Comparison of Approaches for developing Self-adaptive Systems

Christian Krupitzer, Martin Pfannemiiller, Vincent Voss, and Christian Becker
Information Systems II, University of Mannheim
Mannheim, Germany
{christian. krupitzer,martin.pfannemueller,vincent.voss,christian.becker}@uni-mannheim.de

ABSTRACT

The engineering of software systems enables developers to create
very powerful, complex and highly customized software systems by
utilizing newest technical capabilities. However, these systems often
are error-prone, inflexible, non-reusable and expensive to maintain.
Self-adaptation attends to these challenges, offering new ways to
automate the adjustment of a system’s structure and state. For that
reason, many software development approaches specifically con-
sider self-adaptability, leading to a high diversity of methodologies
with different characteristics and areas of application. This work
addresses this issue by presenting a taxonomy for the analysis and
comparison of different approaches for developing self-adaptive
systems. In addition, different sample approaches are presented,
demonstrating how these dimensions can be applied to compare
and classify related work.

CCS CONCEPTS

» General and reference — Surveys and overviews; « Soft-
ware and its engineering; - Computer systems organization
— Self-organizing autonomic computing;

KEYWORDS

Survey, Self-adaptive Systems, Software Engineering, Development
Approaches

ACM Reference Format:

Christian Krupitzer, Martin Pfannemiiller, Vincent Voss, and Christian
Becker. 2018. Comparison of Approaches for developing Self-adaptive Sys-
tems. In Proceedings of . ACM, New York, NY, USA, 14 pages. https://doi.
org/10.475/123_4

1 INTRODUCTION

Due to the continuously increasing complexity of contemporary
software systems and the high non-functional requirements they
have to meet, traditional software engineering approaches do not
succeed with supporting developers in the construction of these sys-
tems. The reason for that is that such traditional approaches do not
emphasize self-adaptability properties and their integration into
the system design, architecture, and deployment. Consequently,
many new software development methodologies and processes
emerge taking into consideration system properties such as flexibil-
ity, dependability, customizability and adaptability to spontaneously

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

, February 2018, Mannheim, Germany

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.

https://doi.org/10.475/123_4

occurring changes in the system’s environment [6, 43]. The con-
cept of self-adaptation allows for the design and implementation
of software systems that are able to change and optimize their be-
havior autonomously by changing their structure or parameters at
run-time.

Self-adaptation is the process of re-organizing, re-structuring,
and re-configuring a system as a reaction to changes in the re-
sources or environment of the system [29]. In order to be able to
execute self-adaptation, the system is equipped with the self-* prop-
erties [26]. These properties include, among others, self-healing,
self-protection, self-optimization, self-configuration [10]. The adap-
tation logic controls these properties through adaptation of the
system resources. Furthermore, self-adaptation can be considered
in respect of its type which can be compositional or parametric.
The adaptation process can exchange components (compositional
adaptation) or change parameters (parameter adaptation) [37].

Self-adaptive Systems (SAS) are systems that integrate the concept
of self-adaptation. That is, such systems are able to autonomously
react to changes or problems at run-time in order to maintain
their functionality [29, 42]. Triggers for performing self-adaptive
tasks are the system itself, the environment, or the users, such as
hardware failures, location changes of mobile systems, or a change
in the user preferences.

Traditional software engineering approaches are not specially
tailored to the design and construction of complex SAS as they
do not incorporate the ability of self-adaptation in their develop-
ment processes. This results in highly customized, non-reusable,
and ineflicient software systems that have to be developed entirely
from scratch [28]. In order to overcome this problem, many differ-
ent development methodologies, processes, and frameworks have
been created. As powerful and supportive these approaches are, as
diverse are their basic concepts, application domains, adaptation
mechanisms, and benefits. For the purpose of analyzing, compar-
ing, and better understanding software development approaches
for SAS, this paper discusses different aspects and characteristics,
joined together in a taxonomy, as well as classifies a selection of
different approaches by means of this taxonomy. The goal of this
paper is to offer researchers and developers a way to examine,
compare and select software development approaches for SAS for
further research or development cases.

This paper is structured as follows. In Section 3, we explain
the taxonomy for the comparison and its characteristics. Section 4
uses the taxonomy to classify relevant development approaches
for SAS. Then, Section 5 presents the discussion and comparison
of development approaches. Section 6 presents related surveys.
Section 7 concludes this paper with naming open issues and possible
future work.

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

, February 2018, Mannheim, Germany

Involved Roles

e TEs User
Special Demands on Developer |/ \
\
Engineering Context \
Development Phase \ -
~| Context

Applicability 7/?— *< Development Approaches for SAS

Programming / Modeling Language Specificity /“C /
/

/

/
Evaluation /

C. Krupitzer et al.

Type of Support
/

%
| Level of Abstraction

I "
| Reusability

Support ¢7
. /4? Use of Libraries

) ,‘\ Use of Reference Architectures
\

Temporal Scope of Support

\ |_ Use of Processes
\ __ Use of Tools

\ \.

\) Support of Adaptation Mechanisms
\ Adaptation

P
Type of Adaptation

\‘-\ Type of Approach

Figure 1: Taxonomy used for the comparison of development approaches for SAS.

2 RESEARCH METHODOLOGY

This paper does not claim to offer an exhaustive survey in the re-
search area of development approaches for SAS. The main purpose
is to provide a taxonomy for categorizing such approaches. The
application of the taxonomy to classify approaches should highlight
the diversity in the area of development approaches for SAS as well
as show the degree of support for developers in the research land-
scape and motivate research gaps. Therefore, this paper focuses
on the most important approaches in the research landscape as
identified in current surveys (e.g., [29], [33], or [44]) and Dagstuhl
seminars in the area of software engineering for SAS in 2008 [6],
2010 [43], and 2013 [16].

As the variety of the relevant approaches is rather large, we
decided not to compare all of them together but rather sort the
approaches into categories and discuss the differences within the
categories as well as cross-categorical. This work looks closely at
the categories Frameworks, Guidelines, Tools, Design concepts, and
Methodologies. A framework is an abstraction providing generic
functionality that can be extended by user-written code. Guidelines
support designers and developers by offering processes for the de-
velopment. Tools can be used by developers to perform different
implementation tasks. Design concepts supports different design
activities, such as requirements engineering. Last, software devel-
opment methodologies are high-level descriptions of procedures.
Section 4 presents each category and corresponding approaches.

For the comparison, we worked out a taxonomy with 21 dimen-
sions that are relevant for the development process of SAS. The
Research Roadmap by Cheng et al. [6], the description of modeling
dimensions in [4], the taxonomy from [29] as well as the analy-
sis of the reviewed approaches served as base for the taxonomy’s
dimensions. The following section presents the taxonomy.

3 TAXONOMY

This section presents the taxonomy used for the analysis, classifica-
tion, and comparison of development approaches for SAS. Figure 1
provides of the taxonomy. Table 5 in the appendix summarizes the
18 dimensions of the taxonomy as well as their characteristics. In
the following, this section presents the dimensions of the taxonomy.

Type of support helps to find a suitable approach for a certain
problem. Due to the diversity of development approaches, also the

"o

form of support is very diverse. It includes "framework", "tools",
"design principles’, "guidelines", and "methodologies".

Temporal scope of support signifies the temporal scope of the
different components that provide support. The temporal scope can
be "design-time", "run-time" or both.

Level of abstraction describes the degree of abstraction of the
provided support. Design principles have a high-level abstraction
and do not offer concrete implementations, whereas tools and frame-
works provide a low-level abstraction, as they directly facilitate the
construction of software artifacts.

Reusability refers to the reusability an approach offers and
how it is achieved. This includes, e.g., reusable process elements
and components, reference architectures, component and design
libraries, generic middleware, modeling languages, and design con-
cepts. Some approaches consider reusability at a high abstraction
level neglecting lower abstraction levels [28], others do not consider
reusability at all.

Use of libraries contains information about the existence and
content of libraries, such as component libraries (e.g., based on
the MAPE pattern [26]), design pattern libraries (e.g., [41]), and
adaptation and coordination mechanisms (cf. [53]).

Use of reference architectures describes whether an approach
makes use of a reference architecture and how it is used. Reference
architectures serve as architectural templates for the construction
of software systems with self-adaptivity properties. However, the
structure and functionality can differ.

Use of processes describes the existence and content of pro-
cesses. Several approaches provide new software development pro-
cesses tailored to the development of SAS. By contrast, others do
neither name nor explain their processes.

Use of tools can support the specification of requirements, the
system design, the implementation, or the system validation. Some
approaches include proprietary tools that support the software
system development, whereas others reference common and open-
source software or do not specify tools.

Support of adaptation mechanisms describes how the ap-
proach supports adaptation. Dependent on the temporal scope
of the support, the approaches consider adaptation at design- or

Comparison of Approaches for developing Self-adaptive Systems

run-time. Furthermore, adaptation can be achieved, e.g., through
adaptation and coordination patterns, middleware services, design
principles, or the refinement of a model.

Type of adaptation states the granularity of adaptation. It can
be "compositional adaptation”, "parameter adaptation”, or a combi-
nation of both.

Type of approach describes the underlying key concept the
approach is based on. In accordance with [29], possible manifesta-
tions are "model-based", "architecture-based", "control-based", "service-
oriented", "agent-based", "nature-inspired”, and "design concepts".

Involved roles describes which parties are involved in an ap-
proach. Some approaches make a clear and precise statement re-
garding involved parties, some only distinguish between designers
and developers

Special demands on developer covers requirements a devel-
oper or designer must possess, such as specific modeling languages,
programming languages, or other techniques.

Engineering context describes the engineering context and,
thus, the integrability of an approach with the chosen software
development process. Several approaches limit their application
possibilities to traditional forward engineering, some broaden the
applicability to modern engineering contexts, and others do not
limit them at all.

Development phase states in which phase of the software engi-
neering process the approach should be applied. This covers phases
of traditional and modern engineering processes.

