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Abstract

Increasing energy efficiency is one of the main goals in current German energy
and climate policies. We study the determinants of energy efficiency in the German
manufacturing sector based on official firm-level production census data. By means
of a stochastic frontier analysis, we estimate the cost-minimizing energy demand
function at the two-digit industry level using firm-level heterogeneity. Apart from
the identification of the determinants of the energy demand function, we also analyze
potential drivers of energy efficiency. Our results suggest that there is still potential
to increase energy efficiency in most industries of the German manufacturing sector.
Furthermore, we find that in most industries exporting and innovating firms as well
as those investing in environmental protection measures are more energy efficient
than their counterparts. In contrast, firms which are regulated by the European
Union Emissions Trading System are mostly less energy efficient than non-regulated
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1 Introduction

Increasing energy efficiency is a cornerstone of current climate and energy policies in
many countries around the world. The European Union (EU) has set the goal to increase
energy efficiency by 20 percent by 2020 compared to 2008 in its 20-20-20 targets (EC,
2010).! Targets for increasing energy efficiency are set to reduce emissions resulting from
the use of fossil fuels and enhance energy security by reducing import dependencies.
Beyond 2020, the EU targets for the year 2030 include an increase in energy efficiency
of at least 27 percent compared to 2008 (EC, 2014).

Germany, in particular, has set ambitious goals to increase energy efficiency in the
framework of the Energy Transition. The main energy efficiency target consists in in-
creasing final energy productivity? by 2.1 percent per year until 2050. From 2008 to
2015, final energy productivity, however, only increased by 1.3 percent per year on av-
erage, falling short of the target. To reach the objective by 2020 after all, an average
increase of 3.3 percent per year is necessary, which requires Germany to increase its
efforts to improve the energy efficiency in all sectors of the economy. (BMWi, 2016b;
Loschel et al., 2016).

The German manufacturing sector accounts for around 30 percent of final energy
demand and also has to contribute to the overall economy wide targets (BMWi, 2016a).
Apart from final energy demand, the German manufacturing sector is of particular
interest because it is seen as the backbone of the German economy with a share of
20 percent in employment and 25 percent in GDP in 2016 (Destatis, 2017). In addition,
the German manufacturing sector accounts for around 20 percent of Germany’s carbon
dioxide emissions (BMWi, 2016a).

If future energy and climate policy objectives are to be met, efficient policy measures
are of the essence. To evaluate the policy mix and the potential to further increase energy
efficiency in the manufacturing sector, a better comprehension of energy efficiency and
its drivers is crucial. This requires analyses based on comprehensive microdata of the
manufacturing sector incorporating firm heterogeneity. After all, measures to reach the
politically prescribed goals have to be implemented by the individual firms. Thus, we
estimate the firm-level energy demand and energy efficiency for 14 two-digit industries in
the German manufacturing sector using the stochastic frontier analysis (SFA) approach
and data from the official German production census. Furthermore, we analyze different
drivers of the estimated energy (in)efficiencies.

In our analysis, we focus on drivers which are based on policy instruments and firm
characteristics. These drivers can be influenced by policy makers through different reg-
ulatory incentives, either costs or subsidies. Additionally, our analysis provides insights

about the relationship of different firm characteristics and energy efficiency, which can

!The strategy also includes targets for the reduction of greenhouse gas emissions (GHG) and the

increasing use of renewable energy sources (RES).
2Final energy productivity is defined as price adjusted gross domestic product divided by total final

energy consumption.



be influenced by the firm itself and is thus of interest for managements. Consequently,
our contribution includes not only the identification of the potential to increase energy
efficiency at the industry level but also of the influence of different drivers, i.e. the re-
lationship between the underlying energy efficiency and the European Union Emissions
Trading System (EU ETS), the firms’ export status, the firms’ R&D expenditures, their
investments in environmental protection measures, as well as their electricity generation
from renewable energy sources.

We contribute to the literature by applying a parametric stochastic frontier function
approach to the estimation of energy demand and energy efficiency. This is of great
relevance because little is known about the drivers of energy efficiency in manufacturing
based on sound econometric analysis of official microdata. We use official German pro-
duction census data (“AFiD”), i.e. a full sample of all manufacturing firms with more
than 20 employees for the period from 2003 to 2012. This data set is highly reliable and
comprehensive. On top of firms’ energy use, it includes a wide set of covariates allowing
us to capture the firm-level heterogeneity. To our knowledge, there is no other study
applying a stochastic energy demand frontier model to Germany and so far there are
only very few applications to firm-level census data.

Energy efficiency can be estimated using a stochastic frontier function approach, in
the course of which the “frontier” or benchmark of cost-minimizing energy demand is
estimated (as adapted by Filippini and Hunt, 2011). By contrast, previous studies on
energy productivity have usually used energy intensity, i.e. the ratio of total energy
use to an output measure, as an approximation to energy efficiency, which, however,
appears to be inadequate (Lundgren et al., 2016; IEA, 2012; Filippini and Hunt, 2011;
Bhattacharyya, 2011).

That is, it is important to define these terms and distinguish between energy effi-
ciency, as it is analyzed in our study using a SFA, and energy intensity or productivity.
Energy intensity or productivity are often used in the political debate and also to set
political targets as a proxy for energy efficiency. As aforementioned, the German “energy
efficiency” target also refers to an increase in annual energy productivity. The definition
of energy intensity is the ratio of energy consumption to GDP at the state or country
level or energy use per output at the industry or firm level, or per square meter at the
residential level. Energy productivity is the inverse of energy intensity.

Energy efficiency, as we estimate it, is defined as the difference between the actual
and predicted energy use (Filippini and Hunt, 2011). Filippini and Hunt (2011) show —
based on country-level data — that it is not clear if energy intensity is actually a good
proxy for energy efficiency. Lundgren et al. (2016) show the same unclear relationship
based on firm-level data for the Swedish manufacturing sector. The authors compare
the energy efficiency scores derived from a SFA with calculated energy intensities using
a simple correlation analysis. The relationship is expected to be perfectly negatively
correlated, if both are perfectly comparable. The authors find negative correlations in

most sectors, but with a relatively low magnitude. Thus, they cannot confirm that



energy intensity is a clear-cut proxy for energy efficiency.?

While the stochastic frontier function approach has been applied to analyze energy
demand and energy efficiency at the country or state level (Filippini and Hunt, 2011;
Evans et al., 2013; Fillipini and Hunt, 2012; Filippini et al., 2014), the approach can
be even more informative at the firm or plant level taking advantage of the underlying
heterogeneity (Lundgren et al., 2016; Boyd and Lee, 2016). The estimation of the
stochastic energy demand function at the firm level allows comparing firms to a “frontier”
or benchmark of energy efficiency in each individual industry.

The use of individual plant- and firm-level data is very scarce in the literature re-
garding energy efficiency due to limited data availability and the novelty of the use of the
research approach to identify energy efficiency and its drivers. However, the utilization
of microdata is a very important step to exploit in-depth information and heterogeneity
of plants and firms. In an early study, Boyd (2008) analyzes the energy efficiency of corn
mills in the US empirically using publicly unavailable plant data. He uses the stochastic
frontier analysis approach as an energy efficiency management tool. His results support
the ENERGY STAR program by the U.S. Environmental Protection Agency (EPA),
according to which a product or firm is eligible for the energy star if it falls above the
75! percentile of energy efficiency “for comparable products or facilities” (Boyd, 2008).

