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Abstract

The increasing variety of high complexity products presents a challenge in ac-

quiring detailed demand forecasts. Against this backdrop, a convex quadratic

parameter dependent forecast model is revisited, which calculates a prognosis

for structural parts based on historical order data. The parameter dependency

inspires a bilevel problem with convex objective function, that allows for the cal-

culation of optimal parameter settings in the forecast model. The bilevel prob-

lem can be formulated as a mathematical problem with equilibrium constraints

(MPEC), which has a convex objective function and linear constraints.

Several new enumerative methods are presented, that find stationary points or

global optima for this problem class. An algorithmic concept shows a recursive

pattern, which finds global optima of a convex objective function on a general

non-convex set defined by a union of polytopes. Inspired by these concepts the

thesis investigates two implementations for MPECs, a search algorithm and a

hybrid algorithm. They incorporate and extend the techniques of the CASET

and BBASET algorithm by Júdice et al. [35, 34]. In this context, a new approach

is presented that solves the general linear complementarity problem (GLCP), that

arises at new nodes of the BBASET algorithm. This approach uses and extends

an algorithm of Hu et al. [24], that originally solves MPECs with linear objective

function. The new approach works for arbitrary constraint matrices.

Several techniques are investigated for the new enumerative methods, such as

cut generation by linear problems (based on the results of Balas et al. [3]),

as well as different branching strategies [43, 44], lower bound calculation with

the Lagrange function, a new relaxation scheme for the complementary variables

in the search method, and specialized constraints for the bilevel MPEC of the

forecast model. The new methods utilize a solver for convex programs in their

core and are subject to extensive numerical testing. Results are generated for the

demand-forecast-bilevel-problem and instances from a collection of test problems

[70].

The results show that these methods work reliably with the given instances and

can find A-stationary points or local optima of high quality with good perfor-

mance. The global solution method is compared to a commercial MIQP-solver

and outperforms it on two larger instances.
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Zusammenfassung

Die hohe Variantenvielfalt komplexer Serienprodukte macht es zunehmend schwieriger

detailerte Bedarfsprognosen zu erstellen. Hierzu wird eine Prognosemethode

vorgestellt und untersucht, welche eine Teilebedarfsermittlung auf der Basis his-

torischer Auftragsdaten durchführt und auf einem parameterabhängigen kon-

vexen quadratisches Problem basiert. Das Modell bildet den Ausgangspunkt

für ein Bilevel-Problem mit konvexer Zielfunktion, welches zur Ermittlung eines

optimalen Parametervektors dient. Dieses Bilevel-Problem kann als mathema-

tisches Problem mit Gleichgewichtsrestriktionen (MPEC) formuliert werden, die

Zielfunktion des MPECs ist konvex, die Nebenbedingungen sind linear.

Es werden mehrere neue enumerative Methoden präsentiert, welche stationäre

Punkte oder globale Optima für diese Problemklasse liefern. Grundlegend wird

ein algorithmisches Konzept vorgestellt, welches auf einer nicht-konvexen Menge,

die als Vereinigung von Polytopen definiert ist, durch rekursive Aufrufe ein glob-

ales Optimum einer konvexen Zielfunktion findet. Dieses Konzept inspiriert zwei

Algorithm für den Fall der vorliegenden MPECs, einen Such-Algorithmus und

einen hybriden Algorithmus. Diese Algorithmen verwenden und erweitern die

Resultate des CASET und BBASET Algorithmus von Júdice et al. [35, 34] und

hierbei wird außerdem ein neuer Ansatz präsentiert, welcher die allgemeinen lin-

earen Komplementaritätsprobleme (GLCPs) löst, die im BBASET-Algorithmus

bei der Generation neuer Knoten entstehen. Der Ansatz basiert auf einem Algo-

rithmus von Hu et al. [24], welcher ursprünglich MPECs mit linearer Zielfunktion

löst und in diesem Zusammenhang adaptiert und erweitert wird. Die Methodik

funktioniert mit beliebigen Systemen linearer Nebenbedingungen.

Für die neuen enumerativen Methoden werden außerdem zusätzliche Techniken

untersucht, wie zum Beispiel die Erzeugung von Schnittebenen durch die Lösung

linearer Probleme (basierend auf den Untersuchungen von Balas et al. [3]),

sowie verschiedene Verzweigungsstrategien [43, 44], die Berechnung von Unter-

schranken mit der Lagrange-Funktion, ein neues Relaxierungs-Schema für die

komplementären Variablen (welches im Such-Algorithmus zum Einsatz kommt)

und die Generation spezieller Nebenbedingungen für das Bilevel-MPEC des Prog-

nose Problems. Die neuen Methoden arbeiten im Kern mit einem Löser für

konvexe Probleme und wurden ausgiebig numerisch getestet, sowohl mit den In-

stanzen des Bilevel-Prognose-Problems als auch mit Instanzen die in einer Samm-
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lung von Testproblemen zu finden sind [70].

Die Ergebnisse zeigen, dass die Methoden die vorliegenden Instanzen zuverlässig

bearbeiten können und mit guter Performance A-stationäre Punkte oder lokale

Optima mit niedrigem Zielfunktionswert liefern. Die globalen Methoden werden

bei den Tests mit einem kommerziellen MIQP-Löser verglichen und weisen bei

zwei größeren Instanzen eine bessere Performance auf.
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1. Introduction

In 2016 the Organization of Motor Vehicle Manufacturers (OICA) reported a pro-

duction of over 94 million vehicles world wide, of which 60 million were passenger

cars [73].

“Building 60 million vehicles requires the employment of about 9 million

people directly in making the vehicles and the parts that go into them.

This is over 5 percent of the world’s total manufacturing employment.”

– OICA [73]

As one of the main contributors to the global economy, the automotive industry

has been widely affected by the advances in digital technologies and the infor-

mation revolution. Concepts in mobility and transportation are continuously

evolving with the rise of new inventions. But it is not only the manufactured ve-

hicle itself that has been influenced by such developments. As customer demands

adjust to a world of e-commerce and digital retail, the area of product customiza-

tion becomes more and more important [9]. In the context of a make-to-order

manufacturing process, this leads to demanding challenges in terms of marketing

and sales [38, 50, 67]. Against this backdrop, the availability of detailed demand

forecasts has been shown to be of vital importance.

This research was inspired by a mathematical model for structural part demand

forecasts, and its basis was provided by one of the global players in the premium

automotive sector, the Mercedes-Benz R© division of Daimler AG. The mathemati-

cal model is multicriterial [16] as it merges the information of historical customer

orders and future demand forecasts. The solution to this problem is always

uniquely determined, but it depends on a specific set of parameters.

The primary motivation behind this work is to investigate parameter settings of

the forecast model that provide optimal results in a number of training scenar-

1



1.1. Introduction 2

ios. The question leads to a multilayered problem structure, which can then be

formulated as a mathematical problem with equilibrium constraints (MPEC).

MPECs

MPECs have been an active field of research for several years [68, 74, 63, 33,

14]. Their origin in mathematical optimization goes back to researchers such as

Cournot, Stackelberg and Nash, and they have been subject to research by many

authors to this day.

Stackelberg introduces a problem for a market situation where two participants

interact by deciding on individual strategies [69]. They are denoted as the leader

and the follower. In their economical environment they supply the same type of

product, forming the constellation of a duopoly. The key aspect in this model

is that the leader can anticipate the decision of the follower, which is optimal in

the follower’s corresponding perspective. This is an extension to the model of

Cournot, which was introduced earlier and provides a foundation for the work of

Stackelberg. In Cournot’s model both participants are equal and their decisions

are both based on the best-answer principle. Stackelberg’s model entitles the

leader to optimize his own profit by selecting a strategy according to the follower’s

anticipated decision, and leads to a multilevel situation which is sometimes called

a Stackelberg game.

As a breakthrough in Economics, Nash’s research on noncooperative games fol-

lowed the results of Stackelberg’s publication. The Nash-Cournot equilibrium

[58] denotes the situation where among several players that compete simultane-

ously, none of them can increase their profit by a change of strategy under the

assumption that all the other players will keep their selected strategy at the same

time.

Hierarchical structures, as in the Stackelberg game, are the entry point to bilevel

problems [15, 4]. In terms of mathematical optimization, this leads to the question

of characterizing optimal points on the follower’s level. Common principles such

as the Karush-Kuhn-Tucker conditions can be used under certain assumptions

and lead to the element of equilibrium constraints.

A general equilibrium constraint for two real valued functions G and H is satisfied
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at a point x if

Gpxq ě 0, Hpxq ě 0, GpxqHpxq “ 0. (1.1)

Within the scope of this work a number of solution techniques that are related

to MPECs with linear complementarity constraints are investigated. The main

achievement is the development of a hybrid solution algorithm and its application.

Numerical experiments are conducted essentially with the data instances of the

automotive industrial application, but also with data instances that are publicly

available.

Structure of this Work

The final hybrid algorithm is a framework that connects different methodologies

in a branch-and-bound environment. The theory behind the individual compo-

nents will be introduced successively. The hybrid algorithm will be presented in

its entirety in chapter 7.

In chapter 2 a range of common concepts that help to characterize stationary

conditions for the feasible points of an MPEC is introduced and investigated

[74, 49, 20, 62]. Difficulties for common solution algorithms are mentioned. These

are due to the lack of stationary conditions, such as the Mangasarian-Fromovitz

constraint qualification [22, 59] in MPECs. In this context the chapter will also

develop proofs of two theorems that are known from related literature on the

matter of B-stationarity, strong stationarity and the MPEC linear constraint

qualification.

This is followed by the introduction of the parameter dependent demand forecast

model with application to high complexity products, the so called reweighting

problem. The model is a quadratic problem whose objective function matrix is

positive semi-definite [59]. A new bilevel problem arises when the forecast model

parameters are tuned with a data scenario that simulates a planning situation

and evaluates the outcome. The bilevel problem is formulated as an MPEC

whose feasible set is analyzed in its combinatorial structure. An investigation on

the solution map of the lower level problem allows the possibility to prove the

connectedness of the feasible area of the MPEC [47, 48, 13, 42].

In chapter 4, the CASET algorithm [35] that finds a strongly stationary point in
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Stationary Concepts and Optimality Conditions for MPECs
Chapter 2

CASET and BBASET
Chapter 4

Feasibility Approach
Chapter 5

Lagrange Lower

Bounds
Chapter 6

Hybrid Algorithm
Chapter 7

- Search Method

- Global Solution Method

Computational Results
Chapter 8

The Reweighting Bilevel Problem

(Automotive Use Case)
Chapter 3

(+ MAC-MPEC

QPEC instances)

Figure 1.1.: Chapter Overview

MPECs with linear complementarity constraints is reviewed. The method can be

extended to find globally optimal solutions in the case of a convex objective func-

tion with a branch-and-bound algorithm [34]. The chapter develops an extension

to this approach for A-stationary points and shows how the CASET algorithm

can be performed by solving a series of convex programs.

Another module of the hybrid algorithm is presented in chapter 5. An algo-

rithm is reviewed that solves MPECs with linear objective function and linear

complementarity constraints by a 0-1 integer based cut generation approach [24].

The method is analyzed and extended to a new adapted version that determines

feasible areas in a general MPEC with linear complementarity constraints.

Standard lower bounds in a branch-and-bound algorithm for MPECs, which are

calculated with a relaxation of the complementarity constraints, can be inefficient

[34, 14, 65, 28, 27]. Chapter 6 establishes a problem that yields a lower bound

generated by the principles of weak duality. The resulting problem is also an

MPEC but avoids some of the complexity by its absence of non-complementarity

constraints. Under certain assumptions it holds that the objective function in

this problem is convex. Furthermore a theorem is presented that characterizes

unbounded directions of a convex function in the context of convex analysis [61].
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Chapter 7 presents the new hybrid algorithm that uses a combination of the previ-

ously presented elements and investigates their interaction. The hybrid algorithm

focuses on the solution of convex subproblems, and is divided into two stages.

The first stage specializes in finding points with low objective value in an MPEC

with convex objective function and linear complementarity constraints. For this

search algorithm an abstract formulation is given that presents a geometrical

generalization of the principle of the BBASET algorithm for feasible sets defined

by a union of polytopes. The second stage specializes in proving global optimal-

ity. Techniques are included that calculate constraints for the complementary

variables and have proven to be effective in practice.

The last chapter concludes the investigation by a large number of computa-

tional experiments. The commercial solvers Cplex R© and Gurobi R© are imple-

mented in a core unit for the solution of the various convex subproblems. A

highly adjustable branch-and-bound framework with different parameter settings

is wrapped around this core unit. The results of the hybrid solver are compared

to the Cplex MIQP solver for instances of the reweighting bilevel MPEC, and

are also compared to benchmarks of a related article for a number of instances

that are publicly available [29]. They demonstrate that the hybrid algorithm

shows viable performance in some instances. The subroutine that searches for a

stationary point with low objective value performs well on the publicly available

MPEC data. The solution of the bilevel problem in the training scenarios of the

demand forecast model yields an increase of an average of 18% for the quality of

the forecast.



2. Stationary Concepts and Solution Methods

for MPECs

We begin by introducing common stationary concepts and optimality conditions

for general optimization problems, followed by specialized versions for the case of

mathematical problems with equilibrium constraints (MPECs). The last section

presents a list of references for a number of selected articles on the topic of solution

methods and related results.

2.1. Common Stationary Conditions and Constraint

Qualifications

The most basic concepts of stationary conditions and constraint qualifications

from general optimization are introduced briefly. One of the most valuable as-

pects is the existence of multipliers at local optimal points, and in return the

characterization of stationary points by the existence of multipliers. This princi-

ple will be extended to the concept of MPECs in the next section.

A point is locally optimal if no descent is possible in the feasible part of an

environment around this point, which is arbitrarily small. The characterization

of feasible directions, which are considered around a feasible point, is achieved

by introducing the tangent cone.

2.1 Definition (Tangent Cone, [22] def. 2.28, def. 2.31, [59] 12.2) The

tangent cone of X at x P X is defined by

TXpxq :“ td | DpxkqkPN Ď X, DptkqkPN P R, tk Ó 0 : xk Ñ x and pxk ´ xq{tk Ñ du.

(2.1)

If X is defined by continuously differentiable functions gi and hj as

X “ tx P Rn
| gipxq ď 0, i “ 1, . . . ,m, and hjpxq “ 0, j “ 1, . . . , ku, (2.2)

6
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then the linearized tangent cone at x P X is given by

Tlinpxq :“ td | ∇gipxqTd ď 0 @i P Ipxq and ∇hjpxqTd “ 0u. (2.3)

We notice that the definition of the linearized tangent cone is possibly easier

to manage than the general definition. Since problems with linear constraints

are of major importance in optimization, it is often adequate to work with the

linearized tangent cone. The equality of both tangent cones is implied by so

called constraint qualifications.

We note that T pxq Ď Tlinpxq always holds [22, section 2.2]. In this section, if not

stated otherwise, let X be defined as in (2.2).

2.2 Definition (Abadie-CQ, [22] def. 2.33) The Abadie constraint qualifi-

cation (Abadie-CQ) is satisfied at x P X if

T pxq “ Tlinpxq. (2.4)

2.3 Definition (KKT-point, [22] def. 2.35) Let f be a continuously differ-

entiable function. A point x˚ is called KKT-point (Karush-Kuhn-Tucker-point)

of the problem

min
x
fpxq

x P X
(2.5)

if it satisfies the KKT-conditions: There exist multipliers λ “ pλg, λhq such that

0 “ ∇fpx˚q `
m
ÿ

i“1

λgi gipx
˚
q `

k
ÿ

j“1

λhj∇hjpx˚q

hpx˚q “ 0

λg ě 0, gpx˚q ď 0, λgTgpx˚q “ 0.

(2.6)

2.1 Theorem (Dual Multiplier Existence, [22] Prop. 2.36)

If x˚ is a local optimum of problem (2.5) where f is continuously differentiable

and the Abadie-CQ holds at x˚ then there exist dual multipliers λ “ pλg, λhq as

in (2.6) and x˚ is a KKT-point.
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Under certain conditions the existence of dual multipliers can be linked back to

the local optimality of the corresponding point. In the case of a convex program

it holds that the KKT-conditions provide a sufficient condition for optimality.

2.4 Definition (Convex Problem, [22] 2.2.4) Problem (2.5) is called con-

vex if f and gi, i “ 1, . . . ,m, are continuously differentiable and convex, and if

hj, j “ 1, . . . , k, are affine linear.

It holds that every locally optimal point of a convex problem is also globally

optimal [22, lemma 2.43].

2.2 Theorem ([22] Prop. 2.46)

If x˚ is a KKT-point of (2.5) and (2.5) is convex, then x˚ is optimal.

We recall that the existence of KKT-multipliers requires the Abadie-CQ. There

are two common constraint qualifications that imply the Abadie-CQ and are more

applicable.

Let Ipxq be the set of indices of the active inequality constraints

Ipxq “ ti | gipxq “ 0u. (2.7)

2.5 Definition (MFCQ, [22] def. 2.38) The Mangasarian-Fromovitz constraint

qualification (MFCQ) is satisfied at x P X if

1. the gradients ∇hjpxq for j “ 1, . . . , k are linearly independent and

2. there exists d P Rn such that ∇gipxqTd ă 0, @i P Ipxq and ∇hjpxqTd “
0, @j “ 1, . . . , k.

The MFCQ ensures that the feasible set is nonempty which naturally is an im-

portant aspect of interior point algorithms.

2.6 Definition (LICQ, [22] def. 2.40) The linear independence constraint

qualification (LICQ) is satisfied at x P X if the active constraint gradients ∇gipxq, i P
Ipxq and ∇hjpxq are linearly independent.

2.3 Theorem ([22] prop. 2.39, 2.41)

The following relations between the constraint qualifications hold:

pLICQq ñ pMFCQq ñ pAbadie´ CQq (2.8)



2.2. Stationary Concepts for MPECs 9

2.2. Stationary Concepts for MPECs

We introduce the general mathematical problem with equilibrium constraints

(MPEC)

min fpxq

gpxq ď 0, hpxq “ 0

Gpxq ě 0, Hpxq ě 0, GpxqTHpxq “ 0

(2.9)

where f : Rn Ñ R, g : Rn Ñ Rk, h : Rn Ñ Rl, G, H : Rn Ñ Rm are differentiable

functions.

For the characterization of a local optimal solution the concept of B-stationarity

is introduced. Varying definitions in different articles can be found (as shown

below), for further considerations the following definition is used:

2.7 Definition (B-stationary, [74] def. 2.2) A feasible point x of an MPEC

(2.9) is said to be B-stationary (Boulingard-stationary) if

∇fpxqTd ě 0 @d P T pxq. (2.10)

Remark 2.1

1. If f is continuously differentiable, then every local optimum is B-stationary

[22, lemma 2.30].

2. The opposite of point 1 is generally not true which can be seen by consid-

ering a local maximum x with ∇fpxq “ 0 (in a minimization problem).

3. The points 1 and 2 still hold if no complementarity constraints are present

(m “ 0).

Remark 2.2 Other definitions of B-stationarity found in related articles use the

linearizations of the constraint functions [20, def. 3.2][62, def. 2.1]. Let x be a

feasible point of the MPEC (2.9), x is denoted B-stationary in definition 2.1 of

[62], if d “ 0 is optimal in
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min
d
∇fpxqTd

gpxq `∇gpxqTd ď 0

hpxq `∇hpxqTd “ 0

0 ď Gpxq `∇GpxqTd K Hpxq `∇HpxqTd ě 0.

(2.11)

(Where the operator xKy for two vectors x and y indicates that the scalar product

xTy “ 0.)

However, with this definition the following example is mentioned: Let the corre-

sponding functions f , G and H of the MPEC (2.9) and system (2.11) be defined

as in

min fpx, yq :“ px´ 1q2 ` py ´ 1q2

0 ď Gpx, yq :“ x K Hpx, yq :“ y ě 0.
(2.12)

We note that x “ p1, 0q is a local optimum. And as we are going to see, it is also

strongly stationary (def. 2.10). But d̂ “ p´1, 1q is feasible in (2.11) and indicates

that the objective value is negative.

∇fp1, 0qT d̂ “ p0,´2qp´1, 1qT “ ´2 (2.13)

It follows that x is not B-stationary in the sense of (2.11) which might not have

been the intention of the authors of [62]. An e-mail concerning this topic remained

unanswered.

A more suitable way to introduce B-stationarity with linearized constraint func-

tions is the following condition

0 “ min∇fpxqTd
d P T linMPECpxq

(2.14)

where d lies in the MPEC linearized tangent cone which will be introduced next

(def. 2.8).

For this and for many further aspects, we introduce the following index sets for

any feasible point x of the MPEC (2.9):
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Ig :“ ti | gipxq “ 0, i P t1, . . . , kuu

I`0 :“ ti | Gipxq ą 0, Hipxq “ 0, i P t1, . . . ,muu

I0` :“ ti | Gipxq “ 0, Hipxq ą 0, i P t1, . . . ,muu

I00 :“ ti | Gipxq “ 0, Hipxq “ 0, i P t1, . . . ,muu.

(2.15)

The definitions depend on the specific point x and are defined in this sense if no

further argument is present. Now we introduce the MPEC version of the Abadie-

CQ with a definition of the linearized tangent cone specialized for MPECs.

2.8 Definition (MPEC Abadie-CQ, [74] def. 3.1) Let x be a feasible point

for the MPEC (2.9). The MPEC-Abadie-CQ is satisfied at x if

T pxq “ T linMPECpxq (2.16)

where
T linMPEC :“ td P Rn such that:

∇gipxqTd ď 0, @i P Ig

∇hipxqTd “ 0, i “ 1, . . . , l

∇Gipxq
Td “ 0, @i P I0`

∇Hipxq
Td “ 0, @i P I`0

∇Gipxq
Td ě 0, @i P I00

∇Hipxq
Td ě 0, @i P I00

p∇Gipxq
Tdqp∇Hipxq

Tdq “ 0, @i P I00u.

(2.17)

Remark 2.3

• The definition of B-stationarity (def. 2.7) is equivalent to the alternative

definition of (2.14) if we assume that the MPEC-Abadie-CQ holds.

• It always holds that T pxq Ď T linMPECpxq [74].

• The difference between the MPEC linearized tangent cone T linMPEC and the

general linearized tangent cone T lin at a point x of the MPEC (2.9) is the

last block of constraints

p∇Gipxq
Tdqp∇Hipxq

Tdq “ 0, @i P I00. (2.18)
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Thus the MPEC version of the linearized tangent cone is more restrictive

than the general version.

Working with the tangent cone is often impractical. Other stationary concepts

use formulations with dual multipliers in the same fashion as the KKT-conditions.

The following definitions are closely related to each other. It is, as Leyffer and

Munson wrote in [49], “the alphabet soup of MPEC stationarity”.

2.9 Definition (W-stationary, [49] def. 2.1, [74] def. 2.3) A feasible point

x of the MPEC (2.9) is said to be W-stationary (weakly stationary) if there exist

multipliers λ “ pλg, λh, λG, λHq P Rk`l`2m, such that:

0 “ ∇fpxq `
ÿ

iPIg

λgi∇gipxq `
l
ÿ

i“1

λhi∇hipxq ´
m
ÿ

i“1

pλGi ∇Gipxq ` λ
H
i ∇Hipxqq

λgIg ě 0, λGI`0
“ 0, λHI0` “ 0.

(2.19)

The definition of W-stationarity is equivalent to the KKT-conditions of the so

called tightened MPEC (TMPEC) at x:

min
x1

fpx1q

gpx1q ď 0, hpx1q “ 0

GI0`YI00px
1
q “ 0, HI`0YI00px

1
q “ 0.

(2.20)

We recall that the sets I`0, I0` and I00 in (2.15) depend on x.

2.10 Definition (C-, A-, M-, S-stationary)

([49] def. 2.2, [74] def. 2.4 - 2.7, [20] def. 3.3)

Let x be weakly stationary and let there exist multipliers as in (2.19):

• x is C-stationary (Clarke-stationary) if λGi λ
H
i ě 0 for all i P I00.

• x is A-stationary (alternatively stationary) if λGi ě 0 or λHi ě 0 for all

i P I00.

• x is M-stationary (Mordukhovich-stationary) if either λGi ą 0 or λHi ą 0 or

λGi λ
H
i “ 0 for all i P I00.

• x is S-stationary (strongly stationary) if λGi ě 0 and λHi ě 0 for all i P I00.
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The stationary concepts satisfy the following chains of inclusion [74, 49]:

pS ´ Stationaryq

ó

pM ´ Stationaryq

ó ó

pA´ Stationaryq pC ´ Stationaryq

ó ó

pW ´ Stationaryq

(2.21)

Example 2.1 The different concepts of stationarity are illustrated on an MPEC

with a single constraint for two non-negative complementary variables.

min
w,ζPR

fpw, ζq

w, ζ ě 0

wζ “ 0

(2.22)

The index sets at p0, 0q are

I`0 “ I0` “ H, I00 “ t1u. (2.23)

Figure 2.1 illustrates the possible directions of the negative gradient ´∇fp0, 0q
that correspond to the individual MPEC stationary concepts. This means that if

the negative gradient lies in the indicated set of directions (blue) then the corre-

sponding stationary definition is satisfied at p0, 0q.

2.4 Theorem

Let x be a feasible point of the MPEC (2.9) and assume that the MPEC-Abadie-

CQ is satisfied at x.

1. If x is strongly stationary then x is B-stationary [74].

2. If f , g, h, G and H are continuously differentiable and x is locally optimal

then x is M-stationary [74].

3. A B-stationary point is not necessarily strongly stationary.
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Figure 2.1.: MPEC Stationary Concepts (Example 2.1)

Proof 1) Since the MPEC-Abadie-CQ is satisfied at x, we can use (2.14) to

characterize B-stationarity: d “ 0 solves

min∇fpxqTd
d P T linMPECpxq.

(2.24)

By the definition of a strongly stationary point (def. 2.10) it follows that there

exist multipliers λ as in (2.19) with λGi ě 0 and λHi ě 0 for all i P I00. With

d P T linMPEC the following three cases may appear:

1. If i P I`0 it follows that ∇Hipxq
Td “ 0 and from (2.19) λGi “ 0.

2. If i P I0` it follows that ∇Gipxq
Td “ 0 and from (2.19) λHi “ 0.

3. If i P I00 it follows that ∇Gipxq
Td ě 0 and ∇Hipxq

Td ě 0 and from strong

stationarity that λGi , λ
H
i ě 0.

Thus for any element d P T linMPECpxq it follows that

´∇fpxqTd “ p
ÿ

iPIg

λgi∇gipxq `
l
ÿ

i“1

λhi∇hipxq ´
m
ÿ

i“1

pλGi ∇Gipxq ` λ
H
i Hipxqqq

Td

“
ÿ

iPIg

λgi
loomoon

ě0

∇gipxqTd
loooomoooon

ď0

`

l
ÿ

i“1

λhi ∇hipxqTd
loooomoooon

“0

´
ÿ

iPI`0

p λGi
loomoon

“0

∇Gipxq
Td` λHi ∇Hipxq

Td
loooomoooon

“0

q

´
ÿ

iPI0`

pλGi ∇Gipxq
Td

loooomoooon

“0

` λHi
loomoon

“0

∇Hipxq
Tdq

´
ÿ

iPI00

p λGi
loomoon

ě0

∇Gipxq
Td

loooomoooon

ě0

` λHi
loomoon

ě0

∇Hipxq
Td

loooomoooon

ě0

q ď 0.

(2.25)
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This shows that x is B-stationary.

2) The proof for this point is not presented in detail here. For more information

the reader is referred to the related article [74] instead. The following is a brief

outline: First it can be shown that for affine linear functions g, h, G andH it holds

that any local solution x is M-stationary. In order to show this, the existence of

Fritz-John type multipliers is utilized. These always exist if the functions of an

optimization problem are continuously differentiable [74, thm. 2.1]. For further

information on Fritz-John multipliers see [22] section 2.2.5. Since the MPEC-

Abadie-CQ is satisfied, the case of affine linear constraint functions is sufficient.

The complete proof can be found in [74] theorem 3.1.

3) The following example shows a B-stationary point that is not strongly sta-

tionary:

min
w,ζPR

´w ´ ζ

wζ “ 0

w, ζ ě 0

pζ ´ wqpζ ` wq “ 0

ζ ´ w ě 0

ζ ` w ě 0

(2.26)

The only feasible point of this system is p0, 0q which is obviously B-stationary.

Regarding the strong stationary condition, this would require positive multipliers

λ “ pλ1, λ2, λ3, λ4q ě 0 such that

0 “

˜

´1

´1

¸

´ λ1

˜

1

0

¸

´ λ2

˜

0

1

¸

´ λ3

˜

´1

1

¸

´ λ4

˜

1

1

¸

. (2.27)

The second of both components reveals that this equation cannot be satisfied for

λ ě 0 and thus p0, 0q is not strongly stationary. �

From point 3 of theorem 2.4 we see that the strong stationary condition is more

restrictive than what is needed for local optimality. On the other hand all the

weaker stationary concepts (W-, A-, C- and M-stationary) allow first order de-

scent directions. This can be seen with the following example [49, 2.7]:
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minpw ´ 1q2 ` ζ3
` ζ2 subject to 0 ď w K ζ ě 0. (2.28)

The point p0, 0q is A- and M-stationary, but moving along the x-axis provides a

feasible descent direction.

The following condition allows to achieve equality of B- and strong stationarity

under the MPEC-Abadie-CQ.

2.11 Definition (MPEC-LICQ, [74] def. 2.8, [20] def. 3.1) Let x be a fea-

sible point of the MPEC (2.9). The MPEC-LICQ (MPEC linear independence

constraint qualification) is satisfied at x if the following active constraint gradients

are linearly independent:

t∇gipxq | i P Igu Y t∇hipxq | i “ 1, . . . , lu

Yt∇Gipxq | i P I0` Y I00u Y t∇Hipxq | i P I`0 Y I00u
(2.29)

2.5 Theorem ([20] lem. 4.3)

Let x be a feasible point of the MPEC (2.9) and let the MPEC-Abadie-CQ be

satisfied at x. If the MPEC-LICQ is satisfied at x and x is B-stationary, then x

is also strongly stationary .

Proof From the MPEC-Abadie-CQ and B-stationarity we conclude that (2.14)

holds: d “ 0 solves

min∇fpxqTd
d P T linMPECpxq.

(2.30)

We take a look at the condition

p∇Gipxq
Tdqp∇Hipxq

Tdq “ 0, @i P I00 (2.31)

from the definition of the MPEC linearized tangent cone (2.17). Let I1 and I2 be

a disjunct partitioning of the set I00

I1 Y I2 “ I00

I1 X I2 “ H.
(2.32)
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Let T pI1, I2q Ď T linMPECpxq be the subset of the MPEC linearized tangent cone

where the constraint (2.31) is exchanged for a number of more restrictive linear

constraints:

T pI1, I2q :“ td P Rn such that:

∇gipxqTd ď 0, @i P Ig

∇hipxqTd “ 0, i “ 1, . . . , l

∇Gipxq
Td “ 0, @i P I0`

∇Hipxq
Td “ 0, @i P I`0

∇Gipxq
Td ě 0, @i P I00zI1

∇Hipxq
Td ě 0, @i P I00zI2

∇Gipxq
Td “ 0, @i P I1

∇Hipxq
Td “ 0, @i P I2u.

(2.33)

It follows that for each such partitioning pI1, I2q the vector d “ 0 is always an

optimal solution of the problem

min∇fpxqTd
d P T pI1, I2q.

(2.34)

This is due to the fact that d “ 0 is always feasible and by the B-stationary

condition no solution with lower objective value can exist.

We notice that problem (2.34) is a pure LP, thus we can conclude that the KKT-

conditions are satisfied at d “ 0 and the following multipliers λ exist

0 “ ∇fpxq `
ÿ

iPIg

λgi∇gipxq `
l
ÿ

i“1

λhi∇hipxq ´
m
ÿ

i“1

pλGi ∇Gipxq ` λ
H
i ∇Hipxqq

λgIg ě 0

(2.35)

but with the following restrictions, depending on pI1, I2q

• for i P I2 there are active inequality constraints ∇Gipxq
Td ě 0 in the

definition of T pI1, I2q. It follows that λGI2 ě 0;
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• for i P I1 there are active inequality constraints ∇Hipxq
Td ě 0 in the

definition of T pI1, I2q. It follows that λHI1 ě 0;

• for i P I`0 there are no constraints present for ∇Gipxq
Td in T pI1, I2q thus

it follows that λGI`0
“ 0;

• for i P I0` there are no constraints present for ∇Hipxq
Td in T pI1, I2q thus

it follows that λHI0` “ 0.

With the MPEC-LICQ it follows that the multipliers of (2.35) are unique. Thus

for any partitioning pI1, I2q we will receive the same multipliers.

Since λGI2 ě 0 and λHI1 ě 0 for each partitioning it follows that λG, λH ě 0, @i P I00.

This concludes that the multipliers λ satisfy the requirements of definition 2.10

which shows that x is strongly stationary. �

Similar to the MPEC-LICQ there also exists an MPEC-MFCQ.

2.12 Definition (MPEC-MFCQ, [62] Def. 2.5) The MPEC-MFCQ is sat-

isfied at a feasible point x of the MPEC (2.9) if there exists a non-zero vector

d P Rn such that

∇Gipxq
Td “ 0, @i P I0`

∇Hipxq
Td “ 0, @i P I`0

∇hipxqTd “ 0, i “ 1, . . . , l

∇gipxqTd ą 0, @i P Ig

∇Gipxq
Td ą 0, @i P I00

∇Hipxq
Td ą 0, @i P I00

(2.36)

and the vectors of the following set are linearly independent

t∇Gipxq | i P I0`u Y t∇Hipxq | i P I`0u Y t∇hipxq | i “ 1, . . . , lu. (2.37)

We want to provide an example that explains why solving MPECs poses potential

difficulties. First we note that the standard MFCQ (def. 2.5) does not hold at

any point of the MPEC, since the gradients of the constraints
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Gipxq ě 0, Hipxq ě 0, GipxqHipxq ď 0, @i “ 1, . . . ,m (2.38)

at a feasible point x are always linearly dependent with some positive multipliers.

But for various applications the MFCQ provides existence of KKT multipliers,

since it implies the Abadie-CQ. This is crucial for many non-linear solution meth-

ods.

The end of this section presents a helpful result which yields that an M-stationary

point is locally optimal under certain conditions without requiring the MPEC-

Abadie-CQ. For this we need two weaker forms of convexity:

2.13 Definition (Pseudo- and Quasiconvex, [52])

A differentiable function f : X Ñ R is called pseudoconvex if for x, y P X

∇fpxqpy ´ xq ě 0 ñ fpyq ě fpxq. (2.39)

A differentiable function f is called quasiconvex if

fpλx` p1´ λqyq ď maxtfpxq, fpyqu, @x, y P X. (2.40)

2.6 Theorem (Sufficient M-stationary condition, [74] Thm. 2.3)

Let x be an M-stationary point of the MPEC (2.9), i.e. there exist multipliers

such that

0 “ ∇fpxq `
ÿ

iPIg

λgi∇gipxq `
l
ÿ

i“1

λhi∇hipxq ´
m
ÿ

i“1

pλGi ∇Gipxq ` λ
H
i ∇Hipxqq

λgIg ě 0, λGI`0
“ 0, λHI0` “ 0

either λGi ą 0, λHi ą 0 or λGi λ
H
i “ 0, @i P I00.

(2.41)
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Let the following index sets be defined as

J` :“ ti | λhi ą 0u, J´ :“ ti | λhi ă 0u,

I`00 :“ ti P I00 | λ
G
i ą 0, λHi ą 0u,

I`00G :“ ti P I00 | λ
G
i “ 0, λHi ą 0u, I´00G :“ ti P I00 | λ

G
i “ 0, λHi ă 0u,

I`00H :“ ti P I00 | λ
G
i ą 0, λHi “ 0u, I´00H :“ ti P I00 | λ

G
i ă 0, λHi “ 0u,

I`0` :“ ti P I0` | λ
G
i ą 0u, I´0` :“ ti P I0` | λ

G
i ă 0u,

I``0 :“ ti P I`0 | λ
H
i ą 0u, I´`0 :“ ti P I`0 | λ

H
i ă 0u.

(2.42)

Let f be pseudoconvex at x and the following functions be quasiconvex:

gi for i P Ig, hi for i P I`J , ´hi for i P J´, Gi for i P I´0` Y I´00H , ´Gi for

i P I`0` Y I
`
00H Y I

`
00, Hi for i P I´`0 Y I

´
00G, ´Hi for i P I``0 Y I

`
00G Y I

`
00.

1. If I´0`YI
´
`0YI

´
00GYI

´
00H “ H it follows that x is a globally optimal solution

of the MPEC.

2. If either I´00G Y I´00H “ H or for all feasible x1 in a sufficiently small set

around x it holds that

Gipx
1
q “ 0, Hipx

1
q “ 0, @i P I´00G Y I

´
00H (2.43)

then x is a locally optimal solution of the MPEC.

The proof of this theorem can be found in [74], theorem 2.3.

With this result it is easy to derive optimality criteria for the case where the

constraint functions are affine linear and the objective function is convex. This

class of MPECs will be investigated in detail in the subsequent chapters.

Corollary 2.1

Let x be a feasible point of MPEC (2.9) and assume that f is convex and g, h,

G and H are affine linear.

1. If x is strongly stationary then x is locally optimal.

2. If x is strongly stationary and λGI0` ě 0 and λHI`0
ě 0 then x is globally

optimal.
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Proof 1) From strong stationarity follows M-stationarity and I´00G “ I´00H “ H.

The result follows with point 2 of theorem 2.6.

2) It further holds that

I´0` “ H ô λGI0` ě 0 (2.44)

I´`0 “ H ô λHI`0
ě 0. (2.45)

And since x is strongly stationary it follows that

I´00G Y I
´
00H “ H. (2.46)

The result follows with point 1 of theorem 2.6. �

2.3. Solution Algorithms for MPECs

This section provides a small number of selected references to solution methods

and related articles for MPECs. Among them are algorithms, such as interior

point methods or regularization schemes, that will not be discussed in detail

within the extent of this work. The references are mainly in chronological order,

ending with three monographs that have a summarizing character.

In [51] Luo et al. present applications of PSQP (piece wise sequential quadratic

programming) methods to MPECs. Their results include local convergence under

the MPEC-LICQ.

In [64] Scholtes investigates a regularization scheme for MPECs as (2.9). The

regularization is based on:

min fpxq

gpxq ď 0, hpxq “ 0

Gpxq ě 0, Hpxq ě 0, GpxqiHpxqi ď t, i “ 1, . . . ,m

(2.47)

for a non-negative scalar t. He shows that under suitable assumptions a series

of stationary points of systems (2.47) converges to a C-stationary point of the

MPEC. The monograph [62] by Ralph and Wright establishes more properties

on algorithms with this regularization scheme. Another regularization scheme is

the Lin-Fukushima approach, as referenced below.
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In [75] Zhang et al. present an algorithm that solves MPECs with convex ob-

jective function and affine linear complementarity constraints. The algorithm

investigates extreme points and directions around the current point of iteration.

These extreme elements determine a face of the feasible area around this cur-

rent point. The SQP step is then carried out on this face. At termination the

algorithm yields a locally optimal point.

In the monograph [60], Demiguel et al. present an interior point method for

relaxations of the following type.

The MPEC in [60] is defined as

min
x
fpxq

hpxq “ 0

0 ď Gpxq K Hpxq ě 0.

(2.48)

The relaxation for pδ1, δ2, δ3q ě 0 is

min
px,w,ζ,sq

fpxq

hpxq “ 0

Gpxq ´ w “ 0

Hpxq ´ ζ “ 0

s1 ´ w “ δ1

s2 ´ ζ “ δ2

s3 ` w
T ζ “ δ3

w, ζ, s ě 0.

(2.49)

where the parameters δ1, δ2 and δ3 gradually decrease in their algorithm. The

vector s allows the possibility to rewrite the system with equality constraints.

