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A micro-macro hybrid model with application for
material and pedestrian flow
Simone Göttlich1* and Marion Pfirsching1

Abstract: In this paper, a hybrid modeling approach for granular flow-like applica-
tions is presented. The approach allows to switch for a priori fixed points in time
between the different levels of description which are the microscopic andmacroscopic
scale, respectively. Based on the numerical discretization of the models, the switching
procedure is able to interpret information on individual objects as density distributions
and vice versa. In particular, the reverse direction, i.e. from a macroscopic to a
microscopic perspective, requires the solution of a nonlinear least squares problem
subject to further constraints. Simulation results are given and demonstrate the good
performance of the algorithm in the case of material and pedestrian flow models.
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1. Introduction
Multi-scale models are a common tool to simulate the behavior of granular materials in many
engineering applications. Such models are for example used to simulate pedestrian flow (Cristiani,
Piccoli, & Tosin, 2014; Etikyala, Göttlich, Klar, & Tiwari, 2014), granular flow (Cristiani, Piccoli, &
Tosin, 2011), traffic flow on roads (Herty & Moutari, 2009; Moutari & Rascle, 2007) or material flow
on conveyor belts (Göttlich, Hoher, Schindler, Schleper, & Verl, 2014). Multi-scale models combine
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the microscopic scale, where the trajectories of single objects are considered separately (e.g.
pedestrian flow (Helbing, Farkas, & Vicsek, 2000), granular flow (Cleary & Sawley, 2002; Cundall
& Strack, 1979)), with the macroscopic scale, where the entity of objects is treated as a mass
distribution (e.g. (Colombo, Garavello, & Lécureux-Mercier, 2012; Colombo & Lécureux-Mercier,
2012)). Typically, multi-scale models are derived from the microscopic scale via hydrodynamic
limits. An overview on multi-scale models for crowd dynamics is given in (Bellomo, Piccoli, & Tosin,
2012). Hybrid multi-scale traffic flow models have been investigated in Herty & Moutari, (2009) and
Moutari & Rascle, (2007). However, the transition between the different scales has been mostly
analyzed from a theoretical point of view and there exist only a limited number of contributions,
where simulation techniques have been applied to switch the dynamics (Herty & Moutari, 2009;
Moutari & Rascle, 2007). Our intention is now to develop a numerical framework which is able to
switch between the microscopic and macroscopic scale at fixed user-defined points in time. This
allows for either a fine or coarse resolution of the underlying model equations depending on
special situations (e.g. queuing effects).

For the presentation of the micro-macro hybrid model within this article, the formal derivation of
limiting macroscopic equations is omitted and only briefly explained. The focus is on a hybrid
switching method to convert the different scales without loosing information and properties of the
model. In the case of material and pedestrian flow problems, we present the model equations,
introduce suitable discretizations methods and explain how special model characteristics are
incorporated in the implementation of the switching algorithm. Different to (Herty & Moutari,
2009; Moutari & Rascle, 2007), the switching procedure works directly in Eulerian coordinates
and the problems are defined on a two-dimensional domain.

Figure 1 illustrates the switching directions, i.e. from the microscopic to the macroscopic
scale and vice versa. For the switch from the microscopic to the macroscopic representation,
the idea is to place a Gaussian bell curve corresponding to the mass of each object. The total
sum of all curves then leads to a density distribution with high density in dense regions and
low density in regions, where the objects are widely spread. The transformation from the
macroscopic to the microscopic scale is more involved since the precise positioning is in
general not possible. In order to have the objects placed as dense as possible in regions of
high density, the idea is to fill the geometry completely and to remove objects according to
the density distribution. Therefore, the density is interpreted as a probability density and a
nonlinear least squares problem is solved to meet the given density distribution as best as
possible. An update algorithm ensures that the objects do not overlap and the placement is
admissible.

The article is organized as follows. Section 1 is concerned with the general description of multi-
scale models. The model equations are presented and embedded into the context of hybrid
switching. In Section 2, the model switch is applied to a material flow model (Göttlich et al.,
2014) and a pedestrian model (Helbing et al., 2000). Section 3 deals with the implementation of
the multi-scale model and the hybrid switching algorithm. Finally, in Section 4, numerical examples
are analyzed to evaluate the accuracy of the switching method.

Micro to Macro

Macro to Micro

Figure 1. Idea of the switch:
frommicroscopic tomacroscopic
scale and vice versa.
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2. Multi-scale models
In this section, we present the microscopic and macroscopic scale of the hybrid multi-scale model
in a general framework as well as the transition between the levels. Furthermore, the switching
idea is introduced based on some key characteristics.

Multi-scale models are commonly used to simulate the evolution of objects over time under certain
conditions and inside a given geometry. However, assuming a high number of objects, there might be
scenarios, where statistical values of the averaged behavior of objects such as flow (objects per time)
or density (objects per area) are sufficient (see e.g. (Colombo et al., 2012; Göttlich et al., 2014)). The
general multi-scale model considered here consists of two simulation levels: a microscopic one,
described by Newton’s equations of motion, and a macroscopic one relying on a hyperbolic conserva-
tion law in two space dimensions (Bellomo et al., 2012; Göttlich, Klar, & Tiwari, 2015).

The setting we are interested in are bounded domains with time-independent external forces.
The latter can be exerted for example by the boundaries of the geometry, the friction of a conveyor
belt (see Section 2.1) or a desired velocity for pedestrians (see Section 2.2). Other external forces
(e.g. gravitational forces) are also possible. The objects are assumed to be uniform and indistin-
guishable, meaning that they have the same mass, shape and set of parameters. They are
assumed to be incompressible and are not allowed to overlap.

