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Abstract

The problem of optimal execution is to trade a fixed amount of a financial asset over

a fixed time horizon in a way that minimizes costs from price impact and transaction

costs. Three types of price impact can be distinguished: Temporary, transient and

permanent price impact. While mathematical models of optimal execution under

temporary and permanent price impact can be analyzed with standard methods

from the calculus of variations, models featuring transient price impact are more

complex.

This thesis studies optimal execution under transient price impact for a single in-

vestor and for multiple investors. Assuming that trading incurs quadratic trans-

action costs, existence and uniqueness of optimal execution strategies and Nash

equilibria is established for a large class of transient price impact functions. Closed-

form representations of Nash equilibria are derived under the assumption that price

impact decays exponentially. These representations are studied in detail to arrive

at an economic evaluation of order anticipation strategies and predatory trading.

A second focus of this thesis is the intimate connection between problems of opti-

mal execution and Fredholm integral equations. It is shown that, given information

about certain characteristics of transient price impact, one can deduce qualitative

features of optimal execution strategies, such as nonnegativity and convexity, from

the corresponding Fredholm integral equations without obtaining an explicit solu-

tion.
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Zusammenfassung

Soll eine vorgegebene Menge eines Finanzprodukts über einen vorgegebenen Zeit-

raum ge- oder verkauft werden, stellt sich die Frage nach der optimalen Handels-

strategie, die Kosten durch Preiseinfluss und Transaktionskosten minimiert. Hierbei

können drei Arten von Preiseinfluss unterschieden werden: Sofortiger, vergänglicher

und dauerhafter Preiseinfluss. Während bei der Suche nach optimalen Handelsstrate-

gien im Hinblick auf sofortigen und dauerhaften Preiseinfluss Standardmethoden der

Variationsrechnung ausreichen, führt die Berücksichtigung von vergänglichem Preis-

einfluss zu komplexeren Optimierungsproblemen.

Diese Arbeit untersucht, wie vorgegebene Mengen im Hinblick auf vergänglichen

Preiseinfluss optimal gehandelt werden sollten. Unter Annahme quadratischer Trans-

aktionskosten werden Existenz und Eindeutigkeit von optimalen Handelsstrategien

für einen einzelnen Investor sowie von Nash-Gleichgewichten für eine beliebige An-

zahl an Investoren bewiesen. Für den Spezialfall exponentiell abklingenden Preis-

einflusses werden Nash-Gleichgewichte in geschlossener Form hergeleitet, mit deren

Hilfe eine ökonomische Bewertung opportunistischer Handelsstrategien, die vom

Preiseinfluss anderer Strategien profitieren, vorgenommen wird.

Die enge Beziehung zwischen optimalen Handelsstrategien und Fredholm-Integral-

gleichungen ist ein weiterer Schwerpunkt dieser Arbeit. Mithilfe solcher Gleichungen

lassen sich qualitative Eigenschaften optimaler Handelsstrategien, wie zum Beispiel

Nichtnegativität und Konvexität, auch in Fällen beweisen, in denen eine explizite

Lösung nicht verfügbar ist.
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Chapter 1

Introduction

The microstructure of financial markets has received much attention in recent years.
Advances in economic and mathematical theory have made it possible to drop the
assumption of “perfect” financial markets, where trading is frictionless and liquid-
ity infinite. At the same time, the rise of high-speed algorithmic trading has made
it increasingly important for investors and regulators to understand market mi-
crostructure and be aware of the influence that transaction costs and liquidity have
on the profitability of trading strategies and on the stability of financial markets.
Liquidity is particularly relevant for investors who must buy or sell large amounts
of a financial asset over a relatively short time period. Examples include:

• a proprietary trader quickly selling an asset after its price has dropped below
his stop-loss threshold;

• a bank buying ten percent of a company’s stock on behalf of a customer over
the course of a week;

• a high frequency trader closing all positions at the end of a trading day;

• a manager of a physical index fund rebalancing his portfolio over the course
of one trading day after the composition of the tracked index has changed.

In each case, the investor has a liquidation constraint, i.e., he must trade a fixed net
amount over a fixed time horizon. The only admissible trading strategies are those
that satisfy the liquidation constraint.
Trading large amounts in one piece can be prohibitively expensive or even impossible.
For large US stocks, the total volume of orders available in the limit order book at
any given time is only about one percent of traded daily volume (Bouchaud et al.,
2009, p. 19). Hence a large order is typically split into a sequence of smaller so-called
child orders that are executed over the given time period.
Every execution of an order changes the balance of supply and demand, and thus po-
tentially impacts the market price. In addition, orders incur transaction costs such
as transaction taxes, brokerage fees and slippage. An investor with a liquidation
constraint therefore faces the problem of optimal execution: Among all admissible

3



4 CHAPTER 1. INTRODUCTION

strategies, find an optimal strategy that minimizes expected costs from price im-
pact and transaction costs (or, more generally: that minimizes a given risk-return
criterion).
Three types of price impact can be distinguished (see Figure 1.1): Temporary, tran-
sient and permanent price impact. Ho and Stoll (1981) explain temporary and
transient price impact as a consequence of risk aversion among market makers. For
the sake of illustration, consider an asset that is traded via a limit order book. A
market maker places buy and sell offers in the limit order book. Once an investor
submits a marketable sell order, it is executed against the market maker’s buy of-
fers with the highest price. These buy offers vanish from the limit order book; as a
direct consequence, the price decreases. This effect is called temporary price impact.
Transient price impact is more subtle. It does not affect the execution price of
the order that caused it, but that of subsequent orders. When some of the market
maker’s buy offers are filled, he acquires a certain amount of the asset. This exposes
him to inventory risk (from changes in the market price) and non-execution risk
(from uncertainty about the arrival of marketable buy orders). A risk-averse market
maker counteracts by submitting cheaper sell offers to attract buyers, and cheaper
buy offers to repel sellers. On average, this leads to a surplus of buyers in the market,
and the market maker’s inventory is gradually reduced by incoming buy orders. As
this happens, he again increases the price of his buy and sell offers until both have
reached their initial level, again leaving the market maker with an empty inventory
and the market in a state of balanced supply and demand.
An alternative to Ho and Stoll’s explanation of price impact is information asym-
metry (Glosten and Milgrom, 1985). Some marketable orders are submitted by
investors because they have new information about the fundamental asset value.
Consequently, large orders raise suspicion among market makers, who adjust the
prices of their offers accordingly. If an order was indeed based on new information,
the price adjustment persists. This effect is called permanent price impact.
Standard theories of arbitrage disregard price impact. Even if the “unaffected” price
process (i.e., the price process that is realized if the investor does not trade) permits
no risk-free gains, there might be a price manipulation strategy which makes money
from its own price impact (Huberman and Stanzl, 2005). As a simple example,
suppose there is no temporary and transient, but positive permanent price impact.
In this case, an investor may buy the asset at the current unaffected market price
of, say, e100. This purchase has a permanent price impact which increases the asset
price to, say, e105. The investor may now sell the asset again to clear inventory and
realize a profit from price manipulation of e5.

Price manipulation strategies are usually not arbitrage strategies in the classical
sense because their profitability can be affected by random fluctuations in the asset
price. But on average they earn excess returns and therefore belong to the larger
class of statistical arbitrage strategies. For transient price impact in particular it is
not obvious under what market conditions price manipulation is possible (Gatheral,
2010; Alfonsi et al., 2012).
Price impact can also be viewed as an externality on other investors. The price im-
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Figure 1.1: Idealized price impact of a sell order.

pact of a sell order constitutes a negative externality for every investor who is selling,
and a positive externality for every investor who is buying. Opportunistic investors
who are able to detect an execution strategy and predict its trading behavior can
deliberately exploit this externality by pursuing an order anticipation strategy. Such
a strategy often involves predatory trading, i.e., selling ahead of the execution strat-
egy and buying back afterwards, to turn the price impact of the execution strategy
into a predictable source of profit. Predatory trading can strongly increase an in-
vestor’s costs from price impact. Consequently, execution strategies must adapt to
the presence of other investors.
Studying the interaction between liquidating and opportunistic investors is also im-
portant from a regulatory point of view. If a large sell order is executed, the market
price drops. Brunnermeier and Pedersen (2005) argue that the additional sell or-
ders submitted by predatory traders must amplify this price drop, an effect known
as price overshooting. This may lead to a domino effect: The amplified price drop
triggers stop-loss thresholds from other investors, resulting in new large sell orders.
These are again subject to predatory trading, creating an even larger price drop,
etc., until the market breaks down. Transaction taxes have the potential to prevent
predatory trading (Schied and Zhang, 2017) and therefore reduce the likelihood of
market breakdowns.

Mathematical models of optimal execution

The key feature of any model of optimal execution is the liquidation constraint : An
investor must execute a fixed net amount x0 over a given time horizon [0, T ]. Suppose
the investor trades continuously and controls his instantaneous rate of trading α(t) dt
for all t ∈ [0, T ]. Then α is an admissible strategy if it satisfies the liquidation
constraint

∫ T
0
α(t) dt = x0 (and some technical conditions). Let S(t;α) denote the
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asset price, including price impact, from the investor’s strategy α. Integration by
parts shows that the investor’s total costs from price impact are

∫ T
0
α(t)S(t;α) dt

plus a constant. Suppose further that a trading rate of α(t) dt incurs additional
transaction costs c(α(t)) dt. Then the investor’s total expected costs are given by

J [α] = E
[ ∫ T

0

(
c(α(t)) + α(t)S(t;α)

)
dt
]
.

The mathematical problem of optimal execution is to find a minimizer of J in the
class of admissible strategies.
Bertsimas and Lo (1998) and Almgren and Chriss (2001) were among the first to
study optimal execution under price impact. Their papers feature linear temporary
and permanent, but no transient price impact. This corresponds to an asset price
evolution of

S(t;α) = S0(t) +
γ

2
α(t) + λ

∫ t

0

α(s) ds.

The process S0 is the unaffected price process and is assumed to be a martingale.
For risk-neutral investors, one can show that the optimal strategy does not depend
on S0, and that it is sufficient to consider deterministic strategies. The nonnegative
constants γ and λ determine the respective size of temporary and permanent price
impact. Notice that costs from temporary price impact contribute to expected costs
in the same way as quadratic transaction costs c(a) = γ

2
a2.

One may also consider non-linear temporary and permanent price impact. Then

S(t;α) = S0(t) +
γ

2
f1(α(t)) + λ

∫ t

0

f2(α(s)) ds

for some functions f1 and f2. See for instance Almgren (2003), Huberman and Stanzl
(2004) and Carmona and Yang (2011).
An empirical study by Bouchaud et al. (2004) suggests that price impact is typi-
cally transient, not permanent. Transient price impact can be modeled via a decay
kernel G, which describes how the asset price “digests” orders over time. The asset
price then evolves according to

S(t;α) = S0(t) +

∫ t

0

G(t− s)α(s) ds. (1.1)

It is of course possible to add temporary and permanent price impact, the latter
by adding a constant to G. The shape of G can be derived from microstructural
models of limit order books (Alfonsi et al., 2010). From an economic point of
view, it is sensible to consider decay kernels that are nonnegative and nonincreasing.
Empirical studies suggest that transient price impact is described well by power-law
decay kernels G(t) = t−ρ for 0 < ρ < 1 (Bouchaud et al., 2004; Almgren et al.,
2005). Theoretical models often consider exponential decay kernels G(t) = e−ρt

for ρ > 0 (Bouchaud, 2010; Lorenz and Schied, 2013; Obizhaeva and Wang, 2013;
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Schied and Zhang, 2017). In this case, transient price impact must be linear to
exclude price manipulation (Gatheral, 2010, Lemma 4.1). General decay kernels
and their compatibility with absence of price manipulation are studied by Gatheral
(2010), Gatheral et al. (2012) and Curato et al. (2017).
If more than one investor trades, the problem of optimal execution can be analyzed
with tools from game theory. The search for an optimal strategy is extended to the
search for a Nash equilibrium, i.e., a tuple of admissible strategies that minimize
each investor’s expected costs under the assumption that no other investor deviates
from equilibrium. Multi-investor models of optimal execution include Carlin et al.
(2007), Schöneborn and Schied (2009), Carmona and Yang (2011), Moallemi et al.
(2012), Schied and Zhang (2015), Lachapelle et al. (2016), Cardaliaguet and Lehalle
(2017) and Huang et al. (2017).
In models without transient price impact, optimal strategies can be obtained through
classical methods from the calculus of variations. But new methods must be devel-
oped to deal with transient price impact. Gatheral et al. (2012), Alfonsi and Schied
(2013) and Schied and Zhang (2017) map out the connection between optimal exe-
cution under transient price impact and different variants of Fredholm integral equa-
tions. For the single-investor case with transient price impact of the form (1.1) and
quadratic trading costs c(a) = γ

2
a2, where γ > 0, it can be shown that an admis-

sible strategy α∗ is the unique optimal strategy if and only if there is a constant η
such that

γα∗(t) +

∫ T

0

G(|t− s|)α∗(s) ds = η, t ∈ [0, T ]. (1.2)

This is a Fredholm integral equation of the second kind with constant free term η.
Such equations are an interesting object of study in themselves. Fredholm integral
equations have many other applications, for instance in electrostatics (Love, 1949),
transport theory (Kaper and Kellogg, 1977) and quantum mechanics (Arfken and
Weber, 2005, Example 16.1.1).

1.1 Statement of results

My thesis studies optimal execution under transient price impact for a single investor
and for multiple investors. It focuses on qualitative features of optimal strategies
and what these features imply from an economic point of view. Special consideration
is given to the influence of transaction costs.

Chapter 2: Predatory trading in a game of optimal execution

Consider the discrete time model of optimal execution with two investors intro-
duced by Zhang (2014). It can be viewed as a discrete time version of the model
discussed above. Trading occurs at the equidistant time points ti := (i − 1)T/n
for i = 1, 2, . . . , n + 1. At each time ti, the first and second investor execute orders
of size ξi and ηi. The first investor must trade a fixed net amount x0. Conse-
quently, any admissible strategy for the first investor ξ = (ξ1, ξ2, . . . , ξn+1) must
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satisfy the liquidation constraint ξ1 + ξ2 + · · ·+ ξn+1 = x0. Similarly, the second in-
vestor must trade a fixed net amount y0, and any admissible strategy for the second
investor η = (η1, η2, . . . , ηn+1) must satisfy η1 + η2 + · · ·+ ηn+1 = y0.

Price impact is transient and decays at an exponential rate. Given that the first
and second investor pursue admissible strategies ξ and η, the asset price evolves
according to

S(t; ξ,η) := S0(t) +
∑
ti<t

e−ρ(t−ti)(ξi + ηi), t ∈ [0, T ],

where ρ > 0. The unaffected price process S0 is assumed to be a martingale.
In addition to costs from price impact, each trade incurs quadratic transaction costs
of size γ̃ ≥ 0. In total, the first investor’s expected costs can be shown to be

J [ξ |η] := E
[ n+1∑
i=1

(
ξiS(ti; ξ,η) +

1

2
ξ2i + εi ξiηi + γ̃ ξ2i

)]
.

Here each εi is a Bernoulli(1/2)-distributed random variable modeling the order in
which the trades ξi and ηi are executed. The second investor’s expected costs J [η | ξ]
are defined similarly.
It is shown in Zhang’s (2014) doctoral thesis, and also in Schied and Zhang (2017),
that a unique Nash equilibrium (ξ∗,η∗) exists for every pair of liquidation con-
straints (x0, y0). Both equilibrium strategies are deterministic and can be rep-
resented in terms of two matrix inverses. Furthermore, both investors engage in
predatory trading if and only if the level of transaction costs γ̃ is smaller than 1/4.
In this case, the investors’ situation resembles a prisoner’s dilemma: Both would
benefit from agreeing to refrain from predatory trading, but either would have an
incentive to deviate.
Transaction costs can come in the form of a transaction tax. In view of the re-
sults above, such a tax has the potential to prevent predatory trading. Numerical
simulations by Schied and Zhang (2017) suggest that it can even reduce the ex-
pected costs of both investors. I make this observation precise in the first part of
Chapter 2 by calculating both investors’ equilibrium strategies and expected costs in
closed form and analyzing under what conditions a transaction tax is advantageous
or disadvantageous.
Although I obtain an explicit formula for the expected costs J [ξ |η] for arbitrary n,
it is too complicated to be of further use. The limit n → ∞ of expected costs, on
the other hand, is relatively simple.
Define three functions c+, c10, c20 : (0,∞)× R2 → R via

c+(r, x, y) :=
(x+ y)2(36e6r(8r + 13)− 60e3r − 3)

16(2e3r(3r + 5)− 1)2
+

(x+ y)(x− y)

2(r + 1)
+

(x− y)2

16(r + 1)2
,

c10(r, x, y) :=
(x+ y)2(6e6r + 3)

2(2e6r(3r + 5) + e3r + 3r + 7)
+

(x+ y)(x− y)

2(e−r + r + 1)
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and

c20(r, x, y) :=
(x+ y)2(6e6r − 3)

2(2e6r(3r + 5)− 3e3r − 3r − 7)
+

(x+ y)(x− y)

2(−e−r + r + 1)
.

Result 1 (Theorem 2.6).

(i) If γ̃ > 0, then J [ξ |η] converges to c+(ρT, x0, y0) as n→∞.

(ii) If γ̃ = 0, then J [ξ |η] converges to c10(ρT, x0, y0) for even n and c20(ρT, x0, y0)
for odd n as n→∞.

The limit of the second investor’s expected costs J [η | ξ] is obtained by interchang-
ing x0 and y0. It is now easy to check numerically for which parameter combina-
tions (ρT, x0, y0) positive transaction costs γ̃ > 0 are advantageous or disadvanta-
geous for both investors.

Observation 2. In the limit n→∞, positive transaction costs γ̃ > 0 are advanta-
geous for both investors if ρT is sufficiently large and x0 and y0 are close. They are
disadvantageous for both investors if x0 and y0 have different signs or the difference
between x0 and y0 is large.

For the special case x0 = y0, I show that positive transaction costs are advantageous
if ρT > log(4 +

√
62/3) ≈ 0.69.

The second part of Chapter 2 is concerned with the transition from discrete to con-
tinuous time and the convergence of Nash equilibria. It is based on the continuous
time version of the model above, as introduced in Zhang’s (2014) doctoral the-
sis. Assume again that two investors must trade fixed net amounts x0 and y0 until
time T . Trading may now occur at any time t ∈ [0, T ]. An admissible strategy for the
first investor is a right-continuous, adapted and bounded process X = (X(t))t∈[0−,T ]
that has finite and P-a.s. bounded total variation and satisfies the execution con-
straint X(0−) = x0 and X(T ) = 0 P-a.s. The value X(t) corresponds to the net
order remaining at time t. An admissible strategy for the second investor Y is
defined similarly.
If the investors pursue admissible strategies X and Y , the asset price evolves ac-
cording to

S(t) = S(t;X, Y ) := S0(t) +

∫
[0,t)

e−ρ(t−s) dX(s) +

∫
[0,t)

e−ρ(t−s) dY (s), t ∈ [0, T ].

Assume again that there are quadratic transaction costs of size γ̃ ≥ 0. Zhang (2014)
shows that the the first investor’s expected costs are

J [X |Y ] := E
[1

2

∫
[0,T ]

∫
[0,T ]

e−ρ|t−s| dX(s) dX(t) +

∫
[0,T ]

∫
[0,t)

e−ρ(t−s) dY (s) dX(t)

+
1

2

∑
t∈[0,T ]

∆X(t)∆Y (t) + γ̃
∑
t∈[0,T ]

∆X(t)2
]
.
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The second investor’s expected costs are J [Y |X]. The definition of J can be shown
to follow naturally from the definition of expected costs in the corresponding discrete
time model.
In his doctoral thesis, Zhang (2014) shows that the continuous time model admits
a unique Nash equilibrium if and only if the level γ̃ of transaction costs equals 1/4.
In this case, the Nash equilibrium (X∗, Y ∗) is deterministic and can be calculated
explicitly. I show that expected costs in this equilibrium are equal to the limit of
expected costs in the corresponding discrete time models.

Result 3 (Proposition 2.10). If γ̃ = 1/4, then the first investor’s expected costs in
equilibrium, J [X∗ |Y ∗], equal c+(ρT, x0, y0).

Finally, I argue that non-existence of Nash equilibria for γ̃ 6= 1/4 is an undesirable
consequence of how transaction costs are implemented in the model: They apply to
discrete trades ∆X(t) and can be avoided in continuous time by choosing a strategy
which is absolutely continuous. I suggest that in continuous time models, transaction
costs should apply to the instantaneous rate of trading dX(t) instead. This leads
to a different model of optimal execution, which I study in the next chapter.

Chapter 3: A different approach to modeling transaction costs

Consider n+ 1 investors trading a financial asset. Each investor i = 0, 1, . . . , n must
trade a fixed net amount x0i and controls his instantaneous rate of trading αi(t) dt
over the time horizon [0, T ]. Consequently, a strategy αi is admissible if it satisfies
the liquidation constraint

∫ T
0
αi(t) dt = x0i (and some technical conditions).

Transient price impact is modeled via a decay kernel G : [0,∞) → [0,∞) that is
assumed to be square-integrable. Given admissible strategies α := (α0, α1, . . . , αn),
the asset price evolves according to

S(t;α) := S0(t) +

∫ t

0

G(t− s)
n∑
i=0

αi(s) ds, t ∈ [0, T ].

This can be viewed as the extension of (1.1) to n+ 1 investors. Each investor faces
quadratic transaction costs γi/2 > 0. In line with the argument above, these costs
apply to the instantaneous rate of trading αi(t) dt. In total, investor i’s costs of
execution are

Ji[αi |α−i] :=

∫ T

0

(γi
2
αi(t)

2 + αi(t)S(t;α)
)

dt,

where α−i := (α0, . . . , αi−1, αi+1, . . . , αn). Assume that each investor minimizes ex-
pected costs of execution.
Absence of price manipulation demands that the decay kernel G be of positive type,
i.e., ∫ τ

0

∫ τ

0

G(|t− s|)α(t)α(s) ds dt ≥ 0

for all strategies α ∈ L2[0, τ ] and all τ > 0. I show that this assumption is sufficient
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to guarantee existence and uniqueness of a Nash equilibrium.

Result 4 (Theorem 3.6). There is a unique Nash equilibrium α∗ in the class of
admissible strategies. It is deterministic.

Each investor obtains his optimal execution strategy by solving a Fredholm integral
equation of the second kind.
I then consider the special case where only one strategic investor trades, i.e., n = 0.
The investor’s optimal strategy is available in closed form for some decay kernels,
and can be shown to display a number of desirable features—such as differentiability,
nonnegativity and convexity—for many others.
Given that the single investor pursues an admissible strategy α = α0, the asset
price evolves according to (1.1). Notice that in the single-investor case, transaction
costs γ = γ0 can also be interpreted as arising from (linear) temporary price impact
as in Almgren and Chriss (2001). The investor’s costs of execution are

J [α] = J0[α] =

∫ T

0

(γ
2
α(t)2 + α(t)S(t;α)

)
dt.

As shown above, a unique optimal strategy α∗ exists. It is the only admissible
strategy which solves the Fredholm integral equation (1.2) for some η ∈ R.
I present explicit solutions of (1.2) for specific decay kernels, including capped linear
decay G(t) = (1−t)+. Assume that T = m is a natural number. For i = 1, 2, . . . ,m,
define

λi := 2
(
1− cos

( iπ

m+ 1

))
and bi :=

√
λi/γ.

Denote by I the m-dimensional identity matrix. Define the m-dimensional square
matrices

B := diag(b1, b2, . . . , bm), E(t) := diag
(
eb1t, eb2t, . . . , ebmt

)
, t ∈ [0, T ],

Σ := diag(1,−1, 1, . . . ,±1), K := I +
(
1{j=m−i}

)
i,j=1,2,...,m,

where 1 denotes the indicator function, and

Q :=
(

sin
( ijπ

m+ 1

))
i,j=1,2,...,m.

Finally, define a ∈ Rm by

a :=
(
γQ
(
E(1) + Σ

)
+KQ

(
(E(1)− I)(Σ− I) +B(E(1)− Σ)

)
B−2

)−1η...
η

 .

Result 5 (Proposition 3.8). Suppose T = m is a natural number and G(t) = (1−t)+.
Define ψ = (ψ1, ψ2, . . . , ψm) : [0, 1] → Rm via ψ(τ) = Q

(
E(τ) + E(1 − τ)Σ

)
a.

Then the solution α∗ of (3.8) satisfies α∗(τ + i − 1) = ψi(τ) for all τ ∈ [0, 1] and
all i = 1, 2, . . . ,m.
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For many interesting decay kernels, no explicit solution α∗ of (1.2) is known. But
it is often still possible to deduce certain qualitative features of the solution. Two
features that are particularly interesting from an economic perspective are nonneg-
ativity and convexity. If α∗ is interpreted as an optimal execution strategy, non-
negativity implies that transaction-triggered price manipulation strategies, which
alternate between buy and sell orders instead of trading in one direction only, are
not optimal. Optimal strategies that only trade in one direction are also desir-
able from a modeling perspective: They remain optimal if the asset price S is not
specified exogenously by (1.1), but derived from a model of a (block-shaped) limit
order book (Gatheral et al., 2012). Convexity of α∗, on the other hand, mirrors the
empirically observed U-shape of the daily distribution of market liquidity.
The decay kernel G is said to be positive definite if

∑m
i,j=1G(|ti − tj|)zizj ≥ 0 for

all m ∈ N, t1, t2, . . . , tm ∈ [0,∞) and z1, z2, . . . , zm ∈ R. If G is continuous, then it
is positive definite if and only if it is of positive type.
The decay kernelG is said to be completely monotone if it is smooth and (−1)nG(n) ≥
0 for all n ∈ N.

Result 6 (Lemma 3.9, Proposition 3.10, Theorem 3.11 and Theorem 3.13). Sup-
pose n = 0. Let α∗ denote the single investor’s optimal strategy. The following
statements are true:

(i) α∗ is symmetric around T/2, i.e., α∗(t) = α∗(T − t) for every t ∈ [0, T ].

(ii) If G is continuous, then α∗ is continuous. If G is m-times differentiable,
then α∗ is (m+ 1)-times differentiable.

(iii) If G is positive definite and γ ≥ G(0)T , or G is convex and nonincreasing,
then x00α∗ is nonnegative.

(iv) If G is completely monotone, then x00α∗ is convex.

I prove the second part of (iii) as well as (iv) in a more general setting in Chapter 4.
Now consider the general case with n+ 1 strategic investors. To make it tractable,
I assume that price impact decays exponentially, i.e., G(t) = e−ρt for ρ > 0. This
allows an explicit representation of the unique Nash equilibrium. Define the (n+2)-
dimensional square matrices

M :=


ρ − 1

γ0
· · · − 1

γ0

2ρ
γ0

− 1
γ1

ρ · · · − 1
γ1

2ρ
γ1

...
... . . . ...

...
− 1
γn
− 1
γn
· · · ρ 2ρ

γn

1 1 · · · 1 −ρ

 , N1 :=


ργ0 0 · · · 0 ρ
0 ργ1 · · · 0 ρ
...

... . . . ...
...

0 0 · · · ργn ρ
γ0 γ1 · · · γn n+ 1

 .
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Define further the (n+ 1)× (n+ 2)-dimensional matrix

W :=


1 0 . . . 0 0
0 1 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0


and the (n + 2)-dimensional column vector v := (0, 0, . . . , 0, 1). Denote by In+1

the (n + 1)-dimensional identity matrix. Define the (n + 2)-dimensional square
block matrix

N2 :=

[
W
(
(M−1 +N1T )eMT −M−1)
v>(In+1 +N1e

MT )

]
.

Result 7 (Theorem 3.14). The matrix N2 is invertible. Suppose G(t) = e−ρt for ρ >
0. Let α∗ = (α∗0, α

∗
1, . . . , α

∗
n+1) be the unique Nash equilibrium and denote by S∗ :=

S( · ;α∗) the corresponding asset price. Then the function ψ∗ := (α∗0, α
∗
1, . . . , α

∗
n, S

∗)
satisfies

ψ∗(t) = (eMt +N1e
MT )N−12 x̃0, t ∈ [0, T ],

where x̃0 := (x00, x
0
1, . . . , x

0
n, 0).

This result makes it possible to study qualitative features of equilibrium strategies. I
consider the case where one investor executes a large sell order, while n opportunistic
investors pursue order anticipation strategies to benefit from the large sell order’s
price impact. My main objective is to test the claim by Brunnermeier and Pedersen
(2005) that opportunistic investors cause price overshooting.

Observation 8. In general, opportunistic investors do not cause price overshooting.
On the contrary, they often reduce the price drop caused by the large sell order, in
particular in models with a “short memory” (i.e., with large values of ρ).

I discuss two possible explanations: Price overshooting occurs only in markets with
long-lived or permanent price impact; or price overshooting is prevented by quadratic
transaction costs.

Chapter 4: Completely monotone decay kernels

In the previous chapter, the decay kernel G was assumed to be square-integrable,
and G(0) was assumed to be finite. These assumptions are too rigid to study the
class of power-law decay kernels G(t) = t−ρ, where 0 < ρ < 1, which seem to fit
empirical observations of transient price impact.
Assume instead that G : (0,∞) → [0,∞) is nonconstant, continuous and satis-
fies

∫ τ
0
G(t) dt < ∞ for every τ > 0. Notice that G may have a weak singular-

ity limt→0G(t) = ∞. As before, assume additionally that G is of positive type,
i.e.,

∫ τ
0

∫ τ
0
G(|t − s|)α(t)α(s) ds dt ≥ 0 for every α ∈ L2[0, τ ] for which the double

integral is well-defined, and every τ > 0.
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Suppose that a single investor must sell a fixed net amount x0 over the time hori-
zon [0, T ].
If there are no transaction costs, i.e., γ = 0, an admissible strategy is a func-
tion X : [0−, T ] → R which is right-continuous, of bounded total variation and
satisfies the liquidation constraint X(0−) = x0 and X(T ) = 0. Finding an optimal
execution strategy means minimizing the cost functional

J0[X] :=
1

2

∫
[0,T ]

∫
[0,T ]

G(|t− s|) dX(s) dX(t)

over admissible strategies X for which J0 is well-defined. The value X(t) specifies
the size of the remaining net order that the investor must execute during [t, T ].
If there are positive quadratic transaction costs of size γ > 0, an admissible strategy
is a function α : [0, T ] → R which is square-integrable and satisfies the liquidation
constraint

∫ T
0
α(t) dt = x0. Finding an optimal execution strategy means minimizing

the cost functional

Jγ[α] :=
1

2

∫ T

0

(
γα(t) +

∫ T

0

G(|t− s|)α(t)α(s) ds
)

dt

over admissible strategies α for which Jγ is well-defined.
The case γ = 0 must be treated separately because optimal strategies in this case are
usually not absolutely continuous. Hence it is necessary to specify the remaining net
amount X(t) directly, as in the continuous time model of Chapter 2. Transaction
costs γ > 0 enforce absolute continuity of the remaining net amount and it is more
straightforward to optimize over the instantaneous rate of trading α(t) = − d

dt
X(t).

Gatheral et al. (2012) show that if the decay kernel G is convex and nonincreasing,
then J0 admits a unique minimizer X∗, which is nonincreasing. I prove a parallel
result for the case γ > 0.

Result 9 (Theorem 4.4). If G is convex and nonincreasing, then Jγ admits a unique
minimizer α∗ in the class of admissible strategies for every γ > 0. In this case, α∗

is nonnegative.