Their article also holds a useful collection of references in the introduction.

In [25] Hu and Ralph investigate the application of penalty methods to MPECs.

In the monograph [20], Fletcher et al. investigate the local convergence of SQP

methods. Their article is helpful in understanding the difficulties with linear de-

pendent active constraints in MPEC solution methods. They achieve superlinear

convergence around a strongly stationary point under a number of reasonable

assumptions.

The monograph [49], by Leyffer and Munson, presents a globally convergent filter

method. In an iteration cycle, a linear problem is used to estimate the active

constraint set of the solution, then a QP with equality constraints is solved. By

applying a filter they achieve convergence to a B-stationary point of the MPEC.
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In [2] Audet et al. investigate reformulations of linear 0-1 mixed integer program-

ming problems to MPECs with linear objective function and linear complemen-

tarity constraints. They present the equivalent versions of cuts, such as e.g. the

common Gomory cuts from mixed integer programming, as well as branch-and-

cut strategies in the MPEC world. In relation to this, the monograph [55], by

Mitchell et al., focuses on tighter relaxations of MPECs.

In the monograph [37], Kanzow et al. show that the Lin-Fukushima-regularization

can create a series of NLPs whose stationary points converge to a C-stationary

point of the MPEC (2.9). For this, the complementarity constraints are replaced

by

pGipxq ` tqpHipxq ` tq ´ t
2
ě 0, i “ 1, . . .m

GipxqHipxq ´ t
2
ď 0, i “ 1, . . . ,m

(2.50)

for a non-negative scalar t that decreases during the algorithm.

In [30], Júdice gives an overview of algorithms for MPECs with linear objective

function and linear complementarity constraints. An extensive bibliography on

bilevel programming and MPECs can be found in [68] by Dempe. The monograph

[31] by Júdice contains a collection of solution techniques for MPECs with linear

complementarity constraints.

2.4. Outlook

The following chapter changes from the theoretical background of MPECs to a

practical quadratic problem that has its origin in an application related to the

automotive industry. After an introduction to the problem and some further

investigations on the matter of the solution map of quadric problems, the topic

of MPECs returns in section 3.4. In this section a bilevel problem is introduced

that can be formulated with the element of linear equilibrium constraints.



3. The Reweighting Problem

The automotive industry provides a good example of so called high complexity

products [50, 38, 67]. In this chapter a problem with complementarity con-

straints, which originates from a demand forecast model for multivariant product

configurations, is presented.

“Mass customization has been viewed as desirable but difficult to achieve

in the volume automotive sector.”

– Production and Operations Management [9]

Visiting the online configurator of a leading automotive manufacturer in the

premium segment provides a good impression on the topic [72]. The customer’s

choice depends not only on the specific model series, color and engine but is

extended to a large number of optional equipment ranging from interior design

to advanced driving assistance systems.

A complete customer order of a Mercedes-Benz R© vehicle holds the information

of a binary vector with hundreds of entries. It is considered highly likely that the

daily output of a single factory does not contain two identical vehicles.

Beyond what the customer can see lies a large rule-based documentation. This

translates the customer configuration into the technical information that is needed

to produce the vehicle in full detail (see [38] for additional information). The

documentation especially holds the list of all structural elements. Figure 3.1

shows a sample of the data format. Each row represents a technical part in

combination with its physical position that might possibly be present in the final

product. Whether or not it is present depends on the evaluation of a potentially

lengthy Boolean expression (column “Rule” in table 3.1). The variables of this

expression are (without further detail) the binary specifications of the customer

order. The fully translated vehicle holds the information of a binary vector with

about 10,000 entries, or a floating point vector with thousands of entries, if the

24
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Technical Part Position Description Rule

A188780201 100-100.1
Distance Ring

Park Distance Control
189;

A188733208 120-120.1
Pipe Cover

Brushed

(686^588) ^  (123 ^  543
^  555

^ 678 _ 546) ^  (686 ^ 588);

A178669405 120-120.2
Pipe Cover

Black
(123 ^  543 ^

 555 ^ 678 _ 546) ^  (686 ^ 588);

A199725507 250-250.15

Combined Instrument:
Odometer,

Oil-Pressure Control,
White Backlight

(R272 ^ 766 ^ 434
_ 344 ^ 665 ^ 455 _ 915)

^  (566 ^ 777)
^  (458 _ 669 _ 155)
^  (532 _ 343)
^546 _ R32;

Table 3.1.: Format Sample of the Technical Documentation

demands for technical parts of the same type are accumulated. These entries are

denoted shortly as parts.

The increasing variety presents a challenge in acquiring detailed demand forecasts.

Considering the data of optional equipment selection in the layer of information

that is visible to the customer, we see that this layer holds aspects which are

observable for marketing and sales. However, extending the analysis and predic-

tion of customer and market behavior to the layer of parts and their demand is

difficult.

In the following section we present a given demand forecast model that is applica-

ble to any high complexity product. The model is based on a convex optimization

problem with a multicriterial objective function, and depends on a set of param-

eters which are related to a certain prognosis input: We assume that a sales or

marketing department (or some other source) provides a certain prognosis for

some of the optional equipment specifications in a future demand period. The

model connects this option planning input with the knowledge about historical

product configurations that hold information of customer behavior and previous

part demands.

The final step is to train this model with data scenarios that simulate the situ-

ation of a demand forecast requirement. The result of the forecast can then be

compared to the desired demand outcome and thus be evaluated. This, let us call
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it training phase, is conducted by solving a bilevel problem. The bilevel problem

can then be formulated as an MPEC and is subject to the solution techniques

that will be developed within the scope of this work.

3.2. The Demand Forecast Model

The demand forecast model is constructed in three steps. It is based on a param-

eter dependent convex optimization problem, and we focus on the aspects related

to its application.

1) Historical Data and a Vector based Representation

We assume that a set of product configurations exists that are suitable as a

foundation for the current demand forecast scenario. These might e.g. be con-

figurations of the same model series, or configurations that have been ordered in

the same market segment as the one that is currently of interest. Let us assume

that these historical orders or templates are given by a finite nonempty set

th̃i | i P IHistu Ă Rm. (3.1)

Next we introduce corresponding planning orders x̃i P Rñ, i P IHist, that resemble

the outcome of the demand prognosis. For each of the historical orders we define

a feasible area around it. This feasible area contains the planning order and is

denoted by pph̃iq. A few examples of how pph̃iq might look like are

1.

x̃i P pph̃iq “ B}¨}1ph̃
i, εiq “ tx P Rm

|

m
ÿ

j“1

|xj ´ h̃
i
j| ă εiu

for given constants εi ą 0;

(3.2)

2.
x̃i P pph̃iq “ tx P Rm

| x “ rih̃
i, ri ě 0u;

(3.3)

3.
x̃i P pph̃iq “ tx P Rm

| x “ rih̃
i, rmin ď ri ď rmaxu

for given constants rmin ă 1 ă rmax.
(3.4)
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The solution of the final optimization problem will yield optimal values x̃˚i and

represent the result of the prognosis. At this point we make the following assump-

tion: We assume that the parts demand of a single given order can be presented

as a real vector in Rp, for some p P N. We further assume that a function exists

T̃ : Rm
ÞÑ Rp (3.5)

that maps a planning order x̃i to its resulting parts demand.

Additional restrictions regarding the entirety of all planning orders can be intro-

duced. We give two examples that extend (3.2) and (3.3) respectively:

1. x̃i P pph̃iq “ B}¨}1ph̃
i, εiq, @i P IHist

ÿ

iPIHist

εi ď εtotal
(3.6)

for a given number εtotal ą 0, or for the second point

2. x̃i P pph̃iq “ tx P Rm
|x “ rih̃

i, rmin ď ri ď rmaxu, @i P IHist
ÿ

iPIHist

ri “ c. (3.7)

for a given constant c ą 0. The first alternative (3.6) allows the planning order

to differ from the historical template h̃i, but the sum over all these differences is

bounded. In the second example (3.7) the planning order x̃i is a scaled version

of the historical template but the total sum of these scaling factors is fixed.

Further, we assume that the restrictions on the planning orders can be modeled

by a set of linear constraints with positive decision variables. If required, we

introduce additional variables such as for the elements ri in (3.7).

We denote the resulting linear system with positive decision variables as

Hx “ h, x ě 0 (3.8)

where H P Rkˆn and h P Rk are constant and x P Rn. We continue with the

following requirements

Assumption: System (3.8) is feasible and the matrix H has full row rank.
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We see that the first step in the modeling process is highly flexible. Each of

the given alternatives can be translated to a certain meaning in terms of the

manufacturer. Which approach is most suitable for the given situation depends

on the specific data, as well as on the expectations of the user.

2) Deviation of Planning and History

One intention behind this modeling concept is to preserve the information that

is contained in the vectors h̃i, i P IHist since it represents customer behavior.

We introduce a term that penalizes the deviation of the planning order from the

historical template. This term is then added to the objective function of the

model. A suitable example would be

min
x̃i: iPIHist

n
ÿ

j“1

px̃ij ´ h̃
i
jq

2. (3.9)

If we reconsider example (3.7) then (3.9) is equivalent to

min
x̃i: ıPIHist

ÿ

iPIHist

pri ´ 1q2. (3.10)

To this point we notice that the optimization of the model penalizes the deviation

from the historical templates, and the historical templates are feasible at the same

time. Thus the model, in the current state, should simply return the historical

templates x̃˚i “ h̃i as a result. We continue with the last step where the objective

function becomes multicriterial.

3) Option Planning Rates

In the last step we want the model to reflect the option planning input that

is given beforehand. The option planning input reflects changes in the market

segment (or current planning area) on the level of option take rates. We assume

that this input is presented by a real vector b “ pb1, . . . , bmq that correspond to

the entries in the vector representation of both the historical data h̃i and the

planning output x̃i, i P IHist.

A prognosticated rate of bj0 for the component with index j0, is met if

ř

iPIHist
x̃ij0

cardpIHistq
“ bj0 (3.11)
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where card denotes the cardinality of the set. It is also possible to determine the

historical option take rates

bHistj :“

ř

iPIHist
h̃ij

cardpIHistq
, j P IHist (3.12)

which supposedly differ from the new option planning b.

We add a term to the objective function which penalizes the deviation of input

rates and outcome. The term is given by

m
ÿ

j“1

γj|

ř

iPIHist
x̃ij

cardpIHistq
´ bj| (3.13)

and depends on a positive parameter vector γ P Rm
ě0 that represents a prioriti-

zation of the individual option planning rates. The complete objective function

is

min
x̃i: iPIHist

ÿ

iPIHist

m
ÿ

j“1

px̃ij ´ h̃
i
jq

2
`

m
ÿ

j“1

γj|

ř

iPIHist
x̃ij

cardpIHistq
´ bj|. (3.14)

Now as a last step we use the representation of (3.8) and rewrite the objective

function in a more general format. The deviation of the take rates (3.13) is then

represented by a parameterized function fγ2 in the final model, the deviation of

planning and historical orders (3.9) is represented by a function f1. The demand

prognosis model is

min
x
f1pxq ` f2pxq

Hx “ h

x ě 0

f1pxq :“ xTQx` cTx

fγ2 pxq :“
m
ÿ

j“1

γj|pAx´ bqj|.

(3.15)

where we assume that Q P Rnˆn is a symmetric positive-definite matrix, c P Rn,

H P Rkˆn, h P Rk, A P Rmˆn and b P Rm. We introduce additional slack and

surplus variables in order to receive a smooth objective function
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min
px,u,vq

xTQx` cTx`
m
ÿ

j“1

γjpuj ` vjq

Hx “ h

Ax` u´ v “ b

x, u, v ě 0.

(3.16)

3.1 Definition (Reweighting Problem) The problem given by (3.16) is de-

noted the reweighting problem.

The term reweighting is related to the special case of the modeling approach (3.7)

where every planning order is a reweighted version of the corresponding historical

template. (See example 3.1 below.)

We have assumed the existence of a function T̃ that maps a planning order x̃i

to its parts demand in (3.5). We now assume that we can find an equivalent

function

T : Rn
ÞÑ Rp (3.17)

that maps a given vector x (that represents all planning orders) to the aggregated

parts demand. This means for a solution x˚ of (3.16) it holds

T px˚q “
ÿ

iPIHist

T̃ px̃˚iq. (3.18)

The value T px˚q represents the final output of the demand forecast model.

Example 3.1 (Reweighting Problem) We demonstrate the idea behind the

reweighting problem. Let a set of historical configurations h̃1, . . . , h̃n, for n “ 6

and m “ 5, be given by the entries in table 3.2. The last column shows the given

option planning that defines the vector b in (3.16).

We use the exemplary approach of (3.4) with rmin “ 0.5 and rmax “ 2 to build

the model. We also introduce a normalizing constraint

n
ÿ

i“1

ri “ n. (3.19)
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Option
Historical

Templates h̃i
Historical
Take Rate

Option Planning
Take Rate

Exclusive Package 1 0 1 1 0 0 50% 50%
Anti-theft Protection 1 1 0 1 1 1 «83% 85%
Vision Package 0 0 0 1 0 1 «33% 37%
Digital TV Tuner 0 1 0 0 0 0 «17% 15%
Glass Electric Sunroof 0 0 0 0 0 0 0% 10%

Part T̃ ph̃iq Demand

A23049340238 4.2 4.2 4.2 0 2.2 0 14.8
A23489534457 3 4.2 8 8 2.2 8 33.4
A90695734536 1 0 1 0 1 1 4
A56734954394 2 0 20 8 0 12 42

Table 3.2.: A Randomized Data Sample

With this we can derive the formulation that defines the reweighting problem

(3.16). Let γ be given by p1, 1, 1, 1, 1q, then (3.16) is given by

min
px,u,vq

n
ÿ

i“1

pxi ´ 1q2 `
m
ÿ

i“1

pui ` viq (3.20)

Ax` u´ v “ b (3.21)
n
ÿ

i“1

xi “ n (3.22)

rmin ď xi ď rmax, i “ 1, . . . , n (3.23)

u, v ě 0 (3.24)

A “
1

n

¨

˚

˚

˚

˚

˚

˚

˝

1 0 1 1 0 0

1 1 0 1 1 1

0 0 0 1 0 1

0 1 0 0 0 0

0 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

, b “

¨

˚

˚

˚

˚

˚

˚

˝

0.5

0.85

0.37

0.15

0.1

˛

‹

‹

‹

‹

‹

‹

‚

(3.25)

The constraints (3.22 - 3.23) can be formulated equivalently as a system of equality

constraints with positive variables x1, y1 and y2
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¨

˚

˝

eT 0 0

I ´I 0

I 0 I

˛

‹

‚

looooooomooooooon

“H

¨

˚

˝

x1

y1

y2

˛

‹

‚

“

¨

˚

˝

n

rmine

rmaxe

˛

‹

‚

loooomoooon

“h

x1, y1, y2 ě 0

(3.26)

where e is the vector of ones and I is the identity matrix. System (3.20 - 3.25)

yields a unique solution x˚ with entries in r0.9, 1.1s and a vector of corresponding

take rates Ax˚. Let the function T be given by the parts matrix in data table 3.2

T pxq “

¨

˚

˚

˚

˚

˝

4.2 4.2 4.2 0 2.2 0

3 4.2 8 8 2.2 8

1 0 1 0 1 1

2 0 20 8 0 12

˛

‹

‹

‹

‹

‚

x. (3.27)

The resulting part demands are given by T px˚q. We summarize the outcome of

the calculation:

Option
Historical

Take Rate

Option Planning

Take Rate

Calculated

Take Rate

Exclusive Package 50% 50% 50%

Anti-theft Protection «83% 85 % «84.72%

Vision Package «33% 37 % «36.11 %

Digital TV Tuner «17% 15 % «15.28%

Glass Electric Sunroof 0% 10 % 0%

Part
Historical

Demand

Calculated

Demand

A23049340238 14.8 14.1

A23489534457 33.4 «33.72

A90695734536 4 4

A56734954394 42 42

The result shows an increase of roughly 5% - 6% in the fulfillment of the given

option planning compared to the historical input th̃i, i “ 1, . . . , nu. We also note

that the take rate for the option “glass electric sunroof” can never become positive
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with this particular approach, since no historical template h̃i with this option is

present.

For the part demands we notice that some entries have not changed. However,

the first entry has changed by roughly 5% in comparison to its predecessor.

Real data instances have a large dimension n and can consider several thousand

units. A change of 5% in demand can be of interest in such scenarios.

3.1 Theorem

With the assumption that Hx “ h, x ě 0, is feasible and Q positive-definite, it

holds that for every vector γ ě 0 the reweighting problem (3.16) has a unique

finite solution px˚, u˚, v˚q.

Proof We look at the non-differentiable and the practical model of the reweight-

ing problem (3.15) and (3.16) respectively.

Problem (3.15):

min
x
f1pxq ` f2pxq

Hx “ h

x ě 0

f1pxq :“ xTQx` cTx

fγ2 pxq :“
m
ÿ

j“1

γj|pAx´ bqj|.

Problem (3.16):

min
px,u,vq

xTQx` cTx`
m
ÿ

j“1

γjpuj ` vjq

Hx “ h

Ax` u´ v “ b

x, u, v ě 0.

We notice that (3.15) is equivalent to (3.16) in the following sense:

The vector px˚, u˚, v˚q is a solution of (3.16) if and only if x˚ is a solution of

(3.15) and

u˚i “ maxt0, pb´ Ax˚qiu, i “ 1, . . . ,m

v˚i “ maxt0,´pb´ Ax˚qiu, i “ 1, . . . ,m.
(3.28)

Next we show that a finite solution for both problems exists:

The objective function of (3.15) is convex since it is the sum of convex functions.

To see that fγ2 is convex we recall that γ ě 0. With Q positive-definite, it follows
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that f1 (and thus the objective function of (3.15)) is not only convex but strictly

convex.

From the quadratic term xTQx it also follows that (3.15) cannot be unbounded.

With the assumption that Hx “ h is feasible, it follows that (3.15) is feasible.

On a convex set it holds that a finite minimum of a strictly convex function

is unique, and thus it follows that the reweighting problem has a unique finite

solution. �

3.3. Continuity of the Solution Map and Variational

Inequalities

We want to investigate the parameter dependency of the reweighting problem

(3.16) on the parameter vector γ. The solution map of quadratic problems has

been widely investigated, and we gather some of the related results. The appli-

cation to a bilevel problem based on the reweighting problem is presented in the

following section.

For this section let a general quadratic problem be given by

min
x

1

2
xTQx` cTx

Ax ď b

Hx “ h

(3.29)

for a symmetric matrix Q P Rnˆn, c P Rn, A P Rmˆn, b P Rm, H P Rkˆn and

h P Rk.

3.2 Definition (Multifunction, [47] 7.2) Let F be a function that maps a

point in Rn to a set in Rm, for some n,m P N. Then we write F : Rn Ñ 2R
m

and F is denoted a multifunction.

3.3 Definition (Graph) Let F be a multifunction, the graph is defined by

graphF :“ tpx, yq P Rn
ˆ Rm

| y P Fpxqu. (3.30)
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3.4 Definition (Locally Upper Lipschitz Multifunction, [47] def. 7.4)

A multifunction F : Rn Ñ 2Rm is called locally upper Lipschitz at x̄ if there exists

a constant l ą 0 and a neighborhood Ux̄ of x̄ such that

Fpxq Ď Fpx̄q ` l}x´ x̄}BRm , @x P Ux̄

Fpx̄q ` l}x´ x̄}BRm :“ ty1 ` y2 | y1 P Fpx̄q, }y2} ă l}x´ x̄}u.
(3.31)

3.5 Definition (Upper Semicontinuous, [47] def. 8.2) A multifunction F :

Rn Ñ 2Rm is said to be upper semicontinuous at x̄ if for any open neighborhood

V of Fpx̄q there exists a neighborhood U of x̄ such that for all x in U it holds

that Fpxq is a subset of V .

3.1 Lemma

If the multifunction F is locally upper Lipschitz then it follows that F is upper

semicontinuous.

Further, if F is a multifunction that maps each point of Rn to a set in Rm with

exactly one element, then

• if F is locally upper Lipschitz, then it is locally Lipschitz continuous in the

sense of a single-valued function;

• if F is upper semicontinuous, then it is continuous in the sense of a single-

valued function.

Proof Assume that F is locally upper Lipschitz at x̄, and V an open neighbor-

hood of Fpx̄q. There exist Ux̄ and l as in (3.31). We choose 0 ă l1 ă l such that

Bpx̄, l1q Ď V .

For every x P Ux̄ where }x´ x̄} ă 1 it follows

Fpxq Ď Fpx̄q ` l}x´ x̄}BRm Ď Fpx̄q ` l1BRm Ď V. (3.32)

This shows that F is upper semicontinuous. The second part of the theorem

follows straight from (3.31) and the common ε-δ-definition of continuity respec-

tively.

3.6 Definition (Polyhedral Multifunction, [47] def. 7.3)

A multifunction F is denoted a polyhedral multifunction if its graph can be rep-
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resented by a finite union of convex polytopes in RnˆRm. Furthermore such sets

will also be denoted polyhedral.

We want to note the following important result.

3.2 Theorem ([47] Theorem 7.2)

If F : Rn Ñ 2Rm is a polyhedral multifunction, then there exists a fixed constant

l0 ą 0 such that F is locally Lipschitz in Rn with l “ l0 in (3.31). Then F is

called an upper Lipschitz multifunction.

Theorem 3.2 is intuitive if we think of F as the inverse projection of a union M

of polytopes in Rm`n to a linear subspace of dimension n. On a path in M , that

connects two point x and y in M , the change from Fpxq to Fpyq is determined by

the finitely many faces of the polytopes. From this finite number of affine linear

functions one can derive the desired constant l0. For a detailed proof the reader

is referred to the monograph [47] and the references therein.

The following lemma is an extended version of proposition 7.2 in [47]. For this

we note the KKT system of the QP (3.29):

Qx` c` ATλ´HTµ “ 0

Ax ď b

Hx “ h

λT pb´ Axq “ 0

λ ě 0.

(3.33)

Let Q, A and H be fixed. We define the following set X

XQP :“ tpc, h, x, λ, µq P R2n`2k`m
| pc, h, x, λ, µq is feasible in (3.33)u. (3.34)

3.2 Lemma

Let π be the projection from R2n`2k`m to a linear subspace Rl. Let the multi-

function F : Rl Ñ R2n`2k`m be defined by

Fpyq “ π´1
pyq XXQP . (3.35)

Then it holds that F is a polyhedral multifunction.
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Proof Without limitation of generality we assume that πpc, h, x, λ, µq “ c. The

graph of F is then given by

graphF “ tpc, c, h, x, λ, µq | pc, h, x, λ, µq P Xu. (3.36)

Thus it is sufficient to show that X is a finite union of polytopes.

Let s Ď t1, . . . ,mu be a subset. We define the set

Gpsq :“ X X tpb´ Axqi “ 0 @i P s, λi “ 0 @i R su. (3.37)

The definition of G is designed so that within this definition the complementarity

constraints in the definition of XQP (3.33) become redundant. It follows that Gpsq

is a polytope. We note that

X “
ď

sĎt1,...,mu

Gpsq (3.38)

which yields that X is a finite union of polytopes and F is a polyhedral multi-

function. �

Lemma 3.2 is related to proposition 7.2 in [47] which characterizes the solution

set of a so called affine variational inequality problem (AVI) which can be stated

with the real matrices and vectors of the QP (3.29):

Find x P ∆ such that pQx` cqT py ´ xq ě 0, @y P ∆

∆ :“ ty | Ay ď b, Hy “ hu.
(3.39)

We see that the term Qx ` c is the gradient of the objective function in (3.29).

Thus (3.39) provides a sufficient and necessary criterion for a local optimal point

x which can then be related to the KKT multipliers. In combination with lemma

3.2 or proposition 7.2 in [47] it follows that the solution map of every quadratic

problem is an upper Lipschitz multifunction.

The general version of a variational inequality is given by the following definition.

3.7 Definition (Variational Inequality, [42] 1.1) Let U be a nonempty,

closed and convex subset of the n-dimensional Euclidean space Rn, and G : U Ñ
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Rn continuous. The variational inequality problem is finding a point u˚ P U such

that

Gpu˚qT pu´ u˚q ě 0, @u P U. (3.40)

The monograph [48] provides an analysis of the continuity (upper and lower) of

the solution map of quadratic problems. A proof of the upper Lipschitz property

can also be found in [13] and a deeper analysis on linear perturbations of varia-

tional inequalities can be found in [47]. For a collection of various results on the

subject of variational inequalities see e.g. [42] or [40].

3.4. The Reweighting Bilevel Problem

We want to investigate the parameter dependency of the reweighting problem

(3.16) which has the following intention.

Say we have acquired a collection of historical data, including historical templates

and an option planning input. We further assume that we have defined the model

as in formulation (3.16) and established a function T , as in (3.17) and (3.20 -

3.25), that yields the respective part demand.

We further assume that there is a given part demand t that corresponds to the

desired outcome of the reweighting problem, i.e. we are in a training scenario

where the outcome of the reweighting problem is evaluated by calculating T pxq´t.

This is called an ex-post data scenario.

We formulate the reweighting bilevel problem for a given parameter set Γ, where Γ

is a polytope, and for an objective function that minimizes the length of T pxq´ t:

min
γ
}T px˚q ´ t}2

x˚ solves the reweighting problem p3.16q

γ P Γ.

(3.41)

We reformulate (3.41) with the KKT-conditions of the reweighting problem
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min
pγ,x,u,v,λ,µ,sx,su,svq

}T pxq ´ t}2

Qx` c´HTµ´ ATλ´ sx “ 0

´λ` γ ´ su “ 0

λ` γ ´ sv “ 0

Ax` u´ v “ b

Hx “ h

0 ď psx, su, svq K px, u, vq ě 0

γ P Γ.

(3.42)

With theorem 2.1 and theorem 2.2 it follows that the KKT-conditions are nec-

essary and sufficient for every QP with positive semi-definite quadratic matrix.

This includes the reweighting problem (3.16) and implies that (3.41) and (3.42)

are equivalent.

We investigate the constraint system to determine that a number of decision

variables can be eliminated. Since Q is positive definite we can rewrite the first

entry in the constraint set to

x “ xpλ, µ, sxq :“ ´Q´1c`Q´1HTµ`Q´1ATλ`Q´1sx. (3.43)

We recall that H has full row rank by assumption. It follows that Hx “ h if and

only if

h “ ´HQ´1c`HQ´1HTµ`Q´1ATλ`Q´1sx

ô µ “ µpλ, sxq :“ pHQ´1HT
q
´1
ph`HQ´1c´Q´1ATλ´Q´1sxq

and thus

x “ xpλ, sxq :“ xpλ, µpλ, sxq, sxq.

(3.44)

For the other constraints we can distinguish the following three cases. For any

feasible point in (3.42) it holds:

• If pb´ Axqi ą 0 then ui ą 0 which yields that su “ 0 which yields λi “ γi;

• If pb´ Axqi “ 0 then su, sv ě 0 which yields ´γi ď λi ď γi;
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• If pb´Axqi ă 0 then vi ą 0 which yields that sv “ 0 which yields λi “ ´γi.

In accordance to this, we introduce the following index sets

I` “ I`pxq “ ti | pb´ Axqi ą 0u Ď t1, . . . ,mu

I´ “ I´pxq “ ti | pb´ Axqi ă 0u Ď t1, . . . ,mu

I0 “ I0pxq “ ti | pb´ Axqi “ 0u Ď t1, . . . ,mu.

(3.45)

The feasible area of (3.42) can now be reformulated to obtain the following pre-

sentation:

min
pγ,λ,sxq

}T pxpλ, sxqq ´ t}
2

λi “ γi, @i P I`pxpλ, sxqq

´γi ď λi ď γi, @i P I0pxpλ, sxqq

λi “ ´γi, @i P I´pxpλ, sxqq

0 ď sx K xpλ, sxq ě 0

γ P Γ.

(3.46)

Let X denote the feasible area of (3.46)

X :“ tpγ, λ, sxq | pγ, λ, sxq feasible in (3.46)u. (3.47)

Let Fx : Γ Ñ 2R
n`2m

denote the solution map that assigns γ P Γ to the solutions

px˚, u˚, v˚q of the reweighting problem (3.16) i.e. px˚, u˚, v˚q P Fxpγq if and only

if px˚, u˚, v˚q is the solution of (3.16) for the given vector γ.

Similarly let Fpλ,sxq be the multifunction that finds the solutions of the KKT

system

Fpλ,sxqpγq :“ tpλ, sxq | pγ, λ, sxq P Xu. (3.48)

3.3 Theorem

Assume that Γ Ď Rm
ě0 is a polytope and that the matrices Q, A, H, h and b are

fixed.

1) It holds that for each γ P Γ: Fxpγq has exactly one element.
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Further, the function F̃x : γ ÞÑ px, u, vq P Fxpγq is continuous in the sense of a

single valued function and the solution set F̃xpΓq of the reweighting problem is a

connected union of polytopes.

2) The multifunction Fpλ,sxq is upper Lipschitz and the feasible area of the

reweighting bilevel problem X is connected.

Proof 1) Theorem 3.1 determines that the reweighting problem has a unique

solution that exists.

Since the quadratic matrix Q in the reweighting bilevel problem is positive semi-

definite, it follows that the KKT-conditions are necessary and sufficient. Thus

lemma 3.2 yields that Fx is a polyhedral multifunction. With theorem 3.2 it

follows that Fx is upper Lipschitz. This implies that Fx is locally upper Lipschitz

and this implies that Fx is upper semicontinuous. Lemma 3.1 yields that Fx is

continuous in the sense of a single valued function which is equivalent to: F̃x is

continuous.

Since Γ is a polytope by assumption and Fx is a polyhedral multifunction we

can conclude that F̃xpΓq is a union of polytopes and since F̃xpΓq is continuous it

follows that F̃xpΓq is connected as the image of a connected set under a continuous

function.

2) As in case 1 lemma 3.2 yields that Fpλ,sxq is a polyhedral multifunction. With

theorem 3.2 it follows that Fpλ,sxq is upper Lipschitz.

For two points pγ1, λ1, s1
xq, pγ

2, λ2, s2
xq P X we show that there exists a connecting

path in X. Let pγ be the connecting line between γ1 and γ2 in Γ. Since X is

finite union of polytopes Pi (lemma 3.2) it follows that we find a lifted version p̂i

of pγ in each of the polytopes Pi such that

pγ “ rγ
1, γ2

srγ2, γ3
srγ3, γ4

s ¨ ¨ ¨ Ď Γ

πγpp̂
i
γq “ tγ | pγ, λ, sxq P p̂

i
γu “ rγ

i, γi`1
s.

(3.49)

The bracket notation in (3.49) denotes the concatenation of (a finite number of)

line segments.

Since Pi is a polytope, without limitation of generality, we can assume that the

lifted path p̂i is also a line segment. It remains to show that the end points
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of these lifted paths can be glued together by some other paths in order to re-

ceive a resulting path from pγ1, λ1, s1
xq to pγ2, λ2, s2

xq in X which shows that X is

connected.

To see this we take a look at the subset of X for a fixed vector γ “ γ0. First we

note that Fxpγ0q has only a single element which has been shown in part 1 of the

proof. For Fpλ,sxqpγ0q it holds that there is only one possible value of x “ xpλ, sxq

(as defined in (3.43) and (3.44)). This means that the index sets I`, I´ and I0

in (3.46) are immutable in Fpλ,sxqpγ0q. It follows that Fpλ,sxqpγ0q is a polytope.

From this we can conclude that we can find a connecting line segment for the end

point of p̂iγ and the start point of p̂i`1
γ in X. With these additional line segments

we can glue the pieces p̂iγ and receive a connecting path in X which shows that

X is connected. �

3.4.1. The Practical Reweighting Bilevel Problem

For the practical application with real data instances the parameter set is defined

as

Γ “ tγ | γmin ď γi ď γmax, i “ 1, . . . ,mu (3.50)

for two given constants γmax ą 1 ą γmin ą 0.

Additionally experiments have shown that, for the data at hand, the cases where

sx ‰ 0 are less interesting or non-desirable. Thus by assuming sx “ 0 we eliminate

the variables sx and achieve simplification in the practical version of the problem.

We also introduce a new matrix Aλ and vector bλ in order to rewrite the affine

linear function xpλ, sxq in the definition of the index sets I`, I´ and I0

Axpλ, 0q ´ b “ Aλλ´ bλ. (3.51)

The convex upper level objective function is defined by a matrix T :

T pxq “ T ¨ xpλ, sxq (3.52)
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and we minimize }Txpλ, sxq ´ t}2. Then immediately introduce another matrix

Tλ and vector tλ such that

Txpλ, 0q ´ t “ Tλλ´ tλ. (3.53)

With the information above the practical reweighting bilevel MPEC is defined by

min
λ
}Tλλ´ tλ}

2

λi ě γmin, if pbλ ´ Aλλqi ą 0 p: I`q

λi ď ´γmin, if pbλ ´ Aλλqi ă 0 p: I´q

´γmax ď λi ď γmax, i “ 1, . . .m.

(3.54)

3.8 Definition (Reweighting Bilevel Problem) The practical reweight-

ing bilevel problem or reweighting bilevel MPEC is problem (3.54) with the intro-

duction of additional slack and surplus variables and is given by

min
pλ,w1,w2,ζ1,ζ2q

}Tλλ´ tλ}
2

Aλλ` w
1
´ w2

“ bλ

λi ` ζ
1
i ě λmin, i “ 1, . . . ,m

λi ´ ζ
1
i ď ´λmin, i “ 1, . . . ,m

´λmax ď λi ď λmax, i “ 1, . . . ,m

0 ď pw1, w2
q K pζ1, ζ2

q ě 0.

(3.55)

where Tλ P Rmˆp is a positive semi-definite matrix, Aλ P Rmˆm, tλ P Rp, bλ P Rm

and

λmax “ γmax ą 1 ą λmin “ γmin ą 0 (3.56)

are two constants.

3.5. An Algorithmic Concept

We have gained the knowledge that the feasible set of the practical reweighting

bilevel problem (3.55) is a connected union of polytopes (theorem 3.3). This
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inspires the following idea: We let I`, I´ and I0 be a partitioning of the set

t1, . . . ,mu corresponding to the constraints in (3.54). We solve the convex prob-

lem that is assumed to be feasible:

min
λ
}Tλλ´ tλ}

2

λi ě λmin, pbλ ´ Aλλqi ě 0, @i P I`

λi ď ´λmin, pbλ ´ Aλλqi ď 0, @i P I´

pb´ Aλλq “ 0, @i P I0

´λmax ď λi ď λmax, i “ 1, . . .m.

(3.57)

At the optimal point λ˚ we investigate the dual multipliers, and perform a step

in an active set strategy on the generally non-convex solution set. For a general

reference on active set strategies the reader is referred to [59].

Let ri be the dual multiplier of some constraint pbλ ´ Aλλqi „ 0, where the sign

of the equation depends on i P I` or i P I´ or i P I0, then

• if ri ă 0 and i P I` and λi “ λmin: move i to I0;

• if ri ă 0 and i P I´ and λi “ ´λmin: move i to I0;

• if ri ă 0 and i P I0 and λi ď ´λmin: move i to I´;

• if ri ă 0 and i P I0 and λi ě λmin: move i to I`.

Similarly for a multiplier rλi for one of the constraints λi ě λmin or λi ď ´λmin

we progress by the following changes:

• if rλi ă 0 and λi “ λmin and i P I` and pbλ ´ Aλλq “ 0: move i from I` to

I0;

• if rλi ă 0 and λi “ ´λmin and i P I´ and pbλ ´ Aλλq “ 0: move i from I´

to I0.

After one or more indices have been shifted, the next convex problem (3.57) is

solved. The algorithm will generate a series of points with descending objective

value. This is due to the fact that the solution of the previous convex problem is

still feasible for the convex problem of the next iteration. Since the feasible area

has shown to be connected (theorem 3.3), one may hope that the algorithm even
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Figure 3.1.: Algorithmic Concept for the Reweighting Bilevel Problem

finds a global minimum. Figure 3.1 illustrates the idea with a descending series

of points λ0, λ1 and λ2.

An initial computational test has shown that the algorithm can successfully com-

pute a local minimum for the given data. However without any further kind of

index selection rule or constraint qualification, this algorithm may end in cycling

a non-optimal point.

The design of a specific algorithm for the reweighting bilevel problem is not carried

out further, because an active set strategy for a non-convex solution set defined by

affine-linear complementarity constraints can be designed more generally. Such

algorithms are first discussed in the next chapter, where a complementarity active

set strategy and branch-and-bound framework is analyzed.



4. CASET and BBASET

In section 3.5 we have seen the idea of an active set strategy that progresses over

a non-convex set defined by a union of polytopes. In [35] Júdice et al. present

results for a complementarity active set algorithm for mathematical problems

with equilibrium constraints denoted as CASET.

4.1. CASET

Let the MPEC be defined by

min
x
fpxq

Cx “ Cyy ` Cww ` Cζζ “ g

y P Ky

x “ py, w, ζq ě 0

wT ζ “ 0

(4.1)

where Cy P Rkˆl, Cw P Rkˆm, Cζ P Rkˆm and C “ pCy, Cw, Cζq are real matrices,

g P Rk and f : Rn Ñ R continuously differentiable, n “ k ` 2m and Ky is a

polytope in Rl

Ky :“ ty | Ay “ bu (4.2)

where A P Rpˆl and b P Rp.

The idea is to run an active set strategy with two working sets Lw, Lζ Ď t1, . . . ,mu

that correspond to the constraints

wi “ 0, @i P Lw

ζi “ 0, @i P Lζ .
(4.3)

46
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Figure 4.1.: Illustration of the CASET Algorithm

The algorithm starts from a complementarity feasible point and maintains feasi-

bility by requiring for all i P t1, . . . ,mu: i P Lw Y Lζ . Figure 4.1 demonstrates

the idea for the following example (with wi “ w, ζi “ ζ and m “ 1)

min
x“pw,ζq

w2
` pζ ´ 1q2

wT ζ “ 0

w, ζ ě 0

x0 “ p1, 0q

x1 “ p0, 0q

x2 “ p0, 1q.

(4.4)

In the example the algorithm terminates with the global optimum x2.

Let the constraint system at the current iteration be given by
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Cyy ` Cww ` Cζζ “ g

Ay “ b

wi “ 0, @i P Lw p: λwi q

ζi “ 0, @i P Lζ p: λ
ζ
i q

yi “ 0, @i P Ly Ď t1, . . . , ku p: λ
y
i q.

(4.5)

where pλy, λw, λζq denote the dual multipliers. (These multipliers exist by theo-

rem 2.1.) System (4.5) is written as

Djx “ dj (4.6)

where j is the index of the current iteration. The convergence of the algorithm

depends on the following property:

Non-Degeneracy Assumption: The matrix Dj always has full row rank.

The CASET algorithm as in [35] is given by step 0 to 4 in algorithm 1 and 2.

Remark 4.1

1. If f is convex and the algorithm terminates with a strongly stationary

point in step 1, with corollary 2.1 it follows that a local optimal solution

was found.

2. The selection of the descent direction in step 2 and the selection of the step-

size in step 3 need additional conditions in order to ensure the convergence

to a stationary (i.e. KKT) point of (4.7). Line search methods have been

explored by many authors [10, 59, 5]. A convergence result for a direction

and stepsize rule is given in the following theorem 4.1.

3. Assume that KKT-points of (4.7) are detected in a finite number of steps. If

the non-degeneracy assumption was not present, then the algorithm could

potentially be caught in a cycle. This can be seen with the example of point

3 in theorem 2.4. The algorithm would then repeat switching the indices

of linearly dependent complementarity constraints between the sets Lw and
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Step 0 (Initialization): Let xj denote the solution of the current iteration
and initialize with a feasible point x0;
Initialize Dj and hj with the active constraints at x0 as defined by (4.5);

Step 1 (Termination): If xj is not a KKT-point for the problem

min fpxq

Djx “ hj
(4.7)

then go to step 2. Otherwise there exist multipliers µ such that

DT
j µ “ ∇fpxjq (4.8)

and µ is unique by the non-degeneracy assumption. If

λyi ě 0, @i P Ly

λwi ě 0, @i P Lw X Lζ

λζi ě 0, @i P Lw X Lζ

(4.9)

then terminate and xj is a strongly stationary point of the MPEC (see
def. 2.10). Otherwise there exists a multiplier

λyi ă 0, i P Ly

or λwi ă 0, i P Lw X Lζ

or λζi ă 0, i P Lw X Lζ .