The studies closest to ours are conducted by Lundgren et al. (2016) and Boyd and
Lee (2016). Lundgren et al. (2016) analyze energy efficiency for 14 industries within
Swedish manufacturing based on individual firm-level data for the years 2000 to 2008.
The authors apply a parametric stochastic frontier approach and the “true random
effects” model by Greene (2005a, 2005b), which allows for firm-specific heterogeneity.
They find considerable inefficiencies, in particular in fuel use compared to electricity
use. Boyd and Lee (2016) use a similar approach to analyze the energy efficiency of
five different metal-based durable manufacturing industries in the United States. They
apply the model to six repeated cross sections for each five-year census for the years
1987 to 2012 using confidential plant-level data on energy use and production from
the quinquennial U.S. Economic Census. They also find considerable inefficiencies and
consistently better electrical efficiency compared to fuel (thermal) efficiency.

Using German production census data, Petrick et al. (2011) analyze the energy use
patterns and energy intensity in the German industry form 1995 to 2006. They find
strong positive correlations between energy intensity, energy use, COs emissions, and
emission intensity. Apart from this study, there is no analysis on energy demand and
energy intensity using panel plant- or firm-level data of the German manufacturing sector
to our knowledge. In contrast to Petrick et al. (2011), we analyze the energy efficiency
of the German manufacturing sector applying a SFA and on top of that contribute a
more recent analysis for the years 2003 to 2012 to the literature.

Our results suggest that there is still potential to improve energy efficiency in most

3For a visual analysis of the covariation, see Lundgren et al. (2016). They conclude that one should

be cautious about using energy intensity as a measurement for energy efficiency.



industries of the German manufacturing sector. Compared to results from the Swedish
manufacturing sector, the potential, however, appears to be smaller. We identify het-
erogeneous levels of energy efficiency at the two-digit industry level. Our results for the
mean time-variant energy efficiency scores range from 0.80 to 0.97, compared to 1 as
the reference point with no inefficiencies present. Energy intensive industries, pulp &
paper (0.85), chemicals (0.86), and basic metals (0.91), have a rather big potential to
increase their energy efficiency. Specifically, energy intensive industries present a con-
siderable lever regarding the effects of energy efliciency improvements on overall energy
use and firms’ energy costs. That is, policy makers should consider to incentivize energy
efficiency increases especially in these industries by applying more comprehensive policy
measures.

With our study, we are also among the first to estimate the own-price elasticities of
energy demand for the German manufacturing sector. The estimated industry-specific
elasticities appear to be rather small in comparison to recent studies of other countries,
ranging from around -0.4 to -0.8. These elasticities give an indication about the re-
sponsiveness of firms to changes in energy prices and thus their reactions to price-based
policy interventions, which is of interest for policy makers.

Additionally, we analyze different drivers of energy efficiency and find that exporting
and innovating firms are more energy efficient than their counterparts in most industries
of the manufacturing sector. Our study is one of the first empirical studies, in which
this positive relationship is identified. Also firms that invest in environmental protection
measures are more energy efficient than their counterparts in many industries. That is,
clean technology adoption and energy efficiency also have a positive relation at the
firm level. Apart from this, firms regulated by the EU ETS are mostly less energy
efficient than non-regulated firms. Comparing our results to the current literature, does
not allow us to draw a comprehensive conclusion about the relationship between the EU
ETS and energy efficiency. Additionally, our analysis shows predominantly no significant
relationship between firms’ electricity self-generation from renewable energy sources and
their energy efficiency.

The remainder of the paper is structured as follows. In Section 2, we describe the
potential drivers of energy efficiency analyzed in more detail. In Section 3, we outline the
methodology of the SFA approach. Section 4 describes the German production census
and the additional data used. The results of our analysis are shown in Section 5 and

their robustness in Section 6. In Section 7, we conclude with a discussion.

2 Potential drivers of energy efficiency

Energy efficiency is one key element in many energy and climate policies, but not the only
one. This fact leads to an interplay with various other aspects and objectives. The reduc-
tion of greenhouse gas emissions as well as the increasing use of renewable energy sources

are also important goals in the German energy and climate policy agenda (BMWi, 2016b;



Loschel et al., 2016). To analyze the interactions between these measures, we study the
relationship between energy efficiency and the European Union Emissions Trading Sys-
tem (EU ETS), the investments in environmental protection measures, and the use of
renewable energy sources for electricity generation. Furthermore, innovation is not only
an integral part of current energy and climate policies, i.e. to develop new technolo-
gies for a low carbon or sustainable economy, but also of Germany’s industrial policy,
which is based on the following paradigm: “Germany’s economic strength is largely
based on the efficiency of German industry, and particularly on its innovative strength.”
(BWMi, 2017) In addition, the “(i)ndustry is at the heart of Germany’s strong export
performance.” (BWMi, 2017) To better understand the determinants in these key areas
(innovation and export) of the German economy, we study their interplay with energy
efficiency. Overall, we analyze the relationship of these different drivers with the energy
efficiency development of firms in 14 two-digit industries of the German manufacturing
sector. In this section, we shortly describe the determinants used in our analysis in
more detail and additionally give an overview on possible relationships drawn from the
literature.

First, we analyze the relationship between the EU ETS and firms’ energy efficiency.
The EU ETS is the most important climate policy instrument of the EU and its member
states. With the help of the EU ETS, the EU aims at steering the European economy to
a low carbon pathway. The EU ETS puts a price on the greenhouse gas emissions of the
regulated installations and consequently on fossil fuel use. Theoretically, the use of fossil
fuels should be reduced by this price signal and firms should face incentives to use energy
more efficient (Linares and Labandeira, 2010; de Miguel et al., 2015). Thus, we would
expect that regulated firms are more energy efficient than their counterparts. However,
the empirical literature on the EU ETS and its impact on firms is scarce. Martin et al.
(2016) as well as Joltreau and Sommerfeld (2016) give comprehensive overviews on the
impacts of the EU ETS on firm behavior.

The empirical evidence specifically analyzing German manufacturing is even more
limited. Petrick and Wagner (2014) investigate the causal effects of the EU ETS regard-
ing emissions, output, employment, and exports. They find that the EU ETS reduced
emissions of regulated firms, but had no significant impact on output, employment,
and exports in the years 2007 to 2010. Lutz (2016) estimates the effects on firm-level
productivity using a structural production function approach and data of the German
production census from 1999 to 2012. He shows that the EU ETS had a significant pos-
itive impact on productivity during the first compliance period. Furthermore, Loschel
et al. (2016) investigate the effects of the EU ETS on the technical efficiency of German
manufacturing firms using data from 2003 to 2012. They apply a difference-in-differences
approach combined with parametric conditioning strategies and find no significant effect
of the EU ETS on the performance of regulated firms. They also analyze the treat-
ment effects at the two-digit industry level for four different industries and only find

statistically significant results for the paper industry. In this industry, the EU ETS had



a significantly positive impact on the efficiency of the regulated firms. The empirical
evidence on the relationship between the EU ETS and energy efficiency is even scarcer.
Specifically regarding energy efficiency, Lundgren et al. (2016) find a mixed relationship
with energy efficiency, that is in some industries positive, negative, or not significant at
all. We add to this strand of literature and analyze the correlation between the EU ETS
and energy efficiency in the different industries of the German manufacturing sector.

