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ABSTRACT

The engineering of software systems enables developers to create
very powerful, complex and highly customized software systems by
utilizing newest technical capabilities. However, these systems often
are error-prone, inflexible, non-reusable and expensive to maintain.
Self-adaptation attends to these challenges, offering new ways to
automate the adjustment of a system’s structure and state. For that
reason, many software development approaches specifically con-
sider self-adaptability, leading to a high diversity of methodologies
with different characteristics and areas of application. This work
addresses this issue by presenting a taxonomy for the analysis and
comparison of different approaches for developing self-adaptive
systems. In addition, different sample approaches are presented,
demonstrating how these dimensions can be applied to compare
and classify related work.
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1 INTRODUCTION

Due to the continuously increasing complexity of contemporary
software systems and the high non-functional requirements they
have to meet, traditional software engineering approaches do not
succeed with supporting developers in the construction of these sys-
tems. The reason for that is that such traditional approaches do not
emphasize self-adaptability properties and their integration into
the system design, architecture, and deployment. Consequently,
many new software development methodologies and processes
emerge taking into consideration system properties such as flexibil-
ity, dependability, customizability and adaptability to spontaneously
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occurring changes in the system’s environment [6, 43]. The con-
cept of self-adaptation allows for the design and implementation
of software systems that are able to change and optimize their be-
havior autonomously by changing their structure or parameters at
run-time.

Self-adaptation is the process of re-organizing, re-structuring,
and re-configuring a system as a reaction to changes in the re-
sources or environment of the system [29]. In order to be able to
execute self-adaptation, the system is equipped with the self-* prop-
erties [26]. These properties include, among others, self-healing,
self-protection, self-optimization, self-configuration [10]. The adap-
tation logic controls these properties through adaptation of the
system resources. Furthermore, self-adaptation can be considered
in respect of its type which can be compositional or parametric.
The adaptation process can exchange components (compositional
adaptation) or change parameters (parameter adaptation) [37].

Self-adaptive Systems (SAS) are systems that integrate the concept
of self-adaptation. That is, such systems are able to autonomously
react to changes or problems at run-time in order to maintain
their functionality [29, 42]. Triggers for performing self-adaptive
tasks are the system itself, the environment, or the users, such as
hardware failures, location changes of mobile systems, or a change
in the user preferences.

Traditional software engineering approaches are not specially
tailored to the design and construction of complex SAS as they
do not incorporate the ability of self-adaptation in their develop-
ment processes. This results in highly customized, non-reusable,
and ineflicient software systems that have to be developed entirely
from scratch [28]. In order to overcome this problem, many differ-
ent development methodologies, processes, and frameworks have
been created. As powerful and supportive these approaches are, as
diverse are their basic concepts, application domains, adaptation
mechanisms, and benefits. For the purpose of analyzing, compar-
ing, and better understanding software development approaches
for SAS, this paper discusses different aspects and characteristics,
joined together in a taxonomy, as well as classifies a selection of
different approaches by means of this taxonomy. The goal of this
paper is to offer researchers and developers a way to examine,
compare and select software development approaches for SAS for
further research or development cases.

This paper is structured as follows. In Section 3, we explain
the taxonomy for the comparison and its characteristics. Section 4
uses the taxonomy to classify relevant development approaches
for SAS. Then, Section 5 presents the discussion and comparison
of development approaches. Section 6 presents related surveys.
Section 7 concludes this paper with naming open issues and possible
future work.
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Figure 1: Taxonomy used for the comparison of development approaches for SAS.

2 RESEARCH METHODOLOGY

This paper does not claim to offer an exhaustive survey in the re-
search area of development approaches for SAS. The main purpose
is to provide a taxonomy for categorizing such approaches. The
application of the taxonomy to classify approaches should highlight
the diversity in the area of development approaches for SAS as well
as show the degree of support for developers in the research land-
scape and motivate research gaps. Therefore, this paper focuses
on the most important approaches in the research landscape as
identified in current surveys (e.g., [29], [33], or [44]) and Dagstuhl
seminars in the area of software engineering for SAS in 2008 [6],
2010 [43], and 2013 [16].

As the variety of the relevant approaches is rather large, we
decided not to compare all of them together but rather sort the
approaches into categories and discuss the differences within the
categories as well as cross-categorical. This work looks closely at
the categories Frameworks, Guidelines, Tools, Design concepts, and
Methodologies. A framework is an abstraction providing generic
functionality that can be extended by user-written code. Guidelines
support designers and developers by offering processes for the de-
velopment. Tools can be used by developers to perform different
implementation tasks. Design concepts supports different design
activities, such as requirements engineering. Last, software devel-
opment methodologies are high-level descriptions of procedures.
Section 4 presents each category and corresponding approaches.

For the comparison, we worked out a taxonomy with 21 dimen-
sions that are relevant for the development process of SAS. The
Research Roadmap by Cheng et al. [6], the description of modeling
dimensions in [4], the taxonomy from [29] as well as the analy-
sis of the reviewed approaches served as base for the taxonomy’s
dimensions. The following section presents the taxonomy.

3 TAXONOMY

This section presents the taxonomy used for the analysis, classifica-
tion, and comparison of development approaches for SAS. Figure 1
provides of the taxonomy. Table 5 in the appendix summarizes the
18 dimensions of the taxonomy as well as their characteristics. In
the following, this section presents the dimensions of the taxonomy.