(4.10)

Let yi “ 0 or wi “ 0 or ζi “ 0 be the corresponding constraint and let
pDjqq be the corresponding row of Dj. Let pDjq´q be the constraint
matrix after removing the row pDjqq;
Find a descent direction such that

min∇fpxjqTd ă 0

pDjq´qd “ 0

pDjqqd ą 0.

(4.11)

Define Dj`1 :“ pDjq´q and go to step 3;

Step 2 (Descent Direction): Find a descent direction d such that

∇fpxjqTd ă 0

Djd “ 0.
(4.12)

Algorithm 1: The CASET Algorithm [35] (Part 1 of 2)
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Step 3 (Stepsize): Find the largest value αmax P RY t8u of α such that
xj ` αd ě 0 and choose α such that 0 ă α ď αmax and
fpxj ` αdq ă fpxjq. If α “ 8 then the MPEC is unbounded;

Step 4 (Update): Update xj`1 Ð xj ` αd and let Dj`1x “ dj`1 be the set
of active constraints at xj`1 as defined by (4.5);

Algorithm 2: The CASET Algorithm [35] (Part 2 of 2)

Lζ . It is important to note that Dj always holds the complete set of active

constraints at xj by definition.

4.1 Theorem (Armijo Rule, [10])

Let β and µ be constants in p0, 1q and γ ą 0. Let π be the projection on the

convex set tx | Djx “ hju and let xj`1 be given by

xj`1
“ πpxj ´ α∇fpxjqq (4.13)

such that

α “ βmjγ (4.14)

and mj P N the smallest integer, such that

fpxj`1
q ď fpxjq ` µ∇fpxjqT pxj`1

´ xjq. (4.15)

If f is continuously differentiable then the limit points of pxjqjPN are stationary

points of (4.7).

For further details on the proof of theorem 4.1 the reader is referred to the mono-

graph [10] and the references therein. The matter of convergence to a stationary

point in the convex subproblems (4.7) is not further investigated. For problems

with quadratic objective function, various solution methods exist that are capa-

ble of finding stationary points. We recite the convergence results related to the

CASET algorithm:

4.2 Theorem ([35] Thm. 2)

The descent direction in step 1 of the CASET algorithm always exists.
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Proof Let D “ Dj, Dq “ pDjqq and D´q “ pDjq´q be defined as in step 1 of the

algorithm. Let d be defined as the solution of the system

˜

D´q

Dq

¸

d “

¨

˚

˚

˚

˚

˝

0
...

0

1

˛

‹

‹

‹

‹

‚

. (4.16)

The system has a solution by the non-degeneracy assumption which yields that

the rows of the system are linearly independent. Let µ be the multipliers from

the situation in step 1, such that

´

DT
´q DT

q

¯

˜

µ´q

µq

¸

“ ∇fpxjq (4.17)

and µq ă 0. It follows that

∇fpxjqTd “ pDµqTd “ µT´q D´qd
loomoon

“0

`µq DT
q d

loomoon

“1

ă 0.
(4.18)

This proof is reconcilable with and related to theorem 2.5 in the sense that

the MPEC-Abadie-CQ and MPEC-LICQ are present and xj would be strongly

stationary if no descent direction existed. �

4.3 Theorem ([35] Thm. 3)

Assume that the CASET algorithm finds a KKT-point of every system

min fpxq

Djx “ hj
(4.19)

in a finite number of steps, if one exists. Further, assume that there exist only

finitely many objective function values for the KKT-points of each system. Then

CASET terminates with a strongly stationary point or proves infeasibility or

unboundedness.

Proof Infeasibility is detected immediately in step 0 if present. The descent
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directions always satisfy the property

∇fpxjqTd ă 0 (4.20)

which allows for the possibility to choose a stepsize α with fpxj`αdq ă fpxjq and

grants a property of strict descent for the objective function value. Further, we

naturally find only a finite number of different active constraint systemsDjx “ hj.

Since the number of KKT-point objective values is limited by assumption for each

system, and the objective value always decreases, it holds that step 1 can only

occur finitely many times. The iterations which are required to revisit step 1 are

limited by assumption. Thus it holds that, within the algorithm, termination

occurs either with a strongly stationary point or unboundedness. �

An example of a possibly non-terminating instance of the CASET algorithm can

be created with the following problem:

min
px,y,w,ζq

psin y ´ xq2 ´ y

x “ w ´ ζ

0 ď w K ζ ě 0

(4.21)

The function in x and y is shaped like an oscillating skew valley and is unbounded

from below in the direction p0, 1q, see figure 4.2. If both constraints w “ 0 and

ζ “ 0 are active (at x “ 0) then the KKT system is

¨

˚

˚

˚

˚

˝

1 0 0

0 0 0

1 1 0

´1 0 1

˛

‹

‹

‹

‹

‚

µ “

¨

˚

˚

˚

˚

˝

´2psin y ´ xq

2psin y ´ xq cos y ´ 1

0

0

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

´2 sin y

2 sin y cos y ´ 1

0

0

˛

‹

‹

‹

‹

‚

(4.22)

which has infinitely many solutions with different objective values, thus violating

the requirements of theorem 4.3. For the CASET algorithm it is possible to

return to system (4.22) infinitely many times if the search directions are selected

accordingly.
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Figure 4.2.: Objective Function of (4.21)

4.2. BBASSET

We continue with an extension of this algorithm. In [34] Júdice et al. present an

embedding of the CASET algorithm in a branch-and-bound framework for the

case where the objective function f is convex. The algorithm is called BBASET

and finds a global optimum of the MPEC.

We repeat the definition of the MPEC

min
x
fpxq

Cx “ Cyy ` Cww ` Cζζ “ g

y P Ky “ ty| Ay “ bu

x “ py, w, ζq ě 0

wT ζ “ 0

(4.23)

where f is now a convex objective function. Problem (4.23) can be solved by a

branch-and-bound algorithm on the complementary variables with nodes where

wi “ 0 or ζi “ 0 for i “ 1, . . . ,m. For a general introduction to branch-and-bound

algorithms see e.g. [36]. We define the node problem P pIw, Iζq by
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min
x
fpxq

Cx “ Cyy ` Cww ` Cζζ “ g

y P Ky

wT ζ “ 0

x “ py, w, ζq ě 0

wi “ 0, i P Iw

ζi “ 0, i P Iζ .

(4.24)

Let us recall the conditions for a globally optimal point in corollary 2.1: If f is

convex, x˚ is strongly stationary and λwI0` ě 0 and λζI`0
ě 0 then x is globally

optimal. In this definition we have

I0` “ ti | w
˚
i “ 0, ζ˚i ą 0u

I`0 “ ti | ζ
˚
i “ 0, w˚i ą 0u

I00 “ ti | w
˚
i “ ζ˚i “ 0u.

(4.25)

Further, λw and λζ are the dual multipliers for the active constraints wi “ 0 and

ζi “ 0 at x respectively.

The idea of the BBASET algorithm is a pattern of nodes that are created from

a stationary point. Assume that we have found a strongly stationary point x˚ in

(4.23) and

I´0` :“ ti P I0` | λ
w
i ă 0u

I´`0 :“ ti P I`0 | λ
ζ
i ă 0u

(4.26)

with the multipliers λw and λζ at x˚. For the following argument we denote the

elements by

I´0` “ ti1, . . . , iαu

I´`0 “ tiα`1, . . . , iβu.
(4.27)

Let P pIw, Iζq be defined as the main problem (4.23) with the additional con-

straints wIw “ 0 and ζIζ “ 0. Then it holds that
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• Example of generated nodes for ��
� , ��

�, ��
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• The algorithm needs a 

complementarity feasible 

point at each generated 

node to start CASET

• For this, the method of 
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-> Use modification of 

method from Hu et al.
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Figure 4.3.: Illustration of the BBASET Algorithm for λζi , λ
ζ
j , λ

w
k ă 0

minP pH,Hq “ mintminP pH, ti1uq,

minP pti1u, ti2uq,

minP pti1, i2u, ti3uq,

. . . ,

minP pti1, . . . , iα´1u, tiαuq,

minP pI´0` Y tiα`1u,Hq,

minP pI´0` Y tiα`2u, tiα`1uq,

. . . ,

minP pI´0` Y tiβu, tiα`1, . . . , iβ´1uq,

minP pI´0`, I
´
`0qu.

(4.28)

The indices in I´0` and I´`0 are denoted the branching indices. Figure 4.3 illustrates

the branching process. The conceptional key is that with corollary 2.1 it follows

that

minP pI´0`, I
´
`0q “ fpx˚q. (4.29)

In other words: For each entry λwi ă 0 or λζi ă 0 in the vector of multipliers at

the stationary point, there might be a direction of possible progress that points to

the convex hull of the generally non-convex feasible set. Meaning that if w˚i “ 0
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and λwi ă 0 we still need to investigate the part where wi ą 0 and ζi “ 0 of the

feasible set. This investigation is carried out by the branching structure in (4.28)

for every index with negative multiplier. The remaining indices have non-negative

multipliers, thus we can apply corollary 2.1 to the stationary point x˚.

4.2.1. Lower Bounds

In the branch-and-bound algorithm, lower bounds for the node problems are

generated. A lower bound for P pIw, Iζq is given by the relaxed convex problem

PrlxpIw, Iζq :“ min
x
fpxq

Cx “ Cyy ` Cww ` Cζζ “ g

y P Ky

x “ py, w, ζq ě 0

wi “ 0, i P Iw

ζi “ 0, i P Iζ .

(4.30)

4.2.2. Algorithm

A node in the branching algorithm is denoted by N and is associated with a node

problem P pIw, Iζq. A lower bound on the objective value of N is denoted by

LBpNq and has a default value of ´8 until some other value has been calculated

in the algorithm. We state the BBASET algorithm as in [34].

The procedure contains algorithmic elements that can influence its behavior:

• The selection of the node N in step 2: Other choices are possible here. We

discuss more details on the node selection in branch-and-bound algorithms

in section 7.6.1.

• The calculation of lower bounds: Cuts can be generated that may help to

calculate an increased lower bound in step 3. This topic is discussed in the

following section.
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Step 0 (Initialization):

Initialize the set of nodes N :“ tP pH,Hqu;

Initialize the upper bound UB “ 8 and lower bound LB “ ´8;

Step 1 (Termination): if N “ H or LB ě UB then
If UB “ 8 the problem is infeasible, if UB “ ´8 then the problem is

unbounded, otherwise a global optimum has been found;

Terminate;

end

Step 2 (Node Selection): Select a node N P N where LBpNq is minimal;

Step 3 (Lower Bound): Calculate a lower bound for N . If LBpNq ě UB

then remove N from N and go to step 1;

Step 4 (CASET): Apply the CASET algorithm to N ;

If N is unbounded let UB “ ´8, if N is infeasible remove N from N and

go to step 1. Else let x˚ be the solution and update

UB Ð mintUB, fpx˚qu; (4.31)

Step 5 (Branching): Create new nodes as in the scheme of (4.28) for

branching indices i R Iw Y Iζ with negative multipliers and update N . Go

to step 1;

Algorithm 3: The BBASET Algorithm [34]

• A starting point for the CASET algorithm in step 4: The CASET algorithm

needs a feasible point of the node problem in its initialization phase. During

the algorithm one can keep track of the node solution points and use these

points to generate start points for the child nodes. The problem is discussed

in section 4.2.4.

• Ordering of the indices in step 5: The suggestion of the authors is to or-

der the branching indices by their dual multipliers, starting with the most

negative. An alternative to this is discussed in section 7.6.3.
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Remark 4.2 (BBASET with A-Stationary Points)

The BBASET algorithm can be extended if a strongly stationary point of P pIw, Iζq

is not present in step 5. Assume that x˚ is only A-stationary in step 4. It follows

that

λwi ě 0 or λζi ě 0, @i P I00. (4.32)

If we include the sets

Iw´00 “ ti | wi “ ζi “ 0, λwi ă 0, λζi “ 0u

Iζ´00 “ ti | wi “ ζi “ 0, λwi “ 0, λζi ă 0u
(4.33)

with the branching indices then it follows that x˚ is a global minimum of the

node problem

P pI´0` Y I
w´
00 , I

´
`0 Y I

ζ´
00 q. (4.34)

With this extension we can perform BBASET with any algorithm inside that

finds A-stationary points.

If the algorithm that finds A-stationary points is finite then BBASET will termi-

nate detecting unboundedness, infeasibility or a globally optimal solution of the

MPEC.

4.2.3. Disjunctive Cuts

Lower bounds for the node problem can be calculated by solving the convex

problem Prlx as defined in (4.30). The authors of [34] propose the generation of

so called disjunctive cuts for increased lower bounds. As stated in [34] these cuts

can be generated directly from basic solutions.

Let x̄ “ pȳ, w̄, ζ̄q be a feasible in PrlxpIw, Iζq. If x̄ is not feasible for P pIw, Iζq there

exists an index c such that w̄cζ̄c ą 0. Assume that B is an invertible basis-matrix

such that
˜

Cy Cw Cζ

A 0 0

¸

¨

˚

˝

y

w

ζ

˛

‹

‚

“ BxB `NxN “

˜

g

b

¸

(4.35)

where xB and xN are the subvectors of x with positive or zero entries at x̄
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respectively. It follows that

xB “ B´1

˜

g

b

¸

loooomoooon

“:g̃

´B´1NxN
(4.36)

and since w̄c, ζ̄c ą 0 it follows that g̃wc , g̃ζc ą 0 where the index wc or ζc denotes

the indices of g̃ which belong to the corresponding variable. With wi “ 0 or

ζi “ 0 for every feasible point in P pIw, Iζq we can deduce

g̃wc ´ pB
´1NxNqwc ď 0 ô 1´

pB´1NxNqwc
g̃wc

ď 0

or

g̃ζc ´ pB
´1NxNqζc ď 0 ô 1´

pB´1NxNqζc
g̃ζc

ď 0.

(4.37)

Let constant vectors vw and vζ be defined such that

vTwx “
pB´1NxNqwc

g̃wc

vTζ x “
pB´1NxNqζc

g̃ζc
.

(4.38)

With the requirement x ě 0 we can derive the following cut:

1´
n
ÿ

i“1

maxtpvwqi, pvζqiuxi ď 0. (4.39)

The cuts can be generated from the solution x̄ of PrlxpIw, Iζq if there exists an

index that violates the complementarity constraints in P pIw, Iζq. With the con-

straint system in (4.35) it follows that they are valid for any node in the branch-

and-bound tree. The case where x̄ is not a basic solution is also discussed in [34].

More details on disjunctive cuts and an alternative approach to their generation

are discussed in section 7.4.



4.2. BBASSET 60

4.2.4. Feasible Points

In step 4 of the BBASET algorithm we need a feasible point of the node problem

P pIw, Iζq in order to start the CASET algorithm. In the special case where

Cw “ I is the identity matrix and Cζ “ M is positive semi-definite, any feasible

point of P pIw, Iζq is a solution of the following problem:

min ζTw “ ζT pg ´Mζ ´ Cyyq

Ay “ b p: µq

y ě 0 p: γq

wi “ pg ´Mζ ´ Cyyqi ě 0, @i R Iw p: αq

wi “ pg ´Mζ ´ Cyyqi “ 0, @i P Iw p: αq

ζi ě 0, @i R Iζ p: βq

ζi “ 0, @i P Iζ p: βq

(4.40)

with objective value 0. We take a look at the stationary conditions with multi-

pliers α, β, µ and γ of (4.40) where the corresponding constraints in (4.40) have

been marked accordingly:

g ` pM `MT
qζ ` Cyy “MTα ` β

CT
y ζ “ CT

y α ` A
Tµ` γ

αi ě 0, αipMζ ` Cyy ` qqi “ 0, @i R Iw

αi free, @i P Iw

βi ě 0, βiζi “ 0, @i R Iζ

βi free, @i P Iζ

µ free

γ ě 0, γTy “ 0.

(4.41)

The following theorem is established in [34] and allows the possibility to identify

a stationary point which yields a feasible point of P pIw, Iζq.

4.4 Theorem ([34] Thm. 3)

If pζ, y, α, µ, β, γq is a stationary point for the quadratic program (4.40) and at

least one of the following conditions holds:
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1. Iw Y Iζ “ H

2. wi ` ζi ą 0, @i P Iw Y Iζ

3.
ř

iPIwYIζ
αiβi ě 0

then αTβ ě 0 and py, w, ζq is a solution of P pIw, Iζq.

The result is proven in [34] and is established via a series of technical results.

The most important is that pζ, y, α, µ, β, γq yields a solution py, w, ζq if αTβ ě 0.

The full proof will be omitted, see [34] for further technical details.

An algorithm that searches a stationary point for (4.40) might initialize with the

solution point of a parent node, and find a solution that satisfies the requirements

of theorem 4.4. In this case the BBASET algorithm can continue with executing

CASET in step 4. Otherwise the method needs to retry this approach. The

authors of [34] suggest having a limited number of attempts, and postponing the

processing of this node in the branch-and-bound search if the method fails. In

the case where the processing cannot be postponed further they advise another

method, such as enumerative algorithms.

In chapter 5 we develop the tools for an enumerative approach to this problem

that uses convex linear programs, and does not need the requirements that Cw “ I

is the identity matrix and Cζ “M is positive semi-definite.

4.3. Performing CASET as a Chain of Convex Programs

We have seen that the original idea of the CASET algorithm is performed by the

operations of an active set strategy - moving along feasible descent directions,

and determining active constraint sets. This can be done by solvers such as

MINOS [57]. Keeping an industrial or corporate application in mind, we want to

focus on solvers for convex problems with linear constraints. Many of them are

professionally administrated and maintained, especially for linear or quadratic

objective functions, such as e.g. Cplex R©, Gurobi R© or Xpress R©. They include

functions such as scaling or constraint preprocessing, which are very useful in

terms of reliability. This section investigates how CASET can be performed by a

chain of convex programs. We show that a key point lies in the non-degeneracy

assumption of the constraint system (4.5).
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Without limitation of generality we assume Ky “ Rk. Then the MPEC is given

by

min
x
fpxq

Cx “ g

x “ py, w, ζq ě 0

wT ζ “ 0

(4.42)

where f is a convex function as in the previous section. In analogy to the pre-

ceding theory, for two disjunct index sets Lw and Lζ Ă t1, . . . ,mu such that

Lw Y Lζ “ t1, . . . ,mu, we define the convex problem P pLw, Lζq:

min
x
fpxq

Cx “ g

x “ py, w, ζq ě 0

wi “ 0, @i P Lw

ζi “ 0, @i P Lζ

(4.43)

The resulting algorithm is algorithm 4.

Step 0 (Initialization): Initialize Lw and Lz such that (4.43) is feasible. If
this is not possible then the MPEC is infeasible;

Step 1 (Solving): Solve the convex problem (4.43);
If the problem is unbounded then so is the MPEC (4.42) - terminate;
Otherwise acquire the solution py˚, w˚, ζ˚q;

Step 2 (Adjust Working Sets): Acquire the dual multipliers λwi for
i P Lw X ti | ζ

˚
i “ 0u and λζi for i P Lζ X ti | w

˚
i “ 0u;

If these multipliers are positive then py˚, w˚, ζ˚q is a strongly stationary
point (corollary 2.1) - terminate;
Otherwise move the index i with a negative dual multiplier (the most
negative by default) from Lw to Lζ or from Lζ to Lw respectively;
Go to step 1;

Algorithm 4: The CASET Algorithm with Convex Objective Function Per-
formed by a Chain of Convex Programs
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We note the following differences:

1) Descent Directions:

In contrast to the original CASET algorithm there is no warranty that we find

unique dual multipliers µ as in step 1 at (4.8). The constraint matrix Dk in

(4.7) is defined by all active constraints at the current point, not only i.e. by

those that have been added to a working set. In theorem 4.2 the non-degeneracy

assumption yields that the constraint normals of the active constraints are linearly

independent, and thus provide a descent direction.

2) Termination:

We recall that by theorem 4.3 the CASET algorithm will successfully terminate

under the non-degeneracy assumption, and under the assumption that the sta-

tionary situations of the subproblems of the MPEC are limited. Algorithm 4 is

vulnerable to cycling. This can be seen with the following example:

Example 4.1 Let the MPEC be given by

min´w1 ´ ζ1

w1 “ w2 “ w3

ζ1 “ ζ2 “ ζ3

0 ď wi K ζi ě 0, i “ 1, 2, 3.

(4.44)

Let Lw “ t1, 2u and Lζ “ t3u. We start the algorithm from the feasible point

x0 “ 0.

The following equations yield dual multipliers µ at the solution x0:

∇fpx0q “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´1

0

0

´1

0

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 1 0 0 1 0 0

´1 0 0 0 0 1 0

0 ´1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 ´1 0 0 0 0

0 0 0 ´1 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

µ (4.45)

At least one of the indices 1 and 2 with equations w1 “ w2 “ 0 and the index 3

with ζ3 = 0 have negative dual multipliers.
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Given the case that w1 “ 0 has a negative multiplier -1, by beginning with the

smallest index we might shift the index i “ 1 from Lw to Lζ. Given that ζ1 “ 0

has a negative multiplier -1 in the next iteration, we would end up in a cycle.

Even a simple anti-cycling rule that avoids the indices from past iterations can

fail (e.g. if we start with Lw “ t1, 3u and Lζ “ t2u we might receive the series

pt1, 3ut2uq Ñ pt3ut1, 2uq Ñ pt2, 3ut1uq Ñ pt2ut1, 3uq Ñ . . . ).

However, problem (4.44) is unbounded from below and x0 is not a strongly sta-

tionary point.

For the sake of completeness we want to state a rather simple fact that will be

used in combination with the BBASET algorithm.

4.5 Theorem

Every solution of problem (4.43) is an A-stationary point of the MPEC (4.42).

Proof We recall that x˚ “ py˚, w˚, ζ˚q is A-stationary (def. 2.10) if there exist

multipliers λ “ pλy, λw, λζqT such that:

0 “ ∇fpx˚q ` CTµ´ λ

λy ě 0

λyi “ 0, @i P ti | y˚i ą 0u

λwi “ 0, @i P I`0

λζi “ 0, @i P I0`

λwi ě 0 or λζi ě 0, @i P I00.

(4.46)

The conditions are now verified for the multipliers at a KKT-point x˚ of the

convex problem (4.43). Let the KKT-multipliers be denoted by pµ, λy, λw, λζq

as the multipliers in (4.46). Their existence is given by theorem 2.1 since (4.43)

satisfies the Abadie-CQ. They satisfy the first equation of (4.46) and further:

If i P Lw then i must be in I0` Y I00 and λwi free, λζi ě 0 and λζi ζi “ 0.

If i P Lζ then i must be in I`0 Y I00 and λζi free, λwi ě 0 and λwi wi “ 0.

It holds that λy ě 0 and yTλy “ 0.

By this we see that the multipliers also satisfy the conditions of system (4.46)

which proves that the KKT-point x˚ is A-stationary. �
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4.6 Theorem

Algorithm 4 will perform as in one of the three cases:

1. It will detect unboundedness or infeasibility of the MPEC after a finite

number of iterations,

2. or find a strongly stationary point after a finite number of iterations,

3. or end in a cycle of A-stationary points with the same objective value.

Proof If the algorithm ends after a finite number of iterations then it must have

terminated in step 1 which covers case 1 and 2.

Assume that algorithm 4 is interminable. There are only finitely many con-

stellations for the partitioning sets Lw and Lζ of t1, . . . ,mu and each problem

P pLw, Lζq in (4.43) has a unique minimal objective value. It holds that the solu-

tion xk at the k´ th iteration is feasible in the convex problem in iteration k` 1.

This yields a monotone (but not necessarily strictly monotone) descent in the

objective value. With the finite number of possible objective values and theorem

4.5 it follows that case 3 is present. �

With this theorem it follows that algorithm 4 is ready to be embedded into the

BBASET framework:

Remark 4.3 Algorithm 4 is finite if we terminate at a repeating constellation

of indices Lw and Lζ . The algorithm always yields an A-stationary point by

theorem 4.5.

With this modification the algorithm can be embedded into the BBASET branch-

and-bound framework with the extension to A-stationary points as in remark 4.2.

4.3.1. Anticycling and B-Stationarity

One can show that overcoming cycling in algorithm 4 can be related to a prob-

lem with linear objective function and linear complementarity constraints. The

problem of finding a feasible descent direction is given by:
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min
d
∇fpxqTd

Cd “ 0

di ě 0, @i P ti | xi “ 0u

dwi “ 0, @i P Lw X ti | ζi ą 0u

dζi “ 0, @i P Lζ X ti | wi ą 0u

dwi d
ζ
i “ 0, @i P ti | ζi “ wi “ 0u.

(4.47)

The set of constraints is the linearized MPEC tangent cone as in definition 2.8.

We note that (4.47) either has the solution 0 (which is always feasible), or the

problem is unbounded (since every solution ‰ 0 yields an unbounded ray).

Let x in (4.47) be the solution of the convex problem in some iteration of algo-

rithm 4. The task is to generate a disjunction of the indices ti | ζi “ wi “ 0u

with two sets L̂w and L̂ζ such that the program

min
d
∇fpxqTd

Cd “ 0

di ě 0, @i P ti | xi “ 0u

dwi “ 0, @i P pLw X I0`q Y L̂w

dζi “ 0, @i P pLζ X I`0q Y L̂ζ

(4.48)

is unbounded. In this case we have found updates of the working sets

Lw Ð pLw X I0`q Y L̂w

Lζ Ð pLζ X I`0q Y L̂ζ
(4.49)

that yield progress in algorithm 4. If the disjunction (L̂w and L̂ζ) does not exist

then we have verified that no feasible descent direction exists and thus x is a B-

stationary point. In this sense finding L̂w and L̂ζ is equivalent to solving (4.47).

The following algorithmic concept finds a solution of (4.47):

We start with the common simplex algorithm on system (4.47) without the com-

plementarity constraints. We assume the simplex algorithm is performed with

an anticycling strategy, e.g. the pivot rule of Bland [22]. Since d “ 0 is a feasible
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solution, we notice that any constellation of linearly independent columns of C

represents a basic solution which is suitable to begin with.

If we find an unbounded ray d with dwi ą 0 and dζi ą 0, we branch the problem

into two subproblems where one has the additional constraint dwi “ 0 and the

other has the additional constraint dζi “ 0. This can be done most conveniently

when determining the stepsize and the exiting basis index. We continue the

search on both branches, branching further if necessary.

This algorithm will eventually find that no non-zero direction which is feasible

in (4.47) exists, or the solution d shows an arrangement of indices such that

algorithm 4 can progress.

With this modification it holds that if algorithm 4 is started from a feasible

arrangement of indices, it will terminate with a B-stationary point (with remark

2.3) or prove that problem (4.42) is unbounded.

4.4. Methodological Outlook

The following chapter develops another component for the hybrid algorithm,

which will be presented in chapter 7. The hybrid algorithm incorporates the

techniques of the CASET algorithm in finding stationary points, and parts of

the BBASET algorithm in the branching steps. In the following, a method that

is originally designed to solve problems with linear objective function and linear

complementarity constraints, will be adapted and used to calculate points that

can be utilized as entry points for the CASET algorithm on the node problems

of the BBASET branches. It has been shown how the CASET algorithm can be

performed by solving a chain of convex problems. The design of the method in

the following chapter has the same key aspect, i.e. it can be performed by solving

a series of (convex) linear problems.



5. A Modification of the Algorithm of Hu et al.

This chapter focuses on a special subclass of MPECs that are linear programs

with linear complementarity constraints (LPCCs). LPCCs are closely related to

mixed integer programming, and can be encountered in the special case of bilevel

problems with linear upper level objective functions as in parameter identification

problems [8]. They can also be encountered in other applications such as e.g.

absolute value programming [30] or certain modeling techniques for the knapsack

problem [32]. For further information on these problems the reader is referred to

the given references. As was mentioned in section 2.3, many NLP approaches to

MPECs exists which can find solutions efficiently. These methods often have the

disadvantage of converging to lower class stationary points that are not locally

optimal. This chapter focuses on methods that solve the problems to global

optimality, especially the method of Hu et al. [24] for LPCCs.

Let the general linear complementarity problem (GLCP) be defined as in [19]:

Find py, ζq such that

q `Mζ `Ny ě 0

p`Rζ ` Sy ě 0

ζT pq `Mζ `Nyq “ 0

y, ζ ě 0

(5.1)

where ζ P Rn and y P Rl, M is a quadratic matrix and N , R and S are rectangular

real matrices and q and p real vectors, all of suitable dimensions. We note that

the GLCP is a special case of of an LPCC. Further, a special case of the GLCP

is the linear complementarity problem (LCP): Find pw, ζq P R2n such that

w “ q `Mζ

wT ζ “ 0

w, ζ ě 0.

(5.2)

68
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The GLCP and LCP have been widely investigated as is shown in the first section,

and the LCP can be solved efficiently under certain assumptions for the matrix

M . In contrary the general case has shown to be NP-hard.

The algorithms that are presented at the end of this chapter will focus on the case

where no additional assumptions for the underlying linear constraints are made.

After an introduction, the method of Hu et al. will be modified for the task of

finding feasible points in a GLCP, where this GLCP corresponds to the feasible

area of an MPEC with convex objective function. The final algorithm uses the

information from a surrounding branch-and-bound procedure of the MPEC, and

a heuristic linear objective function in order to generate feasible points for the

nodes in the binary tree.

5.1. The General Linear Complementarity Problem

In [41] the so called unified interior point method is presented that is applied to

the LCP (5.2), where M is in the class of P0 matrices.

5.1 Definition (P0 Matrix, [21]) A matrix M is in P0 if and only if it is

quadratic and its principal minors are non-negative.

The k´ th principal minor of a matrix m “ pmijqi,j“i,...,n is defined as the deter-

minant of the submatrix pmijqi,j“1,...,kďn.

Remark 5.1

• We note that if M is positive definite then M is a P0 matrix.

• If the principal minors are strictly positive then M is called a P matrix.

The unified interior point method solves the QP

minwT ζ

w “ q `Mζ

w, ζ ě 0.

(5.3)

Under the assumption that

• M is in P0,
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• a startpoint in the interior tpw, ζq | w “ q `Mζ, ζ ą 0u of the feasible

region is available and

• the objective function wT ζ of the QP is bounded on the level sets tpw, ζq|w “

q `Mζ, ζ ě 0, wT ζ ď tu

it holds that the method finds a point with objective value 0, which is a solution

to the LCP, in polynomial time. This does not hold for the GLCP as it has

been shown to be NP-hard if M is positive semi-definite (PSD) (see [33] and the

references therein).

In order to evaluate the computational complexity, minor assumptions are made,

e.g. the matrix M is required to have rational entries. One class of matrices

where all requirements are fulfilled, are row sufficient matrices:

5.2 Definition (RS Matrix, [11]) A matrix M is called row sufficient (RS)

if

xTi pM
Txqi ď 0, @iñ xTi pM

Txqi “ 0, @i. (5.4)

We return to the GLCP (5.1) with the additional requirement that R “ 0. The

monograph [19] gives a strong impression, of how a number of different non-

convex programs in bilevel programming are related to each other. They show

that by introducing suitable surplus variables and a merit function, the GLCP

can be encountered by solving an NLP.

5.1 Theorem ([19] Thm. 1)

Let the GLCP be given by

w “ q `Mζ `Ny

v “ p` Sy

wT ζ “ 0

ζ, y, w, v ě 0.

(5.5)

If the feasible area is nonempty and M is an RS matrix, then any stationary

point of the NLP

min }w ´ q ´Mζ ´Ny}2 ` }v ´ p´ Sy}2 ` p
ÿ

i

pζiwiq
g
q
h

(5.6)
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ζ, w, y, v ě 0 (5.7)

where g, h ě 1 and g ą 1 if h “ 1, is a solution of the GLCP.

Now that a solution method for this case has been established, it is possible to

convert bilinear programming problems (BLPs) and LCPs into a form, to which

the NLP approach can be applied.

A BLP is defined by

min cTx` dTy ` xTHy

Ax ě a

x ě 0

By ě b

y ě 0

(5.8)

where H is a general rectangular matrix. Finding a stationary point for this

problem is considered NP-hard.

5.1 Lemma ([33])

The BLP can equivalently be restated as

min aTu` dTy

w1 “ c´ ATu`Hy

w2 “ ´a` Ax

v “ b´By

w1, w2, v, x, y, u ě 0
˜

w1

w2

¸T ˜

x

u

¸

“ 0.

(5.9)

Proof Then transformation can be acquired by the formulation with two nested

problems

min
y
tdTy `min

x
tpx`HyqTx : x P Kxu : y P Kyu

Kx :“ tx| Ax ě a, x ě 0u

Ky :“ ty| By ě b, y ě 0u.

(5.10)
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Since the inner problem is a standard LP, we may exchange it with its KKT-

conditions which are necessary and sufficient. �

The constraint matrix which connects the complementary vectors is

˜

0 ´AT

AT 0

¸

(5.11)

hence the BLP has been converted into a GLCP with PSD matrix and linear

objective function. One of the major applications of the BLPs, is finding integer

solutions with a non-convex quadratic objective. This is due to the fact that

every feasible point x in

Ax`By ě b

y ě 0

xi P t0, 1u

(5.12)

is a solution of the program

minxT pe´ xq

Ax`By ě b

0 ď x ď e

y ě 0

(5.13)

with an objective function value of 0, where e is a vector of ones. An important

application for this conversion is the so called knapsack problem [54, 39, 53]:

min cTx

aTx “ b

x P t0, 1un.

(5.14)

For the LCP (5.2) there exists a conversion to a BLP that uses additional vari-

ables.

5.2 Lemma ([19])

The LCP (5.2) is equivalent to the BLP
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min eT ζ ` qTx` xT pM ´ Iqζ

Mζ ` q ě 0

0 ď x ď e

ζ ě 0

(5.15)

where I is the identity matrix. A point pw, ζq is a solution of the LCP (5.2) if

and only if there exists a solution pζ, xq of the BLP (5.15) with objective value 0.

Proof The objective function in (5.15) is non-negative for every feasible point

of the BLP. For each complementary pair qi ` pMζqi and ζi exists a variable xi,

that ranges from 0 to 1. The case where wi ą 0 corresponds to xi “ 0 and the

case where qi ` pMζqi ą 0 corresponds to xi “ 1. The so called degenerate case

where both are zero is associated with the complete interval xi P r0, 1s. �

Júdice et al. propose an algorithm that investigates this quadratic program on

a binary tree, fixing a variable xi to 0 or 1 at each branching step, until a global

optimum is found. For details on this see [32].

The BLP (5.15) can be transformed into a GLCP with linear objective function,

as seen before:

min eT ζ ´ eTu

w “ q ` u` pM ´ Iqζ

β “ e´ x

α “ q `Mζ

α, ζ, w, β, x, u ě 0

xTw “ uTβ “ 0.

(5.16)

As a last step in transforming the problem, in [19] Fernandes et al. introduce

another positive variable γ0 “ eT z ´ eTu that is equal to the objective function.

Furthermore they introduce a positive variable λ0 such that

β “ e´ x´ λ0e. (5.17)
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It follows that if λ0 ă 1 then xi ` βi ą 0, @i “ 1, . . . , n and

pβi ‰ 0^ ui “ 0q _ pxi ‰ 0^ wi “ 0q, @i “ 1, . . . , n. (5.18)

5.2 Theorem ([19] Thm. 2)

Let a reformulation be given by

w “ q ` u` pM ´ Iqζ

β “ e´ x´ λ0e

γ0 “ eTu´ eT ζ

α “ q `Mζ

α, ζ, w, β, γ0, x, u, λ0 ě 0

xTw “ uTβ “ λ0γ0 “ 0.

(5.19)

If the feasible set of the original LCP (5.2) is nonempty and (5.19) has a solution

pα˚, ζ˚, w˚, β˚, γ˚0 , x
˚, u˚, λ˚0q where λ˚0 ă 1, then pζ˚, w˚q is a solution of the LCP

(5.2). Further it holds: There exists at least one solution where λ˚0 ď 1.

A remark on the two different cases under the condition λ0 ă 1 has been noted

in (5.18). See [19] for the complete proof.

Theorem 5.2 prepares for the following idea: The constraint matrix connecting

the complementary variables pw, β, γ0q and px, u, λ0q is

¨

˚

˝

0 I 0

´I 0 ´e

0 eT 0

˛

‹

‚

(5.20)

and hence positive semi-definite. Thus the NLP approach in theorem 5.1 can be

applied. With the merit function it is suggested to efficiently generate a number

of solutions of the program, until a solution with λ0 ă 1 is found.

5.1.1. A Pivoting Algorithm for LPCCs

Another approach is presented in the monograph [18] by Fang et al. In their

approach, the simplex algorithm is extended to linear problems with linear com-
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plementarity constraints (LPCCs). The difference to general programs with linear

complementarity constraints (GLCPs) is, besides the linear objective function,

that for a number of indices there exist pairs of affine linear constraints which

are complementary to each other.

min
xPRn

fpxq

Ax ě b

0 ď Hx´ h K Gx´ g ě 0

(5.21)

One can imagine the algorithm as the simplex algorithm with a restriction, con-

cerning which index is allowed to leave the basis when performing a pivoting step.

This is done in a way that always keeps one of the complementary constraints in

the working set. Results are first presented under some beneficial assumptions:

• there are n linearly independent active constraints at every vertex and

• an initial feasible vertex is given.

In this case, since their problem is defined with inequality constraints, the dual

multipliers of the active constraints indicate whether there exists a feasible de-

scent direction at the current vertex. If the algorithm terminates at a vertex

where the minimal dual multiplier is non-negative, then this vertex is a strongly

stationary point. We recall that every local minimum is a strongly stationary

point of an LPCC under the MPEC-LICQ but the opposite is not the case in

general (thm. 2.5).

With this information it remains to investigate B-stationarity in the degenerate

case, i.e. if the MPEC-LICQ is not present. To handle this situation, Fang et

al. initially propose the application of an anticycling strategy which is similar to

Bland’s rule [18]. Since this method does not eliminate the problem completely,

it is necessary to use an additional cycling detection mechanism.

Another solution for this situation has been suggested in section 4.3 where Bland’s

rule is combined with a branching step, in case of, let us call it, interference of

the complementarity constraints.

The result presented in [18] is an algorithm that finds a local minimum or detects

infeasibility under certain conditions, and does not depend on the non-degeneracy

assumption.



5.2. The Method of Hu et al. 76

5.2. The Method of Hu et al.

Extending earlier work of Ibaraki [26, 27] and Jeroslow [28] the authors present

an integer-programming based algorithm for LPCCs. The main idea is based

on observations of the dual programs that are obtained by restricting all of the

complementarity constraints to either side. Under the assumption of certain con-

ditions, one can prove the existence of a large big-M type parameter that allows

the possibility to remodel the problem with 0-1 integer variables. However, the-

oretical results aim to keep the corresponding integer variables in the underlying

method without relying on these assumptions. The approach leads to a minimax

0-1 integer program that resembles the original problem. Finally the method uses

cut management and generation steps, for cuts that emerge from the dual linear

problems, and also includes concepts for feasibility recovery and cut sparsification

subroutines.

The main problem is defined in accordance to the monograph [24]:

min
px,yq

cTx` dTy

Ax`By ě f

0 ď y K pq `Nx`Myq ě 0,

(5.22)

where c P Rn, d, q P Rm and f are real vectors and A, B, M and N are real

matrices, all of suitable dimensions.