Applicability of an approach can be general or specific. SAS
are deployed in many different system domains. Hence, SAS can
differ in their structure and functionality, based on specific sys-
tem domain requirements. To meet these requirements, several
approaches support the design and construction of specific system
types.

Language specificity states whether an approach is bound to
any specific programming or modeling language. Often, frame-
works and run-time oriented approaches integrate adaptation logic
components and a middleware that are programming language
specific. In addition, some approaches require the use of a specific
modeling language for designing the SAS.

Evaluation captures the type and extent of evaluation. It is
inevitable to use the approaches for developing real-world systems
for examining their benefits and challenges. Possible proofs of
concept are case studies, prototypes, or expert interview.

4 APPLICATION OF THE TAXONOMY TO
CLASSIFY DEVELOPMENT APPROACHES
FOR SELF-ADAPTIVE SYSTEMS

This section compares 26 approaches for developing SAS using the
taxonomy elaborated in Section 3. This illustrates how the taxon-
omy can be applied to different approaches and makes it possible to
compare them with regard to specific properties. However, this sec-
tion shall not provide an exhaustive survey in the field. As specified
in Section 2, the approaches are grouped into the categories Frame-
works, Guidelines, Tools, Design concepts, and Methodologies. Table 1
provides an overview of the reviewed development approaches.

, February 2018, Mannheim, Germany

4.1 Frameworks

In general, a framework is an abstraction providing generic func-
tionality that can be extended by user-written code. Frameworks
assist designers and developers with the efficient development of
software, as they can concentrate on meeting the software require-
ments, rather than low-level details of a working system. This en-
ables shorter development times. In the context of SAS, approaches
based on frameworks often provide a combination of a reference
architecture, tools, middleware, development process workflows,
and component libraries.

Rainbow [14, 21] is an architecture-based framework that uses
software architectures and a reusable infrastructure to support the
development of SAS. It offers an abstract architecture model to mon-
itor and execute the system’s run-time properties, evaluates the
model, and performs adaptations. Thus, it affects the implementa-
tion phase, involved developers, and its level of abstraction is rather
low. It considers reusability with the aid of a reusable adaptation
infrastructure consisting of system, architecture, and translation
layers. Furthermore, it offers a tool suite covering a script editor for
the custom developed script language, and the RAINBOW develop-
ment kit. It is also programming language specific, as it makes use
of Java and XML implementations. Case studies were conducted
by the authors in the course of their work in order to evaluate the
approach.

A Model-Driven Approach for Developing Self-Adaptive
Pervasive Systems [13] provides model-based support for adding
a resource to or removing resources from a system. The approach
offers a framework which specifies the condition for an adaptation,
adaptation actions performing the adaptation, and adaptation rules
that define which trigger caused which action. The temporal scope
of this approach is run-time. Involved people are developers who
construct the system based on the framework and it is applied in
the implementation phase of a development project. Reusability
is considered by using an adaptation architecture and adaptation
processes. The approach can be applied to the development of Per-
vasive Systems. Furthermore, this approach’s level of abstraction
is low, as it offers specific implementations of adaptation mecha-
nisms. Those adaptation mechanisms are supported at run-time
through models and the adaptation granularity is compositional.
Finally, the framework includes a reference architecture based on
communication channels.

Meta-Self [17] is a service-oriented framework supporting the
development of SAS in engineering requirements. It covers design-
time and run-time and involves designers and developers. They
identify system properties, select architectural patterns and adapta-
tion mechanisms, instantiate these patterns, the architecture and
policies, and the description of meta-data. The granularity of adap-
tation is compositional and adaptation is performed at run-time
through coordination and adaptation services and the enforcement
of policies. The approach has been evaluated by conducting case
studies.

, February 2018, Mannheim, Germany

C. Krupitzer et al.

Table 1: Overview of different development approaches

Name of approach Year Type of approach Type of sup- Applicability
port
Rainbow [14, 21] 2004 Architecture-based Framework SAS
Model-Driven Approach [13] 2008 Model-based Framework Pervasive Systems
Meta-Self [17] 2008 Service-oriented Framework SAS
SodekoVS [47] 2009 Agent-based Framework SAS
MUSIC [24] 2012 Model-based, Framework SAS
Service-oriented

FESAS Framework [28, 30] 2013 Model-based Framework SAS
Architectural Framework for Self-Configuration & Self- 2011 Architecture-based Framework SAS
Improvement at Runtime [48]
FUSION [19] 2010 Model-based Framework SAS
SASSY [38] 2011 Service-oriented Framework SAS
Zanshin [46] 2012 Control-based Framework SAS
StarMX [5] 2009 Architecture-based Framework SAS
MOSES [12] 2012 Service-oriented Framework SAS
Software Mobility Framework [35] 2010 Architecture-based Framework SAS
GRAF [2] 2012 Model-based Framework SAS
Software Engineering Guideline [45] 2010 Agent-based Guideline Self-organizing Systems
Development Approach and Automatic Process [1] 2015 Architecture-based Guideline SAS
SE Processes for SAS [3] 2013 not defined Guideline SAS
Genie [9] 2008 Model-based Tool Reflective, component-

based Adaptive Systems
FESAS IDE [27] 2016 Model-based Tool SAS
Modeling Dimension [4] 2009 Design concept Design concept SAS
Design Space [11] 2013 Design-driven Design concept SAS
High Quality Specification [31] 2013 Model-based Methodology SAS
Behavioral corridors [40] 2010 Verification-based =~ Methodology SAS
General Methodology for Designing SOSs [22] 2007 Design concept Methodology Self-organizing Systems
FORMS [52] 2010 Model-based Methodology SAS

DYNAMICO [51]

2010/2013 Control-based

Methodology SAS

SodekoVS [47] provides a generic reference architecture and
methodical development support for the development phases. As
the framework captures the entire development process, designers,
developers, as well as testers are involved in it. The engineering
context of the approach is traditional forward engineering. The
provided reference architecture is responsible for the configuration
and integration of self-organizing processes which are considered
to be reusable elements. Furthermore, the approach offers a library
containing coordination patterns which are applied at design-time.
The adaptation granularity is compositional.

MUSIC [24] is a model-driven, service-oriented framework con-
sisting of a development methodology, a tool suite, and a modeling

language. Reusability is provided by using generic, reusable middle-
ware components for automatizing context monitoring and system
adaptation. Designers and developers have to create an initial list
of resource and context dependencies, perform use-case and de-
sign modeling, model transformation and deployment, as well as
testing and validation. The application is driven by a development
process with tasks for every phase. The tool suite contains tools for
creating the application adaptation model, generating source code,
as well as testing. It is a combination of open source and tailored
tools. The MUSIC middleware takes care of supporting adaptation
mechanisms at run-time. MUSIC includes the MAPE-K model as
well as adaptation mechanisms of other approaches.

Comparison of Approaches for developing Self-adaptive Systems

FESAS Framework [28, 30] is a model-driven framework of-
fering reusable components and design patterns. The framework
is equipped with a tool set and includes a middleware that con-
trols system deployment. Designers use the FESAS IDE to create
a design model that, then, is transformed into a system model by
FESAS. Developers use the FESAS IDE to create code for MAPE
components. Because of the inclusion of reusable components, a
reference architecture including middleware as well as distribution
and design patterns, this approach strongly emphasizes reusabil-
ity. The reference architecture and middleware are used for the
transformation of the design model into a system model. Further-
more, the approach uses a component library containing control
loop elements, design/ distribution patterns, and support for meta-
adaptation of the adaptation logic at runtime. FESAS makes use of
other approaches, as it incorporates the MAPE-K principle, the BASE
middleware [8], and patterns for decentralized control (cf. [53]).

Architectural Framework for Self-Configuration & Self-

Improvement at Runtime [48] complements the observer/controller

adaptation logic known from Organic Computing [39] with an ad-
ditional layer for learning new adaptation rules. This framework
provides a reusable reference architecture and a simulation-based
evaluation of system configurations. The adaptation mechanisms
find feasible configuration parameters to adjust the system con-
figuration. If none is found, it relies on learning and simulation.
The approach makes use of other tools, e.g., the MASON simu-
lation tool [32] for testing configurations and a Fuzzy Classifier
System [49] for rule-based learning. Hence, the support of adap-
tation mechanisms is at run-time and granularity of adaptation is
parameter adaptation. The framework was evaluated in scenarios
of traffic and network control.

FUSION [19] is a model-driven framework based on feature
models. They represent an abstraction of the system functional-
ity. FUSION provides a reusable architecture that incorporates a
learning and adaptation cycle. The adaptation cycle comprises de-
tect, plan, and effect. Adaptation is pursued if the system finds
itself not reaching its objectives. Additionally, the learning cycle
induces new relationships between features and their impact on the
objectives. The used model reflects goals in utility functions. The
framework extends the tool XTEAM [18] for modeling goals and
features. For learning, the WEKA framework [25] is integrated. The
PRISM-MW [36] middleware supports monitoring and dynamic
adaptation. The support of the adaptation mechanism is run-time
and granularity of adaptation is on system features, i.e., composi-
tional adaptation.

SASSY [38] aims at self-optimization of service-oriented sys-
tems at run-time. User priorities are incorporated and traded against
each other in a utility function representing the system goals.
Goals consist of functional and QoS requirements. Integrating a
visual requirements specification for QoS specification, SASSY’s
self-adaptation approach is capable of generating a system archi-
tecture at run-time. SASSY relies on reference architectures for
self-adaptation. The approach supports the modeling tool XTEAM
and extends xADL [15] for deriving base architectures from its

, February 2018, Mannheim, Germany

system service architectures at run-time. Therefore, SASSY inte-
grates the Generic Modeling Environment (GME) and the Graph
Rewriting and Transformation engine (GReAT). SASSY supports
compositional adaptation as it exchanges and initiates varying sys-
tem architectures at run-time.

