing data sources.
In [318] (among others) a schema is statistically induced from the large amount of
RDF triples on the Web. Enabling suitable schemas for all those application where
logical inference is required.

Recently, word embeddings representations are involved in the task of knowl-
edge hierarchical organization [88], [330], [104]. However, these methods are only
considering hypernym-hyponym relationship extraction between lexical terms, us-
ing word embeddings. Instead, in our approach we focus on extracting class sub-
sumption axioms, where each class is represented with a set instances.

13.3 Approach

Our approach makes use of vector space embeddings. Those are projections of
each instance – e.g., a word or an entity in a graph – into a low dimensional vector
space. The core assumption that we exploit in our approach is that two similar
entities are positioned close to each other in that vector space.

Following that intuition, we can assume that entities which belong to the same
class are positioned close to each other in the vector space, since they share some
commonalities. Furthermore, instances of a more specific class should be posi-
tioned closer to each other on average than instances of a broader class. For exam-
ple, the class of basketball players is more specific than the class of athletes, so that
we assume that basketball players are on average closer to each other in the vector
space than athletes.

Furthermore, since basketball players are a subclass of athletes, we assume that
the majority of vector space points corresponding to basketball players will be po-
sitioned inside the cluster formed by the athletes in general, hence, their centroids
will be close to each other as well.

The TIEmb approach builds upon those two assumptions. Its pseudocode is
shown in Algorithm 3. The algorithm has two inputs: (1) a knowledge base as

2https://commoncrawl.org

https://commoncrawl.org
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Table 13.1: Results for class subsumption axioms extraction using DBpedia ontol-
ogy as a gold standard

Method Precision Recall F-score
rel out 0.056 0.076 0.064
rel in 0.097 0.209 0.132
rel in & out 0.104 0.219 0.141
TIEmb 0.594 0.465 0.521

its input, which contains a set of instances, where each instance has one or more
class types, and (2) the knowledge base embeddings, where each instance is repre-
sented as n-dimensional feature vector. The output of the algorithm is a set of class
subsumption axioms.

In the first step, the algorithm calculates the centroid and radius for all the
classes in the knowledge base (lines 2-8). To do so, we select all instances for all
the classes, where each instance is represented with the corresponding embedding
vector vi. The centroid of a class represents a vector, which is calculated as the
average of the vectors of all the instances that belong to the class (line 6). The
radius of the class is calculated as the average distance of all instances in the class
to the centroid (line 7).

In the next step, the class subsumption axioms are extracted (lines 9-24). First,
for each class c1 in the knowledge base we generate a set of candidate axioms. The
algorithm iterates over all pairs of classes, and checks for two conditions before
it creates new candidate axiom: for the classes c1 and c2, if the distance between
the centroids of the classes, distancec1c2 , is smaller than the radius of c2 and the
radius of c1 is smaller than the radius of c2, then a new candidate axiom is generated
where c1 is a subclass of c2, i.e., c1 v c2. Each candidate axiom together with the
distance distancec1c2 , are stored in a list. As a final axiom, we select the axiom
with the smallest distance.

In the final step, the algorithm computes the transitive closure over all the pre-
viously extracted axioms (lines 25-44). We also make sure that there are no cycles
in the final class hierarchy (line 34).

13.4 Experiments

We perform two experiments: (i) applying the proposed approach on the DBpedia
dataset using the DBpedia ontology as a gold standard (see Section 13.4.1); (ii)
applying the proposed approach on the WebIsA database in unsupervised manner
(see Section 13.4).
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Algorithm 3 Algorithm for taxonomy induction from a knowledge base
Data: KB: Knowledge base, VKB : Knowledge base embeddings
Result: A: Set of class subsumption axioms

35 A := ∅
# Calculate the centroid and radius for each class in the knowledge base
CKB = {c | ∃i typeOf c ∧ i ∈ KB}
foreach class c ∈ CKB do