Type of support helps to find a suitable approach for a certain
problem. Due to the diversity of development approaches, also the

"o

form of support is very diverse. It includes "framework", "tools",
"design principles’, "guidelines", and "methodologies".

Temporal scope of support signifies the temporal scope of the
different components that provide support. The temporal scope can
be "design-time", "run-time" or both.

Level of abstraction describes the degree of abstraction of the
provided support. Design principles have a high-level abstraction
and do not offer concrete implementations, whereas tools and frame-
works provide a low-level abstraction, as they directly facilitate the
construction of software artifacts.

Reusability refers to the reusability an approach offers and
how it is achieved. This includes, e.g., reusable process elements
and components, reference architectures, component and design
libraries, generic middleware, modeling languages, and design con-
cepts. Some approaches consider reusability at a high abstraction
level neglecting lower abstraction levels [28], others do not consider
reusability at all.

Use of libraries contains information about the existence and
content of libraries, such as component libraries (e.g., based on
the MAPE pattern [26]), design pattern libraries (e.g., [41]), and
adaptation and coordination mechanisms (cf. [53]).

Use of reference architectures describes whether an approach
makes use of a reference architecture and how it is used. Reference
architectures serve as architectural templates for the construction
of software systems with self-adaptivity properties. However, the
structure and functionality can differ.

Use of processes describes the existence and content of pro-
cesses. Several approaches provide new software development pro-
cesses tailored to the development of SAS. By contrast, others do
neither name nor explain their processes.

Use of tools can support the specification of requirements, the
system design, the implementation, or the system validation. Some
approaches include proprietary tools that support the software
system development, whereas others reference common and open-
source software or do not specify tools.

Support of adaptation mechanisms describes how the ap-
proach supports adaptation. Dependent on the temporal scope
of the support, the approaches consider adaptation at design- or
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run-time. Furthermore, adaptation can be achieved, e.g., through
adaptation and coordination patterns, middleware services, design
principles, or the refinement of a model.

Type of adaptation states the granularity of adaptation. It can
be "compositional adaptation”, "parameter adaptation”, or a combi-
nation of both.

Type of approach describes the underlying key concept the
approach is based on. In accordance with [29], possible manifesta-
tions are "model-based", "architecture-based", "control-based", "service-
oriented", "agent-based", "nature-inspired”, and "design concepts".

Involved roles describes which parties are involved in an ap-
proach. Some approaches make a clear and precise statement re-
garding involved parties, some only distinguish between designers
and developers

Special demands on developer covers requirements a devel-
oper or designer must possess, such as specific modeling languages,
programming languages, or other techniques.

Engineering context describes the engineering context and,
thus, the integrability of an approach with the chosen software
development process. Several approaches limit their application
possibilities to traditional forward engineering, some broaden the
applicability to modern engineering contexts, and others do not
limit them at all.

Development phase states in which phase of the software engi-
neering process the approach should be applied. This covers phases
of traditional and modern engineering processes.

Applicability of an approach can be general or specific. SAS
are deployed in many different system domains. Hence, SAS can
differ in their structure and functionality, based on specific sys-
tem domain requirements. To meet these requirements, several
approaches support the design and construction of specific system
types.

Language specificity states whether an approach is bound to
any specific programming or modeling language. Often, frame-
works and run-time oriented approaches integrate adaptation logic
components and a middleware that are programming language
specific. In addition, some approaches require the use of a specific
modeling language for designing the SAS.

Evaluation captures the type and extent of evaluation. It is
inevitable to use the approaches for developing real-world systems
for examining their benefits and challenges. Possible proofs of
concept are case studies, prototypes, or expert interview.

4 APPLICATION OF THE TAXONOMY TO
CLASSIFY DEVELOPMENT APPROACHES
FOR SELF-ADAPTIVE SYSTEMS

This section compares 26 approaches for developing SAS using the
taxonomy elaborated in Section 3. This illustrates how the taxon-
omy can be applied to different approaches and makes it possible to
compare them with regard to specific properties. However, this sec-
tion shall not provide an exhaustive survey in the field. As specified
in Section 2, the approaches are grouped into the categories Frame-
works, Guidelines, Tools, Design concepts, and Methodologies. Table 1
provides an overview of the reviewed development approaches.
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4.1 Frameworks

In general, a framework is an abstraction providing generic func-
tionality that can be extended by user-written code. Frameworks
assist designers and developers with the efficient development of
software, as they can concentrate on meeting the software require-
ments, rather than low-level details of a working system. This en-
ables shorter development times. In the context of SAS, approaches
based on frameworks often provide a combination of a reference
architecture, tools, middleware, development process workflows,
and component libraries.

Rainbow [ 14, 21] is an architecture-based framework that uses
software architectures and a reusable infrastructure to support the
development of SAS. It offers an abstract architecture model to mon-
itor and execute the system’s run-time properties, evaluates the
model, and performs adaptations. Thus, it affects the implementa-
tion phase, involved developers, and its level of abstraction is rather
low. It considers reusability with the aid of a reusable adaptation
infrastructure consisting of system, architecture, and translation
layers. Furthermore, it offers a tool suite covering a script editor for
the custom developed script language, and the RAINBOW develop-
ment kit. It is also programming language specific, as it makes use
of Java and XML implementations. Case studies were conducted
by the authors in the course of their work in order to evaluate the
approach.