Zanshin [46] is a requirements-based framework that adds
adaptation to an existing system. The framework monitors fail-
ures in the fulfilling of requirements based on log files. The monitor
triggers the adaptation process according to the type of failure.
Based on goal-oriented requirements engineering, the approach
acknowledges functional and non-functional requirements. In [46],
Silva Souza extends the Zanshin framework to a control-driven
approach that implements compensation for faulty self-adaptation
performance. The framework relies on prioritization of require-
ments during the design phase. Thus, the temporal scope of support
is both design-time and run-time. The granularity of adaption is pa-
rameter adaption as the adaptation mechanism takes user-defined
policies as input. Silva Souza evaluated the approach by conducting
a case study on a meeting scheduler system.

StarMX [5] is an architecture-based framework consisting of a
development process and a reference architecture which adds self-
adaptation to legacy JavaEE-based systems. StarMX’s execution
engine represents the adaptation logic in the form of processes in
an execution chain. Those execution chains represent autonomic
managers and get triggered either in intervals or by a defined event
sent by the system or other processes. In order to operate, pro-
cesses depend on anchor objects which provide sensors, effectors
and helper functions to interact with the managed system. The
approach comprises the development phase and the deployment of
the self-adaptation mechanism on an operating system. Designers
have to specify self-managing requirements and to provide man-
ageability endpoints. Developers implement a management logic
and configure the framework. StarMX supports them with service
lookup, proxy generation, activation mechanism, caching, memory
scope, data gathering, and logging. The framework incorporates
policies and rules as inputs for the adaption cycle. Adapters for the
policy engine Imperius and the IBM ABLE rule engine are included
but through the exploitation of the adapter design pattern [20],
developers may provide their own adapter for any arbitrary policy
engine. The authors provide a sample implementation with the
web-based application TPC-W in [5].

MOSES [12] focuses on requirement-based QoS aspects within
service-based self-adaptive systems. Therefore, Cardellini et al. [12]
provides an implementation of the adaptation logic following the
MAPE cycle. This implementation is reusable in different settings.
Developers have to describe the composite service in a workflow or-
chestration language, such as Business Process Execution Language.
Additionally, the candidate services have to be described. At run-
time, MOSES uses this information to adapt the service-oriented
architecture at runtime. As reaction, MOSES might change the com-
position of the services, hence, performs a structural adaptation.
The applicability of MOSES was proven in a JavaEE system.

, February 2018, Mannheim, Germany

Software Mobility Framework [35] is an architecture-driven
software mobility framework for developing distributed, mobile sys-
tems. The framework supports modeling, analysis, implementation,
deployment, and run-time migration. Comparable to FUSION [19],
it integrates XTEAM for modeling and PRISM-MW for monitoring
and architecture-based, structural (re-)configuration. Additionally,
DeSi provides algorithms for exploring the configuration space
and determining system configurations at design time and runtime.
Further, a feedback loop is integrated to deliver information from
DeSi to XTEAM which can be used by designers and developers
to further improve the system. Hence, it support designers and
developers during the whole life cycle. In [35], the framework is
evaluated in a robotic scenario.

GRAF [2] integrates TGraphs and accompanying technologies
for modeling and manipulating runtime models. GRAF supports
automatic updates of runtime models based on observing the man-
aged resources at runtime. Based on the runtime model, GRAF
determines adaptation rules for parameter adaptation within the
managed resources. The implementation of GRAF relies on Java-
based aspect-oriented programming within the managed resources.
Amoui et al. evaluate the GRAF approach in two case studies: a
telephony server and the Jake2 game engine.

4.2 Guidelines

Guidelines support designers and developers by offering a detailed
sequence of working steps that have to be performed in order to
achieve a desired result. However, some guidelines also offer the
possibility to skip certain steps, extend, or replace them. Typically,
they do not offer tools, libraries or reference architectures, but they
can be accompanied accordingly.

C. Krupitzer et al.

modules of the reference architecture. Included approaches are the
MAPE-K principle and the DROOLS framework.

SE Processes for SAS [3] addresses the issue that traditional
software engineering processes cannot cope with the requirements
for SAS identified by Andersson et al. in [3]. The main difference
evolves from the coexistence of design activities performed by de-
signers and developers at design time as well as automatic design
activities performed by the SAS at runtime. Consequently, Ander-
sson et al. proposed a new process for developing SAS based on
the Software and Systems Process Engineering Meta-Model (SPEM)
specification. This process targets design time and runtime. The
process provides a high-level guideline describing the development
process of SAS. However, it does not define any frameworks, tools,
or further development support. Contrary, it does not limit the
applicability to any specific language, development knowledge, or
system domain. As it is a high-level view, it might be easily cus-
tomized or extended for various settings.

Additionally to the presented guidelines, some of the presented
frameworks — e.g., StarMX [5] or FESAS [27, 28] — integrate de-
velopment processes. However, they are customized to be used in
combination with the corresponding framework.

4.3 Tools

As the complexity, functional scope, and requirements of software
systems continuously increase, the development of such systems
can become inefficient. The provision of design and development
tools can make the software engineering process more efficient as
they automatize parts of development processes and lower error-
proneness. Some approaches offer only one tool for a specific task.
This can be the construction and visualization of design concepts,
the use of a modeling language, the insertion of meta-data needed

A Software Engineering Guideline for Self-organizing Resource{or the automated creation of software artifacts, or the validation of

Flow Systems [45] is a software engineering guideline combined
with a pattern that describes the elements of the system under con-
struction and how they collaborate. This guideline covers detailed
design and implementation activities for designers and developers.
The guideline can be integrated into a traditional forward engineer-
ing approach and is applicable for Self-organizing Resource-Flow
Systems, such as logistics applications and adaptive production
systems. The approach does not offer custom-made tools, but ref-
erences common development tools that are used in the guideline.
The adaptation is based on the construction and execution of the
design pattern and is supported at design- and run-time.

Development Approach and Automatic Process for Adap-
tation at Runtime [1] is a combination of a reference architecture
and development guidelines based on automated support. The ref-
erence architecture is composed of an adaptation core and four
complementary modules, the development, action plan, adaptation
rule, and infrastructure module. Involved parties are software en-
gineers as well as domain specialists. The developer involvement
covers the identification of system adaptation requirements within
the design phase, and the insertion of meta-data in the implemen-
tation phase. The adaptation is performed at run-time through the

such artifacts. By contrast, others offer whole tool suites supporting
several development activities.

Genie [9] is a development tool that supports the modeling, gen-
eration, and operation of reconfigurable, component-based systems.
It allows developers to use three levels of abstraction populated
by different artifacts such as models, configurations, policies, and
components. As the modeling tool provides design and modeling
support, its temporal scope is design-time. However, the artifacts
the tool constructs are specific implementations, so that the scope is
also run-time. The created artifacts are inserted into a middleware
that is able to process the adaptation at run-time. The approach has
been evaluated by case studies in the course of the authors’ work
and includes MetaEdit+, an environment for creating and using
domain-specific modeling languages.

FESAS IDE [27] complements the Eclipse IDE with two plug-
ins. The FESAS Development Tool supports developers in writing
of code for MAPE-K component. This plug-in is specific for systems
implemented for the FESAS framework. Due to its specificity, this
plug-in is excluded for the comparison. The FESAS Design Tool
offers a model-based approach for designing SAS. It is based on the

Comparison of Approaches for developing Self-adaptive Systems

Eclipse Modeling Framework (EMF), the Graphical Modeling Frame-
work (GMF), and the Acceleo code generator. It relies on the generic
MAPE-K model [26] and offers support for modeling decentralized
interaction patterns from [53]. Hence, the information captured
by the models is reusable for many different SAS. The graphical
editor allows to model the SAS using drag&drop of components.
This high abstraction eliminates the need for the system designer
to learn the modeling syntax. This model is transformed to a sys-
tem configuration that is in accordance with the FESAS modeling
syntax. However, the modular approach enables to easily define an-
other syntax. In [27], the FESAS IDE is evaluated in five case studies.

Additionally, some of the frameworks integrate different tools
for the development, such as XTEAM which is used for modeling
in [35], [19], and [38] or the Eclipse plug-ins of the MUSIC frame-
work [24]. However, these tools do not cover the development of
SASs independently but are integrated in the development process
of the corresponding frameworks.

4.4 Design concepts

Design concepts are focused on design-time. The development of
SAS starts with the requirements engineering, analysis, and de-
sign. The concept of self-adaptation can be examined very early
in order to optimize and emphasize self-adaptation. Design-based
approaches include design principles and patterns, but do not offer
libraries or concrete implementation proposals. However, they can
integrate tool support.

Modeling Dimensions of Self-Adaptive Software Systems [4]
provide software engineers with a terminology for specifying self-
adaptation. Therefore, the dimensions are categorized, considering
goals, change, mechanisms, and effects. This approach offers de-
signers the possibility to explore the system’s modeling dimensions.
Because they do not offer concrete implementation proposals, but
very generic design principles, the level of abstraction is rather high.
However, this high abstraction level facilitates high reusability and
extensibility. The authors state that this approach can be applied
to traditional forward as well as reverse engineering contexts. Fur-
thermore, the approach has been evaluated by different case studies.

Design Space for Self-Adaptive Systems [11] is a design con-
cept which emphasizes systematic design and identifies the design
space dimension of SAS. Therefore, it discusses key design decisions,
design questions, and answers to these question, organizing them
into five different clusters. As this design principles are very generic
and abstract, they are also very reusable and suit most SAS. The
designers are involved by answering all relevant questions provided
by the approach in order to explore the design space of the system
development. The level of abstraction is very high because they
do not offer concrete implementation blueprints. Furthermore, the
approach supports adaptation mechanisms at design-time through
the exploration of the system’s design space resulting in adaptation
requirements, specifications and designs. It also offers high exten-
sibility, as it is a very general design concept that can be adopted,
integrated into other approaches and expanded by new dimensions.