In order to show the complete picture, a formulation, with integer variables z P

t0, 1um and a (suggestively large) parameter θ as in [24], is introduced. The

program LP pθ, zq is defined as

min
px,yq

cTx` dTy

Ax`By ě f

Nx`My ` q ě 0

Nx`My ` q ď θz

y ě 0

y ď θpe´ zq.

(5.23)
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For the standard linear problem LP pθ, zq the dual program DLP pθ, zq always

exists and is given by:

max
λ,u˘,v

fTλ` qT pu` ´ u´q ´ θpzTu` ` pe´ zqTvq

ATλ´NT
pu` ´ u´q “ c

BTλ´MT
pu` ´ u´q ´ v ď d

λ, u˘, v ě 0.

(5.24)

In the following context the unboundedness of a minimization problem is iden-

tified with an objective value of ´8. In case of infeasibility the minimum is 8.

This is practiced in reverse analogy for the case of maximization.

5.3 Lemma

Let ZpLP pθqq be the set of z where LP pθ, zq is feasible. We note the following

relations between the three problems

minpLPCCq “ lim inf
θÑ8

min
z

minLP pθ, zq “ lim inf
θÑ8

min
zPZpLP pθ,zqq

maxDLP pθ, zq.

(5.25)

Proof For the first equation we note that the LPCC is infeasible if and only if

LP pθ, zq is infeasible for every θ and z. On the other hand if LPCC is unbounded,

then there exists a ray say r and corresponding integer vector zr, such that

lim infθÑ8 LP pθ, zrq goes to ´8.

For the second equation we note that minLP pθ, zq ‰ maxDLP pθ, zq if and only

if both programs are infeasible. �

As the following analysis shows, these problems are not necessarily needed to

develop the parameter free integer based approach. Instead we take a direct

approach with the following parameter free but z-dependent LP (as defined in

[24]):
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ϕpzq :“ max
λ,u˘,v

fTλ` qT pu` ´ u´q

ATλ´NT
pu` ´ u´q “ c

BTλ´MT
pu` ´ u´q ´ v ď d

λ, u˘, v ě 0

zTu` ` pe´ zqTv ď 0

(5.26)

ϕ0pzq :“ max
λ,u˘,v

fTλ` qT pu` ´ u´q

ATλ´NT
pu` ´ u´q “ 0

BTλ´MT
pu` ´ u´q ´ v ď 0

λ, u˘, v ě 0

zTu` ` pe´ zqTv ď 0

(5.27)

5.1 Proposition ([24] Prop. 2.2)

For any z P t0, 1um it holds that ϕ0pzq “ 0 if and only if the system

Ax`By ě f

pNx`My ` qqi “ 0 if zi “ 0

pNx`My ` qqi ě 0 if zi “ 1

yi “ 0 if zi “ 1

yi ě 0 if zi “ 0

(5.28)

is feasible.

Proof Every feasible point in p5.27q remains feasible under multiplication with

a positive factor. It follows that the feasible area of p5.27q is a convex cone with

the only possible extreme point 0. It follows that ϕ0pzq P t0,8u. The dual of

system p5.27q is

min
x,y,t

0

Ax`By ě f

tz ě q `Nx`My ě 0

tpe´ zq ě y ě 0

t ě 0

(5.29)
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where t is the positive dual variable that originates from the constraint zTu` `

pe ´ zqTv ď 0. We see that any point px0, y0q is feasible in (5.27) if and only

if there exists a feasible point px0, y0, tq in (5.29). With strong duality in linear

programming we can conclude the following points:

1. If ϕ0pzq “ 8 then (5.29) is infeasible (for every t ě 0).

2. If on the other hand (5.29) is infeasible, then (5.27) is either infeasible or

unbounded. And since the point 0 is always feasible the second of those

options follows.

3. It holds that ϕ0pzq “ 0 if and only if (5.29) is feasible.

Here the combination of point 1 and 2, or point 3 by itself, are sufficient to verify

the proposition. �

In other words proposition 5.1 establishes a connection between the cone of un-

bounded rays of (5.26), and the feasibility of one convex subset of the solution

space of the original LPCC (5.22). The nature of this combinatorial problem is

captured in the integer vector z where each variable zi directly corresponds to

branching on the i-th complementarity constraint.

5.3 Definition (z-leaf) The feasible area of (5.28) that depends on z is lz and

is denoted a leaf or the z-leaf of problem (5.22). The program that emerges from

minimizing cTx` dTy on the feasible area lz shall be denoted LP pzq.

Remark 5.2 For a given vector z the dual program of system p5.26q, which

defines ϕpzq, is LP pzq.

For the main algorithm there will be repeated evaluations of ϕpzq for different

integer vectors z by solving (5.26). We take a closer look at the constraint

zTu` ` pe ´ zqTv ď 0 that has been used in the definition of ϕpzq. The term

initially appeared in the objective function of DLP pθ, zq and has then moved to

the set of constraints. Since z, pe´ zq, u` and v are non-negative, the constraint

yields

u`i “ 0 if zi “ 1

vi “ 0 if zi “ 0.
(5.30)
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The variables u` and v are dual to the θ dependent constraints

Nx`My ` q ď θz and y ď θpe´ zq. (5.31)

in the system of LP pθ, zq. If our intention is that minz LP pθ, zq resembles a part

of the original LPCC (5.22) then the first of these constraints for index i is only

supposed to become active for zi “ 0, and the second is only supposed to become

active for zi “ 1. In all other cases the parameter θ has not been chosen big

enough. If they are not active then the corresponding duals are supposed to

become zero. The constraint zTu` ` pe´ zqTv ď 0 in (5.26) and (5.27) achieves

this effect.

Finally, in the same way as ϕ0 has been related to feasibility, ϕ can be related to

the leaves of the LPCC with remark 5.2:

1. If ϕpzq “ 8 then it follows that lz is infeasible.

2. If ϕpzq is finite then it is equal to the optimal value of LP pzq.

3. If ϕpzq “ ´8 (which means that (5.26) is infeasible) then with proposition

5.1 it follows that lz is infeasible if and only if ϕ0pzq “ 8, or else LP pzq is

unbounded.

The algorithm uses the results related to ϕpzq and ϕ0pzq. The main idea is

that every evaluation of ϕpzq yields either a feasible point for the LPCC, and

therefore an upper bound, or it yields an unbounded ray which means that lz is

infeasible. In the case where program (5.26) itself is infeasible, one can evaluate

ϕ0 to determine whether LP pzq is unbounded or infeasible. With the acquired

dual unbounded ray or point it is possible to introduce certain constraints on the

set of all z (which will later define the set Ẑwork Ď t0, 1um).

5.2.1. Extreme Point and Ray Cuts

Let us assume that ϕpz0q and ϕ0pz0q have been evaluated for an arbitrary but

fixed z0 P t0, 1u
m. Further assuming that the LPCC is not unbounded on lz0 ,

it follows that we have either found an extreme point pλ0, u
˘
0 , v0q of (5.26), or

an extreme ray of (5.27). These options correspond to a feasible point of the

LPCC or the infeasibility of lz respectively. In the second case it follows that
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pλ0, u
˘
0 , v0q ‰ 0. In order to ensure progress in the enumeration algorithm, con-

straints are introduced for the vector z that are provided by the following result.

5.4 Lemma ([24])

1. The point pλ, u˘, vq is feasible in (5.26) for z if and only if

ÿ

l:u`l ą0

zl `
ÿ

l:vlą0

p1´ zlq “ 0.
(5.32)

2. The ray pλ, u˘, vq ‰ 0 is feasible in (5.27) for z if and only if equation (5.32)

holds.

Assume that we are in the situation described above and have evaluated ϕpz0q

and ϕ0pz0q. Since every feasible z is an integer vector, the following constraint

can be deducted in both cases of lemma 5.4:

ÿ

l:u`l ą0

zl `
ÿ

l:vlą0

p1´ zlq ě 1.
(5.33)

5.2.2. Sparsification Procedure

The authors of [24] have developed a procedure that improves the cuts which can

be derived from lemma 5.4. A brief example illustrates the idea:

z1 ` z3 ` p1´ z6q ě 1

ô pz1 ` p1´ z6q ě 1 _ z3 ě 1q
(5.34)

After the integer cut has been branched on, a resulting subcut can be verified by

information from the surrounding solution process. Let the cut be given by

ÿ

iPI
zi `

ÿ

jPJ
p1´ zjq ě 1 (5.35)

where I and J are disjunct sets of indices. The cut can be sparsified by the

decomposition

ÿ

iPI1
zi `

ÿ

jPJ1
p1´ zjq ě 1 _

ÿ

iPI2
zi `

ÿ

jPJ2
p1´ zjq ě 1 (5.36)



5.2. The Method of Hu et al. 82

where I “ I1 Y I2 and I “ I1 Y I2. In order to verify the first subcut, a lower

bound is calculated for all the leaves which violate the subcut. The calculation

is based on a model derived from the primal formulation

LPrlx :“ min
x,y

cTx` dTy

Ax`By ě f

pNx`My ` qqi “ 0 if i P I1

pNx`My ` qqi ě 0 if i R I1

yi “ 0 if i P J1

yi ě 0 if i R J1.

(5.37)

If this lower bound is greater than or equal to the objective function value of the

best currently known solution, then every leaf that violates the subcut is not of

interest for the global solution algorithm. It follows that the subcut can safely

be introduced to the working set and replace the original parent cut.

The sparsification of the cuts is embedded in the overall algorithm. Assume that

UB is the currently known upper bound. After the solution of problem (5.37)

the following three cases may occur [24]:

1. If the lower bound LPrlx ě UB and is relatively close to UB then further

sparsification might not be very promising. All the leaves that violate the

cut yield no improvement on the upper bound. The cut is added to the

current working system (Zwork).
2. If the lower bound LPrlx ě UB and is even larger than UB ` δ for a given

constant parameter δ, then the cut is already useful but might be even more

useful if it is further sparsified. The cut is applied and marked for further

sparsification.

3. If the lower bound LPrlx ă UB then a feasibility recovery procedure is

started that can - if successful - yield a new feasible point for the LPCC and

therefore might yield an improvement of the upper bound. The feasibility

recovery procedure works with linear problems and can take advantage

of the particular structure of the problem instance. However, it is not

necessarily successful. If it fails then the cut can not yet be imposed and

its application is postponed. In this case it is added to a set Zwait.
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5.2.3. Main Algorithm

At this point we can state the main algorithm of [24] that finds a global solution

of the LPCC (5.22):

Step 0 (Initialization): Initialize the sets of generated cuts

Zwork “ Zwait “ H;

Initialize the solution space of z: Ẑwork “ t0, 1um;

Initialize the upper bound UB “ 8 and lower bound LB “ ´8;

Step 1 (Select z): Determine a vector z P Ẑwork. If Ẑwork “ H got to step

2, otherwise go to step 3;

Step 2 (Terminate): If no solution has been found until now, then the

LPCC is infeasible. Otherwise the solution with the lowest objective value

found so far is globally optimal - terminate;

Step 3 (Compute): Compute ϕpzq by solving (5.26). If ϕpzq is finite then

go to step 4a, if ϕpzq “ 8 go to step 4b, if ϕpzq “ ´8 go to step 4c;

Step 4a (Finite Solution): Decide on the following three cases:

1. If ϕpzq is relatively close to UB then add the corresponding point cut to

Zwork and continue;

2. If ϕpzq is reasonably larger then apply the sparsification procedure;

3. If ϕpzq ă UB then update UB Ð ϕpzq and continue;

Step 4b (Extreme Rays): The solution of (5.26) is an extreme ray.

Generate the cut and apply the sparsification procedure, update Zwork
and Zwait accordingly;

Step 4c (Unboundedness): The LPCC might be unbounded in this case.

Solve (5.27) to compute ϕ0pzq. If ϕ0pzq “ 0 then the problem is

unbounded. Else if ϕ0pzq “ 8 then go to step 4b;

Step 5 (Apply this if the lower bound decreases): Move the waiting cuts

with LPrlx ą UB to Zwork since they are valid by now. Apply the

sparsification procedure to the new cuts;

Algorithm 5: The Main IP-based Algorithm [24]
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This finishes the section as the main algorithm is complete. The presented re-

sults have been selected so the algorithm can be developed in a brief and direct

theoretical approach. The authors of [24] present some additional results that

add to the main idea, but are not necessarily needed to build the theoretical

foundation. They have conducted computational experiments in comparison to

the NEOS solvers FILTER and KNITRO (https://neos-server.org/neos/),

for more details on the experiments the reader is referred to the original article

[24]. The next section shows the application and adaptation of this concept to

the feasibility of GLCPs with convex objective function.

5.3. Adaptation and Application of the Method

In the previous section we have seen the main algorithm of [24]. Now an adap-

tation of the algorithm is used to generate feasible points in a branch-and-bound

solution process for a general problem with convex objective function and com-

plementary variables:

min
x
fpxq

Cx “ Cyy ` Cww ` Cζζ “ g

x “ py, w, ζq ě 0

wT ζ “ 0.

(5.38)

where Cy P Rkˆl, Cw P Rkˆm, Cζ P Rkˆm and C “ pCy, Cw, Cζq are real matrices,

g P Rk and f : Rn Ñ R convex and n “ l ` 2m. As seen in the previous section,

we can identify the set t0, 1um with the leaves of the feasible area.

Remark 5.3 (lz for the MPEC (5.38))

The leaf lz is defined in accordance to the previous section. For z P t0, 1um the

leaf lz of problem (5.38) is the set defined by the following constraints

Cx “ g

x “ py, w, ζq ě 0

wi “ 0 if zi “ 0

ζi “ 0 if zi “ 1.

(5.39)
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In order to investigate the feasibility of these systems we take a look at the dual

problem of (5.39) with an added constant objective function.

5.5 Lemma

1) The dual problem DLP pzq for (5.39) with constant objective function exists

and is given by

max gTλ

CT
y λ ď 0

pCT
wλqi ď 0 if zi “ 1

pCT
ζ λqi ď 0 if zi “ 0.

(5.40)

2) The optimal objective value of DLP pzq is either 8 or 0.

3) Any unbounded ray in (5.40) remains an unbounded ray if we change the offset

to the point 0.

Proof 1) The dual program exists since the primal program is an LP. We receive

the problem

max gTλ

CTλ`
ÿ

i: zi“0

µwp0, ei, 0q
T
`

ÿ

i: zi“1

µζp0, 0, eiq
T
“ 0 (5.41)

for unrestricted dual variables λ, µw and µζ . The dual variables µw and µζ are

redundant and so are the corresponding constraints. After elimination (5.40)

remains.

2) Any feasible point in (5.40) with positive objective value can be scaled infinitely

and remains feasible. Further it holds that the point 0 is feasible. Thus the

problem can only be unbounded, or the point 0 is optimal.

3) Follows from the arguments in 2). �

By normalizing the cone of unbounded rays of (5.40) with constant 1, we prepare

for the introduction of a heuristic objective function.

5.6 Lemma

For z P t0, 1um it holds that DLP pzq “ 8 and λ is an unbounded ray of (5.40) if

and only if there exists a number t ą 0 and a positive vector ν such that ν “ tλ

and ν satisfies the system
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gTν “ 1

CT
y ν ď 0

pCT
wνqi ď 0 if zi “ 1

pCζνqi ď 0 if zi “ 0.

(5.42)

Let us now assume that we have found z0 P t0, 1u
m such that DLP pz0q “ 8 and

a corresponding ray λ0 which means that the leaf lz0 is infeasible. We introduce

a cut which is constructed just as in the method of [24]:

CUT pλ0q :
ÿ

i:pCTwλ0qią0

zi `
ÿ

i:pCTζ λ0qią0

p1´ ziq ě 1. (5.43)

5.7 Lemma

1. Let λ0 be an unbounded ray in (5.40) for z0 P t0, 1u
m. It holds that λ0 is

an unbounded ray of (5.40) for z P t0, 1um if and only if:

z violates CUT pλ0q or (5.38) is infeasible.

Proof Let λ0 be an unbounded ray and without limitation we assume that λ0

satisfies (5.42). If pCT
wλ0qi ą 0 or pCT

ζ λ0qi ą 0 for one i P t1, . . . ,mu and z

violates CUT pλ0q, then this is equivalent to zi “ 0 for every i where pCT
wλ0qi ą 0,

and zi “ 1 for every i where pCT
ζ λ0qi ą 0. In consequence λ0 satisfies all the

constraints of (5.42) for z.

The other case is that CT
wλ ď 0 and CT

ζ λ ď 0 holds regardless of any row indices.

Then for any z P t0, 1um it follows that λ satisfies (5.42). This is the case when the

inequality of the cut cannot be satisfied. The consequence is that lz is infeasible

for any z and thus (5.38) is infeasible. �

Keeping the idea of sparsification in mind, we see that the problem of finding

a vector λ that generates a cut with few entries, needs to consider the indices i

where pCT
wλ0qi ą 0 and i where pCT

ζ λ0qi ą 0. In this sense the sparsest cut is

defined by the following MILP in relation to (5.42):
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min
λ,τ

2m
ÿ

j“1

τj

gTλ “ 1

CT
y λ ď 0

pCT
wλqi ď τiθ for i “ 1, . . . ,m

pCT
ζ λqi ď τm`iθ for i “ 1, . . . ,m

τ P t0, 1u2m

pCT
wλqi ď 0 if zi “ 1

pCT
ζ λqi ď 0 if zi “ 0

(5.44)

where θ is a large real number. There always exists θ0 such that for every θ ě θ0

the result does not depend on θ. To see this we note that the objective only

depends on τ , and τ is feasible if there exists λτ , such that pλτ , τq is feasible in

(5.44). Since the set of all τ P t0, 1u2m is finite, this yields a constant θ0.

Remark 5.4 We want to elaborate on program (5.44):

Let Cz “ pCy, pCwqti|zi“1u, pCζqti|zi“0uq be the matrix of columns which are avail-

able in the primal problem to present g as a positive linear combination. By

lemma 5.6, any feasible solution in program (5.44) proves that g does not lie

in the cone which is generated by these columns. Program (5.44) answers the

question of the maximal number of columns of C, that one can allow to be added

to Cz without letting g into the cone. A solution λ˚ of this problem can then be

translated to a constraint that forces at least one of the remaining columns to be

present in future calculations, i.e. a cut CUT pλ˚q is added to the set Zwork.

The use of system (5.44) in an algorithm is motivated by the following idea: Let

z be an integer vector that has been identified such that lz is infeasible. System

(5.44) generates a sparse cut that motivates the selection of another z and calls

the method again. If (5.44) turns out to be infeasible for some zk then the

corresponding leaf lzk is feasible as a result.

Since it might be relatively costly, solving a problem with integer variables τ is

avoided in later applications. Instead we solve the following linear problem that

does not necessarily yield the sparsest cut:
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min
λ,τ

2m
ÿ

j“1

τj

gTλ “ 1

CT
y λ ď 0

pCT
wλqi ď τi for i “ 1, . . . ,m

pCT
ζ λqi ď τm`i for i “ 1, . . . ,m

τ ě 0

pCT
wλqi ď 0 if zi “ 1

pCT
ζ λqi ď 0 if zi “ 0.

(5.45)

5.3.1. The Algorithm

This section presents an algorithm that uses the previous results. The environ-

ment for the task is any branch-and-bound algorithm that investigates a problem

(5.38) with a binary tree. The task is applied to a node in the tree where some

of the complementary variables have been fixed to either wi “ 0 or ζi “ 0. The

result is a point that is feasible in the subproblem that resembles the node.

We note that the general idea of the sparsification procedure of section 5.2.2 can

also be used for the general convex function f . Just as Hu et al. evaluate a

linear objective function to check on a sparser version of a cut, it is possible to

evaluate f in the corresponding relaxed problem. If the objective function value

of the cut violating relaxed problem is higher than the current upper bound in

a branch-and-bound step, then one can conclude that the sparser version of the

cut is eligible for the problem and the parent cut can be removed. In contrast to

the method of Hu et al. there will be no feasibility recovery approach after the

solution of the relaxed problem. Another aspect is that by using system (5.44)

or (5.45) the sparsification of the cut has already reached its target.

For two disjunct index sets Iw, Iζ Ă t1, . . . ,mu the node NpIw, Iζq is associated

with the problem
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min
x
fpxq

Cx “ g

wT ζ “ 0

x “ py, w, ζq ě 0

wi “ 0, @i P Iw

ζi “ 0, @i P Iz.

(5.46)

The relaxation of this problem without the complementarity constraints wT ζ “ 0

is denoted by NrelpIw, Iζq and provides a lower bound for the objective function

at the node NpIw, Iζq.

The set of the vectors z which are eligible for the node NpIw, Iζq shall be denoted

NzpIw, Iζq and is defined by

Nz :“ tz P t0, 1um|zi “ 0 if i P Iw, zi “ 1 if i P Iζu. (5.47)

Why this definition is reasonable can be seen most easily with the primal formu-

lation (5.39) or through the fact that these z P Nz correspond to the leaves lz

whose union forms the solution space of N .

We introduce a subroutine (algorithm 6) that finds a feasible point for the node

problem (5.46) or returns a message that marks the node for fathoming. We

assume the input of a point x0 when the task is started. This could be a point

that has been feasible for a parent node or some similar information. The point

is used to guide a heuristic in the selection of z. The resulting algorithm is

algorithm 6.

Remark 5.5 Since the set of valid z in the algorithm is finite, algorithm 6 ter-

minates with z P Nz such that lz is feasible or provides a certificate of infeasibility

for N . Termination occurs after solving a finite number of LPs.

5.3.2. Partial Feasibility

The algorithm can be extended in order to find a point that satisfies only some

of the complementarity constraints, but at potentially fewer iterations. Such a
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Step 0 (Initialization):
Let Zwork be a (possibly pre-filled) set of cuts for z P t0, 1um;

Let x̂ “ pŷ, ŵ, ζ̂q be a given point;
The solution space of all z which do not violate any of the cuts in Zwork is
Ẑwork Ď t0, 1um;
Initialize ẑ P t0, 1um such that ẑi “ 0 if ŵi “ 0 or else ẑi “ 1;
Let UB be the upper bound for the problem, UB “ 8 by default (this
bound is used in the sparsification procedure);

Step 1 (Select z): Pick z in Ẑwork XNz that minimizes
řm
i“1 |zi ´ ẑi|. If

Ẑwork XNz “ H then the node is marked ready for fathoming and return;

Step 2 (Sparse Cut): Solve system (5.45) for z. If the system is infeasible
go to Step 3a, else receive the solution λ and go to Step 3b;

Step 3a (Return): We were not able to generate an unbounded ray in the
dual system. Then convex linear system (5.39) is feasible and every
feasible point is also feasible in the node system (5.46);
Return;

Step 3b (Apply Cuts): Generate CUT pλq and possibly try sparsification
analogous to section 5.2.2 by solving relaxed (convex) problems, compare
their objective values to UB. Add the resulting cuts to Zwork and go to
Step 1;

Algorithm 6: A Bender’s like Algorithm for a Feasible Point of (5.46)

point is called partially feasible.

5.4 Definition (Partially Feasible Point) A partially feasible point for

the node problem NpIw, Iζq is a feasible point in NrelpIw, Iζq.

With this definition there is no guarantee that a partially feasible point will have

many beneficial properties. However, if it satisfies a subset of the complemen-

tarity constraints it might potentially be useful for further investigation. In the

following this will be used in a branch-and-bound context, but other methods

might be suitable to use this point as a startpoint for further calculations.

For a given vector z and an index set IC we establish a primal system (5.48) and

a corresponding dual system (5.49) that considers only feasibility of the primal.

This happens in analogy to the preceding theory of this section.
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min
x
fpxq

Cx “ g

x “ py, w, ζq ě 0

wi “ 0 if zi “ 0 and i R IC

ζi “ 0 if zi “ 1 and i R IC

(5.48)

The corresponding system for the generation of a dual unbounded ray in analogy

to (5.45) is

min
2m
ÿ

j“1

τj

gTλ “ 1

CT
y λ ď 0

pCT
wλqi ď τi for i “ 1, . . . ,m

pCζλqi ď τm`i for i “ 1, . . . ,m

τ ě 0

pCT
wλqi ď 0 if zi “ 1 or i P IC

pCζλqi ď 0 if zi “ 0 or i P IC.

(5.49)

The change to algorithm 6 happens mainly in Step 3b, the result is algorithm 7.

The extension of step 3b in algorithm 7 introduces dual constraints that are

equivalent to allowing the i-th column of Cw and Cζ both for the constraint matrix

of the primal system. As their presence in the problem with complementarity

constraints is mutually exclusive by the nature of the problem, these additional

constraints in the dual formulation correspond to a relaxation in their primal

counterpart. With this we reduce the complexity of the problem that originates

from its combinatorial nature, but receive only a partially feasible point in return.

Generally, this point yields neither an upper bound nor a lower bound for the

current node.

The focus on relaxation and reduction of iterations - in contrast to the feasibility

of the complementarity constraints - can be regulated by introducing or not

introducing the new constraints in step 3b of the algorithm. For computational
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Step 0 (Initialization):
Initialize the algorithm in the same way as algorithm 6;
Initialize a set of temporary constraints C “ H and a set of indices
IC “ H;

Step 1 (Select z): Pick z in Ẑwork XNz that minimizes
řm
i“1 |zi ´ ẑi|. If

Ẑwork XNz “ H then the node is marked ready for fathoming and return;

Step 2 (Sparse Cut): Solve system (5.49) with additional constraints C for
z. If the system is infeasible go to Step 3a, else receive the solution λ and
go to Step 3b;

Step 3a (Return): We were not able to generate an unbounded ray in the
dual system. Then convex linear system (5.48) is feasible and every
feasible point is also feasible in the node system (5.46) if C and IC are
empty. Otherwise the point might possibly violate the complementarity
constraints for the indices IC and is partially feasible;
Return;

Step 3b (Apply Cut): Generate CUT pλq and possibly try sparsification
analogous to section 5.2.2 by solving relaxed (convex) problems, compare
their objective values to UB. Add the resulting cuts to Zwork and go to
Step 1;

In Step 2 (Possibly add constraints to the set C): For a selected index
i P t1, . . . ,mu possibly add the two constraints pCT

wλqi ď 0 and
pCT

ζ λqi ď 0. In this case also add the selected index i to IC;

Algorithm 7: A Bender’s like Algorithm for a Partially Feasible Point of (5.46)

experiments an input parameter is added, a kind of threshold, that marks the

inner iteration from which the relaxation is started and limits the number of

indices which enter the set IC in one progression. This parameter will later be

referred to in chapter 8 where numerical results are evaluated.

5.3.3. Intermediate Computational Results

Subroutine (algorithm) 6 has been embedded in an exemplary branch-and-bound

algorithm that finds the global optimum of (5.38) in a finite number of steps.

The branch-and-bound algorithm works like the BBASET algorithm, and uses
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algorithm 6 as a subroutine to generate feasible points. Algorithm 6 on the

other hand manages the cuts in Zwork and the corresponding set of valid integer

solutions z which is Ẑwork. In case of sparsification as in the method of Hu et al.

there might also be a set Zwait. The algorithm has an input parameter Imax that

is the maximum number of iterations in one call of algorithm 6.

Computational results with a first implementation have shown that many itera-

tions might otherwise be needed, depending on the specific instance, of course. If

the maximum number of iterations is breached, then the binary tree is expanded

by most infeasible branching with the information at hand instead of BBASET.

The result is algorithm 8.

Test instances have been created from the reweighting bilevel problem in chapter

3. The objective function is quadratic and convex, and the number of comple-

mentarity constraints ranges from 40 to 80. For a detailed description of the

instances the reader is referred to chapter 8 where the selection of the data is

described. Algorithm 8 has been compared to the Cplex MIQP solver. Consider-

ing calculation times for these rather small instances, it has been observed that

Cplex takes a clear lead. Solver iterations and nodes have also been recorded.

The CASET subroutine in algorithm 8 is performed by a series of convex prob-

lems, as described in section 4.3, where the convex QPs are solved by Cplex.

The relaxed programs are solved with the same instance of Cplex. A solve call is

recorded for each convex problem. The integer and LP programs of subroutine

algorithm 6 are also performed by individual instances of Cplex. We note that

algorithm 8 is designed for a general convex objective function f . The results are

presented in table 5.1 and 5.2. The differences, marked by 4, in table 5.1 indi-

cate that the corresponding value of the Cplex experiment has been subtracted

in this column. The number of solve calls has been compared to the number of

nodes in the Cplex MIQP solver. Other columns that are not marked by 4 state

the original values. The results have been generated with an Intel-i7 CPU, Cplex

version 12.1, Gurobi version 7.0 on a Dell notebook, code in Visual-C# 2013.
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Step 0 (Initialization):
Initialize the set of generated cuts Zwork “ H;

Initialize the solution space of z: Ẑwork “ t0, 1um;
Initialize the upper bound UB “ 8 and lower bound LB “ ´8;
Initialize the set of active nodes N “ tNpH,Hqu;
Get an input parameter ε ą 0;
Get an input parameter Imax P NY t8u;

Step 1 (Termination): Update LB Ð mintLBpNq|N P N u;
If UB ´ LB ď ε or |N | “ 0 then terminate;

Step 2 (Select Node): Select the current node N “ NpIw, Izq from N and
remove it from the set;

If Nz X Ẑwork “ H then go to step 1;

Step 3 (Node Lower Bound): Solve the relaxed system Nrel;
if the system is infeasible then

Go to step 1;
else

Receive a solution xlb “ pylb, wlb, ζ lbq and a lower bound LBpNq for N ;
end
If UB ´ LBpNq ď ε then go to step 0;

Step 4 (CASET): Load a feasible point x0 from the closest parent node;
if x0 is feasible in the system of N then

Step 4a: Initialize CASET with x0;
Let the resulting point be x˚ and store it in memory for the node N ;
Update UB Ð mintUB, fpx˚qu;
Generate new nodes from the strongly stationary point x˚ as in
BBASET;

else
Step 4b: Call algorithm 6 with Zwork, UB and a maximum of Imax

iterations for the node N ;

On success: Receive z and update x0 Ð argminLP pzq;
Go to Step 4a;

On infeasibility: Infeasibility of N has been confirmed, go to step 1;

On maximum iterations reached (Most infeasible branching): Get the
most infeasible index j “ argmaxtwlbi ζ

lb
i | i “ 1, . . . ,mu;

Create new nodes N1 “ NpIw Y tju, Iζq and N2 “ NpIw, Iζ Y tjuq;
Update N Ð N Y tN1, N2u;

end

Step 5 (Loop): Go to Step 1;

Algorithm 8: A Branch-and-Bound Algorithm
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Solve Solver
Data Set s Obj. 4 Iterations Calls 4 Iterations 4 Time MIPs LPs Use MIPs?
Data Set 1 20 0 50 2 926 5,71 626 572 y
Data Set 1 20 0 1181 1110 48119 1,87 0 0 n
Data Set 1 40 0 364 770 61952 27,95 2770 1503 y
Data Set 1 40 0 1559 621 73712 8,45 0 0 n
Data Set 2 20 0 32 -26 -354 2,55 366 328 y
Data Set 2 20 0 113 35 102 0,15 0 0 n
Data Set 2 40 0 761 1657 61731 21,46 2597 1133 y
Data Set 2 40 0 1105 962 52345 4,55 0 0 n
Data Set 3 20 0 6 8 -34 0,76 163 152 y
Data Set 3 20 0 19 10 228 0,04 0 0 n
Data Set 3 40 0 101 196 6396 1,91 305 127 y
Data Set 3 40 0 197 120 6399 0,78 0 0 n
Data Set 4 20 0 14 5 27 0,08 14 0 y
Data Set 4 20 0 23 5 -176 0,05 0 0 n
Data Set 4 40 19E-4 86 503 10619 8,11 1128 654 y
Data Set 4 40 19E-4 135 34 2251 0,34 0 0 n

Table 5.1.: Performance of Algorithm 8 on a small Test Set

• s - size parameter of targets in the reweighting lower level problem, the

number of complementarity constraints is 2s (see section 8.3);

• Objective 4 - difference between the objective values of the solutions of

algorithm 8 and the Cplex MIQP solver;

• Iterations - iterations of algorithm 8;

• Solve Calls 4 - difference between number of calls to the convex QP solver

(Cplex) in algorithm 8 and Cplex MIQP nodes;

• Solver Iterations 4 - difference between number of inner iterations of the

QP solver in algorithm 8 and iterations in the Cplex MIQP solver;

• Time - time in seconds;

• MIPs/LPs - number of calls to the integer/LP solver in algorithm 6;

• Use MIP-Appr - whether subroutine 6 was used or only most infeasible

branching was performed. In the second case the maximal number of iter-

ations Imax in step 3b is set to 0.

It has been observed that in few cases the number of nodes in the binary tree

was reduced, which was a main goal of performing this method. Calculation

times for the MIP approach are generally higher, which might be due to the



5.3. Adaptation and Application of the Method 96

Data Set s Cplex Nodes Cplex Iterations Cplex Obj
Data Set 1 20 72 692 0,79447
Data Set 1 40 939 8045 0,59831
Data Set 2 20 80 924 1,5284
Data Set 2 40 147 2247 1,30826
Data Set 3 20 14 154 0,90093
Data Set 3 40 84 1193 0,68124
Data Set 4 20 21 302 1,30895
Data Set 4 40 104 1040 1,18504

Table 5.2.: Performance of the Cplex MIQP Solver on the same Test Set

fact that the implementation was only built for the purpose of this test and is

not highly optimized. Further experiments might be interesting when f is a

non-quadratic but convex objective function. This could be an interesting topic

for future research. Experiments in combination with a hybrid method have

been performed in chapter 8. The comparison with the Cplex solver shows the

performance of a highly optimized MIQP solver that uses a range of techniques,

including problem preprocessing, and remains preferable in terms of performance

in these instances.

5.3.4. Conclusion

The method of Hu et al. [24] has been explained in section 5.2. In section 5.3 the

method has been adapted and considered for the generation of feasible or partially

feasible points for a problem with linear complementarity constraints, and not

necessarily linear but convex objective function (system 5.38). Algorithm 6 and

7 generate the feasible or partially feasible points respectively in a finite number

of steps, and use a heuristic objective function in system (5.45) or (5.49). These

systems aim for the generation of sparse cuts for the solution space of the integer

vector z in a Bender’s decomposition-like fashion. The algorithms are designed

as subroutines for algorithm 8, which utilizes the idea in a traditional branch-

and-bound procedure for problem (5.38). The algorithm merges both concepts

and presents an extension of the original method.

For further reference, the application of these methods (especially algorithm 6)

will also be referred to as Bender’s or feasibility approach. The following chapter

investigates a concept for the generation of improved lower bounds in branch-

and-bound algorithms for MPECs, including MPECs such as (5.38).



6. Lower Bounds from Weak Duality

This chapter investigates the calculation of lower bounds that can be derived from

the Lagrange function. Lagrangian bounds have been the subject of research in

the field of global and discrete optimization [66, 23, 7, 17]. An algorithm with

Lagrangian bounds for programs with equilibrium constraints can be found in

[1]. The authors show that lower bounds can be calculated by a convex program

if the situation consists of variational inequality constraints with a positive semi-

definite constraint matrix [1, lemma 3.1].

The problems of this chapter satisfy no such conditions for the linear constraints,

and involve a number of positive complementary variables. We further develop

an algorithm that uses the branching techniques of the BBASET algorithm and

uses the new lower bounds. Let the problem P be defined as

min
x
fpxq

Ax “ b

gpxq ď 0

xixj “ 0 and xi, xj ě 0 @pi, jq PM Ď t1, . . . , nu2

(6.1)

where f : Rn Ñ R, A P Rlˆn and g : Rn Ñ Rk. The feasible set shall be denoted

by X and we assume that the minimum minpP q ą ´8 exists. Further, let f and

g be convex.

Define the subset XC :“ tx P X| xixj “ 0 and xi, xj ě 0 @pi, jq P Mu, and let

the Lagrange function L be defined only for the non-complementarity constraints

gpxq ď 0 and Ax “ b in the following sense:

Lpx, λ, νq :“ fpxq `
k
ÿ

i“1

λigipxq `
l
ÿ

j“1

νjpb´ Axqj

Lpλ, νq :“ inf
x
Lpx, λ, νq.

(6.2)
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If λ ě 0 it holds that

Lpx, λ, νq ď fpxq, @x P X, @ν P Rl. (6.3)

From this we conclude the following weak duality inequality:

Lpλ, νq ď inf
xPXC

Lpx, λ, νq ď inf
xPX

Lpx, λ, νq ď min
xPX

fpxq “ minpP q (6.4)

The lower bound infxPXC Lpx, λ, νq can be greater than the relaxation of the

complementarity constraints. The relaxed program for P is given by

min
x
fpxq

Ax “ b

gpxq ď 0

xi, xj ě 0, @pi, jq PM.

(6.5)

Example 6.1

min
w,ζě0

pw ´ 2q2 ` pζ ´ 2q2

w ` ζ “ 1

wζ “ 0

A strongly stationary point is p1, 0q with an objective value of 5.

Investigating optimality conditions at the point pw, ζq “ p1, 0q yields dual multi-

pliers pν, λw, λζq:

∇f “
˜

2pw ´ 2q

2pζ ´ 2q

¸

˜

´1

´4

¸

` ν

˜

1

1

¸

` λw

˜

1

0

¸

` λζ

˜

0

1

¸

“ 0.

(6.6)

One solution is pν, λw, λζq “ p4,´3, 0q.
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The Lagrange lower bound for ν “ 4 is:

inf
w,ζě0,wζ“0

Lpw, ζ, 4q “ inf
w,ζě0,wζ“0

pw ´ 2q2 ` pζ ´ 2q2 ` 4p1´ w ´ ζq “ 5 (6.7)

where the relaxed problem

minpw ´ 2q2 ` pζ ´ 2q2

w ` ζ “ 1

w, ζ ě 0

(6.8)

yields a solution of pw, ζq “ p0.5, 0.5q and a lower bound of 4.5.

A problem is that in many cases the value of infxPXC Lpx, λ, νq is ´8. The

following theoretical observations belong to the field of convex analysis, and aim

to characterize the situations where infxPXC Lpx, λ, νq is unbounded below.

6.2. Remarks on Convex Analysis

In this section we consider f to be any convex function. Later a connection will

be established where f is the Lagrange function that is used in calculating a lower

bound, as seen above. The results aim to characterize the existence of a ray of

infinite descent of the function Lpx, λ, νq in XC for fixed vectors λ and ν.

We assume that f : Rn Ñ R is a proper convex function in the sense that

Dx0 P Rn : fpx0q ă 8

and fpxq ą ´8, @x P Rn.
(6.9)

A direction that allows for unbounded descent lies in the cone of recession.

6.1 Definition (Direction of Recession, [61]) The vector s P Rn is called

a direction of recession of f if fpx ` tsq is a non-increasing function of t P R,

@x P Rn. The set of these directions 0`f is denoted the cone of recession.

The boundedness or unboundedness of such directions can be related to the ex-

istence of other directions of this kind. A number of results have already been
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established. A half-line tx ` td| t ě 0u (or the direction of it) is said to be

bounded or unbounded below, if fptx ` td| t ě 0uq is bounded or unbounded

below respectively.

6.1 Theorem ([61] 2.1)

1. If the half-line tx ` td| t ě 0u is unbounded below then so is any half-line

with direction d.

2. Any half-line with a direction in the relative interior of 0`f is unbounded

below.

3. If the direction is bounded below for one initial point then it is bounded

for any initial point.

Another theorem and following corollary limit the number of possible situations

for the boundary of 0`f .

Corollary 6.1 ([61] 2.2)

Let F be a face of 0`f , then

• either all s P F are directions of boundedness,

• or every s P rintpF q is a direction of unboundedness,

where rint denotes the relative interior.

Example 6.1 Let fpx, y, zq “ ´x be defined on R3. Then 0`f “ td| dx ě 0u.

It follow that there is exactly one face F “ td| dx “ 0u and the situation fits the

first case of corollary 6.1.

Further observations regard the existence of unbounded directions, beginning

with a lemma for the case of differentiable functions.