36 Ic = {i | i typeOf c ∧ i ∈ KB ∧ ∃vi ∈ VKB}
c.centroid = 1

|Ic|
∑

i∈Ic
vi

c.radius =
√

1
|Ic|
∑

i∈Ic
(vi − c.centroid)2

37 end
38 # Extract class subsumption axioms

foreach class c1 ∈ C do
39 Ac1 := ∅

foreach class c2 ∈ C do
40 if c1 == c2 then
41 continue

42 end
43 distancec1c2 = distance(c1.centroid, c2.centroid)

if distancec1c2 ≤ c2.radius and c1.radius < c2.radius then
44 axiom = c1 v c2

add [axiom, distance] to Ac1

45 end
46 end
47 sort Ac1 in ascending order

add Ac1 .first() to A
48 end
49 # Compute transitive closure

change = true
while change == true do

50 foreach axiom a ∈ A do
51 change = false

subClass = axiom.getSubClass()
superClass = axiom.getSuperClass()
superClassesAxioms = {c, axiom | ∃axiom ∈ A ∧ axiom =
superClass v c}
foreach classAxiom s ∈ superClassesAxioms do

52 if s.class == subClass then
53 remove s.axiom from A

continue

54 end
55 axiom = subClass v s

if axiom /∈ A then
56 add axiom to A

change = true

57 end
58 end
59 end
60 end
61 return A
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Table 13.2: Results for the class subsumption axiom induction in the Person do-
main

Method DBpedia Coverage Extra Coverage(%) Precision (random 100)
Association Rules 0.44 31301.63 0.25
RDF2Vec TIEmb 0.31 3594.44 0.42
GloVe TIEmb 0.29 1520.00 0.29

Table 13.3: Results for the class subsumption axiom induction in the Place domain

Method DBpedia Coverage Extra Coverage(%) Precision (random 100)
Association Rules 0.25 11029.71 0.45
RDF2Vec TIEmb 0.21 3808.57 0.54
GloVe TIEmb 0.17 301.14 0.48

13.4.1 Embedding the DBpedia Ontology

To evaluate the approach we use the RDF2vec graph embeddings (described in
Chapter 8), built on the DBpedia knowledge graph.

We compare the embedding vectors to three baseline feature generation ap-
proaches, as proposed in [225]. We generate features derived from generic rela-
tions in the graph, i.e., we generate a feature for each incoming (rel in) or outgoing
relation (rel out) of an entity, ignoring the value or target entity of the relation.
Furthermore, we combine both incoming and outgoing relations (rel in & out).

The results are shown in Table 13.1. The results show that we are able to iden-
tify 46.5% of all the class subsumption axioms, and from the ones we discovered,
59.4% exist in DBpedia. Furthermore, the results show that using entity embed-
dings significantly outperforms the baseline feature generation approaches.

The error analysis showed that the algorithm often extracts subsumption ax-
ioms for classes on the same level in the hierarchy, or siblings classes, e.g. dbo:Bird
⊆ dbo:Mammal. The reason for such false positives is that the centroids of the
classes are positioned very close to each other in the embeddings space. Further-
more, some of the false positives would not necessarily be incorrect, but those ax-
ioms simply do not exist in the DBpedia ontology, e.g., dbo:Senator⊆ dbo:OfficeHolder.
Since the DBpedia ontology, like all data sets on the Semantic Web, follows the
open world assumption, 59.4% are only a pessimistic estimate for our approach’s
precision (see [223] for a discussion).