, February 2018, Mannheim, Germany

4.5 Methodologies

A software development methodology, in general, is a strategy or
procedure to deal with a certain problem. It can be limited to a
specific task, e.g., specification, validation, or deployment, or cover
the whole development process. Besides, it can include processes
for sub-tasks or the entire software engineering process, modeling
languages, or analysis techniques. However, it is not as extensive
as a framework and is not bound to a step-by-step guideline, al-
though it may contain a guideline for special tasks embedded into
the methodology.

High-Quality Specification of Self-Adaptive Software Sys-
tems [31] is a methodology for the specification of SAS. This
methodology includes the UML-based Adapt Case Modeling Lan-
guage (ACML), which allows for the explicit specification of self-
adaptation. Furthermore, it is based on formal semantics which
help applying quality assurance techniques to the modeled sys-
tem. As this approach does not consider implementation aspects
in particular, its level of abstraction is high. It supports adaptation
mechanisms at design-time by separating self-adaptivity concerns
using the ACML. It is evaluated by conducting case studies.

Behavioral corridors [40] provides a formal method for the
specification of organic computing systems using description of
behavioral corridors. The approach uses temporal logic (ITL+) to
formally specify the adaptive system and supports the Simple Pro-
gramming Language (SPL) syntax. Therefore, this approach is spe-
cific to the semantics of temporal logic and SPL. Based on the
Restore-Invariant approach [23], it supports formal verification of
the system. The method distinguishes between two system states:
(i) functional state and (ii) erroneous state. In functional state, the
system reaches its desired goals. In an erroneous state it does not
achieve its goals and, therefore, tries to reconfigure itself to re-
turn to a functional state. The approach helps designers to verify
a system’s formal specification during design phase. The formal
method makes use of the KIV theorem prover [7]. The methodology
provides a guideline for verification, but not a concrete implementa-
tion. Thus, the level of abstraction is rather high. The approach was
evaluated by conducting a case study on self-organizing resource
flow systems.

General Methodology for Designing Self-Organizing Sys-
tems [22] is an iterative and incremental development approach
that integrate feedback on its development stages to rework pre-
vious steps or influencing the implementation of following steps.
As the agent-based methodology comprises the design process, its
temporal scope of support is design-time. Involved roles are de-
signers because it focuses on the requirements of a system. The
approach does not consider reusability as it does not offer specific
implementations, instead it yields a concept to route the exploration
of implementations. Hence, its assessment reflects a high level of
abstraction. The methodology was evaluated by its application on
a case study on self-organizing traffic lights.

FORMS [52] incorporates the concepts of computational reflec-
tion [34] and architecture-based adaptation. It supports designers

, February 2018, Mannheim, Germany

in defining a self-adaptive system’s formal specification. FOMRS
provides a reusable reference model to specify architectural pat-
terns for SAS with the Z notation to precisely describe the system’s
elements, their properties, and relationships. It enables formal veri-
fication by Community Z Tools. The temporal scope of support is
the design-time. The level of abstraction is medium as the reference
model contributes concrete guidance on how to specify a system’s
functional and self-managing elements but does not offer a specific
implementation. The authors have evaluated the approach by con-
ducting two case studies.

DYNAMICO [51] is a reference model for context-based self-
adaptation. It addresses the shortcoming of previous research that
often does not clearly examine visibility of feedback loops and
missing control-based modeling. According to [51], the visibility
of decoupled feedback loops supports analyzability, assessability,
and comparability of the adaptation logic. The DYNAMICO refer-
ence architecture adds an additional layer on top of the adaptation
logic for monitoring and reasoning on adaptation objectives [51],
based on the taxonomy of adaptation metrics from [50]. Further,
the three-tier feedback-circuit consisting of an overall control ob-
jective loop with two loops for adaptation and context-awareness
makes the tasks for self-adaptation and context-awareness more
visible for developers. This control-driven and architecture-based
methodology provides specific architectural patterns but lacks a
concrete reference implementation.

5 DISCUSSION

This section discusses the sample approaches presented in Section 4
in terms of their characteristics that have been elaborated accord-
ing to the taxonomy proposed in Section 3. Due to the immense
amount of available development approaches for SAS and their
enormous variety regarding underlying concepts, scope and area
of application, the selection of sample development approaches is
very constrained and does not reflect the collectivity of available
approaches. Thus, the comparison of the sample approaches cannot
draw conclusions about development methodologies in general.
However, it allows for an overview of similarities and differences
of such approaches and reveals strengths, weaknesses, oversupply,
and lack of them and their provided support.

Because the various categories of development approaches are
fundamentally different, we only compare approaches of the same
category with each other. This makes sure that the development
approaches can be compared comprehensively, providing mean-
ingful findings. As tools are rather specific, we omit them for this
discussion.

5.1 Frameworks

In general, it is noticeable that the type of the approaches varies.
We presented architecture-based, model-based, service-oriented,
agent-based, component-based frameworks. Most approaches offer
support at run-time, whereas the others offer support at design-
as well as run-time and, thus, involve not only developers, but
also designers in the development process. This approves the ex-
tensive nature of frameworks. All frameworks take reusability

C. Krupitzer et al.

into consideration, providing generic, reusable adaptation archi-
tectures/infrastructures. But they differ regarding the provision
of reusable process elements and components on the one hand,
and middleware on the other hand. Consequently, reusability as
an important success factor for such approaches is taken care of
similarly. Further, none of the approaches except FESAS focuses
on reusing existing code for the algorithms of MAPE components,
so reusability on a low level. The authors of SodekoVS and MUSIC
explicitly state that these approaches can be integrated into a tra-
ditional forward engineering context, indicating that frameworks
are preferably applied in a straight forward development process,
whereas the other frameworks do not offer information about this
dimension. Rainbow, SodekoVS, and FESAS are applicable to SAS in
general, while the others are more specialized. Except for Rainbow,
there is no information about the demands on the developer. As
these approaches are meant to facilitate the development of SAS,
it would be helpful to provide such information. Furthermore, the
support of adaptation mechanisms differs a lot according to the type
of approach. Adaptation is achieved through models, adaptation
services, coordination mechanisms, or middleware. All frameworks
offer compositional adaptation, confirming their component-based
structure. Some frameworks provide comprehensive tool support,
e.g., Rainbow, MUSIC, and FESAS . Many frameworks includes other
works. All in all, the comparison of the approaches’ type of support
and their year of publication indicates that present frameworks do
not only focus on run-time support, but also include design-time
activities into their support.

5.2 Guidelines

Comparing the guidelines presented in Section 4, one can see that
Software Engineering Guideline [45] is agent-based, whereas Devel-
opment Approach and Automated Process [1] is architecture-based.
However, they both provide support at design- and run-time, but
differ in the type of support, as the one includes a design pattern and
the other provides a reference architecture. The SE processes for
SAS [3] describe a rather generic applicable process. Furthermore,
all approaches can be applied in a traditional forward engineering
context. As different the underlying concepts of the guidelines are,
as different is their support of adaptation mechanisms. The first
guideline achieves adaptation through the construction and exe-
cution of the Organic Design Pattern, while the second achieves it
through different modules. The SE processes for SAS do not specify
any restrictions. Finally, they all do not make use of libraries, but
include other works and are evaluated by the conduction of case
studies.

5.3 Design Concepts

The Modeling Dimensions and Design Space approaches are both de-
sign concepts that provide reusable design principles for the design
of SAS, hence, their temporal scope is design-time and involved
parties are designers. Modeling Dimensions can be applied in a tra-
ditional forward or reverse engineering context, whereas there is
no information on this aspect given in the Design Space approach.
The user involvement is very similar, as the designer has to ex-
plore and apply design dimensions or answer design questions. As
both approaches are design concepts, they do neither use libraries,

Comparison of Approaches for developing Self-adaptive Systems

processes, nor reference architectures, but are extendable, as they
can be integrated into the design phases of other development pro-
cesses and approaches. Both concepts do not include other works
and are evaluated with the aid of case studies. In general, both
approaches are very similar regarding their characteristics. Thus,
it may be interesting to compare the results of their application to
actual software systems in respect of strengths, weaknesses, and
contextual overlapping.

5.4 Methodologies

In general, methodologies share a higher level of abstraction than
frameworks. While frameworks compose a (sub-) system of reusable
components for implementation, methodologies tend to be focused
around a procedure dealing with a specific problem. For instance,
Gershenson’s General Methodology tries to give a standardized
view on the development process of SAS, from where to start design-
ing a system [22]. The two approaches providing concrete reference
models, FORMS [52] and DYNAMICO [51], both hold a medium
level of abstraction, as both provide reference models, but do not
provide implementation but a starting point from where to develop
a system by deploying the models. Opposite, the other methodolo-
gies share a high level of abstraction as they focus more on giving
generic guidance on the development process.

6 RELATED WORK

In [29], we present a taxonomy of self-adaptation and a survey
on engineering SAS motivating a new perspective on these sys-
tems with respect to context adaptation [29]. The classification of
different approaches through the "type of approach"-dimension
described in Section IV is based on the categorization elaborated in
the survey on engineering SAS. Furthermore, ideas for the structure
of the taxonomy are gained from the taxonomy of self-adaptation.
Finally, the approaches considered in their work facilitated the
selection of approaches for the comparison in Section V.

Macias-Escriva et al. review state-of-the-art approaches reported
in literature [33]. Therefore, different methods and techniques that
are are currently applied in the design of SAS are analyzed. Addi-
tionally, the authors survey research challenges and applications
for SAS.

Salehie and Tahvildari presented an overview over the landscape
of self-adaptive software and related research challenges, including
their own taxonomy for self-adaptation [44]. Additionally, they
present and cluster different approaches for developing SASs.