6.1 Lemma ([61] 2.3)

Let f : Rn Ñ R be convex and differentiable. Let d be a non-zero direction and

x P R, then it holds that

if lim
tÑ8

dT∇fpx` tdq ă 0

then d is an unbounded direction for every initial point.
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The following theorem establishes a tool for the existence and construction of an

unbounded direction for a convex function that is unbounded below.

6.2 Theorem

Let O be an open convex set and f be a proper convex function on O. Let pxnqnPN

be a sequence in O such that infnPN fpxnq “ ´8. Let x0 be any arbitrary point

in O. Then any accumulation point d of the directions dn “ pxn ´ x0q{}xn ´ x0}

is unbounded below if

lim sup
nÑ8

fpxnq

tanαn}xn ´ x0}
“ ´8 (6.10)

where αn denotes the angle between dn and d.

Proof For each element xn let rn be the corresponding half-line, such that

rnptq :“ x0 ` tpxn ´ x0q, t ą 0. (6.11)

Since the unit sphere around x0 is a compact set it follows that the sequence

dn “
xn´x0
}xn´x0}

has at least one accumulation point that shall be denoted d. Let r

be the corresponding half-line with direction d and initial point x0.

For a small number ε ą 0 define

Q :“ clptx | Dn P N : px´ x0q
Tdn “ 0 and }x´ x0} “ εuq (6.12)

where cl denotes the closure. Since ε can be chosen arbitrarily small we find ε,

such that Q lies in the open set O.

For any element xn of the sequence it follows that there exists a line segment ln

that connects xn and Q, ln Ă O and also intersects r. The point of intersection

shall be denoted by yn P r. The connecting point in Q shall be denoted qn and

we choose qn such that dTn pqn ´ x0q “ 0. Further, αn is the angle between rn and

r by definition.

Since Q is closed and bounded we find that f is bounded from above on Q. There

exists λ such that yn “ λxn ` p1´ λqqn and λ satisfies the relations
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Figure 6.1.: Geometric Argument in Theorem 6.2

sinαn “ p1´ λq}qn ´ x0}

cosαn “ λ}xn ´ x0}.
(6.13)

Using the convexity of f we conclude that

fpynq ď fpxnqλ` fpqnqp1´ λq

ď
fpxnq

tanαn}xn ´ x0} ` }qn ´ x0}
` fpqnq sinαn

}yn ´ x0}

qn ´ x0

.

(6.14)

Since yn P r it follows that r is unbounded below. �

Quadratic Problems

In the special case of quadratic functions the directions of recession are well

known. Let f be the quadratic function xTQx ` cTx where Q is positive semi-

definite. Further, let there be only linear constraints, which means we ignore the

constraint function g for now. Then the Lagrange function is

Lpx, νq “ xTQx` cTx`
ÿ

j

νjpb´ Axqj. (6.15)
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If a leaf l satisfies the conditions of corollary 6.2 then there exists a direction of

infinite descent d that satisfies the following system of equations:

Qd “ 0

dl “ 0

Ad “ 0

cTd` νTd “ ´1

d ě 0.

(6.16)

On the other hand: If and only if d and l exist then the lower bound for the dual

vector ν is ´8.

6.3. Application

Consider problem (6.1) and the lower bound infxPXC Lpx, λ, νq for fixed λ and ν

where λ ě 0. We further assume that f is convex in a convex open set around

the feasible area, without the complementarity constraints. In the context of a

branch-and-bound procedure that works on the complementary indices in M , a

fixation of xi “ 0 or xj “ 0 for each of the complementary pairs pi, jq P M shall

be denoted a leaf. This definition is equivalent to the definition of a leaf in the

previous chapter. The constraints are gathered in the equation xl “ 0 where xl

denotes the corresponding subvector of x.

Corollary 6.2

The Lagrange lower bound Lpλ, νq, for λ ě 0 and ν fixed, is ´8 if a leaf l exists,

and a sequence in the feasible area of l such that the requirements of theorem 6.2

are satisfied. Then a direction of infinite descent in the feasible area of l exists

(from any initial point).

The corollary follows directly from the construction of the direction in the proof

of the theorem, and the fact that the feasible area without the complementarity

constraints is a closed convex set.
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A Model Algorithm

The efficient solution to the problem

inf
xPXC

Lpx, λ, νq (6.17)

is the key to utilizing these lower bounds. We notice that if BBASET is ap-

plied to this problem class, the issue of finding a feasible point to reinitialize the

CASET algorithm is not an issue, since the only constraints involved are the

complementary variable constraints.

The idea of algorithm 9 shows how the techniques are involved in calculating a

lower bound for problem (6.1) in a branch-and-bound setup. The key idea of the

algorithm is

1. that the investigation of a binary branch-and-bound tree of the complemen-

tarity constraints with an algorithm like BBASET is performed to gain a

good upper bound;

2. the investigation of the same binary tree with (6.17) (for any dual vector

pλ, νq with λ ě 0) yields lower bounds;

3. the calculation of (6.17) can be performed by BBASET without the issue

of finding feasible points to reinitialize CASET;

4. if the objective function is quadratic, then (6.16) yields a criterion for the

cases where (6.17) takes on the value ´8.

For a set of indices

L Ď ti | Dj : pi, jq PM or pj, iq PMu (6.18)

we let NL be the node that is defined by the additional constraints xL “ 0.
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Step 0 (Initialization):

Initialize D “ H the set of dual vectors;

Initialize N “ tNHu, the node set containing the root node and select

NL “ NH;

Initialize UB “ 8 and LB “ ´8 the upper and lower bounds of the

problem;

Step 1 (CASET): Process the selected node NL i.e. by calculating a

strongly stationary point x˚ with CASET;

Update UB Ð mintUB, fpx˚qu;

Add the vector pλ˚, ν˚q of dual multipliers from the solution to D;

Apply the lower bound

LBpNLq :“ sup
pλ,νqPD

inf
xPXC ,xL“0

Lpx, λ, νq (6.19)

to the selected node;

Step 2 (Directions of Infinite Descent): Identify directions of infinite

descent of Lpx, λ, νq, pλ, νq P D on leaves l1, . . . , ln in NL;

Solve a number of corresponding convex problems Nl, update UB and

expand D in the progress, with the aim that LBpNLq ą ´8;

Calculate LBpNLq by applying BBASET for a subset of D;

Step 3 (Branching and Termination): Update LB as the minimum of

LBpNq, N P N ;

if fpx˚Lq ´ LBpNLq ą ε then
Branching: Generate a number of subnodes from NL (i.e. BBASET)

and add them to N ;

end

if UB ´ LB ă ε then

Terminate ;

else

Select another node NL from N and go to step 1;

end

Algorithm 9: A Branch-and-Bound Algorithm with Lower Bounds from Weak

Duality
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6.4. Conclusion

The solution of system (6.17) provides a new type of lower bound, and example

6.1 has shown that these lower bounds can be more restrictive than the ones

generated by relaxation of the complementarity constraints. They require the

solution of a problem with - but only with - complementarity constraints, and

they depend on the choice of dual multipliers ν and µ. The underlying binary

tree of this problem can be identified with the binary tree of the MPEC (6.1).

How or if these bounds can be applied efficiently in practise remains open for

discussion. One approach has been shown in algorithm 9. Their effectiveness

might be increased by an intelligent selection rule for the dual multipliers pµ, νq,

a more direct approach in relating and evaluating the information of both binary

trees and a reliable detection mechanism for directions of infinite descent.



7. A Hybrid branch-and-bound Algorithm for

Convex Programs with Linear

Complementarity Constraints

The previous chapters have developed a number of results that will be used to

establish a hybrid solver for MPECs with linear complementarity constraints and

convex objective function - especially for the reweighting bilevel problem (def.

3.8). The first section introduces an algorithmic concept that can in part be

seen as a geometrically extended version of the BBASET algorithm (that was

introduced in section 4.2). In relation to this first concept, we state the practical

method for a search phase of the hybrid algorithm that finds a node with low

objective value in the branch-and-bound tree. This is followed by the second

phase in section 7.6 where global optimality is investigated. How the feasibility

approach of chapter 5 and the Lagrangian lower bounds of chapter 6 are involved,

is shown in section 7.6.4.

7.1. An Algorithm for Non-Convex Polyhedral Sets

The idea of this recursive algorithm originates from the idea of walking around

the corners in a connected polyhedral set. This type of feasible set is inspired

by the structure of the solution space of the reweighting bilevel problem (def.

3.8). The algorithm is stated in three variants. A key aspect of the algorithm

is that it can mainly be performed by solving convex optimization programs to

acquire a global optimum, although the underlying feasible set is in general non-

convex. The general idea of the algorithm will be stated before the specialization

for the reweighting bilevel problem, and before the specialization for the case of

complementary variables.

Say we want to minimize a continuously differentiable convex function f on a set

107
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X that is defined by a union of polytopes

min
xPX

fpxq

X :“
č

iPI

ď

jPJi
Pij

Pij :“ tx P Rn
| akTij x ď bkij, k “ 1, . . . , kiju

(7.1)

where I and J are finite index sets. Note that the definition of X is related to

the graph of a polyhedral multifunction as discussed in section 3.3. We further

assume that we hold a method that provides us with a local optimum of f on

a convex set or with the information that the problem is unbounded, which is

identified with the minimal objective value of ´8. If the convex set is infeasible

then an optimal objective value of 8 is expected.

In the following a series of simple lemmas is presented. Let ι be an element from
Ś

iPI Ji and Xpιq be defined as

Xpιq :“
č

iPI
Piιi . (7.2)

7.1 Lemma

Let x˚ be a point feasible in X. It holds that x˚ is a local optimum of (7.1) if

and only if x˚ is a local optimum in Xpιq for each ι where x P Xpιq.

Proof We notice that the Abadie-CQ is always present in polyhedral sets. It

suffices to relate the existence of a descent direction between the two cases.

Consider a descent direction d such that x˚ ` εd lies in X for a number ε ą 0.

Then for every index i P I there exists εi ą 0 such that x˚ and x˚` εid lie in one

of the polytopes Pij for an index j P Ji. Since I is finite, the minimum of the

numbers εi grants the existence of a descent direction in Xpιq for an element ι.

On the other hand, for every descent direction in Xpιq Ď X it follows that this

descent direction is also present in X. �

The Abadie-CQ also yields the existence of KKT-multipliers at a local optimal

point. We introduce a definition that is an extension of A-stationarity for MPECs

with linear complementarity constraints to polyhedral sets.
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7.1 Definition (PA-Stationary) A point x in X is called PA-stationary (polyhedral-

alternative-stationary) for the problem minxPX f if x is a minimizer of

min fpxq

x P Xpιq
(7.3)

for an element ι P
Ś

iPI Ji.

The connection between PA-stationarity and A-stationarity will be discussed in

section 7.3 where we return to the problem class of MPECs.

7.2 Definition (Blocking Constraint) Let x˚ be a local optimum of (7.1).

A constraint akTij x ď bkij is denoted a blocking constraint if it has a non-zero

positive KKT multiplier.

We introduce some helpful notations:

Xzpi, jq :“
č

i1PI

ď

j1PJi1
pi1,j1q‰pi,jq

Pi1j1
(7.4)

If J ztju “ H then Xzpi, jq “ H.

And similarly

XzJi :“
č

i1PIztiu

ď

j1PJi1
Pi1j1

X X ptiu ˆ Jq :“ p
ď

j1PJ

Pij1q X pXzJiq.
(7.5)

7.2 Lemma

Let x˚ be a PA-stationary point of minxPX f . Let x̂ P X be a point with lower

objective value fpx̂q ă fpx˚q.

1. If X is connected then there exists a path p P X that connects x˚ and x̂,

i.e. X is path-connected.

2. For the gradient at x˚ it holds that ∇fpx˚q ‰ 0 and there exists at least

one blocking constraint aTx ď b (short for akTij x ď bkij) from the definition

of a polytope Pij that separates both points, i.e. aT x̂ ą b and aTx˚ “ b.
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3. The point x̂ R Pij. And if X is connected: p intersects the set Pij X Pij1 for

an index j1 P Jiztju.
4. If aTx ď b is the blocking constraint of point 2) then the element x̂ lies in

the set pXzpi, jqq X tx|aTx ě bu.

Proof

1) X can be expressed as finite union of polytopes:

X “
ď

ιP
Ś

iPI Ji
Xpιq. (7.6)

Since every polytope is path-connected and since each of them has at least one

point of intersection with the rest of them, it follows that each two polytopes can

be connected by joining a finite number of paths.

2) If the gradient was 0 then x˚ would be a global optimum since f is convex. The

KKT-conditions and non-zero gradient yield a non-zero multiplier that belongs

to a blocking constraint. Let the KKT-system be given by

∇fpx˚q “
l
ÿ

i“1

aiλi

λi ě 0

(7.7)

for the active constraint vectors ai. With the convexity of f it follows that

l
ÿ

i“1

λia
T
i px̂´ x

˚
q “ ∇fpx˚qT px̂´ x˚q ě fpx̂q ´ fpx˚q ą 0. (7.8)

Then there exists at least one index i where aTi px̂´ x
˚q ą 0 and

0 ă aTi px̂´ x
˚
q “ aTi x̂´ b. (7.9)

3) Follows from 2), the existence of the path follows from 1).

4) Follows from 2) and 3). �

We state a theorem before the corresponding algorithms. The proof follows fur-

ther below.
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7.1 Theorem

Assume the method that minimizes f on a convex set terminates after a finite

number of steps. Then the recursive algorithms 11, 12 and 13 terminate with a

global solution or unboundedness or detect infeasibility for the problem

min
xPX

fpxq (7.10)

in a finite number of steps under the assumption that f is continuously differen-

tiable, convex and additionally:

• For variant 1 (algorithm 11):
Ť

jPJ Pij is connected for every i P I.

• For variant 2 (algorithm 12): None.

• For variant 3 (algorithm 13): X is connected.

In the first step of the algorithm (algorithm 10) we find a local optimum. The

algorithm can be aborted prematurely, and in this case it will return a PA-

stationary point.

In the algorithms we use the following algorithmic syntax in the foreach-loops:

continue: The continue statement skips the remaining operations of the current

loop, and continues with the next element from the top of the loop.

break: The break statement exits the loop instantly, and continues with the

operations after the loop.

We note that the function }x ´ Pij} denotes the distance of x to a polytope Pij

and is a convex function. A point x is contained in Pij if and only if this distance

function is 0.

Figure 7.1 illustrates the recursive behavior of the algorithm in variant 1 (algo-

rithm 11) on an example with one index i, i.e. cardpIq “ 1.

Figure 7.2 illustrates the recursive behavior of the algorithm in variant 2 (algo-

rithm 12).

The third variant is applied to the reweighting bilevel problem. What makes it

most impracticable is the existence of a vector y which is used to initialize the

recursive call to the method. In section 7.2 a situation is investigated where y can

be acquired by solving an auxiliary problem. Figure 7.3 illustrates the recursive

behavior of the algorithm in variant 3 (algorithm 13).



7.1. An Algorithm for Non-Convex Polyhedral Sets 112

Initialize with a feasible point x P X;
Initialize UB P R, by default with 8;

Step 0 (Initialize): Let ι be the first element in
Ś

iPI in lexicographical
order such that x P Xpιq;
Set UB Ð mintfpxq, UBu;

Step 1 (Find a PA-stationary point or local optimum): Solve the problem

min fpx̃q

x̃ P Xpιq.
(7.11)

If the problem is unbounded then the MPEC is unbounded, update
UB Ð ´8 and terminate. Otherwise receive a solution x˚;
On premature termination: Identify the blocking constraints at x˚ and
return the PA-stationary point x˚;

if fpxq “ fpx˚q then
Find the next element ι1 in lexicographic order such that x P Xpι1q;
If ι1 exists then update ιÐ ι1 and go to step 1;
If ι1 does not exist then x is a local optimal point: Identify blocking
constraints at x and return x;

else
In this case fpx˚q ă fpxq. Update xÐ x˚, UB Ð mintfpx˚q, UBu
and go to step 0;

end

Algorithm 10: Abstract Search Algorithm Step 1 of all Variants



7.1. An Algorithm for Non-Convex Polyhedral Sets 113

Step 1 (Local Optimum or PA-stationary point): Find a local optimum or
PA-stationary point with algorithm 10;

Step 2 (Recursion);
foreach Polytope Pij that corresponds to a blocking constraint do

If Xzpi, jq “ H do nothing and continue with the next polytope;

foreach Connected component C “
Ť

j1PJC
Pij1 of

Ť

j1PJiztju Pij1 do

foreach Polytope Pij1, where j1 P JC do

Solve the auxiliary problem

min }x´ Pij1}

x P XzJi
(7.12)

by a recursive call with startpoint x˚;

if The minimum is 0 then
Let x1 be the solution;
Solve the problem

min fpxq

x P X X ptiu ˆ JCq
(7.13)

by a recursive call with startpoint x1 and update UB in the
process;
break (foreach Polytope Pij1 , where j1 P JC);

end

end

end
Replace Ji Ð tju;

end
Terminate this call to the algorithm;

Algorithm 11: Abstract Search Algorithm (Variant 1)
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-∇�

Figure 7.1.: Recursive Algorithm Variant 1

-∇�

Figure 7.2.: Recursive Algorithm Variant 2
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Step 1 (Local Optimum or PA-stationary point): Find a local optimum or
PA-stationary point with algorithm 10;

Step 2 (On Local Optimum):
foreach Blocking constraint aTx ď b that belongs to a polytope Pij do

Let X 1 “ pXzpi, jqq X tx|aTx ě bu;
If X 1 “ H do nothing and continue with the next blocking constraint;

foreach Index j1 in Jiztju do

Solve the auxiliary problem

min }x´ pPij1 X tx|a
Tx ě buq}

x P XzJi
(7.14)

by a recursive call with startpoint x˚;

if the minimum is 0 then
Then let x1 be the solution;
Solve the problem

min fpxq

x P X 1
(7.15)

by a recursive call with startpoint x1 and update UB in the
process;
Add the constraint aTx ď b to each polytope Pij where j P Ji.
break (foreach Index j1 in Jiztju);

end

end

end
Terminate this call to the algorithm;

Algorithm 12: Abstract Search Algorithm (Variant 2)
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Step 1 (Local Optimum or PA-stationary point): Find a local optimum or
PA-stationary point with algorithm 10;

Step 2 (On Local Optimum): foreach Polytope Pij that belongs to a
blocking constraint do

Let X 1 “ Xzpi, jq;
If X 1 “ H do nothing and continue with the next blocking constraint;
foreach Connected component C in X 1 X Pij do

Let y be any point in C;
Solve the problem

min fpxq

x P X 1

by a recursive call with startpoint y and update UB in the process;

end

end
Terminate this call to the algorithm;

Algorithm 13: Abstract Search Algorithm (Variant 3)

-∇�

Figure 7.3.: Recursive Algorithm Variant 3
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7.1.1. Algorithm Convergence

We prove theorem 7.1 that states the algorithm in all variants is finite under the

condition that f is continuously differentiable and convex and:

• For variant 1 (algorithm 11):
Ť

jPJ Pij is connected for every i P I.

• For variant 2 (algorithm 12): None.

• For variant 3 (algorithm 13): X is connected.

Proof

Step 1:

If not prematurely terminated, step 1 will then find a local optimum. This follows

from lemma 7.1. The procedure iterates through every ι to verify local optimality.

Note that the number of feasible ι is finite. If prematurely terminated then the

point is PA-stationary by definition 7.1. Note that iteration points in step 1 can

be connected by a path in X since every Xpιq is path connected.

Variant 1:

We use an inductive argument on the pairs pi, jq in the definition of the feasible

set X. Assume that any set Ji has only one element. Then algorithm 10 finds a

solution for the convex problem in the first iteration in step 1, and terminates in

step 2 since X 1 is always empty.

Now let us assume that the algorithm finds a global solution on any X 1 “ Xzpi, jq

or XzJi. It is required to prove that the same holds for X.

Step of induction: In step 1 the algorithm will find a PA-stationary point x˚

in a finite number of steps. Let x̂ be a point that lies in the same connected

component as x˚ of
Ť

jPJ Pij for every i P I, and assume that x̂ has a lower

objective value fpx̂q ă fpx˚q. By lemma 7.2 there exists a blocking constraint

and corresponding Pij such that x̂ R Pij. Then x̂ must lie in X 1 “ Xzpi, jq and

is contained in one of the connected components of the foreach loop in step 2.

Let this connected component be denoted by C. There exists Pij1 Ă C ‰ H that
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contains x̂ and since x̂ P X one of the corresponding auxiliary problems

min }x´ Pij1}

x P XzJi
(7.16)

will successfully return a feasible point in X X C with objective value 0 by as-

sumption of induction. The assumption of induction then yields the success of

the recursive call that investigates C

min fpxq

x P X X ptiu ˆ JCq
(7.17)

and returns a feasible point with objective value less than or equal to fpx̂q. A

finite number of steps is guaranteed by the fact that the foreach loops iterate

through a finite number of steps recursively calling the method. And by assump-

tion of induction these recursive calls only require a finite number of steps.

We also note that the entire set X 1 will be searched by the recursive calls by

assumption of induction. Therefore we can reduce the following recursive calls to

a search on X X Pij, which is handled by reassigning the set Ji in the operation

Ji Ð j of the algorithm.

Variant 2:

For the assumption of induction we note that step 1 also works if we introduce

an additional constraint to any of the polytopes:

Pij Ð tx|aTx ě bu X Pij (7.18)

since this does not change the basic assumption that each of them is defined by

a finite number of constraints.

Thus let us assume that the algorithm finds a global solution on any set X 1 “

pXzpi, jqqX tx| aTx ě bu or XzJi. It is required to prove that the same holds for

X.

Step of induction: Let x̂ be a feasible point in X that has a lower objective value

fpx̂q ă fpx˚q than x˚. Then there exists a blocking constraint aTx ě b from a

polytope Pij such that aT x̂ ą b by lemma 7.2.
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From lemma 7.2 it follows that x̂ lies in the set X 1 “ pXzpi, jqq X tx|aTx ě bu.

We note that
X 1
“ pXzJiq X

ď

j1PJiztju
pPij1 X tx| a

Tx ě buq. (7.19)

Therefore it holds that one of the corresponding auxiliary problems

min }x´ pPij1 X tx|a
Tx ě buq}

x P XzJi
(7.20)

from step 2 will lead to a feasible point in X 1. The algorithm succeeds in solving

the problem by assumption of induction.

Now since x̂ is in X 1, and the algorithm succeeds in the recursive call by assump-

tion of induction, it will return a point with objective value less than or equal to

fpx̂q which needed to be shown.

The statement that introduces the additional constraint to all polytopes is verified

by the fact that a recursive call on X 1 “ pXzpi, jqq X tx|aTx ě bu searches the

entire set X 1 by assumption of induction. This means for subsequent calculations

it is sufficient to search on tx|aTx ď bu.

Variant 3:

Assume that the algorithm returns a global optimum on the connected component

that contains the start point of the algorithm on any set pXzJiqXPij or Xzpi, jq.

Step of induction: Let x˚ be a local optimum and x̂ be a point with lower objective

value and aTx ě b a blocking constraint of Pij.

Lemma 7.2 yields the existence of a path that connects x and x̂, and we notice

that x̂ cannot lie in Pij. The lemma further yields that the connecting path must

intersect one of the connected components C of X 1 X Pij. The set C and x̂ need

to lie in the same connected component of X 1 “ Xzpi, jq, it follows that the

recursive call in step 2 successfully yields a point with objective value lower than

or equal to fpx̂q by assumption of induction. �
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7.2. Application to the Reweighting Bilevel Problem

For the application to the reweighting bilevel problem, the feasible set X is given

by

X “
č

i“1,...,m

pPi` Y Pi´ Y Pi0q

Pi` “ tλ P Rm
| λmin ď λi ď λmax and pb´ Aλqi ě 0u

Pi´ “ tλ P Rm
| ´ λmax ď λi ď ´λmin and pb´ Aλqi ď 0u

Pi0 “ tλ P Rm
| ´ λmax ď λi ď λmax and pb´ Aλqi ď 0 and pb´ Aλqi ě 0u

(7.21)

where 0 ă λmin ă λmax are two given constants, A is a real matrix and b is a real

vector. System (7.21) is equivalent to the feasible set in (3.54) with a slightly

changed notation.

The following analysis investigates the application of the recursive algorithm 13

(variant 3). The algorithm can readily be applied if we find a way to determine

the connected components C and corresponding points y P C as in the statement

of the algorithm.

Instead of Xzpi, jq defined in (7.4) we write Xzpi`q or Xzpi´q or Xzpi0q for the

corresponding polytopes in (7.21). From the definitions it follows that

Pi` X pXzpi`qq Ď tλ | pb´ Aλqi “ 0, λi ě λminu “: αpi`q

Pi´ X pXzpi´qq Ď tλ | pb´ Aλqi “ 0, λi ď ´λminu “: αpi´q

Pi0 X pXzpi0qq Ď tλ | pb´ Aλqi “ 0, λi ě λminu
looooooooooooooooooomooooooooooooooooooon

“:αpi0`q

Ytλ | pb´ Aλqi “ 0, λi ď ´λminu
loooooooooooooooooooomoooooooooooooooooooon

“:αpi0´q

.

(7.22)

We assume that X is connected as has been proven for the reweighting bilevel

problem (thm. 3.3). Algorithm 13 (variant 3) requires a point y in each connected

component C of

pXzpi, jqq X Pij. (7.23)

Temporary Assumption: There is only one such connected component C in

algorithm 13 for each polytope Pi` or Pi´ that belongs to a blocking constraint

and there are only two connected components C for each polytope Pi0. This
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assumption is only considered within this section.

In this case we can find y P C by solving an auxiliary problem

min
λ
}λ´ αpiεq}

λ P X
(7.24)

where ε P t`,´, 0`, 0´u is chosen according to Pij P tPi`, Pi´, Pi0u.

An investigation on the reweighting bilevel instances has shown that the tempo-

rary assumption is often satisfied. However, the investigation has also found an

example where this is not the case. Thus application of algorithm 13 (variant 3)

with the temporary assumption only presents a heuristic solution method.

Figure 7.4 and 7.5 show a visualization of the feasible set of the reweighting bilevel

problem for two exemplary instances. Each line presents an option planning

target that corresponds to the set

tx | pb´ Axqi “ 0u (7.25)

in the formulation of the reweighting bilevel problem in (3.42).

In both figures the polyhedral property of the multifunction of the reweighting

bilevel problem is visible (see thm. 3.3).

Figure 7.5 is a visualization of between 3000 and 4000 experiments. Each dot

presents a result of the reweighting problem for an element γ (see def. 3.1). The

figure shows that the temporary assumption is not necessarily satisfied.
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Figure 7.4.: Feasible Set of an Exemplary Reweighting Bilevel Problem with x P
R2

���

���

���

Figure 7.5.: Feasible Set of an Exemplary Reweighting Bilevel Problem with Two
Connected Components for pXzpi`qq X Pi`
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7.3. Hybrid Algorithm - Search Phase

In this section a hybrid branch-and-bound algorithm is developed that incorpo-

rates different solution strategies. We begin with a search phase of the hybrid

algorithm that uses elements of the recursive algorithms of the preceding sections

and elements of the CASET and BBASET algorithm (chapter 4).

The MPEC is given by

min
x
fpxq

Cx “ Cyy ` Cww ` Cζζ “ g

x “ py, w, ζq ě 0

wT ζ “ 0.

(7.26)

where Cy P Rkˆl, Cw P Rkˆm, Cζ P Rkˆm and C “ pCy, Cw, Cζq are real matrices,

g P Rk and f : Rn Ñ R are convex and n “ l ` 2m.

A reformulation of the feasible area allows the possibility to achieve a represen-

tation that shows the feasible set Xp as in the preceding sections in (7.1).

Xp :“ tx| Cx “ g, x ě 0u
č

i“1,...,m

ptx| wi ď 0, ζi “ 0u Y tx| wi “ 0, ζi ď 0uq

(7.27)

We note some equivalences that originate directly from the corresponding defini-

tions.

Remark 7.1 A point is A-stationary in the MPEC (7.26) if and only if the point

is PA-stationary in minxPXp fpxq.

Remark 7.2 Let x˚ be an A-stationary point for the MPEC (7.26). A blocking

constraint in the formulation Xp (def. 7.2) corresponds directly to a negative

multiplier in the CASET algorithm performed by a chain of convex programs

(alg. 4).

We conclude the series of remarks by relating the recursive problem calls in

algorithm 11 (variant 1) to the BBASET algorithm.
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Remark 7.3 Let x˚ be an PA-stationary point for minxPXp fpxq in algorithm 11

(variant 1) with

Xppιq “ tx| Cx “ g, x ě 0u
č

i“Lζ

tx| wi ď 0, ζi “ 0u
č

i“Lw

tx| wi “ 0, ζi ď 0u

(7.28)

for two disjunct index sets Lw Y Lζ “ t1, . . . ,mu.

If the blocking constraints are ordered by their dual multipliers beginning with

the largest, then the recursive problem calls in step 2 of algorithm 11 (variant 1)

correspond directly to the nodes created by the BBASET algorithm with remark

4.2 for the MPEC (7.26) at the A-stationary point x˚ with Lw and Lζ as in the

definition of A-stationarity with theorem 4.5.

7.3.1. Implementation

For the purpose of implementation a modification of algorithm 11 has been se-

lected. In order to increase the swiftness of the search method we will not recur-

sively dive into the algorithm deeper than the first recursive layer. This means

that inside the auxiliary problems the method will not be called again with an-

other objective function. In the auxiliary problem, obstructing complementary

constraints are identified and relaxed instead. The algorithm also uses the calcu-

lation of lower bounds, gradient based constraints and most infeasible branching.

It is not performed in a recursive manner, instead a branch-and-bound approach

is shown that allows to select the next subproblem. Numerical results are pre-

sented in the following chapter.

In chapter 5 we have already seen the concept of partial feasibility in the sense

that x is partially feasible for problem (7.26) if there exist disjunct sets Iw and

Iζ Ď t1, . . . ,mu such that x is feasible for the problem

min
y,w,ζ

fpy, w, ζq

Cx “ g

wiζi “ 0, @i P Iw Y Iζ

x “ py, w, ζq ě 0.

(7.29)

Related to a single node, let the convex problem P pf 1, Iw, Iζ , If q be defined as
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min
y,w,ζ

f 1py, w, ζq

Cx “ g

wi “ 0, @i P Iw

ζi “ 0, @i P Iζ

wiζi “ 0, @i R If

x “ py, w, ζq ě 0.

(7.30)

The function denoted f 1 in the node problem can be either f itself or another

convex objective function. We introduce the following notation:

A node N with corresponding problem P pf 1, Iw, Iζ , If q is denoted

• type 1 if f “ f 1;

• type 2 if f ‰ f 1.

Type 2 nodes are not an ordinary part of the branch-and-bound tree, but rep-

resent auxiliary problems that are solved within the algorithm. They use in-

formation from the surrounding solution process, which encourages the given

presentation.

The CASET algorithm on P pf 1, Iw, Iζ , If q is performed as presented in section

4.3 - by solving a chain of convex problems:

min
y,w,ζ

f 1py, w, ζq

Cx “ g

wi “ 0, @i P Iw Y Lw

ζi “ 0, @i P Iζ Y Lζ

x “ py, w, ζq ě 0

(7.31)

where Lw and Lζ are a disjunct partitioning of the set t1, . . . ,muzpIw Y Iζ Y If q.

At the creation of a new node, these working sets are copied from the current

parent node. Double entries with the sets Iw, Iζ or If are removed so that Lw

and Lζ remain well defined.

A single call to the CASET algorithm will be denoted successful if the initial

program (7.31) is feasible. In this case the CASET algorithm will terminate with
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an A-stationary point or detect that the given node problem P pf 1, Iw, Iζ , If q is

unbounded.

A lower bound for problem (7.30) can be calculated by relaxing the complemen-

tarity constraints and solving the convex program

min
y,w,ζ

f 1py, w, ζq

Cx “ g

wi “ 0, @i P Iw

ζi “ 0, @i P Iζ

x “ py, w, ζq ě 0.

(7.32)

Algorithm 14 presents the search procedure.

Nodes from an A-stationary Point

New nodes from an A-stationary point of the MPEC are created as in the

BBASET algorithm (remark 4.2). Algorithm 15 shows this procedure. In case of

a type 2 node the action depends on the objective value:

1) If the objective value vanishes, then the point is complementarity feasible in

the corresponding index of the variable that has been minimized in the objective

function. The objective function f 1 is either wi or ζi for an index i P If . The

constraint fulfillment wi “ 0 or ζi “ 0 has been achieved, and the index is added

to the corresponding set Iw or Iζ respectively.

2) If the objective value is greater than zero, then the blocking complementary

index with most negative multiplier is identified and relaxed.

Algorithm 16 shows the processing of type 2 nodes. The current node is P pf 1, Iw, Iζ , If q

and the sets Lw and Lζ are the working indices of the CASET algorithm. Let

L´w Ď Lw and L´ζ Ď Lζ be the indices with negative dual multiplier.
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Initialize with a feasible point py, w, ζq;
Initialize Lw “ ti| wi “ 0u and Lζ “ ti| ζi “ 0^ wi ‰ 0u;
Initialize Iw “ Iζ “ If “ H;
Initialize f 1 “ f and P “ P pf 1, Iw, Iζ , If q;
Initialize the upper bound with UB “ `8;
Calculate a lower bound LBpP q for P and set LB Ð LBpP q;

while the number of nodes left ą 0 and LB ă UB do

Run CASET on the selected node P (alg. 4);

if run successful then
Let py˚, w˚, ζ˚q be the solution;
if node is of type 1 then

Decide whether to add a constraint based on the objective
gradient (sec. 7.5);

if w˚T ζ˚ “ 0 then

Update UB Ð mintUB, fpy˚, w˚, ζ˚qu;
Call subroutine - new branches from an A-stationary point
- algorithm 15;

else

Select an index i where wizi ą 0;
Add new nodes of type 1: P1 “ P pf, Iw Y tiu, Iζ , Ifztiuq and
P2 “ P pf, Iw, Iζ Y tiu, Ifztiuq;
Calculate lower bounds LBpP1q and LBpP2q;

end

else

Call subroutine - handle type 2 node - algorithm 16;

end

else

if Lw Y Lζ “ H the node is infeasible - fathom;
else select a range of indices J Ď Lw Y Lζ and update
P Ð P pg, Iw, Iz, If Y Jq;

end

Fathom nodes P 1 if their lower bound indicates no possible progress,
i.e. if LBpP 1q ě UB;
Select the next live node P Ð P 1;
Update LB to the minimum lower bound of all live nodes;

end
Algorithm 14: Hybrid Algorithm - Phase 1 (Search)
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Decide whether to add type 1 or type 2 nodes;
Let Iw, Iζ and If denote the index sets of the current node;

for j P L´w Y L
´
ζ do

if decided on type 1 then

if j P L´w add a type 1 node P 1 “ P pf, Iw, Iζ Y tju, If q, update
Iw Ð Iw Y tju;
else if j P L´ζ add a type 1 node P 1 “ P pf, Iw Y tju, Iζ , If q, update

Iζ Ð Iζ Y tju;

Calculate a lower bound LBpP 1q and update LBpP q;

else

if j P L´w add a type 2 node P 1 “ P pf 1, Iw, Iζ , If Y tjuq, f
1 “ ζj,

update Iw Ð Iw Y tju;
else if j P L´ζ add a type 2 node P 1 “ P pf 1, Iw, Iζ , If Y tjuq,

f 1 “ wj, update Iζ Ð Iζ Y tju;

Calculate a lower bound LBpP 1q and update LBpP q;

end
if LBpP q ą UB then

Terminate the subroutine;

end

end
Algorithm 15: New Branches from an A-Stationary Point

The current node is P pf 1, Iw, Iζ , If q;

if the objective value is ą 0 then

Find j P L´w Y L
´
ζ where the dual multiplier λj ă 0 is minimal;

if this is not possible then the node is fathomed;
else update P Ð P pf 1, Iw, Iζ , If Y tjuq;

else

Take wi or ζi from the objective function f 1 and add the corresponding
index i to Iw or Iζ respectively;
Remove i from If ;
With Iw or Iζ updated, add the new node P pf, Iw, Iζ , If q of type 1;

end
Algorithm 16: Handling of Type 2 Nodes
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7.2 Theorem

If the CASET algorithm in algorithm 14 always terminates in a finite number of

steps, then algorithm 14 will find a global optimum for the MPEC (7.26) in a

finite number of steps if it exists.

Proof An overview of the algorithm is presented in the diagram of figure 7.6.

Assume that a global optimum for the MPEC (7.26) exists. Every leaf P “

P pf 1, Iw, Iζ , If q of the branch-and-bound tree meets one of the following situa-

tions:

• The lower bound LBpP q ě UB yields no further progress, thus the node

can be fathomed;

• The CASET algorithm has determined an A-stationary point of P and UB

has been updated. Then subroutine algorithm 15 creates new nodes as in

the BBASET algorithm (rem. 4.2);

• The CASET algorithm is unsuccessful and there is no complementarity

index that can be relaxed, i.e. Lw “ Lζ “ H. It follows that IwY Iζ Y If “

t1, . . . ,mu and the feasible set of the node problem (7.30) equals the set of

the relaxed problem (7.32) and both are empty.

In the type 2 nodes the algorithm releases complementarity indices by adding

them to If until the desired type 1 node is achieved or the infeasibility of this

branch is proven. Every type 2 node P pwj, Iw, Iζ , If q will eventually become a

type 1 node P pf, Iw Y tju, Iζ , I
1
f q, for some set I 1f , or determine that the later

is infeasible. And every type 2 node P pζj, Iw, Iζ , If q will eventually become a

type 1 node P pf, Iw, Iζ Y tju, I
1
f q, for some set I 1f , or determine that the later is

infeasible. The type 1 nodes, or their index sets Iw and Iζ , are the nodes that

are generated in the BBASET algorithm. Introducing type 2 nodes only delays

the investigation of the corresponding type 1 nodes, in order to find a feasible

constellation pLw, Lζ , If q for the CASET algorithm to start with.

It follows that algorithm 14 reproduces the branching structure of the BBASET

algorithm which finds a global optimum. �

Remark 7.4 Algorithm 14 can easily be modified to handle possibly unbounded

or infeasible problems. Assume a node P pf, Iw, Iζ , If q is found unbounded by
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Figure 7.6.: Simplified Diagram of Algorithm 14

the CASET algorithm. Then the MPEC is unbounded if If is empty, or else

we perform a branching step by generating nodes P1pf, Iw Y tiu, Iζ , Ifztiuq and

P2pf, Iw, Iζ Y tiu, Ifztiuq for an index i P If .

7.4. Disjunctive Cuts

A lower bound of P pf 1, Iw, Iζ , If q can be calculated by solving problem (7.32),

i.e. by relaxing the complementarity constraints for all indices i that have not

been fixed to wi “ 0 or zi “ 0 yet.

Disjunctive cuts have been investigated some time ago, see e.g. [65]. In [34]

J. Júdice et al. present disjunctive cuts that are generated straight from basic

solutions of the constraint system (section 4.2.3).

Another alternative are disjunctive cuts that are generated by a linear program.

The concept can be seen in [3] for 0-1 mixed integer programming, and is orig-

inally designed to work for a union of polytopes. The convex hull of this union

is then viewed as a relaxation of the feasible area, just as can be practiced with

complementarity constraints. The following shows the cut generating LP for the
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special case of positive complementary variables.

Let x̄ be a feasible point of the relaxed program (7.32) where the i-th index

violates a complementarity constraint: w̄iζ̄i ą 0. The cut generation LP is an

adaption of the cut generation LP in [3] and is of the form

max
uw,uζ ,vw,vζ

β ´ αT x̄

α ě CTuw ´ vwewi

α ě CTuζ ´ vζeζi

β ď uTwg

β ď uTζ g

´1 ď puwqj ď 1 @j “ 1, . . . , k

´1 ď puζqj ď 1 @j “ 1, . . . , k

(7.33)

where ewi and eζi denote the unit vectors corresponding to x “ py, w, ζq, where

the pdimpyq` iq-th or the pdimpyq`m` iq-th component are 1 respectively. The

system contains decision variables uw, uζ , vw and vζ . We note that vw and vζ

may be eliminated along with the corresponding constraints in which they are

used.