A Model-Driven Approach for Developing Self-Adaptive
Pervasive Systems [13] provides model-based support for adding
a resource to or removing resources from a system. The approach
offers a framework which specifies the condition for an adaptation,
adaptation actions performing the adaptation, and adaptation rules
that define which trigger caused which action. The temporal scope
of this approach is run-time. Involved people are developers who
construct the system based on the framework and it is applied in
the implementation phase of a development project. Reusability
is considered by using an adaptation architecture and adaptation
processes. The approach can be applied to the development of Per-
vasive Systems. Furthermore, this approach’s level of abstraction
is low, as it offers specific implementations of adaptation mecha-
nisms. Those adaptation mechanisms are supported at run-time
through models and the adaptation granularity is compositional.
Finally, the framework includes a reference architecture based on
communication channels.

Meta-Self [17] is a service-oriented framework supporting the
development of SAS in engineering requirements. It covers design-
time and run-time and involves designers and developers. They
identify system properties, select architectural patterns and adapta-
tion mechanisms, instantiate these patterns, the architecture and
policies, and the description of meta-data. The granularity of adap-
tation is compositional and adaptation is performed at run-time
through coordination and adaptation services and the enforcement
of policies. The approach has been evaluated by conducting case
studies.
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Table 1: Overview of different development approaches

Name of approach Year Type of approach Type of sup- Applicability
port
Rainbow [14, 21] 2004 Architecture-based  Framework SAS
Model-Driven Approach [13] 2008 Model-based Framework Pervasive Systems
Meta-Self [17] 2008 Service-oriented Framework SAS
SodekoVS [47] 2009 Agent-based Framework SAS
MUSIC [24] 2012 Model-based, Framework SAS
Service-oriented

FESAS Framework [28, 30] 2013 Model-based Framework SAS
Architectural Framework for Self-Configuration & Self- 2011 Architecture-based  Framework SAS
Improvement at Runtime [48]
FUSION [19] 2010 Model-based Framework SAS
SASSY [38] 2011 Service-oriented Framework SAS
Zanshin [46] 2012 Control-based Framework SAS
StarMX [5] 2009 Architecture-based  Framework SAS
MOSES [12] 2012 Service-oriented Framework SAS
Software Mobility Framework [35] 2010 Architecture-based  Framework SAS
GRAF [2] 2012 Model-based Framework SAS
Software Engineering Guideline [45] 2010 Agent-based Guideline Self-organizing Systems
Development Approach and Automatic Process [1] 2015 Architecture-based  Guideline SAS
SE Processes for SAS [3] 2013 not defined Guideline SAS
Genie [9] 2008 Model-based Tool Reflective, component-

based Adaptive Systems
FESAS IDE [27] 2016 Model-based Tool SAS
Modeling Dimension [4] 2009 Design concept Design concept SAS
Design Space [11] 2013 Design-driven Design concept SAS
High Quality Specification [31] 2013 Model-based Methodology SAS
Behavioral corridors [40] 2010 Verification-based =~ Methodology SAS
General Methodology for Designing SOSs [22] 2007 Design concept Methodology Self-organizing Systems
FORMS [52] 2010 Model-based Methodology SAS

DYNAMICO [51]

2010/2013 Control-based

Methodology SAS

SodekoVS [47] provides a generic reference architecture and
methodical development support for the development phases. As
the framework captures the entire development process, designers,
developers, as well as testers are involved in it. The engineering
context of the approach is traditional forward engineering. The
provided reference architecture is responsible for the configuration
and integration of self-organizing processes which are considered
to be reusable elements. Furthermore, the approach offers a library
containing coordination patterns which are applied at design-time.
The adaptation granularity is compositional.

MUSIC [24] is a model-driven, service-oriented framework con-
sisting of a development methodology, a tool suite, and a modeling

language. Reusability is provided by using generic, reusable middle-
ware components for automatizing context monitoring and system
adaptation. Designers and developers have to create an initial list
of resource and context dependencies, perform use-case and de-
sign modeling, model transformation and deployment, as well as
testing and validation. The application is driven by a development
process with tasks for every phase. The tool suite contains tools for
creating the application adaptation model, generating source code,
as well as testing. It is a combination of open source and tailored
tools. The MUSIC middleware takes care of supporting adaptation
mechanisms at run-time. MUSIC includes the MAPE-K model as
well as adaptation mechanisms of other approaches.
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FESAS Framework [28, 30] is a model-driven framework of-
fering reusable components and design patterns. The framework
is equipped with a tool set and includes a middleware that con-
trols system deployment. Designers use the FESAS IDE to create
a design model that, then, is transformed into a system model by
FESAS. Developers use the FESAS IDE to create code for MAPE
components. Because of the inclusion of reusable components, a
reference architecture including middleware as well as distribution
and design patterns, this approach strongly emphasizes reusabil-
ity. The reference architecture and middleware are used for the
transformation of the design model into a system model. Further-
more, the approach uses a component library containing control
loop elements, design/ distribution patterns, and support for meta-
adaptation of the adaptation logic at runtime. FESAS makes use of
other approaches, as it incorporates the MAPE-K principle, the BASE
middleware [8], and patterns for decentralized control (cf. [53]).