2.1. From microscopic to macroscopic scale
The microscopic model is based on Newton’s equations of motion (e.g. (Bellomo et al., 2012)).
Being N the number of objects in the system, xi 2 R

2; i ¼ 1; . . . ;N the spatial coordinate, vi 2 R
2 the

velocity of object i and m the mass of a single object, the equations are characterized by

dxi
dt

¼ vi (1:1a)

m
dvi
dt

¼ ∑
i�j

Fðxi � xj; vi � vjÞ þ Gðxi; viÞ (1:1b)

together with an initial condition

xið0Þ ¼ xi;0; við0Þ ¼ vi;0: (1:2)

Equation (1.1a) describes the velocity of the objects and Equation (1.1b) includes all forces
influencing their acceleration. The force term F : R2 � R

2 ! R
2 collects the interaction forces,

whereas the force term G : R2 � R
2 ! R

2 describes exterior forces as for example interactions
with boundaries or friction forces.

To derive the limiting macroscopic equations of (1.1), the following formal computations have to
be done. We refer to Carrillo et al. (2009); Etikyala et al. (2014); Göttlich et al. (2015); Ruzhansky,
Cho, Agarwal, & Area (2017) where such considerations are made for swarming, pedestrian and
material flow models in a more detailed way.

We start with the Liouville equation

@tf ðNÞ þ ∑
N

i¼1
divxi ðx

:

ifðNÞÞ þ divvi ðv
:

ifðNÞÞ
� �

¼ 0;

where f ðNÞ ¼ f ðNÞðx1; :::; xN; v1; :::; vNÞ describes the distribution function in the phase space. We
integrate over dΩ1 ¼ dx2 � � �dxN � dv2 � � �dvN and make use of Equation (1.1b). We consider the

chaos assumption f ð2Þðx1; v1; x2; v2Þ ¼ f ð1Þðx1; v1Þf ð2Þðx2; v2Þ, set F12 ¼ Fðx1 � x2; v1 � v2Þ and let N
go to infinity, then the resulting equation for the distribution function fðx; v; tÞ is the mean field
equation
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@tf þ v � �xf þ Sf ¼ 0 (1:3)

with

Sf ¼ 1
m

�v � ��Fðx� y; v �wÞ fðy;wÞdydw fðx; vÞ� �þ 1
m

�v � ðGðx; vÞfðx; vÞÞ:

We define the density

ρðx; tÞ ¼
ð
fðx; v; tÞdv

and velocity

uðx; tÞ ¼

ð
vfðx; v; tÞdvð
fðx; v; tÞdv

:

Then, the temporal derivative of the density ρ leads to the continuity equation

@tρþ �x � ðρuÞ ¼ 0 (1:4)

and the computation of the temporal derivative of ρu yields the momentum equation

@tu þ 1
ρ u�xðρuÞ þ 1

ρ�x

ð
v � vfdv

¼ 1
ρ

ð
þ 1

m

ð ð
Fðx� y; v �wÞfðy;wÞdydwþ 1

mGðx; vÞ
� �

fðx; vÞdv:
(1:5)

A monokinetic closure function

f,ρðx; tÞδuðx;tÞðvðtÞÞ

is used to close the system, i.e. fluctuations are neglected. Moreover, we ignore the velocity
dependence meaning that the elastic normal forces dominate the friction forces. So Equation
(1.5) reduces to the hydrodynamic limit equation

@tuþ 1
ρ
u�xðρuÞ þ 1

ρ
�x

ð
ðu� u � ρÞdv ¼ 1

m
ðF�ρÞðxÞ þ 1

m
Gðx;uÞ (1:6)

which describes the system together with the continuity Equation (1.4).

To reduce the system to a scalar limit equation, a quasi-stationary approach is considered,
where the temporal and spatial derivatives are set to zero. We get

Gðx;uÞ ¼ �ðF�ρÞðxÞ:

If the forces F and G are known, we get an expression for u, the so-called closure velocity
(analogous to (Göttlich, Knapp, & Schillen, 2017)) that is of the form

u� ¼ u�ðρ; xÞ ¼ fðρÞðxÞ þ gðxÞ; (1:7)

where the first part depends explicitly on the density ρ and the second term only depends on the
spatial variable x. We plug the closure velocity u� into the continuity Equation (1.4) to get the
scalar limit equation

@tρþ �x � ðρðfðρÞ þ gðxÞÞÞ ¼ 0 (1:8)

which defines the macroscopic model.

The macroscopic model is obviously given by a hyperbolic conservation law in two space
dimensions (Aggarwal, Colombo, & Goatin, 2015). The density distribution is denoted by ρðx; tÞ
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with spatial coordinate x 2 R
2 and time variable t 2 R

þ. The velocity function corresponds to the
closure velocity (1.7).

Note that the model is nonlocal since u�ðρ; xÞ does not only depend on ρðxÞ but on the density
distribution ρ over the whole geometry. The boundaries of the domain are denoted by @ΩW and the
inner normal vector is called nðxÞ. The model Equation (1.8) together with the closure velocity (1.7)
and additional initial and boundary conditions can be expressed as follows:

@tρþ �x � ðρ u�ðρ; xÞÞ ¼ 0 (1:9a)

ρðx;0Þ ¼ ρ0ðxÞ; x 2 R
2 (1:9b)

ρðx; tÞ ¼ 0 x 2 @Ωinflow (1:9c)

hu�ðρ; xÞ;nðxÞi ¼ 0; x 2 @ΩW: (1:9d)

Equation (1.9a) describes evolution of density governed by the hyperbolic conservation law, see
Equation (1.8). The initial data is given by (1.9b), the inflow condition is stated by (1.9c) and the
condition that no mass is going through the boundaries is ensured by (1.9d).

2.2. Hybrid switching method
The goal of the hybrid switching method is to provide a computational framework to change the
scale from the microscopic description (1.1) to the macroscopic (1.9) and vice versa. The switch is
directly based on the Eulerian representation, contrary to the situation considered in (Herty &
Moutari, 2009; Moutari & Rascle, 2007), and works for a priori defined fixed points in time.