7 CONCLUSION

In this paper, a profound taxonomy with detailed dimensions for
the analysis and comparison of different development frameworks,
guidelines, tools, design concepts and methodologies is proposed.
By the use of this taxonomy, different approaches can be classified
with respect to their underlying key concepts, provision of sup-
port, the user involvement, basic applicability conditions, the use
of processes, libraries, and tools, the abstraction level, the handling
of adaptation, and the consideration of reusability, extensibility,
completeness and validity. Furthermore, the taxonomy is applied to

, February 2018, Mannheim, Germany

26 different approaches that are analyzed by means of the dimen-
sions, structured, and presented, allowing for a comparison of their
characteristics and contents.

Due to the high diversity, differences regarding key concepts,
and various extents of development approaches for SAS, it is very
challenging to find one taxonomy that is generic enough to be ap-
plicable to every type of approach. Moreover, the taxonomy should
be detailed, widespread, and in-depth at the same time. Finding
appropriate dimensions that break all information of an approach
down into key attributes and pieces of information that make a
comparison possible and profound, is the greatest challenge of this
work. However, the taxonomy has been successfully used for clas-
sification of approaches from different categories. But despite the
experience that this taxonomy suits a wider range of approaches,
many works do not elaborate the approach’s concepts and prop-
erties thoroughly enough to examine each dimension extensively.
In such cases, additional information is needed to accomplish a
successful analysis.

The taxonomy proposed in this paper may be refined by adding,
adopting, and specifying dimensions in the future. Therefore, it
may be reasonable to perform a more detailed survey for every
category to find characteristics that suit best. This could increase
the quality and usability of the gathered information. Furthermore,
the evaluation of the taxonomy in terms of applying it to more
approaches would be helpful to find new and identify problematic
characteristics.

ACKNOWLEDGMENTS

The authors would like to thank their former student Tanawat Mark
Klaisoongnoen for his contribution.

REFERENCES

[1] Frank José Affonso and Elisa Yumi Nakagawa. 2015. Self-adaptive Software :
Development Approach and Automatic Process for Adaptation at Runtime. In
Revista Brasileira de ComputaAgAco Aplicada. 68-84.

[2] Mehdi Amoui, Mahdi Derakhshanmanesh, JiiRgen Ebert, and Ladan Tahvildari.
2012. Achieving Dynamic Adaptation via Management and Interpretation of
Runtime Models. Journal of Systems and Software 85, 12 (2012), 2720-2737.

[3] Jesper Andersson, Luciano Baresi, Nelly Bencomo, Rogério de Lemos, Alessandra
Gorla, Paola Inverardi, and Thomas Vogel. 2013. Software Engineering Processes
for Self-Adaptive Systems. In Software Engineering for Self-Adaptive Systems II.
LNCS, Vol. 7475. Springer, 51-75.

[4] Jesper Andersson, Rogério de Lemos, Sam Malek, and Danny Weyns. 2009. Mod-
eling Dimensions of Self-Adaptive Software Systems. In Software Engineering for
Self-Adaptive Systems. LNCS, Vol. 5525. Springer, 27-47.

[5] Reza Asadollahi, Mazeiar Salehie, and Ladan Tahvildari. 2009. StarMX: A frame-
work for developing self-managing Java-based systems. In 2009 ICSE Workshop
on Software Engineering for Adaptive and Self-Managing Systems. 58—67.

[6] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi,]J. Magee et al. 2009. Soft-
ware Engineering for Self-Adaptive Systems: A Research Roadmap. In Software
Engineering for Self-Adaptive Systems. LNCS, Vol. 5525. Springer, 1-26.

[7] Michael Balser, Wolfgang Reif, Gerhard Schellhorn, and Kurt Stenzel. 1999. KIV
3.0 for Provably Correct Systems. In Proceedings of the International Workshop on
Current Trends in Applied Formal Method: Applied Formal Methods. 330-337.

[8] Christian Becker, Gregor Schiele, Holger Gubbels, and Kurt Rothermel. 2003.
BASE - a Micro-broker-based Middleware for Pervasive Computing. In Proc.
PerCom. 443-451.

[9] Nelly Bencomo, Paul Grace, Carlos Flores, Danny Hughes, and Gordon Blair. 2008.

Genie: Supporting the Model Driven Development of Reflective, Component-

based Adaptive Systems. In Proc. ICSE. ACM, 811-814.

A. Berns and S. Ghosh. 2009. Dissecting Self-* Properties. International Conference

on Self-Adaptive and Self-Organizing Systems (2009), 10-19.

Yuriy Brun, Ron Desmarais, Kurt Geihs, Marin Litoiu, Antonia Lopes, Mary Shaw,

and Michael Smit. 2013. A Design Space for Self-Adaptive Systems. In Software

Engineering for Self-Adaptive Systems II. LNCS, Vol. 7475. Springer, 33-50.

[10

[11

, February 2018, Mannheim, Germany

[12]

(13

[14]

[15

[16]

[17

[18

[19]

[20]

[21]

[22]

[23]

[24]

[25]

™
&

[27

[28

[29]

[30]

[31

[32]

[33

[34

Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi, Stefano Iannucci,
Francesco Lo Presti, and Raffaela Mirandola. 2012. MOSES: A Framework for
QoS Driven Runtime Adaptation of Service-Oriented Systems. IEEE Transactions
on Software Engineering 38, 5 (2012), 1138-1159.

Vicente Pelechano Carlos Cetina, Pau Giner, Joan Fons. 2008. A Model-Driven
Approach for Developing Self-Adaptive Pervasive Systems. In Proc. Models@RT.
Shang-Wen Cheng. 2008. Rainbow: Cost-Effective Software Architecture-Based
Self-Adaptation. Ph.D. Dissertation. Carnegie Mellon University.

Eric M. Dashofy, André Van der Hoek, and Richard N. Taylor. 2001. A Highly-
Extensible, XML-Based Architecture Description Language. In Proceedings of the
Working IEEE/IFIP Conference on Software Architecture. 103-112.

Rogério de Lemos, David Garlan, Carlo Ghezzi, Holger Giese, Jesper Andersson,
Marin Litoiu, Bradley Schmerl, Danny Weyns, Luciano Baresi, Nelly Bencomo,
Yuriy Brun, Javier Camara, Radu Calinescu, Myra B. Cohen, Alessandra Gorla,
Vincenzo Grassi, Lars Grunske, Paola Inverardi, Jean-Marc Jezequel, Sam Malek,
Raffaela Mirandola, Marco Mori, Hausi A. Miiller, Romain Rouvoy, Cecilia M. F.
Rubira, Eric Rutten, Mary Shaw, Giordano Tamburrelli, Gabriel Tamura, Norha M.
Villegas, Thomas Vogel, and Franco Zambonelli. 2018. Software Engineering
for Self-adaptive Systems: Research Challenges in the Provision of Assurances.
In Software Engineering for Self-Adaptive Systems III, Rogério de Lemos, David
Garlan, Carlo Ghezzi, and Holger Giese (Eds.). Lecture Notes in Computer Science
(LNCS), Vol. 9640. Springer. (to appear).

Giovanna Di Marzo Serugendo, John Fitzgerald, and Alexander Romanovsky.
2010. MetaSelf 4AS- An Architecture and a Development Method for Dependable
Self-* Systems. In Proc SAC. ACM, 457-461.

George Edwards, Sam Malek, and Nenad Medvidovic. 2007. Scenario-driven
Dynamic Analysis of Distributed Architectures. In Proceedings of the 10th Interna-
tional Conference on Fundamental Approaches to Software Engineering. 125-139.
Ahmed Elkhodary, Naeem Esfahani, and Sam Malek. 2010. FUSION: A Framework
for Engineering Self-tuning Self-adaptive Software Systems. In Proc. FSE. ACM,
7-16.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional.

David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley R. Schmerl, and Pe-
ter Steenkiste. 2004. Rainbow: Architecture-Based Self-Adaptation with Reusable
Infrastructure. IEEE Computer 37, 10 (2004), 46-54.

Carlos Gershenson. 2007. Design and Control of Self-organizing Systems (PhD
Thesis). PhD Thesis. Vrije Universiteit Brussel.

M. Gudemann, F. Nafz, F. Ortmeier, H. Seebach, and W. Reif. 2008. A Specification
and Construction Paradigm for Organic Computing Systems. In Proc. SASO. IEEE,
233-242.

S. Hallsteinsen, K. Geihs, N. Paspallis, F. Eliassen, G. Horn, J. Lorenzo, A. Mamelli,
and G.A. Papadopoulos. 2012. A development framework and methodology for
self-adapting applications in ubiquitous computing environments. Journal of
Systems and Software 85, 12 (2012), 2840-2859.

G. Holmes, A. Donkin, and I. H. Witten. 1994. WEKA: a machine learning
workbench. In Proceedings of the 2nd Australian and New Zealand Conference on
Intelligent Information Systems (ANZIIS). IEEE, 357-361.

Jeffrey O. Kephart and David M. Chess. 2003. The Vision of Autonomic Computing.
IEEE Computer 36, 1 (2003), 41-50.

Christian Krupitzer, Felix Maximilian Roth, Christian Becker, M. Weckesser,
Malte Lochau, and Andy Schiirr. 2016. FESAS IDE: An Integrated Development
Environment for Autonomic Computing. In Proceedings of the 13th International
Conference on Autonomic Computing (ICAC). 15-24.

Christian Krupitzer, Felix Maximilian Roth, Sebastian VanSyckel, and Chris-
tian Becker. 2015. Towards Reusability in Autonomic Computing. (2015), 115—
120 pages.

Christian Krupitzer, Felix Maximilian Roth, Sebastian VanSyckel, Gregor Schiele,
and Christian Becker. 2015. A survey on engineering approaches for self-adaptive
systems. Pervasive and Mobile Computing Journal 17, Part B (2015), 184-206.
Christian Krupitzer, Sebastian Vansyckel, and Christian Becker. 2013. FESAS:
Towards a Framework for Engineering Self-Adaptive Systems. In Proceedings
of the 7th International Conference on Self-Adaptive and Self-Organizing Systems
(SASO). IEEE, 263-264.