If the decay kernel is additionally assumed to be completely monotone, this has
strong implications for the minimizers X∗ and α∗. Say that a function f : [0, T ]→ R
is symmetrically totally monotone if it is analytic on (0, T ) and there are nonneg-
ative coefficients (z2k)k∈N such that its power series development in T/2 is of the
form f(t) =

∑∞
k=0 z2k(t− T/2)2k.

Result 10 (Theorem 4.6). Suppose G is completely monotone. Then the following
statements are true:

(i) For every γ > 0, the unique minimizer of Jγ is symmetrically totally mono-
tone.

(ii) For γ = 0, let X∗ be the unique minimizer of J0. Then −X∗ admits a sym-
metrically totally monotone derivative on (0, T ).



Chapter 2

Predatory trading in a game of
optimal execution

Building on Schöneborn’s (2008) doctoral thesis, Schied and Zhang (2017) study how
two investors interact in the discrete time model of optimal execution introduced by
Obizhaeva and Wang (2013). Both investors must satisfy a liquidation constraint
by trading at n + 1 prespecified time points. Price impact is transient and decays
at an exponential rate. Each trade incurs quadratic transaction costs.
An investor’s price impact can be viewed as an externality on the other investor; a
negative externality if both investors trade in the same direction, a positive exter-
nality otherwise. Schied and Zhang show that under certain conditions, the optimal
reaction to the negative externality is predatory trading, i.e., trading aggressively to
benefit from the other investor’s price impact. At the same time, investors try to
avoid being preyed upon. As a result, their optimal strategies quickly alternate be-
tween buy and sell orders. This is expensive and leads to a situation that resembles
a prisoner’s dilemma: Both investors would benefit from agreeing to pursue only
non-predatory strategies, but either would have an incentive to deviate from such
an agreement.
Introducing a sufficiently high transaction tax can make predatory trading unprof-
itable. Schied and Zhang show numerically that the cost savings from this may even
exceed the additional costs from taxation. They conclude that in certain situations,
transaction taxes are advantageous for both investors.
The main objective of this chapter is to corroborate Schied and Zhang’s numerical
observation. In Sections 2.1 and 2.2, I review the model and key results from Schied
and Zhang (2017). I argue in what sense the investors’ situation resembles a pris-
oner’s dilemma and how a transaction tax can help. Section 2.3 makes this math-
ematically precise: For the limit case n → ∞, I obtain closed-form expressions for
both investors’ expected costs in equilibrium. Using these expressions, I determine
for which model parameters transaction taxes are advantageous or disadvantageous
for both investors.
Section 2.4 is concerned with the transition from discrete to continuous time. I
review the continuous time version of the model, which was first studied in Zhang’s

15
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(2014) doctoral thesis. Here, a Nash equilibrium fails to exist unless transaction
costs are equal to a critical value. For this critical value, I prove that the limit
of expected costs obtained in Section 2.3 coincides with the expected costs in the
continuous time equilibrium. I argue that the nonexistence of Nash equilibria is
an undesirable consequence of the way transaction costs are modeled in continuous
time and suggest a different approach.
Section 2.5 contains the tedious derivation of the closed-form expressions for the
limit case n→∞ from Section 2.3.
This chapter is a thoroughly revised and extended version of results published in
Schied et al. (2017).

2.1 The model

Two investors trade a financial asset over the time period [0, T ]. If neither investor
trades, the price evolution of the financial asset is modeled as a right-continuous
martingale S0 = (S0(t))t∈[0,T ] on a filtered probability space (Ω,F , (Ft)t∈[0,T ],P)
satisfying the usual conditions. Assume that F0 is P-trivial.
Both investors must trade a fixed net amount until time T . Let x0 denote the
first investor’s net amount, and y0 the second investor’s. Trading occurs at the
equidistant time points ti := (i− 1)T/n for i = 1, 2, . . . , n + 1. At each time ti, the
first investor executes an order of size ξi, and the second investor executes an order of
size ηi. Consequently, a vector of bounded random variables ξ = (ξ1, ξ2, . . . , ξn+1) is
called an (admissible) strategy for the first investor if (i) every ξi is Fti-measurable;
and (ii) the execution constraint ξ1 + ξ2 + · · ·+ ξn+1 = x0 is satisfied P-a.s.
An (admissible) strategy for the second investor η = (η1, η2, . . . , ηn+1) is defined in
the same way. The execution constraint becomes η1 + η2 + · · ·+ ηn+1 = y0.

To be consistent with subsequent chapters, a positive sign in these strategies in-
dicates a buy order, a negative sign a sell order. This interpretation deviates
from Schied and Zhang (2017), where a positive sign indicates a sell order. It follows
Gatheral (2010) and Gatheral et al. (2012) instead. Remark 2.1 below explains why
this is merely a matter of convention and does not affect the mathematical analysis.
Trading impacts the asset price. Assume that price impact is linear with exponential
decay kernel G(t) = e−ρt, where ρ > 0. Given admissible execution strategies ξ
and η, the asset price evolves according to

S(t) = S(t; ξ,η) := S0(t) + λ
∑
ti<t

e−ρ(t−ti)(ξi + ηi), t ∈ [0, T ],

where λ > 0. There is no loss of generality in letting λ = 1, since all other model
parameters can be scaled accordingly.
Suppose the first investor executes an order of size ξi at time ti. What does this cost
him? Assume for the moment that the second investor does not trade at time ti.
The first investor’s order moves the price from S(ti) to S(ti) + λ ξi = S(ti) + ξi. As
Alfonsi et al. (2010) explain in detail, linear price impact corresponds to a flat order
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book, hence the costs of execution are∫ ξi

0

(S(ti) + x) dx = ξiS(ti) +
1

2
ξ2i .

Now assume instead that the second investor executes an order of size ηi at time ti.
Then the costs of execution depend on whose order is executed first. Suppose
the second investor’s order is executed before the first investor’s. The price that
the first investor now faces is not S(ti), but S(ti) + ηi. His costs of execution
become ξiS(ti)+ 1

2
ξ2i +ξiηi. If on the other hand the first investor’s order is executed

first, his costs of execution remain ξiS(ti) + 1
2
ξ2i . The second investor’s costs of

execution, however, change by ξiηi. Under the assumption that neither investor has a
speed advantage, both orders are equally likely to be executed first. Let (εi)i=1,2,...,n+1

be an independent sequence of Bernoulli(1/2)-distributed random variables that
is independent of σ(

⋃
t∈[0,T ]Ft). Attribute the extra cost ξiηi to the first investor

if εi = 1; attribute it to the second investor if 1− εi = 1.

Assume additionally that an order of size ξi incurs quadratic transaction costs γ̃ ξ2i ,
where γ̃ ≥ 0. In single-investor models (including the model in Chapter 4), trans-
action costs of this form may be interpreted as costs arising from temporary price
impact. It is tempting to follow Huang et al. (2017) in using the same interpretation
for models with two or more investors. But this is incorrect: If an order generates
temporary price impact, it affects the execution price of every order subsequently
executed at the same time ti. It becomes necessary to model the order in which
trades arriving at the same time are executed (which is accomplished here by the
random variables ε1, ε2, . . . , εn+1). One might also choose to apply the same costs
from temporary price impact to all orders arriving at the same time, as in Car-
lin et al. (2007). But notice that the probability of being executed first (and thus
the probability of being subject to temporary price impact from other investors) de-
pends on the number of investors. This must be taken into account when comparing
models with different numbers of investors. In any case, the transaction costs γ̃ ξ2i
only affect the investor who caused them and cannot be viewed as costs from tempo-
rary price impact. They should be interpreted as general costs arising from market
frictions (Gatheral, 2010, p. 751) or—as argued later—costs arising from a transac-
tion tax. See Kissell et al. (2004) for a comprehensive overview of transaction costs
on financial markets.

It would certainly be desirable to replace quadratic transaction costs γ̃ ξ2i with a more
general cost function. But only quadratic transaction costs seem to allow a closed-
form representation of optimal execution strategies. Consider also Proposition 2.6
in Schied and Zhang (2017): There is a piecewise linear cost function for which
the optimal strategies derived under the assumption of quadratic transaction costs
are also optimal. Notice however that this cost function depends on all model
parameters. In particular, different values of n yield different cost functions.
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In total, if the two investors pursue strategies ξ and η, the first investor’s expected
costs add up to

J [ξ |η] := E
[ n+1∑
i=1

(
ξiS(ti; ξ,η) +

1

2
ξ2i + εi ξiηi + γ̃ ξ2i

)]
and the second investor’s expected costs add up to

J [η | ξ] := E
[ n+1∑
i=1

(
ηiS(ti; ξ,η) +

1

2
η2i + (1− εi) ξiηi + γ̃ η2i

)]
.

No contradiction arises from denoting both the first and the second investor’s ex-
pected costs by the same functional J . Indeed, by independence,

E[εi ξiηi] =
1

2
E[ξiηi] = E[(1− εi) ξiηi].

From an economic perspective, it would be more sensible to consider expected exe-
cution shortfall instead of expected costs. Execution shortfall is the difference be-
tween expected costs and the mark-to-market value x0S(0) of the net order. Since
the mark-to-market value is a constant, it is irrelevant to the task of finding a
cost-minimizing strategy. Hence both quantities lead to the same optimal strate-
gies, and considering expected costs instead of expected execution shortfall yields
slightly shorter formulas.

Remark 2.1. A positive sign of ξi indicates a sell order, not a buy order, in Schied
and Zhang (2017) (and in Zhang, 2014, and Schied et al., 2017). The asset price S(t; ξ,η)
under this interpretation evolves according to

S0(t)−
∑
ti<t

e−ρ(t−ti)(ξi + ηi),

and the first investor’s costs are

n+1∑
i=1

(
− ξiS(ti; ξ,η) +

1

2
ξ2i + εiξiηi + γ̃ ξ2i

)
=

n+1∑
i=1

(
− ξiS0(t) + ξi

∑
tj<ti

e−ρ(ti−tj)(ξj + ηj) +
1

2
ξ2i + εiξiηi + γ̃ ξ2i

)
.

The only difference under this interpretation is that S0 is replaced with −S0. All
results in this chapter are independent of S0, and are therefore valid under either
interpretation.

Assume that both investors are risk-neutral and want to minimize expected costs.
A pair (ξ∗,η∗) of admissible strategies for the first and the second investor is called
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a Nash equilibrium if each investor’s strategy minimizes costs, given that the other
investor does not deviate from equilibrium, i.e., J [ξ∗ |η∗] ≤ J [ξ |η∗] for every admis-
sible strategy for the first investor ξ, and J [η∗ | ξ∗] ≤ J [η | ξ∗] for every admissible
strategy for the second investor η. In this case, ξ∗ and η∗ are called optimal strate-
gies (for the first and the second investor, respectively).
This model can be viewed as a two-investor extension of the model in Obizhaeva and
Wang (2013). The special case γ̃ = 0 is analyzed in Schöneborn’s (2008) doctoral
thesis. The general case γ̃ ≥ 0 was first studied in 2013 in an early version of Schied
and Zhang (2017), and subsequently in Zhang’s (2014) doctoral thesis. The current
version of Schied and Zhang (2017) extends the model to a large class of decay
kernels G and arbitrary time grids 0 = t1 < t2 < · · · < tn+1 = T ; the results in the
next section are special cases of the results in this paper.

2.2 Predatory trading and transaction costs

The model admits a unique Nash equilibrium, which can be expressed in closed
form. To this end, define the lower triangular, (n+ 1)-dimensional square matrix

M̃ :=



1/2 0 0 · · · 0 0
e−ρ(t1−t0) 1/2 0 · · · 0 0
e−ρ(t2−t0) e−ρ(t2−t1) 1/2 · · · 0 0

...
...

... . . . ...
...

e−ρ(tn−1−t0) e−ρ(tn−1−t1) e−ρ(tn−1−t2) · · · 1/2 0
e−ρ(tn−t0) e−ρ(tn−t1) e−ρ(tn−t2) · · · e−ρ(tn−tn−1) 1/2


.

Let M := M̃ + M̃>. (The matrix M is called a Kac-Murdock-Szegö matrix, in
reference to Kac et al., 1953). Let I denote the (n+ 1)-dimensional identity matrix,
and 1 the (n+1)-dimensional column vector containing only ones. Define the column
vectors

v := (M + M̃ + 2γ̃I)−11 and w := (M − M̃ + 2γ̃I)−11.

By Lemma 3.2 in Schied and Zhang (2017), both vectors are well-defined; further-
more, 1>v 6= 0 and 1>w 6= 0. The following result is due to Schied and Zhang
(2017).

Theorem 2.2. (Theorem 2.5 in Schied and Zhang, 2017). A unique Nash equilib-
rium (ξ∗,η∗) exists. The optimal strategies are deterministic and given by

ξ∗ =
x0 + y0

2(1>v)
v +

x0 − y0

2(1>w)
w and η∗ =

x0 + y0

2(1>v)
v − x0 − y0

2(1>w)
w.
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Figure 2.1: Optimal strategies ξ∗ (solid line) and η∗ (dashed line) for γ̃ = 1/4 (top)
and γ̃ = 0 (bottom). Parameters: n = 20, x0 = 1, y0 = −1/2 and ρ = T = 1.

Remark 2.3. A decay kernel G is said to be positive definite if

m∑
i,j=1

G(|ti − tj|)zizj ≥ 0

for all m ∈ N, t1, t2, . . . , tm ∈ [0,∞) and z1, z2, . . . , zm ∈ R. It is said to be strictly
positive definite if equality holds only for z1 = z2 = · · · = zm = 0.
Theorem 2.2 is valid for all strictly positive definite decay kernels G and all time
grids 0 = t1 < t2 < · · · < tn+1 = T, if one replaces each e−ρ(ti−tj) in the matrix M̃
with G(|ti − tj|) (Schied and Zhang, 2017, Theorem 2.5).

Figure 2.1 shows ξ∗ and η∗ for different levels γ̃ of transaction costs. If γ̃ is large,
there is little interaction between the two investors, because individual transaction
costs dominate costs from price impact. The equilibrium strategies look roughly
similar to the optimal strategy in the corresponding single-investor model (compare
Figure 2 in Obizhaeva and Wang, 2013).
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Things change if γ̃ is small (or zero): Both investors pile up trading volume by
oscillating between buy and sell orders, throwing the asset back and forth as if it
were a hot potato. Schied and Zhang (2017) provide an economic explanation:

“The dominant form of interaction between two players is predatory trad-
ing, which consists in the exploitation of price impact generated by an-
other agent. [...] Since predators prey on the drift created by the price
impact of a large trade, protection against predatory trading requires
the erasion of previously created price impact. Under transient price im-
pact, the price impact of an earlier trade [...] can be erased by placing
an order [...] of the opposite side. In this sense, oscillating strategies can
be understood as a protection against predatory trading by opponents.”
(p. 10)

As mentioned above, oscillations only occur if γ̃ is small. This is made precise in
the following theorem. It is due to Schied and Zhang (2017).

Theorem 2.4. (Theorem 2.7 in Schied and Zhang, 2017). The following conditions
are equivalent:

(i) For every n ∈ N and ρ > 0, all components of v are nonnegative.

(ii) For every n ∈ N and ρ > 0, all components of w are nonnegative.

(iii) γ̃ ≥ 1/4.

Remark 2.5. Theorem 2.4 remains valid if a positive constant is added to the
kernel G(t) = e−ρt, and the equivalence of (ii) and (iii) even holds for all positive
definite decay kernels G that are continuous, strictly positive and log-convex (Schied
and Zhang, 2017, Theorem 2.7).

Even if transaction costs are zero, oscillatory trading (as in the lower part of Fig-
ure 2.1) is expensive because of the price impact it generates. In fact, it can be so
expensive that both investors would benefit if γ̃ were increased. For an illustration,
let n = 500, x0 = y0 = 10 and ρ = T = 1. Let (ξ∗0,η

∗
0) denote the optimal strategies

for γ̃ = 0; and let (ξ∗1/4,η
∗
1/4) denote the optimal strategies for γ̃ = 1/4.

Suppose actual transaction costs are zero, i.e., γ̃ = 0. The only Nash equilibrium
is (ξ∗0,η

∗
0), but it is interesting to see what happens if one or both investors deviate.

For the sake of the argument, assume that the first investor may only pursue ξ∗0
or ξ∗1/4, and the second investor may only pursue η∗0 or η∗1/4. Four scenarios emerge.
The expected costs of both investors (under the assumption S0(0) = 0) for each
scenario are straightforward to compute. Expected costs in equilibrium are in italics.

η∗0 η∗1/4

ξ∗0 (75, 75) (65, 77)
ξ∗1/4 (77, 65) (70, 70)

Expected costs (J [ξ |η], J [η | ξ] ) if γ̃ = 0.
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This is a prisoner’s dilemma. Both investors would benefit from agreeing to pur-
sue (ξ∗1/4,η

∗
1/4). But both would have an incentive to deviate. If the second investor

pursues η∗
1/4, the first investor minimizes costs by pursuing ξ∗0. And if the first in-

vestor pursues ξ∗1/4, the second investor minimizes costs by pursuing η∗
0. They end

up with (ξ∗0,η
∗
0) and are both worse off.

Now suppose instead that actual transaction costs are γ̃ = 1/4. Recalculating ex-
pected costs shows that the prisoner’s dilemma vanishes because predatory trading
is now prohibitively expensive:

η∗0 η∗1/4

ξ∗0 (1289, 1289) (1280, 81)
ξ∗1/4 (81, 1280) (74, 74)

Expected costs (J [ξ |η], J [η | ξ] ) if γ̃ = 1/4.

Notice that expected costs in equilibrium are lower for γ̃ = 1/4 than for γ̃ = 0. The
reason is that investors no longer have to pursue oscillating strategies to protect
against predatory trading. The cost savings from this more than outweigh the
additional costs from transaction costs.
Transaction costs can come in the form of a financial market tax. In the current ex-
ample, such a tax would reduce investors’ expected costs (assuming that transaction
costs without the tax are zero). It would have the additional benefits of raising tax
income and of “calming the market” by eliminating orders that serve only as pro-
tection against predatory trading. This is the key economic insight of this chapter.
The following section shows that it does not depend on the ad hoc assumption that
only two strategies are available to each investor.

2.3 High frequency limit of expected costs

Both investors’ expected costs depend on the model parameters n, x0, y0, ρ and T .
To make the problem tractable, only the “high frequency” limit n → ∞ will be
analyzed.
Fix x0, y0 ∈ R and ρ, T > 0 and n ∈ {2, 3, . . . }. To make the dependence on n
explicit, denote the expected costs functional as Jn, and the optimal strategies from
Theorem 2.2 as ξ∗n := (ξn1 , ξ

n
2 , . . . , ξ

n
n+1) and η∗

n := (ηn1 , η
n
2 , . . . , η

n
n+1).

Optimal strategies for different n are easier to compare after they have been con-
verted to a step function on [0, T ]: Define m(t) := dt n/T e and

Xn(t) := x0 −
m(t)∑
i=1

ξni and Yn(t) := y0 −
m(t)∑
i=1

ηni , t ∈ [0, T ].

The value Xn(t) is the first investor’s net amount remaining at time t. Figure 2.2
shows Xn for the optimal strategies ξ∗n from Figure 2.1.
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Figure 2.2: Remaining net amount Xn corresponding to the optimal strategy ξ∗n for
γ̃ = 1/4 (left) and γ̃ = 0 (right). All parameters are as in Figure 2.1.

It will be shown in Section 2.5 that Xn exhibits the following limit behavior as
n → ∞: For every γ̃ > 0, the function Xn converges pointwise on (0, T ) to the
same smooth function. For γ̃ = 0, the function Xn does not converge on (0, T ), but
oscillates between two smooth functions. The same is true for Yn.
As suggested by the limit behavior of Xn and Yn, expected costs converge to the
same value for every γ̃ > 0, and diverge with two cluster points for γ̃ = 0. One
reason why expected costs (in equilibrium) are identical for every γ̃ > 0 is that
transaction costs only apply to jumps ∆Xn and ∆Yn. In the limit, transaction costs
of this form can be avoided by trading only infinitesimal amounts.
The limit behavior of the first investor’s expected costs is made precise in the follow-
ing theorem. Its tedious proof is the main mathematical contribution of this chapter
and can be found in Section 2.5. Notice that the special case x0 = −y0 has already
been proven in Zhang’s (2014) doctoral thesis.
Define three functions c+, c10, c20 : (0,∞)× R2 → R via

c+(r, x, y) :=
(x+ y)2(36e6r(8r + 13)− 60e3r − 3)

16(2e3r(3r + 5)− 1)2
+

(x+ y)(x− y)

2(r + 1)
+

(x− y)2

16(r + 1)2
,

c10(r, x, y) :=
(x+ y)2(6e6r + 3)

2(2e6r(3r + 5) + e3r + 3r + 7)
+

(x+ y)(x− y)

2(e−r + r + 1)
,

c20(r, x, y) :=
(x+ y)2(6e6r − 3)

2(2e6r(3r + 5)− 3e3r − 3r − 7)
+

(x+ y)(x− y)

2(−e−r + r + 1)
.

Theorem 2.6.

(i) If γ̃ > 0, then
lim
n→∞

Jn[ξ∗n |η∗
n] = c+(ρT, x0, y0).

(ii) If γ̃ = 0, then

lim
n→∞
n even

Jn[ξ∗n |η∗
n] = c10(ρT, x

0, y0) and lim
n→∞
n odd

Jn[ξ∗n |η∗
n] = c20(ρT, x

0, y0).
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ρT

x0

ρT

x0

Figure 2.3: Given y0 = 1 (left, dashed line) and y0 = 2 (right, dashed line), transac-
tion costs are advantageous if (ρT, x0) lies in the dark gray area, and disadvantageous
if (ρT, x0) lies in the light gray area.

Since both investors are identical except for their execution constraint, the second
investor’s expected costs are obtained simply by interchanging x0 and y0 in the
equations above.
Say that positive transaction costs γ̃ > 0 are advantageous if both investors’ expected
costs for γ̃ > 0 are smaller than the limit inferior of expected costs for γ̃ = 0. In
view of Theorem 2.6, this is equivalent to

c+(ρT, x0, y0) < min{c10(ρT, x0, y0), c20(ρT, x0, y0)} and
c+(ρT, y0, x0) < min{c10(ρT, y0, x0), c20(ρT, y0, x0)}.

Similarly, say that positive transaction costs γ̃ > 0 are disadvantageous if both
investors’ expected costs for γ̃ > 0 are larger than the limit superior of expected
costs for γ̃ = 0, i.e.,

c+(ρT, x0, y0) > max{c10(ρT, x0, y0), c20(ρT, x0, y0)} and
c+(ρT, y0, x0) > max{c10(ρT, y0, x0), c20(ρT, y0, x0)}.

It is easy to check numerically for given parameters (ρT, x0, y0) whether transaction
costs are advantageous, disadvantageous or neither. Figure 2.3 illustrates some
general observations: Transaction costs are advantageous if ρT is sufficiently large
and x0 and y0 are close, and disadvantageous if x0 and y0 have different signs or
if the difference between x0 and y0 is large. Transaction costs seem to address a
very specific failure: the failure to coordinate if both investors face similar execution
constraints. If x0 and y0 have different signs, investors can coordinate without
transaction costs. If x0 is much larger than y0 or vice versa, the larger investor’s
influence is unavoidable and the smaller investor’s influence is negligible. Introducing
transaction costs does not change this.
Corroborating these numerical findings with analytic results is difficult. The follow-
ing result considers the special case x0 = y0.
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Corollary 2.7. For every x ∈ R \ {0}, if r > log(4 +
√

62/2)/3 ≈ 0.69, then

c+(r, x, x) < min{c10(r, x, x), c20(r, x, x)}.

Proof. Let x ∈ R \ {0} and r > 0. It holds that

c+(r, x, x) =
(2x)2(36e6r(8r + 13)− 60e3r − 3)

16(2e3r(3r + 5)− 1)2
,

c10(r, x, x) =
(2x)2(6e6r + 3)

2(2e6r(3r + 5) + e3r + 3r + 7)
and

c20(r, x, y) =
(2x)2(6e6r − 3)

2(2e6r(3r + 5)− 3e3r − 3r − 7)
.

There is no loss of generality in letting x = 1/2. Consider the difference

c10(r, 1/2, 1/2)− c20(r, 1/2, 1/2)

=
6e6r + 3

2(2e6r(3r + 5) + e3r + 3r + 7)
− 6e6r − 3

2(2e6r(3r + 5)− 3e3r − 3r − 7)

= − 3e3r(2e3r + 1)2

(2e6r(3r + 5) + e3r + 3r + 7)(2e6r(3r + 5)− 3e3r − 3r − 7)
.

Rewrite the second factor in the denominator to see that the expression above is
negative:

2e6r(3r + 5)− 3e3r − 3r − 7

= (er − 1)(e2r + er + 1)(10e3r + 7) + 3r(2e6r − 1) > 0.

Hence c10(r, x, x) < c20(r, x, x). It remains to show that if r > log(4 +
√

62/2)/3, then

36e6r(8r + 13)− 60e3r − 3

16(2e3r(3r + 5)− 1)2
<

6e6r + 3

2(2e6r(3r + 5) + e3r + 3r + 7)
.

Multiply by both denominators to see that this is the case if and only if

0 < 16(2e3r(3r + 5)− 1)2 (6e6r + 3)

− 2(2e6r(3r + 5) + e3r + 3r + 7) (36e6r(8r + 13)− 60e3r − 3).

A tedious rearrangement of terms shows that the expression on the right hand side
equals

6(2e3r + 1)2(3r + 5)
(

2e6r − e3r 48r + 79

3r + 5
+

3r + 15

3r + 5

)
.

Since 48r + 79 < 16(3r + 5) and 3r + 15 > 3r + 5, this expression is larger than

6(2e3r + 1)2(3r + 5)(2e6r − 16e3r + 1).

The real-valued function y 7→ 2y2 − 16y + 1 has the two roots y1 := 4 −
√

62/2
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and y2 := 4+
√

62/2. Since y1 < 1 < y2, the real-valued function z 7→ 2e6z−16e3z+1
has exactly one positive root log(y2)/3.
Hence, for every r > log(y2)/3 = log(4 +

√
62/2)/3, it holds that

0 < 6(2e3r + 1)2(3r + 5)(2e6r − 16e3r + 1)

< 16(2e3r(3r + 5)− 1)2 (6e6r + 3)

− 2(2e6r(3r + 5) + e3r + 3r + 7) (36e6r(8r + 13)− 60e3r − 3).

Define the half life τ as the time it takes until half of the initial price impact G(0)
of an order has decayed. In the present model, τ satisfies the equality e−ρτ = 1/2,
hence τ = log(2)/ρ ≈ 0.69/ρ.

The threshold ρT ≈ 0.69 in Corollary 2.7 therefore suggests the following rule of
thumb, given that n is large and x0 ≈ y0: Transaction costs are advantageous for
both investors if the trading horizon T exceeds the half life τ .

2.4 From discrete to continuous time

Since the optimal strategies converge for every γ̃ > 0 as n → ∞, it seems worth-
while to explore the continuous time version of the model above, as in Section 3.3 of
Zhang’s (2014) doctoral thesis. One would assume that optimal strategies in con-
tinuous time are simply the limit of optimal strategies in the n-step models. This
is correct in the corresponding single-investor model (Obizhaeva and Wang, 2013,
Propositions 2 and 3), but turns out to be only partially correct here.
As before, suppose two investors trade over the time period [0, T ] a financial asset
whose unaffected price process is a right-continuous martingale S0 = (S0(t))t∈[0,T ]
on a filtered probability space (Ω,F , (Ft)t∈[0,T ],P) satisfying the usual conditions,
with F0 assumed P-trivial.
Both investors must trade fixed net amounts x0 and y0 until time T . Trading may
now occur at any time t ∈ [0, T ].

In discrete time, a strategy was a list of trades ξn = (ξn1 , ξ
n
2 , . . . , ξ

n
n+1), which was

then converted to a step function Xn specifying the remaining net amount. In
the present situation, a strategy X specifies the remaining net amount directly:
A right-continuous, adapted and bounded process X = (X(t))t∈[0−,T ] is called an
(admissible) strategy for the first investor if it has finite and P-a.s. bounded total
variation and the execution constraint X(0−) = x0 and X(T ) = 0 is satisfied P-a.s.
Notice that X may jump immediately at time 0.
An (admissible) strategy for the second investor Y is defined similarly. The execution
constraint becomes Y (0−) = y0 and Y (T ) = 0.

If the investors pursue admissible strategies X and Y , the asset price evolves ac-
cording to

S(t) = S(t;X, Y ) := S0(t) +

∫
[0,t)

e−ρ(t−s) dX(s) +

∫
[0,t)

e−ρ(t−s) dY (s), t ∈ [0, T ].
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The first investor’s expected costs are

J [X |Y ] := E
[1

2

∫
[0,T ]

∫
[0,T ]

e−ρ|t−s| dX(s) dX(t) +

∫
[0,T ]

∫
[0,t)

e−ρ(t−s) dY (s) dX(t)

+
1

2

∑
t∈[0,T ]

∆X(t)∆Y (t) + γ̃
∑
t∈[0,T ]

∆X(t)2
]
.

The second investor’s expected costs are J [Y |X].

Remark 2.8. The definition of expected costs follows naturally from its discrete time
counterpart, as shown in Lemma 3.3.2 of Zhang’s (2014) doctoral thesis. Choose
admissible strategies X and Y . For n ∈ {2, 3, . . . }, let ti := (i − 1)T/n for i =
1, 2, . . . , n + 1. Define vectors ξn := (ξn1 , ξ

n
2 , . . . , ξ

n
n+1) and ηn := (ηn1 , η

n
2 , . . . , η

n
n+1)

via

ξn1 := X(0)−X(0−) and ξni := X(ti)−X(ti−1) for i = 2, 3, . . . , n+ 1,

ηn1 := Y (0)− Y (0−) and ηni := Y (ti)− Y (ti−1) for i = 2, 3, . . . , n+ 1.

Then ξn and ηn are admissible strategies for the first and the second investor in
the n-step model of Section 2.1, and the expected costs (Jn[ξn |ηn], Jn[ηn | ξn]) con-
verge to (J [X |Y ], J [Y |X]) as n→∞.

A pair (X∗, Y ∗) of admissible strategies for the first and the second investor is called
a Nash equilibrium if J [X∗ |Y ∗] ≤ J [X |Y ∗] for every admissible strategy for the
first investor X, and J [Y ∗ |X∗] ≤ J [Y |X∗] for every admissible strategy for the
second investor Y . In this case, X∗ and Y ∗ are called optimal strategies (for the
first and the second investor, respectively).
The following theorem provides a full characterization of Nash equilibria in this
model. It was first published in Zhang’s (2014) doctoral thesis. A revised proof is
given by Schied et al. (2017, Theorem 4.5). Define two functions V,W : [0, T )→ R,

V (t) :=
e3ρT (6ρ(T − t) + 4)− 4e3ρt

2e3ρT (3ρT + 5)− 1
and W (t) :=

ρ(T − t) + 1

ρT + 1
.

Theorem 2.9. (Theorem 3.3.6 in Zhang, 2014).

(i) If γ̃ = 1/4, then a unique Nash equilibrium (X∗, Y ∗) exists. The optimal strate-
gies are deterministic and given by X∗(0−) = x0, Y ∗(0−) = y0 and X∗(T ) =
Y ∗(T ) = 0 and, for every t ∈ [0, T ),

X∗(t) =
x0 + y0

2
V (t) +

x0 − y0

2
W (t)

and

Y ∗(t) =
x0 + y0

2
V (t)− x0 − y0

2
W (t).

(ii) If γ̃ 6= 1/4, then a Nash equilibrium exists if and only if x0 = y0 = 0.
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Notice that existence of a unique Nash equilibrium for the case γ̃ 6= 1/4 and x0 =
y0 = 0 is not claimed in Theorem 3.3.6 in Zhang’s (2014) doctoral thesis, but follows
easily from the proof.
The following result extends Zhang’s (2014) analysis. It confirms that if γ̃ = 1/4,
then expected costs in the continuous time model coincide with the limit of expected
costs in the n-step models.