As one might imagine, the transformation from the microscopic to the macroscopic level is
straightforward since all necessary information is available. Averaged quantities such as density or
flux can be computed in a straightforward way and are sufficient to describe the approximate
behavior of the system over time. However, the lack of missing information is the more challenging
problem while transforming the system back. Therefore, the main task is to find a method to place
the objects inside a given domain such that the given density distribution matches the position of
objects in the microscopic scale. For application purposes, the transformation from the macroscopic
to the microscopic representation is necessary whenever the trajectory of single objects is needed.

The consistent relation between the amount of mass and the number of objects is ensured by

mtot ¼ N � 2
ffiffiffi
3

p
r2 � ρmax (1:10)

withmtot being the total mass in the system, r the radius of an object and N again the total number of
objects. Note that this number is independent on the switching direction and the derivation is as
follows: If we have a domain of maximal density ρmax, the corresponding object distribution is as
dense as possible which is a hexagonal configuration (Degond, Ferreira, & Motsch, 2017). Then, the
volume corresponding to one object corresponds the volume of a hexagon with inner circle radius r.

The area of such an hexagon is Ahex ¼ 2
ffiffiffi
3

p
r2. The volume for one object therefore is

Vobject ¼ Ahex � ρmax ¼ 2
ffiffiffi
3

p
r2 � ρmax: (1:11)

2.3. Switch from microscopic to macroscopic scale
The transformation from the microscopic to the macroscopic representation is performed such
that the original position of objects can be interpreted as a density distribution. Thus, the idea is to
spend a two-dimensional Gaussian bell curve for each object representing the density distribution
and sum them all up. Since the volume of a two-dimensional Gaussian function with variance σ0 is
normalized and the volume per object has to be equal to Vobject, we have to multiply by the
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corresponding volume as done in Equation (1.11). The x- resp. y-coordinates of the objects are
given by the vectors Xo and Yo and the continuous density distribution for one object i is then

Diðx; yÞ ¼ 1
ρmax2πσ20

exp
�1
2σ20

k x� Xo;i k22 þ k y � Yo;i k22
� � !

� Vobject; (1:12)

where Xo;i and Yo;i is the i-th component of the vector Xo and Yo, respectively. Summing the
densities for each object

ρðx; yÞ ¼ ∑
N

i¼1
Diðx; yÞ; (1:13)

we end up with the desired continuous density distribution.

2.4. Switch from macroscopic to microscopic scale
The switch becomes more involved when the system is transformed from the macroscopic to
the microscopic representation. This is due to missing detailed information on individual
objects at the macroscopic level. To remedy this drawback, we need to solve an optimization
problem to find a good guess for the microscopic density interpretation. To do so, the density
distribution is considered as a normalized probability distribution, meaning that the maximal
density is ρmax ¼ 1: Since it is not possible to compare the placement of objects to the
macroscopic density distribution ρmac, the object distribution has to be transformed back to a
density distribution called ρapp, cf. (1.13). Given the position of objects Xo; Yof g respecting the

boundaries and the non-overlapping conditions, we can set up an optimization problem of the
following form:

min k ρmac � ρapp k22 (1:14a)

with ρapp � ρðx; yÞ ¼ ∑
N

i¼1
Diðx; yÞas in equation (1:13)

s:t: #objects ¼ N (1:14b)

ðXo;i; Yo;iÞ 2 Ωad "i 2 1; . . . ;Nf g (1:14c)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXo;i � Xo;jÞ2 þ ðYo;i � Yo;jÞ2

q
> 2r "i; j 2 1; . . . ;Nf g; i � j; (1:14d)

where Ωad is the admissible interior domain such that objects placed here do not interact with the
boundaries. The optimization problem (1.14) is in fact a nonlinear least squares problem subject to
the constraints that the total numbers of objects is met (1.14b), the objects are placed inside the
admissible domain (1.14c) and do not overlap (1.14d). For the numerical implementation, the
constraints (1.14c) and (1.14d) are ensured by an update algorithm and are not considered directly
in the solution of the optimization problem.

A crucial point is to find an admissible start solution ρapp: Therefore, we require that high-density
regions, where ρmax is attained, are packed as dense as possible such that the geometry is filled
completely and then remove objects until the number N ¼ mtot

Vobject
is reached. First, objects, where the

density is lower than a certain tolerance value �, are removed. For any other placement, remove
the object with a probability of ð1� ρðxÞÞ, where x is the center of the corresponding object. This
means that in each possible position, the objects are placed in a Bernoulli distributed way with
probability equal to the density. In general, the number of objects is not equal to N after this
procedure. So if the number of objects is too large, remove objects in low density regions.
Otherwise, if the number of objects is too low, refill positions in high-density regions.
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Further details on the numerical solution of (1.14) and the update algorithm can be found in sub
section 3.1.

In the next section, we present two applications to demonstrate the switching idea. They mainly
differ in the evaluation of the force terms in particular the exterior forces.

3. Applications

3.1. Material flow model
We briefly introduce the microscopic and macroscopic material flow model. The models are
described in detail in Göttlich et al. (2014, 2015) and the formal derivation of the macroscopic
via the hydrodynamic limit is given in Göttlich et al. (2015).

3.2. Microscopic model
In the considered application case, circular-shaped parts of radius r are transported on a conveyor
belt. The arising exterior forces are the interaction forces between parts and boundaries as well as
the friction force induced by the conveyor belt. Analogous to Göttlich et al. (2015), we have to
specify the force terms in (1.1) as F being the interaction force between the parts and G the friction
force of the belt combined with wall forces. The interaction force F in Equation (1.1b) can be split

into a tangential part f t and a normal part fn:

Fðx; vÞ ¼ Hð2r� k x kÞ � ðf nðx; vÞ þ f tðx; vÞÞ; (2:1)

where H denotes the common Heaviside function with Hð�Þ ¼ 1 if k x k < 2r and 0 otherwise. The
normal force component itself can be split into an elastic repulsive part f nel and a dissipative part f ndiss:

f nðx; vÞ ¼ kn � x
k x k � ð2r� k x kÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ f nel

� γnhv;
x

k x ki
x

k x k|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ f ndiss

:

The repulsive force is modeled by a spring damper model with the normal spring constant kn while the
dissipative force is equipped with the normal viscous coefficient γn. The tangential force is given by

f tðx; vÞ ¼ �minðγt k vt k; μ k f n kÞ � vt

k vt k

with Coulomb friction coefficient μ and tangential viscous damping coefficient γt. The tangential

velocity vt is

vt ¼ v � hv;nin:

The friction force ffric describes the interaction between a part and the surface of the conveyor belt

ffricðviÞ ¼ �minðμb �m � g; γb� k vi � vT kÞ � vi � vT
k vi � vT k

with constant positive velocity of the conveyor belt vT, part mass m and gravitational constant g.
The bottom friction coefficient μb and the bottom viscous damping coefficient γb depend on the
material of the belt and of the parts.