As a second determinant of energy efficiency, we analyze the influence of the exporting
status of firms. Exporting could increase energy efficiency through different channels.
Improved foreign market access could, for example, induce innovation or it may improve
management practices (Roy and Yasar, 2015). From a broader perspective, there is
literature regarding the relationship between exporting behavior and firm performance
or productivity. Wagner (2012) gives an overview of the literature and summarizes that
exporters are more productive than non-exporters. The higher productivity of exporters
could also be related to higher energy efficiency. But there is no evidence yet on the
relationship between export status and energy efficiency. There are, however, studies on
the relationship between export status and energy use. Roy and Yasar (2015) find that
exporting reduces the use of fuels relative to electricity. They analyze a firm-level panel
data set for Indonesia. Batrakova and Davies (2012) show theoretically and empirically
with Irish firm-level data that exporting increases energy use due to greater output.
However, the effect can be offset by adopting more energy-efficient technologies and
this reaction is stronger for firms with higher energy intensity. Cole et al. (2008), and
Dardati and Saygili (2012) analyze Ghanaian and Chilean firms, respectively. They find
that exporting is negatively related to energy intensity. To conclude, so far there is no
study analyzing the association of exporting status to the underlying energy efficiency.
There is, however, some indication for a negative relationship between energy intensity
and exporting status.

Furthermore, we analyze the correlation between firms’ R&D expenditures, as proxy
for the innovation behavior of firms, and their energy efficiency. Innovations, policy in-
centives and high relative energy prices make new technologies often more energy efficient
than older ones. Thus, innovative firms may also be more energy efficient. Popp (2001),
for example, finds that one-third of the reduction of industrial energy consumption can
be explained by innovation. He uses patent data to create a knowledge stock at the US
industry level. We use the firms’ R&D expenditures as proxy for innovation. However,
it is unclear ex ante how the relationship between innovation and energy efficiency ma-
terializes for manufacturing firms. An overview of further literature on the relationship
between energy and technological change can be found in Popp et al. (2010).

The same rationale for more energy efficient new technologies may also hold for
investments in environmental protection measures. These investments account for the
adoption of technologies, specifically green technologies. There are numerous studies
on the determinants of green or clean technology adoption and firm performance; for a

recent overview see Hottenrott et al. (2016). The relationship between environmental



protection investments and energy efficiency, however, has not yet been studied to the
best of our knowledge.

Finally, we analyze the relationship between energy efficiency and the usage of renew-
able energy sources to self-generate electricity. It is unclear how self-generation relates
to energy efficiency and as far as we are aware there have been no studies analyzing this
relationship so far. From the perspective of a firm, investments in renewable energy tech-
nologies increase its capital stock, but could crowd out other investments which could
be favorable for the productivity as well as energy efficiency of the firm, as Boyd and
McClelland (1999) suggest. The effects on the other input factors of the production
function are also not straightforward. Furthermore, the implications depend on the rela-
tive energy prices from self-generated electricity and purchased electricity from utilities,
as well as possible cogeneration of process heat.

As the implications and the magnitude of the different drivers of energy efficiency
are mostly unclear and never have been analyzed for the German manufacturing sector,

we will study their relationships empirically.

3 The stochastic energy demand frontier approach

The measurement of energy efficiency based on economic foundations has evolved from
the economic theory of production and the empirical methods for measuring productive
efficiency. For a general overview of frontier, efficiency, and productivity analyses, we
refer you to Coelli et al. (2005), Fried et al. (2008), or Kumbhakar and Lovell (2000).
For an overview on the literature and methodology of energy efficiency measurement
based on economic foundations, see Filippini and Hunt (2015).

The estimation of a measure of efficient use of energy can be based on a stochastic
demand function of energy (Filippini and Hunt, 2011).% This is a parametric approach,
which has higher discriminating power in energy efficiency performance measurement
compared to its nonparametric frontier counterparts like the data envelopment analysis
(DEA) (Zhou et al., 2012). The estimated energy demand function gives the cost-
minimizing input combination to produce a given level of output, i.e. energy service.
It indicates the minimum amount of energy that is necessary to produce a given level
of output, given the technology, input prices, and other factors (Filippini and Hunt,
2015). The difference between the frontier and the actual energy use can be explained
by allocative or technical inefficiencies.

Boyd (2008) is a prominent example of a study estimating an energy input require-
ment function using stochastic frontier analysis. He stresses the notion that energy
efficiency should be measured relative to some benchmark (instead of simply measur-
ing inputs to outputs), which is achieved by stochastic frontier analysis. He focuses on

plant-level energy efficiency, illustrating his approach by using data on US corn mills.

4This could also be true for the investments in environmental protection discussed above.
®The basic stochastic frontier approach was introduced by Aigner, Lovell and Schmidt (1977) and in

the same year by Meeusen and Van den Broeck (1977).



While an energy input requirement function uses input amounts in order to explain
minimal requirements for output production (e.g. Boyd, 2008), by contrast, an energy
demand frontier function uses input prices instead of input amounts as an explanatory
variable for energy use (e.g. Filippini and Hunt, 2011, 2012; Evans et al., 2013; Filippini
et al., 2014).% Thus, the frontier cost (minimizing) level of energy demand is based on
energy prices, given the output and quasi-fixed inputs (Boyd and Lee, 2016).

Filippini and Hunt (2011) and Evans, Filippini and Hunt (2013) estimate an energy
demand function at the country level for a panel of 29 OECD countries. Filippini
and Hunt (2012), Filippini et al. (2014) and Weyman-Jones et al. (2015) build on the
approach by Filippini and Hunt (2011) while adding a Mundlak correction for unobserved
heterogeneity (Mundlak, 1978).

Early panel models for the stochastic frontier function approach did not differen-
tiate between transient and persistent inefficiencies (for an overview see Filippini and
Greene, 2016). We employ the “true random effects” model (TRE) proposed by Greene
(2005a, 2005b). It is based on the pooled model of Aigner, Lovell and Schmidt (1977)
and extended by firm-specific time-invariant random effects. This model’s error term
subsumes three different components: a term for time-invariant unobserved firm-level
heterogeneity (v;), a firm-specific time-varying inefficiency term (u;), and a random
noise term (v;;). Thus, the TRE model allows estimating the firm-specific time-variant,
“transient” energy inefficiency u;. A similar approach is used by Lundgren et al. (2016)
with Swedish firm-level data as well as by Boyd and Lee (2016) with US plant-level data.

Our estimation incorporates both the energy demand function (Equation 1) and the
drivers of its inefficiencies (Equation 2) within a single-stage approach using maximum
simulated likelihood. We estimate the following short-run stochastic cost-minimizing
energy demand function for firm i in period t separately for each two-digit industry

within the manufacturing sector:

eit = Po + Pryit + Bakie + Balie + Bame + Bspsy + 7T + i + vig + uyy. (1)

In Equation 1, y denotes the gross value of produced output, and k, [, and m denote
capital, labor, and materials, respectively. p® refers to the energy price and T is a time
trend variable, which captures technological change. 1; as introduced by Greene (2005a
and 2005b) is a firm specific random effect and allows for time-invariant heterogeneity
at the individual level, which is assumed to be uncorrelated with the other input factors,
the prices and the time trend.

We identify v;; and u; by making assumptions about their functional forms. u; can
be referred to as the conditional energy inefficiency. It is assumed to have a non-negative
truncated normal distribution w; ~ N7 (g, J?M_). Intuitively, inefficiencies can only take
positive values as no firm can be any more efficient than the frontier. Furthermore, vy
is the usual error term, which is assumed to have a normal distribution v ~ N(0,02).