Markus Luckey. 2013. High-Quality Specification of Self-Adaptive Software Systems.
Ph.D. Dissertation. Paderborn University.

Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, and Keith Sullivan. 2004. MASON:
A New Multi-Agent Simulation Toolkit. In Proceedings of the 2004 Swarmfest
Workshop.

Frank D. Macias-Escriva, Rodolfo Haber, Raul del Toro, and Vicente Hernandez.
2013. Self-adaptive systems: A survey of current approaches, research challenges
and applications. Expert Systems with Applications 40 (2013), 7267-7279. Issue 18.
Pattie Maes. 1987. Concepts and Experiments in Computational Reflection. In
Proc. OOPSLA. ACM, 147-155.

Sam Malek, George Edwards, Yuriy Brun, Hossein Tajalli, Joshua Garcia, Ivo
Krka, Nenad Medvidovic, Marija Mikic-Rakic, and Gaurav S. Sukhatme. 2010.

[36

(37

(38]

[39

[40

[41

[42

[43]

[44

[45

[46

(48

[49

[50

[51

o
£,

[53

A

C. Krupitzer et al.

An architecture-driven software mobility framework. Journal of Systems and
Software 83, 6 (2010), 972-989.

Sam Malek, Marija Mikic-Rakic, and Nenad Medvidovic. 2005. A Style-Aware
Architectural Middleware for Resource-Constrained, Distributed Systems. IEEE
Trans. Softw. Eng. 31, 3 (2005), 256-272.

P K. McKinley, S.M. Sadjadi, E.P. Kasten, and B. H. C. Cheng. 2004. Composing
Adaptive Software. IEEE Computer 37,7 (2004), 56-64.

D. Menasce, H. Gomaa, S. Malek, and J. P. Sousa. 2011. SASSY: A Framework for
Self-Architecting Service-Oriented Systems. IEEE Software 28, 6 (2011), 78-85.
Christian Miiller-Schloer, Hartmut Schmeck, and Theo Ungerer (Eds.). 2011.
Organic Computing GAT A Paradigm Shift for Complex Systems. Springer Basel,
Basel, 111-125. https://doi.org/10.1007/978-3-0348-0130-0_7

Florian Nafz, Hella Seebach, Jan-Philipp Steghéfer, Simon Baumler, and Wolfgang
Reif. 2010. A Formal Framework for Compositional Verification of Organic
Computing Systems. In Autonomic and Trusted Computing. LNCS, Vol. 6407.
Springer, 17-31.

0. Babaoglu, G. Canright, A. Deutsch, G. Caro, F. Ducatelle et al. 2006. Design pat-
terns from biology for distributed computing. ACM Transactions on Autonomous
and Adaptive Systems 1, 1 (2006), 26—-66.

P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimhigner, G. Johnson, N. Medvidovic,
A. Quilici, D. S. Rosenblum, and A. L. Wolf. 1999. An Architecture-Based Approach
to Self-Adaptive Software. IEEE Intelligent Systems 14, 3 (1999), 54-62.

R. de Lemos, H. Giese, H. A. Miiller, M. Shaw, J. Andersson et al. 2013. Software
Engineering for Self-Adaptive Systems: A Second Research Roadmap. In Software
Engineering for Self-Adaptive Systems II. LNCS, Vol. 7475. Springer, 1-32.
Mazeiar Salehie and Ladan Tahvildari. 2009. Self-Adaptive Software: Landscape
& Research Challenges. ACM Transactions on Autonomous and Adaptive Systems
4,2 (2009), Art. 14.

Hella Seebach, Florian Nafz, Jan-Philipp Steghofer, and Wolfgang Reif. 2010. A
Software Engineering Guideline for Self-Organizing Resource-Flow Systems. In
Proc. SASO. IEEE, 194-203.

V. A. Silva Souza. 2012. Requirements-based Software System Adaptation. PhD
Thesis. University of Trento.

Jan Sudeikat, Lars Braubach, Alexander Pokahr, Wolfgang Renz, and Winfried
Lamersdorf. 2009. Systematically engineering self-organizing systems: The
SodekoVS approach. Electronic Communications of the EASST 17 (2009).

Sven Tomforde. 2011. An Architectural Framework for Self-configuration and
Self-improvement at Runtime. PhD Thesis. Universitat Hannover.

Manuel Valenzuela-Rendon. 1991. The Fuzzy Classifier System: A Classifier
System for Continuously Varying Variables. In International Conference on Genetic
Algorithms. 346-353.

Norha M. Villegas, Hausi A. Miiller, Gabriel Tamura, Laurence Duchien, and
Rubby Casallas. 2011. A Framework for Evaluating Quality-Driven Self-Adaptive
Software Systems. In International Symposium on Software Engineering for Adap-
tive and Self-managing Systems. 80-89.

Norha M Villegas, Gabriel Tamura, Hausi A Miiller, Laurence Duchien, and
Rubby Casallas. 2013. DYNAMICO: A Reference Model for Governing Control
Objectives and Context Relevance in Self-Adaptive Software Systems. Springer,
Berlin, Heidelberg, 265-293.

Danny Weyns, Sam Malek, and Jesper Andersson. 2010. FORMS: A Formal
Reference Model for Self-adaptation. In Proc. ICAC. ACM, 205-214.

Danny Weyns, Bradley R. Schmerl, Vincenzo Grassi, Sam Malek, Raffaela Miran-
dola, Christian Prehofer, Jochen Wuttke, Jesper Andersson, Holger Giese, and
Karl M. Goschka. 2013. On Patterns for Decentralized Control in Self-Adaptive
Systems. In Software Engineering for Self-Adaptive Systems II. LNCS, Vol. 7475.
Springer, 76-107.

OVERVIEW ON THE APPROACHES

In the following, the appendix presents the detailed results of the
comparison of the approaches presented in Section 4. The tables
present for each approach its characteristics for the dimensions of
the taxonomy. Due to space limitations, the overview is split into
several tables.

https://doi.org/10.1007/978-3-0348-0130-0_7

, February 2018, Mannheim, Germany

Comparison of Approaches for developing Self-adaptive Systems

Taxonomy of Development Approaches (1)

Table 2

‘Sug premiog udrsoq paywads jou sw-udisog sroudsaq ASofopoay paseq-jonuo) €102/0102 [15] OOINVNAQ
‘Sug premiog udrsaq paymads jou swm-udisaq sroudsaq ASotopoay Ppaseq-1opoN 0102 [2s] SW0Od
Surreaurdua
as1oAdy “Sug [22] swaysAg Surzrue8iQ-yjos Sur
premiog udiso paymads jou sw-udisag sroudsaq ASojopotoy 1daouos udisag £00Z -uSIsa 10J AS0[OPOYIAN [eISUID)
‘Sug premiog udrsoq s3daouod ayqesnay 1auSisa(swm-udisoq ASofopotay PISeq-UOTIeIYLIdA 0102 [0%] sT0p11I0D [RIOTARY DG
ASoroporjoux
‘Sug premiog udisoq (TIWDV) 28engue] Surppoy 1oudisoq awn-udisaq uotjeoyradg Ppaseq-[opoy €102 [1¢] wonreoyroads Ajrrend) ySry
s3doouoo pue
payads jou udiso 51doou00 uIsap 9[qesnar VLU 1ouSisaq swmn-udisag so[dund uSsaq 1daouo) uSisoq €102 [11] 2ordg uStsag
SurresurSua
as1oAdy “Sug sydeouoo pue
pIremiog udisoq 53daou00 uSrsap a[qesnal ‘LU 1oudisoq sum-udisoq so[dourud uSsaq 1daouo) uSsaq 6002 [¥] suorsuau Surppoy
1adopasag
‘Suq premiog ugsag $9ss9001d pue S[o0], dLIUID) ToudIsaq awn-udsaq 1001, Paseq-19poN 9102 [22] Ad1 SVSAd
uor} 1adofasag Eliivel
paywads jou -ejuswapduwy ‘udsaq paymads jou aouSiso@ -uny ‘owm-uSisoq 0oL paseq-[opoy 2002 [6] a1uan
-Suqg premriog udisoq SJULWIAA $59001d d[qesnay 1oudisoq awn-udisaq $S9201J Ppaseq-[opoy €102 [€] SV'S 0] sassa001g IS
1s11R109dg
§590 urewo(y 19U Eliivel 9INJ09)IYITY IUD [1] ssa0014 oryewx
‘Bug premiog -oxd juowrdorossp SOUI[OPIND DINJOANIYDIY NUAIRY -ISUf aIemljo§ -uny Ow-udisoq -I9Joy ‘SAUIPPING PIseq-2InjddjIydry 610z -oiny pue yoeorddy juswdoressg
uor} 1adofasag Eliivel [s¥] ourg
‘Suyg premroj -ejuowapduy ‘uSisaq urone udiso(q druedIo aouSisoq -uny ‘owm-uSisoq UuId)3e ‘QUI[apIND paseq-1uady 010z -opmo Suwueourduyg aremijos
uon 1ouSts awmy
‘Sug premioy -ejuawapduwy ‘udsag QINJOAIYOIY NUAIRY -9 Todoppadg -uny ‘owm-udisaq NIomaurery paseq-[opoy 2102 [2] AVYO
‘Sug premiog uorjejuaura[duy 9INJ09)TYOIY IUIIYY s1adoaAsg wm-uny MNIOMAWIRL] PISEBQ-dINJONIYDIY 0102 [s€] romowrer] AIqojy aIem}jos
uony swmy
‘Suyg premroj -ejuowapduwy ‘uSisaq syuauoduwod a[qesnay ‘spoyjow uSIsaq radoppasq -uny ‘owm-uSisag JYIoMauwrer] POIUBLIO-2IIATG 2102 [21] SASOW
uon IouSts aun
‘Sug premioy -ejuawapdwy ‘udsag sjuouodwiod J[qesnay -9 TodopPadg -uny ‘own-udisag NIOMAUIRL] PISBQ-2INIONIYDIY 6002 [s] Xreis
uor} 2INJIIYITY IUD 1ougts Eliivel
‘Suyg premroj -ejuowdldwy ‘uSsaq -19j9y ‘sjusuodwod pue sasseoord d[qesnay -9 Todopad@ -uny ‘owm-uSisag MIoMaurery Ppaseq-[onuo) 2102 [9%] urysuez
uon 9INJONTYITY 0UD 1ouSts awmy
‘Sug premioy -ejuowd[dw ‘USISdQ -19J9y ‘sjusuodurod pue sassadord a[qesndy -o(1odofpadg -uny ‘Owmn-uSisaq S[00], “YIomaweI] PA1USLIO-30IAISS 1102 [8€] ASSV'S
‘Sug premiog uornjejuauwa[duy 9INJ09)TYOIY IUIIYY s1adopPAasg wm-uny NIoMaurer] paseq-[opoy 0102 [61] NOISNd
[8¥] 1dwr-3po5
-Suqg premrog uonjejuauafduuy 9INJOIIYITY 20UAIJY s1adofanag Quun-uny JNIoMaWeL] PIseq-2InjodIYIIy 1102 % JUOD-J[9S 10 YIOMIWERL] YOIy
uon 1ou8ts awmy QIEMI[PPIN
‘Sug premioy -ejuawapduwy ‘udsag Axeaqry Juauodwoo pue sassaoord a[qesnay -9 TodopPad@ -uny ‘wn-udisag ‘S[00], NIOMIUWRIL] paseq-[opoy €102 [o€ ‘82] SVSaA
ssaooxd 1ouSts wmy o8enJue[Surppoy PAIUALIO-IITAIIG
‘Sug premiog juswdorossp amuyg SIEMI[PPIW J[ESNAI VLU -9 Todo[oadg -uny ‘own-udisag ‘S[00], “[IOMIUEIL] ‘paseq-[PpPoON 2102 [¥z] o1ISNIN
ssad0xd Areiq 19359, ‘ToudIs Eliiisl
‘Sug premroj juowrdo[oAsp aImuy -7 9INJINIYIIY DUIIJY ‘SJUAW[D o[qesnar -d(] Todopasq -uny ‘own-uSisag JIoMauwrer] paseq-1uady 6002 [L¥] SAO¥PPOS
uon 1adofasag surn
paywads jou -ejuswaduwy ‘udsaq 2INJONIISEIJUT OLIUID) TouSisoq -uny ‘owm-udisoq NIoMaurery PAJUSLIO-IITAIIG 8002 [L1] J19S-B1ON
UOTIN[OAUT PUE UOTINJOAD 0] $3s59201d
payoads jou uonjejuauddwy uonedepy ‘arnjosjryore uoneidepe ajqesnay 1adopaaag wum-uny JyIoMmauwrer] Ppaseq-[opoy 8002 [¢1] yoerorddy uaarIg-[opoy
SIOA®] UOTJR[SULI} PUE 2INJOYIIY UWIAISAS JO
paymads jou uonejuawa[dwy Sumsisuod arnjonyjsexyur uorejdepe syqesnay 1adofasag swm-uny S[00], YIOMAUIRL] PISBQ-IINIONIYDIIY $002 [12 ‘¥1] moqurey
1X33U0) aseyq sany 110ddng jo
Surresuruyg juswrdopasaq Aiqesnay -reg pas[oauy adosg peroduwdy jroddng yo adAy, yoeoxddy jo adAy, Teax yoeoxddy yo aprp