The interaction force between the parts and the boundaries of the conveyor belt are modeled in
the same way as the interaction force of the parts. The set containing the indices of walls and
boundaries is called W.

The exterior forces are the sum of the interaction forces with the boundaries and the friction
forces between the parts and the conveyor belt
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Gðxi; viÞ ¼ ∑
w2W

Hðr � distðxi;wÞÞ � ðfnw;i þ f tw;iÞ þ ffricðviÞ (2:2)

with fnw;i and f tw;i the normal and tangential forces exerted by the walls on part i.

The complete microscopic material flow model is obtained by inserting these force terms into the
general microscopic model (1.1) and reads

dxi
dt

¼ vi (2:3a)

m
dvi
dt

¼ ∑
i�j

Fðxi � xj; vi � vjÞ þ Gðxi; viÞ (2:3b)

with F and G as in (2.1), (2.2) and initial conditions xið0Þ ¼ xi;0; við0Þ ¼ vi;0.

3.3. Macroscopic model
The static space-dependent velocity gðxÞ in Equation (1.7) represents the friction force of the
conveyor belt and the force exerted by the boundaries of the given setting, see Figure 2a. The
resulting velocity field is shown in Figure 2b. The dynamic velocity fðρÞ is needed to deal with
situations of maximal density ρmax.

For the formulation of the macroscopic model as in (1.9a) we set

fðρÞ ¼ vdynðρÞ; gðxÞ ¼ vstatðxÞ; (2:4)

where the static velocity field vstat is as in Figure 2b. The nonlocal dynamic vector field vdyn should
be active if the density exceeds a maximal density ρmax and parts start to pile up. Below the

maximal density, vdyn is inactive, i.e. free flow regime, and the parts are transported with the

velocity given by vstat. Thus, the dynamic vector field includes the interaction between parts
weighted by the factor � > 0 and models the formation of congestion in front of an obstacle by
the collision operator IðρÞ:

vdynðρÞ ¼ Hðρ� ρmaxÞ � IðρÞ; (2:5)

where H denotes the common Heaviside function and

IðρÞ ¼ ��
�ðη�ρÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k �ðη�ρÞ k22
q : (2:6)

The negative of the gradient of the convolution means that if there is a pile of maximal density, the
mass will be pushed in a region with lower density. Inside a pile with maximal density, this force
will be zero. Additionally, we have the initial condition

ρðx;0Þ ¼ ρ0ðxÞ; x 2 R
2 (2:7)

and the boundary condition

(a) Conveyor belt geometry (b) Static velocity field

Figure 2. Sketch of the conveyor
belt.
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hu�ðx; ρÞ;nðxÞi ¼ 0; x 2 @ΩW:

The computational domain is denoted by Ω and the boundaries are @Ω. The inflow boundary
at the left in Figure 2 is called @Ωinflow. The walls and the obstacle are denoted by @ΩW, even
if the obstacle is not at the boundary of the computational domain. The normal vector is
called n(x).

The complete macroscopic material flow model is obtained by inserting the velocity components
(2.4) into the closure velocity (1.7). Then, the analogon to system (1.9) reads as follows (see
(Göttlich et al., 2014)):

@tρþ �x � ðρðvdynðρÞ þ vstatðxÞÞÞ ¼ 0 (2:8a)

vdynðρÞ ¼ Hðρ� ρmaxÞ � IðρÞ (2:8b)

IðρÞ ¼ ��
�ðη�ρÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k �ðη � ρÞ k22
q (2:8c)

ρðx;0Þ ¼ ρ0ðxÞ; x 2 R
2 (2:8d)

ρðx; tÞ ¼ 0 x 2 @Ωinflow ð2:8eÞ
hvdynðρÞ þ vstatðxÞ;nðxÞi ¼ 0; x 2 @ΩW: (2:8f)

3.4. Pedestrian flow model

3.4.1. Microscopic model
In the following sections, the pedestrian model derived by Helbing (Helbing et al., 2000) is
briefly reviewed and a corresponding macroscopic model is stated. We assume the pedes-
trians to be of circular shape with radius r and to act in the same way in each direction,
meaning that the forces are rotationally invariant. We specify again the force terms F for the
interaction and G for the desired velocity of pedestrians as well as the forces exerted by the
walls. We set Fij to characterize the interaction force between pedestrian i and j in (1.1b). The

latter is modeled as

Fðxi � xj; vi � vjÞ ¼ Fij ¼ A exp
ð2r � dijÞ

B

� �
þ k � hð2r � dijÞ

� �
nij þ κ � hð2r � dijÞΔvtjitij

with hðyÞ ¼ HðyÞ � y and H the Heaviside function. The constants A; B; k are positive, whereas κ can
be equal to zero if tangential force effects are neglected. The distance of pedestrians i and j is
given by dij ¼k xi � xj k with xi and xj the centers of mass, nij ¼ ðxi � xjÞ=dij is the normalized vector

pointing from pedestrian j to pedestrian i, tij ¼ ð�nð2Þ
ij ;nð1Þ

ij Þ is the tangential direction

and Δvtji ¼ ðvj � viÞ � tij.