The complete error term can also be written as €;; with €;; = vy + uy;.

SFor a detailed overview and comparison of different economic models see Filippini and Hunt (2015).



Our variables representing the drivers of energy efficiency are placed in the mean (p;;)
of the non-negative truncated normal distribution of u;;, which represents the inefficiency.
We use the status of regulation by the EU ETS (ETS), the export status (EXP),
the R&D activity status (R&D), the investment activity in environmental protection
(EPI), and the self-generation of electricity from renewable energy sources (RENEW)
as variables in our conditional inefficiency model.

The estimation of the conditional inefficiency follows the model:
uit = 1ETSi + 2 EX Py + v3R&Dj + 4 EPLiy + s REN EWiy + Gt (2)

where (;; is a random error term.

To get an indication of efficiency or inefficiency, we use two indicators. First, we
calculate A\, which is defined as A\; = o,,/0,,, and provides information on the relative
contributions of the error term () and the energy efficiency term (u;;) to the decom-
posed error term. If A is significant, it means that the variance of the conditional energy
inefficiency term (u;;) is significantly greater than 0. Consequently, it indicates that
there are significant differences in energy efficiency between the firms within the respec-
tive two-digit industry. Second, the energy efficiency of every analyzed industry can be
translated into an energy efficiency score E'E;;, which is given by EE; = exp{—/i}.
It represents the distance of every firm to the frontier in the respective industry. An
energy efficiency score of one indicates an industry on the frontier, which would mean
that all firms and thus the industry are 100 percent energy efficient.

It is assumed that markets are perfectly competitive and firms minimize costs (Lund-
gren et al., 2016). Under these assumptions, the estimated efficiency scores will fully
capture time-variant inefficiency. Note that time-constant, “persistent” firm-specific in-
efficiencies are part of the time-invariant heterogeneity term ; in the TRE model. In
this case, the firm-specific inefficiency term u;; does not capture the “persistent” part of

inefficiencies and should therefore be considered as a conservative estimate.

4 Data

Our analysis is based on data from the German production census AFiD (Amtliche
Firmendaten fiir Deutschland — Official firm data for Germany) provided by the Federal
Statistical Office and the Statistical Offices of the Lénder. The data is confidential and
only accessible for scientific purposes. The participation is mandatory by law and the
quality of the results is monitored by the Statistical Offices. It is also used as a basis
for official government statistics. The structure of this longitudinal data set is modular.
Below we describe the different data modules that we combine for our analysis.

The core data set is the Cost Structure Survey (CSS), which contains comprehensive
annual information about output produced and inputs used by firms in the manufac-
turing sector. The CSS includes all manufacturing firms with more than 500 employees

and a random sample of firms with more than 20 and less than 500 employees. The



Table 1: Descriptive statistics of variables in the energy demand functions

Industry ISIC Output Energy use  Energy price Capital stock Number of Materials Number
Rev. 4 (EUR 1,000) (MWh) (EUR/kWh)  (EUR 1,000)  employees (EUR 1,000) of firms

Food 10 52,800 25,100 0.1427 13,800 183 36,300 3,493
(137,000) (121,000) (1.1676) (35,200) (347) (106,000)

Textiles 13 18,700 12,100 0.1001 7,171 128 9,443 836
(32,200) (29,600) (0.2481) (13,400) (168) (17,500)

Wood 16 25,800 41,600 0.1812 9,924 122 14,900 940
(49,600) (163,000) (1.6779) (24,300) (185) (30,400)

Pulp & paper 17 61,500 145,000 0.1277 29,500 243 30,800 850
(109,000) (447,000) (1.4664) (77,000) (364) (57,200)

Chemicals 20 116,000 294,000 0.3956 53,500 357 57,600 1,453
(482,000) (2,610,000) (15.8516) (244,000) (1,510) (233,000)

Pharmaceuticals 21 128,000 31,400 0.1905 71,800 562 42,400 343
(399,000) (98,400) (1.7417) (273,000) (1,511) (101,000)

Rubber & plastics 22 40,600 17,600 0.1421 15,700 240 20,100 2,165
(98,000) (54,900) (1.8538) (37,900) (534) (51,000)

Basic metals 24 131,000 397,000 0.1398 34,300 360 81,900 1,076
(474,000)  (3,480,000) (1.8505) (142,000) (1,028) (308,000)

Fabricated metal 25 25,900 7,630 0.1333 9,711 167 12,200 4,710

products (54,500) (28,100) (1.0905) (22,100) (286) (31,800)

Computer/electronics 26 47,300 7,562 0.2780 22,800 274 33,100 1,717
(164,000) (33,800) (4.9128) (129,000) (688) (179,000)

Electrical equipment 27 68,800 10,200 0.1579 20,700 426 39,300 2,150
(529,000) (72,100) (0.7625) (180,000) (3,891) (354,000)

Machinery 28 54,600 7,590 0.1444 14,000 287 28,000 5,581
(177,000) (44,700) (0.6146) (73,300) (1,141) (109,000)

Other transport 30 109,000 16,700 0.2105 28,700 528 64,900 420

equipment (420,000) (69,500) (3.7269) (159,000) (1,835) (248,000)

Other manufacturing 32 24,800 4,612 0.1511 10,700 173 9,132 1,244
(71,700) (25,800) (0.2325) (40,200) (383) (28,600)

Repair & installation 33 32,500 2,685 0.7371 4,730 193 16,200 999
(154,000) (17,000) (5.0764) (18,300) (617) (79,200)

Notes: Mean values from 2003 to 2012. Standard deviation in parentheses. Source: Research Data Centres of the Federal Statistical
Offices and the Statistical Offices of the Lander (2014), own calculations.
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random sample is changed every few years. In our sample period from 2003 to 2012, the
sample was renewed in 2003, 2008, and 2012. It is stratified by the number of employ-
ees and economic activity affiliation. The firms are classified according to ISIC Rev. 4.
Appendix A includes additional information on the industry classification.

Additionally, we use the database AFiD-Panel Industrial Units, which contains an-
nual data from the Monthly Report on Plant Operation, the Census on Production, and
the Census on Investment. This data set is a full sample of all plants in manufacturing
which belong to firms with a minimum number of 20 employees. This data is combined
at the plant level with the AFiD-Module Use of Energy and the AFiD-Module Environ-
mental Protection Investments. The Energy Use Module includes comprehensive data
on electricity and fuel purchase, sale, and use. It also distinguishes between electricity
generation from fossil or renewable energy sources. The AFiD-Module Environmental
Protection Investments contains information on various investment categories regarding
environmental protection. These categories are waste management, water conservation,
noise abatement, air pollution control, nature and landscape preservation, and soil re-
mediation. We aggregate this information on firm level to be able to combine all data
sets described.

As measure for output, we use the gross value of production of the firm. This is
taken from the Census on Production and deflated using two-digit ISIC deflators.” The
measure for labor input is calculated as the annual average of the number of employees
reported monthly in the production census. This annual average of monthly data offers
more detailed information on employment compared to the number of employees col-
lected at the reporting date of the CSS. To compute the firm’s capital stock, we use the
perpetual inventory method. A detailed description of the method and its application
to AFiD data can be found in Lutz (2016). Material expenditures are taken from the
CSS and deflated in the same manner as our output variable. We also include the firm
specific average energy price in our energy demand frontier function. The energy price
is calculated by dividing the firm’s total energy expenditures by its total energy use, in-
cluding fuels and electricity, for each year and firm. In Table 1, we report the descriptive
statistics for the aforementioned variables of the energy demand function. More detailed
descriptive statistics are presented in Appendix B.