Architectural Framework for Self-Configuration & Self-

Improvement at Runtime [48] complements the observer/controller

adaptation logic known from Organic Computing [39] with an ad-
ditional layer for learning new adaptation rules. This framework
provides a reusable reference architecture and a simulation-based
evaluation of system configurations. The adaptation mechanisms
find feasible configuration parameters to adjust the system con-
figuration. If none is found, it relies on learning and simulation.
The approach makes use of other tools, e.g., the MASON simu-
lation tool [32] for testing configurations and a Fuzzy Classifier
System [49] for rule-based learning. Hence, the support of adap-
tation mechanisms is at run-time and granularity of adaptation is
parameter adaptation. The framework was evaluated in scenarios
of traffic and network control.

FUSION [19] is a model-driven framework based on feature
models. They represent an abstraction of the system functional-
ity. FUSION provides a reusable architecture that incorporates a
learning and adaptation cycle. The adaptation cycle comprises de-
tect, plan, and effect. Adaptation is pursued if the system finds
itself not reaching its objectives. Additionally, the learning cycle
induces new relationships between features and their impact on the
objectives. The used model reflects goals in utility functions. The
framework extends the tool XTEAM [18] for modeling goals and
features. For learning, the WEKA framework [25] is integrated. The
PRISM-MW [36] middleware supports monitoring and dynamic
adaptation. The support of the adaptation mechanism is run-time
and granularity of adaptation is on system features, i.e., composi-
tional adaptation.

SASSY [38] aims at self-optimization of service-oriented sys-
tems at run-time. User priorities are incorporated and traded against
each other in a utility function representing the system goals.
Goals consist of functional and QoS requirements. Integrating a
visual requirements specification for QoS specification, SASSY’s
self-adaptation approach is capable of generating a system archi-
tecture at run-time. SASSY relies on reference architectures for
self-adaptation. The approach supports the modeling tool XTEAM
and extends xADL [15] for deriving base architectures from its
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system service architectures at run-time. Therefore, SASSY inte-
grates the Generic Modeling Environment (GME) and the Graph
Rewriting and Transformation engine (GReAT). SASSY supports
compositional adaptation as it exchanges and initiates varying sys-
tem architectures at run-time.

Zanshin [46] is a requirements-based framework that adds
adaptation to an existing system. The framework monitors fail-
ures in the fulfilling of requirements based on log files. The monitor
triggers the adaptation process according to the type of failure.
Based on goal-oriented requirements engineering, the approach
acknowledges functional and non-functional requirements. In [46],
Silva Souza extends the Zanshin framework to a control-driven
approach that implements compensation for faulty self-adaptation
performance. The framework relies on prioritization of require-
ments during the design phase. Thus, the temporal scope of support
is both design-time and run-time. The granularity of adaption is pa-
rameter adaption as the adaptation mechanism takes user-defined
policies as input. Silva Souza evaluated the approach by conducting
a case study on a meeting scheduler system.

StarMX [5] is an architecture-based framework consisting of a
development process and a reference architecture which adds self-
adaptation to legacy JavaEE-based systems. StarMX’s execution
engine represents the adaptation logic in the form of processes in
an execution chain. Those execution chains represent autonomic
managers and get triggered either in intervals or by a defined event
sent by the system or other processes. In order to operate, pro-
cesses depend on anchor objects which provide sensors, effectors
and helper functions to interact with the managed system. The
approach comprises the development phase and the deployment of
the self-adaptation mechanism on an operating system. Designers
have to specify self-managing requirements and to provide man-
ageability endpoints. Developers implement a management logic
and configure the framework. StarMX supports them with service
lookup, proxy generation, activation mechanism, caching, memory
scope, data gathering, and logging. The framework incorporates
policies and rules as inputs for the adaption cycle. Adapters for the
policy engine Imperius and the IBM ABLE rule engine are included
but through the exploitation of the adapter design pattern [20],
developers may provide their own adapter for any arbitrary policy
engine. The authors provide a sample implementation with the
web-based application TPC-W in [5].

MOSES [12] focuses on requirement-based QoS aspects within
service-based self-adaptive systems. Therefore, Cardellini et al. [12]
provides an implementation of the adaptation logic following the
MAPE cycle. This implementation is reusable in different settings.
Developers have to describe the composite service in a workflow or-
chestration language, such as Business Process Execution Language.
Additionally, the candidate services have to be described. At run-
time, MOSES uses this information to adapt the service-oriented
architecture at runtime. As reaction, MOSES might change the com-
position of the services, hence, performs a structural adaptation.
The applicability of MOSES was proven in a JavaEE system.
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Software Mobility Framework [35] is an architecture-driven
software mobility framework for developing distributed, mobile sys-
tems. The framework supports modeling, analysis, implementation,
deployment, and run-time migration. Comparable to FUSION [19],
it integrates XTEAM for modeling and PRISM-MW for monitoring
and architecture-based, structural (re-)configuration. Additionally,
DeSi provides algorithms for exploring the configuration space
and determining system configurations at design time and runtime.
Further, a feedback loop is integrated to deliver information from
DeSi to XTEAM which can be used by designers and developers
to further improve the system. Hence, it support designers and
developers during the whole life cycle. In [35], the framework is
evaluated in a robotic scenario.