Proposition 2.10. If γ̃ = 1/4, then the first investor’s expected costs in equilib-
rium, J [X∗ |Y ∗], equal c+(ρT, x0, y0).

Proof. Conclude from the definitions of V and W that X∗ and Y ∗ are smooth
on [0, T ), with

dX∗(t) = −ρ
(3(x0 + y0)(e3ρT + 2e3ρt)

2e3ρT (3ρT + 5)− 1
+

x0 − y0

2(ρT + 1)

)
dt

and

dY ∗(t) = −ρ
(3(x0 + y0)(e3ρT + 2e3ρt)

2e3ρT (3ρT + 5)− 1
− x0 − y0

2(ρT + 1)

)
dt.

In addition,

∆X∗(0) = ∆Y ∗(0) = −3

2

(x0 + y0)(2e3ρT + 1)

2e3ρT (3ρT + 5)− 1

and

∆X∗(T ) = −∆Y ∗(T ) = − x0 − y0

2(ρT + 1)
.

Remark 2.4 in Lorenz and Schied (2013) explains how to correctly treat the jumps
at t = 0− and t = T in the integrals that follow. Obtain∫

[0,T ]

∫
[0,T ]

e−ρ|t−s| dX∗(s) dX∗(t)

=

∫ T

0

∫ T

0

e−ρ|t−s| dX∗(s) dX∗(t) + 2∆X∗(0)

∫ T

0

e−ρt dX∗(t)

+ 2∆X∗(T )

∫ T

0

e−ρ(T−t) dX∗(t) + ∆X∗(0)2 + 2e−ρT∆X∗(0)∆X∗(T ) + ∆X∗(T )2

and, using the fact that ∆Y ∗(0) = ∆X∗(0),∫
[0,T ]

∫
[0,t)

e−ρ(t−s) dY ∗(s) dX∗(t)

=

∫ T

0

∫ t

0

e−ρ(t−s) dY ∗(s) dX∗(t) + ∆X∗(0)

∫ T

0

e−ρt dX∗(t)
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+ ∆X∗(T )

∫ T

0

e−ρ(T−t) dY ∗(t) + e−ρT∆X∗(0)∆X∗(T ).

Plug into the definition of expected costs to obtain

J [X∗ |Y ∗] =
1

2

∫ T

0

∫ T

0

e−ρ|t−s| dX∗(s) dX∗(t) +

∫ T

0

∫ t

0

e−ρ(t−s) dY ∗(s) dX∗(t)

+ 2∆X∗(0)

∫ T

0

e−ρt dX∗(t)

+ ∆X∗(T )
(∫ T

0

e−ρ(T−t) dX∗(t) +

∫ T

0

e−ρ(T−t) dY ∗(t)
)

+
5

4
∆X∗(0)2 + 2e−ρT∆X∗(0)∆X∗(T ) +

1

4
∆X∗(T )2.

Lengthy computations yield

1

2

∫ T

0

∫ T

0

e−ρ|t−s| dX∗(s) dX∗(t)

=
1

2

(∫ T

0

∫ t

0

e−ρ(t−s) dX∗(s) dX∗(t) +

∫ T

0

∫ T

t

e−ρ(s−t) dX∗(s) dX∗(t)
)

= 3
(
3ρTe6ρT − e3ρT + 1

)( x0 + y0

2e3ρT (3ρT + 5)− 1

)2
+

1

2

(
(12ρT − 7)e3ρT + 6e2ρT − 2 + 3e−ρT

)( x0 + y0

2e3ρT (3ρT + 5)− 1

)( x0 − y0

2(ρT + 1)

)
+
(
ρT − 1 + e−ρT

)( x0 − y0

2(ρT + 1)

)2
and ∫ T

0

∫ t

0

e−ρ(t−s) dY ∗(s) dX∗(t)

= 3
(
3ρTe6ρT − e3ρT + 1

)( x0 + y0

2e3ρT (3ρT + 5)− 1

)2
+

3

2

(
− e3ρT + 2e2ρT − 2 + e−ρT

)( x0 + y0

2e3ρT (3ρT + 5)− 1

)( x0 − y0

2(ρT + 1)

)
+
(
1− ρT − e−ρT

)( x0 − y0

2(ρT + 1)

)2
.

Furthermore,

2∆X∗(0)

∫ T

0

e−ρt dX∗(t)

= 9
(
2e6ρT − e3ρT − 1

)( x0 + y0

2e3ρT (3ρT + 5)− 1

)2



30 CHAPTER 2. PREDATORY TRADING

+ 3
(
2e3ρT − 2e2ρT + 1− e−ρT

)( x0 + y0

2e3ρT (3ρT + 5)− 1

)( x0 − y0

2(ρT + 1)

)
and

∆X∗(T )
(∫ T

0

e−ρ(T−t) dX∗(t) +

∫ T

0

e−ρ(T−t) dY ∗(t)
)

= 3
(
3e3ρT − 2e2ρT − e−ρT

)( x0 + y0

2e3ρT (3ρT + 5)− 1

)( x0 − y0

2(ρT + 1)

)
.

Finally,

5

4
∆X∗(0)2 + 2e−ρT∆X∗(0)∆X∗(T ) +

1

4
∆X∗(T )2

=
45

16

(
4e6ρT + 4e3ρT + 1

)( x0 + y0

2e3ρT (3ρT + 5)− 1

)2
+ 3
(
2e2ρT + e−ρT

)( x0 + y0

2e3ρT (3ρT + 5)− 1

)( x0 − y0

2(ρT + 1)

)
+

1

4

( x0 − y0

2(ρT + 1)

)2
.

Plug in and simplify to obtain

J [X∗ |Y ∗] =
(x0 + y0)2(36e6ρT (8ρT + 13)− 60e3ρT − 3)

16(2e3ρT (3ρT + 5)− 1)2

+
(x0 + y0)(x0 − y0)

2(ρT + 1)
+

(x0 − y0)2

16(ρT + 1)2
,

as desired.

Notice that this also shows that the second investor’s expected costs in equilib-
rium, J [Y ∗ |X∗], equal the limit of expected costs, c+(ρT, y0, x0), in the n-step
models.

Remark 2.11. A Nash equilibrium in the present model exists if and only if γ̃ = 1/4.
This is inconvenient from an economic point of view, since there seems to be no
reason why the case γ̃ = 1/4 should be special. To avoid this, I argue that transaction
costs should be defined differently in continuous time models.
Trading is discrete by nature: continuous trading is an idealization. In practice,
every continuous time trading strategy X(t), t ∈ [0, T ], must be executed as a sequence
of block trades

X(t1)−X(t0), X(t2)−X(t1), . . . , X(tn)−X(tn−1).

Consequently, transaction costs on financial markets can only apply to discrete
trades. It is reasonable to take the same approach in discrete time models of finan-
cial markets, as in Section 2.1. In continuous time, however, “discrete” transaction
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costs on block trades form an awkward couple with continuous time trading strate-
gies: An investor can completely avoid them by pursuing a trading strategy that is
absolutely continuous.
I therefore believe that it is more appropriate to idealize transaction costs in the
same way as trading strategies. They should apply “continuously” to the instanta-
neous rate of trading dXt (as suggested for instance by Almgren and Chriss, 2001,
and Gatheral, 2010), and not to block trades ∆X(t). Applying transaction costs to
the instantaneous rate of trading implies that optimal strategies cannot jump if trans-
action costs are nonzero, a consequence criticized by Obizhaeva and Wang (2013)
because “these modifications limit us to a subset of feasible strategies, which is in
general sub-optimal” (p. 12). In my view, their argument loses sight of the fact that
continuous time models are idealized approximations of reality, as Carmona and
Yang (2011) point out: “Although the position of the trader is a piecewise constant
function of time, an absolutely-continuous function can offer a reasonable approx-
imation” (p. 3). Applying transaction costs to the instantaneous rate of trading
ensures that these costs cannot be avoided in the model, just as transaction costs on
discrete trades cannot be avoided in real markets.

2.5 Proof of Theorem 2.6

Fix x0, y0 ∈ R and ρ, T > 0 and n ∈ {2, 3, . . . }. Recall that

m(t) :=
⌈
t
n

T

⌉
,

and that v = (v1, v2, . . . , vn+1) and w = (w1, w2, . . . , wn+1) are defined as

v := (M + M̃ + 2γ̃I)−11 and w := (M − M̃ + 2γ̃I)−11.

Notice that both vectors implicitly depend on n. Define

Vn(t) := 1− 1

1>v

m(t)∑
i=1

vi and Wn(t) := 1− 1

1>w

m(t)∑
i=1

wi, t ∈ [0, T ].

Analyzing Vn and Wn instead of Xn and Yn has the advantage of eliminating x0

and y0 from subsequent calculations. The step functions X∗n and Y ∗n corresponding
to ξ∗n = (ξn1 , ξ

n
2 , . . . , ξ

n
n+1) and η∗

n = (ηn1 , η
n
2 , . . . , η

n
n+1) are easily recovered from Vn

and Wn. Indeed,

X∗n(t) = x0 −
m(t)∑
i=1

ξni =
x0 + y0

2

(
1− 1

1>v

m(t)∑
i=1

vi

)
+
x0 − y0

2

(
1− 1

1>w

m(t)∑
i=1

wi

)
=
x0 + y0

2
Vn(t) +

x0 − y0

2
Wn(t).
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To shorten subsequent calculations, let

a := e−ρT/n and θ := 2γ̃ + 1/2.

By definition, e−ρ(ti−tj) = ai−j. Notice that θ ≥ 1/2, with equality if γ̃ = 0. The
critical value γ̃ = 1/4 in Theorem 2.4 corresponds to θ = 1.
Theorem 2.6 has already been proved for the special case x0 = −y0 in Zhang’s
(2014) doctoral thesis. In this case, calculations are simplified by the fact that
equilibrium strategies only depend on w and not on v. The following lemma collects
auxiliary results obtained for this special case. They follow from Equation (3.16),
Lemma 3.1.7, Proposition 3.1.19, Lemma 3.1.20 and Proposition 3.1.21 in Zhang
(2014). Define four functions fW± , gW± : (0, T )→ R via

fW± (t) :=
1 + ρ(T − t)± e−ρ(T−t)

1 + ρT + e−ρT
and gW± (t) :=

1 + ρ(T − t)± e−ρ(T−t)

1 + ρT − e−ρT
.

Lemma 2.12. (Zhang, 2014).

(i) For every θ ≥ 1/2, the components of w are given as

wi =
(1− a)θ + a(a(θ−1)

θ
)n+1−i

θ(θ − a(θ − 1))
for i = 1, 2, . . . , n+ 1.

(ii) Suppose θ > 1/2. Then limn→∞ 1>w = ρT + 1 and

lim
n→∞

Wn(t) =
ρ(T − t) + 1

ρT + 1
, t ∈ (0, T ).

(iii) Suppose θ = 1/2. Then

lim
n→∞
n even

1>w = e−ρT + ρT + 1 and lim
n→∞
n odd

1>w = −e−ρT + ρT + 1.

Furthermore, for every t ∈ (0, T ), the sequence (Wn(t))n=2,4,6,... has exactly two
cluster points fW± (t) and the sequence (Wn(t))n=1,3,5,... has exactly two cluster
points gW± (t).

(iv) For every θ ≥ 1/2 and all admissible strategies ξ and η, it holds that

Jn[ξ |η] =
1

2
E
[
ξ>(M + 2γ̃I) ξ + ξ>M̃η

]
.

The first step in the proof of Theorem 2.6 is to obtain results similar to Lemma 2.12
(i)–(iii) for v and Vn.
Define the (n + 1)-dimensional square matrix N := (1 − a2)

(
I + M−1(M̃ + 2γ̃I)

)
.

The inverse of M has a simple tridiagonal structure, see for instance Section 7.2,
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Problems 12 and 13, in Horn and Johnson (2013):

M−1 =
1

1− a2



1 −a 0 · · · 0 0
−a 1 + a2 −a · · · 0 0
0 −a 1 + a2 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 1 + a2 −a
0 0 0 · · · −a 1


. (2.1)

Thus

N = (1− a2)I + (1− a2)M−1


θ 0 0 · · · 0
a θ 0 · · · 0
a2 a θ · · · 0
...

...
... . . . ...

an an−1 an−2 · · · θ



=



1− 2a2 + θ −aθ · · · 0
−a(θ − 1) 1 + a2(θ − 2) + θ · · · 0

0
. . . . . . ...

... . . . . . . 0

0
. . . 1 + a2(θ − 2) + θ −aθ

0 · · · −a(θ − 1) 1− a2 + θ


.

Let r :=
(
a4(θ − 2)2 − 2a2(θ2 − θ + 2) + (θ + 1)2

)1/2
. Define

b± :=
±(1− a2(θ + 2) + θ) + r

2r
,

c± :=
±(1 + (1− a2)θ) + r

2r
and

d± :=
1 + a2(θ − 2) + θ ± r

2
.

Define further

δi := b+d
i
+ + b−d

i
− for i = 0, 1, . . . , n,

and
ϕi := c+d

n+2−i
+ + c−d

n+2−i
− for i = 2, 3, . . . , n+ 2.

Notice that δ0 = ϕn+2 = 1. Finally, let

δ := (1− a2 + θ)(b+d
n
+ + b−d

n
−)− a2θ(θ − 1)(b+d

n−1
+ + b−d

n−1
− ).
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Lemma 2.13. For i = 1, 2, . . . , n, the i-th leading principal minor of N equals δi.

Proof. For i = 1, 2, . . . , n, denote by fi the i-th principal minor of N . Straightfor-
ward calculations show

f1 = δ1 and f2 = δ2. (2.2)

Because of the tridiagonal structure of N , the remaining principal minors satisfy the
following homogeneous linear difference equation of second order (see for instance
Theorem 2.1 in El-Mikkawy, 2004):

fi = (1 + a2(θ − 2) + θ)fi−1 − a2θ(θ − 1)fi−2, i = 3, 4, . . . , n. (2.3)

The characteristic equation of (2.3) is

0 = x2 − (1 + a2(θ − 2) + θ)x+ a2θ(θ − 1).

It has the two roots d+ and d−.
Now show that r is real to conclude that d+ and d− are real. Recall that θ ≥ 1/2
and a ∈ (0, 1). Define the mapping f : [1/2,∞)→ R via

f(x) = x2(a2 − 1)2 − 2x(2a4 − a2 − 1) + (2a2 − 1)2.

Refactoring shows that r = f(θ)1/2. For all x ≥ 1/2, it holds that

f ′(x) = 2
(
− 2a4 + a2 + 1 + x(a2 − 1)2

)
≥ 2
(
− 2a4 + a2 + 1 +

1

2
(a2 − 1)2

)
= 3(1− a4)

is nonnegative. Conclude that f(x) ≥ f(1/2) = 9/4(a2 − 1)2 + a2, hence f(x) is
nonnegative for all x ≥ 1/2 and r is real. The general solution to the difference
equation (2.3) is therefore given by z+di+ + z−d

i
− for z+, z− ∈ R (see for instance

Theorem 3.7 in Kelley and Peterson, 1991). Requiring the initial conditions (2.2)
proves the claim.

Lemma 2.14. It holds that ϕn+2 = 1, ϕn+1 = 1− a2 + θ and

ϕi = (1 + a2(θ − 2) + θ)ϕi+1 − a2θ(θ − 1)ϕi+2, i = n, n− 1, . . . , 2.

Proof. Recall from the proof of Lemma 2.13 that the general solution to the ho-
mogeneous linear difference equation of second order

fi = (1 + a2(θ − 2) + θ)fi−1 − a2θ(θ − 1)fi−2

is z+di+ + z−d
i
− for z+, z− ∈ R. Requiring the initial conditions f0 = 1 and f1 =

1−a2+θ yields fi = c+d
i
++c−d

i
−, and therefore fi = ϕn+2−i for all i = 0, 1, . . . , n.
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The inverse of N can now be expressed in terms of the constants δi, ϕi and δ.

Lemma 2.15. The matrix N is nonsingular, and its inverse is given by

(
N−1

)
ij

=

{
δ−1 (a(θ − 1))i−j δj−1 ϕi+1 if j ≤ i,
δ−1 (aθ)j−i δi−1 ϕj+1 if j ≥ i,

for i, j = 1, 2, . . . , n+ 1.

Proof. By Lemma 3.2 in Schied and Zhang (2017), the matrix M + M̃ + 2γ̃I is
nonsingular. Hence N = (1− a2)M−1(M + M̃ + 2γ̃I) is nonsingular.
Notice that δ is the determinant of N , hence δ 6= 0. The claim now follows from
Lemmas 2.13 and 2.14 with the help of Usmani’s (1994a; 1994b) formula for the
inversion of a tridiagonal Jacobi matrix.

This yields an explicit representation of the components of v.

Lemma 2.16. The components of v are given as

v1 =
1− a
δ

(
ϕ2 + (1− a)

n∑
j=2

(aθ)j−1ϕj+1 + (aθ)n
)
,

and, for i = 2, 3, . . . , n,

vi =
1− a
δ

(
(a(θ − 1))i−1ϕi+1 + (1− a)

i−1∑
j=2

(a(θ − 1))i−jδj−1ϕi+1

+ (1− a)
n∑
j=i

(aθ)j−iδi−1ϕj+1 + (aθ)n+1−iδi−1

)
and

vn+1 =
1− a
δ

(
(a(θ − 1))n + (1− a)

n∑
j=2

(a(θ − 1))n+1−jδj−1 + δn

)
.

Proof. Notice that

v := (M + M̃ + 2γ̃I)−11 =
(
I +M−1(M̃ + 2γ̃I)

)−1
M−11 = (1− a2)N−1M−11.

The result now follows from Lemma 2.15 and the fact that

(1− a2)M−11 =
(
1− a, (1− a)2, (1− a)2, . . . , (1− a)2, 1− a

)
,

which in turn follows from (2.1).
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To describe the limit behavior of Vn, define the four functions fV± , gV± : (0, T ) → R
via

fV± (t) :=
(
2e6ρT (3ρT + 5) + e3ρT + 3ρT + 7

)−1(± 3e3ρ(T−t) ± 6e3ρ(2T−t) +

+ e6ρT (6ρ(T − t) + 4) + 3ρ(T − t) + 2e3ρT + 4e3ρt − 4e3ρ(T+t) + 3
)
,

gV±(t) :=
(
2e6ρT (3ρT + 5)− 3e3ρT − 3ρT − 7

)−1(± 3e3ρ(T−t) ± 6e3ρ(2T−t) +

+ e6ρT (6ρ(T − t) + 4)− 3ρ(T − t)− 2e3ρT − 4e3ρt − 4e3ρ(T+t) − 3
)
.

Lemma 2.17.

(i) If θ > 1/2, then

lim
n→∞

Vn(t) =
e3ρT (6ρ(T − t) + 4)− 4e3ρt

2e3ρT (3ρT + 5)− 1
, t ∈ (0, T ).

(ii) Suppose θ = 1/2. For every t ∈ (0, T ), the sequence (Vn(t))n=2,4,6,... has exactly
two cluster points fV± (t) and the sequence (Vn(t))n=1,3,5,... has exactly two cluster
points gV±(t).

Proof. Continue to keep in mind that the dependence of variables on n is often
implicit. For example, limn→∞ a = 1 because a = e−ρT/n.
The proof of Lemma 2.17 is split into three parts:

1. Limit behavior of Vn for θ = 1

2. Limit behavior of Vn for θ > 1/2 and θ 6= 1

3. Limit behavior of Vn for θ = 1/2

Throughout the proof, the formula for partial sums of the geometric series,

m−1∑
i=1

xi =
m−1∑
i=1

xm−i =
x− xm

1− x
for x 6= 1,

will be used frequently and without further reference.

Lemma 2.18. If θ = 1, then, for m = 1, 2, . . . , n+ 1,

m∑
i=1

vi =
(1− a)m+ a

2 + a
+
a(a2 − 2)

2(2 + a)2

( a

2− a2
)n+1

+
a(1 + a)

(2 + a)2

( a

2− a2
)n+1−m

.

Proof. Let θ = 1 and m = 1, 2, . . . , n + 1. Plug into the definitions of r, b±, c±
and d± (noticing that a < 1) to show δi = 2(1 − a2)(2 − a2)i−1 for i = 1, 2, . . . , n,
and ϕi = (2− a2)n+2−i for i = 2, 3, . . . , n+ 1. Furthermore, δ = 2(1− a2)(2− a2)n.
Conclude with Lemma 2.16 that

v1 =
1

2 + a

(
1 +

2− a2

2

( a

2− a2
)n+1)
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and, for i = 2, 3, . . . , n+ 1,

vi =
1

2 + a

(
1− a+ (1− a2)

( a

2− a2
)n+2−i)

.

Sum over i = 1, 2, . . . ,m to obtain the representation in the statement.

Proof of Lemma 2.17, Part 1: Limit behavior of Vn for θ = 1.
Let θ = 1 and t ∈ (0, T ). Then, using L’Hôpital’s rule, limn→∞ (1−a)m(t) = ρt and

lim
n→∞

(2− a2)m(t) = lim
n→∞

exp
(
m(t) log(2− a2)

)
= lim

n→∞
exp

( 2ρt

2a−2 − 1

)
= e2ρt.

Similarly, limn→∞(1−a)(n+1) = ρT and limn→∞ (2−a2)n+1 = e2ρT . Thus Lemma 2.18
shows

lim
n→∞

m(t)∑
i=1

vi =
e−3ρT (4e3ρt − 1) + 6(ρt+ 1)

18
and

lim
n→∞

n+1∑
i=1

vi =
−e−3ρT + 6ρT + 10

18
.

Applying these results to the definition of Vn concludes the proof of Part 1.
Define the following shorthand notation for x ∈ R and k ∈ N:

[x]k :=
1− a
δ

xk.

Lemma 2.19. Abbreviate

C1 :=
a(1 + a)

θ + 1− a(θ − 2)
.

If θ ≥ 1/2 and θ 6= 1, then, for m = 1, 2, . . . , n,

m∑
i=1

vi =
∑

σ∈{+,−}

cσ(dσ − a2θ)
dσ − aθ

[dσ]n

+ (1− a)(m− 1)
∑

σ∈{+,−}

bσcσ

( a(θ − 1)

dσ − a(θ − 1)
+

dσ
dσ − aθ

)
[dσ]n

+ C1

(
1 +

∑
σ∈{+,−}

bσdσ
((

dσ
aθ

)m−1 − 1
)

dσ − aθ

)
an[θ]n

+ 2C1

∑
σ∈{+,−}

cσdσ
(
a(θ−1)
dσ
−
(a(θ−1)

dσ

)m)
dσ − a(θ − 1)

[dσ]n.



38 CHAPTER 2. PREDATORY TRADING

Furthermore,

vn+1 =
∑

σ∈{+,−}

bσ(dσ − a2(θ − 1))

dσ − a(θ − 1)
[dσ]n + 2C1a

n[θ − 1]n.

Proof. Let θ ≥ 1/2 and θ 6= 1. For i = 3, 4, . . . , n,

i−1∑
j=2

(a(θ − 1))i−jδj−1ϕi+1

= a(θ − 1)
∑

σ∈{+,−}

bσcσd
n
σ

dσ − a(θ − 1)

+
a(θ − 1)b+c−d

n+1
−

d+(d+ − a(θ − 1))

(d+
d−

)i
+
a(θ − 1)b−c+d

n+1
+

d−(d− − a(θ − 1))

(d−
d+

)i
− a(θ − 1)

∑
σ∈{+,−}

bσdσ
dσ − a(θ − 1)

∑
τ∈{+,−}

cτd
n+1
τ

(a(θ − 1))2

(a(θ − 1)

dτ

)i
and

n∑
j=i

(aθ)j−iδi−1ϕj+1 =
∑

σ∈{+,−}

bσcσ
dσ − aθ

dn+1
σ

+
b+c−d

n+2
−

d+(d− − aθ)

(d+
d−

)i
+

b−c+d
n+2
+

d−(d+ − aθ)

(d−
d+

)i
−

∑
σ∈{+,−}

cσdσ
dσ − aθ

∑
τ∈{+,−}

bτ (aθ)
n+1

dτ

(dτ
aθ

)i
.

Conclude from the definitions of r and d± that

a(θ − 1)(d− − aθ) + d−(d+ − a(θ − 1))

= a(θ − 1)(d+ − aθ) + d+(d− − a(θ − 1))

= d+d− − a2θ(θ − 1)

= 0.

Hence four summands from the previous calculations cancel out:

0 =
a(θ − 1)b+c−d

n+1
−

d+(d+ − a(θ − 1))

(d+
d−

)i
+
a(θ − 1)b−c+d

n+1
+

d−(d− − a(θ − 1))

(d−
d+

)i
+

b+c−d
n+2
−

d+(d− − aθ)

(d+
d−

)i
+

b−c+d
n+2
+

d−(d+ − aθ)

(d−
d+

)i
=
( a(θ − 1)

d+ − a(θ − 1)
+

d−
d− − aθ

)b+c−dn+1
−

d+

(d+
d−

)i
+
( a(θ − 1)

d− − a(θ − 1)
+

d+
d+ − aθ

)b−c+dn+1
+

d−

(d−
d+

)i
.
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For i = 2, 3, . . . , n, plug into the representation of vi from Lemma 2.16 and simplify
further to show

vi = (1− a)
∑

σ∈{+,−}

bσcσ

( a(θ − 1)

dσ − a(θ − 1)
+

dσ
dσ − aθ

)
[dσ]n

+ 2C1

∑
σ∈{+,−}

cσdσ[dσ]n

a(θ − 1)

(a(θ − 1)

dσ

)i
+ C1

∑
σ∈{+,−}

bσa
n+1θ[θ]n

dσ

(dσ
aθ

)i
.

Observe with similar calculations that

v1 =
∑

σ∈{+,−}

cσ(dσ − a2θ)
dσ − aθ

[dσ]n + C1a
n[θ]n

and

vn+1 =
∑

σ∈{+,−}

bσ(dσ − a2(θ − 1))

dσ − a(θ − 1)
[dσ]n + 2C1a

n[θ − 1]n.

Sum over i = 1, 2, . . . ,m to conclude the proof.

Notice that if t = T, then (−1)m(T ) = 1 if n is even and (−1)m(T ) = −1 is n is odd.

If t ∈ (0, T ) then 0 < 2t/T < 2. Recall that m(t) = dnt/T e. Define kn := d2nt/T e.
If n increases by one, then kn increases by zero, one or two. Clearly, there are
infinitely many instances in which kn increases either by one or two. Suppose there
is an n0 ∈ N such that kn only increases by two for all n ≥ n0. Then there must be
an n1 ≥ n0 for which kn1 − 1 > 2n1t/T. This contradicts the definition of the ceiling
function. Conclude that there are infinitely many instances in which kn increases
by one. Hence ((−1)m(t))n=2,4,6,... oscillates between −1 and 1. The same is true
for ((−1)m(t))n=1,3,5,...

Introduce the following convention: For a sequence of real numbers (xn)n∈N and a
real number x, say that ±x is the limit of (xn)n∈N and write limn→∞(xn)m(t) = ±x
if

(xn)m(t) = (−1)m(t)|xn|m(t) and lim
n→∞

|xn|m(t) = x.

To study the limit behavior of Vn and Jn[ξ∗n |η∗
n], they will be split into small parts

that are easier to analyze. The following lemma contains the limits of these parts.
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Lemma 2.20. Let θ ≥ 1/2 and θ 6= 1 and t ∈ [0, T ]. For n → ∞, the following
limits hold:

Expression Limit Expression Limit Expression Limit

a 1 c− 0 b+
1−a2 2θ

am(t) e−ρt d+ θ c−
d−−(θ−1) −1

2

r 1 d− θ − 1 c−
d−−a(θ−1) −2

3

b+ 0 b+
d+−θ 2 c−

d−−a2(θ−1) −1

b− 1 b+
d+−aθ

4
3

c−
1−a2 θ − 1

c+ 1 b+
d+−a2θ 1 (1− a)m(t) ρt

If additionally θ > 1/2, then also the following limits hold:

Expression Limit Expression Limit Expression Limit(
θ−1
θ

)m(t)
0

(
θ−1
d−

)m(t)
e4ρt [θ − 1]n 0(

d+
θ

)m(t)
e2ρt [d+]n 1

4θ
((θ−1)/θ)n

1−a2 0(
θ−1
d+

)m(t)
0 [d−]n 0 [d−]n

1−a2 0(
d−
θ

)m(t)
0 [θ]n e−2ρT

4θ
[θ−1]n
1−a2 0

If, on the other hand, θ = 1/2, then the limits in the second table are no longer
valid. Instead, the following limits hold:

Expression Limit Expression Limit Expression Limit(
θ−1
θ

)m(t) ±1
(
θ−1
d−

)m(t)
e4ρt b+

d+(θ−1)−d−θ −4
3(

d+
θ

)m(t)
e2ρt d++θ−1

d++a(θ−1)
2
3

c−
d+(θ−1)−d−θ

2
3(

θ−1
d+

)m(t) ±e−2ρt d−+a2θ
d−+aθ

2
3(

d−
θ

)m(t) ±e−4ρt θ+a(θ−1)
1−a2

1
4

Furthermore, if θ = 1/2, then the following limits hold:

lim
n→∞
n even

[d+]n =
1

e−6ρT + 2
, lim

n→∞
n odd

[d+]n =
1

−e−6ρT + 2
,

lim
n→∞
n even

[d−]n =
1

2e6ρT + 1
, lim

n→∞
n odd

[d−]n =
1

−2e6ρT + 1
,

lim
n→∞
n even

[θ]n =
e4ρT

2e6ρT + 1
, lim

n→∞
n odd

[θ]n =
e4ρT

2e6ρT − 1
,

lim
n→∞
n even

[θ − 1]n =
e4ρT

2e6ρT + 1
, lim

n→∞
n odd

[θ − 1]n =
e4ρT

−2e6ρT + 1
.
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Proof. The limits in the first table are obvious or follow after an application of
L’Hôpital’s rule.

Consider the second table. The first limit follows directly from the fact that θ > 1/2.
To prove the second, write (d+/θ)

n = exp
(
n log(d+/θ)

)
and apply L’Hôpital’s rule.

The third limit follows immediately, because

θ − 1

d+
=
θ − 1

θ

θ

d+
.

Prove the fourth and fifth limits in a similar fashion. Now recall that

δ

1− a

=
b+
(
1− a2 + θ − a2θ(θ−1)

d+

)
1− a

dn+ +
b−((1− a2 + θ)d− − a2θ(θ − 1))

d−(1− a)
dn−.

(2.4)

Applying L’Hôpital’s rule shows

lim
n→∞

b+
(
1− a2 + θ − a2θ(θ−1)

d+

)
1− a

= 4θ

and
lim
n→∞

b−((1− a2 + θ)d− − a2θ(θ − 1))

d−(1− a)
= −2(θ − 1).

Notice that this remains true if θ = 1/2. By setting t = T, it follows from the second
and fourth limits in the second table that

lim
n→∞

(d−
d+

)n
= 0, which implies lim

n→∞

∣∣∣d+
d−

∣∣∣n =∞.

Thus

lim
n→∞

[d+]n = lim
n→∞

( δ

(1− a)dn+

)−1
=
(
4θ + 0

)−1 and lim
n→∞

[d−]n = 0.