The interaction force Fiw between wall w 2 W and pedestrian i is modeled as

Fiw ¼ A exp
ðr � diwÞ

B

� �
þ k � hðr � diwÞ

� �
niw � κ � hðr � diwÞðvi � tiwÞtiw (2:9)

with diw being the distance of pedestrian i to wall w, niw the normalized normal vector of wall w
and tiw the tangential vector of wall w. Combined with the component of the desired velocity

vdesðxiÞ ¼
v0ðxiÞ � vðxiÞ

τ
;
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where τ is the reaction time and v0ðxÞ is the desired velocity depending on the pedestrians
location, we set the exterior force as

Gðxi; viÞ ¼ mvdesðxiÞ þ FiWðxi; viÞ:

Compared to the material flow model, where the main ingredient is the friction of the conveyor
belt, the exterior force for the pedestrian model is mainly driven by the desired velocity of
pedestrians. Note that this leads to a different numerical treatment within the switching
algorithm. Inserting these terms into the system (1.1), we have the scaled microscopic pedes-
trian model

dxi
dt

¼ vi (2:10a)

m
dvi
dt

¼ mvdesi þ 1
N
∑
j�i

Fij þ 1
N
∑
W
FiW (2:10b)

with initial positions xið0Þ ¼ xi;0 and velocities við0Þ ¼ vi;0.

3.4.2. Macroscopic model
For the macroscopic pedestrian model, we have to determine the parts of the velocity
u�ðρ; xÞ ¼ fðρÞðxÞ þ gðxÞ, see (1.7), as

fðρÞ ¼ 1
mλ

F�ρ; gðxÞ ¼ v0ðxÞ þ 1
mλ

∑
W
FWðxÞ

with

F�ρð ÞðxÞ ¼
ð
Fðx� yÞρðyÞdy

¼
ð

A exp 2r�kx�yk
B

� �
þ khð2r� k x� y kÞ

� �
x�y
kx�yk ρðyÞdy;

(2:11)

v0ðxÞ is the desired velocity depending on the pedestrians location and

∑
W
FWðxÞ ¼ ∑

W
Axp

r � dðxÞ
B

� �
þ khðr � dðxÞÞ

� �
nW;

where h is defined before. The constants A; B; k and the radius of the pedestrians r are the same as
in the microscopic model. Here, dðxÞ denotes the distance of x and the interacting wall.

The complete macroscopic pedestrian model then reads as

@tρþ �x � ρ v0ðxÞ þ 1
mλ

F � ρðxÞ þ 1
mλ

∑
W
FWðxÞ

� �
 �
¼ 0 (2:12a)

ρðx;0Þ ¼ ρ0ðxÞ; x 2 R
2 (2:12b)

ρðx; tÞ ¼ 0 x 2 @Ωinflow (2:12c)

hu�ðρ; xÞ;nðxÞi ¼ 0; x 2 @ΩW: (2:12d)

with Equation (2.12b) the initial condition, (2.12c) specifying the inflow condition and (2.12d) the
boundary condition.

4. Numerical discretization
In this section, the numerical discretization of the microscopic (1.1) and the macroscopic model
(1.9) are presented. The discretized models are then used to set up the hybrid switching method
introduced in subsection 1.2.
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We set dt the time step of the discretization. The discretized microscopic model reads

xiðtþ dtÞ � xiðtÞ
dt

¼ viðtÞ (3:1a)

m
viðtþ dtÞ � viðtÞ

dt
¼ ∑ FðxiðtÞ � xjðtÞ; viðtÞ � vjðtÞÞ þ GðxiðtÞ; viðtÞÞ (3:1b)

together with the initial condition

xið0Þ ¼ xi;0; við0Þ ¼ vi;0:

It is solved via a classical Runge-Kutta method of fourth order. If the specific application is known,
a priori estimates can be performed for the force terms F and G. Then, the time step can be chosen
appropriately and the need of an adaptation of the step size during the computation can be
avoided.

For the discretization of the macroscopic model we denote by Δx1, Δx2 the space step sizes and
Δt the time step size. The grid points are defined as

xð1Þi ¼ i � Δx1; i ¼ 1; . . . ;Nx1 ; xð2Þj ¼ j � Δx2; j ¼ 1; . . . ;Nx2 ; tk ¼ k � Δt; k ¼ 1; . . . ;Nt: (3:2)

The space is subdivided into squares Si;j ¼ xð1Þ
i�1

2
; xð1Þ

iþ1
2
� � ½xð2Þ

j�1
2
; xð2Þ

jþ1
2

h i
with grid constants λðdÞ ¼ Δt

Δxd
for

d ¼ 1;2. We apply a finite volume scheme, where the density is considered as a piecewise constant
function

ρðx; tÞ ¼ ρki;j 2 R for x 2 Si;j; k 2 1; . . . ;Ntf g:

Due to (1.7), we have that the velocity parts fðρÞ and gðxÞ only depend on ρ or x, respectively. This
allows for a separate numerical computation in terms of the numerical fluxes

Fð1Þ;þi; j ¼ Fð1Þi; j ðρ; ρki; j; ρkiþ 1; j; xiþ 1
2; j
Þ þ Gð1Þ

i; j ðρki; j; ρkiþ1; j; xiþ 1
2; j
Þ (3:3a)

Fð1Þ;�i; j ¼ Fð1Þi; j ðρ; ρki�1; j; ρ
k
i; j; xi�1

2; j
Þ þ Gð1Þ

i; j ðρki�1; j; ρ
k
i; j; xi�1

2; j
Þ (3:3b)

Fð2Þ;þi; j ¼ Fð2Þi; j ðρ; ~ρki; j; ~ρki; jþ1; xi; jþ 1
2
Þ þ Gð2Þ

i; j ð~ρki; j; ~ρki; jþ 1; xi; jþ 1
2
Þ (3:3c)