GRAF [2] integrates TGraphs and accompanying technologies
for modeling and manipulating runtime models. GRAF supports
automatic updates of runtime models based on observing the man-
aged resources at runtime. Based on the runtime model, GRAF
determines adaptation rules for parameter adaptation within the
managed resources. The implementation of GRAF relies on Java-
based aspect-oriented programming within the managed resources.
Amoui et al. evaluate the GRAF approach in two case studies: a
telephony server and the Jake2 game engine.

4.2 Guidelines

Guidelines support designers and developers by offering a detailed
sequence of working steps that have to be performed in order to
achieve a desired result. However, some guidelines also offer the
possibility to skip certain steps, extend, or replace them. Typically,
they do not offer tools, libraries or reference architectures, but they
can be accompanied accordingly.

C. Krupitzer et al.

modules of the reference architecture. Included approaches are the
MAPE-K principle and the DROOLS framework.

SE Processes for SAS [3] addresses the issue that traditional
software engineering processes cannot cope with the requirements
for SAS identified by Andersson et al. in [3]. The main difference
evolves from the coexistence of design activities performed by de-
signers and developers at design time as well as automatic design
activities performed by the SAS at runtime. Consequently, Ander-
sson et al. proposed a new process for developing SAS based on
the Software and Systems Process Engineering Meta-Model (SPEM)
specification. This process targets design time and runtime. The
process provides a high-level guideline describing the development
process of SAS. However, it does not define any frameworks, tools,
or further development support. Contrary, it does not limit the
applicability to any specific language, development knowledge, or
system domain. As it is a high-level view, it might be easily cus-
tomized or extended for various settings.

Additionally to the presented guidelines, some of the presented
frameworks — e.g., StarMX [5] or FESAS [27, 28] — integrate de-
velopment processes. However, they are customized to be used in
combination with the corresponding framework.

4.3 Tools

As the complexity, functional scope, and requirements of software
systems continuously increase, the development of such systems
can become inefficient. The provision of design and development
tools can make the software engineering process more efficient as
they automatize parts of development processes and lower error-
proneness. Some approaches offer only one tool for a specific task.
This can be the construction and visualization of design concepts,
the use of a modeling language, the insertion of meta-data needed

A Software Engineering Guideline for Self-organizing Resource{or the automated creation of software artifacts, or the validation of

Flow Systems [45] is a software engineering guideline combined
with a pattern that describes the elements of the system under con-
struction and how they collaborate. This guideline covers detailed
design and implementation activities for designers and developers.
The guideline can be integrated into a traditional forward engineer-
ing approach and is applicable for Self-organizing Resource-Flow
Systems, such as logistics applications and adaptive production
systems. The approach does not offer custom-made tools, but ref-
erences common development tools that are used in the guideline.
The adaptation is based on the construction and execution of the
design pattern and is supported at design- and run-time.

Development Approach and Automatic Process for Adap-
tation at Runtime [1] is a combination of a reference architecture
and development guidelines based on automated support. The ref-
erence architecture is composed of an adaptation core and four
complementary modules, the development, action plan, adaptation
rule, and infrastructure module. Involved parties are software en-
gineers as well as domain specialists. The developer involvement
covers the identification of system adaptation requirements within
the design phase, and the insertion of meta-data in the implemen-
tation phase. The adaptation is performed at run-time through the

such artifacts. By contrast, others offer whole tool suites supporting
several development activities.

Genie [9] is a development tool that supports the modeling, gen-
eration, and operation of reconfigurable, component-based systems.
It allows developers to use three levels of abstraction populated
by different artifacts such as models, configurations, policies, and
components. As the modeling tool provides design and modeling
support, its temporal scope is design-time. However, the artifacts
the tool constructs are specific implementations, so that the scope is
also run-time. The created artifacts are inserted into a middleware
that is able to process the adaptation at run-time. The approach has
been evaluated by case studies in the course of the authors’ work
and includes MetaEdit+, an environment for creating and using
domain-specific modeling languages.

FESAS IDE [27] complements the Eclipse IDE with two plug-
ins. The FESAS Development Tool supports developers in writing
of code for MAPE-K component. This plug-in is specific for systems
implemented for the FESAS framework. Due to its specificity, this
plug-in is excluded for the comparison. The FESAS Design Tool
offers a model-based approach for designing SAS. It is based on the
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Eclipse Modeling Framework (EMF), the Graphical Modeling Frame-
work (GMF), and the Acceleo code generator. It relies on the generic
MAPE-K model [26] and offers support for modeling decentralized
interaction patterns from [53]. Hence, the information captured
by the models is reusable for many different SAS. The graphical
editor allows to model the SAS using drag&drop of components.
This high abstraction eliminates the need for the system designer
to learn the modeling syntax. This model is transformed to a sys-
tem configuration that is in accordance with the FESAS modeling
syntax. However, the modular approach enables to easily define an-
other syntax. In [27], the FESAS IDE is evaluated in five case studies.

Additionally, some of the frameworks integrate different tools
for the development, such as XTEAM which is used for modeling
in [35], [19], and [38] or the Eclipse plug-ins of the MUSIC frame-
work [24]. However, these tools do not cover the development of
SASs independently but are integrated in the development process
of the corresponding frameworks.