Similar considerations yield the limits of [θ]n and [θ − 1]n. Further applications of
L’Hôpital’s rule show

lim
n→∞

((θ − 1)/θ)n

1− a2
= 0

as well as

lim
n→∞

∣∣∣ 1− a2

(d−/d+)n

∣∣∣ =∞ and lim
n→∞

∣∣∣ 1− a2

((θ − 1)/d+)n

∣∣∣ =∞.

Conclude with the fifth limit in the second table that

lim
n→∞

1− a2

((θ − 1)/d−)n
= 0.
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Now proceed as above to obtain the last two limits in the second table.
Consider the third table. For θ = 1/2, it holds that d− < 0 < d+ because

d± =
1

2

(3(1− a2)
2

±
√

9(1− a2)2
4

+ a2
)
.

With this in mind, write (θ−1)m(t) = (−1)m(t)|θ−1|m(t) and dm(t)
− = (−1)m(t)|d−|m(t).

Then obtain the first five limits with similar arguments as before. For example,

(d−
θ

)m(t)

= (−1)m(t)

∣∣∣∣∣ 3(1− a2)
2

−
√

9(1− a2)2
4

+ a2

∣∣∣∣∣
m(t)

= (−1)m(t) exp
(
m(t) log

(√9(1− a2)2
4

+ a2 − 3(1− a2)
2

))
.

Apply L’Hôpital’s rule to show

lim
n→∞

m(t) log
(√9(1− a2)2

4
+ a2 − 3(1− a2)

2

)
= −4ρt.

The remaining five limits in the third table follow after an application of L’Hôpital’s
rule.
To find the limits of [d+]n, [d−]n, [θ]n and [θ−1]n for even and odd n, recall (2.4) and
proceed as before. For example, conclude with similar arguments as for the second
and fourth limit in the third table that limn→∞ |d−/d+|n = e−6ρT , and obtain

lim
n→∞
n even

[d+]n =
(

2 + lim
n→∞

∣∣∣d−
d+

∣∣∣)−1 =
1

e−6ρT + 2
.

Proof of Lemma 2.17, Part 2: Limit behavior of Vn for θ > 1/2 and θ 6= 1.
Let θ 6= 1 and t ∈ (0, T ). With the help of Lemma 2.19 and the first table in
Lemma 2.20, conclude that limn→∞C1 = 2/3 and thus

lim
n→∞

m(t)∑
i=1

vi =
4

3
lim
n→∞

[d+]n + ρt
(4θ

3
lim
n→∞

[d+]n − 2(θ − 1)

3
lim
n→∞

[d−]n
)

+
2

3

(
1 +

4θ

3

(
eρt lim

n→∞

(d+
θ

)m(t)

− 1
)

− (θ − 1)
( θeρt

θ − 1
lim
n→∞

(d−
θ

)m(t)

− 1
))
e−ρT lim

n→∞
[θ]n

+
4

3

(
θ
(θ − 1

θ
− e−ρt lim

n→∞

(θ − 1

d+

)m(t))
lim
n→∞

[d+]n

− 2(θ − 1)

3

(
1− e−ρt lim

n→∞

(θ − 1

d−

)m(t))
lim
n→∞

[d−]n
)
.

(2.5)
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Notice that this requires writing

d+ − a2θ
d+ − aθ

=
( b+
d+ − a2θ

)−1 b+
d+ − aθ

and

d− − a2(θ − 1)

d− − a(θ − 1)
=
( c−
d− − a2(θ − 1)

)−1 c−
d− − a(θ − 1)

.

Now let additionally θ > 1/2. The remaining limits are in the second table in
Lemma 2.20. In total, obtain for t ∈ (0, T ) :

lim
n→∞

m(t)∑
i=1

vi =
e−3ρT (4e3ρt − 1) + 6(ρt+ 1)

18

and, after showing limn→∞ vn+1 = 0,

lim
n→∞

n+1∑
i=1

vi =
−e−3ρT + 6ρT + 10

18
.

Both limits are the same as in the case θ = 1 (compare Part 1). Plug these results
into the definition of Vn(t) to conclude the proof of Part 2.

Proof of Lemma 2.17, Part 3: Limit behavior of Vn for θ = 1/2.
Let θ = 1/2 and t ∈ (0, T ). Equation (2.5) remains valid. The remaining limits can
be found in Lemma 2.20. In total, obtain for σ ∈ {+,−}:

lim
n→∞
n even

m(t)∑
i=1

vi =
(
18e6ρT + 9

)−1(− σ3e3ρ(T−t) − σ6e3ρ(2T−t)

+ 6e6ρT (ρt+ 1) + 3ρt− e3ρT − 4e3ρt + 4e3ρ(T+t) + 4
)

and

lim
n→∞
n odd

m(t)∑
i=1

vi =
(
− 18e6ρT + 9

)−1(
σ3e3ρ(T−t)σ6e3ρ(2T−t)

− 6e6ρT (ρt+ 1) + 3ρt+ e3ρT − 4e3ρt − 4e3ρ(T+t) + 4
)
.

Letting σ = + and σ = − yields the respective cluster points for even and odd m(t).
Notice that m(T ) is even if and only if n is even. Obtain

lim
n→∞
n even

vn+1 =
2(2e3ρT + 1)

3(2e6ρT + 1)
and lim

n→∞
n odd

vn+1 =
2(2e3ρT + 1)

3(−2e6ρT + 1)
.

Plug these results into the definition of Vn(t) to conclude the proof of Part 3.
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This completes the proof of the auxiliary Lemma 2.17. Part 3 also yields the follow-
ing limits, which will be needed later: If θ = 1/2, then

lim
n→∞
n even

1>v =
2e6ρT (3ρT + 5) + e3ρT + 3ρT + 7

18e6ρT + 9
and

lim
n→∞
n odd

1>v =
2e6ρT (3ρT + 5)− 3e3ρT − 3ρT − 7

18e6ρT − 9
.

(2.6)

The final step in the proof of Theorem 2.6 is to study the limit behavior of expected
costs Jn[ξ∗n |η∗

n]. The following lemma expresses them in terms of v and w. It is
valid for all θ ≥ 1/2.

Lemma 2.21. It holds that

8 Jn[ξ∗n |η∗
n] =

(x0 + y0)2

1>v
+

(x0 + y0)(x0 − y0)
1>v 1>w

(1>v + 1>w) +
(x0 − y0)2

1>w

+
(x0 + y0

1>v

)2
v>M̃ v +

(x0 + y0)(x0 − y0)
1>v 1>w

w>(M̃ − M̃>)v

−
(x0 − y0

1>w

)2
w>M̃ w.

Proof. Recall the representation of Jn[ξn |ηn] in Lemma 2.12 (iv). Plug in for ξ∗n
and η∗

n from Theorem 2.2 and rearrange to see that the right-hand side equals

1

2

((x0 + y0

2 (1>v)

)2
v>(M + M̃ + 2γ̃I)v

+
(x0 + y0)(x0 − y0)

4 (1>v) (1>w)

(
v>(M − M̃ + 2γ̃I)w +w>(M + M̃ + 2γ̃I)v

)
+
( x0 − y0

2 (1>w)

)2
w>(M − M̃ + 2γ̃I)w

)
+

1

2
(ξ∗n)>M̃η∗

n.

By definition, (M + M̃ + 2γ̃I)v = (M − M̃ + 2γ̃I)w = 1. Plug in for (ξ∗n)>M̃η∗
n

and simplify further to conclude the proof.

Lemma 2.22. If θ > 1/2, then

lim
n→∞

v>M̃ v =
−e−6ρT − 8e−3ρT + 24ρT + 36

216
,

lim
n→∞

w>(M̃ − M̃>)v =
−e−3ρT + 4

6
and

lim
n→∞

w>M̃ w =
2ρT + 1

2
.

Proof. First, let θ = 1. Notice from Lemma 2.12 (i) that

w = (1− a, 1− a, . . . , 1− a, 1).
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Calculate

v>M̃ v =
v21
2

+
1

2

n+1∑
i=2

v2i + v1

n+1∑
i=2

via
i−1 +

n+1∑
i=3

i−1∑
j=2

vivja
i−j

=
1

(2 + a)2

(
(1− a2)n

2
+
−a4 + 2a2 + 4a+ 4

2(4− a2)

− a2(a+ 1)

2(a+ 2)

( a

2− a2
)n
− a4

8(4− a2)

( a

2− a2
)2n)

,

and

w>(M̃ − M̃>)v = v1

n+1∑
i=2

wia
i−1 − vn+1

n∑
i=1

wia
n+1−i − w1

n∑
j=2

vja
j−1

+ wn+1

n∑
j=2

vja
n+1−j +

n∑
i=3

wi

i−1∑
j=2

vja
i−j −

n−1∑
i=2

wi

n∑
j=i+1

vja
j−i

= − a2

(2− a2)(2 + a)

(2− a2

2

( a

2− a2
)n

+ a2 − 3
)

and

w>M̃ w =
1

2

n∑
i=1

(1− a)2 +
1

2
+

n∑
i=2

i−1∑
j=1

(1− a)2ai−j +
n∑
j=1

(1− a)an+1−j

=
n(1− a2) + 1

2
.

Take limits to obtain the results.

For the remainder of the proof, let θ ≥ 1/2 and θ 6= 1. The case θ = 1/2 is included
for future reference. If a particular calculation does not hold for the case θ = 1/2, this
will be stated explicitly. Finding the limits of v>M̃v, w>(M̃−M̃>)v, and w>M̃ w
is tedious. Begin by computing M̃v. Let

C1 := a(1 + a)/(1− a(θ − 2) + θ)

as above, and define

C2 :=
∑

σ∈{+,−}

bσcσ

( a(θ − 1)

dσ − a(θ − 1)
+

dσ
dσ − aθ

)
[dσ]n

and

C3 := −C2 +
∑

σ∈{+,−}

cσ

(dσ − a2θ
dσ − aθ

+
2C1(θ − 1)

dσ − (θ − 1)

)
[dσ]n.
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Then (
M̃v

)
1

=
1

2

∑
σ∈{+,−}

cσ(dσ − a2θ)
dσ − aθ

[dσ]n +
C1a

n

2
[θ]n,

(
M̃v

)
2

=
∑

σ∈{+,−}

cσ

(a(dσ − a2θ)
dσ − aθ

+
C1a(θ − 1)

dσ

)
[dσ]n

+
C2(1− a)

2
+
C1(1 + 2a2(θ − 1) + θ)an

2aθ
[θ]n,

and, for i = 3, 4, . . . , n,

(
M̃v

)
i

=
C2(1 + a)

2
+

C1

a(θ − 1)

∑
σ∈{+,−}

cσdσ(1− θ − dσ)[dσ]n

1− θ + dσ

(a(θ − 1)

dσ

)i
+
C1a

n+1θ[θ]n

2

∑
σ∈{+,−}

bσ(dσ + a2θ)

dσ(dσ − a2θ)

(dσ
aθ

)i
+ C3a

i−1,

as well as(
M̃v

)
n+1

=
∑

σ∈{+,−}

bσ

( cσdσa

dσ − aθ
+
dσ + (2cσ − 1)a2(θ − 1)

2(dσ − a(θ − 1))
+

C1a
2θ

dσ − a2θ

)
[dσ]n

+ C3a
n − C1a

nθ[θ − 1]n.

Denote by τ the opposite sign of σ ∈ {+,−}, i.e.,

τ = − if σ = + and τ = + if σ = −.

For i = 3, 4, . . . , n, compute each element vi (M̃ v)i of the vector product v (M̃v)
with the help of the following decomposition: vi (M̃ v)i = D1

i +D2
i +D3

i +D4
i , where

D1
i := C2(1 + a)vi/2,

1

C2(1− a)
D2
i := C3a

i−1 +
C1

a(θ − 1)

∑
σ∈{+,−}

cσdσ(1− θ − dσ)[dσ]n

1− θ + dσ

(a(θ − 1)

dσ

)i
+
C1a

n+1θ[θ]n

2

∑
σ∈{+,−}

bσ(dσ + a2θ)

dσ(dσ − a2θ)

(dσ
aθ

)i
,

a

C1C3

D3
i := 2

∑
σ∈{+,−}

cσdσ[dσ]n

a(θ − 1)

(a2(θ − 1)

dσ

)i
+

∑
σ∈{+,−}

bσa
n+1θ[θ]n

dσ

(dσ
θ

)i
and

1

C2
1

D4
i :=

2

(a(θ − 1))2

( ∑
σ∈{+,−}

(
cσdσ[dσ]n

)21− θ − dσ
1− θ + dσ

(a(θ − 1)

dσ

)2i
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+ c+c−d+d−[d+]n[d−]n
(θ − 1)2 − d+d−
(1− a2)(1− θ)

((a(θ − 1))2

d+d−

)i)

+
(an+1θ [θ]n)2

2

( ∑
σ∈{+,−}

b2σ(dσ + a2θ)

d2σ(dσ − a2θ)

(dσ
aθ

)2i
+
b+b−((a2θ)2 − d+d−)

d+d−a2(1− a2)θ

(d+d−
(aθ)2

)i)

+
anθ [θ]n

θ − 1

(
1− (1− a2)θ

1− a2
∑

σ∈{+,−}

bσcσ[dσ]n
(θ − 1

θ

)i
+

∑
σ∈{+,−}

bτcσdσ[dσ]n

dτ

(1− θ − dσ
1− θ + dσ

+
dτ + a2θ

dτ − a2θ

)(dτ (θ − 1)

dσθ

)i)
.

Sum over i to find that

2

C2(1 + a)

n∑
i=3

D1
i = C2(1− a)(n− 2) + C1

∑
σ∈{+,−}

bσdσ
(
aθ
dσ

[dσ]n − dσ
aθ
an[θ]n

)
dσ − aθ

+ 2C1

∑
σ∈{+,−}

cσdσ

((a(θ−1)
dσ

)2
[dσ]n − an[θ − 1]n

)
dσ − a(θ − 1)

and
n∑
i=3

D2
i = C2C3(a

2 − an)

+
C1C2

1 + a

∑
σ∈{+,−}

(1− a2)c2σ(1− θ − dσ)
(
d2σa

n[θ − 1]n − (a(θ − 1))2[dσ]n
)

cσdσ(dσ − (θ − 1))(a(θ − 1)− dσ)

+
C1C2

2(1 + a)

∑
σ∈{+,−}

(1− a2)b2σ(dσ + a2θ)
(
(aθ)2[dσ]n − d2σan[θ]n

)
bσaθ(dσ − aθ)(dσ − a2θ)

and

1

C1C3

n∑
i=3

D3
i =

∑
σ∈{+,−}

2cσ
(
(dσa

n)2[θ − 1]n − an(a(θ − 1))2[dσ]n
)

dσ(a2(θ − 1)− dσ)

+
∑

σ∈{+,−}

bσa
n(θ2 [dσ]n − d2σ[θ]n)

θ(dσ − θ)
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and

1

C2
1

n∑
i=3

D4
i

= 2
∑

σ∈{+,−}

c2σd
2
σ(1− θ − dσ)

(dσ − (θ − 1))(a(θ − 1)− dσ)(dσ + a(θ − 1))

(
an[θ − 1]n

)2
− 1

2a2θ2

∑
σ∈{+,−}

b2σd
4
σ(dσ + a2θ)

(dσ − aθ)(dσ − a2θ)(dσ + aθ)

(
an[θ]n

)2
+

∑
σ∈{+,−}

(
b2σ(dσ + a2θ)a2θ2

2(dσ − aθ)(dσ − a2θ)(dσ + aθ)

− 2c2σa
4(θ − 1)4(1− θ − dσ)

d2σ(dσ − (θ − 1))(a(θ − 1)− dσ)(dσ + a(θ − 1))

)(
[dσ]n

)2
+ anθ

∑
σ∈{+,−}

(
bσcτdτ

(
1−θ−dτ
1−θ+dτ + dσ+a2θ

dσ−a2θ

)
dσ(θ − 1)− dτθ

− bσcσ(1− (1− a2)θ)
1− a2

)
[dσ]n[θ − 1]n

+
an(θ − 1)2

θ

∑
σ∈{+,−}

(
bσcσ(1− (1− a2)θ)

1− a2
−
bτcσd

2
τ

(
1−θ−dσ
1−θ+dσ + dτ+a2θ

dτ−a2θ

)
dσ(dτ (θ − 1)− dσθ)

)
[dσ]n[θ]n

+
θ((a2 − 1)θ + 1)a2n

1− a2

(
b+b−(θ − 1)2

2θ2
(
[θ]n
)2 − 2c+c−

(
[θ − 1]n

)2)

+
((1− a2)θ − 1)(b+b−θ

2 − 4c+c−(θ − 1)2)

2(1− a2)θ
[d+]n[d−]n.

To connect this representation with the limits found in Lemma 2.19, apply the
substitution

b+c−d−
(
1−θ−d−
1−θ+d− + d++a2θ

d+−a2θ

)
d+(θ − 1)− d−θ

=

c−
1−θ+d− d−(1− θ − d−)

r
(

c−
1−a2

1−a2
b+

θ + (θ − 1)
) +

b+
d+−a2θ d−(d+ + a2θ)

r
(
θ + b+

1−a2
1−a2
c−

(θ − 1)
) .

Recall also the representations of v1, v2 and vn+1 from the proof of Lemma 2.19. The
following results are only true if θ > 1/2 :

lim
n→∞

C1 = 2/3, lim
n→∞

C2 = 1/3, lim
n→∞

C3 = 0

and

lim
n→∞

v>M̃ v

= lim
n→∞

v1 lim
n→∞

(
M̃ v

)
1

+ lim
n→∞

v2 lim
n→∞

(
M̃ v

)
2

+ lim
n→∞

4∑
k=1

n∑
i=3

Dk
i + lim

n→∞
vn+1 lim

n→∞

(
M̃ v

)
n+1
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=
e−6ρT (2e3ρT + 1)2

72 θ2
+
e−6ρT (2e3ρT + 1)2(θ − 1)(3θ − 1)

72 θ4

+
e−6ρT

216 θ4
(
12e6ρT (θ4(2ρT + 3)− 4θ2 + 4θ − 1)

− 4e3ρT (2θ4 + 12θ2 − 12θ + 3)− θ4 − 12θ2 + 12θ − 3
)

+ 0

=
−e−6ρT − 8e−3ρT + 24ρT + 36

216
.

Now compute w>(M̃ − M̃>)v, including again the case θ = 1/2. Define

C4 :=
(a2(θ − 1)− θ)− a

(
a(θ−1)
θ

)n+1

(θ − a(θ − 1))(a2(θ − 1)− θ)
and

C5 :=
a2(θ − 1)(θ + a(θ − 1))

θ2(a2(θ − 1)− θ)
.

It holds that(
w>(M̃ − M̃>)

)
1

=
a

θ − a(θ − 1)

(
1−

(a(θ − 1)

θ

)n)
and, for i = 2, 3, . . . , n,

(
w>(M̃ − M̃>)

)
i

= C4a
i + C5

(a(θ − 1)

θ

)n−i
,

as well as

(
w>(M̃ − M̃>)

)
n+1

=
a
(
an(θ − a2(θ − 1))θ + a2(θ − 1)

(
θ − 1 +

(a2(θ−1)
θ

)n)− θ2)
θ(θ − a(θ − 1))(θ − a2(θ − 1))

.

For i = 2, 3, . . . , n, verify

(w>i (M̃ − M̃>))i vi

= C2(1− a)
(
C4a

i + C5

(a(θ − 1)

θ

)n−i)
+ 2C1

∑
σ∈{+,−}

cσdσ
a(θ − 1)

(
C4

(a2(θ − 1)

dσ

)i
+ C5

(a(θ − 1)

θ

)n( θ
dσ

)i)
[dσ]n

+ C1

∑
σ∈{+,−}

bσa
n+1θ

dσ

(
C4

(dσ
θ

)i
+ C5

(a(θ − 1)

θ

)n( dσ
a2(θ − 1)

)i)
[θ]n
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and then
n∑
i=2

(w>i (M̃ − M̃>))i vi

= C2

(
C4(a

2 − an+1) + C5(1− a)
aθ(θ − 1)− anθ2

(
θ−1
θ

)n
a(θ − 1)(θ − a(θ − 1))

)
+ C1

∑
σ∈{+,−}

(
C4

( 2cσa
3(θ − 1)

dσ − a2(θ − 1)
− bσa

n+1θ

θ − dσ

)
+ C5

( 2cσa
nθ2
(
θ−1
θ

)n
a(θ − 1)(dσ − θ)

− bσaθ

a2(θ − 1)− dσ

))
[dσ]n

− C1aθ
(C4a

n(θ + 1)

θ
+
C5(1− 2a2)

(
a2(θ−1)

θ

)n
a2(1− a2)(θ − 1)

)
[θ]n

− 2C1

(
C4a

2n+1 +
C5θ(1− (a2 − 1)θ)an

a(1− a2)(θ − 1)

)
[θ − 1]n.

To connect this representation with the limits found in Lemma 2.19, apply the
substitutions (

θ−1
θ

)n
d+ − θ

=

(
θ−1
θ

)n
1− a2

1− a2

b+

b+
d+ − θ

and

[d−]n

d− − a(θ − 1)
=

[d−]n

1− a2
1− a2

c−

c−
d− − a(θ − 1)

.

The following results are only true if θ > 1/2 :

lim
n→∞

C4 = 1, lim
n→∞

C5 =
(1− θ)(2θ − 1)

θ2

and

lim
n→∞

w>(M̃ − M̃>)v

= lim
n→∞

(
w>(M̃ − M̃>)

)
1

lim
n→∞

v1 + lim
n→∞

n∑
i=2

(w>i (M̃ − M̃>))i vi

+ lim
n→∞

(
w>(M̃ − M̃>)

)
n+1

lim
n→∞

vn+1

=
e−3ρT + 2

6θ
+

2(2θ − 1)− (θ + 1)e−3ρT

6θ
+ 0

=
−e−3ρT + 4

6
.
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Finally, compute w>M̃ w, including again the case γ̃ = 1/2. With the help of
Lemma 2.12 (i), this is easier:

w>M̃ w =
1

2

n∑
i=1

w2
i +

w2
n+1

2
+

n−1∑
i=1

n∑
j=i+1

wiwja
j−i + wn+1

n∑
i=1

wia
n+1−i

=
θ2 − 2a(1− a2)θ(θ − 1)− a2(2− a2)(θ − 1)2

2(θ − a(θ − 1))3(θ + a(θ − 1))

+
(1− a2)n

2(θ − a(θ − 1))2
−
an+2(1− (1− a)θ)(θ − 1)

(
θ−1
θ

)n
θ(θ − a(θ − 1))3

+
a2(n+2)(θ − 1)2(2θ − 1)

(
θ−1
θ

)2n
2(θ − a(θ − 1))3(θ + a(θ − 1))θ2

.

Notice that (1 − a2)n = (1 + a)(1 − a)m(T ). Letting θ > 1/2 and taking limits
concludes the proof.

Proof of Theorem 2.6 (i). Let θ > 1/2. Recall from Lemma 2.12 (ii) that

lim
n→∞

1>w = lim
n→∞

n+1∑
i=1

wi = ρT + 1.

The limit of 1>v =
∑n+1

i=1 vi is obtained in Part 1 of the proof of Lemma 2.17 for
the case θ = 1, and (with the same result) in Part 2 for the case θ > 1/2, θ 6= 1.
The limits of v>M̃ v,w>(M̃ − M̃>)v, and w>M̃ w can be found in Lemma 2.22.
Plug into the representation of expected costs from Lemma 2.21 to conclude the
proof.

Lemma 2.23. If θ = 1/2, then

lim
n→∞
n even

v>M̃ v =
2e6ρT (3ρT + 5) + e3ρT + 3ρT + 7

54e6ρT + 27
,

lim
n→∞
n even

w>(M̃ − M̃>)v =
4e6ρT − 6e5ρT + e3ρT − 3e−ρT + 4

6e6ρT + 3
and

lim
n→∞
n even

w>M̃ w = e−ρT + ρT + 1.

Furthermore,

lim
n→∞
n odd

v>M̃ v =
2e6ρT (3ρT + 5)− 3e3ρT − 3ρT − 7

54e6ρT − 27
,

lim
n→∞
n odd

w>(M̃ − M̃>)v =
−4e6ρT − 6e5ρT + 3e3ρT + 3e−ρT + 4

−6e6ρT + 3
and

lim
n→∞
n odd

w>M̃ w = −e−ρT + ρT + 1.
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Proof. The representations of v>M̃ v, w>(M̃ − M̃>)v, and w>M̃ w obtained in
the proof of Lemma 2.22 (for the case θ 6= 1) are also valid for θ = 1/2. Observe

b+c−
(
1−θ−d−
1−θ+d− + d++a2θ

d+−a2θ

)
d+(θ − 1)− d−θ

= (1− θ − d−)
c−

d− − (θ − 1)

b+
d+(θ − 1)− d−θ

+ (d+ + a2θ)
b+

d+ − a2θ
c−

d+(θ − 1)− d−θ

and, by definition of d+ and d−,

1−θ−d+
1−θ+d+ + d−+a2θ

d−−a2θ

d−(θ − 1)− d+θ
= − 16(3(1 + a2)− 2r)

3(15(1 + a4)− 4r(1 + r)− 2a2(2r + 17))
.

Furthermore,
C5

1− a2
=

a2(θ − 1)

θ2(a2(θ − 1)− θ)
θ + a(θ − 1)

1− a2
,

C5

d+ − θ
=

C5

1− a2
1− a2

b+

b+
d+ − θ

and

C5

d− − a2(θ − 1)
=

C5

1− a2
1− a2

c−

c−
d− − a2(θ − 1)

.

The expression for w>M̃ w simplifies to

−
2
(
a2(1− (−1)n2an)− 2a− 1− (1 + a)(1− a)n

)
(1 + a)2

.

Plug in the limits from Lemma 2.20 to conclude the proof.

Proof of Theorem 2.6 (ii). Recall from Lemma 2.12 (iii) that, for θ = 1/2,

lim
n→∞
n even

1>w = e−ρT + ρT + 1 and lim
n→∞
n odd

1>w = −e−ρT + ρT + 1.

The cluster points of 1>v for θ = 1/2 are stated in (2.6). With these and the
results from Lemma 2.23, proceed as in the proof of (i). This concludes the proof of
Theorem 2.6.



Chapter 3

A different approach to modeling
transaction costs

I argue at the end of Section 2.4 that in continuous time models of optimal execu-
tion, transaction costs should apply to the instantaneous rate of trading, not to block
trades. Only the former approach ensures that investors are unable to avoid trans-
action costs by choosing a trading strategy that is absolutely continuous. It will be
shown in this chapter that transaction costs of this form make the problem of opti-
mal execution much more tractable. In particular, a relatively weak assumption on
the absence of price manipulation strategies and some technical assumptions on the
decay kernel are sufficient to ensure existence and uniqueness of a Nash equilibrium
of optimal execution strategies for an arbitrary number of investors.
I present the general model in Section 3.1 and show existence and uniqueness of
a Nash equilibrium. Each investor obtains his equilibrium strategy by solving a
Fredholm integral equation of the second kind.
In Section 3.2, I consider the special case where only one strategic investor trades.
In this case, the Fredholm integral equation characterizing the optimal execution
strategy has a constant free term. I present closed-form representations of the op-
timal execution strategy for specific decay kernels, including capped linear decay,
and briefly discuss numerical simulation methods. Since closed-form solutions are
unknown for many interesting decay kernels, I also examine under which condi-
tions qualitative features of the optimal execution strategy can be derived from
information about the decay kernel without solving the Fredholm integral equation
explicitly.
In Section 3.3, I derive a closed-form representation of equilibrium strategies for n+1
strategic investors under the assumption that transient price impact decays expo-
nentially. The derivation develops ideas that will also be useful in Chapter 4: The
system of Fredholm integral equations characterizing the Nash equilibrium is trans-
formed into a system of ordinary differential equations. The latter is then solved
in terms of a matrix exponential and an invertible matrix, and analyzed further by
means of an eigendecomposition.
In Section 3.4, I provide an economic analysis of order anticipation strategies based

53
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on the closed-form representation obtained previously. One investor liquidates a
sell order, and n opportunistic investors pursue order anticipation strategies to ben-
efit from the liquidating investor’s price impact. I study how the opportunistic
investors affect the liquidating investor’s optimal strategy and his expected costs.
I further test the claim by Brunnermeier and Pedersen (2005) that opportunistic
traders cause price overshooting. For many choices of parameters, it must be re-
futed. In fact, opportunistic investors often produce the opposite effect and reduce
the price drop caused by a sell order. I provide two possible explanations: Price
overshooting does not occur if price impact is transient and sufficiently short-lived;
or price overshooting is prevented by quadratic transaction costs.
In Section 3.5, I propose an extension of the model in which opportunistic investors
have additional time to build up and unwind positions before and after the liqui-
dating investor trades.
Parts of this chapter are published as a working paper (Strehle, 2017). I wish to
thank two anonymous referees for helpful remarks.

3.1 Existence of a Nash equilibrium

Consider a continuous time market for a single financial asset. The asset is traded
by n + 1 strategic investors over a time period [0, T ]. In the absence of strategic
trading, the asset price S0 is modeled as a right-continuous martingale on a fil-
tered probability space (Ω,F , (Ft)t∈[0,T ],P) satisfying the usual conditions. Assume
that F0 is P-trivial.
The strategic investors i = 0, 1, . . . , n control their instantaneous rate of trad-
ing αi(t) dt, where a positive sign of αi(t) corresponds to a buy order. Each in-
vestor i must trade a fixed net amount x0i until time T . Consequently, αi ∈ L2[0, T ]
is called an (admissible) strategy (for investor i) if it is progressively measurable and
satisfies the liquidation constraint

∫ T
0
αi(t) dt = x0i .

Define the remaining net amount Xi(t) := x0i −
∫ t
0
αi(s) ds (this corresponds to the

definition of an admissible strategy X in Section 2.4). In terms of Xi, the liquidation
constraint reads Xi(T ) = 0. Notice that x0i and αi together determine Xi and vice
versa. Therefore, an absolutely continuous function Xi : [0, T ] → R will also be
referred to as an admissible strategy if Xi(0) equals x0i and αi := − d

dt
Xi is an

admissible strategy.
Every strategic investor impacts the asset price. Price impact is assumed to be linear
and transient. It is modeled via a square-integrable decay kernel G : [0,∞)→ [0,∞).
Suppose the strategic investors pursue strategies α := (α0, α1, . . . , αn). Then the
asset price evolves according to

S(t) = S(t;α) := S0(t) +

∫ t

0

G(t− s)
n∑
i=0

αi(s) ds, t ∈ [0, T ]. (3.1)

Investor i’s costs from price impact are
∫ T
0
αi(t)S(t;α) dt. In addition, each investor i
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incurs quadratic transaction costs γi
2
αi(t)

2 dt, where γi ≥ 0 (see pp. 17–18 for a
detailed discussion). Notice that the model explicitly allows for different levels of
transaction costs for different investors.
In total, investor i has the following costs of execution:

Ji[αi |α−i] :=

∫ T

0

(γi
2
αi(t)

2 + αi(t)S(t;α)
)

dt, (3.2)

where α−i := (α0, . . . , αi−1, αi+1, . . . , αn).
Assume that each investor is risk-neutral and therefore minimizes expected costs
of execution. Assume further that all model parameters, including n and x0 :=
(x00, x

0
1, . . . , x

0
n), are known to each investor. Integration by parts shows that, for a

given right-continuous martingale S0, the term

E
[ ∫ T

0

αi(t)S
0(t) dt

]
= −x0iS0(0)− E

[ ∫ T

0

Xi(t) dS0(t)
]

= −x0iS0(0)

is the same for all admissible strategies αi. Hence there is no loss of generality in
assuming that S0(t) = 0 for all t ∈ [0, T ]. Notice that this would be very different if
traders were risk-averse (Almgren and Chriss, 2001) or the liquidation constraints
were private information (Moallemi et al., 2012; Choi et al., 2015).
This model may be viewed as a multi-investor version of the continuous time model
in Obizhaeva and Wang (2013). A similar model is also studied in Zhang’s (2014)
doctoral thesis, but with temporary and permanent price impact only.
The (n+ 1)-dimensional function α∗ = (α∗0, α

∗
1, . . . , α

∗
n) is called a Nash equilibrium

(in the class of admissible strategies) if for all i = 0, 1, . . . , n, the strategy α∗i is
admissible, and E[Ji[α

∗
i |α∗−i]] ≤ E[Ji[αi |α∗−i]] for every admissible strategy αi for

investor i. In this case, α∗i is called an optimal strategy (for investor i). Further-
more, α∗ is called a Nash equilibrium in the class of deterministic strategies if each
strategy α∗i is deterministic, and Ji[α

∗
i |α∗−i] ≤ Ji[αi |α∗−i] for every deterministic

admissible strategy αi for investor i.