As a second comparison, we tried to compare our approach to the approach
proposed by Völker and Niepert [318], who propose to use association rule min-
ing for deriving subsumption axioms. The core idea of their approach is that if
instances of class A are often also of class B, then A should be a subclass of B.
However, the approach was not able to generate any axioms on the dataset we
used, since in this dataset, only the most specific class is assigned to each instance,
hence, co-occurrences such as those which their approach tries to exploit are rarely
found in the dataset.
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Figure 13.2: Excerpt of the Person top level hierarchy

13.4.2 Inducing Ontologies from the WebIsADb

The WebIsA database (WebIsADb) is a database of word pairs which reflect sub-
sumption relations. It was generated from the CommonCrawl by applying a set of
patterns like Hearst patterns [113], e.g., X is a Y or Y such as X to the large corpus
of text in the common crawl. Given that the input is raw text from the Web, and all
the patterns are heuristic, the corpus is assumed to provide high coverage, but low
precision. Thus, simply arranging all the axioms from the WebIsADb into a graph
would not constitute a taxonomy, but rather a densely connected graph with many
cycles.

In the second set of experiments, we apply the proposed approach on the We-
bIsADb in order to extract meaningful class hierarchies for the underlying data.
As the WebIsADb contains 120, 992, 248 entities, extracting a single class hier-
archy for the complete database is not a trivial task. Therefore, we narrowed the
experiments to extract 2 domain specific class hierarchies, i.e., Person and Place.

To extract the class hierarchy, first we need to select the domain specific in-
stances from the WebIsADb and identify a finite set of classes for which we need
to extract class subsumption axioms. To do so, we use domain specific classes from
DBpedia as filters. First, we select all the subclasses of dbo:Person (184 in total)
and dbo:Place (176 in total) in DBpedia, and use them as the initial set of classes
for each domain separately. Then, we select all the instances of these classes in
WebIsADb. To identify the rest of the domain specific classes in WebIsADb, we
expand the set of classes by adding all siblings of the corresponding class within
the WebIsADb. For example, we use dbo:SoccerPlayer to select all the instances of
type “soccer player” in WebIsADb, e.g., “Cristiano Ronaldo” is such an instance.
In the next step, we expand the initial set of classes with all the classes assigned
to the “soccer player” instances, e.g., from the instance “Cristiano Ronaldo”, we
will add the following classes in the set of Person classes: “Player”, “Portuguese
Footballer”, “Star”, “Great Player”, etc.

Once we have defined the set of classes for each domain, we select all the
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instances for each class, which represents the input knowledge base for Algorithm
3. We experiment with entity and word embeddings. As entity embeddings we
use DBpedia RDF2vec embeddings, which are built similarly as described in the
previous section, only this time we also use the instance transitive types. To link
the WebIsADb instances to DBpedia, we use exact string matching.

For word embeddings, we use GloVe embeddings [232], trained on the com-
plete Common Crawl.3 The model provides 300-dimensional embedding vectors
for 2.2 million tokens. In case of multiple tokens in the WebIsADb instance, the
final vector is calculated as the average of the vectors of all the tokens in the in-
stance.

Again, we compare our approach to the association rule mining-based approach
proposed in [318]. To do so, for each instance, we generate a transaction of all the
instance’s types. Then, for each of the classes separately, we learn class subsump-
tion axioms using the standard Apriori algorithm [4]. We consider all the rules
with support and confidence value above 50.

To evaluate the induced class subsumption axioms, we use the DBpedia ontol-
ogy as a reference class hierarchy, i.e., (i) we count how many of the class subsump-
tion axioms defined in the DBpedia ontology we identified in WebIsADb (DBpedia
coverage); (ii) we count how many more axioms were discovered compared to the
DBpedia Ontology (Extra Coverage); (iii) we manually determine the precision on
100 randomly selected axioms from all of the extracted axioms.

First, we manually map each DBpedia class to the corresponding WebIsADb
class. For the Person domain, we were able to map 0.99% of the classes, and there
is 1466.67% extra class coverage for the same domain in WebIsADb. For the Place
domain, we were able to map 0.71% of the classes, and there is 1161.93% extra
class coverage for the same domain in WebIsADb. The results for the Person and
the Place domain are shown in Table 13.2 and 13.3, respectively. We can observe
that although the coverage of axioms is slightly lower using the graph embeddings
and TIEmb, we are able to mine subsumption axioms at much higher precision.