Fð2Þ;�i; j ¼ Fð2Þi; j ðρ; ~ρki; j�1; ~ρ
k
i; j; xi; j�1

2
Þ þ Gð2Þ

i; j ð~ρki; j�1; ~ρ
k
i; j; xi; j�1

2
Þ; (3:3d)

where the density-dependent part is given by

Fð1Þi; j ρ; ρki; j; ρ
k
iþ1; j; xiþ 1

2; j

� �
¼ ρi; jf

ð1ÞðρÞðxiþ 1
2; j
Þ f ð1ÞðρÞðxiþ 1

2; j
Þ 	 0

ρiþ1; jf
ð1ÞðρÞðxiþ 1

2; j
Þ f ð1ÞðρÞðxiþ 1

2; j
Þ 
 0

(

and the position-dependent part is

Gð1Þ
i;j ρki;j; ρ

k
iþ1;j; xiþ1

2;j

� �
¼ ρi;jg

ð1Þðxiþ1
2;j
Þ gð1Þðxiþ1

2;j
Þ 	 0

ρiþ1;jg
ð1Þðxiþ1

2;j
Þ gð1Þðxiþ1

2;j
Þ 
 0:

(

We remark that f and g depend on the application we have in mind. In vertical direction, the
computation of the numerical fluxes Fð2Þi;j and Gð2Þ

i;j follows analogously.

A dimensional splitting method is used to reduce the original two-dimensional problem into the
solution of one-dimensional problems only. The discretized system is then

~ρki;j ¼ ρki;j � λð1Þ½Fð1Þ;þi;j � Fð1Þ;�i;j � "ði; jÞ 2 f1; . . . ;Nx1g � f1; :::;Nx2g (3:4a)
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ρkþ1
i; j ¼ ~ρki; j � λð2Þ½Fð2Þ;þi; j � Fð2Þ;�i; j � "ði; jÞ 2 f1; :::;Nx1g � f1; :::;Nx2g (3:4b)

ρi; jð0Þ ¼ ρ0i; j "ði; jÞ 2 1; :::;Nx1f g � 1; :::;Nx2

� 

(3:4c)

huðρ; xi; jÞ;ni; ji ¼ 0 "ði; jÞ 2 W (3:4d)

with W the set containing the grid points corresponding to the boundaries of the underlying
domain. The step sizes have to be chosen such that the CFL condition

Δt
Δxd

max
ρ

k @

@ρ
ðρðfðρÞ þ gðxÞÞk1 
 1 (3:5)

for d ¼ 1;2 is fulfilled.

4.1. Hybrid switching algorithms
The numerical discretizations are now used to present an implementation of the hybrid switching
method, see subsection 1.2.

4.1.1. Microscopic to macroscopic representation
As we have seen, the given geometry is partitioned into grid cells for the numerical computation.
Let us denote by xc and yc vectors containing the x- resp. y-coordinate of the grid cell centers.
Corresponding to (1.13), the density in grid cell i can be calculated via

ρi ¼ ∑
N

j¼1
Djðxc;i; yc;iÞÞ

 !
(3:6)

with Dj being the density corresponding to object j, see Equation (1.12). The variance σ0 >0 has to
be chosen such that the numerical support of the bell function is larger than the actual domain of
one object, otherwise we obtain peaks for densely packed objects and not a uniform-density
distribution. In doing so, the implementation of the microscopic to macroscopic direction is
straightforward as expected.

4.1.2. Macroscopic to microscopic representation
The optimization problem (1.14) can be interpreted as a nonlinear least squares problem if the
constraints (1.14c) and (1.14d) are omitted (cf. discussion in subsection 1.2) and treated in an
additional routine. Therefore, the computation of the macro to micro switching direction can be split
into the following steps:

(1) Find admissible start solution ρapp: The pseudocode to find an admissible start solution is
specified in algorithm 1. The algorithm can be run several times to improve the configuration
of the start solution since a random choice of object placement is used.

(2) Solve nonlinear least squares problem (1.14a)–(1.14b): The nonlinear least squares problem
is solved with the MATLAB function lsqnonlin https://de.mathworks.com/help/optim/ug/
lsqnonlin.html and requires the solution P of algorithm 1 as initialization. The numerical
solution of the nonlinear least sqaures problem is denoted by Q.

(3) Solve problem including the constraints (1.14c)–(1.14d): The main idea of the so-called
update algorithm 2 is to move the objects i with coordinates PðiÞ from the optimized solution
QðiÞ such that they do not overlap any more. This means in particular if object i interacts
with object j�i or with the wall, i.e. jSðiÞ � SðjÞj2 
 2r; j�i or QðiÞ‚Ωad, we set SðiÞ ¼ ðPðiÞ þ
SðiÞÞ=2 and check again for interactions until PðiÞ � SðiÞj j is less than a predefined tolerance δ.
The final configuration satisfying (1.14c)–(1.14d) is denoted by SðiÞ.
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Algorithm 1 Find admissible start solution

Input: Density ρmac, mass m, radius r, # objects N, tolerance �, admissible region Ωad

Output: Solution P containing the coordinates of the object centers

1: Compute a hexagonal grid structure with grid point distance 2r and grid points gi: = (xi, yi)
2: for i = 1: # grid points do
3: if gi ∉Ωad then
4: Delete grid point gi
5: end if
6: end for
7: for i = 1: # remaining grid points do
8: Determine corresponding density value ρi = ρmac(xi, yi)
9: if ρi < � then

10: Delete grid point i
11: else
12: Delete grid point i with probability (1 − ρi)
13: end if
14: end for
15: if N > # remaining grid points then
16: Put grid point with index argmaxi{ρi|gi has been deleted} until N is met
17: else if N < # remaining grid points then
18: Delete grid point with index argmini{ρi|gi not deleted} until N is met
19: end if
20: return Remaining grid points as matrix P corresponding to the placed objects centers

Figure 3 shows a possible evaluation of the update algorithm including a figure for the
macroscopic density that should be reproduced, see Figure 3a, a figure for a possible start
solution computed by algorithm 1, see Figure 3b, a figure for the optimized solution applying

(a) Density distribution (b) Start solution

(c) Optimized solution (d) Final solution

Figure 3. Macroscopic to micro-
scopic representation.
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the MATLAB algorithm lsqnonlin, see Figure 3c, where we directly observe that the non-
overlap condition is injured, and a figure for the final solution after applying the update
algorithm 2, see Figure 3d. Concluding, the latter is a combination of the start and optimized
solution. We observe that in regions, where the density is high, the objects are placed as
dense as possible, whereas in regions, where the density is far from the maximal density,
objects get stuck.