Remark 3.1. The current analysis limits itself to (stochastic) open-loop strate-
gies αi(ω, t), instead of closed-loop strategies

αi
(
ω, t, α0(ω, t), . . . , αi−1(ω, t), αi+1(ω, t), . . . , αn(ω, t)

)
.

In closed-loop Nash equilibria, investors still react optimally if another investor de-
parts from equilibrium. In open-loop Nash equilibria, this is typically not the case:
Each investor implicitly assumes that all other investors will pursue their respective
equilibrium strategies. Carmona and Yang (2011) show that this affects the equilib-
rium itself: An open-loop Nash equilibrium need not be a closed-loop Nash equilibrium
and vice versa. Closed-loop Nash equilibria are an appealing concept, but notoriously
difficult to find. See nonetheless the aforementioned paper for numerical simulations
of open-loop and closed-loop Nash equilibria in a model of optimal execution under
temporary price impact. Closed-loop equilibria for the model in Section 2.1 are stud-
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ied in Section 3.2.3 of Zhang’s (2014) doctoral thesis. For a detailed discussion of
open-loop and closed-loop equilibria in the context of stochastic differential games,
see Section 2.2 in Yeung and Petrosjan (2006).

Not every decay kernel G is sensible from an economic point of view. Suppose there
is only one investor i = 0 and assume for simplicity that γ0 = 0. The investor’s costs
from price impact are∫ T

0

α0(t)S(t;α0) dt =

∫ T

0

∫ t

0

G(t− s)α0(t)α0(s) ds dt

=
1

2

∫ T

0

∫ T

0

G(|t− s|)α0(t)α0(s) ds dt.

(3.3)

If there is a strategy α0 that makes (3.3) negative, this means that the investor can
exploit his own price impact to generate arbitrarily large expected profits: the decay
kernel G admits price manipulation in the sense of Huberman and Stanzl (2004).
Gatheral (2010) points out that price manipulation strategies do not constitute clas-
sical arbitrage, because their profitability is affected by random fluctuations in the
asset price S0. Instead, they belong to the larger class of statistical arbitrage strate-
gies. Notice also the difference between price manipulation and order anticipation:
A price manipulation strategy generates profits from its own price impact, an order
anticipation strategy generates profits from another investor’s price impact.
If (3.3) is nonnegative for every α0 ∈ L2[0, T ] and every T > 0, then G is said to be
of positive type (Mercer, 1909). Assume from now on that G is of positive type.
In single-investor models of optimal execution under transient price impact (Gatheral
et al., 2012; Obizhaeva and Wang, 2013) and the two-investor model in Section 2.4,
impulse trades—i.e., jumps in Xi—are optimal if transaction costs are zero. But in
the current model, such jumps are inadmissible. This suggests that no Nash equi-
librium exists as soon as γi = 0 for some i. Assume from now on that γi > 0 for
all i = 0, 1, . . . , n.

Under these assumptions on G and γi, uniqueness of Nash equilibria is a simple
consequence of the convexity of the cost functionals Ji. The following results are
easily adapted from Proposition 4.8 and Lemma 4.9 in Schied et al. (2017), or from
Lemmas 2.1.3 and 3.3.12 in Zhang’s (2014) doctoral thesis. Notice that uniqueness
should be understood as uniqueness B([0, T ])⊗ P-almost everywhere.

Lemma 3.2.

(i) There is at most one Nash equilibrium in the class of admissible strategies.

(ii) A Nash equilibrium in the class of deterministic strategies is also a Nash equi-
librium in the class of admissible strategies.

Proof. (i) Suppose α0 = (α0
0, α

0
1, . . . , α

0
n) and α1 = (α1

0, α
1
1, . . . , α

1
n) are Nash equi-

libria in the class of admissible strategies.
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For z ∈ [0, 1], define αz := (1− z)α0 + zα1 and

f(z) :=
n∑
i=0

(
E
[
Ji[α

z
i |α0

−i]
]

+ E
[
Ji[α

1−z
i |α1

−i]
])
.

For every i = 0, 1, . . . , n, the strategies α0
i and α1

i are optimal reactions to α0
−i

and α1
−i, respectively. Hence

d

dz
f(z)

∣∣∣∣
z=0

≥ 0.

But interchanging differentiation and integration shows

d

dz
f(z)

∣∣∣∣
z=0

= −
n∑
i=0

E
[ ∫ T

0

(
γi
(
α0
i (t)− α1

i (t)
)2

+
(
α0
i (t)− α1

i (t)
) ∫ t

0

G(t− s)
(
α0
i (s)− α1

i (s)
)

ds

+ (α0
i (t)− α1

i (t))

∫ t

0

G(t− s)
n∑
j=0

(
α0
j (s)− α1

j (s)
)

ds
)

dt
]

= −
n∑
i=0

γi E
[ ∫ T

0

(
α0
i (t)− α1

i (t)
)2

dt
]

− 1

2

n∑
i=0

E
[ ∫ T

0

∫ T

0

G(|t− s|)
(
α0
i (t)− α1

i (t)
)(
α0
i (s)− α1

i (s)
)

ds dt
]

− 1

2
E
[ ∫ T

0

∫ T

0

G(|t− s|)
n∑
i=0

(
α0
i (t)− α1

i (t)
) n∑
i=0

(
α0
i (s)− α1

i (s)
)

ds dt
]
.

Recall that γi > 0 for all i = 0, 1, . . . , n, and that G is of positive type. Hence the
last expression can only be nonnegative if α0 and α1 are identical B([0, T ])⊗P-almost
everywhere.
(ii) Suppose α∗ = (α∗0, α

∗
1, . . . , α

∗
n) is a Nash equilibrium in the class of determin-

istic strategies. Let i = 0, 1, . . . , n. For every admissible strategy αi for investor i,
it must be true that Ji[α∗i |α∗−i] ≤ Ji[αi(ω) |α∗−i] for almost all ω ∈ Ω. This im-
plies Ji[α∗i |α∗−i] ≤ E

[
Ji[αi |α∗−i]

]
, hence α∗i is also optimal in the class of admissible

strategies.

The next step is to show that Nash equilibria are characterized by n + 1 Fredholm
integral equations of the second kind. Existence of a Nash equilibrium then follows
from the invertibility of the corresponding integral operator.
For η ∈ Rn+1, let η denote the (n+1)-dimensional constant function η(t) = η.With
slight abuse of notation, let 0 and 1 denote the (n + 1)-dimensional constant func-
tions 0(t) = (0, 0, . . . , 0) and 1(t) = (1, 1, . . . , 1). Define Γ := diag(γ0, γ1, . . . , γn),
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and a linear operator F on L2([0, T ];Rn+1) via

(Fα)(t) := Γα(t) +
(∫ t

0

G(t− s)α(s)>1(s) ds
)
1(t)

+

∫ T

t

G(s− t)α(s) ds.

(3.4)

The connection between Nash equilibria and the operator F is based on the funda-
mental lemma of the calculus of variations, which is reproduced here for the sake of
completeness.

Lemma 3.3. (Fundamental lemma of the calculus of variations). Let f ∈ L2[0, T ].
Suppose

∫ T
0
f(t)g(t) dt = 0 for every g ∈ L2[0, T ] satisfying

∫ T
0
g(t) dt = 0. Then

there is a constant z ∈ R such that f(t) = z for almost all t ∈ [0, T ].

Proof. The proof is taken from Gelfand and Fomin (1963, Lemma 2).
Let z := 1

T

∫ T
0
f(t) dt and define g ∈ L2[0, T ] via g(t) := f(t)− z. It follows immedi-

ately from the definition of g that
∫ T
0
g(t) dt = 0. Since∫ T

0

(f(t)− z)2 dt =

∫ T

0

f(t)g(t) dt− z
∫ T

0

g(t) dt = 0,

conclude that f(t) = z for almost all t ∈ [0, T ].

The following lemma connects Nash equilibria with the operator F .

Lemma 3.4. The function α∗ = (α∗0, α
∗
1, . . . , α

∗
n) ∈ L2([0, T ];Rn+1) is a Nash equi-

librium in the class of deterministic strategies if and only if

(i)
∫ T
0
α∗i (t) dt = x0i for every i = 0, 1, . . . , n, and

(ii) there is an η = (η0, η1, . . . , ηn) ∈ Rn+1 such that (Fα∗)(t) = η for almost
all t ∈ [0, T ].

In this case, ηix0i ≥ Ji[α
∗
i |α∗−i] for every i = 0, 1, . . . , n.

Proof. Define the linear subspace B := {β ∈ L2[0, T ] |
∫ T
0
β(t) dt = 0}.

Necessity: Suppose α∗ = (α∗0, α
∗
1, . . . , α

∗
n) is a Nash equilibrium in the class of de-

terministic strategies. Let i = 0, 1, . . . , n. For every y ∈ R and β ∈ B, the func-
tion α∗i + yβ is a deterministic admissible strategy for investor i. It follows that a
necessary condition for the optimality of α∗i is

0 =
d

dy
Ji[α

∗
i + yβ |α∗−i]

∣∣∣∣
y=0

=

∫ T

0

(
β(t)

(
γiα

∗
i (t) + S(t;α∗)

)
+

∫ t

0

G(t− s)α∗i (t)β(s) ds
)

dt.
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Conclude with Fubini’s theorem that∫ T

0

∫ t

0

G(t− s)α∗i (t)β(s) ds dt =

∫ T

0

∫ T

t

G(s− t)β(t)α∗i (s) ds dt.

Hence

0 =

∫ T

0

β(t)
(
γiα

∗
i (t) +

∫ t

0

G(t− s)
n∑
i=0

α∗i (s) ds+

∫ T

t

G(s− t)α∗i (s)
)

ds

=

∫ T

0

β(t)(Fα∗)i(t) dt.

The fundamental lemma of the calculus of variations (Lemma 3.3) implies that (Fα∗)i
is constant for almost all t ∈ [0, T ].
Sufficiency: Let α∗ = (α∗0, α

∗
1, . . . , α

∗
n) be such that for every i = 0, 1, . . . , n, the

liquidation constraint
∫ T
0
α∗i (t) dt = x0i is satisfied and (Fα∗)i(t) = ηi for almost

all t ∈ [0, T ] for some η = (η0, η1, . . . , ηn) ∈ Rn+1.

Let i = 0, 1, . . . , n. The liquidation constraint implies that any deterministic ad-
missible strategy αi for investor i can be written as αi = α∗i + β for some β ∈ B.
Conclude with Fubini’s theorem that

Ji[αi |α∗−i]

=

∫ T

0

(γi
2
α∗i (t)

2 + α∗i (t)

∫ t

0

G(t− s)
n∑
j=0

α∗j (s)
)

ds dt

+

∫ T

0

β(t)
(
γiα

∗
i (t) +

∫ t

0

G(t− s)
n∑
j=0

α∗j (s) ds+

∫ T

t

G(s− t)α∗i (s) ds
)

dt

+

∫ T

0

(γi
2
β(t)2 + β(t)

∫ t

0

G(t− s)β(s) ds
)

dt

= J [α∗i |α∗−i] + ηi

∫ T

0

β(t) dt+
1

2

∫ T

0

(
γiβ(t)2 +

∫ T

0

G(|t− s|)β(t)β(s) ds
)

dt

≥ J [α∗i |α∗−i].

Hence α∗i is the optimal strategy for investor i, given that the other investors pur-
sue α∗−i. This is true for all i, showing that α∗ is a Nash equilibrium.
Furthermore, for all i = 0, 1, . . . , n,

Ji[α
∗
i |α∗−i]

=

∫ T

0

(γi
2
α∗i (t)

2 + α∗i (t)

∫ t

0

G(t− s)
n∑
j=0

α∗j (s) ds
)

dt

=

∫ T

0

α∗i (t)(Fα
∗)i(t) dt− 1

2

∫ T

0

α∗i (t)
(
γiα

∗
i (t) +

∫ T

0

G(|t− s|)α∗i (s) ds
)

dt

≤ ηix
0
i .
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Remark 3.5. The optimality condition (Fα∗)(t) = η, t ∈ [0, T ], can be written as

γiα
∗
i (t) +

∫ T

0

G(|t− s|)α∗i (s) ds = ηi −
∫ t

0

G(t− s)
∑
j 6=i

α∗j (s) ds, t ∈ [0, T ], (3.5)

for i = 0, 1, . . . , n. For fixed (α∗0, . . . , α
∗
i−1, α

∗
i+1, . . . , α

∗
n), Equation (3.5) is a one-

dimensional Fredholm integral equation of the second kind. The single-investor ver-
sion of (3.5) will be the analyzed in detail in Section 3.2. Fredholm integral equa-
tions are connected with the more prevalent Euler-Lagrange equations in the fol-
lowing way: Consider the constant decay kernel G(t) = 1. Then, for admissible
strategies α = (α0, α1, . . . , αn), the asset price evolves according to

S(t) =

∫ t

0

(
αi(s) +

∑
j 6=i

αj(s)
)

ds.

This turns the minimization of expected costs Ji[αi |α−i] into a classical problem in
the calculus of variations. The corresponding Euler-Lagrange equation characterizing
the optimal strategy α∗i is

0 =
d

dt

[
γiα

∗
i + S

]
− α∗i .

A straightforward calculation shows that this is the t-derivative of (3.5). But as soon
as the decay kernel is not constant, the nonlocal term

∫ T
t
G(s−t)α∗i (s) ds prevents the

derivation of a “proper” (i.e., local) Euler-Lagrange equation from (3.5). One might
suspect that the minimization of expected costs can still be performed with the help of
a Euler-Lagrange equation by considering the two-dimensional process (α∗i , S) instead
of α∗i . But S is a function of α∗i and a “chain rule” applies. The additional nonlocal
term introduced into the Euler-Lagrange equation by this chain rule is just

∫ T
t
G(|t−

s|)α∗i (s) ds (Avron, 2003). Hence Fredholm integral equations, not Euler-Lagrange
equations, are the appropriate tool for solving problems of optimal execution under
transient price impact.

Existence of a Nash equilibrium in the class of deterministic strategies is now
shown by proving that F is invertible and invoking the uniqueness result from
Lemma 3.2 (i).

Theorem 3.6. There is a unique Nash equilibrium α∗ in the class of admissible
strategies. It is deterministic.

Proof. Uniqueness has been shown in Lemma 3.2 (i).
Define F as in (3.4). Let 〈·, ·〉 denote the L2-inner product on [0, T ], and ‖·‖ its
induced norm. Without loss of generality, let γ0 ≤ γi ≤ γn for all i = 0, 1, . . . , n.

Conclude with the Cauchy-Schwarz inequality and Jensen’s inequality that F is
bounded.
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Indeed, for every α ∈ L2([0, T ];Rn+1),

‖Fα‖

≤ ‖Γα‖+
(∫ T

0

(∫ t

0

G(t− s)
n∑
i=0

αi(s) ds
)2

(n+ 1) dt
)1/2

+
( n∑
i=0

∫ T

0

(∫ T

t

G(s− t)αi(s) ds
)2

dt
)1/2

≤ γn‖α‖

+
(∫ T

0

∫ T

0

G(|t− s|)2 ds dt
)1/2(√

n+ 1
(∫ T

0

( n∑
i=0

αi(s)
)2

ds
)1/2

+ ‖α‖
)

≤ γn‖α‖+ (n+ 2)
(∫ T

0

∫ T

0

G(|t− s|)2 ds dt
)1/2
‖α‖.

Recall that G is square-integrable. Apply Fubini’s theorem and recall that G is of
positive type to see that

〈Fα, α〉 =
n∑
i=0

γi

∫ T

0

αi(t)
2 dt+

1

2

∫ T

0

∫ T

0

G(|t− s|)
n∑
i=0

αi(t)
n∑
i=0

αi(s) ds dt

+
1

2

n∑
i=0

∫ T

0

∫ T

0

G(|t− s|)αi(t)αi(s) ds dt

≥ γ0‖α‖2.

Hence ‖Fα‖ ‖α‖ ≥ γ0‖α‖2, showing that F is also bounded from below.
The adjoint F ∗ of F is given by

(F ∗α)(t) = Γα(t) +
(∫ T

t

G(s− t)α(s)>1(s) ds
)
1(t) +

∫ t

0

G(t− s)α(s) ds.

The same arguments show that F ∗ is bounded from above and below. Hence F is
invertible.
Now define a linear operator A : Rn+1 → Rn+1 via

Aη :=

∫ T

0

(F−1η)(t) dt.

A is invertible: Suppose η0 ∈ Rn+1 is such that η0 ∈ ker(A), i.e., Aη0 = (0, 0, . . . , 0).
Define α0 := F−1η0 ∈ L2([0, T ];Rn+1). Then∫ T

0

α0(t) dt =

∫ T

0

(F−1η0)(t) dt = Aη0 = (0, 0, . . . , 0).

Furthermore, Fα0 = η0. Conclude with Lemma 3.4 (i) that α0 is a Nash equilibrium
if (and only if) all liquidation constraints x0 = (x00, x

0
1, . . . , x

0
n) are zero. But it is
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easy to check that in this case, the constant function 0 is also a Nash equilibrium.
Hence, by Lemma 3.2 (i), it must be true that α0 = 0. Because ker(F ) = {0}, it
follows from F−1η0 = α0 = 0 that η0 = (0, 0, . . . , 0). Hence ker(A) = {(0, 0, . . . , 0)},
and A is invertible.
For given liquidation constraints x0, define η := A−1x0 and α∗ := F−1η. Then α∗ is a
Nash equilibrium in the class of deterministic strategies by Lemma 3.4: First,

∫ T
0
α∗(t) dt =

Aη = x0; second, Fα∗ = η. By Lemma 3.2, it is the unique Nash equilibrium in the
class of admissible strategies.

3.2 Optimal execution for a single investor

Before studying the general case with an arbitrary number of investors, consider
the case where only one strategic investor trades, i.e., n = 0. The investor’s optimal
strategy can be obtained in closed form for some decay kernels, and displays a num-
ber of desirable features—such as differentiability, nonnegativity and convexity—for
many others.
Given that the investor pursues an admissible strategy α0, the asset price evolves
according to

S(t;α0) =

∫ t

0

G(t− s)α0(s) ds, t ∈ [0, T ]. (3.6)

Notice that in the single-investor case, transaction costs γ0 can also be interpreted as
arising from (linear) temporary price impact as in Almgren and Chriss (2001). In this
case, the asset price evolves according to S̃(t;α0) = γ0

2
α0(t) +

∫ t
0
G(t − s)α0(s) ds.

Compare also the remarks on transaction costs and costs from temporary price
impact on p. 17. Under either interpretation, the investor’s costs of execution are

J0[α0] =

∫ T

0

(γ0
2
α0(t)

2 + α0(t)S(t;α0)
)

dt =

∫ T

0

α0(t)S̃(t;α0) dt.

For convenience, write α, γ and J instead of α0, γ0 and J0 throughout this section.
The operator F : L2[0, T ]→ L2[0, T ] becomes

(Fα)(t) = γα(t) +

∫ T

0

G(|t− s|)α(s) ds. (3.7)

Notice that, in contrast to the multi-investor case, F is self-adjoint. The optimality
condition from Lemma 3.4 (ii) characterizing optimal strategies α∗ reads

γα∗(t) +

∫ T

0

G(|t− s|)α∗(s) ds = η, t ∈ [0, T ]. (3.8)

Remark 3.7. The problem of optimal execution for a single investor is equivalent
to a problem of constrained norm minimization. To see this, denote by 〈·, ·〉 the
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L2-inner product on [0, T ] and by ‖·‖ its induced norm. Define for α, β ∈ L2[0, T ] :

〈α, β〉F := 〈Fα, β〉 =

∫ T

0

(Fα)(t) β(t) dt.

Since F is linear and self-adjoint, similar arguments as in the proof of Theorem 3.6
show that 〈·, ·〉F is a vector product, and that its induced norm ‖·‖F is equivalent
to ‖·‖.
For η ∈ R, denote by η the constant function η(t) = η. Since J [α] = ‖α‖2F/2,
minimizing J over admissible strategies is equivalent to

Minimize ‖α‖F over α ∈ L2[0, T ] satisfying 〈α,1〉 = x0. (3.9)

This representation leads to an alternative proof of the fact that an admissible strat-
egy α∗ solves the problem of optimal execution if and only if it solves the Fredholm
integral equation (3.8) for some η ∈ R.
Define the linear subspace B := {β ∈ L2[0, T ] | 〈β,1〉 = 0}. It is closed under ‖·‖.
Indeed, if β1, β2, . . . ∈ B converge to β ∈ L2[0, T ] under ‖·‖, then∣∣∣ ∫ T

0

β(t) dt
∣∣∣ =

∣∣∣ ∫ T

0

(
β(t)− βn(t)

)
dt
∣∣∣ ≤ T ‖β − βn‖ → 0 as n→∞.

Suppose first that α∗ ∈ L2[0, T ] is an optimal strategy and therefore solves (3.9).
By equivalence of norms, B is a closed linear subspace under ‖·‖F , and one may
decompose α∗ = αB + α⊥, where αB ∈ B and 〈α⊥, β〉F = 0 for every β ∈ B. Hence

‖α∗‖2F = ‖αB‖2F + ‖α⊥‖2F ≥ ‖α⊥‖2F .

But 〈α⊥,1〉 = 〈α∗,1〉 = x0. Since α∗ is an optimal strategy, ‖α∗‖2F ≤ ‖α⊥‖2F .
Conclude that 0 = ‖α∗‖2F − ‖α⊥‖2F = ‖αB‖2F and thus α∗ = α⊥. Consequently,

0 = 〈α⊥, β〉F = 〈α∗, β〉F =

∫ T

0

(Fα∗)(t) β(t) dt for every β ∈ B.

By the fundamental lemma of the calculus of variations (Lemma 3.3), Fα∗ is con-
stant almost everywhere on [0, T ].

Suppose on the other hand that α∗ satisfies 〈α∗,1〉 = x0 and that there is an η ∈ R
such that (Fα∗)(t) = η for almost all t ∈ [0, T ]. Every α ∈ L2[0, T ] with 〈α,1〉 = x0

can be written as α = αB + α∗ for some αB ∈ B, so α∗ indeed solves (3.9) and
therefore the problem of optimal execution:

‖α‖2F = ‖αB‖2F + 2η 〈αB,1〉+ ‖α∗‖2F = ‖αB‖2F + ‖α∗‖2F ≥ ‖α∗‖2F .

A similar proof will show in Chapter 4 that (3.8) still characterizes the optimal exe-
cution strategy if the decay kernel is no longer square-integrable but continuous and
integrable, possibly with a weak singularity G(0) = limt→0G(t) =∞ (Lemma 4.3).
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Figure 3.1: Solution α∗(t) of (3.8) for the trigonometric decay kernel G(t) = cos(t)
(left) and the exponential decay kernel G(t) = e−t (right). Parameters: T = 9,
γ = 0.1 and η = 1.

Examples and numerical simulation

The following explicit solutions of the Fredholm integral equation (3.8) are straight-
forward to verify. To obtain the respective optimal strategy α∗0 for a given liquidation
constraint x0, determine η via the equality

∫ T
0
α∗(t) dt = x0. Let ρ > 0 and η ∈ R.

• Constant decay kernel: If G(t) = ρ, then

α∗(t) =
η

γ + ρT
.

• Trigonometric decay kernel: If G(t) = cos(ρt), then

α∗(t) =
η

γ

(
1−

2 tan(ρT/2)
(

cos(ρt) + cos(ρ(T − t))
)

ρ(2γ + T ) + sin(ρT )

)
.

• Linear decay kernel: For G(t) = 1− ρt, define a := 2ρ/γ. Then

α∗(t) =
η
√
a(e
√
at + e

√
a(T−t))

e
√
aT (
√
aγ + 2− ρT ) +

√
aγ − 2 + ρT

.

• Exponential decay kernel: For G(t) = e−ρt, define a := ρ2 + 2ρ/γ. Then

α∗(t) =
ηρ2

γa

(
1 +

2(e
√
at + e

√
a(T−t))

γ(e
√
aT (ρ+

√
a) + ρ−

√
a)

)
.

Figure 3.1 plots α∗ for a trigonometric and an exponential decay kernel.
Now consider the capped linear decay kernel G(t) = (1 − t)+. Assume that T = m
is a natural number. For i = 1, 2, . . . ,m, define

λi := 2
(
1− cos

( iπ

m+ 1

))
and bi :=

√
λi/γ.
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Figure 3.2: Solution α∗(t) of (3.8) for the capped linear decay kernel G(t) = (1−t)+.
Parameters: T = 13, γ = 0.1 and η = 1.

Denote by I the m-dimensional identity matrix. Define the m-dimensional square
matrices

B := diag(b1, b2, . . . , bm), E(t) := diag
(
eb1t, eb2t, . . . , ebmt

)
, t ∈ [0, T ],

Σ := diag(1,−1, 1, . . . ,±1), K := I +
(
1{j=m−i}

)
i,j=1,2,...,m,

where 1 denotes the indicator function, and

Q :=
(

sin
( ijπ

m+ 1

))
i,j=1,2,...,m.

Finally, define a ∈ Rm by

a :=
(
γQ
(
E(1) + Σ

)
+KQ

(
(E(1)− I)(Σ− I) +B(E(1)− Σ)

)
B−2

)−1

η
η
...
η

 .

The key to calculating the solution α∗(t) for t ∈ [0,m] is to consider each inter-
val [0, 1], [1, 2], . . . , [m− 1,m] separately.

Proposition 3.8. Suppose T = m ∈ N and G(t) = (1− t)+ for all t ∈ [0,m]. Define
the function ψ = (ψ1, ψ2, . . . , ψm) : [0, 1]→ Rm via

ψ(τ) = Q
(
E(τ) + E(1− τ)Σ

)
a.

Then the solution α∗ of (3.8) satisfies α∗(τ + i − 1) = ψi(τ) for all τ ∈ [0, 1] and
all i = 1, 2, . . . ,m.
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Proof. 1. Let α∗ denote the unique solution of (3.8). It holds that∫ m

0

(
1− |t− s|

)+
α∗(s) ds

=


∫ t
0
(1− t+ s)α∗(s) ds+

∫ t+1

t
(1 + t− s)α∗(s) ds, t ∈ [0, 1],∫ t

t−1(1− t+ s)α∗(s) ds+
∫ t+1

t
(1 + t− s)α∗(s) ds, t ∈ [1,m− 1],∫ t

t−1(1− t+ s)α∗(s) ds+
∫ m
t

(1 + t− s)α∗(s) ds, t ∈ [m− 1,m].

Define ψ = (ψ1, ψ2, . . . , ψm) : [0, 1]→ Rm via ψi(τ) := α∗(τ+i−1) for i = 1, 2, . . . ,m.
Differentiating twice and replacing α∗ with ψ1, ψ2, . . . , ψm yields that, for τ ∈ [0, 1],

γψ′′1(τ) = 2ψ1(τ)− ψ2(τ),

γψ′′i (τ) = 2ψi(τ)− ψi−1(τ)− ψi+1(τ), i = 2, 3, . . . ,m− 1,

γψ′′m(τ) = 2ψm(τ)− ψm−1(τ).

Hence ψ solves the followingm-dimensional system of ordinary differential equations
on [0, 1] :

ψ′′ =
1

γ


2 −1 . . . 0 0
−1 2 . . . 0 0
...

...
... . . . ...

0 0 . . . 2 −1
0 0 . . . −1 2

ψ.

Denote the matrix in this equation by M . It is a tridiagonal Toeplitz matrix.
Its eigenvalues are λ1, λ2, . . . , λm, as defined above, and the columns of Q contain
corresponding eigenvectors. Eigendecomposition of M shows

ψ(τ) = Q
(
E(τ)z + E(1− τ)z̃

)
, τ ∈ [0, 1],

for some vectors z, z̃ ∈ Rm.

2. Define k := dm/2e. Let Ik, Jk, 0k denote the k-dimensional identity matrix, re-
verse identity matrix and zero matrix, respectively. Let τ ∈ [0, 1]. It is shown in
Lemma 3.9 that α∗ is symmetric, i.e., α∗(t) = α∗(T − t) for all t ∈ [0,m]. This im-
plies that ψi(τ) = ψm+1−i(1 − τ) for all i = 1, 2, . . . ,m. In terms of the matrices
defined above, this reads[

Ik 0k
]
Q
(
E(τ)z + E(1− τ)z̃

)
=
[
0k Jk

]
Q
(
E(1− τ)z + E(τ)z̃

)
. (3.10)

For all i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . ,m}, it holds that

sin
((m+ 1− i)jπ

m+ 1

)
= sin(jπ) cos

( ijπ

m+ 1

)
− cos(jπ) sin

( ijπ

m+ 1

)
= (−1)j+1 sin

( ijπ

m+ 1

)
.
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Hence
[
0k Jk

]
Q =

[
Ik 0k

]
QΣ. Notice that Σ−1 = Σ. Conclude that (3.10) holds for

all τ ∈ [0, 1] if and only if z̃ = Σz.
3. Let t = i ∈ {1, 2, . . . ,m− 1}. Then (3.8) and symmetry of α∗ imply that

η = γα∗(i) +

∫ i

i−1
(1− i+ s)α∗(s) ds+

∫ i+1

i

(1 + i− s)α∗(s) ds

= γψi(1) +

∫ i

i−1
(1− i+ s)ψi(1− i+ s) ds+

∫ i+1

i

(1 + i− s)ψm−i(1 + i− s) ds

= γψi(1) +

∫ 1

0

s
(
ψi(s) + ψm−i(s)

)
ds.

Similar arguments yield η = γψm(1) +
∫ 1

0
sψm(s) ds.

A straightforward calculation shows∫ 1

0

sψ(s) ds = Q
(
(E(1)− I)(Σ− I) +B(E(1)− Σ)

)
B−2z.

In total, this leads to the m-dimensional system of equations

(η, η, . . . , η) =
(
γQ
(
E(1) + Σ

)
+KQ

(
(E(1)− I)(Σ− I) +B(E(1)− Σ)

)
B−2

)
z.

It remains to solve for z.

Figure 3.2 plots α∗ for the capped linear decay kernel G(t) = (1−t)+. Proposition 3.8
also characterizes solutions for the more general decay kernelsG(t) = (1−ρt)+, where
ρ > 0. Indeed, assume that m := ρT is a natural number. Let β∗ ∈ L2[0,m] solve

ργβ∗(t) +

∫ m

0

(
1− |t− s|

)+
β∗(s) ds = ρη, t ∈ [0,m].