4.4 Design concepts

Design concepts are focused on design-time. The development of
SAS starts with the requirements engineering, analysis, and de-
sign. The concept of self-adaptation can be examined very early
in order to optimize and emphasize self-adaptation. Design-based
approaches include design principles and patterns, but do not offer
libraries or concrete implementation proposals. However, they can
integrate tool support.

Modeling Dimensions of Self-Adaptive Software Systems [4]
provide software engineers with a terminology for specifying self-
adaptation. Therefore, the dimensions are categorized, considering
goals, change, mechanisms, and effects. This approach offers de-
signers the possibility to explore the system’s modeling dimensions.
Because they do not offer concrete implementation proposals, but
very generic design principles, the level of abstraction is rather high.
However, this high abstraction level facilitates high reusability and
extensibility. The authors state that this approach can be applied
to traditional forward as well as reverse engineering contexts. Fur-
thermore, the approach has been evaluated by different case studies.

Design Space for Self-Adaptive Systems [11] is a design con-
cept which emphasizes systematic design and identifies the design
space dimension of SAS. Therefore, it discusses key design decisions,
design questions, and answers to these question, organizing them
into five different clusters. As this design principles are very generic
and abstract, they are also very reusable and suit most SAS. The
designers are involved by answering all relevant questions provided
by the approach in order to explore the design space of the system
development. The level of abstraction is very high because they
do not offer concrete implementation blueprints. Furthermore, the
approach supports adaptation mechanisms at design-time through
the exploration of the system’s design space resulting in adaptation
requirements, specifications and designs. It also offers high exten-
sibility, as it is a very general design concept that can be adopted,
integrated into other approaches and expanded by new dimensions.
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4.5 Methodologies

A software development methodology, in general, is a strategy or
procedure to deal with a certain problem. It can be limited to a
specific task, e.g., specification, validation, or deployment, or cover
the whole development process. Besides, it can include processes
for sub-tasks or the entire software engineering process, modeling
languages, or analysis techniques. However, it is not as extensive
as a framework and is not bound to a step-by-step guideline, al-
though it may contain a guideline for special tasks embedded into
the methodology.

High-Quality Specification of Self-Adaptive Software Sys-
tems [31] is a methodology for the specification of SAS. This
methodology includes the UML-based Adapt Case Modeling Lan-
guage (ACML), which allows for the explicit specification of self-
adaptation. Furthermore, it is based on formal semantics which
help applying quality assurance techniques to the modeled sys-
tem. As this approach does not consider implementation aspects
in particular, its level of abstraction is high. It supports adaptation
mechanisms at design-time by separating self-adaptivity concerns
using the ACML. It is evaluated by conducting case studies.

Behavioral corridors [40] provides a formal method for the
specification of organic computing systems using description of
behavioral corridors. The approach uses temporal logic (ITL+) to
formally specify the adaptive system and supports the Simple Pro-
gramming Language (SPL) syntax. Therefore, this approach is spe-
cific to the semantics of temporal logic and SPL. Based on the
Restore-Invariant approach [23], it supports formal verification of
the system. The method distinguishes between two system states:
(i) functional state and (ii) erroneous state. In functional state, the
system reaches its desired goals. In an erroneous state it does not
achieve its goals and, therefore, tries to reconfigure itself to re-
turn to a functional state. The approach helps designers to verify
a system’s formal specification during design phase. The formal
method makes use of the KIV theorem prover [7]. The methodology
provides a guideline for verification, but not a concrete implementa-
tion. Thus, the level of abstraction is rather high. The approach was
evaluated by conducting a case study on self-organizing resource
flow systems.

General Methodology for Designing Self-Organizing Sys-
tems [22] is an iterative and incremental development approach
that integrate feedback on its development stages to rework pre-
vious steps or influencing the implementation of following steps.
As the agent-based methodology comprises the design process, its
temporal scope of support is design-time. Involved roles are de-
signers because it focuses on the requirements of a system. The
approach does not consider reusability as it does not offer specific
implementations, instead it yields a concept to route the exploration
of implementations. Hence, its assessment reflects a high level of
abstraction. The methodology was evaluated by its application on
a case study on self-organizing traffic lights.

FORMS [52] incorporates the concepts of computational reflec-
tion [34] and architecture-based adaptation. It supports designers
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in defining a self-adaptive system’s formal specification. FOMRS
provides a reusable reference model to specify architectural pat-
terns for SAS with the Z notation to precisely describe the system’s
elements, their properties, and relationships. It enables formal veri-
fication by Community Z Tools. The temporal scope of support is
the design-time. The level of abstraction is medium as the reference
model contributes concrete guidance on how to specify a system’s
functional and self-managing elements but does not offer a specific
implementation. The authors have evaluated the approach by con-
ducting two case studies.

DYNAMICO [51] is a reference model for context-based self-
adaptation. It addresses the shortcoming of previous research that
often does not clearly examine visibility of feedback loops and
missing control-based modeling. According to [51], the visibility
of decoupled feedback loops supports analyzability, assessability,
and comparability of the adaptation logic. The DYNAMICO refer-
ence architecture adds an additional layer on top of the adaptation
logic for monitoring and reasoning on adaptation objectives [51],
based on the taxonomy of adaptation metrics from [50]. Further,
the three-tier feedback-circuit consisting of an overall control ob-
jective loop with two loops for adaptation and context-awareness
makes the tasks for self-adaptation and context-awareness more
visible for developers. This control-driven and architecture-based
methodology provides specific architectural patterns but lacks a
concrete reference implementation.