The extracted class subsumption axioms can be found online.4 Excerpts of the
top levels of the Person and Place hierarchies are shown in Figure 13.2 and Figure
13.3, respectively.

13.5 Conclusion and Outlook

Taxonomies are an important backbone of formal knowledge representations. How-
ever, at large scale, they cannot be created manually with reasonable efforts, thus,
automatic approaches have to be used. In this chapter, we have accordingly shown
that using word and knowledge base embeddings are suitable approaches for in-
ducing large scale taxonomies from knowledge graphs such as DBpedia or the

3https://nlp.stanford.edu/projects/glove/
4http://data.dws.informatik.uni-mannheim.de/rdf2vec/TI/webisa/

https://nlp.stanford.edu/projects/glove/
http://data.dws.informatik.uni-mannheim.de/rdf2vec/TI/webisa/
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Figure 13.3: Excerpt of the Place top level hierarchy

WebIsADB. The approach relies on vector space embeddings of entities and ex-
ploits the proximity preserving properties of such embeddings approaches such as
GloVe or RDF2vec.

Using WebIsADB, we were able to create hierarchies of thousands of classes
at decent precision. We created two example hierarchies, i.e., persons and places,
but the approach is capable of generating class hierarchies for any seed concept at
hand. In general, the approach cannot only be used for taxonomy induction, but
also for the problem of type prediction [224]. Here, again exploiting the proximity
relations in the embedding space, each instance can be assigned to the types with
the closest cluster centroid(s).

In the future, it will be interesting to see how embeddings coming from text
and graphs can be combined reasonably. This will allow for even more concise
induction of taxonomies. Furthermore, we want to investigate how higher-level
semantic knowledge, such as class restrictions or complementarity, can be mined
using an embedding-based approach. That way, using the Common Crawl as a
representative sample of the knowledge that exists on the Web, we will be able to
create large-scale semantic knowledge representations directly from Web data.



Chapter 14

Thesis Conclusion

This chapter summarizes the three previous parts of the thesis and outlines the
major contributions of the thesis.

In Chapter 2, we showed that with the advent and growth of Linked Open Data,
information from the Semantic Web can be used beneficially in the data mining and
knowledge discovery process. However, the knowledge discovery process is still
not tapping the full potential that is provided by the Semantic Web. In this thesis,
we developed several approaches that exploit Semantic Web knowledge graphs in
order to aid different steps of the knowledge discovery process.

14.1 PART I: Mining Semantic Web Knowledge Graphs

In Part I, we investigate the hypothesis for exploiting Semantic Web knowledge
graphs as a useful source for background knowledge in data mining, which an-
swers research question RS1 and RS2 from Section 1.1. In Chapter 4, we intro-
duced a collection of datasets for benchmarking machine learning approaches for
the Semantic Web. Such a collection of datasets can be used to conduct quantita-
tive performance testing and systematic comparisons of approaches. We use this
collection of datasets to evaluate the approaches introduced in this thesis. In Chap-
ter 5, we describe a set of strategies for creating features from types and relations
in Semantic Web knowledge graphs. We show that such simple graph transforma-
tion strategies can significantly improve the performances for a given data mining
task on a given data set. As the number of generated features rapidly grows, in
Chapter 6, we provide a strategy for feature selection in hierarchical feature space,
in order to select only the most informative and most representative features for
a given dataset. In the final chapter of this part, Chapter 7, we provide an end-
to-end tool for mining the Web of Linked Data, which provides functionalities for
each step of the knowledge discovery process, i.e., linking local data to a Semantic
Web knowledge graph, integrating features from multiple knowledge graphs, fea-
ture generation and selection, and building machine learning models. Such a tool
allows for bridging the gap between the Web of Data and data mining, and which
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can be used for carrying out sophisticated analysis tasks on and with Linked Open
Data.