If the objective value of pα, βq in (7.33) is greater than zero we receive a cut

αTx ě β that excludes x̄. The bounds on uw and uζ restrict the feasible cone to

a polytope. These constraints have been suggested in the original article [3] to

avoid unbounded solutions.

7.3 Lemma

The generated cuts of (7.33) are globally valid for the MPEC (7.26).

Proof Let pα, βq be a cut generated from 7.33. Let us assume that x “ py, w, ζq

is feasible for the system in the MPEC (7.26). Thus it holds that wi “ 0 or ζi “ 0

for i “ 1, . . . ,m. We conclude that either

αTx ě pCTuwq
Tx´ pvwewiq

Tx “ uTwg ě β, (7.34)
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is satisfied or else it holds that

αTx ě pCTuζq
Tx´ pvζeζiq

Tx “ uTζ g ě β. (7.35)

�

The authors also emphasize the importance of cut strengthening. For further

information we refer the reader to the original article [3].

7.5. Constraints based on the Objective Function

Gradient

The convexity of the objective function allows the possibilty to use its lineariza-

tion at a given point as lower bound in the solution process. In the search phase

of the hybrid algorithm, these linearizations are used in the form of additional

constraints.

For a given point x0 “ py, w, ζq it holds that

@x : fpxq ě ∇fpx0q
T
px´ x0q ` fpx0q. (7.36)

Assuming we are only interested in points x with an objective value fpxq ď UB,

it holds that

UB ě fpxq ě ∇fpx0q
T
px´ x0q ` fpx0q (7.37)

which leads to the constraint

∇fpx0q
Tx ď ∇fpx0q

Tx0 ` UB ´ fpx0q. (7.38)

Some of the investigated branches of the binary search tree may be identified

as infeasible after the application of such constraints. The more common case,

however, is that the branch is not completely infeasible, but initialization of the

CASET algorithm on this branch fails. The working sets Lw and Lζ are part of

this problem, since they are not updated with the introduction of new constraints.
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In order to confirm the infeasibility of the node (which is frequently the case in

practice) we need to solve a general linear complementarity problem, which by

itself is still NP-hard (see e.g. [30]).

In the search phase, an investment of too many resources for a complete search

that investigates every branch is not desired. It is preferred to explore many

solutions that are easily accessible. In the current implementation a priority

system is used which marks individual nodes with a number that supposedly

indicates whether they are more or less promising to solve. Nodes where the

CASET algorithm fails in its first iteration receive a low priority value, and can

be postponed until further investigation.

We note that these constraints can greatly compromise the numerical stability

and speed of a convex solver depending on the given constraint system of the

MPEC. They can also lead to a larger branch-and-bound tree. In the related

experiments they have only been used in few iterations of the search phase.

7.6. Hybrid Algorithm - Global Optimality

The second phase of the hybrid algorithm focuses on the proof of global opti-

mality. Experiments have shown that application of the search phase tends to

create a large number of nodes in a short time. The second phase avoids this by

focusing on the lower bounds when it comes to expansion of the search tree.

7.6.1. Branching Strategies

The selection of the branching variable in integer programs, or branching index

for complementarity constraints, naturally has a large impact on the size of the

search tree, and therefore on the performance of a branch-and-bound algorithm.

Selecting the index with the largest feasibility violation from the solution of the

relaxed problem is just one of them. Many techniques have already been estab-

lished for different types of mixed integer programs, see e.g. [6].

Notation: Let Ic be the candidate set of all branching variables.

We review some of the branching strategies for integer programs in brief:
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• Selecting

argmaxiPIctminpxi ´ txiu, rxis´ xiqu (7.39)

is called most fractional branching.

• Strong branching computes lower bounds for all choices in Ic. The increase

in the lower bound (on a minimization problem) is monitored for each

variable in order to pick the one with the largest increase.

• Pseudocost branching tries to estimate the lower bound increase by logging

the effects of past decisions and estimating the current one.

A look at the website of the Gurobi optimizer [71] suggests that possible technical

details in branch-and-bound algorithms are of arbitrary complexity:

In addition (. . . ), a modern MIP solver will include a long list of

additional techniques. A few examples include sophisticated branch

variable selection techniques, node presolve, symmetry detection, and

disjoint subtree detection. The goal in most cases is to limit the size

of the branch-and-bound tree that must be explored.

Another aspect of a branch-and-bound algorithm is the selection of the next node

to process. Different strategies are possible and three of the main principles are

• Depth first - selecting a deepest live node in the branch-and-bound tree.

The depth of a node increases with every branching choice that has been

made.

• Best first - selecting a node that has a minimal lower bound (in a mini-

mization problem).

• Breadth first - the nodes of the current depth-level in the search tree are

explored before advancing to the next level.

The depth first strategy is often used to generate an upper bound early in the

process. The best bound strategy can effectively be used to prove the optimality

of a given solution. So called diving strategies can be used as a combination of

different concepts where qualities are utilized as needed. For more details on this

topic see e.g. [56].
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For further considerations if not stated differently, we assume that the depth first

strategy is chosen for the selection of the next node.

Most Infeasible Branching

For the sake of completeness, the algorithm that solves a program with linear

complementarity constraints by most infeasible branching is stated in application

to a node problem P pf, I0
w, I

0
ζ , I

0
f q. The result is algorithm 17.

The algorithm returns with a globally optimal solution of P pf, I0
w, I

0
ζ , I

0
f q with

respect to a feasibility tolerance of εFEAS and tolerance on the objective value of

εGAP if one exists. Otherwise it returns with an upper bound UB “ 8.

Other Branching Strategies

In [46] an idea for MIQP branching by Körner investigates the cardinality of the

projection of level sets onto a potential branching variable.

Let a problem with quasiconvex objective function (def. 2.13) be given by

min fpxq

x PM “ tx P Rn
| gjpxq ď 0, j “ 1, . . . ,mu

xi P Z

(7.40)

where f is quasiconvex and M convex. Let the level set be

M˚
“ tx| fpxq ď UB, x PMu (7.41)

for a given upper bound UB. Let Mi be the projection of M˚ onto the axis xi. In

[46] Körner states that under relatively simple assumptions, one can show that

the search tree consists of a minimal number of nodes if the variable xj with the

following properties is branched:

cardpMj X Zq ď cardpMi X Zq, @i P Ic. (7.42)

We explain the approach that is used to prove this statement: Let x1 be the
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Step 0 (Initialization):
Initialize the node set N “ tP pf, I0

w, I
0
ζ , I

0
f qu;

Initialize UB with 8 by default;
Initialize LB with ´8 by default;

while UB ´ LB ą εGAP do

Step 1 (Node Selection): Select a node P “ P pf, Iw, Iζ , If q from N ;

Step 2 (Lower Bound):
Calculate a lower bound LBpP q by solving (7.32) for P and let
xlb “ pylb, wlb, ζ lbq be the solution if it exists;
If no solution exists then the node is fathomed, go to step 1;
Select i R If such that δ :“ wlbi ζ

lb
i is maximal;

if δ ă εFEAS then

Update UB Ð mintUB, fpxlbqu;

else
if UB ´ LBpP q ą εGAP then

Step 3 (Branching):
Create nodes P1 “ P pf, Iw Y tiu, Iζ , If q and
P2 “ P pf, Iw, Iζ Y tiu, If q;
Set lower bounds LBpP1q “ LBpP q and LBpP2q “ LBpP q;
Update N Ð N Y tP1, P2u;

end

end

Step 4 (Update):
Update N Ð N X tP | UB ´ LBpP q ą εGAP u;
Update LB Ð mintLBpP q | P P N u;

end

Algorithm 17: Most Infeasible Branching Algorithm
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solution of the relaxed problem at the current node. Körner’s branching step of

a variable xi is performed by generating new nodes for every value

rx1is ´ k
´, . . . , rx1is ` k

` (7.43)

where k´ is the largest value of k, such that the current node with additional

constraint xi “ rx
1
is´k

´ is either infeasible or has a larger lower bound than UB

(and can therefore be pruned). The value k` is defined analogously.

7.4 Lemma ([45] Lem. 1)

If a node is selected by the best first strategy, and criterion (7.42) is satisfied for

j, then the number of nodes generated by branching j directly before i is less

than or equal to the number of nodes created by branching i directly before j

(for every i P Ic).

Proof The proof in [45] is rather short, and focuses on the fact that after branch-

ing twice both alternatives have branched xi and xj (although in different order).

Since the branching step generates every feasible node with valid objective value,

the number of generated nodes with children is equal to the number cardpMjXZq
or cardpMi X Zq respectively. These are the numbers of property (7.42). �

Checking property (7.42) is most likely to be very impractical for a branch-and-

bound solver in many instances. To overcome this difficulty the diameter of these

sets is evaluated instead, which is defined by

dpMiq “ supt}x´ y} | x, y PMiu. (7.44)

It is suggested to branch the variable with minimal diameter. Formulas on how

to evaluate or approximate this value are carried out especially for the case of

quadratic integer programs. For more details see [46, 44, 43].

These techniques inspire a procedure for problems with complementarity con-

straints. If a complementarity constraint wiζi “ 0 is modeled with an integer

variable xi (see chapter 5) then the following relation holds

cardpMi X Zq “ cardpM˚
X twi “ 0, ζi ě 0uq ` cardpM˚

X twi ě 0, ζi “ 0uq.

(7.45)
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This means that cardpMi X Zq just holds the information - whether both com-

plementary affine linear sets are a non-negligible part of the level set M˚ or not.

The diameter of the level set, on the other hand, might be richer in information.

We continue with the following idea:

Let wiζi “ 0 (i “ 1, . . . ,m) be the complementarity constraints as before. For ev-

ery index i we maximize wi under the restriction ζi “ 0 and analogously maximize

ζi under wi “ 0 on the set M˚. The result are values wmaxi , ζmaxi :

wmaxi :“ maxwi

px,w, ζq PM˚
(7.46)

ζmaxi :“ max ζi

px,w, ζq PM˚
(7.47)

These values can be used to

• either to eliminate a branching candidate if one of them is zero,

• or to introduce a new constraint on this pair of variables:

wiζ
max
i ` ζiw

max
i ď wmaxi ζmaxi . (7.48)

The values wmaxi and ζmaxi can be8 if wi or ζi respectively are unbounded on M˚.

In this case the constraint (7.48) can be reduced to variable bounds wi ď wmaxi

if ζmaxi “ 8 and ζi ď ζmaxi if wmaxi “ 8.

This type of constraints has also been investigated in other algorithms for prob-

lems with complementarity constraints. E.g. in [55] where Mitchell et al. present

a so called bound tightening procedure. Furthermore one could use the values

ζmaxi and wmaxi as a source of information for a heuristic on the selection of the

next branching index in the branch-and-bound algorithm.

7.6.2. Application to the Reweighting Bilevel Problem

A subroutine has been developed for the MPEC of the reweighting bilevel problem

(section 3.4.1) that generates the constraints of the type in (7.48). The principle

can be adapted for other affine linear complementarity constraints, but might not

be as useful if the auxiliary problems (7.46) and (7.47) are unbounded. In this

case little information is gained from the subroutine.
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A formulation of the reweighting bilevel MPEC shall be restated here (def. 3.8),

the subscript λ on T , A, t and b is left out for the sake of legibility):

min
λ,w,ζ

}Tλ´ t}2

b´ Aλ´ w1
` w2

“ 0

λ` ζ1
ě λmin

λ´ ζ2
ď ´λmin

´λmaxe ď λ ď λmaxe

0 ď w “ pw1, w2
q K ζ “ pζ1, ζ2

q ě 0.

(7.49)

Let λ˚i for i P Is be a set of feasible points that have been found in the overall

branch-and-bound algorithm. We state the level set for the subroutine as

M˚
“ tλ| }Tλ´ t}2 ď }Tλ˚i ´ t}

2, @i P Isu. (7.50)

We approximate the level set with a number of linear constraints. Let ∆iλ “ λ˚i ´ λ

and Q “ T TT and let UB be the current upper bound. The constraint is derived

by a Taylor approximation

UB ě }Tλ´ t}2 “ ∆iλ
TQ∆iλ´ 2λ˚Ti Q∆iλ` λ

˚T
i Qλ˚i ` t

TTλ` tT t

ě ´2λ˚Ti Q∆iλ` λ
˚T
i Qλ˚i ` t

TTλ` tT t.
(7.51)

Another set of constraints can be derived by a projection onto the vectors f̂i

which shall be defined as

f̂i “
Tλ˚i ´ t

}Tλ˚i ´ t}
. (7.52)

Let πf̂i be the projection on the linear subspace that is generated by the vector

f̂i. It holds that

}Tλ´ t}2 ě }πf̂ipTλ´ tq}
2

“ }f̂Ti pTλ´ tq}
2.

(7.53)

With the current (positive) upper bound we receive two linear constraints for

every index i P Is:
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´
?
UB ď f̂Ti pTλ´ tq ď

?
UB (7.54)

The number of feasible points λ˚i which is used to generate these constraints

determines how many of them are present in the bound generation LPs (7.46) and

(7.47). By intuition we suggest to limit their number, and secondly to include the

incumbent feasible solution. This has been practiced in the related experiments.

The collection of the aforementioned constraints (7.51) and (7.54) with the non-

complementarity constraints of system (7.49) defines an approximation for the

level set M˚ that shall be denoted by M̂ . The subroutine that describes the

generation of the variable bounds and constraints is algorithm 18.

Preliminaries for Algorithm 18

Assume that λlb is the solution of the lower bound problem for the current node.

Furthermore let I1
c , I

2
c Ď t1, . . . ,mu be the candidates of branching indices i,

where branching on i P I1
c is associated with introducing two nodes for the con-

straints w1 “ 0 and ζ1 “ 0 respectively. The indices in I2
c are related analogously.

The complementary affine linear expressions are noted as

wipλq :“ pb´ Aλqi

ζ1
i pλq :“ λmin ´ λi

ζ2
i pλq :“ λ` λmin.

(7.55)

A heuristic order on the sets I1
c and I2

c is used that sorts the indices by their

magnitude of complementary infeasibility defined by the products

maxt0, wipλqumaxt0, ζ1
i pλqu, i P I

1
c

maxt0,´wipλqumaxt0, ζ2
i pλqu, i P I

2
c .

(7.56)

We note the following relations for feasible points pλ,w, ζq of the MPEC (7.49)

that are used within the algorithm:
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wipλq ă 0 ñ pb´ Aλqi ă 0 ñ w2
i ą 0 ñ ζ2

i “ 0

wipλq ą 0 ñ pb´ Aλqi ą 0 ñ w1
i ą 0 ñ ζ1

i “ 0

ζ1
i pλq ă 2λmin ñ λ ą ´λmin ñ ζ2

i ą 0 ñ w2
i “ 0

ζ2
i pλq ă 2λmin ñ λ ă λmin ñ ζ1

i ą 0 ñ w1
i “ 0.

(7.57)

We also introduce update lists pLα,βwwqi, pL
α,β
wζ qi, pL

α,β
ζw qi and pLα,βζζ qi for α, β “ 1, 2

and i “ 1, . . . ,m. The update lists record the indices of the other affine linear

complementary expressions that are positive at the corresponding LP solutions.

Their definition can be seen within algorithm 18. In practice we use the following

strategy. A node problem for the reweighting bilevel MPEC is given by

min
λ,w,ζ

}Tλ´ t}2

b´ Aλ´ w1
` w2

“ 0

λ` ζ1
ě λmin

λ´ ζ2
ď ´λmin

´λmaxe ď λ ď λmaxe

w1
i “ 0, @i P I1

w

w2
i “ 0, @i P I2

w

ζ1
i “ 0, @i P I1

w

ζ2
i “ 0, @i P I2

w

w1
i ζ

1
i “ 0, @i P I1

f

w2
i ζ

2
i “ 0, @i P I2

f

(7.58)

for index sets I1
w, I

2
w, I

1
ζ , I

2
ζ , I

1
f , I

2
f . Let Λ denote the points that are feasible in the

constraint set of (7.58) but without the complementarity constraints. It follows

that Λ is convex.

For child nodes only those bounds wmaxi and ζmaxi of branching candidates will

be updated where the following situations apply:

if k has entered I1
w then every index i P I1

c where k P pL11
wwqi or k P pL11

ζwqi and

every index i P I2
c where k P pL21

wwqi or k P pL21
ζwqi will be updated;

if k has entered I2
w then every index i P I1

c where k P pL12
wwqi or k P pL12

ζwqi and



7.6. Hybrid Algorithm - Global Optimality 142

every index i P I2
c where k P pL22

wwqi or k P pL22
ζwqi will be updated;

if k has entered I1
ζ then every index i P I1

c where k P pL11
wζqi or k P pL11

ζζqi and

every index i P I2
c where k P pL21

wζqi or k P pL21
ζζqi will be updated;

if k has entered I2
ζ then every index i P I1

c where k P pL12
wζqi or k P pL12

ζζqi and

every index i P I2
c where k P pL22

wζqi or k P pL22
ζζqi will be updated.

For all other indices the old values and update lists will be reused. With this

update strategy it is possible to save a considerate amount of LP solve calls.

Algorithm 18 shows the procedure for every index in I1
c and I2

c .
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foreach α P t1, 2u and foreach i P Iαc do
Solve the LP

maxwipλq, if α “ 1 or max´wipλq, if α “ 2

subject to λ P M̂, pλ,w, ζq P Λ, ζαi “ 0.
(7.59)

if a solution λ̃˚ exists with objective value pwαi q
max ą 0 then

pLα1
wwqi :“ ti| wipλ̃

˚q ą 0u

pLα1
wζqi :“ ti| ζ1

i pλ̃
˚q ą 0u

pLα2
wwqi :“ ti| ´ wipλ̃

˚q ą 0u

pLα2
wζqi :“ ti| ζ2

i pλ̃
˚q ą 0u

(7.60)

else

if a solution λ̃˚ exists with objective value pwαi q
max ď 0 then

Add the node constraint wαi “ 0, remove i from Iαc ;

if pwαi q
max ă 0 add the node constraint ζ3´α

i “ 0 (according to
(7.57)) and remove i from I3´α

c ;
continue with the next index;

else
Add the constraint wαi “ 0, remove i from Iαc and continue with
the next index;

end

end
Solve the LP

max ζαi pλq

λ P M̂, pλ,w, ζq P Λ, wαi “ 0.
(7.61)

if a solution λ̃˚ exists with objective value pζαi q
max ą 0 then

pLα1
ζwqi :“ ti| wipλ̃

˚q ą 0u

pLα1
ζζ qi :“ ti| ζ1

i pλ̃
˚q ą 0u

pLα2
ζwqi :“ ti| ´ wipλ̃

˚q ą 0u

pLα2
ζζ qi :“ ti| ζ2

i pλ̃
˚q ą 0u

(7.62)

if pζαi q
max ă 2λmin it follows that ζ3´α

i ą 0 by (7.57)); In this case add
the node constraint w3´α

i “ 0 and remove i from I3´α
c ;

else

if a solution λ̃˚ exists with objective value pζαi q
max ą 0 then

Add the node constraint ζαi “ 0, remove i from Iαc and continue
with the next index;

else
Add the constraint ζαi “ 0, remove i from Iαc and continue with
the next index;

end

end
Add the node constraint

wαi pζ
α
i q
max ` ζαi pw

α
i q
max ď pζαi q

maxpwαi q
max. (7.63)

end
Algorithm 18: Subroutine - Variable Bound Constraints for the Reweighting
Bilevel MPEC
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7.6.3. A Modification of the BBASET Method

The BBASET method generates a number of new nodes from a complementarity

feasible strongly stationary point. The indices are ordered by the negativity of

their dual multiplier, with preference to the most negative value. An interpreta-

tion of this approach is that BBASET prefers to explore nodes in the binary search

tree that look most promising when it comes to lowering the upper bound. Com-

putational experience within the extent of this work has shown that BBASET

performs well in finding many different local solutions with low objective value.

However, this does not have to be beneficial in terms of increasing the current

lower bound of the program.

In the second phase of the hybrid algorithm a modification of the BBASET

scheme is performed which originates from two key points:

1) For any feasible point x0 P Rn we can use the linearization of f

flinpxq “ ∇fpx0q
T
px´ x0q ` fpx0q (7.64)

as a lower bound for f since f is convex. Note that f was defined to be any

differentiable convex function. In the application, this approach is mainly used

in situations where the number of nodes created from one stationary point is

very large. Calculating lower bounds for each of them can be costly, and may be

cheaper if a linear function is used.

2) The second point is that one can store the product wlbi ζ
lb
i when calculating a

lower bound. With this information, it is possible to generate new nodes by a

hybrid behavior that combines BBASET and most infeasible branching. This is

achieved by ordering the indices not by the magnitude of their dual multipliers,

but by the product wlbi ζ
lb
i beginning with the greatest.

7.6.4. The Method of Hu et al. and Lagrange Lower Bounds

In section 7.6.5 the hybrid algorithm in search for global optimality will be stated.

The following presents a list of the modules that are incorporated.
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Subroutine - Feasibility Module

The algorithm of Hu et al. [24] and an adaption were presented in chapter 5.

The adapted algorithm (sec. 5.3.1) is now embedded in the branch-and-bound

algorithm for the MPEC (7.26). For a node Problem P “ P pf, Iw, Iζ , If q the

remaining complementarity working indices are

Lw Y Lζ “ t1, . . . ,muzIwzIζzIf . (7.65)

The adapted method finds disjunct sets L1w, L1ζ and I 1f such that P pf, Iw, Iζ , I
1
f q

with the working sets L1w and L1ζ provides a suitable entry point for the CASET

algorithm, i.e. P pf, Iw Y L
1
w, Iζ Y L

1
ζ , I

1
f q is feasible.

If I 1f is nonempty then integer sets for a partially feasible solution (def. 5.4) have

been generated.

Elements of the set t0, 1um are associated with the leaves of the branch-and-

bound tree. The leaves of a node problem P with index sets Iw and Iζ are given

by

Pz “ tz P t0, 1u
m
|zi “ 0 if i P Iw, zi “ 1 if i P Iζu. (7.66)

The method keeps track of a feasible set Ẑwork Ď t0, 1um. The set Zwork contains

the cuts on t0, 1um that imply this feasible set. They are generated during the

process and prune branches of the binary tree.

An efficient management of the working set Ẑwork is needed to evaluate as much

information from the surrounding algorithm as possible. For instance, if the

CASET subroutine solves a convex program and the objective function value

is greater than the current upper bound, then it would be completely correct

(meaning without compromising the enumeration of the search tree) to introduce

a binary constraint that prunes this part of the feasible set Ẑwork. However,

depending on the number of relaxed indices If in the CASET subroutine, this

simple cut might turn out to be very dense. A MIP solver or SAT solver that

operates on the set can be slowed significantly by such cuts, which provide only

little information. Thus it might be important to find a good management system

for the set Ẑwork.
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Considering the method of cut sparsification (sec. 5.2.2) we note that this pro-

cedure generates lower bounds from the information at the bottom of the tree

(near the leaves) and tries to carry this information further to the top (near the

root). The hybrid branch-and-bound algorithm will start with the primal system

from the top of the tree, and tries to prune branches by calculating lower bounds

as soon as possible. The method of cut sparsification seems not very efficient in

this context, since it works in reverse direction. Sparsifying a cut requires the

solution of relaxed node programs, and is therefore considered resource demand-

ing. Computational experiments have confirmed this assumption for the given

instances.

Lagrange Lower Bounds

Chapter 6 presented how the Lagrange function can be used to calculate lower

bounds in a problem with linear complementarity constraints. For a given vector

λ we state the program that needs to be solved in order to find such a bound for

the node problem P pf, Iw, Iζ , If q using the representation of the tree with binary

vectors z P Ẑwork:

min
x,z

flagrpxq :“ fpxq ` λpg ´ Cxq

z P Zwork X Pz
wi “ 0 if zi “ 0

ζi “ 0 if zi “ 1

x “ py, w, ζq ě 0.

(7.67)

As mentioned in section 6.3, this convex program with positive complementary

variable constraints can be solved by the BBASET algorithm, without the issue

of finding feasible startpoints.

If the solution process of system (7.67) works with a branch-and-bound algorithm

itself (e.g. BBASET), then branches of this algorithm can be identified with the

branches of the surrounding algorithm. Every branch where an objective value

of flagr is detected, that is greater than or equal to the current upper bound in

the surrounding algorithm, can be pruned in both search trees.
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7.6.5. The Hybrid Algorithm

We initialize every node P with a lower bound LBpP q, which is the lower bound

of the parent node or ´8 for the root node. The global lower bound LB is

automatically updated to the minimal lower bound of all remaining nodes. Nodes

with a lower bound LB ě UB greater than the current upper bound UB are

removed from the node set N . The working sets Lw and Lζ are inherited from

the parent node, and are updated in order to stay well defined, i.e. they have no

intersection with Iw, Iζ or If .

7.3 Theorem

If the convex problems in the hybrid algorithm 19 are solved in a finite number

of steps, and every feasible node problem is bounded, then the hybrid algorithm

finds a global optimum of the MPEC (7.26) in a finite number of steps if it exists.

Proof Every node receives a lower bound in the first part of the algorithm. In

the second part the node is either processed by the BBASET subroutine in step 5,

or a branching index is selected in step 6 where two new child nodes are created.

First we show that the branching behavior in step 5 is correct.

On the Correctness of Step 5b

The modification from section 7.6.3 creates the same branches as the BBASET

algorithm (see remark 4.2) just in different order. We have to show that the

relaxed complementarity constraints with corresponding indices in If do not affect

the enumeration of the search tree.

Let x˚ be an A-stationary point of P pIw, Iζ , If q with working sets Lw and Lζ and

objective value fpx˚q ě UB. The point x˚ is the optimal solution of the convex

problem

min
xě0

fpxq

Cx “ g

wi “ 0, @i P Iw Y Lw

ζi “ 0, @i P Iζ Y Lζ

(7.68)
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Initialize the set Zwork “ t0, 1um;
Initialize the set of nodes with N “ tP pf,H,H,Hq };
Initialize disjunct working sets Lw, Lζ Ď t1, . . . ,mu;
Initialize UB “ 8 and LB “ ´8;

Step 0 (Termination): If UB ´ LB ď 0 terminate;

Step 1a (Node Selection): Select the current node P from N such that
LBpP q ă UB;
Update N Ð N ztP u;

Step 1b (Node Check): If Pz X Zwork “ H go to step 0 (the node is
fathomed);

Step 2a (Lower Bound): Calculate a lower bound LBpP q by solving
(7.32) and let xlb “ pylb, wlb, ζ lbq be the solution if it exists; If not then P
is infeasible - go to step 0;

Step 2b (Lower Bound): Decide whether to calculate a Lagrange lower
bound by solving (7.67);
Update LBpP q and Zwork accordingly;

if LBpP q ă UB then
if miniw

lb
i ζ

lb
i ą 0 then

Step 3 (Disjunctive Cut): Possibly add a disjunctive cut by solving
(7.33);
If a cut was added go to Step 2a;

else

xlb is feasible: Update UB Ð mintUB, fpxlbqu;
Update N Ð N X tP | LBpP q ă UBu;

end

else
Go to step 0 (the node is fathomed);

end
Algorithm 19: Hybrid Algorithm - Phase 2 - Part 1
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Decide whether to apply CASET ;
if CASET applied then

if P pIw Y Lw, Iζ Y Lζ , If q is infeasible then
Run the feasibility subroutine (see section 7.6.4) and update Lw,
Lζ and If ;
Update Zwork;
if infeasibility of P is detected go to step 0;

end
Step 4 (CASET): Run CASET (alg. 4) and receive an A-stationary
point x˚ of P pIw, Iζ , If q;
if miniw

˚
i ζ
˚
i ą 0 then

(x˚ is partially feasible in the MPEC (7.26));
if fpx˚q ă UB then

Step 5a (Feasibility Module): Run the feasibility subroutine on
pIw, Iζ , Lw, Lζ , If q with additional parameters I 1f Ă If and

I 1f ‰ If to receive L1w, L1ζ and I 1f ;

Update Lw Ð L1w, Lζ Ð L1ζ and If Ð I 1f ;

Update Zwork;
if infeasibility of P is detected go to step 0 (the node is
fathomed);
else go to step 4 (CASET);

else
Step 5b (BBASET): Generate new nodes from x˚ as in section
7.6.3;
Update N ;

end
Go to step 0;

else
(x˚ is feasible in the MPEC (7.26));
Update UB Ð mintUB, fpx˚qu;
Step 5c (BBASET): Generate new nodes from x˚ as in section
7.6.3;
Update N ;
Go to step 0;

end

else
Possibly generate variable bound constraints (7.48) - in the case of a
reweighting bilevel MPEC use algorithm 18;
Attach variable bound constraints to the node P and let child nodes
inherit them;
Step 6 (Branching index): Determine a branching index j and generate
new nodes P1 “ P pIw Y tju, Iζ , If q and P2 “ P pIw, Iζ Y tju, If q;
Update N ;
Go to step 0;

end
Algorithm 20: Hybrid Algorithm - Phase 2 - Part 2
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Let x̃˚ be the solution of the following problem:

min
xě0

fpxq

Cx “ g

wi “ 0, @i P Iw Y Lw

ζi “ 0, @i P Iζ Y Lζ

wiζi “ 0, @i P If .

(7.69)

Then x̃˚ is an A-stationary point of the MPEC (7.26) (by thm. 4.5). We recall

that

If “ t1, . . . ,muzpIw Y Lw Y Iζ Y Lζq. (7.70)

It follows that

UB ď fpx˚q ď fpx̃˚q. (7.71)

The full evaluation of the branch pIw, Iζq in the search tree is the solution of

P pIw, Iζ ,Hq. (7.72)

Let ti1w, . . . , i
lw
w u and ti1ζ , . . . , i

lζ
ζ u be the index sets of the corresponding negative

dual multipliers λiw or λiζ at x˚. We define a cascade of index sets just in the

same manner as for the BBASET algorithm:

J1 :“ pIw Y ti
1
ζu, Iζ ,Hq

J2 :“ pIw Y ti
2
ζu, Iζ Y ti

1
ζu,Hq

J3 :“ pIw Y ti
3
ζu, Iζ Y ti

1
ζ , i

2
ζu,Hq

. . .

Jlζ :“ pIw Y ti
lζ
ζ u, Iζ Y ti

1
ζ , . . . , i

lζ´1

ζ u,Hq

Jlζ`1 :“ pIw, Iζ Y ti
1
ζ , . . . , i

lζ
ζ , i

1
wu,Hq

Jlζ`2 :“ pIw Y ti
1
wu, Iζ Y ti

1
ζ , . . . , i

lζ
ζ , i

2
wu,Hq

. . .

Jlζ`lw :“ pIw Y ti
1
w, . . . , i

lw
w u, Iζ Y ti

1
ζ , . . . , i

lζ
ζ u,Hq

(7.73)

It holds that
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minP pJlw`lζq ě minP pIw Y ti
1
w, . . . , i

lw
w u, Iζ Y ti

1
ζ , . . . , i

lζ
ζ u, If q (7.74)

“ minP pIw Y Lw, Iζ Y Lζ , If q “ fpx˚q ą UB. (7.75)

The last chain of equations holds due to the fact that a solution with linear com-

plementarity constraints and convex objective function is globally optimal, if ev-

ery multiplier of the complementarity constraints is non-negative (cor. 2.1). From

this it follows that it is sufficient to generate the nodes related to J1, . . . ,Jlw`lζ´1.

Since the order in which the indices are branched does not compromise the com-

pleteness of the binary tree, we have shown that step 5b is correct.

On the Correctness of Step 5a

For the current node P step 5a repeats itself until one of the following situations

occurs:

• fpx˚q ă UB and jump to step 5b;

• x˚ is complementarity feasible, which means x˚ is feasible in the MPEC

(7.26) and jump to step 5c;

• the feasibility module detects that P pIw, Iζ ,Hq is infeasible, thus the node

is fathomed.

Step 5c is a special case of step 5b which has already been investigated.

Conclusion

The branching behavior in step 6 is standard and the branching behavior of steps

5a - 5c has been investigated. It further holds that any feasible solution with

globally optimal objective value will either be found in step 2, when calculating a

lower bound, or in step 5a-c where the CASET algorithm is applied. Since each

iteration of algorithm 19 expands the binary tree correctly, it follows that the

hybrid algorithm 19 finds a global optimal solution in a finite number of steps.�

Remark 7.5 Just as for the search algorithm, we can extend algorithm 19 to

work with possibly unbounded problems. See remark 7.4.



8. Computational Results

Rounding off the theoretical concepts of chapter 7, a test implementation has been

created. Although the methods are mostly designed for problems with convex

objective functions (and linear complementarity constraints) in general, the tests

have been performed on instances that limit to quadratic objective functions. The

foundation is a branch-and-bound framework in the language C# that manages

a variety of components.

8.1. Components

Core Solver

The main component is denoted the core solver, which is based around an ad-

justable Cplex model. For each pair of complementary variables 0 ď wiKzi ě 0

the solver includes one of the following pairs of constraints

• wi ě 0 “ zi

• zi ě 0 “ wi

• wi, zi ě 0

and thereby solves a convex problem, that is tightened in some of the complemen-

tary indices, and relaxed in the rest of them. In addition to this, the objective

function can be exchanged for linear expressions, such as the minimization of zi

or wi, for any of the complementary pairs of variables pwi, ziq. This is used in

accordance with section 7.3.1 and connected with the generation of type 2 nodes.

Another application of linear objective functions is the generation of the variable

bound constraints in accordance to section 7.6.2.

The core solver also accepts the introduction and removal of additional constraints

in the subroutines as needed.

152
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CASET

The CASET algorithm (chapter 4) is performed by a class that is wrapped around

an instance of the core solver. By successive calls to the core solver and evaluation

of the dual multipliers at the solution, the CASET solver achieves the desired

progression (section 4.3). An anticycling strategy guarantees that the algorithm

is finite. Termination occurs if the solution numerically resembles an A-stationary

point, or in many cases even a strongly stationary point.

The QPs of the core solver are solved in simplex mode, which has shown to be

most effective for the experiments. The essential functions of the core solver that

are used include efficiently adding and removing constraints, and providing the

dual multipliers to a calculated solution or a confirmation of infeasibility if there

is none. Apart from these key elements the core component could be exchanged

for any other solution algorithm.

Cut Generation LP

This module uses a linear problem that works on the formulation of the constraint

set with positive variables and equality constraints. The module generates dis-

junctive cuts (section 7.4) for a given point which, in our case, satisfies the linear

constraints and variable bounds, but not all of the complementarity constraints.

The implementation uses an instance of Cplex or Gurobi to solve the arising LPs.

In the overall progress, the model is updated as necessary to handle repeated solve

calls.

Feasibility Unit

Another class handles a system of two optimization models, where each of them

is either an instance of Cplex or Gurobi. One is a binary model handling the

feasibility of branches and global constraints on this system, the other is a linear

system of unrestricted variables with inequality constraints. Both work in the

sense of the method in section 5.3, alternately generating unbounded rays in

the dual system and binary solutions that represent the remaining tree using a

heuristic objective function.
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Lagrange Lower Bounds

As described in chapter 6 the solution of a problem with only complementarity

constraints on a set of positive variables can be used to generate a lower bound on

the solution of 6.4 that can sometimes be better than the solution of the relaxed

problem 6.5. This problem can be solved by the technique of BBASET [34]

without the need for feasible startpoints in the process. Chapter 6 also connects

the search tree of the branch-and-bound algorithm with the search tree of the

Lagrange lower bound.

A first set of experiments has shown that without a proper implementation the

method is not very useful for the instances at hand. In order to not leave this

method untouched despite these difficulties, an instance of Cplex or Gurobi has

been used to solve the problem with either integer variables or positive variables

and SOS1-constraints. Generation of these lower bounds has shown to be not

very effective, although two ideas of use have been practiced: The first is to

calculate this lower bound for a node that is close to the global bound, hoping to

quickly fathom it without further branching. The second is to use the dual vector

of the solution of a node that is the origin of branching with the BBASET like

method from section 7.6.3, and calculate lower bounds for each of the resulting

nodes. The prioritization of the SOS1-constraints is derived from the values of

the complementary variables that are positive at the strongly stationary point,

which has been calculated by CASET for this node.

8.2. Disclaimer and Technical Details

Finally, there is an initialization class wrapped around the complete algorithm

that solves test instances with different settings, and saves the results. A total of

over 2000 test instances have been solved and documented to analyze the behavior

of the algorithm and investigate the practical use of the methods. Many have been

aborted due to very long calculation times. The presented data is a collection of

the instances with average to good performance in comparison to the entirety of

experiments with this implementation.

Especially regarding the quadratic objective functions of the test instances, the

implemented overall solver is, apart from Cplex and Gurobi, far from an efficient
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state. It could be more powerful if the program were optimized. During the pro-

cess of research the software has grown into a larger project, which conveniently

allows the possibility to turn many features and diagnostics on and off for test

purposes. However, this software had not been anticipated in its final state. The

presented results have been established over a moderate range of time, whereas

the solver was still undergoing some slight changes and adjustments during this

phase.

For the experiments the core solver only runs on a single thread setting. This

option has been selected since parallelization was not meant to be investigated

in the experiments. Accordingly the Cplex MIQP-Solver, for computational ref-

erence, is also set to single thread mode allowing for better comparison of the

results.

The results have been generated with an Intel-i7 CPU, Cplex version 12.1, Gurobi

version 7.0 on a Dell notebook, code in Visual-C# 2013.

8.3. Data and Problem Instances

8.3.1. Reweighting Bilevel Instances

Two kinds of test problems have been considered. The one kind is generated

from historical data provided by Daimler AG. Four different test scenarios have

been selected, where each of them is one of the bilevel problems of chapter 3.

To generate a larger number of test cases, a parameter s P N is introduced that

controls the size of the problem. For a given size s only the first s rows of Aλ are

selected, while the rest of them is neglected. This is equivalent to reducing the

number of option planning targets in the reweighting scenario (section 3.2).
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Data Set Dimensions of T Tλ Tλ # Eigenvalues ă 1e-8 Largest Eigenvalue
Data Set 1 156ˆ 156 122 232
Data Set 2 156ˆ 156 123 1210
Data Set 3 156ˆ 156 122 324
Data Set 4 156ˆ 156 122 232

Table 8.1.: Objective Function Characteristics of the Reweighting Bilevel
Instances

min
λ`,λ´,ug ,uh

}Tλpλ` ´ λ´q ´ tλ}
2

bλ ´ Aλpλ` ´ λ´q ´ w
1
` w2

“ 0

pλ` ´ λ´q ` ζ
1
ě λmin

pλ` ´ λ´q ´ ζ
2
ď ´λmin

λ`, λ´ ď λmax

0 ď w “ pw1, w2
qKζ “ pζ1, ζ2

q ě 0

λ`, λ´ ě 0

(8.1)

The artificial formulation with only positive decision variables is due to the dis-

junctive cuts that are applied to this model. Internally slack variables are intro-

duced, producing a system of only equality constraints. The characteristics of the

test instance objective functions are shown in table 8.1. Although dataset 1 and

dataset 4 have the same characteristics here, they differ in their constraint sets.

During the generation of the objective function the matrices involved are always

scaled if possible, in order to minimize the effects of ill-conditioned data. The

table shows the dimension of the quadratic objective matrix along with numer-

ically zero elements of the spectrum and the maximal eigenvalue. The numbers

show that the objective matrices are rather ill-conditioned. Nevertheless, they

have still been handled well by the instance of the core solver.