Note that the runtime growths linearly in N for algorithm 1 and the solution of the optimization
problem. The runtime for the update algorithm 2 growths cubically in N. However, the solution of
the optimization problem using MATLAB takes several hours and dominates the performance of
the update algorithm for the test cases we present in Section 4.

Algorithm 2 Update algorithm ensuring the non-overlapping condition

Input: Solution Q of least squares problem, start solution P, admissible region Ωad, tolerance δ

Output: Final solution S ensuring a placement of the objects without overlapping

1: Initialize solution with S = P
2: for k = 1: N do
3: for i = 1: N do
4: interaction = 0
5: Place object i at optimized position: S(i) = Q(i)
6: if sðiÞ‚Ωadthen
7: interaction = 1
8: end if
9: for j = 1: N do

10: if |S(i) − S(j)|2 ≤ 2r, j ≠ i then
11: interaction = 1
12: end if
13: end for
14: if interaction = 1 then
15: if |P (i) − S(i)| < δ then
16: STOP, S(i) = P (i), go back to step 3
17: end if
18: S(i) = (P (i) + S(i))/2 and go back to step 6
19: end if
20: end for
21: end for
22: return Final solution S

5. Numerical results
The application examples in Section 2 are now analyzed from a numerical point of view. For each
scenario, implementation details on the model are given and numerical examples are explained in
detail.

5.1. Results for the material flow model
The numerical results of the switch are investigated for a setting as presented in Figure 2. This
experimental setup has been originally introduced in Göttlich et al. (2014), where the microscopic
and macroscopic material flow models have been validated against real data. The idea is now to
use the same data to test the performance of the switch.
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As described in Section 3, the simulation of the microscopic model is done with a classical
Runge-Kutta method of fourth order which is applied to the discretized microscopic model (3.1).
The discretization of the force terms stated in Section 2.1 is straightforward. The parameters are
characterized by the bottom viscous damping coefficient γb ¼ 0:5, the normal viscous coefficient
γn ¼ 0:1, the viscous damping coefficient γt ¼ 0:16, the normal spring constant kn ¼ 200, the
bottom friction coefficient μb ¼ 0:5, the mass m ¼ 0:01, the radius r ¼ 0:012, the gravitational
constant g ¼ 9:81, the Coulomb friction coefficient μ ¼ 0:17, the time step size dt ¼ 0:005 and time
horizon T ¼ 4. The number of parts is N ¼ 192:

Considering the macroscopic material flow Equations (2.8), we have to evaluate the numerical
fluxes for the static velocity

gðxiþ 1
2;j
Þ ¼ vstatðxiþ 1

2;j
Þ:

and the dynamic velocity, see (2.4),

fðρ; ρki;j; xiþ 1
2;j
Þ ¼ Hðρki;j � ρmaxÞ � IðρÞðxiþ 1

2;j
Þ;

according to (3.3), where the first component of the interaction operator I (cf. (2.6)) is discre-
tized as

Ið1ÞðρÞðxiþ 1
2;j
Þ ¼ �

∑p;qρ
k
p;q � cð1Þi�p;j�qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11muþ 1mu ∑p;qρ
k
p;q � cð1Þi�p;j�q

� �2
1muþ 1mu∑p; qρkp;q � cð2Þi�p;j�q2

r

with

cð1Þp;q ¼
ð
Q
pþ1

2
;q

@x1ηðx� τÞdτ; cð2Þp;q ¼
ð
Q
p;qþ1

2

@x2ηðx� τÞdτ

and Qp;q ¼ x1; p�1
2
; x1; pþ 1

2

h i
� x2; q�1

2
; x2; q þ 1

2

h i
being a grid cell. The discretization of the second

component with respect to the x2-direction is computed analogously. We refer to Göttlich et al.
(2014) for more details. We choose a Gaussian convolution kernel η of type

ηðuÞ ¼ 1

σ
ffiffiffiffiffiffi
2π

p � exp � 1
2σ

juj2
� �

; u 2 R
2:

As grid sizes of the macroscopic model, we have Δt ¼ 0:0025 and Δx1 ¼ Δx2 ¼ 0:008. The final
time horizon is again T ¼ 4 and the switch is evaluated at time tswitch ¼ 1:

To validate the results of the switching procedure from micro to macro, the evolution of parts
including the switch of the system is compared to real data, cf. (Göttlich et al., 2014). We measure
how many mass or parts leave the system behind the obstacle, i.e. the outflow over time. The
corresponding diagram is shown in Figure 4.

The maximal outflow error, meaning the maximal difference of the outflow of the model
including the switch and the real data outflow, is about 6%. The maximal outflow error of the
macroscopic model without any switch is approximately 5% (see (Göttlich et al., 2014)), and thus
indicates that the switch performs quite well.

The reverse situation, i.e. from macro to micro, is depicted in Figure 5. Here, the left picture
shows the particle distribution resulting from the update algorithm 2. Even if the switch from the
macroscopic to the microscopic representation is the more difficult direction, the maximal outflow
error is now smaller compared to Figure 4. This is due to the higher accuracy of the microscopic
model. The maximal outflow error, again compared to the real data outflow, is about 3:8%.
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5.2. Results for the pedestrian flow model
We consider an experimental setting with a room which has to be evacuated. Figure 6a shows the
room geometry as well as the static velocity consisting of the desired velocity v0ðxÞ and the wall
forces ∑

W
FWðxÞ, see Figure 6b.