This equation falls in the domain of Proposition 3.8, so β∗ is characterized by a
function ψ : [0, 1]→ Rm as described above.
Define α∗(t) ∈ L2[0, T ] via α∗(t) := β∗(ρt). Integration by substitution shows that
for t ∈ [0, T ],

ρ
(
γα∗(t) +

∫ T

0

(
1− ρ|t− s|

)+
α∗(s) ds

)
= ργβ∗(ρt) +

∫ ρT

0

(
1− |ρt− s|

)+
β∗(s) ds

= ρη.

Hence α∗ solves (3.8) for G(t) = (1− ρt)+.
For many other decay kernels, explicit solutions of (3.8) are unknown. Examples
include G(t) = 1/(1 + t2) and Gaussian decay kernels G(t) = e−ρt

2
, where ρ > 0.

But numerical solutions are readily available. The Nyström method (1930) with
trapezoidal quadrature, as described in Example 11.4.5 in Atkinson and Han (2001),
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Figure 3.3: Numerical solution α̂(t) of (3.8) for G(t) = 1/(1 + t2) (left) and the
Gaussian decay kernel G(t) = 10e−0.01t

2 (right). Parameters: m = 150, T = 9,
γ = 0.1 and η = 1.

is a simple approach for non-singular decay kernels. More sophisticated methods
can be found in Chapter 11 of Aktinson and Han’s book, in Atkinson (1997) and in
Chapter 4 of Wazwaz (2011).
Pick m ∈ N and define equidistant time steps ti := iT/m for i = 0, 1, . . . ,m. Then
solve the following linear system for z = (z0, z1, . . . , zm) :

γzi +
T

2n

m∑
j=1

(
G(|ti − tj−1|)zj−1 +G(|ti − tj|)zj

)
= 1, i = 0, 1, . . . ,m.

Approximate the solution of (3.8) by

α̂(t) :=
η

γ

(
1− T

2n

m∑
j=1

(
G(|t− tj−1|)zj−1 +G(|t− tj|)zj

))
, t ∈ [0, T ].

Figure 3.3 shows some approximations obtained with this method.
To simulate the optimal strategy for a given liquidation constraint x0, proceed as
follows:

(i) Use a numerical method (e.g., the Nyström method) to find an approximate
solution β̂ ∈ L2[0, T ] of the Fredholm integral equation (3.8) for η = 1.

(ii) Approximate the optimal strategy α∗ for a given liquidation constraint x0 by

α̂ :=
x0∫ T

0
β̂(t) dt

β̂.

This construction ensures that α̂ is an admissible strategy. It therefore can be used
to find an upper bound J [α̂] on the minimal costs of execution J [α∗].
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Qualitative features of solutions

It seems worthwhile to investigate whether some general qualitative statements
about α∗ can be derived without finding an explicit solution. What conditions
on G are sufficient to ensure that α∗ is continuous, differentiable, nonnegative or
convex?
All qualitative features should be understood as holding almost everywhere on [0, T ].
A first simple example of a qualitative statement about α∗ is its symmetry around
the midpoint T/2.

Lemma 3.9. Suppose α∗ solves (3.8). Then α∗(t) = α∗(T − t) for all t ∈ [0, T ].

Proof. Define α(t) := α∗(T−t), t ∈ [0, T ]. Integration by substitution shows that α
solves (3.8) as well. Indeed, for all t ∈ [0, T ],

γα(t) +

∫ T

0

G(|t− s|)α(s) ds

= γα∗(T − t) +

∫ T

0

G(|(T − t)− (T − s)|)α∗(T − s) ds

= γα∗(T − t) +

∫ T

0

G(|(T − t)− s|)α∗(s) ds

= η.

By Lemma 3.2, the solution of (3.8) is unique. Hence α∗ = α.

The following proposition shows that α∗ inherits continuity and differentiability from
the decay kernel. Furthermore, if α∗ is differentiable, then each of its derivatives
solves a Fredholm integral equation of the second kind with nonconstant free term.
The regularity of solutions of Fredholm integral equations of the second kind is
well-studied, and similar results have been derived for general free terms and under
weaker assumptions on the decay kernel (see for instance Kahane, 1965, Pitkäranta,
1980 and Vainikko, 2006).

Proposition 3.10. Suppose α∗ solves (3.8). If G is continuous on [0, T ], then α∗ is
continuous. If G is m-times continuously differentiable on [0, T ], then α∗ is (m+1)-
times continuously differentiable. In this case, there are f1, f2, . . . , fm+1 ∈ L2[0, T ]
such that, for k = 1, 2, . . . ,m+ 1, the function fk is continuous and

γα∗,(k)(t) + (−1)k
∫ T

0

G(|t− s|)α∗,(k)(s) ds = fk(t), t ∈ [0, T ], (3.11)

where α∗,(k) denotes the k-th derivative of α∗. In particular, α∗ is smooth if G is
smooth.

Proof. It is clear from (3.8) that α∗ is continuous if G is continuous. Now suppose G
is m-times continuously differentiable for some m ∈ N. Show by induction that



70 CHAPTER 3. A DIFFERENT APPROACH

for k = 1, 2, . . . ,m+ 1, the derivative α∗,(k) exists and (3.11) holds for

fk(t) :=
k∑
i=1

(
(−1)kα∗,(i−1)(T )G(k−i)(T − t) + (−1)i+1α∗,(i−1)(0)G(k−i)(t)

)
,

for t ∈ [0, T ]. Indeed, integration by parts yields that, for every t ∈ [0, T ],

γα∗,(1)(t) = −
(∫ t

0

G(1)(t− s)α∗(s) ds+

∫ T

t

(
−G(1)(s− t)

)
α∗(s) ds

)
=

∫ T

0

G(|t− s|)α∗,(1)(s) ds− α∗(T )G(T − t) + α∗(0)G(t).

The first equality shows that α∗,(1) exists. For k = 1, 2, . . . ,m, induction shows that

γα∗,(k+1)(t)

= (−1)k+1
(∫ t

0

G(1)(t− s)α∗,(k)(s) ds+

∫ T

t

(
−G(1)(s− t)

)
α∗,(k)(s) ds

)
+

k∑
i=1

(
(−1)k+1α∗,(i−1)(T )G(k+1−i)(T − t) + (−1)i+1α∗,(i−1)(0)G(k+1−i)(t)

)
= (−1)k+2

∫ T

0

G(|t− s|)α∗,(k+1)(s) ds

+
k+1∑
i=1

(
(−1)k+1α∗,(i−1)(T )G(k+1−i)(T − t) + (−1)i+1α∗,(i−1)(0)G(k+1−i)(t)

)
for every t ∈ [0, T ].

Assuming G to be of positive type ensures that profits from simple price manipula-
tion strategies are impossible, i.e., J [α] ≥ 0 for every α ∈ L2[0, T ] (as discussed on
p. 56). But Alfonsi et al. (2012) argue that a more subtle type of price manipulation
may still be optimal. The price increase caused by a buy order improves the execu-
tion price of all subsequent sell orders, and vice versa. Therefore, it may be optimal
for an investor who must trade a net amount x0 6= 0 to engage in transaction-
triggered price manipulation by submitting both buy and sell orders, instead of only
trading in one direction. These strategies “look similar to usual price manipula-
tion strategies but occur only when triggered by a given transaction” (Alfonsi et al.,
2012, p. 512).
Optimal strategies that only trade in one direction are also desirable from a modeling
perspective. They remain optimal if the asset price is not specified exogenously
by (3.6), but derived from a model of a (block-shaped) limit order book (Gatheral
et al., 2012, Remark 2.4).
Notice that if transaction-triggered price manipulation is optimal for some liquida-
tion constraint x0 6= 0, then it is optimal for all liquidation constraints x0 6= 0,
because optimal strategies are linear in x0.
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Since x0 and η have the same sign, transaction-triggered price manipulation is op-
timal if and only if ηα∗(t) < 0 for some t ∈ [0, T ]. The following theorem provides
two different sufficient conditions that ensure the nonnegativity of ηα∗.
The first condition guarantees that the decay term (1/γ)

∫ T
0
G(|t − s|)α∗(s) ds is

negligible. In this case, nonnegativity of ηα∗(t) is a simple consequence of the fact
that α∗(t) ≈ η. The second condition is more subtle and holds for all γ > 0.
It is also sufficient for absence of transaction-triggered price manipulation in the
corresponding discrete time model without transaction costs (Alfonsi et al., 2012,
Theorem 1).
The decay kernel G is said to be positive definite (in the sense of Bochner, 1932) if

m∑
i,j=1

G(|ti − tj|)zizj ≥ 0

for all m ∈ N, t1, t2, . . . , tm ∈ [0,∞) and z1, z2, . . . , zm ∈ R. Clearly, every positive
definite decay kernel is of positive type. If G is continuous, the two concepts are
equivalent (Mercer, 1909, §9 and §10). If G is convex, nonincreasing and nonnegative
on [0,∞), then it is positive definite (see Young, 1913, or Gatheral et al., 2012, for
a more recent reference).

Theorem 3.11. Suppose α∗ solves (3.8) and one of the following two conditions is
satisfied:

(i) G is positive definite and γ ≥ G(0)T .

(ii) G is convex, nonincreasing, nonnegative and continuous.

Then ηα∗(t) ≥ 0 for all t ∈ [0, T ].

Proof. (i) First, prove the following auxiliary result:

Lemma 3.12. Suppose G is positive definite. Let t0 ∈ [0, T ]. Then∫ T

0

∫ T

0

H(t, s)α(t)α(s) ds dt ≥ 0 for all α ∈ L2[0, T ],

where
H(t, s) := G(|t− s|)− 2G(|t− t0|) +G(0), s, t ∈ [0, T ].

Proof. It is enough to show
∑n

i,j=1H(ti, tj)zizj ≥ 0 for all n ∈ N, z1, z2, . . . , zn ∈ R
and t1, t2, . . . , tn ∈ [0, T ].

Define z0 := −
∑n

i=1 zi. Since G is positive definite,

0

≤
n∑

i,j=0

G(|ti − tj|)zizj
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=
n∑

i,j=1

G(|ti − tj|)zizj − 2
( n∑
i=1

G(|ti − t0|)zi
)( n∑

i=1

zi

)
+G(0)

( n∑
i=1

zi

)2
=

n∑
i,j=1

H(ti, tj)zizj,

as desired.

It is enough to consider the case η = 1. Let α∗ solve (3.8). Define the linear
operator F as in (3.7) and let x0 :=

∫ T
0
α∗(t) dt. For all t0 ∈ [0, T ], obtain both∫ T

0

G(|t− t0|)α∗(t) dt = (Fα∗)(t0)− γα∗(t0) = 1− γα∗(t0)

and ∫ T

0

∫ T

0

G(|t− s|)α∗(t)α∗(s) ds dt = 〈Fα∗, α∗〉 − γ
∫ T

0

α∗(t)2 dt

= x0 − γ
∫ T

0

α∗(t)2 dt.

Notice that∫ T

0

α∗(t)2 dt ≥ min
α:

∫ T
0 α(t) dt=x0

∫ T

0

α(t)2 dt =

∫ T

0

(x0
T

)2
dt =

(x0)2

T
.

From Lemma 3.12, obtain

0 ≥ −
∫ T

0

∫ T

0

G(|t− s|)α∗(t)α∗(s) ds dt

+ 2
(∫ T

0

α∗(t) dt
)(∫ T

0

G(|t− t0|)α∗(t) dt
)
−G(0)

(∫ T

0

α∗(t) dt

)2

= γ

∫ T

0

α∗(t)2 dt− x0 + 2x0
(
1− γα∗(t0)

)
−G(0)(x0)2

≥ γ(x0)2

T
+ x0 − 2γx0α∗(t0)−G(0)(x0)2,

or equivalently,

α∗(t0) ≥
1

2γ

(
x0
( γ
T
−G(0)

)
+ 1
)
.

Notice that 0 < J [α∗] =
∫ T
0

(Fα∗)(t)α∗(t) dt = ηx0 = x0. Conclude that α∗(t0) ≥ 0.

(ii) This will be shown in more generality in Theorem 4.4.

Numerical simulations suggest that ηα∗ is convex with a minimum at T/2 for many,
but not all, convex, nonincreasing and nonnegative decay kernels G. In the context
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of optimal execution, convexity of α∗ mirrors the “empirically observed U-shape of
the daily distribution of market liquidity. That is, if [α∗ is convex with a minimum
at T/2] and the liquidation horizon is one trading day, as it is often the case, then
the optimal liquidation strategy [α∗] involves fast trading toward the beginning and
end of the trading day when liquidity is high and slower trading when liquidity is
low” (Schied and Strehle, 2017, p. 2).
It will be shown that complete monotonicity of G is sufficient to ensure convexity
of α∗. The decay kernel G is said to be completely monotone if it is smooth and

(−1)mG(m)(t) ≥ 0 for all t ∈ (0,∞) and all m ∈ N.

Clearly, every completely monotone decay kernel is convex, nonincreasing, and non-
negative on (0, T ). In particular, if G is completely monotone on (0,∞), then it is
positive definite and thus of positive type.
In fact, complete monotonicity of G implies that ηα∗ is symmetrically totally mono-
tone, i.e., it is analytic on (0, T ) and there are nonnegative coefficients (z2k)k∈N such
that its power series development in T/2 is of the form

ηα∗(t) =
∞∑
k=0

z2k(t− T/2)2k, t ∈ (0, T ).

The following theorem is proven in more generality as Theorem 4.6 in the next
section.

Theorem 3.13. Suppose α∗ solves (3.8). If G is completely monotone, then ηα∗ is
symmetrically totally monotone. In particular, it is analytic on (0, T ) and convex.

3.3 Exponential price impact

Now consider again the general case with n+1 strategic investors. Unsurprisingly, it
is more complicated. Equilibrium strategies do not display the regularity and strong
dependence on the decay kernel G that was observed in the previous section.
To make the problem tractable, assume that transient price impact decays at an
exponential rate, i.e., G(t) = e−ρt, as in Obizhaeva and Wang (2013) and in Chap-
ter 2. The parameter ρ > 0 determines the size and persistence of price impact. A
small ρ implies large impact and slow recovery (see Figure 3.4). The limit ρ = 0
corresponds to permanent price impact as in Almgren and Chriss (2001).
In searching for a closed-form representation of the Nash equilibrium, it will turn
out that the (n+ 2)-dimensional function

ψ := (α0, α1, . . . , αn, S)

is a more natural object of study than α := (α0, α1, . . . , αn). Clearly, ψ determines α
and vice versa. With a slight abuse of terminology, ψ∗ = (α∗0, α

∗
1, . . . , α

∗
n, S

∗) will
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Figure 3.4: Illustration of transient price impact with exponential decay G(t) = e−ρt.
Asset price S(t) for ρ = 1 (solid line), ρ = 0.5 (dashed line) and for permanent price
impact ρ = 0 (dotted line). Here, a single strategic investor trades at a constant
rate α0(t) = −2 while t ≤ 1/2 and α0(t) = 0 while t > T/2. Parameters: n = 0,
T = 1 and x00 = −1. Notice that α0 is admissible but not optimal.

also be called a Nash equilibrium if α∗ := (α∗0, α
∗
1, . . . , α

∗
n) is a Nash equilibrium

and S∗ = S(· ;α∗).
Notice that G is of positive type. Assume again that γi > 0 for all i = 0, 1, . . . , n.
Let α∗ = (α∗0, α

∗
1, . . . , α

∗
n) be the unique Nash equilibrium (compare Lemma 3.2

and Theorem 3.6). It is deterministic and continuous. Let η = (η0, η1, . . . , ηn)
denote the corresponding vector for which Fα∗ = η (compare Lemma 3.4). Finally,
let S∗ := S( · ;α∗).
The optimality conditions in Lemma 3.4 may be written as a system of integral
equations:

γiα
∗
i (t) + S∗(t) +

∫ T

t

eρ(t−s)α∗i (s) ds = ηi, t ∈ [0, T ], (3.12)

for i = 0, 1, . . . , n.

If all investors had homogeneous transaction costs γ0 = γ1 = · · · = γn, one could
sum (3.12) over i to obtain a two-dimensional system of differential equations charac-
terizing

∑n
i=0 α

∗
i and S∗. Once this system were solved, (3.12) would reduce to n+1

identical one-dimensional ordinary differential equations. The model in Schied and
Zhang (2015) allows for this approach. But if transaction costs are heterogeneous,
all functions α∗0, α∗1, . . . , α∗n and S∗ must be computed simultaneously.
Let i = 0, 1, . . . , n. It is clear from (3.12) that α∗i is differentiable in t. Differentiating
and plugging in from (3.12) yields the ordinary differential equation

d

dt
α∗i = ρα∗i −

1

γi

∑
j 6=i

α∗j +
2ρ

γi
S∗ − ρηi

γi
. (3.13)
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Furthermore, (3.1) shows that S∗ satisfies the ordinary differential equation

d

dt
S∗ =

n∑
i=0

α∗i − ρS∗. (3.14)

Combine (3.13) and (3.14) to conclude that the Nash equilibrium

ψ∗ := (α∗0, α
∗
1, . . . , α

∗
n, S

∗)

solves a system of differential equations of the form d
dt
ψ∗ = Mψ∗ + m, where M is

a square matrix and m is a vector.
Let eMt denote the matrix exponential of Mt. If M is invertible, then ψ∗ must be
of the form ψ∗(t) = eMtz −M−1m, t ∈ [0, T ], for some z ∈ Rn+2. Notice that the
investors’ liquidation constraints translate into unusual boundary conditions for ψ∗:
They apply to

∫ T
0
α∗i (t) dt, not α∗i . This complicates the calculation of z.

Building on these considerations, the next theorem derives a closed-form represen-
tation of ψ∗ (and therefore α∗). Define the (n+ 2)-dimensional square matrices

M :=


ρ − 1

γ0
· · · − 1

γ0

2ρ
γ0

− 1
γ1

ρ · · · − 1
γ1

2ρ
γ1

...
... . . . ...

...
− 1
γn
− 1
γn
· · · ρ 2ρ

γn

1 1 · · · 1 −ρ

 , N1 :=


ργ0 0 · · · 0 ρ
0 ργ1 · · · 0 ρ
...

... . . . ...
...

0 0 · · · ργn ρ
γ0 γ1 · · · γn n+ 1

 .

Define further the (n+ 1)× (n+ 2)-dimensional matrix

W :=


1 0 . . . 0 0
0 1 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0


and the (n + 2)-dimensional column vector v := (0, 0, . . . , 0, 1). For m ∈ N \ {0},
denote by Im the m-dimensional identity matrix. Define the (n + 2)-dimensional
square block matrix

N2 :=

[
W
(
(M−1 +N1T )eMT −M−1)
v>(In+1 +N1e

MT )

]
.

Theorem 3.14. The matrix N2 is invertible and it holds that

ψ∗(t) = (eMt +N1e
MT )N−12 x̃0, t ∈ [0, T ], (3.15)

where x̃0 := (x00, x
0
1, . . . , x

0
n, 0).

Proof. A function ψ = (α0, α1, . . . , αn, S) ∈ L2([0, T ];Rn+2) shall be called regular
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if for each i = 0, 1, . . . , n, the function αi is a deterministic admissible strategy for
investor i, and S = S(· ;α) is the asset price corresponding to α := (α0, α1, . . . , αn).

Define the (n+ 1)× (n+ 2)-dimensional matrices

U :=


γ0 0 . . . 0 1
0 γ1 . . . 0 1
...

... . . . ...
...

0 0 . . . γn 1

 and V :=


ρ
γ0

0 . . . 0 0

0 ρ
γ1

. . . 0 0
...

... . . . ...
...

0 0 . . . ρ
γn

0

 .

The proof is in four steps.
1. ψ is a Nash equilibrium if and only if it is regular, continuously differentiable and
solves the system of differential equations

d

dt
ψ = Mψ − V >y, (3.16)

where y = Uψ(T ).

Necessity: Let ψ be a Nash equilibrium. It is clear from (3.12) and (3.14) that ψ is
continuously differentiable. Let t = T in (3.12) to obtain y = Uψ(T ). From (3.13)
and (3.14), deduce (3.16).
Sufficiency: Let ψ = (α0, α1, . . . , αn, S) be regular and suppose it solves (3.16)
with y = Uψ(T ). Let α := (α0, α1, . . . , αn). Fix i = 0, 1, . . . , n. Define

fi(t) :=

∫ T

t

eρ(t−s)αi(s) ds, t ∈ [0, T ].

Clearly, f ′i = ρfi − αi. Let gi := ηi − γiαi − S. Conclude g′i = ρgi − αi with (3.16).
Hence f ′i − g′i = ρ(fi − gi). Applying the boundary condition y = Uψ(T ) shows
that fi(T )− gi(T ) = 0. It follows that fi = gi and

(Fα)i = γiαi + S + fi = γiαi + S + gi = ηi.

This is true for all i = 0, 1, . . . , n. Hence ψ is a Nash equilibrium by Lemma 3.4.
2. M is invertible.

Define the (n+ 2)-dimensional column vectors

v1 :=
(
ρ+

1

γ0
, ρ+

1

γ1
, . . . , ρ+

1

γn
,−1

2

)
, v2 :=

(
− 1

γ0
,− 1

γ1
, . . . ,− 1

γn
, 1
)
,

v3 := (1, 1, . . . , 1,−2ρ), u := (1, 1, . . . , 1).

Then M = (diag(v1) + v2u
>) diag(v3) and by the matrix determinant lemma,

detM = −ρ
(

1 +
n∑
i=0

1

ργi + 1

) n∏
i=0

(
ρ+

1

γi

)
6= 0.
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3. ψ is a Nash equilibrium if and only if it is regular and there is a z ∈ Rn+2 such
that

ψ(t) = (eMt +N1e
MT )z, t ∈ [0, T ]. (3.17)

The general solution of (3.16) is eMtz+M−1V >y, t ∈ [0, T ], for z ∈ Rn+2. By Step 1,
the condition y = U(eMT z +M−1V >y) must be satisfied. The matrix M − V >U is
nonsingular, which can be verified by checking that (M − V >U)−1 = (N1− vv>)/ρ.
By the Woodbury matrix identity,

(In+1 − UM−1V >)−1 = In+1 + U(M − V >U)−1V >.

Hence
y = (In+1 + U(M − V >U)−1V >)UeMT z.

It holds that V >U(In+2 + N1) = MN1, or equivalently, (M − V >U)−1V >U = N1.
With this, obtain

M−1V >y = M−1V >U(In+2 +N1)e
MT z = N1e

MT z.

4. Once ψ is defined by (3.17), integrating over [0, T ] shows that ψ is regular if
and only if N2z = x̃0. It remains to show that N2 is invertible. Although this
follows from Theorem 3.6, a separate proof is given here. Consider the case where
all investors must trade zero net amounts, i.e., x0 = (0, 0, . . . , 0). It is easy to check
that in this case, ψ0 := 0 is a Nash equilibrium. By Lemma 3.2 (ii), this is the only
Nash equilibrium. According to Step 3, there exists a z0 ∈ Rn+2 such that ψ0(t) =
(eMt + N1e

MT )z0 for t ∈ [0, T ]. This shows that (0, 0, . . . , 0) = d
dt
ψ0(t) = MeMtz0

for all t ∈ [0, T ]. The matrix MeMt is invertible, hence z0 = (0, 0, . . . , 0). It follows
that the equation N2z = (0, 0, . . . , 0) has only the trivial solution z0 = (0, 0, . . . , 0),
showing that N2 is invertible.

The Nash equilibrium (3.15) can be approximated numerically. The next section
does so and studies how the presence of opportunistic investors affects optimal
strategies.

3.4 Order anticipation strategies

In practice, optimal execution of large orders is accomplished with the help of execu-
tion algorithms. These algorithms, including the popular VWAP (volume weighted
average price, see for instance Cartea and Jaimungal, 2015), are typically based on
the observation that price impact depends on the relative size of an order: Price im-
pact is smaller when markets are busy. An execution algorithm might exploit this
fact by trading every thirty seconds over the course of one trading day, placing large
positions when market volume is high and small positions when market volume is
low; while ensuring that the liquidation constraint is satisfied by the end of the day.
The major weakness of such an algorithm is its predictability. Opportunistic in-
vestors with access to high-resolution data on financial markets (e.g., the entire
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limit order book) can detect the algorithm and reverse-engineer it to predict future
trades. Once this is accomplished, they can pursue an order anticipation strategy:
Trade in the same direction as the algorithm, but a little earlier; then wait until
the execution algorithm has traded and clear inventory directly afterwards. With
this simple strategy—also known as front-running—the execution algorithm’s price
impact becomes a predictable source of profit.
Order anticipation strategies require sophisticated detection algorithms (Hirschey,
2016) and a quick alternation of buy and sell orders. Hence they are typically
associated with high frequency traders, for instance by the Securities and Exchange
Commission (2010). Notice however that order anticipation strategies do not require
the breathtaking speed necessary for “true” high frequency strategies such as stale
order sniping or non-designated market making (MacKenzie, 2011).
That order anticipation strategies have been described as aggressive (Benos and
Sagade, 2012), predatory (Brunnermeier and Pedersen, 2005) and “algo-sniffing”
(MacKenzie, 2011) suggests that the Securities and Exchange Commission (2010) is
not alone in suspecting that they “may present serious problems in today’s market
structure” (p. 3609). Indeed, Tong (2015) reports that “one standard deviation
increase in the intensity of [high frequency trading] activities increases institutional
execution shortfall costs by a third” (p. 4). Brunnermeier and Pedersen (2005)
even suggest a direct connection between order anticipation strategies and financial
breakdowns: Front-running amplifies the price drop caused by a large sell order, an
effect known as price overshooting. This might trigger further sell orders (e.g., from
pending stop-loss orders), which are again subject to front-running, causing further
price overshooting and, ultimately, a complete market crash.
Even with high-quality data, empirical studies cannot perfectly identify order an-
ticipation strategies in the market. This is why it can be helpful to study them
in a theoretical model. This section analyzes the influence that order anticipation
strategies have on a liquidating investor’s costs of execution and on the asset price
evolution in the model derived in the previous section. Special consideration is given
to Brunnermeier and Pedersen’s (2005) claim that order anticipation strategies cause
price overshooting.
Let n ≥ 1. Assume that investor 0 executes a net sell order x00 < 0, while all other
investors i = 1, 2, . . . , n trade zero net amounts x0i = 0. The case x00 > 0 is perfectly
symmetric. Investors i = 1, 2, . . . , n will only trade if they can generate profits (that
is, negative costs) from the price impact generated by investor 0. In this sense, they
are opportunistic investors. Investor 0 will be referred to as the liquidating investor.
Assume that all opportunistic investors have identical levels of transaction costs,
i.e., γ1 = γ2 = · · · = γn. It follows from Lemma 3.2 that in equilibrium, all oppor-
tunistic investors pursue the same strategy α∗1. Hence α :=

∑n
i=1 α

∗
i equals nα∗1.

For the subsequent analysis, it is most illustrative to study the remaining net
amounts

X∗0 (t) = x00 −
∫ t

0

α∗0(s) ds and X(t) := −n
∫ t

0

α∗1(s) ds, t ∈ [0, T ].
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Figure 3.5: Remaining net amounts X∗0 (t) and X(t) for n = 0 (dotted line), n = 1
(solid line), n = 5 (dashed line) and n = 25 (dot-dashed line). Parameters: T = 1,
ρ = 0.95, γ0 = γ1 = 0.1, x00 = −1 and x01 = 0.

Figure 3.5 is representative of equilibrium strategies in general. Opportunistic in-
vestors engage in front-running : They build up short positions in the beginning and
buy back for the rest of the trading period. The liquidating investor sells through-
out the trading period, such that opportunistic investors generate a profit from
selling high and buying low. A larger number of opportunistic investors implies
more front-running shortly after t = 0. The liquidating investor reacts accordingly
to avoid selling in a falling market and shifts more trading activity to the end.
This pattern holds for many parameter combinations, but it is not universal: If γ1 is
small and ρ large, opportunistic investors may start selling again shortly after T/2,
such that α changes sign three times.

Costs of execution

Front-running amplifies the liquidating investor’s price impact and increases his total
costs significantly (see Figure 3.6).
If opportunistic investors have low transaction costs, one or two of them suffice to
fully realize the profit potential of order anticipation. Further increasing n results
in competition among opportunistic investors, reducing their total profit and also
reducing the liquidating investor’s total costs. This is different if transaction costs
are high. Transaction costs restrict the degree to which investors can benefit from
opportunistic trading. High transaction costs leave unrealized profit potential for
further opportunistic investors. Consequently, the liquidating investor’s total costs
increase in n. Notice that while total profits of opportunistic investors generally
increase in n, these profits are divided (equally) among an increasing number of
investors; each opportunistic investor earns less if n increases.
It is interesting that the liquidating investor’s costs rise significantly if γ1 decreases
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Figure 3.6: Total costs of the liquidating investor and sum of total (negative) costs
of the opportunistic investors in dependence of n; for γ1 = 0.1 (solid line), γ1 = 0.5
(dashed line) and γ1 = 1 (dotted line). Parameters: T = 1, ρ = 0.1, γ0 = 1, x00 = −1
and x01 = 0.

(at least for small n), while simulations show that his optimal strategy hardly
changes. This suggests that the liquidating investor can do little to avoid exploita-
tion from order anticipation strategies.

Asset price and price overshooting

Figure 3.7 shows that in the absence of opportunistic investors, the asset price S∗

decreases steadily over time: it exhibits a persistent drift. This changes drastically
once opportunistic investors enter the picture, especially if there are many of them.
Opportunistic investors build up short positions very quickly, causing a sudden price
drop right after t = 0. The asset price remains almost constant afterwards. This
seems to support claims about opportunistic investors improving price discovery:
The price drop caused by the order x00 occurs earlier and more quickly (see Sec-
tions 6.2 and 6.3 in Benos and Sagade, 2012, for a discussion). But inferences about
price discovery are outside the scope of this model because all liquidation constraints
are known to all investors.
Consider now the maximum deviation of the asset price,

Σ := sup
t∈[0,T ]

|S(t)− S(0)|.

Brunnermeier and Pedersen (2005) claim that opportunistic investors cause price
overshooting, i.e., Σ is larger for n ≥ 1 than for n = 0. They argue that this may
lead to a domino effect: The price drop caused by the liquidating investor and ampli-
fied by the opportunistic investors triggers additional sell orders (for instance from
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Figure 3.7: Asset price S(t) for n = 0 (solid line), n = 1 (dashed line), n = 5
(dot-dashed line) and n = 25 (dotted line). Parameters: T = 1, ρ = 0.95, γ0 = 1,
γ1 = 0.1, x00 = −1 and x01 = 0.

pending stop-loss orders). This causes an even more extreme price drop, triggering
further sell orders, etc.

The model of price impact in which Brunnermeier and Pedersen observe price over-
shooting only features temporary and permanent price impact. Both impose few
constraints on the opportunistic traders, and generate little feedback from the op-
portunistic traders to the liquidating trader. Consequently, opportunistic traders
trade aggressively and scale their strategies to an exogenously given maximum size.
Brunnermeier and Pedersen arrive at a grim picture in which “predators” (oppor-
tunistic traders) exploit “distressed traders” (liquidating investors) and may even
cause a “panic” (the domino effect described above). Price overshooting is also ob-
served by Oehmke (2014), again in a model with temporary and permanent price
impact only.

Figure 3.8 shows that in the present model, price overshooting is the exception, not
the rule: In general, Σ decreases if n increases. This is most evident for markets
with a “short memory”, i.e., for large values of ρ. A possible explanation is that the
price overshooting observed by Brunnermeier and Pedersen is a consequence of per-
manent (or long-lived transient) price impact, rather than an inherent consequence
of opportunistic trading.