The drivers of energy efficiency are obtained as followes: in order to identify firms
which are regulated by the EU ETS (ETS), we match the production census with the
European Union Transaction Log (EUTL) from 2005 to 2012. We use information on
the commercial register number and the VAT number for the merger. This data is also
used in Lutz (2016) and Loschel et al. (2016). More information on the methodology
of the merger is available in Appendix A. The production census provides information
on revenues from exports at the firm level. We identify a firm as exporting if the export

revenues are positive (EX P). Furthermore, we create a dummy variable for the firm’s

"The data on price indexes was retrieved from the Federal Statistical Office and has already been
used for example by Lutz (2016).
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Table 2: Descriptive statistics of drivers of energy efficiency

Industry ISIC Rev. 4 ETS EXP R&D EPI RENEW
Food 10 0.028 0.485 0.160 0.127 0.028
Textiles 13 0.014 0.906 0.313 0.120 0.021
Wood 16 0.039 0.698 0.145 0.092 0.042
Pulp & paper 17 0.179 0.901 0.242 0.207 0.021
Chemicals 20 0.067 0.934 0.591 0.314 0.030
Pharmaceuticals 21 0.040 0.908 0.480 0.224 0.026
Rubber & plastics 22 0.013 0.880 0.364 0.156 0.020
Basic metals 24 0.055 0.915 0.285 0.319 0.024
Fabricated metal products 25 0.001 0.773 0.248 0.148 0.028
Electrical equipment 27 0.005 0.857 0.531 0.142 0.045
Machinery 28 0.003 0.897 0.492 0.124 0.027
Other transport equipment 30 0.022 0.806 0.389 0.164 0.013
Other manufacturing 32 0.005 0.737 0.335 0.089 0.024
Repair & installation 33 0.001 0.596 0.164 0.060 0.032

Notes: Shares over the years from 2003 to 2012. Source: Research Data Centres of the Federal Statistical Offices and the Statistical
Offices of the Lander (2014), own calculations.

R&D activity (R& D) differentiating between firms with zero or positive expenditures for
R&D. This data is taken from the CSS and includes all cost of internal R&D activities
as well as joint activities with external research centers or laboratories. The dummy
variable for Environmental Protection Investments (EPI) reflects whether firms have
zero or positive investment expenditures in any of the aforementioned investment cat-
egories. The information about the self-generation of electricity with renewable energy
sources (REN EW) is obtained from the production census. The dummy variable repre-
sents whether firms produce electricity from renewable energy sources (i.e. water, wind,
geothermal, or solar photovoltaics) or not. We report the descriptive statistics for the
efficiency determinants at the two-digit industry level in Table 2. The yearly descriptive

statistics of the efficiency determinants can also be found in Appendix B.

5 Results

In this section, we present the estimated energy demand stochastic frontier as well as
the simultaneously estimated relationships of different drivers and energy efficiency. In
Table 3, we show the main estimation results. The first six columns show the estimated
parameters of the frontier. The following five columns present the relation between
several determinants and energy efficiency. The last two columns contain the estimated
variance parameters of o, and A. The estimates of A denote the relative contribution of
the variance in energy efficiency (o,) compared to the variance of the error (o,). The
statistical significance of A indicates the presence of energy inefficiency in the respective
industry.

The results of the estimated energy demand frontier in Table 3 show plausible signs
for the short-run elasticities from an economic point of view. The positive signs for
labor, capital, output and materials can be interpreted as follows: Given the technology
a respective increase in these variables would require an increasing energy demand. The

positive and highly statistically significant time trend hints at the fact that the energy
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use increased over time in all industries. It ranges from 0.027 in the electrical equipment
industry (27) to 0.062 in the pharmaceutical industry (21). These coefficients can be
translated into an increase of energy use of 2.7 to 6.2 percent per year. In contrast to
this, Lundgren et al. (2016) find more heterogeneous results for the time trend in the
Swedish industry. In their analysis, fuel demand decreases in most industries from 2000
to 2008, however, electricity demand increases in many industries.®

Furthermore, we find an economically plausible relationship between energy prices
and energy demand: the negative relationship means that rising energy prices reduce the
energy demand. The own-price elasticities of energy demand range from -0.39 to -0.80
in our analysis. When we compare these elasticities to results from the literature, the
elasticities in the German manufacturing sector seem generally to be quite low, especially
in comparison to more recent studies. They are, however, in the range of what Kleijweg
et al. (1989) find for Dutch firms. They use a panel of Dutch firms for the years 1978
to 1986 and find an own-price elasticity of energy of -0.56. Nguyen and Streitwieser
(2008), in contrast, find much higher own-price elasticities in the range of -1.68 to -7.27
for two-digit US manufacturing industries, but note that they use a cross section for the
year 1991. In a more recent study, Haller and Hyland (2014) find an own-price elasticity
of -1.46 using a long panel of Irish industrial firms from 1991 to 2009. Bardazzi et al.
(2015) analyze the energy demand of the Italian manufacturing sector utilizing a panel
covering the years 2000 to 2005. They estimate an own-price elasticity of -1.13 for energy.
Note that there are more studies analyzing own-price elasticities in the manufacturing
sector, but in many studies it is possible to split energy use into fuel and electricity use.
We are not able to disentangle the energy use due to our underlying data and therefore
the comparison to these results seems not feasible, cf. Woodland, 1993; Bjgrner et al.,
2001; Arnberg and Bjgrner, 2007; Boyd and Lee, 2016; Lundgren et al., 2016; Abeberese,
2017.

Regarding the drivers of energy efficiency,” our analysis suggests that exporting firms
are more energy efficient than non-exporting firms in most industries. Exporting firms
are less energy efficient only in the repair and installation industry (33). The same holds
for innovating firms. These are generally more energy efficient except in the repair and
installation (33) industry. Our results are in line with analyses on different productivity
and efficiency measures presented in Section 2. However, we can show for the first time
that there is a positive relationship between exporting or innovating and the energy
efficiency of manufacturing firms.

EU ETS regulated firms, on the other hand, are less energy efficient in most in-
dustries than their non-regulated counterparts. Only EU ETS regulated firms in the
chemical industry (20) are more energy efficient than non-regulated ones. The lower

energy efficiency of regulated firms is counterintuitive to our expectations formulated

8Note that we cannot disentangle fuel and electricity demand.
9The results of the regression of the determinants presented in Table 3 can be interpreted as follows.

A negative sign means that the firms with variable status 1 are more energy efficient compared to the

group with variable status 0.
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in Section 2. Our results are not in line with the results of Lundgren et al. (2016) for
the Swedish manufacturing sector; they find ambiguous results and no clear-cut trend
regarding regulated and non-regulated firms. For the chemical industry, for example,
they find that regulated firms are less fuel efficient, which is in contrast to our results.
On the other hand, for the pulp and paper industry they find a similar effect, namely
that regulated firms are also less fuel efficient than their counterparts. Thus, the EU
ETS seems to regulate less energy efficient firms. The incentives for firms to become
more energy efficient, which should exist due to the price signal as we stated above,
might, however, materialize in the long term, when the signal is more salient to firms.