For the numerical implementation, almost the same parameters as in Helbing et al. (2000) are
used. We choose the number of pedestrians as N ¼ 81, the mass m ¼ 80, the radius r ¼ 0:25, the

desired velocity v0
�� �� ¼ 1, the acceleration time τ ¼ 0:5, the constants A ¼ 2000;B ¼ 0:08 and the

parameter k ¼ 1:2 � 105. Since during the derivation, the tangential forces are neglected, we set
κ ¼ 0 to directly compare the microscopic and macroscopic results. The final time horizon is T ¼ 50

and the time step to solve the Runge-Kutta scheme is dt ¼ 10�4.

The discretization of the force terms stated in Section 2.2 is straightforward, see (3.1) such that a
classical Runge-Kutta method of fourth order is used again.
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(a) Static velocity field (b) Velocity field induced by the walls

Figure 6. Evacuation of a room
with one exit.
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Corresponding to the discretization of the macroscopic Equation (3.4), the discretized version of
the flux terms (3.3) is

f ð1Þðρ; ρki; j; xiþ1
2; j
Þ ¼ ∑

p;q
ρkp;q � cð1Þi�p; j�q

with

cð1Þp;q ¼
ð
Q
p þ 1

2
;q

A exp
2r� k xi þ 1

2; j
� y k

B

 !
þ k � hð2r� k xi þ 1

2; j
� y kÞ

xi þ 1
2; j

� y

k xi þ 1
2; j

� y kdy

and Qp;q ¼ x1; p�1
2
; x1; pþ 1

2

h i
� x2;q�1

2
; x2; qþ 1

2

h i
being a grid cell. The function h is defined as before.

For the external force term, it is

gð1Þðxiþ 1
2; j
Þ ¼ v0;ð1Þðxiþ 1

2; j
Þ þ 1

mλ
∑
W
Fð1ÞW ðxiþ 1

2; j
Þ

with

FWðxiþ 1
2; j
Þ ¼ A exp

r � dðxiþ 1
2; j
Þ

B

 !
þ k � hðr � dðxiþ 1

2; j
ÞÞ

 !
nW

with dðxiþ 1
2; j
Þ the distance of point xiþ 1

2; j
to wall W.

We choose nearly the same parameters as in the microscopic case, i.e. only the parameters A ¼
1; B ¼ 0:1 and k ¼ 27 have to be varied, to match the results of the pure microscopic simulation. As
grid sizes, we have Δx1 ¼ Δx2 ¼ 0:1 and Δt ¼ 0:001.

Similar to the switch for the material flow model, a switch is implemented for the pedestrian
model at time tswitch ¼ 10: To compare the qualitative behavior of the models, the outflow at the
door is measured. Since there is no real data available this time, the outflow of the model with
switch is compared to the outflow without any switch, contrary to the material flow case.

Figure 7 shows the density distribution from the microscopic to macroscopic representation and
the outflow behavior over time. As we can observe, the outflow of the switched model is close to
the simulation results obtained from the microscopic simulation only. The maximal outflow error is
about 5:3%.

The results for the macro to micro switch can be found in Figure 8. Considering the outflow
diagram, the results of the switched model are compared to the macroscopic simulation. The
maximal outflow error is about 3:2%, which is within an acceptable range.
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5.3. Computation times
Finally, we present the computation times for our switch implementation. All computations have
been performed on a PC equipped with 16 GB Ram, Intel(R) Core(TM) i5-4690 CPU@3.50 GHz. Tables
1 and 2 show the computation times for both switching directions (micro to macro and vice versa)
and the two applications material and pedestrian flow. The same discretizations as introduced
formerly are used. However, we remark that in the macro to micro direction the radius needs to be
adapted in order to match the total mass (1.10).

The times for the three steps in the macro to micro direction are listed separately. As we can see,
the most time-consuming part is the solution of the optimization problem (1.14) which takes
several minutes up to almost one hour for N ¼ 200 objects, whereas the computation of the start
solution (algorithm 1) as well as the update algorithm 2 takes only a couple of seconds.

The total computation time increases exponentially with the number of objects. Nevertheless, it
might happen that an optimum is found quite fast, e.g. for N ¼ 150 pedestrians in Table 2. Note
that the total computation times differ due to the different discretizations and geometries for the
material and pedestrian flow models, cf. discussions in sub sections 4.1 and 4.2.

The computation time of the microscopic model (without any switch) increases quadratically in
the number of objects N (Göttlich et al., 2014). Therefore, the simulation of the macroscopic model
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Figure 8. Switch from macro to
micro for the pedestrian model.

Table 1. Computing times [sec] for the material flow model

N Micro ! Macro Macro ! Micro
Start solution Optimization Update alg.

P
50 0.0077 0.19 25.84 0.17 26.21

100 0.0076 0.34 135.24 0.61 136.19

150 0.0075 0.48 274.08 1.48 276.05

200 0.0074 0.81 727.16 3.03 731.00

Table 2. Computing times [sec] for the pedestrian model

N Micro ! Macro Macro ! Micro
Start solution Optimization Update alg.

P
50 0.0109 1.37 57.17 0.05 58.59

100 0.0098 1.10 919.42 0.03 920.56

150 0.0163 1.21 255.69 0.07 256.97

200 0.0153 1.34 2939.13 0.12 2940.60
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provides a less costly alternative and good results. A switch to the microscopic representation is for
instance useful if the user is interested in a better resolution of the underlying dynamics, even if
the optimization step takes some time.

6. Conclusion
We have presented a switching method that allows to change dynamics from a microscopic to a
macroscopic scale and vice versa. The method has been applied to material and pedestrian flow
models to demonstrate the good numerical performance. In particular, the comparison of the
material flow switch with real data shows quite promising results. Further research might include
automatized switching decisions dewpending on suitable measures or discretizations (Agarwal &
El-Sayed, 2018) as well as stochastic perturbations (Zhang et al., 2017).
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