8.3.2. QPEC Problems

The other kind is from the MACMPEC website of Sven Leyffer (www.mcs.anl.gov/ leyf-

fer/MacMPEC). The instances qpec-100-1 to qpec-100-4 and qpec-200-1 to qpec-

200-4 have been created by a MATLAB generator as described in [29].
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The generator creates quadratic problems with affine variational inequality con-

straints (AVI-QP):

min
px,y,λqPRn`m`p

fpx, yq

Gx`Hy ` a ď 0

F px, yq ` ETλ “ 0

gpx, yq ď 0, λ ě 0, λTgpx, yq “ 0

F px, yq “ Nx`My ` q

gpx, yq “ Dx` Ey ` b

(8.2)

where fpx, yq “ 1
2
px, yqTP px, yq ` cTx` dTy.

A stationary point in [29] is defined just in the same fashion as a strongly sta-

tionary point in definition 2.10.

The point w˚ “ px˚, y˚, λ˚q is called a stationary point if it is feasible and there

exist multipliers ξ, η, π and ζ such that:

∇xfpx
˚, y˚q `GT ξ ´NTη `DTπ “ 0

∇yfpx
˚, y˚q `HT ξ ´MTη ` ETπ “ 0

Eη ´ ζ “ 0

ξ ě 0, pGx˚ `Hy˚ ` aqT ξ “ 0

ζi “ 0, @i P αpw˚q

πi ě 0, ζi ě 0, @i P βpw˚q

πi “ 0, @i P γpw˚q

(8.3)

for index sets

αpw˚q “ t1 ď i ď p : λ˚i “ 0 ă ´pDx˚ ` Ey˚ ` bqiu

βpw˚q “ t1 ď i ď p : λ˚i “ ´pDx
˚
` Ey˚ ` bqi “ 0u

γpw˚q “ t1 ď i ď p : λ˚i ą ´pDx
˚
` Ey˚ ` bqi “ 0u.

(8.4)

As Jiang and Ralph state, the existence of degenerate indices reflects the com-

plexity of the MPEC. They introduce three types of degeneracy which have cor-

responding input parameters in their QPEC generator.
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Instance nx ny m deg1 deg2 degm
qpec-100-1-1 5 100 2 1 20 20
qpec-100-1-2 10 100 2 1 20 20
qpec-100-1-3 10 100 4 1 20 20
qpec-100-1-4 20 100 4 1 20 20
qpec-100-2-1 10 200 4 2 40 40
qpec-100-2-2 20 200 4 2 40 40
qpec-100-2-3 20 200 8 2 40 40
qpec-100-2-4 40 200 8 2 40 40

Table 8.2.: Characteristics of the QPEC Test Instances

8.1 Definition ([29] Def 3.1) Suppose w˚ “ px˚, y˚, λ˚q is feasible in 8.2 and

there exist multipliers as in 8.3.

1. An index i is called first-level degenerate if ξi “ pGx
˚ `Hy˚ ` aqi “ 0.

2. An index i is called second-level degenerate if i P βpw˚q.

3. A second-level degenerate index i is called mixed degenerate if either πi “ 0

or ζi “ 0.

The instances at hand are a special case of LCP constrained QPs:

min
x,y

fpx, yq

Apx, yqT ` a ď 0

0 ď F px, yq “ Nx`My ` qKy ě 0

(8.5)

where x P Rnx , y P Rny , A P Rmˆpnx`nyq and the other dimensions are defined ac-

cordingly. An overview of the characteristics of the QPEC instances is presented

in table 8.2. The numbers of degenerate indices according to Definition 8.1 are

presented in the last three columns.

Note that for some of these instances the algorithm has found slightly lower

objective values than have been published on Sven Leyffer’s site. After a firm

check it is assumed that the solutions are indeed feasible to a tolerance of 1e-8,

to the best of my knowledge.
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8.4. Search Phase

The implemented algorithm has different options regarding what techniques should

be emphasized on every run. It has shown that the increased generation of type 2

nodes (section 7.3) leads to a broad exploration of the tree, which seems efficient

for finding locally optimal solutions with low objective value. However, during

this process a large number of nodes might be created that could have been saved

if emphasis had been put on increasing the lower bound. Therefore, this setup is

used as a kind of search phase procedure that searches for a strongly stationary

point with low objective value, before the second phase emphasizes the proof

of global optimality of the incumbent node. The first phase by itself presents

an algorithm that yields a series of strongly stationary points with decreasing

objective value.

It has shown that the search phase is most interesting for the QPEC problem

instances. Regarding the reweighting bilevel problems, it was possible to find a

good solution for each investigated scenario, just by the first application of the

CASET algorithm to the feasible startpoint. This startpoint is calculated by

solving the lower level problem, the reweighting problem, with target priorities

γi “ 1 for each target (def. 3.1). Since the reweighting problem is easily solved by

any standard QP-solver, this startpoint is always available at low cost. The result

is then translated into the presentation from section 3.4 to serve as a feasible point

of the final model (8.1).

8.4.1. QPEC Problems

Figures 8.1 - 8.4 graphically show the progression of the algorithm over the num-

ber of iterations. A detailed report is shown in table A.1 and A.2 in the appendix

section.

Unfortunately, finding reference for calculation times for these published problem

instances has been shown to be challenging. Table 8.3 shows the results of the

work in [12] where MPECs are solved by introducing slack or surplus variables to

all constraints, and applying an l1-penalty approach to the smooth reformulation.

Since the MFCQ is then satisfied for each feasible point, the resulting problem

can be handled by a primal-dual-interior point method. The authors of [12]
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Figure 8.1.: Hybrid Algorithm in Search Mode, qpec-100-1 (left), qpec-100-2
(right)
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Figure 8.2.: Hybrid Algorithm in Search Mode, qpec-100-3 (left), qpec-100-4
(right)
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Figure 8.4.: Hybrid Algorithm in Search Mode, qpec-200-3 (left), qpec-200-4
(right)

Problem Time Objective Optimum

qpec-100-1 26,76 0,241 0,099002781
qpec-100-2 40,92 -6,43 -6,590734748
qpec-100-3 37,04 -5,48287 -5,48287
qpec-100-4 35,17 -3,91 -4,095553607

Table 8.3.: Computational Reference: l1 Elastic Interior Point Mehod

state that qpec-200-1 to qpec-200-4 have not been calculated due to unreasonable

calculation times. However, it is not specified what exactly that means.

Considering the number of solve calls to the core solver that have been used,

the same instances have been engaged with the Cplex MIQP-Solver with a node

limit of 20000 nodes, as seen in table 8.4. Note that during the research it was

noticed that the performance of the Cplex solver can be strongly affected by the

exact formulation of the problem. In the core solver the model is built by intro-

ducing only positive decision variables. The MIQP solver is faced with the exact

same instance plus additional integer variables to model the complementarity

constraints, with a big M parameter of 100, or alternatively SOS1-constraints.

There might be other ways of modeling that better suit Cplex.

A comparison between all three methods and their efficiency in finding a feasible

point of low objective value is presented in table 8.5.
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Problem Nodes Calculated Incumbent Objective
qpec-100-1 20000 -1 +infinity
qpec-100-2 20000 5328 -5,82511
qpec-100-3 20000 352 -5,44460
qpec-100-4 3321 1464 -4,09555
qpec-200-1 20000 8985 -1,90255
qpec-200-2 20000 -1 +infinity
qpec-200-3 20001 375 5,43762
qpec-200-4 20000 10464 -5,81456

Table 8.4.: Computational Reference: Cplex 12.1 MIQP-Solver

Cplex l1 Elastic Int. Point M. Hybrid Alg.
Instance Time Obj. Val. Time Obj. Val. Time Obj. Val.
qpec-100-1 11,12s 8 26,76s 0,241 11,32s 0,09900
qpec-100-2 12,01s -5,9826 40,92s -6,43 12,06s -6,59073
qpec-100-3 12,00s -5,4446 37,04s -5,48287 12,19s -5,47665
qpec-100-4 3,46s -4,0956 35,17s -3,91 12,04s -4,08768

Table 8.5.: Performance Indicators

8.5. Global Optima

8.5.1. QPEC Problems

During the research, one of the major observations was that branch-and-bound

trees generated by the hybrid algorithm did not have very beneficial properties

in proving optimality for any of the QPEC instances. It seems that splitting

from a strongly stationary point or an A-stationary point (or from a partially

feasible point that is stationary on one of the nodes) creates an unnecessarily

large number of new nodes, which is most likely due to the degrees of degen-

eracy (def. 8.1) these problems have been generated with. It has shown that

the implemented methods using disjunctive cuts, gradient based constraints or

Lagrange lower bounds have not been able to reduce the size of the tree over all.

The exploration of this tree comes with the upside that many locally optimal

solutions are found in the process. In regards of the proof of global optimality

however, the approach seems to be counterproductive. The hybrid algorithm can

still solve the instances in reasonable time, compared to the Cplex MIQP solver

or most infeasible branching, although it always comes in second. Most infea-

sible branching, on the other hand, has shown to be quite effective. Table 8.6
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Instance Objective Value Status Solve Calls Time
qpec-100-1 0,09900 Optimal (global) 25685 166,35s
qpec-100-2 -6,59073 Optimal (global) 89363 742,35s
qpec-100-3 -5,48287 Optimal (global) 71175 621,09s
qpec-100-4 -4,09555 Optimal (global) 2802 20,13s

Table 8.6.: Performance of Most Infeasible Branching by Repeated Calls to the
Cplex QP Solver

shows the performance of pure most infeasible branching by repeated calls to the

core solver. Surprisingly the performance in one case (qpec-100-1) is even faster

than the Cplex MIQP implementation itself (which might be different in newer

versions or with alternative ways of modeling).

Further considerations have focused on accelerating the Cplex MIQP solver by

supplying a MIP-start of good quality before the solve call. The MIP-start is

calculated by the hybrid algorithm in search mode. A different number of itera-

tions has been tested resulting in best performances at about 10 to 100 iterations.

For some instances these MIP-starts significantly increase performance measured

over the complete solution process. A marginal decrease in performance is only

recorded for instances that Cplex can solve quickly by itself, however if the num-

ber of hybrid search iterations is kept small there is never a significant downside

to applying the procedure.

A collection of these experiments is summarized in table 8.7 for the instances

that have been solved to global optimality, and table 8.8 for the instances that

have been aborted after 1800 seconds because their calculation times would have

exceeded hours. The most successful results have been underlined. In the second

case we evaluate the relative gap at the end.

The complete data tables for the related experiments are given in the appendix

section A.2.

8.5.2. Reweighting Bilevel Instances

A large number of tests have been performed on these instances. As mentioned

above by introduction of a parameter s it is possible to regulate the size of

the problem. This parameter directly scales the number of complementarity
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Search Iterations 10 50 100 200 500 1000
Difference qpec-100-1 -97% -97% -97% -97% -96% -95%
in Solution qpec-100-2 5% 3% 3% 3% -6% -4%
Time qpec-100-3 -93% -93% -93% -93% -91% -90%

qpec-100-4 8% 19% 38% 76% 277% 661%
qpec-200-1 -63% -40% -4% 80% 551% 668%
qpec-200-2 0% 0% 0% 0% 0% 0%
qpec-200-3 0% 0% 0% 0% 0% 0%
qpec-200-4 0% 0% 0% 0% 0% 0%
Sum -240% -209% -154% -31% 634% 1140%
Mean -30% -26% -19% -4% 79% 142%

Table 8.7.: Cplex MIQP Solver in Classic Branch-and-Bound Mode with MIP-
Starts provided by the Hybrid Algorithm in Search Mode

Search Iterations 0 10 50 100 200 500 1000
Cplex qpec-200-2 8 0,464 0,465 0,464 0,467 0,476 0,494
Relative qpec-200-3 0,511 0,322 0,320 0,323 0,323 0,338 0,339
Gap qpec-200-4 0,132 0,134 0,135 0,136 0,146 0,141 0,152

Table 8.8.: Cplex MIQP Solver in Classic Branch-and-Bound Mode with MIP-
Starts provided by the Hybrid Algorithm in Search Mode

constraints which is 2s. An instance is therefore defined by the combination of

the selected data set and the problem size parameter s.

The individual experiments also differ in the setup of the involved modules. Some

have been conducted with inclusion of the search phase (see 8.4) that is sepa-

rated from the following second phase. The LP/MIP-feasibility approach is used

with different thresholds. In contrary to these cases, it has also been turned off

completely for some runs. In this case, if the algorithm initializes a call to the

CASET subroutine with infeasible startpoint, the algorithm will simply relax all

the complementary indices that are not fixed. The gradient based constraints

and disjunctive cuts have been generated in varying frequency and different total

maximum number, which had no significant influence on performance. This is

why there will be little emphasis on the point of cut generation in the following

tables. However completely turning constraint and cut generation on or off has

created more noticeable effects.
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Most successful Results

Experiments have shown that the algorithm performs most successfully on the

reweighting bilevel MPECs with the variable bound constraints as described in

section 7.6.2. The column names are explained below. The results are shown

in table 8.9. Every instance has been solved by the Cplex MIQP solver and the

hybrid algorithm, and globally optimal solutions with coinciding objective values

have always been found. The most successful results occurred with a parameter

setting where the cut generation module and Lagrange lower bounds have been

turned off. This shows of course that their application is not always helpful in

the matter of performance. For two of the instances with size s “ 90 the hybrid

algorithm performs faster than the Cplex MIQP solver. Although there is only an

increase in 20 complementarity constraints from s “ 80 to s “ 90 we note that the

complexity of MPECs grows exponentially with the number of complementartiy

constraints in general. For s “ 100, calculations have been aborted due to heavily

increased calculation times in both solvers (aborted after one or more hours due

to the lack of progress). For smaller instances it is very likely that the generated

overhead in the hybrid algorithm is too large.

The table columns are defined as follows:

• s - Problem size, number of complemen-

tary constraints is 2s

• Ph1 It. - Iterations of the search phase

• Ph1 Obj. - Objective value after search

phase of the algorithm

• UB - Upper bound of the hybrid algo-

rithm

• LB - Lower bound of the hybrid algo-

rithm

• C. Obj. - Cplex Objective value

• C. Inc. - Cplex incumbent node

• It. - The number of iterations of the

hybrid solver

• S. Calls - Calls to the QP/LP-Solver of

the core solver

• t - Solving time of the hybrid solver

• Feas. - Whether the feasibility unit was

active

• M. Infeas. - Whether the BBASET

branching from a stationary point was

performed by the largest negative dual

or the most infeasibel index (see section

7.6.3)

• CASET - Whether the CASET algo-

rithm and related features were uti-

lized at all; if not then most infeasible

branching is used

• F. MIPs - The number of MIP calls in

the feasibility unit

• F. LPs - The number of LP calls in the

feasibility unit
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Data Set s F. MIPs LPs C. Nodes C. Inc. Ph1 It. Ph1 Obj. UB LB It. S. Calls t C. Time
Data Set 1 90 5177 325424 353609 330308 90 0,63844 0,63108 0,63108 5177 5177 2438,36 692,66
Data Set 2 90 1001 34695 138062 133597 90 1,16704 1,16704 1,16704 1001 1001 235,1 252,20

Data Set 3 90 535 21439 147698 65202 90 0,71833 0,71833 0,71833 535 535 162,48 262,35

Data Set 4 90 2869 113973 176956 141122 90 0,84223 0,84223 0,84223 2869 2869 818,7 337,66
Data Set 1 80 1935 108406 94296 14202 80 0,6384 0,6266 0,6266 1935 1935 580,22 143,64
Data Set 2 80 747 23452 29274 29170 80 1,15887 1,15887 1,15887 747 747 124,27 44,37
Data Set 3 80 463 17602 7316 3656 80 0,71464 0,71464 0,71464 463 463 102,77 10,55
Data Set 4 80 2561 93062 31035 30526 80 0,89039 0,89039 0,89039 2561 2561 518,85 50,22

Table 8.9.: Hybrid Algorithm compared to Cplex MIQP Solver on Global Optima
for the Reweighting Bilevel MPEC

• Dual Bnds. - The number of Lagrange

dual bounds that have been calculated

• Cuts - The total number of disjunctive

cuts that have been generated

• LPs - LP calls in the variable bound

constraint generation (alg. 18)

Additional Results

Further results show the performance of the hybrid solver for different settings

of the modules. All instances have been aborted after a certain time limit. In

those cases where lower and upper bound do not coincide the time limit has been

reached. The time limit depends on the problem size and can be seen in the

tables (150 seconds for data set 1 with s “ 50).

Tables 8.10 (and in appendix: A.6, A.7, A.8, A.9 and A.10) present the results.

A short analysis of the results shows that the calculation of the Lagrange lower

bounds is inefficient with the current implementation. The solution of the non-

convex subproblems takes more time than the calculated lower bounds save in

the branch-and-bound framework. Further research might try to solve these

subproblems with an approach that is more sophisticated from the perspective of

programming, or use an implementation of the BBASET algorithm as has been

proposed before. It might also be possible to find a better indicator that yields an

improvement on the selection of the nodes for which these bounds are calculated.

A positive observation is that the hybrid branch-and-bound algorithm produces

fewer nodes compared to the Cplex MIQP solver for several instances.
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Data Set s Ph1 Obj. UB LB It. S. Calls t Feas. M. Infeas. CASET F. MIPs F. LPs Dual Bnds. Cuts
Data Set 1 50 0,60451 0,60451 2381 2736 53,62 n y y 0 64
Data Set 1 50 0,60451 0,60451 0,60451 2381 2735 58,49 n y y 0 64
Data Set 1 50 0,60451 0,60451 2376 2657 61,92 n y y 0 0
Data Set 1 50 0,60451 0,60451 0,60451 2376 2656 64,29 n y y 0 0
Data Set 1 50 0,60451 0,60451 4015 4324 85,18 n n y 0 52
Data Set 1 50 0,60451 0,60451 0,60451 4015 4323 86,14 n n y 0 52
Data Set 1 50 0,60451 0,60451 4124 4381 92,68 n n y 0 0
Data Set 1 50 0,60451 0,60451 0,60451 4124 4380 96,2 n n y 0 0
Data Set 1 50 0,60451 0,60451 0,60451 6757 6765 116,61 n 0 8
Data Set 1 50 0,60451 0,60451 6847 6847 122,01 n 0 0
Data Set 1 50 0,60451 0,60451 0,60451 6847 6847 138,58 n 0 0
Data Set 1 50 0,60451 0,60451 6847 6847 142,53 n 0 0
Data Set 1 50 0,60451 0,59889 2838 4562 150,01 y n y 4428 1509 0 79
Data Set 1 50 0,60692 0,60409 6560 6559 150,02 n 696 0
Data Set 1 50 0,60692 0,60358 6298 6297 150,09 n 434 0
Data Set 1 50 0,60451 0,60451 0,5991 2916 4642 153,6 y n y 4506 1509 0 79

Table 8.10.: Hybrid Algorithm on the Reweighting Bilevel MPEC - Data Set 1

Data Set s Initial Part Match Optimized Part Match Quality Increase
Positive Variables Relaxed Positive Variables Relaxed

Data Set 1 50 73,77136 73,77133 60,17119 60,17122 18,44 %
Data Set 2 20 177,24619 177,24627 150,62900 150,62903 15,02%
Data Set 2 50 178,26510 178,26508 140,39935 140,39981 21,24%
Data Set 3 30 103,50506 103,50506 87,95038 87,95038 15,03%
Data Set 4 20 154,94687 154,94657 128,67834 128,67847 16,95%
Data Set 4 40 152,27729 152,27727 117,35046 117,35040 22,94%

Table 8.11.: Upper Level Objective of the Lower Level Solution before and after
the Bilevel Optimization
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Practical Use for Demand Forecast Calculations

Although so far the technical evaluation of the algorithm has been focused on,

table 8.11 presents the evaluation of the lower level (i.e. reweighting) solution

point in the original ex-post objective function T̃ (section 3.2). The bilevel model

which is subject to optimization has undergone different modifications from the

original ex-post problem to its final state. The numbers reflect the final use of the

calculations. Extra columns have been added solving the lower level problem with

and without positivity constraints on the variables (in reference to section 3.4.1).

As table 8.11 presents, the solution of the bilevel problem yields a corresponding

reweighting (i.e. lower level) point that always has a part match of better quality,

if evaluated in the ex-post situation. The increase lies at 15 to 23 percent.

Whether resulting target prioritizations can be used in practice needs to be in-

vestigated in a long term experiment. One particular result might be useful in

a training scenario that has been built from a specific dataset. However, we

cannot conclude that this prioritization does also yield a quality increase in de-

mand forecasts for future time periods, although the concept of training scenarios

depends on the occurrence of this expected effect. Thus, prioritization is only de-

sirable if the quality increase shows some significant stability over time. Whether

this method will be applied to further reweighting calculations in actual demand

forecasts is still up for discussion, and might be the content for future projects.

8.6. Conclusion

The experiments have shown that the CASET algorithm is indeed a valuable tool

for operating on a set of linear constraints and linear complementarity constraints

with a convex objective function. Expanding this local search method to the

whole solution space by considering yet the same dual multipliers as CASET

itself, the idea of the BBASET algorithm is intuitive and bears great potential

for the instances at hand. The hybrid algorithm has eliminated the downside

of working with non-convex problems in order to restore feasibility. This makes

the algorithm more accessible to users from outside of the theoretical field, since

professional optimization software is already in a state of high reliability.

The search phase of the algorithm was successfully applied to the complete set
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of experiments. Regarding the proof of optimality, the investigation shows that

branching by the most infeasible index can be reliable to a certain extent. Off-the-

shelf implementations such as Cplex are overall preferable but their performance

can be increased by supplying startpoints with the search method of the hybrid

algorithm without any risk. For a number of experiments (with the reweighting

bilevel MPEC instances) the hybrid algorithm manages to reduce the number of

solve calls to the core QP-solver. Furthermore, the results show that for a small

number of experiments the hybrid algorithm is faster. Given a more advanced

implementation, further tuning and experiments and a greater set of instances,

this might be the subject of future research.

A theoretical challenge is the development of further indicators that guide the al-

gorithm in analysis of the given problem instance, or the incorporation of already

existing techniques in this area. This would yield an increase in flexibility and

reliability of the algorithm. In the current state, the behaviour of the algorithm is

massively dependent on the parameter set that has been selected beforehand, and

that controls the subroutines of the individual modules. Problem preprocessing

techniques should be utilized, incorporating more information that arises during

the solution process and depends on the given problem structure.

Regarding the use in the presented business application, the bilevel optimization

has shown that the quality of reweighting results could be reasonably improved

by utilization of favorable option planning target prioritizations. The implemen-

tation is able to find solutions of high quality in calculation times that are little

to the user, and is ready to be applied to ex-post data.
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A. Computational Results

A.1. Search Phase Iterations

The iterations of the search phase on the QPEC problems are shown in table A.1

and A.2.

A.2. CPLEX MIQP Solver with MIP-Starts provided by

the Hybrid Algorithm in Search Mode

Appending section 8.5: The various experiments differ in in the following char-

acteristics:

• The number of iterations of the hybrid algorithm in search mode used to

calculate the MIP-start (where no iterations means that CPLEX just runs

by itself);

• Modeling the problem with SOS1-constraints and positive variables or al-

ternatively modeling with binary variables and a big-M parameter of 100.

If SOS1-constraints are used the set of active constraints that is found at

the solution of the hybrid algorithm in search phase is prioritized;

• CPLEX search mode which can either be set to Classic Branch-and-Bound

or Dynamic Search.

The classic branch-and-bound option has been considered to blend out some of

the features that CPLEX uses internally to boost performance. A time limit of

1800 seconds was imposed on all calculations. Runs that have been aborted are

evaluated by their relative gap that remains. Elements of best performance have

been underlined.

The results are presented in table A.3 - A.5.
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Problem Iteration QP/LP Solve Calls Objective Global Minimum Time in s

qpec-100-1 1 6 0,403458695 0,099002781 0,0198405
qpec-100-1 4 48 0,345441094 0,099002781 0,1449084
qpec-100-1 6 57 0,345441094 0,099002781 0,1906315
qpec-100-1 8 83 0,291060044 0,099002781 0,2589583
qpec-100-1 12 117 0,132963869 0,099002781 0,3572013
qpec-100-1 41 283 0,1265236 0,099002781 0,9942933
qpec-100-1 313 2250 0,1265236 0,099002781 9,219647
qpec-100-1 382 2578 0,099002781 0,099002781 11,3285979
qpec-100-1 405 2667 0,099002781 0,099002781 11,9640877
qpec-100-1 435 2817 0,099002781 0,099002781 12,8642272
qpec-100-1 488 3176 0,099002781 0,099002781 14,834412

qpec-100-2 1 59 -6,260490064 -6,590734748 0,1787396
qpec-100-2 279 1505 -6,430055819 -6,590734748 8,3977674
qpec-100-2 371 1864 -6,430055819 -6,590734748 11,3360284
qpec-100-2 387 1959 -6,590734748 -6,590734748 12,0561706
qpec-100-2 398 2010 -6,590734748 -6,590734748 12,5722964
qpec-100-2 412 2051 -6,590734748 -6,590734748 13,0190164
qpec-100-2 472 2297 -6,590734748 -6,590734748 15,3257387
qpec-100-2 477 2321 -6,590734748 -6,590734748 15,5618755
qpec-100-2 486 2347 -6,590734748 -6,590734748 15,8762203
qpec-100-2 499 2399 -6,590734748 -6,590734748 16,7112063

qpec-100-3 1 53 -5,421196864 -5,482874548 0,2911508
qpec-100-3 2 56 -5,421196864 -5,482874548 0,3185076
qpec-100-3 4 67 -5,44477174 -5,482874548 0,4012306
qpec-100-3 30 309 -5,451074667 -5,482874548 1,6127008
qpec-100-3 110 869 -5,451074667 -5,482874548 4,8334322
qpec-100-3 220 1352 -5,456089005 -5,482874548 8,0817879
qpec-100-3 235 1416 -5,476649453 -5,482874548 8,5302009
qpec-100-3 338 2044 -5,476649453 -5,482874548 12,1926401
qpec-100-3 1214 7834 -5,482874548 -5,482874548 51,0554487

qpec-100-4 1 28 -1,503267455 -4,095553607 0,0912504
qpec-100-4 2 31 -1,503267455 -4,095553607 0,1131668
qpec-100-4 13 84 -3,771462838 -4,095553607 0,3801813
qpec-100-4 16 143 -3,899213136 -4,095553607 0,5873441
qpec-100-4 21 177 -3,946745341 -4,095553607 0,7356504
qpec-100-4 26 200 -3,982117798 -4,095553607 0,8632765
qpec-100-4 63 318 -3,982117798 -4,095553607 1,6549866
qpec-100-4 128 513 -4,045289875 -4,095553607 3,5188577
qpec-100-4 314 1360 -4,087684677 -4,095553607 12,0432667
qpec-100-4 744 3106 -4,095553607 -4,095553607 34,8899223
qpec-100-4 850 3402 -4,095553607 -4,095553607 40,6035238
qpec-100-4 852 3410 -4,095553607 -4,095553607 40,8464446
qpec-100-4 873 3491 -4,095553607 -4,095553607 42,1588671

Table A.1.: Iterations of the Hybrid Algorithm in Search Mode Part 1 on QPEC
Problems
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Problem Iteration QP/LP Solve Calls Objective Global Minimum Time in s

qpec-200-1 1 49 -1,934829698 -1,934829698 0,7758231
qpec-200-1 4 63 -1,934829698 -1,934829698 1,0556129
qpec-200-1 216 1021 -1,934829698 -1,934829698 25,2132352
qpec-200-1 268 1286 -1,934829698 -1,934829698 32,8572418
qpec-200-1 458 2349 -1,934829698 -1,934829698 61,9783899
qpec-200-1 462 2370 -1,934829698 -1,934829698 62,9805334

qpec-200-2 1 116 -21,71887114 -24,07742769 2,2112061
qpec-200-2 2 119 -21,71887114 -24,07742769 2,3467926
qpec-200-2 5 158 -22,16364727 -24,07742769 3,2008114
qpec-200-2 11 180 -22,16364727 -24,07742769 3,9285753
qpec-200-2 51 462 -22,42925167 -24,07742769 11,1915183
qpec-200-2 176 1526 -24,07742769 -24,07742769 40,023238
qpec-200-2 207 1968 -24,07742769 -24,07742769 52,3212955
qpec-200-2 682 6652 -24,07742769 -24,07742769 199,924649

qpec-200-3 1 97 -1,924392189 -1,95341 2,8259084
qpec-200-3 2 100 -1,924392189 -1,95341 2,9837602
qpec-200-3 838 9761 -1,925601299 -1,95341 396,846085
qpec-200-3 844 9771 -1,925601299 -1,95341 398,3616935
qpec-200-3 945 10562 -1,925601299 -1,95341 440,4172476
qpec-200-3 1005 10878 -1,925601299 -1,95341 464,6540333
qpec-200-3 1164 11861 -1,925918476 -1,95341 529,0964553
qpec-200-3 1182 11966 -1,925918476 -1,95341 537,6387408
qpec-200-3 1195 12010 -1,925918476 -1,95341 543,0791669
qpec-200-3 1225 12159 -1,925918476 -1,95341 556,6505275
qpec-200-3 1233 12185 -1,925918476 -1,95341 559,9273258
qpec-200-3 1234 12191 -1,925918476 -1,95341 561,0617913
qpec-200-3 1245 12247 -1,9447936 -1,95341 567,7692239
qpec-200-3 1246 12251 -1,9447936 -1,95341 568,4070783
qpec-200-3 1264 12328 -1,9447936 -1,95341 578,1473723
qpec-200-3 1265 12335 -1,9447936 -1,95341 579,5560894
qpec-200-3 1439 13452 -1,9447936 -1,95341 691,349366
qpec-200-3 1448 13471 -1,944812176 -1,95341 694,7204857

qpec-200-4 1 53 -5,823464697 -6,217164712 0,9084454
qpec-200-4 5 80 -5,946667697 -6,217164712 1,567754
qpec-200-4 7 97 -6,029474119 -6,217164712 1,9265394
qpec-200-4 101 661 -6,031016323 -6,217164712 16,3958942
qpec-200-4 106 702 -6,031016323 -6,217164712 18,0564823
qpec-200-4 125 776 -6,03784212 -6,217164712 22,2802725
qpec-200-4 136 822 -6,154585648 -6,217164712 24,4443651
qpec-200-4 138 826 -6,154585648 -6,217164712 24,9164948
qpec-200-4 150 884 -6,193234442 -6,217164712 27,6347755
qpec-200-4 235 1301 -6,216544514 -6,217164712 47,0395944
qpec-200-4 476 2370 -6,216544514 -6,217164712 104,9694986
qpec-200-4 1951 9910 -6,217164712 -6,217164712 624,288648

Table A.2.: Iterations of the Hybrid Algorithm in Search Mode Part 2 on QPEC
Problems
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qpec SOS1 Nodes CPLEX It. Status Obj. Val. Incumbent Rel. Gap Hybr. It. Hybr. Obj. Hybr. Time CPLEX Time Total Time
100-1 n 1754266 33354428 Unknown 8 -1 -1 0,02 1806,79 1806,81
100-1 n 51876 411215 Optimal 0,099 49210 0 10 0,29106 0,36 59,72 60,08
100-1 n 49116 388475 Optimal 0,099 28904 0 50 0,12652 1,21 56,83 58,04
100-1 n 49116 388475 Optimal 0,099 28904 0 100 0,12652 2,89 49,26 52,15

100-1 n 49116 388475 Optimal 0,099 28904 0 200 0,12652 6,14 46,03 52,18
100-1 n 50150 397456 Optimal 0,099 0 0 500 0,099 19,19 47,58 66,77
100-1 n 50150 397456 Optimal 0,099 0 0 1000 0,099 40,83 47,29 88,13

100-2 n 157175 1764790 Optimal -6,59073 155660 6,22E-05 0,02 163,27 163,29
100-2 n 161686 1852687 Optimal -6,59073 157730 6,52E-05 10 -6,26049 0,47 170,88 171,35
100-2 n 161686 1852687 Optimal -6,59073 157730 6,52E-05 50 -6,26049 1,3 166,2 167,5
100-2 n 161686 1852687 Optimal -6,59073 157730 6,52E-05 100 -6,26049 2,45 165,14 167,58
100-2 n 161686 1852687 Optimal -6,59073 157730 6,52E-05 200 -6,26049 5,99 162,82 168,81
100-2 n 130865 1471686 Optimal -6,59073 0 2,40E-05 500 -6,59073 19,65 133,71 153,35

100-2 n 130865 1471686 Optimal -6,59073 0 2,40E-05 1000 -6,59073 23,44 133,69 157,13

100-3 n 1160236 29885836 Unknown 8 -1 -1 0,02 1810,06 1810,07
100-3 n 112177 918985 Optimal -5,48287 78320 9,68E-05 10 -5,44477 0,57 126,7 127,27
100-3 n 106867 872862 Optimal -5,48287 32583 9,68E-05 50 -5,45107 2,04 120,31 122,35

100-3 n 106867 872862 Optimal -5,48287 32583 9,68E-05 100 -5,45107 3,88 121,27 125,15
100-3 n 106867 872862 Optimal -5,48287 32583 9,68E-05 200 -5,45107 9,04 121,58 130,62
100-3 n 105580 861192 Optimal -5,48287 24912 9,71E-05 500 -5,47665 34,36 119,79 154,15
100-3 n 105580 861192 Optimal -5,48287 24912 9,71E-05 1000 -5,47665 62,67 119,3 181,97

100-4 n 5556 47155 Optimal -4,09555 5160 5,85E-07 0,01 7,16 7,17

100-4 n 5988 50585 Optimal -4,09555 5660 7,72E-05 10 -1,50327 0,28 7,47 7,75
100-4 n 5538 46662 Optimal -4,09555 5140 7,92E-05 50 -3,98212 1,28 7,25 8,53
100-4 n 5538 46662 Optimal -4,09555 5140 7,92E-05 100 -3,98212 2,51 7,36 9,87
100-4 n 5120 43559 Optimal -4,09555 3769 0 200 -4,04529 6,55 6,04 12,59
100-4 n 5144 44029 Optimal -4,09555 4818 6,63E-05 500 -4,08768 20,95 6,08 27,03
100-4 n 4925 41616 Optimal -4,09555 0 5,37E-05 1000 -4,09555 48,81 5,76 54,57

200-1 n 3505 50153 Optimal -1,93483 3429 6,37E-05 0 14,79 14,79
200-1 n 778 6995 Optimal -1,93483 0 0 10 -1,93483 1,65 3,75 5,40

200-1 n 778 6995 Optimal -1,93483 0 0 50 -1,93483 5,1 3,74 8,84
200-1 n 778 6995 Optimal -1,93483 0 0 100 -1,93483 10,4 3,83 14,23
200-1 n 778 6995 Optimal -1,93483 0 0 200 -1,93483 22,85 3,76 26,6
200-1 n 778 6995 Optimal -1,93483 0 0 500 -1,93483 92,58 3,75 96,33
200-1 n 778 6995 Optimal -1,93483 0 0 1000 -1,93483 109,76 3,76 113,53

200-2 n 468045 9651266 Unknown 8 -1 -1 0,01 1802,86 1802,87
200-2 n 404801 7175067 Feasible -24,07743 400800 0,464 10 -23,99966 3,2 1801,67 1804,87

200-2 n 401801 7120390 Feasible -24,07743 400800 0,465 50 -23,99966 11,77 1790,42 1802,19
200-2 n 398203 7055453 Feasible -24,11655 396000 0,464 100 -23,99966 20,76 1781,16 1801,93
200-2 n 391509 6933526 Feasible -24,11697 388100 0,467 200 -23,99966 60,65 1741,03 1801,68
200-2 n 374101 6564080 Feasible -24,11697 371600 0,476 500 -24,03953 158,51 1643,18 1801,68
200-2 n 338891 5957643 Feasible -24,11697 336400 0,494 1000 -24,1082 316,13 1485,04 1801,18

200-3 n 433341 5593345 Feasible -1,9153 433200 0,511 0 1801,77 1801,78
200-3 n 378201 4478678 Feasible -1,93606 378100 0,322 10 -1,92439 7,4 1794,22 1801,62
200-3 n 372401 4413383 Feasible -1,94107 371700 0,320 50 -1,92439 21,8 1779,95 1801,75

200-3 n 372301 4412896 Feasible -1,9368 371200 0,323 100 -1,92439 40,14 1761,45 1801,6
200-3 n 362001 4291989 Feasible -1,94025 361600 0,323 200 -1,92439 81,16 1722,55 1803,71
200-3 n 328601 3904931 Feasible -1,93214 325800 0,338 500 -1,92439 251,19 1552,29 1803,48
200-3 n 283201 3394467 Feasible -1,94828 282900 0,339 1000 -1,9256 472,39 1328,94 1801,33

200-4 n 391801 4661836 Feasible -6,25278 389200 0,132 0 1801,89 1801,89

200-4 n 383403 4602912 Feasible -6,25278 381200 0,134 10 -6,02947 2,39 1799,42 1801,8
200-4 n 381301 4580180 Feasible -6,25278 379200 0,135 50 -6,02947 8,19 1793,79 1801,98
200-4 n 378701 4551892 Feasible -6,25278 378400 0,136 100 -6,02947 15,89 1785,67 1801,56
200-4 n 372401 4410171 Feasible -6,21716 368000 0,146 200 -6,19323 43,18 1758,15 1801,33
200-4 n 349301 4197188 Feasible -6,21716 347600 0,141 500 -6,21654 126,99 1674,61 1801,6
200-4 n 315830 3835758 Feasible -6,21716 312600 0,152 1000 -6,21654 283,21 1518,14 1801,34

Table A.3.: CPLEX MIQP Solver in Classic Branch-and-Bound Mode with MIP-
Starts provided by Hybrid Algorithm in Search Mode
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qpec SOS1 Nodes CPLEX It. Status Obj. Val. Incumbent Rel. Gap Hybr. It. Hybr. Obj. Hybr. Time CPLEX Time Total Time
100-1 y 74846 427291 Optimal 0,099 46017 3,21E-05 0,01 69,41 69,42
100-1 y 59268 338731 Optimal 0,099 10374 1,49E-05 10 0,29106 0,31 50,68 50,99
100-1 y 61114 351131 Optimal 0,099 56073 0 50 0,12652 1,23 49,39 50,62
100-1 y 61114 351131 Optimal 0,099 56073 0 100 0,12652 2,7 47,32 50,02
100-1 y 61114 351131 Optimal 0,099 56073 0 200 0,12652 5,95 47,11 53,06
100-1 y 60005 344718 Optimal 0,099 0 0 500 0,099 19,07 44,89 63,95
100-1 y 60005 344718 Optimal 0,099 0 0 1000 0,099 40,71 44,76 85,47
100-1 n 1210550 35496987 Unknown 8 -1 -1 0,02 1804,04 1804,06
100-1 n 38664 295276 Optimal 0,099 37650 0 10 0,29106 0,36 44,8 45,17
100-1 n 39649 308248 Optimal 0,099 26580 0 50 0,12652 1,21 41,08 42,29
100-1 n 39649 308248 Optimal 0,099 26580 0 100 0,12652 2,89 38,6 41,49

100-1 n 39649 308248 Optimal 0,099 26580 0 200 0,12652 6,14 37,01 43,15
100-1 n 38928 299587 Optimal 0,099 0 7,59E-07 500 0,099 19,19 37,92 57,1
100-1 n 38928 299587 Optimal 0,099 0 7,59E-07 1000 0,099 40,83 35,83 76,66

100-2 y 258771 2206896 Optimal -6,59073 252919 9,44E-05 0,02 246,07 246,08
100-2 y 249180 2085497 Optimal -6,59073 248271 7,47E-05 10 -6,26049 0,47 238,79 239,26
100-2 y 249180 2085497 Optimal -6,59073 248271 7,47E-05 50 -6,26049 1,25 225,77 227,02
100-2 y 249180 2085497 Optimal -6,59073 248271 7,47E-05 100 -6,26049 2,43 229,28 231,71
100-2 y 249180 2085497 Optimal -6,59073 248271 7,47E-05 200 -6,26049 5,95 223,82 229,77
100-2 y 264106 2289819 Optimal -6,59073 0 8,56E-05 500 -6,59073 19,67 235,8 255,47
100-2 y 264106 2289819 Optimal -6,59073 0 8,56E-05 1000 -6,59073 23,59 241,58 265,18
100-2 n 281878 2936708 Optimal -6,59073 281770 9,55E-05 0,02 293,37 293,4
100-2 n 132563 1367985 Optimal -6,59073 60080 8,94E-05 10 -6,26049 0,47 138,11 138,58
100-2 n 132563 1367985 Optimal -6,59073 60080 8,94E-05 50 -6,26049 1,3 132,76 134,06