Another possible explanation is that quadratic transaction costs prevent price over-
shooting. Quadratic costs imply that a (statistical) arbitrage strategy cannot be
scaled indefinitely without becoming unprofitable. As n increases, competition
among opportunistic investors increases, and transaction costs increasingly work
against them. Figure 3.8 shows, however, that there is no obvious relationship be-
tween Σ and the level of transaction costs γ1.
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Figure 3.8: Maximum deviation Σ of the asset price for ρ = 0.95 (top) and ρ = 0.1
(bottom) and for γ1 = 0.1 (solid line), γ1 = 0.25 (dashed line), γ1 = 0.5 (dot-dashed
line) and γ1 = 1 (dotted line). Parameters: T = 1, γ0 = 1, x00 = −1 and x01 = 0.
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3.5 Different time frames

Opportunistic investors do not necessarily have the same time horizon as the liqui-
dating investor. Admati and Pfleiderer (1991) point out that the liquidating investor
may preannounce his liquidation constraint: “By informing potential traders who can
take the other side of the preannounced orders and by allowing the market to pre-
pare to absorb these orders, preannouncement facilitates the match between the
demand and supply of liquidity in the market” (p. 444). This practice is known as
sunshine trading. It can be implemented by demanding that the liquidating investor
only trade after some time T0 > 0, as in Brunnermeier and Pedersen (2005).
In their analysis of sunshine trading, Schöneborn and Schied (2009) argue that
opportunistic investors may also have additional time to unwind their position after
the liquidating investor has fully executed his order. This can be implemented in the
model by demanding that the liquidating investor only trade until some time T1 < T .
Consequently, divide [0, T ] into three periods: The acquisition period [0, T0], the
main period [T0, T1] and the unwinding period [T1, T ]. Suppose for now that T0 and T1
are fixed. The liquidating investor is only allowed to trade during the main period.
Opportunistic investors begin and end with a flat inventory X1(0) = X1(T ) = 0.
They use the acquisition period to build up a position X1(T0), then trade alongside
the liquidating investor during the main period. At the end of the main period, they
hold a position X1(T1), which they liquidate in the unwinding period. Notice that
in equilibrium, all opportunistic investors still behave identically.
Given X1(T0), the acquisition period is described by the model in Section 3.1, where
investors i = 1, 2, . . . , n acquire identical amounts x01 = x02 = · · · = x0n = X1(T0)
over the time horizon [0, T0]. Theorem 3.14 yields the equilibrium strategies.
During the main and the liquidation period, the situation is more complicated. The
model by Schöneborn and Schied features linear temporary and permanent price
impact. This has the advantage that price impact generated in earlier periods has
no influence on equilibrium strategies in subsequent periods. With transient price
impact, trades from earlier periods cause a (deterministic) price drift in subsequent
periods. During the main period, the asset price becomes

S(t) = e−ρ(t−T0)S(T0) +

∫ t

T0

e−ρ(t−s)
n∑
i=0

αi(s) ds, t ∈ [T0, T1].

In the same way, price impact from the main period generates a price drift during
the liquidation period. Theorem 3.14 must be generalized by replacing S with

S̃(t) := e−ρ(t−τ0)s+ S(t), t ∈ [τ0, τ1],

for (τ0, τ1) ∈ {(T0, T1), (T1, T )} and s ∈ R. Repeating the arguments from Sec-
tion 3.1, one sees that the Nash equilibrium ψ∗ still satisfies a system of differential
equations of the form d

dt
ψ∗ = Mψ∗ +m, but now m = m(t) is not constant.

Once this system is solved, one may calculate the optimal strategies for the liq-
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uidating investor during the main period, and for the opportunistic investors dur-
ing the main and liquidation periods, in dependence of X1(T0) and X1(T1). This
yields the total (negative) costs for opportunistic investors over the entire time hori-
zon [0, T ] in dependence of X1(T0) and X1(T1). It remains to minimize these costs
over (X1(T0), X1(T1)) ∈ R2.
But go one step further. In the current setting, a liquidating investor engaging
in sunshine trading may not only announce his liquidation constraint x00, but also
his time horizon [T0, T1]. Schöneborn and Schied show that a shorter trading hori-
zon T1 < T can be beneficial to the liquidating investor in certain market conditions.
Although there may be an exogenous upper bound on T1, it is reasonable to assume
that the liquidating investor can voluntarily commit to a shorter trading horizon.
The liquidating investor also has some control over T0 because he can choose the
time of announcement t = 0. Hence T0 and T1 should not be viewed as exoge-
nous. One should rather perform a final optimization over (T0, T1) ∈ R2, this time
minimizing the liquidating investor’s total costs during the main period.
This extension promises interesting results, with opportunistic investors possibly
engaging in liquidity provision instead of front-running, as in Schöneborn and Schied
(2009).



Chapter 4

Completely monotone decay kernels

Consider again the problem of optimal execution with a single risk-neutral investor.
The investor must trade a fixed net amount x0 over the time horizon [0, T ]. Price
impact is transient and modeled via a decay kernel G of positive type. Distinguish
two cases:

(i) There are no transaction costs. This corresponds to the setting in Section 2.4
for γ̃ = 0. In this case, an (admissible) strategy is a right-continuous func-
tion X : [0−, T ]→ R of bounded total variation which satisfies the liquidation
constraint X(0−) = x0 and X(T ) = 0. As in Section 2.4, X(t) describes the
remaining net order at time t. Lemma 2.3 in Gatheral et al. (2012) shows that
the costs of execution of a given admissible strategy X are

J0[X] :=
1

2

∫
[0,T ]

∫
[0,T ]

G(|t− s|) dX(s) dX(t)

plus a constant that is the same for all admissible strategies.

(ii) There are positive transaction costs of size γ > 0 on the instantaneous rate
of trading. This corresponds to the setting in Section 3.2. In this case, an
(admissible) strategy is a function α ∈ L2[0, T ] satisfying the liquidation con-
straint

∫ T
0
α(t) dt = x0.As shown in the previous chapter, the costs of execution

of a given admissible strategy α are

Jγ[α] :=
1

2

∫ T

0

(
γα(t)2 +

∫ T

0

G(|t− s|)α(t)α(s) ds
)

dt

plus a constant that is the same for all admissible strategies.

The case γ = 0 must be treated separately because optimal strategies in this case
are usually not absolutely continuous (Gatheral et al., 2012, Theorem 2.23). Hence
it is necessary to specify the remaining net amount directly. Positive transaction
costs γ > 0 imply that jumps in the remaining net amount cannot be optimal. If α
is an admissible strategy for the case γ > 0, then X(t) := x0 −

∫ t
0
α(s) ds is an

admissible strategy for the case γ = 0.

85
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If G is square-integrable on [0, T ] and G(0) is finite, a unique minimizer of Jγ in
the class of admissible strategies exists for every γ > 0 (compare Lemma 3.2 and
Theorem 3.6). But these assumptions on G are too rigid: Bouchaud et al. (2004) and
Almgren et al. (2005) report that empirical observations of transient price impact
are described well by power-law decay kernels G(t) = t−ρ for 0 < ρ < 1.

Notice also that square-integrability is not sufficient to ensure existence of a mini-
mizer of J0. A counterexample is the Gaussian decay kernel G(t) = e−t

2 (Gatheral
et al., 2012, Example 2.16).
In this section, I study the minimization of Jγ for γ ≥ 0 and decay kernels G that are
continuous and integrable, but may have a weak singularity limt→0G(t) = ∞. The
main results will additionally assume that G is convex and nonincreasing. Under
these assumptions, existence and uniqueness of a minimizer X∗ of J0 was shown
by Gatheral et al. (2012), who also prove that X∗ is nonincreasing. In Section 4.1,
I extend this result to the case γ > 0.

In Section 4.2, I additionally assume that G is completely monotone on (0, T ), i.e., it
is smooth on (0, T ) and (−1)nG(n) ≥ 0 for all n ∈ N. Completely monotone kernels
lead to the study of symmetrically totally monotone functions. These are functions f
that are analytic and have a power series development in T/2 of the form

f(t) =
∞∑
k=0

z2k(t− T/2)2k

for nonnegative coefficients (z2k)k∈N. I show that if G is completely monotone, then
for every γ > 0, the minimizer α∗ of Jγ is symmetrically totally monotone, and the
minimizer X∗ of J0 is differentiable on (0, T ) and − d

dt
X∗(t) is symmetrically totally

monotone.
This chapter is a revised version of Schied and Strehle (2017). I am grateful to
Alexander Schied for the fruitful collaboration, and two anonymous referees for
helpful remarks.

4.1 Existence and nonnegativity

Assume that the decay kernel G : (0,∞) → [0,∞) is nonconstant, continuous and
satisfies

∫ τ
0
G(t) dt <∞ for all τ > 0. Assume further that G is of positive type, i.e.,∫ τ

0

∫ τ

0

G(|t− s|)α(t)α(s) ds dt ≥ 0

for every α ∈ L2[0, τ ] for which the double integral is well-defined and every τ > 0.
Define G(0) := limt→0G(t). Notice that G(0) ∈ (0,∞].

Assume x0 = 1 without loss of generality. For γ = 0, let A0 denote the set of
admissible strategies X for which

∫ T
0

∫ T
0
G(|t−s|) d|X|(s) d|X|(t) is finite. Here, |X|

denotes the total variation process of X. Notice that the liquidation constraint
ensures X(0−) = 1 and X(T ) = 0 for every X ∈ A0.
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For γ > 0, let A1 denote the set of admissible strategies α for which the double
integral

∫ T
0

∫ T
0
G(|t− s|)α(t)α(s) ds dt is well-defined and finite.

Gatheral et al. (2012) state sufficient conditions for the existence and uniqueness of
a minimizer of J0.

Theorem 4.1. (Theorem 2.24 in Gatheral et al., 2012). If G is convex and non-
increasing, then J0 admits a unique minimizer X∗ in A0. In this case, X∗ is non-
increasing.

Notice that −X∗ is a probability distribution function on [0, T ]. The goal of this
section is to prove a parallel result for the case γ > 0.
Many arguments that follow will be simplified by the alternative representations
of Jγ derived in the following lemma. For X ∈ A0, let X̂ denote the Fourier-
Stieltjes transform of X, i.e., X̂(t) =

∫
eist dX(s). For α ∈ A1, let α̂ denote the

Fourier transform of α, i.e., α̂(t) =
∫
eistα(s) ds (following the convention in Gatheral

et al., 2012).

Lemma 4.2. If G is convex and nonincreasing, then there is a positive Radon
measure µ on (0,∞) such that

J0[X] =
1

2

∫
|X̂(t)|2µ(dt) for every X ∈ A0, (4.1)

and at the same time, for every γ > 0,

Jγ[α] =
γ

2

∫
|α̂(t)|2 dt+

1

2

∫
|α̂(t)|2µ(dt) for every α ∈ A1. (4.2)

Proof. Define G(∞−) := limt→∞G(t) < ∞. By Lemma 4.1 in Gatheral et al.
(2012), there is a positive Radon measure ν on (0,∞) such that

∫
(0,∞)

t∧t2 ν(dt) <∞
and

G(t) = G(∞−) +

∫
(0,∞)

(s− t)+ν(ds), t ∈ (0,∞).

Define f : (0,∞)→ R via

f(t) :=
1

π

∫
(0,∞)

1− cos(st)

t2
ν(ds) (4.3)

and a measure µ on (0,∞) via µ(dt) := G(∞−)δ0(dt) + f(t) dt. Then µ is a positive
Radon measure, and G(| · |) is the Fourier transform of µ, i.e. G(|t|) =

∫
eistµ(ds)

for every t ∈ R (Gatheral et al., 2012, Lemma 4.2).
Let T > 0. Proposition 4.5 in Gatheral et al. (2012) shows (4.1). This, in combina-
tion with the Plancherel theorem, shows (4.2).

Notice that the representation of Jγ[α] in (4.2) extends to all α ∈ L2[0, T ] for
which

∫ T
0

∫ T
0
G(|t− s|)α(t)α(s) ds dt is well-defined and finite. Denote the set of all
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these functions by L2
G[0, T ]. Conclude with Lemma 4.2 and the Minkowski inequality

that L2
G[0, T ] is a vector space.

The following result shows that the characterization of minimizers of Jγ for γ > 0
via a Fredholm integral equation (as in Lemma 3.4) remains valid under the given
assumptions, even if G is weakly singular and fails to be square-integrable.

Lemma 4.3. Suppose γ > 0. The function α∗ ∈ A1 minimizes Jγ if and only if
there is an η ∈ R such that

γα∗(t) +

∫ T

0

G(|t− s|)α∗(s) ds = η, t ∈ [0, T ]. (4.4)

In this case, η is strictly positive and equals 2Jγ[α∗].

Proof. Let γ > 0 and define L2
G[0, T ] as above. For α, β ∈ L2

G[0, T ], define the
symmetric bilinear form

Jγ[α, β] :=
1

2

(
Jγ[α + β]− Jγ[α]− Jγ[β]

)
.

Suppose α∗ ∈ A1 minimizes Jγ[ · ]. Choose y ∈ R and a nonzero β ∈ L2
G[0, T ]

satisfying
∫ T
0
β(t) dt = 0. Then α∗ + yβ ∈ A1. A straightforward calculation shows

that
Jγ[α∗ + yβ] = Jγ[α∗] + 2yJγ[α∗, β] + y2Jγ[β].

Since α∗ is optimal, the right-hand side must be minimized at y = 0. Clearly,

Jγ[β] ≥ γ

2

∫ T

0

β(t)2 dt > 0.

Hence Jγ[α∗, β] = 0. Conclude that γα∗(t)
∫ T
0
G(|t − s|)α∗(s) ds is orthogonal to

every β ∈ L2
G[0, T ] satisfying

∫ T
0
β(t) dt = 0. This implies (4.4).

Now suppose on the other hand that α∗ satisfies (4.4). Every α ∈ A1 can be written
as α = α∗ + yβ for some y ∈ R and some β ∈ L2

G[0, T ] satisfying
∫ T
0
β(t) dt = 0. By

Fubini’s theorem,

Jγ[α∗ + β] = Jγ[α∗] + Jγ[β∗] + 2

∫ T

0

β(t)
(
γα∗(t) +

∫ T

0

G(|t− s|)α∗(s) ds
)

dt

= Jγ[α∗] + Jγ[β∗] + 2η

∫ T

0

β(t) dt.

Conclude that Jγ[α∗, β] = 0 and thus Jγ[α] = Jγ[α∗] + y2Jγ[β] ≥ Jγ[α∗].
Finally, it is clear that J [α∗] = 2η if α∗ satisfies (4.4).

The following theorem is the main result of this section. It extends Theorem 4.1 to
the case γ > 0. The proof is based on a similar result on the monotonicity of trading
strategies in discrete time that is due to Alfonsi et al. (2012).
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Theorem 4.4. If G is convex and nonincreasing, then Jγ admits a unique mini-
mizer α∗ in A1 for every γ > 0. In this case, α∗ is nonnegative.

Proof. Let γ > 0. Lemma 3.2 (i) remains valid under the given assumptions on G,
so Jγ has at most one minimizer in A1.
Consider first the case G(0) := limt→0G(t) < ∞. Then G(| · |) is bounded and
continuous on R.
For n ∈ N, define tk := k2−nT for k = 0, 1, . . . , 2n. Let A1

n denote the set of
functions α ∈ L2[0, T ] which are constant on the intervals [tk, tk+1) and satisfy the
liquidation constraint

∫ T
0
α(t) dt = 1. Any α ∈ A1

n is of the form

α =
2n−1∑
k=0

ak1[tk,tk+1) (4.5)

for constants a0, a1, . . . , a2n−1 that sum to 2n/T . Since each α ∈ A1
n is bounded,

conclude that A1
n ⊆ A1. Now prove the following auxiliary result.

Lemma 4.5. Let n ∈ N and define Gn : [0,∞)→ [0,∞) via

Gn(0) := γ2−(n+1)T + 2−2n+1T 2

∫ 1

0

G(2−nTs) (1− s) ds,

Gn(t) := 2−2nT 2

∫ 1

−1
G(t+ 2−nTs) (1− |s|) ds, t ∈ [2−nT,∞),

and Gn(t) linearly interpolated between Gn(0) and Gn(2−nT ) for t ∈ (0, 2−nT ).
Let α ∈ A1

n be of the form (4.5). Then

Jγ[α] =
2n−1∑
i,j=0

Gn(|ti − tj|)aiaj.

Proof. Calculate

γ

2

∫ T

0

α(t)2 dt =
γ

2

2n−1∑
k=0

a2k(tk+1 − tk) = γ2−(n+1) T
2n−1∑
k=0

a2k

and

1

2

∫ T

0

∫ T

0

G(|t− s|)α(t)α(s) ds dt =
1

2

2n−1∑
i,j=0

aiaj

∫ ti+1

ti

∫ tj+1

tj

G(|t− s|) ds dt.

Notice that by Fubini’s theorem, for every integrable function f ,∫ 1

0

∫ 1

0

f(x− y) dy dx =

∫ 1

0

∫ x

x−1
f(y) dy dx

=

∫ 1

0

∫ 0

x−1
f(y) dy dx+

∫ 1

0

∫ x

0

f(y) dy dx
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=

∫ 0

−1
f(y)

∫ 1+y

0

dx dy +

∫ 1

0

f(y)

∫ 1

y

dx dy

=

∫ 1

−1
f(y)(1− |y|) dy.

Hence for i < j, it holds that

1

2

∫ ti+1

ti

∫ tj+1

tj

G(|t− s|) ds dt =
1

2

∫ 2−nT

0

∫ 2−nT

0

G(tj − ti + s− t) ds dt

= 2−2n+1T 2

∫ 1

0

∫ 1

0

G
(
tj − ti + 2−nT (s− t)

)
ds dt

= Gn(tj − ti).

The same argument shows
∫ ti+1

ti

∫ tj+1

tj
G(|t− s|) ds dt = Gn(ti − tj) for i > j and

1

2

∫ ti+1

ti

∫ ti+1

ti

G(|t− s|) ds dt = 2−2nT 2

∫ 1

0

G(2−nTs) (1− s) ds.

This proves the claim. Notice that all values Gn(t) for t /∈ {t0, t1, . . . , t2n−1} can in
fact be chosen arbitrarily.

Let Gn be as in Lemma 4.5.
On [0, 2−nT ], the function Gn is linear. On [2−nT,∞), it is a mixture of the convex,
nonincreasing and nonnegative functions t 7→ G(t+2−nTs) for s ∈ [−1, 1] : hence Gn

has the same properties there. Conclude that Gn is convex if and only if the left-
hand derivative G′n,−(2−nT ) of Gn in 2−nT is smaller than or equal to the right-hand
derivative G′n,+(2−nT ).
Let G′+ denote the right-hand derivative of G. Recall that G(0) is finite by assump-
tion. The value G′+(0) ∈ (−∞, 0) provides a lower bound on G′+, hence

G′n,+(2−nT ) ≥ 2−2nT 2

∫ 1

−1
G′+(0)(1− |s|) ds = 2−2nT 2G′+(0).

Define G(∞−) := limt→∞G(t). Notice that for every t ∈ (0,∞), it holds that
0 ≤ G(∞−) ≤ G(t) ≤ G(0) < ∞. Conclude from the linearity of Gn on [0, 2−nT ]
that

G′n,−(2−nT ) =
1

2−nT

(
2−2nT 2

∫ 1

−1
G
(
2−nT (1 + s)

)
(1− |s|) ds

− γ2−(n+1)T − 2−2n+1T 2

∫ 1

0

G(2−nTs)(1− s) ds
)

≤ 2−nT
(
G(0)

∫ 1

−1
(1− |s|) ds− 2G(∞−)

∫ 1

0

(1− s) ds
)
− γ/2

= 2−nT
(
G(0)−G(∞−)

)
− γ/2.
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For large n, the factor −γ/2 becomes dominating. Hence there is an n0 ∈ N such
that G′n,−(2−nT ) ≤ G′n,+(2−nT ) for all n ≥ n0.

For n ≥ n0, consider the problem of minimizing Jγ[α] over α ∈ A1
n. By Lemma 4.5,

this is equivalent to the minimization of the quadratic form

2n−1∑
i,j=0

Gn(|ti − tj|)aiaj (4.6)

over constants a0, a1, . . . , a2n−1 that sum to 2n/T . Conclude from (4.1) and Lemma
4.5 that (4.6) is always nonnegative. Hence the matrix with entries Gn(|ti − tj|)
is positive definite and the minimization of the quadratic form admits a unique
solution. By Theorem 1 in Alfonsi et al. (2012), all components a0, a1, . . . , a2n−1 of
this solution are nonnegative. Thus, the problem of minimizing Jγ[α] over α ∈ A1

n

admits a unique solution α∗n, which is nonnegative.
It holds that A1

n ⊆ A1
n+1, and therefore Jγ[α∗n0

] ≥ Jγ[α∗n] for every n ≥ n0. Further-
more, since G is of positive type,

Jγ[α∗n] =
1

2

∫ T

0

(
γα∗n(t)2 +

∫ T

0

G(|t− s|)α∗n(t)α∗n(s) ds
)

dt ≥ γ

2
‖α∗n‖2,

where ‖·‖ denotes the standard L2-norm on [0, T ]. Conclude that the L2-norms
of (α∗n)n≥n0 are uniformly bounded. By passing to a subsequence if necessary, as-
sume that the sequence (α∗n)n≥n0 converges weakly in L2[0, T ] to some nonnegative
function α∗. It remains to show that α∗ minimizes Jγ over A1.

Define the filtered probability space ([0, T ],B([0, T ]), (Fn)n∈N, λ), where B([0, T ]) is
the Borel σ-algebra on [0, T ], each σ-field Fn is generated by the intervals [tk, tk+1)
for k = 0, 1, . . . , 2n − 1, and λ is the normalized Lebesgue measure on [0, T ]. Notice
that F∞ := σ

(⋃
n∈NFn

)
equals B([0, T ]).

Choose an arbitrary α ∈ A1. For n ∈ N, let αn denote the conditional expectation
of α with respect to Fn under λ. Then αn belongs toA1

n, hence Jγ[α∗n] ≤ Jγ[αn]. Since
the sequence (αn)n∈N is bounded in L2[0, T ], martingale convergence shows that it
converges in L2[0, T ] to Eλ[α | F∞] = α. Recall that G is bounded and continuous.
Hence limn→∞ J

γ[αn] = Jγ[α]. Since Jγ is lower semicontinuous, conclude that α∗

is indeed the desired minimizer:

Jγ[α∗] ≤ lim inf
n→∞

Jγ[α∗n] ≤ lim inf
n→∞

Jγ[αn] = Jγ[α].

This concludes the proof for the case G(0) <∞.
Now suppose G(0) = ∞. Let ν be the measure defined in the proof of Lemma 4.2.
For n ∈ N, define measures νn via νn(dt) := 1(1/n,∞)(t)ν(dt). As in the proof of
Proposition 4.5 in Gatheral et al. (2012), consider approximations Gn of G defined
via

Gn(t) := G(∞−) +

∫
(0,∞)

(s− t)+νn(ds). (4.7)
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Each Gn is continuous, nonincreasing, nonnegative and satisfies Gn(0) < ∞. The
same arguments as in Lemma 4.2 show that every Gn(| · |) corresponds to a func-
tion fn as in (4.3) and a functional Jγn as in (4.2), where ν is replaced with νn.
Let (αn)n∈N be a minimizing sequence for Jγ in A1. Define the function f as in (4.3).
Since f ≥ fn, conclude from (4.2) that Jγ[αn] ≥ Jγn [αn]. For each n ∈ N, it was
already shown that a unique minimizer α∗n of Jγn exists and is nonnegative. Con-
clude that Jγ[αn] ≥ Jγn [αn] ≥ Jγn [α∗n]. Since (αn)n∈N is a minimizing sequence, the
preceding inequalities imply that the sequence(∫ T

0

α∗n(t)2 dt
)
n∈N

is uniformly bounded. By passing to a subsequence if necessary, assume without
loss of generality that the sequence (α∗n)n∈N converges weakly in L2[0, T ] to some
nonnegative function α∗.
The set [0, T ] is compact, hence the Fourier transforms α̂∗n converge pointwise to α̂∗.
Since fn increases pointwise to f , conclude with Fatou’s lemma that

inf
α∈A1

Jγ[α] = lim
n→∞

Jγ[αn]

≥ lim inf
n→∞

Jγn [α∗n]

= lim inf
n→∞

(γ
2

∫
|α̂∗n(t)|2 dt+Gn(∞−)|α̂∗n(0)|2 +

1

2

∫
|α̂∗n(t)|2fn(t) dt

)
≥ Jγ[α∗],

as desired.

4.2 Symmetric total monotonicity

Numerical simulations show that for many, but not all, convex and nonincreasing
decay kernels, the minimizer α∗ of Jγ for γ > 0 is convex. The results in this section
originate from a search for sufficient conditions that ensure the convexity of α∗. It
will turn out that total monotonicity is such a condition, but in fact implies much
more: In particular, α∗ is itself completely monotone on [0, T/2].

A decay kernel G : (0,∞)→ [0,∞) is said to be completely monotone if it is smooth
on (0,∞) and satisfies (−1)nG(n) ≥ 0 for all n ∈ N. If G is completely monotone,
then it is convex and nonincreasing and thus of positive type. Furthermore, it can
be represented as the Laplace transform of a positive Radon measure on [0,∞)
(Bernstein, 1929). Notice that this is not necessarily true if G is only completely
monotone on (0, τ) for some τ <∞.
A function f : [0, T ] → R shall be called symmetrically totally monotone if it is
analytic on (0, T ) and there are nonnegative coefficients (z2k)k∈N such that its power
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series development in T/2 is of the form

f(t) =
∞∑
k=0

z2k(t− T/2)2k, t ∈ (0, T ).

The following theorem is the main result of this chapter.

Theorem 4.6. Suppose G is completely monotone. Then the following statements
are true:

(i) For every γ > 0, the unique minimizer of Jγ is symmetrically totally mono-
tone.

(ii) For γ = 0, let X∗ be the unique minimizer of J0 in A0. Then −X∗ admits a
symmetrically totally monotone derivative on (0, T ).

The proof of Theorem 4.6 requires some general results about symmetrically totally
monotone functions.
For h > 0, introduce the notation ∆hf(t) := f(t+h)−f(t). Furthermore, say that a
function f : [0, T ]→ R is symmetric around T/2 if f(t) = f(T − t) for all t ∈ (0, T ),
and that it is absolutely monotone if f (n) ≥ 0 for all n ∈ N.

Lemma 4.7. Let f : (0, T ) → R be analytic. Then the following conditions are
equivalent:

(i) f is symmetrically totally monotone.

(ii) f is symmetric around T/2, completely monotone on (0, T/2) and absolutely
monotone on (T/2, T ).

(iii) f is symmetric around T/2 and, for every t ∈ (T/2, T ), n ∈ {1, 2, . . . } and
h > 0 with t+ nh < T,

∆n
hf(t) =

n∑
k=0

(−1)n−k
(
n

k

)
f(t+ kh) ≥ 0.

Proof. (i) ⇒ (iii) is easily proved with induction over n.
(iii) ⇒ (ii) follows from results due to Bernstein (1914, p. 451): A function sat-
isfying (iii) (without necessarily being analytic a priori) is absolutely monotone
on (T/2, T ) and admits an analytic continuation g to all of (0, T ). By analyticity, g
must coincide with f . Conclude from symmetry around T/2 that f is completely
monotone on (0, T/2).

(ii) ⇒ (i) is again straightforward: Since f is completely monotone on (0, T/2) and
absolutely monotone on (T/2, T ), conclude that f (2n)(T/2) ≥ 0 and f (2n+1)(T/2) = 0
for all n ∈ N. Develop f into a power series in T/2 to prove the claim.
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The condition of analyticity cannot be dropped. The function t 7→ arcsin(|1 − t|)
on [0, 2] provides a counterexample: It is straightforward to show that it satisfies
condition (ii); but its first derivative jumps in t = 1, so it is not analytic, and
therefore not symmetrically totally monotone.

Lemma 4.8. Let (fn)n∈N be a sequence of symmetrically totally monotone functions
on (0, T ), and T a dense subset of (0, T ) such that limn→∞ fn(t) exists and is finite
for every t ∈ T. Then

f : (0, T )→ R, f(t) = lim
n→∞

fn(t),

is well-defined and symmetrically totally monotone. Furthermore, (fn)n∈N converges
uniformly to f on compact subsets of (0, T ), and the coefficients in the power se-
ries development fn(t) =

∑∞
k=0 z

n
k (t − T/2)k converge to those in the power series

development f(t) =
∑∞

k=0 zk(t− T/2)k.

Proof. Each function fn is convex. Theorem 10.8 in Rockafellar (1970) shows that f
is well-defined, that (fn)n∈N converges uniformly on compact subsets, and that f is
convex and thus continuous on (0, T ).
Clearly, limn→∞∆k

hfn(t) = ∆k
hf(t) for every t ∈ (T/2, T ), n ∈ {1, 2, . . . } and h > 0

with t + nh < T . As stated in the proof of Lemma 4.7, it follows from Bernstein
(1914) that f is analytic on (T/2, T ) and admits an analytic continuation g to all
of (0, T ).
Since each fn is symmetrically totally monotone, there are sequences (znk )k∈N satis-
fying zn2k ≥ 0 and zn2k+1 = 0 for every k ∈ N such that fn(t) =

∑∞
k=0 z

n
k (t − T/2)k.

Furthermore, there is a sequence (zk)k∈N such that g(t) =
∑∞

k=0 zk(t− T/2)k.
Notice that

z0 = g(T/2) = lim
n→∞

fn(T/2) = lim
n→∞

zn0

by continuity. Next, consider the functions fn,1(t) =
∑∞

k=0 z
n
k+1|t− T/2|k. Conclude

that each fn,1 is convex and that fn,1(T/2) = zn1 and

fn,1(t) = sgn(t− T/2)
∞∑
k=0

znk+1(t− T/2)k =
fn(t)− zn0
|t− T/2|

for t ∈ (0, T/2) ∪ (T/2, T ). Hence the sequence (fn,1)n∈N converges pointwise
on (0, T/2) ∪ (T/2, T ) to the function g1(t) := (g(t) − z0)/|t − T/2|. Using once
again Theorem 10.8 from Rockafellar (1970), conclude that g1 has a continuous and
convex extension to all of (0, T ) and that the sequence (fn,1)n∈N converges to g1
locally uniformly. It follows that

z1 = g1(T/2) = lim
n→∞

fn,1(T/2) = lim
n→∞

zn1 .

By considering the convex functions fn,2(t) =
∑∞

k=0 z
n
k+2(t − T/2)k, conclude with

the same arguments that z2 = limn→∞ z
n
2 . Iterate this argument to show that zk =

limn→∞ z
n
k and thus z2k ≥ 0 and z2k+1 = 0 for every k ∈ N.
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This implies that g is symmetrically totally monotone. Recall that f = g on (T/2, T )
by construction. By symmetry of the fn, the function f is symmetric around T/2,
and so is g. Thus f = g on (0, T/2). By continuity, f(T/2) = g(T/2).

Lemma 4.9. The class of all symmetrically totally monotone functions in L2[0, T ]
is weakly closed in L2[0, T ].