14.2 PART II: Semantic Web Knowledge Graphs Embed-
dings

The feature generation strategies introduced in Part I do not scale when the input
dataset is large, i.e., the number of generated features quickly becomes unmanage-
able. To address this problem, in Chapter 8 in Part II, we introduced an approach
for Semantic Web knowledge graphs embedding, named RDF2Vec, which answers
research question RS3 from Section 1.1. The approach uses language modeling ap-
proaches for unsupervised feature extraction from sequences of words, and adapts
them to Semantic Web knowledge graphs. We generate sequences by leverag-
ing local information from graph sub-structures, harvested by Weisfeiler-Lehman
Subtree RDF Graph Kernels and graph walks, and learn latent numerical represen-
tations of entities in RDF graphs. Our evaluation shows that such vector represen-
tations outperform existing techniques for the propositionalization of RDF graphs
on a variety of different predictive machine learning tasks, and that feature vector
representations of general knowledge graphs such as DBpedia and Wikidata can be
easily reused for different tasks.

In Chapter 9, we extend the RDF2Vec approach by examining methods to di-
rect the random walks in more meaningful ways, i.e., being able to capture more
important information about each entity in the graph. The chapter evaluates a dozen
weighting schemes which influence the walks and, thus, the resulting sequences.

14.3 PART III: Applications of Semantic Web Knowledge
Graphs

In Part III, we listed all the applications that use the approaches described in the
previous two parts of the thesis, which answers research question RS4 from Sec-
tion 1.1. In Chapter 10 we presented the Web-based tool ViCoMap, which allows
automatic correlation analysis and visualizing statistical data on maps using Se-
mantic Web knowledge graphs, which is based on the RapidMiner LOD extension
(described in Chapter 7). In Chapter 11, we introduced three different content-
based recommender systems that utilize Semantic Web knowledge graphs. The
first approach is based on graph metrics, the second approach is based on a hy-
brid approach using flat features extracted from Semantic Web knowledge graphs,
and the third approach uses graph embeddings (introduced in Chapter 8) as fea-
tures to build a content-based recommender system. In Chapter 12, we show that
the graph embeddings, introduced in Chapter 8, can be used for the task of en-
tity and document modeling, which are fundamental problems in numerous tasks
in information retrieval, natural language processing, and Web-based knowledge
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extraction. In Chapter 13, we tackle the problem of taxonomy induction, which
is crucial for maintaining high quality Semantic Web knowledge graphs. Thus,
this chapter presents an approach that makes use of the graph embeddings intro-
duced for automatic unsupervised class subsumption axiom extraction from large
semi-structured knowledge bases.

Besides the applications described in this part of the thesis, there is a list of
further applications where the approaches described in this thesis have been used.
Furthermore, there are several third party applications that utilize some of the ap-
proaches described in this thesis.

The RapidMiner Linked Open Data extension (described in Chapter 7) has
been used in several further use cases.

In [265], we aim at finding special characteristics of a given instance from a
Semantic Web knowledge graph, given a contrast set. To that end, data about the
instance at hand, as well as its contrast set, are retrieved from DBpedia. Attribute-
wise outlier detection, which computes outlier scores for single attribute values
[227], is exploited for identifying those attribute values of the instance that are
significantly different from those of the other instances.

In [251], we use DBpedia, Eurostat, and LinkedGeoData to retrieve features
to discover which factors correlate with the unemployment rate in French regions.
Later, we used the corresponding links from DBpedia to GADM1 to automatically
retrieve the geographical shape data for each region, and visualize the findings on
a map.

Furthemore, we have used the tool to implement baseline recommender system
approaches, for the recommendation of movies [256] and music albums [257].