100-2 n 132563 1367985 Optimal -6,59073 60080 8,94E-05 100 -6,26049 2,45 133,57 136,02
100-2 n 132563 1367985 Optimal -6,59073 60080 8,94E-05 200 -6,26049 5,99 132,13 138,12
100-2 n 129228 1329031 Optimal -6,59073 0 7,49E-05 500 -6,59073 19,65 127,91 147,56
100-2 n 129228 1329031 Optimal -6,59073 0 7,49E-05 1000 -6,59073 23,44 127,68 151,12

100-3 y 915930 5286060 Optimal -5,48287 818401 9,89E-05 0,02 1028,5 1028,52
100-3 y 170253 1023256 Optimal -5,48287 155036 9,99E-05 10 -5,44477 0,56 200,88 201,44
100-3 y 201287 1146330 Optimal -5,48287 194578 9,79E-05 50 -5,45107 2,05 231,72 233,77
100-3 y 201287 1146330 Optimal -5,48287 194578 9,79E-05 100 -5,45107 3,88 233,36 237,24
100-3 y 201287 1146330 Optimal -5,48287 194578 9,79E-05 200 -5,45107 8,93 233,38 242,31
100-3 y 167877 1001409 Optimal -5,48287 157253 9,98E-05 500 -5,47665 34,62 189,99 224,61
100-3 y 167877 1001409 Optimal -5,48287 157253 9,98E-05 1000 -5,47665 62,47 191,7 254,17
100-3 n 109213 823213 Optimal -5,48287 88377 9,95E-05 0,02 129,6 129,62

100-3 n 112500 858696 Optimal -5,48287 410 8,29E-05 10 -5,44477 0,57 131,95 132,52
100-3 n 115696 873092 Optimal -5,48287 66870 9,66E-05 50 -5,45107 2,04 134,22 136,27
100-3 n 115696 873092 Optimal -5,48287 66870 9,66E-05 100 -5,45107 3,88 134,54 138,42
100-3 n 115696 873092 Optimal -5,48287 66870 9,66E-05 200 -5,45107 9,04 134,57 143,61
100-3 n 113692 866933 Optimal -5,48287 105250 9,41E-05 500 -5,47665 34,36 131,33 165,7
100-3 n 113692 866933 Optimal -5,48287 105250 9,41E-05 1000 -5,47665 62,67 133,55 196,22

100-4 y 4200 29026 Optimal -4,09555 2954 1,74E-05 0,01 5,83 5,84
100-4 y 6319 38162 Optimal -4,09555 6200 0 10 -1,50327 0,27 10,58 10,85
100-4 y 4435 29804 Optimal -4,09555 4383 7,90E-05 50 -3,98212 1,29 7,02 8,3
100-4 y 4435 29804 Optimal -4,09555 4383 7,90E-05 100 -3,98212 2,42 6,95 9,37
100-4 y 4433 29817 Optimal -4,09555 4367 4,96E-05 200 -4,04529 6,42 7,16 13,58
100-4 y 4563 30683 Optimal -4,09555 3395 8,44E-06 500 -4,08768 21,06 6,26 27,32
100-4 y 4569 30582 Optimal -4,09555 0 7,90E-05 1000 -4,09555 48,96 5,5 54,46
100-4 n 3321 26961 Optimal -4,09555 1464 6,06E-05 0,01 4,71 4,72

100-4 n 3355 27497 Optimal -4,09555 3230 0 10 -1,50327 0,28 5,09 5,37
100-4 n 3497 27939 Optimal -4,09555 2555 8,39E-05 50 -3,98212 1,28 4,75 6,03
100-4 n 3497 27939 Optimal -4,09555 2555 8,39E-05 100 -3,98212 2,51 4,84 7,35
100-4 n 3641 28780 Optimal -4,09555 3417 0 200 -4,04529 6,55 5,1 11,65
100-4 n 3386 27570 Optimal -4,09555 2750 0 500 -4,08768 20,95 4,32 25,27
100-4 n 3371 27731 Optimal -4,09555 0 9,14E-05 1000 -4,09555 48,81 4,16 52,97

Table A.4.: CPLEX MIQP Solver in Dynamic Search Mode with MIP-Starts pro-
vided by the Hybrid Algorithm in Search Mode
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qpec SOS1 Nodes CPLEX It. Status Obj. Val. Incumbent Rel. Gap Hybr. It. Hybr. Obj. Hybr. Time CPLEX Time Total Time
200-1 y 92176 717360 Optimal -1,93483 2821 9,96E-05 0 257,08 257,08
200-1 y 567 4185 Optimal -1,93483 0 0 10 -1,93483 1,64 2,35 3,99

200-1 y 567 4185 Optimal -1,93483 0 0 50 -1,93483 5,09 2,32 7,41
200-1 y 567 4185 Optimal -1,93483 0 0 100 -1,93483 10,39 2,31 12,7
200-1 y 567 4185 Optimal -1,93483 0 0 200 -1,93483 22,81 2,34 25,15
200-1 y 567 4185 Optimal -1,93483 0 0 500 -1,93483 92,97 2,31 95,28
200-1 y 567 4185 Optimal -1,93483 0 0 1000 -1,93483 109,35 2,34 111,69
200-1 n 435230 3981484 Optimal -1,93516 430157 1,00E-04 0 1064,59 1064,6
200-1 n 1067 9430 Optimal -1,93509 1047 0 10 -1,93483 1,65 6,47 8,12
200-1 n 1067 9430 Optimal -1,93509 1047 0 50 -1,93483 5,1 6,47 11,57
200-1 n 1067 9430 Optimal -1,93509 1047 0 100 -1,93483 10,4 6,39 16,79
200-1 n 1067 9430 Optimal -1,93509 1047 0 200 -1,93483 22,85 6,42 29,27
200-1 n 1067 9430 Optimal -1,93509 1047 0 500 -1,93483 92,58 6,42 98,99
200-1 n 1067 9430 Optimal -1,93509 1047 0 1000 -1,93483 109,76 6,42 116,18

200-2 y 245001 5187562 Feasible -22,6029 80886 0,819 0 1800,83 1800,83
200-2 y 252801 5413271 Feasible -23,99966 0 0,552 10 -23,99966 3,22 1797,34 1800,56
200-2 y 251501 5386953 Feasible -23,99966 0 0,553 50 -23,99966 11,74 1789,18 1800,92
200-2 y 251201 5380277 Feasible -23,99966 0 0,553 100 -23,99966 20,87 1779,84 1800,71
200-2 y 244541 5244856 Feasible -23,99966 0 0,558 200 -23,99966 60,57 1740,11 1800,68
200-2 y 230846 4922057 Feasible -24,03953 0 0,564 500 -24,03953 158,81 1641,9 1800,71
200-2 y 209101 4475846 Feasible -24,1082 0 0,574 1000 -24,1082 315,87 1484,84 1800,71
200-2 n 351332 9321787 Unknown 8 -1 -1 0,01 1801,22 1801,22
200-2 n 436120 7057266 Feasible -24,07743 432600 0,47 10 -23,99966 3,2 1798,2 1801,4
200-2 n 443201 7171227 Feasible -24,07743 438700 0,467 50 -23,99966 11,77 1789,84 1801,61
200-2 n 442101 7153787 Feasible -24,11697 441500 0,464885198 100 -23,99966 20,76 1780,67 1801,44

200-2 n 428401 6932466 Feasible -24,11697 426000 0,47 200 -23,99966 60,65 1740,78 1801,43
200-2 n 408301 6645455 Feasible -24,07743 406400 0,475 500 -24,03953 158,51 1642,81 1801,31
200-2 n 374506 6012051 Feasible -24,11697 368800 0,487 1000 -24,1082 316,13 1484,95 1801,08

200-3 y 240714 2809101 Feasible -1,88717 177458 0,751 0 1800,96 1800,96
200-3 y 251001 2960089 Feasible -1,92439 0 0,468 10 -1,92439 7,44 1794,12 1801,56
200-3 y 249201 2939027 Feasible -1,92439 0 0,469 50 -1,92439 21,76 1780,76 1802,52
200-3 y 247201 2915647 Feasible -1,92439 0 0,47 100 -1,92439 40,21 1760,7 1800,9
200-3 y 243601 2872961 Feasible -1,92439 0 0,471 200 -1,92439 81,25 1721,67 1802,93
200-3 y 219001 2583868 Feasible -1,92439 0 0,483 500 -1,92439 251,26 1549,66 1800,91
200-3 y 185597 2213609 Feasible -1,9256 0 0,498 1000 -1,9256 473,16 1327,28 1800,44
200-3 n 433501 5381262 Feasible -1,95341 432800 0,474 0 1801,59 1801,59
200-3 n 419001 4841221 Feasible -1,9522 418800 0,332371782 10 -1,92439 7,4 1793,78 1801,18

200-3 n 414801 4791903 Feasible -1,93954 414000 0,342 50 -1,92439 21,8 1779,5 1801,3
200-3 n 414001 4782604 Feasible -1,93573 413300 0,345 100 -1,92439 40,14 1760,93 1801,08
200-3 n 400601 4627155 Feasible -1,94234 399400 0,343 200 -1,92439 81,16 1720,2 1801,36
200-3 n 364401 4205447 Feasible -1,93682 364000 0,356 500 -1,92439 251,19 1550,36 1801,56
200-3 n 310701 3637192 Feasible -1,94304 310400 0,366 1000 -1,9256 472,39 1328,76 1801,16

200-4 y 288301 3329273 Feasible -6,22036 228583 0,15 0,01 1800,89 1800,9
200-4 y 295401 3455881 Feasible -6,16877 233848 0,164 10 -6,02947 2,42 1798,65 1801,07
200-4 y 295401 3455881 Feasible -6,16877 233848 0,164 50 -6,02947 8,18 1793 1801,18
200-4 y 293001 3433130 Feasible -6,16877 233848 0,165 100 -6,02947 15,91 1785,41 1801,33
200-4 y 293501 3329220 Feasible -6,19323 0 0,153 200 -6,19323 43,63 1757,48 1801,11
200-4 y 276101 3155215 Feasible -6,21654 0 0,15 500 -6,21654 126,17 1674,92 1801,1
200-4 y 246701 2881877 Feasible -6,21654 0 0,163 1000 -6,21654 298,6 1501,96 1800,56
200-4 n 402701 4276686 Feasible -6,25278 397200 0,054558096 0 1801,61 1801,61

200-4 n 396101 4315258 Feasible -6,25278 386000 0,071 10 -6,02947 2,39 1799,12 1801,51
200-4 n 409558 4441969 Feasible -6,25278 390800 0,067 50 -6,02947 8,19 1793,22 1801,4
200-4 n 395301 4308083 Feasible -6,25278 381200 0,071 100 -6,02947 15,89 1785,72 1801,61
200-4 n 391310 4194896 Feasible -6,25278 376700 0,059 200 -6,19323 43,18 1758,19 1801,37
200-4 n 361601 3923367 Feasible -6,25278 356800 0,069 500 -6,21654 126,99 1674,41 1801,4
200-4 n 331501 3644428 Feasible -6,21716 324300 0,086 1000 -6,21654 283,21 1517,96 1801,17

Table A.5.: CPLEX MIQP Solver in Dynamic Search Mode with MIP-Starts pro-
vided by the Hybrid Algorithm in Search Mode
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A.3. The Hybrid Algorithm on Global Optimality

Appending section 8.5:

The table columns are defined as follows:

• s - Problemsize, number of complemen-

tary constraints is 2s

• Ph1 It. - Iterations of the search phase

• Ph1 Obj. - Objective value after search

phase of the algorithm

• UB - Upper bound of the hybrid algo-

rithm

• LB - Lower bound of the hybrid algo-

rithm

• C. Obj. - Cplex Objective value

• C. Inc. - Cplex incumbent node

• It. - The number of iterations of the

hybrid solver

• S. Calls - Calls to the QP/LP-Solver of

the core solver

• t - Solving time of the hybrid solver

• Feas. - Whether the feasibility unit was

active

• F. Thr. - The threshold in the feasibil-

ity module (see section 5.3.1)

• M. Infeas. - Whether the BBASET

branching from a stationary point was

performed by the largest negative dual

or the most infeasibel index (see section

7.6.3)

• CASET - Whether the CASET algo-

rithm and related features were uti-

lized at all; if not then most infeasible

branching is used

• F. MIPs - The number of MIP calls in

the feasibility unit

• F. LPs - The number of LP calls in the

feasibility unit

• Dual Bnds. - The number of Lagrange

dual bounds that have been calculated

• Cuts - The total number of disjunctive

cuts that have been generated

• LPs - LP calls in the variable bound

constraint generation (alg. 18)
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Data Set s F. MIPs F. LPs Dual Bnds. Cuts Ph1 Obj. UB LB It. S. Calls t Feas. M. Infeas. CASET F. Thr.
Data Set 2 20 0 0 0 0 1,5284 1,5284 60 71 0,12 n n y
Data Set 2 20 0 0 0 6 1,5284 1,5284 56 73 0,13 n n y
Data Set 2 20 0 0 0 0 1,5284 1,5284 113 113 0,16 n n n
Data Set 2 20 0 0 0 0 1,5284 1,5284 77 93 0,18 n y y
Data Set 2 20 0 0 0 5 1,5284 1,5284 77 98 0,19 n y y
Data Set 2 20 0 0 0 0 1,5284 1,5284 113 113 0,19 n n n
Data Set 2 20 0 0 46 6 1,5284 1,5284 56 73 0,28 n n y
Data Set 2 20 79 31 0 6 1,5284 1,5284 46 85 0,29 y n y small
Data Set 2 20 0 0 50 0 1,5284 1,5284 60 71 0,3 n n y
Data Set 2 20 79 31 0 0 1,5284 1,5284 46 79 0,31 y n y small
Data Set 2 20 85 18 0 6 1,5284 1,5284 64 106 0,32 y n y large
Data Set 2 20 0 0 62 0 1,5284 1,5284 113 113 0,32 n n n
Data Set 2 20 100 19 0 5 1,5284 1,5284 78 121 0,35 y y y large
Data Set 2 20 83 18 0 0 1,5284 1,5284 62 98 0,35 y n y large
Data Set 2 20 100 19 0 0 1,5284 1,5284 78 116 0,4 y y y large
Data Set 2 20 0 0 62 0 1,5284 1,5284 113 113 0,41 n n n
Data Set 2 20 116 32 0 0 1,5284 1,5284 78 127 0,43 y y y small
Data Set 2 20 116 32 0 5 1,5284 1,5284 78 132 0,44 y y y small
Data Set 2 20 79 31 43 0 1,5284 1,5284 46 79 0,46 y n y small
Data Set 2 20 0 0 81 5 1,5284 1,5284 77 98 0,47 n y y
Data Set 2 20 0 0 81 0 1,5284 1,5284 77 93 0,48 n y y
Data Set 2 20 79 31 43 6 1,5284 1,5284 46 85 0,5 y n y small
Data Set 2 20 85 18 59 6 1,5284 1,5284 64 106 0,52 y n y large
Data Set 2 20 0 0 0 0 1,5284 1,5284 1,5284 113 113 0,53 n n n
Data Set 2 20 0 0 0 6 1,5284 1,5284 1,5284 99 114 0,54 n n y
Data Set 2 20 0 0 0 0 1,5284 1,5284 1,5284 99 108 0,54 n n y
Data Set 2 20 0 0 0 3 1,5284 1,5284 1,5284 113 116 0,56 n n n
Data Set 2 20 83 18 57 0 1,5284 1,5284 62 98 0,6 y n y large
Data Set 2 20 100 19 83 5 1,5284 1,5284 78 121 0,63 y y y large
Data Set 2 20 0 0 0 0 1,5284 1,5284 1,5284 107 123 0,64 n y y
Data Set 2 20 94 24 0 8 1,5284 1,5284 1,5284 69 107 0,65 y n y small
Data Set 2 20 102 10 0 6 1,5284 1,5284 1,5284 91 138 0,67 y n y large
Data Set 2 20 116 32 87 5 1,5284 1,5284 78 132 0,68 y y y small
Data Set 2 20 119 23 0 5 1,5284 1,5284 1,5284 95 139 0,73 y y y large
Data Set 2 20 94 24 0 0 1,5284 1,5284 1,5284 69 99 0,73 y n y small
Data Set 2 20 0 0 0 5 1,5284 1,5284 1,5284 111 132 0,75 n y y
Data Set 2 20 133 40 0 5 1,5284 1,5284 1,5284 92 140 0,76 y y y small
Data Set 2 20 100 19 83 0 1,5284 1,5284 78 116 0,76 y y y large
Data Set 2 20 116 32 87 0 1,5284 1,5284 78 127 0,81 y y y small
Data Set 2 20 102 10 0 0 1,5284 1,5284 1,5284 91 132 0,82 y n y large
Data Set 2 20 0 0 92 6 1,5284 1,5284 1,5284 99 114 0,83 n n y
Data Set 2 20 106 15 0 0 1,5284 1,5284 1,5284 90 127 0,83 y y y large
Data Set 2 20 121 30 0 0 1,5284 1,5284 1,5284 90 131 0,84 y y y small
Data Set 2 20 0 0 110 3 1,5284 1,5284 1,5284 113 116 0,86 n n n
Data Set 2 20 0 0 92 0 1,5284 1,5284 1,5284 99 108 0,87 n n y
Data Set 2 20 94 24 71 8 1,5284 1,5284 1,5284 69 107 0,9 y n y small
Data Set 2 20 0 0 110 0 1,5284 1,5284 1,5284 113 113 0,94 n n n
Data Set 2 20 102 10 88 6 1,5284 1,5284 1,5284 91 138 0,97 y n y large
Data Set 2 20 0 0 112 0 1,5284 1,5284 1,5284 107 123 1,03 n y y
Data Set 2 20 0 0 116 5 1,5284 1,5284 1,5284 111 132 1,05 n y y
Data Set 2 20 94 24 71 0 1,5284 1,5284 1,5284 69 99 1,05 y n y small
Data Set 2 20 119 23 105 5 1,5284 1,5284 1,5284 95 139 1,08 y y y large
Data Set 2 20 133 40 110 5 1,5284 1,5284 1,5284 92 140 1,11 y y y small
Data Set 2 20 106 15 99 0 1,5284 1,5284 1,5284 90 127 1,25 y y y large
Data Set 2 20 102 10 88 0 1,5284 1,5284 1,5284 91 132 1,25 y n y large
Data Set 2 20 121 30 106 0 1,5284 1,5284 1,5284 90 131 1,26 y y y small

Table A.6.: Data Set 2 - s “ 20: Hybrid Algorithm on the Proof of Global
Optimality
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Data Set s F. MIPs F. LPs Dual Bnds. Cuts Ph1 Obj. UB LB It. S. Calls t Feas. M. Infeas. CASET F. Thr.
Data Set 2 50 0 0 0 0 1,41298 1,41298 1149 1233 9,07 n y y
Data Set 2 50 0 0 0 0 1,41298 1,41298 1296 1349 9,61 n n y
Data Set 2 50 0 0 0 0 1,41298 1,41298 1,41298 1149 1230 10,85 n y y
Data Set 2 50 0 0 0 0 1,41298 1,41298 1,41298 1296 1346 11,46 n n y
Data Set 2 50 0 0 0 0 1,41298 1,41298 1467 1467 11,64 n n n
Data Set 2 50 0 0 0 0 1,41298 1,41298 1,41298 1467 1467 13,6 n n n
Data Set 2 50 0 0 264 0 1,41298 1,41298 1467 1467 17,24 n n n
Data Set 2 50 0 0 0 72 1,41298 1,41298 1107 1260 26,05 n y y
Data Set 2 50 0 0 0 0 1,41298 1,41298 1467 1467 27,85 n n n
Data Set 2 50 0 0 0 72 1,41298 1,41298 1,41298 1107 1257 29,13 n y y
Data Set 2 50 0 0 0 60 1,41298 1,41298 1442 1555 31,39 n n y
Data Set 2 50 0 0 0 46 1,41298 1,41298 1,41298 1333 1379 31,96 n n n
Data Set 2 50 0 0 0 60 1,41298 1,41298 1,41298 1442 1552 35,33 n n y
Data Set 2 50 0 0 264 0 1,41298 1,41298 1467 1467 42,22 n n n
Data Set 2 50 3306 1123 0 117 1,41298 1,41298 2102 3478 49,73 y y y large
Data Set 2 50 3462 1207 0 0 1,41298 1,41298 2169 3444 49,78 y y y large
Data Set 2 50 3462 1207 0 0 1,41298 1,41298 1,41298 2169 3441 51,01 y y y large
Data Set 2 50 0 0 1120 0 1,41298 1,41298 1149 1233 112,08 n y y
Data Set 2 50 0 0 1120 0 1,41298 1,41298 1,41298 1149 1230 114,12 n y y
Data Set 2 50 3306 1123 0 117 1,41298 1,41298 1,41298 2102 3475 125,93 y y y large
Data Set 2 50 7940 2314 0 0 1,41298 1,41298 5446 9483 127,95 y n y large
Data Set 2 50 7940 2314 0 0 1,41298 1,41298 1,41298 5446 9480 128,63 y n y large
Data Set 2 50 8186 2450 0 245 1,41298 1,41298 5549 9891 132,05 y n y large
Data Set 2 50 7784 2896 0 0 1,41298 1,41298 4739 7600 144,98 y n y small
Data Set 2 50 7784 2896 0 0 1,41298 1,41298 1,41298 4739 7597 145,98 y n y small

Table A.7.: Data Set 2 - s “ 50: Hybrid Algorithm on the Proof of Global
Optimality
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Data Set s F. MIPs F. LPs Dual Bnds. Cuts Ph1 Obj. UB LB It. S. Calls t Feas. M. Infeas. CASET F. Thr.
Data Set 3 30 0 0 1 0 0,88696 0,88696 41 41 0,06 n n n
Data Set 3 30 0 0 0 0 0,88696 0,88696 41 41 0,06 n n n
Data Set 3 30 0 0 0 0 0,88696 0,88696 41 41 0,06 n n n
Data Set 3 30 0 0 1 0 0,88696 0,88696 41 41 0,07 n n n
Data Set 3 30 0 0 0 0 0,88696 0,88696 21 31 0,08 n n y
Data Set 3 30 0 0 0 0 0,88696 0,88696 10 21 0,09 n y y
Data Set 3 30 0 0 0 0 0,88696 0,88696 21 31 0,1 n n y
Data Set 3 30 10 0 0 0 0,88696 0,88696 10 21 0,11 y y y small
Data Set 3 30 0 0 0 1 0,88696 0,88696 10 22 0,12 n y y
Data Set 3 30 10 0 0 0 0,88696 0,88696 10 21 0,12 y y y large
Data Set 3 30 10 0 0 1 0,88696 0,88696 10 22 0,14 y y y small
Data Set 3 30 10 0 0 1 0,88696 0,88696 10 22 0,14 y y y large
Data Set 3 30 25 4 0 0 0,88696 0,88696 21 31 0,15 y n y large
Data Set 3 30 25 4 0 0 0,88696 0,88696 21 31 0,16 y n y large
Data Set 3 30 0 0 20 0 0,88696 0,88696 10 21 0,19 n y y
Data Set 3 30 0 0 20 1 0,88696 0,88696 10 22 0,2 n y y
Data Set 3 30 10 0 20 0 0,88696 0,88696 10 21 0,21 y y y small
Data Set 3 30 39 17 0 0 0,88696 0,88696 18 40 0,22 y n y small
Data Set 3 30 10 0 20 1 0,88696 0,88696 10 22 0,23 y y y small
Data Set 3 30 10 0 20 1 0,88696 0,88696 10 22 0,23 y y y large
Data Set 3 30 39 17 0 0 0,88696 0,88696 18 40 0,23 y n y small
Data Set 3 30 10 0 20 0 0,88696 0,88696 10 21 0,23 y y y large
Data Set 3 30 0 0 32 0 0,88696 0,88696 21 31 0,24 n n y
Data Set 3 30 0 0 32 0 0,88696 0,88696 21 31 0,26 n n y
Data Set 3 30 25 4 32 0 0,88696 0,88696 21 31 0,31 y n y large
Data Set 3 30 39 17 29 0 0,88696 0,88696 18 40 0,35 y n y small
Data Set 3 30 25 4 32 0 0,88696 0,88696 21 31 0,38 y n y large
Data Set 3 30 39 17 29 0 0,88696 0,88696 18 40 0,4 y n y small
Data Set 3 30 0 0 0 1 0,88696 0,88696 0,88696 47 48 0,57 n n n
Data Set 3 30 0 0 0 0 0,88696 0,88696 0,88696 41 41 0,58 n n n
Data Set 3 30 0 0 0 2 0,88696 0,88696 0,88696 10 19 0,59 n y y
Data Set 3 30 0 0 0 1 0,88696 0,88696 0,88696 21 28 0,6 n n y
Data Set 3 30 0 0 0 0 0,88696 0,88696 0,88696 10 17 0,6 n y y
Data Set 3 30 0 0 0 0 0,88696 0,88696 0,88696 21 27 0,61 n n y
Data Set 3 30 10 0 0 2 0,88696 0,88696 0,88696 10 19 0,62 y y y small
Data Set 3 30 10 0 0 0 0,88696 0,88696 0,88696 10 17 0,64 y y y small
Data Set 3 30 10 0 0 2 0,88696 0,88696 0,88696 10 19 0,66 y y y large
Data Set 3 30 0 0 20 2 0,88696 0,88696 0,88696 10 19 0,67 n y y
Data Set 3 30 25 4 0 1 0,88696 0,88696 0,88696 21 28 0,68 y n y large
Data Set 3 30 10 0 20 2 0,88696 0,88696 0,88696 10 19 0,69 y y y small
Data Set 3 30 0 0 20 0 0,88696 0,88696 0,88696 10 17 0,69 n y y
Data Set 3 30 10 0 0 0 0,88696 0,88696 0,88696 10 17 0,69 y y y large
Data Set 3 30 39 17 0 1 0,88696 0,88696 0,88696 18 37 0,72 y n y small
Data Set 3 30 10 0 20 2 0,88696 0,88696 0,88696 10 19 0,73 y y y large
Data Set 3 30 10 0 20 0 0,88696 0,88696 0,88696 10 17 0,73 y y y small
Data Set 3 30 25 4 0 0 0,88696 0,88696 0,88696 21 27 0,73 y n y large
Data Set 3 30 0 0 32 1 0,88696 0,88696 0,88696 21 28 0,74 n n y
Data Set 3 30 0 0 32 0 0,88696 0,88696 0,88696 21 27 0,77 n n y
Data Set 3 30 39 17 0 0 0,88696 0,88696 0,88696 18 36 0,77 y n y small
Data Set 3 30 10 0 20 0 0,88696 0,88696 0,88696 10 17 0,8 y y y large
Data Set 3 30 0 0 46 1 0,88696 0,88696 0,88696 47 48 0,8 n n n
Data Set 3 30 0 0 40 0 0,88696 0,88696 0,88696 41 41 0,81 n n n
Data Set 3 30 25 4 32 1 0,88696 0,88696 0,88696 21 28 0,84 y n y large
Data Set 3 30 39 17 29 1 0,88696 0,88696 0,88696 18 37 0,86 y n y small
Data Set 3 30 25 4 32 0 0,88696 0,88696 0,88696 21 27 0,92 y n y large
Data Set 3 30 39 17 29 0 0,88696 0,88696 0,88696 18 36 0,94 y n y small

Table A.8.: Data Set 3: Hybrid Algorithm on the Proof of Global Optimality
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Data Set s F. MIPs F. LPs Dual Bnds. Cuts Ph1 Obj. UB LB It. S. Calls t Feas. M. Infeas. CASET F. Thr.
Data Set 4 20 0 0 0 0 1,30895 1,30895 23 23 0,02 n n n
Data Set 4 20 0 0 0 0 1,30895 1,30895 23 23 0,02 n n n
Data Set 4 20 0 0 0 0 1,30895 1,30895 14 23 0,03 n n y
Data Set 4 20 0 0 0 0 1,30895 1,30895 14 23 0,03 n n y
Data Set 4 20 0 0 6 0 1,30895 1,30895 23 23 0,03 n n n
Data Set 4 20 0 0 6 0 1,30895 1,30895 23 23 0,03 n n n
Data Set 4 20 14 0 0 0 1,30895 1,30895 14 23 0,04 y n y small
Data Set 4 20 0 0 0 0 1,30895 1,30895 18 29 0,05 n y y
Data Set 4 20 14 0 0 0 1,30895 1,30895 14 23 0,05 y n y large
Data Set 4 20 0 0 0 0 1,30895 1,30895 18 29 0,05 n y y
Data Set 4 20 14 0 0 0 1,30895 1,30895 14 23 0,05 y n y small
Data Set 4 20 14 0 0 0 1,30895 1,30895 14 23 0,05 y n y large
Data Set 4 20 0 0 16 0 1,30895 1,30895 14 23 0,07 n n y
Data Set 4 20 0 0 16 0 1,30895 1,30895 14 23 0,07 n n y
Data Set 4 20 0 0 0 0 1,30895 1,30895 1,30895 23 23 0,07 n n n
Data Set 4 20 0 0 0 0 1,30895 1,30895 1,30895 14 21 0,08 n n y
Data Set 4 20 14 0 16 0 1,30895 1,30895 14 23 0,09 y n y small
Data Set 4 20 14 0 16 0 1,30895 1,30895 14 23 0,09 y n y large
Data Set 4 20 0 0 0 0 1,30895 1,30895 1,30895 18 27 0,09 n y y
Data Set 4 20 14 0 0 0 1,30895 1,30895 1,30895 14 21 0,09 y n y small
Data Set 4 20 14 0 16 0 1,30895 1,30895 14 23 0,09 y n y small
Data Set 4 20 14 0 0 0 1,30895 1,30895 1,30895 14 21 0,09 y n y large
Data Set 4 20 14 0 16 0 1,30895 1,30895 14 23 0,09 y n y large
Data Set 4 20 0 0 0 1 1,30895 1,30895 1,30895 14 22 0,1 n n y
Data Set 4 20 29 9 0 0 1,30895 1,30895 19 33 0,1 y y y large
Data Set 4 20 14 0 0 1 1,30895 1,30895 1,30895 14 22 0,11 y n y small
Data Set 4 20 14 0 0 1 1,30895 1,30895 1,30895 14 22 0,11 y n y large
Data Set 4 20 29 9 0 0 1,30895 1,30895 19 33 0,11 y y y large
Data Set 4 20 0 0 0 1 1,30895 1,30895 1,30895 47 48 0,11 n n n
Data Set 4 20 0 0 0 1 1,30895 1,30895 1,30895 18 28 0,12 n y y
Data Set 4 20 0 0 27 0 1,30895 1,30895 18 29 0,12 n y y
Data Set 4 20 34 14 0 0 1,30895 1,30895 19 35 0,12 y y y small
Data Set 4 20 0 0 16 0 1,30895 1,30895 1,30895 14 21 0,12 n n y
Data Set 4 20 0 0 27 0 1,30895 1,30895 18 29 0,12 n y y
Data Set 4 20 0 0 22 0 1,30895 1,30895 1,30895 23 23 0,12 n n n
Data Set 4 20 14 0 16 0 1,30895 1,30895 1,30895 14 21 0,13 y n y small
Data Set 4 20 34 14 0 0 1,30895 1,30895 19 35 0,13 y y y small
Data Set 4 20 14 0 16 0 1,30895 1,30895 1,30895 14 21 0,13 y n y large
Data Set 4 20 14 0 16 1 1,30895 1,30895 1,30895 14 22 0,15 y n y large
Data Set 4 20 29 9 0 0 1,30895 1,30895 1,30895 19 31 0,15 y y y large
Data Set 4 20 14 0 16 1 1,30895 1,30895 1,30895 14 22 0,16 y n y small
Data Set 4 20 0 0 27 0 1,30895 1,30895 1,30895 18 27 0,16 n y y
Data Set 4 20 29 9 27 0 1,30895 1,30895 19 33 0,17 y y y large
Data Set 4 20 34 14 0 0 1,30895 1,30895 1,30895 19 33 0,17 y y y small
Data Set 4 20 0 0 16 1 1,30895 1,30895 1,30895 14 22 0,18 n n y
Data Set 4 20 34 14 27 0 1,30895 1,30895 19 35 0,18 y y y small
Data Set 4 20 29 9 0 1 1,30895 1,30895 1,30895 19 32 0,18 y y y large
Data Set 4 20 29 9 27 0 1,30895 1,30895 19 33 0,18 y y y large
Data Set 4 20 34 14 0 1 1,30895 1,30895 1,30895 19 34 0,19 y y y small
Data Set 4 20 34 14 27 0 1,30895 1,30895 19 35 0,2 y y y small
Data Set 4 20 0 0 27 1 1,30895 1,30895 1,30895 18 28 0,21 n y y
Data Set 4 20 29 9 27 1 1,30895 1,30895 1,30895 19 32 0,23 y y y large
Data Set 4 20 29 9 27 0 1,30895 1,30895 1,30895 19 31 0,23 y y y large
Data Set 4 20 34 14 27 0 1,30895 1,30895 1,30895 19 33 0,25 y y y small
Data Set 4 20 34 14 27 1 1,30895 1,30895 1,30895 19 34 0,26 y y y small
Data Set 4 20 0 0 46 1 1,30895 1,30895 1,30895 47 48 0,26 n n n

Table A.9.: Data Set 4 - s “ 20: Hybrid Algorithm on the Proof of Global
Optimality
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Data Set s F. MIPs F. LPs Dual Bnds. Cuts Ph1 Obj. UB LB It. S. Calls t Feas. M. Infeas. CASET F. Thr.
Data Set 4 40 0 0 0 0 1,18504 1,18504 131 131 0,46 n n n
Data Set 4 40 0 0 5 0 1,18504 1,18504 131 131 0,52 n n n
Data Set 4 40 0 0 0 0 1,18504 1,18504 131 131 0,54 n n n
Data Set 4 40 0 0 0 0 1,18523 1,18523 69 85 0,57 n n y
Data Set 4 40 0 0 5 0 1,18504 1,18504 131 131 0,59 n n n
Data Set 4 40 0 0 0 0 1,18523 1,18523 78 97 0,65 n y y
Data Set 4 40 0 0 0 8 1,18523 1,18523 69 93 0,7 n n y
Data Set 4 40 0 0 0 7 1,18523 1,18523 78 104 0,76 n y y
Data Set 4 40 94 13 0 0 1,18523 1,18523 79 120 1,12 y n y large
Data Set 4 40 90 13 0 8 1,18523 1,18523 75 124 1,24 y n y large
Data Set 4 40 132 55 0 0 1,18523 1,18523 74 124 1,39 y n y small
Data Set 4 40 99 16 0 7 1,18523 1,18523 81 145 1,48 y y y large
Data Set 4 40 99 16 0 0 1,18523 1,18523 81 138 1,48 y y y large
Data Set 4 40 132 55 0 8 1,18523 1,18523 74 132 1,55 y n y small
Data Set 4 40 163 74 0 0 1,18523 1,18523 85 123 1,66 y y y small
Data Set 4 40 163 74 0 7 1,18523 1,18523 85 130 1,68 y y y small
Data Set 4 40 0 0 79 8 1,18523 1,18523 69 93 1,73 n n y
Data Set 4 40 0 0 79 0 1,18523 1,18523 69 85 1,82 n n y
Data Set 4 40 0 0 96 7 1,18523 1,18523 78 104 2,07 n y y
Data Set 4 40 0 0 96 0 1,18523 1,18523 78 97 2,24 n y y
Data Set 4 40 0 0 0 2 1,18523 1,18504 1,18504 139 141 2,51 n n n
Data Set 4 40 0 0 0 8 1,18523 1,18523 1,18523 69 91 2,57 n n y
Data Set 4 40 0 0 0 0 1,18523 1,18523 1,18523 69 83 2,63 n n y
Data Set 4 40 0 0 0 7 1,18523 1,18523 1,18523 78 102 2,64 n y y
Data Set 4 40 0 0 0 0 1,18523 1,18504 1,18504 131 131 2,66 n n n
Data Set 4 40 90 13 93 8 1,18523 1,18523 75 124 2,76 y n y large
Data Set 4 40 0 0 0 0 1,18523 1,18523 1,18523 78 95 2,78 n y y
Data Set 4 40 132 55 90 8 1,18523 1,18523 74 132 2,86 y n y small
Data Set 4 40 132 55 90 0 1,18523 1,18523 74 124 2,96 y n y small
Data Set 4 40 94 13 99 0 1,18523 1,18523 79 120 3,08 y n y large
Data Set 4 40 90 13 0 8 1,18523 1,18523 1,18523 75 122 3,31 y n y large
Data Set 4 40 99 16 112 7 1,18523 1,18523 81 145 3,37 y y y large
Data Set 4 40 94 13 0 0 1,18523 1,18523 1,18523 79 118 3,41 y n y large
Data Set 4 40 99 16 0 7 1,18523 1,18523 1,18523 81 143 3,44 y y y large
Data Set 4 40 132 55 0 8 1,18523 1,18523 1,18523 74 130 3,5 y n y small
Data Set 4 40 163 74 114 7 1,18523 1,18523 85 130 3,52 y y y small
Data Set 4 40 132 55 0 0 1,18523 1,18523 1,18523 74 122 3,6 y n y small
Data Set 4 40 99 16 113 0 1,18523 1,18523 81 138 3,6 y y y large
Data Set 4 40 99 16 0 0 1,18523 1,18523 1,18523 81 136 3,64 y y y large
Data Set 4 40 163 74 0 7 1,18523 1,18523 1,18523 85 128 3,66 y y y small
Data Set 4 40 0 0 79 8 1,18523 1,18523 1,18523 69 91 3,69 n n y
Data Set 4 40 163 74 0 0 1,18523 1,18523 1,18523 85 121 3,74 y y y small
Data Set 4 40 163 74 114 0 1,18523 1,18523 85 123 3,75 y y y small
Data Set 4 40 0 0 79 0 1,18523 1,18523 1,18523 69 83 3,89 n n y
Data Set 4 40 0 0 96 7 1,18523 1,18523 1,18523 78 102 3,99 n y y
Data Set 4 40 0 0 96 0 1,18523 1,18523 1,18523 78 95 4,32 n y y
Data Set 4 40 90 13 93 8 1,18523 1,18523 1,18523 75 122 4,74 y n y large
Data Set 4 40 132 55 90 8 1,18523 1,18523 1,18523 74 130 4,75 y n y small
Data Set 4 40 0 0 136 2 1,18523 1,18504 1,18504 139 141 4,84 n n n
Data Set 4 40 0 0 128 0 1,18523 1,18504 1,18504 131 131 4,89 n n n
Data Set 4 40 132 55 90 0 1,18523 1,18523 1,18523 74 122 4,96 y n y small
Data Set 4 40 94 13 99 0 1,18523 1,18523 1,18523 79 118 5,11 y n y large
Data Set 4 40 163 74 114 7 1,18523 1,18523 1,18523 85 128 5,28 y y y small
Data Set 4 40 99 16 112 7 1,18523 1,18523 1,18523 81 143 5,39 y y y large
Data Set 4 40 99 16 113 0 1,18523 1,18523 1,18523 81 136 5,75 y y y large
Data Set 4 40 163 74 114 0 1,18523 1,18523 1,18523 85 121 5,77 y y y small

Table A.10.: Data Set 4 - s “ 40: Hybrid Algorithm on the Proof of Global
Optimality
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gen einer unrichtigen oder unvollständigen eidesstattlichen Versicherung sind mir

bekannt.

Ich versichere an Eides statt, dass ich nach bestem Wissen die reine Wahrheit
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