Proof. Let M denote the class of all finite measures on [0, T ] whose restrictions
to (0, T ) admit a symmetrically totally monotone Lebesgue density. Show first
thatM is weakly closed with respect to convergence of measures.
Let (µn)n∈N be a sequence inM that converges weakly to a finite measure µ on [0, T ].
Denote by Fn(t) := µn([0, t]) and F (t) := µ([0, T ]) the corresponding distribu-
tion functions. Then Fn(t) → F (t) for all continuity points of F and hence on
a dense subset of (0, T ). Since each Fn is the integral of an absolutely monotone
function on (T/2, T ), it is absolutely monotone itself. In particular, it is convex
on [T/2, T ]. By symmetry, Fn(t) = Fn(T ) +µn({T − t})−Fn(T − t) for t ∈ [0, T/2].
Since µn({T}) ≥ 0 and µn({T − t}) = 0 for all t ∈ (0, T/2], conclude that Fn is
concave on [0, T/2].
As in the proof of Lemma 4.8, conclude that the sequence (Fn)n∈N converges to F
for all t ∈ (0, T ) with a symmetrically totally monotone derivative on (0, T ).
Now let (fn)n∈N be a sequence of symmetrically totally monotone functions that
converge in L2[0, T ] to some function f . Then f is nonnegative, and the finite
measures fn(t) dt converge weakly to a finite measure f(t) dt. Since M is weakly
closed with respect to convergence of measures, f is symmetrically totally monotone.
Conclude that the class of all symmetrically totally monotone functions is closed
in L2[0, T ] and thus weakly closed.

The proof of Theorem 4.6 is in two steps: First, the statement is shown for γ > 0
and generalized exponential decay kernels, i.e., decay kernels G : (0,∞)→ [0,∞) of
the form

G(t) =
n∑
k=1

ake
−
√
bkt, t ∈ (0,∞), (4.8)

where n ∈ N and a1, a2, . . . , an > 0 and bn > bn−1 > · · · > b1 > 0. Then the general
case is deduced from this.

Proof of Theorem 4.6 for γ > 0 and generalized exponential kernels.
Let γ > 0 and assume that G is of the form (4.8). Since G is completely mono-
tone, a unique minimizer α∗ ∈ A1 of Jγ exists by Theorem 4.4. Furthermore, G
is square-integrable and G(0) := limt→0G(t) is finite. Recall the following facts
from Section 3.2: By Lemma 3.9, the function α∗ is symmetric around T/2, and by
Lemma 3.4, there is an η ∈ R such that α∗ satisfies the following Fredholm integral
equation of the second kind:

γα∗(t) +

∫ T

0

G(|t− s|)α∗(s) ds = η, t ∈ [0, T ]. (4.9)
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The latter also follows from Lemma 4.3.
It is enough to consider the case η = γ. All matrices considered in this proof are n-
dimensional square matrices, and all vectors n-dimensional column vectors. Denote
the diagonal matrix with x1, x2, . . . , xn on its main diagonal as diag(xi)i=1,2,...,n and
say that a matrix is a positive diagonal matrix if it is diagonal and all diagonal
entries are positive.
Define A := diag(ai)i=1,2,...,n and B := diag(bi)i=1,2,...,n. Define ψ = (ψ1, ψ2, . . . , ψn)
via

ψk(t) := ak

∫ T

0

e−
√
bk|t−s|α∗(s) ds, t ∈ [0, T ], k = 1, 2, . . . , n.

Let λ := 1/γ and 1 := (1, 1, . . . , 1) ∈ Rn. Conclude from (4.9) that

α∗ = 1− λ
∑
k

ψk = 1− λ1>ψ. (4.10)

The proof proceeds as follows:

1. Show that ψ solves a system of n ordinary differential equations ψ′′ = Mψ −
2AB1/21 with boundary conditions ψ(0) = ψ(T ) and ψ′(0) = B1/2ψ(0).
Here, M is a nonsingular matrix.

2. Show that M has n distinct, real eigenvalues cn > cn−1 > · · · > c1 > 0.
Define C := diag(ci)i=1,2,...,n. Obtain an eigendecomposition M = QCQ−1,
where Q is a nonsingular matrix.

3. Conclude with Step 1. that

α∗(t) = d
(
1 + 2λ1>

(
eM

1/2t + eM
1/2(T−t))N−11), t ∈ [0, T ], (4.11)

where d is a positive constant and N is a nonsingular matrix.

4. Use the eigendecomposition of M to rewrite (4.11) as

α∗(t) = d
(
1 + 1>E(t)Ñ−11

)
, t ∈ [0, T ]. (4.12)

Here, Ñ is a nonsingular matrix and
(
E(t)

)
t∈[0,T ] is a class of positive diago-

nal matrices where each diagonal entry is a symmetrically totally monotone
function of t.

5. Decompose Ñ−1 = Ñ1(Ñ2+Ñ3)
−1Ñ4 such that Ñ1 and Ñ3 are positive diagonal

matrices, Ñ2 is positive definite, and all off-diagonal entries of (Ñ2 + Ñ3)
−1 are

nonpositive.

6. Show that all entries of Ñ−12 Ñ4 1 are nonnegative. Show that this implies that
all entries of Ñ−11 are nonnegative.

7. Conclude with (4.12) and Step 6. that α∗ is symmetrically totally monotone.
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1. Recall that A = diag(ai)i=1,2,...,n and B = diag(bi)i=1,2,...,n are positive diagonal
matrices, and that bn > bn−1 > · · · > b1. Notice that 11> is the matrix containing
only ones. Define

M := B + 2λAB1/211> =


b1 + 2λa1

√
b1 2λa1

√
b1 · · · 2λa1

√
b1

2λa2
√
b2 b2 + 2λa2

√
b2 · · · 2λa2

√
b2

...
... . . . ...

2λan
√
bn 2λan

√
bn · · · bn + 2λan

√
bn

 .

1.1 ψ solves the system of n ordinary differential equations ψ′′ = Mψ − 2AB1/21.
Let t ∈ [0, T ] and k = 1, 2, . . . , n. Differentiating and plugging in from (4.10) shows

ψ′′k(t) = ak
√
bk

d

dt

[
−
∫ t

0

e−
√
bk(t−s)α∗(s) ds+

∫ T

t

e−
√
bk(s−t)α∗(s) ds

]
= ak

√
bk

(√
bk

∫ T

0

e−
√
bk|t−s|α∗(s) ds− 2α∗(t)

)
= bkψk(t)− 2ak

√
bkα

∗(t)

= bkψk(t)− 2ak
√
bk
(
1− λ

∑
l

ψl(t)
)
.

Conclude ψ′′ = (B + 2λAB1/211>)ψ − 2AB1/21 = Mψ − 2AB1/21.

1.2 ψ(0) = ψ(T ).
By Lemma 3.9, α∗ is symmetric around T/2, i.e., α∗(t) = α∗(T − t) for t ∈ [0, T ].
Let t ∈ [0, T ] and k = 1, 2, . . . , n. Integration by substitution shows

ψk(t) = ak

∫ T

0

e−
√
bk|t−s|α∗(s) ds

= ak

∫ T

0

e−
√
bk|(T−t)−(T−s)|α∗(T − s) ds

= ak

∫ T

0

e−
√
bk|(T−t)−s|α∗(s) ds

= ψk(T − t).

In particular, ψk(0) = ψk(T ).

1.3 ψ′(0) = B1/2ψ(0).
Let k = 1, 2, . . . , n. Then

ψ′k(0) = ak
√
bk

[
−
∫ t

0

e−
√
bk(t−s)α∗(s) ds+

∫ T

t

e−
√
bk(s−t)α∗(s) ds

]
t=0

= ak
√
bk

∫ T

0

e−
√
bksα∗(s) ds

=
√
bk ψk(0).
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2.1 M has n distinct, real eigenvalues c1, c2, . . . , cn. They satisfy the interlacing
inequalities cn > bn > cn−1 > bn−1 > · · · > c1 > b1 > 0.
Let v := 2λ (a1

√
b1, a2

√
b2, . . . , an

√
bn) and x ∈ R+ \ {b1, b2, . . . , bn}. By the matrix

determinant lemma,

det(xI −M) = det(xI −B − v1>)

=
(
1− v>(xI −B)−11

)
det(xI −B)

=
(

1− 2λ
∑
k

ak
√
bk

x− bk

)∏
k

(x− bk).

The following argument is due to Terrell (2017). Define f : R+ \{b1, b2, . . . , bn} → R
via

f(x) := 1− 2λ
∑
k

ak
√
bk

x− bk
.

Let k = 1, 2, . . . , n− 1. Then f is continuous on (bk, bk+1), with

lim
x↘bk

f(x) = −∞ and lim
x↗bk+1

f(x) = +∞.

Conclude that f has a root ck ∈ (bk, bk+1). Furthermore,

lim
x↘bn

f(x) = −∞ and lim
x↗+∞

f(x) = 1,

showing that f has another root cn ∈ (bn,+∞). Since det(ckI −M) = 0 for k =
1, 2, . . . , n, each ck is an eigenvalue of M .

2.2 If c is an eigenvalue of M , then(a1√b1
c− b1

,
a2
√
b2

c− b2
, . . . ,

an
√
bn

c− bn

)
is a corresponding eigenvector.
Let c ∈ R+ \ {b1, b2, . . . , bn} be an eigenvalue of M , and v = (v1, v2, . . . , vn) a
corresponding eigenvector. The definition Mv = cv translates into the following
system of equations:

bkvk + 2λak
√
bk
∑
l

vl = cvk, k = 1, 2, . . . , n.

It must be true that
∑

l vl 6= 0. Otherwise bkvk = cvk for all k = 1, 2, . . . , n. Since c /∈
{b1, b2, . . . , bn} (see Step 2.1), this implies v = 0, which contradicts the definition
of an eigenvector. Hence one may set

∑
l vl = 1/(2λ) without loss of generality.

Obtain

v =
(a1√b1
c− b1

,
a2
√
b2

c− b2
, . . . ,

an
√
bn

c− bn

)
.

Now let cn > cn−1 > · · · > c1 > 0 be the eigenvalues of M .
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Define C := diag(ci)i=1,2,...,n,

Q̃ :=
( 1

cj − bi

)
i,j=1,2,...,n

and Q := AB1/2Q̃.

2.3 M = QCQ−1.
By Step 2.2, the columns of Q are eigenvectors corresponding to the eigenval-
ues c1, c2, . . . , cn. Eigenvectors corresponding to different eigenvalues are linearly
independent, hence Q is nonsingular. Obtain the eigendecomposition M = QCQ−1.

2.4 1>Q = 1/(2λ)1>.
This follows from Step 2.2, where each eigenvector in Q was assumed to sum
to 1/(2λ).

3. Define
d :=

(
1 + 2λ

∑
k

ak√
bk

)−1
> 0.

Let M1/2 := Q diag(
√
ci)i=1,2,...,nQ

−1 and denote by

eM
1/2T = Q diag(e

√
ciT )i=1,2,...,nQ

−1

the matrix exponential of M1/2T. Define

N := A−1
(
M1/2

(
eM

1/2T − I
)

+B1/2
(
eM

1/2T + I
))
,

where I denotes the identity matrix.
The general solution of f ′′ = Mf − 2AB1/21 is

f(t) = eM
1/2tz0 + eM

1/2(T−t)z1 + 2dAB−1/21, t ∈ [0, T ],

for z0, z1 ∈ Rn. To see this, let t ∈ [0, T ] and z0, z1 ∈ Rn. Writing d = 1/(1 +
2λ1>AB−1/21) shows

dMAB−1/21 = d
(
AB1/21 + 2λAB1/211>AB−1/21

)
= d

(
1 +

1

d
− 1
)
AB1/21

= AB1/21.

Therefore,

f ′′(t) = M
(
eM

1/2tz0 + eM
1/2(T−t)z1

)
= Mf(t)− 2dMAB−1/21

= Mf(t)− 2AB1/21.

It remains to choose z0 and z1 in such a way that the boundary conditions from
Steps 1.2 and 1.3 are satisfied. First, f(0)− f(T ) = (eM

1/2T − I)(z1 − z0).
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By Step 2.3, the matrix

eM
1/2T − I = Q diag

(
e
√
ciT
)
i=1,2,...,n

Q−1 − I = Q diag
(
e
√
ciT − 1

)
i=1,2,...,n

Q−1

is nonsingular. Hence f(0) = f(T ) if and only if z0 = z1. Set z0 = z1. Second,

f ′(0)−B1/2f(0) =
(
M1/2

(
I − eM1/2T

)
−B1/2

(
I + eM

1/2T
))
z0 − 2dA1

= −A(Nz0 + 2d1).

It is shown in Step 5.5 that N is nonsingular. Hence, f ′(0) = B1/2f(0) if and only
if z0 = −2dN−11. Conclude

ψ(t) = eM
1/2tz0 + eM

1/2(T−t)z1 + 2dAB−1/21

=
(
eM

1/2t + eM
1/2(T−t))z0 + 2dAB−1/21

= 2d
(
AB−1/2 −

(
eM

1/2t + eM
1/2(T−t))N−1)1

for all t ∈ [0, T ]. Notice that 1− 2dλ1>AB−1/21 = 1− d(1/d− 1) = d, so

α∗(t) = 1− λ1>ψ(t)

= 1− 2dλ1>AB−1/21 + 2dλ1>
(
eM

1/2t + eM
1/2(T−t))N−11

= d
(
1 + 2λ1>

(
eM

1/2t + eM
1/2(T−t))N−11)

for all t ∈ [0, T ].

4. Define

E(t) := diag
(e√cit + e

√
ci(T−t)

e
√
ciT − 1

)
i=1,2,...,n,

t ∈ [0, T ].

E(t) is a positive diagonal matrix for all t ∈ [0, T ]. In particular, it is nonsingular.
Define further

Ñ := A−1
(
QC1/2 +B1/2QE(T )

)
.

With Step 2.3, obtain

N = A−1
(
QC1/2 diag

(
e
√
ciT − 1

)
i=1,2,...,n

Q−1 +B1/2Q diag
(
e
√
ciT + 1

)
i=1,2,...,n

Q−1
)

= A−1
(
QC1/2 +B1/2QE(T )

)
diag

(
e
√
ciT − 1

)
i=1,2,...,n

Q−1

= Ñ diag
(
e
√
ciT − 1

)
i=1,2,...,n

Q−1.

Hence N is nonsingular if and only if Ñ is nonsingular. This, in combination with
Steps 2.3, 2.4 and 3., shows, for all t ∈ [0, T ],

α∗(t) = d
(
1 + 2λ1>Q diag

(
e
√
cit + e

√
ci(T−t)

)
i=1,2,...,n

Q−1N−11
)

= d
(
1 + 1>E(t)Ñ−11

)
.
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5. Define the real-valued functions

β(x) :=
∏
l

(x− bl), γ(x) :=
∏
l

(x− cl).

Let

D1 := diag
( β(ck)

γ′(ck)

)
k=1,2,...,n,

and D2 := diag
(
− γ(bk)

β′(bk)

)
k=1,2,...,n.

It will be shown in Step 5.2 that D1 and D2 are positive diagonal matrices. In
particular, they are nonsingular.

5.1 Q̃ is nonsingular. It holds that Q̃−1 = D1Q̃
>D2 and Q̃−11 = D11.

The matrix −Q̃ is known as a Cauchy matrix. The results are due to Schechter
(1959).

5.2 D1 and D2 are positive diagonal matrices.
Let k = 1, 2, . . . , n. Then

β(ck)

γ′(ck)
=

∏
l(ck − bl)∑

m

∏
l 6=m(ck − cl)

=

∏
l(ck − bl)∏

l 6=k(ck − cl)
= (ck − bk)

∏
l 6=k

ck − bl
ck − cl

.

Recall from Step 2.1 that ck > bk, and, for each l = 1, 2, . . . , n, that ck > bl if and
only if ck > cl. Similarly,

− γ(bk)

β′(ck)
= (ck − bk)

∏
l 6=k

bk − cl
bk − bl

> 0.

Now define

Ñ1 := C−1/2, Ñ2 := Q̃>D2B
−1/2Q̃, Ñ3 := D−11 E(T )C−1/2, Ñ4 := Q̃>D2B

−1.

All four matrices are nonsingular (see Steps 5.1 and 5.2 in particular). It will be
shown in Step 5.5 that Ñ2 + Ñ3 is nonsingular.

5.3 Ñ−1 = Ñ1(Ñ2 + Ñ3)
−1Ñ4.

By definition, Q̃ = A−1B−1/2Q. Using Step 5.1:

Ñ−14 (Ñ2 + Ñ3)Ñ
−1
1 = BD−12 Q̃−T

(
Q̃>D2B

−1/2Q̃+D−11 E(T )C−1/2
)
C1/2

= B1/2Q̃C1/2 +B(D1Q̃
>D2)

−1E(T )

= A−1QC1/2 +BQ̃E(T )

= A−1
(
QC1/2 +B1/2QE(T )

)
= Ñ .



102 CHAPTER 4. COMPLETELY MONOTONE DECAY KERNELS

5.4 Ñ1 and Ñ3 are positive diagonal matrices, and Ñ2 is positive definite.
B,C and E(T ) are positive diagonal matrices. By Step 5.2, the same is true
for D1 and D2. Hence D2B

−1/2 is positive definite. Since Q̃ is nonsingular (see
Step 5.1), Ñ2 = Q̃>D2B

−1/2Q̃ is also positive definite.

5.5 Ñ2 + Ñ3, Ñ and N are nonsingular.
It follows from Step 5.4 that Ñ2 + Ñ3 is positive definite. Every positive definite
matrix is nonsingular (Horn and Johnson, 2013, Corollary 7.1.7). Since Ñ1 and Ñ3

are nonsingular, Ñ is nonsingular. It was shown in Step 4. that N is nonsingular if
(and only if) Ñ is nonsingular.

A square matrix is called a Z-matrix if all its off-diagonal entries are nonpositive.
Given that some matrix U is a Z-matrix, the following two conditions are equivalent:

(M1) There exists a positive diagonal matrix V such that UV + V U> is positive
definite.

(M2) U is nonsingular and all entries of U−1 are nonnegative.

In this case, U is called anM-matrix. In particular, (M1) implies that every positive
definite Z-matrix is anM -matrix. See Theorem 2.3 in Berman and Plemmons (1994)
for proofs and further equivalent characterizations of M -matrices.

5.6 Ñ−12 is a Z-matrix.
With Step 5.1, obtain

Ñ−12 = Q̃−1B1/2D−12 Q̃−T = D1Q̃
>D2B

1/2Q̃D1.

D1 is a positive diagonal matrix, so it suffices to show that all off-diagonal entries
of Q̃>D2B

1/2Q̃ are nonpositive. Fix i, j ∈ {1, 2, . . . , n} such that i 6= j. Define

z :=
(
Q̃>D2B

1/2Q̃
)
ij

= −
∑
k

√
bk γ(bk)

(bk − ci)(bk − cj)β′(bk)

= −
∑
k

√
bk
∏

l 6=i,j(bk − cl)∏
l 6=k(bk − bl)

.

The following argument is due to Petrov (2017). Define f : R+ → R,

f(x) = −
√
x
∏
l 6=i,j

(x− cl).

There are positive constants z0, z1, . . . , zn−2 such that

f(x) = −
n−2∑
k=0

(−1)n−2−kzk x
k+1/2 =

n−2∑
k=0

(−1)n−1−kzk x
k+1/2.
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Differentiating n− 1 times yields

f (n−1)(x) =
n−2∑
k=0

(
(−1)n−1−kzk x

k−n+3/2

n−2∏
l=0

(k + 1/2− l)
)
.

Let k = 0, 1, . . . , n−2. The factor k+1/2−l is positive if l = 0, 1, . . . , k and negative
if l = k + 1, k + 2, . . . , n− 2. Hence

(−1)n−1−k
n−2∏
l=0

(k + 1/2− l) = (−1)n−1−k(−1)n−2−(k+1)+1

n−2∏
l=0

|k + 1/2− l|

= −
n−2∏
l=0

|k + 1/2− l|

< 0.

Conclude that f (n−1)(x) < 0 for all x > 0.

The Lagrange polynomial interpolation p : [0,∞)→ R of f in b1, b2, . . . , bn is

p(x) =
∑
k

f(bk)
∏
l 6=k

x− bl
bk − bl

=
(
−
∑
k

√
bk
∏

l 6=i,j(bk − cl)∏
l 6=k(bk − bl)

)
xn−1 + q(x)

= zxn−1 + q(x)

for some polynomial q of degree at most n − 2. The interpolation is exact in x =
b1, b2, . . . , bn. By Rolle’s theorem, there is an x̃ > 0 such that f (n−1)(x̃) = p(n−1)(x̃)
(Milne-Thomson, 2000, Chapter 1). Hence

0 > f (n−1)(x̃) = p(n−1)(x̃) = (n− 1)! z,

showing that z =
(
Q̃>D2B

1/2Q̃
)
ij
is nonpositive if i 6= j.

5.7 Ñ−12 is a nonsingular M-matrix.
According to Step 5.6, Ñ−12 is a Z-matrix. Since Ñ2 is positive definite by Step 5.4,
its inverse Ñ−12 is positive definite as well (Horn and Johnson, 2013, Theorem 7.2.1).
Hence Ñ−12 is a nonsingular M -matrix by (M1).

5.8 All entries of (Ñ−12 + Ñ−13 )−1 are nonnegative.
As a positive diagonal matrix, Ñ−13 is positive definite and a nonsingular M -matrix.
The sum of positive definite Z-matrices is again a positive definite Z-matrix. Con-
clude that Ñ−12 + Ñ−13 is a positive definite Z-matrix (see Step 5.7); and therefore
an M -matrix. By (M2), all entries of (Ñ−12 + Ñ−13 )−1 are nonnegative.
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5.9 All off-diagonal entries of (Ñ2 + Ñ3)
−1 are nonpositive.

By the Woodbury matrix identity,

(Ñ2 + Ñ3)
−1 = Ñ−13 − Ñ−13 (Ñ−12 + Ñ−13 )−1Ñ−13 .

Recall that Ñ−13 is a positive diagonal matrix. It follows from Step 5.8 that all
off-diagonal entries of Ñ−13 (Ñ−12 + Ñ−13 )−1Ñ−13 are nonnegative.

6.1 All entries of Ñ−12 Ñ4 1 are nonnegative.
Using Step 5.1, obtain

Ñ−12 Ñ4 1 = Q̃−1B1/2D−12 Q̃−T Q̃>D2B
−11

= D1Q̃
>D2B

−1/2 1

= D1Q̃
>D2B

−1/2Q̃ Q̃−11

= D1Ñ2D11.

By Step 5.7, Ñ−12 is a nonsingularM -matrix. Hence all entries of Ñ2 are nonnegative
by (M2). The same is true for D1 by Step 5.2.

6.2 All entries of (Ñ2 + Ñ3)
−1Ñ2 are nonnegative.

Define U := (Ñ2 + Ñ3)
−1Ñ2. Writing U = I − (Ñ2 + Ñ3)

−1Ñ3 shows that all off-
diagonal entries of U are nonnegative (see Steps 5.4 and 5.9).

Now use the following result about positive definite matrices: If two matrices M1

and M2 are positive definite, then M1−M2 is positive definite if and only if M−1
2 −

M−1
1 is positive definite (Horn and Johnson, 2013, Corollary 7.7.4). The matri-

ces (Ñ2 + Ñ3), Ñ3 and (Ñ2 + Ñ3) − Ñ3 = Ñ2 are positive definite (see Step 5.4).
Hence

Ñ−13 − (Ñ2 + Ñ3)
−1 = UÑ−13

is positive definite. All entries on the main diagonal of a positive definite matrix are
nonnegative. Therefore, all entries on U ’s main diagonal are nonnegative.

6.3 All entries of Ñ−11 are nonnegative.
All entries of Ñ1, (Ñ2+Ñ3)

−1Ñ2 and Ñ−12 Ñ4 1 are nonnegative (see Steps 6.1 and 6.2).
Hence all entries of the product

Ñ1(Ñ2 + Ñ3)
−1Ñ2Ñ

−1
2 Ñ4 1 = Ñ1(Ñ2 + Ñ3)

−1Ñ4 1 = Ñ−11

are nonnegative.

7. Recall that
α∗(t) = d

(
1 + 1>E(t)Ñ−11

)
, t ∈ [0, T ].

Since

E(t) = diag
(e√ciT/2(e√ci(t−T/2) + e

√
ci(T/2−t))

e
√
ciT − 1

)
, t ∈ [0, T ],



4.2. SYMMETRIC TOTAL MONOTONICITY 105

conclude that there are y1, y2, . . . , yn ∈ R for which

α∗(t) = d
(

1 +
n∑
i=1

yi
(
e
√
ci(t−T/2) + e

√
ci(T/2−t)

))
= d

(
1 +

n∑
i=1

yi

∞∑
k=0

(
1 + (−1)k

) (√
ci(t− T/2)

)k
k!

)
= d

(
1 +

∞∑
k=0

( n∑
i=1

2yic
k
i

(2k)!

)
(t− T/2)2k

)
.

Step 6.3 shows that y1, y2, . . . , yn ≥ 0. Recall that d > 0. Hence α∗ is symmetrically
totally monotone.

Proof of Theorem 4.6, general case.
(i) Let γ > 0. Suppose first that G(0) := limt→0G(t) < ∞. Assume without loss
of generality that G(0) = 1. By Bernstein’s theorem, there is a Borel probabil-
ity measure µ on [0,∞) such that G is the Laplace transform of µ, i.e., G(t) =∫
[0,∞)

e−stµ(ds) for t ∈ [0,∞).

The set of finite convex combinations of Dirac measures is dense in the set of all Borel
probability measures on [0,∞) with respect to weak convergence. Hence there exists
a sequence (µn)n∈N of such measures that converges weakly to µ. The corresponding
Laplace transforms Gn of µn are all generalized exponential kernels of the form (4.8).
Weak convergence of (µn)n∈N to µ implies that limt→∞Gn(t) = G(t) for all t ∈ [0,∞).
For n ∈ N and α ∈ A1, define

Jγn [α] :=
1

2

∫ T

0

(
γα(t)2 +

∫ T

0

Gn(|t− s|)α(t)α(s) ds
)

dt.

Notice that the restrictions to [0, T ] of all Gn and G are elements of L2[0, T ]. Let ‖·‖
denote the standard L2-norm on [0, T ]. Apply the Cauchy-Schwarz inequality twice
to see that∣∣Jγ[α]− Jγn [α]

∣∣ ≤ ‖α‖ ∫ T

0

|α(t)|
(∫ T

0

(
G(|t− s|)−Gn(|t− s|)

)2
ds
)1/2

dt

≤ ‖α‖2
(∫ T

0

∫ T

0

(
G(|t− s|)−Gn(|t− s|)

)2
ds dt

)1/2
≤
√

2T ‖α‖2 ‖G−Gn‖.

By dominated convergence, ‖G−Gn‖ → 0. Hence Jγn [α] converges to Jγ[α] uniformly
in functions α from any bounded subset of L2[0, T ].

For n ∈ N, denote by α∗n the minimizer of Jγn in A1. As shown in the first step of the
proof, each α∗n is symmetrically totally monotone. Since the constant function α(t) =
1/T belongs to A1, conclude that there is a constant C independent of n such
that ‖α∗n‖ ≤ C. By passing to a subsequence if necessary, assume without loss of
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generality that the sequence (α∗n)n∈N converges weakly in L2[0, T ] to a function α∗.
By Lemma 4.9, the function α∗ is symmetrically totally monotone.
Choose an arbitrary α ∈ A1. Then Jγn [α] ≥ Jγn [α∗n] and by uniform convergence of
the functionals Jγn and the lower semicontinuity of Jγ,

Jγ[α] = lim
n→∞

Jγn [α] ≥ lim inf
n→∞

Jγn [α∗n] = lim inf
n→∞

Jγ[α∗n] ≥ Jγ[α∗].

This concludes the proof for γ > 0 and G(0) <∞.
If γ > 0 and G(0) = ∞, approximate G via finite kernels Gn as in (4.7). As in
the final part of the proof of Theorem 4.4, conclude that the symmetrically totally
monotone minimizers for Gn converge weakly in L2[0, T ] to the minimizer for G.
Thus, the latter is also symmetrically totally monotone by Lemma 4.9.
(ii) Let γ = 0. Denote by X∗ the minimizer of J0 in A0. Approximate the probability
measure − dX∗(t) in the weak topology by probability measures αn(t) dt, where
each αn is a bounded nonnegative function on [0, T ] satisfying

∫ T
0
αn(t) dt = 1.

Then choose a sequence (γn)n∈N of positive real numbers that decreases to zero and
satisfies

lim
n→∞

γn

∫ T

0

αn(t)2 dt = 0.

Conclude from (4.1) that limn→∞ J
γn [αn] = J0[X∗].

Let α∗n denote the minimizer of Jγn in A1. By passing to a subsequence if necessary,
assume without loss of generality that the probability measures µn(dt) = α∗n(t) dt
on [0, T ] converge weakly to a probability measure µ on [0, T ]. Conclude from the
proof of Lemma 4.9 that the restriction of µ to (0, T ) is absolutely continuous with
respect to the Lebesgue measure and admits a symmetrically totally monotone den-
sity. Define Xn := 1 − µn([0, t]) and X := 1 − µ([0, t]). Then all Xn and X are
elements of A0. Obtain

J0[X] = lim
n→∞

J0[Xn] ≤ lim inf
n→∞

Jγn [α∗n] ≤ lim inf
n→∞

Jγn [αn] = J0[X∗].

By uniqueness of the minimizer, X = X∗.



Chapter 5

Outlook

This thesis studies optimal execution strategies in the presence of transient price
impact and transaction costs. Open questions remain, both economic and mathe-
matical. I would like to briefly discuss two promising directions for future research.

1. The Nash equilibria obtained in Chapters 2 and 3 are partial equilibria: While
all strategic investors are aware of each other, price impact is completely mechanic,
and random fluctuations in the asset price are implicitly attributed to non-strategic
“noise traders”. Almost all mathematical models of optimal execution are partial
equilibrium models (Kyle, 1985, comes close to being an exception). In this respect,
they provide a middle ground between models where the asset price is purely exoge-
nous (such as the Black-Scholes model) and full equilibrium models where all market
participants, including market makers and noise traders, behave strategically.

In my view, it would be worthwhile to study optimal execution in the context of a
full equilibrium. This would merge research on optimal execution with research on
optimal market making (see, e.g., Guéant, 2017, and the references therein) and ef-
ficient markets (see the discussion and references in the introduction of Bouchaud
et al., 2004). A full equilibrium model would have to address two important issues:
First, in what sense is the market equilibrium free of arbitrage and price manipula-
tion? Second, different market participants—such as liquidating investors, arbitrage
traders and market makers—are primarily characterized by differences in informa-
tion. How can this be incorporated into the model, and what is the appropriate
equilibrium concept?

One of the economic problems that could be studied in a full equilibrium model is
the influence that non-designated market making has on market quality. Bershova
and Rakhlin (2013) echo concerns that liquidity provided by non-designated market
makers (e.g., by high frequency traders) could be “fictitious; although such liquidity
is plentiful during ‘normal’ market conditions, it disappears at the first sign of
trouble” (p. 3). To test this claim in a theoretical setting, it is necessary to model
non-designated market makers who interact strategically with liquidity takers with
different information sets.
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2. One of the observations in Chapter 3 was that order anticipation strategies, which
are typically associated with high frequency traders, do not necessarily cause price
overshooting and in fact often reduce the price drop caused by a large sell order.
Brunnermeier and Pedersen (2005) make a strong point about the danger of price
overshooting. Linking opportunistic trading with increased (or reduced) price over-
shooting would serve as a strong argument for (or against) the harmfulness of high
frequency trading. Theoretical research should determine for what types of price
impact and transaction costs price overshooting occurs; and empirical research is
necessary to study price overshooting in real financial markets.
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