C. Krupitzer et al.

, February 2018, Mannheim, Germany

Taxonomy of Development Approaches (2)

Table 3

uou
uou

uou

uou

suou

auou

Juou

suza)jed wonNqLISIp

pue uSrsap ‘Areiqr jusuodwo)

payroads jou
suou

uou
uou

SUON.
SUON.

uou

SUON.
Juou
QUON.

SUON.
surayyed wornqLIsIp
pue udisap ‘Arexqry jusuodwo)

Juou
SuId)
-ed uorneurpiood jo Joree)

uou

A-4dVIN
A-4dVIN

uou

uou

suou
suou

suou

sanpow jo Sur

-1STSU0D 2INJOIYITE AIUIIIIY

suou
suou

sanpouw jo Sur

-1STSU0D 2INJOJIYIIE AIUIIIIY

uou
S9NI UT S[apour

SWNUNI JO UONJEULIOJSURI]
A-ddVIN

A-ddVIN uo

Paseq 2INJOIYDIL 2IUIJY
2INJ09)IYOTY UTey) UONNIIXY

Surrojruowr pajewoyny
9INJ09IYOTE PIUSLIO-IITATIG
A-ddVIN

saIny

-29)IYITE IS[OIIU0)) /IDAIISO
[9POu W2)SAS 0JuUT [9pour
uSIsop JO UOIRULIOJSURI],

auou
sassado01d Surzruedio-ypos jo
uoneidajur pue uoreIndyuo)

paymads jou

S[auueyd uorjedru

ssaooxd HEMEQO~U>UG AINUD I0J MO[PIOM
§59501d JuatIdo[aAdp SITIUD 10J MOTPIOM

§59001d JuaTIdO[2ASD SINIUD 10] MOPIOAN

§59501d JuawIdO[aAdp JITIUD I0J MOTPIOM

saseyd uSrsop pue sisATeue ‘worjeoyrdads
sjuawaIbar oy uTyIIM TNV 2y jo uorjesriddy
sardourid aoeds ugisap ayj jo uorjesrddy
suorsuawIp uSrsap aty jo uonedorddy

§59001d JUTUdO[2ASD SINUD 10] MOPIOAN

payroads jou
§52201d Juatrdo[aAdp JITIUS I} I0] MO IOA

$59201d Juawrdo[aAdp SITIUD A} I0] MOJJIOA
sdays JuarayIp yim sureping juswdoraadq

Surpapowr 10
payoads jou

payroads jou
$59501d Juatrdo[aAdp JITIUS N[} I0] MOJJIOA

payoads jou
ASojoporour Juatdo[aAdp USALIP-[9PON
payads jou
paymads jou

ssaooxd “EDEQO~D>Dﬁ ITIUD I0J MO IOM

aseyd juawrdo[aAdp A19A9 10§ S)sB}
ynm ASofoporowr Juawrdo[PAdp UIALIP-[OPOIN

Surpaurduy uoneUIPIO0)) PIZIULSIO-J[9S

SOTIAT}OR JWT)-UNI pue -udIsaq

Y3ty
Lrlis]

Y3ty

Y3y
Y3y
Y3y
43y

wnIpay

MO
Lrlis]

Mo
wnrpay

wnIpajy
Y3ty

Y3y
Lrlis)

Y3ty
Y3y
43H

MOT

MOT

MOT
payrads jou

paymads jou

uou
uou

suou
a8enSue
Surwrrerdorg
apdurtg LI
(TWOV) 28engue|
Suropour Surraisey
suou

suou

uon

-ejuawadu] ‘usisaq
suou

paymads jou

uou

sydern,
payroads jou

paywads jou
paymads jou

Surpd

-poIN sjuawaImbay
paymads jou
SurureaT suryorpyy

paymads jou

paymwads jou

paywads jou
paywads jou

paywads jou

swaysAg aandepy-J[os
swa)sAg aandepy-J[os

swalsAg Surzued10-Jps

swrdsAs SurzruediQ

JIPs pue 2andepy-js

swa)sAg aandepy-Jjos
swa)sAg aandepy-J[os
swaysAg aandepy-J[os

swa)sAg aandepy-J[og

paymads jou
swa)sAg aandepy-J[os

swa)sAg aandepy-J[os
Swa)SAG MO[L

901n0sY Surziuesin-Jos

swa)sAg aandepy-J[os
swa)sAg aandepy-J[os

swaysAg aandepy-J[os
swa)sAg aandepy-J[os

swaysAg aandepy-Jjos
swaysAg aandepy-J[os
swaysAg aandepy-J[os

swdsAs SurzrueSiQ

s pue 2andepy-js

swaysAg aandepy-J[os
sorreudds Sunndurod

snoymbiqn pue aqiqow
ur su)sAg aandepy-jos

swaysAg aandepy-J[os
swdsAs SurzruediQ

JIPs pue 2andepy-js

swaIsAg

OAISBAI9J JO SOLIBUIDS

[15] OOINVNAQ

[2s] swaod

[22] swaysAg SurzruedrQ-yjos Sur
-ugisa 10§ AS0[0pPOYIOIN [eIoUID)

[0¥] s1op11100 TRIOIARYSG

[1¢] uoneoyadg Ayengy ysSry
[11] @oedg uSisag
[¥] suorsuawr SurpPpoy

[L2] 9a1 svsdd

[6] sruan

[€] SV 10 sas$9001g S

[1] ssa001g onjewx

-ony pue yoeorddy juswdorossg
[s] sur

-opmy Sureaurduyg aIem}jog
(2] av¥o
[s¢] qromdurery AJIqOIN 9TEMIJOS

[e1] sasow
[s] xwrels

[9¥] urysuez

[8¢] XSSVS

[61] NOISNA

[87] 2dwy-J28

% uﬁoon,ﬁmm HO,« v—uogmadhnm .JOH<

[o€ ‘82] SVSHA

[¥e] 1SN
[2¥] SA0¥apOS

[£1] J195-v19

payoads Jou -NWWOD UO Paseq dINJOANTYITY payroads jou Mo payoads J0U UOTINJOAU] PUE UOTINJOAT [¢1] yoeorddy uaaLIq-[2poN
98pajmouny

suou paywads jou paymads jou MO [eonIRWR eI swa)sAg aandepy-J[os [1Z ‘P1] moqurey
any) uoroeIs xadoparaq uo