5 DISCUSSION

This section discusses the sample approaches presented in Section 4
in terms of their characteristics that have been elaborated accord-
ing to the taxonomy proposed in Section 3. Due to the immense
amount of available development approaches for SAS and their
enormous variety regarding underlying concepts, scope and area
of application, the selection of sample development approaches is
very constrained and does not reflect the collectivity of available
approaches. Thus, the comparison of the sample approaches cannot
draw conclusions about development methodologies in general.
However, it allows for an overview of similarities and differences
of such approaches and reveals strengths, weaknesses, oversupply,
and lack of them and their provided support.

Because the various categories of development approaches are
fundamentally different, we only compare approaches of the same
category with each other. This makes sure that the development
approaches can be compared comprehensively, providing mean-
ingful findings. As tools are rather specific, we omit them for this
discussion.

5.1 Frameworks

In general, it is noticeable that the type of the approaches varies.
We presented architecture-based, model-based, service-oriented,
agent-based, component-based frameworks. Most approaches offer
support at run-time, whereas the others offer support at design-
as well as run-time and, thus, involve not only developers, but
also designers in the development process. This approves the ex-
tensive nature of frameworks. All frameworks take reusability
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into consideration, providing generic, reusable adaptation archi-
tectures/infrastructures. But they differ regarding the provision
of reusable process elements and components on the one hand,
and middleware on the other hand. Consequently, reusability as
an important success factor for such approaches is taken care of
similarly. Further, none of the approaches except FESAS focuses
on reusing existing code for the algorithms of MAPE components,
so reusability on a low level. The authors of SodekoVS and MUSIC
explicitly state that these approaches can be integrated into a tra-
ditional forward engineering context, indicating that frameworks
are preferably applied in a straight forward development process,
whereas the other frameworks do not offer information about this
dimension. Rainbow, SodekoVS, and FESAS are applicable to SAS in
general, while the others are more specialized. Except for Rainbow,
there is no information about the demands on the developer. As
these approaches are meant to facilitate the development of SAS,
it would be helpful to provide such information. Furthermore, the
support of adaptation mechanisms differs a lot according to the type
of approach. Adaptation is achieved through models, adaptation
services, coordination mechanisms, or middleware. All frameworks
offer compositional adaptation, confirming their component-based
structure. Some frameworks provide comprehensive tool support,
e.g., Rainbow, MUSIC, and FESAS . Many frameworks includes other
works. All in all, the comparison of the approaches’ type of support
and their year of publication indicates that present frameworks do
not only focus on run-time support, but also include design-time
activities into their support.

5.2 Guidelines

Comparing the guidelines presented in Section 4, one can see that
Software Engineering Guideline [45] is agent-based, whereas Devel-
opment Approach and Automated Process [1] is architecture-based.
However, they both provide support at design- and run-time, but
differ in the type of support, as the one includes a design pattern and
the other provides a reference architecture. The SE processes for
SAS [3] describe a rather generic applicable process. Furthermore,
all approaches can be applied in a traditional forward engineering
context. As different the underlying concepts of the guidelines are,
as different is their support of adaptation mechanisms. The first
guideline achieves adaptation through the construction and exe-
cution of the Organic Design Pattern, while the second achieves it
through different modules. The SE processes for SAS do not specify
any restrictions. Finally, they all do not make use of libraries, but
include other works and are evaluated by the conduction of case
studies.

5.3 Design Concepts

The Modeling Dimensions and Design Space approaches are both de-
sign concepts that provide reusable design principles for the design
of SAS, hence, their temporal scope is design-time and involved
parties are designers. Modeling Dimensions can be applied in a tra-
ditional forward or reverse engineering context, whereas there is
no information on this aspect given in the Design Space approach.
The user involvement is very similar, as the designer has to ex-
plore and apply design dimensions or answer design questions. As
both approaches are design concepts, they do neither use libraries,
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processes, nor reference architectures, but are extendable, as they
can be integrated into the design phases of other development pro-
cesses and approaches. Both concepts do not include other works
and are evaluated with the aid of case studies. In general, both
approaches are very similar regarding their characteristics. Thus,
it may be interesting to compare the results of their application to
actual software systems in respect of strengths, weaknesses, and
contextual overlapping.

5.4 Methodologies

In general, methodologies share a higher level of abstraction than
frameworks. While frameworks compose a (sub-) system of reusable
components for implementation, methodologies tend to be focused
around a procedure dealing with a specific problem. For instance,
Gershenson’s General Methodology tries to give a standardized
view on the development process of SAS, from where to start design-
ing a system [22]. The two approaches providing concrete reference
models, FORMS [52] and DYNAMICO [51], both hold a medium
level of abstraction, as both provide reference models, but do not
provide implementation but a starting point from where to develop
a system by deploying the models. Opposite, the other methodolo-
gies share a high level of abstraction as they focus more on giving
generic guidance on the development process.