In [222], the LOD extension was used for the purpose of linkage error de-
tection between LOD datasets. To that end, links between datasets are projected
into a high dimensional feature space, and different multi-dimensional outlier de-
tection techniques, taken from RapidMiner’s Anomaly Detection extension [100],
are used to identify wrong links. The approach was evaluated on two datasets of
owl:sameAs links: DBpedia - Peel Sessions2, and DBpedia - DBTropes3. The
LOD extension was used to generate the feature vectors for each link, i.e., direct
types, and all ingoing and outgoing properties. The evaluation showed promising
results, with an area under the ROC curve up to 0.86 (i.e., wrong links get lower
scores than correct links with a probability of 86%), and an F-measure up to 0.54.

In another use case, the extension is used to implement an approach that com-
bines NLP techniques and background knowledge from DBpedia for finding dis-
puted topics in news sites. To identify these topics, newspaper articles are anno-
tated with DBpedia concepts, using the DBpedia Spotlight linking operator. For
each article, a polarity score is computed. Then, the extracted DBpedia categories
are used to identify those categories revealing significant deviations in polarity

1http://gadm.geovocab.org/
2http://dbtune.org/bbc/peel/
3http://skipforward.opendfki.de/wiki/DBTropes

http://gadm.geovocab.org/
http://dbtune.org/bbc/peel/
http://skipforward.opendfki.de/wiki/DBTropes
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across different media. An experiment with articles from six UK and US news
sites has shown that such deviations can be found for different topics, ranging from
political parties to issues such as drug legislation and gay marriage [55].

Schulz et al. use the extension for developing an approach for semantic abstrac-
tion for generalization of tweets classification [271, 272]. Shidik et al. [278] make
use of the extension for developing a machine learning approach for predicting
forest fires using LOD as background knowledge. Lausch et al. [157] list the ex-
tension as a tool for performing data analysis in environmental research. Schaible
et al. [266] use the extension for the task of movie classification using background
knowledge from LOD.

[161] uses the tool to develop hybrid approach for automatic taxonomy learn-
ing, which combines a data-driven and a knowledge-based component. The ap-
proach uses the tool to extract structured semantic information from the Linked
Open Data cloud (DBpedia) and WordNet.

The Semantic Web graph embeddings, RDF2Vec (described in Chapter 8, have
been used in several other applications.

In [5], we use the graph embedding approach to exploit the vector representa-
tions of frames using the FrameNet [203] graph and the subsumption hierarchy of
roles as represented in Framester [96], for the task of reconciling knowledge graphs
extracted from text. The results show that using the graph embeddings significantly
outperforms the baseline approaches on the given task.

The authors of [144], use RDF2Vec to develop a supervised algorithm for de-
riving type embeddings in the same latent space as a given set of entity embeddings.
Given a set of pre-generated entity embeddings, and a sparse collection of type as-
sertion triples (a subset of the ABox), the approach can generate embeddings for a
set of types.

[103] presents an approach that can summarize facts about a collection of en-
tities by analyzing their relatedness in preference to summarizing each entity in
isolation. Specifically, the approach generates informative entity summaries by
selecting: (i) inter-entity facts that are similar and (ii) intra-entity facts that are
important and diverse, which are calculated using the RDF2vec approach.

The authors of [109], address the task of learning a model capable of clas-
sifying images into classes for which no sample is available as training data, by
leverage the interlinking of knowledge bases published as Linked Open Data to
provide different semantic feature representations of visual classes in a large-scale
setting. To do so, the authors use the RDF2vec graph embeddings.

[193] presents an approach for building entity-centric event collections from
large archives. The approach first identifies relevant concepts and entities from
a knowledge base, and then detects their mentions in the documents, which are
interpreted as indicators for relevance. For ranking the entities, the authors use
RDF2Vec embeddings. The approach is compared to a set of baselines, and eval-
uated on three datasets, showing that RDF2vec outperforms all the baseline meth-
ods.
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14.4 Open Issues and Limitations

As outlined in the individual chapters, there are several open issues and limitations
of the introduced approaches, which bring opportunities for future work. Here we
discuss general open issues of the thesis.