The results for environmental protection investments suggest that firms which invest
are also more energy efficient. This positive result applies to the pulp and paper (17),
rubber and plastics (22), fabricated metal products (25), electrical equipment (27), and
machinery (28) industries. Nevertheless in the wood (16) and other manufacturing (32)
industries the picture is negative for firms which invested in environmental protection.
Thus, overall our results suggest that energy efficiency and clean technology adoption
seem to be positively related to each other.

The association of energy efficiency and the use of renewable energy sources is only
statistically significant in three industries. Thus, firms which self-generate electricity by
using renewable energy are more energy efficient in the machinery (28) industry and less
energy efficient in the food (10) and other transport equipment (30) industries. That is,
we cannot draw clear conclusions from our analysis on the relationship between energy

efficiency and the self-generation of electricity with renewable energy sources.

Table 4: Energy efliciency and energy intensity

Energy efficiency (EE) Energy intensity (EI)
Sector ISIC Rev. 4 EEmean EEedian Elmean Elnedian
Food 10 0.973 0.999 0.630 0.303
Textiles 13 0.871 0.900 0.721 0.376
Wood 16 0.803 0.835 0.852 0.220
Pulp & paper 17 0.845 0.998 1.176 0.262
Chemicals 20 0.857 0.888 1.152 0.196
Pharmaceuticals 21 0.849 0.878 0.357 0.184
Rubber & plastics 22 0.848 0.881 0.417 0.299
Basic metals 24 0.914 0.925 0.961 0.462
Fabricated metal products 25 0.882 0.898 0.343 0.181
Electrical equipment 27 0.850 0.875 0.179 0.089
Machinery 28 0.874 0.896 0.309 0.098
Other transport equipment 30 0.925 0.942 0.398 0.140
Other manufacturing 32 0.856 0.880 0.226 0.098
Repair & installation 33 0.888 0.854 0.129 0.049

Notes: Energy intensity is measured in kWh/EUR (energy use/output). Source: Research Data Centres of the Federal Statistical
Offices and the Statistical Offices of the Lander (2014), own calculations.

There are two indicators for energy efficiency in our model. The first one as mentioned
above is A, which is shown in the last column of Table 3. We can identify energy
inefficiencies for most industries in the German manufacturing sector. A is statistically
significant in almost all analyzed industries. This means that we can reject the null

hypothesis of A = 0, i.e. there are time-variant differences in energy efficiency between
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the firms within the respective two-digit industry. The variance of the conditional energy
inefficiency term wu is significantly greater than 0.

The second indicator is the energy efficiency score: EE;; = exp{—ji;;}. These scores
are presented in Table 4. The highest possible score is 1, which would indicate that
there is no potential for time-variant energy efficiency improvements in the respective
industry. The mean energy efficiency scores in our analysis range from 0.803 in the
wood industry (16) to 0.973 in the food industry (10). The results for the median scores
range from 0.835 to 0.999 in the respective industries. These results are fairly high,
which hints at the fact that there is actually not much potential to increase energy
efficiency. Note, that this is the time-variant part of the energy efficiency and considered
in relation to the industry’s own benchmarking technology. Furthermore, the median is
larger than the mean in most industries, except for repair & installation (33). The mass
of the distribution is therefore concentrated above the mean. That is, most firms in the
respective industries are relatively closer to the frontier and therefore the 100 percent
energy efficient firm in each industry.

Policy makers are particularly concerned about energy intensive firms and industries.
On the one hand, most energy efficiency goals are set to reduce energy intensity in the
future. On the other hand, there is a concern that especially energy intensive firms and
industries might lose competitiveness through energy and climate policies as they face
high shares of energy costs. In Table 4, we also include the mean and median energy
intensities measured in energy use per output (kWh/EUR) at the two-digit industry level.
The industries with the highest mean energy intensity in our sample are the pulp & paper
(17), chemicals (20), and basic metals (24) industries. The pulp & paper industry, as
the most energy intensive industry (1.176) in our sample, has one of the lowest mean
energy efficiencies (0.845). Thus, compared to other industries, there is a high potential
to increase the time-variant energy efficiency and many firms are far from utilizing the
optimal cost-minimizing energy demand function of the best performing firm on the
frontier. The chemicals industry has a medium rank energy efficiency score compared
to other industries in our sample, but still a relatively low mean energy efficiency score
of 0.857 after all. The basic metal industry has in comparison a rather high energy
efficiency score, which leads to the conclusion that there is not as much potential for
increases in energy efficiency. However, there is some potential, because the mean energy

efficiency score of the basic metals industry amounts to 0.914.

6 Robustness check

A concern that could be raised regarding our estimation might be a simultaneity or
timing problem between the energy demand function and the drivers of energy efficiency.
Thus, we also use a specification with lagged values of different determinants. The
determinants are lagged for one year, so the results can be interpreted as the effect of

the status of the determinant from year ¢ — 1 on the energy efficiency in year t. We lag
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the exporting status (EX P,_1), the expenditures in R&D (R&D;_1), the investments in
environmental protection (EPI;_1) and the electricity generation from renewable energy
sources (RENEW,_1). For the EU ETS, we suppose no lagged influence, because for
most firms the regulatory status should be clear for a longer period. The results for the
lagged model specification are presented in Table 5. A comparison of the results of the
contemporaneous and lagged analyses is presented in Appendix C.

The estimation with lagged energy efficiency determinants reveals that exporting
firms are for the most part more energy efficient than non-exporting firms. This confirms
the results from our former estimation. The same result holds for the R&D activities of
firms. Thus, innovating firms are more energy efficient than their counterparts in mostly
all estimated industries. The lagged specification of environmental protection invest-
ments suggests that firms which invested are more energy efficient than firms which did
not invest in environmental protection measures. All statistically significant industries
(textiles (13), rubber & plastics (22), fabricated metal products (25), and machinery
(28)) show this result. The results of the electricity generation from renewable energy
sources are mixed. Firms in the chemical (20) industry are more energy efficient, if
they generated electricity with renewable energy sources in the year before. But in the
fabricated metal product (25) and computer & electronics (26) industries firms with

renewable energy electricity generation are less energy efficient than firms without.

Table 6: Energy efficiency - Lagged efficiency drivers

Industry ISIC Rev. 4 EEmean EEnedian
Textiles 13 0.861 0.890
Wood 16 0.890 0.867
Chemicals 20 0.869 0.896
Pharmaceuticals 21 0.869 0.894
Rubber & plastics 22 0.856 0.889
Fabricated metal products 25 0.878 0.897
Computer & electronics 26 0.841 0.869
Machinery 28 0.875 0.898
Repair & installation 33 0.909 0.877

Notes: Source: Research Data Centres of the Federal Statistical Offices and the Statistical Offices of the Liander (2014), own
calculations.

The energy efficiency indicators A and EE show results in a similar range as in the
non-lagged specification above. A is statistically significant in most industries. The mean
energy efficiency scores EE range from 0.841 in the computer & electronics (26) industry
t0 0.909 in the repair & installations (33) industry. The comprehensive results are shown
in Table 6 and a comparison to the results of the estimation with contemporaneous

variables can be found in in Appendix C.

7 Concluding discussion

Increasing energy efficiency plays a crucial role in current energy and climate policies.
However, little is known about the determinants and drivers of industrial energy demand

and energy efficiency. Therefore, insights into these developments are needed. This can
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help to improve the efficiency of current and future policy instruments and thus to achieve
the overarching climate and energy policy targets. The manufacturing sector, with its
considerable energy use and carbon dioxide emissions, is an important sector when it
comes to contributing to these goals and increasing energy efficiency. Moreover, the
manufacturing sector is very heterogeneous. We acknowledge this by analyzing energy
efficiency at the industry level capturing the firm-level heterogeneity.