6 RELATED WORK

In [29], we present a taxonomy of self-adaptation and a survey
on engineering SAS motivating a new perspective on these sys-
tems with respect to context adaptation [29]. The classification of
different approaches through the "type of approach"-dimension
described in Section IV is based on the categorization elaborated in
the survey on engineering SAS. Furthermore, ideas for the structure
of the taxonomy are gained from the taxonomy of self-adaptation.
Finally, the approaches considered in their work facilitated the
selection of approaches for the comparison in Section V.

Macias-Escriva et al. review state-of-the-art approaches reported
in literature [33]. Therefore, different methods and techniques that
are are currently applied in the design of SAS are analyzed. Addi-
tionally, the authors survey research challenges and applications
for SAS.

Salehie and Tahvildari presented an overview over the landscape
of self-adaptive software and related research challenges, including
their own taxonomy for self-adaptation [44]. Additionally, they
present and cluster different approaches for developing SASs.

7 CONCLUSION

In this paper, a profound taxonomy with detailed dimensions for
the analysis and comparison of different development frameworks,
guidelines, tools, design concepts and methodologies is proposed.
By the use of this taxonomy, different approaches can be classified
with respect to their underlying key concepts, provision of sup-
port, the user involvement, basic applicability conditions, the use
of processes, libraries, and tools, the abstraction level, the handling
of adaptation, and the consideration of reusability, extensibility,
completeness and validity. Furthermore, the taxonomy is applied to
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26 different approaches that are analyzed by means of the dimen-
sions, structured, and presented, allowing for a comparison of their
characteristics and contents.

Due to the high diversity, differences regarding key concepts,
and various extents of development approaches for SAS, it is very
challenging to find one taxonomy that is generic enough to be ap-
plicable to every type of approach. Moreover, the taxonomy should
be detailed, widespread, and in-depth at the same time. Finding
appropriate dimensions that break all information of an approach
down into key attributes and pieces of information that make a
comparison possible and profound, is the greatest challenge of this
work. However, the taxonomy has been successfully used for clas-
sification of approaches from different categories. But despite the
experience that this taxonomy suits a wider range of approaches,
many works do not elaborate the approach’s concepts and prop-
erties thoroughly enough to examine each dimension extensively.
In such cases, additional information is needed to accomplish a
successful analysis.

The taxonomy proposed in this paper may be refined by adding,
adopting, and specifying dimensions in the future. Therefore, it
may be reasonable to perform a more detailed survey for every
category to find characteristics that suit best. This could increase
the quality and usability of the gathered information. Furthermore,
the evaluation of the taxonomy in terms of applying it to more
approaches would be helpful to find new and identify problematic
characteristics.
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OVERVIEW ON THE APPROACHES

In the following, the appendix presents the detailed results of the
comparison of the approaches presented in Section 4. The tables
present for each approach its characteristics for the dimensions of
the taxonomy. Due to space limitations, the overview is split into
several tables.
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B OVERVIEW OF THE TAXONOMY

The following table summarizes the 18 dimensions of the taxonomy

as well as their characteristics.

Table 5: Taxonomy of Development Approaches:
Dimensions and Characteristics

C. Krupitzer et al.

Dimension

Captured Information

Characteristics

Type of support
Temporal scope of support

Level of abstraction

Reusability

Use of libraries
Use of reference architecture

Use of processes

Use of tools

Support of adaptation mecha-
nisms

Type of adaptation

Type of approach

Involved roles

Special demands on developer

Engineering context
Development phase

Applicability
Language specificity

Evaluation

What kind of support does it provide? What
elements does the approach include?

Which temporal scope does the support by the
approach affect?

What is the level of abstraction of the approach?
Does it solve certain development issues explic-
itly?

Is reusability considered? How is it achieved?

What do they consist of? How are they used?
Does the approach provide a reference archi-
tecture? How is it integrated and what is its
purpose?

Is(are) there any process(es) determined?

How do the tools support the development?
When are they applied?

How does the approach handle the system's
adaptation? What mechanisms does it utilize?
What is the granularity of the adaptation?

What is the key concept? What aspects does it
focus on?

Which kind of parties are involved in the de-
velopment process? What people does the ap-
proach aim at?

What requirements does the developer have to
fulfill? What type of and how much knowledge
is demanded in order to use the approach?
Which software engineering context does it
suit?

In which step(s) of the software development
process can it be applied?

Which systems can the approach be applied on?
Does the approach require a specific program-
ming or modeling language?

Has the approach already been evaluated? How
is it tested?

framework, tools, design concept, guidelines,
methodology
design-time, run-time, both

High, medium, low, not specified

reusable process elements, reusable compo-
nents, reference architectures, component li-
braries, design patterns, generic middleware,
modeling languages, design concepts
provided, not provided, not specified

Provided, not provided

Provided, not provided
proprietary tools, open-source tools, no tools

At design-time (requirements), at run-time
(adaptation logic)

Compositional adaptation, parameter adapta-
tion, both

model-based, architecture-based, control-based,
service-oriented, agent-based, nature-inspired,
design concept, verification

Designer, developer, tester, not specified

none, modeling languages, programming lan-
guages, not specified

Forward Eng., reverse engineering, not specified
design, implementation, both

SAS, CPS, adaptive systems

programming language, modeling language, in-
dependent

Case studies, Industry cooperation, prototyping,
surveys, no evaluation
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