In this thesis we only focused on a limited set of data mining datasets and
tasks. More precisely, most of the approaches are evaluated on standard data min-
ing tasks. In future work, we would consider extending the evaluation to other
tasks, such as link prediction, type prediction, graph completion and error detection
in knowledge graphs, among the others. Furthermore, the benchmark of datasets
used for evaluation can be extended to achieve more thorough evaluation of the
approaches.

Another notable limitation of the thesis is that we are not able to directly mea-
sure the quality of the generated Semantic Web knowledge graph embeddings, i.e.,
the quality of the embeddings is measured through specific data mining tasks, ex-
trinsic evaluation, which shows that there is no “one size fit all solution”. In future
work, we would consider developing an intrinsic evaluation benchmark, which
would reduce the time for evaluating the approaches, and would make the evalua-
tion process more transparent and easier to compare to other approaches.

Furthermore, while we set the basics for possible integration of multiple Se-
mantic Web knowledge graphs to be used in data mining, we didn’t evaluate to
which extent this can be done with the graph embeddings approaches. To do so,
we consider two approaches: (i) embed each graph separately, and then align the
entities and properties, or (ii) perform the alignment and the embedding of the
graphs in the same step.

14.5 Future Work

In this section we discuss possible future directions of work for exploiting Semantic
Web knowledge graphs in data mining.

With the recent developments, both in research and industry, most of the data is
represented in the form of knowledge graphs. As we already showed in this thesis,
there are several initiatives in the research field that try to convert the whole human
knowledge in large Semantic Web knowledge graphs, like DBpedia, Wikidata, and
YAGO. Also, the IT giants represent their data in the form of knowledge graphs,
e.g., Google Knowledge Grpah,4 Yahoo Knowledge Graph5 and IBM knowledge
graph (used by IBM Watson)6, among the others. This leads to a rapid development
of approaches for managing such data. i.e., generating, consuming and mining.

4https://www.google.com/intl/bn/insidesearch/features/search/
knowledge.html

5http://semtechbizsj2014.semanticweb.com/sessionPop.cfm?confid=
82&proposalid=6452

6https://www.ibm.com/watson/

https://www.google.com/intl/bn/insidesearch/features/search/knowledge.html
https://www.google.com/intl/bn/insidesearch/features/search/knowledge.html
http://semtechbizsj2014.semanticweb.com/sessionPop.cfm?confid=82&proposalid=6452
http://semtechbizsj2014.semanticweb.com/sessionPop.cfm?confid=82&proposalid=6452
https://www.ibm.com/watson/
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One of the research directions is converting the vast amount of unstructured
data published on the Web in various formats, e.g., text, lists, tables, etc, into graph
data. This data contains useful knowledge that aligned with existing Semantic Web
knowledge graphs can be of a high value. Furthermore, maintaining high quality
knowledge graphs is not trivial. To address this issues, data mining solutions can
be used.

While, in this thesis we described a set of approaches for converting graph data
in propositional form that can be directly used in existing data mining tools and
algorithms, in the future work we believe that more effort will be put in developing
data mining algorithms that will be applicable directly on graph data. Such algo-
rithms would not follow the general KDD pipeline, i.e., the Transformation step
will be omitted.

When developing such approaches, a lot of effort will go into optimizing the
data mining algorithms, due to the large size of the knowledge graphs. Even today,
the knowledge graphs can grow up to several million of nodes and billions of edges,
which is pushing the currently available processing power to its limits. In many
cases multiple graphs need to be merged together, which exponentially increases
the computational complexity. This brings the attention to the need for developing
efficient approaches for merging large-scale knowledge graphs.

To summarize, we believe that contributions like this thesis will lead to a rapid
advancement in the technology for graph-based representation and consumption of
data, which will integrate data mining as a non-separable part of the maintenance
and consumption of the data.
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[313] Anze Vavpetič and Nada Lavrač. Semantic subgroup discovery systems and
workflows in the sdm-toolkit. Comput. J., pages 304–320, 2013.
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