SILIRIQIT JO 3s() -09}IYIIy IJUIIJIY JO 3s() $3SS3001J JO IS) -qY JO [9AdT spuewdq [erdadg Annqeornddy yoeoxddy yo aprp

, February 2018, Mannheim, Germany

Comparison of Approaches for developing Self-adaptive Systems

Taxonomy of Development Approaches (3)

Table 4

Apmys ase)

Apms ase)

Apmys ase)

Apnis ase)

sjuapnys Surafoaur syoafoxd
pue sarpnys uonedorddy ‘sar
-pnjs 9SED UO PIseq UOTeN[eAT
Apmys ase)

saIpnys ase)

Sa1pN)s ase))

sarpnys ase)

Apnis ase)

Apms ase)

Apmys ase)
SaIpNIs ase)
Apmys ase)
Apnis ase)
Apmys ase)
Apmys ase)
sarpnys ase)

Sa1pN)s Ise))

Apnjs ase)

Sa1pN)s Ise))

suorjeorjdde jo uorday0o ®
Jo Sunsay, ‘quawdo[aAap [erry,

paywads jou
payroads jou
payads jou

Jojouwrered

uou

auou
I9joUreI
-eg ‘Teuonisoduro)
I9joures
-eJ ‘Teuonisoduro)

Teuonisoduo)
payroads jou

paymads jou

paymads jou

sI9)jouere g
I9joUreI
Teuonisodwo))
I9joureI

-eJ ‘Teuonisoduro)
I9jouwrereq
I9joweIeq
reuonsoduwo)
reuonsoduro)
I9joureI

-eg ‘euonisoduro)

-ed

I9joures
-eJ ‘Teuonisoduro)

Iojourer
-eg ‘Teuonisoduro)

JIot
-Aryaq 2a1idEpE JO UONIUYDP DWI)-USISIP 1Y
IOt
-Aetaq 2aT)depE JO UOTIIUYAP ‘OWT)-USISIp 1y
JIot
-Aryaq 2a1idepE JO UONIUYDP WT)-USISIP 1y
101
-Aeyaq 2aTIdEpE JO UONIUYDP QWI)-USISIP 1Y

su1a0u0d Ajanpdepe-j[as jo uorn

-eredas y8noayy uoneidepy Qwm-uSisap 1y
sardourrd aoeds

uSisap ySnoxy) uorjeydepy ‘owm-uSisap 1y
uorjerodxa uorsuawrp

ugisap ySnoay) uoneidepy Qwmn-uSisap 1y
[opourt wa)s4s Jo

Juswauyal y8noxy) uorjejdepy ‘Qun-uni 1y
S]OBJT}IE pUR

safen3uey Suropow oyroads urewop jo asn
ygnoayy uonjeydepy Qwn-uni pue -usisap 1y
payroads jou

sa[npow ySnoyy uorjedepy ‘Owr-uni 3y
wped

uSIsa(d1ueSIQ) JO UOIINIIXD PUE UOTJINIISUOD
ySnoayy uonjeydepy ‘Qwm-uni pue -uSIsap 1y
sampow ySnoiyy

uonjeidepy ‘dum-uni je {Surppowr -uSisap 1y

sa[npow ySnoayy uonejdepy ‘dwm-uni 1y

Sy QS jo uonisoduro)) ‘owrm-uni pue -ugisap 1y
sanpow ySnoay uorejdepy ‘duwm-uni 1y
sa[npow ygnoayy uonejdepy ‘Owm-uni 1y
sa[npow ySnoyy uoneydepy ‘dwmn-uni 1y
sa[npow ySnoyy uonjeidepy ‘owm-uni 1y

sanpow ySnoiy uorejdepy ‘duwm-uni 3y

[opout wd)sAs Jo
Juswauyal ySnoxy) uorjejdepy ‘Qun-uni 3y

aremap
-prur OISOV YySnoxyy uoneydepy ‘owm-uni 3y
SWISTURYOIW UOT}

uou
uou
uou

uou

TANN

suou
suou
eAe[
paywads jou
suou

payroads jou

paymads jou
TNX ‘eae[
paywads jou
ade[

ade[
payrads jou
paymads jou

eAe[

payroads jou

eAe[

JIomoaurery

juauodwod 1950 ‘eaef

uou
uou
uou

uou

suou
suou
suou
sur-8nyg asdippy pazruoisny

S]OBJT)IE DIRM]JOS
JO uonPNISuod pue UIISIP Y} 10§ [00],
Juou

payroads jou

s[00} JuawdoTaAp UOWWOD)
ydern,
MIN-WSRId ‘IS0 ‘WVALX

Tdd9

snuedu ‘FTIdV WAl
paymads jou

IvouO WD “TAVX WYELX
MWW-IWSTId ‘VIIM INVILX

[003 nonemuwis NOSYIN

o101 uony

-ejdepe Jo uorjeard 10j s[oo} juawdojos
-9 ‘Tepowr uSisop Surnjdes [003 udisaq
Sunjeprrea pue Jur

-189 ‘9p02 221no0s Jurjerauad ‘Ppour uory
-eydepe uoneoridde ayy Surjead 10y sjoog,

-opmo Surresurduyg

[15] OOINVNAQ

[es] sSWwd0d

[22] swysAg SurzrueSiQ-jos Sur
-ugisa(10j AS0[0pOYIdIN [eISUID

[o%] s10p11100 TRIOIARYDY

[1¢] woneoywadg Ayen ysiy
[11] @ovdg uSsagq

[¥] suorsuatur(Surpepoy

(L2] 9ar SvSdd

[6] a1ruan

[£] SV'S 10§ sassad01d IS
[1] ssa0014 onyewr

-ojny pue yoeorddy juswrdorassg

[sp] our
aremijos

[e] avao

[¢€] yromaure1y LMqojy aremijos

[z1] sason
[§] xwrers
[97] urysuez
[8¢] xSSV'S
[61] NOISNA
[8] 1dw-jo5

29 "JUOD-J[2S 10J YIOMIWEI] YTy

[0 ‘82] sVsad

[¥2] O1SNIN

paymads jou Teuonisodwo) -eurprood ydnoayy uoneidepy ‘owm-udisap 3y paymads jou paywads jou [L%] sA0¥PpOS
$901A195 UOTIe}dEpR/UOTIRUIPIOOD JO
saIpnys ase) reuonisoduwro) uorjesridde ySnoayy uoneydepy ‘oum-uni 3y auou auou [£1] J9S-e10 N
payads jou reuonisoduwo) s[opour y3nory) uoneidepy ‘dwn-uni 3y uou paymads jou [¢1] yoerorddy uaarrg-[opoN
ID{[00] JUdW
Sa1pN)s ase)) Teuonisodwo)) paymads jou TNX ‘eae[-dofoasp moqurey To3ips 3dIIos yomg [12 ‘1] moqureyg
uoneydepy Agradg afens
uornjenjeay Jo Aremuern swistueydq uoneldepy jo yroddng -uey SurururexSoxg ST00], JO s} yoeoxddy yo aprL

, February 2018, Mannheim, Germany

B OVERVIEW OF THE TAXONOMY

The following table summarizes the 18 dimensions of the taxonomy

as well as their characteristics.

Table 5: Taxonomy of Development Approaches:
Dimensions and Characteristics

C. Krupitzer et al.

Dimension

Captured Information

Characteristics

Type of support
Temporal scope of support

Level of abstraction

Reusability

Use of libraries
Use of reference architecture

Use of processes

Use of tools

Support of adaptation mecha-
nisms

Type of adaptation

Type of approach

Involved roles

Special demands on developer

Engineering context
Development phase

Applicability
Language specificity

Evaluation

What kind of support does it provide? What
elements does the approach include?

Which temporal scope does the support by the
approach affect?

What is the level of abstraction of the approach?
Does it solve certain development issues explic-
itly?

Is reusability considered? How is it achieved?

What do they consist of? How are they used?
Does the approach provide a reference archi-
tecture? How is it integrated and what is its
purpose?

Is(are) there any process(es) determined?

How do the tools support the development?
When are they applied?

How does the approach handle the system's
adaptation? What mechanisms does it utilize?
What is the granularity of the adaptation?

What is the key concept? What aspects does it
focus on?

Which kind of parties are involved in the de-
velopment process? What people does the ap-
proach aim at?

What requirements does the developer have to
fulfill? What type of and how much knowledge
is demanded in order to use the approach?
Which software engineering context does it
suit?

In which step(s) of the software development
process can it be applied?

Which systems can the approach be applied on?
Does the approach require a specific program-
ming or modeling language?

Has the approach already been evaluated? How
is it tested?

framework, tools, design concept, guidelines,
methodology
design-time, run-time, both

High, medium, low, not specified

reusable process elements, reusable compo-
nents, reference architectures, component li-
braries, design patterns, generic middleware,
modeling languages, design concepts
provided, not provided, not specified

Provided, not provided

Provided, not provided
proprietary tools, open-source tools, no tools

At design-time (requirements), at run-time
(adaptation logic)

Compositional adaptation, parameter adapta-
tion, both

model-based, architecture-based, control-based,
service-oriented, agent-based, nature-inspired,
design concept, verification

Designer, developer, tester, not specified

none, modeling languages, programming lan-
guages, not specified

Forward Eng., reverse engineering, not specified
design, implementation, both

SAS, CPS, adaptive systems

programming language, modeling language, in-
dependent

Case studies, Industry cooperation, prototyping,
surveys, no evaluation

	Abstract
	1 Introduction
	2 Research Methodology
	3 Taxonomy
	4 Application of the Taxonomy to Classify Development Approaches for Self-adaptive Systems
	4.1 Frameworks
	4.2 Guidelines
	4.3 Tools
	4.4 Design concepts
	4.5 Methodologies

	5 Discussion
	5.1 Frameworks
	5.2 Guidelines
	5.3 Design Concepts
	5.4 Methodologies

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Overview on the Approaches
	B Overview of the Taxonomy