We analyze the determinants of energy efficiency in the German manufacturing sector
by means of a stochastic energy demand frontier analysis. We estimate the energy
demand function at the two-digit industry level allowing for firm heterogeneity by using
official firm-level production census data. Furthermore, we analyze potential drivers of
energy efficiency. The selection of drivers in our analysis is based on the relevance for
research and policy. Except for the EU ETS, our analysis is the first to analyze these
drivers. For our analysis, we focus on the following policies and firm characteristics:
regulation under the European Union Emissions Trading Scheme (EU ETS), exporting
status, R&D activity, investments in environmental protection and electricity generation
with renewable energy sources.

First of all, our analysis shows that there is potential to increase the energy efficiency
in all analyzed industries of the German manufacturing sector, although the energy
efficiency scores are in general quite high. The variety in energy efficiency scores at the
industry level reflects the heterogeneity of the manufacturing sector as a whole. The
mean of the energy efficiency scores in some industries is quite high and many firms
are close to the optimal cost-minimizing energy demand function within the industry,
i.e. in the food industry. On the other hand there are industries with lower mean
energy efficiency scores, which indicate that many firms are further away from the cost-
minimizing frontier in the respective industry, i.e. manufacturing wood products. Thus,
the time-varying energy efficiency might be increased by optimizing production processes
according to an industry benchmark.

Furthermore, energy intensive industries of the German manufacturing sector (pulp
& paper, chemicals, and basic metals industries) seem to have quite a vast potential to
increase their energy efficiency in comparison with less energy intensive industries. The
potential is estimated compared to the cost-minimizing frontier at the industry level.
Reaching the frontier could lead to more efficient use of energy, supposably without
harming the competitive position of these industries. Additionally, the changes in energy
demand and efficiency in energy intensive industries have larger impacts on the overall
goals than those in industries with low energy intensities. Thus, the increase in energy
efficiency in energy intensive industries is of high importance to reach the underlying
energy and climate policy goals.

Additionally, we find that there is also heterogeneity regarding the influences of the
analyzed drivers of energy efficiency. Exporting and innovating firms are in general more
energy efficient than non-exporting and non-innovating firms. Thus, we show that these

measures are positively correlated to higher energy efficiency in almost all industries in
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the manufacturing sector. Also, in most industries firms that invest in environmental
protection measures are more energy efficient than their counterparts which do not
invest. Our results suggest that clean technology adoption and energy efficiency are
closely related in many industries in the manufacturing sector.

However, EU ETS regulated firms are mostly less energy efficient than non-regulated
firms. The chemical industry is an exception; EU ETS regulated firms in the chemical in-
dustry are more energy efficient than non-regulated firms. Comparing our results to ear-
lier studies, does not allow us to draw a clear conclusion about the relationship between
energy efficiency and the EU ETS. Apart from that, our analysis shows predominantly
no significant relationship between firms’ electricity self-generation from renewable en-
ergy sources and energy efficiency. Our results are generally also robust, if we use one
year lagged variables in the conditional energy efficiency function to avoid timing or
simultaneity problems.

In future research, the contemporaneous identification of time-variant and time-
invariant firm-specific inefficiencies could be of interest (cf. Filippini and Greene, 2016).
This could help to better understand the underlying sources of energy (in)efficiency in
the manufacturing sector and thus to tailor policy instruments according to the specific

requirements of the different industries.
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Appendix

A Further data description

Industry classification: The underlying industry classification in the data set is based
on the European implementation NACE Rev. 2 (Statistical Classification of Economic
Activities in the European Community) of the UN classification ISIC Rev. 4. From 2003
to 2008 the industry classification based on NACE Rev. 1.1 was used in the data sets. To
transfer these from NACE Rev. 1.1 to NACE Rev. 2, we use the official reclassification
guide of the statistical offices at the four-digit industry code level.

Matching AFiD, CSS, and EUTL: The different internal data sets of the Sta-
tistical Offices of Germany, such as AFiD and CSS, can easily be merged via plant-
and firm-level identifiers. However, it requires some effort to match external data to
AFiD and CSS, since the information on firm identifiers and names is not accessible
for researchers. We match AFiD data at the firm level with aggregated data from the
EUTL for the years from 2005 to 2012 using the commercial register number and the
VAT number. We are able to match 77 percent (813 firms) of the firms in the EUTL
with AFiD. The 238 firms that are not matched mainly belong to the energy, public, or

service sector and thus are not part of the production census for manufacturing.
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B Further descriptive statistics

Table 7: Detailed descriptive statistics (2003-2012)

Industry ISIC Mean SD Skewness Kurtosis P10 P50 P90 N
Rev. 4
Output (EUR 1,000)
Food 10 52,800 137,000 6.97 70.00 1,571 11,900 127,000 16,796
Textiles 13 18,700 32,200 5.74 50.10 1,967 8,327 44,700 3,922
Wood 16 25,800 49,600 4.28 28.49 1,868 7,477 67,200 3,899
Paper 17 61,500 109,000 3.96 23.91 3,326 20,800 165,000 3,944
Chemicals 20 116,000 482,000 14.74 282.51 4,231 24,500 203,000 7,727
Pharmaceuticals 21 128,000 399,000 6.34 52.28 3,169 24,200 227,000 1,774
Rubber/plastic 22 40,600 98,000 8.37 96.77 2,889 13,600 95,600 8,615
Basic metals 24 131,000 474,000 11.23 169.02 4,170 25,400 241,000 5,920
Fabricated metal products 25 25,900 54,500 6.91 85.74 2,377 8,700 61,500 17,792
Computer/electronics 26 47,300 164,000 11.43 178.36 2,115 10,500 93,300 7,178
Electrical equipment 27 68,800 529,000 26.33 751.50 2,680 12,800 113,000 8,577
Machinery 28 54,600 177,000 15.86 457.76 2,806 13,500 114,000 22,630
Other transport equipment 30 109,000 420,000 8.82 97.65 2,460 11,700 190,000 2,217
Other manufacturing 32 24,800 71,700 7.40 74.43 1,387 5,761 50,500 5,001
Repair and installation 33 32,500 154,000 18.00 383.98 2,079 8,205 61,100 2,758
Energy use (MWh)
Food 10 25,100 121,000 15.83 324.20 419 3,532 44,600 16,757
Textiles 13 12,100 29,600 11.03 209.32 296 3,033 34,100 3,946
Wood 16 41,600 163,000 7.09 70.08 200 1,751 58,300 3,877
Paper 17 145,000 447,000 5.43 40.96 499 6,192 385,000 3,935
Chemicals 20 294,000 2,610,000 19.12 425.00 509 5,172 205,000 7,740
Pharmaceuticals 21 31,400 98,400 5.44 35.79 428 4,317 54,500 1,829
Rubber/plastic 22 17,600 54,900 9.34 116.05 508 3,791 36,800 8,579
Basic metals 24 397,000 3,480,000 16.17 317.07 870 10,400 225,000 5,903
Fabricated metal products 25 7,630 28,100 37.75 2,678.01 316 1,704 17,300 17,761
Computer/electronics 26 7,562 33,800 13.76 314.35 141 864 12,700 7,102
Electrical equipment 27 10,200 72,100 22.41 606.30 165 1,107 15,500 8,528
Machinery 28 7,590 44,700 27.07 1,020.43 265 1,280 12,700 22,475
Other transport equipment 30 16,700 69,500 11.67 185.63 267 1,872 31,600 2,220
Other manufacturing 32 4,612 25,800 12.38 176.42 103 608 6,660 4,981
Repair and installation 33 2,685 17,000 16.17 290.99 75 387 3,918 2,647
Energy price (EUR/kWh)
Food 10 0.1427 1.1676 80.94 7506.11 0.0485 0.0944 0.2032 16753
Textiles 13 0.1001 0.2481 27.09 853.94 0.0459 0.0786 0.1340 3945
Wood 16 0.1812 1.6779 43.61 2052.12 0.0201 0.0963 0.2450 3872
Paper 17 0.1277 1.4664 51.75 2865.76 0.0344 0.0775 0.1409 3935
Chemicals 20 0.3956 15.8516 61.48 3831.34 0.0373 0.0815 0.1616 7740
Pharmaceuticals 21 0.1905 1.7417 37.71 1527.65 0.0518 0.0879 0.1885 1829
Rubber/plastic 22 0.1421 1.8538 59.42 3814.25 0.0541 0.0908 0.1449 8579
Basic metals 24 0.1398 1.8505 49.55 2753.45 0.0402 0.0765 0.1370 5903
Fabricated metal products 25 0.1333 1.0905 89.43 8743.03 0.0552 0.0954 0.1649 17759
Computer/electronics 26 0.2780 4.9128 64.08 4448.72 0.0602 0.1061 0.2424 7090
Electrical equipment 27 0.1579 0.7625 42.54 2356.68 0.0566 0.0980 0.1946 8521
Machinery 28 0.1444 0.6146 39.04 2203.85 0.0571 0.0956 0.1732 22467
Other transport equipment 30 0.2105 3.7269 46.77 2198.03 0.0522 0.0923 0.1851 2220
Other manufacturing 32 0.1511 0.2325 13.79 299.72 0.0561 0.1056 0.2493 4981
Repair and installation 33 0.7371 5.0764 20.78 536.07 0.0684 0.1379 0.8357 2641
Capital stock (EUR 1,000)
Food 10 13,800 35,200 7.88 91.09 412 3,700 33,500 16,769
Textiles 13 7,171 13,400 5.73 50.78 380 2,685 17,700 3,945
Wood 16 9,924 24,300 5.27 38.19 418 2,269 23,800 3,853
Paper 17 29,500 77,000 7.10 70.99 976 7,612 68,200 3,930
Chemicals 20 53,500 244,000 13.68 250.15 1,063 8,142 87,300 7,754
Pharmaceuticals 21 71,800 273,000 6.53 48.36 1,020 10,000 94,600 1,849
Rubber /plastic 22 15,700 37,900 7.34 74.66 664 4,583 37,500 8,584
Basic metals 24 34,300 142,000 15.27 298.34 815 6,061 67,100 5,903
Fabricated metal products 25 9,711 22,100 7.73 103.67 453 2,870 24,500 17,828
Computer/electronics 26 22,800 129,000 14.19 244.84 388 2,617 30,600 7,222
Electrical equipment 27 20,700 180,000 25.63 711.85 353 2,568 31,500 8,594
Machinery 28 14,000 73,300 40.89 2,320.69 522 3,272 26,100 22,652
Other transport equipment 30 28,700 159,000 12.64 178.67 450 2,887 39,700 2,251
Other manufacturing 32 10,700 40,200 8.83 94.16 245 1,634 19,800 5,009
Repair and installation 33 4,730 18,300 11.50 161.89 273 1,208 8,045 2,742
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Table 7: (continued)

Industry ISIC Mean SD Skewness Kurtosis P10 P50 P90 N
Rev. 4
Number of employees
Food 10 183 347 7.33 86.55 27 83 394 16,872
Textiles 13 128 168 4.66 36.52 30 71 272 3,990
Wood 16 122 185 4.55 33.62 25 56 287 3,906
Paper 17 243 364 4.84 39.88 33 121 588 3,947
Chemicals 20 357 1,510 16.85 354.58 33 101 605 7,785
Pharmaceuticals 21 562 1,511 5.43 33.96 34 171 928 1,850
Rubber/plastic 22 240 534 8.59 100.22 32 98 544 8,624
Basic metals 24 360 1,028 12.29 214.17 34 115 708 5,933
Fabricated metal products 25 167 286 5.47 48.32 29 75 388 17,912
Computer/electronics 26 274 688 10.67 180.17 31 96 600 7,280
Electrical equipment 27 426 3,891 27.86 807.83 31 101 639 8,645
Machinery 28 287 1,141 35.63 1841.11 31 99 560 22,803
Other transport equipment 30 528 1,835 7.99 80.10 32 99 839 2,261
Other manufacturing 32 173 383 7.88 91.40 27 67 357 5,048
Repair and installation 33 193 617 13.75 233.04 28 70 387 2,784
Materials (EUR 1,000)
Food 10 36,300 106,000 8.88 128.69 529 5,516 91,800 16,885
Textiles 13 9,443 17,500 6.25 67.32 569 3,906 23,800 3,992
Wood 16 14,900 30,400 4.33 31.06 718 3,730 39,700 3,910
Paper 17 30,800 57,200 4.13 25.90 1,234 9,855 78,600 3,952
Chemicals 20 57,600 233,000 13.14 226.64 1,169 11,900 106,000 7,789
Pharmaceuticals 21 42,400 101,000 3.71 17.56 724 7,977 89,800 1,853
Rubber/plastic 22 20,100 51,000 8.43 101.69 1,014 6,087 46,400 8,636
Basic metals 24 81,900 308,000 11.01 172.94 1,333 11,900 146,000 5,936
Fabricated metal products 25 12,200 31,800 9.74 187.67 502 3,118 27,800 17,926
Computer/electronics 26 33,100 179,000 17.28 432.01 856 4,957 50,000 7,284
Electrical equipment 27 39,300 354,000 28.56 889.79 938 6,056 58,300 8,654
Machinery 28 28,000 109,000 23.42 1003.32 807 5,625 54,100 22,818
Other transport equipment 30 64,900 248,000 9.55 124.29 485 5,224 125,000 2,262
Other manufacturing 32 9,132 28,600 8.70 113.70 248 1,871 18,100 5,048
Repair and installation 33 16,200 79,200 11.35 148.99 378 2,391 26,200 2,785

Notes: Source: Research Data Centres of the Federal Statistical

calculations.

Table 8: Descriptive statistics of drivers of energy efficiency (II)

Year ETS Exports R&D EPI RENEW
2003 0.026 0.772 0.341 0.130 0.014
2004 0.027 0.772 0.339 0.135 0.011
2005 0.028 0.780 0.342 0.108 0.011
2006 0.029 0.788 0.352 0.173 0.013
2007 0.031 0.809 0.359 0.171 0.017
2008 0.027 0.787 0.344 0.158 0.022
2009 0.028 0.791 0.347 0.146 0.028
2010 0.029 0.794 0.352 0.166 0.040
2011 0.029 0.798 0.357 0.183 0.051
2012 0.029 0.797 0.347 0.171 0.065

Offices and the Statistical Offices of the Léander (2014), own

Notes: Shares over industries, included industries (ISIS Rev. 4): 10, 13, 16, 17, 20-22, 24-28, 30, 32, 33. Source: Research Data
Centres of the Federal Statistical Offices and the Statistical Offices of the Lander (2014), own calculations.
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C Comparison of results
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